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Abstract

Incomplete data is a pervasive problem in health research, and as a result statistical methods en-
abling inference based on partial information play a critical role. This thesis explores estimation
of regression coefficients and associated inferences when variables are incompletely observed.
In the later chapters, we focus primarily on settings with incomplete covariate data which arise
by design, as in studies with two-phase sampling schemes, as opposed to incomplete data which
arise due to events beyond the control of the scientist. We consider the problem in which “inex-
pensive” auxiliary information can be used to inform the selection of individuals for collection
of data on the “expensive” covariate. In particular, we explore how parameter estimation relates
to the choice of sampling scheme. Efficient sampling designs are defined by choosing the opti-
mal sampling criteria within a particular class of selection models under a two-phase framework.
We compare the efficiency of these optimal designs to simple random sampling and balanced
sampling designs under a variety of frameworks for inference.

As a prelude to the work on two-phase designs, we first review and study issues related to in-
complete data arising due to chance. In Chapter 2, we discuss several models by which missing
data can arise, with an emphasis on issues in clinical trials. The likelihood function is used as
a basis for discussing different missing data mechanisms for incomplete responses in short-term
and longitudinal studies, as well as for missing covariates. We briefly discuss common ad hoc
strategies for dealing with incomplete data, such as complete-case analyses and naive methods
of imputation, and we review more broadly appropriate approaches for dealing with incomplete
data in terms of asymptotic and empirical frequency properties. These methods include the EM
algorithm, multiple imputation, and inverse probability weighted estimating equations. Simu-
lation studies are reported which demonstrate how to implement these procedures and examine
performance empirically. We further explore the asymptotic bias of these estimators when the
nature of the missing data mechanism is misspecified. We consider specific types of model mis-
specification in methods designed to account for the missingness and compare the limiting values
of the resulting estimators.

In Chapter 3, we focus on methods for two-phase studies in which covariates are incomplete by
design. In the second phase of the two-phase study, subject to correct specification of key mod-
els, optimal sub-sampling probabilities can be chosen to minimise the asymptotic variance of the
resulting estimator. These optimal phase-II sampling designs are derived and the empirical and
asymptotic relative efficiencies resulting from these designs are compared to those from simple
random sampling and balanced sampling designs. We further examine the effect on efficiency of
utilising external pilot data to estimate parameters needed for derivation of optimal designs, and
we explore the sensitivity of these optimal sampling designs to misspecification of preliminary
parameter estimates and to the misspecification of the covariate model at the design stage. De-
signs which are optimal for analyses based on inverse probability weighted estimating equations
are shown to result in efficiency gains for several different methods of analysis and are shown to
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be relatively robust to misspecification of the parameters or models used to derive the optimal de-
signs. Furthermore, these optimal designs for inverse probability weighted estimating equations
are shown to be well behaved when necessary design parameters are estimated using relatively
small external pilot studies. We also consider efficient two-phase designs explicitly in the context
of studies involving clustered and longitudinal responses. Model-based methods are discussed
for estimation and inference. Asymptotic results are used to derive optimal sampling designs and
the relative efficiencies of these optimal designs are again compared with simple random sam-
pling and balanced sampling designs. In this more complex setting, balanced sampling designs
are demonstrated to be inefficient and it is not obvious when balanced sampling will offer greater
efficiency than a simple random sampling design. We explore the relative efficiency of phase-II
sampling designs based on increasing amounts of information in the longitudinal responses and
show that the balanced design may become less efficient when more data is available at the de-
sign stage. In contrast, the optimal design is able to exploit additional information to increase
efficiency whenever more data is available at phase-I.

In Chapter 4, we consider an innovative adaptive two-phase design which breaks the phase-
II sampling into a phase-IIa sample obtained by a balanced or proportional sampling strategy,
and a phase-IIb sample collected according to an optimal sampling design based on the data
in phases I and IIa. This approach exploits the previously established robustness of optimal
inverse probability weighted designs to overcome the difficulties associated with the fact that
derivations of optimal designs require a priori knowledge of parameters. The efficiency of this
hybrid design is compared to those of the proportional and balanced sampling designs, and to the
efficiency of the true optimal design, in a variety of settings. The efficiency gains of this adaptive
two-phase design are particularly apparent in the setting involving clustered response data, and
it is natural to consider this approach in settings with complex models for which it is difficult to
even speculate on suitable parameter values at the design stage.
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Chapter 1

Introduction

This thesis is concerned with statistical methods for the analysis of incomplete data. Attention
is given to data that are incomplete due to unforeseen reasons and data that may be intentionally
incomplete because of decisions made at the planning stage of a study. Such decisions are often
made in epidemiological research with a view to constraining costs (time, effort, or financial
costs). We begin our discussion with a review of the terminology and approaches for dealing
with data which are incomplete by happenstance, with a focus on the clinical trial setting.

1.1 Statistical Methods for Incomplete Data

1.1.1 Terminology for Incomplete Data

The statistical and clinical literature have adopted a standard nomenclature to characterise the
mechanisms giving rise to missing data: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR) (Little and Rubin, 2002; Sterne et al.,
2009). If the missingness (whether a variable is observed or not) does not depend on the response
or other observed variates, then data are said to be MCAR. If missingness depends only on fully
observed variables, then responses are said to be MAR. Otherwise, the missing data mechanism
is called MNAR.

The term ignorable missing data is used when consistent analyses can be based on only those
individuals with complete data (Little and Rubin, 2002); typically this encompasses MCAR
mechanisms and MAR mechanisms when the response model controls for all prognostic fac-
tors related to missingness. Non-ignorable missing data mechanisms then typically corresponds
to MNAR mechanisms and to MAR mechanisms when the response model does not control for
all prognostic factors related to missingness. In the case of this non-ignorable MAR mechanism,
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inconsistent estimates may arise from common methods of analysis (Joseph et al., 2004), but
there are practical methods to correct for this which we discuss later; when data are MNAR,
there are considerable challenges in trying to conduct appropriate analyses (Allison, 2001). The
terms used to describe the nature of incomplete data must be used with caution, however, since
they are to be interpreted in the context of the missing data mechanism, the response model, and
the framework for the analysis (Little and Rubin, 2002). Determining if the missing data mecha-
nism is MCAR, MAR, or MNAR is not trivial and usually cannot be done using observed study
data (Beunckens et al., 2005); sensitivity analyses often play an important role (Molenberghs
et al., 2004).

Perhaps the simplest strategy for dealing with missing data is to restrict attention to individuals
with complete data. This is referred to as a complete-case analysis (CCA) (Demissie et al., 2003),
or sometimes observed-case analysis (Wilcock et al., 2000). This approach has appeal from
the standpoint that implementation is simple. However, standard complete-case analyses can
incur substantial bias in estimates of event rates and associated treatment effects if the missing
data mechanism is non-ignorable (Knol et al., 2010). This occurs because the sub-sample of
completely observed individuals is not necessarily representative of the original sample.

1.1.2 Methods Based on Imputation

The CONSORT (Consolidated Standards of Reporting Trials) group recommends that the data
from a clinical trial be analysed by retaining patients in their originally randomised assigned
groups (Schulz et al., 2010) following the intent to treat (ITT) principle (Sackett and Gent, 1979).
Such an ITT analysis needs to be clearly defined by the analyst, but typically involves all patients
who were randomised; that is, it includes patients who yield complete data, as well as patients
for whom data are missing because they prematurely terminated the study (Schulz et al., 2010).
An imputation strategy facilitates this approach.

An immediate and obvious challenge lies in determining what values should be used in place of
the missing variables. The National Research Council Panel on Handling Missing Data states that
there is no ideal method of replacing missing values (National Research Council, 2010). Ad hoc
methods of imputation can lead to biased estimates and standard errors may likewise be invalid.
Multiple imputation offers a more rigorous framework for imputation as well as strategies for
ensuring valid comparison of treatment effects. Analysts must be explicit in the assumptions
made to use this method, but it can be used effectively in many settings.

Ad Hoc Methods of Imputation
If the outcome is a simple indicator of the success or “response” to treatment, then an imputa-
tion of “failure” is often made for missing responses (Alirezai et al., 2007). This is sometimes
called non-responder imputation (NRI) and is used extensively in dermatology trials (Gottlieb
et al., 2004; Gordon et al., 2006b; Menter et al., 2007; Leonardi et al., 2008, 2011). It is viewed
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as a conservative way of handling missing data since it may be rationalised by the assumption
that subjects prematurely withdraw from trials due to lack of efficacy (Saurat et al., 2008). It is
important to note, however, that NRI is not necessarily conservative for estimation of treatment
effects if the termination rate differs between treatment arms (McIsaac et al., 2013). In der-
matology trials, researchers often replace missing measurements with their last observed value
(Gottlieb et al., 2004; Menter et al., 2008; Gordon et al., 2011; Leonardi et al., 2011; Reich
et al., 2011). This last observation carried forward (LOCF) imputation implicitly assumes that
variables remain constant after their last observed values has been recorded (Papp et al., 2008a).

These crude methods of single imputation can produce results which are significantly biased or
which are no longer interpretable in terms of the study objective. Interestingly, these methods
remain popular for the analysis of clinical trials despite the facts that their validity depends on
implausible restrictive assumptions (Cook et al., 2004; Papp et al., 2008b; Prakash et al., 2008),
and that analyses based on these two different methods of imputation can lead to very different
inferences in practice (Roy et al., 2011).

Multiple Imputation
There has been considerable interest in recent years in a more sophisticated imputation approach
called multiple imputation (Rubin, 1987; Little and Rubin, 2002) and its implementation in sev-
eral statistical software packages (Mayer et al., 2012) has contributed to its growing popularity.
Multiple imputation involves randomly generating a value for each missing variable to create a
pseudo-complete dataset. This is repeated a number of times to create multiple pseudo-complete
datasets. Each dataset is then analysed separately to obtain several estimates of the treatment
effect. These estimates are then appropriately combined to obtain a final summary estimate.
Standard errors for the final summary estimate are computed in a way that recognises that the
pseudo-complete datasets were obtained by imputation of data.

The advantage of multiple imputation over the cruder approaches to imputation discussed earlier
arises from the specification of a model to generate the imputed values. Since the missing values
can never be truly known, the model accounts of the uncertainty in predicting the imputed values.
This model must be specified by the analyst (either explicitly or implicitly), but it can exploit
available observed information to make the imputation procedure more informed than NRI or
LOCF. Of course the validity of this approach hinges on correct specification of the imputation
model; if the imputation model is incorrect, inferences will be invalid (Carpenter et al., 2006).

1.1.3 Inverse Probability Weighting

Another approach for addressing biases that may arise from data which are MAR involves
weighting observations from individuals who have provided complete information so that the re-
sulting weighted complete-case analysis furnishes estimates compatible with the complete sam-
ple (Whittemore and Halpern, 1997). Missing data are not imputed when inverse probability
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weighting (IPW) is used, rather the complete cases are reweighed to reflect the fact that they
are potentially also representing several unobserved cases. Available information on incomplete
cases can be exploited in IPW to model the probability that an individual will be completely
observed; the weight for each individual with complete data is the inverse of this probability.
Thus the IPW approach simply requires a model for the probability of missingness which can be
fitted and implemented in many statistical packages (Hogan et al., 2004; van der Wal and Geskus,
2011).

Inverse probability weighting, as described above, eliminates the potentially significant biases
of standard complete-case analyses in MAR data, but does not optimally exploit individuals
with missing response data. Augmented inverse probability weighted approaches (Robins et al.,
1994; Tsiatis, 2006) are an extension of IPW which allow for greater use of information from
individuals with incomplete data and, as a result, do not suffer from as much loss of power as IPW
may suffer from. Augmented inverse probability weighting (AIPW) requires the specification of
a second model, but consistent estimators may be found if either of the models is correctly
specified (Robins et al., 1994; Carpenter et al., 2006; Tsiatis, 2006).

1.2 Incomplete Data Arising by Two-Phase Designs

Consider the problem of estimating a particular finite population characteristic such as the mean
of a random variable X , denoted X . If X is highly variable, then a simple random sample would
need to be quite large in order for a precise estimate of X to be obtained. Now suppose that
it is very expensive to observe X , where this expense may be either in the actual fiscal cost of
observing X , or in terms of the time and resources required to obtain accurate measurements.
Budgetary constraints make it impossible to observe X in large samples. Further suppose an
auxiliary variable V is available which is strongly associated with X , relatively inexpensive to
measure, and of a known range. Two-phase sampling approaches, which were formalised by
Neyman (1938), use the inexpensive information contained in V to select samples with which
one can efficiently estimate X .

As the name suggests, there are two phases to these sampling procedures. The first phase (phase
I) involves collecting a large sample of individuals and measuring the cheap auxiliary variable V
for all individuals in this sample. This primary sample can then be stratified based on the values
of V . The second phase (phase II) involves using stratified sampling to select a small subset of
the primary sample. Values of X are measured for individuals in this secondary subsample and
these are used to estimate X .

Strata of the primary sample are constructed so that individuals within the same stratum have
similar values of V . Since X and V are highly correlated, the values of X within strata will also be
fairly homogenous. This two-phase sampling approach improves efficiency over simple random
sampling by sampling a small number of individuals from each stratum. The difference between
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variances resulting from an estimator based on simple random sampling (X̂SRS) and an estimator
based on, for example, proportionately allocated stratified sampling (X̂ strat) is asymptotically

var(X̂SRS)− var(X̂ strat)
·=
(

1− n
N

) 1
n

H

∑
h=1

(
Xh−X

)2Wh, (1.1)

where Xh is the mean for X in stratum h, Wh is the proportion of the population in stratum h,
n is the sample size, and N is the total population size (Lohr, 2009). Note that (1.1) is always
non-negative, and that it increases as the

(
Xh−X

)2 increase. Thus, there is a gain in efficiency if
X values tend to be more similar within-strata than between-strata, as they are in two-phase sam-
pling. Therefore, when an auxiliary variable is available to guide selection at the second stage,
estimators based on proportional two-phase sampling should be more efficient than those based
on simple random sampling. The size of the gain in efficiency over simple random sampling de-
pends on how strata are defined and on the stratum-specific phase-II sampling probabilities that
are employed; in most cases, it is possible to achieve greater efficiency through designs other
than proportional sampling.

Two-phase sampling (or double sampling) has been widely used to increase the precision of
study results while keeping study costs low (Pickles et al., 1995; Whittemore and Halpern, 1997;
Chatterjee et al., 2003). This sampling framework can be effective whenever the cost of measur-
ing a specific covariate is expensive, relative to the cost of measuring some associated auxiliary
information. Two-phase sampling requires the collection of inexpensive auxiliary information
in a large phase-I sample, so that this inexpensive information can be exploited in determining
which individuals should be selected into a phase-II subsample where the expensive covariates
are measured (Reilly and Pepe, 1995; Zhao et al., 2009). The efficiency gain that comes from
such a two-phase sampling framework depends on the parameter of interest, the method of anal-
ysis, and the way in which the phase-I data are exploited in the design of the phase-II selection
probabilities (Reilly, 1996). Here we are concerned with regression analyses using such two-
phase data and the efficiency that can be gained by using optimal phase-II selection probabilities.

Consider a study in which interest lies in estimation of an element of the parameter vector α

which describes the conditional distribution of a response Y given covariates X and V , as in

f (Y |X ,V ;α).

Data arise according to the joint model f (Y |X ,V ;α)g(X |V ;β )h(V ;γ), but the parameters β and
γ , which describe the distributions of the covariates, are typically treated as nuisance parameters.

Further suppose that these data are gathered in from a two-phase study where the response Y
and inexpensive covariate V are collected for all individuals in a large phase-I sample of size N.
The expensive covariate X , on the other hand, is only measured for individuals selected into the
phase-II subsample. Selection into the phase-II sample will be governed by the phase-II selection
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probabilities

π(Y,V ;δ ) = P(R = 1|Y,V ;δ ),

where Ri = 1 if individual i is selected for inclusion in the phase-II sample and Ri = 0 otherwise.
The data are ultimately incomplete; all N individuals provide information on Y and V , but mea-
surements of X will be missing for the ∑

N
i=1(1−Ri) individuals not selected into the phase-II

sample. Note that within this two-phase sampling framework, we consider missingness which
occurs by design so we can be confident that missingness is not governed by the latent variables
– i.e. P(R = 1|Y,X ,V ;δ ) = P(R = 1|Y,V ;δ ) – so data will be at most MAR in the terminology
of Little and Rubin (2002). If the phase-II selection probabilities do not exploit the phase-I data
– i.e. P(R = 1|Y,V ;δ ) = P(R = 1;δ ) – then the data will be MCAR. Note that analyses which
assume the data arise as a simple random sample can introduce biases unless data are MCAR
(Lawless et al., 1999; Little and Rubin, 2002). However, using phase-II selection probabilities
which result in data that are MCAR precludes one from gaining efficiency through exploitation
of the phase-I data.

1.3 Motivating Settings and Studies

1.3.1 Incomplete Data in Randomised Dermatology Trials

In many areas of clinical research, it is difficult to collect complete data for all individuals. Stud-
ies in psychiatric conditions such as depression routinely feature high drop-out rates and it can
be difficult to collect detailed clinical information in studies off many other mental health condi-
tions. We discuss issues in the conduct of dermatology trials in detail here, partially motivated by
collaborations with researchers in psoriatic arthritis. A detailed survey of the literature is given to
help understand the scope of the issues and get a sense of the methods routinely used in practice.

In many randomised controlled dermatology trials, an experimental treatment is compared to
standard care for its effect on symptoms of a particular disease or condition. The treatments
usually take some time to alleviate the symptoms and so studies routinely involve a baseline as-
sessment of the condition, usually at the time of randomisation, and assessment at one or more
follow up visits. Tests for the effect of the experimental treatment may be based on a measure of
the severity of the condition at a particular time, the percentage change in the severity from base-
line, an indicator of whether a minimum percent improvement has been achieved, or an indicator
of whether symptoms have been eliminated or not. Studies which explore treatment effect on
psoriasis, for example, often incorporate measures of Psoriasis Area and Severity Index (PASI),
Physician Global Assessment (PGA), and Dermatology Life Quality Index (DLQI). Studies can
be found which explore treatment effect in terms of PGA scores (Leonardi et al., 2011) after
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a certain number of weeks, the change in PASI or DLQI (Griffiths et al., 2010; Menter et al.,
2007) over a period of time, or total clearance of symptoms by a set follow up time (Gordon
et al., 2006b). The most common primary outcome in psoriasis trials is the binary PASI 75, an
indicator of whether a decrease in PASI score of at least 75% from baseline has been achieved.

We present here an overview of the rates of missing data encountered in randomised controlled
trials in psoriasis, the common strategies used for dealing with missing data in analyses, and
the reasons given for incomplete data. Table 1.1 summarises this information for twenty-two
randomised, placebo-controlled, double-blind phase 3 clinical trials of biologics (adalimumab,
alefacept, briakinumab, efalizumab, etanercept, infliximab, and ustekinumab) in the treatment of
plaque psoriasis published from 2000 to 2011. Studies were excluded if they compared use of
concomitant topical treatments, explored immunogenicity only, or primarily explored safety.

The reported rate of missing responses in primary analyses ranged from 2.7%-47.7%; two studies
did not report the rate of missing data. Fifteen of the twenty-two studies reported that NRI was
used in the primary analyses to deal with missing response data. Five studies indicated that
missing data were at least partially imputed using LOCF for primary analyses. Three of the
studies did not indicate how missing data were handled. In secondary analyses, approaches for
dealing with missing data included NRI, LOCF, CCA, and BOCF (a variation on LOCF that
involves imputing baseline observations). Only three studies examined the sensitivity of primary
analyses to their choice of missing data strategy. Papp et al. (2005) used LOCF in primary
analyses and then assessed the robustness of their findings by performing a sensitivity analysis
using NRI; Gordon et al. (2011) and Strober et al. (2011) used NRI for their primary analysis
and used LOCF in a sensitivity analysis. Saurat et al. (2008) used NRI in their primary analyses
and called this approach “the generally more conservative approach for analysing data”. They
used LOCF, however, when considering secondary analyses with continuous responses as they
“considered it excessively conservative to impute a value of zero for missing patients”, as would
be done with NRI.

When data are MAR, standard complete-case analyses yields biased estimates of the response
rate in the population of patients. The extent of the bias depends on the strength of the depen-
dence of missingness on the observed covariates, as well as the serial association between re-
sponses over time. The estimates from an NRI analysis are also biased. When data are MAR, the
degree to which “success rate” estimates are conservative will differ between subgroups defined
by treatment and observed prognostic factors. The cumulative effect of these differing biases
when comparing the probability of response between treatment groups will not necessarily be
conservative; the direction of the bias could actually differ for different measures of treatment
effect. Thus, despite being referred to as a “conservative approach” (Saurat et al., 2008), NRI
analyses could, in fact, result in under-estimation or over-estimation of treatment effects. Biases
here will be most common if the proportion of missing data differs greatly between treatment
arms. LOCF and BOCF are valid if responses do not change over time. The size of any bias
resulting from LOCF will depend on the amount of missing data and the (unknown) trend of the
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missing responses (Cook et al., 2004; Beunckens et al., 2005). Multiple imputation analyses will
be valid whenever a correct model can be specified. IPW analyses can also achieve consistent es-
timators since the weighting can eliminate the bias inherent in standard complete-case analyses.
The validity of the IPW approach hinges on correct specification of the model for missingness,
but unlike the missing response model needed for valid imputation, here we need only model a
binary indicator of missingness, which can be simpler. More efficient estimates can be obtained
through the use of augmented inverse probability weighted estimating equations, but these have
not yet seen wide-spread use in the clinical literature.

All of the trials reported at least some reasons for the incomplete response data. Reasons com-
monly given for missing data included lack of efficacy, adverse events, loss to follow up, as
well as others such as pregnancy and administrative decision. Obtaining the cause of patient
drop-out is important. The more information that is recorded on the reasons for incomplete data,
the easier it is to select a model for the missing data mechanism and to carry out corresponding
corrective analyses. For example, if it is known that loss to follow up occurred solely due to of
administrative reasons unrelated to the response (e.g. the patient moved), then such responses are
MCAR and the missing data are ignorable. If all incomplete data were due to such reasons, the
reported results from standard analyses are easily interpreted. Drop-outs due to lack of efficacy
could result in responses that are MAR or MNAR depending on whether this missingness is suf-
ficiently explained by the treatment and observed prognostic factors. If an individual drops out
of the study because their response is unfavourable to an extent which cannot be explained by the
treatment assignment or other observed prognostic factors, then responses are MNAR and valid
analyses are not straightforward. However, if responses are missing differentially by treatment
arm due to a lack of efficacy of the experimental treatment, then responses could be MAR and
valid analyses can be achieved through appropriate weighting or imputation as long as the neces-
sary additional models are correctly specified. Obviously missing data are a pervasive problem
in dermatology clinical trials and the methods being used to analyse these data in practice are not
sufficient to account for a MAR mechanism.

1.3.2 Biomarker Studies in Psoriatic Arthritis

Psoriatic arthritis (PsA) is an immunological disease associated with considerable joint pain and
inflammation which can ultimately lead to serious disability and poor quality of life (Langley
et al., 2005; Chandran et al., 2010a). The disease course is complex and heterogeneous; some
patients experience rapid joint destruction, and some exhibit little evidence of progression even
after considerable time with the disease (Sutradhar and Cook, 2009; Gladman and Chandran,
2011). Identification of patients at high risk of progression is therefore critical to ensure timely
intervention early in the course of disease for those who need it, and to avoid unnecessary use
of expensive, powerful, but potentially toxic biologic therapies. Due to the important role of
serum biomarkers and genetic factors in disease progression (Rahman et al., 2008; Gladman and
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Chandran, 2011), there is increased interest in the design and analysis of biomarker studies.

The Centre for Prognosis Studies in the Rheumatic Diseases was established in 1976 as a tertiary
referral centre affiliated with the University Health Network of the University of Toronto. It now
maintains the largest cohort of patients with psoriatic arthritis in the world (University Health
Network Centre For Prognosis Studies In The Rheumatic Diseases, 2007). Patients in this co-
hort attend the clinic for annual examinations during which the extent of damage of sixty-four
individual joints is assessed and graded using a 5-point modified Steinbrocker scale (van der
Heijde et al., 2005). In addition, levels of a well-established systemic marker of inflammation,
the erythrocyte sedimentation rate (ESR), is recorded at clinic visits (Gladman and Chandran,
2011), and blood samples are collected and stored for use in future studies. Radiographic exam-
inations are scheduled every two years. As a result of this careful followup, there is considerable
information on the presence of inflammation and rates of disease progression.

Of course, disease progression can be modelled in a number of ways including the development
of newly damaged joints (Sutradhar and Cook, 2009), the involvement of new types of joints
(Tolusso and Cook, 2009; Chandran et al., 2010b), and the onset of a particular condition. The
main focus of this thesis will be set in the context where disease progression is modelled as a
binary indicator of one of these events (see Figure 1.1).

(Xi,Vi)

Clinic Entry

Yi = I(joint damage)

First Follow-up Visit

Figure 1.1: Diagram displaying the timeline for collection of information on disease progression over a fixed
follow-up time in the Psoriatic Arthritis setting with a univariate response. The value of the expensive covariate
X can be determined through retrospective examination of the sera stored from the time of clinic entry. So, the
specification of Ri = I(Xi obs.) can be made after the follow-up visit.

We will also consider bivariate responses (see Figure 1.2), which represent the development of
involvement of the two sacroiliac (SI) joints, an important concern because it represents the
onset of spondyloarthritis. Damage of the SI joints is determined by clinical and radiological
examination with the extent of damage in each joint graded using a standardised scale (Rahman
et al., 1998). Serum biomarkers and genetic factors can play important roles in identifying pa-
tients at high risk for developing psoriatic spondyloarthritis (Rahman et al., 1998; Gladman and
Chandran, 2011), and as a consequence, biomarker studies are of considerable importance.

A major stream of research in this centre now involves the identification of serum biomarkers
prognostic for disease progression. The enzyme MMP-3 is the biomarker of greatest current
interest because it is thought to play an important role in the destruction of cartilage and bone in
rheumatic diseases characterised by synovitis (Chandran et al., 2010a). A current goal is to study
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(Xi,Vi)

Clinic Entry

Yi1 = I(damage to left SI joint )
Yi2 = I(damage to right SI joint )

First Follow-up Visit

Figure 1.2: Diagram displaying the timeline for collection of information on disease progression over a fixed
follow-up time in the Psoriatic Arthritis setting with clustered responses. The value of the expensive covariate X can
be determined through retrospective examination of the sera stored from the time of clinic entry. So, the specification
of Ri = I(Xi obs.) can be made after the follow-up visit.

the effect of the biomarker MMP-3 on progression of PsA while accounting for the effect of the
inexpensive and easy to measure ESR (Gladman and Chandran, 2011), to establish the added
value of MMP-3 over the marker most commonly used in this setting. The stored blood samples
can be used to obtain measures of MMP-3, but measurement of MMP-3 level is expensive and
cannot be carried out for all clinic patients. Given the availability of the data on joint damage
over assessments and the inexpensive ESR data, we aim to use a two-phase study design to derive
optimal sampling probabilities for the selection of the phase-II sample (i.e. the patients on whom
MMP-3 will be measured).

Since different selection procedures result in different levels of efficiency in parameter estima-
tion, it is of interest to determine how to best exploit the available clinic data in selecting indi-
viduals for measurement of the biomarker. By developing optimal phase-II selection strategies,
biomarker effects can be estimated with greater precision and associated tests will be more pow-
erful. These efficiency gains are possible without increasing the study budget – the idea is not to
select more individuals for biomarker analysis, but rather to select individuals in a more informed
way.

1.3.3 Canadian Longitudinal Study on Aging

The Canadian Longitudinal Study on Aging (CLSA) is a pan-Canadian longitudinal study of
disease incidences and associated risk factors involving 50,000 individuals aged 45 to 85 years
old who are to be followed for 20 years or death. All participants in the CLSA will provide
some information to the study, while a subset of 30,000 will be chosen for additional, in-depth
examination. This sub-cohort will undergo a more intensive clinical examination, providing
imaging data, and giving biological specimens every three years; specimens will be stored in
biobanks in a controlled environment to facilitate subsequent testing. Thus the biobank will
serve as a valuable resource for affiliated investigators to study risk factors predictive of disease
onset and progression (CLSA, 2009; Raina et al., 2009).

Samples will be expensive to process for all 30,000 individuals in the cohort undergoing intensive
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follow-up, so it will be of central importance to determine how individuals should be selected
for testing of stored specimens. We therefore explore the extension of the two-phase sampling
problem to longitudinal data. Since interest lies in the onset of disease, we focus on transitional
models and formulate the exposure effects on transition probabilities. We study various designs
for sampling and analysis to investigate how optimal selection procedures can be derived at a
particular time point given the partial histories of individuals data.

Specifically, we examine the improved precision in estimation that can result when more infor-
mation is used in deriving optimal selection probabilities. We suppose that longitudinal data
arise as in Figure 1.3 and consider different designs for selecting individuals to undergo an ex-
pensive genotyping process where the goal is efficient estimation of the transitional effect of
a genetic marker. Phase-II sampling designs for selecting individuals for measurement of the
marker will be considered at different time points. By allowing these designs to depend on the
varying amount of information that is available at different time points, we can explore how the
efficiency of these phase-II designs changes as more phase-I data are available for exploitation.

(Xi,Vi)
Yi0 = I(presence of disease)

Visit 1
Recruitment

Yi1 = I(presence of disease)

Visit 2

Yi2 = I(presence of disease)

Visit 3

Figure 1.3: Diagram of timeline for collection of longitudinal assessments of disease activity or progression.
Here the selection of individuals for measurement of X can be made at any time point t through specification of
P(Ri = I|Vi,Yi0, . . . ,Yit), so that more information is available for exploitation in the sampling designs at later time
points.

1.4 Outline of Thesis Research

The remainder of the thesis is organised as follows.

1.4.1 Methods for Data Missing by Happenstance

In Chapter 2 attention is directed at data which are incomplete by chance. The likelihood func-
tion is used as a basis for discussing different missing data mechanisms for incomplete responses
in short-term and longitudinal studies, as well as for missing covariates. In Section 2.2 we dis-
cuss the problem of incomplete binary responses with an emphasis on issues in clinical trials.
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We discuss the case of incomplete longitudinal data in Section 2.3, and the problem of incom-
plete covariates in Section 2.4. We briefly discuss common ad hoc strategies for dealing with
incomplete data, such as complete-case analyses and the naive methods of imputation introduced
in Section 1.3.1. We also review more broadly appropriate approaches for dealing with incom-
plete data: the EM algorithm, multiple imputation, and inverse probability weighted estimating
equations. Simulation studies are reported which demonstrate how to implement these proce-
dures and present asymptotic and empirical frequency properties for these estimators in a variety
of settings. In Section 2.5 we explore the asymptotic biases of multiple imputation and inverse
probability weighted estimators when the respective modelling assumptions are misspecified due
to an incorrect formulation of models for imputation or the missing data process.

1.4.2 Two-Phase Sampling Design

Chapter 3 is devoted to the study of issues in observational studies in which a covariate is in-
complete by design. Two-phase studies are reviewed and the asymptotic efficiencies of several
methods of analysis are presented (Section 3.3). These asymptotic efficiencies are used to derive
optimal phase-II sampling designs which select informative sub-samples in the second phase of
sampling so that the asymptotic variance of a resulting estimator is minimised (Section 3.4). Re-
sults from simulation studies demonstrate the empirical efficiencies resulting from these optimal
designs in the context of psoriatic arthritis data. Optimal designs are compared to those based
on simple random sampling and balanced sampling to quantify the potential gains in terms of
efficiency when optimal designs are employed. Use of optimal designs requires a priori knowl-
edge of certain parameters, however in Section 3.5, we explore the sensitivity of optimal designs
to misspecification of design parameters, and consider the robustness of an optimal design to
misspecification of the nuisance covariate model. We further examine the effect on efficiency of
utilising external pilot data to estimate the design parameters needed for derivation of optimal
designs. Designs which are optimal for analyses based on inverse probability weighted estimat-
ing equations are shown to result in efficiency gains for several different methods of analysis
and are shown to be robust to misspecification of the parameters or models used to derive the
optimal designs. Furthermore, these optimal designs for inverse probability weighted estimating
equations are shown to be well behaved when necessary design parameters are estimated using
relatively small external pilot studies. In the simulation studies in Sections 3.1-3.6 we focus on
a binary, univariate response and binary auxiliary covariate, and consider both a binary and a
continuous expensive covariate.

In Section 3.7 we consider asymptotic relative efficiencies of two-phase sampling designs with
clustered responses and cluster-level exposure and auxiliary variables. Marginal models (Liang
and Zeger, 1986) are adopted in this setting with analysis frameworks based on maximum like-
lihood and inverse probability weighted pseudo-likelihood. We demonstrate the potential inef-
ficiency that can result from use of balanced designs in this setting. Furthermore, we show the
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efficiency gains that can be achieved through the use of an optimal design for IPW analysis,
whether or not the resulting clustered data are actually analysed using IPW; this is the first foray
into this area that we are aware of. In Section 3.8 we give a framework for two-phase designs
in longitudinal studies, another relatively unexplored area, where interest lies in modelling the
effect of an exposure variable on the onset of disease under a first-order Markov model. We
explore the relative efficiency of phase-II sampling designs based on increasing amounts of in-
formation in the longitudinal responses and show that the balanced design may become less
efficient when more data is available at the design stage. In contrast, the optimal design is able
to exploit additional information to increase efficiency whenever more data is available at phase
I.

1.4.3 Adaptive Stratified Two-Phase Sampling

In Chapter 4, we consider an innovative adaptive two-phase design which breaks the phase-
II sampling into a phase-IIa sample obtained by a balanced or proportional stratified sampling
strategy, and a phase-IIb sample collected according to an optimal sampling design for IPW
analysis. Optimal phase-IIb sampling probabilities are derived for given phase-IIa sample sizes.
These optimal phase-IIb designs can be implemented using initial parameter estimates that can
be found by analysing the phase-I and phase-IIa data (an ‘internal’ pilot study). This approach
exploits the previously established robustness of optimal inverse probability weighted designs to
overcome the difficulties associated with the fact that derivations of optimal designs require a
priori knowledge of parameters. The efficiency of this adaptive design is compared to those of
the proportional and balanced sampling designs, and to the efficiency of the true optimal design,
in a variety of settings reflecting the datasets considered in Chapter 3: a univariate response and
binary covariates, a continuous expensive covariate X , and clustered responses. It is natural to
consider this approach in settings with complex models for which it is difficult to even speculate
on suitable parameter values at the design stage. The adaptive design is important in that it allows
for near-optimal selection probabilities to be used without requiring the added costs associated
with collected external pilot data. The efficiency gains of this adaptive two-phase design are
especially obvious in the setting involving clustered response data.

These results are summarised in Chapter 5, which also contains a description of important prob-
lems that remain unsolved and directions for future work.
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Chapter 2

Statistical Methods for Data Missing By
Happenstance

2.1 Introduction

In well-conducted clinical trials, randomisation eliminates the possible effect of confounding
variables in the assessment of treatment effects. That is, when the assignment of the treatment
to patients is carried out by random allocation, different treatment groups will have similar dis-
tributions of demographic and clinical features, so any differences seen in the distribution of
responses between the treatment groups are attributable to the different treatments they receive.
There are a number of other rationale put forward for use of randomisation in health research
(Sprott and Farewell, 1993), but it is the elimination of the effect of confounding variables and
facilitation of causal inference that has had the most profound impact in advancing scientific
understanding.

Following recruitment and randomisation, however, participants in clinical trials often withdraw
before completion of follow-up, leading to incomplete outcome data. Incomplete data can of
course arise for a variety of reasons; many illustrative examples can be seen in the second chapter
of Molenberghs and Kenward (2007). Depending on the reasons for withdrawal, the individuals
who remain in the study may no longer form groups with similar distributions of the demographic
and clinical features, which compromises the validity of causal inferences. The purpose of this
chapter is to discuss models and mechanisms by which incomplete data can arise in clinical
trials, the consequences missing data can have on the interpretation of study results, and methods
which can be employed to minimise the effect of these consequences. The impact of model
misspecification in methods for dealing with incomplete data is also studied based on the limiting
behaviour of resulting estimators. A clear understanding of the practical and statistical issues
involved with incomplete response data will improve ability to critically appraise the clinical
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literature and help guide selection of methods of analysis.

