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Abstract

Characterizing probability distribution function for the input of a communication channel

that achieves the maximum possible data rate, is one of the most fundamental problems

in the field of information theory. In his ground-breaking paper, Shannon showed that

the capacity of a point-to-point additive white Gaussian noise channel under an average

power constraint at the input, is achieved by Gaussian distribution. Although imposing a

limitation on the peak of the channel input is also very important in modelling the commu-

nication system more accurately, it has gained much less attention in the past few decades.

A rather unexpected result of Smith indicated that the capacity achieving distribution for

an AWGN channel under peak constraint at the input is unique and discrete, possessing a

finite number of mass points.

In this thesis, we study multiple access channel under peak constraints at the inputs of

the channel. By extending Smith’s argument to our multi-terminal problem we show that

any point on the boundary of the capacity region of the channel is only achieved by discrete

distributions with a finite number of mass points. Although we do not claim uniqueness

of the capacity-achieving distributions, however, we show that only discrete distributions

with a finite number of mass points can achieve points on the boundary of the capacity

region.

First we deal with the problem of maximizing the sum-rate of a two user Gaussian MAC

with peak constraints. It is shown that generating the code-books of both users according

to discrete distributions with a finite number of mass points achieves the largest sum-rate

in the network. After that we generalize our proof to maximize the weighted sum-rate of

the channel and show that the same properties hold for the optimum input distributions.

This completes the proof that the capacity region of a two-user Gaussian MAC is achieved

by discrete input distributions with a finite number of mass points.
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Chapter 1

Introduction

1.1 Information Theory

A mathematical theory for the study of communication systems was first developed by

Claude E. Shannon in 1948 [1]. In [1], Shannon defined information in mathematical terms

and discussed limitations of data transmission rate over different communication channels.

He Described the notion of Channel Capacity as the maximum transmission rate over the

channel such that reliable communication is secured. Over the last half century a large

portion of works in the field of Information Theory has been dedicated to finding the

capacity of communication channels and implementing Coding strategies to achieve rates

close to this capacity. Notions like Entropy of a random variable x, denoted by h(x), and

the Mutual Information between two random variables, shown by I(x;y), are of substantial

importance in the development of the theory.
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x : E[x2] ≤ σ2
P

z ∼ N(0,σ2
N )

y = x1 + x2 + z

Figure 1.1: A point-to-point additive white Gaussian noise channel with average power

constraint at the transmitter

1.2 Channel Capacity

Shannon modeled the channel by a probability transition matrix p(y|x), and showed that

its capacity is given by

C = sup
px(x)

I(x;y), (1.1)

where x and y denote the input and the output of the channel, respectively. It turns out

that finding a closed-form formula for many of the communication channels is extremely

complicated, but between those ones with a well-known capacity formula, Additive White

Gaussian Noise (AWGN) channel is of great importance. Shannon showed that if the output

of the channel is of the form y = x + z, where z is the additive noise with a Gaussian

Probability Distribution Function (PDF), subject to an average power constraint at the

input of the channel, is

C =
1

2
log
(

1 +
σ2
P

σ2
N

)
, (1.2)

where σ2
P and σ2

N denote the variance of x and z, respectively. The capacity of this channel

is achieved by Gaussian distribution with variance σ2
P at the input.
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1.3 Literature Review

1.3.1 Scalar Gaussian Channel with Peak Constraint

In his seminal thesis, J. G. Smith studies a point to point Additive White Gaussian Noise

channel under peak power constraint, as well as average power constraint [2, 3]. The main

observation in [2], is that with only a “peak” power constraint at the input, the capacity

achieving distribution is unique and discrete with a finite number of mass points. The

same characteristics hold for the optimum distribution if we have both average and peak

power constraints at the transmitter. We remark that characterizing the exact number and

location of the mass points must be done numerically. This is a remarkable observation in

the sense that, for a fixed peak power constraint, increasing the number of mass points of

the input distribution does not necessarily result in an increase in the amount of mutual

information between the input and the output of the channel. We will go more into the

details of [2] in chapter 2, since there is a strong correlation betweens our proof for Theorem

1 in chapter 4, and Smith’s approach in [2].

1.3.2 Capacity-Achieving Discrete Distributions

Discrete input distributions are capacity achieving in various scenarios. [4] shows that for

some additive noise channels with peak constraint, where the noise has a piecewise-constant

probability density, only discrete input distributions can achieve the capacity.

It is shown in [5] that under only an average power constraint at the transmitter in a

point-to-point scenario, if the additive noise is “heavy-tailed” compared to Gaussian noise,

the corresponding capacity-achieving distribution must be of bounded support. While, for

a “light-tailed” additive noise compared to Gaussian noise, the capacity-achieving distri-

3



bution must be of unbounded support1. Moreover, for heavy-tailed noises, if the marginal

entropy function2 admits an analytic extension to the complex plane, the optimum input

distribution has a finite number of mass points.

Reference [6] provides an insightful methodology in dealing with similar problems con-

sidered in [2, 3]. In fact, [6] presents a general class of additive noise channels for which

a discrete input with a finite number of mass points achieves the capacity under a peak

constraint at the transmitter.

In [7], the author considers a point-to-point additive white Gaussian noise channel under

small peak constraints. It is shown that if the constraint on the peak is small enough3, a

binary and equiprobable distribution with the mass points at the two ends of the input

peak interval achieves the capacity of the channel.

The authors In [8] extend the results in [2, 3] to a quadrature additive Gaussian channel.

It is shown that under average and peak power constraints, an input distribution with

discrete amplitude, possessing a finite number of mass points, with a uniformly distributed

and statistically independent phase, achieves the capacity of the channel. Geometrical

representation of the optimal distribution is a finite number of concentric circles. The

same properties hold for the capacity-achieving input distribution of an AWGN channel

with Tikhonov phase error [9]. Capacity of an AWGN channel with block-independent

carrier phase rotation is studied in [10], and it’s been shown that an input distribution

which is discrete in amplitude with infinite number of mass points, achieves the capacity.

In another framework, the authors in [11, 12] demonstrate optimality of discrete input

distributions in channels with quantized output. Two different kinds of quantizers are

studied in [12]; “saturation quantizer” in which the overflows are mapped to the closest

1For definition of “heavy-tailed” and “light-tailed” distributions, see [5].
2Marginal entropy function is defined by Smith in [2]; for details see Section().
3If the channel input is constrained to be in [−A,A], then A ≤ 1.05 is shown to be “small enough”.
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quantization level, and “modulo quantizer” where the overflows are mapped to the nearest

quantization level after subtracting some multiple of the modulo period from the chan-

nel output4. It is shown that regardless of the noise distribution, the capacity achieving

input distribution for a system with N -level modulo quantizer at the output, is discrete

with exactly N mass points. Although these mass points may be at different locations for

various noise distributions, but they are always uniformly distributed, i.e. mass points are

equiprobable and equidistant. It is also shown that for Gaussian additive noise channel,

the capacity of modulo quantization is a lower bound for the capacity of saturation quanti-

zation, and the gap between these two is reduced by increasing the number of quantization

levels.

Conditionally Gaussian channels with peak and multiple cost constraint at the trans-

mitter are studied in [13] where necessary and sufficient conditions for optimality of discrete

input distributions are provided. [13] also provides a comprehensive list of research papers

devoted to channels with peak and or power constraints.

In [14], the authors give a comprehensive survey on fading channels. In many cases,

these channels were shown to have discrete capacity-achieving input distributions [15]-[21].

