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ABSTRACT 

In an automotive crash event, hot stamped, die quenched martensitic structural components 

have been shown to provide excellent intrusion resistance. These alloys exhibit only limited 

ductility, however, which may limit the overall impact performance of the component. The 

introduction of lower strength and more ductile “tailored” properties within some regions of a 

hot stamped component has the potential to improve impact performance. One approach being 

applied to achieving such tailored properties is through locally controlling the cooling rate 

within the stamping die. The primary motivation for the current work is to understand the role 

of cooling rate on the as-quenched mechanical response of tailored hot stampings, which has 

required characterization of the high strain rate mechanical behaviour of tailored hot stamped 

boron steel.  

The effect of cooling rate and resulting microstructure on the as-quenched mechanical 

behavior of USIBOR® 1500P boron steel at strain rates between 10-3 and 103 s-1 was 

investigated.  Specimens quenched at rates above the critical cooling rate (~27 °C/s) exhibited 

a fully martensitic microstructure with a UTS of ~1,450 MPa. Sub-critical cooling rates, in the 

range 14°C/s to 50 °C/s, resulted in as-quenched microstructures ranging between bainitic to 

martensitic, respectively.  Tension tests revealed that predominantly bainitic material 

conditions (14 °C/s cooling rate) exhibited a lower UTS of 816 MPa compared to 1,447 MPa 

for the fully martensitic material condition (50 °C/s cooling rate) with a corresponding increase 

in elongation from 0.10 to 0.15 for the bainitic condition.  The reduction in area was 70% for 

the bainitic material condition and 58% for the martensitic material conditions which implied 

that a tailored region consisting of bainite may be a desirable candidate for implementation 

within a hot stamped component.  The strain rate sensitivity was shown to be moderate for all 

of the as-quenched material conditions and the measured flow stress curves were used to 

develop a strain rate sensitive constitutive model, the “Tailored Crash Model (TCM)”.  The 

TCM accurately reproduced the measured flow stress curves as a function of effective plastic 

strain, strain rate and Vickers hardness (or area fraction of martensite and bainite).  

The effect of deformation during quenching and the associated shift in the CCT 

diagram on the subsequent constitutive response was also examined for this material. 

Specimens were simultaneously quenched and deformed at various cooling rates to achieve a 
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range of as-quenched microstructures that included ferrite in addition to martensite and bainite.  

Tensile tests conducted on these specimens at strain rates ranging from 0.003 s-1 to ~80 s-1 

revealed that the presence of ferrite resulted in an increase in uniform elongation and n-value 

which increased overall energy absorption for a given hardness level. The strain rate sensitivity 

was shown to be moderate for all of the as-quenched material conditions and the TCM 

constitutive model was extended to account for the presence of ferrite. This extended 

constitutive model, the “Tailored Crash Model II (TCM II)”, has been shown to predict flow 

stress as a function of effective plastic strain, strain rate and area fraction of martensite, bainite 

and ferrite. 

As a validation exercise, uniaxial tension test simulations of specimens extracted from 

the transition zone of a hot stamped lab-scale B-pillar with tailored properties [1] were 

performed.  The measured hardness distribution along the gauge length of the tensile 

specimens was used as input for the TCM constitutive model to define the element constitutive 

response used in the finite element (FE) models.  The measured stress versus strain response 

and strain distribution during loading (measured using digital image correlation) was in 

excellent agreement with the FE models and thus validated the TCM constitutive model 

developed in this work.  Validation of the TCM II version of the model is left for future work. 
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1 INTRODUCTION 

Hot stamping is a relatively new manufacturing process used to form structural vehicle 

components that have ultra high strength steel (UHSS) properties with ultimate tensile 

strengths in the order of 1,500 MPa due to a fully martensitic material condition.  One of the 

main advantages of implementing hot stamped components is the potential to lightweight a 

vehicle structural assembly, while maintaining crashworthiness.  A recent development at the 

University of Waterloo has shown that the in-die heating technique can be implemented within 

a conventional hot stamping process to produce lower strength and higher ductility regions of 

“tailored” properties consisting of varying volume fractions of martensite, bainite and ferrite 

[1].  A hot stamped part with tailored properties has the potential to improve the impact (crash) 

performance of vehicle structural members, but there is currently little published work on the 

mechanical response of hot stamped materials with such tailored properties.  This is the main 

motivation for the work presented in this thesis, which focuses on experimentally simulating 

the hot stamping thermal-mechanical processing routes required to produce tailored 

microstructures and then subsequently testing the as-quenched tailored materials in uniaxial 

tension at various strain rates to characterize the mechanical behaviour.  In addition to the 

measured mechanical response, another primary deliverable stemming from this work is the 

development of a strain rate sensitive constitutive model that is capable of predicting the flow 

stress behavior for the various multiphase tailored material conditions. The main beneficiaries 

of this model will be those who implement hot stamped components (with tailored properties) 

within a vehicle crash protective structure and simulate full vehicle crash scenarios.  The 

accurate prediction of the low to high strain rate response of tailored hot stamped components 

is a necessary step to enable virtual optimization and commercialization of vehicle crash 

structures that are both lightweight and meet stringent crash test regulations. 

This thesis has been written in a “manuscript-based” style which includes first this 

synopsis of the thesis work, followed by several parts documenting each aspect of the research. 

The synopsis comprises a review of the current state of the art in hot stamping, an outline of 

the objectives and a summary of the research results, followed by a discussion, conclusions 

and future work.  The remainder of the thesis consists of four individual parts that detail the 
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work done and results accomplished to fulfill the objectives.  Each part is a published or 

submitted peer-review manuscript.  
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2 HOT STAMPING: THE CURRENT STATE OF THE ART 

2.1 The Hot Stamping Process 

The current demand to reduce vehicle weight for improved fuel efficiency, while 

maintaining crash performance, has led to the application of new and innovative materials and 

manufacturing processes in the automotive industry.  One such process is hot stamping (or 

press hardening) of boron steel, which allows conventionally stamped parts to attain Ultra 

High Strength Steel (UHSS) properties with tensile strengths up to 1,500 MPa.  The UHSS 

properties are a result of in-die quenching, which causes a hot blank to undergo a solid-state 

phase transformation from austenite to 100% martensite during the forming process.  The 

elevated strength of hot formed parts allows for the use of thinner gauge sheet metal, which 

results in vehicle weight reduction while maintaining structural integrity.  The adoption of hot 

stamped components within a vehicle structure is becoming more commonplace as indicated 

by a steady increase in global production rate [2,3].  The hot stamping process is currently 

used to manufacture structural components such as bumper beams, door intrusion beams, A- 

and B-pillars, roof and side rails [2,4-8].  Figure 1 shows some of the typical structural 

components which are currently being produced or are candidates to be manufactured using 

the hot stamping process.  These are critical crash components of a vehicle.  

 

 

Figure 1: Structural components currently (or candidates to be) manufactured by hot stamping [6]. 

(1) Door Beam
(2) Bumper Beam
(3) Cross and Side Members
(4) A/B-Pillar Reinforcement
(5) Waist Rail Reinforcement
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2.2 Tailored Properties for Improved Crash Performance 

Although components with a fully martensitic microstructure are often desired due to 

their exceptional high strength and intrusion resistance, some structural components, such as a 

B-pillar, may benefit from regions of lower strength but greater ductility for improved energy 

absorption. Figure 2 is a schematic of a B-pillar with a region of tailored properties that has 

been adapted from the work of Maikranz-Valentin et al. [9].  Maikranz-Valentin et al. were 

among the first to suggest that the crashworthiness of a vehicle with a hot stamped B-pillar 

containing a tailored region would improve based on the frontal and side load transmission 

paths within a vehicle structural frame when subjected to crash loading.  Munera et al. [10,11] 

created, tested and modeled multiple crash structures that were produced by tailor welding a 

conventional hot stamping boron steel sheet to a steel sheet that resisted the martensitic phase 

transformation during hot stamping and remained soft. They showed that the tailored 

components offered lower reduced component weight (compared to conventionally stamped 

steel) and improved the overall passenger safety in a crash event.   

 

 

Figure 2 - A schematic of a B-pillar with tailored properties. Adapted from [9]. 

 

Munera et al. [10] also stressed the importance of capturing the strain rate sensitivity in 

their crash models to account for local deformation rates that reach strain rates of 1,000 s-1.  

This revelation is not new as it has been well established that vehicle structural components 

undergo deformation at strain rates that range from quasi-static (0.001 s-1) to high strain rates 

(1,000 s-1) in local hinge point regions [12-18].  It is widely accepted among the crash 
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modeling community that the successful and accurate prediction of vehicle crash behavior is 

dependent on the accuracy of the strain rate sensitive constitutive model implemented for the 

structural components within the finite element (FE) analysis [15-17,19-21].  The accuracy of 

the crash models is crucial during the design and development stage of new vehicle concepts to 

ensure that vehicles pass certification trials at the prototype stage.  

 

2.3 Producing a Hot Stamped Part with Tailored Properties 

Multiple variations of the hot stamping process exist that are capable of producing a 

tailored hot stamping as reviewed in [8,9,22]. The various processes are outlined below.   

2.3.1 Tailor Welded Blanks 

ArcelorMittal has austenized and hot formed tailor welded blanks made of boron sheet 

metal (USIBOR® 1500P) and DUCTIBOR® 500P.  The boron steel achieves an ultimate 

tensile strength (UTS) of 1,500 MPa while the DUCTIBOR® 500P material exhibits a UTS of 

500 MPa and about 20% uniform elongation after hot stamping [10,11,22].  The disadvantage 

of this process is the additional blanking and welding required which increases the complexity 

of the process and the cost involved. 

2.3.2 Partial heating in a furnace  

For this process, a portion of the blank is austenized in an open-ended furnace and 

subsequently hot formed [4,23].  Only the part of the blank that was austenized achieves full 

martensitic properties when stamped, while the reminder of the part possesses the as-received 

properties of USIBOR® 1500P, which are a UTS of 600 MPa and 20% uniform elongation [4].  

In this case, the tailored zone is restricted to the as-received material properties of the boron 

steel, which does not allow for tailoring. 

2.3.3 Post Tempering 

In this case, a fully martensitic part is hot stamped and then a region is partially 

subjected to a tempering treatment which reduces the strength and improves ductility by 
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introducing tempered martensite [22,24-26].  The main downfall of post tempering is the 

addition of another process step in the production chain and some limitations related to 

isolating the tailored region.  Also, the time required to post temper can be as long as several 

minutes. 

2.3.4 Die Materials with Variable Heat Extraction Rates  

A hot stamping die can be made with regions of different materials that have varying 

thermal conductivity characteristics.  Where fully martensitic properties (1,500 MPa UTS) are 

desired, die materials with a thermal conductivity of 50-70 W/mK are used, while in the 

regions where parts are to have tailored properties (~800 MPa UTS), the thermal conductivity 

is 5-10 W/mK [27,28].  There is a lack of flexibility in this method because the tailored region 

cannot be altered once the die has been manufactured. 

2.3.5 Partial In-Die Heating 

 Hot stamped parts with tailored properties can be formed within a die that has heated 

sections.  The heated sections of the die reduce the cooling rate of the boron steel to less than 

the critical cooling rate at which the martensitic transformation occurs. Figure 3a shows the 

continuous cooling transformation (CCT) diagram for USIBOR® 1500P [29], which is the 

material of focus for the current doctoral work.  By reducing the cooling rate (CR) to below 

the critical cooling rate, some volume fraction of bainite can be transformed into the 

microstructure as shown by CR2 in Figure 3a.  The decomposition of austenite into ferrite 

requires a cooling rate of 8 °C/s, which is relatively slow and requires a controlled heated 

environment (i.e. a furnace) as shown by CR3 in Figure 3a. However, the occurrence of plastic 

deformation during hot stamping results in a shift of the CCT diagram to the left [30], which 

allows some volume fraction of ferrite to form, as will be discussed in Section 2.4.  Figure 3b 

is a schematic of the expected true stress versus effective plastic strain response due to the 

tailored properties as defined by the cooling rate in Figure 3a.  The reduced strength and 

increased ductility are properties that would benefit a hot stamped part such as the one shown 

in Figure 2. 
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Figure 3 - (a) The continuous cooling transformation (CCT) diagram for USIBOR® 1500P [29]. (b) A schematic 
of the expected true stress versus effective plastic strain response due to the cooling rates shown in (a). 

 

A number of research groups have examined the in-die heating technique to produce 

hot stamped parts with tailored properties [31-37]. In some of the existing work, quench times 

were not published, while for the work where the quench time was published, it was greater 

than 20 s.  Quench time refers to the holding period within the die at the bottom of the forming 

stroke and a 20 s quench time is not attractive from a production cycle time perspective.  To 

overcome this deficit in the current state of the art, a hot stamping program was undertaken at 

the University of Waterloo and the development of a hot stamping process with in-die heating 

and short quench times was one of the primary objectives. As a part of this program, George et 

al. [1] developed a hot stamping tool with heated sections as shown in Figure 4a. This tool was 

used to successfully hot stamp a lab-scale B-pillar which contained tailored properties within 

the soft zone as shown in Figure 4b.  It was shown that a heated die section (400 °C) with a 

quench time of 4 s resulted in a tailored region with a Vickers hardness that was 52% less than 

the fully martensitic region.  Uniaxial tension tests were conducted on a specimen cut from the 

tailored region which revealed that the ultimate tensile strength decreased by 49% and the 

uniform elongation increased by 84% when compared to the fully martensitic material 

condition.  Metallographic observations conducted on the hot stamped components revealed 

that the as-quenched volume fraction of martensite, bainite and ferrite varied based on the 

heated die temperature and location that the specimen was extracted from. It was shown that 
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the presence of ferrite was found to be more pronounced in regions of the B-pillar where 

deformation (thinning) was observed.  