The remainder of this chapter is organised as follows. In Section 2.2 we discuss the problem of
incomplete binary responses. We restrict attention to the case of a binary treatment indicator and
a single binary auxiliary variable to simplify the discussion, calculations, and empirical studies,
but we remark on practical issues with more complex settings at the end of this section. We
discuss the case of incomplete longitudinal data in Section 2.3, and the problem of incomplete
covariates in Section 2.4. In Section 2.5 we explore the limiting values of estimators obtained
from analyses which aim to address the incomplete nature of data, but which do so based on one
or more misspecified models. Concluding remarks are made in Section 2.6.

2.2 Methods for Incomplete Binary Responses in Randomised
Trials

2.2.1 Models and Measures of Treatment Effect

Consider a balanced two-arm clinical trial in which patients are randomised to receive either an
experimental treatment or standard care. Let X = 1 indicate that a patient was allocated to receive
experimental therapy and X = 0 otherwise, where P(X = 1) = 0.5. Suppose the outcome of
interest is whether the patient had a successful response; we let Y = 1 if this is the case and Y = 0
otherwise. We illustrate the problem of dependently missing data by considering a situation with
a single additional binary variable V , where V = 1 indicates the presence of a particular feature
and V = 0 otherwise; P(V = 1) = p. Suppose that the variable V is an effect modifier (Rothman
and Greenland, 1998) so that the treatment has a different effect for individuals with and without
the risk factor. This may be represented by the logistic model

P(Y = 1|X ,V ;η) = expit(η0 +ηxX +ηvV +ηxvXV ) , (2.1)

where η = (η0,ηx,ηv,ηxv)′. In most situations there will be sub-populations between which
there is variation in the event rate and the effect of treatment; (2.1) is the simplest model which
accommodates this phenomenon.

While (2.1) may reflect a simple reality, in clinical trials we typically aim to assess treatment
effects based on marginal models (i.e. models that do not condition on prognostic variables such
as V ); indeed provided X is independent of V , the causal effect of treatment is typically defined
in terms of such a model. Thus the logistic model used for treatment comparisons is formulated
as

P(Y = 1|X ;α) = expit(α0 +αxX) , (2.2)
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where α = (α0,αx)
′. Of course,

P(Y = 1|X ;α) = EV [P(Y = 1|X ,V ;η); p] , (2.3)

since V is independent of X due to randomisation, and so it is possible to obtain the functional
form of α in terms of (η ′, p)′.

The resulting response rates in the control and treatment arms are pC = P(Y = 1|X = 0) =
expit(α0) and pT = P(Y = 1|X = 1) = expit(α0 + αx), respectively. Some common measures
of treatment effect include the absolute difference AD = pT − pC, the number needed to treat
NNT = (pT − pC)−1, the relative risk RR = pT /pC, and the odds ratio OR = [pT /(1− pT )]/
[pC/(1− pC)] (Matthews and Farewell, 1996; Laupacis et al., 1998). When the experimental
treatment has a higher response rate, the AD and NNT measures are positive and the RR and OR
are greater than one.

Let I(A) be an indicator function such that I(A) = 1 if A is true and I(A) = 0 otherwise. If
response data are incomplete, in order to thoroughly discuss modelling issues it is necessary
to introduce a new random variable R = I(Y observed), so R = 1 if Y is observed and R = 0
otherwise. The biases that result from incomplete data arise if there is an association between the
response (Y ) and whether we observe it or not (R). There are a variety of ways of introducing an
association between Y and R including through bivariate binary models (Cox, 1972) and shared
random effect models (Albert and Follmann, 2009). Here we consider the setting in which both
Y and R are associated with the covariates X and V . When V is unknown, an association between
Y and R exists because of the omission of V from the analysis. We adopt this framework because
when V is known, there are a variety of approaches to incorporating information about V into the
analyses to mitigate problems, as we discuss in the following sections.

Suppose that the missing data model is

P(R = 1|X ,V ;δ ) = expit(δ0 +δxX +δvV +δxvXV ) , (2.4)

where δ = (δ0,δx,δv,δxv)
′. This model accommodates a different dependence on V in the two

treatment arms. We assume in this idealised setting that R ⊥ Y |X ,V . Since X ⊥ V by randomi-
sation, the marginal proportion of missing data is

pR = P(R = 1;δ , p) = EX {EV [P(R = 1|X ,V )]}

=
1

∑
x=0

1

∑
v=0

P(R = 1|X = x,V = v;δ ) P(V = v; p) P(X = x) ,

where P(V = v; p) = pv(1− p)1−v, and P(X = x) = 1/2 due to balanced randomisation. The
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joint probability mass function for Y,R|X is

P(Y,R|X ;Ω) = EV [P(Y |X ,V ;η) P(R|X ,V ;δ )]

=
1

∑
v=0

P(Y |X ,V = v;η) P(R|X ,V = v;δ )P(V = v; p) , (2.5)

where Ω = (η ′, p,δ ′)′. From (2.5) we can derive the conditional odds ratio for the association
between Y and R given X as

ORY,R|X =
P(Y = 1,R = 1|X ;Ω)
P(Y = 1,R = 0|X ;Ω)

/
P(Y = 0,R = 1|X ;Ω)
P(Y = 0,R = 0|X ;Ω)

,

and we can calculate the conditional probability

P(Y |X ,R;Ω) =
P(Y,R|X ;Ω)
P(R|X ;Ω)

=
P(Y,R|X ;Ω)

∑
1
y=0 P(Y = y,R|X ;Ω)

. (2.6)

So, thus far we have defined a simple model for Y |X ,V and R|X ,V under the assumption that
Y and R are conditionally independent given (X ,V ). When we condition on X but not V , the
response Y and the missing data indicator R are associated (i.e. dependent). We have mentioned
that this setting was problematic, but here we will explore why this is the case.

2.2.2 Parameter Estimation with Incomplete Response Data

Complete-Case Analyses

Complete-Case Analyses When Covariate V is Unknown
The likelihood function is perhaps the most fruitful starting point when considering inference
based on parametric models (Sprott, 2000). When data may be incomplete, the availability of
the response of interest is stochastic, and hence the observed data likelihood is

L ∝ P(Y,R = 1|X)R P(R = 0|X)1−R .

Noting that P(Y,R = 1|X) = P(Y |R = 1,X)P(R = 1|X), this may be re-expressed as LY |R=1,X ·
LR|X where

LY |R=1,X =
[
P(Y = 1|R = 1,X ;Ω)Y P(Y = 0|R = 1,X ;Ω)1−Y ]R (2.7)
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is obtained from P(Y |R = 1,X)R by considering the two possible realisations of Y , and

LR|X = P(R = 1|X ;Ω)R P(R = 0|X ;Ω)1−R . (2.8)

When responses are not available from all individuals in a sample, it is tempting to restrict at-
tention to individuals with complete data and base analyses on this subset. This restriction,
however, implicitly conditions on R = 1 so that a complete-case maximum likelihood analysis
actually maximises the partial likelihood (2.7). It appears that (2.8) does not contain information
about the parameters we are interested in because it relates to the missing data process alone.
Note however that while (2.7) is indexed by Ω, the quantities estimated by standard analyses
based on available data (i.e. the sub-sample of individuals with R = 1) are

α
†
0 = logit P(Y = 1|X = 0,R = 1;Ω)

and

α
†
x = logit P(Y = 1|X = 1,R = 1;Ω)−α

†
0 .

These parameters differ from α0 and αx whenever P(Y |X ,R = 1) 6= P(Y |X), which will occur
here if P(Y |X ,V ) 6= P(Y |X) and P(R|X ,V ) 6= P(R|X). Using (2.6), we can compute the naive
measures of treatment effect which are actually being estimated from complete-case analyses:
AD† = P(Y = 1|X = 1,R = 1)−P(Y = 1|X = 0,R = 1), NNT† = 1/AD†, RR† = P(Y = 1|X =
1,R = 1)/P(Y = 1|X = 0,R = 1), and OR† = [P(Y = 1|X = 1,R = 1)/P(Y = 0|X = 1,R =
1)]/[P(Y = 1|X = 0,R = 1)/P(Y = 0|X = 0,R = 1)].

To explore this more fully, we consider here some specific parameter configurations. Let P(X =
1) = 0.5 and P(V = 1) = 0.5. In the response model (2.1), we let ηv = 0 and ηxv = log(2) so the
odds ratio characterising the treatment effect is twice as big for those with V = 1 compared to
those with V = 0. We set αx = log(1.5) in (2.2), so the marginal odds ratio of the treatment effect
is 1.5, and we solve for η0 and ηx so that P(Y = 1|X = 0) = expit(α0) = 0.5 (i.e. the probability
of response is 0.5 in the control arm). The marginal relative risk is therefore 1.2. In the missing
data model (2.4) we set δx = δv = 0 and for each δxv we solve for δ0 so that P(R = 1) = 0.5.

Figure 2.1 displays a plot of RR† and OR†, the limiting values of complete-case estimators of RR
and OR, as a function of δxv. When δxv = 0, the probability of the response being missing is the
same for all individuals regardless of their covariates (data are missing completely at random,
in the terminology of Little and Rubin (2002)), so P(R|X ,V ) = P(R|X) = P(R). In this case,
RR† = RR = 1.2 and OR† = OR = 1.5. When δxv < 0, complete-case estimators of these effect
measures will be too small and hence correspond to a understatement of the effect of treatment.
Conversely, when δxv > 0, the inferences regarding the benefit of treatment are anti-conservative.
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Figure 2.1: Limiting values of naive complete-case estimators of the relative risk (RR†) and odds ratio (OR†) as a
function of δxv.

Complete-Case Analyses when Covariate V is Known
If we are able to identify the variable V which renders Y and R conditionally independent (i.e.,
Y ⊥ R|X ,V ), another option is to write the observed data likelihood based on the conditional
model as

L ∝ P(Y,R = 1|X ,V )R [P(R = 0|X ,V )]1−R .

Since P(Y,R = 1|X ,V ) = P(Y |X ,V )P(R = 1|Y,X ,V ) and P(R = 1|Y,X ,V ) = P(R = 1|X ,V ) this
can in turn be written as LY |X ,V ·LR|X ,V where LY |X ,V ∝ P(Y |X ,V ) and LR|X ,V ∝ P(R|X ,V ). In
practice one would naturally restrict attention to the partial likelihood LY |X ,V , since we are not
typically interested in modelling the missing data process unless it is necessary. As seen above, a
complete-case analysis with restriction to individuals with R = 1 yields inconsistent estimators of
α when we just condition on X , however when we condition on V as well, a complete-case anal-
ysis gives consistent estimators for η . Identification of variables like V which are prognostic for
Y and associated with the missing data process is therefore key to ensure consistent estimation of
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parameters. It is not sufficient for these variables to be associated with the response alone or the
missing data status alone since in either case such variables cannot render Y and R conditionally
independent.

While conditioning on a suitable V seems to have solved our problem, the catch is that we did not
want to condition on V in our assessment of the treatment effect – we are estimating η instead
of α , so we are estimating the wrong thing! We do have the option of modelling V |X , which
amounts to modelling the marginal distribution of V since X was determined by randomisation,
and given an estimate of p as p̂, we can compute a crude estimate by solving for α in

P̃(Y = 1|X ; α̃) =
1

∑
v=0

P(Y = 1|X ,V = v; η̂) p̂v(1− p̂)1−v .

This procedure has been called the expected conditional mean (ECM) approach (Chen and Cook,
2012). Due to the so-called curse of dimensionality, this process is considerably more challeng-
ing and undesirable when V is high dimensional (i.e. a vector) (Robins and Ritov, 1997). A
very convenient and more direct approach to estimating α is obtained using inverse probability
weights as we describe in the next sub-section.

Use of Inverse Probability Weights

Suppose we have a sample of size N giving data {(Yi,Xi,Vi), i = 1, . . . ,N}. The score function
for the logistic regression model in (2.2), resulting from (2.7) can be written as

S(α) =
N

∑
i=1

Ri (Yi−E(Yi|Xi;α)) [1, Xi]
′ .

With complete data (i.e. if P(Ri = 1) = 1, i = 1, . . . ,N) this has expectation zero and hence yields
a consistent estimator for α (McCullagh and Nelder, 1989). With incomplete data however,

E[Si(α)] = EX
{

EY |X
{

ER|Y,X [S(α)]
}}

= EX
{

EY |X
[
P(Ri = 1|Yi,Xi) (Yi−E(Yi|Xi;α)) [1, Xi]

′]} ,

which does not in general equal zero. If the probability of a response being missing depends on
Y given X , then inconsistent estimators are obtained for α; the corresponding limiting values are
the α† given in the previous section.

Now again suppose we are able to identify V as a covariate which renders Y ⊥ R|X ,V . In this
case we can employ the model for P(R = 1|Y,X ,V ) = P(R = 1|X ,V ;δ ) in an inverse probability
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weighted estimating function defined as

U(α) =
N

∑
i=1

Ri

P(Ri = 1|Xi,Vi;δ )
(Yi−E(Yi|Xi;α)) [1, Xi]

′ (2.9)

(Robins et al., 1995). Taking the expectation of an entry of (2.9) as before yields

E[Ui(α)] = EX ,V

{
EY |X ,V

[
ER|Y,X ,V

(
Ri

P(Ri = 1|Xi,Vi)
(Yi−E(Yi|Xi;α)) [1, Xi]

′
)]}

= EX ,V
{

EY |X ,V
[
(Yi−E(Yi|Xi;α)) [1, Xi]

′]}
= EX

{
EV |X

{
(E(Yi|Xi,Vi)−E(Yi|Xi;α)) [1, Xi]

′}}
= EX

[
(E(Yi|Xi;α)−E(Yi|Xi;α)) [1, Xi]

′]= 0 (2.10)

and so a consistent estimator of α is obtained from (2.9).

Note that in practice the parameters in the model P(R|X ,V ;δ ) must be estimated and this can
easily be carried out via logistic regression since R is a binary variable. Naive standard errors
which do not recognise that the weights have been estimated can lead to invalid tests (with
incorrect type I error rates) and invalid confidence intervals (with coverage rates not compatible
with the normal level).

Multiple Imputation

Multiple imputation is, in its simplest implementation, a simulation-based approach to creating
complete data from an incomplete dataset. Again suppose that we have identified a covariate V
which renders Y ⊥ R|X ,V , and the model for Y |X ,V is given by (2.1). A multiple imputation
approach involves fitting a model to Y |X ,V based on individuals with complete data, even though
Y |X is the model of interest. The fitted model would give a consistent maximum likelihood
estimator η̂ , along with the asymptotic covariance matrix for η̂ , I −1(η̂), where I (η) is the
expected information matrix from an analysis based on (2.1). Since η is not of interest, this
fitted model is simply used to generate complete data which are then analysed with the model of
interest. The particular steps in such analyses are described in the following paragraphs.

The approach has a Bayesian flavour in that after fitting Y |X ,V we sample from MVN(η̂ , I −1(η̂))
to obtain another realisation of the 4× 1 parameter vector η̂ which we denote by g1. If the re-
sponse for any individual is missing, then we simulate the binary response as a Bernoulli variate
with probability expit(g1

0 +g1
xX +g1

vV +g1
xvXV ) using the respective covariate values. This yields

the first imputed value for each individual with missing data, and we label the realised response
y1. After each individual with incomplete data in the dataset has a response simulated based on
g1, a second sample is drawn from MVN(η̂ , I −1(η̂)) and labelled g2. Using this value, one
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samples a second value Y 2 ∼Bern(expit(g2
0 +g2

xX +g2
vV +g2

xvXV )) for each person with a miss-
ing response data. This procedure is repeated m times until we have m “complete" datasets. For
each of the m “complete" datasets we then fit the model of interest given by (2.2).

Let α̂r
x denote the estimate of αx from the rth imputed dataset and ωr = v̂ar(α̂r

x) be the naive vari-
ance estimate ignoring the fact that some data had been imputed by simulation. The combined
estimate of αx obtained by multiple imputation is simply the average, so ¯̂αx = ∑

m
r=1 α̂r

x/m is the
reported point estimate from multiple imputation. Let ω̄ = ∑

m
r=1 ωr/m denote the average of the

naive (within imputation) variance estimates, and let ω∗ = (m−1)−1
∑

m
r=1(α̂

r
x− ¯̂αx)2 denote the

variation between imputation samples. Rubin (1987) argues that the asymptotic variance of ¯̂αx
is var( ¯̂αx) = ω̄ +(1+m−1)ω∗ and

¯̂αx−αx√
var
(

¯̂αx

) ∼ tum

approximately, where the degrees of freedom are given by

um = (m−1)
[

1+
mω̄

(1+m)ω∗

]2

.

Wang and Robins (1998) prove consistency and derive the large sample properties of estimators
arising from multiple imputation under correct model specification. More refinements to the
estimated degrees of freedom have since been made (Barnard and Rubin, 1999; Lipsitz et al.,
2002) and are implemented in SAS. We will not get into these issues here, but remark simply that
one appeal of multiple imputation is the ability to make use of auxiliary variables such as V when
constructing the imputation model. In the context of longitudinal data with missing at random
processes (see Section 2.3), this can be achieved by adopting a joint model for the responses over
time (e.g., a mixed model) and, while the primary analysis is to be based only on a final response,
intermediate values can ensure a more suitable imputation process which may translate to more
precise estimates of treatment effects and more powerful tests.

In the present setting with incomplete response data, if the selection model in an inverse weighted
analysis and the imputation model for a multiple imputation analysis are correct, one would not
expect the resulting estimators to differ much since they are both essentially generating pseudo-
complete data in slightly different ways.

2.2.3 An Illustrative Simulation Study

Here we report on a simple simulation study to illustrate these methods. We let pR = 0.50,
P(V = 1) = p = 0.5, αx = log1.5, ηv = log0.5 and ηxv = log2. These specifications can be
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used to obtain values for η0 and ηx. Note that the true odds ratio exp(αx), which would be
consistently estimated in the absence of missing data, is 1.5 in this formulation (αx ≈ 0.4055).
We then specify the missing data model as δx = 0, δv = log2, δxv = log4, and ensure that P(R =
1) = pR = 0.50, so 50% of subjects will have incomplete response data and there is a differential
degree of association between Y and R in the control and treatment arms. The limiting value of
a naive estimate of αx is 0.4831 based on the earlier calculations, giving an asymptotic bias of
approximately 0.0777.

Table 2.1: Simulation results of naive and adjusted analyses using inverse weight-
ing (known and estimated weights) and multiple imputation with incomplete response
data; P(X = 1) = 0.5; P(V = 1) = 0.5; pR = 0.5; α0 = 0, αx = log(1.5) η0 = 0.347,
ηx = 0.059, ηv = log(0.5) = −0.693, ηxv = log(2) = 0.693; pR = 0.5; δ0 = −0.654, δx = 0,
δv = log(2) = 0.693, δxv = log(4) = 1.386; Number of subjects = 500; Number of simulations
= 2000

Method of Analysis Parameter Bias ESE ASE ECP

CCA α0 -0.072 0.201 0.196 93.3
αx 0.076 0.268 0.260 93.1

IPW α0 -0.005 0.204 0.199 95.1
αx 0.009 0.278 0.274 94.1

IPW2 α0 -0.004 0.203 0.200 95.2
αx 0.008 0.279 0.275 94.3

MI α0 -0.004 0.203 0.195 94.2
αx -0.004 0.281 0.277 94.2

CCA is Complete-Case Analysis; IPW is Inverse Probability Weighted analysis with known weights; IPW2 is In-
verse Probability Weighted analysis with estimated weights; MI is Multiple Imputation, which here involved the
creation of m = 20 pseudo-complete datasets

Two thousand datasets of N = 500 individuals were simulated and the following analyses were
carried out: i) a complete-case likelihood analysis using (2.7), ii) an inverse weighted analysis
using (2.9) with weights known, iii) an inverse weighted analysis with weights estimated via
logistic regression, and iv) multiple imputation with m = 20 and the imputation model based on
Y |X ,V . In all cases the response model was simply based on Y |X . The empirical biases, empirical
standard errors (ESE), average asymptotic standard errors (ASE), and empirical coverage of
nominal 95% confidence intervals (ECP) are reported in Table 2.1.
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The empirical biases of the complete-case analyses (expected since ηxv 6= 0 and δxv 6= 0) are
apparent, and this leads to empirical coverage probabilities which are less than the nominal
95% level. The empirical biases from the inverse weighted analyses with known and estimated
weights are negligible and the empirical coverage probabilities are compatible with the 95%
level. The biases are similarly small for the estimators based on multiple imputation and the
empirical coverage probabilities are compatible with the 95% level for these as well. Also note-
worthy is the similarity in the standard errors of the estimates based on inverse weighting and
multiple imputation.

2.2.4 Further Remarks

In many clinical settings there are a number of ad hoc alternative approaches for dealing with
missing response data. In dermatology trials, for example, it is common to use so-called “non-
responder" imputation (Gordon et al., 2006a; Reich et al., 2005a). If, as we have described here,
the response Y = 1 indicates a successful response to treatment (e.g. alleviation of symptoms),
then in non-responder imputation (NRI), individuals who do not provide a response are assigned
a value Y = 0 (i.e. they did not remain in the trial and report an alleviation of symptoms). The
rationale for this crude form of imputation may arise from the notion that anything other than
completing the course of treatment and exhibiting a good clinical response is undesirable and
hence should be treated as a failure. An intuitively appealing aspect of this form of imputation
is that all patients randomised are utilised in the analysis. However with NRI, a naive estimator
of the probability of a successful response given X is, in fact, consistent for the joint probability
P(Y = 1,R = 1|X); this reflects that individuals must both provide a response and the response
must be successful. The validity of estimates achieved through this method depends, therefore,
on the process giving rise to the missing data. If R ⊥ Y,X estimates of response rates within
treatment arms (and therefore also estimates of AD) are conservative in that they are down-
weighted by the probability of a response being observed (in fact, we are consistently estimating
P(Y = 1|X) ·P(R = 1)). When data are not missing completely at random, NRI analyses will
not yield consistent estimates of RR, OR, or AD. Depending on the mechanism giving rise to the
missing data (which is generally unknown), NRI analyses can lead to conservative (too small)
or anti-conservative (too large) estimates of treatment effect. Despite this, NRI is commonly
assumed to be a conservative method of analysis (Saurat et al., 2007).

When responses are continuous, the calculations discussed in previous sections can be carried
out following similar principles; to make this clear we wrote the expressions in a general form
using expectations and explicit probability statements in key places. With continuous responses,
however, another common crude method of imputation is often used called “mean value" impu-
tation. In this case the average value of the response (perhaps for that particular treatment arm,
or overall) is assigned to individuals with missing responses. This strategy can also lead to con-
servative or anti-conservative estimates of treatment effect depending on the particular setting,
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and naive standard errors will not typically reflect the effect of imputation.

The discussion of multiple imputation given earlier is often referred to as “parametric" multi-
ple imputation since it relies on the explicit specification of a parametric model to simulate the
imputed data for each dataset. Other versions of multiple imputation are often adopted which
employ implicit models to exploit the data observed in the sample (Herzog and Rubin, 1983;
Little and Rubin, 2002). If we consider a particular individual with a missing response, “non-
parametric" multiple imputation involves finding individuals in the dataset who are similar to this
particular person with respect to key attributes or a summary measure, and randomly selecting
from the responses in this set of similar individuals (Schenker and Welsh, 1988; Reilly and Pepe,
1997). This sampling is done with replacement to make up multiple complete datasets. Here
judgement is not required to specify a probability model for imputation of the response, but rather
to identify the set of “similar" individuals for each individual with a missing response (Rubin,
1987). Matching, stratification or use of propensity scores are useful for this goal, and several
procedures are available in common statistical packages to facilitate this.

2.3 Methods for the Analysis of Incomplete Longitudinal Data

2.3.1 Notation and Terminology

Consider a longitudinal study in which the plan is to assess each of n individuals over K distinct
assessment times. Let Yi = (Yi1, . . . ,YiK)′ denote the random variable corresponding to the re-
sponse vector for individual i over the K assessments. Suppose that every individual under study
has measurements taken on p baseline covariates so that subject i has baseline covariate vector
Xi = (Xi1, . . . ,Xip)′. We assume Xi is completely observed, and let P(Yi|Xi) denote the probability
model of interest.

We restrict attention to incomplete longitudinal data due to drop-out, and suppose that the last
time an observation for individual i occurred was at time Ki; this is a random variable and we let
ki denote its realisation, as illustrated in Figure 2.2. We can then partition the response vector
as Yi = (Ȳi,Y−i ), where Ȳi = (Yi1, . . . ,YiKi)

′ is observed and Y−i = (Yi,Ki+1, . . . ,YiK) is missing.
Let Ri = (Ri1, . . . ,RiK)′ be the corresponding vector of missing data indicators, where Rik =
I(k ≤ Ki), k = 1, . . . ,K. We can therefore equivalently think of Ri as a random vector or Ki as a
random variable. Little and Rubin (2002) and Rubin (1976) define three classes of missing data
mechanisms for this context.

Data are said to be missing completely at random (MCAR) if missingness (failing to observe a
value) does not depend on any observed or unobserved measurements, i.e. P(Ri|Yi,Xi) = P(Ri).
Data are said to be missing at random (MAR) if, conditional on the observed data, missingness
does not depend on the data that are unobserved; that is, P(Ri|Yi,Xi) = P(Ri|Ȳi,Xi). Data are
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Yi1 Yi2 Yi3 Yi4 Yi5

Ri1 = 1 Ri2 = 1 Ri3 = 1 Ri4 = 0 Ri5 = 0

ASSESSMENTS

Figure 2.2: Schematic of schedule of assessments in longitudinal study with K = 5 for an individual with Ki = 3.

said to be missing not at random (MNAR) (or sometimes not missing at random) if missingness
depends on the value of the realised (but unobserved) response, i.e. P(Ri|Yi,Xi) cannot be sim-
plified. It is perhaps worth emphasising that these terms must be used and interpreted in the
context of the available information (or at least the information being used); MNAR mechanism
can become a MAR mechanism in light of additional information used judiciously.

2.3.2 Likelihood-Based Methods of Estimation and Inference

As in the univariate case, the likelihood for incomplete longitudinal data is developed by speci-
fying the joint distribution of response variable Yi and the missing data indicators Ri (or equiva-
lently Ki), given the covariates Xi. Two classes of models have been proposed based on alternative
factorisations of the joint distribution of (Yi,Ri)|Xi (Little, 1995): one is based on selection mod-
els (Little and Rubin, 2002), the other is based on pattern mixture models (Glynn et al., 1993;
Little, 1993).

With selection models, the joint distribution of Yi and Ri is factored as

P(Ri,Yi|Xi;α,δ ) = P(Ri|Yi,Xi;δ ) P(Yi|Xi;α) , (2.11)

where the distribution of Ri, P(Ri|Yi,Xi;δ ), is indexed by a vector of parameters δ and the distri-
bution of Yi, P(Yi|Xi;α), is indexed by a vector of α .

With pattern-mixture models, the factorisation of the joint distribution is

P(Ri,Yi|Xi;α,δ ) = P(Yi|Xi,Ri;τ) P(Ri|Xi;κ) , (2.12)

where in P(Yi|Xi,Ri;τ), the distribution of Yi, is defined separately for each missing data con-
figuration and indexed by parameters τ , and the distribution of Ri, P(Ri|Xi;κ), is known up to
parameters κ .

When we are concerned with the parameters of the marginal distribution of Y , averaged over the
missing data patterns, it is in many senses more natural to use selection models, because people
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do not want to make inference conditional on the missing data indicators. In the following, we
focus on selection models.

To describe the likelihood based approach we derive the joint density of the observed data (Ȳi,Ri)
by integrating out the missing data Y−i in the selection model of the joint distribution as

P(Ri,Ȳi|Xi;δ ,α) =
∫

P(Ri|Ȳi,Y−i ,Xi;δ ) P(Ȳi,Y−i |Xi;α) dY−i .

Let Ȳ = {Ȳi, i = 1,2, . . . ,N} and R = {Ri, i = 1,2, . . . ,N} for a sample of size N. Then the
observed-data joint likelihood for (δ ′,α ′)′ is

L(δ ,α;Ȳ ,R) =
N

∏
i=1

∫
P(Ri|Ȳi,Y−i ,Xi;δ ) P(Ȳi,Y−i |Xi;α) dY−i . (2.13)

When the missing data mechanism is MAR, P(Ri|Ȳi,Y−i ,Xi) = P(Ri|Ȳi,Xi) and (2.13) becomes

L(δ ,α;Ȳ ,R) =
N

∏
i=1

{
P(Ri|Ȳi,Xi;δ )

∫
P(Ȳi,Y−i |Xi;α) dY−i

}
(2.14)

=
N

∏
i=1
{P(Ri|Ȳi,Xi;δ ) P(Ȳi|Xi;α)} .

If the parameters δ and α are functionally independent, then likelihood inference for α from
(2.14) is the same as a likelihood inference for α from the observed “partial" likelihood simply
using the available data

L(α;Ȳ ) =
N

∏
i=1

P(Ȳi|Xi;α) . (2.15)

Thus likelihood functions are unaffected by MAR mechanisms and this has contributed in part to
the popularity of mixed effects models for the analysis of longitudinal data. If data are MNAR,
then the simplification in (2.14) is not possible and we must use (2.13). This likelihood may lead
to identifiability problems and so sensitivity analyses are often advocated for this case (Robins
et al., 2000).

We remark that, as in the univariate case, one can sometimes identify an auxiliary covariate Vi
which renders Ri ⊥ Y−i |Ȳi,Xi,Vi, so that inclusion of Vi in the analysis causes the missing data
mechanism to be MAR. In this case, consider

P(Ri,Ȳi|Xi,Vi) =
∫

P(Ri|Ȳi,Y−i ,Xi,Vi) P(Ȳi,Y−i |Xi,Vi) dY−i

= P(Ri|Ȳi,Xi,Vi) P(Ȳi|Xi,Vi) .
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This is only useful if we aim to estimate the effect of both Xi and Vi on the distribution of Yi.
Again, however, Vi may be useful for multiple imputation (as in Section 2.2.2) or for inverse
weighting as we discuss in the next section.

2.3.3 Generalised Estimating Equations

Using standard notation for generalised linear models of binary data, we let E(Yik|xi) = P(Yik =
1|xi)= µik and var(Yik|xi)= µik(1−µik), k = 1, . . . ,K. Furthermore, we let Σi(α,ρ)= cov(Yi|xi)=

A
1
2
i Q(ρ)A

1
2
i where Ai = diag{µik(1−µik),k = 1, . . . ,K} and Q(ρ) is a K×K working correlation

matrix with (k,k′) entry, Qkk′(ρ), parameterised in terms of a vector of association parameters
ρ . A marginal generalised linear model is formed by letting g(µik) = x′ikα where g(·) is a known
link function and α = (α0, . . . ,αp)′ is a (p+1)×1 vector of regression coefficients.

Generalised estimating equations for α take the form

U(α,ρ) =
N

∑
i=1

Ui(α,ρ) = 0 (2.16)

where Ui(α,ρ) = G′i(α)Σ−1
i (α,ρ)(Yi− µi), with µi = (µi1, . . . ,µiK)′ and Gi(α) = ∂ µi(α)/∂α ′

a K×(p+1) matrix of derivatives (Liang and Zeger, 1986). If α̂ is the solution for fixed ρ = ρo,
then asymptotically

√
N(α̂−α)∼ N(0,var(

√
N(α̂−α))) with

var(
√

N(α̂−α)) = [A−1(α,ρo)][B(α,ρo)][A−1(α,ρo)]′ , (2.17)

where A(α,ρ) = E(∂Ui(α,ρ)/∂α ′) and B(α,ρ) = E(Ui(α,ρ)U ′i (α,ρ)). When ρ is not speci-
fied, estimation of α is facilitated by iteratively replacing ρ with a

√
N-consistent moment-type

estimate based on estimates of α at successive iterations of a scoring algorithm (Liang and Zeger,
1986).

The functional form of Qkk′(ρ), k 6= k′, k,k′ = 1, . . . ,K, is typically unknown, but even if the
correlation structure is misspecified, consistent estimators of α arise from solving (2.16), and
(2.17) will still hold. However, misspecification of the correlation structure in (2.16) can lead to
inefficient estimators of α and, in more extreme cases, problematic asymptotic properties arise
for the solution (Crowder, 1995). In many cases, the working independence assumption can
yield quite efficient estimators (Sutradhar and Das, 1999), so we set Qkk′(ρ) = ρo = 0 for k 6= k′

in what follows. An estimate of (2.17) is obtained in this case by computing

v̂ar(
√

N(α̂−α)) = [Â−1(α̂,ρo)][B̂(α̂,ρo)][Â−1(α̂,ρo)]′ , (2.18)
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where

Â(α̂,ρo) =−N−1
N

∑
i=1

G′i(α̂)A−1
i (α̂,ρo)Gi(α̂),

and

B̂(α̂,ρo) = N−1
N

∑
i=1

G′i(α̂)A−1
i (α̂,ρo)(yi− µ̂i)(yi− µ̂i)′A−1

i (α̂,ρo)Gi(α̂) .

As in the univariate case, however, this estimating equation approach is not appropriate when
data are incomplete and not missing completely at random.

Selection models provide a natural framework for characterising factors which affect the risk of
attrition in longitudinal studies. Let Rik = I(k ≤ Ki). Selection models involve modelling the
conditional probability of drop-out at each visit, which we denote here as λik = P(Rik = 0|Ri1 =
· · · = Ri,k−1 = 1,yi,xi). As mentioned in Section 2.3.1, the nature of the relation between this
conditional probability of drop-out, covariates, and (possibly missing) responses determines the
impact that drop-outs have on inferences regarding the regression coefficients in the response
model. We restrict attention here to settings in which data are MAR, with any covariate depen-
dence based only on previously observed covariates or responses. In this case, λik may be a
function of Ȳi and Xi, but not of Y−i . Let Hy

ik = {yi1, . . . ,yi,k−1} be the history of the response up
to time k. In practice, we typically let λik depend on Hy

ik and Xi.

Since Rik is a binary variable it is convenient to formulate logistic regression models for the
conditional probability of drop-out given by

log(λik/(1−λik)) = w′ikδ
(k) , (2.19)

where δ (k) = (δ (k)
0 , . . . ,δ

(k)
qk )′ is a (qk +1)×1 vector of regression coefficients characterising the

nature of the relationship between wik and λik, and wik is a covariate vector containing relevant
observed information in Hy

ik and Xi.

The inverse-weighted estimating equations under the working independence assumption take the
form

U(α,δ ) =
N

∑
i=1

Ui(α,δ ) = 0 (2.20)

where under cluster-specific weights as discussed by Fitzmaurice et al. (1995),

Ui(α,δ ) = G′i(α)Σ−1
i (α)∆i(δ )(Yi−µ(Xi;α) ,

Σi(α)= diag{µik(1−µik),k = 1, . . . ,K}, ∆i(δ )= I(Ki = ki)/πi(δ ), and πi(δ )= P(Ki = ki|Ȳi,xi;δ ).
We often assume all subjects are available for the first assessment, so πi(δ ) = λi2(δ ) if ki = 1,
πi(δ ) = (1−λi2(δ ))λi3(δ ) if ki = 2, πi(δ ) = (1−λi2(δ ))(1−λi3(δ )) if ki = 3, etc. In practice,
an estimate of δ can be obtained by fitting ordinary logistic regression models to the missing
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data indicators as appropriate. Inserting δ̂ into (2.20) gives estimating equations which can be
solved for α in the usual fashion (Robins et al., 1995).