Reference [15] explores a memoryless point-to-point channel with fast Rayleigh fading,

where fading is independent from one symbol to another. Assuming that the channel state

information is unknown to both transmitter and receiver, it is shown that under only a

constraint on average power at the transmitter the capacity-achieving input distribution is

discrete. Moreover, authors in [21] show that Gaussian input distribution generates bounds

on the mutual information of the channel.

It is shown in [19, 20] that the optimum input distribution of the discrete-time non-

coherent AWGN channel, under only average power constraint, is discrete with finite num-

4For a detailed definition, see[12], Section (2).
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ber of mass points.

For low power regime, it is shown that under general assumptions on point-to-point ad-

ditive noise channels, the capacity-achieving input distributions are binary [23]. Moreover

it has been shown that even for the channels with continuous optimum input distributions,

simple discrete input constellations can get very close to the capacity of the channel.

1.4 Thesis Organization

This thesis consists of 6 chapters. Chapter 2 reviews scalar additive Gaussian channel under

peak constraint at the transmitter and summarizes Smith’s approach in characterizing the

optimum input distribution.

Chapter 3 presents multiple access channel models with average and peak power con-

straints at the transmitters and introduces the capacity region of the channel under general

assumptions. Our problem is formulated at the last section of chapter 3.

Chapter 4 studies the optimum input distributions corresponding to the maximum

achievable sum-rate of a two user multiple access channel with peak constraints. We show

that discrete distributions with a finite number of mass points can achieve the maximum

sum-rate. Although we do not claim uniqueness of the answers but we show that discrete

distributions are the only sum-capacity achieving distributions in this scenario.

Chapter 5 generalizes our results in chapter 4 for the optimum input distributions

corresponding to the maximum weighted sum-rate in the same multiple access channel.

This in turn proves that any point on the boundary of the capacity region is only achieved

by discrete distributions with a finite number of mass points.

Chapter 6 summarizes our discussions in the previous chapters and states some possible

future work directions.
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1.5 Notation:

The set of natural, real and complex numbers are denoted by N, R and C, respectively.

Other sets are shown by calligraphic letters such as X . The real and imaginary parts of

s ∈ C are denoted by Re(s) and Im(s), respectively. The imaginary number
√
−1 is shown

by j. We denote the constant 1√
2π

by c. Random variables are shown in bold such as x

with realization x. The Probability Density Function (PDF), the Cumulative Distribution

Function (CDF) and the characteristic function5 of x are shown by px(·), Fx(·) and Φx(·),
respectively. The law of a distribution function F on R is shown by µF , i.e, µF (·) is the

unique probability measure on R such that F (x) = µF ((−∞, x]). A point x ∈ R is called

a point of increase for a random variable x if for any open set O containing x, we have

µx(O) > 0. The support of a random variable x is the union of all points of increase

for x. The differential entropy of a continuous random variable x is shown by h(x), and

I(x;y) denotes the mutual information between random variables x and y. A normal

random variable with mean m and variance σ2 is denoted by N(m,σ2). For two functions

f : R → R and g : R → R, we say f(x) = g(x) for almost all x if f(x) = g(x) except

possibly on a set of Lebesgue measure zero. The indicator function of any A ⊂ R is shown

by 1A(·). If (xn)n∈N is a sequence in a topological space, we write limn xn as a short hand

for limn→∞ xn. In a metric space X , a point x∗ ∈ X is called a point of accumulation for a

set A ⊂ X if there exists a sequence (xn)n∈N ⊂ A such that limn xn = x∗. The largest open

set contained in a set A in a topological space is called the interior of A and is denoted

by int(A). The smallest closed set containing a set A in a topological space is called the

closure of A and is denoted by cl(A). The convex-hull of a subset A of a vector space U
is denoted by conv(A) = {ax+ (1− a)y : x, y ∈ A, a ∈ [0, 1]}.

5Characteristic function of x is the Fourier transform of px(·).
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Chapter 2

Peak-Constrained Scalar AWGN

Channel

2.1 Capacity-Achieving Input Distributions

As we mentioned in the previous chapter, point-to-point additive white Gaussian noise

channel under peak constraint at the transmitter, was first studied by Smith [2, 3]. In this

chapter we try to briefly state the important claims, observations and steps of proof in [2].

The channel model is as following:

y = x + z, (2.1)

where x and y denote the input and output of the channel, respectively, and the random

variable z ∼ N(0, 1)1 represents the additive Gaussian noise. The information capacity of

1It is shown in [2] that normalizing noise variance to be equal to 1, does not affect our results.
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x : |x| ≤ A

z ∼ N(0, 1)

y = x1 + x2 + z

Figure 2.1: A point-to-point additive white Gaussian noise channel with peak power con-

straint at the transmitter

this channel is defined by

C , sup
x:|x|≤A

I(x;y). (2.2)

Since I(x;y) = h(y)− h(z), and h(z) is a constant, one can rewrite (2.2) as

C = sup
x:|x|≤A

h(y). (2.3)

So we need to find the supremum of the output differential entropy over all Fx(·) ∈ FA,

where FA denotes the set of all possible probability distribution functions with all points

of increase in [−A,A]. By definition of differential entropy we have

h(y) = −
∫ ∞
−∞

py(y) log py(y)dy. (2.4)

Since x and z are independent random variables, we can write the output PDF as

py(y) =

∫ A

−A
pz(y − x)dFx(x), (2.5)

therefore by (2.4),

h(y) = −
∫ ∞
−∞

∫ A

−A
pz(y − x) log py(y)dFx(x)dy. (2.6)

9



Another notation for h(y) that we use is h(Fx) when x ∼ Fx(·) ∈ FA. It is shown in [2]

that we are allowed to change the order of integration in (2.6),

h(y) =

∫ A

−A
h(x;Fx)dFx(x), (2.7)

where,

h(x;Fx) = −
∫ ∞
−∞

pz(y − x) log py(y)dy. (2.8)

h(x;Fx) is called marginal entropy function and plays a crucial role in finding the necessary

and sufficient conditions for the optimum distribution in (2.3). With these preliminaries

in mind, we go to the next step which is applying an important optimization technique

named “Karush-Kuhn-Tucker” (KKT) Theorem, to our problem. Here we state the KKT

Theorem for completeness. We start by defining the concept of directional derivative.

Definition 1 Let f : V → R be a function on a vector space V. The directional derivative

of f at a ∈ V along a direction d ∈ V is defined by

Da(f ; d) , lim
t↓0

1

t
(f(a+ td)− f(a)), (2.9)

if this limit exists.

KKT Optimization Theorem: Let f : κ→ R be a continuous, weakly differentiable and

strictly concave function from a convex and compact topological space κ, to R. Then a

unique ω0 ∈ κ is the answer to the optimization problem

sup
ω∈κ

f(ω), (2.10)

and the necessary and sufficient condition for ω0 is Dω0(f ;ω − ω0) ≤ 0 for all ω ∈ κ. It is

shown [3] that h(y) and FA, satisfy all the conditions of the KKT Theorem. Therefore,

10



by invoking this theorem to the optimization problem in (2.3), we have F0 ∈ FA to be the

unique answer to (2.3), if and only if∫ A

−A
h(x;F0)dFx(x) ≤ h(F0) ∀Fx(·) ∈ FA. (2.11)

Let us denote the set of all points of increase of F0 as L. One can easily show that (2.11)

is equivalent to the following:

h(x;F0) ≤ h(F0) ∀x ∈ [−A,A], (2.12)

h(x;F0) = h(F0) ∀x ∈ L. (2.13)

In the brilliant part of his work, Smith shows that the continuation of the marginal

entropy function to the complex plane, denoted by h(s;F0) and s ∈ C, is analytic2 on

the entire complex plane. Using a fundamental theorem in Complex Analysis, he proves

finiteness of the number of the points of increase of F0. We state this theorem here for

completeness.