 

 

Figure 4 – (a) A CAD model showing the design of the split tool with heated zones (b) A photograph of a hot 
stamped part. 

 

2.4 Effect of Plastic Deformation during Hot Stamping on the 
Tailored Properties 

The effect of plastic deformation during quenching of a hot stamped boron steel was 

examined by Barcellona and Palmeri [30].  They used a Gleeble thermal-mechanical simulator 

to quench and isothermally deform a 22MnB5 boron steel at various temperatures and quench 

rates that were either above or below the critical cooling rate.  The results of their study 

revealed that plastic deformation caused the continuous cooling transformation (CCT) diagram 

to shift towards the left, or lower quench times as shown in Figure 5.  The CCT also moved 

downward and this combined shift in the CCT resulted in the decomposition of austenite into 

bainite and ferrite at quench rates that would normally supress these phase transformations.  It 

should be noted that the as-quenched bainitic structure due to plastic deformation was that of 

granular bainite.  Min et al. [38] conducted experiments similar to those presented in [30] and 
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concluded that the increase in stored energy due to the plastic deformation of austenite 

contributes to increasing the driving force and shortening the incubation time for the ferrite 

phase transformation.  These effects were amplified as the temperature at which the 

deformation was imposed was reduced.  Unlike the granular bainite morphology reported by 

Barcellona and Palmeri [30], Min et al. [38] reported that bainite transformed at the austenite 

grain boundaries was conventional bainite (CB) and appeared as packets of parallel ferrite 

laths separated by a martensite-austenite constituent, while the bainite transformed at 

intergranular sites was acicular ferrite (AF) which grows as randomly oriented ferrite laths or 

groups of laths which contain discrete martensite-austenite particles.  Naderi et al. [39] 

conducted experiments in which a cylindrical 22MnB5 boron steel specimen was quenched at 

50 °C/s and simultaneously deformed (in compression) at various temperatures. The imposed 

deformation in their experiments resulted in the phase transformation of austenite to martensite 

and bainite and also indicated that the CCT diagram shifted towards the left and down. 

 

 

Figure 5 - Effect of deformation on the CCT diagram for 22MnB5 hot stamping steel. Adapted from [30]. 

 

Nikravesh et al. [40] and Abassi et al. [41] conducted similar experiments using the same 

experimental apparatus as Naderi et al. [39] and showed that the presence of ferrite in the as-

quenched microstructure varied due to the cooling rate, deformation temperature and strain 

rate at which deformation occurred.  Fan et al. [42] conducted a small scale tensile 

quenching/deformation study in which a small volume fraction of ferrite was detected in 

otherwise fully martensitic microstructures at quench rates of 25 °C/s and 30 °C/s for a boron 
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steel.  Shi et al. [43] conducted similar work to [40] and concluded that the diffusional phase 

transformations of polygonal ferrite and bainitic ferrite were facilitated by non-isothermal 

deformation during quenching.  

 

2.5 Current Deficit in the Literature 

Although there has been a substantial research effort put towards understanding the 

complex phase transformations that result in the as-quenched multiphase (martensite, bainite, 

ferrite) microstructure of boron steels with tailored properties, there has yet to be a 

comprehensive assessment of the mechanical response of the as-quenched multiphase material 

conditions and the implication of applying these materials to vehicle crash structures.  In 

particular, the effect of varying volume fractions of martensite, bainite and ferrite on the strain 

rate sensitivity, strain hardening response and overall energy absorption behaviour (as 

illustrated in Figure 3b) need to be explored. This is the main motivation behind the current 

work, in which a variety of as-quenched material conditions were produced and tested in 

uniaxial tension at various strain rates. These mechanical characteristics need to be identified 

and captured within a constitutive model that can be used to define the strain rate sensitive 

constitutive response of tailored properties within a finite element simulation of a full-scale 

vehicle crash event. 
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3 OBJECTIVE  

The objective of the current research is to characterize the mechanical response of hot 

stamped materials or components containing “tailored” properties which consist of multiphase 

microstructures with varying volume fractions of martensite, bainite and ferrite.  In addition, a 

constitutive model capable of predicting the low to high strain rate constitutive behavior of 

tailored components is to be developed for implementation within vehicle crash models.  In 

order to achieve this objective, a number of research tasks were undertaken as outlined in the 

following. The interrelationship between these tasks is captured in the flow chart showing the 

research strategy in Figure 6. 

 

1. Develop experimental techniques and methods to simulate quenching of boron 

steel at:  

(i) Quench rates greater than the critical cooling rate (~27 °C/s) to produce 

martensitic as-quenched material conditions. 

(ii) Quench rates less than the critical cooling rate (~27 °C/s) to produce 

martensitic, martensitic/bainitic and bainitic as-quenched material 

conditions. 

(iii) Quench rates at and less than the critical cooling rate, with 

simultaneous plastic deformation to produce as-quenched material 

conditions with varying volume fractions of martensite, bainite and 

ferrite. 

 

2. Develop and apply metallographic analysis methods to characterize and 

quantify the microstructures of the various as-quenched phases present within 

the tailored material conditions. 

 

3. Conduct low to high strain rate uniaxial tension testing on the various as-

quenched material conditions. Analyze the stress versus strain response of the 

material conditions to characterize the influence of martensite, bainite and 

ferrite on the mechanical properties. 



 12

 

4. Capture the effect of strain rate sensitivity and volume fraction of the as-

quenched phases (martensite, bainite and ferrite) in a constitutive model that 

can be used to define the as-quenched constitutive properties (stress versus 

strain curves) suitable for simulation of impact (crash) loading of a hot stamped 

component. 

 

5. Validate the model by comparing the predicted constitutive response against 

specimens that have been extracted from an actual hot stamping with tailored 

properties due to in-die quenching. 

 

  Work done within these research tasks are summarized in the following sections of 

this synopsis.  More detailed treatment of the research results follow in Parts 1-4 of this thesis, 

each part consisting of a peer-reviewed research article. 
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Figure 6 - Research strategy. 

 

 

  

Develop Techniques to Produce Tailored Properties:

• Water and oil bath (martensite)

• Forced Air Quenching Apparatus, FAQA (martensite/bainite)

• Gleeble (martensite/bainite/ferrite)

• Determine process boundary conditions required to achieve “Tailored” properties via temp-time-
deformation data & dilatometer measurements

Low to High Strain Rate Uniaxial Tension 
Testing

• Quasi-Static, 0.003 - 1 s-1 (Instron)

• Intermediate Strain Rate, 10 - 100 s-1

(Instrumented Falling Weight Impactor, IFWI)

• High Strain Rate, 1,000 s-1 (Tensile Split 
Hopkinson Bar, TSHB)

• Development of the Hydraulic Intermediate 
Strain Rate Apparatus (HISR) to replace the 
IFIW for strain rates of 10 - 100 s-1

Characterization/Quantification of As-
Quenched Multiphase Area Fractions

• SEM micrographs of etched surfaces

• Two Stage Color-Tint Etching technique to 
delineate martensite, bainite and ferrite

• Identify variations in morphology within 
each individual phase

Influence of Martensite, Bainite and Ferrite on the Mechanical Response

• Ultimate Tensile Strength
• Yield Strength
• Strain Rate Sensitivity
• Ductility

• Fracture Behaviour
• Strain hardening Behaviour
• Energy Absorption

Constitutive Model Development

• Consider Existing Strain Rate Sensitive Constitutive Models

• Fit the experimental flow stress data to the candidate constitutive model

• Validate the newly developed model by simulating tensile experiments conducted on specimens 
extracted from a hot stamped component
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4 SUMMARY OF THE RESEARCH RESULTS 

The research carried out to complete the objective of this research program is presented in 

four parts.  Each part is based on a separate article as shown below: 

 

Part 1 Bardelcik A, Salisbury CP, Winkler S, Wells MA, Worswick MJ. 

Effect of Cooling Rate on the High Strain Rate Properties of Boron 

Steel. International Journal of Impact Engineering, 37 (6), 694-702, 

2010. 

 

Part 2 Bardelcik A, Worswick MJ, Winkler S, Wells MA. A Strain Rate 

Sensitive Constitutive Model for Quenched Boron Steel with Tailored 

Properties. International Journal of Impact Engineering, 50, 49-62, 

2012. 

 

Part 3 Bardelcik A, Worswick MJ, Wells MA. The Influence of Martensite, 

Bainite and Ferrite on the As-Quenched Constitutive Response of 

Simultaneously Quenched and Deformed Boron Steel – Experiments 

and Model. Submitted for possible publication. 2012. 

 

Part 4 Bardelcik A, George R, Worswick MJ. Transition Zone Tensile 

Properties within a Tailored Hot Stamping. SAE World Congress 2012, 

Paper# 2012-01-0531, 2012. 
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In addition to these four parts, the following four published and peer-reviewed articles 

were written and based on the current research.  These articles have a lesser impact on the 

overall objective of this thesis and will only be referenced as supportive work:  

 

 George R, Bardelcik A, Worswick MJ. Hot Forming of Boron Steel using 

Heated and Cooled Tooling for Tailored Properties. Journal of Materials 

Processing Technology, 212 (11), 2386-2399, 2012. 

 

 Bardelcik A, Ghavam K, George R, Worswick MJ. An Impact Model of a Hot 

Stamped Lab-Scale B-Pillar with Tailored Properties. 3rd International 

Conference on Hot Sheet Metal Forming of High-Performance Steel, 221-228, 

2011. 

 

 Bardelcik A, Salisbury CP, Worswick MJ, Wells MA. The effect of cooling 

rate on the mechanical properties and energy absorption potential of hardened 

boron steel. 2nd International Conference on Hot Sheet Metal Forming of 

High-Performance Steel, 105-113, 2009. 

 

 Bardelcik A, Salisbury CP, Worswick MJ, Wells MA. High Strain Rate 

Properties of Hot Formed Die Quenched Boron Steel. 1st International 

Conference on Hot Sheet Metal Forming of High-Performance Steel, 45-54, 

2008. 
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4.1 Part 1: Effect of Cooling Rate on the High Strain Rate Properties 
of Boron Steel 

The initial characterization of the effect of cooling rate on the high strain rate behavior of 

as-quenched boron steel was investigated in this part of the research.  The cooling rates that 

were focused on in this work were near to and greater than the critical cooing rate of ~27 ºC/s.  

USIBOR® 1500P steel blanks were quenched at three cooling rates (45, 250 and 2,200 °C/s), 

all of which resulted in fully martensitic as-quenched material conditions. In addition, a single 

cooling rate was considered, 25 °C/s, that was less than the critical cooling rate.  The quenched 

blanks were machined into miniature dog-bone style tensile specimens that were tested in 

tension at a quasi-static rate (0.003 s-1) and a high strain rate (960 s-1) using an Instron and a 

tensile split Hopkinson bar apparatus, respectively.  Micro-hardness measurements were made 

on the quenched specimens and optical micrographs of the as-quenched microstructures were 

generated. 

The path of the measured temperature-time history during quenching (not shown, but 

found in Figure 2 in Part 1) with respect to the continuous cooling transformation (CCT) 

diagram indicates that the specimens quenched at 25 °C/s consisted of a “tailored” or mixed 

phase microstructure.  This was confirmed by the measured Vickers hardness and optical 

micrographs (Figure 7), which revealed that the specimens quenched at 25 °C/s consisted of 

approximately 5% bainite and 95% martensite by volume.  The specimens quenched at the 45, 

250 and 2,200 °C/s cooling rates all contained a fully martensitic as-quenched microstructure.  

 

 

Figure 7 - Optical micrographs of quenched specimens (a) 25 °C/s (b) 45 °C/s and (c) 2,200 °C/s.  Etchant: 2% 
Nital. The microstructure of the 250ºC/s specimens are very similar to the 45 °C/s specimens. 

50 microns

(a) (b) (c)

20 microns
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 Figure 8a shows the engineering stress versus strain curves (three repeats per cooling 

rate) measured under quasi-static (0.003 s-1) loading conditions.  The quasi-static stress versus 

strain results revealed that the small volume fraction of bainite within the tailored 

microstructure (25 °C/s quench condition) reduced the average ultimate tensile strength (UTS) 

and average yield strength by 190 MPa and 75 MPa, respectively, when compared to the fully 

martensitic (45 °C/s) material condition. The measured hardness also reduced from 472 HV to 

420 HV as the quench rate was decreased from 45 °C/s to 25 °C/s.  Although the strength 

decreased, the overall ductility (i.e. total elongation) did not show any improvement which is 

not beneficial from an energy absorption perspective.  The fracture mechanism was shown (see 

Figure 9) to be dependent on the microstructure constituents as it transitioned from a ductile-

shear mechanism at 25 °C/s which is favourable from a crash perspective, to a more shear 

dependent mechanism as the cooling rate increased. 

