
Intelligent Condition Assessment of Power 

Transformer Based on Data Mining 

Techniques 
 

 

 

by 
 

 

Monsef  Tahir 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Electrical and Computer Engineering 

 

 

 

Waterloo, Ontario, Canada, 2012 

 

 

© Monsef Tahir 2012  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144146209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 



 

 iii 

Abstract 

    In recent years, the trade-off between quality and cost of power system components has become a 

matter of interest for many utilities. The widespread use of costly electricity networks either in 

residential or industrial areas has encouraged service providers to find a proper strategy that will 

minimize the overall life-cycle cost while keeping components in good working condition. The power 

transformer, which represents approximately 60% of the overall cost of the network, is ranked as one 

of the most important and expensive components. However, the transformer's sudden failure puts the 

system in a serious or critical condition which in most cases causes catastrophic loss to both utilities 

and customers. Significant attention has been given to monitoring and diagnostic techniques that 

observe any abnormal behaviour, assess the transformer's condition, and therefore minimize the 

probability of unplanned outage. Yet, applying many various monitoring tests is not always 

applicable due to the following factors: some tests require the unit to be taken out from service for 

testing, insufficient availability of man power, and significant cost of applying all the tests. Thus, 

there is a vital demand for an intelligent method of minimizing the number of monitoring tests 

without losing much information about the transformer's actual condition.  

In this research, data mining techniques have been employed to evaluate the transformer's state 

through intelligent selection criteria that determines the optimal number of monitoring tests in cost-

effectiveness. Feature selection technique based on ranker search method has been used to rank the 

monitoring tests (features) in a priority sequence from their individual evaluation, and to select the 

most inductive tests that provide the most information about the unit's condition. When the measured 

data from monitoring tests is collected and prepared, a diagnostic technique is applied to assess the 

condition of the transformer. In this regard, Support Vector Machine (SVM) has been utilized to 

perform this task due to its robust classification accuracy. SVM is first applied to the full number of 

tests, and then the number of monitoring tests is reduced by one after each classification process using 

the feature selection algorithm. The selected number of monitoring tests has shown the best possible 

accuracy the classifier can reach over the whole number of tests. Radial Basis Function (RBF) 

classifier has been used in the classification process for results comparison purposes. This proposed 

work contributes towards finding an intelligent method of evaluating the transformer state as well as 

minimizing the number of tests without losing much information about the unit's actual condition. 

Therefore, this method facilitates deciding a wise course of action regarding the transformer: either 

maintain, repair, or replace. 
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Chapter 1 
Introduction 

1.1 General        

In recent years, high investment in electricity networks has encouraged power utilities to find optimal 

management of capacity while optimizing the cost of the current components over their lifespans [1]. 

The power transformer represents approximately 60% of the overall cost of the network, and is 

designed to operate safely between 25 and 30 years. The power transformer is ranked as one of the 

most important and expensive components in the electricity sector [2, 3]. Recently, more attention has 

been paid to the life cycle management and condition monitoring techniques of power transformers 

because of their significant contribution in minimizing forced outage risks, reducing cost, and 

extending the nominal end of life. Approximately 27 monitoring methods to assess transformer 

condition are presented in the literature [3]. Furthermore, in many cases the capital cost of 

transformer unplanned outage costs millions of dollars [4]. The gradual deterioration in a transformer 

occurs for many reasons, specifically for in-service aged transformers. Overloading, lack of 

maintenance, design problems, environment temperature, and other factors speed up the deterioration 

process; therefore, condition monitoring and assessment procedures aim to track behaviour of 

components and detect incipient faults early; hence, reduced maintenance costs and proper health 

assessment can be achieved. 

The wide diversity in monitoring and diagnostic techniques greatly help in the evaluation of power 

transformer status, but at the same time a lot of effort, expense, and skilled people are needed in order 

to achieve these tasks. Moreover, the time required for the unit to be out of service for off-line 

monitoring tests causes serious compensation challenges for service providers. This thesis presents an 

intelligent model based on optimization technique to properly monitor and diagnose the power 

transformer. Furthermore, the proposed model helps in finding an efficient yet reliable limited 

number of monitoring techniques to address transformer condition and hence minimize the 

challenges. The primary goal of this thesis is to help decision makers apply a cost-effective plan for 

an optimally selected number of monitoring methods to achieve proper condition assessment. 

1.2  Motivation 

In the past decades many and various monitoring methods have been developed to help utilities make 

the right decisions when performing maintenance, repairs, or replacement scenarios. The evaluation 



 

 2 

process of power transformer must be conducted based on measured and reliable information while 

resolving any problems that have occurred during its service. However, many challenges impede the 

application of many monitoring tests every time. Availability of skilled people, time demands 

(especially for major and off-line tests), electricity interruption in the absence of spare transformers, 

and the high costs incurred to perform these tests constitute the greatest obstacles to service providers. 

As the number of monitoring tests increases, the challenges increase. Therefore, the need for a 

technique that overcomes these challenges to compromise between the reliable assessment of 

transformer condition and the application of many monitoring tests has recently become a matter of 

interest. In this thesis, an intelligent model based on tests minimization technique has been proposed 

to both technically and economically assess transformer condition. 

1.3  Thesis Objectives 

The main contribution of this research is presenting a reliable and efficient model that evaluates 

transformer condition both economically and technically based on a specific number of monitoring 

tests which have been intelligently selected. The proposed model selects the most efficient and useful 

tests that provide as much information about transformer state as possible without going through all 

the monitoring tests. This work contributes towards solving many of the previously mentioned issues 

in order to meet utilities’ satisfaction. Furthermore, this is an efficient model for decision makers to 

make wise decisions when it comes to maintenance, repair, replacement, or disposal actions. This 

study’s objective is further sub-divided: 

1. To investigate different classification techniques that might be used to evaluate transformer 

condition based on the available test data; 

2. To develop feature selection algorithm that optimally selects the most inductive type of tests; 

3. To develop intelligent classifier model that assigns each transformer to its proper class among 

five different classes based on measured data; and 

4. To validate the efficiency of the proposed classifier and compare it with the most commonly 

used estimation techniques. 

1.4  Methodology  

The proposed methodology of this thesis is based on minimizing the number of monitoring methods 

by employing feature selection techniques using ranker search method. After preprocessing the data, 
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the full set of tests is ranked first in a priority sequence by the algorithm that computes the 

information gain value of each individual test of the data set. After that, the classifier is applied to the 

full data set, and then the tests are reduced one at a time by eliminating the least inductive test and 

applying the classifier again. The best performance achieved by the classifier is the optimal number 

of tests that will be used to assess transformer condition. The output of the classifier will be the actual 

condition of the tested transformer. This model will help decision makers in making the right decision 

when it comes to planning actions. The following flowchart in Figure  1.1 explains the process of the 

methodology.   

 

START

Data 
Preproces

sing

Ranking and 
Feature Selection

Classification 
Process

Decision Making

End

 

Figure  1.1 Thesis Methodology  

1.5  Thesis Outline 

This thesis includes six chapters following the introduction that have been organized as follows. 

Chapter two is an overview of transformer asset management in terms of maintenance and risk 
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assessment, along with a survey on the most effective monitoring and diagnostic techniques. Chapter 

three explains the diagnostic techniques used in this research. Support vector machine (SVM) and 

radial basis function (RBF) as classifiers are investigated and explained in terms of operation and 

algorithm structure. Moreover, feature selection technique in specific “InfoGainAttributeEval” is 

considered for use in feature (test) reduction process. Chapter four introduces the most common set of 

monitoring tests used in this thesis. In chapter five, the model (classifier) has been developed to 

assess transformer condition based on measured data from in-service transformers. Chapter six 

presents the conclusion which summarizes the work in this thesis and its main contribution in 

evaluating transformer condition.  
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Chapter 2 
Literature Review and Background 

 

2.1 Power Transformer Asset Management 

In recent years, the trade-off between quality and cost of power system components has become the 

main concern for many utilities. Due to widespread electricity networks and their high cost in both 

residential and industrial areas, a proper strategy is needed to minimize overall cost while keeping the 

component in good condition until it reaches its designed end-of-life or beyond. Hence, over the past 

15 to 20 years asset management approaches have been applied on electricity sectors. Asset 

management can be defined as a series of management, engineering, financial, and economic 

procedures applied to an existing asset in order to reach a satisfactory or acceptable level of service in 

the most cost effective way. Effective asset management begins from study, design, construction, 

operation, maintenance, replacement, and disposal, as shown in Figure  2.1. In order for asset 

management practices to minimize the overall life cycle cost, a comprehensive program should be 

applied from the beginning through to the end of an asset’s life so that a full return will be achieved 

from the asset service. 

 

 

Figure  2.1 An effective asset management practice 

In a power system network, the power transformer is ranked as one of the most important and 

expensive components. Its main function is to transform power from one circuit to another. Among 

study 

design 

construction 

operation 

maintenance 

replacement 

disposal 
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all power system devices, power transformer is a reliable element which may function for more than 

40 years, with some even working for 60 years. However, the sudden failure of the power transformer 

places the system into serious or critical condition which in most cases costs both utilities and 

customers catastrophic losses; moreover, the time for repairing or replacing such a component takes 

days to weeks and in some cases more than a month. This time increases the economic loss and risk 

on the system, specifically if the load is loaded to another transformer. Therefore, a successful asset 

management strategy can be applied to keep a component in good condition while being in service on 

order to avoid sudden interruption in electricity. Figure  2.2  represents a complete asset management 

approach which consists of two main sections: one for life assessment and the other one for decision 

options. Economic based action alternatives represent the main actions conducted on a transformer 

while being in service for full economic benefits. 

 

 

Asset Management Approach

Condition 
Evaluation

Reliability and 
Risk AssessmentDesign Analysis

Replace

Decision 
Making

Maintenan RepairContinue

Economically 
Optimized 
Solution

 

Figure  2.2 Power transformer asset management approach 
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2.1.1 Maintenance  

In order to maintain good condition and implement satisfactory function, power transformer, like any 

other power system component, needs regular maintenance to facilitate successful operation. 

Satisfactory service from this equipment can be achieved if regular inspection procedures are applied 

and corrective measures are taken when necessary [5]. On the other hand, lack of attention and 

regular maintenance reduces the reliability and the chance of unplanned outage becomes more likely. 

There are many benefits of performing regular maintenance on power transformer to ensure 

satisfactory outcomes during the service life, which include: 

• Extending the end-of-life; 

• Increasing  reliability and reducing unplanned outages; 

• Minimizing risks; 

• Minimizing overall cost (life cycle cost); and 

• Making reliable decisions when considering repair and replacement options. 