2.3.4 Naive Methods of Imputation for Incomplete Longitudinal Data

The “last observation carried forward” (LOCF) imputation approach for dealing with miss-
ing values due to drop-outs operates as follows: if ki < K, missing observations at visits k =
ki + 1, . . . ,K are replaced with the value of the most recently observed response (i.e. yiki). To
distinguish the actual (possibly latent) responses from the pseudo-responses used under this im-
putation scheme, we use Y ∗i to denote the response vector under LOCF imputation. Therefore
Y ∗ik = Yik for k≤ ki and Y ∗ik = Yiki for k > ki, k = 1,2, . . . ,K. We let y∗ik denote the realised value of
Y ∗ik. Assumptions made for the response Yi are adopted for the pseudo-response Y ∗i since analyses
are typically carried out under the assumption that they are in some sense equivalent. In fact,
in most situations for which the assumptions regarding Yi are true, they will not be true for Y ∗i ,
implying that the estimating equation (2.16) is misspecified for the pseudo response. As with
the other naive imputation approaches discussed earlier, LOCF leads to inconsistent estimators
in a wide variety of settings and can result in either conservative or anti-conservative estimates
of treatment effect.

The frequency properties of estimators of α based on Y ∗i have been investigated under a wide
range of settings by several authors (Cook et al., 2004; Prakash et al., 2008) based on the theory
of misspecified models (White, 1982a; Rotnitzky and Wypij, 1994).

2.4 Methods for Dealing with Incomplete Covariate Data in
Observational Studies

2.4.1 Likelihood Analyses

Now consider a similar estimation problem to the one considered in Section 2.2, but suppose
that it is the covariate X which is subject to incomplete measurement. We again assume that Y is
generated through (2.1) so P(Y = 1|X ,V ;η) = expit(η0 +ηxX +ηvV +ηxvXV ), and we wish to
estimate α in P(Y = 1|X ;α) as defined in (2.2).

In this observational study setting, we let R = I(X observed) indicate whether the covariate value
of interest was recorded. The observed data likelihood can then be written as

L ∝ P(Y,X ,R = 1)R P(Y,R = 0)1−R , (2.21)
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where we can marginalise over X with ∑x P(Y,X = x,R = 0) to obtain P(Y,R = 0), the contribu-
tion from individuals for whom X is unobserved.

As in the case of incomplete responses, the tendency is to focus on simple analyses such as those
restricted to individuals with complete covariate data. In this case the adopted likelihood would
be based on the response model with the implicit condition R = 1 and so is proportional to

P(Y |X ,R = 1) =
P(R = 1|Y,X) P(Y |X)

∑y P(R = 1|Y = y,X) P(Y = y|X)

=
P(R = 1|Y,X)
P(R = 1|X)

P(Y |X) . (2.22)

If R⊥ Y |X , then (2.22) reduces to P(Y |X) and a complete-case analysis will yield consistent es-
timators of α , but otherwise inconsistent estimators are obtained; we show this by example in the
simulation studies that follow and in Section 2.5 we give a more in-depth examination of what
is being estimated by such an approach. Note that with incomplete covariate data, missingness
can depend on the potentially missing variable (X) and a complete-case analysis remains valid
because it involves conditioning on this covariate; this is in contrast to the setting of missing re-
sponses where the missing data must be modelled. However even when valid, this complete-case
analysis ignores the information contained in the responses from individuals with incomplete
data, and therefore may result in less than optimal efficiency.

2.4.2 An EM Algorithm

If one makes assumptions regarding the distribution of the incomplete covariate in likelihood
analyses based on (2.21), one can exploit information from individuals with R = 0 and improve
efficiency. To see this note that the second term in (2.21),

P(Y,R = 0) =
1

∑
x=0

P(Y |X = x) P(X = x) P(R = 0|Y,X = x) ,

is indexed by α (as well as the parameters in P(X) and those of the missing data process). If
P(R|Y,X) = P(R|Y ) or P(R), then the missing data process can be modelled using observed
data. If P(R|Y,X) = P(R|X), then while this is a desirable missing data process for complete-
case analysis (see (2.22)), in this setting there is a need to make uncheckable assumptions about
the missing data process, since the modelled dependence between R and X cannot be verified
in general. Progress can be made here if an auxiliary variable V can be found which satisfies
R⊥ X |V,Y .

The assumptions that are needed to exploit information from individuals with R = 0 could include
the fully specified conditional covariate distribution, or simply its parametric form. In the latter

32



case, the EM algorithm offers a convenient method for estimation (Dempster et al., 1977). The
complete data likelihood LC corresponding to (2.21) is proportional to

[P(R|Y,X) P(Y |X) P(X)]R [P(R|Y,X) P(Y |X) P(X)]1−R .

We typically would work with the “partial" complete data likelihood

LC ∝ [P(Y |X) P(X)]R [P(Y |X) P(X)]1−R (2.23)

under the assumption that the information regarding α in the missing-data model is negligible.
Working with (2.23) then requires an expression for

P(X |R = 0,Y ) =
P(R = 0|Y,X) P(Y |X) P(X)

∑x P(R = 0|Y,X = x) P(Y |X = x) P(X = x)
(2.24)

for the expectation step of the EM algorithm, which if R⊥ X |Y gives simply

P(Y |X) P(X)
∑x P(Y |X = x) P(X = x)

. (2.25)

It is clear from (2.25) that the partial complete data likelihood (2.23) can be used only if P(R|Y,X)=
P(R|Y ).

Suppose now that R 6⊥ X |Y but there exists a completely observed covariate V which renders
R⊥X |Y,V . Again for simplicity we assume V is binary with P(V = 1) = p and P(V = 0) = 1− p.
Then the partial complete data likelihood can be expressed as

LC ∝ [P(Y |X) P(X) P(V |Y,X)]R [P(Y |X) P(X) P(V |Y,X)]1−R (2.26)

(Horton and Laird, 2001), and the requirement for consistent estimation using the associated
EM algorithm is then that P(R|Y,X ,V ) = P(R|Y,V ). We note however, that this approach also
requires correct specification of models for P(V |Y,X) and P(X).

2.4.3 Multiple Imputation with Missing Covariates

Multiple imputation can be carried out using a model for P(X |Y,V,R) = P(X |Y,V ) and because
X ⊥ R|Y,V , the model for X |Y,V can be fitted based on individuals with complete data. Here this
can be easily fitted using a saturated logistic regression model

P(X = 1|Y,V ) = expit(ζ0 +ζyY +ζvV +ζyvYV ) . (2.27)

Following the same arguments given in Section 2.2.2, for any given dataset we may carry out
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multiple imputation of X based on the model P(X |Y,V ). We may also carry out multiple impu-
tation in a less parametric manner by using a technique based on an implicit model, such as ap-
proximate Bayesian bootstrap imputation, which imputes missing values by repeatedly sampling
with replacement from observations of individuals deemed to be within the same adjustment
class as the individuals with a missing covariate (Rubin and Schenker, 1986; Little and Rubin,
2002). This approach is similar to hot-deck imputation (Reilly and Pepe, 1995), but is proper in
the sense that variance estimates discussed earlier still apply (Little and Rubin, 2002).

2.4.4 Inverse Probability Weighted Estimating Functions

Inverse probability weighting can be used to obtain unbiased estimating functions for a complete-
case analysis. If P(R|Y,X ,V ) = P(R|Y,V ), then we can write the inverse weighted estimating
function as

U(α) =
N

∑
i=1

Ri

P(Ri = 1|Yi,Vi;δ )
(Yi−E(Yi|Xi;α)) [1, Xi]

′ , (2.28)

and this can be shown to have expectation zero. Since the model in the weight indicates a
dependence on (Yi,Vi) which are always observed, this model can be fit and a

√
N-consistent

estimator of δ inserted; a consistent estimator of α will then be obtained by setting (2.28) equal
to zero and solving for α .

2.4.5 An Illustrative Simulation Study

Here we report on a simulation study designed to demonstrate the performance for several meth-
ods of dealing with missing covariates when the covariate X is incomplete and missingness is
governed by the model

P(R = 1|Y,X ,V ;δ ) = expit(δ0 +δvV ). (2.29)

We consider the response model (2.1) with ηx = log(1.5) and ηv = 0 in (2.2). We then con-
sider two incomplete covariate settings – one where ηxv = 0 so Y⊥V |X and, in turn, Y⊥R|X ;
and one setting where ηxv = log(4), so the complete dataset is response biased. We generate the
binary X so that P(X = 1|V ) = expit(β0 + βvV ), where βv = log(1.5) and β0 is chosen so that
P(X = 1) = 0.5. We also set P(V = 1) = 0.5, P(Y = 1) = 0.5, δv = log(1.2) and find δ0 in (2.29)
so that P(R = 1) = 0.5; so for 50% of subjects we would expect the covariate to be missing. We
generated data for samples of 500 and 2000 individuals in each of 2000 simulated datasets. The
analyses conducted included a complete-case analysis, an inverse probability weighted analy-
sis with known weights, an inverse probability weighted analysis with weights estimated using
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the true observation model πi = expit(δ0 + δvV ), an inverse probability weighted analysis with
weights estimated using the model πi = expit(δ ∗0 +δ ∗y Y +δ ∗v V +δ ∗yvYV ), an EM algorithm which
used saturated binomial models for modelling P(V |Y,X) and P(X), and multiple imputation. The
imputation model adopted was a saturated logistic regression model for X given (Y,V ), involving
four parameters: the intercept, two main effects, and the two-way interaction. Simulations and
analyses were carried out in R version 2.15.1 and SAS 9.2.

The empirical biases, empirical standard errors, average asymptotic standard errors, and empiri-
cal coverage probabilities are reported in Tables 2.2 and 2.3 for sample sizes of 500 (left column)
and 2000 (right column). Table 2.2 corresponds to the case where R⊥Y |X ; in Table 2.3, R 6⊥Y |X
but R⊥ Y |X ,V . For the purpose of comparison, we also include the results that could have been
achieved if all covariates were available for analysis (that is if there were no missing values).

The results for the setting with Y ⊥ R|X indicate that all methods yielded approximately unbi-
ased estimates, close agreement between the empirical and average asymptotic standard errors,
and empirical coverage that was compatible with the nominal 95% level; see Table 2.2. The
efficiency gains realised by modelling the covariate distribution are apparent by comparing the
standard errors from the complete-case analysis with those of the EM algorithm. Similar gains in
efficiency were achieved through multiple imputation and through the modelling of the selection
probabilities in the inverse probability weighted analysis using estimated post-stratified weights
(i.e. using πi = expit(δ ∗0 + δ ∗y Y + δ ∗v V + δ ∗yvYV )). It is interesting to note that similar gains in
efficiency over a complete-case analysis were not observed when weights were estimated using
only V .

For Table 2.3, the empirical biases from the complete-case analyses expected due to (2.22) are
apparent. The other methods yielded estimators with much smaller empirical biases and better
coverage probability; the difference is especially noticeable with the smaller standard errors
provided by the larger sample size. The empirical coverage probabilities for all valid methods
were compatible with the nominal 95% level. The EM algorithm and MI approaches resulted in
small biases and standard errors. It is interesting to note that the post-stratified inverse probability
weighted analysis incorporating Y in the estimation of weights had empirical efficiency that was
very similar to that achieved by the EM and MI approaches here, while the IPW and IPW2
approaches were less efficient. The EM, MI, and IPWps approaches had relatively small standard
errors and good coverage probabilities. However, a comparison with the efficiency of the analysis
using full data shows that the loss in efficiency due to the missingness was significant even when
these methods of analysis were employed.
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Table 2.2: Simulation results of naive and adjusted analyses using inverse weighting, EM,
and multiple imputation to account for an ignorably incomplete covariate X ; P(X = 1) = 0.5;
P(V = 1) = 0.5; P(Y = 1) = 0.5; ηx = log(1.5); ηv = 0; P(R = 1) = 0.5; δv = log(2); Number
of simulations = 2000

Sample Size: 500 Sample Size: 2000

Method Parameter Bias ESE ASE ECP Bias ESE ASE ECP

Y ⊥ R|X (ηxv = 0)

CCA α0 -0.007 0.182 0.183 95.0 -0.002 0.091 0.091 95.0
αx 0.016 0.259 0.256 94.4 0.001 0.124 0.127 95.7

IPW α0 -0.006 0.185 0.185 94.9 -0.002 0.092 0.092 95.2
αx 0.014 0.263 0.260 94.5 0.001 0.126 0.129 95.6

IPW2 α0 -0.006 0.185 0.186 94.7 -0.002 0.092 0.092 95.3
αx 0.013 0.263 0.261 94.3 0.001 0.126 0.129 95.7

IPWps α0 -0.005 0.156 0.159 94.7 -0.001 0.077 0.079 96.2
αx 0.013 0.263 0.261 94.3 0.001 0.126 0.129 95.5

EM α0 -0.005 0.156 0.159 95.9 -0.001 0.077 0.079 96.2
αx 0.013 0.262 0.259 94.3 0.001 0.126 0.129 95.5

MI α0 -0.005 0.158 0.159 95.8 -0.001 0.079 0.079 95.5
αx 0.013 0.262 0.259 94.3 0.000 0.130 0.129 95.0

Full Data α0 -0.003 0.124 0.128 95.0 -0.002 0.063 0.064 95.4
αx 0.009 0.178 0.180 96.0 0.003 0.091 0.090 94.8

CCA denotes a Complete-Case Analysis; IPW denotes a Inverse Probability Weighted analysis with known weights;
IPW2 denotes a Inverse Probability Weighted analysis with estimated weights based on the correct model; IPWps

denotes a Inverse Probability Weighted analysis with estimated weights based on the saturated model; EM denotes
an EM algorithm; MI denotes Multiple Imputation, which here involved the creation of m = 20 pseudo-complete
datasets; Full Data demonstrates the efficiency that would be possible if no covariates were missing
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Table 2.3: Simulation results of naive and adjusted analyses using inverse weighting, EM,
and multiple imputation to account for an ignorably incomplete covariate X ; P(X = 1) = 0.5;
P(V = 1) = 0.5; P(Y = 1) = 0.5; ηx = log(1.5); ηv = 0; P(R = 1) = 0.5; δv = log(2); Number
of simulations = 2000

Sample Size: 500 Sample Size: 2000

Method Parameter Bias ESE ASE ECP Bias ESE ASE ECP

Y 6⊥ R|X (ηxv = log(4))

CCA α0 -0.009 0.189 0.188 95.1 -0.003 0.095 0.093 95.0
αx 0.136 0.270 0.268 92.4 0.117 0.132 0.133 86.5

IPW α0 -0.008 0.193 0.191 95.1 -0.003 0.097 0.095 94.8
αx 0.021 0.274 0.271 95.2 0.003 0.133 0.135 95.7

IPW2 α0 -0.008 0.193 0.191 95.2 -0.003 0.097 0.095 94.7
αx 0.020 0.271 0.271 95.5 0.004 0.133 0.134 95.7

IPWps α0 -0.008 0.164 0.165 95.5 -0.004 0.083 0.081 94.7
αx 0.020 0.272 0.271 95.5 0.004 0.132 0.134 95.7

EM α0 -0.008 0.164 0.164 95.5 -0.004 0.083 0.081 94.6
αx 0.020 0.272 0.269 95.5 0.004 0.132 0.134 95.6

MI α0 -0.010 0.167 0.164 95.0 -0.004 0.085 0.082 93.7
αx 0.025 0.281 0.267 94.4 0.004 0.137 0.133 94.6

Full Data α0 -0.004 0.128 0.131 96.0 -0.002 0.066 0.065 94.7
αx 0.012 0.186 0.187 95.0 0.001 0.091 0.093 95.7

CCA denotes a Complete-Case Analysis; IPW denotes a Inverse Probability Weighted analysis with known weights;
IPW2 denotes a Inverse Probability Weighted analysis with estimated weights based on the correct model; IPWps

denotes a Inverse Probability Weighted analysis with estimated weights based on the saturated model; EM denotes
an EM algorithm; MI denotes Multiple Imputation, which here involved the creation of m = 20 pseudo-complete
datasets; Full Data demonstrates the efficiency that would be possible if no covariates were missing
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2.4.6 A Note on Generalisability

When the response Y or covariate of interest X is not binary, specification of models for E[Y |X ,V ;η ]
and E[Y |X ;α] may be more complicated. In particular, when X is continuous, the models (2.1)
and (2.2) may be incompatible in the sense that they cannot be simultaneously correct. In prac-
tice, it is generally only necessary to specify the response model of interest – here (2.2); the
specification of (2.1) is presented only for ease of discussion. It would be necessary to specify
the (potentially incompatible) expanded response model (2.1) when utilising a parametric im-
putation approach for the analysis of incomplete response data, however many non-parametric
imputation approaches can be implemented which do not require this explicit model specifi-
cation. Robins and Wang (2000) derived the asymptotic properties of estimators based on a
fully-parametric imputation model that may be incompatible with the response model.

This approach of specifying both (2.1) and (2.2) in the setting where they are compatible is also
utilised in the next section to allow for a precise discussion of the effects of model misspecifica-
tion in the analysis of incomplete data.

2.5 Issues of Model Misspecification with Incomplete Data

In the discussion and simulations thus far, it has been assumed that the models were correctly
specified. It is important to recognise however, that misspecification is routinely a problem and
here we explore this important issue in the context of the methods we have discussed. Again
suppose that interest lies in estimation of the parameter α in the mean model

µ(X ;α) = E[Y |X ;α],

where the response model is in the exponential family (McCullagh and Nelder, 1989).

When response values are MAR, data can be analysed through the use of imputation or inverse
weighting as demonstrated in Section 2.2. In different ways, these two approaches create rect-
angular datasets which can be analysed with available software: the inverse weighting approach
restricts attention to individuals with complete responses and achieves consistent estimators by
weighting contributions by the inverse of the probability of an individual being complete, while
imputation creates a pseudo-complete dataset involving all individuals by replacing missing re-
sponses with imputed values.

With correct specification of the model assumptions associated with the handling of incomplete
data (the model for the probability of being observed in the case of inverse weighting and the
imputation model in the case of imputation), then the resultant estimators are consistent. The
relative efficiencies of these methods have been compared in a variety of settings when the model
assumptions are correct (Rubin, 1987; Reilly and Pepe, 1997; Seaman et al., 1999; Carpenter
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et al., 2006). However, when the necessary model assumptions for handling incomplete data are
incorrectly specified, it is less clear how these methods compare.

We explore here the limiting values of estimators resulting from inverse probability weighting
and multiple imputation when model assumptions are violated. We derive the limiting values of
estimators in the simple case where variables are binary and show the asymptotic bias of these
estimators when model assumptions are incorrect. This comparison of asymptotic bias provides
a greater understanding of the implicit effects of the assumptions in these analyses and allows
for a comparison of robustness of the methods of analysis to model misspecification.

2.5.1 Asymptotic Behaviour of Estimators from Estimating Functions

Let α̂ be the solution to the estimating equation U(α̂) = ∑
N
i=1Ui(α̂) = 0. The Taylor series

expansion of this function is a first step towards deriving the limiting behaviour of the estimator
under the mild regularity conditions discussed by Wild (1991). Since

U(α̂) = U(α)+ I(α)(α̂−α)+op(N−1/2),

where I(α) =−∂U(α)/∂α ′ then with U(α̂) = 0

(α̂−α) = I−1U(α)+op(N−1/2).

If E[Ui(α)] = 0, then by the Central Limit Theorem (Grimmett and Stirzaker, 2007)

N−1/2U(α) = N−1/2
N

∑
i=1

Ui(α) D→MV N(0,B),

where B = cov(Ui(α)), and by Slutsky’s theorem (Resnick, 1999)

N−1/2(α̂−α) D→MV N(0,A−1BA−′),

where A = plim N−1I(α).

Therefore, α̂ consistently estimates the parameter α satisfying E[Ui(α)] = 0. These results are
useful for deriving the limiting distribution of estimators obtained by solving estimating equa-
tions. This can be used to discover exactly what is being estimated when models for imputation
or for inverse probability weighting are misspecified; one can derive the limiting value of param-
eter estimates for the weights when the selection model is misspecified, and given the resultant
incorrect weights, the limiting values of the estimators arising from the inverse weighted esti-
mating equations can be obtained. We pursue this and related issues in subsequent sections.
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2.5.2 Misspecified Models for Handling Incomplete Responses

As before, we assume that there exists an auxiliary covariate V which is known for all individ-
uals and which renders the response and missingness indicator conditionally independent; i.e.
Y 6⊥R|X , but Y⊥R|X ,V . Thus, observation of V results in a missing at random (MAR) mecha-
nism, but if V is not available then response data are MNAR; conditioning on V in the response
model renders the missing data mechanism ignorable (Little and Rubin, 2002).

We consider simple violations to the model assumptions necessary for achieving consistent esti-
mators through inverse probability weighting and multiple imputation. These violations of model
assumptions arise from ignoring interaction effects between V and X . We derive the limiting dis-
tributions of estimators arising from these methods of analysis and relate them to the true α (i.e.
we will compare (2.31), (2.32), and (2.33) to (2.30)). Writing the limiting values of these estima-
tors explicitly facilitates an understanding of how the estimators are affected by model violations
and enables an assessment and comparison of asymptotic biases (that is, a comparison between
what is being consistently estimated and what we want to be consistently estimating).

Suppose that Y,X ,V are univariate and binary and arise according to the following models:

E[Y |X ,V ;η ] = expit(η0 +ηxX +ηvV +ηxvXV ),
P(R = 1|Y,X ,V ;δ ) = expit(δ0 +δxX +δvV +δxvXV ),

and suppose that X and V are independent.

The mean model of interest is E[Y |X ;α] = expit(α0 + αxX), and the true value of α can be
recovered from η and P(V ) by noting that

E[Y |X ;α] = EV{E[Y |X ,V ;η ]}. (2.30)

Complete-Case Analysis

A natural estimator in the presence of incomplete data is one which restricts attention to only
those individuals who provide complete information. That is, we could estimate α with the
complete-case estimator α̂cc which solves the estimating equation

0 =
N

∑
i=1

RiUi(α) =
N

∑
i=1

Ri
[
Yi−E[Yi|Xi;α]

]
[1, Xi]

′ .

The resulting estimator will consistently estimate the parameter of interest, α , whenever Y⊥R|X .
Therefore complete-case (CC) analyses will yield consistent estimators of α for missing data
mechanisms which are MCAR and for some MAR missing data mechanisms, since in these
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special cases, the subsets of individuals that are completely observed are representative of the
original sample.

Here, however, α̂cc will not consistently estimate α since (Y 6⊥R)|X . The limiting value of α̂cc

is the solution to 0 = E[RiUi(α)] where

E[Y |X ;α
cc] = E[Y |X ,R = 1;η ,δ ] =

EV

{
E[Y |X ,V ;η ]P(R = 1|X ,V ;δ )

}
EV

{
P(R = 1|X ,V ;δ )

} , (2.31)

since X⊥V and Y⊥R|X ,V . Note that if Y⊥R|X , which occurs if Y⊥V |X or R⊥V |X (that is,
ηv = ηxv = 0 or δv = δxv = 0), then (2.31) reduces to (2.30) and the complete case estimator is
consistent for the true parameter of interest (i.e. αcc = α).

Inverse Probability Weighting

Analyses which restrict attention to completely observed individuals can be made more gener-
ally useful by reweighting the observations so they are representative of the original sample.
This is possible for a MAR incomplete dataset by exploiting the observed variates V that render
Y⊥R|X ,V to find the inclusion probability π(Xi,Vi) = P(Ri = 1|Xi,Vi). The inverse probability
weighted (IPW) estimator is the solution to the Horvitz-Thompson-style estimating equation

0 =
N

∑
i=1

Ūi(α) =
N

∑
i=1

Ri Ui(α)
π(Xi,Vi)

=
N

∑
i=1

Ri

π(Xi,Vi)
[
Yi−E[Yi|Xi;α]

]
[1, Xi]

′ .

This IPW estimator will be consistent provided Y⊥R|X ,V and that π(Xi,Vi) is correctly modelled
and bounded away from 0 (Robins et al., 1994; Lawless et al., 1999). In this case, data will be
MCAR within classes defined by (X ,V ); this missing data mechanism is sometimes called quasi-
randomisation (Little and Rubin, 2002).

Suppose inverse probability weighting is used, but that the covariate V is not used properly
to render the missing data mechanism MAR. We consider the situations where the model for
missingness π(Xi,Vi;δ ) is incorrectly modelled as

π(Xi,Vi;δ
∗) = expit(δ ∗0 +δ

∗
x X +δ

∗
v V )

where the interaction between X and V is omitted. A root of E[Ūi(α)] is then α ipw, where

E[Y |X ;α
ipw] =

EV
{

E[Y |X ,V ;η ]P(R = 1|X ,V ;δ )/π(X ,V ;δ ∗)
}

EV
{

P(R = 1|X ,V ;δ )/π(X ,V ;δ ∗)
} , (2.32)

41



since

0 = ERY XV

{
Ri

π(Xi,Vi)
(Yi−E[Yi|Xi;α]) [1, Xi]

′
}

= EY XV

{
P(Ri = 1|Xi,Vi)

π(Xi,Vi)
(Yi−E[Yi|Xi;α]) [1, Xi]

′
}

, as (R⊥Y )|X ,V

= EXV

{
P(Ri = 1|Xi,Vi)

π(Xi,Vi)
(E[Yi|Xi,Vi]−E[Yi|Xi;α]) [1, Xi]

′
}

= EX

{[
EV

{
P(Ri = 1|Xi,Vi)

π(Xi,Vi)
E[Yi|Xi,Vi]

}
−EV

{
P(Ri = 1|Xi,Vi)

π(Xi,Vi)

}
E[Yi|Xi;α]

]
[1, Xi]

′
}

.

Thus if the missingness model is correctly specified so π(X ,V ) = P(R = 1|X ,V ;δ ) (i.e. if δxv =
0, so δ ∗ = δ ), then (2.32) reduced to (2.30) and the IPW estimator consistently estimates the true
parameter of interest (i.e. α ipw = α). Note that if V had been ignored entirely in the model for
missingness (i.e. in the case that π(Xi,Vi) is misspecified as π(Xi,Vi;δ ∗∗) = expit(δ ∗∗0 +δ ∗∗x X)),
then (2.32) would reduce to (2.31) (i.e. α ipw = αcc).

Multiple Imputation

As discussed in Section 2.2.2, analyses need not be restricted to individuals with complete data
if it is possible to impute appropriate values for the missing data and then analyse the completed
dataset. If we create a pseudo-complete set of responses Y imp by imputing values for incomplete
responses, α can be estimated by solving the pseudo-complete data estimating equation

0 =
N

∑
i=1

U imp
i (α) =

N

∑
i=1

[
Y imp

i −E[Yi|Xi;α]
]
[1, Xi]

′ .

There has been much research into how to properly impute these values and much care must be
taken to ensure that variance estimates remain valid (Rubin, 1987; Xie and Paik, 1997; Schafer,
1999).

We consider here analogous misspecification to that defined for IPW where the covariate V is
not fully exploited. Here, missing responses might be incorrectly imputed so that

E[Y imp
i |Xi,Vi] = E[Yi|Xi,Vi;η

∗] = expit(η∗0 +η
∗
x X +η

∗
v V )

which ignores the interaction between X and V . This represents the use of regression imputation
based on a misspecified model, or hot-deck or approximate Bayesian bootstrap imputation where
adjustment classes are incorrectly specified (Little and Rubin, 2002).
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In practice, this imputation estimator is found by solving

0 =
N

∑
i=1

{
Ri
[
Yi−E[Yi|Xi;α]

]
+(1−Ri)

[
Y imp

i −E[Yi|Xi;α]
]}

[1, Xi]
′ ,

and a root of E[U imp
i (α)] is α imp where

E[Y |X ;α
imp] = EV

{
P(R = 1|X ,V )E[Y |X ,V ]+ [1−P(R = 1|X ,V )]E[Y imp|X ,V ]

}
.

We are supposing that the imputation model is misspecified so that E[Y imp|Xi,Vi] = E[Yi|Xi,Vi;η∗],
where the parameter η∗ is consistently estimated using the misspecified estimating equation

0 =
N

∑
i=1

Ri Si(η) =
N

∑
i=1

Ri [Yi−E(Yi|Xi,Vi;η)] [1, Xi, Vi]
′ .

So, η∗ solves

0 = E[RiSi(η∗)]

= EY XV

{
P(Ri = 1|Xi,Vi;δ )

[
Yi−E[Yi|Xi,Vi;η

∗]
]
[1, Xi, Vi]

′
}

= EXV

{
P(Ri = 1|Xi,Vi;δ )

[
E[Yi|Xi,Vi;η ]−E[Yi|Xi,Vi;η

∗]
]
[1, Xi, Vi]

′
}

.

Since X is binary, this gives 0 = EV

{
P(Ri = 1|1,Vi;δ )

[
E[Yi|1,Vi;η ]− E[Yi|1,Vi;η∗]

]}
and

0 = EV

{
∑

1
x=0 P(Ri = 1|Xi = x,Vi;δ )

[
E[Yi|Xi = x,Vi;η ]−E[Yi|Xi = x,Vi;η∗]

]
P(Xi = x)

}
so

P(Ri = 1|0,Vi;δ )
[
E[Yi|0,Vi;η ]−E[Yi|0,Vi;η∗]

]
= 0. Therefore P(Ri = 1|Xi,Vi;δ )

[
E[Yi|Xi,Vi;η ]−

E[Yi|Xi,Vi;η∗]
]
= 0 and so α imp satisfies

E[Y |X ;α
imp] = EV

{
E[Y |X ,V ;η

∗]+P(R = 1|X ,V )
[
E[Y |X ,V ;η ]−E[Y |X ,V ;η

∗]
}

= EV{E[Y |X ,V ;η
∗]} (2.33)

when X is binary.

Note that the expected conditional mean (ECM) estimator discussed earlier estimates E[Y |X ;α]
through estimation of EV{E[Y |X ,V ;η ]}, so the misspecified imputation approach described here
has the same asymptotic bias as the ECM estimator using η∗ for η (i.e. when the estimating
equation for η ignores the interaction term between X and V ).

If the imputation model was correctly specified so that E[Y |X ,V ;η ] = E[Y |X ,V ;η∗] (i.e. ηxv = 0),
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then (2.33) reduces to (2.30) and the imputation estimator consistently estimates the true param-
eter α generating the data. If missing responses are imputed using adjustment classes defined by
X alone, then (2.33) reduces to (2.31) (i.e. α imp = αcc).

Augmented Inverse Probability Weighting

Robins et al. (1994) showed that the IPW estimating equation could be augmented to exploit
the partial information available on individuals with incomplete data. As a result, an augmented
inverse probability weighted (AIPW) estimator of the form

0 =
N

∑
i=1

¯̄Ui(α) =
N

∑
i=1

Ri

π(Xi,Vi)
Ui(α)− Ri−π(Xi,Vi)

π(Xi,Vi)
φ(Xi,Vi)

can be asymptotically more efficient than the IPW estimator. In the absence of further auxiliary
covariates, the optimal choice for the augmentation function φ(·) is φ

opt
U = E[U(α)|X ,V ] (Robins

et al., 1994; Tsiatis, 2006; Yu and Nan, 2006). In practice, the term φ
opt
U can be approximated

by specifying an appropriate model for Y|X,V, as in the imputation approach. So, the AIPW
estimator requires specification of both an ‘imputation’ model and a model for the inclusion
probability, π(Xi,Vi) = P(Ri|Xi,Vi). The AIPW estimator is ‘double robust’ in the sense that the
estimator will remain consistent if either model is correctly specified. To see this note

EY,X ,V

{
ER|Y,X ,V{Ri}
π(Xi,Vi;δ )

Ui(α)−
ER|Y,X ,V{Ri}−π(Xi,Vi;δ )

π(Xi,Vi;δ )
φ(Xi,Vi)

}
equals zero whenever π(·;δ ) is correctly modelled. Moreover, note that if the ‘imputation’ model
is correct, so that φ

opt
U (Xi,Vi) = EY |X ,V [Ui(α)], then the AIPW estimating function is unbiased

when data are MAR since

ER,Y,X ,V

{
Ui(α)+

Ri−π(Xi,Vi;δ )
π(Xi,Vi;δ )

Ui(α)− Ri−π(Xi,Vi;δ )
π(Xi,Vi;δ )

EY |X ,V [Ui(α)]
}

= ER,Y,V

{
Ri−π(Xi,Vi;δ )

π(Xi,Vi;δ )
(
EY |R,X ,V [Ui(α)]−EY |X ,V [Ui(α)]

)}
= 0. (2.34)

In practice, Robins et al. (1994) recommend estimating φ
opt
U with an empirical estimate of

EY |X ,V [Ui(α ipw)] based on the completely observed data. There has been some discussion re-
cently about the utility of iteratively updating the estimate of φ

opt
U as α is estimated (Lumley

et al., 2011; Scott and Wild, 2011a). In our simulations in Chapter 3, we demonstrate that this
iteration results in perceivable small-sample efficiency gains for the AIPW estimator. Further-
more we note here that without this iterative updating, the expectation of the AIPW estimating
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function in (2.34) is actually

ER,Y,V

{
Ri−π(Xi,Vi;δ )

π(Xi,Vi;δ )
(
EY |R,X ,V [Ui(αaipw)]−EY |X ,V [Ui(α ipw)]

)}
;

so the AIPW estimator is not unbiased if αaipw 6= α ipw, which will occur whenever the selection
model π(Xi,Vi;δ ) is incorrectly specified. Therefore, this iterative estimation of φ

opt
U is required

to ensure that the AIPW estimator is double robust.

It remains of interest, however, to explore what is being estimated when both models are incor-
rectly specified. This question has seen some exploration through the use of simulation studies
(see Bang and Robins, 2005; Kang and Schafer, 2007), but we attempt to provide a more com-
prehensive examination here by deriving the limiting value of the estimator under misspecified
models.

We again consider the misspecified models considered above with the IPW and MI estimators.
We suppose that π(Xi,Vi;δ ) is incorrectly modelled as

π(Xi,Vi;δ
∗) = expit(δ ∗0 +δ

∗
x X +δ

∗
v V )

where the interaction between X and V is omitted; we further suppose that the model for the
expectation of Y|X,V ignores the interaction between X and V and is modelled using

E[Yi|Xi,Vi;η
∗] = expit(η∗0 +η

∗
x X +η

∗
v V ).

Then, the AIPW estimator is consistently estimating αaipw which satisfies

0 =E[ ¯̄Ui(α)]

=ERY XV

{
Ri

π(Xi,Vi;δ ∗)
(Yi−E[Yi|Xi;α]) [1, Xi]

′−

Ri−π(Xi,Vi;δ ∗)
π(Xi,Vi;δ ∗)

E
[
(Yi−E[Yi|Xi;α]) [1, Xi]

′ |Xi,Vi;η
∗]}

=EY XV

{
P(Ri = 1|Xi,Vi;δ )

π(Xi,Vi;δ ∗)
(Yi−E[Yi|Xi;α]) [1, Xi]

′−

P(Ri = 1|Xi,Vi;δ )−π(Xi,Vi;δ ∗)
π(Xi,Vi;δ ∗)

(E[Yi|Xi,Vi;η
∗]−E[Yi|Xi;α]) [1, Xi]

′
}
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=EXV

{
P(Ri = 1|Xi,Vi;δ )

π(Xi,Vi;δ ∗)
(E[Yi|Xi,Vi;η ]−E[Yi|Xi;α]−E[Yi|Xi,Vi;η

∗]+E[Yi|Xi;α]) [1, Xi]
′+

(E[Yi|Xi,Vi;η
∗]−E[Yi|Xi;α]) [1, Xi]

′
}

=EX

{
EV
{P(Ri = 1|Xi,Vi;δ )

π(Xi,Vi;δ ∗)
(E[Yi|Xi,Vi;η ]−E[Yi|Xi,Vi;η

∗])+

(E[Yi|Xi,Vi;η
∗]−E[Yi|Xi;α])

}
[1, Xi]

′
}

,

so

E[Y |X ;α
aipw] = EV

{
P(R = 1|X ,V ;δ )

π(X ,V ;δ ∗)
(
E[Y |X ,V ;η ]−E[Y |X ,V ;η

∗]
)}

+EV

{
E[Y |X ,V ;η

∗]
}

.

(2.35)

Note that if δ ∗ = δ or η∗ = η , then (2.35) would reduce to (2.30) and the AIPW estimator would
consistently estimate the true parameter α generating the data (i.e. αaipw = α).