The similarity in the stress versus strain response and measured hardness of the 45 °C/s 

and 250 °C/s quench conditions shown in Figure 8a indicates a robust and large process 

window for the conventional (fully hardened) hot stamping process.  The specimens quenched 

at 2,200 °C/s, which is outside the realistic capability of the hot stamping process, resulted in 

an increase in UTS from ~1,450 MPa (average of 45 °C/s and 250 °C/s quench conditions) to 

1,640 MPa as shown in Figure 8a, along with an increase in hardness from ~476 HV (average 

of 45 °C/s and 250 °C/s quench conditions) to 516 HV.  This relatively large increase in 

material strength and hardness was most likely due to the refined microstructure of the 

specimens quenched at 2,200 °C/s as shown in Figure 7c. 

A comparison of the quasi-static and high strain rate average engineering stress versus 

strain curves in Figure 8b shows moderate strain rate sensitivity for the 45 °C/s quench 

condition which was similar to the 250 °C/s data that was omitted in the figure for clarity.  The 

25 °C/s quench condition stress-strain curves shown in Figure 8b show slightly more strain 

rate sensitivity than the fully martensitic material condition quenched at 45 °C/s. The highest 

strength martensitic condition, achieved at a cooling rate of 2,200 °C/s, revealed almost no 

strain rate sensitivity. 
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Figure 8 – (a) Quasi-static strain rate (0.003 s-1) engineering stress versus strain results (b) The Average quasi-
static (QS) and high strain rate (HSR) engineering stress-strain results. The 250 °C/s results were omitted for 
clarity. 
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Figure 9 - Optical micrographs showing the cross-section and fracture profiles of specimens tensile tested at 
0.003 s-1 for samples quenched at (a) 25 °C/s (b) 45 °C/s (c) 250 °C/s and (d) 2,200 °C/s. The images on the right 
are higher-resolution images of regions highlighted on the left. As-polished and viewed along the long-transverse 
plane. 
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4.2 Part 2: A Strain Rate Sensitive Constitutive Model for Quenched 

Boron Steel with Tailored Properties 

The work presented in Part 1 considered a broad range of cooling rates (25 °C/s to 

2,200 °C/s) that were close to and greater than the critical cooling rate of (~27 °C/s) for a fully 

martensitic phase transformation. Part 2 focusses on imposing a range of sub-critical cooling 

rates (<30 °C/s) to USIBOR® 1500P blanks, in an order to produce as-quenched 

microstructures that range from martensitic to bainitic.  To achieve these sub-critical cooling 

rates, a forced air quenching apparatus (FAQA) was developed to quench the boron steel 

blanks.  The apparent cooling rates that were achieved with the FAQA were 14, 17, 24, 28 and 

50 °C/s as shown by the measured temperature-time plots during quenching in Figure 10.  The 

average measured Vickers hardness for these specimens (see Table 1) varied from 268 HV to 

466 HV for the 14 °C/s and 50 °C/s quench conditions, respectively.  Due to some variability 

that resulted from the manual nature of the FAQA apparatus, a Gleeble thermo-mechanical 

apparatus was used to impose the average temperature-time histories shown in Figure 10 to 

boron steel blanks.  The Gleeble processed blanks were then polished and the microstructures 

shown in Figure 11 were observed using scanning electron microscopy.  The microstructure 

varied from approximately bainitic to martensitic as shown in the Figure 11 micrographs that 

were used to quantify the area fractions of martensite and bainite for each quench condition as 

shown in Table 1. Micro-hardness measurements of the as-quenched microstructures revealed 

a linear relationship between the area fraction martensite (remainder being bainite) and 

hardness.  

  

 

 



 21 

 

Figure 10 - Average measured temperature versus time curves for the five quench conditions tested in the FAQA.  
The overlaid CCT diagram is for USIBOR® 1500P that was austenized with similar composition and temperature 
versus time conditions used in the FAQA tests [29]. 

 

Table 1 – The average measured Vickers hardness and average measured area fraction of martensite and bainite 
for the various apparent cooling rate conditions. 

Apparent Cooling 
Rate (°C/s) 

Avg. Measured 
Vickers Hardness  

Avg. Measured % Area 
Fraction Martensite/Bainite  

14 268 3% / 97% 
17 318 12% / 88% 
24 399 57% / 43% 
28 442 86% / 14% 
50 466 97% / 3% 

 

 

 

Figure 11 - SEM micrographs of the Gleeble specimens showing (a) an almost fully martensitic microstructure 
for the 50°C/s specimen (b) a mixed bainitic/martensitic microstructure for the 24°C/s specimen and (c) a 
predominantly bainitic microstructure for a 14°C/ specimen. (B=bainite, M=martensite). 
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Miniature dog-bone style specimens were cut from the as-quenched FAQA processed 

blanks and tested at quasi-static strain rates of 0.003 s-1 and 1.0 s-1 using an Instron, ~85 s-1 

using an instrumented falling weight impactor (IFWI) and ~1,075 s-1 using a tensile split 

Hopkinson bar (TSHB) apparatus. The engineering stress versus strain response of the various 

material conditions pulled at the quasi-static rate is shown in Figure 12a and indicates that the 

average UTS increased from 816 MPa to 1,447 MPa as the microstructure transitioned from 

bainitic to martensitic.  Figure 12b shows that the elongation to failure exhibited a 

corresponding increase from 0.10 to 0.15 strain.  It was also shown that the elongation to 

failure improved only when the area fraction of martensite was less than 50%. This finding 

indicates improved ductility for the more bainitic material conditions which is a key aspect of 

tailoring the properties of a hot stamping for improved crash performance.  There was also an 

advantageous increase in the fracture surface reduction in area from 58% to 70% as the 

material varied from martensitic to bainitic as shown in Figure 13.  The fracture behaviour 

varied from a ductile mode to a pure shear mode (see Figure 12c) as the material varied from 

bainitic to martensitic, respectively. 
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Figure 12 - (a) The engineering stress-strain curves conducted at 0.003 s-1 (b) The measured elongation to failure 
versus % area fraction martensite from the quasi-static (0.003 s-1) tension tests.  Note that 0% and 100% area 
fraction martensite refers to 100% and 0% area fraction bainite, respectively.  The vertical and horizontal error 
bars indicate the maximum and minimum measured values from the repeat measurements (c) Optical microscope 
images of the fracture surface (cross-sectional views) for specimens quenched at 14-50 °C/s and pulled at 0.003s-

1. The specimens quenched at the apparent cooling rates correspond to the following measured area fraction 
martensite/bainite: 14 °C/s (3%M/97%B), 17 °C/s (12%M/88%B), 24 °C/s (57%M/43%B) 28 °C/s 
(86%M/14%B), 50 °C/s (97%M/3%B). 
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Figure 13 - Percent area reduction versus % area fraction martensite as measured from the quasi-static (0.003 s-1) 
tension tests.  Note that 0% and 100% area fraction martensite refers to 100% and 0% area fraction bainite, 
respectively. The vertical and horizontal error bars indicate the maximum and minimum measured values from 
the repeat measurements. 

 

 The true stress versus effective plastic strain (or flow stress) curves generated at the 

various strain rates and various area fractions of martensite/bainite were used to develop a 

strain rate sensitive constitutive model.  Initially, the Johnson-Cook (JC) [44,45] constitutive 

model was fit to the data, but it was shown that the strain hardening behavior and stress 

saturation of the martensitic material conditions could not be captured by the continuously 

hardening function that defines the JC model.  The Zerilli-Armstrong model was also fit to the 

data, but the strain rate sensitivity for all of the material conditions predicted unrealistic model 

parameters.  It was shown that the Voce [46] hardening law (equation 1) with an exponential-

type strain rate sensitivity term accurately captured the hardening behavior and strain rate 

sensitive response for all of the material conditions examined in this work.  
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found and a phenomenological constitutive model, referred to as the “Tailored Crash Model 

(TCM)” was developed.  The purpose of this model is to predict the flow stress behavior of the 

tailored material conditions as a function of effective plastic strain ሺߝሻ, true strain rate ሺߝሶሻ and 

Vickers hardness ሺܸܪሻ as shown in equation 2.  The excellent agreement between the 

predicted (TCM) and measured flow stress curves can be seen in Figure 14. 

	

ߪ ൌ ݂ሺߝ, ,ሶߝ ሻܸܪ ൌ ൥ܣሺܸܪሻ ൅ ቈሾܤሺܸܪሻ െ ሻሿ݁ቀିܸܪሺܣ
ഄ

಴ሺಹೇሻ
ቁ቉൩ ሾ1 ൅  ሶሿ஽ሺு௏ሻ      (2)ߝ

 

This model can alternatively be expressed as a function of the area fraction martensite, 

due to the linear relationship between Vickers hardness ሺܸܪሻ and area fraction martensite 

ሺ%ܯሻ as measured from the experiments and shown in equation (3).  For a given a ሺ%ܯሻ the 

balance of the area fraction is bainite.  

 

ܸܪ    ൌ 217.85 ∙ ሺ%ܯሻ ൅ 236.15    (3) 

 

With the current TCM, a hot stamping finite element (FE) simulation can be conducted 

and the as-quenched volume fraction of martensite and bainite for each element can be used to 

define the crash properties for a subsequent impact FE model by implementing the numerical 

procedure outlined by Bardelcik et al. [47].   
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Figure 14 - The measured (symbols) and TCM predicted (curves) flow stress curves for a variety of as-quenched 
Vickers hardness and strain rate values. The following hardness values correspond to the following measured area 
fraction martensite/bainite: 268 HV (3%M/97%B), 318 HV (12%M/88%B), 399 HV (57%M/43%B) 442 HV 
(86%M/14%B), 466 HV (97%M/3%B). 
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4.3 Part 3: The Influence of Martensite, Bainite and Ferrite on the 

As-Quenched Constitutive Response of Simultaneously 

Quenched and Deformed Boron Steel – Experiments and Model 

The formation of ferrite within the as-quenched microstructure of a tailored hot 

stamping has been shown to occur due to the application of plastic deformation during 

quenching as reviewed in section 2.4.  This phenomenon was observed by George et al. [1] for 

a hot stamped, lab-scale B-pillar component that was produced at the University of Waterloo 

using in-die heating to produce regions of tailored properties.  Understanding the influence of 

ferrite within a mixed multiphase material containing martensite, bainite and ferrite was the 

motivation for this part of the work, which focused on: (i) simultaneously quenching and 

deforming USIBOR® 1500P boron steel, (ii) characterizing the as-quenched microstructure 

(iii), evaluating the mechanical properties, and (iv) developing a new constitutive model.  

A Gleeble 3500 thermal-mechanical apparatus was used to simultaneously quench and 

deform boron steel blanks at three different cooling rates (10, 15 and 30 °C/s) and two 

different deformation temperatures (TDEF=800 °C and 600 °C) as shown in temperature versus 

time schematics in Figure 15.  The imposed deformation during the quenching process was 

஽ாிߝ  = ~0.2 strain in each case. A no deformation (ND) condition experiment was also carried 

out for each of the three different cooling rates. 

 

Figure 15 - Temperature versus time schematic for the two hot deformation temperature conditions. 

 

The hardness of the as-quenched materials reduced as the quench rate reduced, which 

is expected from the work presented in Parts 1 and 2 of this thesis. The effect of deformation 
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during quenching also reduces the as-quenched hardness, with the greatest reduction occurring 

for deformation occurring at the lower temperature (TDEF) of 600 °C, as shown in Figure 16.  

Scanning electron microscope and colour tint etched optical micrographs were generated for 

the various quenched/deformed conditions (Figure 16) and revealed that for most of the 

deformation conditions, ferrite was present within the microstructure as presented in Table 2. It 

was also observed that the morphology of the bainite phase changed from an upper bainite-

type (UB) structure when no deformation was imposed, to a granular bainite (GB) structure 

when deformation was imposed as shown in Figure 16. 

 

 

Figure 16 - Vickers hardness versus cooling rate. The error bars indicate +/- the standard deviation as measured 
from the population of repeat measurements and the values adjacent to the data points indicate the calculated 
standard deviation. (ND = no deformation). SEM micrographs and color tint-etched optical micrographs for two 
different quench/deformation conditions. F=ferrite, UB=upper bainite-type, GB=granular bainite. 

 

Table 2 - Summary of the area fraction measurements. 

Cooling 
Rate 

(°C/s) 

TDEF 
(°C) 

Avg. 
Vickers 

Hardness 

Avg. Area 
Fraction 

Martensite, M (%) 

Avg. Area 
Fraction 

Bainite, B (%) 

Avg. Area 
Fraction 

Ferrite, F (%) 

10 
ND 339 22 72 6 
800 282 17 71 12 
600 257 14 70 16 

15 
ND 413 57 37 6 
800 326 53 29 18 
600 288 12 76 12 

30 
ND 458 78 19 3 
800 450 71 27 2 
600 348 37 49 14 
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Miniature dog-bone style tensile specimens were cut from the quenched and deformed 

blanks and subsequently tested in uniaxial tension at a quasi-static strain rate of 0.003 s-1 using 

an Instron.  The tensile specimens were also tested at intermediate strain rates (10 s-1 and 80 s-

1) using the Hydraulic Intermediate Strain Rate (HISR) apparatus that was developed as a part 

of this work and is described in detail in Part 3.  The stress versus strain curves generated from 

the quenched and deformed specimens revealed that the presence of ferrite within the tailored 

microstructure resulted in almost no change in yield strength (Y) and a slight increase in 

ultimate tensile strength (UTS) when compared, at an equivalent hardness, to the tailored 

microstructure of the FAQA specimens (Part 2) that were devoid of ferrite.  A plot of Y and 

UTS versus hardness for the quenched and deformed and FAQA specimens is shown in Figure 

17a.  Although there was little change in material strength due to the presence of ferrite, the 

uniform elongation increased noticeably for a given hardness level less than ~350 HV, as 

plotted in Figure 17b.   