To ensure that all of the abovementioned advantages are met, three types of maintenances are 

proposed as shown in Figure  2.3: 

 

Maintenance 

Reliability 
Centered 

Maitenance

Preventive 
Maintenance

Corrective 
Maintenance

 

Figure  2.3 Types of maintenance 

2.1.1.1 Corrective Maintenance 

Corrective maintenance has been used for a long time. This type of maintenance is only performed 

when a failure or problem occurs to the component. Currently, this kind of maintenance is considered 

as a poor type of maintenance if conducted alone since it only takes place after the occurrence of the 
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problem or unplanned outage. The advantages and disadvantages of corrective maintenance are listed 

and compared with the other types of maintenance in Table 2.1. 

2.1.1.2 Preventive Maintenance 

Preventive maintenance is planned maintenance that is conducted on a regular basis to keep 

transformers working continuously at their highest levels as well as minimize the probability of 

failure. Moreover, preventive maintenance is a very useful practice for detecting incipient faults that 

may lead to catastrophic risks if not repaired. This type of maintenance requires certain efforts in 

terms of condition monitoring and diagnostic techniques, and the time span between them depends on 

the type of preventive maintenance. 

Two types of preventive maintenance are presented: time-based maintenance (TBM) and condition-

based maintenance (CBM). TBM is a very common practice conducted regularly by utilities when 

performing testing and monitoring actions and the time span between two practices is constant. The 

disadvantages of TBM are the amount of work required for testing and inspection as well as the cost 

of planned outage. The time span between tests plays an important role in minimizing risks if it is 

short, and contributes to unplanned outage if it is too long. 

In contrast, CBM does not rely on the time span between inspections. Time for conducting CBM 

varies from one transformer to another based on its condition - whether it is a severe and urgent case 

to perform maintenance or not. CBM is preferred and is widely used by utilities even more so than 

TBM because it avoids some drawbacks including manpower and cost. To perform this type of 

maintenance, much attention must be given to monitoring, inspection, and diagnostic techniques for 

better condition assessment. Experts or maintenance planners then choose the appropriate time and 

action to conduct maintenance based on transformer condition. CBM can be classified into two types: 

on-line where sensors are used to take measurements including partial discharge, winding movement, 

and temperature; and off-line such as tan (δ), recovery voltage, and gas in oil.  

2.1.1.3 Reliability Centred Maintenance (RCM) 

Reliability centered maintenance (RCM) strategy can be considered a type of preventive maintenance, 

yet it is a qualitative rather than quantitative approach of maintenance as presented previously. By 

definition, RCM is a combination of tools and methods that help utilities identify the minimum set of 

preventive maintenance tasks that are prerequisite to address serious component failures without 

compromising service reliability [6]. RCM can be considered the most intelligent type of maintenance 
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because it recognizes that each component in the system differs from other components in term of 

design, location, and loading conditions specifically in the case of power transformer. Therefore, 

RCM assigns maintenance level and priority based on the overall reliability and degree of risk of the 

transformer as well as the facility. 

Table  2.1: Advantages and disadvantages of maintenance types 

 

Maintenance type 

 

Advantages 

 

Disadvantages 

 

Corrective 

maintenance 

 

1. Low cost 

2. Less staff 

1. Increased cost due to 

unplanned downtime 

2. Increased labor cost, 

especially if overtime is needed 

3. Inefficient use of staff 

resources 

 

Preventive                                                                    

maintenance 

1. Cost effective in many capital-

intensive processes 

2. Increased component life cycle 

3. Energy savings 

4. Reduces equipment or process 

failure 

1. Catastrophic failures still 

likely to occur 

2. Labor intensive 

 

3. Includes performance of 

unneeded maintenance 

 

Reliability Centred 

Maintenance (RCM) 

 

1. Most efficient maintenance 

program 

2. Lowers costs by eliminating 

unnecessary maintenance  

3. Minimizes frequency of overhauls 

4. Increases component reliability 

 

1. Can have significant startup 

cost, training, and equipment 

2. Savings potential not readily 

seen by management 
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In conclusion, maintenance strategy is an essential procedure conducted by utilities to improve the 

overall efficiency of the facility and minimize life cycle cost of the component. Moreover, reliability 

and minimization of risks can be improved if the three types of maintenances are applied properly. 

Table  2.1  lists the advantages and disadvantages of each type of maintenance [7]. 

2.1.2  Transformer Failure Modes and Reliability Assessment  

The investment in electricity sectors due to increased demand is continuing to grow. As a result, any 

unplanned shutdown in electricity may cause a catastrophic loss for utilities and customers. The study 

of reliability and failure modes of power system components helps in better understanding certain 

problems so as to avoid any negative consequences following these failures. Power transformer, as an 

essential part of power grid, has two modes of failure: firstly, constant failure rate that cannot be 

improved by maintenance such as design problems, human mistakes, or weather conditions, and that 

are constant throughout transformer lifetime; secondly, failure modes that change over time while 

transformer is in service. Such failure modes can be cured by maintenance such as insulation 

degradation, high temperature, partial discharge, bushings, load tap changers, bad contacts, and 

others. Condition monitoring techniques and maintenance procedures are the main keys in the early 

detection of incipient faults or any other problems and as a result prevent any risks or failures which 

may cause transformer to break down. Table  2.2 and Figure  2.4 list the major failures and the 

monitoring detection techniques as well as the failure statistics of the defective components [8, 9]. 

Table  2.2: Failure modes and condition monitoring techniques 

Failure Type Condition Monitoring Technique 

Cellulose insulation degradation Degree of Polymerization, Fluid analysis 

Oil decomposition DGA analysis, Fluid analysis 

LTC failure DGA analysis, Internal inspection 

Partial Discharge DGA, (acoustic and electric signal testing) 

Bushing failure Power factor test, Visual inspection 

Short turns Resistance test, Winding ratio test 

Heat exchange, devices failure Thermography, Function test, Vibration test 
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Figure  2.4 Failure statistics of the defective components 

 

2.1.3  Monitoring Techniques 

Condition monitoring and assessment of power transformer, which is the first step in an effective 

asset management, are gaining significant attention from utilities. Monitoring techniques provide 

useful information to the operation and planning for teams to keep tracking their assets. Monitoring 

power transformer is achievable through many techniques, either on-line or off-line depending on the 

type of the used technique. Such techniques utilized for monitoring power transformer can be 

classified into electrical, chemical, and mechanical practices. These practices help utilities monitor 

their assets and observe any abnormal changes in the obtained measured data. In addition, the benefit 

of monitoring power transformer creates a historical record of measured data which is used in 

defining the date and type of maintenance as well as assessing the condition of a transformer. 

Understanding the current condition of a transformer helps stakeholders to estimate the investment 

and set up a plan. Moreover, performing such a strategy is useful specifically in the case of aged 

transformers where their condition can be assessed precisely, hence avoiding any future possible 

shortcomings. 
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In the literature, many papers have been published in the field of power transformer condition 

assessment. Over the past twenty years, numerous methodologies and tools have been presented in 

this area in order to discover the proper way to evaluate the state of a component based on special 

techniques or historical data collected from this component. The complexity in construction, design, 

operation, and environment factors of power transformer have made the accurate assessment process 

be very difficult. However, the lifespan and health of power transformer during its service mainly 

depends on its insulation system and specifically the insulating paper; therefore, considerable 

attention has been given to this aspect in terms of diagnosis and assessment. Traditionally, chemical 

and electrical techniques are widely used in insulating paper condition assessment, yet a review of all 

these techniques in one paper is very rare. In [10, 11] a review has been created of chemical 

diagnostic methods and their interpretations schemes. [12] Polarization measurement techniques, 

including furan analysis by high performance liquid chromatography (HPLC) for analyzing cellulose 

ageing have been implemented. Also, the DP measurement for cellulose mechanical strength and its 

relation to cellulose ageing phenomena was also investigated in this paper. [13] has demonstrated the 

use of spectroscopy and multivariate statistical analysis to accurately measure the water and oil 

content in insulating paper. In [14], new on-line and off-line monitoring techniques in insulation 

system have been presented. Other papers have examined the thermal effect on insulating paper as in 

[15, 16]. However, condition of power transformer does not only depend on its insulating system 

whereas other parts such as windings, tap changers, cooling system, tank, and bushing play an 

important role in transformer failure. Assessing the condition of each from the previous mentioned 

accessories can lead to a full and accurate assessment. However, a variety of monitoring and 

diagnostic techniques have been used to assess the state of each component. In [4] a comprehensive 

survey was made on electrical, chemical, and physical tests. Their interpretations have been presented 

and a methodology has been developed to use data acquisition derived from condition monitoring and 

standard diagnosis for rehabilitation purposes of transformers. [17] has proposed three types of tests. 

The first type is an on-line diagnostic technique which includes physical, thermal, and insulating oil 

assessment. The second type is an off-line diagnostic technique represented by electrical tests. The 

third type is a more advanced diagnostic technique, and is essentially a frequency response analysis 

and partial test. An approach called Health Index (HI) has been proposed in [1, 2] where the majority 

of thermal, mechanical, electrical, and chemical diagnostic tests are presented. HI approach can be 

simply defined in [2] as a practical and reliable tool that combines the results of operating 

observations, field inspections, and site and laboratory testing into an objective and quantitative 



 

 13 

index,  thereby providing the overall health of the asset. 24 techniques are used to assess a 

transformer condition via HI in this paper whereas in [1] three more tests were added to the 24 used in 

[2] which include lose factor, conductivity factor, and Polarization index to increase the reliability of 

the assessment, and then special software was used to predict HI.   

  

2.1.4   Application of Artificial Intelligence Techniques into Condition Assessment  

Artificial intelligence (AI) techniques have been used widely in many different fields including 

medicine diagnosis, weather forecasting, and control. In terms of transformer condition assessment, 

AI tools have recently been broadly used to translate monitoring and maintenance data into a health 

index or a condition reflecting the efficiency of a component. In the literature many diagnostic tools 

including neural networks, support vector machines, expert systems, fuzzy logic, and various 

softwares have been utilized to assess transformer condition based on type and size of the used data. 

In [18] a proposed methodology to assess insulating oil condition of power transformer is conducted 

which utilizes ANN for the application of extracting chromatographic information using 

physicochemical analysis. An expert system is proposed in [19] to diagnose the fault in power 

transformer based on fuzzy logic and artificial neural network using data from dissolved gas analysis 

test. A comprehensive assessment model based on hierarchical fuzzy theory is proposed to evaluate 

transformer condition in [20]. The transformer accessories in this model are assessed individually by 

related monitoring parameters and then the overall condition is predicted by combining individual 

conditions. An integrated fuzzy logic and evidential decision making model is presented in [21] to 

assess power transformer condition. DGA, oil, and electrical tests are established to facilitate the 

assessment model. A statistical learning technique has proposed supporting the use of vector machine 

algorithm for assessing field transformer condition based on DGA data [22]. The algorithm used in 

this paper has demonstrated its ability to quantify the insulation condition based on polarization and 

depolarization current (PDC) measurement. In order to obtain better classification results, an 

optimized SVM parameters via Particle Swarm optimization PSO algorithm has been proposed in 

[23]. Again, DGA data is used where transformer condition is divided into five conditions as 

excellent, good, normal, attention, and fault.  