Exploration of Asymptotic Biases under Model Misspecification

For further insight to the biases resulting from misspecification of the models in imputation (IMP)
and inverse probability weighted (IPW) methods for analysing incomplete data, consider the
asymptotic biases that result from a specified parameter set where ηx = δx = 0, ηv = δv = log1.2,
P(Y = 1) = .5,P(X = 1) = .5, and unless otherwise noted, ηxv = δxv = 2, P(R = 1) = .5, and
P(V = 1) = .5; we also consider separately the effect of a range of values for ηxv, δxv, P(R = 1),
and P(V = 1). The limiting values of estimators of relative risk (P(Y = 1|X = 1;α)/P(Y = 1|X =
0;α) = expit(α0 +αx)/expit(α0)) using the above methods under misspecification by omission
of the respective interaction terms can be found in Figure 2.3; the corresponding limiting values
of estimators of odds ratios (exp(αx)) are in Figure 2.4. For the purpose of comparison, we have
also included the limiting values of the complete case (CC) estimator based on (2.31), as well as
the true values and the double-robust augmented inverse probability weighted (AIPW) estimator.

Not surprisingly, all estimators were consistent when the required model assumptions (noted
above) were satisfied (i.e. ηxv = 0 for IMP; δxv = 0 for IPW; either ηxv = 0 or δxv = 0 for
AIPW). However, there are parameter combinations for which the estimators are consistent even
when these assumptions are not satisfied; these conditions are sufficient, but not necessary for
consistent estimation of the parameters. The necessary conditions for consistent estimation were
presented in the previous section and are less restrictive than the usual assumptions associated
with consistency of the methods of analysis; for example, the complete-case estimator of αx is
consistent when δxv =−0.166 (see Panel 2 of Figure 2.4), despite the fact that these data are not
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MAR. Furthermore, estimators of relative risks may be consistent even if neither α0 nor αx is
consistently estimated; for example, Panel 2 of Figure 2.3 shows that the complete-case estimator
of relative risk is consistent when δxv = −0.155, but neither α0 nor αx are being consistently
estimated here.

In general, there appears to be less asymptotic bias in the imputation estimator than the IPW
estimator. It appears that the imputation approach here is more robust to misspecification of the
imputation model than IPW is to misspecification of the missingness model when responses are
incomplete. The asymptotic bias of the AIPW estimator is generally quite small when either of
the model violations are small. However, there is no universally best method when models are
misspecified; it is interesting to note that there are situations where the complete-case estimator
has the smallest asymptotic bias. The asymptotic biases resulting from these misspecified models
can be quite large when the violations to the model assumptions are large (i.e. when δxv and ηxv
are far from 0) and when there is a large fraction of missing data. As is to be expected, the
asymptotic bias of all methods decreases as the fraction of missing data decreases.

Examining the limiting values of estimators for odds ratios shows a very similar story (Figure
2.4). The complete-case estimator of the odds ratio generally demonstrates the largest asymptotic
bias, while the limiting value of the imputation estimator is generally closer to the true value of
α than the IPW estimator. The AIPW estimator generally suffers from the smallest amount of
asymptotic bias, and the bias is quite small when either of the model assumptions are nearly
correct. Again, however, no method of analysis is universally best. In all cases, the biases
decrease as the percentage of missing data decreases and as the respective model violations
diminish. It is also interesting to note that the direction of the asymptotic bias of the AIPW
estimator is often different than the direction of the bias from the IPW and IMP approaches.

We have seen that for the considered set of parameters the imputation estimator appears to be
more robust to model misspecification than the IPW estimator. However with non-binary data,
the IPW estimator may become more appealing as the complexity of the imputation model nec-
essarily increases – even with complex datasets, the IPW approach requires only modelling for
binary response indicators, while imputation requires a model for the missing data itself. In
such a situation, the AIPW estimator may also be quite appealing because it will be asymptot-
ically more efficient than the IPW estimator while remaining consistent if the selection model
is correctly specified. Bang and Robins (2005) suggest that this double robustness property will
be advantageous even when both models are slightly misspecified, however, Kang and Schafer
(2007) show that this is not always the case. We have shown here that the AIPW estimator can
often result in less asymptotic bias than either imputation or an inverse probability weighting
when both models are slightly misspecified. Seaman et al. (1999) propose methods combining
IPW and MI to increase robustness to model specification while maintaining a high degree of
efficiency.
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Figure 2.3: Limiting values of estimators of relative risk from analyses with misspecified models when responses
are incomplete

2.5.3 Misspecified Models for Incomplete Covariate Data

Consider now the case where it is the covariate X which is incomplete. We let Ri be the indicator
that Xi is observed and again consider analysis of these data through complete-case analysis, in-
verse probability weighting, multiple imputation, and augmented inverse probability weighting.
We again suppose that there exists a covariate V which render the data MAR; that is, X 6⊥R|Y ,
but X⊥R|Y,V .

As before, the fully observed data are response biased within classes defined by X (i.e. Y 6⊥R|X),
however here these data are also response biased within classes defined by both X and V (i.e.
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Figure 2.4: Limiting values of estimators of odds ratios from analyses with misspecified models when responses
are incomplete

Y 6⊥R|X ,V ); that is, the missing data mechanism is not ignorable for estimation of α or η . There-
fore, neither CC analyses nor ECM analyses will consistently estimate α , even if the models used
in the ECM estimator are saturated. The presence of V does, however, allow for consistent esti-
mation of α through inverse weighting or imputation.

IPW estimators will be consistent for α provided that the model for the probability of being
observed is correctly specified as

π(Yi,Xi,Vi) = P(Ri|Yi,Vi;δ ).

Similarly, estimators of α based on imputation will be consistent provided that the imputation
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model is correctly specified so that E[X imp
i |Y,V ] = E[X |Y,V ].

In Figures 2.5 and 2.6 we present the relative risk and odds ratio which are being estimated
by an IPW analysis which omits the interaction term between Y and V in the model for π , an
imputation analysis which omits the interaction term between Y and V in the imputation model
for the missing X , and an AIPW estimator which incorporates both misspecified models. Note
that the limiting value of this imputation estimator would now differ from that of the ECM
approach. The estimating equation used to find the CC estimator is again

0 =
N

∑
i=1

RiUi =
N

∑
i=1

Ri
[
Yi−E[Yi|Xi;α]

]
[1, Xi]

′ .

IPW analysis is carried out by solving the estimating equation

0 =
N

∑
i=1

Ūi(α) =
N

∑
i=1

Ri

π(Yi,Vi;δ ∗)
[
Yi−E[Yi|Xi;α]

]
[1, Xi]

′ ,

where δ ∗ is found by solving

0 =
N

∑
i=1

[
Ri−π(Yi,Vi;δ )

]
[1, Yi, Vi]

′ .

Note that if the missingness model was correctly specified so that the IPW estimator used weights
found through 0 = ∑

N
i=1
[
Ri−π(Yi,Vi;δ )

]
[1, Yi, Vi, YiVi]

′ , then the IPW estimator would be con-
sistent for α .

The imputation approach involves solving

0 =
N

∑
i=1

Ri
[
Yi−E[Yi|Xi;α]

]
[1, Xi]

′+(1−Ri)
[
Yi−E[Yi|X imp

i ;α]
][

1, X imp
i

]′
,

to find α after imputing missing covariates based on a misspecified model where P[X imp
i |Yi,Vi;λ ∗]

is found through

0 =
N

∑
i=1

Ri
[
Xi− expit(λ ∗0 +λ

∗
y Yi +λ

∗
v Vi)

]
[1, Yi, Vi]

′ ,

instead of the correctly specified saturated imputation model 0 = ∑
N
i=1 Ri

[
Xi−expit(λ ∗0 +λyYi +

λvVi +λyvYiVi)
]
[1, Yi, Vi, YiVi]

′ that would lead to consistent estimators for α .
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The AIPW estimator is found here by solving the estimating equation

0 =
N

∑
i=1

Ri

π(Yi,Vi;δ ∗)
[
Yi−E[Yi|Xi;α]

]
[1, Xi]

′−Ri−π(Xi,Vi;δ ∗)
π(Xi,Vi;δ ∗)

E
[[

Yi−E[Yi|Xi;α]
]
[1, Xi]′

∣∣∣∣Yi,Vi;λ
∗
]
.

As in the missing response case, we consider the asymptotic biases that result from a speci-
fied parameter set. Here we consider ηx = δy = 0, ηv = δv = log1.2, βv = log(1.5), P(Y =
1) = .5,P(X = 1) = .5, and separately consider a range of values for ηxv, δyv, P(R = 1), and
P(V = 1); unless otherwise noted ηxv = δyv = 2, P(R = 1) = .5, and P(V = 1) = .5, where as
before we use P(X = 1|V ) = expit(β0 +βvV ). The asymptotic biases for estimating the relative
risk (P(Y = 1|X = 1;α)/P(Y = 1|X = 0;α) = expit(α0 +αx)/expit(α0)) using the above meth-
ods can be found in Figure 2.5; the corresponding limiting values of estimators of odds ratios
(exp(αx)) are in Figure 2.6.

Here the limiting value of the AIPW estimator was generally the closest to the true value when the
models were only slightly misspecified (i.e. when δyv was small in absolute value, and when λxv
– or equivalently ηxv – was near zero). In the presence of greater model assumption violations,
however, the IPW estimator often had less asymptotic bias than any of the other analyses.

2.6 Discussion

Incomplete data can arise in a number of settings for a variety of different reasons. Key factors
influencing the extent of the impact on standard analyses are the proportion of missing data, and
as demonstrated in this chapter, the nature of the stochastic mechanism which causes the data to
be incomplete. Even when analyses are valid, loss of efficiency and decreased power are always
issues. When possible, the extent of missing data should always be minimised.

When data are ignorably missing, then there is no need for imputation unless it is meant to re-
cover power by exploiting information about the missing response from the available data. Naive
imputation strategies (non-responder imputation, last observation carried forward, etc.) can intro-
duce biases that can make interpretation of treatment effects difficult. Likelihood methods which
have been developed and applied to minimise the effect of incomplete data are often directed at
retrieving information about parameters of interest and improving power, but these come at the
cost of making modelling assumptions beyond those typically made in analyses with complete
data. These additional model assumptions are explicit, for example, when a parametric multiple
imputation approach is adopted for incomplete response data. When covariates are missing and
the EM algorithm is applied, one must make assumptions regarding the covariate distribution,
which is not customary in routine analyses. When inverse probability weights are used, a model
for the missing data process must be specified, which again is not something that is routinely
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Figure 2.5: Limiting values of estimators of relative risk from analyses with misspecified models when covariates
are incomplete

done in standard analyses. The specified models should be checked carefully since consistent
estimators only result if these are correct.

When these models are incorrectly specified, it is difficult to characterise exactly what is being
estimated. What is clear is that MI, IPW, and AIPW all worked reasonable well when violations
to the relevant specified model were minimal and when the amount of missingness was small. In
contrast to the findings of Kang and Schafer (2007), the double-robustness property of the AIPW
estimator was beneficial here when neither model was correctly specified, but violations to either
of the model assumptions were small. In our explorations, MI estimators were generally more
robust to model misspecification than IPW estimators when responses were missing, but IPW
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Figure 2.6: Limiting values of estimators of odds ratios from analyses with misspecified models when covariates
are incomplete

estimators were generally more robust when covariates were incomplete. Both methods were
generally preferable to the CC estimator, but the attempt to adjust for the incomplete nature of
the data was far from universally beneficial when the nature of the missing data mechanism was
misconstrued. However, these results support the assertions of Carpenter et al. (2006) that MI is
more useful in the presence of incomplete responses, while IPW techniques are better suited to
studies involving missing covariates.

We have emphasised simple models with binary data, primarily for transparency and so that
explicit results would be easy to obtain. When incomplete variables are continuous, inverse
probability weighting changes very little; this approach requires modelling the missing data in-
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dicator which remains binary. Multiple imputation can be carried out in this case based on a
linear regression model. The methods for longitudinal data can be similarly adapted. When in-
completely observed variables are continuous or categorical, the necessary model assumptions
for the EM algorithm or multiple imputation may become more involved and robustness of in-
ferences becomes more of a concern. When multiple covariates are missing, high-dimensional
joint models for the covariates are required and these can be challenging to specify and check.
These challenges, in part, are reasons for the appeal of inverse probability weighted analyses of
individuals with complete data.

We have considered the cases of a missing response or a single missing covariate separately.
Frequently both responses and covariates can be missing in a given dataset and hybrid methods
can be employed (Chen et al., 2010).

We have emphasised the setting in which interest lies in a regression model for a marginal mean
parameter. In some settings, association parameters (e.g. correlations or odds ratios) are viewed
as of comparable importance. This occurs when scientific interest lies in the nature of the as-
sociation structure, or if concerns lie in optimising efficiency. In this case, regression models
can be formulated for the association parameters and appropriate likelihood functions can be
formed (Heagerty and Zeger, 2000; Heagerty, 2002). Zhao and Prentice (1990) describe how to
do this using second order estimating equations. In the likelihood setting, the EM algorithm can
be adopted and the idea of using inverse weighting for estimating association parameters can be
adapted (Yi and Cook, 2002).
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Chapter 3

Two-Phase Sampling Designs

3.1 Introduction

3.1.1 Study Design under Two-Phase Sampling Schemes

In two-phase studies involving response-dependent sampling, information is collected in the first
phase on the outcome of interest and inexpensive covariates for a large number of individuals. A
subset of individuals are then selected in a second phase of sampling, and the expensive exposure
variables are measured for this sub-sample. The appeal of two-phase sampling designs lies in
their ability to guide the efficient selection of individuals for the collection of expensive covariate
data in the second phase through careful exploitation of inexpensive information available from
the first phase of sampling.

Two-phase designs have received considerable attention in the statistical literature, and are being
used increasingly often in public health research. Breslow and Chatterjee (1999) discuss two-
phase designs in the context of the Wilms’ tumour study, where interest lies in examining the
association between outcome and tumour histology (classified as “unfavourable histology” or
“favourable histology”). They demonstrate that by using the histological diagnoses of clinicians
at patients’ cancer centres as a surrogate for a more definitive diagnosis made at the National
Wilms’ Tumour Study Group Pathology Center, sampling schemes can be developed to ensure
regression estimators remain very efficient while drastically reducing the need for central pathol-
ogy assessments. In another setting, Clayton et al. (1998) show that estimation of the incidence
of dementia in the elderly can also be made more efficient as a two-phase study by using Mini-
Mental State Examination scores as a surrogate for definitive diagnoses of dementia (see also
Zhao et al., 2009) . Robins et al. (1994) consider a two-phase design for a regression problem
involving the Nurses Health Study (Stampfer et al., 1985). The response of interest was a binary
indicator of myocardial infarction during a five-year period of followup. This response and a
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surrogate for the expensive covariate were known for all individuals in a large (phase-I) sample.
The expensive covariates, vitamin A and E measurements at study entry, were measured for a
small (phase-II) sub-sample through the processing of stored sera. They show that the incom-
plete information available on phase-I individuals can often be exploited to achieve more efficient
regression estimators than would be possible using only the phase-II sample in a complete-case
analysis.

The efficiency of two-phase designs depends on how phase-I data are exploited at the second
phase of sampling (Reilly and Pepe, 1995; Reilly, 1996; Schaubel et al., 1997). If available
phase-I data are ignored during the design of the second phase, for example, then the phase-II
sampling scheme is equivalent to simple random sampling. If the phase-II sample is chosen
by stratification on a binary response variable indicating disease status, a case-control sampling
scheme is obtained. Auxiliary covariate data are often also available in phase one. When these
covariates are used along with response data, a more general two-phase sampling approach is
used, which can lead to greater efficiency (White, 1982b; Breslow and Holubkov, 1997). The
extent of the efficiency gain in any setting depends on the framework for the analysis and on how
the phase-I data are exploited in deriving phase-II sampling probabilities.

Two-phase sampling designs have proven useful in epidemiology for ensuring efficient use of
resources when estimating the effect of expensive or otherwise difficult to measure exposure
variables on a response. Under such designs, a regression model is often of interest with a binary
response indicating disease status and a covariate vector recording the exposure variable of inter-
est along with possible auxiliary covariates. The first phase of sampling is used to collect data on
the response and auxiliary covariates while a subset of these individuals is chosen at the second
phase for measurement of the expensive exposure variable. The full sample ultimately contains
a sub-sample with complete information on the outcome and all explanatory variables, while
for the other individuals only the outcome and auxiliary covariates are available. Viewed as a
whole, the full sample therefore features missing exposure data with the missing data mechanism
determined by the nature of the phase-II sampling probabilities.

There is a wide range of statistical methods for dealing with regression based on incomplete co-
variate data including those based on maximum likelihood (Sprott, 2000), semiparametric max-
imum likelihood (Lawless et al., 1999; Zhang and Rockette, 2005), multiple imputation (Little
and Rubin, 2002), mean score equations (Reilly and Pepe, 1995; Reilly, 1996) inverse prob-
ability weighted estimating functions, and augmented inverse probability weighted estimating
functions (Robins et al., 1994; Tsiatis, 2006). These approaches differ in the nature of the as-
sumptions required and the extent to which data from individuals with incomplete exposure data
are used. Maximum likelihood, while potentially optimally efficient, requires one to model the
distribution of the exposure variable given any auxiliary variables and misspecification of this
model can lead to inconsistent estimates. The mean score method involves specifying unbiased
estimating functions through approximating the conditional distribution of the exposure variable
given the response and auxiliary variables using the phase-II sample. In their simplest form,

56



inverse probability weighted estimating equations restrict attention to individuals in the phase-II
sample and hence do not require modelling of the covariate distribution. The resulting estimates
are consistent provided the weights are correctly specified, but are typically less efficient than
maximum likelihood estimates. Augmented inverse probability weighted estimating equations
aim to improve efficiency by exploiting information in the individuals who only provide infor-
mation in the phase-I sample. We explore asymptotic and empirical properties of each of these
methods of analysis and derive phase-II sampling designs that optimally exploit available phase-I
data.

When planning studies and attempting to optimise efficiency, the challenge is to specify the
phase-II sampling model which will lead to the greatest precision of estimators for the parameters
of interest; this is typically the coefficient of the exposure variable.

The remainder of the chapter is organised as follows. In Section 3.2, we introduce notation, spec-
ify the models, and formalise the problem of interest. In Section 3.3 we review several methods
for fitting regression models with incomplete covariate data and give large sample properties
of associated estimators. Section 3.4 contains guidelines for derivation of optimal designs for
various methods of analysis, and simulation studies are presented to demonstrate the empirical
efficiencies of the designs based on minimising the asymptotic variance of the parameter of in-
terest. In Section 3.5, we explore the sensitivity of optimal designs to misspecification of design
parameters, and consider the robustness of an optimal design to misspecification of the nuisance
covariate model. Further, we examine the utility of optimal designs when necessary parameters
are not known a priori, but are estimated using external pilot studies of varying sizes. Section
3.6 summarises these results and offers recommendations for the study of expensive biomarkers
for progression of psoriatic arthritis.

Much of the work to date on two-phase designs involves univariate outcomes reflecting disease
status. The purpose of the latter part of this chapter is to consider statistical issues in two-phase
designs with more complex disease outcomes, motivated by our involvement in two studies dis-
cussed in Section 1.3. In Section 3.7 we consider the setting of clustered responses with cluster-
level exposure and auxiliary variables. Marginal models (Liang and Zeger, 1986) are adopted
in this setting with analysis frameworks based on maximum likelihood, and inverse probability
weighted pseudo-likelihood. In Section 3.8 we give a framework for two-phase designs in longi-
tudinal studies where interest lies in modelling the effect of an exposure variable on the onset of
disease under a first-order Markov model. Asymptotic theory and optimal designs are provided
for each setting. Concluding remarks and topics for further research are given in Section 3.9.

3.2 Design Of Studies With Two-Phase Sampling

Consider the setting where scientific interest lies in detecting and quantifying the effect of a new
biomarker X on the mean of a categorical response Y while adjusting for a known categorical
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prognostic variable V . This response model of interest is denoted

µ(X ,V ;α) = E[Y |X ,V ;α] (3.1)

and the conditional density of X given V is

g(X |V ;β ), (3.2)

P(V ;γ) denotes the marginal probability mass function of V , and we let θ = (α ′,β ′)′ and Ψ =
(α ′,β ′,γ ′)′. We suppose that Y and V are known for all individuals in a phase-I sample giving
{(Yi,Vi), i = 1, . . . ,N}, but due to budgetary constraints the covariate X can only be observed for
a subset of individuals. Let Ri = 1 if individual i is selected for inclusion in the phase-II sample
(and hence for measurement of Xi), and let Ri = 0 otherwise. Thus, the data ultimately consists
of N individuals: n = ∑

N
i=1 Ri of whom provide complete data (Yi,Xi,Vi), and (N− n) of whom

provide information only on (Yi,Vi).

Note that within this two-phase sampling framework, incomplete data arise by design and the
researcher can control the sampling probabilities at the second phase through specification of the
selection model

π(Y,V ;δ ) = P(R = 1|Y,V ;δ ); (3.3)

we let Ω = (α ′,β ′,γ ′,δ ′)′. We consider optimal two-phase designs, which involve the selection
of individuals in phase-II who minimise the asymptotic variance of the estimator of αx. For now
we consider Bernoulli sampling (Lawless et al., 1999) or basic variable probability sampling
(Lawless, 1997), wherein all sampling decisions are independent. The resulting data will then be
missing at random (MAR) in the terminology of Little and Rubin (2002) since P(R = 1|Y,X ,V )=
P(R = 1|Y,V ).

As is the case with most design problems, determining optimal phase-II selection probabilities
requires a specification of values for the parameters to be estimated, which are often chosen
based on pilot data (Pepe et al., 1994; Reilly, 1996). This problem is sometimes ignored un-
der the assumption that the optimal designs will not be sensitive to parameter misspecification
(Whittemore and Halpern, 1997).
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3.3 Frameworks For Analysis

3.3.1 Maximum Likelihood Estimation with Complete Data

If the data {(Yi,Xi,Vi), i = 1,2, . . . ,N}, were available for a random sample of size N from a large
population, the corresponding complete-data conditional likelihood would be

L =
N

∏
i=1

P(Yi,Xi|Vi) =
N

∏
i=1

P(Yi|Xi,Vi;α) ·g(Xi|Vi;β ). (3.4)

Provided β is functionally independent of α , the partial log-likelihood

`(α) =
N

∑
i=1

`i(α) =
N

∑
i=1

logP(Yi|Xi,Vi;α) (3.5)

yields the maximum likelihood estimator α̂ , as the solution to the score equation

N

∑
i=1

Si(α) =
N

∑
i=1

∂`i(α)/∂α = 0,

and modelling of X |V is not necessary if β is viewed as a nuisance parameter.

3.3.2 Maximum Likelihood With Covariates Missing At Random

With Xi known only for the subset of individuals with Ri = 1, efficient estimation for α can be
based on the observed-data conditional likelihood

N

∏
i=1

{
P(Yi|Xi,Vi;α)g(Xi|Vi;β )π(Yi,Vi;δ )

}Ri
{

EX |Vi

[
P(Yi|X ,Vi;α)

]
(1−π(Yi,Vi;δ ))

}1−Ri

(Robins et al., 1994). Since R is completely observed, and δ and θ = (α ′,β ′)′ are functionally
independent, we need only consider the observed-data partial likelihood

L(θ) =
N

∏
i=1

{
P(Yi|Xi,Vi;α)g(Xi|Vi;β )

}Ri
{

EX |Vi

[
P(Yi|X ,Vi;α)

]}1−Ri

, (3.6)

which requires specification of both the response model (3.1) and the nuisance covariate model
(3.2) (Lawless et al., 1999). The maximum likelihood estimate θ̂ ml is the solution to the score
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equations

N

∑
i=1

{
RiSi(α)+(1−Ri)EX |Y,V [Si(α)]

}
= 0 (3.7)

N

∑
i=1

{
RiSi2(β )+(1−Ri)EX |Y,V [Si2(β )]

}
= 0 (3.8)

where Si2(β ) = ∂ logg(Xi|Vi;β )/∂β . Equations (3.7) and (3.8) may be solved directly or via an
EM algorithm (Dempster et al., 1977).

The limiting distribution of θ̂ ml depends on (3.1)-(3.3) such that asymptotically
√

N(θ̂ ml−θ)∼ N(0,A(Ω)−1),

where A(Ω) = E
[
Si(θ)S ′

i (θ)
]
= E

[
−∂Si(θ)/∂θ ′

]
, and

Si(θ) =∂ log{[ f (Yi,Xi|Vi;θ)]Ri[EX |Vi[P(Yi|X ,Vi;θ)]]1−Ri}/∂θ

=Ri

[
∂ logP(Yi|Xi,Vi;α)

∂θ
+

∂ logg(Xi|Vi;β )
∂θ

]
+(1−Ri)

∂ logEX |Vi[P(Yi|X ,Vi;θ)]
∂θ

is the score function corresponding to the observed-data likelihood in (3.6). Note that A(Ω) is a
function of the full parameter set Ω since the expectation is taken with respect to (Ri,Yi,Xi,Vi).

When the covariate X is continuous, the ML approach based on (3.6) is less appealing as consis-
tent estimators of α require correct specification of a model for the nuisance distribution of X |V
(Pepe, 1992; Reilly and Pepe, 1995; Robins et al., 1995). This problem can be overcome through
the use of the semiparametric restricted maximum likelihood (SPML) estimator, which involves
maximisation of the likelihood

L(α,G) =
N

∏
i=1

{
P(Yi|Xi,Vi;α)G(Xi|Vi)

}Ri
{

P(Yi|Vi;G,α)
}1−Ri

,

over the set of all discrete distributions G supported by the observed values of X (Lawless et al.,
1999; Zhang and Rockette, 2005). This likelihood can be maximised using an EM algorithm
(Zhao et al., 2009) or a profile likelihood approach (Breslow and Holubkov, 1997; Scott and
Wild, 1997). Variance estimates can be obtained by inverting the observed information matrix
produced by the profile likelihood approach (Lawless et al., 1999) or through numerical differ-
entiation of the log-likelihood (Zhao et al., 2009).

Multiple Imputation (MI) can also be useful in the presence of an incomplete continuous covari-
ate X as discussed in Chapter 2. With multiple imputation, we create complete pseudo-datasets
that can be analysed to get “ML estimates” of α by maximising the complete-data partial log
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likelihood (3.5) (Little and Rubin 2002). The imputation process is repeated m times creating m
pseudo-datasets that can be used to find “ML estimates” α̂1, . . . , α̂m, which can be averaged to
obtain one final estimate ¯̂α . The variance of this MI estimator can be estimated as

ω̄ +(1+m−1)ω∗,

where ω̄ is the average within-imputation variance arising from the ML estimations and ω∗ =
(m− 1)−1

∑
m
r=1(α̂

r− ¯̂α)′(α̂r− ¯̂α) is the between-imputation variance. In the simulations that
follow, we use approximate Bayesian bootstrap imputation (Rubin and Schenker, 1986; Little
and Rubin, 2002).

3.3.3 Inverse Probability Weighted Estimating Equations

Greater robustness can be achieved if we avoid specification of the covariate distribution by re-
stricting attention to individuals with complete data. Suppose Ui(α) = h(Xi,Vi)[Yi−µ(Xi,Vi;α)]
is an unbiased estimating function for α with complete data. With incomplete data, the complete-
case estimating equation ∑

N
i=1 RiUi(α) = 0 yields an inconsistent estimator of α if Ri 6⊥Yi|Vi. A

consistent estimator can be obtained, however, if the estimating function is weighted according
to the selection model (Robins et al., 1994). This leads to the inverse probability weighted (IPW)
estimating equations,

N

∑
i=1

Ūi(α,δ ) =
N

∑
i=1

Ri

π(Yi,Vi;δ )
Ui(α) = 0, (3.9)

where the selection probabilities for phase-II, π(Yi,Vi;δ ), are assumed to be bounded away from
zero. For the remainder of this chapter we assume that the estimating function is taken to
be the score function from the complete-data likelihood; for example, with a binary response
arising according to the logistic model E[Y |X ,V ;α] = expit(α0 + αxX + αvV ) we assume that
Ui(α) = Si(α) = (1,Xi,Vi)′[Yi−µ(Xi,Vi;α)], which is the optimal estimating equation for these
logistic regression parameters in the presence of complete data (Tsiatis, 2006).

The estimating function in (3.9) is unbiased whenever the π(Yi,Vi;δ ) are correctly specified since

E
{

Ri

π(Yi,Vi;δ )
Ui(α)

}
= EY,X ,V

{
ER|Y,X ,V{Ri}
π(Yi,Vi;δ )

Ui(α)
}

= EY,X ,V

{
Ui(α)

}
= 0.

Note that it is not necessary to model the nuisance covariate model (3.2) here, so the IPW ap-
proach is potentially more robust than the ML approach. A drawback of the IPW approach,
however, is that none of the partial information available from the incomplete observations is
exploited, and so there results a loss of efficiency. Furthermore, when some phase-II selection
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probabilities are close to zero, the IPW estimator can perform poorly as estimates are greatly
influenced by observations taken from these less frequently sampled strata (Tsiatis, 2006).

If α̂ ipw is the IPW estimator of α that uses known stratum-specific selection probabilities defined
by δ , then asymptotically

√
N(α̃−α)∼ N(0, Ā(Ψ)−1 B̄(Ω) Ā(Ψ)−1),

where

Ā(Ψ) = E
[
−∂Ūi(α,δ )/∂α

′]
= EY,X ,V

{
−ER|Y,X ,V

[
Ri

π(Y,V ;δ )
∂Ui(α)

∂α ′

]}
= EY,X ,V

{
−∂Ui(α)

∂α ′

}
,

and

B̄(Ω) = E
[
Ūi(α,δ )Ū ′i (α,δ )

]
= EY,X ,V

{
ER|Y,X ,V

[ Ri

π(Y,V ;δ )2Ui(α)U ′i (α)
]}

= EY,X ,V{π(Y,V ;δ )−1Ui(α)U ′i (α)}
= ∑

Y,V
π(Y,V ;δ )−1 ·P(Y,V ;Ψ) ·EX |Y,V

[
Ui(α)U ′i (α)

]
.

The asymptotic variance of the IPW estimator can then be written as

Ā(Ψ)−1 [
∑
Y,V

P(Y,V ;Ψ)
π(Y,V ;δ )

·EX |Y,V
[
Ui(α)U ′i (α)

]]
Ā(Ψ)−1,

where Ā(Ψ) is functionally independent of δ .

3.3.4 Inverse Probability Weighted Estimating Equations With Estimated
Weights

It is also possible to proceed using an IPW analysis where the weights are estimated, so that the
IPW2 estimator, α̂ ipw2 , is found by solving

N

∑
i=1

Ūi(α; δ̂ ) =
N

∑
i=1

Ri

π(Yi,Vi; δ̂ )
Ui(α) = 0. (3.10)
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The estimator arising from (3.10) remains consistent provided the sampling probabilities π(Y,V ;δ )
are replaced with a

√
N-consistent estimator π(Y,V ; δ̂ ), which in turn hinges on correct speci-

fication of a parametric selection model. Interestingly, the estimating function using π(Y,V ; δ̂ )
will be at least as efficient as (3.9) asymptotically (Robins et al., 1994; Whittemore and Halpern,
1997; Lawless et al., 1999). When Y and V are discrete, equivalent approaches have alternatively
been proposed as weighted likelihood (Breslow and Holubkov, 1997; Lawless et al., 1999), the
mean score method (Reilly and Pepe, 1995), and the Horvitz-Thompson estimating function
(Whittemore and Halpern, 1997). Reilly and Pepe (1997) have shown that in this case this ap-
proach is also asymptotically equivalent to hot-deck imputation.

Reilly and Pepe (1995) show that the asymptotic variance of this IPW2 estimator can be written
as

Ā(Ψ)−1 + Ā(Ψ)−1B̄∗(Ω) Ā(Ψ)−1,

where
B̄∗(Ω) = ∑

Y,V
P(Y,V )[π(Y,V ;δ )−1−1] ·varX |Y,V [Ui(α)],

with varX |Y,V [Ui(α)] = EX |Y,V
[
Ui(α)U ′i (α)

]
−EX |Y,V

[
Ui(α)

]
EX |Y,V

[
U ′i (α)

]
.

3.3.5 Augmented Inverse Probability Weighted Estimating Equations

Robins et al. (1994) introduced augmented inverse probability weighted estimating equations
(AIPW) of the form

N

∑
i=1

¯̄Ui(α,δ ) =
N

∑
i=1

Ri

π(Yi,Vi;δ )
·Ui(α)− Ri−π(Yi,Vi;δ )

π(Yi,Vi;δ )
·φ(Yi,Vi) = 0, (3.11)

which can incorporate partial information from individuals only in the phase-I sample and lead
to more efficient estimators than those arising from (3.9) or (3.10).

Robins et al. (1995) and Tsiatis (2006) show that AIPW estimators are consistent and asymp-
totically normal with asymptotic variance equal to the variance of the corresponding influence
function. Therefore, if α̂aipw is the AIPW estimator found by solving (3.11), then

√
N(α̂aipw−α)

is asymptotically normal with mean 0 and variance

Ā(Ψ)−1 ¯̄B(Ω) Ā(Ψ)−1, (3.12)

where ¯̄B(Ω) = E
{ ¯̄Ui(α,δ ) ¯̄U ′i (α,δ )

}
As discussed in the previous chapter, the optimal choice for the augmentation function φ(·) in
(3.11) here is φ

opt
U = E[U(α)|Y,V ] (Robins et al., 1994; Tsiatis, 2006; Yu and Nan, 2006). In the
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simulation studies in Section 3.5, we approximate φ
opt
U (y,v) with the phase-II sample average

Ê[U(α̂)|y,v] = ∑
N
i=1 Ri I(Yi = y,Vi = v) Ui(α̂ ipw)

∑
N
i=1 Ri I(Yi = y,Vi = v)

, (3.13)

where α̂ ipw is the IPW estimator of α . This estimation of φ
opt
U does not affect the asymptotic

properties of the AIPW estimator (Robins et al., 1994). When selection probabilities are known,
the estimating equation in (3.11) is particularly appealing as the AIPW estimator will, unlike the
ML estimator, necessarily be consistent; the specification of φ(·) will determine the efficiency of
the estimators arising from (3.11).

Lumley et al. (2011) elucidate the relationship between this estimator and calibration estimators
which have been developed in the context of survey sampling. In the discussion of Lumley et al.
(2011), alternative methods for estimating φ

opt
U are offered (Lawless and Kalbfleisch, 2011; Scott

and Wild, 2011a; Tsiatis and Davidian, 2011).

Note that while φ
opt
U allows for the most efficient possible estimation of α amongst estimating

equations of the form (3.11) (that is, amongst estimating equations based on the optimal full-data
estimating function Ui=Si), we remark that it is possible in principle to achieve greater efficiency
by deriving the optimal incomplete-data estimating function Ueff and its corresponding optimal
augmentation term φ eff

Ueff (Robins et al., 1994). This process, however, can be computationally
intensive and require iterative methods (Robins et al., 1994; Tsiatis, 2006). Tsiatis (2006) rec-
ommends finding estimating equations that are optimal within a restricted class, and his optimal
restricted class 1 estimators promise efficiency gains without requiring complex, iterative calcu-
lations as long as the selection probabilities are known (unlike other possible augmented inverse
probability weighted estimating equations, however, these are not double robust). Implemen-
tation of these optimal restricted class 1 estimators requires the calculation of the matrix Û−1

22 ,

where Û22 = N−1
∑

N
i=1[Ri−π(Yi,Vi;δ )](1,Y,V,YV )′(1,Y,V,YV ) if phase-I data are binary. This

method implicitly requires the undesirable additional restriction that certain strata must not be
sampled completely. For example, if we wish to sample all individuals from the stratum with
(Y = 1,V = 1), then we would set π(1,1) = P(R=1|Y =1,V =1)=1. However, in this case Û22
(and the corresponding U22) will necessarily be singular.