 

 

Figure 17 - (a) The measured ultimate tensile strength (σUTS) and 0.2% yield strength (σY) versus average Vickers 
hardness from the quasi-static tension tests conducted at a strain rate of 0.003 s-1 (b) The average uniform 
elongation versus the average measured Vickers hardness. The percent values indicate the average measured area 
fraction of ferrite within the microstructure. The error bars indicate +/- the standard deviation as measured from 
the population of repeat test results. The FAQA results are those measured from Part 2.  

 

The increase in uniform elongation can be seen in Figure 18 which serves to compare 

the average stress versus strain curves at material conditions with similar hardness levels. For 

the two pairs of curves with a hardness of ~260 HV and ~330 HV, the material exhibits similar 
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strength levels and a larger uniform elongation strain when the amount of ferrite present within 

the microstructure increases.   

 

 

Figure 18 - The effect of area fraction of ferrite on the uniform elongation strain. Shown for a variety of as-
quenched material conditions. Average engineering stress versus strain curves for a variety of as-quenched 
material conditions tested in this work and from the FAQA experiments (Part 2).  The tensile tests were 
conducted at a strain rate of 0.003 s-1 and the label corresponding to each curve indicates: [avg. Vickers hardness, 
avg. measured area fraction of ferrite, cooling rate, deformation condition]. 

 

By fitting the true stress versus true strain data with the power law function due to 

Holloman [48] and quantifying the strain hardening exponent (n-value), it was shown that the 

increased uniform elongation strain also corresponds to an increase in the n-value, which 

indicates greater strain hardening due to the presence of ferrite within the as-quenched 

microstructure as shown in Figure 19a.  The elevated uniform elongation strain and greater n-

value result in greater energy absorption capacity of the quenched and deformed material 

containing ferrite.  Energy absorption was quantified as the toughness, which is plotted in 

Figure 19b.  At hardness levels less than ~350 HV, the quenched and deformed material 

containing ferrite indicate improved energy absorption capacity when compared to the material 

devoid of ferrite. It was shown that a material with a bainitic microstructure containing 16% 

ferrite (with 257 HV) resulted in a 28% increase in energy absorption when compared to a 

material that was fully bainitic with a hardness of 268 HV as shown in Figure 19b. The 

toughness distribution shown in Figure 19b also shows that as-quenched materials with 

hardness values ranging from approximately 300 HV to 425 HV exhibited a lower reduced 
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energy absorbing capacity, which must be considered during the design/development of a hot 

stamped component with tailored properties.  

 

 

Figure 19 – (a) The strain hardening exponent (n) versus the Vickers hardness for the quenched and deformed 
specimens (b) The average toughness (or energy absorption) versus the Vickers hardness for the quenched and 
deformed specimens.  Also included is the data for the specimens quenched in the FAQA, from Part 2.  The 
percent values indicate the average measured area fraction of ferrite within the microstructure. 

 

The effect on increasing the loading rate revealed only moderate strain rate sensitivity 

as shown by the increase in Y and UTS (Figure 20), due to an increase in strain rate from 

0.003 s-1 to 80 s-1.  

 

  

Figure 20 - The ultimate tensile strength (UTS) for and 0.2% yield strength (Y) versus Vickers hardness for all 
of the quenched and deformed specimens tested at nominal strain rates of 0.003 s-1, 10 s-1 and 80 s-1. 
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True stress versus effective plastic strain (or flow stress) curves were generated for all 

of the various material conditions and strain rates tested in this work.  This flow stress data, 

along with the FAQA flow stress data from Part 2, was used to develop the “Tailored Crash 

Model II (TCM II)”, which is a constitutive model that is an extension of the TCM (Part 2) and 

is now a function of effective plastic strain ሺߝሻ, true strain rate ሺߝሶሻ, the martensite – bainite 

area fraction relationship [M/(M+B)] and the area fraction ferrite ሺܨሻ as shown in equation 4 

below, 

 

ߪ ൌ ݂ ቀߝ, ,ሶߝ ሾ
ெ

ெା஻
ሿ, ቁܨ ൌ ൥ܣ ቀሾ

ெ

ெା஻
ሿ, ቁܨ ൅ ቈቂܤ ቀሾ

ெ

ெା஻
ሿ, ቁܨ െ ሺሾܣ

ெ

ெା஻
ሿ, ሻቃܨ ݁ቀିఌ ஼ሺሾ

ಾ
ಾశಳ

ሿ,ிሻ⁄ ቁ቉൩ ሾ1 ൅  ሶሿ஽      (4)ߝ

 

The TCM II is based on the same Voce hardening law with exponential-type strain rate 

sensitivity term as shown in equation 1.  Rather than fitting the model parameters ሺܣ, ,ܤ ,ܥ  ሻܦ

with respect to Vickers hardness, three dimensional surface functions were found to fit each of 

the Voce model parameters with respect to the martensite – bainite area fraction relationship 

[M/(M+B)] and the area fraction ferrite ሺܨሻ.  The TCM II accurately captures the constitutive 

behavior of the tailored material conditions tested in this work for all of the strain rates as 

shown in Figure 21.  The model was also shown to be able to predict the FAQA specimen flow 

stress data (at various strain rates) measured in Part 2. 

 



 33

 

Figure 21 - The measured and predicted (TCM II) flow stress curves for the quenched and deformed specimens 
pulled at a strain rate of (a) 0.003 s-1 and (b) 80 s-1. The TDEF=600 °C and 30 °C/s results were omitted for clarity. 
The numbers adjacent to the predicted curves indicate (cooling rate °C/s, [M/(M+B)],	F). 

 

4.4 Part 4: Transition Zone Tensile Properties within a Tailored Hot 

Stamping 

Validation of constitutive models against independently generated experimental data is 

crucial for building confidence in the model and is generally considered good practice amongst 

the modeling community.  Although the Tailored Crash Model (TCM) from Part 2 was 

successfully validated against the data used to fit the model, it was important to validate the 

model against experiments conducted on actual hot stamped materials.  This was the 

motivation for Part 4, in which tensile tests were conducted on specimens that were cut from 

the transition zone of the hot stamped part developed by George et al. [1] which incorporates 

tailored properties.  A finite element (FE) model of the tensile tests was developed and the true 

stress versus effective plastic strain (or flow stress) curves used within the model were defined 

by the TCM.  It should be noted that an earlier implementation of the TCM, which 

incorporated a logarithmic strain rate sensitivity term, rather than the exponential term was 

used as shown in equation 5.  Although the strain rate term was different, the strain rate 

sensitive constitutive behaviour was predicted with nearly the same accuracy.  Also, the tests 

that were modeled in Part 4 were conducted at quasi-static strain rates. 

 

0

300

600

900

1200

1500

1800

0.00 0.02 0.04 0.06 0.08 0.10
Effective Plastic Strain (mm/mm)

0

300

600

900

1200

1500

1800

0.00 0.02 0.04 0.06 0.08 0.10

T
ru

e 
S

tr
es

s 
(M

P
a)

Effective Plastic Strain (mm/mm)

a

ND

TDEF=800 °C
TDEF=600 °C

30,81%,3%
30,72%,2%

15,61%,6%

10,16%,16%

15,14%,12%
10,20%,12%
10,23%,6%

15,64%,18%

Measured TCM II

b

80 s-10.003 s-1



 34 

𝜎 = 𝑓(𝜀, 𝜀̇,𝐻𝑉) = �𝐴(𝐻𝑉) + �[𝐵(𝐻𝑉)− 𝐴(𝐻𝑉)]𝑒�−
𝜀

𝐶(𝐻𝑉)��� [1 + 𝐷(𝐻𝑉) ∙ 𝑙𝑛(𝜀̇)]      (5) 

 

For the experimental part of this work, tensile dog-bone specimens were extracted from 

the transition zone of the lab-scale B-pillar created due to the work of George et al. [1].  Figure 

22a shows a CAD image of the heated and cooled tooling that was used to create the tailored 

B-pillar part using the in-die heating technique.  The hard and soft zone of the hot stamped part 

are indicated in Figure 22b, along with the transition zone that is due to the air gap present in 

the hot stamping tool.  Sub-sized ASTM-E8 tensile specimens were extracted from various 

locations at the transition zone shown in Figure 22b.  The material properties varied across the 

gauge length of the tensile specimen for which the hardness indicated a transition from fully 

martensitic (450 HV) to fully bainitic (265 HV) microstructure.  The tensile specimens were 

pulled in tension and the stress-strain response was measured.  Also, digital image correlation 

(DIC) techniques were used to measure the strain distribution during tensile loading, which 

provided additional validation for the FE models. 

 

 

Figure 22 - a) A CAD image of the heated/cooled hot stamping die set (b) A photograph of a hot stamped part 
with the transition zone specimen locations highlighted. The dashed line indicates the location of the 3 mm air 
gap in the tool which represents the middle of the transition zone. Copyright © SAE International. Reprinted with 
permission from SAE paper 2012-01-0531. 
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A finite element (FE) model (Figure 23a) of the transition zone tensile specimens was 

created and loaded using boundary conditions corresponding to those in the experiments.  The 

material flow stress curves defined for the FE model were generated using the TCM (equation 

5) based on the measured Vickers hardness distribution along the length of the tensile 

specimens.  A sample of the variation in flow stress (as predicted by equation 5) due to 

hardness and strain rate is shown in Figure 23b.   

 

 

 

Figure 23 - a) Finite element mesh of the tensile specimens cut from location 1 to 5. (b) A sample of flow stress 
curves generated using the TCM from Article 2 with a logarithmic strain rate sensitivity term. Copyright © SAE 
International. Reprinted with permission from SAE paper 2012-01-0531. 

 

Material properties corresponding to the measured hardness distribution within each 

specimen were mapped onto the finite element mesh and the material stress versus strain data 

was assigned using a point-wise stress-strain-strain rate material model according to the 

procedure described by Bardelcik et al. [47]. The FE simulation of the tension tests accurately 

reproduced the experimentally measured engineering stress versus strain curves, as seen in 

Figure 24a.  The DIC analysis of the strains within tensile samples also revealed that the FE 

model predicted the measured strain distribution well, as shown in Figure 24b.   
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Figure 24 – (a) The measured and predicted engineering stress vs. engineering strain curves for the location 1,2,4 
and 5 specimens.  The location 3 results were omitted for clarity. (b) The measured (DIC) and predicted (FE) 
major engineering strain distributions at the strain state indicated. The framed numbers indicate the specimen 
location within the hot stamped part (Figure 22).  Copyright © SAE International. Reprinted with permission 
from SAE paper 2012-01-0531. 
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5 DISCUSSION 

The research presented in this thesis has successfully characterized the high strain rate 

mechanical response of USIBOR® 1500P boron steel with tailored properties imparted through 

a thermal-mechanical route which simulates a hot stamping process with in-die heating.  In 

general, the low hardness regions within tailored hot stampings were shown to exhibit reduced 

strength, improved ductility and good energy absorption properties.  These characteristics 

indicate that a hot stamped component with tailored properties may offer improved crash 

performance.  The strain-rate sensitive constitutive models developed in this work can be 

directly applied to finite element (FE) simulations of component-level or full-vehicle impact 

models that utilize hot stamped components with tailored properties.  These models are needed 

to support the design and development of vehicle crash structures incorporating tailored hot 

stamped parts. 

From a material response perspective, it was shown that a tailored material condition 

consisting of bainite has improved ductility compared to a fully martensitic material condition, 

with comparable energy absorption.  These mechanical properties suggest that a hot stamping 

with a tailored region consisting of bainite may be desirable because such a region can locally 

absorb impact energy during crash and resist fracture in regions that are inherently susceptible 

to cracking due to geometric constraints.  The increased reduction in area for an increasingly 

more bainitic material condition corresponds to improved ductility, which is also attractive 

from an energy absorption perspective.   

Plastic deformation during quenching results in the transformation of austenite into 

ferrite at cooling rates near or below the critical cooling rate.  The current mechanical 

characterization efforts have demonstrated that the presence of ferrite within a tailored 

microstructure not only increases the UTS of the material (for an equivalent hardness), but also 

increases the uniform elongation and strain hardening behavior (n-value) for hardness levels 

less than ~350 HV.  The presence of ferrite with the low strength and high ductility within the 

tailored microstructure resulted in a more ductile behavior, which ultimately improved the 

energy absorption capacity. With this desirable increase in energy absorption or toughness, it 

may be possible to design future processing strategies to intentionally introduce elevated levels 

of strain to improve overall crash performance. Regardless of whether such a strategy can be 
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implemented in practice, the current work provides a constitutive model that accounts for the 

presence of ferrite resulting from deformation during quenching. 