The drawbacks of the used techniques are the number or the diversity measured data. Most of the 

mentioned papers rely on DGA, oil test, or temperature measurements for assessing transformer 

condition. However, for full and reliable assessment, more monitoring information including power 
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factor, cooling systems, LTC, and winding should be used as an input data to some machine learning 

tools to assure the achievement of confident assessment. 

 

2.2 Discussion 

The reliable assessment of power transformer greatly depends on the amount of available 

information. While in service, a transformer is exposed to many abnormal operating conditions. As 

described earlier, applying different types of maintenance prevents transformers from early 

deterioration and keeps transformer in good working condition until reaching end of life. 

Furthermore, studying the failure rate and risks associated with the component helps in preventing 

expected faults or sudden breakdown by taking correct preventative action. However, one of the most 

significant actions that can be taken to keep transformer in good health is to monitor and diagnose 

each associated part. Hence, collecting data is the first step in understanding the current state of a 

transformer so that a decision or judgment can be taken based on the interpretation of the gathered 

data. Nevertheless, in the field of monitoring techniques many challenges are faced by utilities, and in 

some cases it is impossible to perform all the tests. Some of these challenges can be summarized by 

expense, lack of skilled workers, types of tests, time demands, and value of test. Therefore, there is 

clearly a need for a model to evaluate the condition based on historical operating information. 
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Chapter 3 
Artificial Intelligence Techniques 

 

3.1 Introduction 

Monitoring methods of power system components helps utilities in identifying the condition of their 

assets through measured data. However, this measured data is a kind of raw data that needs to be 

prepared and processed before it can be used. Therefore, statistical analysis methods are used to 

preprocess data by removing information that is not useful or by filling in missing points. In the case 

of power transformers, many monitoring methods result in sets of information that need to be 

translated into values that represent their condition. Hence, artificial intelligence technique, which is 

defined as the capability of a machine to imitate intelligent human behaviour, has been used in this 

thesis and is represented here by support vector machine (SVM) to translate raw data into a condition 

or health index. Section 3.2 summarizes the basic structure and algorithms used in SVM as well as the 

training process for better performance, whereas section 3.3 briefly introduces radial basis function 

machine (RBF) for the purpose of comparison with SVM. Finally, future selection from data mining 

technique has been utilized to reduce the number of monitoring tests by selecting the most inductive 

attributes which significantly affect the health index. 

       

3.2 Support Vector Machine 

SVMs have been developed recently [24, 25]. Originally, SVMs worked out for linear two-class 

classification with margin, meaning the minimal distance from the separating hyperplane to the 

closest data points. SVM learning machine seeks an optimal separating hyperplane where the margin 

is maximal. An important and unique feature of this approach is that the solution is based only on 

those data points which are at the margin. These points are called support vectors. The linear SVM 

can be extended to nonlinear when the problem is first transformed into a feature space using a set of 

nonlinear basis functions. In the feature space - which can be very high dimensional - the data points 

can be separated linearly. A key advantage of the SVM is that it is not necessary to implement this 

transformation or to determine the separating hyperplane in the possibly very-high dimensional 
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feature space; instead, a kernel representation can be used, where the solution is written as a weighted 

sum of the values of certain kernel function evaluated at the support vectors [26]. 

 

Consider the training data  (𝑥𝑖,𝑦𝑖)    𝑖 = 1,2 … … … . . ,𝑛, 𝑦𝑖 ∈ {+1,1}  as shown in Figure  3.1. 

Where H is the classification line of two types of sample, H1, H2 respectively, are all in the smallest 

distance from the classification line, and parallel to the H line. For optimal classification, the distance 

between H1 and H2 must be maximized [23]. 

In order to obtain the largest distance, that is   ‖𝑤‖
2

2
    is the smallest. For all 𝑥1,𝑥2  there is: 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏)− 1 ≥ 0      for   i=1,2  ……….., 𝑛              …………..(1.1) 

Solving the optimal hyperplane problem is ultimately a quadratic programming problem: 

Min  ∅(𝑤, 𝑏) = 1
2
‖𝑤‖2 

S.t   𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) − 1 ≥ 0,     𝑖 = 1,2 … … … . . ,𝑛           ……………. (1.2) 

 

 

Figure  3.1 Hyperplane line 

 

Some samples cannot be separated linearly; therefore, non-negative slack variables are introduced 

ξ_i. The constraint of hyperplane is changed as: 

 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖 ≥ 0,     𝑖 = 1,2 … … … . . ,𝑛  …………………………..(2.3) 



 

 17 

If 0< 𝜉𝑖 < 1, the samples were correctly classified, otherwise the samples were misclassified. 

Generalized optimal separating surface becomes: 

 

𝑀𝑖𝑛 ∅(𝑤, 𝑏) = 1
2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖𝑛

𝑖=1   ………………………………………….(2.4) 

 

The first step is to make the classification of an interval as big as possible; the second step is to make 

errors as small as possible. Among it, C  is an adjustable parameter [2]. 

The optimization problem in (2.4) can be solved easily in its dual formulation. By introducing 

Lagrange multipliers, the original constrained problem is converted to an unconstrained problem. 

 

𝐿(𝑤, 𝑏, 𝜉,𝑎) =  1
2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖 −𝑛

𝑖=1 ∑ 𝜂𝑖 𝜉𝑖 − ∑ 𝑎𝑖[𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) − 1 +  𝜉𝑖]𝑛
𝑖=1

𝑛
𝑖=1  ………….(2.5) 

 

𝑎𝑖 are the Lagrange multipliers for all training sample data. In solving (2.5), the optimal classification 

function can be obtained as: 

 

𝑀𝑖𝑛 𝐹(𝑎) = 1
2

  ∑ ∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 , 𝑥𝑗) − ∑ 𝑎𝑖𝑛
𝑖=0

𝑛
𝑗=1

𝑛
𝑖=1       

S.t    ∑ 𝑎𝑖𝑛
𝑖=0  𝑦𝑖 = 0          𝑖 = 1,2, … … … . . ,𝑛 

 

0 ≤ 𝑎𝑖 ≤ 𝐶,         𝑖 = 1,2, … … . . ,𝑛     …………………………………….. (2.6) 

 

The focus of the problem is a linearly constrained convex quadratic programming. The solution is 

unique. Most of them have the solution of zero. The non-zero solution for support vector is recorded 

as 𝑎∗. 

 

𝑓(𝑥) = 𝑠𝑔𝑛{∑ 𝑎𝑖∗ 𝑦𝑖(𝑥𝑖, 𝑥) + 𝑏∗} 𝑚
𝑖=1   …………………………………….. (2.7) 

 

m is the number of the support vectors; sgn(x) is the sign function [26]. 

It is evident that formula (2.5) only contains the inner product operation of unspecified sample and 

training samples support vector. To solve linear classification problems in feature space, the inner 

product operation in space must be known. Non-linear problems can be transformed into a high-

dimensional linear problem. Kernel functions are the keys to be used to achieve this transformation. 
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3.2.1  Kernel 

The Kernel Trick can be applied to any algorithm that is solely dependent on dot products between 

two vectors. It has been demonstrated that Kernel can be implemented to develop nonlinear 

generalization of any algorithm that can be cast in terms of dot products. The basic theoretical 

concept for building nonlinear support vector machine is to first map the data points in the original 

space or the input space to the feature space (higher dimensional space), then a linear classification 

function is determined in the new space. The transformation of the data is performed using the 

mapping  x → Φ(x) , where x is a vector of independent variables. The Kernel dot product between 

two points i and j in the feature space takes the form of   Φ(xi).Φ�xj� = k(xixj). 

Table  3.1 shows some Kernels that can be used in the case of SVM to perform dot product: 

 

Table  3.1. Types of Kernel functions 

Function Form 

Linear 𝑘(𝑥, 𝑥′) = 〈𝑥. 𝑥′〉 + 𝑐 

Polynomial 𝑘(𝑥, 𝑥′) = (〈𝑥. 𝑥′〉 + 1)𝑑 

Gaussian Radial Basis Function 𝑘(𝑥, 𝑥′) = exp (−
‖𝑥 − 𝑥′‖2

2𝜎2
) 

Exponential Radial Basis Function 𝑘(𝑥, 𝑥′) = exp (−
‖𝑥 − 𝑥′‖

2𝜎2
) 

Multi-Layer Perceptron 𝑘�𝑥,𝑥′� = tanh (𝜎〈𝑥.𝑥′〉 + 𝛾) 

 

3.3  Radial Basis Function 

Radial basis function neural networks (RBFNN) are well  suited for solving function approximation 

and pattern classification problems due to their simple topological structure and ability to reveal how 

learning proceeds in an explicit manner [24]. An RBFN is primarily composed of three layers, 
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including input layer, hidden layer, and output layer. The input layer is composed of input data, while 

the hidden layer transforms the data from the input space to the hidden space using a non-linear 

function. The output layer, which is linear, yields the response of the network. The argument of the 

activation function of each hidden unit in an RBFN computes the Euclidean distance x between the 

input vector and the center of that unit. The network has a better accuracy only when the early stop 

technique is appropriately used. 

The values of RBF depend only on the distance from the origin, so 𝜑(𝑥) = (‖𝑥‖)  or r on the 

distance from other point c, where c is called center, hence  𝜑(𝑥, 𝑐) = (‖𝑥 − 𝑐‖). Therefore, any 

function 𝜑 satisfies 𝜑(𝑥) = (‖𝑥‖)  is a nonlinear function which has many types, as shown in 

Table  3.2, and ⟦ ⟧ is the Euclidean Norm [25]. 

The popular Gaussian function is the most common type of RBF used in the hidden layers. There are 

three parameters used in radial function center 𝑐𝑖, shape 𝜑, and distance measure 𝑟 = ‖𝑥 − 𝑐𝑖‖. 

 

Table  3.2 Types of radial basis functions 

Function Form 

Gaussian φ(r) = exp(−βr2)      β > 0 

Multiquadric φ(r) = (β2 + r2)
1
2       β > 0 

Polyharmonic Spline 
φ(r) = rk ln(r), k = 2,4,6  

Thin Plate Spline φ(r) = r2 ln(r) 

 

 

3.3.1  Radial Basis Function Network 

The basic RBFN has an input layer with input nodes, a hidden layer of RBF nodes, and an output 

layer with linear nodes. Figure  3.2 shows the architecture of radial basis function neural network. 
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Figure  3.2 RBFN structure 

 

RBFN classification function is introduced as: 

 

𝑦𝑗(𝑥) = ∑ 𝑤𝑖𝑗𝜑(‖𝑥 − 𝑐𝑖‖)𝑛
𝑖=1    ………………………..(2.8) 

𝑦𝑗 represents the activity of the output node j, 𝜑(‖𝑥 − 𝑐𝑖‖) is the activity of the middle node 𝑖 with a 

radial basis function centre on the vector 𝑥𝑖, 𝑥 is the actual input vector, and 𝑤𝑖𝑗 are the weights 

between the hidden layers and output layers [25]. As previously stated, the most popular type of 

radial basis function network used in classification is the Gaussian function. 