For the remainder of this paper, we restrict attention to the efficient, but potentially sub-optimal,
augmented estimating equations of the form (3.11) that utilise Ui = Si and φ

opt
U . This estimating

function is called the efficient augmented estimator by Kulich and Lin (2004).
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3.4 Relative Efficiency Of Phase-Two Designs

3.4.1 Derivation of Phase-Two Sampling Designs

We consider first the case in which both Y and V are binary, yielding discrete phase-I data
{(Yi,Vi), i = 1,2, . . . ,N} which can be partitioned into four strata defined by the values of (Y , V ),
with respective sample sizes {NYV : Y,V ∈ {0,1}}. These strata sample sizes can be exploited in
determining stratum-specific phase-II sampling probabilities, π(Yi,Vi;δ ). The response model of
interest is

µ(X ,V ;α) = E[Y |X ,V ;α] = expit(α0 +αxX +αvV ).

We consider six sampling designs which exploit these phase-I data in different ways: simple
random sampling, balanced sampling, optimal ML sampling, optimal IPW sampling, optimal
IPW2 sampling, and optimal AIPW sampling. In each optimal design, the selection models
are derived to minimise the asymptotic variance of the estimator of αx. These optimal designs
require information on the phase-I stratum sizes and require specification of the (unknown) pa-
rameter values. In contrast, simple random sampling does not exploit the phase-I information,
and balanced sampling only requires knowledge of the sizes of the phase-I strata.

Budgetary constraints limit the number of individuals that can be sampled in the second phase.
We reflect these budgetary constraints by specifying some 0 < PR ≤ 1 so that

P(R = 1;δ ) = ∑
Y,V

π(Y,V ;δ ) ·NYV /N = PR, (3.14)

where it is assumed that the NYV are known at the design stage.

Simple Random Sampling

Under simple random sampling, phase-II selection probabilities are the same for all individuals
and

π(Yi,Vi;δ
srs) = PR.

This design is easy to implement and renders covariate data missing completely at random
(MCAR) (Little and Rubin, 2002). Analysis of the resulting data is therefore straight-forward as
MCAR mechanisms are ignorable for analyses based on both fully-parametric likelihoods and
semi-parametric estimating equations. This naive sampling scheme does not exploit information
available in the phase-I data and so it will be used as a baseline to assess the efficiency gains of
more sophisticated designs.
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Balanced Sampling

Breslow and Cain (1988) and Breslow and Chatterjee (1999) advocate a balanced sampling de-
sign which samples equally from each of the strata defined by the phase-I data. That is, the
phase-II sampling probabilities are inversely proportional to the size of the stratum, so that each
stratum is equally represented in the phase-II sample. The stratum-specific sampling probabili-
ties for this design are

π(y,v;δ
bal) =

PR/∑Y,V 1
Ny,v/N

, (3.15)

where ∑Y,V 1 is the number of strata defined at phase I.

While this design is not necessarily efficient, it is thought to offer a “reasonable compromise be-
tween the competing demands of efficiency and the need to check model assumptions” (Breslow
and Chatterjee, 1999). Breslow and Chatterjee (1999) also point out that optimal designs will
differ depending on the method of estimation that is used and advocate the balanced design as a
more generally applicable approach.

Optimal Sampling Under Maximum Likelihood

The asymptotic variance of the ML estimator, obtained from A(Ω)−1 (see Section 3.3.2), is a
function of the choice of phase-II selection probabilities, so optimal designs under likelihood
analyses can be obtained for any specified set of parameters Ψ. Specifically, phase-II selection
probabilities can be found that minimise the asymptotic variance of αx, subject to the budgetary
constraints in (3.14); this sampling design, π(Yi,Vi;δ ml), can be found using numerical minimi-
sation procedures and will be optimally efficient for ML estimation of αx whenever the covariate
model and the parameter values are correctly specified at the design stage and N is large.

Optimal Sampling Using Inverse Probability Weighted Estimating Equations

Optimal phase-II sampling in this context requires finding the selection probabilities π(Y,V ;δ )
that result in the smallest asymptotic variance of our estimator. Primary interest lies in estimation
of αx, so we focus on minimising the [2,2] entry of the asymptotic variance matrix, where {A}[k,k]
denotes the [k,k] entry of matrix A. This minimisation is subject to the budgetary constraint
(3.14) so, similarly to Reilly and Pepe (1995), we wish to minimise

Λ =
{

Ā(Ψ)−1[
∑
Y,V

P(Y,V ;Ψ)
π(Y,V ;δ )

·EX |Y,V
[
Ui(α)U ′i (α)

]]
Ā(Ψ)−1

}
[2,2]

+λ (∑
Y,V

π(Y,V ;δ )
NYV

N
−PR).
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The optimal π(Y,V ;δ ) is the root of

∂Λ

∂π(Y,V ;δ )
=
{

Ā(Ψ)−1[− P(Y,V ;Ψ)
π(Y,V ;δ )2 ·EX |Y,V

[
Ui(α)U ′i (α)

]]
Ā(Ψ)−1

}
[2,2]

+λ
NYV

N
= 0.

At the true Ψ, the optimal stratum-specific sampling probabilities for IPW estimation of αx,
π(y,v;δ ipw), can be written explicitly as

PR
[
P(y,v;Ψ)/(Nyv/N)

]1/2
{

Ā(Ψ)−1EX |y,v
[
Ui(α)U ′i (α)

]
Ā(Ψ)−1

}1/2

[2,2]

∑Y,V
[
P(Y,V ;Ψ)NYV /N

]1/2
{

Ā(Ψ)−1EX |Y,V
[
Ui(α)U ′i (α)

]
Ā(Ψ)−1

}1/2

[2,2]

. (3.16)

Inverse Probability Weighted Estimating Equations With Estimated Weights

Following a similar argument, the optimal phase-II sampling probabilities π(y,v;δ ipw2) for effi-
cient estimation of αx using IPW2 can be shown to be

PR
[
P(y,v;Ψ)/(Nyv/N)

]1/2
{

Ā(Ψ)−1varX |y,v[Ui(α)]Ā(Ψ)−1
}1/2

[2,2]

∑Y,V
[
P(Y,V ;Ψ) ·NYV /N

]1/2
{

Ā(Ψ)−1varX |Y,V [Ui(α)]Ā(Ψ)−1
}1/2

[2,2]

. (3.17)

Augmented Inverse Probability Weighted Estimating Equations

As with maximum likelihood, if Ψ could be known, the optimal choice of the selection probabili-
ties for AIPW analysis could be found numerically by minimising (3.12) subject to the budgetary
constraint in (3.14). However with discrete phase-I data, this efficient augmented AIPW estima-
tor is asymptotically equivalent to the IPW2 estimator (Robins et al., 1994) and therefore the
optimal design for AIPW analysis can also be found explicitly through (3.17).

Note that in the consideration of optimal designs in the presence of discrete data that follows,
tedious but straightforward algebra can show that IPW2 and AIPW estimators of αx are also
asymptotically equivalent to the IPW estimator of αx. Therefore, the optimal design for the
IPW2, AIPW, and IPW approaches in this context are all the same. However, the IPW estimator
of α0 and αv are not asymptotically equivalent to the IPW2 and AIPW estimators (the IPW2 and
AIPW approaches are asymptotically more efficient), so if optimality were not defined solely in
terms of minimising the variance of the estimator of αx, then the optimal design for IPW would
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differ from the optimal design for IPW2 or AIPW analysis. This phenomenon appears to be
true for all settings involving discrete phase-I data considered in this thesis. Therefore, in what
follows we have only two unique optimal designs: one for ML analysis, and one for the IPW,
IPW2, and AIPW analyses. Furthermore, this optimal design for ML would also be optimal
for the AIPW estimator using Ueff in the consideration of binary data that follows since these
estimators can be shown to have the same asymptotic variance in this context.

Optimal designs for the mean score method (which is equivalent to our IPW2 method) are dis-
cussed by Reilly and Pepe (1995) and Whittemore and Halpern (1997), among others. However,
optimal designs discussed here differ in that our budgetary constraint (3.14) is based on the
observed phase-II stratum sizes, whereas Reilly and Pepe (1995) and Whittemore and Halpern
(1997) base their constraint on the expected stratum sizes, as in

P(R = 1;δ ) = ∑
Y,V

π(Y,V ;δ ) ·P(Y,V ;Ψ) = PR. (3.18)

We have focussed on the budgetary constraint in (3.14) which uses observed stratum sizes for
two reasons: i) it has practical appeal when phase-I data are known, and ii) this facilitates an
exploration of the sensitivity of designs to changes in the parameters specified at the design stage.
To illustrate this second point, note that our budgetary constraint in (3.14) does not depend on Ψ,
but (3.18) is a function of the parameters used at the design stage. Therefore, changes to design-
stage parameter values of Ψ would affect not only the optimal design for a given budgetary
constraint, but also the constraint itself. In fact, the optimal designs derived by Whittemore
and Halpern (1997) (their Table IV) would not sample the expected number of individuals from
their observed phase-I data (their Table I) due to differences between the expected and observed
phase-I stratum sizes. In the next section, we consider the loss of efficiency that will result when
optimal designs are derived using incorrect parameter estimates. As discussed above, use of the
budgetary constraint in (3.18) would yield incompatible results since these changes to the design
parameters would also lead to changes in the budgetary constraint.

3.4.2 Empirical Properties of Phase-Two Designs

Here we develop results in the context of the two-phase study of biomarkers for joint damage in
psoriatic arthritis and consider optimal two-phase designs for selecting patients for measurement
of the biomarker MMP-3 in the University of Toronto Psoriatic Arthritis Clinic. The data consist
of a binary response Y which indicates disease progression over the follow-up period, an inex-
pensive binary covariate V which indicates an elevated level of ESR at baseline, and an expensive
covariate X related to baseline MMP-3 levels. Phase-I data (Y and V ) have been gathered for 504
patients who had a clinic visit between 2003 and 2008 during which information was recorded
on the patient’s ESR level and on the extent of damage to the patient’s joints. These patients
also provided blood samples during these visits which enables assessment of the level of the
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biomarker MMP-3. Followup visits that occurred roughly two years later were used to determine
whether individuals had experienced an increase in the number of damaged joints constituting
disease progression. The phase-I stratum sizes were (N00,N01,N10,N11) = (196,143,61,104),
where Nyv is the number of individuals in the phase-I sample with (Y = y,V = v).

The initial parameter estimates used in the design stage were obtained from two pilot studies
which gathered complete data, including MMP-3 level, on 53 additional psoriatic arthritis pa-
tients. Of these 53 individuals, 9 individuals had elevated ESR and experienced an increase in
their number of damaged joints during the follow-up period, and 17 had elevated ESR but did
not experience disease progression. Of the 27 individuals without elevated ESR, 7 experienced
disease progression during the follow-up period.

Optimal designs have been selected based on the limiting distributions given in Section 3.4, so
it is important to explore how closely these asymptotic results relate to empirical standard errors
in finite samples. Simulation studies were conducted with small samples (N = 500) and large
samples (N = 3000). In both cases, optimal designs were derived for each method of analysis
with budgetary constraints reflected through the specification of P(R=1)=0.25.

We consider empirical performance for the case of a binary (Section 3.4.2) and continuous
(Section 3.4.2) covariate X ; these two scenarios respectively reflect interest in the effect of di-
chotomised and raw values of the MMP-3 marker.

Empirical Properties of Phase-Two Designs with Binary X

For the simulation study, 1000 complete datasets of size N were generated according to response
model (3.1) and covariate distributions

P(X = 1|V ;β ) = expit(β0 +βvV ),

and

P(V = 1;γ) = expit(γ0). (3.19)

The parameter values Ψ0 =(α0,αx,αv,β0,βv,γ0)′=(−1.95,1.00,0.90,1.05,−0.41,−0.04)′ were
obtained from analysis of the PsA pilot data where MMP-3 levels were dichotomised based on
whether they exceeded two standard deviations above the mean of controls (as specified by re-
searchers at the PsA clinic).

Phase-I data were considered in each generated dataset, and phase-II samples were selected
according to each of the four unique designs: simple random sampling (SRS), balanced sampling
(Bal), the optimal design for ML analysis (Optml), and the optimal design for IPW, IPW2, and
AIPW analyses (Optipw). Each of the 1000 simulated incomplete datasets were analysed via
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ML, IPW, IPW2, and AIPW analyses. The empirical biases (Bias) and empirical standard errors
(ESE) are presented in Table 3.1.

Note that in order to avoid undesirable, degenerate designs with near-zero selection probabilities
in some strata (Breslow and Cain, 1988), we restricted the stratum-specific selection probabili-
ties to be at least 0.05 (in our simulations, this restriction only affected the Optml design). This
restriction additionally ensured that samples could be analysed with IPW, where near-zero se-
lection probabilities are especially problematic. Selection probabilities were also constrained to
be less than or equal to 1. These boundary conditions can easily be incorporated into the nu-
merical minimisation used for finding Optml. We derived the balanced and the Optipw designs
by proceeding along the boundaries of the parameter constraints, as in Reilly and Pepe (1995).
That is, when the solution to (3.15) (or to (3.16)) did not satisfy the boundaries conditions (i.e.
0.05≤ π(y,v)≤ 1 for some y and v), the offending stratum-specific selection probabilities were
fixed at the corresponding boundary condition (i.e. π(y,v) was fixed at 0.05 or 1), and the design
was balanced (or optimised) over the remaining strata by updating the budgetary constraint in
(3.14) to

∑
(Y,V )6=(y,v)

π(Y,V ;δ ) ·NYV /N = PR−π(y,v)Nyv/N.

The stratum-specific selection probabilities π = [π(0,0),π(0,1),π(1,0),π(1,1)] employed by
the SRS design were πsrs = [0.25,0.25,0.25,0.25]. The balanced and optimal designs were based
(at least in part) on phase-I data, so these designs depended on each simulated dataset. The av-
erage selection probabilities over the 1000 simulated datasets for the balanced, Optipw, and Optml
designs were π̄bal = [0.16,0.22,0.52,0.32], π̄ml = [0.05,0.33,0.16,0.58], and π̄ ipw = [0.10,0.25,
0.45,0.43], respectively, so there was considerable variation between designs.

None of the methods of analysis showed appreciable empirical bias (see Table 3.1). The fully
parametric ML analysis was the most efficient; it yielded estimates with standard errors at least
as small as those arising from the estimating equation approaches under all designs. The asymp-
totic variances of αx from the IPW, IPW2, and AIPW are equal, however, the asymptotic variance
of the estimators of α0 and αv are much smaller for the IPW2 and AIPW approaches. These re-
lationships were reflected in the empirical properties with N = 3000. However with N = 500,
the IPW2 approach resulted in much smaller empirical standard errors and slightly less empiri-
cal bias than AIPW; the IPW2 estimator appears to have better small sample-sample properties
than the asymptotically equivalent AIPW. We also explored the small-sample properties of an
AIPW estimator where the approximation of φ

opt
U used in (3.13) was updated iteratively with the

estimator of α , as suggested in Scott and Wild (2011a). This iterative AIPW estimator did have
better small sample properties (not shown) than the AIPW estimator. The small-sample proper-
ties of analysis using this iterative AIPW estimator were identical to the small-sample results for
the IPW2 analysis; in fact, the estimates resulting from these methods of analysis were nearly
identical for all simulations. A similar improvement in the small sample properties was achieved
by using α̂ ipw2 in (3.13) instead of α̂ ipw; in this case, the IPW2 and AIPW estimates were gen-
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erally equivalent to 7 decimal places. Interestingly, the IPW estimators of αx was actually more
efficient here than either the IPW2 or AIPW estimators.

As expected, the optimal designs (bolded in Table 3.1) resulted in the smallest empirical standard
errors in the estimates of αx for the respective method of analysis when N was large. However,
the Optipw design actually demonstrated the greatest efficiency for estimation of αx when the
sample size was small (N = 500). In all cases, the Optipw design resulted in more efficient
estimators of αx than either SRS or the balanced design; this design also generally resulted in
more efficient estimators for α0, but the balanced design was often more efficient for estimation
of αv. Of course, if efficient estimation of αv were also of primary importance, the definition
of optimality could be modified and the optimal designs could be updated accordingly. The
form of the optimal design in (3.17) can be easily extended for any specified linear function,
h, of elements of the asymptotic variance matrix by replacing {A}[2,2] with h(A); in particular,
analogs of A-optimality and C-optimality (Walter and Pronzato, 1990; Emery and Nenarokomov,
1999) can be achieved by taking h = trace(HAH ′) with H = I or H = diag{α}−1, respectively.

It is interesting to note that the empirical efficiency of IPW2 analysis under its optimal design
was similar to ML analysis under its optimal design when the sample size was small. While the
Optml design resulted in inefficient estimating equation analyses, the Optipw design was more
efficient than either the SRS or balanced designs for estimation of the parameter of interest even
when ML analysis was used.

Note that the asymptotic variance for the optimal class 1 restricted AIPW (see Section 3.3) are
equivalent to the asymptotic variance for the ML approach here. This suggests that the use of the
φ

opt
U term in (3.11) increases efficiency of the parameters not associated with the incompletely

observed covariate (α0 and αv), while greatly increasing the efficiency of αx requires replacing
the optimal full-data estimator Ui with the corresponding optimal incomplete-data estimator,
Ueff, as discussed in Robins et al. (1995) and Tsiatis (2006).

Empirical Properties of Phase-Two Designs with Continuous X

Here we consider the case of a continuous X , but we do not consider the Optml design because
the numerical minimisation of the asymptotic variance function has a high computational cost
and because the ML method of analysis that is optimised by Optml is less appealing as it requires
correct specification of the conditional model for the continuous X |V ; instead of analysing data
using the ML approach which requires specification of the covariate distribution, here we employ
the SPML and MI analyses along with the IPW, IPW2, and AIPW analyses. The simple form of
the Optipw design makes it attractive as a basis for design in a wide range of situations (Whitte-
more and Halpern, 1997), so we contrast this efficient design with SRS and balanced designs for
these methods of analysis. We next compare asymptotic and small-sample properties (N = 500)
of designs in the presence of a continuous covariate X .
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As before, optimal designs were derived so that P(R=1)=0.25. For the simulation study, 1000
complete datasets of size N were generated according to response model (3.1) and covariate
distributions given by (3.19) and

g(X |V ;β ) =
1

Γ(β0)(β1 +βvV )β0
Xβ0−1e−

X
β1+βvV , (3.20)

so that V remained binary, but now X |V followed a gamma distribution with shape β0 and scale
β1 +βvV . The parameters used in generating these data were Ψc

′
0 = (α0,αx,αv,β0,β1,βv,γ0)′ =

(-2.18, 0.03, .84, 1.40, 10, 5, -.04)′, where values of β were chosen to reflect the distribution of
actual MMP-3 values given ESR status seen in the PsA pilot data.

Phase-II samples were chosen from each simulated set of phase-I data using three different de-
signs described above: SRS, balanced, and the Optipw design. The SRS design was identical
to that used for a binary covariate X . The average balanced and Optipw designs over the 1000
simulations were, respectively, π̄bal = [0.15,0.20,0.81,0.38] and π̄ ipw = [0.12,0.30,0.46,0.41].

The simulated datasets were analysed using SPML, MI, IPW, IPW2, and AIPW analyses as
described in Section 3.3. The empirical biases and standard errors are presented in Table 3.2.
Again the IPW2 analysis had better small-sample properties than the asymptotically equivalent
AIPW analysis, but the small-sample properties of AIPW could be improved by estimating φ

opt
U

iteratively or by using α̂ ipw2 in (3.13). As before, the IPW method of analysis was much less
efficient for estimation of α0 and αv, but slightly more efficient for estimation of αx. The SPML
estimator had the smallest empirical standard errors for estimation of all parameters under all
designs. The IPW2 analysis was generally more efficient than MI.

For all methods of analysis, the Optipw design resulted in the most efficient estimator of αx.
As with the binary data case, this suggests that the Optipw design is useful in a wide variety of
situations, not only when the goal is finding an IPW estimate of αx.

3.5 Misspecification in Optimal Two-Phase Designs

In the previous simulations, optimal designs were derived using the true parameter values, which
in practice are unknown. In this section we explore the sensitivity of optimal phase-II sampling
designs to misspecification of the parameter values at the design stage for a binary (Section 3.5.1)
and a continuous (Section 3.5.2) covariate X . We further examine the effect of this misspecifica-
tion on the asymptotic efficiency of estimators that use these designs.
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3.5.1 Sensitivity Analyses of Optimal Designs with Binary X

Misspecification of Design Parameters with Binary X

Table 3.3 contains the parameter estimates obtained by the analysis of the PsA pilot data which
were used as the basis of the previous simulation studies; we now treat this set of parameter values
as the true values and denote it by Ψ0. Table 3.3 also contains parameter estimates that result from
analysing the PsA pilot data under alternative “misspecified” models. Specifically, if we analyse
the PsA data under the assumptions that X⊥V we obtain the values in Ψ1; assuming Y⊥(X ,V )
gives the values in Ψ2; assuming Y⊥X |V, X⊥V yields Ψ3; and assuming Y⊥(X ,V ), X⊥V gives
Ψ4. Compared to the ‘true’ parameter, Ψ0, the other parameter sets in Table 3.3 represent varying
degrees of misspecification: Ψ1 represents the mistaken assumption that the covariates X and V
are independent, in Ψ2 it is mistakenly assumed that the covariates do not affect the response, in
Ψ3 it is assumed that X is independent of Y and V , and Ψ4 assumes that all three variables are
independent. These alternative parameter sets (Ψ1,Ψ2, Ψ3, and Ψ4) are used in the sensitivity
analyses exploring the effect of parameter misspecification at the design stage; we examine the
efficiency loss that would result in estimation of Ψ0 if the other parameter sets were mistakenly
used in the derivation of optimal designs. These sensitivity analyses are important since truly
optimal designs can only be derived when the parameters of interest are known a priori.

The optimal designs derived using each of these different parameter sets are also in Table 3.3,
where it is assumed that we are deriving designs for sampling from the 504 available PsA patients
whose phase-I data resulted in observed stratum sizes of (N00,N01,N10,N11)= (196,143,61,104).
Note that the SRS and balanced designs do not require initial parameter estimates and are there-
fore unaffected by misspecification of the parameters. Here again, Optipw is the optimal design
for efficiently estimating αx through IPW, IPW2, or AIPW analyses; Optml is similarly defined
to be optimal for ML analysis. In order to simplify the following discussion of asymptotic effi-
ciencies of estimators of αx, we will use “AIPW” to refer to the asymptotically equivalent IPW,
IPW2, and AIPW estimators.

Table 3.4 contains the asymptotic relative efficiencies for estimation of αx under the supposedly-
optimal designs which have been derived based on potentially misspecified parameter sets. The
column labelled Ψ0 in Table 3.4, for example, contains the asymptotic relative efficiency related
to each of the designs when optimal designs are based on knowledge of the true parameter set
Ψ0, while the Ψ1 column contains the asymptotic relative efficiencies when the parameters used
in deriving optimal designs are mistakenly assumed to be Ψ1. These asymptotic efficiencies
are presented relative to the asymptotic efficiency achieved through SRS; the asymptotic relative
efficiency (ARE) of the estimator α̂x under the Optml design, for example, would be calculated
as

asvarα̂x
(δ ml)

asvarα̂x
(δ srs)

,
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Table 3.3: Parameter estimates from the PsA data (Ψ0) along with alternative parameter sets
(Ψ1,Ψ2,Ψ3,Ψ4) that are derived from the PsA data using analyses that made incorrect assump-
tions about the data. Stratum-specific sampling probabilities for the optimal designs derived
using different parameter sets are also presented where P(R=1)=0.25.

Alternative Parameter Values
Parameter Ψ0 Ψ1 Ψ2 Ψ3 Ψ4

X⊥V Y⊥(X ,V ) Y⊥X |V,X⊥V Y⊥(X ,V ),X⊥V
α0 -1.95 -1.95 -0.73 -1.16 -0.73
αx 1.00 1.00 0.00† 0.00† 0.00†

αv 0.90 0.90 0.00† 0.81 0.00†

β0 1.05 0.84 1.05 0.84 0.84
βv -0.41 0.00† -0.41 0.00† 0.00†

γ0 -0.04 -0.04 -0.04 -0.04 -0.04

Selection
probabilities Optimal Design for Maximum Likelihood

π(0,0) 0.05 0.05 0.21 0.12 0.32
π(0,1) 0.34 0.32 0.05 0.27 0.05
π(1,0) 0.15 0.19 0.99 0.41 0.81
π(1,1) 0.56 0.57 0.16 0.37 0.07

Optimal Design for IPW, IPW2, and AIPW
π(0,0) 0.10 0.11 0.12 0.14 0.18
π(0,1) 0.25 0.24 0.15 0.25 0.20
π(1,0) 0.44 0.47 0.56 0.45 0.45
π(1,1) 0.42 0.40 0.37 0.34 0.34

The SRS and balanced designs, which do not require parameter values at the design stage, were respectively π =
(π(0,0),π(0,1),π(1,0),π(1,1)) = (0.25,0.25,0.25,0.25), and π = (0.16,0.22,0.52,0.30).
†indicates values constrained to be zero

where asvarα̂x
(δ ml) is the asymptotic variance of α̂x under the Optml design; smaller AREs

therefore correspond to more efficient designs. Here, the asymptotic variance of the ML and
AIPW estimators under SRS are equivalent to 10 decimal places. Note again that these initial
parameter misspecifications do not affect the SRS or balanced designs. The asymptotic relative
efficiencies of the designs are also displayed graphically in Figure 3.1 for different values of the
phase-II sampling fraction P(R = 1).

An examination of Table 3.3 shows that the Optml design was very sensitive to the design pa-
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Figure 3.1: Asymptotic efficiency relative to SRS of estimators for αx under different designs as a function of the
phase-II sampling fraction
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Table 3.4: Asymptotic relative efficiency of the ML, IPW, IPW2, and AIPW estimators of αx
when P(R=1)=0.25 and designs are based on the true parameters (Ψ0) and on misspecified pa-
rameters (Ψ1, Ψ2, Ψ3, and Ψ4); efficiencies are relative to the asymptotic efficiency of estimators
of αx under the SRS design†.

Parameters used at the design stage
Analysis Design Ψ0 Ψ1 Ψ2 Ψ3 Ψ4
ML Bal 0.805 0.805 0.805 0.805 0.805

Optml 0.728 0.730 0.781 0.779 0.938
Optipw 0.768 0.773 0.807 0.791 0.812

AIPW‡ Bal 0.829 0.829 0.829 0.829 0.829
Optml 1.100 0.996 0.789 0.781 2.550
Optipw 0.771 0.773 0.814 0.793 0.826

† ML and IPW/IPW2/AIPW estimators of αx under SRS were asymptotically equivalent to 10 decimal places.
‡ Asymptotic efficiencies for IPW, IPW2, and AIPW are equivalent here.

rameter settings. This is reflected in Table 3.4 where we see that the efficiency of the ‘optimal’
ML design differed greatly when different parameter values were used at the design stage. This
indicates that efficient use of the Optml design relies heavily on a priori knowledge of the true
parameters. The Optipw design, however, appears to be much more robust to changes in the pa-
rameter estimates used at the design stage. This design robustness is reflected in Table 3.4 where
it can be seen that the Optipw design was always more efficient than SRS for analyses based on
both ML and estimating equation. The Optipw design was always the most efficient choice for
estimating equation analyses regardless of the parameter values used in the design. The Optipw
design was also generally more efficient than the balanced design for ML estimation of αx; in
the worst cases the Optipw design is similar to the balanced design in terms of efficiency. The
optimal ML design often contains selection probabilities which are small for certain strata (see
Table 3.3). These designs result in very inefficient estimators of αx based on weighted estimating
equations. However, the Optipw designs are very efficient for all considered analyses. Figure 3.1
shows that these trends are not specific to the situation where P(R = 1) = 0.25, but hold quite
generally.

It is interesting to note that in using Ψ3, it is assumed at the design stage that X⊥(Y,V ). In
this case, the optimal designs are functionally independent of α and could potentially be derived
using only phase-I data. However, the design parameters used in deriving optimal designs are
often based on pilot data. In the next section, we consider the effect that this has on the efficiency
of optimal designs.
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Estimation of Design Parameters From External Pilot Studies (Binary X)

As mentioned above, the derivation of true optimal sampling designs requires a priori knowledge
of parameter values which will generally be unknown. We have shown in the previous section
that the Optml design is sensitive to the misspecification of parameters at the design stage, but the
Optipw design appears to be more robust. In practice, when a priori knowledge of the necessary
parameters is not available, it is possible to derive optimal designs by estimating parameter values
from a small validation sample (Pepe et al., 1994; Reilly and Pepe, 1995; Reilly, 1996). However,
if optimal designs are sensitive to the small changes in design parameters that will result from the
use of pilot data, then these optimal designs will be of little practical use. Here we explore the
sensitivity and efficiency of optimal designs when they are based on parameter estimates from
simulated pilot studies of different sizes.

We considered external pilot studies of size m, where m ∈ {50,200,500,1000}; note that m =
1000 represents an idealised pilot study which would most likely be prohibitively large in prac-
tice. For each pilot study, we simulated data (Yi,Xi,Vi) for m individuals according to the parame-
ter set Ψ0 in Table 3.3 and we added one observation to each of the 8 strata defined by the binary
(Y,X ,V ) in order to achieve greater stability in our estimates (Pepe et al., 1994). These simulated
data were then used to find Ψ̂, a maximum likelihood estimate of the true parameters. Optimal
designs were derived using Ψ̂ and the asymptotic variances that would result from employing
these designs were recorded. This process was repeated 1000 times for each m. The results of
these simulations are presented in Figures 3.2 and 3.3. It should be noted here that the Optml de-
sign was previously seen to perform very poorly for the weighted estimating equation analyses
and this situation should not be expected to improve when estimating design parameters using
pilot data. However, the Optipw was very efficient for the estimating equation analyses, and both
the Optipw and the Optml designs performed well for ML analysis when the true parameters were
used at the design stage. It is therefore important to examine how optimal designs will perform
when pilot data are used for estimating design parameters, and it is interesting to compare the ef-
ficiencies of the Optipw and Optml designs for ML analysis when design parameters are estimated
from pilot data.

Figure 3.2 shows that there is a great deal of variability in the phase-II selection probabilities
employed by the Optml design even when the pilot studies are large (m=1000), and the variability
in the selection probabilities used by Optipw is much smaller. In fact, even with small pilot studies
(m = 50), the Optipw design appears to only vary slightly between simulations.

The robustness of the Optipw design is reflected in the relatively small changes in the asymptotic
relative efficiency of the Optipw seen in Figure 3.3. Here it can be seen that the Optml design
can often be inefficient, even under ML analysis, when based on relatively small pilot studies
(m = 50). In fact, even with very large pilot studies (m = 1000), the Optml was sometimes
seen to be less efficient than the balanced design for ML analysis. The Optipw design, on the
other hand, was asymptotically more efficient than the balanced design for both ML and AIPW

79



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pilot Sample Size (m)

S
el

ec
tio

n 
P

ro
ba

bi
lit

y 
π(
0,
0)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Optipw (based on pilot data)
Optipw (true)
Optml (based on pilot data)
Optml (true)

50 200 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pilot Sample Size (m)

S
el

ec
tio

n 
P

ro
ba

bi
lit

y 
π(
0,
1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50 200 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pilot Sample Size (m)

S
el

ec
tio

n 
P

ro
ba

bi
lit

y 
π(
1,
0)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50 200 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pilot Sample Size (m)

S
el

ec
tio

n 
P

ro
ba

bi
lit

y 
π(
1,
1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50 200 500 1000

Figure 3.2: Boxplots of optimal selection probabilities derived using parameter estimates from pilot studies of size
m with binary covariates and response. Here a wide range in the selection probabilities suggests that the optimal
design is sensitive to the small changes in design parameter estimates that will result from the use of pilot study
estimates instead of a priori knowledge of parameters; the dotted lines represent the optimal designs based on
knowledge of the true parameters.
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Figure 3.3: Asymptotic efficiencies of designs relative to SRS as a function of the size of the pilot studies used to
estimate the design parameters with binary covariates and response. The balanced and SRS designs do not utilise
the pilot data and are not affected by its size; the dotted lines here represent the relative efficiency of the optimal
designs based on knowledge of the true parameters.

analyses in all but a handful of trials, even when the pilot study is moderately sized (m = 200).
With the smallest pilot studies, the resulting Optipw design was generally more efficient than the
balanced design and was always more efficient than SRS. It should also be reiterated that, while
the balanced design is shown to be quite efficient here, there is no guarantee that the balanced
design will be efficient in general; in other design problems (see Sections 3.7 and 3.8) we have
experienced situations where the balanced design is less efficient than the naïve SRS design.
This Optipw design, however, is guaranteed to be the most asymptotically efficient design for
IPW, IPW2, and AIPW analyses when the parameters are known a priori, and this design is
shown here to be fairly efficient even when the design parameters are based on pilot data. In
addition, the Optipw design is also guaranteed to be fairly efficient for use with ML analysis
since, asymptotically, the fully-parametric ML will be at least as efficient as estimating equation
analyses for any given design.

The potential efficiency of the Optml design is very appealing for ML analysis, but as seen in the
previous section, this design is inefficient for other methods of analysis and is sensitive to small
changes in the parameters used at the design stage so it may even be inefficient for ML analysis
when parameters are not known a priori. The Optipw design in contrast works well for ML, IPW,
IPW2, and AIPW analyses and is relatively robust to parameter misspecification.
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3.5.2 Sensitivity Analyses of Optimal Designs with Continuous X

Misspecification of Covariate Model for Continuous X

When X is continuous, the derivation of the Optipw design requires not only a priori knowledge
of certain parameters, but also correct specification of the covariate distribution in (3.20). Here
we wish to explore the efficiency of the Optipw design if X |V is modelled incorrectly at the design
stage. Note that the incorrect specification of the model for X |V will not effect the consistency
of our estimators since this model is only used for specifying the π(Y,V ;δ ); none of the methods
of analysis that we consider here – SPML, MI, IPW, IPW2, and AIPW – require specification of
a model for X |V .

Here we report on a simulation study to examine the effect on efficiency of misspecifying the nui-
sance covariate distribution. As in Section 3.4.2, the optimal design Optipw was derived under the
assumption that X |V followed a gamma distribution. However, datasets of N = 500 individuals
were simulated based on a log-normal model for X |V :

g(X |V ;β ) =
1

X
√

2πβ1
exp
{
−(logX− [β0(1−V )+βvV ])2

2β1

}
.

The parameters used in generating the simulated data (Ψc
′
1 = (α0,αx,αv,β0,β1,βv,γ0)′ = (-2.18,

0.03, .84, 0.73, 2.77, 2.37, -.04)′) were chosen so that the mean and variances of X |V would
be approximately equal to the mean and variances of the gamma distributed X |V that was as-
sumed in the derivation of Optipw (in Section 3.4.2, we used Ψc

′
0 = (α0,αx,αv,β0,β1,βv,γ0)′ =

(-2.18, 0.03, .84, 1.40, 10, 5, -.04)′ to reflect the distribution of MMP-3 given ESR in the PsA
pilot data). For the simulated data, phase-II samples were selected using SRS, balanced, and
the (misspecified) Optipw designs; these three potential two-phase samples were analysed using
SPML, MI, IPW, IPW2, and AIPW analyses. In order to curtail some particularly poor AIPW
estimates, the AIPW estimator reported here was iterated to update the estimate of φ

opt
U a single

time. The empirical biases and standard errors of the resultant estimators from 1000 simulated
datasets are presented in Table 3.5. This simulation represents what would arise if the Optipw
design were derived for the PsA data under the mistaken assumption that the conditional distri-
bution of the undichotomised MMP-3 given dichotomised ESR followed a gamma distribution,
when in reality the distribution was log-normal.

Again, the IPW2 analysis was at least as efficient as MI for estimation of all parameters under all
designs (Table 3.5) and these methods of analysis were generally more efficient than IPW and
less efficient than SPML in estimation of α0 and αv. The once-iterated AIPW estimator had very
similar empirical properties as the IPW2 estimator, but it was still slightly less efficient.

The Optipw design was more efficient than the SRS and balanced designs for estimation of αx for
all methods of analysis, despite the fact that the Optipw design was derived based on an incorrect
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specification of the covariate distribution. The Optipw design was also more efficient than the
SRS design in estimation of α0 for all methods of analysis, although the balanced design was
generally most efficient for estimation of αv.