It was also observed that the morphology of the bainite present in the as-quenched 

microstructure changed from an upper bainite-type lath structure, when no deformation was 

imposed during quenching, to a granular bainite structure (with ferrite regions) when 

simultaneous deformation was operative during quenching.  The effect of bainite morphology 

on the mechanical response of tailored components has to be further investigated to reveal 

what degree of influence it has on the energy absorption capacity of the material.   

For all of the tailored microstructures examined in this work, it was revealed that 

intermediate as-quenched hardness, values ranging from approximately 300 HV to 425 HV, 

resulted in reduced energy absorption capacity, which must be considered during the 

design/development of a hot stamped component with tailored properties. Interestingly, the 

current work on tensile testing of transition zones (Part 4) has not revealed any embrittling 

effect of this lower toughness material within the transition between high and low hardness 

phases. 

In terms of industrial viability, the lab-scale hot stamping process with in-die heating 

reported by George et al. [1] has successfully produced a hot stamped part with a tailored 

region consisting primarily of bainite that meets industrial targets for as-formed properties and 

manufacturability.  Other researchers [31-37] have also examined the hot stamping process 

with in-die heating, but those studies have not provided in-depth characterization of the as-

quenched stress-strain response and mechanical properties that result for the as-quenched and 

multiphase microstructures.  Other tailoring techniques, such as hot stamping of non-boron 

alloyed steel [49] and varying austenization temperatures with subsequent quenching [50] have 

also been studied, but the as-quenched microstructures resulting from these tailoring 

techniques differ from those that are achieved due to in-die heating.  The most novel 

contribution stemming from this thesis are the strain rate sensitive constitutive models that can 

be used to define finite element (FE) constitutive properties needed to model the in-service 

crash response of such tailored components.  These models accurately capture both the strain 

hardening response and the strengthening effect due to elevated loading rates for the range of 

phases present in hot stampings produced using in-die heating tailoring techniques.  Such 

models represent an important tool for future vehicle structure design, optimization and 
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validation, which precedes the development of an actual part.  These models should serve to 

improve the accuracy of crash simulation; in addition, they can be used to optimize the hot 

stamping process itself, by identifying the critical regions that will benefit from introduction of 

tailored properties. 
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6 CONCLUSIONS 

The following conclusions are drawn from this research: 

 

 The as-quenched microstructure due to cooling rates of 45 °C/s and 250 °C/s resulted in 

the formation of 100% martensite, for which the quasi-static ultimate tensile strength 

(UTS) and hardness were approximately 1,450 MPa and 476 HV, respectively.  Optical 

micrographs of specimens quenched at 2,200 °C/s revealed that the martensitic 

microstructure was refined (compared to 45 °C/s and 250 °C/s) which most likely 

contributed to the elevated UTS of 1,620 MPa and hardness of 516 HV for this 

condition.  The strain rate sensitivity was shown to be moderate for the specimens 

quenched at 45 °C/s and 250 °C/s, and minimal for the specimens quenched at of 2,200 

°C/s.  

 

 Specimens quenched at and below the critical cooling rate (< ~27 °C/s) resulted in as-

quenched tailored microstructures that varied from bainitic to martensitic, for which the 

measured Vickers hardness varied linearly with respect to the area fraction of martensite 

and bainite.  The UTS and strain at failure of the martensitic material condition was 

1,447 MPa and 0.10, respectively, while the UTS and strain at failure of the bainitic 

material condition was 816 MPa and 0.15 strain, respectively.  The fracture surface 

reduction in area also increased from 58% to 70% as the microstructure varied from 

martensitic to bainitic.  The overall mechanical properties measured for the bainitic 

material condition indicate that a tailored microstructure consisting of bainite may be a 

desirable candidate material condition for implementation within a hot stamped 

structural component for improved crash performance.   

 

 For as-quenched tailored microstructures consisting of martensite, bainite and ferrite, the 

presence of ferrite was shown to slightly improve the UTS without affecting the yield 

strength for material conditions with similar Vickers hardness values.  The presence of 

ferrite in the tailored microstructure also noticeably increased the uniform elongation and 

hardening behavior (n-value) which resulted in improved material toughness (or energy 
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absorption capacity) for hardness values less than ~350 HV.  The improvement in energy 

absorption due to the presence of 16% ferrite within a 257 HV predominantly bainitic 

microstructure was 28% when compared to a bainitic material condition that was void of 

ferrite, but of similar hardness. 

 

 All of the as-quenched material conditions tested in this work (except for the 2,200 °C/s 

case) displayed moderate strain rate sensitivity as measured from uniaxial tensile data 

generated at a various strain rates  (0.003 s-1 to ~1,075 s-1). The tensile data was used to  

develop the “Tailored Crash Model (TCM)” which was shown to accurately reproduce 

the measured flow stress data as a function of effective plastic strain, true strain rate and 

Vickers hardness (or area fraction martensite) for materials ranging in microstructure 

from martensite to bainite.  The “Tailored Crash Model II (TCM II)”, which introduced 

the effect of ferrite on the constitutive response, also accurately reproduced the measured 

flow stress data as a function of effective plastic strain, true strain rate and area fractions 

of martensite, bainite and ferrite.   

 

 The TCM constitutive model was validated against uniaxial tension tests conducted on 

specimens that were extracted from the transition zone of a tailored hot stamping and 

varied in hardness from 459 HV to 265 HV along the gauge length.  The measured 

hardness distributions were used to define the finite element (FE) constitutive response 

for models of the experiments.  The measured stress versus strain response was in 

excellent agreement with FE models, as was the strain distribution during loading that 

was measured using digital image correlation. 
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7 FUTURE WORK 

The following future work is proposed as next steps to support the commercial 

implementation of tailored hot stampings:  

 

 The constitutive models developed in this work have been validated primarily for 

uniaxial loading and it was assumed that the materials behave in an isotropic manner.  

Future work will consider multi-axial loading and variations in strain paths to fully 

validate the model and assumptions made in this work. 

 

 Develop a fracture criterion that is based on the variation of martensite, bainite and 

ferrite within the as-quenched microstructure.  Such a fracture criterion will improve the 

accuracy of finite element crash simulations. 

 

 Validate the TCM II constitutive model and fracture criterion against impact experiments 

on hot stamped components with tailored properties.   

 

 Identify whether it is feasible to develop a hot stamping process in which deformation 

can be imposed throughout the blank during quenching to form ferrite within tailored 

regions for enhanced energy absorption. 

 

 Conduct a rigorous metallographic examination of the as-quenched multiphase material 

conditions to understand the dislocation dynamics at play and how they contribute to the 

measured constitutive response.  This would require advanced metallographic 

experimental techniques such as TEM and XRD. 
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a b s t r a c t

In this work, the effect of cooling rate on the high strain rate behavior of hardened boron steel was
investigated. A furnace was used to austenize boron sheet metal blanks which were then quenched in
various media. The four measured cooling rates during the solid state transformation were: 25
(compressed air quench), 45 (compressed air quench), 250 (oil quench) and 2200 �C/s (water quench).
Micro-hardness measurements and optical microscopy verified the expected as-quenched microstruc-
ture for the various cooling rates. Miniature dog-bone specimens were machined from the quenched
blanks and tested in tension at a quasi-static rate, 0.003 s�1 (Instron) and a high rate, 960 s�1 (split
Hopkinson tensile bar). The resulting stress vs. strain curves showed that the UTS increased from
1270 MPa to 1430 MPa as strain rate increased for the specimens cooled at 25 �C/s, while the UTS
increased from 1615 MPa to 1635 MPa for the specimens cooled at 2200 �C/s. The high rate tests showed
increased ductility for the 25, 45 and 250 �C/s specimens, while the specimens cooled at 2200 �C/s
showed a slight decrease. The Hollomon hardening curve was fit to the true stress vs. true strain curves
and showed that the mechanical response of the high rate tests exhibited a greater rate of hardening
prior to fracture than the quasi-static tests. The hardening rate also increased for the specimens
quenched at higher cooling rates. Optical micrographs of the fractured specimens showed that the failure
mechanism transformed from a ductile-shear mode at the lower cooling rates to a shear mode at the
high cooling rates.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The current demand to reduce vehicle weight for improved fuel
efficiency, while maintaining crash performance, has led to the
application of new and innovative materials and manufacturing
processes in the automotive industry. One such process is hot
forming die quenching (HFDQ) of boron steel where sheet metal is
austenized and subsequently stamped in a cooled die as shown in
Fig. 1a. The process was developed and patented in 1974 by NJA
which later merged to SSAB Hardtech and is today known as Ges-
tamp Hardtech [1]. Although this process has been around for some
30 years, the estimated increase in European consumption of flat
boron steel (60,000–80,000 t/year in 2004 is expected to increase
up to 300,000 t/year in 2008–2009) indicates that automobile
manufacturers are implementing more hot formed components
into their vehicle design [2]. The HFDQ process is currently used to
manufacture structural components such as bumper beams, door
intrusion beams, A and B-pillars, roof and side rails [1–3]. These
components are critical to the crash performance of a vehicle.

The HFDQ process allows for conventional stamping equipment
to be used for the production of ultra high strength steel (UHSS)
parts that have a final ultimate tensile strength of approximately
1500 MPa. This is achieved by heating the boron sheet metal to
a temperature greater than 900 �C to achieve a homogeneous
austenitic microstructure. After annealing, the sheet is transferred
to a stamping press and formed with a cold tool. The initial high
temperature of the sheet facilitates forming as the boron material
exhibits reduced flow stress and greater ductility at high temper-
ature. During the forming process however, the cold tool forces the
cooling rate of the sheet to be greater than 30 �C/s, which results in
a fully martensitic phase transformation of the sheet after it has
been cooled as shown by the boron steel continuous cooling
transformation (CCT) diagram in Fig. 1b [3–6].

Although components with a fully martensitic microstructure
are desired because of the UHSS material properties, some struc-
tural components, such as a B-pillar, may benefit from regions that
have a lower strength and greater ductility for improved crash
performance as shown in Fig. 1c. These varying mechanical prop-
erties can be achieved by modifying the cooling rate within the
stamping die during the HFDQ process. A cooling rate lower than
30 �C/s will result in a microstructure which contains other more
ductile phases, such as bainite, ferrite or pearlite [6,7].

* Corresponding author. Tel.: þ1 519 888 4567x36936; fax: þ1 519 885 8562.
E-mail address: abardelc@uwaterloo.ca (A. Bardelcik).

Contents lists available at ScienceDirect

International Journal of Impact Engineering

journal homepage: www.elsevier .com/locate/ i j impeng

0734-743X/$ – see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijimpeng.2009.05.009

International Journal of Impact Engineering 37 (2010) 694–702

abardelc
Text Box
48




The HFDQ process is well understood, and thermo-mechanical
finite element numerical models of the forming process have been
successfully developed [3,5,8–10], but there is little published work
on the as-formed, high strain rate properties of HFDQ boron steel.
In a crash situation, the local strain rates in deformation zones may
reach levels up to 1000 s�1 [11]; therefore, the high strain rate
performance of the as-formed boron steel must be taken into
account when modeling full-scale vehicle crash, which is the main
motivation of this work.

In this study, USIBOR� 1500P boron sheet metal was austenized
according to the HFDQ parameters and quenched in various media
to achieve cooling rates below and above the critical rate of 30 �C/s.
Miniature dog-bone specimens were then made and tested in
tension at a quasi-static strain rate of 0.003 s�1 with an Instron and
at a high strain rate of 960 s�1 using a split Hopkinson tensile bar
apparatus. Stress vs. strain curves were then analyzed to assess the
effect of cooling rate on the high strain rate performance of the
boron steel. The Hollomon hardening law was fit to the data and
used to compare the hardening behaviour of the different test
conditions. To gain further insight into the as-quenched micro-
structure of the boron steel, micro-hardness measurements were
made and a metallographic analysis was undertaken.

2. Experimental work

In this section the heating and quenching tests that were used to
simulate theHFDQprocess are discussed alongwith the results of the
micro-hardness testing and themetallographic analysis. The lowand
high strain rate test experimental procedures are outlined as well.

2.1. Heating and quenching experiments

To simulate the HFDQ process, 1.63 mm USIBOR� 1500P
(aluminum–silicon coated 22MnB5 steel, 0.22% carbon) boron sheet
metal blankswere austenized in an electric furnace and quenched in

various media to achieve different cooling rates. The as-received
yield and ultimate tensile strength of the boron sheet metal were
385 MPa and 575MPa respectively. High temperature Inconel
overbraided thermocoupleswere resistancewelded to the surface of
the boron steel blanks. An Omega data acquisition system (OMB-
DAQ-55) was used to monitor and record the blank temperature at
28 Hz which gives adequate temporal resolution at even the highest
cooling rate. The blanks were placed into a 950 �C oven and held for
5 min after the temperature rose above 900 �C. After the 5-min hold
time, the blankswere removed from the oven andquenched in three
different media; a water bath (22 �C), a heated oil bath (85 �C) and
compressed air at low and high flow rates. Due to the time required
to transfer the specimen, the temperature dropped to approximately
870 �Cprior to quenching. For thewater andoil bath, theblankswere
fully submerged in the media, while the compressed air apparatus
was used to blowair onto both sides of the blank. Themanual nature
of the compressed air apparatus resulted in a less repeatable cooling
rate for the blanks, which further became apparent during the low
and high strain rate mechanical testing. The cooling rate was quan-
tified using an ideal (and linear) cooling rate curve that was con-
structed from the measured start temperature to the beginning of
the apparent phase transformation temperature (approximately
400 �C for all rates)whichappears as adecrease in cooling rate due to
the heat released during the transformation. Although this change in
cooling rate is a good approximation of a phase transformation,
dilation tests provide a more accurate measure of the phase trans-
formation temperature/time. Using this method of determining the
cooling rate, the following rates were measured for the 4 different
quench media; 25, 45, 250 and 2200 �C/s.

