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Abstract

The majority of this thesis is concerned with the development of efficient and robust
numerical methods based on adaptive algebraic multigrid to compute the stationary distri-
bution of Markov chains. It is shown that classical algebraic multigrid techniques can be ap-
plied in an exact interpolation scheme framework to compute the stationary distribution of
irreducible, homogeneous Markov chains. A quantitative analysis shows that algebraically
smooth multiplicative error is locally constant along strong connections in a scaled system
operator, which suggests that classical algebraic multigrid coarsening and interpolation can
be applied to the class of nonsymmetric irreducible singular M-matrices with zero column
sums. Acceleration schemes based on fine-level iterant recombination, and over-correction
of the coarse-grid correction are developed to improve the rate of convergence and scalabil-
ity of simple adaptive aggregation multigrid methods for Markov chains. Numerical tests
over a wide range of challenging nonsymmetric test problems demonstrate the effectiveness
of the proposed multilevel method and the acceleration schemes.

This thesis also investigates the application of adaptive algebraic multigrid techniques
for computing the canonical decomposition of higher-order tensors. The canonical decom-
position is formulated as a least squares optimization problem, for which local minimizers
are computed by solving the first-order optimality equations. The proposed multilevel
method consists of two phases: an adaptive setup phase that uses a multiplicative correc-
tion scheme in conjunction with bootstrap algebraic multigrid interpolation to build the
necessary operators on each level, and a solve phase that uses additive correction cycles
based on the full approximation scheme to efficiently obtain an accurate solution. The
alternating least squares method, which is a standard one-level iterative method for com-
puting the canonical decomposition, is used as the relaxation scheme. Numerical tests
show that for certain test problems arising from the discretization of high-dimensional par-
tial differential equations on regular lattices the proposed multilevel method significantly
outperforms the standard alternating least squares method when a high level of accuracy
is required.
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Chapter 1

Introduction

The goal of this thesis is to develop efficient and robust numerical methods based on

adaptive algebraic multigrid (AMG) for solving problems in linear and multilinear algebra.

The research topics considered include the computation of the stationary distribution of

large sparse Markov chains and the computation of the canonical decomposition of higher-

order tensors. In what follows we introduce each of these topics separately, give a brief

overview of this thesis, and conclude with a statement of research contributions.

1.1 Algebraic multigrid for Markov chains

A Markov chain is a stochastic process with a finite or countably infinite state space that

satisfies a memoryless property, that is, the occurrence of a future state depends only on

the present state and is independent of any past states. Markov chains come in two flavors:

discrete-time chains in which state changes occur at discrete times and continuous-time

chains in which state changes may occur at any point in time. In the case of a finite state

space all the information of a Markov chain can be encoded into a matrix P ∈ Rn×n,

referred to as a transition matrix. The ijth entry of this matrix gives the probability of

transitioning to state j in the next time step given that the chain is currently in state

i. The behavior of a Markov chain can be characterized by the various properties of its

1



states, or in the case of a finite state space, by the various properties of its transition

matrix. For example, a discrete-time Markov chain is called irreducible if every state

can be reached from every other state, which is equivalent to its transition matrix being

irreducible. Irreducible Markov chains with finite state spaces are of particular importance

to this thesis because they are guaranteed to have a unique stationary distribution, that

is, there exists a vector x ∈ Rn with nonnegative components that sum to one such that

x = Px. In addition, if the states of the chain are aperiodic then the stationary distribution

corresponds to the limiting probability distribution. This quantity is often of great interest

in applications because it characterizes the behavior of the chain in the long run.

Markov chains are of interest in a wide range of applications including information

retrieval and web ranking, performance modeling of computer and communication systems,

dependability and security analysis, and analysis of biological systems [95, 100, 110]. For

example, a well-known web ranking application is the PageRank algorithm used by the

Google search engine. In its simplest interpretation the PageRank algorithm views the

Internet as a large directed graph, where each node in the graph corresponds to a web

page and each edge corresponds to a link between web pages. Essentially, the PageRank

algorithm performs a random walk on this graph assigning edge weights that correspond to

transition probabilities. The resulting edge-weighted graph corresponds to the transition

matrix of a discrete-time Markov chain. Various regularizations are performed to manage

any dangling nodes and to make the transition matrix irreducible and aperiodic. The

page rank of each web page is then obtained by computing the stationary probability

distribution of the regularized transition matrix. The exact details of how Google computes

the stationary distribution is a closely guarded secret; however, the underlying method is

allegedly a simple one-level stationary iterative method accelerated by vector extrapolation.

If the state space of a Markov chain is relatively small, direct methods such as LU fac-

torization via Gaussian elimination followed by forward/backward substitution are effective

for computing the stationary distribution (see [110] for an overview of direct methods ap-

plicable to Markov chains). However, in the case of Markov chains with large state spaces

iterative methods are the only option for computing the stationary distribution. The sim-

plest such method is the power method. One iteration of the power method consists of
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multiplying the current iterate by the transition matrix, followed by normalization. The

rate of convergence of the power method can often be improved by considering other one-

level solvers such as weighted Jacobi and successive overrelaxation [104], which may be

viewed as preconditioned versions of the power method. While standard one-level methods

are simple to implement and have provable convergence for certain classes of matrices, they

can be unacceptably slow to converge when a subdominant eigenvalue of the transition ma-

trix, that is, an eigenvalue of maximum magnitude less than one, is close to unity. We refer

to a Markov chain as being slowly mixing if its subdominant eigenvalue with maximum real

part approaches unity as the size of the state space grows (note that our definition may

differ from others found in the literature). We are particularly interested in slowly mixing

Markov chains because they represent a class of problems for which multigrid acceleration

of standard one-level methods has the potential for large speedups.

A challenging class of problems in which some of the transition matrix eigenvalues tend

to cluster around the eigenvalue λ = 1 are nearly completely decomposable (NCD) Markov

chains. Nearly completely decomposable Markov chains are characterized by a state space

that can be partitioned into disjoint subsets, with strong interactions among the states

of a subset but weak interactions among the subsets themselves [91, 110]. Equivalently,

the transition matrix can be symmetrically permuted to block form in which the nonzero

elements of the off-diagonal blocks are small compared to those of the diagonal blocks.

While one-level iterative methods typically perform poorly for NCD problems owing to a

clustering of eigenvalues near λ = 1, two-level iterative aggregation/disaggregation (IAD)

methods [34, 37, 39, 65, 80, 81, 82, 87, 88, 89, 114] are more effective for this class of

Markov chains, oftentimes displaying rapid convergence to the exact solution. Iterative

aggregation/disaggregation methods are multiplicative in nature and include geometric

variants that select aggregates based on a priori knowledge of the Markov chain’s struc-

ture and algebraic variants that select aggregates based on strength of connection in the

problem matrix. As their name implies, IAD methods are closely related to aggregation-

based multigrid methods in that the updated iterate after one iteration is obtained by

disaggregating (interpolating) the approximate solution of a smaller (coarser) system of

aggregated equations, followed by a few iterations of an inexpensive smoother. Iterative

3



aggregation/disaggregation methods of the geometric type can obtain fast convergence for

NCD problems by exploiting the a priori known block structure of the permuted transition

matrix to guide the selection of the aggregated states. We mention that domain decompo-

sition methods such as Schwarz methods [8, 90, 104], and preconditioned Krylov subspace

methods including Arnoldi, GMRES, and biconjugate gradient [9, 10, 100, 104, 110] have

also been successful at solving such problems. In fact, these methods constitute some of

today’s leading solvers for Markov chains.

Horton and Leutenegger were among the first to consider multilevel methods for com-

puting the stationary distribution of Markov chains [69, 85]. Their method extends of

the two-level iterative aggregation/disaggregation method for Markov chains developed by

Takahashi [114], which makes use of the aggregated equations proposed by Simon and Ando

[107]. Historically, multilevel methods with more than two levels have not been widely used

for Markov chains, probably due to their poor convergence properties compared with two-

level methods and the Krylov subspace methods mentioned above. However, with the

recent advancements in multigrid over the past 20 years such as smoothed aggregation

multigrid, bootstrap AMG, and the adaptive AMG framework, applying multigrid tech-

niques to solve Markov chain problems shows much promise [15, 33, 99, 117, 118, 127].

Although theoretical convergence results are difficult to obtain for general nonsymmetric

problems, empirical studies have demonstrated good convergence properties and robustness

of multigrid methods applied to nonsymmetric linear systems [31, 38, 105, 112]. The goal

of this thesis is to develop adaptive AMG methods for Markov chains that scale well and

demonstrate good robustness. We note that while theoretical convergence results do exist

for certain classes of two-level IAD methods [34, 81, 87, 88, 89], these results do not ex-

tend easily to multilevel methods. In fact, theoretical convergence results for AMG solvers

applied to nonsymmetric problems are sparse in the literature, with advances having only

recently been made [31, 96].
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1.2 Algebraic multigrid for tensor decomposition

The second topic we consider is the canonical decomposition of higher-order tensors. An

Nth-order tensor is an N -dimensional array of size I1 × · · · × IN . The order of a tensor is

the number of modes (dimensions). For example, a tensor of order three can be visualized

as a rectangular prism of elements, while vectors and matrices are tensors of order one

and two, respectively. The tensor canonical decomposition is a higher-order generalization

of the matrix singular value decomposition (SVD) in that it decomposes a tensor as a

sum of rank-one components. For example, if T is an Nth-order tensor of rank R, which

implies that T can be expressed as a sum of no fewer than R rank-one components, then

its canonical decomposition has the form

T =
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r ,

where ◦ denotes the vector outer product. The rth rank-one component in the canonical

decomposition is formed by taking the vector outer product of N column vectors a
(n)
r ∈ RIn

for n = 1, . . . , N . For each mode n, the vectors a
(n)
1 , . . . , a

(n)
R can be stored as the columns

of an In × R matrix A(n). This matrix is referred to as the mode-n factor matrix, and its

columns are the mode-n factors. In this sense the factors are analogous to the singular

vectors in the matrix SVD (with the singular values absorbed). However, a major difference

is that the factors are not necessarily orthogonal in each mode.

We refer to the canonical decomposition as CANDECOMP/PARAFAC (CP) after the

names originally given to it in early papers on the subject [35, 64]. In the example above

the tensor rank was known, however, in general the rank is unknown. Computing the

rank of a general tensor is an NP-hard problem [67], and so the aim is to find the “best”

approximate decomposition (in some sense) for a given number of components R. The

problem of computing the CP decomposition with R components that best approximates
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an arbitrary tensor Z may be formulated as a nonlinear least squares optimization problem:

minimize f(A(1), . . . ,A(N)) :=
1

2

∥∥∥Z−
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r

∥∥∥
2

F
.

Here ‖ · ‖F denotes the Frobenius norm of a tensor, defined as the square root of the sum

of the squared tensor elements. A general approach to solving this optimization problem

is to find solutions of the first-order optimality equations, that is, to find a set of nontrivial

factor matrices that zero out the gradient of f [1, 79].

The CP optimization problem defined above is nonconvex; consequently it may admit

multiple local minima. Moreover, for any local minimizer there is a continuous manifold

of equivalent minimizers [79]. This manifold arises because of a scaling indeterminacy

inherent to the CP decomposition, that is, the individual factors composing each rank-

one term can be rescaled without changing the rank-one term. The CP decomposition

also exhibits a permutation indeterminacy in that the rank-one component tensors can be

reordered arbitrarily [79]. The scaling and permutation indeterminacies can be removed

by imposing a specific normalization and ordering of the factors. However, in spite of

these steps the CP decomposition may still exhibit multiple local minima for some tensors,

and depending on the initial guess, iterative methods for computing CP may converge to

different stationary points. Furthermore, for certain tensors and certain values of R a best

rank-R approximation does not exist [45]. For example, Kolda and Bader [79] give an

example of a rank-three tensor that can be approximated arbitrarily closely by a tensor of

rank two. Essentially, because the space of rank-two tensors is not closed one can build a

sequence of rank-two tensors that converges to a tensor of rank other than two. Tensors that

are approximated arbitrarily well by a decomposition of lower rank are called degenerate.

Uniqueness of the exact CP decomposition up to scaling and permutation indeterminacies

has been proved under mild conditions relating the ranks of the factor matrices with the

tensor rank, and despite the aforementioned complications, CP is used in many different

fields [79].

The primary application of CP is as a tool for data analysis, for example, as an alter-
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native to the classical two-way principal component analysis, for which it has been used in

a variety of fields including chemometrics, data mining, image compression, neuroscience,

and telecommunications [79]. Alternatively, CP has been used to approximate tensors that

arise from the discretization of integral and differential equations on high-dimensional reg-

ular lattices [75, 76, 97, 98], primarily as a form of dimensionality reduction to allow for

more economical storage and efficient solution methods. Many algorithms have been pro-

posed for computing the CP decomposition [1, 40, 43, 79, 101, 116]; however, the workhorse

algorithm for computing the CP decomposition is still the original alternating least squares

(ALS) method, first proposed in 1970 in early papers on CP [35, 64]. The alternating least

squares method is simple to implement and often performs adequately; however, it can be

slow to converge, and its convergence may depend strongly on the initial guess. Despite the

simplicity and potential drawbacks of ALS, it has proved difficult over the years to develop

alternative methods that significantly improve on ALS in a robust way for large classes of

problems. Accordingly, ALS-type algorithms remain the method of choice in practice. Our

goal is to accelerate the standard ALS algorithm by combining it with a nonlinear adaptive

AMG framework in which ALS essentially acts as a relaxation method. We note that while

the idea to apply multilevel methods to problems in multilinear algebra has already been

discussed and analyzed [4, 16, 77], as far as we know the algorithm we propose is the first

multigrid method for computing the canonical decomposition of a tensor.

1.3 Overview

Chapter 2 covers the pertinent background material that is necessary to understand the

topics discussed in this thesis. We begin by defining the classes of nonnegative matrices

and M-matrices, and provide sufficient conditions for irreducibility and aperiodicity of non-

negative matrices. In particular, we focus on the class of stochastic nonnegative matrices,

which is fundamental to the study of Markov chains, as any transition probability matrix

is necessarily a stochastic matrix. In §2.3 we provide a brief introduction to discrete-time

and continuous-time Markov chains. Sufficient conditions that guarantee existence and

uniqueness of the stationary and limiting distributions are given for homogeneous Markov
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chains with finite state spaces. Section 2.4 introduces tensors and the basic matrix and

tensor operations that are needed when discussing the tensor canonical decomposition.

Section 2.5, which is a precursor to our introduction of multigrid methods, discusses ba-

sic one-level iterative methods based on matrix splittings, and states conditions for their

convergence. In particular, the application of these methods to irreducible singular M-

matrices is investigated. We conclude Chapter 2 by introducing multigrid methods in §2.6.

After discussing the fundamental underpinnings of all multigrid methods, we describe the

classical AMG algorithm as well as aggregation-based AMG.

Chapters 3–6 contain the main contributions of this thesis. In Chapter 3 we describe

an AMG method for computing the stationary distribution of an irreducible homogeneous

Markov chain with finite state space. Our approach incorporates classical AMG coarsening

and interpolation developed in the early stages of the AMG project by Brandt, McCormick,

and Ruge [24] within a multiplicative correction scheme framework. We begin by deriving a

two-level multiplicative correction scheme in an exact interpolation scheme [26] framework.

In §3.3 we propose a modification of the classical AMG interpolation formula that produces

a nonnegative interpolation operator with unit row sums. Sections 3.4 and 3.5 show how

a lumping technique, which maintains the sign structure and irreducibility of the coarse-

level system operators on all levels, results in strictly positive iterates on all levels and

a fixed-point property for the exact solution. The connection between the multiplicative

correction and additive correction frameworks is also discussed, which leads to a simple

hybrid multiplicative/additive method. The chapter is concluded by numerical experiments

for a variety of challenging test problems.

In Chapter 4 we discuss a simple method based on iterant recombination [119] to ac-

celerate multigrid methods for computing the stationary distribution of Markov chains.

Iterant recombination constructs an improved fine-level approximation as a linear com-

bination of successive fine-level iterates from previous multigrid cycles, where the linear

combination minimizes the residual with respect to some norm. Our acceleration method

for Markov chains is different from standard applications of iterant recombination in that it

must produce probability vectors. Consequently, after each multigrid cycle iterant recom-

bination corresponds to solving a constrained minimization problem over a small subset
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of probability vectors. We consider both one-norm and two-norm minimization problems,

and focus on accelerating the simple non-overlapping adaptive multilevel aggregation algo-

rithm developed in [51]. We begin by the chapter describing the simple adaptive multilevel

aggregation algorithm for Markov chains. In §4.2 we discuss the constrained iterant re-

combination approach, and in §4.3 we discuss Matlab’s built-in quadratic programming

solver quadprog as a solver for the two-norm iterant recombination optimization prob-

lem. We also describe an efficient algorithm for computing the analytical solution of the

quadratic programming problem with window size two. Section 4.4 describes the ellipsoid

method for nonlinear convex programs, and §4.5 discuss how it can be applied to solve the

one-norm optimization problem that arises from the iterant recombination process. We

also briefly discuss the connection between one-norm minimization and linear program-

ming. The chapter is concluded by numerical experiments for a subset of the test problems

considered in Chapter 3.

In Chapter 5 we discuss an approach to accelerate a simple non-overlapping multi-

level aggregation for Markov chains that is based on scaling the coarse-grid correction by a

scalar α > 1. Borrowing the terminology of Mı́ka and Vaněk [125] we refer to this technique

as over-correction. In particular, we present an automatic over-correction mechanism, in

which α is the solution of a simple minimization problem on each level. We compare au-

tomatic over-correction with a fixed over-correction approach in which a (nearly) optimal

value of α is chosen a priori via trial and error. In addition, we compare multilevel aggre-

gation accelerated by over-correction with unaccelerated multilevel aggregation, multilevel

aggregation accelerated by iterant recombination from Chapter 4, the MCAMG method

from Chapter 3, the preconditioned stabilized biconjugate gradient method [104], and the

preconditioned generalized minimal residual method [104]. We begin Chapter 5 by briefly

describing and motivating the classical over-correction mechanism for additive-correction

multigrid applied to symmetric positive definite systems in §5.1. In particular, we also mo-

tivate the need for over-correction through a simple model problem. Section 5.2 describes

our over-correction mechanism for multilevel aggregation applied to Markov chains. In

§5.3 we present numerical results, and §5.4 contains concluding remarks.

In Chapter 6 we switch gears and discuss an adaptive AMG method for computing
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the canonical decomposition of higher-order tensors. The proposed method consists of two

phases: an adaptive setup phase that uses a multiplicative correction scheme in conjunc-

tion with bootstrap algebraic multigrid (BAMG) interpolation [20, 72] to not only build

the necessary transfer operators and coarse-level tensors, but also to compute initial ap-

proximations of the factor matrices, and a solve phase that uses additive correction cycles

based on the full approximation scheme (FAS) [18, 23] to efficiently obtain an accurate

solution. The method is adaptive in the sense that during the setup phase the transfer

operators are continually improved by incorporating the most recent approximation of the

desired factor matrices. We note that the combination of a multiplicative setup scheme and

BAMG was previously considered in [83], where it formed the basis of an efficient eigen-

solver for multiclass spectral clustering problems. A similar approach was also proposed in

[21, 72]. Furthermore, the multigrid framework we propose is closely related to recent work

on an adaptive algebraic multigrid method for computing extremal singular triplets and

eigenpairs of matrices [47], and to a lesser degree to multigrid methods for Markov chains

[15, 53, 118]. We begin Chapter 6 by stating the first-order optimality equations for CP

and describing the alternating least squares method. Section 6.2 describes the multilevel

setup phase, and §6.3 describes the multilevel solve phase. Implementation details and

numerical results are presented in §6.4, followed by concluding remarks.

Chapter 7 summarizes the work presented in this thesis and speculates on future avenues

of research.

1.4 Statement of research contributions

The main contributions of this thesis are the development of adaptive multilevel methods

for computing the stationary distribution of Markov chains and the canonical decompo-

sition of higher-order tensors. Contributions to the literature for which I am a primary

author are listed below along with the chapter of this thesis in which they are discussed.

Names appearing in bold face type in the author lists indicate the primary authors.
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G. Sanders. Algebraic multigrid for Markov chains. SIAM J. Sci. Comput., 32:544–

562, 2010.
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Adv. Comput. Math., 35:375–403, 2010.
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Chapter 2

Background Material

2.1 Notation

Scalars are denoted by Roman letters and lowercase Greek letters, e.g., c, C, λ. Vectors are

denoted by boldface lowercase letters, e.g., v. An exceptional case is 1, which denotes the

vector of all ones. Matrices are denoted by boldface capital letters, e.g., A. The identity

matrix is denoted by I, and depending on the context, 0 denotes either the vector whose

components are all zero or the matrix whose elements are all zero. Higher-order tensors

(tensors of order three and higher) are denoted by boldface Euler script letters, e.g., Z.

The ith component of a vector x is denoted by xi, the ijth element of a matrix A is

denoted by aij, and, for example, element (i, j, k, `) of a fourth-order tensor Z is denoted

by zijk`. The jth column of a matrix A is denoted by aj. In the case of the identity matrix,

ej denotes its jth column, that is, the jth canonical basis vector. The kth element of a

sequence is denoted by a superscript in parentheses, e.g., x(k). In some cases we break this

rule and use a subscript to denote the kth element of a sequence of scalars, e.g., ak. In

general, indices range from 1 to their capital versions, e.g., k = 1, . . . , K. Sets and spaces

are denoted by capital Euler script letters, e.g., T, except in a few cases. Given a square
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matrix A, its spectrum is denoted by

σ(A) = {set of eigenvalues of A}, (2.1)

and its spectral radius is denoted by

ρ(A) = max{|λ| : λ ∈ σ(A)}. (2.2)

We use the operator diag(·) in two different ways. If v ∈ Rn, then diag(v) is an n × n

diagonal matrix with v1, . . . , vn on its diagonal. If A ∈ Rn×n, then diag(A) is an n × n
diagonal matrix with a11, . . . , ann on its diagonal. We use nnz(A) to denote the number

of nonzero elements in a sparse matrix A. The standard inner product in Rn is denoted

by 〈x,y〉 = x>y. We make use of the usual vector norms: ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞, and their

corresponding induced matrix norms. As well, for any tensor X ∈ RI1×···×IN the Frobenius

norm is defined by

‖X‖F =

√√√√
I1∑

i1=1

· · ·
IN∑

iN=1

x2
i1,...,iN

. (2.3)

We note that if X were replaced by a vector, then (2.3) would correspond to the vector

two-norm, and if X were replaced by a matrix, then (2.3) would correspond to the matrix

Frobenius norm. Given a symmetric positive definite matrix A, we also make use of the

energy inner product and the energy norm, defined by

〈u,v〉A = 〈Au,v〉 and ‖u‖A = 〈Au,u〉1/2.

2.2 Nonnegative matrices and M-matrices

We begin this section with a brief introduction to directed graphs. A directed graph

or digraph is an ordered pair D = (N,A) of sets N and A, where N = {v1, . . . , vn}
is a nonempty set of nodes (vertices) and A is a set of ordered pairs of nodes called
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arcs. For nodes u and v in N, a (directed) u-v walk in D is a finite set of nodes u =

v0, v1, . . . , vk−1, vk = v, beginning at u (start node) and ending at v (end node), such that

(vi−1, vi) ∈ A for i = 1, . . . , k. A (directed) u-v path in D is a directed u-v walk in which all

nodes are distinct, except possibly the start and end nodes. The length of a path is defined

as the number of arcs in the path. A (directed) cycle in D is a path in which the start node

corresponds to the end node. A cycle of length one, which is just an arc that joins a node

to itself is called a loop. For simplicity, when referring to a walk, a path or a cycle in a

digraph, we omit the qualifier “directed”. A digraph can be represented pictorially, where

each node corresponds to a point and each arc corresponds to an arrowed line, indicating

direction, between two points (see Figure 2.1). A digraph D is said to be weakly connected

v1 v3

v2 v4

Figure 2.1: A simple digraph on four nodes. The sequence of node indices (1, 2, 4, 2, 3) is an
example of a walk, (1, 2, 4) is an example of a path, and (1, 2, 3, 1) is an example of a cycle. Note
that node v4 has a loop.

if there exists an undirected path (arcs can be traversed in either direction) between any

two distinct nodes, whereas D is called strongly connected if there exists a directed path

between any two distinct nodes. For example, the graph in Figure 2.1 is strongly connected.

Another feature of a graph that we make use of is its periodicity. Formally, the periodicity

of a strongly connected graph is defined as

p = gcd{`1, `2, . . . , `K}, (2.4)
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where `k is the length of the kth cycle in D for k = 1, . . . , K. If p = 1 the graph is said

to be aperiodic, otherwise the graph is said to be periodic with period p. For example, the

graph in Figure 2.1 has three cycles (ignoring permutations) of lengths 1, 2, and 3, hence it

is aperiodic. Directed graphs can also be used to represent the nonzero structure of square

matrices. For any matrix A ∈ Rn×n its associated graph is denoted by D(A) = (N,A),

where N = {1, . . . , n} and (vj, vi) ∈ A if aij 6= 0. For example, the graph in Figure 2.1 is

the corresponding directed graph of the 4× 4 matrix




∗
∗ ∗
∗
∗ ∗




with nonzero elements indicated by asterisks. Many structural properties of a matrix such

as periodicity and irreducibility can then be inferred from its corresponding graph.

We now discuss the various classes of matrices that are fundamental to this thesis.

Because the transition probability matrix of a Markov chain necessarily has nonnegative

elements, it is only appropriate that we begin by examining the class of nonnegative ma-

trices. In what follows we provide conditions for a nonnegative matrix to be irreducible

and aperiodic, and state the Perron–Frobenius theorem for irreducible nonnegative matri-

ces. Using nonnegative matrices as our building blocks, we consider stochastic matrices

and M-matrices. For an in-depth exploration of nonnegative matrices we recommend the

books by Berman and Plemmons [11] and Horn and Johnson [68].

Definition 2.2.1 (Nonnegative matrix). A matrix A ∈ Rm×n is said to be nonnegative if

aij ≥ 0 for all index pairs (i, j). Moreover, if aij > 0 for all index pairs (i, j), then A is

called positive.

Similarly, we say that a vector x is nonnegative if xi ≥ 0 for all i, and is positive (or strictly

positive) if xi > 0 for all i. Also, we say that a vector x or matrix A is nonpositive if −x

or −A is nonnegative. We now prove a property of nonnegative matrices that leads to a

lower bound on their spectral radius.
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Lemma 2.2.1. Let ‖ · ‖ be any matrix norm on Cn×n. Then

ρ(A) = lim
k→∞
‖Ak‖1/k

for any matrix A ∈ Cn×n.

Proof. See Corollary 5.6.14 in [68].

Theorem 2.2.1. Let A and B be nonnegative matrices in Rn×n such that aij ≤ bij for all

index pairs (i, j). Then ρ(A) ≤ ρ(B).

Proof. For some integer k ≥ 1 suppose that Ak ≤ Bk where the inequality is applied

elementwise. Then for any index pair (i, j) we have

(Ak+1)ij =
n∑

`=1

ai`(A
k)`j ≤

n∑

`=1

bi`(B
k)`j = (Bk+1)ij.

Therefore, by induction, Ak ≤ Bk for all k = 1, 2, . . ., and hence

‖Ak‖1/k ≤ ‖Bk‖1/k

for all natural numbers k. Taking the limit as k → ∞ gives ρ(A) ≤ ρ(B) by Lemma

2.2.1.

For any nonnegative matrix A ∈ Rn×n, Theorem 2.2.1 implies that

max
i=1,...,n

aii = ρ(diag(A)) ≤ ρ(A).

Irreducibility is a structural property of a matrix in that it depends only on the loca-

tion of the nonzero matrix elements and not on their values. Equivalent conditions for a

nonnegative matrix to be irreducible are given by Theorem 2.2.2; see [68] for more details.
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Theorem 2.2.2 (Irreducibility). A nonnegative matrix A ∈ Rn×n is said to be irreducible

if any of the following equivalent conditions are satisfied.

1. The digraph D(A) is strongly connected.

2. For each index pair (i, j) there exists a natural number m such that (Am)ij > 0.

3. Each element of (I + A)n−1 is strictly positive.

4. The transpose A> is irreducible.

We note that by the above theorem any matrix whose elements are all nonzero is necessarily

irreducible. A matrix that is not irreducible is said to be reducible and is characterized by

its graph failing to be strongly connected. Equivalently, a reducible matrix can be put into

block lower triangular form by a symmetric permutation of its rows and columns. We do

not concern ourselves with reducible matrices in this thesis; for more information see [11].

See also [110] for a discussion of reducible matrices as they pertain to Markov chains.

The set of primitive matrices is equivalent to the set of irreducible aperiodic nonnegative

matrices. The following theorem (see [68]) states sufficient conditions for an irreducible

nonnegative matrix to be aperiodic, and hence primitive.

Theorem 2.2.3 (Primitive matrix). An irreducible nonnegative matrix A ∈ Rn×n is said

to be primitive if any of the following conditions are satisfied.

1. The greatest common divisor of the lengths of any directed cycle in D(A) is unity.

2. There exists a natural number m such that Am has strictly positive elements.

3. The matrix A has only one eigenvalue of maximum modulus.

4. The trace of A is positive, i.e., aii > 0 for some index i.

The most significant result concerning irreducible nonnegative matrices is the Perron–

Frobenius theorem which characterizes the eigenspace of this class of matrices. Details of

its proof may be found in [11, 68, 126]. We note that versions of the Perron–Frobenius

theorem also exist for positive matrices and primitive matrices [68].
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Theorem 2.2.4 (Perron–Frobenius). Let A ∈ Rn×n be an irreducible nonnegative matrix.

1. There exists a positive real eigenvalue of A that is equal to the spectral radius ρ(A).

2. To ρ(A) there corresponds a right eigenvector x, unique up to scaling, which can be

chosen such that all components of x are positive.

3. The spectral radius ρ(A) is an algebraically simple eigenvalue of A.

4. If A has exactly p eigenvalues equal in modulus to λ1 = ρ(A), then these eigenvalues

are distinct and are the roots of the equation λp − λ1
p = 0, that is,

λ = λ1 exp(2πik/p) for k = 0, . . . , p− 1.

An important subclass of the nonnegative matrices that pertains to the study of Markov

chains are the stochastic matrices. In particular, the transition matrices of finite state

Markov chains, which encode all the information of the chain, are stochastic matrices. A

nonnegative matrix A ∈ Rn×n is said to be column-stochastic if each of its columns sum to

unity. In this thesis we assume that all transition matrices are column-oriented, and hence

column-stochastic. Some useful properties of stochastic matrices are presented below in

the form of a theorem.

Theorem 2.2.5 (Properties of stochastic matrices). Let A ∈ Rn×n be a stochastic matrix.

1. The left eigenvector of A corresponding to a unit eigenvalue is 1 (because the columns

of A sum to one).

2. The eigenvalue λ1 = 1 is a dominant eigenvalue of A, that is, ρ(A) = λ1.

3. If A is irreducible then λ1 = 1 is a simple eigenvalue whose corresponding eigenvector

has strictly positive elements that sum to one.

Proof. Property 1 follows by the fact that A has unit column sums. Property 2 follows by

the fact that 1>P = 1> and ρ(A) ≤ ‖A‖1 = 1. Property 3 is a direct consequence of the

Perron–Frobenius theorem.
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M-matrices have a multitude of definitions, in fact, Berman and Plemmons list fifty

equivalent definitions for nonsingular M-matrices (see Chapter 6, Theorem 2.3 in [11]).

Consequently, we state the definition which is perhaps the most natural and certainly the

most useful in this thesis.

Definition 2.2.2 (M-matrix). The matrix A ∈ Rn×n is an M-matrix if there exists an

irreducible nonnegative matrix B ∈ Rn×n such that A = γI−B for some scalar γ ≥ ρ(B).

If the scalar γ in Definition 2.2.2 is strictly greater than the spectral radius of B then A is a

nonsingular M-matrix, otherwise, if γ = ρ(A) then A is a singular M-matrix. M-matrices

have nonpositive off-diagonal elements, and because the maximum diagonal element of

a nonnegative matrix is less than or equal to its spectral radius, they have nonnegative

diagonal elements. In particular, nonsingular M-matrices have strictly positive diagonal

elements. M-matrices arise naturally in the study of Markov chains, for example, see

Proposition 2.3.1 in §2.3. Below we present some properties of singular and nonsingular

M-matrices (consult [11] and [126] for proofs).

Theorem 2.2.6 (Properties of singular M-matrices). Let A ∈ Rn×n be a singular M-

matrix.

1. If A is irreducible then null(A) = span(xr) and null(A>) = span(x`), where the

vectors xr and x` are strictly positive.

2. If B ∈ Rn×n has a strictly positive vector in its left or right null space, and if its

off-diagonal elements are nonpositive, then B is a singular M-matrix.

3. If A is irreducible then every principal submatrix of A other than itself, is a nonsin-

gular M-matrix.

4. If A is irreducible then it has strictly positive diagonal elements.

5. The real part of each nonzero eigenvalue of A is positive.
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Theorem 2.2.7 (Properties of nonsingular M-matrices). Let A ∈ Rn×n be a nonsingular

M-matrix.

1. The diagonal elements of A are strictly positive.

2. The inverse A−1 is nonnegative.

3. If Ã is obtained from A by setting any of its off-diagonal elements to zero, then Ã

is also an M-matrix.

4. If A is symmetric then it is positive definite. Moreover, if A is a symmetric positive

definite matrix with nonpositive off-diagonal elements, then it is a nonsingular M-

matrix.

2.3 Markov chains

This section presents a brief introduction to discrete-time and continuous-time Markov

chains. In particular, sufficient conditions that guarantee existence and uniqueness of the

stationary distribution are given for Markov chains with time-independent transitions and

finite state spaces. A terse introduction to Markov chain theory is given by Norris [95], and

a comprehensive introduction to numerical methods for Markov chains is given by Stewart

[110].

A stochastic process is defined as a family of random variables {X(t) : t ∈ T} defined

on a given probability space and indexed by a time parameter t, where t varies over some

index set (parameter space) T. The values assumed by the random variable X(t) are called

states, and the set of all possible states, denoted by S, is the state space of the process. The

state space and the parameter space may be either discrete or continuous. For example, the

stochastic process corresponding to the temperature outside at specific times during the

day has a discrete parameter space and a continuous state space. Processes for which the

parameter space is discrete (continuous) are referred to as discrete-time (continuous-time)

processes.
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A Markov process is a special type of stochastic process characterized by a conditional

probability density that satisfies a memoryless property (Markov property), that is, the

occurrence of a future state depends only upon the present state and is independent of any

past states. More precisely, X(t) is a continuous-time Markov process if for all integers n,

and any sequence t0, t1, . . . , tn ordered so that t0 < t1 < · · · < tn < t, we have

P(X(t) ≤ x |X(tn) = xn, . . . , X(t0) = x0) = P(X(t) ≤ x |X(tn) = xn). (2.5)

It is evident from (2.5) that X(tn) contains all the relevant information concerning the

history of the process. We note that if transitions from a state X(t) depend on the time

t then the Markov process is said to be nonhomogeneous. Conversely, if transitions do

not depend on the time parameter then the Markov process is said to be homogeneous. A

Markov process whose state space is discrete (at most countably infinite) is referred to as a

Markov chain, where, without loss of generality, the state space is represented by a subset

of the positive integers. The numerical methods discussed in this thesis are intended

for homogeneous Markov chains with finite state spaces S = {1, 2, . . . , N}. Therefore,

the definitions and theoretical results in this section are presented for this class of Markov

chains. We note that Markov chains can be conveniently described by a transition diagram,

which is a weighted directed graph in which the nodes of the graph correspond to the states,

arcs correspond to transitions between states, and weights correspond to transition rates

or transition probabilities (see Figure 2.2).

1
2

1
3

1

2
3

λ1 λ2 λ3

Discrete-time Markov chain Continuous-time Markov chain

Figure 2.2: Illustration of transition diagrams for some arbitrary Markov chains.
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Without loss of generality, the parameter space of a discrete-time Markov chain (DTMC)

can be represented by the set of natural numbers T = N = {0, 1, 2, . . .}, where the nth ob-

servation defines the random variable Xn. A DTMC satisfies the following Markov property

for all n ∈ T and all states xn:

P(Xn+1 = xn+1 |Xn = xn, . . . , X0 = x0) = P(Xn+1 = xn+1 |Xn = xn). (2.6)

The (single-step) transition probabilities of a DTMC, denoted by

pij = P(Xn+1 = i |Xn = j) for all n = 0, 1, 2, . . . ,

are the conditional probabilities of making a transition from state j to state i as the time

parameter increases from n to n+ 1. Arranging the transition probabilities into an array,

we arrive at the N × N transition probability matrix for the chain defined by (P)ij = pij.

Since

0 ≤ pij ≤ 1 for i, j = 1, . . . , N and
N∑

i=1

pij = 1 for j = 1, . . . , N,

it follows that P is a column-stochastic matrix (see §2.2). The single-step transition prob-

abilities can be generalized by considering the conditional probability of transitioning to

state i in n ≥ 1 time steps given that the chain is currently in state j. What arises are the

n-step transition probabilities, denoted by

p
(n)
ij = P(Xm+n = i |Xm = j) for all m = 0, 1, 2, . . . .

Analogously, the n-step transition probability matrix is defined by (P(n))ij = p
(n)
ij . An

important property satisfied by the n-step transition probability matrix is given by the

Chapman–Kolmogorov equations:

P(n) = P(n−k)P(k) for 0 < k < n. (2.7)
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This result states that n-step transition probabilities can be written as the sum of products

of k-step and (n− k)-step transition probabilities. In particular, (2.7) can be used to show

that P(n) = Pn, that is, the n-step transition probability matrix is obtained by multiplying

the single-step transition probability matrix by itself n times. Moreover, P(n) is a column-

stochastic matrix.

We next consider probability distributions defined on the states of a discrete-time

Markov chain. We denote by u
(n)
i the probability that the Markov chain is in state i

at time step n, where it is clear that for any n ≥ 0

u
(n)
i ∈ R, 0 ≤ u

(n)
i ≤ 1 for i = 1, . . . , N, and

N∑

i=1

u
(n)
i = 1.

In vector format we obtain the column-vector defined by (u(n))i = u
(n)
i . The distribution

of the chain at time step n+ 1 is obtained by multiplying the current distribution at time

step n by the transition probability matrix, i.e., u(n+1) = Pu(n). It follows that if u(0) is

the initial distribution of the chain then

u(n) = Pnu(0) = P(n)u(0) for all n = 1, 2, 3, . . . .

The stationary distribution of a DTMC is a probability distribution u such that u = Pu.

The stationary distribution of a finite DTMC exists and is unique if the chain is irreducible.

Definition 2.3.1 (Irreducibility). A finite DTMC is irreducible if its transition matrix is

irreducible.

Because any stochastic matrix is necessarily nonnegative with spectral radius equal to

unity (see §2.2), existence and uniqueness of the stationary distribution follows by Perron–

Frobenius theorem for irreducible nonnegative matrices; see Theorem 2.2.4. Moreover, the

Perron–Frobenius theorem implies that the components of the stationary distribution are

strictly positive. We note that if the transition matrix is not irreducible there may exist

multiple eigenvectors associated with the unit eigenvalue each of which can have zero or
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negative components [110]. Given some initial probability distribution u(0), the limit

u = lim
n→∞

u(n) (2.8)

if it exists is referred to as the limiting distribution. The limiting distribution of a fi-

nite irreducible DTMC exists and is independent of the initial distribution if the chain is

aperiodic. Moreover, the limiting distribution, if it exists, is identical to the stationary

distribution.

Definition 2.3.2 (Periodicity). A finite irreducible DTMC is periodic with period p if the

directed graph D(P) corresponding to its transition matrix P has period p. If p = 1 the

Markov chain is aperiodic.

To see why aperiodicity is essential, let X be an irreducible Markov chain with period d > 1.

Because X is periodic with period d it follows that p
(n)
jj = 0 for any state j whenever n is

not a multiple of d. Now consider the sequence of points given by nk = dk + 1 for k ≥ 1.

Since nk is not a multiple of d for any k, the limit

lim
k→∞

P(Xnk
= j and X0 = j) = lim

k→∞
p

(nk)
jj P(X0 = j) = 0

for any state j. Therefore, the limit of P(Xn = j and X0 = j) as n→∞ does not approach

some uj > 0 along the subsequence {nk}k≥1. Consequently, there cannot exist a strictly

positive limiting distribution that is independent of the initial distribution.

We now turn our attention to continuous-time Markov chains (CTMC), which arise

when a state change can occur at any point in time. To simplify matters we consider

homogeneous CTMCs with finite state spaces. A stochastic process {X(t) : t ≥ 0} is a

continuous-time Markov chain if for all integers n ≥ 0, and for any sequence t0, t1, . . . , tn, tn+1

such that t0 < t1 < · · · < tn < tn+1, we have

P(X(tn+1) = xn+1 |X(tn) = xn, . . . , X(t0) = x0) = P(X(tn+1) = xn+1 |X(tn) = xn). (2.9)

Analogous to discrete-time Markov chains the transition probabilities for any time t are
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defined by

pij(τ) = P(X(t+ τ) = i |X(t) = j),

where
N∑

i=1

pij(τ) = 1 for all τ ≥ 0.

The transition probability pij(τ) is the conditional probability of being in state i after

an interval of length τ , given that the chain is currently in state j. Whereas a discrete-

time Markov chain is represented by a matrix of transition probabilities, a continuous-time

Markov chain is represented by a matrix of transition rates Q, referred to as the transition

rate matrix or the infinitesimal generator. The ijth element of Q is the (instantaneous)

rate at which transitions occur from state j to state i at any time t. Under the assumption

of a finite state space, and as τ → 0 uniformly in t, for all i

pij(τ) = qijτ + o(τ) for i 6= j,

pii(τ) = 1 + qiiτ + o(τ),

where the Landau notation o(τ) means that o(τ)/τ → 0 as τ → 0. For i 6= j this expression

says that correct to terms of order o(τ), the probability that a transition occurs from state

j to state i within τ time units is equal to the rate of transition multiplied by the length

of the time interval. By conservation of total probability, for each i

pii(τ) = 1−
∑

i 6=j

pij(τ) ⇒ qii = −
∑

i 6=j

qij +
o(τ)

τ
for all τ > 0. (2.10)

Therefore, taking the limit as τ → 0+, the diagonal entries of Q are given by

qii = −
∑

i 6=j

qij for i = 1, . . . , N. (2.11)

Intuitively, because the probability of transitioning to a different state increases as the

time interval grows larger (i.e., qij ≥ 0), the probability of remaining at that state must
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decrease with time, and therefore the corresponding transition rate should be negative.

Consequently, the transition rate matrix has negative diagonal elements and nonnegative

off-diagonal elements. Moreover, Q is weakly diagonally dominant because

N∑

i=1

|qij| = |qjj| for j = 1, . . . , N.

Many properties of a continuous-time Markov chain can be deduced from its corresponding

embedded Markov chain (EMC).

Definition 2.3.3 (Embedded Markov chain). Given a continuous-time Markov chain

{X(t) : t ≥ 0}, the discrete-time Markov chain {Yn : n ∈ N}, where Yn is the nth

state visited by X(t), is the embedded Markov chain for X(t).

In particular, a CTMC is irreducible if and only if its EMC is irreducible. We note that

there is no concept of periodicity for continuous-time Markov chains because there are no

time steps at which transitions either do or do not occur [110]. The transition probabilities

wij of the embedded Markov chain that corresponds to an irreducible CTMC are given by

wij =

{
−qij/qii if i 6= j,

0 if i = j.
(2.12)

We note that irreducibility of the underlying continuous-time Markov chain implies that

qii 6= 0 for all states i. By the definition of the transition rates it follows that

0 ≤ wij ≤ 1 for i, j = 1, . . . , N and
N∑

i=1

wij = 1 for j = 1, . . . , N.

Moreover, because wij = 0 if and only if qij = 0 for i 6= j, irreducibility of Q implies

irreducibility of W. Therefore, the transition probability matrix of the embedded Markov

chain is an irreducible stochastic matrix. In matrix form

W = I−Q(diag(Q))−1, (2.13)
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where diag(Q) is the diagonal matrix corresponding to the diagonal of Q.

Similar to DTMCs we can define probability distributions on the states of continuous-

time Markov chains. We let vi(t) denote the probability of being in state i at time t,

and define the column-vector (v(t))i = vi(t). Given some initial distribution v(0) = v0 a

time t = 0, the distribution at any future time t > 0 is a solution the following system of

ordinary differential equations:

dv(t)

dt
= Qv(t), v(0) = v0 ⇒ v(t) = exp(tQ)v0. (2.14)

If there reaches a point in time at which the rate of change of v(t) is zero, then dv(t)/dt = 0

and the system has reached a limiting distribution. For a finite irreducible CTMC the

limiting distribution always exists and is identical to the stationary distribution. The

limiting distribution, denoted by v, satisfies

Qv = 0. (2.15)

Therefore, the limiting distribution can be computed by applying linear system solvers

directly to (2.15). Alternatively, the limiting distribution can be obtained from the sta-

tionary distribution of the corresponding embedded Markov chain. Let W be the transition

matrix of the EMC (2.13), and let u denote its unique stationary distribution. Then

Wu = u ⇒ Q(diag(Q))−1u = 0 ⇒ v = − (diag(Q))−1u

‖(diag(Q))−1u‖1
. (2.16)

Since the vector space Q = {v : Qv = 0} is isomorphic to W = {u : Wu = u}, it follows

that (2.15) has a unique solution up to scalar multiplication. Therefore, v as given in (2.16)

must be the unique limiting probability distribution. From a practical point of view, using

the EMC has the potential drawback that W may be periodic. To avoid periodicity we can

instead compute the stationary distribution of an alternative embedded process referred

to as the uniformized chain. The uniformized chain is a discrete-time Markov chain that

can be interpreted as a discretized version of the original CTMC, where transitions take
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place at intervals of length α. The transition matrix of the uniformized chain is given by

P = I + αQ for 0 < α ≤ (max
i
|qii|)−1, (2.17)

where the constraints on α ensure that P is a stochastic matrix. We note that P is

irreducible if and only if Q is irreducible. Clearly, the stationary distribution of the uni-

formized chain is the same as the stationary distribution of the corresponding CTMC. If P

is irreducible, and if pii > 0 for some i, it follows by Theorem 2.2.3 (4) that P is primitive

and hence aperiodic. Thus, the uniformized chain corresponding to an irreducible CTMC

is aperiodic for any 0 < α < (maxi |qii|)−1. We observe that as α → 0 all the eigenvalues

of P converge to unity. Therefore, a good heuristic is to choose the parameter α as large

as possible so as to try and maximize the separation between λ1 = 1 and the subdominant

eigenvalues, that is, the eigenvalues with modulus closest to but strictly less than one.

In practice, maximizing the distance between the dominant and subdominant eigenvalues

typically improves convergence of basic one-level iterative methods for linear systems.

The problem of computing the stationary distribution of an irreducible finite Markov

chain can now be succinctly stated as follows.

Proposition 2.3.1. (Stationary distribution of a Markov chain) Let {X(t) : t ∈ T} be an

irreducible Markov chain with a finite state space. If X is a DTMC let P be its transition

probability matrix, otherwise let P be the transition matrix of the uniformized chain (2.17).

Then X has a unique stationary distribution that is the solution of

(I−P)x = 0, xi > 0 for all i,
∑

i

xi = 1,

where I−P is an irreducible singular M-matrix.