Estimation of Design Parameters From External Pilot Studies (Continuous X)

Again it is important to explore the potential efficiency of the optimal design when the parame-
ters specified at the design stage have been estimated from external pilot data. A simulation study
was conducted in which data (Y,X ,V ) were simulated for each of m ∈ {50,200,500,1000} in-
dividuals according to the parameters Ψc0 with X |V following a gamma distribution. As in the
binary case, eight observations were added to the pilot data in order to stabilise the resulting
estimates of the design parameters; since X is continuous, these eight additional observations
consisted of the four combinations of Y and V along with a large and small value of X which
were chosen here to be the means of X |V = 0 and X |V = 1. Parameter estimates found using
these simulated pilot data were then used to derive the Optipw design (using the correct covariate
distribution) and the resultant selection probabilities and asymptotic efficiencies are displayed in
Figures 3.4 and 3.5, respectively.

The Optipw design is fairly robust even with a continuous covariate; the design changes little
between simulations, even with fairly small simulated pilot studies (Figure 3.4). Despite the
similarity between the asymptotic efficiencies under the balanced and the true Optipw designs, the
Optipw designs based on pilot data still result in more efficient estimators in the vast majority of
cases, even when the pilot studies are quite small (Figure 3.5). Therefore, the Optipw is preferable
to either the SRS or balanced designs here even though the expensive covariate is continuous and
the design is based on parameter estimates from relatively small pilot studies.

3.6 Recommendations for Selection of PsA Patients

We return now to the problem of interest to the researchers at the Psoriatic Arthritis Clinic:
selection of serum samples for measurement of the expensive covariate MMP-3 for use in the
study of the effect of the biomarker MMP-3 on progression of PsA while accounting for the
effect of the inexpensive and easy to measure ESR. We have shown that in this setting, efficiency
can be gained by using an optimal IPW sampling design regardless of whether MMP-3 values
are to be dichotomised and regardless of whether analysis is to be carried out using likelihood or
weighted estimating equation approaches.

IPW, IPW2, and AIPW were asymptotically equivalent in terms of their efficiency in estimating
αx and in terms of their optimal designs, but IPW2 and AIPW were shown to be more efficient
at estimating α0 and αv, and the IPW2 method of analysis had consistently better small-sample
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Figure 3.4: Boxplots of optimal selection probabilities derived using parameter estimates from pilot studies of
size m when X |V followed a gamma distribution.
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Figure 3.5: Boxplots of asymptotic efficiencies of the Optipw designs relative to SRS as a function of the size of
the pilot studies used to estimate the design parameters when X |V followed a gamma distribution.

properties than the AIPW approach. The small-sample properties of our AIPW estimator were
improved by iteratively updating the augmentation term, but even this iteration did not result in
empirical standard errors that were smaller than those from the IPW2 estimator. It appears that
the IPW2 estimator is preferable here, although that would change if one were to find the optimal
incomplete-data estimating function Ueff and its corresponding optimal augmentation term φ eff

Ueff

in the AIPW estimator. Therefore, if a weighted estimating equation approach is to be used, we
recommend using the AIPW approach only if one is willing to invest the time and resources in
the derivation of Ueff and only if one is willing to bound stratum-specific selection probabilities
away from both 0 and 1 (to avoid degenerative designs and the invertibility problems discussed
earlier); otherwise the IPW2 estimator should be used. If a likelihood-based analysis is to be
implemented, we have seen that the SPML has much better small sample properties than MI.
The SPML estimation procedure may be preferable in general as the IPW2 analysis has been
shown to be inefficient in some settings (Lawless et al., 1999).

Perhaps the most troubling aspect of implementation of optimal designs is the requirement for a
priori knowledge of parameters. Reilly (1996) uses a small pilot study to estimate parameters for
use in finding optimal designs. We have demonstrated that the Optml design can be sensitive to
misspecification of parameters, but the Optipw design is efficient even when some parameters are
incorrectly specified. In fact, efficient designs could be found in our scenario even in the absence
of a pilot study by deriving the optimal Optipw using only phase-I data and the assumption that
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X⊥(Y,V ).

Based on the results of our sensitivity analyses it seems that the use of the Optml design is only
appropriate when one is very confident about the parameter estimates used at the design stage.
However, the Optipw design was shown to be efficient in a wide variety of circumstances: with a
binary or continuous expensive covariate, with design parameters misspecified or estimated using
pilot data, and even when derived using a misspecified covariate distribution. This efficiency of
the Optipw design was seen whether estimation was carried out with IPW, IPW2, AIPW, ML,
SPML, or MI analyses. Therefore when samples are to be selected based on discrete auxiliary
information, it appears that the Optipw design could effectively be used to efficiently select a
phase-II sample regardless of the desired method of analysis.

Our recommendations for the Psoriatic Arthritis clinic are therefore that they select from the
phase-I patients according to the Optipw design based on parameter values estimated using the
53 patients in the pilot study. If budgetary constraints dictate that only 25% of the 504 available
serum samples can be analysed for measurement of MMP-3, we recommend selecting according
to the model

π
ipw = [0.10,0.25,0.44,0.42]

if MMP-3 is to be dichotomised in the analysis, and according to the model

π
ipw = [0.12,0.30,0.35,0.35]

if it is the effect of continuous values of MMP-3 that are of interest.

Our only reservations in this recommendation are two-fold. Firstly, this optimal design was based
on an independent sampling procedure (called variable probability sampling in Lawless et al.,
1999) which means that the phase-II sample size will be random and the budgetary constraint
fixes only the expected sample size. Secondly, the pilot data are used solely to derive the design-
parameter values and would be excluded from the final analysis; the money spent to get complete
information on these 53 patients would represent a large portion of our available budget here and
so this does not represent a good use of resources. We address both of these concerns in Chapter
4, where we consider basic stratified sampling and an adaptive design that does not require
external pilot data.

In the next sections, we extend our investigation of two-phase designs to more complex settings
motivated by the PsA and CLSA studies. We identify settings in which balanced designs are
particularly inefficient.

87



3.7 Response-Dependent Sampling with Clustered Binary Data

3.7.1 The Response Model for Clustered Data

Let Yi = (Yi1,Yi2)′, denote the bivariate binary response for cluster i, and let Xi and Vi be the
univariate expensive and auxiliary covariates, respectively, defined at the cluster level (i.e. all
subjects in a given cluster have the same values of these covariates). In the context of the study
from the University of Toronto Psoriatic Arthritis Clinic, the responses correspond to the status
of the left and right sacroiliac joints. The expensive covariate could be a genetic marker and the
auxiliary variable could be an inexpensive marker of inflammation measured at the time of clinic
entry (e.g. baseline IL4 or ESR). For µi j = E[Yi j|Xi,Vi] = P(Yi j = 1|Xi,Vi), the conditional mean
of Yi j given covariates Xi and Vi, we consider the logistic response model

logit µi j = α0 +αxXi +αvVi, (3.21)

where the covariates are assumed to have a common effect on both responses. We adopt the
marginal model of Lipsitz et al. (1991) to account for an association between Yi1 and Yi2 given
(Xi,Vi). Let µikl = P(Yi1 = k,Yi2 = l|Xi,Vi;α), where α = (α0,αx,αv,ψ)′. Then, specifically, we
let

ψi =
P(Yi1 = 1,Yi2 = 1|Xi,Vi)/P(Yi1 = 0,Yi2 = 1|Xi,Vi)
P(Yi1 = 1,Yi2 = 0|Xi,Vi)/P(Yi1 = 0,Yi2 = 0|Xi,Vi)

=
µi11/µi01

µi10/µi00

be the odds of subunit 1 in cluster i responding when subunit 2 responds, versus the respective
odds when subunit 2 doesn’t respond, given the cluster-level covariates Xi and Vi. We will further
assume a common odds-ratio so that ψi = ψ, i = 1, . . . ,N. The joint probability is then

P(Yi1 = 1,Yi2 = 1|Xi,Vi;α) =

{
ci−[c2

i−4ψ(ψ−1)µi1µi2]1/2

2(ψ−1) if ψ 6= 1
µi1µi2 if ψ = 1

where ci = 1−(1−ψ)(µi1 +µi2). The marginal means and the odds ratio completely specify the
full distribution of the clustered binary response data with clusters of size 2. We consider binary
covariates X and V which arise so that logit P(Xi = 1|Vi;β )= β0+βvVi and logit P(Vi = 1;γ) = γ0.

3.7.2 The Selection Model

We specify the phase-II sampling design for these bivariate data through the choice of selection
parameters δ in the probabilities π(Yi,Vi;δ ) = P(Ri = 1|Yi,Vi;δ ), where we consider the selection
model

logit π(Yi,Vi;δ ) = δ0 +δ1Yi1 +δ2Yi2 +δ3Vi +δ4Yi1Yi2 +δ5Yi1Vi +δ6Yi2Vi +δ7Yi1Yi2Vi.
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Note that since the covariate V and the responses Y1 and Y2 are binary, the use of this saturated
selection model is equivalent to specifying stratum-specific sampling probabilities which indicate
the selection probabilities that should be used within each of the eight strata defined by the phase-
I data (Y1,Y2,V ). We will also concentrate here only on asymptotic calculations and therefore
define the budgetary constraint in terms of expectations as in (3.18). A simple random sampling
design in this context still involves phase-II selection probabilities which are equal for all strata
(so δk = 0, k = 1, . . . ,7).

Optimal IPW2 Sampling

When using the IPW2 analysis from (3.10) where now

Ui(α)≡ ∂ logP(Yi1,Yi2|Xi,Vi;α)/∂α

(i.e when maximising the weighted pseudo-likelihood Riπ̂
−1
i Ui), the optimal design for efficient

estimation of αx, Optipw, can be derived in a similar manner to (3.17) so that now

π(y,v;δ
ipw) =

PR

{
Ā(Ψ)−1varX |y,v

[
Ui(α)

]
Ā(Ψ)−1

}1/2

[2,2]

∑Y,V P(Y,V ;Ψ)
{

Ā(Ψ)−1varX |Y,V
[
Ui(α)

]
Ā(Ψ)−1

}1/2

[2,2]

, (3.22)

where y represents the vector (y1,y2) and

Ā(Ψ) = EY1,Y2,X ,V [−∂Ui(α)/∂α
′].

Balanced Sampling

For the clustered data problem, we will consider two balanced sampling designs. In the first
balanced sampling design, the phase-I sample will be divided into the eight classes defined by all
possible values of (Y1,Y2,V ). However, since we are defining efficiency in terms of the variance
of the estimator of αx, and (3.21) assumes a common effect of X on either response, it may
be more in the spirit of the balanced design to sample equally from the six strata defined by
(Y1 +Y2,V ); therefore we also consider this second balanced design when analysing the clustered
data. It is clear here that implementation of a balanced design is not as straightforward as one
might like as it is not always clear how phase-I data should be used to stratify the sample. Note
that in our asymptotic calculations, these designs are based on expected phase-I stratum sizes,
which come from having knowledge of the true parameters at the design stage.
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3.7.3 Asymptotic Relative Efficiencies

As before, we considered analyses based on maximising the observed data likelihood where
saturated models are used for modelling the nuisance covariate distributions (ML), and based on
maximising the weighted pseudo-likelihood with weights estimated using a saturated model for
missingness (IPW2). For both of these methods of analysis we considered four designs: simple
random sampling (SRS), balanced sampling over all eight strata defined by (Y1,Y2,V ) (Bal 8),
balanced sampling over the six strata defined by (Y1 +Y2,V ) (Bal 6), and the sampling design
which is asymptotically optimal for precise estimation of αx with IPW2 analysis (Optipw). The
asymptotic efficiencies of the estimators of αx resulting from these three latter designs were
calculated relative to the asymptotic efficiency of a simple random sampling design where, as
before, greater precision corresponds to lower asymptotic relative efficiency.

We also consider the relative efficiency of the designs for estimating α0, αv, and ψ; note that the
‘optimal’ design will not necessarily be efficient for estimation of parameters other than αx. The
asymptotic relative efficiencies of the different sampling designs is presented in Figure 3.6 for
IPW2 estimation and in Figure 3.7 for ML estimation. The relative efficiencies are presented for
a range of values of the association parameter ψ while the other parameters were chosen so that
E[Y1] = E[Y2] = 0.4;E[X ] = 0.6;E[V ] = 0.5;E[R] = 0.25;αx = log(1.25);αv = log(1.5);βv =
log(1.5).

It can be seen that the Optipw design allows for a great increase in the efficiency of estimation of
αx regardless of the method of analysis (Figures 3.6 and 3.7). The Optipw design also increased
the efficiency with which α0 was estimated. This is similar to that which was reported by Reilly
(1996), where optimising for efficient estimation of one parameter led to efficiency gains for
other parameters. The choice of design had little effect on the efficiency of estimators of αv and
ψ .

The Bal 6 design was consistently more efficient than SRS for estimation of α0 and αx, while
the Bal 8 design sometimes resulted in efficiency gains and sometimes resulted in a loss of
efficiency compared to SRS. This illustrates the main problem with implementing a balanced
sampling design: it is difficult to determine how to best stratify the phase-I sample based on the
available data for balanced sampling, and it is unclear if a balanced design will result in more
efficient estimators than a SRS design would. The Optipw design, on the other hand, is guaranteed
to increase the efficiency of the IPW2 estimators of parameters of interest and has been shown
to often increase efficiency for other estimators and parameters not specified in the definition of
optimality.
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Figure 3.6: Asymptotic relative efficiencies (vs. SRS) of IPW2 estimators of αx using balanced (8 and 6
strata) and Optipw designs with clustered responses. E[Y1] = E[Y2] = 0.4;E[X ] = 0.6;E[V ] = 0.5;E[R] = 0.25;αx =
log(1.25);αv = log(1.5);βv = log(1.5)
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Figure 3.7: Asymptotic relative efficiencies (vs. SRS) of ML estimators of αx using balanced (8 and 6 strata)
and Optipw designs with clustered responses. E[Y1] = E[Y2] = 0.4;E[X ] = 0.6;E[V ] = 0.5;E[R] = 0.25;αx =
log(1.25);αv = log(1.5);βv = log(1.5)
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3.8 Response-Dependent Sampling with Longitudinal Binary
Data

3.8.1 The Response Model for Longitudinal Data

Here we consider the analysis of binary data arising from a longitudinal study where the bi-
nary response variable is measured at up to K prespecified time points (one baseline assess-
ment and up to K − 1 follow-up assessments). We denote the response for individual i as
Yi = (Yi0,Yi1, . . . ,Yi,K−1)′. We again consider binary covariates Xi and Vi, where Vi is known
for all individuals at time 0, but Xi will only be collected for individuals selected into a phase-II
sample. We further assume that Yi0 = 0, i = 1, . . . ,N and P(Yik = 0|Yi,k−1 = 1) = 0, so that once
an individual has Yik = 1, then Yil = 1 with probability 1 for l = k +1, . . . ,K.

Thus if we consider Yit to be an indicator of disease status at time point t, then these data repre-
sent a study of an irreversible disease process in which all individuals are disease-free at study
entry. Specifically, it is of interest to examine how the change in disease status is affected by a
time-invariant, expensive binary covariate Xi (possibly a genetic factor), after accounting for an
available baseline auxiliary covariate Vi. This framework is consistent with the aims of the CLSA
where the objective is to model risk factors for the onset of disease.

We again consider ML and IPW2 analyses. For these data, we are not interested in estimating
marginal parameters as in (3.21), rather we are primarily interested in the effect of the covariate
X in the transitional response model

logit P(Yik = 1|Yi,k−1 = 0,Xi,Vi;α) = α0k +αxXi +αvVi, k = 1,2, . . . ,K.

Due to the irreversible nature of the disease process, if K = 2 the joint response model on which
the likelihood methods are based is

P(Yi|Xi,Vi;α) = I(Yi1 = 1)I(Yi2 = 1)P(Yi1 = 1|Yi0 = 0,Xi,Vi;α)
+ I(Yi1 = 0)I(Yi2 = 0)[1−P(Yi1 = 1|Yi0 = 0,Xi,Vi;α)][1−P(Yi2 = 1|Yi1 = 0,Xi,Vi;α)]
+ I(Yi1 = 0)I(Yi2 = 1)[1−P(Yi1 = 1|Yi0 = 0,Xi,Vi;α)]P(Yi2 = 1|Yi1 = 0,Xi,Vi;α).

3.8.2 The Selection Model

Here we set K = 2 and consider balanced and Optipw designs for the selection of a phase-II
sample at each of the three time points. This allows us to examine how the efficiency of designs
is affected by the amount of auxiliary information available at phase-I for choosing the phase-II
sample. Note that simple random sampling is not affected by the time at which the phase-II
sample is chosen as this design does not exploit the data available at phase-I.
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The selection model at time t can be expressed as πit(Y it ,Vi;δ (t)) = P(Ri = 1|Yi1, . . . ,Yit ,Vi). At
each progressive time point, more phase-I information is available for exploitation in deriving
efficient phase-II selection probabilities. At time point 0, the phase-I sample can be divided into
two strata based on the available information on V , so π(Y 0,V ;δ (0)) = π(V ;δ (0)); at time point
1, the phase-I sample can be stratified into four classes based on the available information on V
and Y1, so π(Y 1,V ;δ (1)) = π(Y1,V ;δ (1)); at time point 2, the phase-I sample can be stratified
into six classes based on the available information on V , Y1, and Y2, where P(Y2 = 0|Y1 = 1) = 0.

Simple random sampling is the same at each time point, but the efficiency of the balanced and
optimal designs will be affected by the amount of information available at phase-I. Therefore,
for this study of transitional effects, we consider 7 designs for each method of analysis: simple
random sampling (SRS), balanced sampling using the phase-I data available at each time point
(call these Bal 0, Bal 1, and Bal 2 at time points 0, 1, and 2, respectively) and the sampling
designs which are optimal for IPW2 estimation of αx given the data that are available at the time
of selection (call these Optipw 0, Optipw 1, and Optipw 2). We will again present the efficiencies
of the designs relative to simple random sampling, which would be carried out in the same way
at all time points as SRS does not exploit the available phase-I information.

The asymptotic variances and optimal designs can be found as before; however summations
are no longer over all strata (defined here by (Y1,Y2,V )), but rather over strata defined by the
data that are available at the time of selection. This decrease in phase-I data essentially places
added constraints on the previously derived optimal sampling design; for example, at time point
0, when only V is available for phase-II sampling decisions, then π(Y,V ;δ ) = π(V ;δ ) for all
Y = (Y1,Y2) ∈ {(0,0),(0,1),(1,1)}. The Optipw sampling design at time point 1, for example, is
defined by stratum-specific sampling probabilities π(y1,v;δ ipw1) that can be found as

PR

{
Ā(Ψ)−1

∑Y 2
{

P(y1,Y2,v;Ψ)/P(y1,v;Ψ)EX |y1,Y2,v
[
Ui(α)U ′i (α)

]}
Ā(Ψ)−1

}1/2

[2,2]

∑Y1,V

{
Ā(Ψ)−1 ∑Y2

{
P(Y1,Y2,V ;Ψ)P(Y1,V ;Ψ)EX |Y1,Y2,V

[
Ui(α)U ′i (α)

]}
Ā(Ψ)−1

}1/2

[2,2]

,

where Ui(α)≡ ∂ logP(Yi1,Yi2|Xi,Vi;α)/∂α and Ā(Ψ) = EY1,Y2,X ,V [−∂Ui(α)/∂α ′].

3.8.3 Asymptotic Relative Efficiencies

We derived optimal designs for a range of values of PR, which defines the budgetary constraint
as in (3.18). Other parameters were chosen so that E[Y1] = 0.2;E[Y2] = 0.4;E[X ] = 0.6;E[V ] =
0.75;αx = log(1.5);αv = log(1.5);βv = log(1.5). The relative efficiencies of the different sam-
pling designs is presented in Figures 3.8 and 3.9 for IPW2 and ML analyses, respectively. We

94



consider the relative efficiency of each of the considered designs for estimating α0, α1, αx, and
αv.

As expected, the Optipw sampling designs offered large efficiency gains over simple random
and balanced designs when estimating αx. As before, these designs also added efficiency to
the estimation of α0 (Figures 3.8 and 3.9). Having more information at the time of sampling
increased the efficiency of the optimal design for the estimation of both α0 and αx. However Bal
2, the balanced design at time point 2, was often less efficient than Bal 1, the balanced design
which was based only on the auxiliary information available at time point 1. This indicates that,
as was seen in the comparison of Bal 6 and Bal 8 in the previous section, having more phase-I
information does not necessarily improve the efficiency of balanced designs. For IPW2 analysis,
none of the balanced designs was consistently better than the others and all of the balanced
designs were generally less efficient than SRS. For ML analysis, the Bal 1 design was the best
balanced design and was preferable to SRS. The Bal 0 design, on the other hand, was generally
less efficient than SRS for ML analysis and Bal 2 sometimes resulted in greater asymptotic
efficiency than SRS and sometimes did not.

The asymptotic variances of the ML and IPW2 estimators under SRS were very similar. The
efficiency gain of the Optipw designs over SRS for estimation of αx was also very similar for
both methods of analysis; the Optipw 0 design was very similar to SRS, and the Optipw 1 and
Optipw 2 designs resulted in increasing levels of asymptotic efficiency for estimation of αx and
α0. The balanced designs were most efficient for estimation of α1 and αv, but the differences
between designs was small. Furthermore, if precision of estimation of αv was also of primary
importance, the optimality criteria could easily be modified to find designs that were also efficient
for estimation of αv.

Note that as the sampling fraction increases, smaller strata are selected in their entirety by the
balanced designs (the selection probabilities must be capped at 1, as discussed previously); this
accounts of the lack of smoothness in the change in asymptotic efficiency of the balanced designs.

3.9 Discussion

One criticism of optimal sampling approaches offered by Breslow and Chatterjee (1999) is that
optimal designs differ for different methods of analysis. Furthermore, Breslow and Cain (1988)
encountered “degenerate” optimal designs which were undesirable due to the fact that selection
probabilities for certain strata were near zero. We have shown that the optimal IPW2 design is
also optimal for AIPW analysis and in our situation was also optimal for IPW estimation of αx.
Additionally, the Optipw design offered improved efficiency for ML, MI, and SPML analyses in
a wide variety of settings. Furthermore, while the Optml designs did contain very small sampling
probabilities, this did not occur with the Optipw design. In fact, a necessary condition for IPW
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Figure 3.8: Asymptotic efficiency of estimators under balanced and optimal IPW designs relative to simple
random sampling when using IPW2 analysis to estimate transitional effects. E[Y1] = 0.2;E[Y2] = 0.4;E[X ] =
0.6;E[V ] = 0.75;αx = log(1.5);αv = log(1.5);βv = log(1.5)
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Figure 3.9: Asymptotic efficiency of estimators under balanced and optimal IPW designs relative to simple
random sampling when using maximum likelihood analysis to estimate transitional effects. E[Y1] = 0.2;E[Y2] =
0.4;E[X ] = 0.6;E[V ] = 0.75;αx = log(1.5);αv = log(1.5);βv = log(1.5)
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analysis is that the selection probabilities be bounded away from 0, so optimising for IPW anal-
ysis should avoid this problem entirely. In any case, this problem of degenerate designs could
easily be avoided by searching for optimal designs amongst those designs that have a minimum
selection probability (for example, we required that π(Y,V ;δ )≥ 5%). Since this optimisation is
over a class of designs that includes the balanced design, this approach would still be at least as
efficient as using a balanced design and will avoid degenerate designs. Importantly, all methods
of analysis demonstrated improved efficiency in estimation of the parameter of interest when the
Optipw design was used. This held true even when the design was derived based on pilot data, or
derived using slightly misspecified parameters or covariate distributions. This design also often
resulted in improved efficiency of estimators of other parameters and the optimality criteria could
easily be modified to include any set of parameters whose estimation is of primary importance.

The investigations in this chapter are among the first to study the relative efficiencies of two-
phase sampling designs involving clustered or longitudinal data. Given the increased interest
in studies involving cross-sectionally clustered data and the recent trend towards the design of
massive cohort studies of health and disease, the insights that result from this work are important.

For the setting of clustered data, the first decision to make is typically on the method of analysis
and there are a variety of frameworks one can adopt. We restricted attention to bivariate response
data and marginal models for characterising the effects of exposure. In this setting, maximum
likelihood and the IPW2 methods can be much more efficient than IPW for estimation of the
covariate effects; maximum likelihood is asymptotically the most efficient method, but necessi-
tates modelling the covariate distribution. When the exposure variable is continuous, a robust
implementation of the inverse probability weighting methods may be more appealing since no
modelling of exposure is required. We found that optimal designs based on maximum likeli-
hood analyses may be more sensitive to small changes in the parameters used at the design stage
than optimal IPW designs. So, if models for exposure variable are difficult to formulate with
confidence, the robustness of the IPW approaches may be more appealing. When the auxiliary
variable is continuous, discretising seems the most practical approach to addressing the curse of
dimensionality and this has been recommended by several authors (Lawless et al., 1999).

When comparing the effect of different frameworks for analysis and design, it is interesting to
note that the conclusions about optimality bear only on the criteria adopted for the optimal de-
sign; the intercept, effect of the auxiliary variable and association parameters do not necessarily
behave in the same way.

The pragmatic approach of using balanced sampling designs as a compromise between robust-
ness and efficiency does not yield clear and consistent recommendations; the resulting estimators
sometimes perform well and sometimes perform poorly. Furthermore, it is unclear what auxil-
iary information should be considered when implementing a balanced design especially in more
complex settings.

There are several directions of future research that are natural to consider. We focus on clusters
of size two because of interest in the two sacroiliac joints among patients with psoriatic arthritis.
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However, clusters can naturally be much larger as would be the case if all joints were to be
modelled. Dealing with larger cluster sizes is in principle straightforward but may suggest the
use of second-order generalised estimating functions rather than likelihood analyses. One may
elect to retain the robustness of a first order analysis by refraining from higher order assumptions,
or invoke further moment assumptions to try to optimise efficiency at the expense of robustness
in the estimating equation framework.

We have also restricted attention to a first order Markov model in the longitudinal context with
only three assessments. Longer term follow-up, as is planned for the Canadian Longitudinal
Study in Aging (Raina et al., 2009) raises questions about the need for more elaborate response
models, the need for greater collapsing of strata, and issues surrounding time-varying covariates.
These and other issues are subject to further research.
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Chapter 4

Adaptive Stratified Two-Phase Sampling

In Section 3.6, we identified two potential shortcomings with our recommended phase-II sam-
pling design for studies of expensive covariates in the presence of budgetary constraints: (i) the
size of the phase-II sample, and therefore the cost of the study, was random and fixed only in
expectation; and (ii) the specification of parameter values at the design stage would typically re-
quire good a priori knowledge of the covariate effects and the other parameters or the collection
of expensive external pilot data. In this chapter, we aim to address these concerns by proposing
a multiphase, adaptive, basic stratified sampling design for efficient estimation through inverse
probability weighted estimating equations.

4.1 Inverse Probability Weighting with Basic Stratified Sam-
pling

With basic stratified sampling (BSS), we make sampling decisions about the number of indi-
viduals to be selected from each stratum, {nyv}, rather than about the selection probabilities
{π(y,v)}. This approach differs from the previously considered variable probability sampling
(VPS) in that the phase-II sample size, n = ∑yv nyv, is fixed and the sampling decisions are no
longer independent within strata.

Lawless et al. (1999) derived the asymptotic variance of a number of estimators under both VPS
and BSS. In an effort to exploit the simplicity, robustness, and general utility of designs based on
inverse probability weighted (IPW) analyses demonstrated in the previous chapter, we choose to
focus on this framework here.
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4.1.1 Asymptotic Variance of IPW under BSS

As in Lawless et al. (1999) and under mild regularity conditions discussed by Wild (1991), the
estimator α̂ which solves the weighted unbiased score equation

Ū(α) =
N

∑
i=1

Riπ
−1
i Ui(α) = 0

has the property that
√

N(α̂−α)
p→ N(0, Ā(Ψ)−1B̄(Ω)Ā(Ψ)−1),

where
Ā(Ψ) = plim(−N−1

∂Ū(α)/∂α
′) = limE[−N−1

∂Ū(α)/∂α
′],

and B̄(Ω) = limvar(N−1/2Ū(α)). As in the case of VPS sampling,

Ā(Ψ) = lim ERY XV [− 1
N

N

∑
i=1

∂Riπ
−1
i Ui(α)/∂α

′] = EY XV [−∂Ui(α)/∂α
′].

However, now

B̄(Ω) = lim var(N−1/2
N

∑
i=1

Riπ
−1
i Ui(α))

= lim

{
varY XV (ER|Y XV [N−1/2

N

∑
i=1

Riπ
−1
i Ui(α)])+EY XV (varR|Y XV [N−1/2

N

∑
i=1

Riπ
−1
i Ui(α)])

}

= lim N−1

{
varY XV (

N

∑
i=1

Ui(α))+EY XV (varR|Y XV [
N

∑
i=1

Riπ
−1
i Ui(α)])

}

We use πi = P(Ri = 1|yi,vi) = nyi,vi/Nyi,vi to denote the sampling probability for an individual i
and denote the second-order inclusion probability as πi j = P(Ri = 1,R j = 1|yi,vi,y j,v j). Under
VPS, πi j = πi ·π j; under BSS, πi j = πi ·π j = nyi,vi/Nyi,vi · ny j,v j/Ny j,v j if individuals i and j are
from different strata (i.e. if (yi,vi) 6= (y j,v j)), while πi j = nyi,vi/Nyi,vi · (nyi,vi − 1)/(Nyi,vi − 1) if
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they are from the same stratum (i.e. (yi,vi) = (y j,v j)). So, under BSS

EY XV
[
varR|Y XV [

N

∑
i=1

Riπ
−1
i Ui(α)]

]
= EY XV

[ N

∑
i=1

varR|Y XV (Ri)π−2
i Ui(α)Ui(α)′+

N

∑
i=1

N

∑
j=1;i 6= j

cov(Ri,R j|yi,xi,vi,y j,x j,v j)π−1
i π

−1
j Ui(α)U ′j(α)

]
= EY XV

[ N

∑
i=1

(πi−π
2
i )π−2

i Ui(α)U ′i (α)+
N

∑
i=1

N

∑
j=1;i6= j

πi j−πiπ j

πiπ j
Ui(α)U ′j(α)

]
= EY XV

[ N

∑
i=1

(π−1
i −1)Ui(α)U ′i (α)

]
+

N

∑
i=1

EYV

[
(NYV −1)

(
nYV −1
NYV −1

NYV

nYV
−1
)

EX |YV [Ui(α)]EX |YV [U ′i (α)]
]

= EY XV
[ N

∑
i=1

(π−1
i −1)Ui(α)U ′i (α)

]
−

N

∑
i=1

EYV
[(

π
−1
i −1

)
EX |YV [Ui(α)]EX |YV [U ′i (α)]

]
=

N

∑
i=1

EYV
[
(π−1

i −1)
(
EX |YV [Ui(α)U ′i (α)]−EX |YV [Ui(α)]EX |YV [Ui(α)′]

)]
Therefore, B̄(Ω) = E[Ui(α)U ′i (α)]+ ∑YV P(Y,V )(π(Y,V )−1− 1)varX |YV [Ui(α)U ′i (α)], and the
asymptotic variance of the IPW estimator under BSS is

Ā(Ψ)−1 + Ā(Ψ)−1B̄∗(Ω) Ā(Ψ)−1, (4.1)

where
B̄∗(Ω) = ∑

Y,V
P(Y,V )

[NYV

nYV
−1
]
·varX |Y,V [Ui(α)],

which is equivalent to the asymptotic variance for IPW2 derived in 3.3.4 under VPS.

4.2 IPW Analysis for Multi-Phase Sampling

Consider now a multi-phase sampling procedure for selection of the expensive covariate X . Sup-
pose that a total of n unique individuals can be selected for measurement of X in any of T rounds
of sampling, where we use R(t)

i to indicate selection of an individual at time t, and individu-
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als are only selected once so Ri = ∑
T
t=1 R(t)

i = 1 for those individuals selected for measurement
of X . Analysis based on IPW estimating equations is quite appealing in this setting since the
probability that an individual is selected for measurement of X is simply

P(Ri = 1|yi,vi)

=P(R(1)
i = 1∪R(2)

i = 1∪·· ·∪R(T )
i = 1|yi,vi)

=P(R(1)
i = 1|yi,vi)+P(R(2)

i = 1|yi,vi,R
(1)
i = 0) ·P(R(1)

i = 0|yi,vi)

+ · · ·+P(R(T )
i = 1|yi,vi,R

(T−1)
i = 0) ·P(R(T−1)

i = 0|yi,vi)

=
n(1)

yv

Nyv
+

n(2)
yv

Nyv−n(1)
yv

Nyv−n(1)
yv

Nyv
+ · · ·+

n(T−1)
yv

Nyv−n(1)
yv −·· ·−n(T−1)

yv

Nyv−n(1)
yv −·· ·−n(T−1)

yv

Nyv

=N−1
yv [Nyv +n(1)

yv + · · ·+n(T−1)
yv ]

=
nyv

Nyv
,

where nyv = ∑
T
t=1 n(t)

yv is the total number of individuals selected from the stratum defined by
(y,v) and n(t)

yv is the corresponding number selected from the stratum at the tth stage of sampling,
t = 1,2, . . . ,T . The IPW estimating equation will therefore be the same whether the phase-II data
are selected simultaneously or sequentially (Whittemore and Halpern, 1997).

In the previous chapter, we discussed using external pilot data to estimate the design parameters
so that phase-II sampling could be optimally efficient. Here we consider a multi-phase sampling
procedure such that each phase of sampling uses the previously collected data as an internal pilot
study for estimating the optimal sampling procedure for the next phase of sampling. This idea
of using internal pilot studies to modify the study design without discarding data was advocated
by Wittes and Brittain (1990). Lohr (1990) used a similar approach, called triple sampling, in
estimation of an unknown multivariate mean. Pepe et al. (1994) acknowledged the possibility of
such an adaptive optimal IPW designs and stated that this approach needs further exploration.

4.3 Adaptive Multi-Phase Sampling

In Section 3.4, we considered VPS with the budgetary constraint

P(R = 1;δ ) = ∑
Y,V

π(Y,V ;δ ) ·NYV /N = PR,

and assumed that NYV (the size of the phase-I sample strata) were known at the design stage. We
focussed on finding the optimal π(y,v;δ ), which amounted to finding the best expected stratum
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sampling weights. With BSS, we focus on choosing the actual sample sizes nyv for each stratum
defined by (y,v). Here the budgetary constraint is based on the actual (not expected) cost of the
study through specification of n, the number of individuals that can be sampled at phase-II, and
we partition our phase-II sampling into multiple phases.

In its simplest form, this adaptive multi-stage phase-II design will consist of two stages of selec-
tion: phase IIa in which individuals are selected without any knowledge of the true parameters,
and phase IIb in which we exploit the phase-IIa data to obtain parameter estimates to guide the
sampling of remaining phase-II individuals. Phase IIa will involve selecting n(a) individuals un-
der proportional or balanced stratified sampling. Phase-IIb will involve selecting the remaining
n(b) = n−n(a) individuals optimally for IPW analysis (that is, optimally assuming the parameter
estimates from phase IIa are the true parameters). For simplicity, we continue to discuss a two-
stage phase-II design, but this procedure can easily be generalised to a sampling design with an
arbitrary number of stages. The effect on efficiency of the choice of the number of stages for
sampling and the relative sizes of each sampling stage will be explored.

Our sampling plan now involves deciding how to distribute the n = n(a)+n(b) individuals amongst
the phase-I strata under the budgetary constraint

n = ∑
Y,V

[n(a)
YV +n(b)

YV ],

and we wish to minimize the asymptotic variance of the estimator of interest as defined by the
[2,2] entry in (4.1). Therefore, we wish to find the {n(b)

YV} that minimise

Λ =
{

Ā(Ψ)−1 + Ā(Ψ)−1{
∑
Y,V

P(Y,V )
[ NYV

n(a)
YV +n(b)

YV

−1
]
·varX |Y,V [Ui(α)]

}
Ā(Ψ)−1

}
[2,2]

+λ [∑
Y,V

(n(a)
YV +n(b)

YV )−n],

so the optimal n(b)
YV is the solution to

∂Λ

∂n(b)
YV

=
{

Ā(Ψ)−1{ NYV

(n(a)
YV +n(b)

YV )2
P(Y,V )varX |Y,V [Ui(α)]

}
Ā(Ψ)−1

}
[2,2]

+λ = 0.