 

𝜑(‖𝑥 − 𝑐𝑖‖) = 𝑒𝑥𝑝 �− ‖𝑥−𝑐𝑖‖2

2𝜎2
�   𝜎 > 0 …………………. (2.9) 

 

Where σ is the Gaussian’s width. The parameters of the radial basis function neural network that must 

be determined include weights, spreads, and centers [25]. 

 

3.3.2  Learning Strategy 

In the neural network, it is usually assumed that the number of basis functions is less than input data. 

Therefore, determining the number of neurons is important for the construction of an RBFN. In 

addition, the placement of neurons and the calculation of the adjusted parameters within the neural 

system are also essential. Two approaches have been presented for the learning process, including 

hybrid learning algorithm and supervised learning algorithm, as proposed in [27]. 
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3.4  Feature Selection 

Variable selection, attribute selection, dimensionality reduction, or what is called feature selection is 

the process of selecting a small number of highly predictive features out of a large set of candidate 

attributes that might be strongly irrelevant or redundant. This selection plays a fundamental role in 

pattern recognition, data mining, and more general machine learning tasks [28]. In other words, the 

least number of attributes that most contribute to accuracy will be selected by eliminating the 

unrelated or unimportant ones. 

Feature selection plays an important role in preprocessing data, specifically when tens or hundreds of 

thousands of variables are available. There are many advantages for applying such techniques, which 

are summarized as follows: 

 Reducing training and execution time 

 Defining the course of dimensionality to improve prediction performance 

 Facilitating data visualization and data understanding 

 Reducing measurement and storage requirements 

 

There are two approaches for applying feature selection in order to avoid the course of 

dimensionality. 

 

1. Forward selection: In this method the algorithm first begins the selection with no variables, 

and then starts adding them one by one. The error is calculated at each step. In this process 

the algorithm selects the most effective attributes that significantly reduce the error until no 

observable reduction occurs in the error. 

2. Backward selection: In contrast with the first technique, the algorithm begins with all the 

variables and eliminates them one by one. At each step the algorithm eliminates the feature 

which reduces the error.  

 

Feature selection technique has been implemented using WEKA software, which has many types of 

selection algorithms and either supervised or unsupervised techniques. The algorithm used in this 

research is called InfoGainAttributeEval with Ranker search method. This algorithm evaluates 

attributes based on information gain, followed by ranking based on their evaluation. 
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The classifier InfoGainAttribEval is a tree classifier using InfoGain in every parent (level) to decide 

about which attribute to be used. A decision tree can be constructed top-down using the information 

gain in the following way [29]: 

• begin at the root node 

• determine the attribute with the highest information gain which is not already used as an 

ancestor node 

• add a child node for each possible value of that attribute 

• attach all examples to the child node where the attribute values of the examples are identical 

to the attribute value attached to the node 

• if all examples attached to the child node can be classified uniquely add that classification to 

that node and mark it as leaf node 

• go back to step two if there are unused attributes left, otherwise add the classification of most 

of the examples attached to the child node 

 

3.5 Discussion  

SVM has demonstrated its leading robustness in the field of classification and regression problems, 

compared to other machine learning techniques such as artificial neural network and radial basis 

function. SVM is superior in always finding the global rather than local solution. However, selecting 

the correct value of each parameter is a considerable challenge for any programmer because the 

classification process depends on these parameters to be successful. Some methodologies have been 

proposed to optimize these values to assure better performance, such as using a hybrid system 

integrated SVM with genetic algorithm (GA).  
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Chapter 4 
Monitoring Techniques 

4.1 Preamble  

Life cycle management and condition monitoring techniques of power transformer have recently been 

gaining considerable attention because of their direct impact on minimizing unplanned outage risks, 

cost, and extending the nominal end of life. The gradual deterioration in a transformer occurs for 

many reasons, specifically for in-service aged transformers. Overloading, lack of maintenance, design 

problems, environment temperature, and other factors speed up the deterioration process; therefore, 

condition monitoring procedures aim to track component behavior and detect incipient faults early. 

This monitoring is directly reflected on maintenance costs and proper health assessment. In recent 

years many various monitoring techniques have been developed to help utilities make the right 

decisions when performing maintenance, repairs, or replacement scenarios. Due to the complex 

construction of a power transformer, many monitoring tests have been developed to assess each 

specific part. For instance, dissolved gas analysis, oil quality, degree of polymerization, and furan 

content have been widely used to assess insulation systems including insulating paper and oil. Other 

electrical tests have been used for assessing winding conditions including AC and DC insulation tests, 

bushing, excitation current, winding resistance, turns ration, and load tests. Finally, thermal tests such 

as infrared thermography and hot spot temperature measurement have been applied to complete the 

monitoring process. All previous monitoring techniques are applied periodically on oil power 

transformers for full assessment. The results of these procedures are essential to evaluate the most 

cost-effective option when making operation, maintenance, repair, or replacement decisions. 

 

4.2 Dissolved Gas Analysis (DGA) 

Most in-service oil-immersed power transformers are exposed to abnormal operating conditions 

which cause minor or major deterioration in the insulating system, depending on whether the fault 

type is thermal or electrical. Electrical faults occur because of partial discharge, arcing, and low 

energy sparking; whereas thermal faults occur due to overloading, cooling problems, and overheating 

in the insulating material. Under abnormal operating conditions, small amounts of gases will be 

liberated from insulating oils or paper that are generally compostable when exposed to thermal or 
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electrical stress. DGA test has been used widely to extract, detect, and quantify dissolved gases and 

their concentration in insulating fluid; therefore, incipient faults inside a transformer can be detected 

with their causative. The most important gases generated from transformer insulating material can be 

listed as follows: methane (CH4), ethane (C2H6), ethylene (CH4), acetylene (C2H2), and hydrogen 

(H2). These gases are classified as hydrocarbon gases, whereas carbon oxides are represented by 

carbon monoxide (CO) and carbon dioxide (CO2). In addition, two gases that may be generated but 

are considered non-fault gases are nitrogen (N2) and oxygen (O2) [12]. The fault type can be detected 

based on the concentration and rate of each gas over the acceptable limit provided by national 

standards such as Dorenenburg, Bureau of Reclamation, and IEEE, as shown in Table  4.1. In 

addition, a criteria for classifying transformer state to four conditions based on TDCG has been 

proposed in IEEE standard C57.104-1991 [30]. Over the past few years, many diagnostic techniques 

have been proposed to distinguish the fault type based on the level and concentration of the key gases. 

 

Table  4.1. Recommended limits of dissolved gases 

 
Gas 

 
Dorenenburg/Stritt 

 
IEEE 

 
Bureau of 

Reclamation 

Hydrogen 200 100 500 

Methane 50 120 125 

Ethane 35 65 75 

Ethylene 80 50 175 

Acetylene 5 35 7 

Carbon Monoxide 500 350 750 

TDCG  720  

Carbon Dioxide 6000 2500 10000 
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4.2.1  Key Gases Method 

The interpretations of incipient faults in oil-immersed power transformer using key gas method helps 

in detecting the fault type based on rates of gases. Four general fault types and their relative 

proportions are listed as follows [30]: 

A. Thermal-Oil: Decomposition samples include ethylene and methane with small amount of 

hydrogen and ethane.  

B. Thermal Cellulose: High rate of carbon dioxide and carbon monoxide are developed from 

overheated cellulose. 

C. Electrical Corona: Hydrogen and methane with small amount of ethane and ethylene may 

be presented due to low energy electrical discharge. 

D. Electrical Arcing: High rate of hydrogen and acetylene are produced with small quantities 

of methane and ethylene. If the faults involve cellulose, carbon monoxide and carbon 

dioxide may be produced. 

4.2.2  Dorenenburg Ratio Method 

Dorenenburg methodology uses four gas ratios to indicate a fault type from the existence of three 

fault types. The four key gas ratios are R1=CH4/H2; R2=C2H2/C2H4; R3=C2H2/CH4; and 

R4=C2H6/C2H2. The first step is to compare these values with special concentration to identify 

possible problems or the existence of any faults. Next, limiting values that provide a suggested fault 

diagnosis are compared with these ratios  in order to diagnose any existing faults [30]. 

4.2.3  Rogers Ratio Method 

Rogers ratio method is similar to Dorenenburg method as it uses the same ratios procedure. This 

technique uses three ratios instead of four, which are R1=CH4H2; R2=C2H2/C2H4; and 

R3=C2H4/C2H6. The fault can be clarified by applying key gas method when the concentration of 

the gases exceeds the limits provided in Table 4 [30]. 

In addition to the previous mentioned techniques, other methods used to clarify fault type such as 

Duval’s triangular [31], total combustible gas (TCG), and total dissolve combustible gas (TDCG) as 

stated in IEEE PC57.104 D11d standards [30].   
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4.3  Oil Quality 

Insulating oil in the power transformer functions similarly to blood in the human body, in that useful 

information about the transformer’s condition can be extracted from oil. In addition to its main 

function of insulating liquid between conductors and core, insulating oil is also used for cooling due 

to its excellent electrical insulating properties as well as its high boiling point. However, during its 

service, the power transformer is exposed to thermal and electrical stress which degrades oil; hence, 

some of its strength characteristics are lost. Therefore, physical, chemical, and electrical tests are used 

to verify oil quality and detect any faults occurring during the service. Table  4.2 lists many types of 

tests suggested by national standards, including ASTM and IEC. The most frequently used tests 

among this list are Color, interfacial tension, dielectric break down, power factor, acidity, and water 

content.  

 

Table  4.2 Pertinent ASTM tests for mineral insulating oil 

Type Test 
ASTM 

standard/method 
IEC 

Physical Tests 

Color ASTM D1500 ISO 2049 

Interfacial tension ASTMD971 ISO 6295 

Visual examination ASTM D1524  

Electrical Tests 

Dielectric breakdown voltage ASTM D877 IEC60156 

Dissipation factor ASTM D924 IEC247 

Dielec breakdown impulse vol ASTM D3300  

Chemical Tests 

Gas content ASTM D2945  

Neutralization number ASTM D664 IEC62021 

Water content ASTM D1533 IEC 60814 

Furans in insulating liquids ASTM D5837  
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Reconditioning oil or replacing oil with new oil will eliminate most of the information that is used to 

assess the transformer’s condition. Therefore, such tests are applied from time to time to create a 

database system that helps utilities understand the deterioration behavior of their transformers and 

make the right decision. Table  4.3 shows suggested test limits by voltage class for good oils to remain 

in continued service and more deteriorated values, as stated in [32]. 