Proof. Since P is a stochastic matrix, ρ(P) = 1, and hence I− P is a singular M-matrix.

Irreducibility follows by the fact that subtracting P from the identity matrix does not alter

any of its off-diagonal elements. The claim now follows by Theorem 2.2.6 (1).

We conclude this section by listing some properties of the matrix A = I − P that are
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required later in this thesis.

1. The matrix A is an irreducible singular M-matrix.

2. Each column of A sums to zero.

3. By Theorem 2.2.6 (4) the diagonal elements of A are strictly positive.

4. By Theorem 2.2.6 (5) any nonzero eigenvalue of A belongs to the disk of radius one

centered at the point (1, 0) in the complex plane.

2.4 Tensors

An Nth-order tensor is an N -dimensional array of size I1×· · ·× IN . The order of a tensor

is the number of modes (dimensions), and the size of the nth mode is In for n = 1, . . . , N .

Vectors are tensors of order one and matrices are tensors of order two. Tensors of order

three and higher are referred to as higher-order tensors. Figure 2.3 illustrates a tensor of

order three. An Nth-order tensor is rank one if it can be written as the outer product of

i
=

1,...,I

j = 1, . . . , J k =
1,

. . .
, K

Figure 2.3: A third-order tensor T ∈ RI×J×K .

N vectors, that is,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N),
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with the elements of X given by the corresponding product of vector elements:

xi1,i2,...,iN = a
(1)
i1
a

(2)
i2
, . . . , a

(N)
iN

for all 1 ≤ in ≤ In.

In general, a tensor is rank R if it can be expressed exactly as a sum of no fewer than R

rank one tensors. We note that this definition of tensor rank is one of many that exist in

the literature; for other concepts of tensor rank see [79].

Fibers are higher-order generalizations of matrix rows and columns. A fiber is obtained

by fixing every index of a tensor but one. Figure 2.4 illustrates column, row and tube

fibers of a third-order tensor that are obtained by fixing index i, j, and k, respectively.

Analogously, slices are two dimensional sections of a tensor, that are obtained by fixing all

(a) Mode-1 (column) fibers (b) Mode-2 (row) fibers (c) Mode-3 (tube) fibers

Figure 2.4: Fibers of a third-order tensor.

but two indices.

Matricization, also referred to as unfolding or flattening, is the process of reordering

the elements of a tensor into a matrix. In this thesis we are only interested in mode-n

matricization, which arranges the mode-n fibers to be the columns of the resulting matrix.

The mode-n matricized version of a tensor Z is denoted by Z(n). Matricization provides

an elegant way to describe the product of a tensor by a matrix in mode n. The n-mode

matrix product of a tensor Z ∈ RI1×···×IN with a matrix A ∈ RJ×In is denoted by Z×n A

and is of size I1 × · · · × In−1 × J × In+1 × · · · × IN . The n-mode product can be expressed
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in terms of unfolded tensors as follows:

X = Z×n A ⇔ X(n) = AZ(n).

We note that in a sequence of multiplications the order of multiplication is irrelevant for

distinct modes in the sequence, that is,

Z×n A×m B = Z×n B×m A for m 6= n.

If the modes are the same, then

Z×n A×n B = Z×n (BA).

To denote the product of a tensor and a sequence of matrices over some nonempty subset

of the modes N = {n1, . . . , nk} ⊂ {1, . . . , N}, we use the following notation as shorthand

Z×n∈N A(n) = Z×n1 A(n1) · · · ×nk
A(nk).

The Kronecker product of two matrices A ∈ RI×K and B ∈ RJ×L is denoted by A⊗B.

The result is a matrix of size IJ ×KL given by

A⊗B =




a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

...
. . .

...

aI1B aI2B · · · aIJB



.

The Kronecker product is a bilinear and associative operation that satisfies the following

mixed-product property:

(A⊗B)(C⊗D) = AC⊗BD

for any matrices A,B,C,D of the appropriate sizes. By the mixed-product property it

follows that (A⊗B) is invertible if and only if A and B are invertible, in which case the
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inverse is given by

(A⊗B)−1 = A−1 ⊗B−1.

Similarly, the transpose operation is distributive over the Kronecker product

(A⊗B)> = A> ⊗B>.

Armed with the Kronecker product we can now state the following useful relationship

between tensors and their matricized versions [78]. Let Z ∈ RI1×···×IN and A(n) ∈ RJn×In

for n = 1, . . . , N . Then, for any n ∈ {1, . . . , N},

X = Z×1 A(1) · · · ×N A(N)

m
X(n) = A(n)Z(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)>
. (2.18)

The Khatri–Rao product of two matrices A ∈ RI×K and B ∈ RJ×K is a matrix of size

(IJ)×K given by

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK ].

The Khatri–Rao product is a bilinear and associative operation that is equivalent to the

columnwise Kronecker product. Associativity of the Khatri–Rao and Kronecker products,

and the mixed-product property of the Kronecker product imply the following useful result:

A(1)B(1) � · · · �A(N)B(N) =
(
A(1) ⊗ · · · ⊗A(N)

) (
B(1) � · · · �B(N)

)
(2.19)

for any sequences of matrices A(n) and B(n) of the appropriate sizes.

The Hadamard product is the elementwise matrix product. Given matrices A and B
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both of size I × J , the Hadamard product of A and B is the I × J matrix given by

A ∗B =




a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J
...

...
. . .

...

aI1bI1 aI2bI2 · · · aIJbIJ



.

The Hadamard product is associative, commutative, and distributive over addition. The

Hadamard product also preserves symmetry in that A ∗ B is symmetric if A and B are

symmetric. We note that the Hadamard product of two matrices may be symmetric even

if the individual matrices are not.

2.5 Stationary iterative methods

In preparation for an introduction to algebraic multigrid, we first consider simple stationary

iterative methods for solving the linear system

Ax = f (2.20)

with A ∈ Rn×n and x, f ∈ Rn. These methods play an important role in multigrid where

they typically compose the relaxation scheme or smoother of the multigrid solver. The

purpose of the relaxation scheme is to eliminate error in the approximate solution, and

the components of the error that are not effectively reduced by relaxation are called the

algebraically smooth error. The smooth error components must then be eliminated through

a complementary process referred to as the coarse-grid correction procedure. However, we

defer any further discussion of algebraic multigrid to §2.6.3, where these concepts are

explored in detail. The remainder of this section introduces iterative methods based on

matrix splittings such as the Jacobi and Gauss–Seidel iterations, and states conditions for

their convergence. In particular, the application of these methods to irreducible singular

M-matrices is investigated. We recommend [11] and [126] for an in-depth exploration of

the convergence of iterative methods based on matrix splittings.
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In general, given a splitting A = M−N in which M is nonsingular, we seek a solution

of (2.20) by way of the following stationary iterative procedure

x(k+1) = M−1Nx(k) + M−1f = Hx(k) + c (2.21)

for k = 0, 1, 2, . . . and some initial guess x(0). The matrix H is referred to as the iteration

matrix for the iterative procedure. The qualifier stationary refers to the fact that the

update formula does not change from one iteration to the next. We note that since H =

M−1N = I−M−1A, the iterative procedure (2.21) can also be written as

x(k+1) = x(k) + M−1r(k) (2.22)

where r(k) = f − Ax(k) is the residual of the kth approximation. Therefore, the new

approximation is obtained from the current one by adding a transformed residual. The

iterative procedure in (2.21) can also be viewed as a technique for solving the system

(I−H)x = c. (2.23)

Writing the iteration matrix as H = I−M−1A, this system can be rewritten as

M−1Ax = M−1f . (2.24)

The above system, which has the same solutions as the original system (2.20), is the

preconditioned system, where M is the preconditioning matrix. Evidently, if M−1 is a good

approximation of A−1 (assuming that A is invertible) then we expect that an iterative

method applied to (2.24) would converge to the exact solution in only a few iterations.

Therefore, the splitting should ideally be chosen such that M−1 approximates A−1 in some

sense, and the inverse of M is cheap to compute.

A simple way to choose a splitting is to decompose the coefficient matrix A = D−L−U,

where D = diag(A), and L and U are respectively the lower and upper triangular parts of

A with their signs reversed and with zeros on their diagonals. The (pointwise) Jacobi and
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Gauss–Seidel (GS) iterations then correspond to the following splittings

Jacobi: M = D, N = L + U, HJ = D−1(L + U) (2.25)

Gauss–Seidel: M = D− L, N = U, HGS = (D− L)−1U. (2.26)

The Jacobi and Gauss–Seidel iterations are well-defined only if A has nonzero elements on

its diagonal, otherwise M is not invertible. Considering the pointwise update equations

the Jacobi and Gauss–Seidel iterations:

Jacobi: diix
(k+1)
i = fi −

∑

j 6=i

(`ij + uij)x
(k)
j (2.27)

Gauss–Seidel: diix
(k+1)
i = fi −

∑

j<i

`ijx
(k+1)
j −

∑

j>i

uijx
(k)
j , (2.28)

we observe that Gauss–Seidel uses the most recent information as soon as it is available,

whereas Jacobi performs an entire iteration before using the updated values. Therefore, we

might expect Gauss–Seidel to converge faster Jacobi, which in general it does. Also, from

a practical viewpoint, Gauss–Seidel can be implemented using only a single array to hold

the current approximation, which is simply overwritten during each iteration. The memory

requirements for Jacobi, however, are higher because two arrays must be maintained to

house the current and updated approximations. This is not to say the Jacobi is without

merit, as it does possess benefits over Gauss–Seidel such as better parallelization properties

[119] and a cheaper per iteration cost. Weighted versions of the Jacobi and Gauss–Seidel

methods that depend on a relaxation parameter ω can also be defined. For example, the

successive overrelaxation (SOR) method, which is a weighted variant of the Gauss–Seidel

method, corresponds to the splitting

A =
1

ω
(D− ωL)− 1

ω
((1− ω)D + ωU).

In general, the method is overcorrecting when ω > 1 , and is undercorrecting when ω < 1.

When ω = 1 we recover the unweighted version of the iterative method. The iteration
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matrices for weighted Jacobi and SOR are given by

weighted Jacobi: HωJ = (1− ω)I + ωHJ = I− ωD−1A (2.29)

SOR: HSOR = (D− ωL)−1[(1− ω)D + ωU]. (2.30)

Adding a relaxation parameter to a stationary iterative method can often improve its

convergence properties. For example, the convergence rate of SOR with the optimal value

of ω can be a considerable improvement over that of Gauss–Seidel. Moreover, using a

relaxation parameter can sometimes be the difference between a method converging or

not converging, as we shall soon see. Unfortunately, an analytical determination of the

optimal value of ω (or even a reasonable value) may require a fairly sophisticated eigenvalue

analysis. While results do exist for certain classes of matrices (see Chapter 7 in [11] and

[126]), little is currently known for general nonsymmetric matrices. However, it has been

established that SOR converges for any matrix A ∈ Cn×n only if ω ∈ (0, 2) (see Theorem

7.4.5 in [11])

So far we have introduced the general linear stationary iterative procedure based on a

matrix splitting (2.21), and have mentioned some of the prevailing iterative methods that

are used today. We now discuss conditions for which linear stationary iterative methods

converge. We begin with some general convergence results, and then consider the case of

(irreducible) singular M-matrices.

The first question we ask is: if the iteration x(k+1) = Hx(k) + c converges, then is the

limit a solution of the original system? If the iteration sequence {x(k)} converges to a limit

x, then its limit x satisfies

x = Hx + c ⇔ Mx = Nx + f ⇔ Ax = f . (2.31)

Hence, the limit of the iterative procedure is indeed a solution of the original system. A

classical convergence result that applies to nonsingular linear systems is given below by

Theorem 2.5.1 (see [104]).
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Theorem 2.5.1. Let A ∈ Rn×n be nonsingular. Then the iterative method (2.21) converges

to the solution of Ax = f for any initial guess x(0) if ρ(H) < 1.

Proof. Let x(0) ∈ Rn, and let e(k) = x − x(k) denote the error of the kth iterate x(k)

produced by the iterative method (2.21). Since Hx = x−M−1f , it follows that

e(k+1) = He(k) = Hk+1e(0) for k = 0, 1, 2, . . . .

If ρ(H) < 1, then the limit limk→∞Hk exists and is equal to the zero matrix1, i.e., e(k) → 0

in the limit as k →∞. Therefore, the iterative procedure converges to the exact solution

x for any initial guess x(0).

The asymptotic rate at which the iteration converges is given by the global asymptotic

convergence factor ρ, defined by

ρ := lim
k→∞

(
max

x(0)∈Rn

‖e(k)‖
‖e(0)‖

)1/k

= lim
k→∞

(
max

e(0)∈Rn

‖Hke(0)‖
‖e(0)‖

)1/k

= lim
k→∞
‖Hk‖1/k = ρ(H). (2.32)

Thus, the rate of convergence of a stationary iterative method is governed by the spectral

radius of the iteration matrix (when the coefficient matrix is nonsingular). In general, the

smaller the spectral radius of H, the faster the convergence of the iteration.

Since the spectral radius is bounded above by the norm of the matrix, the implication

of Theorem 2.5.1 remains true under the more restrictive condition ‖H‖ < 1, where ‖ · ‖
is any matrix norm. However, computing the spectral radius is typically expensive, and

because a tight upper bound on ρ(H) may be unattainable, convergence conditions based

on properties of the splitting and the coefficient matrix A instead of ρ(H) are convenient.

Subsequent results in this section rely on the notion of regular and weak regular splittings.

Definition 2.5.1 (Regular and weak regular splitting). A splitting A = M−N is called

a regular splitting if the matrices M−1 and N are nonnegative. It is called a weak regular

splitting if M−1 and M−1N are nonnegative.

1In this case the matrix H is said to be convergent (see [11] and Theorem 5.6.12 in [68]).
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Theorem 2.5.2. Let A ∈ Rn×n be an M-matrix (singular or nonsingular) with positive

elements on its diagonal. Then weighted Jacobi and SOR correspond to regular splittings

of A for 0 < ω ≤ 1.

Proof. First consider weighted Jacobi. We have that

M =
1

ω
D, N = (1/ω − 1)D + L + U,

which is clearly a regular splitting if ω > 0 and 1/ω − 1 ≥ 0, i.e., if 0 ≤ ω < 1. Now

consider the SOR method. Without loss of generality suppose that A has a unit diagonal.

Then we have that

M =
1

ω
(I− ωL), N =

1

ω
[(1− ω)I + ωU].

Clearly N is nonnegative if 0 < ω ≤ 1. Since M is nonsingular, and since L is strictly

lower triangular and nonnegative, it follows that

M−1 = ω(I− ωL)−1 = ω(I + ωL + ω2L2 + . . .+ ωn−1Ln−1),

which is nonnegative if ω > 0. Hence, for 0 < ω ≤ 1, SOR is based on a regular splitting.

The following result (Theorem 4.4 in [104]) applies to regular splittings of nonsingular

inverse-positive matrices.

Theorem 2.5.3. Let A = M−N be a regular splitting. Then ρ(M−1N) < 1 if and only

if A is nonsingular and A−1 is nonnegative.

Proof. We begin with the sufficient condition. Writing

A = M(I−M−1N),
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it is obvious that A is nonsingular if ρ(M−1N) < 1. To show that A is inverse positive we

observe that

A−1 = (I−M−1N)−1M−1 =

[
I +

∞∑

n=1

(M−1N)n

]
M−1.

Since M, N is a regular splitting of A, this expression consists of an infinite sum of

nonnegative terms, hence A−1 must be nonnegative.

Now consider the necessary condition. Assuming that A is nonsingular, it follows that

I−M−1N is nonsingular. Therefore, we are justified in writing

A−1N = (I−H)−1H,

where H = M−1N. Since H is nonnegative, by the Perron–Frobenius theorem there exists

a nonnegative eigenvector x of H with corresponding eigenvalue ρ(H). Therefore,

A−1Nx = (I−H)−1Hx =
ρ(H)

1− ρ(H)
x.

Using the fact that A−1, N, and x are nonnegative, it follows that

ρ(H)

1− ρ(H)
≥ 0,

which is only possible if 0 ≤ ρ(H) ≤ 1. However, because I−H is nonsingular it must be

true that ρ(H) 6= 1, which leads us to conclude that ρ(M−1N) = ρ(H) < 1.

By Theorem 2.2.7 (3), a corollary of this result is that the iterative method (2.21) con-

verges for any regular splitting of a nonsingular M-matrix. In particular, by Theorem

2.5.2, weighted Jacobi and SOR converge for 0 < ω ≤ 1 when the coefficient matrix is a

nonsingular M-matrix.

We now consider convergence results for the iterative method (2.21) in which the coeffi-

cient matrix A is singular. It is assumed that the linear system Ax = f is consistent, that
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is, f ∈ range(A). Because (1,x) with x ∈ null(A) \ {0} is an eigenpair of H = I−M−1A

for any invertible matrix M, it follows that ρ(H) ≥ 1. In this case the iteration matrix

cannot be convergent, and we require a weaker condition on H, namely, semiconvergence.

Definition 2.5.2 (Semiconvergent matrix). A matrix H ∈ Rn×n is said to be semiconver-

gent whenever the limit limk→∞Hk exists.

The following theorem shows that semiconvergence is a necessary and sufficient condition

for the iterative method (2.21) to converge (see Lemma 7.6.13 in [11]). We note that the

matrix A in Theorem 2.5.4 may be either singular or nonsingular.

Theorem 2.5.4. Let A = M −N ∈ Rn×n in which M is invertible. Then the iterative

method (2.21) converges to a solution of Ax = f for each initial guess x(0) if and only if

H = M−1N is semiconvergent.

Necessary and sufficient conditions for a matrix to be semiconvergent are given below (see

page 152 in [11]).

Theorem 2.5.5 (Conditions for semiconvergence). Let H ∈ Rn×n. Then H is semicon-

vergent if and only if each of the following conditions hold.

1. The spectral radius ρ(H) ≤ 1.

2. If ρ(H) = 1 then rank((I−H)2) = rank(I−H).

3. If ρ(H) = 1 then λ ∈ σ(H) with |λ| = 1 implies that λ = 1.

It turns out that the first two conditions of Theorem 2.5.5 are satisfied by any regular

splitting of an irreducible singular M-matrix (see Theorem 6.4.12 in [11]). Consequently,

by Theorem 2.5.2 the Jacobi and Gauss–Seidel iteration matrices satisfy the first two

conditions. However, the third condition, which says that any eigenvalue in σ(H) \ {1}
must belong to the open unit disk in the complex plane, may not hold true. For example,

although the transition matrix P of a Markov chain may be primitive, the iteration matrix

corresponding to a regular splitting of I − P may be periodic, in that it has multiple
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eigenvalues distributed uniformly along the boundary of the unit circle. Consequently,

the Jacobi and Gauss–Seidel iterations are not guaranteed to converge. Now consider the

weighted Jacobi method applied to an irreducible singular M-matrix. As shown in (2.30),

the weighted Jacobi iteration matrix can be written in terms of the Jacobi iteration matrix

as follows

HωJ = (1− ω)I + ωHJ .

Consequently, any eigenvalue λ of HωJ is given by λ = 1−ω+ωµ for some µ ∈ σ(HJ). A

little algebra shows that

|λ− (1− ω)| = ω|µ| ≤ ω for all λ ∈ σ(HωJ).

Therefore, if 0 < ω < 1 then λ = 1 is the only eigenvalue of HωJ that lies on the unit

circle, and hence, weighted Jacobi applied to an irreducible singular M-matrix converges

for any ω ∈ (0, 1). As illustrated in Figure 2.5, the relaxation parameter ω serves to shrink

σ(H) away from the boundary of the unit circle toward the unit eigenvalue.

ω0

ω1

ω2

1-1

Figure 2.5: Disks {λ ∈ C : |λ − (1 − ω)| ≤ ω} that contain the spectrum of HωJ for 0 < ω2 <
ω1 < ω0 < 1. The solid dots indicate the centers of the disks.
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Let us consider the role of the relaxation parameter a bit further. The asymptotic rate

of convergence of the iterative procedure (2.21) with semiconvergent iteration matrix H is

defined as

R∞(H) = − ln δ(H) with δ(H) = max{|λ| : λ ∈ σ(H), λ 6= 1}. (2.33)

The larger the value of R∞(H), or equivalently the smaller the value of δ(H), the faster

the convergence of the iterative process. The quantity δ(H), which is strictly less than

ρ(H) when the coefficient matrix is singular, corresponds to the magnitude of the subdom-

inant eigenvalue(s) of H. Therefore, the optimal parameter ω is one that minimizes the

magnitude of the subdominant eigenvalue(s) of HωJ . We now ask ourselves the following

question. Given that λ = 1−ω+ωµ for µ ∈ σ(HJ) is an eigenvalue of HωJ , to what degree

can we minimize |λ| by our choice of ω? To answer this question we consider a contour

plot (Figure 2.6) of the function

f(µ) = |1− ωopt(µ) + ωopt(µ)µ|

for all µ ∈ {z ∈ C : |z| < 1}, where

ωopt(µ) = min

{
0.99,

1− Re(µ)

(1− Re(µ))2 + Im(µ)2

}

is the value of ω ∈ (0, 1) that minimizes f(µ). Because the true optimal value of ω may be

greater than one, we take the minimum with respect to 0.99 in order to restrict ω to the

interval (0, 1). We note that our choice of 0.99 is arbitrary, and any number sufficiently

close to but strictly less than one would have sufficed. Figure 2.6 shows that the optimal

relaxation parameter provides effective damping when Re(µ) < 0. However, we also observe

that the effectiveness of the damping decreases as µ approaches one, and in particular, the

relaxation parameter has little effect when Re(µ) ≈ 1. Consequently, if HJ has eigenvalues

with real part close to one we expect the weighted Jacobi method to be slow to converge

regardless of the relaxation parameter (note that Re(µ) ≈ 1⇒ Re(λ) ≈ 1).

The Gauss–Seidel method can also be made to converge by using a weighted iteration
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Figure 2.6: Contour plot of f(µ) over the open unit disk in the complex plane.

matrix of the form

HωGS = (1− ω)I + ωHGS = I− ω(D− L)−1A.

It must be stressed, however, that while the weighted Gauss–Seidel method is similar to

the SOR method, they are not the same. In general, if H is the iteration matrix arising

from a weak regular splitting of an irreducible singular M-matrix, then

Hω = (1− ω)I + ωH (2.34)

is semiconvergent for any ω ∈ (0, 1) [93].

We conclude this section by showing that the weighted Jacobi method with ω ∈ (0, 1)

is guaranteed to converge to the unique (up to scaling) strictly positive solution of Ax = 0

when A is an irreducible singular M-matrix.
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Theorem 2.5.6. Consider the linear system Ax = 0 where A ∈ Rn×n is an irreducible

singular M-matrix. Let A = M−N be any weak regular splitting chosen in such a way that

H = M−1N is semiconvergent. Then the iterative procedure (2.21) converges to a strictly

positive solution of Ax = 0 for any strictly positive initial guess x(0).

Proof. The iterative procedure applied to the homogeneous system is given by

x(k) = Hkx(0) for k = 1, 2, 3, . . . .

By Theorem 2.5.4 this procedure converges to a solution of Ax = 0. Therefore, our goal

is to show that the solution is not the trivial solution. Let

Ĥ = lim
k→∞

Hk,

which exists because H is semiconvergent. By the assumption of a weak regular splitting,

Hk is nonnegative for any k ∈ N, and hence Ĥ is nonnegative. Let

x̂ = lim
k→∞

x(k) = lim
k→∞

Hkx(0) = Ĥx(0).

By Lemma 7.6.11 in [11]

Ĥ = I− (I−H)(I−H)D,

where (I−H)D is the unique matrix2 such that for any z ∈ Rn

(I−H)Dz =

{
y if (I−H)y = z and x ∈ range(I−H),

0 if (I−H)z = 0.

Writing H = I−M−1A, we have Ĥ = I−M−1A(M−1A)D. Let x be the strictly positive

vector that spans the one-dimensional nullspace of A. Since M−1Ax = 0 we have

Ĥx = [I−M−1A(M−1A)D]x = x.

2The matrix (I−H)D is the Drazin inverse of I−H; see page 198 in [11].
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Therefore, by strict positivity of the exact solution, Ĥ must have at least one strictly

positive element in each of its rows, otherwise, Ĥx would have a zero component, which is

not possible. Hence, by strict positivity of the initial guess and because dim null(A) = 1,

x̂ must be the desired strictly positive nontrivial solution.

Corollary 2.5.1. If A is an irreducible singular M-matrix, and if A = M−N is a weak

regular splitting chosen in such a way that H = M−1N is semiconvergent, then the iterative

procedure (2.21) applied to Ax = 0 has strictly positive iterates.

Proof. Because Ĥ has at least one strictly positive element in each row, Hk must also have

at least one strictly positive element in each row for any k ∈ N. Therefore, given a strictly

positive initial guess, the iterates of (2.21) must be strictly positive for all k ∈ N.

Theorem 2.5.7. For any irreducible singular M-matrix A ∈ Rn×n, the weighted Jacobi

method with 0 < ω < 1 converges to the unique (up to scaling) strictly positive solution of

Ax = 0 for any strictly positive initial guess x(0).

Proof. By Theorem 2.2.6 (4) A has strictly positive diagonal elements. Therefore, the

iteration matrix for the weighted Jacobi method is based on a regular splitting by Theorem

2.5.2 and is semiconvergent for 0 < ω < 1. The result now follows by Theorem 2.5.6.

2.6 Multigrid

2.6.1 Principles of multigrid

Multigrid methods (we first focus on geometric multigrid) were originally developed to

solve linear systems arising from the discretization of boundary value problems on spatial

domains. Multigrid’s development was motivated in part by the observation that while

simple iterative methods such as Jacobi and Gauss–Seidel may be slow to converge for such

problems, they possess a smoothing property in that the approximation error after a few

iterations is geometrically smooth. The smoothing property of simple iterative methods,
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and the fact that smooth error can be well approximated on coarser grids, are the two basic

principles of the multigrid approach. These concepts are best illustrated by considering

the simple boundary value problem:

−uxx − uyy = f(x, y) for (x, y) ∈ Ω = (0, 1)× (0, 1) (2.35)

u(x, y) = 0 for (x, y) ∈ ∂Ω,

which is the Poisson problem on the unit square with homogeneous Dirichlet boundary

conditions for some function f(x, y). Suppose that Ω̄ = Ω ∪ ∂Ω is discretized by the

grid points (xi, yj) = (ih, jh) for i, j = 0, . . . , n and n ∈ N, where for simplicity the grid

spacing h = hx = hy = 1/n is the same in both dimensions. The discrete grid including

the boundary points is denoted by Ω̄h, and the discrete grid corresponding to the interior

points is denoted by Ωh. Evaluating the exact solution u(x, y) at the grid points in Ω̄h we

define the grid function uij = u(xi, yj). Similarly, we define fij = f(xi, yj) at grid points in

Ωh. The partial derivatives in (2.35) can then be replaced by their centered finite difference

approximations which gives rise to the discrete problem:

4uij − ui+1,j − ui−1,j − ui,j−1 − ui,j+1

h2
= fij for i, j = 1, . . . , n− 1, (2.36)

u0j = unj = ui0 = uin = 0,

where uij is now the approximate solution to the PDE at (xi, yj). As illustrated by Figure

2.7 each unknown variable is coupled only to its direct neighbors. It is clear from the

discretization that there are (n − 1)2 degrees of freedom associated with the (n − 1)2

interior grid points. Using standard lexicographical ordering, the unknowns at the grid

points in Ωh may be collected into the vector

u = (u11, . . . , u1,n−1, . . . , un−1,1, . . . , un−1,n−1)
>.

Proceeding similarly for the source term produces the vector

f = (f11, . . . , f1,n−1, . . . , fn−1,1, . . . , fn−1,n−1)
>.
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Figure 2.7: Two-dimensional grid on the unit square. The solid dots indicate the unknowns that
are related at an interior grid point (xi, yj) by the discrete equation (2.36).

Thus the discrete problem can be formulated as an (n− 1)2× (n− 1)2 sparse linear system

Au = f (2.37)

in which A is the block tridiagonal matrix given by

A =
1

h2




T −I

−I T
. . .

. . . . . . −I

−I T




with T =




4 −1

−1 4
. . .

. . . . . . −1

−1 4



∈ R(n−1)×(n−1).

The matrix A is clearly symmetric, and in fact A is positive definite because

h2x>Ax =
∑

i

∑

j<i

|aij|(xi − xj)2 +
∑

i

xi
2
(

4−
∑

j 6=i

|aij|
)
> 0 for all x ∈ R(n−1)2 \ {0}.
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Moreover, by Theorem 2.2.7 (4) A is a nonsingular M-matrix. As a consequence, the

(weighted) Jacobi and Gauss–Seidel methods converge when applied to (2.37).

Now suppose we apply weighted Jacobi with ω = 2/3 and Gauss–Seidel to equation

(2.37) with f = 0. (We consider weighted Jacobi and Gauss–Seidel because they are

common choices for the relaxation method in multigrid algorithms.) We note that when

examining the error of stationary iterative methods applied to nonsingular linear systems

it is sufficient to work with the homogeneous system Au = 0 and an arbitrary initial guess.

A benefit of working with the homogeneous system is that the error of an approximate

solution v is simply −v. Figure 2.8 illustrates the error smoothing properties of weighted

Jacobi and Gauss–Seidel. It is evident that while the error does not necessarily become

small after a few iterations, it certainly becomes smooth. In the context of multigrid, the

naming convention of “smoother” or “relaxation method” is in reference to the smoothing

property of simple stationary iterative methods.

Error of initial guess Error after 5 iterations Error after 10 iterations

Error of initial guess Error after 10 iterations Error after 20 iterations

Figure 2.8: Smoothing properties of Gauss–Seidel and weighted Jacobi (ω = 2/3) applied to
Au = 0 with the same random initial guess. The top row is Gauss–Seidel and the bottom row is
weighted Jacobi.
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Further insight into the smoothing property of simple stationary iterative methods is

gained by considering the eigenmodes of the discrete Poisson problem (2.36) at the grid

points in Ωh:

ϕk,`ij = sin

(
kπi

n

)
sin

(
`πj

n

)
for i, j = 1, . . . , n− 1 (2.38)

and k, ` ∈ {1, . . . , n− 1}. Collecting these values into the vector ϕk,` for each wavenumber

(k, `), it is clear that ϕ1,1, . . . ,ϕn−1,n−1 are the eigenvectors of A, which form a basis for

R(n−1)2 . This observation motivates us to consider the smoothing properties of weighted

Jacobi and Gauss–Seidel when applied to the homogeneous system Au = 0 with ϕk,` as

the initial guess (the negative of initial error). Figure 2.9 gives the number of iterations

required by weighted Jacobi (ω = 2/3) and Gauss–Seidel to reduce the error by a factor of

103. Figure 2.9 clearly illustrates that for the discrete Poisson problem (2.36) stationary
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Figure 2.9: Number of iterations needed to reduce the initial error ϕk,` by a factor of 103 on a
15× 15 grid.
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iterative methods are more effective at reducing the high frequency or oscillatory error

components (large k or `) than the low frequency or smooth error components (small k

and `). Note that the relaxation parameter ω = 2/3 is near the optimal value of 4/5 for

reducing high frequency error components for this problem (see [119]).

We have seen that the weighted Jacobi and Gauss–Seidel methods possess a smoothing

property, and are particularly effective at removing oscillatory components of the error.

This observation raises the question of whether these methods can also be used to attenuate

smooth components of the error. In multigrid this is accomplished by relaxing on a coarse

grid. Since there are fewer degrees of freedom on a coarse grid, relaxations on a coarse grid

require less work. Suppose we have relaxed on the fine grid Ωh and are confident that only

smooth error remains. Then the question we must ask ourselves is if the smooth error (low

frequency eigenmodes) can be accurately represented on a coarse grid. The answer to this

question is the second principle of multigrid, namely the coarse grid principle. Assuming

that n is an even number, a natural way of defining the coarse grid is to double the grid

spacing in each dimension, which is referred to as standard coarsening.The coarse grid

obtained by standard coarsening is given by

Ω2h = {(xi, yj) : xi = 2hi, yj = 2hj, 1 ≤ i, j ≤ n/2− 1}.

Now consider the eigenmodes of the discrete Poisson problem (2.38). We observe that

ϕk,`ij = −ϕn−k,`ij = −ϕk,n−`ij = ϕn−k,n−`ij for i, j = 2, 4, 6, . . . , n− 2. (2.39)

Hence, on the coarse grid Ω2h any eigenmode with n/2 < max{k, `} < n coincides with an

eigenmode for which 0 < max{k, `} < n/2. Therefore, the high frequency modes are not

“visible” on the coarse grid, a phenomenon referred to as aliasing. We note that for k = n/2

or ` = n/2, the ϕk,`ij vanish on Ω2h. Therefore, it is exactly the low frequency eigenmodes

that can be represented on the coarse grid Ω2h. Furthermore, because there is only one

quarter the number of points on the coarse grid as on the fine grid, the low frequency

eigenmodes on Ωh must appear more oscillatory on Ω2h (see Figure 2.10). Consequently,

relaxation on the coarse grid should be more effective at removing smooth error. We note
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that the definition of “high frequency” and “low frequency” modes depends on the fine

grid as well as on the coarse grid. For example, suppose the grid spacing on the coarse grid

is 4h (assuming n is divisible by 4) instead of 2h. Then by a similar argument as above

with i, j = 4, 8, 12, . . . , n−4, the low frequency modes correspond to 0 < max{k, `} < n/4,

and the high frequency modes correspond to n/4 < max{k, `} < n.
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Figure 2.10: Low frequency eigenmodes ϕ1,1,ϕ1,2,ϕ2,1,ϕ2,2 on a 16× 16 grid (top, right to left).
The same low frequency eigenmodes on a coarser 8× 8 grid (bottom, right to left).

2.6.2 The multigrid algorithm

Building on the discussion in the previous section, we describe the individual components

of a multigrid method, in the context of our model problem, and show how they may be

combined into a single algorithmic unit. Consider the linear system

Ahuh = fh (2.40)
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corresponding to the discrete Poisson equation (2.36) defined on the grid Ωh. Let Ω2h

denote the coarse version of the fine grid Ωh obtained by standard coarsening. There are

Nh = (n− 1)2 degrees of freedom on Ωh, and N2h = (n/2− 1)2 degrees of freedom on Ω2h.

Now recall the two basic principles of multigrid that were motivated in Section 2.6.1.

Smoothing Principle: Simple stationary iterative methods such as weighted Jacobi and

Gauss–Seidel, when applied to linear systems with suitable structure, have a strong

smoothing effect on the error of any approximation.

Coarse Grid Principle: A smooth error term can be well approximated on a coarse grid.

Because the coarse grid has fewer degrees of freedom, it is much cheaper to do work

on the coarse grid.

Suppose we have an initial approximation ũh to uh such that its corresponding error

eh = uh − ũh is sufficiently smooth. Then by the coarse grid principle the error can

be accurately approximated on the coarse grid, where relaxations are cheaper to perform

and are more effective at removing smooth error modes. Moreover, provided the error is

accurately approximated on the coarse grid and there is some way of transferring it to the

fine grid, adding the fine-grid error approximation to ũh should yield an improved solution

ũh + ẽh ≈ uh. The procedure we have just loosely described is referred to as a coarse-grid

correction scheme, and it has the makings of a multigrid method. However, some questions

now arise. First and foremost, how do we relax the error on Ω2h? On the fine grid, the

error is related to the residual rh = fh −Ahũh by the residual equation

Aheh = rh. (2.41)

Assuming the error is smooth it can be approximated on the coarse grid as the solution of

a coarse residual equation

A2he2h = r2h. (2.42)

The error can then be relaxed on the coarse grid by applying the relaxation scheme to the

coarse system (2.42). Because relaxing on the fine system (2.40) with an arbitrary initial
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guess ũh is equivalent to relaxing on the residual equation (2.41) with a zero initial guess,

it follows that we may use 02h as the initial guess for the error on the coarse grid.

To obtain the coarse residual r2h we need some way of transferring fine grid quantities

to the coarse grid. This is accomplished by defining a (linear) transfer operator

I2h
h : RNh → RN2h , (2.43)

referred to as the restriction operator. The coarse residual is then defined by

r2h := I2h
h rh.

Similarly, we can define an interpolation or prolongation operator

Ih2h : RN2h → RNh , (2.44)

which transfers coarse grid quantities to the fine grid. In particular, the prolongation

operator may be used to obtain a fine grid approximation of the coarse grid error

ẽh = Ih2he2h.

The most basic restriction operator is the injection operator, which simply assigns fine-grid

values located at the coarse-grid points to the coarse grid. For example, using injection to

define the coarse residual for the model problem we have that

(r2h)ij = (rh)2i,2j for i, j = 1, . . . ,
n

2
− 1.

While there are many different choices for the restriction and interpolation operators,

usually the simplest of these are effective. Common transfer operators for the model

problem with standard coarsening are bilinear interpolation, and full weighting restriction,

which corresponds to the scaled transpose of the bilinear interpolation operator. Figure

2.11 illustrates the distribution process for the bilinear interpolation operator. In general,

prolongation corresponds to piecewise multilinear interpolation, which is the extension of
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Figure 2.11: Distribution process for the bilinear interpolation operator on a uniform grid. Solid
black dots (•) are coarse grid points and hollow dots (◦) are fine grid points.

piecewise linear interpolation to higher dimensions. In the case of bilinear interpolation,

interpolated values are given by averages of the values at neighboring grid points. Owing

to the simple structure of these types of prolongation, smooth fine-grid errors eh can be

well approximated by coarse-grid interpolation, whereas oscillatory fine-grid errors cannot.

Because the precise structure of the transfer operators is not important to us here, we refer

to [119] for further details.

Because the coarse grid has the same structure as the fine grid, only with fewer grid

points, the coarse-grid system operator A2h can be obtained by discretizing the problem on

Ω2h. An alternative approach is to use the Galerkin formulation of the coarse-grid system

operator, given by

A2h = I2h
h Ah Ih2h.

It can be shown that if Ah is symmetric positive definite, then the Galerkin operator with

I2h
h = (Ih2h)

> satisfies an important variational property involving the coarse-grid correction

(see Theorem 2.6.1).

We now have all the ingredients to precisely describe a two-grid correction scheme,

which is a combination of the coarse-grid correction procedure described above, together

with pre- and post-smoothing steps (Algorithm 2.1). It is the complementary relationship

of these two processes that makes multigrid methods so effective.
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Algorithm 2.1: Two-grid correction scheme for Ahuh = fh

Input: current approximation u
(k)
h , Ah, fh, number of smoothing steps ν1, ν2

Output: New approximation u
(k+1)
h

1. Pre-smoothing: apply ν1 relaxations to u
(k)
h

ūh ← Relax(Ah, fh, u
(k)
h , ν1)

2. Coarse-grid correction:
3. Compute coarse-grid residual r2h ← I2h

h (fh −Ahūh)
4. Solve A2he2h = r2h

5. Interpolate the coarse-grid error to the fine grid êh ← Ih2he2h and
correct the fine grid approximation uCGC

h ← ūh + êh

6. Post-smoothing: apply ν2 relaxations to uCGC
h

u
(k+1)
h ← Relax(Ah, fh, uCGC

h , ν2)

Several comments regarding Algorithm 2.1 are in order. First, we use

Relax(A, f ,x(0), ν)

to denote ν iterations of a stationary iterative procedure applied to the linear system

Ax = f with initial guess x(0). Common choices for the relaxation scheme include the

weighted Jacobi and Gauss–Seidel methods. The integers ν1 and ν2, which control the

number of pre- and post-smoothing steps, are typically fixed prior to the start of the

method. In most cases only a few pre- and post-smoothing steps are necessary on each

grid level, for example, ν1, ν2 ∈ {1, 2, 3}.

It is important to appreciate the complementarity inherent to the two-grid correction

scheme. Pre-smoothing reduces the high frequency components of the error, leaving the

error smooth. Thus, the error after smoothing can be accurately approximated on a coarse

grid. Assuming the coarse residual equation is solved accurately, the interpolated error

should be a good approximation of the fine-grid error, and correction of the fine-grid solu-
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tion should be effective. Post-smoothing helps reduce any high frequency error components

introduced by interpolation.

The two-grid method serves as a basis for a true multigrid method, and is particularly

important as a theoretical tool for proving (two-grid) convergence (see [119]). The multigrid

idea arises from the observation that since the coarse-grid equation (2.42) may be too

large and hence too costly to solve directly, it is more effective and efficient to obtain an

approximate solution of (2.42) by recursively applying the two-grid method with a sequence

of coarser grids. This approach is possible because the coarse-grid equation is of the same

form as the original equation. Consider the n× n linear system

Au = f

arising from the discretization of a boundary value problem on the grid Ω0, with grid

spacing h, and suppose we define a sequence of consecutively coarser grids

Ω0,Ω1, . . . ,Ω`, . . . ,ΩL,

with ΩL as the coarsest grid. Moreover, let n` be the number of unknowns on Ω` for

` = 0, . . . , L with n0 = n. For example, in the case of the model problem with standard

coarsening, Ω` would correspond to the uniform grid with mesh size h` = 2−`h. Suppose

that for each grid Ω` the linear operators

I`+1
` : Rn` → Rn`+1 , I``+1 : Rn`+1 → Rn` , A` ∈ Rn`×n`

are given, where A`u` = f` is the discrete problem to be solved on Ω`, and A0 = A. A

multigrid cycle for Au = f is given by Algorithm 2.2. The input parameter µ controls the

number of recursive solves performed on each level, and is referred to as the cycle index.

In practice, only µ = 1 or 2 are used, where the multigrid cycle is referred to as a V-cycle

for µ = 1, and a W-cycle for µ = 2. While W-cycles are computationally more expensive

than V-cycles, they typically result in faster convergence than V-cycles, so the goal is to

choose the cycle that leads to the fastest overall execution. We note that other cycling
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schemes are possible, however, V-cycles and W-cycles are the most common in practice.

The structure of a multigrid V-cycle and W-cycle is illustrated by Figure 2.12. A multigrid

method in its most basic incarnation consists of a sequence of V-cycles or W-cycles, where

the output of the kth cycle (iteration) is used as input for the (k + 1)th cycle. Algorithm

2.2 recursively visits successively coarser grids until it reaches the coarsest grid ΩL where

the corresponding set of equations are solved directly. The problem on the coarsest level is

usually invertible and hence amenable to solution by LU factorization, however, its exact

nature depends on the underlying continuous problem and on the discretization. The size

of ΩL should be sufficiently small so that the direct solve is computationally inexpensive.

We note that in lieu of computing the exact solution on ΩL, it may be sufficient to obtain

an approximate solution by applying a number of relaxations on ΩL.

Algorithm 2.2: MGCYC (generic multigrid cycle for solving Au = f)

Input: u
(k)
` , A`, f`, µ, ν1, ν2

Output: u
(k+1)
`

if ` = L then
1. Solve ALuL = fL

else

2. Pre-smoothing: apply ν1 relaxations to u
(k)
`

ū` ← Relax(A`, f`, u
(k)
` , ν1)

3. Restrict the residual: f`+1 ← I`+1
` (f` −A`ū`)

4. Set v`+1 ← 0 and repeat µ ≥ 1 times:

v`+1 ← MGCYC(v`+1, A`+1, f`+1, µ, ν1, ν2)

5. Correct: uCGC
` ← ū` + I``+1v`+1

6. Post-smoothing: apply ν2 relaxations to uCGC
`

u
(k+1)
` ← Relax(A`, f`, uCGC

` , ν2)

end
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We observe from Algorithm 2.2 that a multigrid cycle comprises:

1. A sequence of consecutively coarser grids Ω0, . . . ,ΩL

2. A set of inter-grid transfer operators defined on Ω0, . . . ,ΩL−1

3. A set of system operators A` defined on Ω` for ` = 0, . . . , L

4. A relaxation method

5. A coarsest-grid solver

Together, these components form what is called a multigrid hierarchy.

W-cycle µ = 2V-cycle µ = 1

0

1

2

3

Figure 2.12: Structure of a multigrid V-cycle and W-cycle with L = 3 (• smoothing, ◦ coarsest
level solve, \ coarse-to-fine transfer, / fine-to-coarse transfer).

Remark 2.6.1. Multigrid methods can be applied most efficiently to elliptic boundary value

problems, of which the Poisson problem is a prototypical example. The multigrid approach

may also be applied to boundary value problems involving parabolic and hyperbolic PDEs,

however, doing so may require special considerations that are beyond the scope of this

thesis. In particular, care must be taken to choose an appropriate discretization of the

differential operator as the discretization directly influences the properties of the corre-

sponding system of equations Au = f . For simplicity, in this section we have assumed that

Au = f arises from the discretization of a linear elliptic boundary value problem and that

the discrete operator A is a symmetric positive definite matrix.
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We conclude this section by analyzing the computational work of a multigrid cycle.

Following [119], the computational work W0 per multigrid cycle is recursively given by

WL−1 = WL
L−1 +WL, W`−1 = W `

`−1 + µW` for ` = L− 1, . . . , 1 (2.45)

where W `
`−1 denotes the computational work of a two-grid cycle with fine grid Ω`−1 and

coarse grid Ω`, excluding the work needed to solve the residual equation on Ω`, and WL is

the amount of work to compute the exact solution on ΩL. It follows by (2.45) that

W0 = µL−1WL +
L−1∑

`=1

µ`−1W `
`−1 (2.46)

for L ≥ 1. We assume that W `
`−1 is proportional to the number of points on Ω`−1, that is,

n`−1, where the constant of proportionality C is given by

C ≈ (ν1 + ν2)ws + wc + wr.

Here, ws, wc and wr are estimates of the amount of work per grid point of Ω`−1 to perform

a single smoothing step, compute the correction, and compute the coarse residual, respec-

tively. Note that “≈” means “=” up to lower-order terms. We further assume that the

coarsening is such that n`−1 ≈ αn` for ` = 1, . . . , L with α > 1. For example, in the case

of standard coarsening in two dimensions α = 4. Putting all the pieces together it follows

that

W0 ≈
L−1∑

`=1

Cn
(µ
α

)`−1

+ µL−1WL <
α

α− µCn+ µL−1WL for µ < α. (2.47)

Assuming that the amount of work to compute the exact solution on ΩL is negligible, we

conclude that

W0 /
α

α− µCn for µ < α (2.48)
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where “/” means “≤” up to lower order terms. Therefore, in the case of standard coars-

ening in two dimensions, it follows that the computational work of a V-cycle or a W-cycle

is proportional to the number of points on the finest grid.

Remark 2.6.2. In many cases it can be shown through local Fourier analysis that the

convergence speed of an appropriate multigrid method does not depend on the size of the

finest grid. For example, see chapters 3 and 4 in [119] as well as [18]. By “appropriate”

we mean a multigrid method in which suitable care has been taken in choosing each of its

components: transfer operators, smoother, coarsening. Together with the fact that each

multigrid cycle requires only O(n) arithmetic operations, it follows that multigrid methods

are capable of achieving a fixed reduction of the error in O(n) arithmetic operations. This

is the real “magic” of multigrid, often referred to as the “optimality” of multigrid methods.

In this section and the previous one we described the basic principles of multigrid

and presented a generic multigrid cycle. Unfortunately, designing a multigrid method is

not so simple as throwing together a smoother, a coarsening strategy and some transfer

operators. Care must be taken in selecting these components so they work in unison to

produce an efficient and robust algorithm, and at the same time account for the various

subtleties of the underlying problem. In particular, because the grid hierarchy is often

fully determined by a specific coarsening strategy, special care must be taken in choosing

the relaxation method so that an efficient interplay between smoothing and coarse-grid

correction is obtained. Thankfully, theoretical tools such as smoothing analysis and local

Fourier analysis exist to help guide the selection of these various components [119]. In

the next section we describe algebraic multigrid, a variation of the “geometric” multigrid

method considered here, which relies on the same basic multigrid principles, but is intended

for problems in which the underlying grid is unstructured, or there is no underlying grid.