At the true Ω, given the phase-IIa sample sizes {n(a)
YV}, the optimal stratum-specific phase-IIb

sampling sizes for IPW estimation of αx satisfy

n(b)
yv = λ

∗[NyvP(y,v)
]1/2
{

Ā(Ψ)−1varX |y,v
[
Ui(α)

]
Ā(Ψ)−1

}1/2

[2,2]
−n(a)

yv ,
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so the optimal design is

n(b,opt)
yv =

n ·N1/2
yv P(y,v)1/2 ·

{
Ā(Ψ)−1varX |y,v

[
Ui(α)

]
Ā(Ψ)−1

}1/2

[2,2]

∑Y,V N1/2
YV P(Y,V )1/2 ·

{
Ā(Ψ)−1varX |Y,V

[
Ui(α)

]
Ā(Ψ)−1

}1/2

[2,2]

−n(a)
yv (4.2)

under the constraints 0 ≤ n(b)
yv ≤ Nyv− n(a)

yv . We can solve (4.2) along the boundary as in Reilly
and Pepe (1995) (i.e. if n(b)

yv > Nyv−n(a)
yv , for some (y,v), then we set n(b)

yv = Nyv−n(a)
yv and solve

for the others using an updated version of (4.2)). Here we need not worry about the degenerate
case n(b)

yv = 0, but we must simply ensure that n(a)
yv +n(b)

yv > 0.

4.4 Empirical Properties of Adaptive Multi-phase Designs

We compare here the empirical efficiency of adaptive two-phase designs to that of the optimal
design (which is based on the true, unknown parameters) for estimation of αx in the each of the
three main settings considered in Chapter 3: a binary expensive covariate, a continuous expensive
covariate, and clustered binary response data.

4.4.1 Simulation Results for a Binary X

Here, we consider selection in phase-II in several steps: we first select na individuals using
(i) proportional stratified sampling, or (ii) balanced sampling; and then select the remaining
nb = n− na individuals according to the optimal IPW design based on the preliminary parame-
ter estimates from the phase-IIa sample. Here, we consider basic stratified sampling, so that the
number of individuals selected at phase II is not random. We considered a dataset of N = 1000 in-
dividuals at phase I, and phase-II sample sizes of n = 250 and 500; these values are chosen to cor-
respond roughly to the total size of the psoriatic arthritis cohort of approximately 1000 individu-
als and settings with low and moderate budgets for biomarker studies. In both cases, we consid-
ered three possible choices for the proportion of the phase-II sample to select at phase IIa: 100%
(na = n), 60%, and 20% (note that when na = n, nb = 0 and this is not adaptive sampling but rep-
resents a scenario where the entire phase-II sample is chosen through proportional stratified sam-
pling or balanced sampling). As in Pepe et al. (1994) and as with the external pilot data discussed
in Chapter 3, we attempt to stabilise the estimation of the design parameters by adding one obser-
vation to each strata when analysing the phase-IIa data. Parameter values were chosen as in the
previous chapter so that Ψ0 = (α0,αx,αv,β0,βv,γ0)′ = (−1.95,1.00,0.90,1.05,−0.41,−0.04)′.

105



Each design was employed for 1000 simulated datasets and the differences between these designs
and the optimal designs are presented in Figures 4.1 and 4.2. Figure 4.1 displays the difference
between the the optimal and the design-specific proportion of individuals selected for measure-
ment of X from each stratum (i.e. nYV /NYV −nopt

YV /NYV ) for n = 250; Figure 4.2 displays these
differences in sampling fractions for n = 500. The optimal design here utilise the true parameters
Ψ0 that generate the data, while the adaptive designs attempt to approximate this design.

The empirical biases, empirical standard errors, and empirical coverage probabilities of the es-
timators resulting from the different designs are presented in Tables 4.1 and 4.2 for n=250 and
500, respectively.

The adaptive designs resulted in sampling fractions which were much closer to the optimal de-
signs than either proportional or balanced sampling alone (see Figures 4.1 and 4.2). This near-
optimality is reflected in Tables 4.1 and 4.2, where it can be seen that the adaptive designs
increased the empirical efficiency of the resultant estimators of αx. These adaptive designs also
resulted in an increase in efficiency for estimation of α0; the efficiency with which αv was esti-
mated changed little between designs.

The non-adaptive proportional sampling design was quite inefficient here. The balanced design
offered improved efficiency over proportional stratified sampling. However, the adaptive designs
all had much greater empirical efficiency than both non-adaptive designs. In all cases, the adap-
tive design which allocated 20% of the sample to phase IIa resulted in empirical efficiencies that
were very similar to the true optimal design. These designs did not result in any bias and the
empirical coverage probabilities were very close to the nominal 95% level even when the sample
size was small. It is interesting to note that the adaptive design that allocated 20% of the sample
to phase IIa lead to greater efficiency than the design which allocated 60%, but the sampling
probabilities were less variable for the latter design. These results demonstrate empirically that
there is an important trade-off between the efficiency that can be achieved through increasing the
size of the phase-IIb sample and the variability of the design that results from the less precise
phase-IIa estimates that result from smaller phase-IIa samples. Here, however, allocating 20%
of the sample to phase IIa was sufficient to achieve levels of efficiency which were very close to
optimal. A similar phenomenon was demonstrated in Chapter 3 where small pilot studies were
sufficient to derive near-optimal designs for IPW analysis.

In all cases, the empirical coverage probabilities were close to the nominal 95% level, which
indicates that the estimated asymptotic standard errors for the adaptive design closely tracked
the empirical standard errors. The estimated asymptotic standard errors from the adaptive de-
signs were very similar to those from the asymptotically optimal design. However, the empirical
standard errors of the adaptive designs were actually sometimes smaller than the empirical stan-
dard errors from the optimal design (see Table 4.1). Therefore, the regular variance estimators
worked well for these adaptive designs, which achieved efficiency that was very similar to the
unknowable optimal design.

In the next sections we will consider the efficiency of these same two-stage phase-II designs in
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the context of data involving a continuous expensive covariate and clustered responses before
returning to this univariate setting to consider the effect of using more stages of sampling.
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4.4.2 Simulation Results for a Continuous X

Here we consider the case of a continuous expensive exposure variable where X |V arises from a
gamma distribution with shape β0 and scale β1 +βvV , as in (3.20); the response Y and auxiliary
covariate V were again generated according to the models (3.1) and (3.19). Because Y and V
are still discrete, strata are defined as before at phase I. The parameter values used in generating
these data were, as in Section 3.4.2, Ψc

′
0 = (α0,αx,αv,β0,β1,βv,γ0)′ = (-2.18, 0.03, .84, 1.40,

10, 5, -.04)′, where values of β were chosen to reflect the distribution of actual MMP-3 values
given ESR status seen in the PsA pilot data.

One thousand datasets were generated and the empirical biases and estimated asymptotic stan-
dard errors of the estimators resulting from the use of the different sampling designs were
recorded. The differences between the sampling fractions for the adaptive and optimal designs
are displayed in Figures 4.3 and 4.4 for selection of n = 250 and 500 out of N = 1000 indi-
viduals, respectively. The empirical biases, standard errors, and coverage probabilities of the
estimators resulting from the different designs are reported in Tables 4.3 and 4.4, for n=250 and
500, respectively.

Again it can be seen that the adaptive designs produce sampling fractions that are much closer
to the optimal designs than those from proportional or balanced sampling alone. These adaptive
designs are also more efficient than the non-adaptive designs for estimation of αx; in fact, both
versions of the adaptive design were more efficient than either non-adaptive design in the esti-
mation of both αx and α0 for both n = 250 and n = 500. The adaptive designs were also more
efficient than proportional sampling for estimation of αv. Here the adaptive design that allocates
20% of the sample to phase IIa was not always preferable to the adaptive design that allocates
60% of the sample to phase IIa in terms of empirical efficiency in estimation of αx. There were
also situations here where the empirical efficiency of the adaptive designs was actually greater
than that from the asymptotically optimal designs for estimation of αx. In all cases, the empirical
coverage probabilities were near the nominal 95% level.
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4.4.3 Simulation Results for Clustered Responses

We now turn our attention to the setting of multiphase designs involving clustered responses.
The more elaborate response model and the difficulty in specifying even tentative values for the
association parameters motivated, in part, the exploration of the adaptive phase-II designs we
consider in this chapter. Here we consider a balanced sampling design based on the eight strata
defined by the eight possible values of (Y1,Y2,V ), and a balanced sampling based on six strata
defined by the six possible values of (Y1 +Y2,V ), as discussed in Chapter 3. Parameter values
were chosen so that E[Y1] = 0.4,E[Y2] = 0.4,αx = log1.25,αv = log1.5,E[X ] = 0.6,βv = log1.5,
and γ0 = 0, as in Section 3.7. We considered both a mild and a strong within-cluster association
defined by the conditional odds ratios ψ=1.25 and ψ=3.00, where ψ is the conditional odds ratio

ψ =
P(Y1 = 1,Y2 = 1|X ,V )/P(Y1 = 0,Y2 = 1|X ,V )
P(Y1 = 1,Y2 = 0|X ,V )/P(Y1 = 0,Y2 = 0|X ,V )

.

In each case, 1000 datasets were simulated and corresponding phase-II designs were selected.
The distribution of the difference between the stratum-specific sampling fractions for each design
and the optimal design can be found in Figures 4.5 and 4.6 for the case of the mild within-cluster
association ψ = 1.25 and in Figures 4.7 and 4.8 for ψ = 3.00. In order to preserve space in these
figures, the sampling fractions are only presented for the four strata with V = 1; the trends within
the other strata are very similar. The empirical biases, empirical standard errors, and empirical
coverage probabilities resulting from IPW analysis of the designs can be found in Tables 4.5 -
4.8.

The non-adaptive designs were generally quite dissimilar to the optimal designs. Out of these
non-adaptive designs, the design balanced on 6 strata was generally the most similar to the op-
timal design. Both forms of adaptive sampling resulted in stratum-specific sampling fractions
that were much closer to the optimal designs (Figures 4.5 - 4.8). The adaptive designs using
na = 0.20n were very similar to the optimal designs. The distribution of stratum-specific sam-
pling probabilities from the balanced design based on 8 strata were generally further from the
optimal designs than the proportional design. However, when only na = 0.20n individuals were
selected at phase-IIa, the three designs were quite similar.

None of the non-adaptive designs was consistently more efficient than the others for estimation of
αx; the balanced designs were often less efficient than the proportional stratified sampling design
(see Tables 4.5 - 4.8). The adaptive designs generally resulted in much more efficient estimators
of αx than the non-adaptive designs. The adaptive designs using na = 0.20n were generally very
similar to the (unknown) optimal design in terms of efficiency regardless of the design used
at phase-IIa. These designs were generally more efficient than the adaptive design using with
na = 0.60n, which generally offered a substantial improvement over the non-adaptive design in
terms of efficiency of estimating αx. The adaptive designs also generally increased the efficiency
with which the other parameters were estimated. In one setting, the non-adaptive design which
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balanced on 6 strata achieved an empirical efficiency which was very similar to the optimal
design 4.5; even in this setting, the adaptive approach still resulted in smaller empirical standard
errors and again demonstrated a superefficiency compared to the asymptotically optimal design.
In all cases the empirical coverage probabilities were near the nominal 95% level. These adaptive
two-phase designs generally increased the efficiency of parameter estimates in the presence of an
expensive covariate without artificially inflating the variance estimates. In general, the adaptive
designs were most efficient when most individuals were selected at phase-IIb.
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4.5 Considerations of Studies Involving Greater Numbers of
Stages

We return now to the problem involving a univariate response and binary covariates. We consider
again the problem of selecting n = 250 individuals out of N = 1000 for measurement of the
expensive covariate. Now, instead of examining only a two-stage adaptive selection procedure,
we allow for adaptive sampling procedures that involve selection at 1, 2, 5, or 10 stages. The
sampling procedure with only 1 stage of sampling is not adaptive. Here, the design using 2
stages differs slightly from those considered above as here n is divided evenly between the two
stages of sampling (na = nb = n/2); the design using 5 and 10 stages also select the same number
of individuals at each stage (0.20n and 0.10n, respectively). After each stage of sampling, the
completely observed individuals from all previous stages of selection are analysed in order to
estimate the design parameters necessary for deriving the optimal design for the next stage of
sampling. These designs were implemented for 1000 simulated datasets generated using the
parameters discussed above. The difference between the sampling probabilities and the optimal
sampling probabilities are displayed in Figure 4.9. The empirical biases and standard errors of
the estimators, as well as the average estimated asymptotic standard errors and the empirical
coverage probabilities resulting from the different designs are presented in Table 4.9.

There appears to be little to be gained here from greatly increasing the number of stages used
in adaptive sampling. The designs using many stages of sampling did result in more efficient
estimation than non-adaptive designs, but this efficiency was also gained by using relatively few
stages of sampling. Again we see that the empirical efficiency of these adaptive designs was
very similar to those for the optimal design; in fact, these adaptive designs were, by chance,
sometimes more efficient in this finite sample situation than the asymptotically optimal design.
There was also no evidence of bias here and the empirical coverage probabilities were compatible
with the nominal level. Further work may be needed, however, to ensure that this use of internal
pilot studies will not inflate the type-I error rate more generally (Wittes and Brittain, 1990).

4.6 Conclusion

This adaptive two-phase sampling design addresses the important problem of specifying param-
eter values at the design stage of studies. We have demonstrated situations in which the balanced
design can be less efficient than simple random sampling or proportional stratified sampling, so it
is not clear which of the non-adaptive designs would be preferable for any given study. However,
the adaptive designs consistently improved the efficiency of the estimator of interest. These adap-
tive designs were beneficial regardless of which design was used at phase IIa; the efficiencies of
estimators under adaptive sampling were generally very similar to those found under the opti-
mal design. These adaptive procedures are particularly important for elaborate response models
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where many parameters must be specified in order to derive the optimal design; a simple example
of this was the data involving clustered responses. Near-optimal designs were achieved without
a priori knowledge of the parameters and without the necessity for costly external pilot stud-
ies. It was also demonstrated that adaptive designs using relatively small phase-IIa samples were
generally quite efficient. There does appear to be a trade-off between the potential efficiency of
a large phase-IIb sample and the decreased precision of estimates of the design parameter values
when phase-IIa is small, however, the adaptive design that collected 20% of the individuals at
phase IIa was generally quite effective at generating near-optimal sampling fractions.

We have focussed here on analyses using inverse probability weighted pseudo-likelihoods, how-
ever it was demonstrated in Chapter 3 that the optimal IPW design increased efficiency for a
variety of methods of analysis. These adaptive designs have been shown to approximate the
optimal IPW design, so the properties previously observed for the optimal design – improved
efficiency for a variety of estimators, robustness to a misspecified covariate model – should also
hold for this adaptive approach. It is of interest to explore the potential efficiency gains for more
complex datasets such as those discussed in Chapter 5.
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Chapter 5

Future Work

5.1 Implications of Research Findings

Optimal designs for IPW analyses have been shown to result in increased efficiency compared to
standard methods for two-phase sampling for a variety of settings and frameworks for analysis.
Specifically, these designs resulted in efficiency gains over simple random sampling and bal-
anced sampling designs under maximum likelihood, semi-parametric maximum likelihood, mul-
tiple imputation, inverse probability weighted pseudo-likelihoods, inverse probability weighted
pseudo-likelihoods with estimated weights, and efficient augmented inverse probability weighted
pseudo-likelihood methods of analysis. These efficiency gains were seen when all covariates
were univariate and binary, when the expensive covariate was continuous, and when responses
were clustered. Moreover, this optimal design resulted in efficient estimation of the parameter of
interest for both variable probability and basic stratified sampling.

This optimal IPW design has also proven to be quite robust. Efficiency gains were seen for
the estimator of interest when using misspecified optimal designs instead of balanced or sim-
ple random sampling. These efficiency gains were demonstrated when design parameters were
misspecified and when there was misspecification of the nuisance covariate distribution required
for derivation of the optimal design. This optimal design was also demonstrated to achieve high
levels of efficiency when the design parameters were estimated using external pilot studies. The
robustness of the optimal IPW design was also demonstrated when it was seen that design pa-
rameters estimated using moderately-sized external pilot studies were quite generally sufficient
to improve the efficiency of the estimator of interest over both simple random and balanced
sampling designs.

The two-stage adaptive Optipw sampling scheme discussed in Chapter 4 was found to be quite
effective for approximating the optimal IPW design in a variety of settings. Relatively small
internal pilot studies were demonstrated to be sufficient for estimating the design parameters
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necessary to derive the optimal IPW design. Furthermore, it was also demonstrated that balanced
designs can be less efficient than simple random or proportional stratified sampling designs when
responses are clustered.

When designing the second phase of a two-phase study, it is not clear which form of non-adaptive
design would be most efficient. Simple random sampling, proportional stratified sampling, and
balanced sampling designs were all demonstrated to be particularly inefficient in different set-
tings. It has been shown, however, that the optimal design for IPW can be applied quite generally
to improve the efficiency of the estimator of interest. These designs have also been seen to gener-
ally improve the efficiency of the estimator of the intercept term. If efficient estimation of other
parameters is also of primary importance than the definition of optimality can be adjusted to in-
corporate this. By using a two- or multi-stage adaptive approach, the optimal IPW design can be
approximated quite well without any a priori knowledge of parameter estimates and without the
need to discard data selected in external pilot studies.

The decision of how to analyse the resultant incomplete data is not straight-forward. We have re-
viewed several methods of analysis designed for use with data under a MAR mechanism, and we
compared their empirical efficiencies in a number of simulations. We further explored the limit-
ing values of multiple imputation and IPW estimators implemented using misspecified models.
When models were misspecified, neither of these approaches to analysis were universally prefer-
able; in fact, neither of these methods of analysis were universally preferable to complete-case
analysis. However, our results appear to support the assertions of Carpenter et al. (2006) that MI
is more useful in the presence of incomplete responses, while IPW techniques are better suited to
studies involving missing covariates. The doubly robust AIPW analysis may offer some benefit
here as consistent estimators can still be achieved if either of the two specified models are correct.
However, this method of analysis may perform poorly if both models are slightly misspecified
(Kang and Schafer, 2007). Furthermore, we observed quite poor small sample properties for the
AIPW estimator, although we also saw that this could be rectified through iterative estimation of
the augmenting term, or by using the IPW2 estimator to find the necessary preliminary estimate.
A semiparametric efficient AIPW estimator is theoretically possible, but its derivation can com-
putationally expensive and it is rarely, if ever, implemented in practice (Carpenter et al., 2006).
Other potentially efficient methods of analysis for two-phase data include the pseudo-score esti-
mator (Chatterjee et al., 2003) and conditional maximum likelihood (Lawless et al., 1999; Scott
and Wild, 2011b). Although the results were not presented in this thesis, the optimal design
for IPW analysis was also shown to increase the efficiency of the pseudo-score estimator of the
parameter of interest.

Whatever the chosen method of analysis, the optimal IPW design could be implemented through
the adaptive sampling approach. Calculation of these optimal stratum-specific sampling proba-
bilities is relatively straight-forward, and the resultant design was generally quite efficient and
robust. This design could be quite useful for improving precision of estimates without increasing
study costs in a wide variety of settings, including those of the PsA and CLSA studies that served
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as our motivation.

The contents of this thesis have so far resulted in the preparation of four manuscripts. McIsaac
and Cook (2013a) focuses on missing data in the context of clinical trials; commonly used meth-
ods for analysing incomplete data are summarised and critically assessed based on both their
asymptotic and empirical properties. McIsaac et al. (2013) examines causes and effects of miss-
ing data in dermatology trials and provides practical recommendations for planning and drawing
conclusions from studies which could involve incomplete data. McIsaac and Cook (2013c) ex-
amines the potential efficiency gains of optimal two-phase sampling designs in the context of
clustered and longitudinal data. Finally, McIsaac and Cook (2013b) critically examines the util-
ity of implementing optimal two-phase designs when parameter values are not known a priori; in
particular, the Optipw design is shown to work well in practice. Immediate next steps involve the
study of two-phase design in the context of longitudinal binary data with time-varying exposure
variables, as described in the next section.

5.2 Ongoing and Future Research Plans

In this section we highlight several areas of interest for continuing research.

5.2.1 Repeated Measure Analyses of Longitudinal Data

Consider the analysis of binary data arising from a longitudinal study. Suppose that measure-
ments can be taken at K prespecified time points t1, . . . , tK so that the complete data for indi-
vidual i consists of Yi = (Yi1, . . . ,YiK)′, Xi = (Xi1, . . . ,XiK)′, and Vi = (Vi1, . . . ,ViK)′. However
the expensive covariate X may not be observed for individual i at all time points. We let Ri j
be the indicator that Xi j is observed. Then Ri = (Ri1, . . . ,RiK)′ is the vector of indicators of
subsample selection for individual i. We will assume that all individuals have complete infor-
mation at the first time point so that Ri1 = 1, for i = 1, . . .N. We will indicate the history of
a vector Zi = (Zi1, . . . ,ZiK)′ up to a certain time point k with an overbar and a subscript k, so
that Zik = (zi1, . . . ,zi,k−1)′. We denote the probability of being selected for measurement of the
expensive covariate by πik = P(Rik = 1|yi,xi,vi).

The analysis in this section is motivated by a modification of the CLSA design problems and
could have applications in other studies, including those at the PsA clinic. Suppose that it is of
interest to determine at each time point of an ongoing longitudinal study which individuals should
be selected for in-depth study. The sampling decision can then be based only on the observed
history. That is, the researcher can choose whether to select in an individual for measurement of
the expensive covariate based on past responses, past realisations of the auxiliary covariate, and
those past values of the expensive covariate which were observed. This differs from the problem
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considered in Section 3.8 in that the responses are repeated measures and covariates here are
time-dependent.

We can consider marginal analysis and use generalised estimating equations of the form

UV (α,η) =
N

∑
i=1

D′i(α)V −1
i (η)(Yi−µi(α)) = 0,

for these longitudinal data, where Vi(η) = A1/2
i R(η)A1/2

i , and η can be replaced by η̂(α), a
√

N-
consistent estimator of η given α . In order to obtain consistent estimators of α in the presence of
covariates which are MAR, we must introduce a weighting to the estimating function. Since we
are discussing a prospective study where data are missing by design, the probability of selection
can only depend on data which are available to the experimenter at the time of selection. That is,
if we consider the values of covariate X observed prior to time k in xr

ik = (xr
i1, . . . ,x

r
i,k−1)

′ where
xr

i j = (Ri j,Ri jxi j)′, then

P(Rik = 1|yi,xi,vi,Rik) = P(Rik = 1|yik,vik,yik,vik,xr
ik), (5.1)

where, as in previous chapters, the two-phase design means that cheap covariates yik and vik are
available at time k for use in deciding whether to sample xik (alternatively, one could consider
the situation where only the covariates yik,vik, and xr

ik are available at time k).

Now, let Hik = (vik,yik,v′ik,y
′
ik,x

r
ik
′)′, so Hik is the observed history for individual i up to time k.

Given the designed nature of our missing data we will assume that

λik ≡ λik(δ ) = P(Rik = 1|yi,vi,xi;δ ) = P(Rik = 1|Hik;δ ), (5.2)

is a known function of the parameter δ , which has been selected by the experimenter. That is,
the probability of observing individual i at time k is a known function (specified by the experi-
menter) which depends only on the data available for individual i at time k. Then the conditional
probability of the selection process for individual i given the data (yi,xi,vi) is

πi ≡ πi(δ ) = P(Ri = ri|yi,xi,vi) =
K

∏
k=1

λ
rik
ik (1−λik)1−rik . (5.3)

We can then use the inverse probability weighted generalised estimating equation

U1(α, η̂(α),δ ) =
N

∑
i=1

D′i(α)V −1
i (η̂(α))∆i(δ ) · (Yi−µi(α)) = 0, (5.4)

where, as suggested by Fitzmaurice et al. (1995) we use the cluster-level weights
∆i(δ ) = diag{ri1I(Ri = ri) π

−1
i ,ri2I(Ri = ri) π

−1
i , · · · ,riKI(Ri = ri) π

−1
i }.
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For any given vector of observations ri, estimating equation (5.4) is unbiased and results in a√
N-consistent estimator for α since

E [U1(α, η̂(α),δ )] =
N

∑
i=1

EY,X ,V
[
D′iV

−1
i ER|Y,X ,V {∆i} · (Yi−µi)

]
= 0

when ER|Y,X ,V {∆i} does not depend on Yi, and the model for µi is properly specified.

Under the regulatory conditions discussed in Robins et al. (1995) and assuming that η0 is the
true value for η , Taylor’s theorem gives
0 = U1(α̃,η0,δ ) = U1(α,η0,δ )+ ∂

∂α ′U1(α,η0,δ )(α̃−α)+op(N−
1
2 ), so

(α̃−α) = I−1(α)U1(α,η0,δ )+op(N−
1
2 ), where I(α) =− ∂

∂α ′U1(α,η0,δ ). Thus,
√

N(α̃−α) =
[ 1

N I(α)
]−1
[

1√
N

U1(α,η0,δ )
]
+op(1). As N→ ∞,

1
N I(α)=− 1

N
∂

∂α ′ ∑
N
i=1U1i(α,η0,δ )=− 1

N ∑
N
i=1

[
∂

∂α ′U1i(α,η0,δ )
]

p→−E
[

∂

∂α ′U1i(α,η0,δ )
]
, and

1√
N

U1(α,η0,δ ) = 1√
N ∑

N
i=1U1i(α,η0,δ ) D→MV N (0,Iα) , where

Iα = E
[
U1i(α,η0,δ )U ′1i(α,η0,δ )

]
. So,

√
N(α̃ −α) D→ MV N

(
0,Γ−1

α Iα [Γ−1
α ]′
)

where Γα =

E
[

∂

∂α ′U1i(α,η0,δ )
]
. So, the estimator α̃ of α is consistent and

√
N(α̃ −α) has asymptotic

variance
Γ
−1
α Iα [Γ−1

α ]′ (5.5)

when η0 is known.

If primary interest lies in modelling the association amongst the responses as well as the marginal
means, then we may wish to proceed with a GEE2 type procedure where it is not assumed that the
parameters α and η are orthogonal. As in Liang et al. (1992), consider Wi =(Yi1Yi2,Yi1Yi3, . . . ,Yi,K−1YiK)′

and ωi = E[Wi|Xi,Vi]. Then IPWGEE2 amounts to utilising the estimating equation for Ω = (α ′,η ′)′ :

U2(α,η ,δ ) =
N

∑
i=1

U2i(α,η ,δ ) =
N

∑
i=1

∂ (µ ′i ,ω
′
i )

∂Ω
· cov−1

(
Yi
Wi

)
·∆∗i ·

(
Yi−µi
Wi−ωi

)
,

where ∆∗i ≡ ∆∗i (δ ) is a matrix of weights such that ER|Y,X ,V {∆∗i } does not depend on Yi. For
example, with subject-specific (cluster-level) weights we could have

∆
∗
i (δ ) = diag{ri1, . . . ,riK,ri1ri2, . . . ,ri,K−1riK}I(Ri = ri)π−1

i (δ ), (5.6)

where πi(δ ) is defined as in (5.3). By similar arguments to those used above, it can be shown
that with properly specified models for marginal means (µ) and marginal pairwise associations

(ω),
√

N
(

Ω̂−Ω

)
=
√

N
(

α̃−α

η̂−η

)
D→ N

(
0,Γ−1

Ω
IΩ[Γ−1

Ω
]′
)
, where

IΩ = E
[
U2i(α,η ,δ )U ′2i(α,η ,δ )

]
and ΓΩ = E

[
∂

∂Ω′U2i(α,η ,δ )
]
.
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In this setting, we can explore optimal designs which result in an efficient estimator of α . One
interesting feature of utilising these longitudinal data to explore marginal features is that the
parameter estimates can be updated at each time point. Thus instead of requiring a pilot study to
find estimates to use in developing our design, we could begin with a simple design and revise to
more optimal sampling designs as our knowledge of the parameters increases. This is a natural
extension of the adaptive samples considered in Chapter 4.

5.2.2 Current Status Failure Time Data

It is also interesting to explore the selection of individuals for biomarker testing based on current
status data of progression. As shown in Figure 5.1, the response is an indicator of damage
occurring before clinic entry. The auxiliary variable will be the time from disease diagnosis
to clinic entry. These inexpensive variables will be incorporated in a selection model whose
parameters will be optimally tuned to obtain the most informative sample possible for estimating
the parameter of interest. This extension will be interesting as it seems reasonable to assume
that the selection procedure will depend not only on the response, but also on the size of the
censoring interval. For example, with current status data, where there is only one clinic visit (the
enrolment visit), it seems reasonable to assume that failures occurring within large censoring
intervals will not be as informative as failures that occur in short intervals since in the latter case
we would have more precise information about when the event actually occurred. An estimate
of the distribution of time from disease diagnosis to first damaged joint in PsA patients based on
the current status information at clinic entry is shown in Figure 5.2.

-

Birth
t = 0

Disease Diagnosis
Ti

Joint Damage Clinic Entry

Ci

Yi = I(Ti ≤Ci)

Figure 5.1: Timeline diagram for current status data on disease progression

Suppose that the responses Yi and censoring times Ci are known for all individuals i = 1, . . . ,N
in the first phase of a two-phase study involving current status data. In the second phase, the
covariates Xi are to be ascertained for a subset of the individuals. We once again will utilise
the notation that Ri is an indicator of Xi being observed, and we will attempt to find the optimal
parameters δ indexing P(Ri = 1|yi,ci;δ ) which maximise the precision with which the parameter
of interest, αx, can be estimated.
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Figure 5.2: Kaplan-Meier estimate of the distribution of the time from disease diagnosis to first damaged joint for
clinic patients with stored sera based on current status data at clinic entry.

We can consider efficient designs under two main methods of analyses that are analogous to
the methods considered for cross-sectional data: a fully-specified likelihood approach, and an
inverse-weighting approach similar to that proposed by Li and Nan (2011). We could consider the
optimal selection strategies in both these circumstances and explore how these optimal designs
work in practice; here optimal designs could be sensitive to misspecification of the nuisance
baseline hazard function.

LIKELIHOOD WITH COMPLETE COVARIATES
Under the proportional hazards assumption h(t|x) = h0(t)eαxx with complete covariates, the like-
lihood for current status data is

L(αx,H0;x,c) =
N

∏
i=1

Li(αx,H0;xi,ci)

=
N

∏
i=1

[exp{−eαxxiH0(ci)}]1−yi [1− exp{−eαxxiH0(ci)}]yi (5.7)
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(Sun, 2006). Assuming a Weibull model, analysis of the the binary response Yi = I(Ti < ci)
can be carried out using standard statistical software for binomial data under a complementary
log-log link.

LIKELIHOOD APPROACH WITH INCOMPLETE COVARIATES
When we do not have complete covariate information, Wen and Lin (2010) suggest the use of
the likelihood

LF(α,β ) =
N

∏
i=1

∫
xi∈Xi

Li(α;xi,ci)g(xi;β ) dxi, (5.8)

where g(·) is the density function associated with X , Xi is the set of possible values of xi, and
maximisation can be implemented through the use of an EM algorithm. Then the ML estimator
of θ will satisfy

UF(θ̂) = ∂`F(θ̂)/∂θ ≡ ∂`F(θ)/∂θ

∣∣∣∣
θ=θ̂

= 0, where

UF(θ) =
N

∑
i=1

UF i(θ)

=
N

∑
i=1

 Ri ∂ logLi(α;xi,ci)/∂α +(1−Ri) ∂ log
(∫

x Li(α;x,ci)g(xi;β )dx
)
/∂α

Ri ∂ logg(xi;β )/∂β +(1−Ri) ∂ log
[∫

x Li(α;x,ci)g(xi;β )dx
]
/∂β


is the derivative of the logarithm of (5.8) with respect to θ .

Therefore,
√

N(θ̂ −θ) D→MVN
(
0,I −1

θ

)
, where

Iθ = E
[
UF i(θ)U ′F i(θ)

]
. (5.9)

The expectation in (5.9) will be taken over the Ri, so the asymptotic variance of the resultant
estimator will be a function of δ .

INVERSE WEIGHTING APPROACH
With a Weibull hazard, the inverse weighting approach involves maximising the weighted complete-
case log-likelihood

`W (α,δ ) = ∑
i:Ri=1

logLi(α;xi,ci)×P(Ri = 1|yi,ci;δ )−1. (5.10)

If we let UW i(α,δ ) be the score function associated with (5.10), then the derivation of the asymp-
totic variance of the estimator resulting from the inverse weighting approach can be carried out
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as before, and
√

N(α̂−α) D→MVN
(
0,Γ−1

α Iα [Γ−1
α ]′
)
, where now

Γα = E
[ ∂

∂α ′
UW i(α,δ )

]
and Iα = E

[
UW i(α,δ )U ′W i(α,δ )

]
.

Once again, the resulting asymptotic variance will depend on δ , which is associated with the
sampling design.

We can consider different classes of selection models incorporating continuous and discretised
censoring time values and explore the relative efficiency of optimal designs. We can further
explore the robustness of these designs to misspecification of design models and parameters. It
will also be interesting to explore the relative efficiency of such designs when analysis is carried
out using a semi-parametric approach which does not assume a Weibull baseline hazard function.

5.2.3 Dealing with Data Missing by Design and Chance

Another area of research interest deals with data which are partially incomplete by happenstance
and partially incomplete by design in a two-phase study. If data are complete at the first phase of
sampling, then having two types of missingness changes the true probabilities of being observed
so that, using the notation of this thesis,

πi = P(Ri = 1|Yi,Vi) = P(R(d)
i = 1|Yi,Vi) ·P(R(h)

i = 1|Yi,Vi,R
(d)
i = 1),

where R(d)
i is the indicator that an individual is selected by the design for measurement at the

second phase of sampling, and R(h)
i is the indicator that the observation is not missing by hap-

penstance. In terms of analysis, this missingness by happenstance at phase-II will change little
as long as the missing data mechanism is MAR. If analysis is to be carried out using likelihood
methods (e.g. ML, SPML, or MI), then the model for missingness need not be specified; only
the MAR assumption is required. If analysis is carried out using weighted estimating equations,
then the true missingness model need not be known as more efficient estimators can be found
by using estimated selection probabilities, which can easily be found for discrete phase-I data
as ∑i I(Ri,Yi = y,Vi = v)/∑i I(Yi = y,Vi = v). Here, consistency is only guaranteed if both miss-
ing data mechanisms are MAR and if P(R(d)

i = 1|Yi,Vi) ·P(R(h)
i = 1|Yi,Vi,R

(d)
i = 1) is bounded

away from zero. Optimal designs are somewhat complicated as the optimal selection probabil-
ities should be inflated by a factor of P(R(h)

i = 1|Yi,Vi,R
(d)
i = 1)−1 since we are optimising for

πi and not P(R(d)
i = 1|Yi,Vi). There is little that can be done at the design stage to estimate the

probability of phase-II missingness, however an internal pilot study could now serve the dual
purpose of estimating the design parameters and estimating P(R(h)

i = 1|Yi,Vi,R
(d)
i = 1). It would

be interesting to examine the efficiency of such a design.
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If phase-I data are incomplete, then the situation is potentially more complicated. As before,
knowledge of the true parameters allows for derivation of the optimal complete-observation prob-
abilities πi, only now

πi = P(Ri = 1|Yi,Vi) = P(R(h)
i = 1|Yi,Vi) ·P(R(d)

i = 1|Yi,Vi,R
(h)
i = 1),

since individuals can only be completely observed if their phase-I values are observed. In
this setting, a small validation sample could be selected for observation of the missing phase-
I data, which would allow for verification of the MAR assumption and allow for estimation of
P(R(h)

i = 1|Yi,Vi), which when combined with the optimal πi would allow for estimation of the
optimal phase-II selection probabilities among those available for study P(R(d)

i = 1|Yi,Vi,R
(h)
i =

1) = πi ·P(R(h)
i = 1|Yi,Vi)−1. This validation sample could be combined with the idea of the

adaptive designs, so that the internal pilot study consists of actively seeking out individuals with
missing phase-I data for complete observation of Y,X ,V ; these data would provide enough in-
formation to approximate an optimal sampling design for the remainder of the phase-II sample.
There is likely to be a cost difference between complete observation of an individual who was
originally missing and phase-II observation of a previously-observed individual. There will be
an interesting decisions to be made about how many incomplete phase-I individuals to pursue.
It may again be of interest to inflate these selection probabilities by an estimate of the stratum-
specific probability of non-response.