 

Table  4.3 Suggested limits for continued use of in service oil 

 

Test and method 

Voltage Class 

≤69 kV >69 – <230 kV 230 kV and above 

Dielectric strength 

    Strength kV(1,2 mm gap) 

23 

40 

28 

             47 

30 

             50 

Power factor 

25 º C, 100 º C 

0.5 

        5.0 

0.5 

             5.0 

0.5 

             5.0 

Water content 

mg/kg maximum (ppm) 

 

35 

 

25 

 

20 

Interfacial tension 

mN/m minimum 

 

             25 

 

30 

 

32 

Acidity 

mg KOH/g maximum 

 

0.2 

 

0.15 

 

0.1 

 

4.4  Furan Test 

There are two types of insulating systems in power transformer: insulating oil and cellulosic paper 

(solid insulation). Insulating oil and cellulosic paper are degraded by the ageing process or by 

abnormal operating conditions such as overloading followed by high temperature. In the solid 

insulation, furanic compounds are generated from cellulosic paper and the generation process is 

accelerated with the presence of oxygen and moisture under higher operating temperatures. However, 
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the concentration level of these compounds is used as a good indication for ageing or incipient fault 

conditions. Many papers in the literature have examined the use of furanic compounds to understand 

the ageing phenomena of cellulosic paper. For example, one study used high performance liquid 

chromatography (HPLC) technique for ageing analyzing [12]. Acceptable limits suggested by ASTM 

from IEEE are shown in[12]. 

 

4.5  Power Factor 

Power factor (known as dissipation factor or tan delta) test is a common and practical test used to 

monitor and assess transformer and bushing conditions. Power factor is the ratio of resistive current 

component to the leakage current when the voltage is applied. This test is used widely by utilities as a 

routine test to evaluate capacitive insulation condition between windings and compartments [2]. 

According to [33], power factor less than 1% is considered to be good; power factor between 1% and  

2% must be investigated; and if the power factor is over 2% an action is required that takes into 

consideration the historical change in power factor for full evaluation. This test is performed as 

follows: high-voltage to ground, high- to low-voltage winding, low-voltage winding to ground, high- 

to tertiary-voltage winding, low- to tertiary-voltage winding, and tertiary-voltage winding to ground 

insulation [33]. 

 

4.6  Infra-red Emission Testing 

During its service, the power transformer is exposed to some abnormal operating conditions such as 

overloading, cooling system blockage, connection problems, and high environmental temperature 

(ambient temperature). Notably, when the transformer operates under higher temperatures, especially 

hot spot temperature oil decomposition, cellulosic paper deterioration and power losses are the 

outcomes. Therefore, on-line monitoring using thermal imaging is a very common and important 

practice to prevent unwanted operating conditions and protect insulating material, which mainly 

affects ageing factor and early breakdown [34]. The hot spot temperature has been recommended by 

IEC not to exceed 98 º C, as 6 º C deviation on the hottest temperature may double the ageing rate 

[35]. Infrared thermography testing is used to detect all the hot areas with any temperatures that are 

higher than the transformer’s external surface. The hot areas emit infrared radiation which can be 

measured on the infrared spectra band of the electromagnetic spectrum [36]. Four colors are displayed 
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in the thermal imaging: white, red, blue, and black. Hottest areas are displayed in white and red colors 

and colder areas are displayed in black and blue colors. Table  4.4 classifies temperature levels and 

their severity where temperature excess is the difference between normal temperature and the highest 

temperature [33]. 

 

Table  4.4 Classification of overheating severity 

Classes Temperature Excess 

Attention 0-9 º C 

Intermediate 10-20 º C 

Serious 21-49 º C 

Critical >50 º C 

 

4.7  Winding Resistance Test 

In this test, the pure ohmic resistance of the transformer windings and tap changer are tested. This test 

is conducted on both low and high voltage windings to compare their deviations from manufacturer’s 

name plate as well as the existence of the tap changer in each position. The deterioration in the ohmic 

resistance occurs for many reasons, including poor design, poor environment, overloading, and lack 

of maintenance. Therefore, this test is important for the purpose of calculating conductor losses 

(𝐼2𝑅 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) and for calculating winding temperature at the end of the temperature test cycle. A 

capable ohmmeter is required ranging from 10 ohm down to some fractions. The test’s basic principle 

is to inject a stable DC current through the winding and then measure the voltage drop on this 

winding. During the test, the temperature should be recorded for future comparisons because winding 

resistance varies with oil temperature. Any deviation from the nameplate value greater than 5% 

indicates serious damage in the conductor [33]. A ranking method that classifies winding conditions 

into four classes based on the severity of the deviation is applied in [2]. 
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4.8  Turns Ratio Test 

It is known that the main function of the transformer is step-up or step-down voltage from one side to 

another depending on the number of turns in each coil. However, these coils are subject to mechanical 

and electrical stress that may cause shorts between turns of the same coil or open winding circuits. 

Therefore, turns ratio test is used to detect these problems which may indicate insulation breakdown 

between turns. As noted on transformer nameplate, a good ratio must be within 5% of the ratio of the 

rated voltage between windings. For new transformers, the ratio is expected to be 1% compared to the 

nameplate, and a ratio greater than 2% indicates severe deviation requiring immediate action. The 

direct relationship between the ratio of primary-to-secondary voltage must meet the ratio of number 

of turns in the primary-to-secondary windings as indicated by (V1 / V2 = N1 / N2) where 

V1=primary voltage, V2=secondary voltage, N1=number of primary turns, and N2=number of 

secondary turns.  

 

4.9  Load Test 

During its service, power transformers are exposed to different loading conditions. Power 

transformers are designed to provide satisfactory service for a specific period of time or beyond based 

on the rated nameplate output (KVA). However, in many cases, the demand exceeds the rated value 

for short or long periods of time which results in continuous hot spot conductor temperatures. Hence, 

the deterioration rate of insulating material (oil and cellulosic paper) will be increased. According to 

[37], transformer operation follows one of the following five loading conditions: 

A. Normal Life Expectancy Loading: Continuous Load 

This is a constant load subjected to the rated nameplate output KVA while the ambient temperature 

does not exceed 30 º C. In addition to the ambient temperature (30 º C), hot spot rise (15 º C), and 

average winding rise (65 º C), a continuous hot spot temperature of 110 º C is the result of this 

condition. 

B. Normal Life Expectancy Loading: Cyclical Load 

For this load, the hottest spot conductor temperature ranges higher and lower than the normal 

temperature of 110 º C at a cyclical load and normal constant ambient 30 º C where the load cycles up 

and down transformer rating.  
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C. Long Time Emergency Loading 

This rare type of loading results from the long outage of some components in the system that cause 

transformer loading. Hence, the hottest spot conductor temperature may reach 140 C. Long time 

emergency loading has a severe impact on transformer life by increasing the aging process of the 

insulating system, and may have associated risks. 

D. Short Time Emergency Loading 

This rare condition of loading may occur two to three times during the transformer’s life. It happens 

because of one or two events and may cause hottest spot conductor temperature to reach to 180 º C. 

The insulation life is accelerated significantly during this condition. 

E. Planned Loading Beyond Nameplate: Normal Operation 

In this loading, top oil temperature or hottest spot conductor temperature exceeds the suggested limits 

for normal life loading. This can be considered a normal loading accepted by users since it is more 

likely to occur without component outage or emergencies. The hottest spot conductor temperatures 

vary from 120 º to 130 º C. 

Calculating the loss of insulation life in all cases is recommended since it is important for utilities 

loading policy. The recommended maximum temperatures provided by ANSI/IEEE C57.91-1995 and 

IEC St 354 are given in [37]. The monthly or yearly load peaks can be used to estimate load history 

condition based on the recommended values given by ASTM/IEEE and IEC. 

 

4.10  Tap Changer Condition 

Tap changer plays the primary role in changing the voltage ratio of power transformer to the 

secondary voltage within the acceptable limit. On-load tap changer (OLTC) selects the winding taps 

along the transformer winding for the appropriate ratio with the continuity of the load current. 

However, as with other transformer parts, OLTC is subject to many abnormal operating conditions 

which cause it to be the top reason for transformer failure. Major failure occurs due to insulation 

degradation and contact failure inside the devices. In addition to thermal and electrical stress, bad 

contacts cause hotspots in the tank which speed up the degradation rate of the insulating oil. There are 

many techniques used to assess OLTC condition including DGA, oil test, dynamic resistance 

measurements (DRM), number of operations, temperature, relay timing, and maintenance. However, 
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applying the same interpretation of the previous test to all OLTC types is not correct because each 

type has its own sensitivity to degradation mechanisms. DGA and oil quality tests have been used as 

the most dependable techniques for detecting thermal and electrical faults in the OLTC. However, the 

interpretations of gas ratios and DGA limits differ from one standard to another. For example, IEC 

has different limits than IEEE. The general differences between these as well as normal gas 

concentration introduced by Weidman-ACTI and WECC gas limits are given in [2]. 

       

4.11  Bushing Condition 

Bushings are one of the most important accessories of transformers. Statistical studies have shown 

that failure in bushing causes long term outage of transformers; therefore, a catastrophic economic 

loss may occur because of this condition. Some studies show that approximately 45% of transformer 

failures occur because of bushings, and 90% of failures are caused by moisture entering the bushing 

through leaky gaskets [38]. Transformer bushings come in many types, including air-insulated 

bushing, oil-filled bushing, oil-paper insulated bushing, and gas-insulated bushing. However, oil-

paper is the most commonly used transformer bushing because of its characteristics in terms of good 

electrical and heat transfer properties. Like transformers, bushing exposed to electrical, mechanical, 

environmental, and thermal stress increases the deterioration rate of the bushing insulation. There are 

many monitoring procedures to assess bushing conditions such as power factor, capacitance, partial 

discharge, DGA, moisture, oil sampling, and thermovision. The normal and emergency limits for 

power factor, water content, DGA results, breakdown voltage, and temperature are provided in [39].  

 

4.12  Cooling Equipment 

One serious problem faced by transformers is the rise of temperature over the acceptable limits. Heat 

in the transformer is generated from the current flowing in the windings (copper losses), hysteresis, 

and eddy current losses. Proper heat dissipation is a very crucial action because the continuity of heat 

over the acceptable limit contributes largely to the degradation of insulating system. Therefore, the 

transformer’s cooling system dissipates heat in winding and insulating oil which saves the 

transformer from early breakdown. External cooling systems used in power transformers in order to 

accelerate the dissipation rate of heat include Oil Natural Air Natural (ONAN), Oil Natural Air 

Forced (ONAF), Oil Forced Air Forced (OFAF), Oil Forced Water Forced (OFWF), Oil Directed Air 
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Forced (ODAF), and Oil Directed Water Forced (ODWF). Cooling assessment of power transformer 

must be performed on all the cooling parts, including radiator, cooler gaskets, fans, and pumps.  