2.6.3 Classical algebraic multigrid (AMG)

In contrast to geometric multigrid, in which the underlying differential equation and ge-

ometry of the problem at hand are used to guide the solution process of the discretized
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equations Au = f , algebraic multigrid (AMG) bases multigrid concepts solely on infor-

mation contained in the coefficient matrix of the algebraic system. In particular, coarse

grids, coarse-grid system operators, and inter-grid transfer operators (i.e., interpolation

and restriction operators) are automatically constructed, based only on the elements in

the current fine-grid system operator Ah. Consequently, AMG can be used as a solver for

problems in which no structured grids are employed, for example, finite-element discretiza-

tion with irregular fine-grid triangulations, and large sparse systems that are not derived

from differential equation problems. AMG may also useful for boundary value problems

in which conventional coarsening may not be able to account for certain pathologies in the

equation coefficients, for example, diffusion problems with discontinuous coefficients.

The main conceptual difference between geometric multigrid and AMG lies in the in-

terplay between the coarse-grid correction process and the smoothing process. Because

geometric multigrid employs a prescribed grid hierarchy, an appropriate smoothing pro-

cess must be chosen to ensure an efficient interplay with the coarse-grid correction. In

contrast, as discussed in [119], AMG fixes the smoother to a simple relaxation scheme, and

enforces an efficient interplay with the coarse-grid correction by choosing the coarse grids

and interpolation operators appropriately.

The first “AMG-like” method, which employed operator-dependent interpolation (in-

terpolation based on the current fine-grid system operator) in an otherwise geometric

multigrid setting, was introduced in 1981 by Alcouffe, Brandt, Dendy, and Painter [2] to

solve diffusion problems with strongly discontinuous coefficients. Classical algebraic multi-

grid (as described below) was developed in the early-to-mid 1980’s by Brandt, McCormick,

Ruge, and Stüben [19, 22, 24, 103]. Since algebraic multigrid’s inception, a large amount

of research has been focused on advancing AMG theory and on the development of new

multigrid algorithms that extend the applicability of AMG to new classes of problems, for

example, see [21, 26, 28, 29, 30, 31, 66, 96, 121, 124]. For a brief introduction to AMG that

outlines many of the main developments since the initial papers on AMG we recommend

[56]. For a more thorough introduction to AMG, see [32, 119].

In the remainder of this section we describe the classical AMG algorithm developed

by Brandt, McCormick, Ruge, and Stüben for solving the n × n sparse linear system of
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equations

Au = f ,

where it is assumed for simplicity that A is a symmetric nonsingular M-matrix with non-

negative row sums3. We note that AMG is applicable to other classes of matrices including

essentially positive-type matrices in which some of the off-diagonal elements can be positive,

providing they are sufficiently small (see [19]).

Analogous to geometric multigrid, in AMG the index of each variable ui is associated

with a “grid point” that belongs to the “grid” Ω = {1, . . . , n}. Connections between grid

points in Ω may then be defined as the edges in the undirected adjacency graph of A,

denoted by G(A) = G(Ω,E), where an edge exists between node i and node j if i 6= j

and aij 6= 0 (see Figure 2.13). Points on the “coarse grid” are given by a subset of the

A =




∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗




1 5

2 3 4

Figure 2.13: Undirected graph G(A) of the matrix A. Nonzero elements in A are indicated by
asterisks.

fine-grid points C ⊂ Ω, and hence a subset of fine-grid variables {ui : i ∈ C} serve as the

coarse-grid unknowns. While this artificial geometry has no physical meaning, it provides

a means of defining connections between points as well as local neighborhoods of points,

in an algebraic setting.

Definition 2.6.1. For any point i, the (direct) neighborhood of i is defined as the set of

points that are adjacent to i in G(A), that is, Ni = {j 6= i : aij 6= 0}.
3This assumption is equivalent to the requirement that A is a weakly row diagonally dominant, sym-

metric, positive definite matrix with nonpositive off-diagonal elements.
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The locality of two points i and j corresponds to the distance between nodes i and j in

G(A), defined as number of edges in the shortest path connecting them. For instance, Ni

consists of the distance one connections to node i.

Similar to geometric multigrid, an AMG hierarchy consists of the following components:

1. A sequence of consecutively coarser grids Ω0 ⊃ Ω2 ⊃ · · · ⊃ ΩL with Ω0 = Ω

2. A set of transfer operators

a. Interpolation: I``+1 : Rn`+1 → Rn` for ` = 0, . . . , L− 1

b. Restriction: I`+1
` : Rn` → Rn`+1 for ` = 0, . . . , L− 1

3. A set of system operators A` ∈ Rn`×n` for ` = 0, . . . , L with A0 = A

4. A smoother such as weighted Jacobi or Gauss–Seidel

5. A coarsest-grid solver

Remark 2.6.3. When considering two consecutive levels only, we use indices h andH instead

of ` and `+ 1, respectively, to distinguish between fine-grid and coarse-grid quantities.

Once the components of the AMG hierarchy are defined, the recursively defined AMG

cycle is given by Algorithm 2.2. For this cycle to work efficiently, relaxation and coarse-

grid correction must work together to effectively reduce all error components. As discussed

above, AMG fixes the relaxation scheme and appropriately chooses the coarse grids, the

transfer operators, and the system operators to ensure an effective interplay with the

coarse-grid correction. The following principles guide the choice of these components:

P1: Error components not efficiently removed by relaxation must be well approximated

by the range of interpolation.

P2: The coarse-grid problem must provide a good approximation to the fine-grid error in

the range of interpolation.
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Principle P1 determines the coarse grids and interpolation. To satisfy P1, the coarse grid

and interpolation are to be selected automatically so that the range of interpolation accu-

rately approximates error components that are slow to converge by relaxation. Principle

P2 affects the choice of restriction and the coarse-grid system operator. For symmet-

ric positive definite operators, P2 is satisfied by using the Galerkin formulation for the

restriction and coarse-grid system operators:

A`+1 = I`+1
` A` I

`
`+1 and I`+1

` = (I``+1)
>. (2.49)

When A is symmetric positive definite, Galerkin-based coarse-grid corrections satisfy a

variational principle in that they minimize the energy norm of the error with respect to

all error components in the range of interpolation. That is, the correction from the exact

solution of the coarse-grid problem is the best approximation (with respect to the energy

norm) in the range of interpolation. A further useful property of (2.49) is that A`+1 is

a symmetric positive definite operator if the interpolation operator is of full rank. To

demonstrate this variational principle, consider a (two-grid) coarse-grid correction process

between consecutive fine and coarse grids Ωh ⊃ ΩH ,

uCGC

h = ūh + IhHvH

= ūh + IhH((AH)−1IHh (fh −Ahūh))

= (Ih − IhH(AH)−1IHh Ah)ūh + IhH(AH)−1IHh fh.

Expressed in terms of the corresponding error we have that

eCGC

h = Ch,H ēh with Ch,H := Ih − IhH(AH)−1IHh Ah, (2.50)

where Ch,H is the (two-grid) coarse-grid correction operator. Assuming that AH is given

by the Galerkin formulation in (2.49), we have the following proposition.

Proposition 2.6.1. The Galerkin-based coarse-grid correction operator Ch,H is an Ah-

orthogonal projection such that range(Ch,H) ⊥Ah
range(IhH).

64



Proof. The coarse-grid correction operator is an Ah-orthogonal projection, if (1) Ch,H is

symmetric with respect to the energy inner product and (2) (Ch,H)2 = Ch,H . Condition

(1) follows by the observation that

AhCh,H = Ah −AhI
h
H(AH)−1IHh Ah = (Ih −Ah(I

H
h )>(AH)−1(IhH)>)Ah = (Ch,H)>Ah.

Condition (2) follows by

(Ch,H)2 = Ih − 2IhH(AH)−1IHh Ah + IhH(AH)−1 IHh AhI
h
H︸ ︷︷ ︸

AH

(AH)−1IHh Ah

= Ih − 2IhH(AH)−1IHh Ah + IhH(AH)−1IHh Ah

= Ch,H .

Having verified that Ch,H is an Ah-orthogonal projection, it must be true that

range(Ch,H) ⊥Ah
null(Ch,H) = range(Ih −Ch,H).

Because IhH , Ah, and AH are all of full rank, (AH)−1IHh Ah is also of full rank. Therefore,

range(Ih −Ch,H) = range(IhH(AH)−1IHh Ah) = range(IhH),

which concludes the proof.

The following theorem states the principal result that motivates the use of the Galerkin

coarse-grid system operator, that is, the variational principle discussed above.

Theorem 2.6.1. Suppose that Ah is symmetric positive definite, IhH is a full rank inter-

polation operator, and Ch,H is the Galerkin-based coarse-grid correction operator. Then,

‖Ch,Heh‖Ah
= min

eH

‖eh − IhHeH‖Ah
for all eh.
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Proof. By Proposition 2.6.1,

range(Ch,H) ⊥Ah
range(Ih −Ch,H) and range(Ih −Ch,H) = range(IhH).

Therefore, by writing eh = Ch,Heh + (Ih − Ch,H)eh, it follows for any fine-grid error eh

that,

min
eH

‖eh − IhHeH‖2Ah
= min

vh∈range(Ih−Ch, H)
‖Ch,Heh + (Ih −Ch,H)eh − vh‖2Ah

= min
v̂h∈range(Ih−Ch, H)

‖Ch,Heh + v̂h‖2Ah

= min
v̂h∈range(Ih−Ch, H)

(
‖Ch,Heh‖2Ah

+ ‖v̂h‖2Ah

)

= ‖Ch,Heh‖2Ah
.

Now consider principle P1. Naturally, our first step is to characterize the smooth

error of simple relaxation schemes in an algebraic setting. Recall from §2.6.1 that in the

geometric setting, the most important property of smooth error is that it is not effectively

reduced by standard relaxation methods (see Figure 2.9). As discussed in [19], such error

can typically be approximated by the near nullspace of A, which is the subspace spanned

by eigenvectors of A corresponding to small eigenvalues. In the algebraic setting, error

for which relaxation is slow to converge is defined as algebraically smooth to distinguish it

from the geometric case in which case smooth error is also geometrically smooth. In fact,

algebraically smooth error can still be largely oscillatory. Given the iteration matrix of a

relaxation scheme, H = I−M−1A, algebraically smooth error is characterized by

‖He‖A ≈ ‖e‖A. (2.51)

Observing that

He = e−M−1r,
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it follows that convergence must be slow if the residuals are in some sense small com-

pared with the errors. Moreover, the converse of this statement is typically true for many

commonly used relaxation methods, that is, slow convergence implies small residuals. In

[19] Brandt shows that for any symmetric M-matrix A (more generally for any symmetric

positive definite matrix A), if the convergence speed of weighted Jacobi or Gauss–Seidel

relaxation slows down, then

n∑

i=1

ri
2

aii
�

n∑

i=1

riei, (2.52)

where ri is the ith entry of the residual vector r = Ae. This result implies that, on average,

for each i, algebraically smooth error has scaled residuals that are much smaller than the

error itself

|ri| � aii|ei|. (2.53)

Although the error may still be large globally, (2.53) implies that

ri ≈ 0 ⇒ aiiei ≈ −
∑

j∈Ni

aijej. (2.54)

Hence, algebraically smooth error ei can be approximated locally by an average of its

neighboring error values ej. In addition, if A has nonnegative row sums then a more

intuitive definition of algebraically smooth error is possible. We begin by writing

〈Ae, e〉 =
∑

i

∑

i<j

|aij|(ei − ej)2 +
∑

i

∑

j

aijei
2. (2.55)

It follows by the Cauchy–Schwarz inequality with D = diag(A) that

〈Ae, e〉 = 〈D−1/2Ae,D
1/2e〉 ≤ ‖D−1/2Ae‖2‖D1/2e‖2 = ‖r‖D−1‖e‖D. (2.56)

In conjunction with (2.52) this result implies that 〈Ae, e〉 � 〈De, e〉. It now follows from
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(2.55) and weak row diagonal dominance of A that

∑

i

∑

i<j

|aij|(ei − ej)2 �
∑

i

aiiei
2.

Rearranging this expression, we obtain that in general for each i,

∑

j<i

|aij|
aii

(ei − ej)2

ei2
� 1. (2.57)

This expression leads us to one of the main heuristics in classical AMG.

AMG Heuristic: Algebraically smooth error varies slowly in the direction of large (neg-

ative) connections. That is, if |aij|/aii is relatively large then ei ≈ ej, in which case

the error is locally almost constant.

To quantify “large negative connections” in the matrix A, the concept of strength of con-

nection is introduced.

Definition 2.6.2 (Strength of connection). Let A be an M-matrix. Given a threshold

value 0 < θ ≤ 1, the variable ui (point i) strongly depends on variable uj (point j) if

−aij ≥ θmax
k 6=i
{−aik}.

Moreover, if ui strongly depends on uj, then we say that uj strongly influences ui.

Therefore, we say that algebraically smooth error varies slowly in the direction of these

strong connections. By the AMG Heuristic algebraically smooth error is geometrically

smooth along strong connections; consequently, it can be accurately interpolated from

error points (coarse-grid points) on which it strongly depends. We note that positive off-

diagonal connections are considered to be weak connections by Definition 2.6.2. Moreover,

it is possible that a point i strongly depends on j, but that j only weakly depends on i,

even though A is symmetric.
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Now suppose that the current fine grid Ωh = {1, . . . , nh} has been partitioned into a

set of coarse points C, and a set of fine points F. Points in C are referred to as C-points

and points in F as F-points. We note that the coarse grid ΩH is obtained by relabeling the

elements of C = {i1, . . . , inH
} in terms of their coarse-grid labels. For any fine-grid point

ik ∈ C, its coarse-grid label is given by α(ik) = k. The nh × nH interpolation operator IhH
is then defined by

(IhH)i,α(j) =





wij if i ∈ F and j ∈ Ci,

1 if i ∈ C and j = i,

0 otherwise,

(2.58)

where the wijs are the interpolation weights, and Ci ⊂ C is the subset of C-points that

strongly influence point i. It remains to determine the interpolation weights wij for each

point i ∈ F. Let Sj be the set of points that strongly influence j, for each point j ∈ Ωh.

Recall that algebraically smooth error is characterized by small residuals, r ≈ 0, which

implies that

aiiei ≈ −
∑

j∈Ni

aijej.

Note that for ease of notation we drop the subscript h on the elements of Ah. Suppose the

direct neighborhood of i is partitioned by Ni = Ci∪Ds
i ∪Dw

i , where Ds
i = F∩Si, and Dw

i is

the set of all points weakly connected to i. Splitting up the summation over the partition

of Ni, it follows that

aiiei ≈ −
∑

j∈Ci

aijej −
∑

j∈Ds
i

aijej −
∑

j∈Dw
i

aijej. (2.59)

Observe that if Ds
i = Dw

i = ∅, then (2.59) would give the desired interpolation formula with

weights wij = −aij/aii for all j ∈ Ci. This observation suggests that unwanted connections

in Ds
i ∪Dw

i should be “collapsed” to Ci. For weakly connected neighbors of point i, that

is, for points in Dw
i , each ej is replaced by ei. More care, however, must be taken with the

strong connections in Ds
i . Let j belong to Ds

i . A premise of AMG is that smooth error

is locally almost constant along strong connections. Assuming that Ci ∩ Sj 6= ∅, it follows
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that ej can be approximated by a convex combination of ek for k ∈ Ci that interpolates

constants exactly. By the small residual condition coefficients in the convex combination

are proportional to connections between j and each point k ∈ Ci:

ej ≈ −
1

ajj

∑

k∈Nj

ajkek ≈ −
1

ajj

∑

k∈Ci

ajkek.

Normalizing so that constants are interpolated exactly,

ej ≈
∑

k∈Ci
ajkek∑

k∈Ci
ajk

. (2.60)

Clearly, the approximation in (2.60) improves as the amount overlap between Ci and Sj

increases. At the very minimum, however, these sets must have at least one point in

common. We note that (2.60) can be thought of as a truncated interpolation formula for

ej, in the sense that we have simply deleted those points in the neighborhood of j that do

not belong to Ci. Substituting these approximations into (2.59) and solving for ei leads to

the following formula for the interpolation weights:

wij = −
aij +

∑
m∈Ds

i

(
aimamj∑
k∈Ci

amk

)

aii +
∑

r∈Dw
i
air

for all j ∈ Ci. (2.61)

In our description of AMG interpolation we assumed that the set of coarse-grid points

C was available. We now describe how C is determined. Let S>i denote the set of points

that strongly depend on point i. The coarsening process seeks to satisfy two heuristics:

H1: For each point i ∈ F, every point j ∈ Si should either belong to Ci or should strongly

depend on at least one point in Ci.

H2: The set of coarse-grid points C should be a maximal subset of all points with the

property that no two points in C are strongly connected to each other.

Heuristic H1 (see Figure 2.14) is essential if approximation (2.60) in the interpolation
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formula is to make sense. Heuristic H2 seeks to strike a balance between the amount

of work on the coarse grid and the convergence speed of the multigrid cycle, thereby

controlling the efficiency of the solution process. Because it is not always possible to

satisfy both heuristics, the coarsening process seeks to rigorously satisfy H1, while using

H2 as a guide.

i ∈ F

k ∈ Ci

j ∈ Si \ Ci

p ∈ Ci

Figure 2.14: Illustration of coarsening heuristic H1. Arrows indicate the direction of strong
influence.

Selection of the C-points proceeds in two phases. In the first phase (Algorithm 2.3), an

initial partition of Ωh into sets C and F is computed. The goal of this phase is obtain a

uniform distribution of C-points over Ωh that tend to satisfy H2. As shown by Algorithm

2.3, associated with each unassigned point i is a measure, λi, of that point’s usefulness as a

C-point. Intuitively, points that influence a large number of F-points, that is, points with

large measures, represent good candidates for C-points. During each iteration of Algorithm

2.3, the point with maximal measure is added to C, and the unassigned points that strongly

depend on this point are added to F. Unassigned points that influence the new F-points

are more likely to be useful as C-points, so their measures are incremented. On line 5 of

Algorithm 2.3, λj is decremented for all unassigned points j ∈ Si to try to minimize the

number of strong C-C connections.

The second phase of the coarsening process (Algorithm 2.4) seeks to rigorously enforce

heuristic H1. The algorithm sequentially tests each F-point i to ensure that each point

in Ds
i strongly depends on at least one point in Ci. If for some F-point i, a point j ∈ Ds

i
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is found such that Ci ∩ Sj = ∅, then j is tentatively made a C-point and is added to Ci.

Processing of the points in Ds
i then continues. If all those points now strongly depend on

Ci, then j is removed from F and is permanently added to C. However, if another point

in Ds
i is found that does not depend on any points in Ci, then i is permanently added to

C and j is removed from the tentative C-point list. This process is repeated for the next

F-point and continues until all F-points have been examined.

Algorithm 2.3: Phase 1 of AMG coarse-grid selection.

1. Set C← ∅, F ← ∅, U← Ωh, λi ← |S>i | for all i ∈ U

while U 6= ∅ do

2. Select i ∈ U with maximal λi and set C← C ∪ {i}, U← U \ {i}
foreach j ∈ (S>i ∩ U) do

3. Set F ← F ∪ {j} and U← U \ {j}
4. For each point k ∈ Sj ∩ U set λk ← λk + 1

end

5. For each j ∈ Si ∩ U set λj ← λj − 1

end

Algorithm 2.4: Phase 2 of AMG coarse-grid selection.

1. Set T ← F

while T 6= ∅ do

2. Select a point i ∈ T and set Ci ← C ∩ Si, C̃i ← ∅, Ds
i ← Si \ Ci, T ← T \ {i}

foreach j ∈ Ds
i such that Ci ∩ Sj = ∅ do

if C̃i 6= ∅ then
3. Set C← C ∪ {i}, F ← F \ {i}, and go to line 2

else

4. Set C̃i ← {j}, Ci ← Ci ∪ {j}
end

end

5. Set C← C ∪ C̃i, F ← F \ C̃i, T ← T \ C̃i
end
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The application of AMG is usually implemented as a two part process composed of a

setup phase and a solution phase. The setup phase is responsible for choosing the coarse

grids, and defining the transfer and coarse-grid system operators. The solution phase

consists of repeated multigrid cycles until the desired solution accuracy is achieved. Unlike

geometric multigrid where the numerical work per cycle is typically known beforehand, in

AMG nothing definite is known a priori about the numerical work per cycle. As discussed

in [103], the total work for both the setup and solution phases can be estimated in terms

of the following quantities:

1. The average “stencil size” over all grids

2. The average number of interpolation points per F-point

3. The ratio of the total number of points on all grids to that of the finest grid, referred

to as the grid complexity (Cgrid)

4. The ratio of the total number of nonzero elements in all system operators to that of

the finest-grid system operator, referred to as the operator complexity (Cop)

In an efficient multigrid solver these quantities should all be relatively small. The grid

complexity and the operator complexity are useful measures of the memory requirements

for storing the solution vectors and right-hand side vectors, and the system operators on

all levels, respectively. With respect to the time complexity of an AMG method, the most

significant quantities are the stencil size and the operator complexity. The numerical work

of a multigrid cycle (solve phase) is dominated by the relaxation work on all levels, which

is proportional to the number of nonzero elements in all matrices on all levels. Therefore,

the operator complexity is an approximate measure of the ratio of numerical work per cycle

to the amount of relaxation work on the finest grid. Small operator complexities lead to

small cycle times. The stencil size on a given level is defined as the average number of

coefficients per matrix row. While the stencil size of the original matrix is usually small,

large stencil sizes are possible on coarser levels. The stencil size largely influences the setup

time, in that stencil growth can lead to a significant increase in the number of operations
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required by coarsening and interpolation processes [48]. Naturally, stencil growth also leads

to increased operator complexities.

The numerical efficiency of a multigrid method depends on both the amount of work

per cycle and the speed of convergence. The speed of convergence is determined by the

asymptotic convergence factor ρ (see (2.32) in §2.5). It is useful to have an empirical

measurement of this quantity. The convergence factor of the kth cycle, q(k), is defined as

q(k) :=
‖r(k)‖
‖r(k−1)‖ ,

where r(j) is the residual of the updated solution after the jth cycle. For sufficiently large

k, a good estimate for ρ is then given by

γ(k) :=
k−k0
√
q(k0+1) . . . q(k) =

k−k0

√
‖r(k)‖
‖r(k0)‖ , (2.62)

which is the average residual reduction factor over the (k0 +1)th to the kth cycles. We note

that because the first few iterations tend not to reflect the asymptotic convergence factor

a small value of k0 is used, usually between two and five. Clearly, γ(k) � 1 corresponds

to a rapid reduction of the residual. A numerically scalable algorithm is one in which

the amount of computational work to solve a problem of a given size is linearly related

to the problem size. Numerical scalability of the AMG solution phase is characterized

by asymptotically constant operator complexities and convergence factors as the problem

size grows. In practice, linear scaling of the setup phase can typically be achieved for

sparse matrices whose stencil sizes do not grow too large on the coarser grids. While the

setup phase is more expensive than the solution cycles due to construction of the transfer

operators and coarse-grid system operators, its numerical cost can often be amortized over

many runs.
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2.6.4 Aggregation-based algebraic multigrid

The reduction of error components by a correction based on grouping states together dates

back to the work of Southwell [108]. The concept of grouping nodes into disjoint sets and

the subsequent identification of each set with a single degree of freedom was introduced in

the early 1950s by Leontief [84]. Iterative Aggregation-based methods have been considered

at least as far back as the 1982 paper by Chatelin and Miranker [37], which explored this

approach in the context of Markov chains. True AMG methods using aggregation were first

considered by Vaněk [121] and Braess [17]. The main difference between the classical AMG

framework described in §2.6.3 and aggregation-based AMG is the definition of coarsening

and interpolation. In the latter, the current set of fine-grid points Ωh is partitioned into

mutually disjoint sets called “aggregates” (as opposed to a C/F-splitting)

Ωh = {Ap : p = 1, . . . , nH},

where each aggregate Ap may be associated with a coarse-grid point p ∈ ΩH = {1, . . . , nH}.
Interpolation is then defined by piecewise constant interpolation from ΩH to the aggregates,

that is, the interpolant ũh of an arbitrary coarse-level vector uH is given by

(ũh)i = (uH)p for all i ∈ Ap.

It is easy to see that aggregation-based AMG can be interpreted as a simple limiting case of

the classical AMG approach, in which each F-point is allowed to interpolate from exactly

one C-point. That is, although an F-point i may have multiple connections to the set of

C-points, its coarse interpolatory set is restricted to contain exactly one C-point. From this

point of view each aggregate consists of exactly one C-point, k ∈ C, as well as the indices

of all F-points that interpolate from k (see Figure 2.15). Clearly, for this partitioning into

aggregates to be reasonable, the F-points in each aggregate should all strongly depend on

the corresponding interpolatory C-point. Setting all interpolation weights equal to unity, it

follows from (2.58) that classical AMG interpolation then corresponds to piecewise constant

interpolation.
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A1

A2

A3

A4

Figure 2.15: Partition of fine-grid points into aggregates (• C-point, ◦ F-point). The arrows
indicate which C-point an F-point interpolates from.

Let us now consider the aggregation process in slightly more detail, and show how

it relates to the classical AMG approach. Suppose that Ωh has been partitioned into

aggregates, and let the current nh × nh fine-grid problem be given by

Ahuh = fh with uh, fh ∈ Rnh .

Then the nH × nH coarse-grid problem

AHuH = fH with eH , fH ∈ RnH

is obtained through a simple summing process, where the entries of the Galerkin coarse-grid

system operator are given by

(AH)pq =
∑

i∈Ap

∑

j∈Aq

(Ah)ij, (2.63)
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and

(fH)p =
∑

i∈Ap

(fh)i (2.64)

for p, q = 1, . . . , nH . Defining the disaggregation operator (interpolation operator) by

(Qh
H)ip =

{
1 if i ∈ Ap,

0 otherwise
(2.65)

and the aggregation operator (restriction operator) by QH
h = (Qh

H)>, expressions (2.63)

and (2.64) may be written as

AH = QH
h AhQ

h
H and fH = QH

h fh. (2.66)

Thus, the aggregation AMG approach is equivalent to the classical AMG approach with

the only difference being the construction of the interpolation operator.

In that many aggregation strategies are possible, we mention a general purpose ag-

gregation strategy referred to as neighborhood aggregation [123] that follows a two-phase

procedure similar to classical AMG coarsening. In the first phase, aggregates are con-

structed by selecting a root point i ∈ Ωh that is not adjacent to any other aggregate, and

including all points that are strongly connected to i (based on some strength of connec-

tion measure) including i itself. This procedure is repeated until all unaggregated points

are adjacent to an aggregate. In the second phase, the remaining unaggregated points

are either integrated into preexisting aggregates, or are combined to form new aggregates.

Considerable care must be taken in handling the remaining unaggregated points during the

second phase. If too many aggregates are formed, then coarsening will be slow and cycle

times may increase. If aggregates are enlarged by too much, or have largely varying sizes

or irregular shapes, then convergence factors will grow. We note that the neighborhood

aggregation process is described in more detail in §4.1.

The disaggregation operator defined in (2.65) possesses a number of useful properties
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that we now briefly discuss.

Proposition 2.6.2. If the fine-grid operator Ah is a symmetric M-matrix with zero row

sums, then so is the coarse-grid system operator AH given by (2.63).

Proof. According to Theorem 2.2.7 (4) it is sufficient to show that AH is a symmetric

positive definite matrix with nonpositive off-diagonal elements and zero row sums. The

fact that AH is SPD follows directly from the observation that Qh
H has full rank. The

off-diagonal elements of AH are nonpositive because the aggregates do not overlap, that

is, because Ap ∩Aq = ∅ for all p 6= q the summation in (2.63) is only over the off-diagonal

elements of Ah. The zero row sum property follows by the fact that Qh
H interpolates

constants exactly, that is, AH1H = QH
h AhQ

h
H1H = QH

h Ah1h = 0h.

Owing to the simple structure of the disaggregation operator, storing Q`
`+1 requires only n`

storage locations on level `, and hence only nCgrid storage locations for a multilevel V-cycle.

Moreover, restriction (interpolation) of a fine-grid (coarse-grid) vector requires only n flops,

and constructing the aggregated coarse-grid matrix AH requires no more than nH nnz(Ah)

flops. Perhaps the most important property of the aggregation process is that the Galerkin

construction of the coarse-grid system operator approximately preserves the number of

nonzero elements per row of the fine-grid matrix [62]. Consequently, aggregation multigrid

usually exhibits little, if any, stencil growth, which leads to small operator complexities

(Cop ≈ 1) and fast cycles.

Unfortunately, the simple aggregation procedure described above typically leads to

inefficient AMG methods that are slow to converge. However, with certain modifications

aggregation-based AMG can become practical. It was shown independently by Blaheta and

Vaněk [13, 125] how weighting the coarse-grid correction by a small scalar factor α > 1,

that is,

uCGC

h = ūh + αQh
HvH ,

can significantly improve the convergence of basic aggregation-based AMG. This procedure,

referred to as over-correction, was motivated by the observation that while the correction

typically approximates the error well in the sense of its “progress”, it may not provide
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a good approximation in the sense of its “size” [125]. In the case of symmetric positive

definite matrices, theoretical arguments are used to derive a formula for the optimal over-

correction parameter α that minimizes the error of the CGC in the energy norm. For

further detail we refer to Chapter 5, where over-correction is more fully introduced, and is

used to accelerate aggregation-based AMG methods for Markov chains.

Another approach to accelerate aggregation-based AMG is the so-called smoothed ag-

gregation (SA) method developed in [121, 124]. The SA method differs from the basic

aggregation approach primarily in its definition of the interpolation operators. Observe

that interpolation of a coarse-grid vector vH can be written as

QvH =

nH∑

p=1

(vH)pϕp,

where ϕj is the jth column of Qh
H . Therefore, interpolation can be interpreted as a linear

combination of basis vectors ϕ1, . . . ,ϕnH
. Moreover, because ϕp has support given by the

corresponding aggregate Ap, for p = 1, . . . , nH , the basis vectors form an orthogonal basis

for the range of interpolation. Thus, the aggregation-based AMG framework for defining

interpolation can be viewed as an approach to define appropriate (locally supported) basis

vectors that span the near nullspace of Ah [72]. The SA method embraces this viewpoint

by using a smoother such as weighted Jacobi or Gauss–Seidel to smooth the columns of

Qh
H , thereby creating a set of smoothed basis vectors and introducing overlap between

the aggregates. The smoothed basis vectors can more accurately approximate the near-

nullspace components of Ah (for example see [119]), and the SA multigrid method typically

performs similarly to classical AMG. Unfortunately, the desirable properties of Qh
H such

as those given by Proposition 2.6.2 may be lost through the smoothing process, and in

particular, operator complexities may grow.

2.6.5 Full approximation scheme and full multigrid

The full approximation scheme (FAS) [18, 32, 119] is a multigrid method intended for

solving nonlinear problems. It is based on the same fundamental principles as in the linear
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case, that is, pre- and post-smoothing of the fine-grid error combined with a coarse-grid

correction procedure. The main difference between FAS and linear multigrid methods is

that in FAS the full approximation is approximated on the coarse grid, instead of the error.

Naturally, this difference is how the full approximation scheme earned its name.

Consider a system of nonlinear algebraic equations given by

A(u) = (A1(u), . . . , An(u))> = (f1, . . . , fn)> = f , (2.67)

with functionals Ai : Rn → R for i = 1, . . . , n. Common relaxation schemes for this type

of problem include the nonlinear Jacobi and nonlinear Gauss–Seidel methods. During the

kth iteration of the nonlinear Jacobi method, the ith variable is updated by solving the

ith equation of (2.67) for u
(k+1)
i , that is,

Ai(u
(k)
1 , . . . , u

(k)
i−1, u

(k+1)
i , u

(k)
i+1, . . . , u

(k)
n )− fi = 0.

Analogously, during the kth iteration of the nonlinear Gauss–Seidel method, the ith vari-

able is updated by solving

Ai(u
(k+1)
1 , . . . , u

(k+1)
i−1 , u

(k+1)
i , u

(k)
i+1, . . . , u

(k)
n )− fi = 0

for u
(k+1)
i . In both cases, a single nonlinear equation has to be solved for a single unknown.

Updating the ith variable is then formally equivalent to finding a root of a nonlinear

function of a single variable. Therefore, relaxation methods for nonlinear problems are

usually combined with a root-finding method such as scalar Newton’s method, resulting in,

for example, the Jacobi–Newton method and the Gauss–Seidel–Newton method. Although

these methods may be inefficient solvers for the system of nonlinear equations (2.67), they

are often effective smoothers.

Similar to the linear case, a FAS cycle can be defined by recursively extending a two-

grid method. Thus, for simplicity we describe one iteration of a two-grid FAS cycle. Let

the fine-grid problem be given by

Ah(uh) = fh,
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and suppose there exist inter-grid transfer operators IhH and IHh . Furthermore, let ūh be

the smoothed fine-grid approximation, and let eh = uh − ūh be the corresponding error.

Then the fine-grid residual equation is given by

Ah(ūh + eh)−Ah(ūh) = fh −Ah(ūh) = rh. (2.68)

This equation is approximated on the coarse grid by

AH(ūH + eH)−AH(ūH) = rH = IHh (fh −Ah(ūh)), (2.69)

where AH is an appropriate nonlinear operator. For example, in the case of a nonlinear

boundary value problem, AH may be obtained by discretizing the original problem on the

coarse grid. On the coarse grid we work with the problem

AH(wH) = fH , (2.70)

where wH = ūH + eH is the full approximation (not the error) and

fH := AH(IHh ūh) + IHh (fh −Ah(ūh)). (2.71)

The relaxed fine-grid solution is transfered to the coarse grid via restriction to obtain

ūH = IHh ūh. Solving (2.70) for wH , the coarse-grid approximation of the error is given

by eH = wH − IHh uh. We note that on the coarsest grid it may be necessary to solve the

linearized version of (2.70) to obtain an approximation of wH . The coarse-grid corrected

solution is then computed by

uCGC

h = ūh + IhH(wH − IHh uh). (2.72)

The two-grid scheme concludes with a few post-smoothing iterations.

A few observations regarding FAS are in order. We note that if A is a linear operator,

then FAS reduces to the usual linear two-grid correction scheme. Thus, the full approx-

imation scheme can be viewed as a generalization of the two-grid correction scheme for
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linear problems (see Algorithm 2.1). Also, if the exact fine-grid solution uh is a fixed point

of the relaxation scheme and IHh uh is a fixed point of the coarse-grid solver, then uh is a

fixed point of FAS. In practice the coarse-grid equation (2.70) is solved recursively, and

so the full approximation scheme is usually implemented as a V-cycle or a W-cycle. For

further details on FAS see [26, 119].

As is true for any iterative method, convergence of the full approximation scheme

can often be greatly improved by supplying a suitable initial guess. This statement is

especially true for nonlinear problems, in which the initial guess must lie within the basin

of attraction. Moreover, when the approximate solution is close to an exact solution, the

nonlinear problem (2.67) appears more linear, and the solution process is more effective.

One way in which we can try to obtain a better initial guess to the fine-grid problem is to

use full multigrid (FMG) [32, 119]. Full multigrid is based on the idea of nested iterations,

whereby coarse grids are used to obtain improved initial guesses for fine-grid problems. At

any given grid level the problem is first solved on the next coarser grid, after which the

solution is interpolated to the current grid to provide a good initial guess. This process

naturally starts at the coarsest grid and terminates at the finest. Once an initial guess to

the finest-grid problem has been obtained, repeated multigrid cycles can be used to obtain

an accurate solution. We note that the use of full multigrid is not restricted to nonlinear

problems solved by FAS; FMG can also provide a good initial guess for linear problems

in which geometric multigrid or AMG is used. The following components are required to

define an FMG cycle:

1. a sequence of consecutively coarser grids Ω0, . . . ,ΩL,

2. a multigrid solver MGCYC(u, A, f , µ, ν1, ν2) with its own multigrid hierarchy de-

fined on the same grid structure as in 1,

3. FMG transfer operators Î``+1 and Î`+1
` for ` = 1, . . . , L − 1, possibly different from

those used by the multigrid solver MGCYC.

A generic full multigrid cycle is given by Algorithm 2.5 (initially with ` = 0). We note that

the FMG restriction operators may be the same as those used by the associated multigrid
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cycle MGCYC, or, alternatively, f` may be obtained by injection of f0 to Ω`.

Algorithm 2.5: FMGCYC (generic full multigrid cycle for solving Au = f)

Input: f`, ν0 ≥ 1

Output: uFMG
`

if ` = L then

1. Solve ALuL = fL and set uFMG
L ← uL

else

2. Restrict the right-hand side: f`+1 ← Î`+1
` f`

3. uFMG
`+1 ← FMGCYC(f`+1, ν0)

4. Interpolate to the current fine grid: uFMG
` ← Î``+1u

FMG
`+1

5. Repeat ν0 times (usually ν0 = 1):

uFMG

` ← MGCYC(uFMG

` , A`, f`, µ, ν1, ν2)

end

2.6.6 Adaptive algebraic multigrid

An efficient multigrid process relies on the appropriate complementarity between relax-

ation and the coarse-grid correction. To achieve this complementarity, algebraic multigrid

makes assumptions about the nature of algebraically smooth error. For example, the

classical AMG framework described in §2.6.3 assumes that all algebraically smooth error

components vary slowly along strong connections in the fine-grid matrix, that is, they are

locally constant. However, in some cases these assumptions are not warranted and error

that is not treated effectively by relaxation can vary substantially along strong connections.

Adaptive AMG attempts to remedy this situation by reducing or eliminating the method’s

reliance on these additional assumptions. The main premise of adaptive AMG is to “use

the method to improve the method”. Essentially, the method should automatically identify

troublesome error components and make adjustments for them. The concept of using a

multigrid algorithm to improve itself is not new; the key ingredients of adaptive AMG were
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originally developed in the early stages of the AMG project by Brandt, McCormick, and

Ruge [24] (see also [103]). More recently, the concepts of adaptive AMG were developed

further in [29, 30, 31].

The basic adaptive algorithm proceeds as follows. Set k = 0 and define the initial

method, M (k), as the multigrid relaxation scheme. Starting with a random initial guess

on the finest grid, apply this method to the homogeneous problem Au = 0 to uncover a

representative of algebraically smooth error (referred to as a prototype). Using this proto-

type, define a multigrid hierarchy as follows. At each level apply the current method to the

homogeneous problem, and build the interpolation operator and corresponding Galerkin

coarse-grid system operator. Interpolation is constructed in such a way that the current

prototype lies approximately in its range. Continue this procedure recursively to the coars-

est grid. From the coarsest grid, interpolate and relax up to the finest grid. The resulting

vector forms the enriched prototype on the finest grid. Define the new method, M (k+1), as

the resulting multigrid hierarchy. Test the new method by applying it to Au = 0 with a

random initial guess. If its performance is adequate, then the adaptive stage is complete.

Otherwise, there remain error components that are not effectively reduced by the current

method. If this is the case, the adaptive step is repeated with the new prototype serving

as the initial guess, and with k incremented by one.

Thus, the adaptive stage improves the multigrid hierarchy until relaxation and coarse-

grid correction are sufficiently complementary. Ideally, the adaptive setup phase should

allow for the recovery of classical multigrid performance in cases where the near-nullspace

components are not locally constant, albeit at the expense of a more costly setup phase

and a more elaborate implementation.

The AMG method we develop for Markov chains (Chapter 3) is related to adaptive

AMG in the following way. At each level interpolation is constructed so that its range

exactly contains the current relaxed solution. As a consequence, smooth error (the pro-

totype) corresponding to the current solution is approximately represented in the range

of interpolation. Therefore, as the computed solution becomes more accurate, the repre-

sentation of smooth error in the range of interpolation improves, and hence, the coarse

representation of the fine-grid problem improves. Thus, the method continually improves
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itself as the fine-grid solution converges. In a similar way, the aggregation methods for

Markov chains developed by Horton and Leutenegger [69] and by De Sterck et al. [51] are

related to adaptive versions of aggregation multigrid [29].
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Chapter 3

Markov Chain AMG Method

Having introduced Markov chains and multigrid fundamentals in Chapter 2, we now de-

scribe an adaptive AMG method for computing the stationary distribution of irreducible

homogeneous Markov chains with finite state spaces. Our approach incorporates classical

AMG coarsening and interpolation developed in the early stages of the AMG project by

Brandt, McCormick, and Ruge [24] within a multiplicative correction scheme framework.

The multiplicative coarse-grid correction process is similar to the two-level aggregated

equations proposed by Simon and Ando [107]. The framework is similar to the two-level

iterative aggregation/disaggregation method for Markov chains pioneered Takahashi [114],

and later extended to the multilevel case by Horton and Leutenegger [69, 85]. Our defini-

tion of interpolation is also closely related to the exact interpolation scheme (EIS) proposed

by Brandt and Ron [26], which has been applied to various eigenproblems [83, 86]. The

EIS is an adaptive multilevel approach in which the interpolation operator on each level is

constructed to exactly fit the current approximate solution after pre-relaxation. The coarse

level is used to compute a solution, as opposed to an error correction in classical AMG,

that upon interpolation to the fine level yields an improved approximation. Moreover,

unlike in classical AMG, no residuals are transferred to the coarse level.

With the success of two-level iterative aggregation/disaggregation methods and smoot-

hed aggregation methods for Markov chains [49, 118], AMG is a compelling alternative ap-
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proach for Markov chains. Algebraic multigrid relies on the twin premises that relaxation

produces small residuals, and that the error associated with these residuals is locally con-

stant. These assumptions form the basis for choosing coarse grids and defining interpolation

weights. While many linear systems can be treated by relaxation schemes that yield small

residuals, the premise that smooth error is locally constant limits the applicability of clas-

sical AMG. Indeed, for general nonsymmetric problems such as Markov chains, a rigorous

characterization of algebraically smooth error is difficult, if not intractable. Nonetheless,

AMG methods have been successfully applied to nonsymmetric problems [31, 38, 105, 112].

As discussed by Stüben in [112], nonsymmetry by itself is typically not a major issue for

AMG. In our case, it is reassuring that matrices arising from the study of Markov chains

typically share many of the same underlying properties as the matrices for which AMG was

developed, for example, sparsity with locally connected graphs, strictly positive diagonal

elements, and nonpositive off-diagonal elements.

Let us now consider the problem at hand. Let B ∈ Rn×n be the transition matrix of an

irreducible homogeneous Markov chain with finite state space. In the case of a continuous-

time Markov chain, B corresponds to the transition matrix of the uniformized chain (see

(2.17) in §2.3). Regardless, B is an irreducible column-stochastic matrix. The stationary

probability vector is the unique vector x ∈ Rn such that

x = Bx, xi > 0 for i = 1, . . . , n,
n∑

i=1

xi = 1. (3.1)

That is, x is the eigenvector of B corresponding to the largest eigenvalue. As a matter of

convenience we reformulate this eigenproblem as a linear system problem:

Ax = 0, xi > 0 for i = 1, . . . , n,
n∑

i=1

xi = 1, (3.2)

where A = I−B is an irreducible singular M-matrix. Subtracting B from the identity has

the effect of reflecting the spectrum of B across the imaginary axis and then shifting the

reflected eigenvalues into the right half plane. Consequently, the eigenvector x corresponds

to the smallest eigenvalue of A. Hence, relaxations applied to Ax = 0 should eliminate the
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“high eigenvectors” of A (those eigenvectors corresponding to large eigenvalues), leaving

“low eigenvectors” (those eigenvectors corresponding to small eigenvalues) to be handled

by coarse-grid correction. Note that we proved convergence of the weighted Jacobi method

applied to Ax = 0 in Proposition 2.5.7. In order to obtain an effective method there must

exist good complementarity between relaxation and coarse-grid correction. Therefore, the

range of interpolation must accurately represent the low eigenvectors of A. In particular,

because our framework employs a multiplicative correction, the range of P must accurately

represent the exact solution x (the “lowest” eigenvector). By ensuring that the range of

interpolation exactly fits the approximate solution, as in the EIS, we obtain an interpolation

operator that represents x to an arbitrarily high degree of accuracy as the approximate

solution converges.

The rest of this chapter is organized as follows. We begin by describing the multiplica-

tive correction framework for singular problems. In §3.3 we propose a modification of the

classical AMG interpolation formula that results in a nonnegative interpolation operator

with unit row sums. It is shown how a lumping technique (first proposed in [49]), main-

tains the sign structure and irreducibility of the coarse-level operators on all levels. The

connection between the multiplicative correction framework and the standard multigrid

additive correction framework is also discussed, which leads to a basic hybrid multiplica-

tive/additive method. The chapter is concluded by numerical tests with a wide array of

test problems for which traditional iterative methods are slow to converge.

In this chapter and all that follow we deviate from the multigrid terminology and two-

level notation established in Chapter 2. In particular, the terms grid and level are used

interchangeably. We note that for historical reasons coarse-grid correction remains un-

changed. Coarse-level quantities are denoted by a subscript “c”, while fine-level quantities

and transfer operators do not carry any subscripts. When multilevel notation is necessary

we proceed as in previous sections and append a subscript ` to indicate the level number,

where ` = 0, . . . , L for some positive integer L and zero indexes the finest level.
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3.1 Multiplicative correction AMG framework

The primary difference between our approach for Markov chains and that of classical AMG

for nonsingular linear systems (see §2.6.3) is the use of a multiplicative correction. Let x(k)

be the current approximation of the exact solution x prior to the pre-smoothing step,

and let x̄(k) be the corresponding smoothed approximation of x. Suppose there exist full

rank restriction and interpolation operators, R ∈ Rnc×n and P ∈ Rn×nc , respectively, such

that x̄(k) is exactly in the range of P. Further suppose that x is approximately in the

range of P, that is, x ≈ Pxc for some coarse-level approximation xc. Clearly, the better

x̄(k) approximates x, the more accurately the exact solution is represented in the range of

P. The solution of the fine-level problem (3.2) can then be approximated by solving the

coarse-level problem

Acxc = 0c, µc(xc) = 1, (3.3)

where

Ac := RAP (3.4)

is the nc × nc Galerkin coarse-level system operator. Because A has rank n − 1 and the

transfer operators are of full rank, the rank of Ac is nc − 1, which implies that (3.3)

has a unique solution. However, because Ac is generally not an irreducible singular M-

matrix (owing to the structure of the transfer operators), the solution of the coarse-level

problem may fail to be strictly positive. Hence, the positivity constraint has been dropped.