Identity Theorem in Complex Analysis: If two functions, analytic in some region of the

complex plane, agree on an infinite set of points in that region and the set of points has a

limit point in that region, then the functions are equal in that region.

Suppose F0 has infinitely many points of increase. Base on Bolzano-Weierstrass Theo-

rem [34], these points has to have a limit point in the interval [−A,A]. Invoking Identity

Theorem of Complex Analysis, it is shown [2, 3] that this assumption leads to a contra-

diction. Therefore, the optimum input distribution for scalar AWGN channel with peak

constraint has to be unique and discrete with a finite number of mass points.

2An analytic function is a function that is locally given by a convergent power series [38].
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Chapter 3

Channel Models

3.1 Multiple Access Channel

In this chapter we want to give a brief introduction to the Multiple Access Channel (MAC)

and the important notion of Capacity Region. MAC is referred to the channel where mul-

tiple transmitters are sending data to a single receiver simultaneously and over a “shared”

noisy channel. The receiver is supposed to decode the data of all the users with arbitrary

small probability of error. An error occurs when the receiver makes a wrong decision about

the transmitted message of at least one of the users.

Consider a two user1 MAC as shown in figure (3.1). User i is transmitting data with

rate Ri ≥ 0, for i = 1, 2, i.e. the codebook for ith user contains 2nRi codewords of length

n. A rate tuple (R1, R2) is said to be achievable if there exists codebooks for both users

such that by making the length of the codewords large enough we can get arbitrary small

probability of error at the receiver [25]. The following notions are important in defining

the capacity region of MAC.

1All the definitions in this chapter can be extended to n-user multiple access channel.
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x1 ∼ px1(·)

x2 ∼ px2(·)

y

p(y|x1,x2)

Figure 3.1: A two-user multiple access channel

Time Sharing: if (R1, R2) and (R
′
1, R

′
2) are achievable rate tuples for a two user multiple

access channel, then (λR1 + (1−λ)R
′
1, λR2 + (1−λ)R

′
2) is also achievable for all λ ∈ [0, 1].

Definition 2 For some fixed input distribution (x1,x2) ∼ px1(·)px2(·), in a two user mul-

tiple access channel (figure (3.1)), the capacity region is characterized by

0 ≤ R1 ≤I(x1;y|x2)

0 ≤ R2 ≤I(x2;y|x1). (3.1)

R1 +R2 ≤I(x1,x2;y)

This region outlines a pentagon shown in figure (3.2). Therefore, all the rate tuples lying

in this pentagon are achievable for those particular fixed input distributions.

Using time-sharing and definition (2), one can say that the convex hull of the union

of the capacity regions for all possible input distributions (x1,x2) ∼ px1(·)px2(·), is also

achievable for multiple access channel [25]. It can also be shown that this region gives an

upper bound on the achievable rate tuples, i.e. for any rate tuple at the boundary of the

region, one cannot increase a user’s rate without sacrificing another user’s rate.

13



R1

R2

I(x1;y|x2)I(x1;y)

I(x2;y|x1)

I(x2;y)

Figure 3.2: The capacity region of a two user MAC for some fixed input distribution

(x1,x2) ∼ px1(·)px2(·).

Single-letter characterization of the Capacity Region of the multiple access channel was

first derived in [26, 27]. This region characterizes the fundamental limits on the achievable

data rates in the channel.

Capacity Region: The convex hull of the union of all the achievable rates (R1, R2),

characterized by (3.1), for all of the possible product probability distributions px1(·)px2(·)
is the capacity region of the multiple access channel.

Capacity region of the multiple access channel has been characterized for different

scenarios. References [28]-[31] introduce some interesting works for the multiple access

channel under different assumptions.

14



x1 : E[x
2
1] ≤ P1

x2 : E[x
2
2] ≤ P2

z ∼ N(0, 1)

y = x1 + x2 + z

Figure 3.3: A two-user Gaussian multiple access channel with average power constraints

3.2 Gaussian Multiple Access Channel with Average

Power Constraints

Consider a Multiple Access Channel with additive Gaussian noise, as shown in figure

(3.3). Under average power constraints at the transmitters, the capacity region is a single

pentagon characterized by

0 ≤ R1 ≤
1

2
log(1 + P1)

0 ≤ R2 ≤
1

2
log(1 + P2). (3.2)

R1 +R2 ≤
1

2
log(1 + P1 + P2)

This was first shown in [32, 33]. The reason for the simple structure of the capacity region

is that, all of the constraints in (3.1) are maximized simultaneously by choosing px1(·) and

px2(·) to be Gaussian distributions with variances P1 and P2, respectively. Therefore, the

15



R1

R2

I(x1;y|x2)I(x1;y)

I(x2;y|x1)

I(x2;y)
Γ1

Γ2

Figure 3.4: Red pentagon: Border of the capacity region of a two-user Gaussian multiple

access channel with average power constraints; Black pentagons: examples of capacity

regions corresponding to non-Gaussian input distributions

capacity region of this channel is of the form in figure (3.4). We know that if we add two

independent random variables with Gaussian probability distributions, the result will also

be Gaussian with a variance equal to the summation of the variances of the two primary

random variables. Having this in mind, we can have a nice interpretation of the rate tuples

at the corner points of the capacity region.

Consider the two-user scenario shown in figure (3.3). Suppose that the first user starts

transmitting data with its maximum possible data rate while the second user is silent. In

this case the first user can transmit data with rate R1 = I(x1;y|x2). Now if we look at

16



the point-to-point channel from the second user to the output of the channel when the

signal from the first user is considered as noise, we will see a Gaussian channel with the

noise variance equal to 1+P1. Therefore the second user cannot send data with rates more

that R2 = I(x2;y). This rate tuple (R1, R2) represents the corner point of the capacity

region shown by Γ1 in figure (3.4). The same interpretation holds for the point Γ2, and by

time-sharing, we can achieve any point on the line between Γ1 and Γ2.

Reference [22] proposes a code-division multiple-access scheme called rate-splitting mul-

tiple accessing (RSMA) for M -user Gaussian MAC. RSMA splits the M original sources

into at most 2M − 1 virtual sources and shows that the effort of finding the codes for the

M users of MAC, is that of at most 2M − 1 independent scalar Gaussian channels.