Fig. 2 shows the USIBOR� 1500P continuous cooling trans-
formation (CCT) diagram with the measured cooling curves. As
indicated by the CCT diagram, the blanks quenched at 45, 250 and
2200 �C/s should have a fully martensitic microstructure (indicated
by an ‘‘M’’), while the blank quenched at 25 �C/s is expected to have
bainite within its microstructure since the cooling curve
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intersected the nose of the CCT where bainite forms (indicated by
a ‘‘B’’ in the figure).

2.2. Micro-hardness testing

Micro-hardness testing of the quenched specimens was con-
ducted to quantify the effect of cooling rate/microstructure on the
Vickers hardness. The micro-hardness was measured using a LECO
MHT Series 2000 testing system. The hardnessmeasurements were
taken in the gauge length region of the miniature dog-bone spec-
imens that were made from the quenched blank as shown in Fig. 3
inset. The hardness values are similar through the thickness of
the quenched specimens as shown in Fig. 3. The average through
the thickness Vickers and Rockwell C [HRC] hardness values of the
quenched specimens are shown in Table 1.

Hodge and Orehoski [12] conducted Jominy bar end-quench
tests on a variety of carbon steels and showed (using microstruc-
tural examination) that for a 0.22% carbon steel, the microstructure
consisted of 99% martensite when the measured hardness was
greater than 45.4 HRC (independently shown for high purity iron–
carbon alloys by Litwinchuk et al. [13]). As they examined the
microstructure further away from the quenched end of the Jominy
bar (where cooling rates were lower andmore bainitewas present),
they showed that the percent martensite formed and hardness
decreased. Table 1 shows the predicted percent martensite formed
(using Ref. [12]) based on the average micro-hardness measure-
ments made for this work. Because the 25 �C/s cooling curve
intersected the bainite formation region of the boron steel CCT
diagram (Fig. 2), the predicted percent martensite formed is 95%
while, while the remainder is expected to be bainite. The hardness
of the other three cooling rate specimens predict a fully martensitic
(99%) as-quenched microstructure which is expected because of
the position of the cooling curves on the CCT diagram. Although the
microstructure of the specimens quenched at 45, 250, 2200 �C/s is
fully martensitic, the hardness increases for higher cooling rates
and may be due to a change in the martensitic structure as will be
shown in the next section.

2.3. Metallography

After quenching and mechanical testing, the specimens were
studied using metallographic techniques. The specimens were
mounted in epoxy resin, ground and polished to a mirror finish

using 500, 1200 and 4000 grit SiC paper; followed by 3, 1 and
0.25 mm diamond paste. A 2% Nital etching solution was used to
reveal the microstructure. Microstructural and failure character-
ization was carried out using an Olympus BH60 optical microscope
equipped with an ImagePro Plus 5.1 image analysis software.

As indicated by the CCT diagram in Fig. 2 and predicted by
Ref. [12] (Table 1), the blanks quenched at 45, 250 and 2200 �C/s
should have a fully martensitic microstructure; while the blanks
quenched at 25 �C/s are expected to have a predominantly
martensitic microstructure with small amounts of bainite since the
cooling curve intersected the nose of the CCT where bainite forms.
Because the weight percent carbon of the boron steel is less than
0.60%, the as-quenched martensite consists of a lath structure
[14,15]. Initial metallographic examination of the as-quench blanks
confirms the martensitic microstructure for the 25, 45 and 250 �C/s
specimens as shown in Fig. 4a and b. The magnified sections of the
micrographs highlight the previous austenite grain boundaries and
the packets of parallel lath crystals that are characteristics of the
martensite [14–17]. The microstructure of the specimen cooled at
2200 �C/s appears to contain a finer and more randomly oriented
structure. The previous austenite grain boundaries are difficult to
distinguish and the observed packet size is more fine and randomly
dispersed throughout the microstructure, which would lead one to
expect that the martensite will have an elevated strength (hardness
has already been shown to be elevated) do to an increase in
dislocation impedances [15,16,18].

2.4. Low to high strain rate mechanical testing

The quenched blanks were CNC machined into the miniature
dog-bone style specimens shown in Fig. 5a. The specimen gauge
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Table 1
Measured cooling rates, Vickers hardness and percent martensite of the quench
blanks.

Quench media Measured
cooling,
rate (�C/s)

Average Vickers
hardness [HRC]

Percent martensite
of a 0.22% carbon
steela

Low flow compressed air 25 420 [43.6] 95%
High flow compressed air 45 472 [47.1] 99%
Oil bath 250 480 [47.7] 99%
Water bath 2200 516 [50.2] 99%

a Predicted as a function of hardness [12].
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length was 12.5 mm and the same specimen was used for both the
low and high strain rate tests. Work conducted at the University of
Waterloo has shown that the miniature dog-bone style geometry
used for this work correlated well with standard ASTM (E 8M-04)
dog-bone specimen results up to the ultimate tensile strength for
both aluminium [19,20] and advanced high strength steels [21–23].
Fig. 5 shows the Instron apparatus that was used for the quasi-static
strain rate tests and the split Hopkinson tensile bar apparatus that
was used for the high rate tests. For each of the four cooling rates,
three repeatable test results were used for the analysis at the two
strain rates.

Quasi-static strain rate. The quasi-static experiments were con-
ducted using a servo hydraulic Instron testing apparatus (Fig. 5b).
Custom grips were made for the miniature dog-bone specimens
and an extensometer was used to measure the elongation of the
specimen gauge length. A cross-head displacement of 2.25 mm/
min was used, which resulted in a strain rate of 0.003 s�1.

High strain rate. High strain rate testing was conducted using the
split Hopkinson tensile bar (SHTB) apparatus at the University of
Waterloo (Fig. 5c). The apparatus is described briefly here, while
a more detailed description can be found in Refs. [19,21].

The SHTB uses a gas gun to propel a concentric hollow striker
towards an end cap located at the free end of the incident pressure
bar. Upon impact, a tensile incident loading pulse is generated
which travels towards the specimen. As the incident wave reaches

the specimen a portion is transmitted into the sample with the
remainder being reflected. The specimen is overwhelmed by the
applied impulse which causes the specimen to deform at high rates.
Strain gauges placed on the incident and transmitted bars measure
the incident, reflected and transmitted waves. The waves are then
analyzed using the Hopkinson bar equations to determine the stress
vs. strain relationship of the sample. The strain rates for these tests
were relatively constant during plastic deformation and the average
measured values for all of the specimens tested were 960 s�1.

3. Results and discussion

The results of the two strain rate tests performed at 0.003 s�1

and 960 s�1 for each cooling rate are presented. The Holloman
hardening law is fit to the experimental data and the flow stress
curves are presented to show the plastic behavior of the quenched
specimens up to the UTS.

3.1. Constitutive behaviour

Fig. 6a and b shows the complete set of engineering stress vs.
strain results for the quasi-static and high strain rate tests respec-
tively. As can be seen in the figures, the results of the 45, 250 and
2200 �C/s tests were very repeatable at both strain rates, while the
tests performed on the 25 �C/s specimens exhibited more scatter.

Fig. 4. Optical micrographs of quenched specimens (a) 25 �C/s (b) 45 �C/s and (c) 2200 �C/s. Etchant: 2% Nital. The microstructure of the 250 �C/s specimens are very similar to the
45 �C/s specimens.

Fig. 5. (a) Miniature dog-bone specimen geometry (dimensions are in mm) (b) Quasi-Static testing apparatus and (c) Split Hopkinson tensile bar apparatus.
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Due to the manual nature of the compressed air quenching appa-
ratus, the measured cooling rate varied between 23 and 26 �C/s
along the blank from which the specimens were cut. Due to this
slight variation in cooling rate, the percent volume of bainite/
martensite formed would have also varied, resulting in less
repeatability of the mechanical properties due to a variation in the
microstructure. This also indicates the sensitivity of the material’s
mechanical response to small fluctuations in cooling rate. For each
test condition, the data of the three repeated tests were averaged
and a representative curve was constructed for each condition as
shown in Fig. 6c. The results of the 250 and 45 �C/s cooling rates
were very similar, therefore the 250 �C/s datawas omitted in Fig. 6c
for clarity. The engineering parameters used to compare the effect
of cooling rate and strain rate on the mechanical response are; the
ultimate tensile strength (UTS), the yield strength (YS) and the
strain at failure. These three results (average and individual test
results) are summarized in Fig. 7.

For all of the conditions tested, the UTS occurred between 0.03
and 0.06 strain. Fig. 7a shows that the UTS of the cooling rates
within the hot forming die quenching (HFDQ) process window (45
and 250 �C/s) are on average 1450 MPa at the quasi-static (QS)
strain rate and increases by 6% to approximately 1540 MPa at the

high strain rate (HSR). At the highest cooling rate, which is beyond
the HFDQ process window, the UTS marginally increased from
1620 MPa at QS to 1640 MPa at HSR. The 25 �C/s cooling rate
specimens resulted in a UTS of 1270 MPa at QS and 1430 MPa for
the HSR test. This cooling rate showed the greatest increase in UTS
(13%) as a function of strain rate.

The yield strength (YS) of the test specimens was calculated
using the 0.2% offset method. For each test, an apparent elastic
modulus was fit to the initial linear rise portion up to 900 MPa and
then used in the 0.2% offset method. Fig. 7b shows the results of the
measured YS as a function of strain rate. As expected, the YS trends
are similar to the UTS trends (Fig. 7a) for the different cooling rates.
The 2200 �C/s cooling rate specimens showed almost no increase in
YS (w1340 MPa) for the two rates tested, while the 25 �C/s cooling
rate specimens showed the greatest increase in YS from 1130 MPa
at QS up to 1200 MPa at the HSR.

There is a large amount of scatter in the engineering strain at
failure (Fig. 7c) at the QS rate for all of the cooling rates. On average,
the QS strain at failure was approximately 0.11 for the 25, 45 and
250 �C/s cooling rates, while for the HSR tests, therewas less scatter
and an average increase in strain at failure to approximately 0.13.
Similar increases in strain at failure have been shown for advanced
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high strength steels [23,24] and aluminum [20,25]. For the 2200 �C/s
cooling rate specimens, the strain at failure decreased slightly when
the strain rate was increased from QS to HSR.

In addition to the strain at failure, the reduction in cross-
sectional area at failure, which is a measure of ductility, was
measured and is presented vs. strain rate in Fig. 8a. An Olympus
BH60 optical microscope equipped with ImagePro Plus 5.1 image
analysis softwarewas used tomeasure the cross-section of the failed
specimens. After image enhancement, the cross-sectional area was
measured by tracing a polygon around the edge of the fracture
surface as shown in Fig. 8b and c. Due to the large shear lips formed
at the fracture surface of the specimens quenched at 25 �C/s, it was
difficult to accurately measure the cross-section and therefore the

Table 2
Results of the Hollomon hardening function curve fit.

Cooling
rate (�C/s)

Strain
rate (s�1)

Strength coefficient,
K (MPa)

Strain-hardening
coefficient, n

R2

25 0.003 1758 0.084 0.982
960 2119 0.108 0.940

45 0.003 2118 0.106 0.969
960 2755 0.162 0.963

250 0.003 2183 0.110 0.965
960 2538 0.143 0.924

2200 0.003 2473 0.116 0.959
960 3441 0.202 0.974

Fig. 10. Optical micrographs showing the cross-section and fracture profiles of specimens tested at 0.003 s�1 for (a) 25 �C/s (b) 45 �C/s (c) 250 �C/s and (d) 2200 �C/s. The images on
the right are higher-resolution images of regions highlighted on the left. As-polished and viewed along the long-transverse plane.
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results were omitted. The Fig. 8a trends suggest that by increasing
the strain rate, the specimens quenched at 45 and 250 �C/s show
improved ductility while the 2200 �C/s specimens were unaffected
at the higher strain rate. These results agreewith the strain at failure
trends shown in Fig. 7c.

The engineering stress vs. strain data was converted into true
stress vs. strain and used to rank the relative formability of the
quenched specimens (Fig. 9a). For clarity, the 250 �C/s results were
omitted. In order to quantify the effect of cooling and deformation
rate on the hardening behaviour, the Hollomon [26] equation was
fit to the true stress vs. strain data,

s ¼ Ken (1)

where K is the strength coefficient (MPa) and n is the strain-
hardening exponent. Each individual test result was fit with (1)
from 0.015 strain up to the UTS. This portion of the curves was
selected because it has been shown that notable changes occur in
the n-value at low strains for most metals and in particular for
martensitic steels [27,28]. The K and n parameters were then
averaged for each condition and are shown in Table 2. As an
indication to the goodness of the fitted parameters, the R-squared
value is identified in the table. The results of the curve fitting
exercise are plotted as the curves with data points in Fig. 9a. For
most metals, the n-value provides an empirical parameter for
appraising the relative stretch formability of similar metallic
systems and is useful for estimating the strain at the onset of
necking in a uniaxial tension test [29,30].