The coarse-level normalization condition µc(xc) := 〈1, Pxc〉 ensures that the coarse-grid

corrected approximation sums to one. We note that it is not actually necessary to impose

the normalization condition on any of the coarse levels so long as the solution on the finest

level is normalized after each iteration. After solving the coarse-level problem (3.3), the

updated iterate is obtained by a multiplicative coarse-grid correction:

xCGC = Pxc. (3.5)
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The transfer operators are designed so that Ac accurately represents the left and right

near-nullspace components of A. Since 1 spans the left nullspace of A, the restriction

operator can be defined so that 1 is exactly represented in the range of R>. Ideally,

the interpolation contains the right nullspace component of A in its range. However, the

right nullspace component x is not known (it is the target of our method), hence a fully

accurate representation is not guaranteed. Instead, we compromise by ensuring that the

relaxed iterate x̄(k), which should be locally similar to x, lies exactly in the range of P1. As

the computed solution becomes more accurate, so too does the coarse representation of the

original problem. To construct such operators, we begin by defining a full rank tentative

interpolation operator P̃. The sparsity structure of P̃ is determined by the classical AMG

two-pass coarsening with strength of connection based on the scaled operator

Ā = Adiag(x̄(k)) (3.6)

(see Algorithms 2.3 and 2.4). The interpolation weights are computed by a variant of

the classical AMG interpolation described in §3.3. In particular, P̃ is guaranteed to have

nonnegative elements and unit row sums, i.e., 1 = P̃1c. The restriction and interpolation

operators are then defined by

R := P̃> and P := diag(x̄(k))P̃, (3.7)

where P has full rank if and only if x̄(k) has nonzero entries. Consequently, interpolation

is said to be adaptive because its range is updated after each iteration to exactly contain

the most recent approximation of the exact solution. Since P̃ interpolates the vector of all

ones exactly,

1 ∈ range(R>) and x̄(k) ∈ range(P). (3.8)

1The vector x̄(k) is locally similar to x if about each point i there exists a small neighborhood Ni

and a positive constant c = ci such that x̄(k)
j ≈ cxj for all j ∈ Ni. An assumption of AMG is that the

near-nullspace components of A are locally similar, and hence any linear combination of them should be
locally similar to x. Consequently, saying x̄(k) is locally similar to x is equivalent to the statement that
x̄(k) can be expressed as a linear combination of near-nullspace components of A, including x.
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Moreover, if x̄(k) = x then xc = 1c by the following argument

x = diag(x)P̃xc ⇔ 1 = P̃xc ⇔ xc = 1c. (3.9)

To motivate our definition of the tentative interpolation operator P̃, we define the

multiplicative error of the relaxed fine-level approximation:

e := diag(x̄(k))−1x,

where it is assumed that x̄(k) has nonzero components. We note that if x(k) is strictly

positive on the finest level, and if the system operators are irreducible singular M-matrices

on all levels, then it can be shown that the relaxed iterates have strictly positive com-

ponents on all levels (see §3.5). The fine-level system can be formulated in terms of the

multiplicative error as

Āe = 0, (3.10)

and the coarse-grid correction, Pxc, can be interpreted as an approximation of the fine-level

multiplicative error:

x ≈ Pxc ⇔ e ≈ P̃xc. (3.11)

Therefore, in order to obtain an effective interpolation the range of P̃ must accurately

represent multiplicative error corresponding to smoothed approximations x̄(k), which we

refer to as algebraically smooth multiplicative error. To characterize algebraically smooth

multiplicative error we note that relaxation on Ax = 0 typically results in a small residual

after just a few relaxation steps: Ax̄(k) ≈ 0. As the relaxed approximation x̄(k) approaches

the exact solution, the multiplicative error e approaches 1. Moreover, (3.10) suggests that

each component of e can be approximated by a weighted sum of neighboring error values,

with weights proportional to the entries in Ā. These observations suggest that defining P̃

via classical AMG operator interpolation with strength of connection based on Ā should
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work well assuming that smooth multiplicative error varies slowly along strong connections

in Ā. We make the following qualitative argument in support of this statement. Suppose

that relaxation produces small residuals, that is, Ā1 = Ax̄(k) ≈ 0. Hence,

∑

j

āij ≈ 0 for each i. (3.12)

By the multiplicative error equation

2e>Āe = 0 ⇔
∑

ij

|āij|(ei − ej)2 = −
∑

ij

āije
2
i −

∑

ij

āije
2
j . (3.13)

Evaluating the terms on the right-hand side of this expression we find that

∑

ij

āije
2
i =

∑

i

e2i
∑

j

āij ≈ 0 by (3.12),

∑

ij

āije
2
j =

∑

j

e2j
∑

i

āij = 0 since each column of Ā sums to zero.

We note that in the above argument we assume that e2i is bounded close to one, which is

reasonable given that e→ 1 as the x̄(k) converges to x. Therefore,

∑

i

∑

j 6=i

|āij|(ei − ej)2 ≈ 0. (3.14)

This result implies that algebraically smooth multiplicative error varies slowly in the di-

rection of relatively large off-diagonal elements of Ā. We conclude that for each i,

ej ≈ ei for all j ∈ Si. (3.15)

To further justify basing strength of connection on Ā we offer the following probabilistic

argument. The quantity −aij, for j 6= i, is the conditional probability of transitioning to

state i given that the chain is currently in state j. Consider the last part of this statement.

If the probability of being in state j is small (in the long run), then regardless of −aij,
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the probability of transitioning to state i from state j is also small. Therefore, we should

consider the joint probability −aijxj to measure the influence of state j on state i. However,

since x is unknown, we use the most recent approximation of the exact solution and base

strength of connection on Adiag(x̄(k)). The system operator on the coarse level, Âc, is also

an irreducible singular M-matrix with zero column sums that is obtained from Ac through

a lumping process (see §3.4). Therefore, by Definition 2.2.2,

Âc = ρ(Bc)Ic −Bc,

where Bc is some irreducible nonnegative matrix and ρ(Bc) > 0 is the spectral radius of

Bc. Letting α = 1/ρ(Bc), we have that

αÂc = Ic − αBc,

where the scaled matrix αBc is an irreducible column-stochastic matrix. Hence, Âc corre-

sponds to a coarse-level Markov chain with transition matrix Bc.

Remark 3.1.1. In practice we scale Ā by the reciprocal of its maximum diagonal element.

Doing so helps to mitigate the occurrence of extremely small off-diagonal elements in Ac,

which if present may negatively affect the lumping routine described below due to numerical

roundoff error. We note that the coarsening routine and the formula for the interpolation

weights are invariant to such scaling.

Due to the structure of the transfer operators the coarse-level system operator, Ac, may

not be an irreducible singular M-matrix; hence, the solution of the coarse-level problem

may not be strictly positive. In this case there is no way to guarantee strict positivity

of the iterates on all levels. To remedy this issue we apply a lumping method (see §3.4)

that computes a lumped coarse-level system operator Âc, which is an irreducible singular

M-matrix, by adding small perturbations to some of the elements of Ac. Instead of solving

(3.3), we solve the lumped coarse-level problem:

Âcxc = 0c, (xc)i > 0 for i = 1, . . . , nc, µc(xc) = 1. (3.16)
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We note that the positivity constraint on xc is now justified. In §3.5 we prove that lumping

leads to irreducible singular M-matrices on all levels, which implies the strict positivity of

the iterates on all levels. Moreover, we prove that the exact solution is a fixed point of the

multilevel V-cycle with the lumped coarse-level operators. In order to prove these claims

we require that

1>c Ac = 0c for all iterates x̄(k), (3.17)

Ac1c = 0c for x̄(k) = x. (3.18)

Given that A is an irreducible singular M-matrix with zero column sums, conditions (3.17)

and (3.18) are clearly satisfied by the properties of the transfer operators (3.8).

Algorithm 3.1: MCAMG V-cycle for Markov chains

Input: A`, current approximation x
(k)
` , number of smoothing steps ν1, ν2

Output: New approximation x
(k+1)
`

if on the coarsest level then
1. Solve A`x` = 0` subject to x` strictly positive

else

2. Perform ν1 relaxations: x̄
(k)
` ← Relax(A`, 0`, x

(k)
` , ν1)

3. Compute the transfer operators R← P̃> and P← diag(x̄
(k)
` )P̃

4. Construct the coarse-level system operator A`+1 ← RA`P

5. Compute the lumped coarse-level system operator Â`+1

6. Recursive call:

x`+1 ← MCAMG(Â`+1, 1`+1, ν1, ν2)

7. Correct: xCGC
` ← Px`+1

8. Perform ν2 relaxations: x
(k+1)
` ← Relax(A`, 0`, xCGC

` , ν2)

end

We conclude this section by stating the multilevel V-cycle MCAMG (Markov chain

AMG) method given by Algorithm 3.1. As our smoother we use the weighted Jacobi

method with relaxation parameter ω ∈ (0, 1). The coarsest level is reached when the num-
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ber of points on the current level is less than some threshold value ncoarse. The maximum

number of levels can also be restricted to some positive integer L if, for example, we want

a two- or three-level solver. As our coarsest-level solver we use a variant of Gaussian elim-

ination which is briefly described in the next section. We note that since A` depends on

x̄
(k)
`−1 for ` = 1, 2, . . . , L, in principle it is necessary to recompute the transfer operators on

all levels in each V-cycle. To reduce the amount of work per cycle, the tentative interpo-

lation operator can be frozen on all levels after only a few iterations; however, it remains

necessary to recompute the coarse-level system operators each cycle according to (3.4) and

(3.7) so that conditions (3.9) and (3.18) are satisfied. Because the computed solution is

locally similar to the exact solution after only a few multigrid cycles, freezing the tentative

interpolation typically does not lead to a deterioration in the rate of convergence.

3.2 Coarsest-level solver: GTH algorithm

According to Theorem 3.5.1 the system operator on the coarsest level is an irreducible

singular M-matrix. Consequently, we may use the Grassmann–Taksar–Heyman (GTH)

algorithm [61] as the direct solver on the coarsest level. The GTH algorithm is a variant of

Gaussian elimination for computing the stationary distribution of an irreducible Markov

chain, or equivalently, the unique nullspace vector of an irreducible singular M-matrix with

zero column sums. The key to the GTH algorithm is that after each reduction step (zeroing

the sub-diagonal elements in a column) the remaining unreduced portion of the matrix is

itself a singular M-matrix with zero column sums that corresponds to a Markov chain

defined on a reduced set of states. Consequently, diagonal elements can be computed as

the negated sum the off-diagonal elements, which avoids any subtractions. Since diagonal

elements computed during the elimination process are guaranteed to be nonzero, pivoting

is unnecessary, and cancellation by loss of significant digits is avoided, which improves

stability. In fact, the GTH algorithm is forward stable and is guaranteed to compute the

stationary vector with low relative error in each component. For implementation details

regarding the GTH algorithm we refer to [110, 111].
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3.3 Interpolation

The sparsity structure of the tentative interpolation operator P̃ is defined according to

the definition of the classical AMG interpolation operator presented in §2.6.3. That is,

each C-point interpolates from its corresponding coarse-level point, and the interpolated

value of each F-point i is given by a weighted sum of the values of the points in its coarse

interpolatory set Ci (see (2.58) for details). The interpolation weights w̃ij are defined so

that P̃ has nonnegative elements and unit row sums. For any F-point i we have that

(P̃)i,α(j) = w̃ij =

āij +
∑

m∈Ds
i

(
āimāmj∑
k∈Ci

āmk

)

∑
p∈Ci

āip +
∑

r∈Ds
i
āir

for all j ∈ Ci, (3.19)

where α(j) is the coarse-level label for C-point j, and Ds
i is the set of F-points that strongly

influence point i. Comparison with the classical AMG definition of interpolation shows

that (3.19) is essentially a rescaled version of the original formula (2.61). This rescaling is

necessary because the classical interpolation formula applied to singular M-matrices can

lead to negative weights, and even division by zero in the case that A is not row diagonally

dominant. It is, however, easy to verify that the rescaled formula does not suffer from

these deficiencies, as we now explain.

Under the premise that A is an irreducible singular M-matrix, and by the fact that

i 6∈ Ci∪Ds
i , it follows that all matrix elements used in (3.19) are nonpositive. The two-pass

AMG coarsening routine ensures that Ci 6= ∅, hence the denominator in (3.19) is nonzero.

Together with the fact that Ci ∩ Ds
i = ∅, which precludes diagonal elements āmm from

occurring in (3.19), we find that w̃ij > 0 for all i ∈ F and j ∈ Ci. Thus, P̃ has nonnegative

entries. By computing the sum
∑

j∈Ci
w̃ij, we observe that P̃ has unit row sums. We note

that it is important to perform both passes of the coarsening routine, since this ensures

that
∑

k∈Ci
āmk 6= 0 for any i ∈ F and m ∈ Ds

i , which is required for the w̃ijs to be well-

defined. In particular, the second pass of the coarsening routine ensures that every point

in Ds
i strongly depends on at least one point in Ci.

We conclude this section by mentioning an alternative formulation of the interpolation
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weights that was suggested to us by multigrid guru Steve McCormick. Essentially, instead

of collapsing the weak connections in Dw
i to the diagonal they are included with the set of

strong connections Ds
i . Following the derivation of the classical AMG interpolation weights

formula in §2.6.3, and normalizing the weights to sum to one, we find that

wSM

ij =

āij +
∑

m∈Ds
i∩Dw

i

(
āimāmj∑
k∈Ci

āmk

)

∑
p∈Ni

āip
> 0 for all j ∈ Ci. (3.20)

Because weak connections in Dw
i correspond to small elements in row i of Ā (relative to

those elements in row i that correspond to strong connections), it should be true that

wSM

ij ≈ w̃ij +
1∑

p∈Ni
āip

∑

m∈Dw
i

(
āimāmj∑
k∈Ci

āmk

)
for all j ∈ Ci. (3.21)

The summation on the right-hand side of this expression is over Dw
i , hence its value should

be close to zero. Therefore, the interpolation formula suggested by Steve McCormick gives

approximately the same interpolation weights as our formula. In practice, either of these

formulas result in very satisfactory and comparable performance of our multigrid method.

In this thesis, and in general, we use formula (3.19) to define the interpolation weights.

3.4 Lumping

Owing to the structure of P̃, the coarse-level operator Ac may not be an irreducible singular

M-matrix. Let Ā = Adiag(x̄(k)) and consider the splitting Ā = D − (L + U), where

D = diag(Ā), L is strictly lower triangular, and U is strictly upper triangular. Then

Ac = P̃>ĀP̃ = P̃>DP̃− P̃>(L + U)P̃ = Sc −Gc, (3.22)

where Sc = P̃>DP̃ and Gc = P̃>(L+U)P̃ are nonnegative matrices because Ā is a singular

M-matrix and P̃ has nonnegative elements. Since Sc is generally not diagonal, Ac may have

positive off-diagonal elements, and therefore may not be a singular M-matrix. Furthermore,
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Ac may lose irreducibility due to the creation of new zero elements. We address this

problem by applying the lumping method described in [49]. In essence, a modified coarse-

level system operator is constructed by symmetrically lumping off-diagonal weight in Sc

to the diagonal. The resulting lumped operator Âc has nonpositive off-diagonal elements

and retains nonzero off-diagonal elements where Gc has nonzero off-diagonal elements (to

guarantee irreducibility). It is important to note that while lumping may introduce new

nonzero entries into Âc, it cannot create a zero entry in Âc where Gc is nonzero.

Without lumping our method often displays erratic convergence behavior, in some cases

stalling or even diverging. There are many potential pitfalls when the coarse-level opera-

tors are not irreducible singular M-matrices. For example, incorrect signs in coarse-level

operators may result in negative interpolation weights. Coarse-grid correction may then

lead to the generation of vectors with vanishing or negative components. Moreover, com-

ponents with incorrect signs may be generated after relaxation. These pathological vectors

propagate incorrect signs upward in the cycle via coarse-grid correction, and downward

via column-scaled operators that may have entire columns that vanish or have incorrect

signs. A loss of irreducibility means that a strictly positive solution is no longer guaranteed

for the direct solve on the coarsest level. In certain cases we have found that lumping is

unnecessary; however, we do not know of an easy way to determine a priori if a particular

problem requires lumping. In our experience, matrices that are similar to symmetric ma-

trices, and thus have real eigenvalue spectra, often do not require lumping, except perhaps

in the first few cycles. However, even in such idealized cases, if lumping is not performed

in the early cycles then convergence may become erratic, especially for large problems. In

general, problems with less symmetry typically require lumping in all cycles. Consequently,

lumping is paramount to the robustness of our algorithm.

In order to describe the lumping procedure in more detail we define an offending index

pair, which is an ordered pair (i, j) such that i 6= j, sij 6= 0, and (Ac)ij ≥ 0. It is precisely

for these indices that lumping is performed. Let (i, j) be an offending index pair. To

98



correct the sign in Ac at the ijth location we define the matrix

S{i,j} :=




i j

. . .
...

...

i · · · β{i,j} · · · −β{i,j} · · ·
...

...

j · · · −β{i,j} · · · β{i,j} · · ·
...

...



, (3.23)

where β{i,j} > 0, and the other elements are zero. Adding S{i,j} to Sc = (sij) corresponds

to lumping parts of Sc to the diagonal, in the sense that β{i,j} is removed from off-diagonal

elements sij and sji and added to diagonal elements sii and sjj. By choosing β{i,j} so that

the following inequalities are satisfied,

sij − gij − β{i,j} < 0,

sji − gji − β{i,j} < 0,

we ensure that the lumped operator Âc has strictly negative elements at the ijth and jith

locations. We note that the lumping procedure is symmetric in the sense that correcting

the sign at the ijth location also corrects the sign at the jith location (if necessary). Hence,

if (i, j) and (j, i) are offending index pairs then only one matrix S{i,j} must be added to Sc.

Moreover, the symmetry of S{i,j} preserves the column sums and row sums of Ac, which

ensures that Âc satisfies conditions (3.17) and (3.18). Indeed, if S̃c =
∑

S{i,j}, where the

sum is over the lumped index pairs, then

1>c Âc = 1>c Ac + 1>c S̃c = 1>c Ac = 0 for all iterates x̄(k), (3.24)

Ac1c = Ac1c + S̃c1c = Ac1c = 0 for x̄(k) = x. (3.25)
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In our implementation β{i,j} is the maximum of β
(1)
{i,j} and β

(2)
{i,j}, where

sij − gij − β(1)
{i,j} = −η gij,

sji − gji − β(2)
{i,j} = −η gji,

and η ∈ (0, 1] is a fixed parameter. Empirical evidence suggests that we should lump as

little as possible [49], and in practice η = 0.01 seems to work well. We note that since Sc

remains a symmetric matrix throughout the lumping process, it is sufficient to examine

its strictly lower (or strictly upper) triangular part for detecting potential offending index

pairs.

3.5 Fixed point property of MCAMG

In this section we prove that the exact solution is a fixed point of the MCAMG V-cycle. In

what follows we let ` = 0, . . . , L index the level of a V-cycle, and we let P`
`+1 and R`+1

` de-

note the interpolation and restriction operators between levels ` and `+1, respectively. We

begin by proving that the coarse-level matrix Gc in (3.22) is irreducible if Ā is irreducible.

Proposition 3.5.1 (Irreducibility of Gc). If Ā = D− (L + U) is an irreducible singular

M-matrix then Gc = P̃>(L + U)P̃ is irreducible.

Proof. It is sufficient to show that for any C-points with coarse-level labels I 6= J , there

exists a directed path from node I to node J in the directed graph of Gc = (gij). First,

observe that irreducibility of Ā implies irreducibility of L + U. Let i 6= j be any fine-level

labels such that (L + U)ij 6= 0. Furthermore, let I be any C-point that interpolates to i,

i.e., p̃iI 6= 0, and let J be any C-point that interpolates to j, i.e., p̃jJ 6= 0. Since every row

of P̃ contains at least one nonzero element (its rows sum to one), indices I and J exist.

Now,

gIJ =
∑

m,n

p̃mI(lmn + umn)p̃nJ ,
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and because p̃iI , p̃jJ , and (L + U)ij are nonzero, it follows gIJ 6= 0. Thus, for any fine-level

points i and j such that an arc exists from node i to node j in D(Ā), there exist coarse-level

points I and J such that an arc exists from node J to node I in D(Gc).

Now, let I and J be any two distinct C-points. Furthermore, let i and j be the fine-level

labels of I and J , respectively. By irreducibility of L + U there exists a directed path of

distinct fine-level points from node i to node j. Denote this path by

i = v0, v1, . . . , vk−1, vk = j,

where nodes v0, . . . , vk are fine-level points. By the result above there must exist coarse-

level points V0, . . . , Vk that form a directed walk (see §2.2)

V0, V1, . . . , Vk−1, Vk

in D(Gc). However, any directed U -V walk contains a directed U -V path [36]. Thus, there

exists a directed path in D(Gc) that begins at V0 and ends at Vk. Recall that C-points V0

and Vk were chosen such that they interpolate to v0 = i and vk = j, respectively. Since

the only point that interpolates to a given C-point is the point itself (by the definition

of interpolation), it follows that V0 = I and Vk = J . Hence, there exists a directed path

from node I to node J in the directed graph of Gc. Since I and J were arbitrary, Gc is

irreducible.

Theorem 3.5.1 (Singular M-matrix property of an MCAMG V-cycle). Assume that A0

is an irreducible singular M-matrix and that x̄
(k)
0 has strictly positive components. Then

the coarse-level operators A1, . . . ,AL corresponding to an MCAMG V-cycle are irreducible

singular M-matrices, and the pre-smoothed iterates x̄
(k)
1 , . . . , x̄

(k)
L−1 have strictly positive com-

ponents.

Proof. The proof is by induction. Since x̄
(k)
0 is strictly positive the scaled operator Ā0 =

A0diag(x̄
(k)
0 ) is an irreducible singular M-matrix. Consider the splitting Ā0 = D0− (D0−
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Ā0) with D0 = diag(Ā0). By Proposition 3.5.1 the matrix

G1 = (P̃0
1)
>(D0 − Ā0)P̃

0
1

is irreducible. Lumping ensures that A1 has nonpositive off-diagonal elements and the same

nonzero sparsity pattern as G1. Therefore, A1 is irreducible, and by (3.24) in conjunction

with Theorem 2.2.6 (2) it follows that A1 is a singular M-matrix. Strict positivity of x̄
(k)
1

follows by Theorem 2.5.1 and by the fact that x
(k)
1 = 11.

Now suppose that for some ` ≥ 0 the matrix A` is an irreducible singular M-matrix and

the iterate x̄
(k)
` is strictly positive. Then the scaled operator Ā` is an irreducible singular

M-matrix. Hence, by Proposition 3.5.1 the matrix

G`+1 = (P̃`
`+1)

>(diag(Ā`+1)− Ā`+1)P̃
`
`+1

is irreducible. Lumping ensures that A`+1 has nonpositive off-diagonal elements and same

nonzero sparsity pattern as G`+1. Therefore, A`+1 is irreducible, and by (3.24) in conjunc-

tion with Theorem 2.2.6 (2) it follows that A`+1 is a singular M-matrix. Strict positivity

of x̄
(k)
`+1 follows by Theorem 2.5.1 and by the fact that x

(k)
`+1 = 1`+1.

Corollary 3.5.1. The system operators A0, . . . ,AL corresponding to an MCAMG V-cycle

each have a unique right nullspace vector with positive components (up to scaling).

Proof. Since A` is an irreducible singular M-matrix for ` = 0, . . . , L, it follows by Theorem

2.2.6 (1) that A` has a unique right nullspace vector with positive components (up to

scaling).

Corollary 3.5.2. If A0 is an irreducible singular M-matrix, and if x̄
(k)
0 is strictly posi-

tive, then the relaxed coarse-grid corrections produced by an MCAMG V-cycle have strictly

positive components on all levels.

Proof. By Theorem 3.5.1 the pre-smoothed iterates, x̄
(k)
1 , . . . , x̄

(k)
L−1, have strictly positive

components. Moreover, the solution of the coarsest-level problem, ALxL = 0L, is strictly
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positive because AL is an irreducible singular M-matrix. Since the tentative interpolation

operators, P̃`
`+1, are nonnegative with at least one nonzero element per row, it follows that

xCGC

L−1 = diag(x̄
(k)
L−1)P̃

L−1
L xL

is strictly positive. Thus by Theorem 2.5.6, the post-smoothed coarse-grid corrected iterate,

x
(k+1)
L−1 , is strictly positive. Continuing this argument inductively up to the finest level it

follows that x
(k+1)
` is strictly positive for ` = L− 1, . . . , 0.

An immediate result of corollary 3.5.2 is that the interpolation operators must have full

rank on all levels. We conclude this section by proving a fixed point theorem for the

MCAMG V-cycle algorithm. In what follows we let

Hν
` = (I` −M−1

` A`)
ν

denote ν iterations of a general relaxation scheme on level `.

Lemma 3.5.1. If the current iterate on the finest level of an MCAMG V-cycle is equal

to the exact solution then the relaxed solution x̄
(k)
` = 1` for ` = 1, . . . , L − 1. Moreover,

A`1` = 0` for ` = 1, . . . , L.

Proof. The proof is by induction. Suppose the current iterate x
(k)
0 is equal to the exact

solution x on the finest level. Then

A1 = R1
0 Adiag(x)P̃0

1 + S̃1,

where S̃1 is the lumping correction. Since the tentative interpolation operators have unit

row sums on all levels, and since the lumping matrices have zero row sums on all levels,

A111 = R1
0 Ax = 01.

It immediately follows that x̄
(k)
1 = Hν

111 = 11 for any number of iterations ν ≥ 0. Now
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suppose the induction hypothesis is true for some level ` ≥ 1, so x
(k)
` = 1`. Then

A`+1 = R`+1
` A` diag(1`)P̃

`
`+1 + S̃`+1,

and by the induction hypothesis

A`+11` = R`+1
k A`1` = 0`.

It follows immediately that x̄
(k)
` = Hν

`+11`+1 = 1`+1 for any number of iterations ν ≥ 0.

Theorem 3.5.2 (MCAMG V-cycle fixed point property). The exact solution x is a fixed

point of the MCAMG V-cycle method.

Proof. If x
(k)
0 = x then by Lemma 3.5.1 the solution of coarsest-level problem is xL = 1L.

Since x̄
(k)
` = 1` for ` = 1, . . . , L− 1, on the finest level it follows that

xCGC

0 = Hν2
0 diag(x)P̃0

1 Hν2
1 P̃1

2 . . .H
ν2
L−1P̃

L−1
L 1L

= Hν2
0 diag(x)P̃0

111

= Hν2
0 x

= x.

The conclusion now follows by the fact that the exact solution is a fixed point of the

relaxation scheme on the finest level.

3.6 Multiplicative correction vs. additive correction

We begin this section by showing that under certain assumptions the standard multigrid

additive correction scheme is equivalent to the multiplicative correction scheme, without

lumping, presented in §3.1. We then define a hybrid method that combines the MCAMG

method (with lumping) as a setup phase in conjunction with a standard multigrid addi-

tive correction scheme as a solve phase. We begin by describing the standard additive
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multigrid correction scheme for the problem Ax = 0. Given the current relaxed fine-level

approximation x̄(k) (the same as in the multiplicative scheme), the additive error is defined

by

eadd := x− x̄(k). (3.26)

The fine-level problem can be rewritten in terms of the additive error as the fine-level

residual equation

Aeadd = r(k) = −Ax̄(k). (3.27)

We seek a coarse-level approximation of the error eaddc , that when interpolated to the fine

level approximately equals the unknown fine-level additive error. The coarse-level error is

obtained by solving (approximately) the coarse-level problem

RAPeaddc = Rr(k), (3.28)

where R is the nc×n full rank restriction operator, and P is the n×nc full rank interpolation

operator. The updated fine-level approximation is then given by the coarse-grid correction

xCGC = x̄(k) + Peaddc . (3.29)

We recall that in order for this process to be effective the smooth additive error components

must lie approximately in the range of interpolation (so they can be removed by coarse-grid

correction). Now consider the interpolation operator P = diag(x̄(k))P̃ for the multiplicative

correction scheme. The near-nullspace components of A, that is, the components of the

algebraically smooth additive error eadd, are locally similar to x and x̄(k). Since x̄(k) is

locally similar to x, and x̄(k) ∈ range(P), the additive error should also lie approximately

in the range of P. Therefore, the multiplicative correction scheme interpolation should also

be a suitable interpolation for the additive scheme. In fact, if the (adaptive) interpolation

and restriction for the multiplicative scheme are used in every iteration of the additive

scheme, then the multiplicative and additive schemes are equivalent.
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Proposition 3.6.1 (Equivalence of multiplicative and additive schemes). One two-level

MCAMG cycle without lumping is equivalent to one iteration of the additive scheme, as-

suming the same initial guess, the same transfer operators, and the same number of pre-

and post-relaxations are used in both cycles.

Proof. Let R and P = diag(x̄(k))P̃ be the transfer operators from the multiplicative cycle.

Since x̄(k) is in the range of P, the coarse-level problem for the additive scheme is equivalent

to

RAPeaddc = Rr(k) = −RAP1c ⇔ RAP(eaddc + 1c) = 0c.

Letting xc = eaddc + 1c, we obtain the (unlumped) multiplicative coarse-level problem

RAPxc = 0c.

Moreover, by making the same substitution into the additive coarse-grid correction (3.29)

we observe that

xCGC = x̄(k) + Peaddc = P(1c + eaddc ) = Pxc,

which is equivalent to the multiplicative coarse-grid correction (3.5).

The analysis in Proposition 3.6.1 can be extended to the multilevel case provided the

relaxed solution x̄(k) lies exactly in the range of interpolation on all levels. Whereas the

multiplicative scheme can converge only when x lies exactly in the range of interpolation,

the additive scheme can converge if x and eadd are only approximately in the range of inter-

polation. This observation motivates the following approach. We first adaptively determine

transfer operators on all levels by performing a few multiplicative cycles. We then freeze

the transfer and (lumped) coarse-level operators, and use additive cycles to update the

solution. Essentially, the multiplicative cycles form a setup phase and the additive cycles

form a solve phase. Additive cycles are computationally much cheaper than multiplica-

tive cycles because the transfer and coarse-level operators are not computed on each level.
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Therefore, this hybrid method is potentially much cheaper than the standalone multiplica-

tive method. We note that since the two-level MCAMG method modifies the coarse-level

system operator through a lumping process (see §3.4), the equivalence in Proposition 3.6.1

does not hold. In particular,

(RAP + S̃c)xc = 0c ⇔ RAPxc = −S̃cxc (3.30)

and the coarse-level problems are not equivalent. As the fine-level solution converges,

by the equation for the multiplicative coarse-grid correction (3.5) we have that xc → 1c,

hence the right-hand side S̃cxc → 0c. Therefore, the equivalence between the lumped

multiplicative two-level scheme and the additive two-level scheme should improve as the

multiplicative method converges. Regardless, the hybrid method should still work well if

the smooth additive error components are approximated well by the range of interpolation.

Naturally, if the convergence rate of the additive cycles begins to deteriorate, signifying

that the smooth additive error components are not approximated well enough by the range

of interpolation, a multiplicative cycle can be used to update the transfer operators and

coarse-level operators as well as the solution.

Additive cycles for solving Ax = 0 are given by Algorithm 2.2 with transfer operators

and coarse-level system operators on each level constructed in the multiplicative cycles.

Since the coarsest-level problem ALxL = fL is singular, care must be taken when computing

its solution. As discussed in [118], the solution on the coarsest level should contain as little

of the nullspace of AL as possible to avoid contaminating the coarse-grid correction with

unwanted nullspace components on finer levels. Consider a two-level method. If the coarse-

level solution contains some proportion of the nullspace of Ac then the correction Pxc may

contain some proportion of the nullspace of A, that is, the sought after vector x. In this case

the coarse-grid correction x̄(k)+Pxc may actually subtract away some proportion of x from

x̄(k), and consequently ruin the computed solution. To obtain a unique “null-free” solution

on the coarsest level the authors of [118] advocate setting xL = A†L fL, where the Moore–

Penrose pseudoinverse of AL is computed via the singular value decomposition of AL.

Since null(AL) = span(vnL
), where vnL

is the right singular vector of AL corresponding to
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its zero singular value, it follows that

range(A†L) ∩ null(AL) = ∅.

Additive and multiplicative cycles are combined into a simple hybrid solver referred to

as MCAMG-hybrid (Algorithm 3.2). The first if-then-else block determines if the multi-

grid hierarchy constructed by the multiplicative cycles is sufficiently accurate to warrant

using additive cycles. In practice we use a setup tolerance of τ = 10−4. There are two

conditional statements in the second if-then-else block. The first conditional statement

assesses whether the additive cycles have stagnated, and consequently if a multiplicative

cycle should be used to update the transfer and coarse-level system operators.

Algorithm 3.2: Hybrid multiplicative-additive solver for Markov chains

Input: Initial guess x(0), A, setup tolerance τ ∈ (0, 1), positivity tolerance
δ ∈ (0, 1), stagnation factor C ∈ (0, 1]

Output: Converged iterate x(k+1)

1. Set k ← 0

2. if ‖Ax(k)‖1 > τ then

3. Obtain x(k+1) via one MCAMG cycle with initial guess x(k)

else
4. Obtain xadd via one additive cycle with initial guess x(k)

if ‖Axadd‖1 ≥ C‖Ax(k)‖1 or max
i
− xaddi > δ then

5. Obtain x(k+1) via one MCAMG cycle with initial guess x(k)

else

6. Set x
(k+1)
i ← |xaddi | for all i and normalize

end

end

7. If the stopping criterion is satisfied return x(k+1), otherwise set k ← k+ 1 and go to 2

Varying C over the interval (0, 1] controls how aggressive the check is for stagnation. The

numerical tests in §3.7 use the least aggressive setting C = 1, that is, xadd is accepted as

the new iterate as long as its residual one-norm is less than that of the previous iterate.
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The second conditional statement checks the magnitude of negative values in the additive

solution. Since we cannot guarantee positivity of the additive cycle iterates, small negative

values may be present in xadd. If the negative components in a vector u ∈ Rn are sufficiently

small in magnitude, then the residual one-norm is essentially unaffected by taking the

componentwise absolute value, as shown by the following inequality:

∣∣‖Au‖1 − ‖A|u|‖1
∣∣ ≤ ‖Au−A|u|‖1 =

∑

i

∣∣∣
∑

j

aij(uj − |uj|)
∣∣∣

= 2
∑

i

∣∣∣
∑

j∈J−

aijuj

∣∣∣, J− = {j : uj < 0}

≤ 2
∑

i

∑

j∈J−

|aij||uj|

≤ 2δ
∑

i

∑

j∈J−

|aij|, max
j
−uj < δ

≤ 2δ
∑

j∈J−

∑

i

|aij|

≤ 4δ
∑

j∈J−

ajj. (3.31)

Accordingly, if all negative values in xadd are sufficiently small in magnitude (smaller than

some tolerance 0 < δ � 1) we accept xadd and take its absolute value. In practice we

use the tolerance δ = 10−20. The hybrid algorithm presented here is a simple version

of the more sophisticated on-the-fly (OTF) adaptive AMG algorithm for Markov chains

proposed in [118]. Essentially, the OTF framework tries to maximize its use of additive

cycles during the setup phase as well as during the solve phase to obtain fast convergence

speeds. Further sophistication is obtained by overlapping the setup and solution phases in

a parallel setting. The OTF framework [118] has also been considered for Markov chain

problems in [53]. We note that the combination of an adaptive multiplicative setup phase

followed by additive cycles is not new and has been considered extensively in the literature

[20, 21, 26, 29, 30, 31].
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3.7 Numerical results

In this section we present the results of numerical tests. All experiments are performed

using Matlab version 7.5.0.342 (R2007b), where every attempt has been made to obtain

optimized performance by exploiting sparse data types and vectorization in Matlab, and

by implementing MEX (Matlab Executables) in the C programming language for the bot-

tleneck operations in the multilevel methods. Timings are reported for a laptop running

Windows XP, with a 2.50 GHz Intel Core 2 Duo processor and 4 GB of RAM. For the

stopping criterion we iterate until the one-norm of the residual has been reduced by a

factor of 1012, that is, until

‖Ax(k)‖1
‖x(k)‖1

< 10−12‖Ax(0)‖1. (3.32)

The initial guess x(0) is randomly generated by sampling the standard uniform distribution

and then normalizing with respect to the one-norm.

The numerical tests compare the standalone MCAMG method (Algorithm 3.1) with

the hybrid multiplicative-additive method (Algorithm 3.2) denoted by MCAMG-hybrid,

or MCAMG-h in the tables. We also consider MCAMG-frozen in which P̃ has been frozen

on all levels after two iterations. The parameters for these methods are given in Table 3.1.

For MCAMG and MCAMG-frozen we use V(2, 2)-cycles (two pre- and post-relaxations

Parameter Value

Strength of connection parameter θ 0.25
Lumping parameter η 0.01
Weighted Jacobi relaxation parameter ω 0.7
Maximum number of points on coarsest level 20
Maximum number of levels 20

Table 3.1: Parameters for MCAMG and MCAMG-hybrid methods.

per level), and for the MCAMG-hybrid method we use V(4, 2) setup cycles and V(1, 1)

solution cycles. We note that any additional MCAMG cycles during the solution phase
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of MCAMG-hybrid (as in line 3 of Algorithm 3.1) are V(2, 2)-cycles. We note that in the

hybrid method a larger number of relaxations is required by the setup cycles to ensure that

sufficiently accurate transfer operators and coarse-level system operators are obtained prior

to the additive solve phase. Moreover, because the computational cost of a setup cycle

is significantly more than the cost of a solution cycle, it is worth performing the extra

relaxations (which are cheap relative to the entire setup cycle cost) in order to minimize

the number of setup cycles.

In the tables below we report the problem size on the finest level (n), the number of

nonzero elements in the finest-level operator (nnz), and the following performance mea-

sures.

1. The number of iterations (it).

2. The total execution time in seconds (time).

3. The operator complexity (Cop) on the last cycle; see §2.6.3.

4. The grid complexity (Cgrid) on the last cycle; see §2.6.3.

5. The number of levels on the last cycle (levs).

6. The convergence factor γ := γ(k) with k0 = 5; see (2.62).

7. The lumping ratio (Rlump) on the last cycle, which is defined as

Rlump =

∑L−1
`=0 (number of offending index pairs in the unlumped matrix A`+1)∑L

`=0 nnz(A`)
.

We note that while the operator complexity, grid complexity, number of levels, and lump-

ing ratio may vary during the initial iterations, as the solution converges the multilevel

hierarchy should stabilize and these quantities should approach constant values. In the

case of the hybrid method these quantities are determined by the last multiplicative cycle

performed either during the setup or solve phase. The lumping ratio gives the fraction of

matrix elements for which lumping is required, and is thus an indication of the extra work
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required for lumping. We note that lumping is not required in the finest-level matrix, so

lumping only contributes extra work starting from the second level.

The first test problems we consider correspond to discrete-time Markov chains that arise

from a random walk on a weighted undirected graph. We assume the underlying graph

is connected and the edge weights wij are positive. The transition probability matrix

B for these Markov chains is defined as follows. Let C be the adjacency matrix of the

weighted graph, that is, cij = wij for each edge {i, j}, and note that C is symmetric. Let

D = diag(d) where di =
∑

k wik is the sum of the weights of all outgoing edges from node i.

Then B = CD−1. The transition probability matrix B is similar to a symmetric adjacency

matrix:

D
−1/2BD

1/2 = D
−1/2CD

−1/2,

hence B has a real spectrum. Moreover, x = d/(1>d) is the stationary distribution of B

because

(Bx)i =
∑

j

bijxj =
∑

j

wij
dj

dj
1>d

=
di

1>d
= xi for all i. (3.33)

Note that

Ā = A diag(x) =
1

1>d
(I−B) diag(d) =

1

1>d
(D−C), (3.34)

which implies that Ā is symmetric when x is the stationary distribution. While these

test problems are academic in nature, they are nonetheless instructive because of their

similarity to linear systems arising from the discretization of partial differential equations,

which are well understood in the context of AMG. Furthermore, these test problems give

an indication of the kind of performance that can be expected for more general problems.

3.7.1 Isotropic two-dimensional lattice

The first test problem we consider is an isotropic two-dimensional (2D) lattice (Figure 3.1).

Results for the isotropic 2D lattice are given in Table 3.2. As expected we observe near-
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Figure 3.1: Graph of isotropic 2D lattice. All weights are equal to one.

optimal performance, that is, small convergence factors and bounded operator complexities

that do not grow as n increases. Figure 3.2 shows the execution time scaling for MCAMG

and MCAMG-frozen. We observe that by freezing the transfer operators and coarse-level

operators after a few cycles, the MCAMG execution times can effectively be cut in half

while maintaining scalability. We note that there was no lumping on the last cycle, which

is common for problems in which A is similar to a symmetric matrix.

Method n nnz it γ time Cop Cgrid Rlump levs

MCAMG

4096 20224 11 0.10 0.4 2.20 1.68 0 6
16384 81408 11 0.10 1.5 2.20 1.67 0 7
65536 326656 11 0.10 6.6 2.20 1.67 0 8

262144 1308672 11 0.10 28.5 2.20 1.67 0 9
589824 2946048 11 0.10 65.0 2.20 1.67 0 10

MCAMG-frozen

4096 20224 11 0.10 0.2 2.20 1.68 0 6
16384 81408 11 0.10 0.9 2.20 1.67 0 7
65536 326656 11 0.10 3.6 2.20 1.67 0 8

262144 1308672 11 0.10 15.6 2.20 1.67 0 9
589824 2946048 11 0.10 35.8 2.20 1.67 0 10

Table 3.2: Isotropic 2D lattice. Iteration counts (it) and execution times in seconds (time) to
reduce the residual by a factor of 1012.
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Figure 3.2: Isotropic 2D lattice execution time scaling of MCAMG and MCAMG-frozen. The solid
and dashed lines are the best-fit lines through the data points (circles and squares). Numerical
values in the legend are the slopes of the best-fit lines.

3.7.2 Anisotropic two-dimensional lattice

The next test problem is an anisotropic 2D lattice with small edge weights ε = 10−6 in the

y-direction (Figure 3.3). Anisotropic grids are difficult for standard geometric multigrid

1 1 1 1

ε

1 1 1 1

1 1 1 1

1

1

1

ε ε ε ε ε

ε ε ε ε ε ε

Figure 3.3: Graph of anisotropic 2D lattice with small edge weights ε = 10−6.
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because the (pointwise) relaxation scheme is unable to smooth in the direction of weak

connections. The remedy is to employ either semicoarsening with pointwise relaxation

or line relaxation with full coarsening [32, 119]. Classical AMG applied to anisotropic

grid problems naturally produces semicoarsened grids by coarsening only in the direction

of strong dependence [32]. In addition, smoothed aggregation multigrid with strength-

based aggregation is also an effective method for anisotropic problems [49]. Results for the

anisotropic 2D lattice are given in Table 3.3. Similar to the isotropic test case we observe

near-optimal performance for the anisotropic 2D lattice (Figure 3.4). Approximately one

and half times as many levels are required for the anisotropic test case as for the isotropic

test case because of the coarsening routine’s automatic semicoarsening in the direction of

strong connections. Again we note that there was no lumping on the last cycle, which is

common for problems in which A is similar to a symmetric matrix.

Method n nnz it γ time Cop Cgrid Rlump levs

MCAMG

4096 20224 10 0.08 0.3 2.67 2.00 0 9
16384 81408 10 0.08 1.1 2.73 2.00 0 11
65536 326656 10 0.08 4.7 2.76 2.00 0 13

262144 1308672 10 0.08 20.3 2.78 2.00 0 15
589824 2946048 10 0.08 46.9 2.78 2.00 0 16

MCAMG-frozen

4096 20224 10 0.08 0.2 2.67 2.00 0 9
16384 81408 10 0.08 0.7 2.73 2.00 0 11
65536 326656 11 0.08 3.5 2.76 2.00 0 13

262144 1308672 11 0.08 15.3 2.78 2.00 0 15
589824 2946048 11 0.08 35.7 2.78 2.00 0 16

Table 3.3: Anisotropic 2D lattice. Iteration counts (it) and execution times in seconds (time) to
reduce the residual by a factor of 1012.

115



10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

Number of unknowns  n

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

 

 

MCAMG (1.02)

MCAMG−frozen (1.06)

Figure 3.4: Anisotropic 2D lattice execution time scaling of MCAMG and MCAMG-frozen. The
solid and dashed lines are the best-fit lines through the data points (circles and squares). Nu-
merical values in the legend are the slopes of the best-fit lines.

The remaining test problems we consider include a tandem queueing network [110], a

random walk on an unstructured directed planar graph [52], an octagonal mesh problem

[50], a stochastic Petri net problem [69, 92], an ATM queueing network model [100], and

a reliability model [8, 110]. We note that the fifth test case arises from Markov chain

applications, and is from the MARCA (Markov chain analyzer) collection [109]. These six

test problems are intended to be challenging in that they are nonsymmetric with complex

spectra, and have eigenvalues that tend to cluster near λ = 1. Moreover, the MARCA

test problem is an example of a nearly completely decomposable Markov chain [91]. The

transition matrix spectra of the test problems are plotted in Figure 3.5. We note that the

spectrum in subplot (f) contains only real eigenvalues.

To further characterize the spectra of these test problems we investigate the asymp-

totic relationship between the subdominant eigenvalue of the transition matrix B and the
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Figure 3.5: Transition matrix spectra of MCAMG test problems.

number of states n. In particular, we look for the following relationship:

1− Re(λ2) ≈ β

(
1

n

)α
as n→∞, (3.35)

where α and β are positive constants, and λ2 is the subdominant eigenvalue of B with real

part closest to one. The exponent α determines how rapidly the subdominant eigenvalue

approaches unity as n grows large. Log-log plots in Figure 3.6 illustrate the asymptotic

behavior described in (3.35). An estimate of α may also provide insight into the rate at

which traditional stationary iterative methods converge. In particular, we expect multilevel

methods to outperform traditional stationary methods as the subdominant eigenvalue of

B with largest real part approaches unity. Although we cannot prove this fact (nor do we

know of any proof), in general the weighted Jacobi preconditioner M−1 = ωD−1 appears

unable to significantly counteract poor scaling in the transition matrix B. Log-log plots
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in Figure 3.7 illustrate the asymptotic behavior between the subdominant eigenvalue with

real part closest to one and the number of states n for the weighted Jacobi iteration matrix

I − ωD−1A with ω = 0.7 and A = I − B. Figure 3.8 illustrates the nonzero structure

of the test cases. We note that the octagonal mesh and reliability model have symmetric

nonzero structure, whereas the other test cases are fully nonsymmetric.

10
3

10
4

10
5

10
−6

10
−4

10
−2

 n

1
−

R
e
(λ

2
)

(a) Tandem queue, α = 1.14

10
3

10
4

10
5

10
−3

10
−2

10
−1

 n
1

−
R

e
(λ

2
)

(b) Planar digraph, α = 0.58

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

 n

1
−

R
e
(λ

2
)

(c) Octagonal mesh, α = 1.00

10
3

10
4

10
5

10
−4

10
−3

10
−2

 n

1
−

R
e
(λ

2
)

(d) Petri net, α = 0.63
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(f) Reliability model, α = 0.51

Figure 3.6: Asymptotic behaviour of the eigenvalue with maximum real part associated with the
transition matrix B.
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(d) Petri net, α = 0.66
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Figure 3.7: Asymptotic behavior of the subdominant eigenvalue with maximum real part corre-
sponding to the weighted Jacobi iteration matrix I− ωD−1A with ω = 0.7.
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Figure 3.8: Nonzero structure of A = I−B for the MCAMG test problems.
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3.7.3 Tandem queueing network

The first test problem we consider is the tandem queueing network from [110], in which

two finite queues with single servers are placed in tandem. Customers arrive according to a

Poisson distribution with rate µ, and the service time distribution at the two single-server

stations is Poisson with rates µ1 and µ2. The states of the system are represented by

tuples (n1, n2), where ni is the number of customers waiting in the ith queue. Thus, if the

capacity of each queue is N customers, the model has (N + 1)2 states in total. We choose

(µ, µ1, µ2) = (10, 11, 10) for the arrival and service time rates, which leads to slow mixing.