3.3 Problem Statement: Gaussian Multiple Access

Channel with Peak Constraints

In this thesis we consider the problem of characterizing optimum input distributions for

Gaussian multiple access channel with peak constraints at the transmitters (figure (3.5)),

that achieve data rates at the boundary of the capacity region. Although the form of the

capacity region is unknown, but we can show that only discrete input distributions with

finite number of mass points can achieve rates at the boundary of the region. In the next

chapter we prove those characteristics for input distributions that achieve the maximum

sum-rate in the network. Later on in chapter 5, we extend our results to all weighted

sum-rates which is equivalent to all of the points on the boundary of the capacity region.
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x1 : |x1| ≤ A1

x2 : |x2| ≤ A2

x3 : |x3| ≤ A3

xn : |xn| ≤ An

z ∼ N(0, 1)

y = x1 + x2 + x3 + . . .+ xn + z

Figure 3.5: n-user Gaussian multiple access channel with peak constraints
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Chapter 4

Sum-Capacity of Gaussian MAC

with Peak Constraints

In this chapter, we consider a two-user Gaussian MAC under peak constraints at both

transmitters1 as shown in Fig. 4.1. Let xi denote the signal transmitted by the ith user

on a certain transmission slot for i = 1, 2. The signal received at the common receiver is

given by

y = x1 + x2 + z, (4.1)

where z ∼ N(0, 1) is the additive noise at the common receiver. Note that x1, x2 and z

are independent random variables. The transmitted signal by the ith user is required to lie

within the interval [−Ai, Ai] for i = 1, 2 where A1, A2 > 0. The main part of the chapter

is devoted to look for an optimal choice x∗1 and x∗2 of x1 and x2 such that the sum rate in

the network is maximized, i.e.,

x∗1,x
∗
2 = arg max

xi:|xi|≤Ai, i=1,2
I(x1,x2;y). (4.2)

1Our results can be easily extended to a Gaussian MAC with any finite number of users.
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x1 : |x1| ≤ A1

x2 : |x2| ≤ A2

z ∼ N(0, 1)

y = x1 + x2 + z

Figure 4.1: A two-user Gaussian MAC under peak constraints

Note that there might be more than one choice of x∗1 and x∗2 that satisfy (4.2). Since

I(x1,x2;y) = h(y)− h(z), one can alternatively write (4.2) as

x∗1,x
∗
2 = arg max

xi:|xi|≤Ai, i=1,2
h(y). (4.3)

The main contribution here is that selecting x1 and x2 to be discrete random variables

with a finite number of mass points is an answer to the optimization problem in (4.3).

Although, we do not claim uniqueness for the answer to (4.3), however, we show that any

answer to (4.3) must be discrete with a finite number of mass points. Let us fix x1 = x∗1.

Note that the distribution of x∗1 is unknown at this point. Define x̃2 by

x̃2 , arg max
x2:|x2|≤A2

h(x∗1 + x2 + z). (4.4)

Therefore,

h(x∗1 + x∗2 + z) ≤ h(x∗1 + x̃2 + z). (4.5)

According to (4.3),

h(x∗1 + x∗2 + z) ≥ h(x∗1 + x̃2 + z). (4.6)
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Comparing (4.5) and (4.6), h(x∗1 + x∗2 + z) = h(x∗1 + x̃2 + z). However, it is shown in

Theorem 1 that the answer to (4.4) is a unique discrete random variable x̃2 with a finite

number of mass points. Hence, x∗2 = x̃2 i.e. they have to have the same probability

distribution functions. This shows any x∗2 satisfying (4.3) must be discrete with a finite

number of mass points. A similar argument can be applied to verify the same property for

x∗1.

Theorem 1 Let u be a random variable with support [−A,A] for some A > 0 and z ∼
N(0, 1). For any B > 0, a unique and discrete random variable x with a finite number of

mass points in [−B,B] is the answer to the optimization problem supx:|x|≤B I(x;x+u+z).

4.1 Proof of Theorem 1

In order to prove our result, we extend the approach taken in [2, 3]. The answer to

our optimization problem in Theorem 1 is in fact the capacity of a point-to-point scalar

additive white noise channel v = x + u + z under the constraint |x| ≤ B where x

and v represent the input and output of the channel, respectively. Let us denote the

set of CDFs for random variables whose points of increase lie in [−B,B] by FB. Also,

pv(·;F ), Φv(·;F ) and h(v;F ) denote the PDF of v, the characteristic function of v and

the differential entropy of v, respectively, when x is generated according to Fx = F for

some F ∈ FB. We first show that I(x;x + u + z) achieves its supremum over FB. Note

that arg maxx:|x|≤B I(x;x + u + z) = arg maxF∈FB
h(v;F ). As such, we focus on the

optimization problem supF∈FB
h(v;F ). Our first observation is the following:

Lemma 1 h(v; ·) : FB → R achieves its supremum over FB.
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Proof: For this purpose, it is enough to equip FB with a topology under which FB is

compact and h(v; ·) : FB → R is continuous. To proceed, we need the following definitions

[35]:

Definition 3 For any F1, F2 ∈ FB, the so-called Lévy metric is defined by

dL(F1, F2) , inf {ε > 0 : F1(x− ε)− ε ≤ F2(x) ≤ F1(x+ ε) + ε, for any x ∈ R} . (4.7)

Definition 4 A sequence (Fn)n∈N of CDFs in FB is said to converge weakly to F∗ ∈ FB
if for all continuous functions f : [−B,B]→ R, we have limn

∫ B
−B fdFn =

∫ B
−B fdF∗.

We need the following technical result [35]2.

Helly-Bray Theorem: The Lévy metric dL : FB × FB → [0,∞) is a metric on FB that

metrizes weak convergence of sequences in FB, i.e., limn

∫ B
−B fdFn =

∫ B
−B fdF∗ for any

continuous function f : [−B,B] → R if and only if limn dL(Fn, F∗) = 0 for any sequence

(Fn)n∈N and F∗ in FB.

According to Lemma 8.10 in [36], the metric space (FB, dL) is sequentially compact3and

hence, it is compact4. We remark that compactness of FB under the Lévy metric is also

shown in [3] based on a different approach.

It remains to verify continuity of h(v; ·) : FB → R. Defining the total additive noise by

w , u + z, (4.8)

2See Theorem 11.3.3 and problem 8 of section 11.3 in [35].
3A metric space (X , d) is called sequentially compact if any sequence (xn)n∈N in X has a convergent

subsequence.
4See Theorem 28.2 in [39] where it is shown that a metric space is compact if and only if it is sequentially

compact.
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we have

pv(v;F ) =

∫ B

−B
pw(v − x)dF (x). (4.9)

Lemma 2 pw : R→ R is continuous.

Proof: Note that

pw(w) =

∫ A

−A
pz(w − u)dFu(u). (4.10)

Let (wn)n∈N ⊂ R and limnwn = w∗ for some w∗ ∈ R. Since pz : R → R is continuous,

we have limn pz(wn − u) = pz(w∗ − u) for all u ∈ [−A,A]. Also, pz(wn − u) ≤ c for all

u ∈ [−A,A]. Noting that
∫ A
−A c dFu(u) = c <∞, one can invoke the Lebesgue Dominated

Convergence Theorem (LDCT) to deduce limn pw(wn) = pw(w∗). This completes the proof.

Here we state the Lebesgue Dominated Convergence Theorem (LDCT) for completeness

[37].

Lebesgue Dominated Convergence Theorem (LDCT): Let (fn)n∈N be a sequence of inte-

grable functions which converges almost everywhere to a real valued measurable function

f∗. If there exists an integrable function g such that |fn| ≤ g for all n, then f∗ is integrable

and

lim
n

∫
fndµ =

∫
f∗dµ. (4.11)

Lemma 3 pv : R×FB → R is separately continuous in both arguments.

Proof: Let us fix F ∈ FB. Using expression (4.9), proof of continuity for pv(·;F ) : R→ R

follows the same lines5 as in the proof of continuity for pw : R → R offered in Lemma 2.