 

4.13 Core-To-Ground Resistance Test 

The transformer is intentionally grounded via one connection. Core-to-ground test or Megger test is 

used to detect any loss in the connection. Moreover, this test is  also used to detect the presence of a 

spurious or undesired ground. If the resultant resistant is very low, then the intentional core ground is 

intact. In order to check for undesired core ground connection, the intentional ground has to be 

removed and megger between core the grounded transformer tank. If the resultant resistance is very 

high, the unintentional or undesired ground does not exist. Hot metal gases such as methane, ethylene, 

and ethane can be generated from unintentional core ground; therefore, megger test can be used as a 

supplement to DGA test [4]. Table  4.5 Core-to-Ground test classifies transformer conditions based on 

Core-to-Ground resistance test.  

Table  4.5 Core-to-Ground test 

 

Limits ( MΩ) 

 

Diagnostics 

  R> 1000 MΩ new transformer 

R>100 MΩ service-aged transformer 

    R  10-100 MΩ deterioration between core and ground 

                         R<10 MΩ serious deterioration 

 

4.14 Frequency Response Analysis Test 

During transportation operations, because of high faults, or even because of lightning, a displacement 

in the winding of a transformer can occur. Changes in resonance frequencies or magnitudes are linked 

to deviations of inductances or capacitances, which are defined by physical dimensions and materials 

of a transformer. Thus, changes in resonances are evidence for diagnosis of winding mechanical 

faults such as displacements and deformations [40]. The SFRA is a non-destructive method and can 
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be considered a mechanical fault detector. Developing this method is based on the relationship 

between the displacement or deterioration in windings and the change in frequencies between the two 

windings due to changes in the capacitance and inductance of windings. In essence, the method 

consists of applying a low voltage sinusoidal signal made of a sweep of frequencies covering a range 

between 10Hz and 2MHz on one end of the transformer winding, and measuring the other end of the 

winding [41].  

According to [40], different winding faults can be interpreted as illustrated in Table  4.6. 

 

Table  4.6 Sub-band division of frequency responses 

Frequency Failure Sensitivity 

<2 kHz core deformation, open circuits, shorted 
turns, and residual magnetization  

2-20 kHz bulk winding movement between  
windings and clamping structure  

20-400 kHz deformation within the main  
or tap windings  

400 kHz- about 1MHz movement of the main and tap windings, 
ground impedance variations  
 

4.15  Leakage Reactance Test 

Sometimes called short circuit test, leakage reactance test is used to detect winding or core 

deformation caused by faults, lightning strikes, or during transportation operation. When deformation 

occurs, changes in the magnetic flux will be followed by changes in the measured leakage reactance, 

which may cause immediate failure to the transformer. Usually this test is performed in the field and 

compared with transformer nameplate information, previous tests, or transformers from the same 

design and rating. The factory test conditions, which are indicated on the nameplate, may be different 

from field test conditions in terms of load current which is not always available in the field [9]. Limits 

of results obtained from this test and their deviation from nameplate information are shown on 

Table  4.7.  
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Table  4.7 Leakage reactance test 

Deviation from Nameplate % Condition 

    ∆%<1 Good condition 

1< ∆% <3 Minor deterioration 

3< ∆% <5 Significant deterioration 

                          5< ∆% Severe deterioration 

 

 

4.16  Excitation Current Test 

Excitation current test is effective in identifying problems such as abnormal core ground, short circuit 

windings, open circuit windings, LTC problems, and poor electrical connections. However, when one 

of these problems occurs, a change in the effective reluctance of the magnetic circuit will occur, 

which also affects the current required to force a given flux through the core. This test is performed 

on the high voltage side in order to minimize the excitation current by keeping the secondary side 

open. The applied voltage must be high but not exceed the rating voltage for line-to-neutral on wye 

connection and line-to-line voltage on delta connection. The results from this test should be compared 

with previous tests or similar components by taking into consideration the exact applied voltage. The 

acceptable limits and the percentage of deviation from transformer nameplate or previous tests are 

discussed and scored in [4]. 

 

4.17  Maintenance  

As mentioned in the literature review, maintenance in its three classes (corrective, preventive, and 

reliability centered) is an essential task that must be conducted regularly in addition to monitoring 

tests. Other diagnostic tests involved in the overall transformer condition can be conducted by internal 

and external visual inspection during maintenance, including oil leakage, gaskets, tank condition, and 

connectors. Maintenance history, as a good indicator of transformer condition, summarizes problems 

and actions that have been conducted on the unit. Ranking power transformer in terms of maintenance 

actions is proposed in [2]. 
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4.18 Discussion   

Condition monitoring of power transformers is a very important step in assessing conditions and 

analyzing risk of failure. Many monitoring methods have been proposed to prevent transformers from 

sudden failure as well as create databases consisting of information about each part of the unit in 

order to track any change in the measured data from the rating nameplate. However, monitoring 

methods vary in terms of the importance or weight factor. Some methods must be conducted when a 

transformer is off-line and others can be conducted when a transformer is on-line, depending on 

whether the type of test is electrical, chemical, or thermal. The challenges utilities may experience 

determine the time and type of test to be used. Many tests are impossible to perform in some cases, 

especially for off-line tests that may result in catastrophic economic loss to providers and customers. 

Another problem is that not all tests provide reliable information for making clear decisions. For 

example, in the case of insulating paper, it is very difficult to accurately estimate its condition and 

expected life time. The experts play the main role in deciding the type and time of the tests as well as 

the interpretation of the obtained data. However, it is clear that the most common and practical tests 

used by most utilities include DGA, oil quality test, power factor, infra-red, bushing condition, turns 

ration, and load tap changer. Other tests are used when more information is required, especially in the 

case of aged transformers.   
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Chapter 5 
Proposed Intelligent Assessment Technique 

5.1  Preamble  

It is well established that more monitoring techniques leads to more available data, which results in 

the achievement of accurate health assessment. However, it is not always easy or even economically 

viable to perform many tests because of limited budget, availability of skilled workers, and time 

constraints. Collecting data from the previously mentioned techniques (see Chapter 4) is the first step 

in assessing the current state of a transformer; thus, a decision or judgment can be taken based on the 

interpretations of the measured data and their variation from the transformer nameplate. In fact, 

translating these measurements into a value or class helps in discovering the transformer's state 

without focusing on individual interpretations of each test. In this chapter, an SVM-based diagnostic 

test is used to assess the state of the transformer's condition. The preparation and preprocessing is first 

conducted, followed by feature (test) selection technique based on ranker search algorithm to select 

the most effective tests that best describe the transformer's condition. RBF classifier has been used as 

a second classifier for results comparison and to prove the validity of SVM model.   

 

5.2 Data Preparation and Preprocessing 

Collecting a large set of data from many different tests without preprocessing makes the interpretation 

process very difficult. However, in most cases the availability of all measured data of a single 

transformer is very rare and expensive if it is possible. Normally, either utilities perform the most 

important tests, or specified tests based on experts' experience provide the needed information. 

However, even for conducted tests there will be some missing data. Usually the missing data is lost 

during the collection process or when mistakes are made with the data entry. For instance, performing 

oil quality test includes measurement of breakdown voltage, interfacial tension, color, moisture, and 

neutralization number, but does not include dissipation factor and furan tests. Moreover, from the 

collected data, some transformers had undergone too few tests which made the preparation process 

more difficult. Therefore, statistical methods have been employed to fill in the missing data that is 

close to the real or measured values. These statistical techniques are mean substitution, regression 

substitution, and more advanced methods such as maximum likelihood. Also, transformers of the 
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same size and class working under the same operating conditions could be taken as a reference to 

approximate the missing values.  

In this research, for each individual test of the monitoring methods a ranked method is used to 

classify the raw data from 4 to 0 where 4 is excellent, 0 is fail, and 1, 2, and 3 are values in between. 

This ranking is made taking into consideration the interpretations and limitations provided by national 

standards such as ASMT/IEEE and ICE. The methods for ranking these values have been proposed in 

[2, 4]. For example, the DGA test has been ranked into five conditions based on the percentage of 

total dissolved compostable gases TDCG as stated in section 4.2, and this continues for the rest of the 

tests. After preprocessing the data, a diagnostic technique is needed to translate the information 

obtained from all the tests of one unit to a value which is represented by the Health Index HI. 

Heuristic techniques, specifically support vector machine for classification SVM, are used as a 

diagnostic technique to estimate the overall condition or HI of a transformer. SVM has been chosen 

due to its robust classification results compared with other heuristic tools such as neural network, as 

shown in section 5.3. SVM, as any machine learning tool, needs to be trained and tested in order to be 

used as a classifier; therefore, data from 70 power transformers with the condition of each transformer 

(label) is used in this research.  

Training and testing the classifier has been conducted using k-fold cross-validation technique. K-fold 

cross-validation is a technique for assessing how the results of a classifier can be generalized to an 

independent sample. In k-fold cross-validation, the actual data is randomly divided equally into four 

sub-samples. From the four sub-samples, one sub-sample is used for testing the classifier (validation), 

and the remaining three sub-samples are used for training purposes. The cross-validation process is 

repeated four times, with each of the four sub-samples used exactly once as a validation data. 

The four outputs from the folds are then averaged to produce a single estimation. The advantage of 

this technique is that each sample or observation is used once as a training and testing sample [42]. 

The input data of the classifier are the features or attributes, and here it is the measured data (tests); 

whereas the output is the label which represents the condition (HI). After training, testing, and 

adjusting the parameters of the classifier, it can be applied to other transformers of the same size and 

class to estimate conditions. 
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5.3  Condition Assessment Using SVM 

Due to its superb characteristics, support vector machine (SVM) has been chosen to assess the 

transformer condition from the available data. Compared to other classifiers such as ANN, RBF, and 

decision tree classifiers, SVM has the following significant advantages: 

 It has a regularization parameter, which helps in avoiding over-fitting; 

 It is defined by a convex optimization problem (no local minima); 

 It uses a Kernel trick where expert knowledge can be built about the problem; and 

 It works well with a small set of data for training. 

In this research, the dimensionality of the measured data that is used in SVM is not large. In general, 

by assuming that the number of transformers used in the classifier is (M) and the number of tests of 

each transformer is (N), then a matrix with a dimension of M x N represents the whole dataset used in 

SVM and RBF for training and testing purposes. In this research, SVM is applied to 70 transformers 

and is represented by 19 features (M=70 and N=19). Moreover, in order to generalize and improve 

the classifier, the data is divided into a number of subsets using k-fold. The condition (label) of each 

unit has been provided with the measured data based on the experts’ knowledge of transformers' ages 

and any problems that might have occurred during their service. Therefore, the transformer conditions 

are divided into five different categories as follows: A, B, C, D, and E, where A represents excellent 

condition or new transformer and E represents failed unit, as shown in Table  5.1. 