The possible transitions and the rates at which they occur are given by

(n1, n2)→ (n1 + 1, n2) with rate µ,

(n1, n2)→ (n1 − 1, n2 + 1) with rate µ1,

(n1, n2)→ (n1, n2 − 1) with rate µ2,

for 0 ≤ n1, n2 ≤ N . If we order the states such that state (i, j) has index (N + 1)(N − i) +

N − j + 1, then the resulting (N + 1)2 × (N + 1)2 column-oriented infinitesimal generator

matrix Q is block tridiagonal with stencil Q = [B, A, C], where

A =




∗
µ2 ∗

µ2 ∗
. . . . . .

µ2 ∗



, B =




0 µ1

0 µ1

0
. . .
. . . µ1

0



, and C = µI.

The diagonal elements indicated by asterisks are the negated sums of the off-diagonal

elements in their corresponding columns in Q.

The results for the tandem queueing network are given in Table 3.4. While the operator

complexities appear to be bounded independent of the problem size, they are somewhat

larger than we would like. Unfortunately, attempts to reduce the operator complexity

through truncation of the interpolation operator [119] or increasing the strength threshold
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were unsuccessful. Preliminary experiments with aggressive coarsening [119] were also

conducted, however, the computation of the first coarse level was too expensive for the

larger problems (n ≥ 262144) to be of any use. Although the hybrid method effectively

reduces the execution time by half for n = 589824, its convergence rates are somewhat

higher than those of MCAMG, and it scales slightly worse than MCAMG in terms of

execution time. The performance of MCAMG-hybrid compared with MCAMG is not

surprising given the approximate equivalence of the additive and multiplicative cycles (as

discussed in §3.6), and to a lesser degree because the hybrid method solution cycles are

V(1, 1)-cycles whereas the MCAMG cycles are V(2, 2)-cycles. In general, we expect the

convergence rate of the hybrid method at the very best to equal that of MCAMG.

Method n nnz it γ time Cop Cgrid Rlump levs

MCAMG

4096 16129 16 0.21 0.8 4.47 2.13 0.085 7
16384 65025 18 0.27 3.6 4.54 2.13 0.086 9
65536 261121 24 0.42 20.3 4.61 2.12 0.080 11

262144 1046529 25 0.43 91.3 4.65 2.12 0.067 13
589824 2356225 21 0.35 180.3 4.67 2.13 0.067 14

MCAMG-h

4096 16129 19(0) 0.32 (0.2, 0.1) 4.47 2.13 0.123 7
16384 65025 22(0) 0.38 (0.7, 0.3) 4.53 2.12 0.138 9
65536 261121 33(1) 0.53 (2.8, 3.1) 4.60 2.12 0.134 11

262144 1046529 30(3) 0.50 (15.5, 20.0) 4.64 2.12 0.062 13
589824 2356225 26(3) 0.46 (35.6, 43.5) 4.65 2.12 0.073 14

Table 3.4: Tandem queueing network. Iteration counts (it) and execution times in seconds
(time) to reduce the residual by a factor of 1012. The bracketed times (t0, t1) are the setup and
solve times in seconds. A bracketed value beside an iteration count is the number of additional
multiplicative cycles performed during the solve phase, which is included in the overall iteration
count.
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Figure 3.9: Tandem queueing network execution time scaling of MCAMG and MCAMG-hybrid.
The solid and dashed lines are the best-fit lines through the data points (circles and squares).
Numerical values in the legend are the slopes of the best-fit lines.

3.7.4 Unstructured planar graph

The next test problem we consider is a random walk on an unstructured directed planar

graph [52]. To construct the graph we randomly distribute n points in the unit square

[0, 1]× [0, 1]. These points are then connected via Delaunay triangulation, which yields an

undirected planar graph G. To obtain a directed graph D from G we proceed as follows. A

subset of triangles is selected from the triangulation such that no two triangles in the set

share an edge. This subset is constructed by selecting an unmarked triangle, marking it

with a “+”, and then marking its neighbors with a “−”. This process is repeated for the

next unmarked triangle until all triangles are marked. Then, one edge on each “+” triangle

is randomly made unidirectional. We note that while some of the “−” triangles will also

have unidirectional edges, each “+” triangle will have one and only one unidirectional edge.
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This process ensures that D is strongly connected, or equivalently, that the corresponding

Markov chain is irreducible. Figure 3.10 illustrates a typical planar graph arising from this

construction.

(a) Original graph G
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(b) Directed graph D

Figure 3.10: Unstructured directed planar graph. The black dots represent nodes, and the
light gray arrows represent edges in the original planar graph G. The black arrows represent
unidirectional edges, and triangles marked by “+” have a single edge that was made unidirectional.

Table 3.5 gives the results for the unstructured directed planar graph problem. Again

we observe near-optimal performance of the MCAMG method. In this case the hybrid

method results in much faster execution times with a speedup of four times for n =

262144, and scaling that is almost as good as MCAMG. The execution time scaling of

the two methods is given in Figure 3.11. This test case is a prime example of the classical

AMG coarsening routine’s ability to robustly handle highly unstructured problems in which

geometric coarsening is impractical.
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Method n nnz it γ time Cop Cgrid Rlump levs

MCAMG

4096 25402 21 0.37 0.9 2.73 1.69 0.003 7
16384 101737 23 0.40 4.0 2.80 1.69 0.003 9
65536 407175 23 0.40 17.5 2.82 1.69 0.003 10

262144 1628955 25 0.45 81.9 2.82 1.69 0.003 11

MCAMG-h

4096 25402 27(0) 0.47 (0.1, 0.1) 2.72 1.69 0.003 7
16384 101737 27(0) 0.47 (0.6, 0.4) 2.80 1.69 0.003 9
65536 407175 39(0) 0.61 (2.3, 2.6) 2.82 1.68 0.003 10

262144 1628955 33(0) 0.56 (10.1, 9.6) 2.83 1.69 0.003 12

Table 3.5: Unstructured directed planar graph. Iteration counts (it) and execution times in
seconds (time) to reduce the residual by a factor of 1012. The bracketed times (t0, t1) are the
setup and solve times in seconds. A bracketed value beside an iteration count is the number of
additional multiplicative cycles performed during the solve phase.
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Figure 3.11: Unstructured directed planar graph execution time scaling of MCAMG and
MCAMG-hybrid. The solid and dashed lines are the best-fit lines through the data points (circles
and squares). Numerical values in the legend are the slopes of the best-fit lines.
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3.7.5 Octagonal mesh

The next test problem we consider features elements of web traffic modeling restricted to

the directed planar graph G illustrated in Figure 3.12. This test problem is designed so the

spectrum of the transition matrix uniformly fills the unit circle in the complex plane (see

subplot (c) in Figure 3.5). The directed graph G has N = 8nxny nodes, where nx is the

Figure 3.12: Graph G of the octagonal mesh with nx = ny = 3.

number of octagons in the x-direction and ny is the number of octagons in the y-direction.

To each node in G we assign the following probabilities:

µ+ The probability of moving forward, distributed evenly among outgoing arcs.

µ0 The probability of staying at the current node.

µ− The probability of moving backward, distributed evenly among incoming arcs.

These probabilities are defined so that µ0 + µ+ + µ− = 1. To construct the transition

probability matrix of the discrete-time Markov chain we define an N × N binary matrix
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G such that

gij =

{
1 if an arc exists from node j to node i in G,

0 otherwise.

It follows that

µ+

(∑

i

gij

)−1

is the probability of moving forward from node j along any of its outgoing arcs, and

µ−

(∑

i

gji

)−1

is the probability of moving backward from node j along any of its incoming arcs. There-

fore, the transition probability matrix is given by

B = µ0I + µ+G diag(1>G)−1 + µ−G>diag(G1)−1.

We note that although B is nonsymmetric, it has symmetric nonzero structure.

For our numerical tests we set µ0 = 0, µ− = 0.05, and µ+ = 0.95, and let

(nx, ny) ∈ {(32, 16), (64, 32), (128, 64), (256, 128), (256, 256)}.

The results for the octagonal mesh problem are given in Table 3.6. We observe optimal

performance that is independent of the problem size for both the MCAMG and MCAMG-

hybrid methods. While the hybrid method requires twice the iterations to converge, it does

so in only half the amount of time. Thus, one hybrid cycle is on average four times faster

than an MCAMG cycle for this problem. The execution time scaling of the two methods

is given in Figure 3.13.
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Method n nnz it γ time Cop Cgrid Rlump levs

MCAMG

4096 16192 20 0.28 0.7 3.73 1.95 0.010 8
16384 65152 20 0.29 2.7 3.85 1.94 0.010 9
65536 261376 20 0.29 11.8 3.89 1.93 0.010 11

262144 1047040 20 0.29 51.7 3.91 1.93 0.009 12
524288 2095104 20 0.29 106.5 3.90 1.93 0.010 13

MCAMG-h

4096 16192 40(0) 0.59 (0.2, 0.1) 3.73 1.95 0.011 8
16384 65152 39(0) 0.59 (0.7, 0.5) 3.85 1.94 0.012 9
65536 261376 39(0) 0.59 (3.1, 2.2) 3.90 1.93 0.012 11

262144 1047040 39(0) 0.59 (13.5, 9.7) 3.91 1.93 0.012 12
524288 2095104 39(0) 0.59 (27.6, 20.0) 3.90 1.93 0.012 13

Table 3.6: Octagonal mesh. Iteration counts (it) and execution times in seconds (time) to reduce
the residual by a factor of 1012. The bracketed times (t0, t1) are the setup and solve times in
seconds. A bracketed value beside an iteration count is the number of additional multiplicative
cycles performed during the solve phase.

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

Number of unknowns  n

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

 

 

MCAMG (1.02)

MCAMG−hybrid (1.03)

Figure 3.13: Octagonal mesh execution time scaling of MCAMG and MCAMG-hybrid. The solid
and dashed lines are the best-fit lines through the data points (circles and squares). Numerical
values in the legend are the slopes of the best-fit lines.
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3.7.6 Stochastic Petri net

The next test problem we consider is derived from a stochastic Petri net (SPN) [6, 92].

Petri nets are a modeling formalism for the description of concurrency and synchronization

in distributed systems. In general, Petri nets consist of places, which model conditions or

objects; tokens, which represent the specific value of the condition or object; transitions,

which model activities that change the value of conditions or objects; and arcs, which

specify interconnection between input places and output places. An arc always runs from

a place to a transition (input arc), or from a transition to a place (output arc). In a

graphical representation of Petri nets it is customary to use circles to denote places, filled

dots to denote tokens, rectangles to denote transitions, and arrowed lines to denote arcs.

For example, the SPN in Figure 3.14 is taken from [92].

Tokens move between places according to firing rules imposed by the transitions. A

transition can fire when it is enabled, that is, when each of its input places contains at least

one token; when it fires, the transition consumes one token from each input place, and

deposits one token in each of its output places. While multiple transitions may be enabled,

it is assumed that only one transition fires at a time. Any distribution of tokens over the

places represents a state of the model called a marking. Typically, a Petri is specified with

an initial marking. Starting from the initial marking and following the firing rules we can

progress through the states of the model. The reachability set of a Petri net is the set of

all markings the net can reach, starting from an initial marking and following the firing

rules. Moreover, the reachability graph of a Petri net is the directed graph in which each

node corresponds to a reachable marking, and each arc (i, j) is labeled by the transition

that fired to move the model from state i to state j.

Stochastic Petri nets are a way to add timing information into the Petri net modeling

language. An SPN is a standard Petri net together with a tuple (λ1, . . . , λn) of firing

rates. Once transition ti is enabled, there is an exponentially distributed delay time with

rate λi until it can fire. As discussed in [92], a finite place, finite transition, stochastic

Petri net with a specified initial marking is isomorphic to a one-dimensional Markov chain.

To construct this Markov chain consider the reachability graph of the SPN and suppose
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t2, λ2 t3, λ3t4, λ4

t5, λ5

t1, λ1

p1

p2 p3

p5p4

Figure 3.14: Graphical representation of a stochastic Petri net with initial marking M0 =
(1, 0, 1, 2, 0). Places are labeled by (p1, p2, p3, p4, p5) and transitions are labeled by (t1, t2, t3, t4, t5)
together with their corresponding firing rate (λ1, λ2, λ3, λ4, λ5).

that each arc is weighted by the firing rate of its corresponding transition. The resulting

weighted graph is equivalent to the transition diagram of a continuous-time Markov chain,

which defines the infinitesimal generator matrix of the chain.
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Test Initial marking n nnz

1 (22, 0, 0, 0, 0) 4324 24058
2 (35, 0, 0, 0, 0) 16206 92646
3 (55, 0, 0, 0, 0) 60116 349636
4 (90, 0, 0, 0, 0) 255346 1502956
5 (115, 0, 0, 0, 0) 527046 3115006

Table 3.7: MCAMG test cases for stochastic Petri net.

Method Test it γ time Cop Cgrid Rlump levs

MCAMG

1 18 0.24 0.6 2.42 2.12 0.001 8
2 19 0.25 2.4 2.50 2.15 0.001 10
3 26 0.41 15.1 2.55 2.16 0.001 10
4 27 0.43 81.6 2.59 2.17 0.001 13
5 27 0.43 165.1 2.60 2.17 0.001 14

MCAMG-h

1 19(9) 0.28 (0.2, 0.3) 2.42 2.12 0.001 8
2 19(12) 0.27 (0.9, 1.4) 2.50 2.15 0.001 10
3 37(4) 0.56 (3.9, 4.1) 2.65 2.17 0.003 11
4 31(11) 0.49 (19.8, 38.2) 2.60 2.17 0.002 12
5 30(8) 0.48 (42.0, 65.2) 2.82 2.18 0.005 14

Table 3.8: Stochastic Petri net. Iteration counts (it) and execution times in seconds (time) to
reduce the residual by a factor of 1012. The bracketed times (t0, t1) are the setup and solve times
in seconds. A bracketed value beside an iteration count is the number of additional multiplicative
cycles performed during the solve phase, which is included in the overall iteration count.

As our test problem we consider the SPN described by Figure 3.14 with firing rates

(1, 3, 7, 9, 5). Numerical tests correspond to the initial markings given in Table 3.7. The

results for the stochastic Petri net problem are given in Table 3.8. In order to obtain

reasonable operator complexities it was necessary to use the strength threshold θ = 0.7.

The standalone MCAMG method displays near-optimal performance with small operator

complexities and very acceptable execution time scaling (Figure 3.15). We observe that

although the hybrid approach leads to improved execution times, the improvement is only

moderate. The lackluster performance of MCAMG-hybrid is attributable to the large
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number of extra multiplicative cycles during the solve phase. The primarily reason for

these extra multiplicative cycles was to correct for unacceptably large negative components

in the additive iterate. For n = 255346 the extra multiplicative cycles account for 80% of

the overall solve time, and for n = 527046 the extra multiplicative cycles account for 70%

of the overall solve time!
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Figure 3.15: Stochastic Petri net execution time scaling of MCAMG and MCAMG-hybrid. The
solid and dashed lines are the best-fit lines through the data points (circles and squares). Nu-
merical values in the legend are the slopes of the best-fit lines.

3.7.7 MARCA ATM

The next problem we consider is an example of a multi-class, finite buffer priority system

that has been considered in the telecommunications literature as a model for asynchronous

transfer mode (ATM) networks [100]. The model consists of a single service center at

which two identical servers provide service to two classes of customers. The service rates

for each class µ1 and µ2 are exponentially distributed. An illustration of the model is given
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in Figure 3.16. For class 1 customers, ν1 and ν2 are the rates of the two phases in the

arrival process, and p is the probability of taking the first of these. Similarly, for class 2

customers, γ1 and γ2 are the rates of the two phases in the arrival process, and q is the

probability of taking the first of these. A six component vector is used to represent the

states of the underlying Markov chain. Components 1 and 2 denote the phase of the arrival

process for each of the two classes, respectively. Components 3 and 4 represent the number

of class 1 and class 2 customers in the system. Components 5 and 6 indicate the state of

the two servers. The number of states in the Markov chain can be increased by increasing

Buffer of size N

Class 1 arrivals

Class 2 arrivals Two server
station

ν1

ν2

γ1

γ2

µ1

µ2

p

1− p

q

1− q

Figure 3.16: Illustration of the MARCA ATM model.

the buffer size N . We use the following parameters for our tests

(p, q, ν1, ν2, γ1, γ2, µ1, µ2) = (0.25, 0.5, 2.0, 3.0, 2.0, 3.0, 1.0, 1.5)

and consider buffer sizes of N = 12, 23, 46, 91, 181. The code and data files used to build

the transition rate matrix for this Markov chain model are provided freely on the web [109].
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Method n nnz it γ time Cop Cgrid Rlump levs

MCAMG

4068 27076 24 0.35 0.9 3.29 2.10 0.011 8
16580 111164 24 0.35 3.4 2.97 2.05 0.007 10
65540 440924 24 0.34 15.2 2.76 2.04 0.004 12

260660 1756544 24 0.35 64.1 2.62 2.02 0.003 13

MCAMG-h

4068 27076 32(0) 0.50 (0.4, 0.1) 3.33 2.11 0.012 9
16580 111164 31(2) 0.48 (1.0, 0.8) 2.96 2.05 0.007 10
65540 440924 31(7) 0.46 (6.2, 5.3) 2.75 2.04 0.004 11

260660 1756544 32(7) 0.47 (29.3, 28.9) 3.60 2.08 0.014 14

Table 3.9: MARCA ATM. Iteration counts (it) and execution times in seconds (time) to reduce
the residual by a factor of 1012. The bracketed times (t0, t1) are the setup and solve times in
seconds. A bracketed value beside an iteration count is the number of additional multiplicative
cycles performed during the solve phase, which is included in the overall iteration count.
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Figure 3.17: MARCA ATM problem execution time scaling of MCAMG and MCAMG-hybrid.
The solid and dashed lines are the best-fit lines through the data points (circles and squares).
Numerical values in the legend are the slopes of the best-fit lines.
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The results for the MARCA ATM problem are given in Table 3.9. In order to ob-

tain reasonable operator complexities it was necessary to use the larger strength threshold

θ = 0.5. We observe near-optimal performance of the MCAMG method, with very rea-

sonable operator complexities and good convergence rates. For n = 260660 the seven

extra multiplicative cycles during the solve phase of MCAMG-hybrid account for over half

the solve time. Consequently, the hybrid approach is unable to significantly improve upon

MCAMG. Execution time scaling of MCAMG and MCAMG-hybrid is given in Figure 3.17.

3.7.8 Reliability model

The final test problem we consider is a simple reliability model [8, 110] in which there are

two different classes of machines, each subject to breakdown and a subsequent repair. It

is assumed that each class has the same number of machines. The states of the system are

represented by tuples (n1, n2), where ni is the number of functioning machines in the ith

class. Thus, if there are N machines per class, the model has (N + 1)2 states in total. The

times between successive breakdowns and successive repairs are exponentially distributed.

The breakdown rates of the class 1 and class 2 machines are λ1 and λ2, respectively.

Similarly, the repair rates of the class 1 and class 2 machines are µ1 and µ2, respectively.

The possible transitions and the rates at which they occur are given by

(n1, n2)→ (n1 + 1, n2) with rate µ1(N − n1),

(n1, n2)→ (n1 − 1, n2) with rate λ1n1,

(n1, n2)→ (n1, n2 + 1) with rate µ2(N − n2),

(n1, n2)→ (n1, n2 − 1) with rate λ2n2,

for 0 ≤ n1, n2 ≤ N . If we order the states such that state (i, j) has index (N + 1)(N − i) +

N − j + 1, then the resulting (N + 1)2 × (N + 1)2 column-oriented infinitesimal generator
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matrix Q is block tridiagonal with stencil Q = [Bk, A, Ck], where

A =




∗ µ2

Nλ2 ∗ 2µ2

(N − 1)λ2 ∗ . . .
. . . . . . Nµ2

λ2 ∗



, Bk = (N − k + 1)λ1I, and Ck = kµ1I,

for k = 1, . . . , N . The diagonal elements indicated by asterisks are the negated sums of

the off-diagonal elements in their corresponding columns in Q. In our numerical tests we

take λ1 = 0.2, λ2 = 30, µ1 = 0.5, and µ2 = 60, which leads to a case of slow mixing.

Method n nnz it γ time Cop Cgrid Rlump levs

MCAMG

4096 20224 15 0.25 0.4 2.41 2.00 0.000 9
16384 81408 22 0.41 2.2 2.56 2.02 0.004 11
65536 326656 12 0.13 5.2 2.59 2.02 0.004 13

262144 1308672 12 0.14 22.6 2.59 2.02 0.003 14
589824 2946048 12 0.15 56.6 2.58 2.01 0.002 16

MCAMG-h

4096 20224 16(12) 0.26 (0.1, 0.3) 2.40 1.99 0.000 8
16384 81408 29(6) 0.54 (0.3, 0.9) 2.56 2.03 0.004 11
65536 326656 14(4) 0.19 (1.4, 2.4) 2.58 2.02 0.004 13

262144 1308672 14(4) 0.20 (5.9, 10.5) 2.63 2.02 0.004 14
589824 2946048 15(5) 0.25 (13.7, 29.6) 2.62 2.02 0.004 16

Table 3.10: Reliability model. Iteration counts (it) and execution times in seconds (time) to
reduce the residual by a factor of 1012. The bracketed times (t0, t1) are the setup and solve times
in seconds. A bracketed value beside an iteration count is the number of additional multiplicative
cycles performed during the solve phase, which is included in the overall iteration count.

The test results for the reliability model are given in Table 3.10. We observe near-

optimal performance of the MCAMG method, with very reasonable operator complexities

and good convergence rates. We note that it is unclear what causes the spike in the

convergence factors for n = 16384; however, the rate of convergence of MCAMG for n =

16384 can be improved substantially by using a V(3, 3)-cycle as opposed to a V(2, 2)-cycle.
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In this case the hybrid method is unable results in only a moderate speedup of MCAMG,

in part due to the relatively high number of additional multiplicative cycles during the

additive solve phase. Execution time scaling of MCAMG and MCAMG-hybrid is given in

Figure 3.18.
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Figure 3.18: Reliability model execution time scaling of MCAMG and MCAMG-hybrid. The solid
and dashed lines are the best-fit lines through the data points (circles and squares). Numerical
values in the legend are the slopes of the best-fit lines.

3.8 General discussion and conclusions

The main contribution of this chapter was to show how classical AMG techniques can be

applied in an exact interpolation scheme framework to compute the stationary distribu-

tion of irreducible homogeneous Markov chains. In particular, it was shown through a

qualitative analysis that algebraically smooth multiplicative error is locally constant along

strong connections in the scaled operator Ā, which motivated the use of the classical AMG
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coarsening and interpolation. The significance of this result is that it demonstrates how

classical AMG coarsening and interpolation can be extended to a specific class of non-

symmetric matrices, that is, irreducible singular M-matrices with zero column sums. The

MCAMG algorithm was vetted through a series of challenging numerical test cases, for

which it demonstrated near-optimal performance and scalability. Moreover, it was shown

how a simple hybrid method with an MCAMG setup phase and an additive solve phase

could provide significant speedups of standalone MCAMG in some cases. We conclude this

chapter with a few general observations.

In AMG it is well-known that Galerkin coarse-level operators tend to lose sparsity on the

coarser levels which can lead to large operator complexities. Our numerical tests revealed

that the operator complexity of MCAMG V-cycles is somewhat sensitive to the strength

threshold θ. Furthermore, for the stochastic Petri net, MARCA ATM model, and MARCA

NCD model, operator complexities were substantially larger during the initial iterations,

but then tended to settle down at a decreased level as solution accuracy improved. It

is difficult to say exactly why the operator complexity may initially be large for some

problems and not for others; however, this phenomenon appears to depend on how close

the coarse-level iterates are to the coarse vector of all ones 1c. Since we base strength of

connection on the scaled system operator (which is motivated by the assumption of small

residuals; see §3.1), it is plausible that operator complexities may initially increase when

coarse-level iterates are far from 1c, and then stabilize at some level as the coarse-level

iterates approach 1c. Often, simply increasing θ was sufficient to reduce the operator

complexity to an acceptable value. Therefore, it may be worthwhile to investigate an

iteration-dependent strength threshold that adapts with respect to the measured operator

complexity. However, this work is beyond the scope of this thesis. As a compromise we

advocate a larger strength threshold. In general, θ = 0.5 seems to work well, however, in

certain rare cases it may be necessary to choose θ ≥ 0.9.

While the stationary distribution vector of an irreducible Markov chain is guaranteed

to have strictly positive components by the Perron–Frobenius theorem, for certain Markov

chains the majority of these components can be extremely close to zero, on the order of

10−300 or smaller. Moreover, the stationary distribution may consist primarily of small
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values with a few probabilities that are O(1). Owing to the nature of the multiplicative

cycles, this discrepancy in scales may lead to poorly scaled coarse-level system operators

in which some diagonal entries are essentially equal to zero. As a consequence, weighted

Jacobi relaxation may “blow up” due to overflow errors caused by numerical roundoff. In

this situation Kaczmarz relaxation [104, 115] on the coarser levels, which is often employed

in multigrid when the coarser-level systems are ill-conditioned, was also ineffective. In ad-

dition, extremely small values in the computed solution may also lead to spurious diagonal

and off-diagonal values in the lumped coarse-level matrices. For example, these issues arose

with the reliability model test problem. The simplest and most effective remedy we have

found for these issue is as follows. The pre-relaxed iterate is examined for any extremely

small values by comparing each of its components with a small positive threshold ε. Any

components found below this threshold are set to ε. To limit the amount of additional

work, this procedure can be interwoven into the updates of the final iteration of the relax-

ation method. Moreover, because the relaxed iterates on the coarser levels tend to 1c after

only a few MCAMG cycles, it should only be necessary to perform this check on the finest

level. After some experimentation, a reasonable value for ε seems to be 10−50. We note

that an approach similar to ours was advocated in [110], albeit for an unrelated method,

by setting components of the computed solution below a certain threshold to zero.

Negative values of significant magnitude may occur in the early stages of the additive

solve phase when the solution is still far from the exact solution. When designing the

hybrid method it was unclear whether these negative values should be ignored, or addressed

as in steps 5 and 6 of Algorithm 3.2. Numerical experiments in which negative values

were ignored by setting δ = ∞ in Algorithm 3.2 converged poorly with a large number

of iterations in the solve phase. Thus, it appears that the extra computational work of

performing additional multiplicative cycles to obtain strictly positive iterates in the additive

solve phase is justified and necessary.
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Chapter 4

Top-Level Acceleration of AMG

Methods for Markov Chains

In this chapter we discuss a simple method based on iterant recombination [119] to ac-

celerate multigrid methods for computing the stationary distribution of Markov chains.

While our approach can be applied to any multilevel Markov chain algorithm that satisfies

a certain minimal set of assumptions, we limit our scope to the non-overlapping adaptive

multilevel aggregation algorithm developed in [51], which is closely related to the earlier

work of Horton and Leutenegger [69]. In general, basic multilevel aggregation schemes

with non-overlapping aggregates rarely achieve algorithmic scalability due to the inability

of the aggregation-based transfer operators to accurately represent near-nullspace compo-

nents of the fine-level system operator in their range. Thus, basic multilevel aggregation is a

prime candidate to demonstrate the improvements that may be gained by our acceleration

approach.

Iterant recombination constructs an improved fine-level approximation as a linear com-

bination of successive fine-level iterates from previous multigrid cycles, where the linear

combination minimizes the residual with respect to some norm. In this respect multigrid

acceleration by iterant recombination is closely related to multigrid-preconditioned Krylov

subspace iterations. For example, restarted GMRES with multigrid preconditioning is
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theoretically equivalent to multigrid acceleration by iterant recombination with a fixed

number of previous iterates and two-norm residual minimization [119]. Consequently, the

distinction between multigrid as a preconditioner and multigrid accelerated by iterant re-

combination depends largely on one’s perspective. Since the multiplicative schemes we

consider have multigrid hierarchies that evolve with each iteration, standard Krylov accel-

eration is not applicable because the spaces involved are not related by a fixed multigrid

preconditioner. Moreover, since the iterant recombination process is formulated as a con-

strained minimization problem over a subspace of probability vectors, flexible acceleration

techniques such as FGMRES [104] are not readily applicable. Instead, the resulting min-

imization problem is solved by techniques from constrained optimization. We note that

GMRES preconditioned by additive AMG with a fixed hierarchy has already been consid-

ered in the literature for Markov chains, for example, see [127].

In what follows we consider minimizing the two-norm and the one-norm of the residual

with nonnegativity constraints. Minimization in the two-norm results in a quadratic pro-

gramming problem that is solved using standard techniques from quadratic optimization.

Minimization in the one-norm results in a nonlinear convex programming problem that we

solve by a variant of the ellipsoid method. We consider the ellipsoid method because it

is straightforward to implement efficiently, it is a robust solver for nonlinear programming

problems [57], and at some levels of solution error it is competitive with other general-

purpose solvers [57]. We consider minimizing in the one-norm primarily to determine if

faster overall acceleration can be obtained compared with minimizing in the two-norm.

Furthermore, there are two additional but less significant motivations for considering mini-

mization in the one-norm. In probability theory the one-norm is used to measure distances

between probability vectors, which is natural since probability vectors are unit vectors in

the one-norm. It is then only natural to consider minimization in the one-norm. Also,

one-norm minimization methods have recently raised significant interest in emerging fields

such as compressive sensing, sparse representation, and sparse factorization. Consequently

the question of whether one-norm minimization can be done efficiently as compared to

two-norm minimization is receiving greater attention.

Acceleration of multigrid methods by iterant recombination dates back at least as far as
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the paper by Brant and Mikulinsky [25]. Accelerators similar to ours have been designed for

other nonlinear iterations, for example, Washio and Oosterlee [128] develop an accelerator

for the full approximation scheme (FAS) (see §2.6.5 for a brief overview) in the context of

solving nonlinear partial differential equations. A key difference between their approach

and ours is that our acceleration method for Markov chains must produce probability

vectors, a feature not required for general nonlinear problems. Another difference is that

the acceleration of FAS for nonlinear problems requires linearization of target functionals,

whereas our multiplicative approach does not rely on linearization. Nevertheless, the FAS

accelerator does share many characteristics of the method developed here.

The rest of this chapter is organized as follows. We begin by describing the adaptive

multilevel aggregation algorithm for Markov chains. In §4.2 we discuss the constrained

iterant recombination approach. In §4.3 we discuss Matlab’s built-in quadratic program-

ming solver quadprog as a solver for the two-norm iterant recombination optimization

problem. We also describe an efficient algorithm for computing the analytical solution of

the quadratic programming problem with window size two. Sections 4.4 and 4.5 describe

the ellipsoid method for nonlinear convex programs and discuss how it can be applied to

solve the one-norm optimization problem arising from the iterant recombination process.

Section 4.6 briefly discusses the connection between the one-norm minimization problem

and linear programming. In §4.7 we present the numerical results, and §4.8 contains the

concluding remarks.

4.1 Multilevel aggregation for Markov chains

We begin by describing the adaptive multilevel aggregation method for Markov chains

(AGG) that we aim to accelerate. Our description is brief since the underlying multiplica-

tive aggregation framework is essentially the same as the framework used by the MCAMG

method (see [51] for further details). As before we use two-level notation in which coarse-

level quantities are denoted by a subscript “c”, while fine-level quantities and transfer
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operators do not carry any subscripts. The fine-level problem we wish to solve is given by

Ax = 0, xi > 0 for i = 1, . . . , n,
n∑

i=1

xi = 1, (4.1)

where A = I−B is an irreducible singular M-matrix with zero column sums. Decomposing

the fine-level degrees of freedom {1, . . . , n} into nc mutually disjoint aggregates A1, . . . ,Anc ,

the n× nc full rank disaggregation operator Q is defined by

qij =

{
1 if i ∈ Aj,

0 otherwise.

The aggregated coarse-level problem is then defined by the classical aggregation equations

proposed by Simon and Ando [107], that is,

Acxc = 0c, (4.2)

where

Ac = Q> diag(x̄(k))Q diag(Q>x̄(k))−1 −Q>B diag(x̄(k))Q diag(Q>x̄(k))−1, (4.3)

with x̄(k) the relaxed fine-level iterate. We assume that x̄(k) has strictly positive elements

for all iterations and on all levels, which can be proved by arguments similar to those found

in §3.5. Defining the aggregation-based full rank restriction and interpolation operators by

R = Q> and P = diag(x̄(k))Q diag(Q>x̄(k))−1, (4.4)

the equation for the coarse-level system operator can be written more succinctly as

Ac = RAP. (4.5)

Given the definition of Ac in (4.3), the coarse-level system (4.2) can be interpreted as

a coarse-level probability equation, as we now show. Defining the coarse-level stochastic

143



matrix Bc by

Bc := Q>B diag(x̄(k))Q diag(Q>x̄(k))−1, (4.6)

we find that

Ac = R(I−B)P

= Q> diag(x̄(k))Q diag(Q>x̄(k))−1 −Q>B diag(x̄(k))Q diag(Q>x̄(k))−1

= Ic −Bc.

Consequently, by Definition 2.2.2 the coarse-level system operator Ac is a singular M-

matrix. Furthermore, we can prove that Ac is irreducible by arguments identical to those

found in the proof of Proposition 3.5.1. As a consequence, we do not require any lumping

to obtain an irreducible singular M-matrix on the coarse level. The coarse-level problem

(4.2) also has the following straightforward probabilistic interpretation. If x̄(k) is equal to

the exact fine-level solution x, then the solution of (4.2) is given by

xc = Q>x ⇔ (xc)i =
∑

j∈Ai

xj for i = 1, . . . , nc.

That is, the solution of the coarse-level aggregated system truly represents an aggregated

version of the exact fine-level solution. The coarse-grid correction corresponding to the

two-level method is given by

xCGC = Pxc. (4.7)

We note that if x̄(k) = x, then x is a fixed point of the two-level method:

xCGC = Pxc = diag(x)Q diag(Q>x)−1Q>x = x. (4.8)

A pseudocode description of the multilevel AGG method is given by Algorithm 4.1. We

introduce a new multigrid cycle in Algorithm 4.1, namely the F-cycle, which is an inter-
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mediate case between a V-cycle and W-cycle. F-cycles are often used in practice because

their computational cost is similar to a V-cycle and their convergence factor is similar

to a W-cycle. A common strategy to improve the convergence of multilevel aggregation

schemes is to use either F-cycles or W-cycles. We note that F-cycles and W-cycles can

result in large operator complexities in the case of overlapping aggregates, for example, in

the case of the MCAMG method. However, operator complexities tend to remain small for

multilevel aggregation schemes with non-overlapping aggregates (see §2.6.4). In Algorithm

4.1 if µ = 1 we obtain a V-cycle, if µ = 2 we obtain a W-cycle, and if µ = 3 we obtain

an F-cycle. Relaxations correspond to the weighted Jacobi method with ω ∈ (0, 1) and for

the direct solver on the coarsest level we use the GTH algorithm (see §3.2).

Algorithm 4.1: AGG algorithm for Markov chains

Input: A`, current approximation x
(k)
` cycle index µ, smoothing steps ν1, ν2

Output: New approximation x
(k+1)
`

if on the coarsest level then
1. Solve A`x` = 0` subject to x` strictly positive

else

2. Perform ν1 relaxations: x̄
(k)
` ← Relax(A`, 0`, x

(k)
` , ν1)

3. Compute the transfer operators R and P according to (4.4)
4. Construct the coarse-level system operator A`+1 ← RA`P

if µ = 1 then
5. x`+1 ← AGG(A`+1, 1`+1, µ, ν1, ν2)

else
6. x`+1 ← AGG(A`+1, 1`+1, µ, ν1, ν2)
7. x`+1 ← AGG(A`+1, x`+1, 3− dµ/2e, ν1, ν2)

end
8. Correct: xCGC

` ← Px`+1

9. Perform ν2 relaxations: x
(k+1)
` ← Relax(A`, 0`, xCGC

` , ν2)

end
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We conclude this section by describing how the aggregation procedure. Aggregates are

determined by the neighborhood-based aggregation technique of [123] with a symmetric

strength of connection measure based on the scaled matrix

Ā = Adiag(x̄(k)).

The motivation behind basing strength of connection on Ā is the same as in §3.1. Alge-

braically smooth multiplicative error varies slowly along strong connections in Ā, therefore,

aggregates should contain strongly connected points. Given the strength of connection pa-

rameter θ ∈ (0, 1), a point i is strongly connected to a point j if either

−āij ≥ θmax
k 6=i
{−āik} or − āji ≥ θmax

k 6=j
{−ājk}. (4.9)

That is, points i and j are strongly connected if i is strongly influenced by j or if j is strongly

influenced by i. Neighborhood aggregation relies on the notion of a strong neighborhood

about a point i, denoted by Ns
i , that is defined as the set all the points strongly connected

to i with respect to a given strength of connection parameter θ, including i itself. We

note that neighborhood-based aggregation is related to standard aggregation techniques in

the AMG literature, but differs from the aggregation techniques for Markov chains given

in [49, 51, 117]. Neighborhood-based aggregation is attractive for sparse problems with

local connectivity because it typically results in well-balanced aggregates of approximately

equal size, and in coarsening that reduces the number of unknowns quickly. In general,

coarse-level stencil sizes tend to be uniform and do not grow quickly. The neighborhood

aggregation scheme is given by Algorithm 4.2. The first pass of Algorithm 4.2 produces

a set of tentative aggregates Ã1, . . . , ÃK corresponding to strong neighborhoods of the

fine-level degrees of freedom. In the second pass each unassigned point i is added to the

aggregate whose corresponding tentative aggregate has the most points in common with

Ns
i , that is, the most points to which i is strongly connected. We note that ties that arise

in selecting j on line 6 of Algorithm 4.2 are broken arbitrarily.
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Algorithm 4.2: Neighborhood aggregation

Input: Strength of connection parameter θ, Ā
Output: Aggregates A1, . . . ,AK

1. Set U← {1, . . . , n} and K ← 0
for i ∈ {1, . . . , n} do

2. Let Ns
i be the strong neighborhood of i

if Ns
i ⊂ U then

3. K ← K + 1

4. Set AK ← Ns
i and ÃK ← Ns

i

5. U← U \Ns
i

end

end
while U 6= ∅ do

6. Select i ∈ U and set j ← argmaxk=1,...,K |Ns
i ∩ Ãk|

7. Set Aj ← Aj ∪ {i} and U← U \ {i}
end

4.2 Constrained iterant recombination

Suppose we have a sequence of successive iterates {x(i)}ki=1 on the finest level from previous

multigrid cycles. In order to find an improved iterate x?, we consider a linear combination

of the m most recent iterates x(k),x(k−1), . . . ,x(k−m+1), where m is the window size. Let X

be the n×m matrix

X = [x(k−m+1), . . . ,x(k−1),x(k)],

where x(k) is the most recent iterate, and assume that each column of X is a probability

distribution with strictly positive entries. We note that our assumption on the columns

of X is met by the multilevel methods considered in this thesis. Then the improved

approximation is given by x? = Xz? for some vector z? ∈ Rm. This process is repeated

after each multilevel cycle with x? serving as the initial guess for the next cycle; see Figure

4.1. We note that in practice iterant recombination can be applied in the first few multigrid

cycles, in which case X may initially have fewer than m columns.
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x(k)? x(k+1)

· · ·
x(k+2) x(k+3)x(k+1)? x(k+2)?

Figure 4.1: Accelerated multigrid V-cycles. The black dots (•) represent relaxation operations on
their respective levels and the open dots (◦) represent coarse-level solves. An acceleration step,
represented by a grey box, occurs after each V-cycle.

We require a criteria on which to base our choice of z?, and hence x?. Defining P as

the set of all n-dimensional probability vectors

P = {u ∈ Rn : ‖u‖1 = 1, ui ≥ 0 for i = 1, . . . , n},

we choose a functional F : Rn → R such that the solution of Ax = 0 is the unique

global minimizer of F over P. An obvious choice for F that satisfies this condition is

F (u) = ‖Au‖ where ‖ · ‖ is any vector norm on Rn. Since the improved approximation

belongs to P as well as to the range of X, we define x? as the solution of the following

minimization problem:

minimize F (u) over V = P ∩ range(X), (4.10)

where the set V is referred to as the feasible set. Since any vector belonging to the range

of X can be written as Xz, we have that u ∈ V if and only if there exists some vector z

such that

u = Xz, (Xz)i ≥ 0 for i = 1, . . . , n, 1>z = 1. (4.11)

148



Thus, (4.10) is equivalent to the following constrained minimization problem:

minimize F (Xz)

subject to Xz ≥ 0

1>z = 1

z ∈ Rm.

(4.12)

The inequality constraints are necessary to maintain nonnegative signs throughout the

computations, not only because nonnegative signs are desired for probability vectors, but

also because our multilevel cycles may become ill-posed if iterates with negative signs

occur. Since our multilevel cycles require that iterates have strictly positive components,

we propose the following tightened minimization problem:

minimize F (Xz)

subject to Xz ≥ δxmin1

1>z = 1

z ∈ Rm,

(4.13)

where the parameter δ ∈ [0, 1) and xmin is the smallest element in X. The lower bound

δxmin ensures the new feasible set Vδ ⊂ V is not empty because any canonical basis vector

in Rm belongs to Vδ. The modified inequality constraint has the added benefit of reducing

the likelihood of any small negative values occurring in the computed solution. In practice

we find that δ = 0.1 works well. We note that for δ = 0 the tightened minimization problem

(4.13) is equivalent to the original minimization problem (4.12). Since the feasible set Vδ is

closed and convex with a nonempty interior, convexity of F implies that (4.13) is a convex

program. Therefore, by a standard result from convex analysis, any local minimum of F

on Vδ is also a global minimum. In general the feasible set may be unbounded, and hence

not compact, so it is difficult to say if there exists a solution of (4.13). In the special case

that F (u) = ‖Au‖2, (4.13) is a quadratic programming problem. When F (u) = ‖Au‖1
the functional F is not C1 and subgradient calculus is required for the ellipsoid algorithm.
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There are m variables and n � m inequality constraints in (4.13). In general, it is

not possible to reduce the number of inequality constraints as they may all contribute

to defining the set of feasible points. On the other hand, because of the single equality

constraint, any vector belonging to the feasible set has only m − 1 degrees of freedom.

Thus, we can obtain an equivalent inequality-form problem with m − 1 unknowns and n

inequality constraints by eliminating one of the variables from (4.13). Eliminating z1 and

letting ẑ = (z2, . . . , zm)>, the equality constraint implies that z = (1− 1>ẑ, ẑ)>. Defining

X̂ := −[x2, . . . ,xm] + x11
>, Â := −AX̂, and r1 := Ax1, (4.14)

where xi is the ith column of X, the inequality-form problem is given by

minimize ‖Âẑ + r1‖
subject to X̂ẑ− x1 ≤ −δxmin1

ẑ ∈ Rm−1.

(4.15)

If ẑ? is the solution of (4.15), the improved iterate is given by x? = x1 − X̂ẑ?, and its

residual is r1 + Âẑ?. As we shall see, the inequality-form problem is necessary in practice

when using the ellipsoid method to solve the one-norm minimization problem. We con-

clude this section with a pseudocode description of the iterant recombination procedure

given by Algorithm 4.3. Due to roundoff errors the accelerated iterate x(k)? may have small

negative components or zero components. If all negative components are sufficiently small

in magnitude then x(k)? is overwritten by its absolute value (see (3.31) in §3.6). Otherwise,

the accelerated iterate is rejected and the most recent multigrid iterate is used as the ini-

tial guess for the next multigrid cycle. Any zero components in x(k)? are replaced by the

minimum between machine epsilon and the smallest positive component in x(k)?. On line

7 of Algorithm 4.3 the improved iterate is rejected if it does not yield a strictly smaller

residual than the residual of the most recent multigrid iterate, which may occur because

(4.13) is solved only approximately. In addition to solving a minimization problem each

iteration, the main computational overhead of Algorithm 4.3 is the computation of Xz?

and the residuals r(k) and Ax(k)?, which requires 4 nnz(A) + 2mn flops.

150



Algorithm 4.3: Iterant recombination with window size m

Input: Initial guess x(0), A, window size m, convergence tolerance τ
Output: The converged approximation x(k)?

1. Set k ← 1, τrel ← τ‖Ax(0)‖1, and x(0)? ← x(0)

2. Obtain the next multigrid iterate x(k), with x(k−1)? as the initial guess
3. Set j ← min{k,m}
4. Set X← [x(k−j+1), . . . ,x(k−1),x(k)]

5. Set r(k) ← Ax(k) and update the matrix AX

6. Solve (4.13) for z?, and set x(k)? ← Xz?

7. if ‖Ax(k)?‖1 ≥ ‖r(k)‖1 then
x(k)? ← x(k)

end

8. Check convergence: ‖Ax(k)?‖1 < τrel, otherwise set k ← k + 1 and go to 2

Remark 4.2.1. Depending on the functional F and the optimization routine it may not be

necessary to explicitly compute Xz? and ‖Ax(k)?‖1 in Algorithm 4.3, as these quantities

are often available from the minimization process. In the case of two-norm minimization

it may be sufficient to reject the improved iterate using the stricter condition

‖Ax(k)?‖2 ≥ ‖r(k)‖1,

to help reduce the computational overhead.

4.3 Two-norm minimization

As discussed in the previous section, when F (u) = ‖Au‖2 the iterant recombination

minimization problem can be cast as a quadratic program. To solve this problem we

use Matlab’s built-in quadratic programming solver quadprog. In particular, we use the

medium-scale version of this algorithm which is based on an active-set method (see [94] for

details). Active-set methods attempt to identify which inequality constraints are active at
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the solution (that is, which inequality constraints are equal to zero at the solution), and

treat the active constraints as equalities in the subproblems that define the iterates [59]. In

general, active-set methods find a step from one iterate to the next by solving a quadratic

subproblem in which all the equality constraints and some of the inequality constraints are

imposed as equalities. This subset is referred to as the working set, which is updated by

adding and removing constraints as the algorithm proceeds. Thus, active-set methods are

attractive for the minimization of (4.13) because only a few of the n inequality constraints

may be relevant.

When the window size m equals two we can directly compute the analytic solution of

(4.13). For simplicity we work with the equivalent inequality-form problem (see (4.15))

minimize g(z) = ‖(r2 − r1)z + r1‖2
subject to (x1 − x2)z ≤ x1 − δxmin1,

(4.16)

where r1 = Ax1, r2 = Ax2, and z ∈ R. If z? is the optimal solution of (4.16), then

z? = (1 − z?, z?)> is the optimal solution of the corresponding two-dimensional problem.

Defining the index sets

I+ = {i : xi1 − xi2 > 0} and I− = {i : xi1 − xi2 < 0},

the constraint (x1 − x2)z ≤ x1 − δxmin1 implies that

−∞ ≤ L = sup
i∈I−

(
xi1 − δxmin
xi1 − xi2

)
≤ z? ≤ inf

i∈I+

(
xi1 − δxmin
xi1 − xi2

)
= U ≤ +∞.

We note that L < 0 < U always holds, so the feasible set is never empty. Assuming that

r1 6= r2, the function g is a concave up parabola, and hence the minimizer occurs at the

vertex of the parabola. Thus, the strict global minimizer of g over R is given by

zgbl =
〈r1, r1〉 − 〈r1, r2〉
〈r1 − r2, r1 − r2〉

.

If r1 = r2, then x1 = x2 in which case we select z? = 1 as the minimizer. When r1 6= r2,
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we choose

z? =





zgbl if zgbl ∈ [L,U ],

L if |zgbl − L| < |zgbl − U |,
U otherwise.