5Note that by Lemma 4, pw : R→ R is continuous and by (4.10), pw(w) ≤ c for all w ∈ R.
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Next, let us fix v ∈ R and show that pv(v; ·) : FB → R is continuous. Let (Fn)n∈N

be a sequence in FB such that limn dL(Fn, F∗) = 0 for F∗ ∈ FB. Using continuity of

pw : R → R (Lemma 2) and invoking Helly-Bray Theorem, limn

∫ B
−B pw(v − x)dFn(x) =∫ B

−B pw(v−x)dF∗(x), or equivalently, limn pv(v, Fn) = pv(v, F∗). This completes the proof.

We are ready to show that for any sequence (Fn)n∈N and F∗ in FB such that limn dL(Fn, F∗) =

0, then limn h(v;Fn) = h(v;F∗). Based on Lemma 3, limn pv(v;Fn) = pv(v;F∗) for any

v ∈ R. Since f : [0,∞)→ R defined by f(ζ) = ζ log ζ for ζ > 0 and f(0) = 0 is continuous,

then

lim
n
pv(v;Fn) log pv(v;Fn) = pv(v;F ) log pv(v;F ). (4.12)

If we can show there exists a function ϕ : R→ R such that |pv(v;Fn) log pv(v;Fn)| ≤ ϕ(v)

for any v ∈ R and
∫
R ϕ(v)dv < ∞, we can invoke LDCT to conclude limn h(v;Fn) =

h(v;F∗). As such, the next step is to construct such a function ϕ. By (4.10), pw(w) =∫ A
−A ce

− 1
2

(w−u)2dFu(u). This yields

θA(w) ≤ pw(w) ≤ ΘA(w), (4.13)

where

θA(w) , min
u∈[−A,A]

ce−
1
2

(w−u)2 =

 ce−
1
2

(w+A)2 w ≥ 0

ce−
1
2

(w−A)2 w < 0
(4.14)

and

ΘA(w) , max
u∈[−A,A]

ce−
1
2

(w−u)2 =


ce−

1
2

(w−A)2 w ≥ A

c −A < w < A

ce−
1
2

(w+A)2 w ≤ −A

. (4.15)

Also, using (4.13) in (4.9),

min
x∈[−B,B]

θA(v − x) ≤ pv(v;Fn) ≤ max
x∈[−B,B]

ΘA(v − x). (4.16)
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It is easy to see that

min
x∈[−B,B]

θA(v − x) = θA+B(v) (4.17)

and

max
x∈[−B,B]

ΘA(v − x) = ΘA+B(v). (4.18)

Hence,

θA+B(v) ≤ pv(v;Fn) ≤ ΘA+B(v). (4.19)

Remark 1 Let f : R → (0,∞) be a bounded function, i.e., 0 < f(v) ≤ b < ∞ for any

v ∈ R and some b > 0. For any v ∈ R,

| log f(v)|+ log f(v) =

0 log f(v) ≤ 0

2 log f(v) log f(v) > 0
(4.20)

and

log f(v) ≤ log b. (4.21)

Combining (4.20) and (4.21),

| log f(v)| ≤ − log f(v) + 2| log b|. (4.22)

We use (4.22) in several instances throughout the proof.

By (4.16) and Remark 1,

|−pv(v;Fn) log pv(v;Fn)| ≤ ΘA+B(v)| log pv(v;Fn)|

≤ ΘA+B(v) (− log pv(v;Fn) + 2| log c|)

≤ ΘA+B(v) (− log θA+B(v) + 2| log c|) . (4.23)
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As ΘA+B(v) decays like e−v
2

and log θA+B(v) only grows like v2, it is easy to see that

ϕ(v) , ΘA+B(v) (− log θA+B(v) + 2| log c|) (4.24)

is an integrable function.∫
R
ϕ(v)dv = −

∫
R

ΘA+B(v) log θA+B(v)dv + 2| log c|
∫
R

ΘA+B(v)dv. (4.25)

On one hand,∫
R

ΘA+B(v)dv = c

∫ −A−B
−∞

e−
1
2

(v+A+B)2dv + c

∫ ∞
A+B

e−
1
2

(v−A−B)2dv + c

∫ A+B

−A−B
dv

≤ c

∫ ∞
−∞

e−
1
2

(v+A+B)2dv + c

∫ ∞
∞

e−
1
2

(v−A−B)2dv + 2c(A+B)

= 2c

∫ ∞
−∞

e−
v2

2 dv + 2c(A+B)

= 2c
(√

2π + A+B
)
<∞. (4.26)
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On the other hand,∫
R

ΘA+B(v) log θA+B(v)dv = log(c)

∫
R

ΘA+B(v)dv − 1

2

∫ ∞
0

ΘA+B(v)(v + A+B)2dv

−1

2

∫ 0

−∞
ΘA+B(v)(v − A−B)2dv

= log(c)

∫
R

ΘA+B(v)dv − 1

2

∫ A+B

0

ΘA+B(v)(v + A+B)2dv

−1

2

∫ 0

−A−B
ΘA+B(v)(v − A−B)2dv

−1

2

∫ ∞
A+B

ΘA+B(v)(v + A+B)2dv − 1

2

∫ −A−B
−∞

ΘA+B(v)(v − A−B)2dv

= log(c)

∫
R

ΘA+B(v)dv − c

2

∫ A+B

0

(v + A+B)2dv − c

2

∫ 0

−A−B
(v − A−B)2dv

− c
2

∫ ∞
A+B

(v + A+B)2e−
1
2

(v−A−B)2dv − c

2

∫ −A−B
−∞

(v − A−B)2e−
1
2

(v+A+B)2dv

= log(c)

∫
R

ΘA+B(v)dv − 7c(A+B)3

3

− c
2

∫ ∞
A+B

(v + A+B)2e−
1
2

(v−A−B)2dv − c

2

∫ −A−B
−∞

(v − A−B)2e−
1
2

(v+A+B)2dv.

(4.27)
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This yields∣∣∣∣∫
R

ΘA+B(v) log θA+B(v)dv

∣∣∣∣ ≤ | log c|
∫
R

ΘA+B(v)dv +
7c(A+B)3

3

+
c

2

∫ ∞
A+B

(v + A+B)2e−
1
2

(v−A−B)2dv +
c

2

∫ −A−B
−∞

(v − A−B)2e−
1
2

(v+A+B)2dv

(a)

≤ 2c
(√

2π + A+B
)
| log c|+ 7c(A+B)3

3

+
c

2

∫ ∞
−∞

(v + A+B)2e−
1
2

(v−A−B)2dv +
c

2

∫ ∞
−∞

(v − A−B)2e−
1
2

(v+A+B)2dv

= 2c
(√

2π + A+B
)
| log c|+ 7c(A+B)3

3

+
c

2

∫ ∞
−∞

(v + 2(A+B))2e−
v2

2 dv +
c

2

∫ ∞
−∞

(v − 2(A+B))2e−
v2

2 dv

= 2c
(√

2π + A+B
)
| log c|+ 7c(A+B)3

3
+ c

∫ ∞
−∞

(
v2 + 4(A+B)2

)
e−

v2

2 dv

= 2c
(√

2π + A+B
)
| log c|+ 7c(A+B)3

3
+
√

2πc(1 + 4(A+B)2) <∞, (4.28)

where (a) follows by (4.26). By (4.25), (4.26) and (4.28), we conclude that ϕ is an integrable

function. This completes the proof of continuity for h(v; ·) : FB → R.
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The next Lemma guarantees that h(v; ·) : FB → R attains its global maximum for a

unique distribution in FB and it admits no local maxima.