 

Table  5.1 Transformer Condition Classification 

Class Percentage% Condition 

A 85-100% Excellent/New 

B 70-85% Very Good 

C 50-70% Maintain/Repair 

D 30-50% Deteriorated 

E <30% Failed 
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Up until now the methodology of ranking transformer conditions for three, four, or five classes is still 

a matter of discussion; however, such a ranking or classification strategy has been proposed in 

different publications as in [2, 17]. The percentages of each class for the whole set of the transformer 

conditions as received are shown Figure  5.1. As is evident from Fig 5.1, class A represents 24% (17 

of 70 units) in contrast with class B which is indicated by 47% (33 of 70 units) holding the highest 

percentage. Class B has very high returns because the majority of the transformers are aged 

transformers that have been in service for more than 15 years. However, class B transformers are still 

in very good condition since many of them are very close to class A transformers, which indicates 

new transformers or transformers that have been in service for less than ten years and have never 

experienced abnormal operating conditions such as overloading for a long period of time, exposure to 

lightning, or internal faults. Class C transformers, which represent approximately 21% (15) of the 

whole dataset, are still in good condition but need more attention in terms of maintenance and repairs 

for some parts. In contrast, class D transformers are quite deteriorated units which are very rare to 

find in service. Only four Class D transformers of 70 represent 6% of the dataset. Finally, 1 of 70 

units, or approximately 2%, represents a class E transformer that is already out of service and is only 

included for the purpose of  classifying the performance of different transformers. 

 

 

Figure  5.1 Transformer Classes 
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In order to assure proper performance for the classifier, SVM parameters should be adjusted 

correctly. For instance, if the regularization parameter or penalty factor C is too large, this will lead to 

a high penalty for non-separable points, and result in overfit. If the regularization parameter is too 

small, this may result in under fitting. In addition, the Kernel type and its parameters such as 𝜎 need 

to be chosen properly, as the correct selection for these parameters makes the model work properly on 

a new set of data. In this research, the values of SVM parameters are chosen based on trial and error 

strategy until the best performance is achieved. Other techniques might be used such as Particle 

Swarm Optimization (PSO) to optimize these parameters as reported in [23]. Table  5.2 shows the 

parameters used in the classifier and their values. 

 

Table  5.2  SVM Parameters  

Parameter Value 

C 2000 

Epsilon 1.0E-12 

Kernel RBF 

Tolerance parameter 0.001 

K-fold cross validation 4 

 

5.4  Feature Selection 

Feature selection technique plays an important role in reducing the dimensionality of the data, or in 

other words, minimizing the number of tests that are required to give proper condition assessment. 

Hence, the InfoGainAttributeEval algorithm, which ranks attributes by their individual evaluation, 

has been used as a supervised technique with ranking methodology to rank features in priority 

sequence from most to least importance. The ranking strategy enables the user to perceive the most 

inductive attributes affecting the output (label). In order to make sure from the selection process, and 

the most effective features that will provide useful information about transformer condition, different 

selection algorithms have been examined and compared to InfoGainAttributeEval. Theses algorithms 
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built in Weka software and designed to be used in the same way as the proposed algorithm. These 

algorithms are: InfoGainAttributeEval, sfcSubsetEval, consistencySubsetEval, gainRatioAtrributEval, 

svmAttributeEval which are explained in [43] . SVM classifier has been run on each algorithm to 

evaluate each algorithm’s validity on the same number of tests. The precision rate is used as an 

evaluator to compare between them. From Figure  5.2 it is clearly shown that the proposed algorithm 

InfoGainAttributeEval has achieved the best performance over the rest of the selection algorithms.  

 

 

Figure  5.2 Feature selection algorithms comparison 

 

The 19 tests used in this research have been ranked based on their individual evaluations using 

InfoGainAttributeEval algorithm as follows: DGA, infra-red, load history, bushing condition, power 

factor, DGA of LTC, leakage reactance, winding resistance, LTC oil quality, oil quality, turns ratio, 

cooling, furan, excitation current, core-to-ground, frequency response analysis, main tank condition, 
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connectors, and gaskets. This ranking provides a clear indication of the validity of the feature 

selection technique since the most common and important test has been ranked first [2]. The physical 

meaning of DGA test being ranked first is of high importance, because this routine test provides 

information about the actual condition of a transformer. The concentration of the dissolved gases 

when performing DGA test reflects the severity and type of the fault occurring inside the transformer. 

While in-service, transformers are exposed to thermal and electrical stress which occasionally results 

in variation in DGA test conditions, as opposed to other stable tests such as core-to-ground or turns 

ratio. Therefore, the algorithm selects the most inductive tests that vary between transformers in their 

levels and affect the output (condition) as in the case of DGA, infra-red, load history, etc.  

 

5.5 Classification Process 

First of all, the whole data set of the seventy units and their labels are prepared and adjusted for use in 

the classifier. The entries are the 19 features (tests) and the labels (conditions) of each unit for the 

whole data set. The classification process begins with all the features and then reduces each feature 

step-by-step starting with the least inductive using feature selection techniques. At each step, the 

classifier is run to see the correctly classified instances and identify at which number of attributes the 

least percentage of error is achieved. 

The flowchart in Figure  5.3 summarizes the feature selection and classification process and shows the 

classification of tests using SVM and RBF. First, data is collected by employing monitoring tests and 

feedback from experts, followed by the preparation and preprocessing of data as explained 

previously. When the data is ready for classification, the third step begins selecting and ranking the 

best tests (features) based on their individual evaluation. Next, the training and testing process using 

k-fold cross-validation is performed. After training the classifier and adjusting its parameters, the 

classification operation is conducted and the results are saved for comparison with new results. The 

second cycle starts by deleting the least important feature and then retrains the classifier with the new 

number of features. Each time, a new subset of data is generated using k-fold cross validation. This 

process continues until the number of tests reaches one which is indicated by k=1, meaning that the 

deletion process has been stopped. Thus, the accuracy of selected tests is printed out as the best 

results of the classifier. 
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Figure  5.3 Classification process using SVM and RBF 
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5.6 Simulation Results 

The SVM algorithm has been developed and tested in Matlab environment. The following figure 

shows the performance of SVM classifier over each number of features (tests), where each point over 

the number of tests represents the classifier accuracy at each cycle or loop as explained in the 

flowchart. Note that these results represent the performance of SVM for a combination of test data 

generated using k-fold. The trend is evident of the relationship between the accuracy of the classifier 

and the number of tests. 

 

 

Figure  5.4 SVM Performance at each number of attributes 

 

As shown in Figure 5.2, the x-axis represents the number of tests from one to 19 and the y-axis 

represents the correctly classified instances at each set of tests. It was observed that for the first three 

features the classifier performance achieved accuracy of 84.28%, which can be considered a good 
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start for the classifier. However, as the number of attributes increased the classification process 

improved; hence, the correctly classified instances increased as illustrated at four and five attributes. 

At six features it was observed that the classifier provided the best performance (accuracy 92.85%), 

which indicates the best number and type of monitoring tests that can be utilized to indicate 

transformer condition. However, as the number of tests increased further, the classification accuracy 

became less, as in seven, nine, and ten features having the same accuracy. Finally, the classification 

accuracy decreased until it reached 16 features with accuracy of 80% and continued with the same 

performance until completion.  

In data mining, when the dimensionality of the data increases, many techniques of data analysis and 

classification problems become more difficult. Moreover, a high number of attributes results in lower 

classification accuracy. On the other hand, when the number of the training data is very small, the 

created model in the case of a supervised learning technique will be less reliable [44]. Therefore, 

feature selection techniques have shown their capability in improving the classification performance 

when many features are used. The basic idea of feature subset selection is to eliminate the redundant 

or irrelevant attributes from the data as they can lead to a reduction of the classifier performance [45].  

In order to have better visualization and to observe the trend of the data points, a curve fitting 

technique has been used to find the best curve that passes through these points. Curve fitting 

procedures have been implemented using Matlab software as a powerful technique for dealing with 

such a problem. This technique helps in identifying the margin and the required tests that should be 

used in the assessment process. It was observed that the classification accuracy improved as the 

number of tests decreased until feature nine, at which point the classification accuracy decreased. 

This trend can be interpreted as the non-inductive or irrelevant features being considered noisy 

information that reduces classification accuracy. Hence, utilizing the top ranked features obtained by 

the feature selection algorithm improves the classifier performance by ignoring the attributes of less 

information. More information regarding the classification accuracy is given by the classifier in Weka 

software at each test. In each run, full information is provided about the classifier including 

correctly/incorrectly classified instances, average error, accuracy, and most importantly the confusion 

matrix as explained in detail in the following tables and paragraphs. Table 5.3 displays one of the 

performance indices that provide the best results (six features). This case, which can be considered 

optimal in terms of selecting the best number of tests, gives utilities the type and number of 

monitoring tests to perform in order to assess transformer condition. Some terms shown in the tables 
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are explained clearly in [46]. These measurements are useful for comparing classifiers. For example, 

Kappa statistic measures the agreement of prediction with the true class -1.0 signifying complete 

agreement. 

Table  5.3  SVM Performance at Six Features 

Classifier  Performance Results 

Correctly classified instances 65  =   92.8571 % 

Incorrectly classified instances 5  =  7.1429 % 

Kappa statistic 0.8932 

Mean absolute error 0.2446 

Root mean squared error 0.3234 

Relative absolute error 89.7888 % 

Root relative squared error 88.1441 % 

Total number of instances 70 

 

Other terms shown in Table  5.4 such as True Position (TP), False Position (FP), Precision, and F-

measure are explained further in [46]. These terms are critical in understanding the classification 

accuracy where the classified and misclassified examples are stated as a percentage for each 

individual class. The following are definitions of terms used in Table  5.4 [46]:  

True Positive (TP) rate: the proportion of examples which were classified as class x among 

all examples which truly have class x 

False Positive (FP) rate: the proportion of examples which were classified as class x but 

belong to a different class 

Precision: the proportion of the examples which truly have class x among all those which 

were classified as class x 

F-Measure: a combined measure for precision and recall defined as  

                     2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 
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Table  5.4  SVM Detailed Accuracy by Class  

TP Rate FP Rate Precision Recall F-measure Roc-Area Class 

1 0 1 1 1 1 A 

0.939 0.054 0.939 0.939 0.939 0.949 B 

0.867 0.036 0.867 0.867 0.867 0.96 C 

1 0.015 0.8 1 0.889 0.992 D 

0 0 0 0 0 0.435 E 

0.929 0.034 0.917 0.929 0.922 0.959 Weight Avg 

 

In the field of artificial intelligence, the success of a classifier is measured by the confusion matrix, 

which in some cases is called the contingency table. The confusion matrix is a specific table design 

which permits the visualization of classification accuracy. In this problem, the correctly classified and 

misclassified instances are shown in the confusion matrix in Table  5.5. 