These data fall under the framework of the three-stage case-control studies (Scott and Wild,
2011b) and multi-phase designs (Lee et al., 2010). Efficient estimators based on conditional
maximum likelihood have been discussed by Scott and Wild (2011b) in this setting. However,
further efficiency gains would be possible here by implementing optimal or near-optimal selec-
tion procedures. Easily-calculated optimal designs for IPW analyses may again offer a robust
and efficient method for selecting individuals at each of the sampling phases regardless of the
chosen method of analysis. Adaptive designs such as those discussed in Chapter 4 will be useful
for approximating these designs without requiring a priori specification of design parameters.

140



Bibliography

P. S. Albert and D. Follmann. Shared-parameter models. In G. Fitzmaurice, M. Davidian, G. Ver-
beke, and G. Molenberghs, editors, Longitudinal Data Analysis, pages 433–452. CRC Press,
Boca Raton, FL, 2009.

M. Alirezai, S. A. George, I. Coutts, D. I. Roseeuw, J. P. Hachem, N. Kerrouche, F. Sidou,
P. Soto, et al. Daily treatment with adapalene gel 0. 1% maintains initial improvement of acne
vulgaris previously treated with oral lymecycline. European Journal of Dermatology, 17(1):
45–51, 2007.

P. D. Allison. Missing Data. Number no. 136 in Quantitative Applications in the Social Sciences.
SAGE Publications, 2001. ISBN 9780761916727.

H. Bang and J. M. Robins. Doubly robust estimation in missing data and causal inference models.
Biometrics, 61:962–972, 2005.

J. Barnard and D. B. Rubin. Miscellanea. small-sample degrees of freedom with multiple impu-
tation. Biometrika, 86(4):948–955, 1999.

C. Beunckens, G. Molenberghs, and M. G. Kenward. Direct likelihood analysis versus simple
forms of imputation for missing data in randomized clinical trials. Clinical Trials, 2(5):379–
386, 2005.

N. E. Breslow and K. C. Cain. Logistic regression for two-stage case-control data. Biometrika,
75(1):11–20, 1988.

N. E. Breslow and N. Chatterjee. Design and analysis of two-phase studies with binary outcome
applied to wilms tumour prognosis. Applied Statistics, 48(4):457–468, 1999.

N. E. Breslow and R. Holubkov. Weighted likelihood, psuedo-likelihood and maximum likeli-
hood methods for logistic regression analysis of two-stage data. Statistics in Medicine, 16(1):
103–116, 1997.

141



J. R. Carpenter, M. G. Kenward, and S. Vansteelandt. A comparison of multiple imputation
and doubly robust estimation for analyses with missing data. Journal of the Royal Statistical
Society A, 169(3):571–584, 2006.

V. Chandran, R. J. Cook, J. Edwin, H. Shen, F. J. Pellett, S. Shanmugarajah, C. F. Rosen, and
D. D. Gladman. Soluble biomarkers differentiate patients with psoriatic arthritis from those
with psoriasis without arthritis. Rheumatology, 49(7):1399–1405, 2010a.

V. Chandran, D. C. Tolusso, R. J. Cook, and D. D. Gladman. Risk factors for axial inflammatory
arthritis in patients with psoriatic arthritis. The Journal of Rheumatology, 37(4):809–815,
2010b.

N. Chatterjee, Y. Chen, and N. E. Breslow. A pseudoscore estimator for regression problems
with two-phase sampling. Journal of the American Statistical Association, 98(461):158–168,
Mar 2003.

B. Chen and R. J. Cook. Strategies for bias reduction in estimation of marginal means with
data missing at random. In P. Pardalos and T. F. Coleman amd P. Xanthopoulos, editors,
Optimization and Data Analysis on Biomedical Informatics. American Mathematics Society,
2012.

B. Chen, G. Y. Yi, and R. J. Cook. Weighted generalized estimating functions for longitudinal
response and covariate data that are missing at random. Journal of the American Statistical
Associaton, 105:336–353, 2010.

D. Clayton, D. Spielgelhalter, G. Dunn, and A. Pickles. Analysis of longitudinal binary data from
multi-phase sampling. Journal of the Royal Statistical Society Series B (Statistical Methodol-
ogy), 60(1):71–87, 1998.

Canadian Longitudinal Study On Aging (CLSA). Etude longitudinale canadienne sur le vieil-
lissement (elcv). http://www.clsa-elcv.ca/en/welcome/index.html, 2009.

R. J. Cook, L. Zeng, and G. Y. Yi. Marginal analysis of incomplete longitudinal binary data: A
cautionary note on locf imputation. Biometrics, 60:820–828, September 2004.

D. R. Cox. The analysis of multivariate binary data. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 21(2):113–120, 1972.

M. Crowder. On the use of a working correlation matrix in using generalized linear models for
repeated measures. Biometrika, 82:407–410, 1995.

S. Demissie, M. P. LaValley, N. J. Horton, R. J. Glynn, and L. A. Cupples. Bias due to miss-
ing exposure data using complete-case analysis in the proportional hazards regression model.
Statistics In Medicine, 22(4):545–557, 2003.

142

http://www. clsa-elcv. ca/en/welcome/index. html


A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):
1–38, 1977.

L. Dubertret, W. Sterry, J. D. Bos, S. Chimenti, S. Shumack, C. G. Larsen, N. H. Shear, and
K. A. Papp. Clinical experience acquired with the efalizumab (raptiva R©)(clear) trial in patients
with moderate-to-severe plaque psoriasis: Results from a phase iii international randomized,
placebo-controlled trial. British Journal Of Dermatology, 155(1):170–181, 2006.

AF Emery and A. V. Nenarokomov. Optimal experiment design. Measurement Science and
Technology, 9(6):864, 1999.

G. M. Fitzmaurice, G. Molenberghs, and S. R. Lipsitz. Regression models for longitudinal
binary responses with informative drop-outs. Journal of the Royal Statistical Society. Series B
(Methodological), 57(4):691–704, 1995.

D. D. Gladman and V. Chandran. Observation cohort studies: Lessons learnt from the university
of toronto psoriatic arthritis program. Rheumatology, 50:25–31, 2011.

R. J. Glynn, N. M. Laird, and D. B. Rubin. Multiple imputation in mixture models for nonig-
norable nonresponse with followups. Journal of the American Statistical Association, pages
984–993, 1993.

K. B. Gordon, R. G. Langley, C. Leonardi, D. Toth, M. A. Menter, S. Kang, M. Hefferman,
B. Miller, R. Hamlin, L. Lim, J. Zhong, R. Hoffman, and M. M. Okun. Clinical response to
adalimumab treatment in patients with moderate to severe psoriasis: Double-blind, random-
ized controlled trial and open-label extension study. Journal of the American Academy of
Dermatology, 55:598–606, 2006a.

K. B. Gordon, R. G. Langley, C. Leonardi, D. Toth, M. A. Menter, S. Kang, M. Heffernan,
B. Miller, R. Hamlin, L. Lim, et al. Clinical response to adalimumab treatment in patients
with moderate to severe psoriasis: Double-blind, randomized controlled trial and open-label
extension study. Journal of the American Academy of Dermatology, 55(4):598–606, 2006b.

K. B. Gordon, R. G. Langley, A. B. Gottlieb, K. A. Papp, G. G. Krueger, B. E. Strober, D. A.
Williams, Y. Gu, and J. M. Valdes. A phase iii, randomized, controlled trial of the fully
human il-12/23 mab briakinumab in moderate-to-severe psoriasis. Journal of Investigative
Dermatology, 2011.

A. B. Gottlieb, R. Evans, S. Li, L. T. Dooley, C. A. Guzzo, D. Baker, M. Bala, C. W. Marano,
and A. Menter. Infliximab induction therapy for patients with severe plaque-type psoriasis:
A randomized, double-blind, placebo-controlled trial. Journal of the American Academy of
Dermatology, 51(4):534–542, 2004.

143



C. E. M. Griffiths, B. E. Strober, P. van de Kerkhof, V. Ho, R. Fidelus-Gort, N. Yeilding,
C. Guzzo, Y. Xia, B. Zhou, S. Li, et al. Comparison of ustekinumab and etanercept for
moderate-to-severe psoriasis. New England Journal of Medicine, 362(2):118–128, 2010.

G. Grimmett and D. Stirzaker. Probability and Random Processes, 3rd Edition. Oxford Univer-
sity Press Inc, New York, 2007.

P. J. Heagerty. Marginalized transition models and likelihood inference for longitudinal categor-
ical data. Biometrics, 58(2):342–351, 2002.

P. J. Heagerty and S. L. Zeger. Marginalized multilevel models and likelihood inference (with
comments and a rejoinder by the authors). Statistical Science, 15(1):1–26, 2000.

T. Herzog and D. B. Rubin. Using multiple imputations to handle nonresponse in sample surveys.
In W. G. Madow, I. Olkin, and D. B. Rubin, editors, Incomplete Data in Sample Surveys,
Volume 2: Theory and Bibliography. Academic Press, New York, 1983.

J. W. Hogan, J. Roy, and C. Korkontzelou. Handling drop-out in longitudinal studies. Statistics
In Medicine, 23(9):1455–1497, 2004.

N. J. Horton and N. M. Laird. Maximum likelihood analysis of logistic regression models with
incomplete covariate data and auxiliary information. Biometrics, 57:34–42, 2001.

L. Joseph, P. Bélisle, H. Tamim, and J. S. Sampalis. Selection bias found in interpreting analyses
with missing data for the prehospital index for trauma. Journal Of Clinical Epidemiology, 57
(2):147–153, 2004.

J. D. Y. Kang and J. L. Schafer. Demystifying double robustness. Statistical Science, 22(4):
523–539, 2007.

M. J. Knol, K. J. M. Janssen, A. R. T. Donders, A. C. G. Egberts, E. R. Heerdink, D. E. Grobbee,
K. G. M. Moons, and M. I. Geerlings. Unpredictable bias when using the missing indica-
tor method or complete case analysis for missing confounder values: An empirical example.
Journal Of Clinical Epidemiology, 63(7):728–736, 2010.

G. G. Krueger, K. A. Papp, D. B. Stough, and et al. A randomized, double-blind, placebo-
controlled phase iii study evaluating efficacy and tolerability of 2 courses of alefacept in pa-
tients with chronic plaque psoriasis. Journal of the American Academy of Dermatology, 47:
821–833, 2002.

M. Kulich and D. Y. Lin. Improving the efficiency of relative-risk estimation in case-cohort
studies. Journal of the American Statistical Association, 99(467):832–844, 2004.

144



R. G. B. Langley, G. G. Krueger, and C. E. M. Griffiths. Psoriasis: Epidemiology, clinical
features, and quality of life. Annals Of The Rheumatic Diseases, 64(suppl 2):ii18–ii23, 2005.

A. Laupacis, D. L. Sackett, and R. S. Roberts. An assessment of clinically useful measures of
the consequences of treatment. New England Journal of Medicine, 318:1728–1733, 1998.

J. F. Lawless. Likelihood and pseudo likelihood estimation based on response-biased observa-
tions. In I. S. Basawa, V. P. Godambe, and R. L. Taylor, editors, Studies in Item Analysis and
Prediction, pages 43–55. Institute of Mathematical Statistics, 1997.

J. F. Lawless and J. D. Kalbfleisch. Discussions. International Statistical Review, 79(2):225–228,
2011.

J. F. Lawless, J. D. Kalbfleisch, and C. J. Wild. Semiparametric methods for response-selective
and missing data problems in regression. Journal of the Royal Statistical Society Series B
(Statistical Methodology), 61(2):413–438, 1999.

M. Lebwohl, E. Christophers, R. Langley, J. P. Ortonne, J. Roberts, and C. E. M. Griffiths.
An international, randomized, double-blind, placebo-controlled phase 3 trial of intramuscular
alefacept in patients with chronic plaque psoriasis. Archives Of Dermatology, 139(6):719,
2003.

A. J. Lee, A. J. Scott, and C. J. Wild. Efficient estimation in multi-phase case-control studies.
Biometrika, 97(2):361–374, 2010.

C. Leonardi, R. G. Langley, K. Papp, S. K. Tyring, N. Wasel, R. Vender, K. Unnebrink, S. R.
Gupta, W. C. Valdecantos, and J. Bagel. Adalimumab for treatment of moderate to severe
chronic plaque psoriasis of the hands and feet: Efficacy and safety results from reach, a ran-
domized, placebo-controlled, double-blind trial. Archives of Dermatology, 147(4):429, 2011.

C. L. Leonardi, J. L. Powers, R. T. Matheson, B. S. Goffe, R. Zitnik, A. Wang, and A. B. Gottlieb.
Etanercept as monotherapy in patients with psoriasis. New England Journal of Medicine, 349
(21):2014–2022, 2003.

C. L. Leonardi, K. A. Papp, K. B. Gordon, A. Menter, S. R. Feldman, I. Caro, P. A. Walicke,
P. G. Compton, A. B. Gottlieb, et al. Extended efalizumab therapy improves chronic plaque
psoriasis: Results from a randomized phase iii trial. Journal of the American Academy of
Dermatology, 52(3 Pt 1):425, 2005.

C. L. Leonardi, A. B. Kimball, K. A. Papp, N. Yeilding, C. Guzzo, Y. Wang, S. Li, L. T. Dooley,
K. B. Gordon, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 mono-
clonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind,
placebo-controlled trial (phoenix 1). Lancet, 371(9625):1665, 2008.

145



Z. Li and B. Nan. Relative risk regression for current status data in case-cohort studies. Canadian
Journal of Statistics, 39(4):557–577, 2011.

K. Liang, S. L. Zeger, and B. Qaqish. Multivariate regression analyses for categorical data.
Journal of the Royal Statistical Society. Series B (Methodological), 54(1):3–40, 1992.

K. Y. Liang and S. L. Zeger. Longitudinal data analysis using generalized linear models.
Biometrika Trust, 73(1):13–22, April 1986.

S. R. Lipsitz, N. M. Laird, and D. P. Harrington. Generalized estimating equations for correlated
binary data: Using the odds ratio as a measure of association. Biometrika, 78(1):153–160,
March 1991.

S. R. Lipsitz, M. Parzen, and L. P. Zhao. A degrees-of-freedom approximation in multiple
imputation. Journal of Statistical Computation and Simulation, 72(4):309–318, 2002.

R. J. A. Little. Pattern-mixture models for multivariate incomplete data. Journal of the American
Statistical Associaton, 88:125–134, 1993.

R. J. A. Little. Modeling the drop-out mechanism in repeated-measures studies. Journal of the
American Statistical Associaton, 90:1112–1121, 1995.

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data Second Edition. John
Wiley & Sons, New York, 2002.

S. L. Lohr. Sampling: Design And Analysis. Thomson, 2009.

S. L. Lohr. Accurate multivariate estimation using triple sampling. The Annals of Statistics,
pages 1615–1633, 1990.

T. Lumley, P. A. Shaw, and J. Y. Dai. Connections between survey calibration estimators and
semiparametric models for incomplete data. International Statistical Review, 79(2):200–220,
2011.

D. E. Matthews and V. T. Farewell. Using and Understanding Medical Statistics, 3rd Revised
Edition. Karger, Basel, Switzerland, 1996.

B. Mayer, R. Muche, and K. Hohl. Software for the handling and imputation of missing data –
an overview. Journal of Clinical Trials, 2012.

P. McCullagh and J. A. Nelder. Generalised Linear Models. Chapman & Hall, New York, 1989.

M. A. McIsaac and R. J. Cook. Statistical models and methods for incomplete data in randomized
clinical trials. In K. van Montfort, J. Oud, and W. Ghidey, editors, Developments in Statistical
Evaluation of Clinical Trials. Springer, 2013a.

146



M. A. McIsaac and R. J. Cook. Biomarkers for disease progression in rheumatology: A review
and empirical study of two-phase designs. Canadian Journal of Statistics, 2013b. Submitted.

M. A. McIsaac and R. J. Cook. Two-phase designs leading to incomplete exposure information
in clustered or longitudinal data. Springer Lecture Notes, ISS2012 Symposium proceedings
volume, 2013c. In press.

M. A. McIsaac, R. J. Cook, and M. Poulin-Costello. Incomplete data in randomized dermatology
trials: Consequences and statistical methodology. Reviewed and resubmitted to Dermatology,
2013.

A. Menter, K. Gordon, W. Carey, T. Hamilton, S. Glazer, I. Caro, N. Li, W. Gulliver, et al.
Efficacy and safety observed during 24 weeks of efalizumab therapy in patients with moderate
to severe plaque psoriasis. Archives Of Dermatology, 141(1):31, 2005.

A. Menter, S. R. Feldman, G. D. Weinstein, K. Papp, R. Evans, C. Guzzo, S. Li, L. T. Dooley,
C. Arnold, A. B. Gottlieb, et al. A randomized comparison of continuous vs. intermittent
infliximab maintenance regimens over 1 year in the treatment of moderate-to-severe plaque
psoriasis. Journal Of The American Academy Of Dermatology, 56(1):31–e1, 2007.

A. Menter, S. K. Tyring, K. Gordon, A. B. Kimball, C. L. Leonardi, R. G. Langley, B. E. Strober,
M. Kaul, Y. Gu, M. Okun, et al. Adalimumab therapy for moderate to severe psoriasis: A
randomized, controlled phase iii trial. Journal of the American Academy of Dermatology, 58
(1):106, 2008.

G. Molenberghs and M. Kenward. Missing Data in Clinical Studies. John Wiley & Sons Ltd,
West Sussex, England, UK, 2007.

G. Molenberghs, H. Thijs, I. Jansen, C. Beunckens, M. G. Kenward, C. Mallinckrodt, and R. J.
Carroll. Analyzing incomplete longitudinal clinical trial data. Biostatistics, 5(3):445–464,
2004.

Panel on Handling Missing Data in Clinical Trials National Research Council. The Prevention
and Treatment of Missing Data in Clinical Trials. The National Academies Press, 2010. ISBN
9780309158145.

J. Neyman. Contribution to the theory of sampling from human populations. Journal of the
American Statistical Association, 33:101–116, 1938.

K. A. Papp, S. Tyring, M. Lahfa, J. Prinz, CEM Griffiths, A. M. Nakanishi, R. Zitnik, and
P. C. M. Van De Kerkhof. A global phase iii randomized controlled trial of etanercept in
psoriasis: Safety, efficacy, and effect of dose reduction. British journal of dermatology, 152
(6):1304–1312, 2005.

147



K. A. Papp, P. Fonjallaz, F. Casset-Semanaz, J. G. Krueger, and K. M. Wittkowski. Analytical ap-
proaches to reporting long-term clinical trial data. Current Medical Research and Opinion R©,
24(7):2001–2008, 2008a.

K. A. Papp, P. Fonjallaz, F. Casset-Semanaz, J. G. Krueger, and K. M. Wittkowski. Analytical ap-
proaches to reporting long-term clinical trial data. Current Medical Research and Opinion R©,
24(7):2001–2008, 2008b.

K. A. Papp, R. G. Langley, M. Lebwohl, G. G. Krueger, P. Szapary, N. Yeilding, C. Guzzo,
M. C. Hsu, Y. Wang, S. Li, et al. Efficacy and safety of ustekinumab, a human interleukin-
12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised,
double-blind, placebo-controlled trial (phoenix 2). The Lancet, 371(9625):1675–1684, 2008c.

M. S. Pepe. Inference using surrogate outcome data and a validation sample. Biometrika, 79(2):
355–365, June 1992.

M. S. Pepe, M. Reilly, and T. R. Fleming. Auxiliary outcome data and the mean-score method.
Journal of Statical Planning and Inference, 42:137–160, 1994.

A. Pickles, G. Dunn, and J. L. Vazquez-Barquero. Screening for stratification in two-phase (‘two-
stage’) epidemiological surveys. Statistical Methods in Medical Research, 4:73–89, 1995.

A. Prakash, R. C. Risser, and C. H. Mallinckrodt. The impact of analytic method on interpretation
of outcomes in longitudinal clinical trials. International Journal Of Clinical Practice, 62(8):
1147–1158, 2008.

P. Rahman, D. D. Gladman, R. J. Cook, Y. Zhou, G. Young, and D. Salonen. Radiological
assessment in psoriatic arthritis. Rheumatology, 37(7):760–765, 1998.

P. Rahman, T. Snelgrove, L. Peddle, F. Siannis, V. Farewell, C. Schentag, and D. Gladman. A
variant of the il4 i50v single-nucleotide polymorphism is associated with erosive joint disease
in psoriatic arthritis. Arthritis & Rheumatism, 58(7):2207–2208, 2008.

P. S. Raina, C. Wolfson, S. A. Kirkland, and L. E. Griffith et al. The canadian longitudinal study
on aging (clsa). Canadian Journal on Aging, 28(3):221–229, 2009.

K. Reich, F. O. Nestle, K. Papp, J. P. Ortonne, R. Evans, C. Guzzo, L. T. Dooley, and C. E.
M. for the EXPRESS Study Investigators Griffiths. Infliximab induction and maintenance
therapy for moderate-to-severe psoriasis: A phase iii, multicentre, double-blind trial. Lancet,
366:1367–1374, 2005a.

K. Reich, F. O. Nestle, K. Papp, J. P. Ortonne, R. Evans, C. Guzzo, S. Li, L. T. Dooley, and
C. E. M. Griffiths. Infliximab induction and maintenance therapy for moderate-to-severe pso-
riasis: A phase iii, multicentre, double-blind trial. The Lancet, 366(9494):1367–1374, 2005b.

148



K. Reich, R. G. Langley, K. A. Papp, J. P. Ortonne, K. Unnebrink, M. Kaul, and J. M. Valdes.
A 52-week trial comparing briakinumab with methotrexate in patients with psoriasis. New
England Journal of Medicine, 365(17):1586–1596, 2011.

M. Reilly. Optimal sampling strategies for two phase studies. American Journal of Epidemiology,
143:92–100, 1996.

M. Reilly and M. S. Pepe. A mean score method for missing and auxiliary covariate data in
regression models. Biometrika, 82(2):299–314, June 1995.

M. Reilly and M. S. Pepe. The relationship between hot-deck multiple imputation and weighted
likelihood. Statistics in Medicine, 16:5–19, 1997.

S. I. Resnick. A Probability Path. Birkhauser, New York, 1999.

J. M. Robins and Y. Ritov. Toward a curse of dimensionality approximate (coda) asymptotic
theory for semiparameric models. Statistics in Medicine, 16:285–319, 1997.

J. M. Robins and N. Wang. Inference for imputation estimators. Biometrika, 87:113–124, 2000.

J. M. Robins, A. Rotnitzky, and L. P. Zhao. Estimation of regression coefficients when some
regressors are not always observed. Journal of the American Statistical Association, 89(427):
846–866, September 1994.

J. M. Robins, A. Rotnitzky, and L. P. Zhao. Analysis of semiparametric regression models
for repeated outcomes in the presence of missing data. Journal of the American Statistical
Association, 90(429):106–121, March 1995.

J. M. Robins, M. A. Hernan, and B. Brumback. Marginal structural models and causal inference
in epidemiology. Epidermiology, 11(5):550–560, 2000.

K. J. Rothman and S. Greenland, editors. Modern Epidemiology, Second Edition. Lippincott
Williams & Wilkins, Philadelphia, 1998.

A. Rotnitzky and D. Wypij. A note on the bias of estimators with missing data. Biometrics, 50
(4):1163–1170, December 1994.

S. Roy, N. Chen, and M. Cifaldi. Pms70 a comparison of non-responder imputation and last-
observation-carried-forward analysis methods in rheumatoid arthritis clinical trials. Value in
Health, 14(3):A136–A136, 2011.

D. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

D. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley, New York, 1987.

149



D. B. Rubin and N. Schenker. Multiple imputation for interval estimation from simple random
samples with ignorable nonresponse. Journal of the American Statistical Association, 81:
366–374, 1986.

D. L. Sackett and M. Gent. Controversy in counting and attributing events in clinical trials. New
England Journal of Medicine, 301(26):1410–1412, 1979.

J. H. Saurat, G. Stingl, L. Dubertret, K. Papp, R. G. Langley, J. P. Ortonne, K. Unnebrink,
M. Kaul, A. Camez, and for the CHAMPION Study Investigators. Efficacy and safety re-
sults from the randomized controlled comparative study of adalimumab vs. methotrexate vs.
placebo in patients with psoriasis (champion). British Journal of Dermatology, 158:558–566,
2007.

J. H. Saurat, G. Stingl, L. Dubertret, K. Papp, R. G. Langley, J. P. Ortonne, K. Unnebrink,
M. Kaul, and A. Camez. Efficacy and safety results from the randomized controlled compar-
ative study of adalimumab vs. methotrexate vs. placebo in patients with psoriasis (champion).
British Journal of Dermatology, 158(3):558–566, 2008.

J. L. Schafer. Multiple imputation: A primer. Statistical Methods in Medical Research, 8:3–15,
1999.

D. Schaubel, J. Hanley, J. P. Collet, J. F. Boivin, C. Sharpe, H. I. Morrison, and Y. Mao. Two-
stage sampling for etiologic studies sample size and power. American Journal Of Epidemiol-
ogy, 146(5):450–458, 1997.

N. Schenker and A. H. Welsh. Asymptotic results for multiple imputation. The Annals of Statis-
tics, 16(4):1550–1566, 1988.

K. F. Schulz, D. G. Altman, D. Moher, et al. Consort 2010 statement: Updated guidelines for
reporting parallel group randomised trials. BMC medicine, 8(1):18, 2010.

A. J. Scott and C. J. Wild. Fitting regression models to case-control data by maximum likelihood.
Biometrika, 84(1):57–71, 1997.

A. J. Scott and C. J. Wild. Discussions. International Statistical Review, 79(2):228–230, 2011a.

A. J. Scott and C. J. Wild. Fitting regression models with response-biased samples. Canadian
Journal of Statistics, 39(3):519–536, 2011b.

S. R. Seaman, I. R. White, A. J. Copas, and L. Li. Combining multiple imputation and inverse-
probability weighting. Biometrics, 68:129–137, 1999.

D. A. Sprott. Statistical Inference in Science. Springer, New York, 2000.

150



D. A. Sprott and V. T. Farewell. Randomization in experimental science. Statistical Papers, 34:
89–94, 1993.

M. J. Stampfer, W. C. Willett, G. A. Colditz, B. Rosner, F. E. Speizer, and C. H. Hennekens. A
prospective study of postmenopausal estrogen therapy and coronary heart disease. The New
England Journal of Medicine 313(17), 313(17):1044–1049, 1985.

J. A. C. Sterne, I. R. White, J. B. Carlin, M. Spratt, P. Royston, M. G. Kenward, A. M. Wood, and
J. R. Carpenter. Multiple imputation for missing data in epidemiological and clinical research:
Potential and pitfalls. BMJ: British Medical Journal, 338, 2009.

B. E. Strober, J. J. Crowley, P. S. Yamauchi, M. Olds, and D. A. Williams. Efficacy and safety
results from a phase iii, randomized controlled trial comparing the safety and efficacy of bri-
akinumab with etanercept and placebo in patients with moderate to severe chronic plaque
psoriasis. British Journal of Dermatology, 165(3):661–668, 2011.

J. Sun. The Statistical Analysis of Interval-censored Failure Time Data. Springer, Columbia,
2006.

B. C. Sutradhar and K. Das. On the efficiency of regression estimators in generalised linear
models for longitudinal data. Biometrika, 86:459–465, 1999.

R. Sutradhar and R. J. Cook. A bivariate mover – stayer model for interval-censored recurrent
event data: Application to joint damage in rheumatology. Communications in Statistics –
Theory and Methods, 38(18):3389–3405, 2009.

D. Tolusso and R. J. Cook. Robust estimation of state occupancy probabilities for interval-
censored multistate data: An application involving spondylitis in psoriatic arthritis. Commu-
nications in Statistics – Theory and Methods, 38(18):3307–3325, 2009.

A. A. Tsiatis. Semiparametric Theory and Missing Data. Springer Science + Business Media,
New York, 2006.

A. A. Tsiatis and M. Davidian. Discussions. International Statistical Review, 79(2):221–223,
2011.

S. Tyring, K. B. Gordon, Y. Poulin, R. G. Langley, A. B. Gottlieb, M. Dunn, and A. Jahreis.
Long-term safety and efficacy of 50 mg of etanercept twice weekly in patients with psoriasis.
Archives Of Dermatology, 143(6):719, 2007.

University Health Network Centre For Prognosis Studies In The Rheumatic Diseases. Psoriatic
arthritis clinic newsletter. http://www.uhnresearch.ca/studies/cpsrd/psa/
psa_nl10.html, May 2007.

151

http://www. uhnresearch. ca/studies/cpsrd/psa/psa_nl10. html
http://www. uhnresearch. ca/studies/cpsrd/psa/psa_nl10. html


P. C. M. Van de Kerkhof, S. Segaert, M. Lahfa, T. A. Luger, Z. Karolyi, A. Kaszuba, G. Leigheb,
F. M. Camacho, D. Forsea, C. Zang, et al. Once weekly administration of etanercept 50
mg is efficacious and well tolerated in patients with moderate-to-severe plaque psoriasis: A
randomized controlled trial with open-label extension. British Journal of Dermatology, 159
(5):1177–1185, 2008.

D. van der Heijde, J. Sharp, S. Wassenberg, and D. D. Gladman. Psoriatic arthritis imaging: A
review of scoring methods. Annals Of The Rheumatic Diseases, 64(suppl 2):ii61–ii64, 2005.

W. M. van der Wal and R. B. Geskus. Ipw: An r package for inverse probability weighting.
Journal of Statistical Software, 43(i13), 2011.

E. Walter and L. Pronzato. Qualitative and quantitative experiment design for phenomenological
models – a survey. Automatica, 26(2):195–213, 1990.

N. Wang and J. M. Robins. Large-sample theory for parametric multiple imputation procedures.
Biometrika, 85:935–948, 1998.

C. C. Wen and C. T. Lin. Analysis of current status data with missing covariates. Biometrics,
Nov 2010. no. doi: 10. 1111/j. 1541-0420. 2010. 01505. x.

H. A. White. Maximum likelihood estimation of misspecified models. Econometrica, 50:1–25,
1982a.

J. E. White. A two stage design for the study of the relationship between a rare exposure and a
rare disease. American Journal of Epidemiology, 115(1):119–128, 1982b.

A. S. Whittemore and J. Halpern. Multi-stage sampling in genetic epidemiology. Statistics in
Medicine, 16:153–167, 1997.

G. K. Wilcock, S. Lilienfeld, and E. Gaens. Efficacy and safety of galantamine in patients
with mild to moderate alzheimer’s disease: Multicentre randomised controlled trial. Bmj, 321
(7274):1445, 2000.

C. J. Wild. Fitting prospective regression models to case-control data. Biometrika, 78:705–717,
December 1991.

J. Wittes and E. Brittain. The role of internal pilot studies in increasing the efficiency of clinical
trials. Statistics in Medicine, 9(1-2):65–72, 1990.

F. Xie and M. C. Paik. Multiple imputation methods for the missing covariates in generalized
estimating equation. Biometrics, 53:1538–1546, 1997.

G. Y. Yi and R. J. Cook. Marginal methods for incomplete longitudinal data arising in clusters.
Journal of the American Statistical Association, 97:1071–1080, December 2002.

152



M. Yu and B. Nan. A revisit of semiparametric regression models with missing data. Statistica
Sinica, 16(4):1193, 2006.

Z. Zhang and H. E. Rockette. On maximum likelihood estimation in parametric regression with
missing covariates. Journal of Statistical Planning and Inference, 134:206 – 223, 2005.

L. P. Zhao and R. L. Prentice. Correlated binary regression using a quadratic exponential model.
Biometrika, 77(3):642–648, 1990.

Y. Zhao, J. F. Lawless, and D. L. McLeish. Likelihood methods for regression models with
expensive variables missing by design. Biometrical Journal, 51(1):123–136, 2009.

153


	List of Tables
	List of Figures
	Introduction
	Statistical Methods for Incomplete Data
	Terminology for Incomplete Data
	Methods Based on Imputation
	Inverse Probability Weighting

	Incomplete Data Arising by Two-Phase Designs
	Motivating Settings and Studies
	Incomplete Data in Randomised Dermatology Trials
	Biomarker Studies in Psoriatic Arthritis
	Canadian Longitudinal Study on Aging

	Outline of Thesis Research
	Methods for Data Missing by Happenstance
	Two-Phase Sampling Design
	Adaptive Stratified Two-Phase Sampling


	Statistical Methods for Data Missing By Happenstance
	Introduction
	Methods for Incomplete Binary Responses in Randomised Trials
	Models and Measures of Treatment Effect
	Parameter Estimation with Incomplete Response Data
	An Illustrative Simulation Study
	Further Remarks

	Methods for the Analysis of Incomplete Longitudinal Data
	Notation and Terminology
	Likelihood-Based Methods of Estimation and Inference
	Generalised Estimating Equations
	Naive Methods of Imputation for Incomplete Longitudinal Data

	Methods for Dealing with Incomplete Covariate Data in Observational Studies
	Likelihood Analyses
	An EM Algorithm
	Multiple Imputation with Missing Covariates
	Inverse Probability Weighted Estimating Functions
	An Illustrative Simulation Study
	A Note on Generalisability

	Issues of Model Misspecification with Incomplete Data
	Asymptotic Behaviour of Estimators from Estimating Functions
	Misspecified Models for Handling Incomplete Responses
	Misspecified Models for Incomplete Covariate Data

	Discussion

	Two-Phase Sampling Designs
	Introduction
	Study Design under Two-Phase Sampling Schemes

	Design Of Studies With Two-Phase Sampling
	Frameworks For Analysis
	Maximum Likelihood Estimation with Complete Data
	Maximum Likelihood With Covariates Missing At Random
	Inverse Probability Weighted Estimating Equations
	Inverse Probability Weighted Estimating Equations With Estimated Weights
	Augmented Inverse Probability Weighted Estimating Equations

	Relative Efficiency Of Phase-Two Designs
	 Derivation of Phase-Two Sampling Designs
	Empirical Properties of Phase-Two Designs

	Misspecification in Optimal Two-Phase Designs
	Sensitivity Analyses of Optimal Designs with Binary X
	Sensitivity Analyses of Optimal Designs with Continuous X

	Recommendations for Selection of PsA Patients
	Response-Dependent Sampling with Clustered Binary Data
	The Response Model for Clustered Data
	The Selection Model
	Asymptotic Relative Efficiencies

	Response-Dependent Sampling with Longitudinal Binary Data
	The Response Model for Longitudinal Data
	The Selection Model
	Asymptotic Relative Efficiencies

	Discussion

	Adaptive Stratified Two-Phase Sampling
	Inverse Probability Weighting with Basic Stratified Sampling
	Asymptotic Variance of IPW under BSS

	IPW Analysis for Multi-Phase Sampling
	Adaptive Multi-Phase Sampling
	Empirical Properties of Adaptive Multi-phase Designs
	Simulation Results for a Binary X
	Simulation Results for a Continuous X
	Simulation Results for Clustered Responses

	Considerations of Studies Involving Greater Numbers of Stages
	Conclusion

	Future Work
	Implications of Research Findings
	Ongoing and Future Research Plans
	Repeated Measure Analyses of Longitudinal Data
	Current Status Failure Time Data
	Dealing with Data Missing by Design and Chance


	Bibliography