Lemma 4 h(v; ·) : FB → R is strictly concave.

Proof: It is evident that FB is a convex set. It is also well-known [24] that h(v; ·) :

FB → R is concave, i.e., for any F1, F2 ∈ FB and λ ∈ [0, 1],

h(v;λF1 + (1− λ)F2) ≥ λh(v;F1) + (1− λ)h(v;F2), (4.29)

with equality if and only if pv(v, F1) = pv(v, F2) for almost all v ∈ R. Assuming pv(v, F1) =

pv(v, F2) for almost all v ∈ R and noting that pv(v, F ) ≤ c for any v ∈ R and F ∈ FB,

the Fourier transforms of pv(·, F1) and pv(·, F2) are identical, i.e., Φv(ω;F1) = Φv(ω;F2)

for all ω ∈ R. This yields Φw(ω)(Φ1(ω) − Φ2(ω)) = 0 for all ω ∈ R where Φi(·) is the

Fourier transform of the probability law on R induced by Fi(·), i.e., Φi(ω) =
∫
R e

jwxdFi(x)

for i = 1, 2. The following Lemma shows that zeros of Φw(·) as isolated.

Lemma 5 Φw : R→ C can be zero in at most a countably infinite set of isolated points.

Proof: Let us consider the moment generating function Mw : C→ C of w defined by6

Mw(s) ,
∫
R
eswdFw(w), s ∈ C. (4.30)

Note that Mw(s) is defined for any s ∈ C, i.e., |Mw(s)| <∞. In fact,

|Mw(s)| ≤
∫
R
|esw|dFw(w)

=

∫
R
eRe(s)wpw(w)dw

≤
∫
R
eRe(s)wΘA(w)dw. (4.31)

6Note that Φw(ω) = Mw(jω) for all ω ∈ R.
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It is straightforward to see that the right side in (4.31) is finite. Next, we show that Mw(·)
is an analytic function everywhere on C. To show this we need Morera’s Theorem [40]

which is mentioned here for completeness:

Morera’s Theorem: Let f be a continuous, complex valued function on a connected

open set D in the complex plane. If
∮

∆
fds = 0 for every triangular path ∆ in D, then f

is analytic on D.

Let us first show that Mw(·) is a continuous function. Assume (sn)n∈N is a sequence in C

such that limn sn = s∗ ∈ C. Therefore, there exists b > 0 such that |sn| ≤ b for any n ∈ N.

Moreover, for any w ∈ R, |esnw| = eRe(sn)w ≤ eb|w|. But,∫
R
eb|w|dFw(w) =

∫
R
eb|w|pw(x)dw

≤
∫
R
eb|w|ΘA(w)dw

< ∞. (4.32)

The last step in (4.32) follows similar lines as in (4.24)-(4.28) where we showed integrability

of ϕ. Hence, we can use LDCT to write limnMw(sn) = Mw(s∗), i.e., Mw : C → C is

continuous.

Let ∆ be a triangular path in C. Note that∣∣∣∣∮
∆

Mw(s)ds

∣∣∣∣ ≤ len(∆) max
s∈∆

Mw(s) <∞, (4.33)

where len(∆) is the length of ∆ and we have used the fact that the continuous function

Mw(·) attains its maximum on ∆ as ∆ is a closed and bounded set of points, or equivalently,

a compact set in C. Then (4.33) allows us to invoke Tonelli-Fubini Theorem [35] that
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justifies exchanging the order of integration, i.e.,∮
∆

Mw(s)ds =

∮
∆

∫
R
eswdFw(w)ds

=

∫
R

∮
∆

eswdsdFw(w)

= 0, (4.34)

where the last step follows by the fact that f : C → C defined by f(s) = esw is analytic

on C for any w ∈ R, and therefore, by Cauchy’s integral Theorem,
∮

∆
eswds = 0. Hence,

by Morera’s Theorem, Mw(·) is analytic everywhere on C. It is well-known [40] that zeros

of an analytic function are isolated. Since Φw(ω) = Mw(jω), we conclude that Φw(·) can

be zero for at most a countably infinite set of isolated points. Based on lemma 5, if we

denote the isolated zeros (if any) of Φw(·) by ω1, ω2, ω3, · · · , then Φ1(ω) = Φ2(ω) for any

ω ∈ R except possibly for ω ∈ {ω1, ω2, ω3, · · · }. Fixing n ≥ 1, let (ωn,m)m∈N be a sequence

of rational numbers that tends to ωn from above and {ωn,m : m ∈ N}∩{ω1, ω2, ω3, · · · } = ∅.
Then Φ1(ωn,m) = Φ2(ωn,m) for any m ∈ N. Using the fact that the characteristic function

of any random variable is (uniformly) continuous7 on R, we get Φ1(ωn) = limm Φ1(ωn,m) =

limm Φ2(ωn,m) = Φ2(ωn) for any n ∈ N. Therefore, Φ1(ω) = Φ2(ω) for all ω ∈ R. This in

turn yields F1 = F2.

We are ready to present necessary and sufficient conditions for the unique distribu-

tion F0 that satisfies h(v;F0) = supF∈FB
h(v;F ). The following Lemma is essential for

developing the rest of the proof.

Lemma 6 Let f : C → R be a concave function where C is a convex set. For any a ∈ int(C)
and for any a′ ∈ C, the directional derivative of f at a along a′ − a exists and is finite.

Moreover, a is a point of global maximum for f if and only if Da(f ; a′ − a) ≤ 0 for any

a′ ∈ C.

7See Lemma 9.3 in [36].
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Proof: See Propositions 2.1.1, 2.1.2 and 3.1.2 in [34].

One can write h(v;F ) as

h(v;F ) =

∫ B

−B
k(x;F ) dF (x), F ∈ FB, (4.35)

where k : [−B,B]×FB → R is given by

k(x;F ) , −
∫
R
pw(v − x) log pv(v;F )dv. (4.36)

Note that existence and finiteness of DF0(h(v; ·);F − F0) is guaranteed by Lemma 6. Cal-

culating the directional derivative DF0(h(v; ·);F − F0) is a straightforward task and we

refer the reader to [3] for details8. In fact,

DF0(h(v; ·);F − F0) =

∫ B

−B
k(x;F0) dF (x)− h(v;F0). (4.37)

Using Lemma 6, the optimum distribution F0 satisfies DF0(h(v; ·);F − F0) ≤ 0. As such,

the necessary and sufficient condition for optimality of F0 is given by∫ B

−B
k(x;F0) dF (x) ≤ h(v;F0), F ∈ FB. (4.38)

Taking F (x) = 1[y,∞)(x) in (4.38), it is seen that

k(y;F0) ≤ h(v;F0), y ∈ [−B,B]. (4.39)

Let I ⊂ [−B,B] be the set of points of increase for F0 and x0 ∈ I, i.e., µF0(O) > 0 for

any open set O containing x0. Following the steps in [13], we show k(x0;F0) = h(v;F0).