 

Table  5.5  SVM Confusion Matrix 

a b c d e Classified 

as 

17 0 0 0 0 a=A 

0 31 2 0 0 b=B 

0 2 13 0 0 c=C 

0 0 0 4 0 d=D 

0 0 0 1 0 e=E 
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From the confusion matrix it is evident that the 17 class A transformers have been classified correctly 

and there are no misclassified instances. For the 33 class B transformers, there are 31 units correctly 

classified as B and two units classified as C, which indicates two misclassified instances. 

Transformers with class C that are represented by 15 units have two class B units while the other 13 

units are classified correctly as C class. Finally, transformers with lower conditions such as C are 

classified correctly for four units and the one failed E class transformer is classified as D. Overall, it 

was observed that five of 70 transformers were incorrectly classified, which represents a 7.14% error 

rate. Therefore, the small number of misclassified instances can be considered a good indicator for the 

validity of the classifier performance. 

 

5.7  Comparison With RBF 

Radial Basis Function (RBF) classifier has been applied to the same data set following the same exact 

strategy as SVM in terms of data size and feature selection algorithm. RBF is used as a benchmark to 

validate the performance of the proposed algorithm.  

It is clear from Figure  5.5 that the best performance of the classifier is given at ten, 14, and 15 tests 

with classification accuracy of approximately 90%. In addition, the procedures of applying SVM are 

followed. The performance of the classifier is improved by starting with 19 tests and then reducing 

the number of the tests step-by-step. The accuracy increases until it reaches its maximum at 14 and 15 

features, at which point the classification accuracy starts decreasing. A sudden drop occurred at six 

features, in contrast with SVM where at six features the best performance was achieved. After this, 

the performance improves with small variation until it reaches the first attribute.  

Comparing these results with SVM classifier gives a clear indication of each classifier's performance 

in terms of the minimum number of features that can be used to achieve better accuracy. Comparing 

these results with SVM classifier gives a clear indication of each classifier's performance in terms of 

the minimum number of features that can be used to achieve better accuracy. 
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Figure  5.5 RBF Performance at each number of attributes 

 

Table  5.6  RBF Performance at Ten Features 

Correctly classified instances 63 = 90% 

Incorrectly classified instances 7 = 10% 

Kappa statistic 0.8498 

Mean absolute error 0.0438 

Root mean squared error 0.1947 

Relative absolute error 16.0664 % 

Root relative squared error 53.0805 % 

Total number of instances 70 
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RBF performance parameters including TP Rate, FP Rate, Precision, Recall, and F-Measure are 

shown in detailed accuracy by class in Table  5.7. Comparing this table with SMV is very beneficial in 

distinguishing between the performances of the classifiers. 

 

Table  5.7  Detailed Accuracy by Class RBF 

TP 

Rate 
FP Rate Precision Recall 

F -

measure 

Roc-

Area 
Class 

1 0 1 1 1 1 A 

0.97 0.054 0.941 0.97 0.955 0.947 B 

0.8 0.036 0.857 0.8 0.828 0.863 C 

0.5 0.03 0.5 0.5 0.5 0.792 D 

0 0.014 0 0 0 0.79 E 

0.9 0.035 0.899 0.9 0.899 0.927 
Weight 

Avg 

 

 

As previously explained, the confusion matrix is most important. The classified and misclassified 

instances are shown in Table  5.8 in which transformers with condition A are classified correctly, one 

instance of B is misclassified, three instances of C are misclassified, two instances of D are 

misclassified, and finally one instance of E is misclassified. When comparing the confusion matrix 

from SVM and RBF, it was observed that both matrices correctly classified transformers with 

condition (class) A. In B classes, SVM misclassified two B class transformers as C class, whereas 

RBF misclassified one B class unit as C class. For C class, SVM demonstrated better performance by 

misclassifying two units as B class, while RBF misclassified three units. Moreover, SVM correctly 

classified all D class transformers and misclassified the only transformer with E class to D class, 

whereas RBF misclassified two instances of D class and the one instance of E class.  
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Table  5.8  RBF Confusion Matrix 

a b c d e 
Classified 

as 

17 0 0 0 0 a=A 

0 32 1 0 0 b=B 

0 2 12 1 0 c=C 

0 0 1 2 1 d=D 

0 0 0 1 0 e=E 

 

5.8  Results and Discussion  

This chapter investigates the proper use of data mining techniques in the condition assessment of 

power transformers. Diagnostic techniques have been used to perform this task through two 

classifiers: Support Vector Machine (SVM) and Radial Basis Function (RBF). Firstly, the 19 

monitoring tests have been ranked based on their individual evaluation using the ranker search from 

the attribute selection filter in Weka Software. Secondly, the features (tests) were reduced by one 

each time, and then the classifiers were executed on the new set of data to identify the classification 

accuracy. This strategy will allow utilities to minimize the number of tests to a level that properly 

indicates the transformer condition without losing much information. The performance of each 

classifier has been presented and compared.      

In many cases, conducting all the monitoring tests on power transformers is not a cost-effective action 

for effective asset management. Therefore, a good method of meeting utilities satisfaction is to rank 

these tests by priority sequence in terms of their effectiveness in transformer condition, as well as 

select a limited number of these tests to improve classifier performance. SVM achieved better 

performance in predicting transformer condition with the first six tests when its accuracy reached 

92.85%. This implies that new transformers can be classified reliably and the risk of misclassifying is 

very small. While RBF classifier has also achieved good performance, it is not comparable with SVM 

in terms of accuracy and number of tests. RBF achieved the best performance with the first ranked 
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ten, 14, and 15 tests, in which classifier performance reached 90%. A comparison of the two 

classifiers in terms of their performance on the measured data is shown in Table  5.9. 

 

Table  5.9  Performance Comparison (SVM and RBF) 

Comparison Terms SVM RBF 

Number of instances 70 70 

Accuracy % 92.85% 90% 

Number of tests at best performance 6 10, 14, 15 

Correctly classified instances 65 63 

 

Overall, applying the methodology of this research facilitates quick assessment of transformer 

condition and reliable decisions without performing all tests. There are many beneficial applications 

including the minimization of monitoring costs, time, and work that is required to perform these tests. 

This model will allow utilities to assess their transformers properly with a limited number of specific 

monitoring tests, and create reliable plans regarding proper transformer action.  
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Chapter 6 
Conclusion 

6.1  Thesis Conclusion 

Power transformers are a vital and essential component in any electric network. Indeed, transformer 

cost varies between thousands and millions of dollars depending on the design and size of the unit. 

Therefore, any failure leads to unplanned outage or early breakdown before the designed lifespan 

expires, which costs utilities catastrophic loss. Hence, asset management practices have been widely 

utilized in the last decades to minimize overall life cycle cost and maintain cost-effectiveness. Such a 

practice ensures operating the system in an efficient and reliable way to meet the providers’ and 

customers’ satisfaction. Moreover, an effective asset management procedure needs many practices 

and work starts from design until disposal. In this research, condition assessment of power 

transformers, which is a part of asset management, has been investigated and a case study from in-

service transformers has been conducted to develop a model that helps in identifying transformer 

condition from measured data. 

A literature review is introduced which describes transformer importance and its contribution to the 

electricity sector. Various maintenance strategies are discussed as a part of asset management. In 

addition, a survey is conducted of monitoring and diagnostic techniques and of what has been done 

thus far in the area of transformer condition assessment. Common monitoring methods used to assess 

transformer state as well as the limits and variations from the unit nameplate interpreted based on 

national standards such as ASTM/IEEE and IEC have been investigated. Diagnostic techniques such 

as SVM and RBF as well as feature selection algorithms are explained for their employment in the 

assessment task. 

 Applying many monitoring techniques may be economically unreliable, require a lot of skilled work, 

and have many challenges and drawbacks from application. Some of these challenges can be 

summarized as electricity interruption in the case of off-line tests, time consumption, and high cost. 

Hence, the proposed model in this research employs data mining techniques to find a proper method 

of minimizing these challenges while proving reliability as a valid model. SVM classifier is used to 

predict transformer condition or health index among five classes A, B, C, D, and E from optimal to 

least optimal, respectively. The 19 tests (features) from the measured data have been prepared and 

processed to be used in the classification process. When the data are prepared and scaled, the feature 
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selection based on ranker search method has been used to rank and select the most inductive tests 

(features) in a priority sequence. The algorithm ranked the tests based on their individual evaluation 

and their strong impact on the transformer’s condition. For instance, DGA, infra-red, and load history 

tests were selected first because they are the most common and important tests used by utilities to 

evaluate the state of the transformer. The full number of tests has been used to train and test the 

classifier (SVM) using k-fold cross-validation in which each feature (test) is used in the training and 

testing at least once, and then the tests have been reduced by eliminating the least inductive feature 

(test) after each classification process. Moreover, after each eliminating process, the classifier is 

retrained for the new number of tests. The number of tests for which the classifier gives best 

performance is selected as the recommended number of tests that reflect the transformer's actual 

condition. SVM reached its maximum performance (92.85%) at six tests, which are DGA, infra-red, 

load history, bushing condition, power factor, and DGA of LTC. In fact, these tests are the most 

common tests conducted by utilities and manufacturers because of the useful information they 

provide about the transformer's state. For instance, DGA provides information about faults inside a 

transformer and their causes. The thermography test identifies hot spot areas and overloading 

conditions. Loading history helps in determining how many times the unit has been operated under 

overloading conditions and their impact on the insulation system. Power factor is a routine test used 

to evaluate capacitive insulation condition between windings and compartments as well as assess 

bushing condition. Finally, DGA of LTC is used as the main test to assess tap changer condition. The 

criteria followed for selecting the specific number of tests prove the applicability of the model in 

predicting the transformer's actual condition with the least number of monitoring techniques. This 

process results in a cost-effective solution to assess the power transformers. The RBF model has been 

built in the same way and compared with SVM in terms of accuracy and number of tests. Although its 

classification accuracy was good (90%), this percentage was achieved at ten, 14, and 15 tests. 

However, RBF model is not comparable with SVM because of the high number of monitoring tests it 

needs to achieve this performance.  

Considerable attention has been given to transformer condition assessment because of its direct 

impact on planning and budget as well as reliability and risk assessment. Furthermore, operating 

transformers in acceptable condition even after their designed lifespan has been considered to meet 

service providers' and customers’ satisfaction. 
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6.2 Future Work 

A similar model using artificial intelligence tools could be designed to predict the transformer's future 

condition. Historical data from one unit represents different types of tests that could be utilized to 

train the model in order to use it on other units of the same size. Assessing the future condition of the 

transformer would provide utilities with more time to develop an effective plan and minimize the 

probability of unplanned outages through awareness of the deterioration rate or expected faults of the 

transformer.   
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