Since the computed values of L and U , denoted by L̃ and Ũ , are susceptible to roundoff

error, we replace them by L̃(1 + ω) and Ũ(1− ω), respectively, for some sufficiently small

ω > 0. The purpose of using ω is to prevent the computed value of z? from falling outside

the feasible set. In practice ω = 10−14 seems to be a suitable value. If the matrix AX has

already been updated, then computing zgbl requires 9n flops to leading order, assuming

that the searches to find L and U require 2n flops in total.

4.4 The ellipsoid method

The ellipsoid method was first described in 1976 by Iudin and Nemirovskii [71], and was

explicitly stated as we know it today in 1977 by Shor [106]. It gained notoriety in the

early 1980s when Khachiyan showed that a variation of the ellipsoid method for linear

optimization could be implemented with polynomial time complexity [74]. Although the

ellipsoid method was not competitive in practice for linear optimization, it has shown itself

to be a robust solver for nonlinear convex programs, which at some levels of solution error

is competitive with other more mainstream solvers [57].

The ellipsoid method was originally intended as a solver for nonlinear convex optimiza-

tion problems of the form

minimize f0(x) (4.17)

subject to x ∈ S = {y ∈ Rm : fi(y) ≤ 0, i = 1, . . . , n},

where each fi : Rm → R for i = 0, . . . , n is a finite convex function on Rm that is not

required to be differentiable. Here, the function f0 is referred to as the objective function

and the functions f1, . . . , fn are referred to as constraint functions. The set S of all points
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that satisfy the n inequality constraints is called the feasible set. Hence, any point belonging

to S is called feasible, and any point not belonging to S is called infeasible. We assume

that the feasible set is nonempty and that there exists an optimal solution x? to (4.17).

Definition 4.4.1 (Ellipsoid). Let D be an m×m symmetric positive definite matrix and

let x0 be any point in Rm. Then the set

E(x0,D) = {x ∈ Rn : (x− x0)
>D−1(x− x0) ≤ 1}

is an ellipsoid with center x0.

Definition 4.4.2 (Hyperplane and Halfspace). Let a be a nonzero vector in Rm and c a

scalar.

1. The set {x ∈ Rm : a>x = c} is a hyperplane.

2. The set {x ∈ Rm : a>x ≤ c} is a halfspace.

Suppose we have an initial ellipsoid E(0) that contains x?. The ellipsoid method iter-

atively constructs a sequence of successively “smaller” ellipsoids each of which contains

x?. By smaller, we mean that the volume of the next ellipsoid is strictly less than the

volume of the previous ellipsoid. Suppose now that E(k) = E(x(k),D(k)) is the kth ellipsoid

in this sequence. Then E(k+1) may be constructed as follows. Determine a hyperplane that

passes through x(k). Then x? is contained in one of the halfspaces generated by this hyper-

plane, call it H(k). Now define E(k+1) = E(x(k+1),D(k+1)) as the minimum volume ellipsoid

that contains the intersection of E(k) with H(k). Since x? ∈ (E(k) ∩H(k)), it follows that

x? ∈ E(k+1). Furthermore, if the center point x(k+1) is feasible, then it is an approximation

of x?. This procedure is illustrated in Figure 4.2. If the hyperplane passes through x(k),

then E(k+1) is a center-cut ellipsoid. If instead the hyperplane passes between x(k) and x?,

then E(k+1) is a deep-cut ellipsoid [55]. Intuitively, it is clear that the deep-cut ellipsoid

contains x? but less than half of E(k).

The normal vector g(k) that defines the hyperplane through x(k), that is, {y ∈ Rm :

g(k)>(y − x(k)) = 0}, is chosen in such a way that it is easy to decide in which halfspace
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E(k)

E(k+1)

g(k)

x(k)

E(k) ∩H(k)

x?

x(k+1)

Figure 4.2: Construction of the minimum volume ellipsoid E(k+1). Here g(k) is the normal vector
to the hyperplane (dashed line).

x? is located. First, we require the definition of a subgradient and subdifferential, which

generalize the derivative to functions that are not differentiable.

Definition 4.4.3 (Subgradient, Subdifferential). Let f : C → R be a convex function

whose domain is an open convex set C ⊂ Rm, and let x0 ∈ C. Then the vector g is a

subgradient of f at x0 if

f(x0) + g>(x− x0) ≤ f(x) for all x ∈ C.

The set of all subgradients of f at x0 is denoted by ∂f(x0) and is called the subdifferential

of f at x0. If f is convex and differentiable at x0 then ∂f(x0) = {∇f(x0)}.

There are two possibilities to consider for the center-cut algorithm. If the current

approximation x(k) is infeasible, that is, if there exists an index j > 0 such that fj(x
(k)) > 0,

then we choose g(k) ∈ ∂fj(x
(k)). Otherwise, if x(k) is feasible, then we choose g(k) ∈

∂f0(x
(k)). In either case it is straightforward to verify that

x? ∈ H(k) = {y ∈ Rm : g(k)>(y − x(k)) ≤ 0}.
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In order to define a hyperplane it is necessary to find a nonzero subgradient vector. To

show that a nonzero subgradient exists, we start with the fact that since each fi is convex

on Rm, it has a nonempty subdifferential at any point in Rm [7]. Now it is still possible

that the subdifferential of fi at some point in Rm contains only the zero vector. By the

definition of the subgradient, for any iterate x(k) we have that

g(k)>(x− x(k)) ≤ fi(x)− fi(x(k)) for all x ∈ Rm and g(k) ∈ ∂fi(x(k)). (4.18)

In the infeasible case, fi(x
(k)) > 0 for some i ∈ {1, . . . , n}. If ∂fi(x

(k)) = {0}, then by

(4.18)

0 < fi(x
(k)) ≤ fi(x) for all x ∈ Rm. (4.19)

However, this inequality implies the feasible set S is empty, which contradicts our assump-

tion that S is nonempty. In the feasible case, if ∂f0(x
(k)) = {0}, then it follows from (4.18)

that x(k) is optimal. Therefore, if x(k) is feasible but not optimal a nonzero subgradient

must exist.

It remains to describe the update equations for E(k+1). Given E(k) = E(x(k),D(k)) ∈ Rm

with m > 1 and the subgradient vector g(k) defining the halfspace H(k), the center-cut

minimum volume ellipsoid that contains the region E(k) ∩H(k) is given by

E(k+1) = E(x(k+1),D(k+1)),

x(k+1) = x(k) − 1

m+ 1

D(k)g(k)

√
g(k)>D(k)g(k)

, (4.20a)

D(k+1) =
m2

m2 − 1

(
D(k) − 2

m+ 1

D(k)g(k)(D(k)g(k))>

g(k)>D(k)g(k)

)
. (4.20b)

Indeed, it can be verified that D(k+1) is symmetric positive definite, and that the volume

of E(k+1) is strictly less than the volume of E(k). A rigorous derivation of these results is
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given in [12] (see also [14]). In the one-dimensional case (m = 1) we have

x(k+1) = x(k) − 1

2
sgn(g(k))

√
D(k), (4.21a)

D(k+1) =
D(k)

4
, (4.21b)

where sgn(·) is the signum function and all quantities are scalar. In this case the ellipsoid

method is equivalent to the bisection method.

The update formulas for an ellipsoid method with deep cuts are very similar to those

given in (4.20). Since we make use of deep cuts in our numerical tests, we briefly describe

them below. Let E = E(x0,D) be an ellipsoid in Rm. It was shown in [57] that any

hyperplane given by {y ∈ Rm : g>y = β} with β = g>x0 − α
√

g>Dg and α ∈ [−1, 1] has

a nonempty intersection with E. Furthermore, for α ∈ [−1/m, 1] it is possible to construct

a minimum volume ellipsoid that contains the intersection of E and the halfspace

H =
{
y ∈ Rm : g>(y − x0) ≤ −α

√
g>Dg

}
. (4.22)

We note that if α < −1 then E∩H = H, if α > 1 then E∩H = ∅, and if −1 ≤ α < −1/m

then E is the smallest ellipsoid containing E ∩H [14]. For m > 1 define the parameters:

τ :=
1 + αm

m+ 1
, σ :=

2(1 + αm)

(m+ 1)(1 + α)
, δ :=

m2(1− α2)

m2 − 1
. (4.23)

Then according to [14] the deep-cut ellipsoid with volume strictly less than E(k) is given

by

E(k+1) = E(x(k+1),D(k+1)),

x(k+1) = x(k) − τ D(k)g(k)

√
g(k)>D(k)g(k)

, (4.24a)

D(k+1) = δ

(
D(k) − σD(k)g(k)(D(k)g(k))>

g(k)>D(k) g(k)

)
. (4.24b)
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In the one-dimensional case

x(k+1) = x(k) − (1 + α)

2
sgn(g(k))

√
D(k), (4.25a)

D(k+1) =
(1− α)2

4
D(k). (4.25b)

The parameter α in the equations above determines the depth of the cut. If α ∈ [−1/m, 0)

then E(k+1) is referred to as a shallow-cut ellipsoid, and E(k+1) contains more than half

of E(k) ∩ H(k) including x(k) [14]. For α = 0 we recover the formulas for the center-cut

ellipsoid in (4.20) and (4.21), and for α ∈ (0, 1] we obtain a deep-cut ellipsoid. In our

implementation αk (the depth of cut on the kth iteration) is computed as follows. If x(k)

is feasible then

αk = (f0(x
(k))− uk)

(
g(k)>D(k)g(k)

)−1/2

(4.26)

with

uk = min{f0(x
(i)) : 1 ≤ i ≤ k, x(i) ∈ S}. (4.27)

Otherwise, if fj(x
(k)) > 0 for some index j > 0, then

αk = fj(x
(k))
(
g(k)>D(k)g(k)

)−1/2

. (4.28)

It was shown in [57] that computing αk according to formulas (4.26) and (4.28) always

yields a valid cut. For further details regarding deep cuts as well as examples of their use

in deep-cut ellipsoid methods we refer to [54, 57].

A stopping criterion for the ellipsoid method is given by

uk − lk < ε, (4.29)

where lk and uk are the current best upper and lower bounds for the optimal objective
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value, that is, lk ≤ f0(x
?) ≤ uk. The upper bound uk is given by (4.27), and

lk = max
{
f0(x

(i))−
√

g(i)>D(i) g(i) : x(i) ∈ S, 1 ≤ i ≤ k
}
.

The lower bound lk can be derived as follows. For any feasible iterate x(k), it follows by

the subgradient inequality that

f0(x
?) ≥ f0(x

(k)) + g(k)>(x? − x(k))

≥ f0(x
(k)) + inf

z∈E(k)
g(k)>(z− x(k)). (4.30)

Since E(k) is a compact subset of Rm and g(k)>(z − x(k)) is continuous, the infimum is

attained on the boundary of E(k). The minimizer of (4.30) can then be obtained through

a straightforward application of Lagrange multipliers. At convergence

0 ≤ uk − f0(x
?) ≤ uk − lk < ε,

and the feasible iterate xbest that satisfies f0(xbest) = uk is returned. We note that since the

ellipsoid method is not a descent method it is necessary to keep track of the best feasible

iterate discovered throughout the course of the algorithm.

By arguments similar to those for deriving the lower bound lk, if x(k) is infeasible, then

for some index j > 0

fj(x) ≥ fj(x
(k))−

√
g(k)>D(k) g(k) for all x ∈ E(k).

Therefore, if the right-hand side of this expression is strictly positive, the convex opti-

mization problem (4.17) is infeasible. In this case no further progress can be made, and

execution of the algorithm is terminated.

A pseudocode description of the deep-cut ellipsoid method is given by Algorithm 4.4.

Due to numerical roundoff in finite precision arithmetic, the computed matrix D(k) will

invariably become indefinite. Consequently, the quantity γ may not be a real number.
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Fortunately, numerical stability of Algorithm 4.4 can be remedied in the following way.

As advocated in [14], the matrix D(0) can be factorized into its Cholesky factors D(0) =

L(0)Λ(0)L(0)>, where L(0) is lower triangular and Λ(0) is a positive definite diagonal matrix.

(Algorithm 4.1.2 in [60] is a numerically stable implementation for computing the Cholesky

factors of a symmetric positive definite matrix.) Then, D(k) can be maintained in product

form by updating L(k) and Λ(k). Referring to Algorithm 4.4, the matrix D(k+1) is obtained

through a symmetric rank-one modification of D(k). In [58], Gill, Golub, Murray, and

Saunders discuss algorithms for computing the Cholesky factors of a symmetric positive

definite matrix modified by a symmetric matrix of rank one. Of the methods discussed

in [58], we use algorithm C2 to compute L(k+1) and Λ(k+1), primarily because of its good

numerical stability. The update process for D(k) requires approximately 3m2 + O(m) flops

and m+ 1 square roots. The only other modification of Algorithm 4.4 is the computation

of the vector g on line 9, which is given by the following sequence of steps:

u = L(k)>g(k), v = Λ(k)u, γ =
√

u>v, g = γ−1L(k)v. (4.31)

We note that the formula for γ is equivalent to

γ =
√

u>v =
√

u>Λ(k)u ,

which must be a real number because Λ(k) is a positive definite diagonal matrix.

We conclude this section with a brief discussion regarding convergence of the ellipsoid

algorithm. Convergence of the center-cut variant of Algorithm 4.4 (α = 0) applied to

convex programming problems was proved in [63] using an approach based on variational

inequalities. Moreover, Frenk, Gromicho and Zhang [57] proved convergence of center-cut

and deep-cut variants of the ellipsoid method applied to the convex program (4.17). Here,

convergence is understood in the following sense:

lim
k→∞

uk = f0(x
?).
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The speed of convergence of the center-cut ellipsoid method is geometric with rate

(
m2

m2 − 1
m

√
m− 1

m+ 1

)1/2

for m ≥ 2, (4.32)

which approaches unity as m → ∞. The convergence rate attains its minimum value of

1/2 when m = 1, in which case the ellipsoid method is equivalent to the bisection method.

Algorithm 4.4: Deep-cut ellipsoid method

1. Let E(0) = E(x(0),D(0)) be an initial ellipsoid such that x? ∈ E(0)

2. Set k ← 0
while k < K do

if fj(x(k)) > 0 for some index j > 0 then
3. Choose g(k) ∈ ∂fj(x(k))

4. Set γ ←
(
g(k)>D(k)g(k)

)1/2
and compute α according to (4.26)

else
5. Choose g(k) ∈ ∂f0(x(k))

6. Set γ ←
(
g(k)>D(k)g(k)

)1/2
and compute α according to (4.28)

end
7. Set g← γ−1D(k)g(k)

8. If x(k) is feasible, check the stopping criterion, otherwise check for infeasibility
9. Compute τ , δ, and σ according to (4.23)

10. Construct a new ellipsoid E(k+1) = E(x(k+1),D(k+1)) with

x(k+1) ← x(k) − τg and D(k+1) ← δ
(
D(k) − σgg>

)

11. Set k ← k + 1
end
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4.5 One-norm minimization via the ellipsoid method

In this section we discuss how the ellipsoid method can be applied as a solver for the

iterant recombination problem. In particular, formulas for the subgradients of the objective

function and the constraint functions are given, and it is shown how an initial ellipsoid E(0)

that contains the exact solution of the minimization problem can be constructed.

We work with the inequality-form problem given by

minimize ‖Âẑ + r1‖
subject to X̂ẑ− x1 ≤ 0

ẑ ∈ Rm−1,

(4.33)

where ‖ · ‖ is a norm on Rn. We note that since the ellipsoid method is an interior-point

method, its feasible iterates approach x? from the interior of the feasible region. Therefore,

the solution of (4.33) by the ellipsoid method has strictly positive components. It is clear

that the objective function of (4.33) is

f0(ẑ) = ‖Âẑ + r1‖

and the constraint functions are

fi(ẑ) = x̂>i ẑ− (x1)i for i = 1, . . . , n,

where x̂i is the ith column of X̂>. Since the constraint functions are convex and differen-

tiable with respect to ẑ, the subdifferential ∂fi(ẑ) = {∇fi(ẑ)} = {x̂i} for all ẑ ∈ Rm−1.

Treating the objective function as a composition of Âẑ + r1 and h(·) = ‖ · ‖, it follows by

the (subgradient) chain rule [102] that

∂f0(ẑ) = Â>∂h(Âẑ + r1).

162



We note that in the case of one-norm minimization the vector function q ∈ Rn defined by

qi(x) =

{
1 if xi ≥ 0,

−1 if xi < 0
(4.34)

is a subgradient for h(x) = ‖x‖1. Furthermore, if h(x) = ‖x‖2 (quadratic minimization)

the subgradient of h is given by ∇h(x) = x/‖x‖2.

We now describe a procedure to find an initial ellipsoid E(0) = E(ẑ(0),D(0)) that is

guaranteed to contain ẑ?, assuming that ẑ? exists. In addition, we state necessary and

sufficient conditions for the existence of E(0). Intuitively, we expect that most of the

weight in the optimal linear combination x? = Xz? will be associated with the most recent

fine-level approximation x(k), which is the rightmost column of X. Therefore, we choose

ẑ(0) = (0, . . . , 0, 1)>

as the center point for the initial ellipsoid. We now derive the matrix D(0). If z is any

feasible point of (4.12) then the corresponding point ẑ is feasible for (4.33), and AXz =

Âẑ + r1. Therefore, given some feasible point z ∈ Rm it follows that

ẑ? ∈ {y ∈ Rm−1 : ‖Ây + r1‖ ≤ α} with α = ‖AXz‖ = ‖Âẑ + r1‖.

For example, the ith canonical basis vector in Rm, denoted by ei, is a feasible point for

(4.12). In practice we choose α according to

α = min
i=1,...,m

‖AXei‖.

Since Ây + r1 = Â(y − ẑ(0)) + (Âẑ(0) + r1) for any y ∈ Rm−1, it is clear that

ẑ? ∈ {y ∈ Rm−1 : ‖Â(y − ẑ(0)) + (Âẑ(0) + r1)‖ ≤ α}.
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Applying the reverse triangle inequality,
∣∣‖u‖ − ‖v‖

∣∣ ≤ ‖u± v‖, we obtain

ẑ? ∈ {y ∈ Rm−1 : ‖Â(y − ẑ(0))‖ ≤ r} with r = α + ‖Âẑ(0) + r1‖.

Since (1/β)‖ · ‖2 ≤ ‖ · ‖ for some β > 0 (equivalence of norms on Rn) we arrive at the

desired result:

‖Â(ẑ? − ẑ(0))‖2 ≤ βr ⇔ (ẑ? − ẑ(0))>D(0)−1
(ẑ? − ẑ(0)) ≤ 1, (4.35)

where D(0) = β2r2(Â>Â)−1. Therefore, the optimal solution ẑ? belongs to the ellipsoid

E(0) = E(ẑ(0),D(0)). We note that β = 1 for ‖ · ‖ = ‖ · ‖1.

In order for the initial ellipsoid described above to exist, the matrix Â>Â must be

invertible. It is clear that Â>Â is an (m − 1) × (m − 1) symmetric positive semidefinite

matrix, and provided that Â is of full rank, D(0) exists and is symmetric positive definite.

Therefore, we must determine under what conditions Â is of full rank. We begin with a

simple observation.

Proposition 4.5.1. The exact solution of Ax = 0 does not belong to the range of X̂.

Proof. Suppose to the contrary that x ∈ range(X̂). Then there exists some vector y such

that

x = X̂y.

However, this result implies that

1>x = 1>X̂y = 0,

which is not possible because x is a probability vector.

The above proposition establishes that Â has full rank if and only if X̂ has full rank since

Â = −AX̂. To handle the situation in which X̂ is rank deficient we employ the following

simple strategy. If X̂ is rank deficient then X is also rank deficient. Thus, the most obvious

approach is to drop all columns of X except for the rightmost column corresponding to the
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most recent multigrid iterate, and to skip the next iterant recombination step. Doing so

it follows that X has full rank because it consists of a single nonzero column. The iterant

recombination process can then be restarted. In practice, rank deficiency of Â is rarely

an issue because of the nonlinear nature of the underlying multilevel algorithm, that is,

because the range of the multilevel iteration operator changes with each iteration.

We conclude this section by discussing the computational costs of using the ellipsoid

method in conjunction with the iterant recombination process. The main per iteration

computational costs of Algorithm 4.4 are the subgradient vector construction (line 3), and

the ellipsoid update (line 5). Construction of the subgradient vector consists of four steps:

(1) Perform a feasibility check, (2) compute Âẑ + r1, (3) compute q, (4) compute Â>q.

The feasibility check consists of evaluating X̂ẑ−x1 and then searching for a positive entry,

which requires O(mn) flops. The order in which the feasibility constraints are examined is

discussed in [54], where the authors advocate a cyclical order because it yields slightly better

efficiency. However, in our implementation we use a straightforward top-down sequential

search of f1, . . . , fn, which yields an efficient and robust method for the test problems

considered. Steps (2) and (4) each require O(mn) flops, and step (3) requires O(n) flops.

A more in depth analysis reveals that construction of the subgradient vector requires 2mn

flops when the current iterate is infeasible, and (6m + 2)n flops when it is feasible. Here

we have assumed that a sequential search of a length n array requires n flops. Referring

to the discussion at the end of §4.4, computing the (m − 1) × (m − 1) Cholesky factors

L(k+1) and Λ(k+1) requires 3(m− 1)2 + O(m) flops and m square roots. Given that m� n

this work is negligible compared to the subgradient vector construction. Therefore, we

conclude that each iteration requires O(n) flops. We note that these estimates apply to

both the center-cut and deep-cut algorithms. The ellipsoid method also has the setup cost

of computing D(0) = β2r2(Â>Â)−1. For window sizes m ≤ 4 there exist analytic formulas

for the inverse that require 32 flops when m = 4 and 7 flops when m = 3. In general, for

m > 4 computing the inverse requires (8/3)m3 flops to leading order. Moreover, computing

the Cholesky factors of D(0) requires (m− 1)3/3 flops to leading order. The computation

of r requires (m+ 1)n flops.

In addition to the ellipsoid method per iteration and setup costs discussed above, there
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are additional overhead costs to consider. We note that in general the overhead costs

represent only a small part of the overall ellipsoid method cost per iterant recombination

step. After each multigrid cycle it is necessary to update Â and Â>Â. To be as efficient

as possible we would like to recycle as much of the existing elements in Â and Â>Â as

possible. Prior to updating Â we have

Â = [r2 − r1, . . . , rm − r1]

where ri = Axi is the ith residual for i = 1, . . . ,m (see (4.14)). Let

Âold = [r3 − r1, . . . , rm − r1],

where we have dropped the first column of Â, and suppose that rnew is the new rightmost

column of AX. Then

Ânew = [Âold + u1> |v], u = r1 − r2, v = rnew − r2. (4.36)

Thus, by recycling Âold we require only mn flops to update Â. Now consider

Ânew

>
Ânew =

[
H11 H12

H21 H22

]
,

where

H11 = Âold

>
Âold + (1u>Âold)

> + 1u>Âold + 〈u, u〉11>,

H21 = v>(Âold + u1>),

H12 = H>12,

H22 = 〈v, v〉.

By recycling the (m− 2)× (m− 2) matrix Âold

>
Âold, computing the matrix H11 requires

only 2mn+ 3(m− 2)2− 4n flops to leading order. Since v>Ânew = [H21 |H22], computing
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H12, H21, and H22 requires 2n(m − 1) flops to leading order. Thus, updating Ânew and

Ânew

>
Ânew requires only 4mn+ 3(m− 2)2 − 6n flops to leading order.

4.6 One-norm minimization via linear programming

When F (u) = ‖Au‖1, the one-norm minimization problem (4.12) is formally equivalent to

a linear programming problem. Linear programming is a technique for the optimization of

a linear objective function, subject to linear equality and linear inequality constraints. By

introducing the auxiliary variables

θ = (θ1, . . . , θn)>

the absolute values in the objective function can be eliminated, resulting in the equivalent

linear program

minimize 1>θ

subject to




X 0

AX I

−AX I

1> 0>

−1> 0>




[
z

θ

]
≥




0

0

0

1

−1




z ∈ Rm and θ ∈ Rn,

(4.37)

where the matrix describing the inequality constraints has 3n + 2 rows, m + n columns,

and 3nm + 2(n + m) nonzero elements. Standard methods for solving linear programs

include the well-known simplex method as well as various interior point methods [12, 94].

The feasible set of any linear program can be represented as a polyhedron, that is, a set of

the form

P = {x ∈ Rn : Cx ≥ b}.
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An extreme point of a polyhedron P is any point in P that cannot be written as the

convex combination of two other points in P. A result from linear optimization states

that if a linear program over a polyhedron P has an optimal solution, and if P has at

least one extreme point, then the optimal solution must occur at an extreme point of P

[12]. The simplex method searches for an optimal solution by moving along the boundary

of P from one extreme point to another, always in a direction that reduces the value

of the objective function. In this respect, the simplex method either locates the global

optimum, or determines that no such optimum exists, that is, that the objective function

is unbounded below on P. Contrary to the simplex method, interior point methods traverse

the interior of the feasible set to find an optimal solution to within some tolerance ε >

0. Essentially, interior point methods transform the original constrained problem into

an unconstrained problem with an objective function that penalizes the boundary. This

unconstrained problem is then approximately solved via Newton iteration. Interior point

methods are particularly effective for large sparse problems, and often outperform the

simplex method for these types of problems [12]. Although it is beyond the scope of this

thesis to discuss these methods in detail, they present a viable alternative to the ellipsoid

method discussed above, and should be investigated as part of future research for the

iterant recombination one-norm minimization problem.

4.7 Numerical results

In this section we present the results of numerical tests for one-norm and two-norm mini-

mization. We consider a subset of the test problems described in Chapter 3 including the

tandem queueing network, the random walk on an unstructured directed planar graph,

and the stochastic Petri net problem. All experiments are performed using Matlab version

7.5.0.342 (R2007b), where every attempt has been made to obtain optimized performance

by exploiting sparse data types and vectorization in Matlab, and by implementing MEX

(Matlab Executables) in the C programming language for the bottleneck operations in the

multilevel methods. Timings are reported for a laptop running Windows XP, with a 2.50

GHz Intel Core 2 Duo processor and 4 GB of RAM. For the stopping criterion we iterate
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until the one-norm of the residual has been reduced by a factor of 1012, that is, until

‖Ax(k)‖1
‖x(k)‖1

< 10−12‖Ax(0)‖1. (4.38)

The initial guess x(0) is randomly generated by sampling the standard uniform distribution

and then normalizing with respect to the one-norm.

The parameters for the multilevel aggregation method described in §4.1 are given in

Table 4.1. We experiment with F(2, 2)-cycles and W(2, 2)-cycles, where the aggregates are

frozen after ten iterations. In the tables below AGG-F denotes the F-cycle method and

AGG-W denotes the W-cycle method.

Parameter Value

Strength of connection parameter θ 0.25
Weighted Jacobi relaxation parameter ω 0.7
Maximum number of points on coarsest level 20
Maximum number of levels 20

Table 4.1: Parameters for AGG method.

Numerical tests have shown that iterant recombination with small window sizes is

sufficient to dramatically reduce the overall number of multilevel iterations. Moreover,

the constrained iterant recombination approach becomes less practical for larger window

sizes owing to the increased computational cost of solving the corresponding optimization

problem. Therefore, we consider AGG accelerated by iterant recombination with window

sizes m = 2, 3, 4. To determine a reasonable stopping tolerance for the ellipsoid method

(ε in (4.29)) we aim to strike a balance between the number of rejected iterates (step

7 in Algorithm 4.3) and the number of ellipsoid iterations. Let r(k) be the residual of

the kth multilevel iterate, let r̃ be the residual of the computed solution from the iterant

recombination procedure, and let r? be the residual of the exact solution to the iterant

recombination optimization problem. Then ‖r?‖1 ≤ ‖r̃‖1, and by the stopping criterion

for the ellipsoid method

‖r(k)‖1 − ‖r?‖1 < ε.
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Combining these inequalities we find that ‖r(k)‖1 − ‖r̃‖1 < ε, or equivalently that

‖r̃‖1
‖r(k)‖1

< 1 +
ε

‖r(k)‖1
. (4.39)

In order to avoid rejection of the accelerated iterate we require the left-hand side of (4.39)

be less than one. Therefore, we choose ε so that the right-hand side of this inequality

is close to one. Since ‖r(k)‖1 < τ at convergence, where τ is the stopping tolerance of

the multilevel method, one possibility for ε is to use a fixed stopping tolerance given by

εf = 0.01τ . However, experience has shown us that using a fixed tolerance results in a large

number of ellipsoid method iterations during the initial multilevel cycles primarily because

the multilevel iterates in X still have large residuals relative to τ . With respect to execution

time it usually does not pay to solve the iterant recombination problem to a high degree

of accuracy during these initial iterations. An alternative to the fixed stopping tolerance

εf is a dynamic tolerance such as εd = 0.01‖r(k)‖1. We note that as the multilevel method

nears convergence εd approaches εf . As a point of comparison we consider the fixed and

dynamic approaches in our numerical tests. If the stopping tolerance is not met within 400

iterations, the ellipsoid method is terminated. With respect to the two-norm minimization

with quadprog, Matlab’s default settings are used. In the case of window size two the

exact solution is computed via the procedure described in §4.3.

In the tables below we report the total number of iterations required by the AGG

algorithm accelerated with iterant recombination to converge for window size m. For the

standalone AGG method we report the problem size on the finest level (n) the number

of levels (levs) the number of iterations (it), and the operator complexity on the last

cycle (Cop). In what follows we refer to the iterant recombination acceleration with two-

norm minimization as two-norm acceleration, and in the one-norm case we say one-norm

acceleration.
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4.7.1 Tandem queueing network

Numerical results for the tandem queueing network are given in Table 4.2. It is evident

that acceleration by iterant recombination leads to a large reduction in the number of AGG

iterations. For n = 262144, the iteration counts are reduced by at least a factor of 3.7 for

W-cycles, and by at least a factor of 5.8 for F-cycles. In general, iteration counts tend

to decrease as the window size increases. Moreover, based on the iteration counts there

does not appear to be any significant advantage of minimizing in the one-norm compared

with minimizing in the two-norm. Although these results do not display perfect scalability

(iteration counts grow as a function of problem size), the improvement in iteration counts

is significant, and the scalability is much improved over the unaccelerated method.

Method n levs Cop it Ellipsoid (εf ) Ellipsoid (εd) Quadprog

Window size Window size Window size

2 3 4 2 3 4 2 3 4

AGG-W

1024 3 1.42 126 73∗ 47 42 66∗ 45 40 80 53 48
4096 4 1.50 227 88 67 55 110 62 53 74∗ 97 64

16384 5 1.50 286 125 84 61 114 74 62 86∗ 82∗ 71∗

65536 5 1.50 371 122 110 75 128∗ 92 78 108∗ 77∗ 79∗

262144 6 1.50 541 126 126 96 147∗ 114 99 109∗ 116∗ 116∗

AGG-F

1024 3 1.42 126 73∗ 47 42 66∗ 45 40 80 53 48
4096 4 1.47 273 94 75 62 122 73 59 68∗ 110 71

16384 5 1.47 443 103 93 81 113∗ 98 73 92∗ 92∗ 86∗

65536 5 1.47 599 164 135 85 137∗ 113 88 110∗ 101∗ 96∗

262144 6 1.46 1085 186 153 124 182∗ 156∗ 170∗ 159∗ 164∗ 166∗

Table 4.2: Tandem queueing network. Iteration counts to reduce the residual by a factor of 1012

for various window sizes and minimization strategies. The number of levels on the last cycle
(levs), the operator complexity on the last cycle (Cop), and the number of iterations (it) are
given for the unaccelerated AGG method. A superscript asterisk indicates there was at least one
acceleration step in which the residual was not reduced, or in which the underlying optimization
method failed to converge.

Figure 4.3 shows the convergence histories of the accelerated AGG W-cycles for n =

262144. Although our implementation of the iterant recombination procedure is not fully

optimized, window size two acceleration appears to be the most efficient, reducing the
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execution time roughly by a factor of two. In Table 4.2, the ellipsoid method with the

fixed stopping tolerance typically results in a better reduction of the iteration counts than

the ellipsoid method with the dynamic stopping tolerance. However, as Figure 4.3 demon-

strates, lower overall execution times are obtained with the dynamic stopping tolerance.
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Figure 4.3: Convergence histories of AGG W-cycles for the tandem queueing network with n =
262144. In the legends AGG is the unaccelerated method, E1-f is one-norm minimization by
the ellipsoid method with the fixed stopping tolerance, E1-d is one-norm minimization by the
ellipsoid method with the dynamic stopping tolerance, Q2 is two-norm minimization by Matlab’s
quadprog method, and AL2 is the two-norm minimization method discussed in §4.3.

Similar convergence results are observed for the accelerated AGG F-cycles shown in

Figure 4.4. Comparison with Figure 4.3 shows that for window size two, accelerated

W-cycles are faster than accelerated F-cycles by a small margin. As the window size

increases, this margin widens and the accelerated W-cycles are clearly faster, in particular
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those corresponding to one-norm minimization by the ellipsoid method with the dynamic

stopping tolerance.
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Figure 4.4: Convergence histories of AGG F-cycles for the tandem queueing network with n =
262144. In the legends AGG is the unaccelerated method, E1-f is one-norm minimization by
the ellipsoid method with the fixed stopping tolerance, E1-d is one-norm minimization by the
ellipsoid method with the dynamic stopping tolerance, Q2 is two-norm minimization by Matlab’s
quadprog method, and AL2 is the two-norm minimization method discussed in §4.3.
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4.7.2 Unstructured planar graph

Numerical results for the unstructured directed planar graph are given in Table 4.3. For

n = 262144 the iteration counts are reduced by at least a factor of 3.3 for both W-cycles

and F-cycles, and by at least a factor of 3.3 for F-cycles. Two-norm minimization with

window size two appears to be the most efficient, and there is not a significant difference

in terms of iteration counts between two-norm minimization with Matlab’s quadprog and

the one-norm minimization approach for window sizes greater than two.

Figure 4.3 shows the convergence histories of the accelerated AGG W-cycles for n =

262144. Again, two-norm minimization with window size two is the most efficient accelera-

tion method, reducing the execution time roughly by a factor of three. As observed for the

previous test problem, one-norm acceleration is more efficient with the dynamic stopping

tolerance than with the fixed stopping tolerance.

Method n levs Cop it Ellipsoid (εf ) Ellipsoid (εd) Quadprog

Window size Window size Window size

2 3 4 2 3 4 2 3 4

AGG-W

1024 3 1.29 122 52 44 36 52∗ 46 34 66 48 42
4096 4 1.34 182 85 58 47 95 54 41 71∗ 69 59

16384 5 1.36 299 127∗ 66 55 128 64 53 81∗ 60∗ 60∗

65536 5 1.37 457 159 82 72 138∗ 67 66 98∗ 72∗ 66∗

262144 6 1.37 560 170∗ 95 87 155∗ 86 76 100∗ 97∗ 76∗

AGG-F

1024 3 1.29 122 52 44 36 52∗ 46 34 66 48 42
4096 4 1.32 194 92∗ 59 54 103 53 47 56∗ 73 64

16384 5 1.33 373 133 100 72 130∗ 70 63 94∗ 76∗ 69∗

65536 6 1.34 594 195∗ 83 78 136∗ 93 75 103∗ 83∗ 81∗

262144 6 1.34 903 277 136 109 180∗ 106 98 126∗ 150∗ 99∗

Table 4.3: Unstructured directed planar graph. Iteration counts to reduce the residual by a factor
of 1012 for various window sizes and minimization strategies. The number of levels on the last
cycle (levs), the operator complexity on the last cycle (Cop), and the number of iterations (it) are
given for the unaccelerated AGG method. A superscript asterisk indicates there was at least one
acceleration step in which the residual was not reduced, or in which the underlying optimization
method failed to converge.
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Figure 4.5: Convergence histories of AGG W-cycles for the unstructured directed planar graph
with n = 262144. In the legends AGG is the unaccelerated method, E1-f is one-norm minimization
by the ellipsoid method with the fixed stopping tolerance, E1-d is one-norm minimization by the
ellipsoid method with the dynamic stopping tolerance, Q2 is two-norm minimization by Matlab’s
quadprog method, and AL2 is the two-norm minimization method discussed in §4.3.

4.7.3 Stochastic Petri net

Numerical results for the stochastic Petri net are given in Table 4.4. We note that the test

case with n = 1015 was generated with the initial marking (13, 0, 0, 0, 0). It appears that

accelerated W-cycles with window size two are the most efficient, displaying near-optimal

performance. In contrast to the previous test problems the unaccelerated AGG W-cycles

also display scalable performance. While the iterant recombination procedure is still able

to reduce the iteration counts in this case, the reduction is less significant compared with

the previous test problems. For n = 255346 the iteration counts are reduced by at least a
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factor of 1.5 for W-cycles, and by at least a factor of 1.7 for F-cycles. This test problem

is meant to illustrate how iterant recombination acceleration typically improves methods

that are far from being optimal, thus improving robustness, but is less effective for methods

and problems that already display near-optimal convergence.

Method n levs Cop it Ellipsoid (εf ) Ellipsoid (εd) Quadprog

Window size Window size Window size

2 3 4 2 3 4 2 3 4

AGG-W

1015 4 1.77 74 29 28 23 34 27 24 31∗ 29∗ 26∗

4324 5 1.87 72 30 30 30 30 31 30 32∗ 36∗ 28∗

16206 6 1.93 72 31 37 32 35 35 35 32∗ 41∗ 33∗

60116 6 1.91 73 36 38 38 34 38∗ 38∗ 35∗ 39∗ 39∗

255346 7 1.70 73 37 49 48 37 38∗ 45 39∗ 32∗ 39∗

AGG-F

1015 4 1.71 80 33 27 27 36 28 25 33∗ 25∗ 25∗

4324 5 1.78 90 34 38 33 36∗ 29 29 34∗ 32∗ 31∗

16206 6 1.81 89 39 39 37 39 42 41 42∗ 41∗ 37∗

60116 6 1.66 126 49 51 44 50 61∗ 43∗ 46∗ 47∗ 48∗

255346 6 1.51 125 50 69 56 74 67∗ 63 54∗ 48∗ 69∗

Table 4.4: Stochastic Petri net. Iteration counts to reduce the residual by a factor of 1012 for
various window sizes and minimization strategies. The number of levels on the last cycle (levs),
the operator complexity on the last cycle (Cop), and the number of iterations (it) are given for
the unaccelerated AGG method. A superscript asterisk indicates that there was at least one
acceleration step in which the residual was not reduced, or in which the underlying optimization
method failed to converge.

Figure 4.6 shows the convergence histories of accelerated AGG W-cycles for n = 255346.

We note that timing results for window size four are not shown because compared with

the standalone AGG method, acceleration with window size four resulted in slower overall

execution times. In this case iterant recombination acceleration results in only modest

speedups. The most efficient acceleration method is two-norm minimization with window

size two, which reduces the execution time approximately by a factor of 1.3.
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Figure 4.6: Convergence histories of AGG W-cycles for the stochastic Petri net with n = 255346.
In the legends AGG is the unaccelerated method, E1-f is one-norm minimization by the ellip-
soid method with the fixed stopping tolerance, E1-d is one-norm minimization by the ellipsoid
method with the dynamic stopping tolerance, Q2 is two-norm minimization by Matlab’s quadprog
method, and AL2 is the two-norm minimization method discussed in §4.3.

4.8 General discussion and conclusions

The main contribution of this chapter was to show that adaptive multilevel aggregation for

Markov chains can be accelerated through constrained iterant recombination on the finest

level. Numerical results demonstrated that when the AGG method is not performing opti-

mally significant improvements in its iteration counts and scalability are possible by iterant

recombination with small window sizes. Moreover, when the AGG method was performing

optimally, iterant recombination was able to further reduce iteration counts and execution

times, although not to the same degree as in the non-optimal test problems. For win-
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dow sizes larger than three the iteration counts were not further reduced by a significant

amount, and in most cases the added overhead of solving a larger minimization problem

(more unknowns) lead to increased execution times. In terms of execution time, the ellip-

soid method was typically faster than or as fast as quadprog for window sizes greater than

two. However, in terms of overall execution time, window size two acceleration was the

clear winner, with the analytic solution method discussed in §4.3 resulting in the fastest

overall execution times for all test problems. While it is difficult to form generally valid

conclusions based on timing results for one-norm and two-norm minimization due to pos-

sible differences in implementation efficiency, in terms of iteration reduction no significant

difference was observed between the one-norm minimization and two-norm minimization

approaches.
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Chapter 5

Over-Correction for AMG Methods

for Markov Chains

Simple non-overlapping multilevel aggregation has computational advantages over methods

such as the MCAMG method discussed in Chapter 3 in terms of memory complexity and

computational complexity per cycle (see §2.6.4). However, simple multilevel aggregation

typically suffers from slow convergence due to the inability of the coarse-grid correction

to effectively remove smooth error components. In the previous chapter we discussed a

general approach based on iterant recombination to accelerate multilevel methods applied

to Markov chain problems. Numerical results demonstrated that our approach can signifi-

cantly improve the performance and scalability of simple multilevel aggregation for Markov

chains. In this chapter we consider an altogether different approach to accelerate simple

multilevel aggregation for Markov chains that is based on scaling the coarse-grid correction

by a scalar α. Since α is taken to be greater than one, we use the terminology of Mı́ka

and Vaněk [125] and refer to this acceleration as multilevel aggregation for Markov chains

with over-correction. In particular, we present an automatic over-correction mechanism,

applicable on all levels, that can cheaply and effectively improve the convergence of the

simple multilevel aggregation algorithm described in §4.1 (Algorithm 4.1). We compare our

automatic mechanism with a fixed over-correction approach in which a suitable α is cho-
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sen a priori via trial and error. In addition, we compare multilevel aggregation accelerated

by over-correction with unaccelerated multilevel aggregation, multilevel aggregation accel-

erated by iterant recombination from Chapter 4, the MCAMG method from Chapter 3,

and leading Krylov subspace methods including the preconditioned stabilized biconjugate

gradient (Bi-CGStab) method [104], and the preconditioned generalized minimal residual

(GMRES) method [104].

We begin by briefly describing the classical over-correction mechanism for standard

additive-correction multigrid applied to symmetric positive definite systems in §5.1. In

§5.2 we describe our automatic over-correction mechanism for multiplicative-correction

multilevel aggregation for Markov chains. In §5.3 we present numerical results, and §5.4

contains the concluding remarks.

5.1 Classical over-correction for multilevel aggrega-

tion

The idea of applying over-correction is a simple one, its goal being to improve the rate of

convergence of multilevel aggregation methods [112, 125]. With respect to additive cor-

rection schemes, instead of applying a standard coarse-grid correction, an over-correction

parameter α is introduced to scale the correction:

xCGC = x̄ + αPec, (5.1)

where x̄ is the relaxed fine-level approximation and α is a positive scalar typically larger

than one. Closely following the example of Stüben [112] (see also [13]), over-correction as

in (5.1) can be motivated by considering a simple model problem:

d2u

dx2
= f(x) for x ∈ (0, 1),

u(x) = 0 for x ∈ {0, 1}.
(5.2)
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Assuming the model problem (5.2) is discretized with uniform grid spacing h and centered

finite difference approximations, we obtain a linear system Au = f in which

A =
1

h2




2 −1

−1 2
. . .

. . . . . . −1

−1 2




is a symmetric positive definite matrix. Now let e be any fine-level error that satisfies the

boundary conditions in (5.2). Then by the variational principle of the Galerkin coarse-level

system (see Theorem 2.6.1), the two-level correction Pec is optimal in the sense that it

minimizes ‖e−Pec‖A with respect to all corrections in the range of P. Consequently, Pec

minimizes

〈Av, v〉 =
1

2h2

(∑

i

∑

j∈Ni

(vi − vj)2 +
∑

i

siv
2
i

)
, si = 2 +

∑

j 6=i

aij, (5.3)

where v = e−Pec and Ni is the set of nearest neighbors of i. This result implies that away

from the boundary where si = 0, the two-norm of the slope of v is minimal, whereas at

the boundary where si 6= 0 the corresponding components of v are zero. Now suppose that

aggregation is defined by grouping pairs of neighboring variables together and consider a

smooth error e. The result of this minimization near the left boundary of the interval [0, 1]

is illustrated in Figure 5.1. Interpolation is constant over the aggregates, and the slope of

Pec is zero. Between the aggregates, the slope of v becomes minimal if the slope of Pec

equals the slope of e. Consequently, the correction Pec has approximately half the slope

of e. As illustrated in Figure 5.1, multiplying Pec by a factor of two gives a much more

effective correction with respect to the error e.

One approach for over-correction is to use a fixed value of α that is determined by

either a theoretical analysis, or through an a priori trial-and-error strategy [13, 17]. The

main challenge, however, is to automatically determine an appropriate value for α. In [125]

a method for automatically determining α was suggested by minimizing the energy norm
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e
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2Pec

Figure 5.1: Optimal approximation Pec of the smooth error e with respect to the energy norm for
the model problem. Dashed boxes represent the aggregates on the fine grid, solid dots correspond
fine-grid points, and hollow dots correspond to coarse-grid points.

of the error corresponding to the coarse-grid correction:

minimize
∥∥Hν2(e− αPec)

∥∥2

A
over all α ∈ R, (5.4)

where e = x − x̄ is the unknown error of the smoothed iterate x̄ prior to coarse-grid

correction, and H is the iteration matrix of the relaxation scheme. The error of the coarse-

grid correction is smoothed by ν2 > 0 relaxations prior to computing α because the goal

of (5.4) is to find the over-correction parameter that yields the optimal solution after

post-relaxation. The optimal α can then be calculated by the formula:

αopt =
ê>(f −Ax̂)

ê>Aê
with ê = Hν2e and x̂ = Relax(A, f , x̄, ν2). (5.5)

Although this approach has been demonstrated to significantly improve the performance of

simple multilevel aggregation applied to symmetric positive definite systems, it is limited
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by the requirement that A is a symmetric positive definite matrix. If A is not symmetric

positive definite then ‖·‖A does not define a norm, and it becomes unclear how to minimize

the quantity e−αPec given that e is the unknown error. Moreover, a large number of pre-

relaxation steps may be necessary in order for the effect of over-correction to be significant,

for example, see [122].

5.2 Over-Correction for Markov chains

For a nonsymmetric matrix A, the expression (5.4) is no longer meaningful because the

energy norm is undefined. As far as we are aware, only fixed over-correction strategies

have been considered for nonsymmetric problems in the literature [27, 62, 130, 131]. In

particular, Horton and Leutenegger [69] experimented with a fixed over-correction approach

for Markov chains by taking a convex combination of two different coarse approximations

to the correction. However, their approach was not automated. In order to automatically

determine α, we consider minimizing the residual two-norm as an alternative to the energy

norm. We note that minimization of the residual two-norm to accelerate the convergence

of multilevel processes has already been considered [129], but only on the finest level.

The multilevel aggregation method for Markov chains described in §4.1 employs a mul-

tiplicative coarse-grid correction of the form

xCGC = Pxc = diag(x̄(k))Q diag(Q>x̄(k))−1xc,

where xc is the solution of the coarse-level problem. Letting P̄ = diag(x̄(k))Q and ec =

diag(Q>x̄(k))−1xc, the coarse-grid correction can be written as

xCGC = P̄ec,

where ec is the coarse-level approximation of the fine-level multiplicative error. Owing to

the nature of the coarse-grid correction, we cannot simply multiply the correction Qec by

a scalar α, as doing so would result in α being eliminated by normalization on the fine
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level. Instead, we consider a coarse-grid correction of the form

xCGC

α = diag(x̄(k))(Qec)
α, (5.6)

where the αth power is applied componentwise to the multiplicative correction. Note

that Qec is the fine-level approximation of the fine-level multiplicative error. Taking the

componentwise logarithm of (5.6) we observe that

log((xCGC

α )i) = log(x̄
(k)
i ) + α log((Qec)i) for each i,

which is in some sense analogous to the additive over-correction formula (5.1). In partic-

ular, when the multiplicative error component (Qec)i = 1, the over-correction is inactive.