Assume on the contrary that k(x0;F0)− h(v;F0) = −ε for some ε > 0. It is verified in the

appendix 9 that k(·;F ) : R → R is a continuous function for any F ∈ FB. Then there is

8See the Lemma that appears on page 29 of [3].
9In fact, appendix verifies a much stronger statement about k(·;F ) where it is shown that continuation

of k(·;F ) to the whole complex plane is analytic everywhere on C.
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an open set O containing x0 such that k(x;F0)−h(v;F0) ≤ − ε
2

for any x ∈ O. Integrating

both sides with respect to µF0(·), we get∫
O

(k(x;F0)− h(v;F0))dF0(x) ≤ − ε
2
µF0(O). (4.40)

On the other hand,∫
O

(k(x;F0)− h(v;F0))dF0(x)
(a)

≥
∫
R
(k(x;F0)− h(v;F0))dF0(x)

(b)
=

∫
R
k(x;F0)dF0(x)− h(v;F0)

(c)
= 0, (4.41)

where (a) follows by (4.38), (b) is due to the fact that
∫
R dF0(x) = 1 and (c) is a consequence

of (4.35). Combining (4.40) and (4.41), we get µF0(O) ≤ 0 which is a contradiction. Hence,

k(x0;F0) = h(v;F0), x0 ∈ I. (4.42)

It is shown in the appendix that continuation of k(·;F ) to the whole complex plain is well-

defined and in fact, k(·;F ) is analytic on the whole complex plain. It is well-known [40] that

zeros of an analytic function are isolated points on its domain10. Therefore, the equation

k(s;F0) = h(v;F0) can have at most a countably infinite set of isolated solutions denoted

by S. We can write I ⊂ S ∩ [−B,B]. If I is not finite, i.e., if it is countably infinite, it

must have a point of accumulation x∗ by Bolzano-Weierstrass Theorem [34]. Hence, there

is a sequence of points (xn)n∈N in I such that limn xn = x∗. Since k(xn;F0) = h(v;F0)

for all n ∈ N and k(·;F0) is continuous, we get k(x∗;F0) = limn k(xn;F0) = h(v;F0). As

such, x∗ ∈ I which is a contradiction as all points in I are isolated. Therefore, I must be

a finite set of isolated points. This completes the proof of Theorem 1.

10A set S ⊂ C is said to be a set of isolated points if for any s ∈ S, there is an open set O ⊂ C containing

s such that S ∩ O = {s}.

33



Chapter 5

Maximizing the weighted sum rate

under peak constraints

This chapter is devoted to study the weighed sum rate of a two-user Gaussian MAC. Let

us denote the capacity region of a Gaussian MAC with peak constraints shown in Fig. 4.1

by RMAC(A1, A2). In fact, RMAC(A1, A2) is the set of all tuples (R1, R2) where Ri is the

transmission rate of the ith user such that the receiver can decode the messages of both

users with arbitrarily small probability of error. By [24],

RMAC(A1, A2) = cl

conv

 ⋃
xi:|xi|≤Ai,i=1,2

RMAC(A1, A2;x1,x2)

 , (5.1)

where RMAC(A1, A2;x1,x2) is the set of all tuples (R1, R2) that satisfy

0 ≤ R1 ≤ I(x1;y|x2)

0 ≤ R2 ≤ I(x2;y|x1)

R1 +R2 ≤ I(x1,x2;y)

. (5.2)

Any point on the boundary of RMAC(A1, A2) corresponds to a solution for

arg sup(R1,R2)∈RMAC(A1,A2) R1 +mR2 for some m > 0. Using the structure of RMAC(A1, A2),
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one may alternatively describe any point on the boundary of RMAC(A1, A2) by solving

for arg supxi:|xi|≤Ai, i=1,2 sup(R1,R2)∈RMAC(A1,A2;x1,x2)R1 + mR2 for some m > 0. This leads

to maximizing I(x1;y|x2) + mI(x2;y) and I(x1;y) + mI(x2;y|x1) for 0 < m < 1 and

m > 1, respectively over the set of all xi such that |xi| ≤ Ai for i = 1, 2. We show that

the answer to these optimization problems are discrete random variables x1 and x2 with

a finite number of mass points in [−A1, A1] and [−A2, A2], respectively. In what follows,

we focus on the case 0 < m < 1. The case m > 1 is treated similarly.

Let

x∗1,x
∗
2 , arg max

xi:|xi|≤Ai, i=1,2
I(x1;y|x2) +mI(x2;y)

= arg max
xi:|xi|≤Ai, i=1,2

I(x1;x1 + z) +mI(x2;x2 + x1 + z). (5.3)

By Theorem 1, the term I(x2;x2 + x1 + z) is maximized for a discrete x2 with a finite

number of mass points in [−A2, A2] for any choice of x1 where |x1| ≤ A1. Therefore, x∗2 is

a discrete random variable with a finite number of mass points in [−A2, A2]. Then

x∗1 = arg max
x1:|x1|≤A1

I(x1;x1 + z) +mI(x∗2;x∗2 + x1 + z)

= arg max
x1:|x1|≤A1

(1−m)h(x1 + z) +mh(x1 + x∗2 + z). (5.4)

Let us define

w1 , z, w2 , x∗2 + z (5.5)

and

vi , x1 + wi, i = 1, 2. (5.6)

Following our previous notation, we are looking for Fx1 = F0 ∈ FA1 given by

F0 = arg max
F∈FA1

(1−m)h(v1;F ) +mh(v2;F ). (5.7)
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Mimicking the same lines of proof for Lemma 1 and Lemma 4, we can show that (1 −
m)h(v1; ·) + mh(v2; ·) : FA1 → R achieves its supremum over FA1 and is strictly concave.

Moreover, let ki : [−A1, A1]×FA1 → R be given by

ki(x;F ) , −
∫
R
pwi

(v − x) log pvi
(v;F )dv, i = 1, 2, (5.8)

for any x ∈ [−A1, A1] and F ∈ FA1 . Then one can write h(vi;F ) as

h(vi;F ) =

∫ A1

−A1

ki(x;F )dF (x), i = 1, 2, (5.9)

for any F ∈ FA1 . Invoking similar arguments as the ones in the appendix where we show

k(·;F ) : C→ C given in (4.36) is analytic on the whole complex plane, we can show that

continuation of ki(·;F ) to the whole complex plane is everywhere analytic for any F ∈ FA1

and i = 1, 2. Verifying that any point of increase x0 for F0 satisfies

(1−m)k1(x;F0) +mk2(x;F0) = (1−m)h(v1;F0) +mh(v2;F0), (5.10)

using the same lines of reasoning that appear after (4.42), one can show that the points of

increase for F0 consist of only a finite number of isolated points in [−A1, A1]. This completes

the proof for the fact that any point on the boundary of the region RMAC(A1, A2) can be

achieved only by input distributions x1 and x2 whose CDFs have only a finite number of

points of increase in the intervals [−A1, A1] and [−A2, A2], respectively.
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Chapter 6

Conclusion

6.1 Summary

In this thesis we have studied Gaussian multiple access channels under peak constraints at

the transmitters. We have characterized the optimum input distributions corresponding

to the points at the boundary of the capacity region to be discrete with a finite number of

points of increase. First we prove our claim for maximizing sum-capacity of the channel

then we generalize the idea to the weighted sum-rate. This concludes that only discrete

distributions with finite number of mass points achieve points at the boundary of the

capacity region but does not claim uniqueness of those distributions.

Central part of the thesis is the arguments presented in chapter 4 where we break

down the multiple access channel problem into a point-to-point problem with two additive

noises, one is the additive Gaussian noise, and the other is an amplitude-limited noise with

an arbitrary probability distribution function. In Theorem 1 we claimed that a unique

and discrete distribution with a finite number of mass points achieves the capacity of this
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simpler channel. We adopted the standard methodology of Smith [2] to prove our claim in

Theorem1.