The strain-hardening coefficient results in Table 2 indicate that
the onset of necking ranges from 0.08 to 0.20 strain for all of the
conditions tested. This does not agree with the measured results
(see Fig. 6) which show that the onset of necking occurs between
0.03 and 0.06 strain. Although the predicted n-values are high,
they serve to rank the relative formability of the specimens tested
in this work. For all of the individual cooling rates, the HSR
n-values are greater than the QS n-values, indicating that a higher
rate of deformation causes the rate of hardening to increase. This
agrees with the increased strain at failure (except for 2200 �C/s) at
HSR as shown in Fig. 7c. The K-values of the HSR tests are also
greater than the QS tests for each cooling rate, which show the
increased strength of the material at higher rates of loading.

All of the repeat tests conducted for this work were converted
from engineering to true stress vs. effective plastic strain (or flow
stress curves) up to the point of necking. The apparent modulus
that was found for each test was used to calculate an elastic strain
which was subtracted from the total strain resulting in effective
plastic strain. For each condition, an average curve of the repeated
tests was found and is shown in Fig. 9b (the 250 �C/s results were
omitted for clarity). In general, the flow stress increases at the
higher strain rate for all of the cooling rates tested. Also, the
difference in flow stress between the QS and HSR tests decreases as
the cooling rate is increased. This is shown in Fig. 9b by the flow
difference for the three cooling rates, where the difference is
approximately 40 MPa for the 2200 �C/s specimens while the
difference is approximately 150 MPa for the specimens cooled at
25 �C/s (at 0.02 strain). This trend may be related to the increased
hardness (and change in microstructure) that the specimens
exhibited for higher cooling rates.

3.2. Deformation behaviour

The optical micrographs in Fig. 10 show the typical cross-section
and fracture profile of the as-quenched blanks that failed at a strain
rate of 0.003 s�1. As the cooling rate of the specimens increases
from 25 to 2200 �C/s, the fracture surface changes from that of

a rough fibrous ductile appearance (Fig. 10a and b) to a smoother
planar shear appearance (Fig. 10c and d). This suggests that the
failure mechanism transitions from a ductile-shear mode to a shear
mode with increasing cooling rates. Less localized necking is also
observed in specimens quenched at the higher rates. This trend is
expected considering the increased hardness of the specimens
quenched at the higher rates (Fig. 3). Damage in the specimens
studied is also found to be sensitive to the cooling rate. In speci-
mens quenched at 25 and 45 �C/s, damage is observed to occur via
a void nucleation and growth mechanism at the grey hard non-
deformable intermetallics seen in Fig. 10a and b, prior to final
failure via shear overload. For specimens quenched at 250 and
2200 �C/s, the presence of micro-cracks are seen along the centre-
line of the specimen (Fig. 10c) or adjacent to the fracture surface at
approximately 45 degrees angle to the applied load.

4. Conclusions and recommendations

Utilizing a furnace and various quenching media, four different
cooling rates were successfully imposed on initially austenized
boron steel blanks. The boron steel CCT diagram showed that the
45, 250 and 2200 �C/s quenched blanks resulted in a fully
martensitic phase transformation, while the 25 �C/s cooling rate
specimens allowed approximately 95% martensite to formwith the
remainder being bainite. This was confirmed by the measured
cooling rates and the micro-hardness tests.

The repeatability of the quasi-static 0.003 s�1 (QS) andhigh strain
rate 960 s�1 (HSR) tests was good for the 45, 250 and 2200 �C/s
specimens. The 25 �C/s specimens showedmore scatter because the
cooling rate varied slightly along the blank. It is likely that the
variation in cooling rate resulted in a variation of bainite formed.
Future work will examine lower cooling rates that produce other
phases such as pearlite and ferrite.

The 45 and 250 �C/s cooling rates are representative of the
thermal route that boron sheet undergoes during the hot forming
die quenching (HFDQ) process. Even though the cooling rates vary
considerable, the mechanical properties of the quenched speci-
mens are almost identical, which is an attribute of this robust
process. By increasing the strain rate from QS to HSR, the average
ultimate tensile strength and average yield stress increase by 6%
and 4% respectively. The increased strain rate also showed an
average increase in strain at failure from 0.11 to 0.13.

A structural vehicle member, such as a B-pillar, would benefit
from regions that have increased elongation properties for
improved crash performance. One such method is to lower the
cooling rate during forming, which introduces other phases such as
bainite, pearlite and ferrite. By introducing some bainite into the
mostly martensitic microstructure, the ultimate tensile strength
(UTS) of the 25 �C/s quenched specimenwas reduced (compared to
the 45 and 250 �C/s) by an average of 190 MPa at QS and 110 MPa at
HSR. Similarly, the YS also reduced by 75 MPa and 60 MPa for QS
and HSR respectively. The strain at failure was similar to the 45 and
250 �C/s quenched specimens and did not offer an increase in
elongation that would have been beneficial for improved energy
absorption.

The highest cooling rate (2200 �C/s) is outside the realistic
capability of the HFDQ process, and illustrates a bounding extreme
of the boron steel properties. An increase in strain rate from QS to
HSR resulted in a marginal increase in UTS from 1620 MPa to
1640 MPa and almost no increase in YS. In comparison to all of the
cooling rates tested, the 2200 �C/s specimens showed a slight
decrease in strain at failure and the lowest increase in flow stress
when tested at the high rate.

It has been shown that the strain-hardening exponent (n), which
was derived fromtheHollomonequation, does not predict the strain
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at the onset of necking as it does for other metals. It does however
showthat loading the specimens at 960 s�1 results in a higher rate of
strain-hardening prior to fracture than the specimens loaded at the
0.003 s�1 rate, as indicated by the higher n-values.

Optical micrographs showed that the highest cooling rate
produces a more refined martensitic grain structure. Also, as the
cooling rate was increased, the observed failure mechanism
transformed from a ductile-shear mode to a shear mode.
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a b s t r a c t

In this work, boron steel sheet metal blanks were austenized and quenched at five different cooling rates
ranging from 14 �C/s to 50 �C/s, which resulted in as-quenched microstructures that ranged from bainitic
to martensitic respectively. Micro-hardness tests revealed a linear relationship between the Vickers
hardness and percent area fraction of martensite and bainite present in the quenched specimens.
Miniature tensile specimens were machined from the quenched blanks and tested in tension at four
strain rates from 0.003 s�1 to 1075 s�1. For the 0.003 s�1 tests, the ultimate tensile strength (UTS)
increased from 816 MPa to 1447 MPa for the 14 �C/s and 50 �C/s quench condition respectively. By
elevating the strain rate from 0.003 s�1 to 1075 s�1, the UTS of the 14 �C/s specimens increased by
134 MPa, while the increase in UTS of the 50 �C/s specimens was measured to be 170 MPa for an
equivalent change in loading rate. The percent area reduction of the fracture surface was 70% for the
14 �C/s specimens and decreased to 58% for the 50 �C/s specimens. The true stress versus effective plastic
strain (flow stress) curves were used to develop the “Tailored Crash Model” (TCM) which is a constitutive
model that is a function of strain, strain rate, and as-quenched Vickers hardness (or area fraction
martensite/bainite). Scanning electron microscope and optical microscope images of the fracture surfaces
revealed a transition from ductile to shear fracture behaviour as the quench condition increased from
14 �C/s to 50 �C/s.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for lighter vehicles that possess excellent crash-
worthiness properties has driven the automotive industry to
develop new and innovative materials and manufacturing
processes. The hot stamping process, which is also known as press
hardening, is one such recent innovation that is gaining popularity
for the manufacture of vehicle structural components as indicated
by a steady increase in global [1,2] production rates. Hot stamping
allows conventionally stamped parts to attain Ultra High Strength
Steel (UHSS) properties with tensile strengths up to 1500 MPa. The
UHSS properties are a result of in-die quenching, which causes
a hot blank to undergo a solid-state phase transformation from
austenite to 100% martensite during the forming process. The
elevated strength of hot stamped parts allows for the use of thinner
gauge sheet metal, which has the potential to reduce part weight

while maintaining crash and structural integrity. The hot stamping
process is currently used to manufacture structural components
such as bumper beams, door intrusion beams, A- and B-pillars, roof
and side rails [1,3e7]. Karbasian and Tekkaya [7] provide a detailed
review of the hot stamping process.

Although components with a fully martensitic microstructure
are often desired due to their exceptional high strength and
intrusion resistance, some structural components, such as a B-
pillar, may benefit from regions of reduced strength and greater
ductility for improved energy absorption and fracture resistance as
shown in Fig. 1 [8e12]. This class of hot stamped parts are said to
have “tailored properties” and various hot stamping processes exist
which are capable of creating such a part [7,13]. George et al. [14,15]
used the “in-die heating” hot stamping process to produce regions
of tailored properties within a lab-scale B-pillar. This process
utilized a segmented hot stamping die with one segment that
remained at room temperature while the other segment was
heated to 400 �C. The as-quenched Vickers hardness of the B-pillar
region hot stamped within the heated die segment varied from
244 HV to 260 HV, while the average as-quenched Vickers hardness
of the section hot stamped within the room temperature die
segment was 475 HV. The lower hardness of the tailored regionwas
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due to sub-critical cooling rates (less than w30 �C/s) imposed on
the blank during hot stamping, which allowed some volume frac-
tion of bainite (and/or ferrite) to form as shown in the continuous
cooling transformation (CCT) diagram in Fig. 1. Various other
researchers have conducted similar hot stamping experiments with
heated tools and have shown that the hardness decreases with
increasing tool temperature [16e18].

One requirement to support introduction of tailored parts in
cars is the development of predictive models of in-service crash
response. This mandates development of strain rate sensitive
constitutive models which account for the broad range of strain
rates that are encountered during crash (up to 1000 s�1) [19e22], as
well as the effect of quench rate on the material properties within
the part [16e18,23,24]. Typically, strain rate sensitive constitutive
models are developed for a single material, but in the case of a part
with tailored properties, the constitutive model must also be
a function of the as-formed phases that develop within the as-
quenched microstructure. This is the main focus of the current
work, which strives to; (i) characterize the low to high strain rate
behaviour and mechanical properties of an as-quenched boron
steel with tailored properties; (ii) develop a strain rate sensitive
constitutive model (for tailored parts) to be used in crash simula-
tions and (iii) characterize the fracture behaviour of hot stamped
steels with tailored properties.

2. Experimental methods

In this section, the heating and cooling procedure used to
quench boron steel blanks are discussed, the experiments and
procedure used to quantify the as-quenched volume fraction of
phases found in the quenched blanks is outlined and the details of
the micro-hardness and tension tests are presented.

2.1. USIBOR� 1500P boron steel

For this work,1.2 mmUSIBOR� 1500P sheet metal was used. The
sheet metal has an AleSi coating and an as-receivedmicrostructure
of ferrite/pearlite with a yield strength, ultimate tensile strength
and uniform elongation of 485MPa, 612MPa and 0.22, respectively.
The chemical composition of the steel is given in Table 1.

2.2. Forced air quenching apparatus (FAQA)

A forced-air quenching apparatus (FAQA) was used to quench
the USIBOR� 1500P blanks over a range of apparent cooling rates. A
brief description of these experiments is given here while a more
detailed review can be found in [24]. The quenched blanks were
subsequently machined into miniature dogbone style specimens

and tested in uniaxial tension as discussed in a forthcoming section
of this article.

The boron steel blanks were instrumented with thermocouples
and a measured temperature versus time history plot is shown for
a single test (heat and quench) in Fig. 2a. The blanks were heated up
to 900 �C, at which point the austenization process began and the
temperature increased to a maximum of approximately 973 �C in
4 min and 20 s. Upon completion of the austenization process, the
blanks were manually transferred to the FAQA which resulted in
a temperature drop to approximately 950 �C prior to quenching.

Fig. 2b shows the average (of 6 repeat tests) temperature versus
time curves for five quench conditions imposed by the FAQA. The
cooling rates in these experiments, as in actual hot stamping
conditions, are not constant and for this work an “apparent cooling
rate” was defined to characterize the quench conditions. To define
the apparent rate of cooling, the temperature versus time curves
were examined and the start of the austenite-bainite or austenite-
martensite transformation was identified. This corresponds to the
inflection point as shown in Fig. 2b for an austeniteebainite case.
The apparent cooling rate is simply defined as the temperature
drop divided by quenching time at the onset of transformation. This
is equivalent to a constant cooling rate which corresponds to the
conditions used to create continuous cooling transformation (CCT)
diagrams. The dashed line in Fig. 2b shows the constant cooling rate
curve plotted for this “apparent cooling rate”. Using this method to
define the apparent cooling rate, the following apparent rates were
calculated for the FAQA test conditions; 14, 17, 24, 28 and 50 �C/s as
shown in Fig. 2b. By overlaying the USIBOR� 1500P CCT diagram
[25] in Fig. 2b, the austenite transformed into bainite for the lowest
cooling rate while a fully martensitic phase transformation
occurred at the highest apparent cooling rate. This was confirmed
in a phase identification study that is presented in the next section
of this article.

A CNC milling machine was used to cut the quenched blanks
into miniature dogbone specimens. The specimens were flushed
with coolant during machining and the depth of cut was small in
order to ensure that heating of the specimens was minimized.