Since the disaggregation matrix Q corresponds to piecewise constant interpolation, (5.6)

is equivalent to

xCGC

α = P̄(ec)
α. (5.7)

The goal then is to find the value of α that minimizes

∥∥AP̄(ec)
α
∥∥2

2
. (5.8)

Unfortunately, minimization of (5.8) is difficult as well as computationally expensive due

to the nonlinearity of the correction. Moreover, we observe that if all the components of

ec are greater than one (resp. less than one) then the optimal over-correction parameter

is α = −∞ (resp. α = ∞). As a workaround we use the fact that the multiplicative

correction achieved by the multilevel aggregation method is typically close to 1, that is,

we assume that

Qec = 1 + ε for some vector ε such that ‖ε‖∞ � 1.
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By the componentwise application of Taylor’s theorem

(Qec)
α = (1 + ε)α = 1 + αε+ O(ε2). (5.9)

Therefore, a linearized over-correction formula is given by

diag(x̄(k))(Qec)
α ≈ x̄(k) + α diag(x̄(k))ε = x̄(k) + α(xCGC − x̄(k)). (5.10)

We note that formula (5.10) is equivalent to the additive over-correction formula (5.1)

with Pec = xCGC− x̄(k). Similar to the additive correction scheme, in order to compute the

optimal parameter α, the corrected approximation is first smoothed by ν > 0 relaxations:

x̂ = Relax(A,0,xCGC, ν). (5.11)

Although the variational principle of the Galerkin coarse-level system is not applicable

in Markov chain applications, we have found that relaxing the corrected approximation

xCGC prior to computing α improves the performance of the over-correction process. In

particular, relaxing xCGC ensures that x̄(k) is not significantly smoother than x̂, which

results in a better search direction x̂− x̄(k). The optimal parameter α is then obtained by

minimizing ∥∥RA(x̄(k) + α(x̂− x̄(k)))
∥∥2

2
, (5.12)

with the minimizer given by

αopt =
u>(u− v)

〈u− v,u− v〉 , u = RAP̄1c, v = Q>Ax̂. (5.13)

We note that restricting the residual of the linearized over-correction to the coarse level

as in (5.12) improves convergence and reduces the computational cost of computing αopt.

Restriction has a similar effect as smoothing in that it helps expose algebraically smooth

error components, but is much cheaper to apply than a relaxation.

The amount of computational work to compute αopt on the `th level of a multigrid
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V-cycle is approximately

(ν + 1) nnz(A`) + 3n` + nnz(A`+1) + 5n`+1 (5.14)

flops to leading order. The dominant computation in (5.13) is computing the vector v which

includes the cost of the ν additional relaxations. The computational cost of automatic

over-correction for a V-cycle (` = 0, . . . , L− 1) is then approximately

((ν + 2)Cop − 1) nnz(A0) + (8Cgrid − 5)n0 (5.15)

flops to leading order, which is roughly the cost of (ν + 2)Cop − 1 relaxations on the

finest level. The overall computational cost for a W-cycle is more complicated to compute

because coarser levels are visited more than once, but it is bounded above and below by

(ν + 2)Cop + 8Cgrid flops and (ν + 1)Cop + 3Cgrid flops, respectively.

In practice we restrict αopt to a predefined interval [αmin, αmax] with 0 < αmin <

αmax to obtain a more stable algorithm. For example, in some cases formula (5.13) may

yield a negative value for αopt, which could potentially cause numerical instability. If αopt

falls outside the interval [αmin, αmax], then it is set to either αmin or αmax, depending

on which boundary point it is nearest. In addition, it may also be necessary to use a

smoothing parameter in (5.11) that is different from the parameter used in the pre- and

post-relaxations, or, it may even be necessary to use ν > 1 relaxations to smooth the

coarse-grid correction. In general, insufficient smoothing of the coarse-grid correction may

result in a poor determination of αopt.

Empirical evidence has shown us that using the linearized form (5.10) of the coarse-

grid over-correction equation in conjunction with automatic over-correction results in better

overall performance of the multilevel method than applying α as a componentwise power as

in (5.7). However, using the linearized formula may result in a coarse-grid correction that

has nonpositive values. In order for the linearized over-correction (5.10) to have strictly
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positive components we require that

0 < α ≤ inf
i∈I−

(
x̄

(k)
i

|x̂i − x̄(k)
i |

)
, (5.16)

where I− = {i : x̂i − x̄(k)
i < 0}. Checking this condition on each level is computationally

expensive, therefore we check the over-corrected coarse-grid correction for any negative

components, and if any are found, xCGC
α is replaced by the relaxed coarse-grid correction x̂

in (5.11) and the post-relaxations are skipped. In our experience, nonpositive values only

occur during the initial iterations when the residual norm is still relatively large and the

computed solution is still far from the exact solution.

5.3 Numerical results

In this section we present the results of our numerical tests for the tandem queueing

network, the random walk on an unstructured directed planar graph, the stochastic Petri

net problem, and the octagonal mesh problem. The methods tested include weighted

Jacobi relaxation, simple non-overlapping multilevel aggregation (AGG), AGG accelerated

by over-correction (OC-AGG), AGG accelerated by iterant recombination (IR-AGG), the

MCAMG method from Chapter 3, ILU-preconditioned stabilized biconjugate gradient (Bi-

CGStab) [104], and ILU-preconditioned GMRES [104]. All experiments are performed

using Matlab version 7.11.0.584 (R2010b) 64-bit, and every attempt has been made to

obtain optimized performance by exploiting sparse data types and vectorization in Matlab,

and by implementing MEX (Matlab Executables) files in the C programming language

for the bottleneck operations in the multilevel methods. Timings are reported for server

running Red Hat Enterprise Linux (release 5.8), with four 2.60 GHz Dual-Core AMD

Opteron 2218 processors and 8 GB of RAM. We note that the difference in computing

environments between this chapter and Chapters 3 and 4 is to facilitate larger test problems.
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We use the following stopping criterion for all methods except GMRES:

‖Ax(k)‖1
‖x(k)‖1

< 10−12‖Ax(0)‖1. (5.17)

For GMRES we use

(
‖Ax(k)‖2 < 10−12‖Ax(0)‖1 and

‖Ax(k)‖1
‖x(k)‖1

< 10−12‖Ax(0)‖1
)
. (5.18)

The initial guess x(0) is randomly generated by sampling the standard uniform distribution

and then normalizing with respect to the one-norm. In order to check the one-norm

criterion in (5.18) at each inner iteration of GMRES it is necessary to compute the current

approximation x(k) (see [104] for details). However, doing so may incur unnecessary extra

computations, especially when GMRES is still far from converging. Therefore, we use a

preliminary stopping criterion based on the two-norm of the residual, which we get for free

(see [104]), to gauge if GMRES is near convergence, and only when this condition is satisfied

do we compute x(k) and check the one-norm criterion in (5.18). We note that although the

iterates x(k) are not normalized in the inner GMRES iterations, their one-norms remain

close to one, and so the two-norm test is meaningful.

The Bi-CGStab and GMRES algorithms were implemented according to the templates

in [5]. Experiments with GMRES were run for subspaces with dimensions 10, 25, and 50.

We also considered the following preconditioners: ILU(0) and ILUTP (ILU with threshold-

ing and pivoting [104]) with permutation tolerance set to 1 (always choose the maximum

magnitude element in the column as the pivot) and with drop tolerances 0.1, 0.01, 0.001,

and 0.0001. The preconditioners were constructed by Matlab’s built-in sparse incomplete

LU factorization method ilu. For each test problem we selected the Bi-CGStab and GM-

RES parameters that gave fastest execution time for the largest problem size, and used

that combination for all problem sizes. We note that in some instances very small non-

positive components were present in the computed solution, in which case we took the

absolute value and renormalized. A run was terminated if it reached the iteration limit of

500 iterations before satisfying the stopping criterion.
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The parameters for the AGG, IR-AGG, and OC-AGG methods are given in Table 4.1.

We use W(2, 2)-cycles and neighborhood aggregation with aggregates frozen on all levels

after five iterations. A run was terminated if it reached the iteration limit of 1000 iterations

before satisfying the stopping criterion. With respect to IR-AGG we choose between the

fastest of the analytic solution method for two-norm minimization with window size two

(IR-AGG-A2) and the one-norm minimization by the ellipsoid method with window size

three (IR-AGG-E3). With respect to OC-AGG we denote the fixed over-correction method

by OC-AGG-f and the automatic over-correction method by OC-AGG-a. In the case of

OC-AGG-a we use ν = 2 weighted Jacobi relaxations with ω = 0.7 to smooth the correction

and we restrict the computed value of α to the interval [1.1, 2]. The parameters for the

MCAMG method are given in Table 3.1. We use V(2, 2)-cycles with transfer operators

frozen after five iterations (unless specified otherwise). Experience shows that in general

these settings work well for a wide range of problems.

In the tables below we report the problem size on the finest level (n), the number of

iterations to converge (it), the overall execution time in seconds (time), and the operator

complexity (Cop). The weighted Jacobi relaxation parameter reported in the tables is the

relaxation parameter that minimizes its iteration count. In the case of GMRES and Bi-

CGStab the overall execution times include the time to construct the preconditioner. In

Blank entries in a table indicate that a method failed to satisfy its stopping criterion within

its alloted iteration limit. We note that in one instance it was also necessary to terminate

a run after a sufficiently long period of time (approximately two hours).

5.3.1 Tandem queueing network

Numerical results for the tandem queueing network are given in Tables 5.1 and 5.2. We

observe that AGG with fixed over-correction parameter α = 2.2 is the most efficient method

for this test problem, displaying near-optimal scalability. Although OC-AGG-a is almost

four times faster than unaccelerated multilevel aggregation, it is unable to obtain the

same kind of scalable performance as OC-AGG-a. We observe that OC-AGG-A2 is also a

competitive solver for this test problem with near-optimal scalability and the second fastest
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execution times for the largest test cases. Preconditioned GMRES and Bi-CGStab are

competitive solvers for test cases with n ≤ 1048576, but the multilevel methods are faster

than Bi-CGStab for the larger problem sizes. Moreover, the execution time scalability of

the multilevel methods is significantly better than that of Bi-CGStab and GMRES (Figure

5.2).

Weighted Jacobi Bi-CGStab GMRES(50)
(ω = 0.99) (ILUTP(10−4)) (ILUTP(10−4)) AGG

n it time it time it time it Cop time

4096 50287 7.1 5 < 0.1 8 < 0.1 227 1.50 1.6
16384 182441 150.6 7 0.6 12 0.6 286 1.50 6.8
65536 11 3.7 17 3.5 369 1.50 30.3

262144 19 24.9 29 26.7 524 1.50 157.3
1048576 37 199.0 49 201.0 720 1.50 833.8
2102500 52 522.0 183 838.0 837 1.50 2208.9
3147076 72 1030.0 338 2090.0 838 1.50 3300.5

Table 5.1: Tandem queueing network. Iteration counts (it) and execution times in seconds (time)
to reduce the residual by a factor of 1012. Here Cop is the operator complexity.

OC-AGG-f
MCAMG (α = 2.2) OC-AGG-a IR-AGG-A2

n it Cop time it Cop time it Cop time it Cop time

4096 16 4.85 0.4 45 1.50 0.5 80 1.50 0.8 76 1.50 0.7
16384 18 5.01 2.1 44 1.50 1.8 89 1.50 3.3 72 1.50 2.6
65536 21 5.17 9.8 44 1.50 7.1 108 1.50 13.5 93 1.50 12.2

262144 29 5.12 52.0 43 1.50 25.5 130 1.50 59.1 100 1.50 43.2
1048576 29 5.17 229.9 54 1.50 117.1 142 1.50 248.4 128 1.50 193.5
2102500 30 5.16 510.8 44 1.50 213.6 148 1.50 561.1 156 1.50 452.7
3147076 32 5.19 898.5 44 1.50 328.6 151 1.50 868.5 155 1.50 691.4

Table 5.2: Tandem queueing network. Iteration counts (it) and execution times in seconds (time)
to reduce the residual by a factor of 1012. Here Cop is the operator complexity.
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Figure 5.2: Execution time scaling of Bi-CGStab, GMRES, MCAMG, OC-AGG-f, and IR-AGG-
A2 for the tandem queueing network. Solid lines are the best-fit lines through the data points
(asterisks, crosses, circles, squares, and triangles). Numerical values in the legend are the slopes
of the best-fit lines.

5.3.2 Unstructured planar graph

Numerical results for the unstructured directed planar graph are given in Tables 5.3 and

5.4. Preconditioned Bi-CGStab and GMRES are the fastest solvers for the smaller prob-

lem sizes; however, the MCAMG method is competitive with Bi-CGStab and is superior to

GMRES in terms of execution time for n = 2102500, 3147076. Although OC-AGG-f with

over-correction parameter α = 3 is significantly faster than unaccelerated multilevel ag-

gregation, it is unable to obtain the same textbook multigrid efficiency as for the previous

test problem. The OC-AGG-a method demonstrates good speedups and good scalability

for smaller problem sizes but struggles for n ≥ 1048576. Evidently, an over-correction

parameter near three is suitable for the larger problem sizes; consequently, restricting the

computed over-correction parameter to the interval [1.1, 2] is detrimental to the perfor-

mance of OC-AGG-a. The numerical tests also revealed that for larger problem sizes it
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may be beneficial to use a window size larger than two with iterant recombination. In

essence, the added numerical cost of solving a larger minimization problem is outweighed

by the added savings of performing fewer multilevel iterations. Although Bi-CGStab and

GMRES are competitive methods for this test problem in terms of execution time, they

do not scale as well as the multilevel methods (Figure 5.3).

Weighted Jacobi Bi-CGStab GMRES(50)
(ω = 0.99) (ILUTP(10−3)) (ILUTP(10−4)) AGG

n it time it time it time it Cop time

4096 19140 4.4 11 < 0.1 9 0.2 174 1.33 1.6
16384 59950 57.5 21 0.6 15 1.2 310 1.36 9.5
65536 240342 1012.3 37 3.8 25 8.1 469 1.37 56.3

262144 66 21.9 46 51.3 635 1.37 368.5
1048576 145 167.0 110 298.0
2102500 186 420.0 151 829.0
3147076 212 744.0 202 1640.0

Table 5.3: Unstructured directed planar graph. Iteration counts (it) and execution times in
seconds (time) to reduce the residual by a factor of 1012. Here Cop is the operator complexity.

OC-AGG-f
MCAMG (α = 3) OC-AGG-a IR-AGG-E3

n it Cop time it Cop time it Cop time it Cop time

4096 21 2.75 0.5 48 1.33 0.6 61 1.33 0.8 55 1.33 0.7
16384 21 2.83 2.0 58 1.35 2.7 91 1.36 4.1 71 1.35 3.2
65536 22 2.84 8.9 56 1.37 11.3 147 1.37 25.1 69 1.37 11.5

262144 27 2.84 44.9 64 1.37 48.9 147 1.37 91.2 89 1.37 52.6
1048576 26 2.83 194.2 103 1.37 269.4 229 1.37 602.7 128 1.37 324.4
2102500 29 2.84 477.7 89 1.37 468.9 175 1.37 1046.9 116 1.37 577.2
3147076 29 2.84 797.1 140 1.37 1036.4 796 1.37 6293.4 145 1.37 1056.1

Table 5.4: Unstructured directed planar graph. Iteration counts (it) and execution times in
seconds (time) to reduce the residual by a factor of 1012. Here Cop is the operator complexity.
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Bi−CGStab (1.36)

GMRES (1.35)

MCAMG (1.13)
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Figure 5.3: Execution time scaling of Bi-CGStab, GMRES, MCAMG, OC-AGG-f, and IR-AGG-
E3 for the directed unstructured planar graph. Solid lines are the best-fit lines through the data
points (asterisks, crosses, circles, squares, and triangles). Numerical values in the legend are the
slopes of the best-fit lines.

5.3.3 Stochastic Petri net

Numerical results for the stochastic Petri net are given in Tables 5.5 and 5.6. Test cases

corresponding to n = 1048061, 2162281, 3153606 were generated using the initial markings

(145, 0, 0, 0, 0), (185, 0, 0, 0, 0), and (210, 0, 0, 0, 0), respectively. In order to obtain smaller

operator complexities and faster overall performance of the MCAMG method it was nec-

essary to freeze the transfer operators after nine iterations and use the larger strength

threshold θ = 0.7. Unfortunately, despite these steps MCAMG operator complexities

remain unacceptably large. Multilevel aggregation with fixed over-correction parameter

α = 1.9 is the fastest multilevel method for this test problem, with speedups of at least

two times over unaccelerated multilevel aggregation. Preconditioned Bi-CGStab is a com-

petitive solver for the smaller problem sizes; however, OC-AGG-f is considerably faster

than Bi-CGStab for problem sizes n = 2162281, 3153606. In terms of scaling the multi-
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level methods are superior to Bi-CGStab as shown in Figure 5.4. The generalized minimal

Weighted Jacobi Bi-CGStab GMRES(50)

(ω = 0.99) (ILUTP(0.1)) (ILUTP(10−2)) AGG

n it time it time it time it Cop time

4324 7394 1.7 24 < 0.1 15 0.2 75 1.64 0.9
16206 16939 16.1 39 0.4 20 2.4 92 1.54 3.5
60116 34625 124.2 51 2.2 27 25.6 79 1.48 10.9

255346 84 16.0 39 404.0 129 1.48 68.7
1048061 190 130.0 82 6010.0 93 1.49 235.7
2162281 248 384.0 115 1.50 583.1
3153606 240 558.0 143 1.50 1029.5

Table 5.5: Stochastic Petri net. Iteration counts (it) and execution times in seconds (time) to
reduce the residual by a factor of 1012. Here Cop is the operator complexity.

MCAMG OC-AGG-f
(θ = 0.7) (α = 1.9) OC-AGG-a IR-AGG-A2

n it Cop time it Cop time it Cop time it Cop time

4324 18 2.41 0.4 38 1.87 0.7 36 1.68 0.7 34 1.64 0.6
16206 18 2.49 1.6 39 1.93 2.5 37 1.54 2.4 39 1.54 1.9
60116 23 2.69 8.4 38 1.97 8.6 53 1.48 11.4 37 1.48 6.7

255346 23 2.98 43.7 38 1.82 35.3 45 1.47 43.2 56 1.48 37.2
1048061 21 4.31 268.9 39 1.66 143.4 60 1.49 219.5 53 1.49 154.3
2162281 19 5.48 577.9 38 1.61 299.8 58 1.50 406.6 71 1.50 431.1
3153606 21 5.95 975.0 37 1.59 437.7 68 1.50 684.4 77 1.50 704.2

Table 5.6: Stochastic Petri net. Iteration counts (it) and execution times in seconds (time) to
reduce the residual by a factor of 1012. Here Cop is the operator complexity.

residual method is slow for this test problem because of the long time required to build the

ILUTP preconditioner with a small drop tolerance. Transition matrices for the stochastic

Petri net test problem have the highest density and the most irregular sparsity pattern

of any of the test problems we consider; consequently, significant fill-in may occur during
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the construction of the ILUTP preconditioner with a small drop tolerance, resulting in

a very slow setup phase. We note that in order to obtain convergence with GMRES it

was necessary to use a drop tolerance of 0.01 or smaller, whereas Bi-CGStab was able to

converge with the relatively large drop tolerance of 0.1.
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MCAMG (1.21)
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Figure 5.4: Execution time scaling of Bi-CGStab, MCAMG, OC-AGG-f, and IR-AGG-A2 for the
stochastic Petri net. Solid lines are the best-fit lines through the data points (asterisks, crosses,
circles, and squares). Numerical values in the legend are the slopes of the best-fit lines.

5.3.4 Octagonal mesh

Numerical results for the octagonal mesh are give in Tables 5.7 and 5.8. In this case

the MCAMG method demonstrates near-optimal performance and is the fastest multilevel

method with speedups of two to four times over unaccelerated multilevel aggregation.

Moreover, MCAMG and is competitive with Bi-CGStab and GMRES, and for sufficiently

large problem sizes MCAMG is faster than these methods. Although OC-AGG-f is slower

than MCAMG for the problem sizes considered, it obtains optimal multilevel scaling as
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Weighted Jacobi Bi-CGStab GMRES(25)

(ω = 0.99) (ILUTP(10−3)) (ILUTP(10−4)) AGG

n it time it time it time it Cop time

4096 10580 1.5 6 < 0.1 6 < 0.1 59 1.97 0.9
16384 42204 26.7 13 0.3 10 0.4 75 1.98 3.5
65536 146946 372.8 25 1.9 16 2.3 119 2.01 17.8

262144 46 14.5 34 18.3 165 2.01 88.5
1048576 92 108.0 83 133.0 219 2.02 529.0
2097152 128 322.0 158 589.0 279 2.02 1285.3
3145728 162 610.0 158 853.0 300 2.02 2018.7

Table 5.7: Octagonal mesh. Iteration counts (it) and execution times in seconds (time) to reduce
the residual by a factor of 1012. Here Cop is the operator complexity.

OC-AGG-f
MCAMG (α = 1.3) OC-AGG-a IR-AGG-E3

n it Cop time it Cop time it Cop time it Cop time

4096 20 5.24 0.5 75 1.97 1.0 727 1.97 9.2 48 1.97 0.8
16384 20 5.27 2.4 65 1.98 3.1 647 1.98 25.2 52 1.98 2.7
65536 20 5.08 8.6 66 2.01 12.1 669 2.01 97.3 69 2.01 12.3

262144 20 5.03 32.5 66 2.01 46.2 691 2.01 381.7 86 2.01 54.8
1048576 21 4.91 132.4 72 2.02 192.5 664 2.02 1583.2 107 2.02 270.2
2097152 22 5.03 306.3 85 2.02 446.2 639 2.02 3245.1 125 2.02 667.7
3145728 21 5.00 460.3 81 2.02 618.0 633 2.02 4777.3 131 2.02 992.6

Table 5.8: Octagonal mesh. Iteration counts (it) and execution times in seconds (time) to reduce
the residual by a factor of 1012. Here Cop is the operator complexity.

shown in Figure 5.5. In contrast to the previous test cases, an over-correction parameter

much less than two is optimal for this problem. Consequently, a fixed over-correction

parameter near two, which is somewhat standard for multilevel aggregation applied to

symmetric positive definite problems, may not always be suitable. The primary reason we

have included this test problem is to illustrate that our automatic over-correction approach

is not guaranteed to improve the performance of the AGG method. As shown in Table
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5.8, the performance of OC-AGG-a is substantially worse than unaccelerated multilevel

aggregation. An investigation of this test problem revealed that multilevel aggregation

is very sensitive to the choice of the over-correction parameter α. In particular, slow

convergence is attributable to values of α > αmax that were set to αmax = 2. Moreover,

additional tests of OC-AGG-f with α = 2 supports this claim.
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Figure 5.5: Execution time scaling of Bi-CGStab, GMRES, MCAMG, OC-AGG-f, and IR-AGG-
E3 for the octagonal mesh. Solid lines are the best-fit lines through the data points (asterisks,
crosses, circles, squares, and triangles). Numerical values in the legend are the slopes of the
best-fit lines.

5.4 General discussion and conclusions

The main contribution of this chapter was to show that over-correction can significantly

improve the convergence of a simple non-overlapping multilevel aggregation method for

Markov chains. In particular, we formulated an over-corrected version of the multiplica-

tive coarse-grid correction and developed an automatic over-correction approach that aims
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to compute an optimal over-correction parameter on each level. Numerical results demon-

strated that fixed over-correction, in which the over-correction parameter is determined a

priori and is fixed on all levels, can dramatically improve the convergence of simple multi-

level aggregation, often resulting in optimal or near-optimal performance with respect to

algorithmic scalability. The downside of fixed over-correction is that the over-correction

parameter has to be selected through a costly and impractical a priori trial-and-error pro-

cedure. It was also shown that automatic over-correction is capable of improving scalability

and reducing execution times of simple multilevel aggregation, although not to the extent

of fixed over-correction. Although automatic over-correction is clearly computationally

more expensive than fixed over-correction, our expectation was that it would reduce it-

eration counts by as much or even more than fixed over-correction. Unfortunately, in

each of the test cases the iteration counts of OC-AGG-a were markedly higher than those

of OC-AGG-f, which suggests that more work is needed to improve the automatic over-

correction approach. As evidenced by the octagonal mesh problem, robustness of the

automatic over-correction approach is an area in which improvements are needed. The

numerical results also demonstrated that our multilevel methods tend to scale better than

ILU-preconditioned Bi-CGStab and GMRES in terms of execution time. For the smaller

problem sizes Bi-CGStab and GMRES were generally the fastest solvers or were very com-

petitive; however, for larger problems our multilevel approach was competitive and often

superior to Bi-CGStab and GMRES. Although it is difficult to form general conclusions

based on comparisons with a limited number of test problems, it should be noted that

the MCAMG and IR-AGG methods consistently showed good scalability and robustness,

and were among the fastest multilevel methods for each of the test problems considered.

Preliminary tests suggest that combining iterant recombination and over-correction may

lead to further improvements over the individual acceleration approaches. In particular,

iterant recombination in conjunction with fixed over-correction seems promising, although

further testing is required.

A technique to reduce the computational cost of automatic over-correction that seems

fruitful is to automatically determine the over-correction parameter on the finest level and

use this fixed value on coarser levels. While this approach clearly reduces the per iteration
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computational cost, preliminary tests suggest it may also be successful at reducing the

overall execution time, however, further testing is required. With respect to fixed over-

correction, it may be sufficient to choose the over-correction parameter based on an a

priori trial-and-error strategy with small problem sizes. Preliminary tests in which a single

multilevel aggregation V-cycle is performed for a range of over-correction parameters has

worked well for some test problems, but poorly for others. Currently, it is unclear if the

value of α obtained from this procedure will be suitable for larger problem sizes. More

generally, a rigorous analysis of the over-correction mechanism, or at the very least heuristic

arguments in support of our approach, would be of great benefit to guide the formulation

of the automatic over-correction minimization problem.
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Chapter 6

AMG for Canonical Tensor

Decomposition

Recall the definition of the tensor canonical decomposition (CP) from the introduction.

Given an Nth-order tensor Z and the number of components R, we seek an approximate

decomposition of the form

Z ≈
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r := JA(1), . . . ,A(N)K,

where the factor matrices

A(n) =
[
a

(n)
1 , . . . , a

(n)
R

]
∈ RIn×R for n = 1, . . . , N. (6.1)

The problem of computing CP with R components that best approximates an arbitrary

Nth-order tensor Z is formulated as a nonlinear least squares optimization problem:

minimize f(A(1), . . . ,A(N)) :=
1

2

∥∥∥Z− JA(1), . . . ,A(N)K
∥∥∥

2

. (6.2)

We note that in this chapter all norms ‖ ·‖ correspond to the Frobenius norm (see §2.1). A

general approach to solving this optimization problem is to find solutions of the first-order
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optimality equations, that is, to find a set of nontrivial factor matrices that zero out the

gradient of f [1, 79].

In this chapter we describe an adaptive algebraic multigrid method for computing (lo-

cal) minimizers of f by solving the optimality equations. Our multigrid method consists of

two multilevel phases: a multiplicative correction scheme as the setup phase and an addi-

tive correction scheme as the solve phase. We note that this combination of multiplicative

and additive methods is similar to the hybrid method discussed in Chapter 3 for Markov

chains. In the setup phase a multiplicative correction scheme is used in conjunction with

bootstrap algebraic multigrid (BAMG) interpolation [20, 72] not only to build the neces-

sary transfer operators and coarse-level tensors but also to compute initial approximations

of the factor matrices. In this phase the alternating least squares (ALS) method forms

the relaxation scheme on all levels. The setup phase is adaptive in the sense that the

transfer operators are continually improved using the most recent approximation to the

solution factor matrices. In order for the exact solution to be a fixed point of the multi-

plicative correction scheme, it must lie exactly in the range of interpolation at convergence.

However, because each interpolation operator attempts to fit multiple factors (in a least

squares sense), this condition can be met only approximately. Therefore, after a few setup

cycles the transfer operators and coarse-level tensors are frozen, and additive correction

cycles are used in the solve phase, which can still converge when the exact solution lies

only approximately in the range of interpolation. The combination of a multiplicative

setup scheme and BAMG has already been considered in [83], where it formed the basis

of an efficient eigensolver for multiclass spectral clustering problems. A similar approach

was also proposed in [21, 72]. In the solve phase we use the full approximation scheme

[18, 23] to efficiently obtain an accurate solution (see §2.6.5). Our multigrid framework is

closely related to recent work on an adaptive AMG solver for extremal singular triplets and

eigenpairs of matrices [47], and to a lesser degree to multigrid methods for Markov chains

[15, 53, 118]. We note that while our proposed algorithm is the first such multigrid method

for computing the CP decomposition of a tensor, the idea of applying multilevel methods

to problems in multilinear algebra has already been discussed and analyzed [4, 16, 77]. In

the context of linear systems that arise from the discretization of high-dimensional PDE
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problems, it is often possible to overcome the curse of dimensionality by exploiting the

tensor structure of the linear system when constructing the components of the multigrid

method. Although our method applies multigrid techniques to tensors, we do not expect its

performance to improve as the dimensionality increases, primarily because our method is

currently formulated for general tensors and does not exploit any tensor product structure

or hierarchical tensor structure that the tensors may possess. In particular, we show in

§6.4.1 that a single solution cycle has complexity O(NPR), where P = sN for an Nth-order

tensor with each mode size equal to s.

We expect our method to work well for tensors with properties that make a multilevel

approach beneficial, but less so for generic tensors that lack these properties. Just as in

the case of multigrid for matrix systems derived from PDE discretization, our multilevel

approach can lead to significant speedup when error components that are damped only

weakly by the fine-level process can be represented and damped efficiently on coarser levels.

We expect this to be the case for the decomposition of certain higher-order tensors that arise

in the context of PDE discretization on high-dimensional regular lattices [75, 76, 97, 98],

and we will illustrate the potential benefits of the proposed multigrid method for these

types of problems. To illustrate the potential applicability of our approach to broader

classes of tensors, we also present some numerical tests for a standard non-PDE tensor

decomposition problem. It should also be noted that since a single interpolation operator

is associated with an entire factor matrix, and since each interpolation operator can only be

expected to represent a small number of factors in a sufficiently accurate way, especially if

the desired factors have little in common, the multigrid acceleration proposed here will only

be effective for low-rank decompositions with small R (e.g., up to 5 or 6). These restrictions

are entirely analogous to the case of the adaptive multigrid method for computing SVD

triplets of a matrix [47].

The remainder of this chapter is organized as follows. We begin by stating the first-

order optimality equations for CP and describing the alternating least squares method in

§6.1. Section 6.2 describes the multilevel setup phase, and §6.3 describes the multilevel

solve phase. Implementation details and numerical results are presented in §6.4, followed

by concluding remarks in §6.5.
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6.1 CP first-order optimality equations and ALS

The first-order optimality equations for CP are obtained by setting the gradient of the

functional in (6.2) equal to zero. Following the derivation of ∇f given in [1], for each mode

n ∈ {1, . . . , N} the derivative of f with respect to A(n) can be written as an In×R matrix

G(n) = −Z(n)Φ
(n) + A(n)Γ(n), (6.3)

where

Φ(n) = A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1) (6.4)

and

Γ(n) = Υ(1) ∗ · · · ∗Υ(n−1) ∗Υ(n+1) ∗ · · · ∗Υ(N), (6.5)

with Υ(n) = A(n)>A(n) ∈ RR×R for n = 1, . . . , N . Recall that � is the Khatri–Rao

product, which is equivalent to the columnwise Kronecker product (see §2.4). The first-

order optimality equations are then given by

G(n) = 0 for n = 1, . . . , N. (6.6)

We note that the R × R matrix Γ(n) is symmetric positive semidefinite because it is the

Hadamard (elementwise) product ∗ of symmetric positive semidefinite matrices [113]. Ad-

ditionally, if each factor matrix A(n) has full rank then Γ(n) is symmetric positive definite.

One iteration of ALS for the CP decomposition is equivalent to one iteration of block

nonlinear Gauss–Seidel applied to the optimality equations (6.6). Iterating through the

modes sequentially, at the nth step the factor matrices are fixed for all modes except n,

and the resulting linear least squares problem is solved for A(n). The linear least squares

problem is solved by updating Γ(n) and Φ(n) and setting A(n) ← Z(n)Φ
(n)(Γ(n))†, where

(Γ(n))† is the Moore–Penrose pseudoinverse of Γ(n). We note that the order in which

the factor matrices are updated during an ALS iteration can be any permutation of the
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indices 1, . . . , N . Because of the scaling indeterminacy inherent to CP, during ALS some

factors may tend to infinity while others may compensate by tending to zero, such that

the rank-one components remain bounded. This behavior can be avoided by using a

normalization strategy. After each ALS iteration the factors of the rth component are

normalized according to

a(n)
r 7→ λr

(
a

(n)
r

‖a(n)
r ‖

)
for n = 1, . . . , N, λr =

(
‖a(1)

r ‖ . . . ‖a(N)
r ‖

)1/N
(6.7)

for r = 1, . . . , R. This normalization equilibrates the norms of the factors of each compo-

nent, that is,

‖a(1)
r ‖ = ‖a(2)

r ‖ = · · · = ‖a(N)
r ‖ for r = 1, . . . , R.

Because of the permutation indeterminacy inherent to CP, upon completion of ALS the

rank-one terms are sorted in decreasing order of the normalization factors λr. The ALS

method described here is used as the relaxation method and coarsest-level solver in the

setup phase. A local convergence analysis of ALS for the tensor canonical decomposition

is discussed in [120].

6.2 Multiplicative setup phase

This section describes the multilevel hierarchy constructed in the setup phase of our solver.

Two-level notation is used to describe the interaction of two levels at a time. Coarse-

level quantities are denoted by a subscript “c”, except in cases where a superscript “c”

improves readability. Fine-level quantities and transfer operators have neither subscripts

nor superscripts. We note that our setup phase is similar to the setup phase of [47]

for computing SVD triplets of a matrix in that interpolation matrices are constructed via

bootstrap AMG and a separate interpolation matrix is defined for each mode. Furthermore,

the formulation of the coarse-level equations and the two-level multiplicative coarse-grid

correction scheme is similar to the formulation of the MCAMG method.
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6.2.1 Derivation of coarse-level equations

The fine-level equations correspond to the first-order optimality equations (see §6.1) given

by

Z(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
= A(n)Γ(n) (6.8)

for n = 1, . . . , N . Suppose there exist N full-rank operators P(n) ∈ RIn×In,c with 1 < In,c <

In, such that A(n) lies approximately in the range of P(n), that is, A(n) ≈ P(n)A
(n)
c for

some coarse-level variable A
(n)
c ∈ RIn,c×R and for each n. (Since each factor matrix has

R columns it is unlikely that equality can be achieved.) Then a solution of (6.8) can be

approximated by solving a coarse-level problem given by

P(n)>Z(n)

(
P(N)A(N)

c � · · · �P(n+1)A(n+1)
c �P(n−1)A(n−1)

c � · · · �P(1)A(1)
c

)

=
(
P(n)>P(n)

)
A(n)
c Γ(n)

c for n = 1, . . . , N, (6.9)

followed by interpolation. Here, Γ
(n)
c is defined as in (6.5) with

Υ(n)
c = A(n)

c

>
(
P(n)>P(n)

)
A(n)
c for n = 1, . . . , N.

Letting B(n) = P(n)>P(n) for each mode n, and using properties (2.18) and (2.19), the

coarse-level problem (6.9) can be written as

Zc
(n)

(
A(N)
c � · · · �A(n+1)

c �A(n−1)
c � · · · �A(1)

c

)
= B(n)A(n)

c Γ(n)
c , (6.10)

where the coarse-level tensor is given by the product

Zc = Z×1 P(1)> ×2 P(2)> · · · ×N P(N)>. (6.11)

Note that (6.11) is essentially a higher-dimensional analogue of the Galerkin coarse-level

operator that is commonly used in algebraic multigrid for the matrix case. By the full-

rank assumption on the interpolation operators it follows that B(n) is SPD; hence we can
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compute its Cholesky factor L(n), which is an In,c×In,c nonsingular lower triangular matrix.

The Cholesky factors are used to transform (6.10), whereby one obtains an equivalent set

of equations that correspond to the first-order optimality equations of a coarse-level CP

optimization problem. Defining the transformed coarse-level factor matrices by Â
(n)
c =

L(n)>A
(n)
c for n = 1, . . . , N , and again appealing to properties (2.18) and (2.19), it follows

that (6.10) can be written as

Ẑc
(n)

(
Â(N)
c � · · · � Â(n+1)

c � Â(n−1)
c � · · · � Â(1)

c

)
= Â(n)

c Γ̂(n)
c ,

where the transformed coarse-level tensor is given by

Ẑ
c

= Z×1 P̂(1)> ×2 P̂(2)> · · · ×N P̂(N)>, (6.12)

with P̂(n) = P(n)L(n)−> for n = 1, . . . , N . Note that Γ̂
(n)
c = Γ

(n)
c for all modes n. Hence, the

coarse-level equations are equivalent to the gradient equations of the following coarse-level

functional:

f̂c(Â
(1)
c , . . . , Â(N)

c ) :=
1

2

∥∥∥Ẑc − JÂ(1)
c , . . . , Â(N)

c K
∥∥∥

2

. (6.13)

Therefore, the coarse-level equations can be solved by applying ALS to minimize f̂c. An

initial guess for the mode-n coarse-level factor matrix is obtained by applying a restriction

operator R̂(n), defined as the transpose of P̂(n), to the current fine-level approximation

of A(n). We note that since R̂(n)P̂(n) is equal to the coarse-level identity, it follows that

R̂(n)u = R̂(n)P̂(n)ûc = ûc for any vector u in the range of P(n). Moreover, P̂(n)R̂(n)u = u

for any vector u in the range of P(n). After solving the coarse-level equations, the coarse-

grid corrected fine-level approximations are obtained via prolongation:

A
(n)
CGC = P̂(n)Â(n)

c for n = 1, . . . , N. (6.14)
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Now suppose that P(n) contains A(n) exactly in its range, and hence R̂(n)A(n) = Â
(n)
c .

Further suppose that Â
(n)
c is a fixed point of the coarse-level solver. Then

A
(n)
CGC = P̂(n)Â(n)

c = (P̂(n)R̂(n))A(n) = A(n) for n = 1, . . . , N.

However, because these assumptions are satisfied only approximately, we expect (6.14) to

yield an improved but not exact approximation to the fine-level solution. In particular,

because the approximation properties of the interpolation operators deteriorate as the

number of components increases, we expect our method to perform well for a relatively

small number of components R.

6.2.2 Bootstrap AMG V-cycles

The multiplicative setup phase uses the bootstrap AMG approach described in [20, 21, 26]

to find initial approximations of the desired factor matrices, and to adaptively determine

the interpolation operators that approximately fit the factor matrices. In the context of

a linear system Ax = f , Bootstrap AMG is a general interpolation scheme that fits best

(in a least-squares sense) a set of relaxed error vectors, referred to as test vectors, each of

which is obtained by relaxing the homogeneous system of equations from a random initial

guess. The BAMG process for computing the test vectors proceeds by applying relaxation

to the homogeneous system

A`x` = 0`

on each level ` = 0, . . . , L − 1. Assuming that a priori knowledge of the algebraically

smooth error is not available, the test vectors are initialized randomly on the finest level,

and are obtained on coarser levels by restricting the test vectors computed on the previous

fine level. Interpolation is constructed through a least-squares fitting of the test vectors,

and the coarse-level system operators are computed via the variational Galerkin definition.

Once an initial multigrid hierarchy has been computed, the current set of test vectors is

further enhanced on all levels using the existing multigrid structure.

We now describe the initial BAMG V-cycle for the multilevel setup phase. On the finest
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level we start with nt test blocks (a generalization of test vectors), where each test block

is a collection of N randomly generated test factor matrices (TFMs) A
(1)
t , . . . ,A

(N)
t . It is

necessary to use test blocks instead of adding more columns to the factor matrices because

the rank-one components of the best rank-R CP tensor approximation must be found

simultaneously [79]; contrary to the best rank-R matrix approximation, the best rank-R

CP approximation cannot be obtained by truncating the best rank-Q approximation with

Q > R. We also start with a collection of N randomly generated boot factor matrices

(BFMs) A
(1)
b , . . . ,A

(N)
b , which serve as our initial guess to the desired factor matrices. We

note that the subscripts “t” and “b” serve only to distinguish between the test and boot

factors.

In the downward sweep of the first BAMG V-cycle, the BFMs and the test blocks are

relaxed (each test block is relaxed individually) by a few iterations of the ALS algorithm

described in §6.1. The modes are coarsened and the interpolation operators P(1), . . . ,P(n)

are constructed. The nth interpolation operator P(n) fits the factors in the nth TFMs

across all test blocks in a least squares sense such that these factors lie approximately in

the range of P(n). The coarse-level tensor Ẑ
c

is constructed, and the TFMs and BFMs are

restricted to the coarse level. This process is then repeated recursively on each level until

the coarsest level is reached, from which point on we relax only on the BFMs.

In the upward sweep of the first cycle, starting from the coarsest level, the BFMs are

recursively interpolated up to the next finer level, which gives the coarse-grid corrected

approximation on that level. The coarse-grid corrected BFMs are then relaxed by a few

iterations of ALS. This process continues until the coarse-grid correction on the finest level

has been relaxed by ALS.

The initial BAMG V-cycle can be followed by several additional BAMG V-cycles (see

Figure 6.1). These cycles are the same as the initial cycle except for one key difference. In

the downward sweep the nth interpolation operator P(n) fits the factors in the nth TFMs

across all test blocks as well as the factors in the nth BFM. Since the BFMs serve as the

initial approximation of the solution for the additive phase of the algorithm, they must be

well represented by interpolation if the additive solve phase is to converge.
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Relax on the TFMs and BFMs

Solve for BFMs via ALS

Relax on BFMs

Figure 6.1: Illustration of BAMG V-cycles for the multiplicative setup phase.

6.2.3 Interpolation sparsity structure: Coarsening

Construction of the interpolation operators proceeds in two phases. In the first phase

the sparsity structure of P(n) is determined by partitioning the set of fine-level indices

Ωn = {1, . . . , In} into a set of C-points, Cn, with cardinality 1 < In,c < In, and a set of

F-points, Fn. For each point i ∈ Fn we define a set of coarse interpolatory points Cin, which

contains coarse points that i interpolates from. For convenience we assume that the points

in Cin are labeled by their coarse-level indices. Furthermore, for any fine-level point i ∈ Cn

we let α(i) denote its coarse-level index. The interpolation operator P(n) is defined by

p
(n)
ij =





w
(n)
ij if i ∈ Fn and j ∈ Cin,

1 if i ∈ Cn and j = α(i),

0 otherwise,

where the w
(n)
ij s are the interpolation weights for mode n. The interpolation weights are

determined by the least squares process described in §6.2.4. The coarse degrees of freedom
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are obtained through standard geometric coarsening of each mode, whereby Cn consists

of the odd-numbered points in Ωn and Fn consists of the even-numbered points (hence

α(i) = (i+ 1)/2). For each i ∈ Fn we define Cin = {α(i− 1), α(i+ 1)} (coarse-level labels)

except possibly at the right endpoint. This coarsening works well when the modes have

approximately the same size; however, when some of the mode sizes vary widely a more

aggressive coarsening of the larger modes may be appropriate. In §6.2.5 we describe a

straightforward approach to coarsening tensors with varying mode sizes. While the simple

coarsening procedure discussed here is suitable for the structured test problems considered

in §6.4 (PDE problems on high-dimensional regular lattices), more general coarsening al-

gorithms for other types of tensors are desirable. The development of such algorithms is a

topic of future research.

6.2.4 Least squares determination of interpolation weights

Suppose that mode n has been coarsened and that Cn and Fn are given. Further suppose

that the factors in the nth TFMs across all test blocks are stored as the columns of the

In × Rnt matrix Ut, and let Ub = A
(n)
b for the BFMs. Following [20, 21, 26, 47] we

use a least squares approach to determine the interpolation weights in the rows of P(n)

that correspond to points in Fn. The weights are chosen such that the vectors in Ut and

Ub (except in the first cycle) lie approximately in the range of P(n). Let the columns of

Uf = [Ut | Ub] hold the nf = R(nt + 1) vectors to be fitted. Let uk be the kth column

of Uf , and let uik be the value of uk at the fine-level point i. Let uk,c be the coarse-level

version of uk obtained by injection, and let (uk,c)j be its value at the coarse-level point

j. The interpolation weights of each row that corresponds to a point in Fn may now be

determined consecutively by independent least squares fits. For each point i ∈ Fn with

coarse interpolatory set Cin, the following least-squares problem is solved for the unknown

interpolation weights w
(n)
ij :

uik =
∑

j∈Ci
n

w
(n)
ij (uk,c)j for k = 1, . . . , nf . (6.15)
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We make (6.15) overdetermined by choosing nt > Ms/R, where Ms is the maximum

interpolation stencil size for any i on any level, that is, |Cin| ≤Ms. Owing to the standard

geometric coarsening of each mode, Ms = 2, so it is sufficient to use nt = 2 for any number

of components R > 1. For a rank-one decomposition we must take nt ≥ 3.

In practice (6.15) is formulated as a weighted least squares problem, where the weights

should bias the fit toward the boot factors. For a fixed n, the weights for the mode-n factor

vectors are given by

µr =
‖A(n)‖2
‖G(n)‖2 for r = 1, . . . , R, (6.16)

where G(n) is the gradient in (6.3). Weights are computed for each test block as well as for

the BFMs. The weights for all test blocks are stored in the vector µt of length Rnt, and

the weights for the boot factors are stored in the vector µb of length R. The full vector

of weights µ ∈ Rnf is obtained by “stacking” µt on top of µb. Equation (6.16) stems

from the observation that G(n) is a residual for the nth factor matrix. Therefore, since

the BFMs should converge much faster than the TFMs, the gradient norm for the BFMs

should be much smaller, and hence their weights should be larger. We note that weights

corresponding to a single factor matrix are chosen identical in (6.16) since we do not want

preferential treatment given to different factor vectors, but rather to entire factor matrices.

Defining the nf ×nf diagonal weight matrix M = diag(µ), the |Cin| ×nf coarse matrix

Uc = [u1,c, . . . ,unf ,c], the row vector wi of interpolation weights, and the row vector ui as

the ith row of Uf , it follows that wi is chosen to minimize the functional

F (wi) =
∥∥uiM1/2 −wiUcM

1/2
∥∥2

2
. (6.17)

Setting the gradient of F equal to zero, the critical points of F satisfy

wiUcMU>c = uiMU>c . (6.18)

This linear system has a unique solution if rank(UcM
1/2) = |Cin|, or equivalently, if Uc has
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full rank and M is nonsingular. By making the least squares problems overdetermined, it

is likely that Uc will have full rank. In our implementation the local least squares problems

(6.18) are solved via QR factorization. That is, we compute the reduced QR factorization

UcMU>c = Q̃R̃, and solve the upper-triangular system

R̃w>i = Q̃>(UcMu>i ).

We note that solving the local least squares problems (6.18) via QR factorization is math-

ematically equivalent to right multiplying uiMU>c by the Moore–Penrose pseudoinverse

of UcMU>c , and provides better numerical stability than solving the normal equations

directly.