6.2 Future works

We have characterized the optimum input distributions to achieve points on the boundary

of the capacity region of a multiple access channel with peak constraints at the transmitters.

One possible extension to this work would be characterizing the general form of the capacity

region of this channel and in particular answering to the question that is there just a single

point on the boundary of the capacity region that corresponds to the maximum sum-rate

or there is a collection of infinitely many points that achieve the sum-capacity, i.e. the

boundary of the capacity region contains a straight line that corresponds to the maximum

sum-rate?

Other interesting question on this channel would be on the optimality of different

schemes such as Time Division Multiple Access (TDMA) or Frequency Division Multiple

Access (FDMA) to achieve points on the boundary of the capacity region. It has been

shown for Gaussian MAC with average power constraints, that both schemes of TDMA and

FDMA can achieve exactly one point on the boundary of the capacity region corresponding

to maximum sum-rate. Proving optimality (at least at one point on the capacity region)

or non-optimality of TDMA and FDMA in our MAC with peak constraints would be an

interesting contribution to the topic.
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Appendix

Fixing F ∈ FB, let us define ρ : C→ C by

ρ(s) ,
∫
R
pw(v − s) log pv(v;F )dv. (6.1)

Note that k(x;F ) = ρ(x) for x ∈ R. We show that ρ(·) is analytic everywhere on C. Let

us start by verifying that |ρ(s)| <∞ for any s ∈ C. By (4.10),

|pw(v − s)| ≤
∫ A

−A
|pz(v − s− u)|dFu(u). (6.2)

Since

|pz(v − s− u)| = ce−
1
2

Re((v−s−u)2) = ce
1
2

(Im(s))2e−
1
2

(v−Re(s)−u)2 , (6.3)

we get

|pw(v − s)| ≤ ce
1
2

(Im(s))2 max
u∈[−A,A]

e−
1
2

(v−Re(s)−u)2

= e
1
2

(Im(s))2ΘA(v − Re(s)), (6.4)

where we have used the definition of ΘA(·) in (4.15). Using (6.4) and recalling the inequality

| log pv(v)| ≤ − log θA+B(v) + 2| log c| from (4.23),

|ρ(s)| ≤
∫
R
|pw(v − s)|| log pv(v;F )|dv

≤ e
1
2

(Im(s))2
∫
R

ΘA(v − Re(s)) (− log θA+B(v) + 2| log c|) dv. (6.5)
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Following a similar argument that we used to prove integrability of ϕ(·) defined in (4.24), it

can be seen that the right side in (6.5) is finite. Hence, |ρ(s)| <∞ for any s ∈ C. To show

that ρ(·) is an analytic function on C, we invoke Morera’s Theorem. For this purpose, we

need the following Lemmas:

Lemma 7 ρ(·) : C→ C is everywhere continuous.

Proof: Let (sn)n∈N be a sequence in C such that limn sn = s∗ for some s∗ ∈ C. Our

goal is to show limn ρ(sn) = ρ(s∗). We proceed as follows:

1) We show limn pw(v − sn) = pw(v − s∗) for any v ∈ R. To see this, note that

limn pz(v−sn−u) = pz(v−s∗−u) for any u, v ∈ R as pz(·) is continuous (in fact analytic)

everywhere on C. Moreover, since (sn)n∈N converges, there is a b > 0 such that |sn| ≤ b

for any n ∈ N. By (6.3),

|pz(v − sn − u)| ≤ c max
s∈C:|s|≤b

e
1
2

(Im(s))2e−
1
2

(v−Re(s)−u)2

≤ ce
b2

2 max
s∈C:Re(s)∈[−b,b]

e−
1
2

(v−Re(s)−u)2

= e
b2

2 Θb(v − u), u, v ∈ R, n ∈ N. (6.6)

Since ∫ A

−A
Θb(v − u)dFu(u) ≤ max

u∈[−A,A]
Θb(v − u)

= Θb+A(v) <∞, v ∈ R, (6.7)

we can apply LDCT to (4.10) in order to conclude limn pw(v − sn) = pw(v − s∗).

2) We show that there exists a function φ : R→ R such that |pw(v−sn) log pv(v;F )| ≤
φ(v) for any v ∈ R and

∫
R φ(v)dv <∞. Using this fact and the previous step, we conclude
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limn ρ(sn) = ρ(s∗) by applying LDCT again. By (6.2), (6.6) and (6.7) and recalling the

inequality | log pv(v)| ≤ − log θA+B(v) + 2| log c| from (4.23),

|pw(v − sn) log pv(v;F )| ≤ e
b2

2 (− log θA+B(v) + 2| log c|) Θb+A(v), v ∈ R. (6.8)

Let us define

φ(v) , e
b2

2 (− log θA+B(v) + 2| log c|) Θb+A(v), v ∈ R. (6.9)

Following our argument in (4.24)-(4.28) to prove integrability of ϕ(·), it can be seen that∫
R φ(v)dv is finite. This completes the proof of continuity for ρ(·).
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Lemma 8 For any v ∈ R, define fv : C → C by fv(s) = pw(v − s). Then fv is analytic

everywhere.

Proof: By (6.4), fv is well-defined, i.e., |fv(s)| <∞ for any s ∈ C. Moreover, fv : C→ C

is everywhere continuous by Lemma 7. Next, let ∆ be an arbitrary triangular path in C.

Then we can find b′ > 0 such that |s| ≤ b′ for any s ∈ ∆. Since fv is continuous on the

compact set {s ∈ C : |s| ≤ b′}, we get sups∈∆ |fv(s)| <∞. Therefore,

∣∣∣∣∮
∆

∫ A

−A
pz(v − s− u)dFu(u)ds

∣∣∣∣ =

∣∣∣∣∮
∆

fv(s)ds

∣∣∣∣
≤ len(∆) sup

s∈∆
|fv(s)|

< ∞. (6.10)

Then by Tonelli-Fubini Theorem,∮
∆

fv(s)ds =

∮
∆

∫ A

−A
pz(v − s− u)dFu(u)ds

=

∫ A

−A

∮
∆

pz(v − s− u)dsdFu(u)

= 0, (6.11)

where the last step is by Cauchy’s integral Theorem, as pz(·) is analytic everywhere. Since∮
∆
fv(s)ds = 0 for any triangular path ∆ and fv(·) is continuous everywhere, by Morera’s

Theorem, we conclude that fv(·) is analytic.

Next, let ∆ be an arbitrary triangular path in C. Then there exists b′′ > 0 such that

for any s ∈ ∆, we have |s| ≤ b′′. By Lemma 7, ρ(·) is everywhere continuous. Since the

set {s ∈ C : |s| ≤ b′′} is compact, we conclude that sups∈∆ |ρ(s)| <∞. Therefore,∣∣∣∣∮
∆

∫
R
pw(v − s) log pv(v;F )dvds

∣∣∣∣ =

∣∣∣∣∮
∆

ρ(s)ds

∣∣∣∣
≤ len(∆) sup

s∈∆
|ρ(s)|

< ∞. (6.12)
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Hence, by Tonelli-Fubini Theorem [35],∮
∆

ρ(s)ds =

∮
∆

∫
R
pw(v − s) log pv(v;F )dvds

=

∫
R

∮
∆

pw(v − s)ds log pv(v;F )dv

= 0, (6.13)

where the last step follows by Lemma 8 and Cauchy’s integral Theorem. Therefore, using

Morera’s Theorem, ρ(·) is everywhere analytic.
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