6.2.5 CP-AMG-mult algorithm

A pseudocode description for a multiplicative setup phase V-cycle with ALS as the relax-

ation scheme and coarsest-level solver is given by Algorithm 6.1. The CP-AMG-mult algo-

rithm recursively coarsens each mode until it reaches some predefined coarsest level. Since

the size of each mode I1, . . . , IN may differ and since the rate of coarsening is the same for

each mode, it is possible that some modes may reach their coarsest level sooner than others.

Therefore, for each mode n we define a threshold In,coarsest to be the maximum size of that

mode’s coarsest level, and we continue to coarsen that mode until In ≤ In,coarsest. Let the

modes that still require further coarsening be indexed by the set Ic = {n : In > In,coarsest},
and let I′c denote its complement. Then for each n ∈ I′c, and at any given level, it follows

that P̂(n) = I(n), where I(n) is the In×In identity matrix. Setting P̂(n) equal to the identity

for all n ∈ I′c has the following implications. The coarse-level tensor is obtained by taking

the product in (6.12) over the modes in Ic, instead of for all n = 1, . . . , N . The coarse-level

approximations of the BFMs are given by

Ã(n)
c =

{
R̂(n)A(n) if n ∈ Ic,

A(n) if n ∈ I′c

for n = 1, . . . , N. (6.19)
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Similarly, the coarse-level approximations of the TFMs in each test block are computed by

restricting only those factor matrices indexed by Ic. Additionally, the coarse-grid corrected

BFMs are given by

A
(n)
CGC =

{
P̂(n)Â

(n)
c if n ∈ Ic,

Â
(n)
c if n ∈ I′c

for n = 1, . . . , N. (6.20)

Algorithm 6.1: V-cycle for setup phase of CP decomposition (CP-AMG-mult)

Input: tensor Z, BFMs A(1), . . . ,A(N), TFMs
Output: updated BFMs A(1), . . . ,A(N), updated TFMs

1. Compute the set Ic = {n : In > In,coarsest}
if Ic 6= ∅ then

2. Apply ν1 relaxations to TFMs in each test block and to A(1), . . . ,A(N)

for n ∈ Ic do
3. Build the interpolation operator P(n) (on first cycle only use TFMs)

4. Let B(n) ← P(n)>P(n) and compute the Cholesky factor L(n) of B(n)

5. Let P̂(n) ← P(n)L(n)−> and R̂(n) ← P̂(n)>

end
6. Compute the coarse BFMs and coarse TFMs according to (6.19)

7. Compute the coarse-level tensor Ẑ
c ← Z×n∈Ic R̂(n)

8. Recursive solve:

{Â(1)
c , . . . , Â(N)

c } ← CP-AMG-mult(Ẑc, Ã(1)
c , . . . , Ã(N)

c , coarse TFMs)

9. Compute the CGC A(n) for n = 1, . . . , N according to (6.20)

10. Apply ν2 relaxations to A(1), . . . ,A(N)

else
11. Apply νc relaxations to A(1), . . . ,A(N)

end

The size of the coarsest level plays an important role in multigrid performance. If

the coarsest level is too large, then not enough work is done on the coarser levels and
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convergence will be slow. Conversely, choosing too small a coarsest level may negatively

impact convergence, or in some cases may even cause divergence (as in [47, 72, 83]). In

practice we have found that choosing In,coarsest ≥ R for all n works well.

6.3 Full approximation scheme additive solve phase

In this section we describe how the full approximation scheme (see §2.6.5) can be used

to obtain an additive correction method for the CP decomposition. Two-level notation is

used to describe the interaction of two levels at a time with coarse-level quantities denoted

by a subscript “c”.

6.3.1 Coarse-level equations

Recall the finest-level equations (6.8), and suppose we define nonlinear operators

H(1), . . . ,H(N)

such that for any n ∈ {1, . . . , N},

H(n) : RI1×R × · · · × RIN×R → RIn×R, (A(1), . . . ,A(N)) 7→ A(n)Γ(n) − Z(n)Φ
(n),

where Φ(n) is given in (6.4). Then the fine-level problem can be formulated as a system of

nonlinear equations

H({A}) := (H(1)({A}), . . . ,H(N)({A})) = (F(1), . . . ,F(N)), (6.21)

where F(n) = 0 for n = 1, . . . , N on the finest level. Note that we use {A} as shorthand

for A(1), . . . ,A(N). In order to apply the full approximation scheme we require a coarse

version of (6.21). For each mode n we define the coarse operator

H(n)
c ({Ac}) := A(n)

c Γ(n)
c − Ẑc

(n)

(
A(N)
c � · · · �A(n+1)

c �A(n−1)
c � · · · �A(1)

c

)
, (6.22)

214



where Ẑc is the coarse-level tensor computed in the multiplicative setup phase. The coarse-

level FAS equations are then given by

Hc({Ac}) := (H(1)
c ({Ac}), . . . ,H(N)

c ({Ac})) = (F(1)
c , . . . ,F(N)

c ), (6.23)

where

F(n)
c = R̂(n)(F(n) −H(n)({A})) + H(n)

c ({Ãc}) for n = 1, . . . , N (6.24)

and R̂(n) is the mode-n restriction operator from the multiplicative setup phase. Here Ã
(n)
c

is the coarse-level approximation of A(n) obtained by restriction. Solving (6.23) for {Ac},
the coarse-grid corrected factor matrices on the fine level are given by

A
(n)
CGC = A(n) + P̂(n)(A(n)

c − Ã(n)
c ) for n = 1, . . . , N, (6.25)

where P̂(n) is the mode-n interpolation operator from the multiplicative setup phase. To-

gether, (6.21) to (6.25) describe a FAS two-level coarse-grid correction scheme for the CP

optimality equations.

6.3.2 Relaxation

We employ block nonlinear Gauss–Seidel (BNGS) as the relaxation scheme and coarsest-

level solver for the CP-FAS algorithm (Algorithm 6.2). Applying BNGS to the equations in

(6.21) is similar to applying ALS to the CP optimality equations. One iteration of BNGS

consists of iterating through the modes sequentially, where at the nth step Γ(n) and Φ(n)

are computed and A(n) is updated by solving

A(n)Γ(n) = Z(n)Φ
(n) + F(n). (6.26)

When considering how to solve (6.26) for mode n, on any level, we note that an exact

solution of the CP optimality equations is a fixed point of FAS only if it is a fixed point

of the relaxation scheme. Suppose we update A(n) by postmultiplying the right-hand
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side of (6.26) by (Γ(n))†, which is a small R × R matrix. If Γ(n) is nonsingular, then

its pseudoinverse is equivalent to its inverse, in which case there exists a unique solution

and the fixed point is preserved. However, if Γ(n) is singular, then postmultiplying by its

pseudoinverse will in general not preserve the fixed point. Therefore, we propose using a few

iterations of Gauss–Seidel (GS) to update A(n), which guarantees the fixed-point property

of our relaxation method. Moreover, a result by Keller [73] for positive semidefinite matrices

states that if Γ(n) has nonzero entries on its diagonal then GS must converge to a solution

(there may be many) of (6.26). Owing to the structure of Γ(n) this condition is equivalent

to the fundamental requirement that the factor matrices have nonzero columns. Therefore,

we can be confident that GS will converge regardless of whether or not Γ(n) is singular.

In practice we find that only a few GS iterations are necessary to obtain a sufficiently

accurate solution to (6.26), and that further iterations do little to improve the relaxed

approximation (our numerical tests use ten GS iterations).

Due to the structure of the FAS equations, in particular the right-hand side in (6.21),

the scaling and permutation indeterminacies are not present on the coarser levels and so

normalizing/reordering there is unnecessary. Therefore, normalization and reordering (as

described in §6.1) are performed only on the finest level.

6.3.3 CP-FAS algorithm

A pseudocode description for an additive solve phase V-cycle is given in Algorithm 6.2.

We assume that at any given level the current tensor, the index set Ic, and the interpola-

tion/restriction operators from the setup phase are available to the algorithm. Note that

the parameters (ν1, ν2, νc) may be different from those used during the setup phase.

It is instructive to mention the differences between this additive solution phase and

the additive phase in [47]. In the SVD case, singular vectors can be computed in separate

V-cycles and FAS is not required because the singular values are updated in a top-level

Ritz step. In the tensor case, all factor vectors need to be computed simultaneously in a

single FAS V-cycle, and the weights λr from (6.7), which are in some sense equivalent to the

singular values, are updated in these FAS cycles as well, making a Ritz step unnecessary.
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Algorithm 6.2: V-cycle for solve phase of CP decomposition (CP-FAS)

Input: right-hand side matrices F(1), . . . ,F(N), factor matrices A(1), . . . ,A(N)

Output: updated factor matrices A(1), . . . ,A(N)

if not on the coarsest level then
1. Apply ν1 relaxations to H({A}) = (F(1), . . . ,F(N))
2. Coarse initial guess:

Ã(n)
c ←

{
R̂(n)A(n) if n ∈ Ic,

A(n) if n ∈ I′c
for n = 1, . . . , N

3. Coarse right-hand side:

F(n)
c ←

{
H

(n)
c ({Ãc}) + R̂(n)(F(n) −H(n)({A})) if n ∈ Ic,

F(n) if n ∈ I′c
for n = 1, . . . , N

4. Recursive solve:

{A(1)
c , . . . ,A(N)

c } ← CP-FAS(F(1)
c , . . . ,F(N)

c , Ã(1)
c , . . . , Ã(N)

c )

5. Coarse-grid correction:

A(n) ← A(n) +

{
P̂(n)(A

(n)
c − Ã

(n)
c ) if n ∈ Ic,

A
(n)
c − Ã

(n)
c if n ∈ I′c

for n = 1, . . . , N

6. Apply ν2 relaxations to H({A}) = (F(1), . . . ,F(N))

else
7. Apply νc relaxations to H({A}) = (F(1), . . . ,F(N))

end

We conclude this section with a simple fixed-point theorem for the CP-FAS V-cycle.

We note that the exact solution of the optimality equations is generally not a fixed point

of the CP-AMG-mult V-cycle (especially when there are many components). However, if

the exact solution is provided as the initial guess, then the setup phase typically produces

an approximate solution that lies in the basin of attraction of the solution phase.
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Theorem 6.3.1 (CP-FAS V-cycle fixed point property). Let {A} = A(1), . . . ,A(N) be a

solution of the fine level CP optimality equations. Then {A} is a fixed point of the CP-FAS

V-cycle.

Proof. We prove this result for a two-level CP-FAS cycle; the proof can be extended to the

multilevel case by induction over the levels. We begin by noting that {A} is a fixed point

of the fine-level relaxations (see §6.3.2); therefore, it is sufficient to consider the CP-FAS

two-level coarse-grid correction step. Since H(n)({A}) = 0 for n = 1, . . . , N it follows that

F
(n)
c = H

(n)
c ({Ãc}) for n = 1, . . . , N . Thus, the coarse-level equations are given by

H(n)
c ({Ac}) = H(n)

c ({Ãc}) for n = 1, . . . , N.

Using the BNGS relaxation scheme discussed in §6.3.2 with {Ãc} as the initial guess to

solve the coarse-level equations, the solution on the coarse level is given by A
(n)
c = Ã

(n)
c

for n = 1, . . . , N . Computing the coarse-grid correction we find that

A
(n)
CGC = A(n) + P̂(n)(A(n)

c − Ã(n)
c ) = A(n) for n = 1, . . . , N.

6.3.4 Full multigrid FAS cycles

For some tensors the initial guess provided by the multiplicative setup phase may be

inadequate to yield a convergent additive solve phase, that is, the initial guess lies outside

the basin of attraction. One way in which we can try to obtain a better initial guess to

the fine-level problem is to use full multigrid (see §2.6.5). Once an initial guess to the

finest-level problem has been obtained we can apply repeated CP-FAS cycles to obtain an

improved approximate solution. We use CP-FAS V-cycles as the solver on each level of

the FMG cycle, except on the coarsest level, where ALS is used (see §6.1). A pseudocode

description of the FMG-CP-FAS algorithm is given in Algorithm 6.3. We assume that

at any given level the current tensor, the index set Ic, and the interpolation/restriction
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operators from the setup phase are available. In Algorithm 6.3 we use a subscript ` to

index the current level, where ` = 0, . . . , L. Note that a subscript ` on an interpolation

operator indicates that level ` is mapped to level `− 1.

Algorithm 6.3: FMG cycle for solve phase of CP decomposition (FMG-CP-FAS)

Output: finest-level factor matrices A
(1)
0 , . . . ,A

(N)
0

1. On the coarsest level apply ν iterations of ALS with a random initial guess to obtain

A
(1)
L , . . . ,A

(N)
L

2. Set `← L− 1

while ` 6= 0 do

3. A
(n)
`−1 ← P̂

(n)
` A

(n)
` for n = 1, . . . , N

4. {A(1)
`−1, . . . ,A

(N)
`−1} ← CP-FAS({0}, A

(1)
`−1, . . . ,A

(N)
`−1)

5. `← `− 1

end

6.4 Implementation details and numerical results

In this section we present the results of numerical tests. All experiments are performed

using MATLAB version 7.5.0.342 (R2007b) and version 2.4 of the Tensor Toolbox [3].

Timings are reported for a laptop running Windows XP, with a 2.50 GHz Intel Core 2

Duo processor and 4 GB of RAM. Initial guesses for the boot factors and test factors are

randomly generated from the standard uniform distribution. The initial boot factors are

also used as the initial guess for the standalone ALS method. The stopping criterion for

the numerical tests is based on the gradient of f . In particular, defining

g(A(1), . . . ,A(N)) :=
1

‖Z‖

(
N∑

n=1

‖G(n)‖2
)1/2

, (6.27)
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where G(n) is the mode-n partial derivative of f as defined in (6.3), we iterate until

g(A(1), . . . ,A(N)) < τ (6.28)

or until the maximum number of iterations is reached. For the multilevel method the

maximum number of iterations is set to 500. For ALS the maximum number of iterations

is set to 104. The stopping tolerance is τ = 10−10. Table 6.1 lists the parameters used by

the setup and solve phases. As in [47, 72, 83], a larger number of relaxations is required

in the setup cycles to produce sufficiently accurate transfer operators.

Table 6.1: CP-AMG-mult and CP-FAS parameters.

Parameter CP-AMG-mult CP-FAS

Pre-relaxations ν1 5 1
Post-relaxations ν2 5 1
Relaxations on coarsest level νc 100 50
Cycle type V-cycle V-cycle
Number of test blocks nt 2 n/a

For each numerical test, we perform ten runs with a different random initial guess for

each run. The values reported in the tables represent averages over the successful runs,

where a run is deemed successful if the stopping criterion is satisfied prior to reaching the

iteration limit. The tables compare the ALS method and the multilevel method with or

without FMG-CP-FAS as part of the setup phase (see §6.4.1). For ALS we report the

average number of iterations, the average execution time, and the number of successful

runs. For the multilevel method we report the average number of iterations (setup and

solve phases), the average total execution time, the number of successful runs, the average

speedup over ALS, and the number of levels. The average speedup is determined as follows.

For a given test and run, if both ALS and the multilevel method were successful, we divide

the execution time of ALS by the execution time of the multilevel method to obtain the

speedup for that run. The speedup values for all runs are then averaged to obtain the

average speedup for that test. We note that execution times do not include the evaluation
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of the stopping criterion, that is, the computation of g in (6.27).

6.4.1 Implementation details

The multilevel setup and solve phases have thus far been described separately; however,

these phases can be combined in the following simple way. Since the factor matrices lie only

approximately in the range of the interpolation operators, convergence of the setup cycles,

as measured by the functional g, should stagnate after a few iterations. Therefore, after

each setup cycle the current iterate {Anew} is compared to the previous iterate {Aold},
and the setup cycles are halted once

g({Anew}) > (1− ε)g({Aold}), (6.29)

where the tolerance is set at ε = 0.1. At most five setup cycles are performed, and

stopping criterion (6.29) is checked only after three setup cycles have completed. After the

setup phase is complete, solution cycles are performed until the stopping criterion (6.28)

is satisfied. To improve robustness, we also try to detect stagnation of the solution cycles.

After five solution cycles have elapsed, the stagnation condition g({Anew}) ≥ g({Aold}) is

checked in each subsequent iteration. If this inequality is satisfied then the current iterate

{Anew} is discarded, and the transfer operators and coarse tensors are rebuilt by one

downsweep of CP-AMG-mult with the previous iterate {Aold} used for the boot factors.

This process is carried out at most once, and any further indications of stagnation are

ignored. We note that the boot factors are not updated by the downsweep of CP-AMG-

mult, as doing so would likely ruin any progress made by the solution cycles.

The combination of the setup and solve phases described above can be modified to

include an FMG-CP-FAS cycle as part of the setup phase. After the setup cycles have

completed, we perform one FMG-CP-FAS cycle to compute a new approximation to the

boot factors. The transfer operators and coarse tensors are then rebuilt using one down-

sweep of CP-AMG-mult. Note that while the TFMs are updated by the downsweep of

CP-AMG-mult, the boot factors are not. We refer to this combination as “Multilevel +
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FMG” in the tables and “ML + FMG” in the figures.

We conclude this section by considering the computational costs of one setup cycle, one

solution cycle, and one FMG cycle. Let ` = 0, . . . , L index the levels, and define

I`n :=
In
2`
, P ` :=

N∏

n=1

I`n =
1

2N`

N∏

n=1

In, S` :=
N∑

n=1

I`n =
1

2`

N∑

n=1

In

for any ` ≥ 0. Assume for simplicity that Z is dense and that each mode is coarsened at

the same rate with L being the same for each mode. Consideration of Algorithm 6.1 shows

that the most expensive operations on each level are the construction of the coarse-level

tensor, the relaxations, and the construction of the interpolation operators, in particular

computing the weights for the least squares fits. We note that since B(n) is tridiagonal

(due to the structure of the interpolation matrices), its Cholesky factor can be computed

in only O(S`/2) operations on the `th level. The coarse-level tensor is constructed by

sequentially taking the n-mode product of the current tensor with the nth restriction

operator for n = 1, . . . , N . Computing Ẑ
c

on level ` requires O(P `S`) operations. The

dominant computation for the relaxations and least squares weights is the matrix product

Z(n)Φ
(n). Since Z(n) is of size I`n× (P `/I`n) and Φ(n) is of size (P `/I`n)×R on the `th level,

forming this product requires O(NP `R) operations. Therefore, by summing over all the

levels, to leading order one setup cycle requires approximately

[(
2N

2N − 1

)
(nt(ν1 + 1) + ν1 + ν2 + 1) +

νc
2NL

]
· O(NPR) +

(
2N

2N − 1

)
· O(PS) (6.30)

operations, where P = P 0 and S = S0. We note that PS scales only slightly worse than

linear in P , and in particular NPImin ≤ PS ≤ NPImax, where Imin and Imax are the sizes

of the smallest and largest modes, respectively. Consideration of Algorithm 6.2 shows that

the most expensive operations on each level are the relaxations and the construction of

the right-hand sides. By a similar analysis, to leading order one solution cycle requires
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approximately

[(
2N

2N − 1

)
(ν1 + ν2 + 1 + 1/2N) +

νc
2NL

]
· O(NPR) (6.31)

operations. Similarly, it follows that to leading order one FMG-CP-FAS cycle requires

approximately

[(
2N

2N − 1

)2

(ν1 + ν2 + 1 + 1/2N) +
ν + νcL

2NL

]
· O(NPR) (6.32)

operations. Note that in (6.32) ν is the number of ALS iterations performed on the coarsest

level and (ν1, ν2, νc) are the CP-FAS parameters. In general a solution cycle is significantly

cheaper than a setup cycle because of the extra work required by a setup cycle to relax on

the TFMs, the typically larger number of relaxations performed on each level of a setup

cycle, and the added work of constructing the coarse-level tensors (i.e., the O(PS) term).

If Z is sparse then further savings are possible on the finest level. In particular, to leading

order the cost of one relaxation reduces to NR times the number of nonzero elements in

Z. In our current framework the coarse tensors will in general be dense; multiplication

by the inverted Cholesky factors as in (6.12) eliminates any sparsity. Therefore, it may

be interesting to consider alternative formulations of the coarse-level equations without

multiplication by Cholesky factors, for example, by working directly with the coarse-level

equations (6.10). In the analogous case of computing SVD triplets of a matrix [47] via

adaptive algebraic multigrid the coarse-level equations correspond to a generalized singular

value problem that can be relaxed by block Gauss–Seidel and solved directly on the coarsest

level. In our case, however, it is currently unclear if the coarse-level equations without the

Cholesky factors (6.10) can be interpreted as the optimality equations of a generalized

canonical decomposition, and if ALS can be adapted as a relaxation scheme for these

equations.
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6.4.2 Sparse tensor test problem

The first test problem we consider is the standard finite difference Laplacian tensor on a

uniform grid of size sd in d dimensions. This test problem yields an N -mode sparse tensor

Z of size s × s × · · · × s with N = 2d. We can efficiently construct Z by reshaping the

sd × sd matrix

Z =
d∑

k=1

I`(k) ⊗D⊗ Ir(k) ,

where Ir(k) is the sk−1 × sk−1 identity matrix, I`(k) is the sd−k × sd−k identity matrix, and

D is the s × s tridiagonal matrix with stencil [−1, 2, −1]. Although this test problem is

somewhat pedagogical in nature, it offers a good starting point to illustrate our method.

The parameters for the various test tensors that we consider are given in Table 6.2. Nu-

merical results for the sparse problem are given in Table 6.3. The results show that our

multilevel approach is anywhere from two to seven times as fast as ALS for this test prob-

lem. For tests 1 to 6 (order 4 tensors), larger speedups are observed for the multilevel

method with FMG. However, for tests 7 to 11 (order 6 and 8 tensors) larger speedups

are observed for the multilevel method without FMG. For higher-order tensors the setup

phase of the multilevel method with FMG is considerably more expensive than the setup

phase of the multilevel method without FMG. The multilevel variants demonstrate similar

robustness to varying initial guesses for this problem; however, in general we expect the

multilevel method with FMG to be the most robust option. We also observe the trend

that for each grouping of tests in Table 6.3, the speedup tends to increase as the number of

components R increases. Figures 6.2 and 6.3 illustrate the convergence history of ALS and

the multilevel method for one run of tests 3 and 9, respectively, in Table 6.3. These plots

are typical of the performance observed for this test problem. We note that the spike in the

“Multilevel + FMG” curves is due to the initial approximation to the solution computed

by the single FMG-CP-FAS cycle performed after the setup cycles.
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Test Problem parameters

1 N = 4, s = 20, R = 4
2 N = 4, s = 20, R = 5
3 N = 4, s = 20, R = 6
4 N = 4, s = 50, R = 2
5 N = 4, s = 50, R = 3
6 N = 4, s = 50, R = 4
7 N = 6, s = 20, R = 2
8 N = 6, s = 20, R = 3
9 N = 6, s = 20, R = 4

10 N = 8, s = 10, R = 2
11 N = 8, s = 10, R = 3

Table 6.2: Test parameters for sparse test problem.

ALS Multilevel Multilevel + FMG

test it time ns it time spd ns it time spd ns levs

1 1897 26.2 10 37 8.7 3.0(0, 0) 10 36 9.2 3.0(0, 0) 10 2
2 3329 54.1 8 64 15.6 4.4(0, 0) 10 42 11.8 5.0(0, 0) 10 2
3 3587 71.1 9 67 18.1 3.9(0, 0) 9 32 10.6 6.8(0, 0) 10 2

4 5457 98.9 10 113 37.9 2.6(3, 0) 10 118 41.1 2.5(0, 0) 10 4
5 5508 164.0 4 200 69.8 2.5(5, 1) 9 100 43.1 3.8(1, 1) 9 4
6 6788 247.8 3 163 71.2 5.1(2, 0) 10 146 68.1 5.2(2, 0) 10 4

7 1619 227.4 10 51 121.1 1.9(0, 0) 10 52 135.9 1.7(0, 0) 10 3
8 3481 718.6 10 72 185.7 3.9(0, 0) 10 70 198.5 3.7(0, 0) 10 3
9 4085 1137.9 10 75 237.0 4.8(2, 0) 10 78 260.0 4.5(1, 0) 10 3

10 634 227.4 10 50 180.1 1.3(0, 0) 10 54 207.1 1.1(0, 0) 10 3
11 1743 949.5 10 39 426.0 2.2(0, 0) 10 43 498.8 1.9(0, 0) 10 3

Table 6.3: Sparse problem. Average number of iterations (it) and time in seconds (time) until the
stopping criterion is satisfied with stopping tolerance 10−10. Here “spd” is the multilevel speedup
compared to ALS and “ns” is the number of successful runs. The ordered pair (a, b) in the “spd”
column gives the number of runs in which the transfer operators were rebuilt and the number of
runs in which rebuilding the transfer operators failed to recover convergence, respectively.
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Figure 6.2: Sparse problem. Convergence plot for test 3 from Table 6.2 (N = 4, s = 20, R = 6).
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Figure 6.3: Sparse problem. Convergence plot for test 9 from Table 6.2 (N = 6, s = 20, R = 4).
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6.4.3 Dense tensor test problem

The second test problem we consider is a dense, symmetric, third-order tensor Z ∈ Rs×s×s

whose elements are given by

zijk =
(
i2 + j2 + k2

)−1/2
for i, j, k = 1, . . . , s.

This tensor was used as a test case in [97], and was also considered in [98], which describes a

novel method for computing the Tucker decomposition of third-order tensors. As mentioned

in [98], Z arises from the numerical approximation of an integral equation with kernel

1/‖x − y‖ acting on the unit cube and discretized by the Nyström method on a uniform

grid. In this section we compute CP decompositions forR = 2, 3, 4, 5. It has been observed

numerically that when R ≥ 4 ALS may be extremely slow to converge, requiring on the

order of 105 iterations for some initial guesses, with highly nonmonotonic convergence

behavior as measured by g in (6.27). The performance of our method for R ≥ 4 is less

robust than desired because the multigrid framework uses a single interpolation operator

for each factor matrix. Even so, depending on the initial guess our method may still

demonstrate a significant improvement over ALS.

The results for the dense problem are given in Table 6.4. We note that only the

multilevel method with FMG is considered (see the description in §6.4.1). The blank

entries for test 4 in Table 6.4 indicate that ALS did not have any successful runs. For

R ≥ 3 our multilevel approach can lead to significant savings in iterations and execution

time. The speedup is less impressive when R = 2 because ALS already converges quickly

without any multigrid acceleration. It is also apparent that as the number of components

increases, the number of successful runs of the multilevel method, and of ALS, decreases.

For initial guesses in which the multilevel method failed to converge, there was typically

a rapid decrease in the gradient norm, followed by convergence stagnation of the solution

cycles. This behavior suggests that the setup phase was unable to construct transfer

operators that adequately represented the solution in their range. Alternatively, it is

possible that ALS may have entered a swamp which is essentially a protracted region of

slow error reduction. Swamps are artifacts of the ALS procedure typically characterized
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by highly collinear factors in all modes (see §6.4.4 for the definition of collinearity). How

to deal with swamps in ALS is an open topic of research, and currently our algorithm

does not implement any special procedures to deal with swamps in ALS (see [120] and the

references within).

ALS Multilevel + FMG

test problem parameters it time ns it time spd ns levs

1 s = 50, R = 2 161 0.7 10 7 2.0 0.4(0, 0) 10 5
2 s = 50, R = 3 2435 11.8 10 10 2.0 5.7(1, 0) 10 5
3 s = 50, R = 4 4838 25.9 5 140 13.4 3.7(8, 2) 8 4
4 s = 50, R = 5 — — 0 276 27.2 —(9, 6) 3 4

5 s = 100, R = 2 253 10.5 10 7 7.2 1.5( 0, 0) 10 6
6 s = 100, R = 3 1695 78.8 9 9 7.8 10.2( 0, 0) 10 6
7 s = 100, R = 4 3836 198.5 6 125 38.2 13.6( 8, 0) 10 5
8 s = 100, R = 5 7854 437.9 2 219 68.3 9.2(10, 4) 6 5

9 s = 200, R = 2 274 88.2 10 7 46.9 1.9(0, 0) 10 7
10 s = 200, R = 3 1830 663.1 10 16 66.9 10.5(2, 0) 10 7
11 s = 200, R = 4 2998 1209.1 8 80 179.9 9.7(8, 1) 9 6
12 s = 200, R = 5 5686 2529.0 3 209 421.6 5.9(9, 6) 4 6

Table 6.4: Dense problem. Average number of iterations (it) and time in seconds (time) until the
stopping criterion is satisfied with stopping tolerance 10−10. Here “spd” is the multilevel speedup
compared to ALS and “ns” is the number of successful runs. The ordered pair (a, b) in the “spd”
column gives the number of runs in which the transfer operators were rebuilt and the number of
runs in which rebuilding the transfer operators failed to recover convergence, respectively.

Figures 6.4, and 6.5 illustrate the convergence history of ALS and the multilevel method

for one run of tests 7, and 8, respectively, in Table 6.4. Figure 6.5 (R = 5) shows how ALS

can initially be slow to converge with erratic convergence behavior: for the first half of

the run its gradient norm fluctuates with little decrease. Such behavior can make it very

difficult for the setup phase to construct adequate transfer operators.
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Figure 6.4: Dense problem. Convergence plot for test 7 from Table 6.4 (s = 100, R = 4).
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Figure 6.5: Dense problem. Convergence plot for test 8 from Table 6.4 (s = 100, R = 5).
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6.4.4 Random data test problem

As our final test problem we consider factoring third-order random data tensors Z ∈ Rs×s×s

of ranks R = 3, 4, 5. A test tensor is constructed by randomly generating factor matrices

A(1),A(2),A(3) ∈ Rs×R such that the collinearity c of the factor matrices is specified in

advance. This is a standard non-PDE test problem for CP decomposition that was consid-

ered in [1, 116], and also more recently in [46]. Setting the collinearity of the factor vectors

to c means that

〈
a

(n)
r , a

(n)
q

〉

‖a(n)
r ‖ · ‖a(n)

q ‖
= c for q 6= r, r, q = 1, . . . , R, and n = 1, 2, 3. (6.33)

We set c = 0.9 for our test problems because it is well-known that collinearity of the factors

near unity leads to slow convergence of ALS [116].

The following steps are used to generate a third-order test tensor Z with rank R and

collinearity c.

1. Generate an R×R matrix C that has ones on its diagonal and off-diagonal elements

equal to c, and compute its Cholesky factor L.

2. Generate three uniformly random s×R matrices, Ã(1), Ã(2), Ã(3) and orthonormalize

their columns via QR factorization:

Ã(n) = Q(n)R(n) for n = 1, 2, 3.

3. Set A(n) = Q(n)L for n = 1, 2, 3 and let Z = JA(1),A(2),A(3)K.

We note that in [1, 116] two types of noise are added to the test tensors; however, we do not

consider the addition of noise in our test cases. The results for the collinear test problem are

presented in Table 6.5. It is clear that ALS is slow to converge (because of the high level of

collinearity between the factors), and our multilevel approach can lead to significant savings

in both iterations and execution time. Unfortunately, our method appears to be less robust
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ALS Multilevel

test problem parameters it time ns it time spd ns levs

1 s = 100, R = 3, c = 0.9 1931 90.1 10 55 20.1 4.5(3, 2) 8 5
2 s = 100, R = 4, c = 0.9 2286 118.9 10 115 37.9 4.2(5, 4) 6 5
3 s = 100, R = 5, c = 0.9 2576 147.3 10 78 31.5 4.7(8, 3) 7 5

4 s = 200, R = 3, c = 0.9 1892 697.1 10 54 136.6 5.2(3, 2) 8 6
5 s = 200, R = 4, c = 0.9 2266 931.1 10 67 177.5 5.3(6, 4) 6 6
6 s = 200, R = 5, c = 0.9 2613 1185.2 10 77 214.6 5.4(8, 6) 4 6

Table 6.5: Random data problem. Average number of iterations (it) and time in seconds (time)
until the stopping criterion is satisfied with stopping tolerance 10−10. Here “spd” is the multilevel
speedup compared to ALS and “ns” is the number of successful runs. The ordered pair (a, b)
in the “spd” column gives the number of runs in which the transfer operators were rebuilt and
the number of runs in which rebuilding the transfer operators failed to recover convergence,
respectively.

than ALS, which converges for each run, albeit quite slowly. We have found that using

FMG as part of the setup phase does not improve robustness for this test problem. The

observed lack of robustness is not surprising because we are using AMG components that

were developed for PDE applications. In particular, it is well-known that applying AMG to

new classes of problems often requires new coarsening techniques. We use simple geometric

coarsening (every other fine-level point becomes a coarse-level point), and fine-level points

interpolate from their lexicographically nearest neighbors. This coarsening is somewhat

arbitrary because there is no immediate reason to expect the random data to be correlated

between neighboring points, and it is clear that more sophisticated coarsening techniques

are required to obtain robust results. For example, it may be possible to remedy these

robustness issues by employing a strength-based coarsening procedure similar to that used

in [47], and this idea is currently the focus of ongoing research. Nevertheless, the results in

Table 6.5 clearly demonstrate that our approach is promising for non-PDE type problems,

with the potential for significant speedups. This observation is supported in Figures 6.6

and 6.7, which illustrate the convergence history of ALS and our multilevel method for one

run of tests 3 and 5, respectively, in Table 6.5.
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Figure 6.6: Random data problem. Convergence plot for test 6 from Table 6.5 (s = 100, R = 5).

0 25 50 75 100

10
−10

10
−6

10
−2

10
2

Iterations

G
ra

d
ie

n
t 
n
o
rm

 

 

0 250 500 750 1000

10
−10

10
−6

10
−2

10
2

Time (sec)

G
ra

d
ie

n
t 
n
o
rm

 

 

ALS

Multilevel

Figure 6.7: Random data problem. Convergence plot for test 9 from Table 6.5 (s = 200, R = 4).
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6.5 General discussion and conclusions

The main contribution of this chapter was to show how techniques from adaptive multigrid

could be used to accelerate the alternating least squares method for computing the CP

decomposition with small number of components. As far as we are aware, our method is

the first genuine multigrid algorithm for computing the CP decomposition as well as the

first adaptive AMG method for solving a nonlinear optimization problem. Numerical tests

with dense and sparse tensors of varying sizes and orders (up to order eight) that are related

to PDE problems showed how our multilevel method can lead to significant speedup over

standalone ALS when high accuracy is desired. Furthermore, a test case that is unrelated

to PDE problems demonstrated how our multilevel method may be successfully applied to

more general test problems.

The main area in which our algorithm can be improved is its robustness. The often er-

ratic convergence behavior of the ALS method can make it difficult to construct sufficiently

accurate transfer operators during the setup phase. Therefore, it may be beneficial to con-

sider a Tikhonov regularized formulation of CP [1]. As discussed in [120], the regularized

problem is always well-posed in that it admits a global minimizer. Moreover, numerical

investigation has shown that swamps in ALS convergence (protracted regions of very slow

error reduction) are less likely to occur with the regularized formulation. A more general

coarsening routine would also lead to improved robustness in that a wider class of tensors

could be considered. As in classical AMG, a rigorous (at the very least heuristic) charac-

terization of the error for certain classes of tensors will be key in guiding the development

of an automatic operator-based coarsening routine. It may also be worthwhile to investi-

gate a more sophisticated setup phase that iteratively combines the CP-AMG-mult cycles

and CP-FAS-FMG cycles, and more sophisticated measures of the convergence stagnation.

How best to deal with stagnation is yet another question. As discussed in [47], the addition

of a line search on the finest level may also improve convergence and robustness.

Further avenues of research include identifying classes of tensors for which multigrid

acceleration of ALS may be beneficial, developing an alternative formulation of the coarse-

level equations without the inverted Cholesky factors, and generalizing our multilevel
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framework to other similar tensor optimization problems, such as the Tucker decompo-

sition [79], and block tensor decompositions [41, 44], as well as the best rank-(R1, . . . , RN)

approximations [42, 70].
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Chapter 7

Conclusions and Future Work

The objective of this thesis was to develop efficient and robust numerical methods based

on adaptive algebraic multigrid for solving problems in linear and multilinear algebra. In

particular, we have considered two relevant applications, namely, computing the stationary

distribution of large sparse Markov chains, and computing the canonical decomposition of

higher-order tensors. Numerical methods have been motivated through heuristic-based

arguments, and have been validated through extensive numerical experimentation. In the

following sections we summarize the major results of this thesis and discuss avenues of

future research.

7.1 Markov chains

7.1.1 Contributions

In Chapter 3 we presented a novel algorithm for Markov chains that combines classical

algebraic multigrid techniques with an exact interpolation scheme framework. By adding

the computed solution directly to the range of interpolation, as in the exact interpolation

scheme, the approximation of near-nullspace components by the range of interpolation was

adaptively improved as the computed solution converged. Through a heuristic analysis
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we showed that algebraically smooth multiplicative error is locally constant along strong

connections in the system operator scaled by the relaxed approximation, which motivated

the use of classical AMG coarsening and interpolation. In order for our heuristic analy-

sis to apply on all levels it was necessary to maintain the irreducible singular M-matrix

structure of the coarse-level system operators on all levels. By employing an existing lump-

ing technique that augments the Galerkin coarse-level system operators through a small

additive perturbation, the singular M-matrix structure of the fine-level system operator

was preserved. Although this lumping technique is somewhat artificial, it was the only

way in which we were able to guarantee the structure of the coarse-level system operators

and strict positivity of the computed solution. The MCAMG algorithm (Algorithm 3.1)

was vetted through a series of challenging test problems, for which it demonstrated ex-

cellent robustness, and near-optimal scalability. Although these results are encouraging,

the MCAMG algorithm suffers from the fundamental drawback that the entire multilevel

hierarchy of operators is recomputed during each multilevel cycle. To remedy this issue

we developed a simple hybrid method in which the MCAMG method formed the setup

phase, and a cheap additive correction multigrid method with a fixed multigrid hierarchy

was used for the solve phase. Compared with the standalone MCAMG algorithm, the

hybrid approach consistently resulted in faster execution times, and often lead to signifi-

cant speedups. In general, we expect that more sophisticated hybrid schemes such as the

parallel on-the-fly scheme proposed in [118] would lead to further improvements.

In Chapter 4 we proposed a constrained iterant recombination approach to accelerate

multilevel methods for Markov chains. Although our numerical experiments focused on ac-

celerating the simple adaptive multilevel aggregation method for Markov chains described

in §4.1, our approach can be applied to any iterative method for Markov chains whose

iterates are strictly positive probability vectors. The minimization problem for selecting

the weights in the “optimal” linear combination of previous iterates consisted of minimiz-

ing the one-norm or the two-norm of the residual subject to strict positivity constraints

on recombined iterate. Numerical results demonstrated that recombining only a small

number of iterates (small window size) may be sufficient to significantly improve iteration

counts as well as the scalability in the case of suboptimal performance of the standalone
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method. Moreover, even when the standalone method was performing optimally in terms

of scalability, iterant recombination was able to further reduce the iteration counts. It

was observed that iteration counts are not further reduced by a significant amount for

window sizes larger than two, and in some cases the added overhead of solving a larger

minimization problem lead to increased execution times. In terms of iteration reduction,

no significant difference was observed between the one-norm and two-norm minimization

approaches. In terms of overall execution time, acceleration with window size two was

the clear winner for the problem sizes considered, with the analytic solution method for

two-norm minimization discussed in §4.3 resulting in the fastest overall execution times

for all test problems. We note that in light of the results in Chapter 5, for sufficiently

large problems it may be beneficial to use a window size greater than two. In essence, the

added numerical cost of solving a larger minimization problem is outweighed by the added

savings of performing fewer multilevel iterations.

In Chapter 5 we demonstrated that a simple over-correction approach can significantly

improve the convergence of the AGG method for Markov chains described in §4.1. In par-

ticular, we developed an automatic over-correction mechanism in which the over-correction

parameter α is computed on each level as the solution of a unconstrained minimization

problem. Numerical tests demonstrated that fixed over-correction, in which a single fixed

value of α is used on all levels and for all cycles, can dramatically improve the convergence

of multilevel aggregation, often resulting in optimal or near-optimal performance with re-

spect to algorithmic scalability. The downside of the fixed over-correction approach is that

the over-correction parameter has to be selected through a costly a priori trial-and-error

procedure. Moreover, judging by the variability of the fixed over-correction parameter

about the value α = 2, estimating a suitable fixed over-correction parameter is problem

dependent and far from straightforward. It was also shown that automatic over-correction

is capable of improving scalability and reducing execution times of multilevel aggrega-

tion. Unfortunately, it was not as robust as desired, and was unable to reduce iteration

counts by the same amount as the fixed over-correction approach with a carefully chosen

α. Numerical tests also compared the MCAMG method (Chapter 3) and multilevel ag-

gregation accelerated by iterant recombination (Chapter 4) with popular Krylov subspace
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methods for Markov chains including ILU-preconditioned Bi-CGStab and GMRES. For

the smaller problem sizes Bi-CGStab and GMRES were generally the fastest solvers or

were very competitive; however, our multilevel approach was competitive and often su-

perior to Bi-CGStab and GMRES for the larger problems . Although it is difficult to

form general conclusions based on comparisons with a limited number of test problems,

it should be noted that the MCAMG and IR-AGG methods consistently showed good

scalability and robustness, and were among the fastest multilevel methods for each of the

test problems considered. Preliminary tests suggest that combining iterant recombination

and over-correction may lead to further improvements over the individual acceleration ap-

proaches. In particular, iterant recombination in conjunction with fixed over-correction

seems promising, although further testing is required.

7.1.2 Future research

With respect to the MCAMG algorithm, future research should aim at gaining further

insight into the multiplicative correction scheme framework presented in this thesis. Many

of the arguments in support of this framework are based on heuristics, and the goal should

be to find mathematically rigorous justifications of these heuristics. In particular, a char-

acterization of algebraically smooth error arising from weighted Jacobi relaxation applied

to irreducible singular M-matrices would provide insight into the construction of coarse

grids and the definition of interpolation. Since the energy norm cannot be used for Markov

chain problems, one of the first steps toward a characterization of algebraically smooth

error is try and find a suitable norm on which to base our analysis. Additional areas of

investigation include an iteration-dependent strength threshold that adapts with respect

to the measured operator complexity, alternative techniques to reduce the operator com-

plexity, a more rigorous theoretical investigation of the lumped coarse-level system, and

the efficient parallel implementation of MCAMG to facilitate large-scale testing.

With respect to iterant recombination acceleration of multilevel aggregation, it may be

worthwhile to investigate constrained optimization solvers other than the ellipsoid method

for solving the one-norm minimization problem. As discussed in §4.6, the one-norm mini-
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mization problem is equivalent to a linear programming problem, for which interior point

methods and the simplex method are known to be effective solvers.

With respect to over-correction of multilevel aggregation, future research should focus

on improving the robustness and performance of the automatic over-correction approach. A

rigorous analysis of the over-correction mechanism, or at the very least a heuristic analysis

involving a suitable model problem, would be of great benefit to guide the formulation

of the automatic over-correction minimization problem. In addition, it may be sufficient

to automatically determine the over-correction parameter on the finest level, and then

fix this value on coarser levels. While this approach clearly improves the per iteration

cost of over-correction, it may also lead to overall improvements in performance similar

to fixed over-correction. It may also be worthwhile to investigate whether a suitable fixed

over-correction parameter can be efficiently determined a priori by considering a small test

problem, or by analytic means.

7.2 Canonical tensor decomposition

7.2.1 Contributions and future research

In Chapter 6 we discussed how techniques from adaptive multigrid can be used to accelerate

the alternating least squares method for computing the CP decomposition of higher-order

tensors. As far as we are aware, our method is the first genuine multigrid algorithm for

computing the CP decomposition as well as the first adaptive AMG method for solving

a nonlinear optimization problem. Our method consists of two phases: a multiplicative

correction scheme with bootstrap AMG interpolation as the setup phase, and an additive

correction scheme based on the full approximation scheme as the solve phase. Numerical

tests with dense and sparse tensors of varying sizes and orders (up to order eight) that are

related to PDE problems demonstrated that our multilevel method can lead to significant

speedup over standalone ALS when high accuracy is desired. Furthermore, a test case that

is unrelated to PDE problems demonstrated that our multilevel method may be successfully

applied to more general test problems.
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The main area in which our algorithm can be improved is its robustness. The often er-

ratic convergence behavior of the ALS method can make it difficult to construct sufficiently

accurate transfer operators during the setup phase. Therefore, it may be beneficial to con-

sider a Tikhonov-regularized formulation of CP [1]. As discussed in [120], the regularized

problem is always well-posed in that it admits a global minimizer. Moreover, numerical

investigation has shown that swamps in ALS convergence (regions of very slow error reduc-

tion) are less likely to occur with the regularized formulation. A more general coarsening

routine would also lead to improved robustness in that a wider class of tensors could be

considered. As in classical AMG, a rigorous (at the very least heuristic) characterization

of the error for certain classes of tensors will be key in guiding the development of an

automatic operator-based coarsening routine. It may also be worthwhile to investigate a

more sophisticated setup phase that iteratively combines the CP-AMG-mult cycles and

CP-FAS-FMG cycles, and to investigate more sophisticated measures of convergence stag-

nation. How best to deal with stagnation is yet another question. As discussed in [47], the

addition of a line search on the finest level may also improve convergence and robustness.

Furthermore, combining our AMG method with the GMRES method for canonical tensor

decomposition developed in [46] may also prove fruitful.

Further avenues of research include identifying classes of tensors for which multigrid

acceleration of ALS is beneficial, developing an alternative formulation of the coarse-level

equations without the inverted Cholesky factors, and generalizing our multilevel framework

to other similar tensor optimization problems such as the Tucker decomposition [79], block

tensor decompositions [41, 44], and the best rank-(R1, . . . , RN) approximations [42, 70].

A class of tensors that we feel our method would be suitable for and that we are eager

to experiment with in the future are derived from time series of still images that arise in

applications such as medical imaging.
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[62] H. Guillard and P. Vaněk. An aggregation multigrid solver for convection-diffusion

problems on unstructured meshes. Technical Report UCD-CCM-130, Center for

Computational Mathematics, University of Colorado at Denver, May 1998.
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[103] J. W. Ruge and K. Stüben. Algebraic multigrid. In S. F. McCormick, editor, Multi-

grid Methods, Frontiers in Applied Mathematics. Society for Industrial and Applied

Mathematics, 1987.

250



[104] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 2nd edition, 2003.

[105] B. Seibold. Performance of algebraic multigrid methods for non-symmetric matrices

arising in particle methods. Numer. Linear Algebra Appl., 17:433–451, 2010.

[106] N. Z. Shor. Cut-off method with space extension in convex programming problems.

Cybernetics, 13:94–96, 1977.

[107] H. A. Simon and A. Ando. Aggregation of variables in dynamic systems. Economet-

rica, 29:111–138, 1961.

[108] R. V. Southwell. Relaxation Methods in Theoretical Physics. Clarendon Press, Ox-

ford, 1946.

[109] W. J. Stewart. MARCA Models: A Collection of Markov Chain Models. Available

online http://www4.ncsu.edu/~billy/MARCA_Models/MARCA_Models.html. Last

accessed August 2008.

[110] W. J. Stewart. An Introduction to the Numerical Solution of Markov Chains. Prince-

ton University Press, Princeton, NJ, 1994.

[111] W. J. Stewart. Probability, Markov Chains, Queues, and Simulation: The Mathe-

matical Basis of Performance Modeling. Princeton University Press, Princeton, NJ,

2009.
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[123] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid on unstructured meshes.

Technical Report UCD-CCM-034, Center for Computational Mathematics, Univer-

sity of Colorado at Denver, December 1994.
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