2.3. As-quenched phase identification

For each quench condition, the average measured temperature
versus time curves from the FAQA experiments (Fig. 2b) were based
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Table 1
Composition of USIBOR� 1500P sheet metal used in this work (wt. %).

C Mn B Si P Cu Ni Cr Al Ti Mo

0.22 1.23 0.004 0.25 0.008 0.03 0.02 0.20 0.03 0.037 <0.02
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on 6 repeat measurements. Although the temperature versus time
measurement repeatability was good [24], small changes in the
temperature versus time due to the manual nature of the FAQA
experiments resulted in small Vickers hardness variations, due to
consequent variation of the as-quenched volume fractions of
daughter phases. In an effort to minimize the volume fraction
variations for the purpose of quantifying the as-quenched phases,
a Gleeble thermo-mechanical apparatus was used to prescribe the
average measured temperature versus time history from the FAQA
experiments to boron steel specimens. The Gleeble processed
specimens were then polished and etched to reveal the as-
quenched phases using scanning electron microscopy. Also, the
dilation of the specimens was measured during quenching and the
data was used to indicate the start and finish of the decomposition
of austenite into daughter phases.

Gleeble Experiments e A Gleeble 3500 Thermo-Mechanical
simulator was used to simulate the FAQA experiments by
prescribing the average temperature versus time histories shown in
Fig. 2b. A schematic of the specimen geometry is shown in Fig. 3a
with the control thermocouple location indicated and the longi-
tudinal axis being parallel to the rolling direction of the sheet. The
specimen prior to testing in the Gleeble is shown in Fig. 3b. The
quenchmediawas compressed air which was applied using quench
heads positioned above and below the specimen. The upper quench
head can be seen in Fig. 3b. The quartz C-gauge shown in Fig. 3b
was used to measure the change in width (or dilation) of the sheet
metal specimen during quenching. The dilation measurements
were used to indicate the start and finish temperature of phase
transformations. The C-gauge and thermocouple data acquisition
frequency was 200 Hz during quenching.

The averagemeasured temperature versus time history from the
FAQA experiments (Fig. 2b) was used to prescribe the input
temperature versus time for the Gleeble tests as shown by the blue
curves in Fig. 3c. Prior to quenching, the specimens were heated at
17 �C/s up to 600 �C, then at 5 �C/s up to 900 �C, at which point the
austenization process began and the temperature increased to
a maximum of 973 �C in 4 min and 20 s. Upon completion of the
austenization process, the specimens were allowed to cool to
950 �C, to replicate the heat loss due to transfer from the furnace to
the FAQA apparatus, and then quenched. The measured tempera-
ture versus time histories for the five different quench conditions
are plotted as the thin black curves with open circular markers in
Fig. 3c. The excellent temperature versus time control of the

Gleeble apparatus resulted in nearly no deviation between the
prescribed and measured curves.

Metallography e The thermally processed specimens from the
Gleeble experiments were cut at the control thermocouple location
and prepared for metallographic examination. The specimens were
mounted in epoxy resin, ground and polished to a mirror finish
using 500, 1200 and 4000 grit SiC paper; followed by 3 and 1 mm
diamond paste. A 2% Nital etching solution was used to reveal the
microstructure. A JEOL JSM 840 scanning electron microscope
(SEM) was used to create micrographs of the variable cooling rate
specimens using secondary electron imaging (SEI). The area frac-
tion of the phases present within each micrograph was quantified
bymanually selecting the phases using image analysis software and
conducting a pixel count. The section area used to quantify the area
fraction was from the plane normal to the longitudinal axis of the
specimen (see Fig. 3a) and at the control thermocouple location.
The area of the section was 510 mm (along the sheet mid-plane to
surface direction) by 350 mm wide. This area was composed of six
smaller micrographs that were individually quantified.

2.4. Micro-hardness

Micro-hardness measurements were made with a LECO MHT
Series 2000 hardness tester using a 1000 g load. All of the speci-
mens used for hardness measurements were mounted in epoxy
resin, ground and polished to a mirror finish using 500, 1200 and
4000 grit SiC paper; followed by 3 and 1 mmdiamond paste. For the
specimens quenched using the FAQA apparatus, three blanks were
randomly selected for each quench conditions. Hardness specimens
were cut from the blanks and the hardness was tested through the
thickness of the sheet at a location that corresponds to the centre of
the gauge length of the subsequently cut tensile specimens (see
[24] for a schematic of the location). The hardness was measured at
five locations through the thickness of each hardness specimen.
The hardness of the specimens processed with the Gleeble was
measured through the thickness of the sheet (at five locations) and
at the control thermocouple location, as shown in Fig. 3a.

2.5. Uniaxial tension testing

Uniaxial tension tests were conducted on specimens that were
machined from the blanks quenched in the FAQA at the following
nominal strain rates; 0.003, 1.0, 85 and 1075 s�1. The following

Fig. 2. (a) The measured temperature versus time history of an FAQA specimen that was quenched at 14 �C/s (b) Average measured temperature versus time curves for the five
quench conditions tested in the FAQA. The overlaid CCT diagram is for USIBOR� 1500P that was austenized with similar composition and temperature versus time conditions used in
the FAQA tests [25].
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section briefly describes the specimen geometry and equipment
used to conduct the uniaxial tension tests.

Specimen Geometry e The miniature dog-bone style specimen
(see Fig. 4) used in this work was developed by Smerd et al. [26] for
aluminium alloy sheet metal. Small sample gauge lengths are
mandated in high rate testing to minimize signal rise time and
achieve very high strain rates. Smerd et al. [26] demonstrated that
that stress versus strain curves from quasi-static tension tests
conducted on ASTM (E 8M-04) specimens matched those of the
miniature specimens up to the ultimate tensile strength (UTS),
which is acceptable since the flow stress is of importance in
constitutive models. This correlation was also confirmed in the
current work. Subsize ASTM (E 8M-04) specimens were cut from
the quenched blanks and tested in tension at a strain rate of
0.003 s�1. Fig. 4 plots the resultant engineering stress versus strain
curves (up to UTS) for the subsize ASTM and miniature dog-bone
specimens, which agree with each other and justify the use of the
miniature specimens for this work.

Quasi-Static Strain Ratee An Instronmodel 1331 servo-hydraulic
testing machine was used to conduct the quasi-static strain rate

tests. Specimen elongation was measured using a �5 mm exten-
someter and the specimens were mounted in a pair of custom grips
as shown in Fig. 5a. Cross-head velocities of 0.0375 mm/s and
1.0 mm/s were used to deform the specimens at true strain rates of
0.003 s�1 and 0.9 s�1, respectively.

Intermediate Strain Rate e Intermediate strain rate tests were
conducted using an IMATEK instrumented falling weight impactor
(IFWI) which is also known as a drop tower. A schematic of the IFWI
is shown in Fig. 5b while a more rigorous description of the
apparatus can be found in [27]. The specimen is attached to a fixed
upper grip and then loaded in tension by a free falling striker. Load
is measured using a Kistler piezoelectric load cell and an enhanced
laser velocity system (ELVS) is used to measure the displacement of
the lower grip. Due to the nature of the IFWI apparatus, wave
effects cause ringing in the force-time signal, resulting in force data
that contains oscillations. To combat these effects, rubber damping
pads were placed at the striker/lower grip interface, as shown in
Fig. 5b. These pads serve to dampen the impact and thus reduce the
oscillations in the force-time signal. Although the oscillations were
reduced, the addition of the pads increase the rise time prior to
which a constant strain rate is achieved. The raw force-
displacement data measured during each test was manually post-
processed using Microsoft Excel to determine the stress, strain,
and strain rate. For this work, the weighted fork assembly was
released from a height of 0.10 m (measured from the top of the
rubber damping pads) to deform the specimen at an average true
strain rate of 85 s�1.

High Strain Rate e A tensile split Hopkinson bar (TSHB) appa-
ratus was used to conduct high strain rate tension tests at an
average true strain rate of 1075 s�1. A photograph of the apparatus
is shown in Fig. 5c and a detailed description of the equipment and
methods used to calculate the engineering stress versus strain can
be found in [26,27], while a brief review follows. For the current
work, 15.88 mm (5/800) diameter aluminium round bar stock
material was used for the incident and transmitter bars that had
a length of 2057 mm and 1816 mm, respectively. In order to
minimize wave distortion at the bar-specimen interface and
provide adequate clamping force to prevent specimen slipping
during loading, theminiature dog-bone specimens (see Fig. 4) were
mechanically fastened to the bar ends as outlined by Smerd et al.
[26]. The incident and transmitter bar strain gauge stations utilized
a half-bridge configuration and a gas gun was used to propel
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a 508 mm (2000) hollow striker tube, located concentrically on the
incident bar, towards an end cap, which generates the incident
loading pulse. High speed amplifiers and a 20 M sample/s data
acquisition system are used to excite the strain gauge stations and
record the raw waveform data, respectively. The in-house TSHB
post-processing software, CSHB [28], was used to separate the raw
waveforms and conduct a spectral analysis to back-propagate the
waves to the barespecimen interface, which at the same time
reverses the effects of wave attenuation and dispersion [28]. The
code then uses classical Hopkinson bar equations [29] to determine
the stress, strain, and strain rate from the waveform data.

Intermediate and High Strain Rate Test Specimen Elongation e A
key difference in the strain measurements between the various test
apparatus’ used in this work lies in the gauge length over which the
elongation is measured. The Instron tests utilize a clip-on exten-
someter which has a gauge length of 12.5 mm as shown in Fig. 5a.
In contrast, because there is no “dynamic extensometer” for the
IFWI apparatus, these experiments utilize the ELVS to measure the
extension across the specimen shoulders which has a length of
18.86 mm (Fig. 4) and therefore also measures deformation that
occurs outside of the gauge length region of the sample. The TSHB
method measures the displacements at the bar ends which is
equivalent to the measure of displacement in the IFWI experi-
ments. This difference in specimen elongation measurement
introduces additional deformation (primarily elastic) from outside
the gauge length that is measured and when converted to engi-
neering strain, results in a lower apparent or “effective” Young’s
modulus. In the current work, the use of an “effective modulus” in
the calculation of effective plastic strain in each experiment serves
to compensate for the different elongation measurements and
provides a measure of effective plastic strain that is relatively
insensitive to the manner in which elongation is measured. This
approach reflects the fact that the majority of the deformation in
the specimen shoulder is elastic such that the plastic deformation is
essentially concentrated in the gauge length region of the sample.

2.6. True strain rates

The true strain rate versus true strain for a single test conducted
at each nominal strain rate is shown in Fig. 6. For each repeat test,
the true strain rate was calculated as the average strain rate from
the apparent strain at yield to the end of the test and the average
true strain rate for each quench rate condition is shown in Table 2.
The strain rate curves shown for the 0.003 s�1, 1.0 s�1 and 1075 s�1

tests in Fig. 6 indicate a constant strain rate throughout the loading
duration of the specimen, while the strain rate for the 85 s�1 test
increases during the initial loading of the specimen due to the use
of damping pads in the IFWI tests.

3. Experimental results and discussion

The following sections present the measured phase area frac-
tions, hardness measurements and stress versus strain curves as
measured for the various quench conditions and strain rates.

3.1. Area fraction of the as-quenched phases

Samples of the SEM micrographs used to quantify the as-
quenched area fraction of martensite and bainite for the Gleeble
specimens are shown in Fig. 7 for the 14, 24 and 50 �C/s quench
conditions. The 50 �C/s cooling rate specimen shown in Fig. 7a,
exhibits the packets of the parallel lath crystals that are charac-
teristic of martensite which contains less than 0.60% carbon
[30,31]. The microstructure observed in Fig. 7c is that of ferritic
bainite, as reported for similar materials/conditions by Feng et al.
[32], Tariq et al. [33] and Saeglitz et al. [34]. The characteristic
features of ferritic bainite are a ferrite matrix with dispersed
cementite particles [35e37]. Although this microstructure appears
to be primarily bainite, a small area fraction of an irregular
constituent which appears to be martensite was observed, as
shown in Fig. 7c. Similarly, the 50 �C/s specimens contained a small
area fraction of a secondary phase which appeared to be bainite as
indicated in Fig. 7a. Fig. 7b shows the mixed martensiteebainite

Fig. 5. (a) Quasi-static test apparatus (b) Instrumented falling weight impactor (IFWI) schematic and (c) Split Hopkinson tensile bar apparatus at the University of Waterloo.
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microstructure for the 24 �C/s specimen. Based on the bainite and
martensite phase structure characteristics, the area fraction of
martensite and bainite was quantified for each condition and is
reported in Table 2.

The decomposition of austenite into daughter phases results in
a volumetric change due to the difference in crystal structure
between the phases. Dilatometer experiments are typically con-
ducted under constant cooling rates to measure these phase
transformations, which are used to construct continuous cooling
transformation (CCT) diagrams such as the one shown in Fig. 1
[36e38]. For this work, dilatometer type experiments were con-
ducted and the change in the specimen width (or dilation) was
measured during quenching with the C-gauge shown in Fig. 3b. The
C-gauge measurements were used to determine the start and finish
of phase transformations, as shown by the dilation curves in Fig. 8.
For this particular material, the CCT diagram provided by the
supplier indicates that the decomposition of austenite to ferrite
occurs at cooling rates less than 8 �C/s, therefore the transformation
of ferrite is not expected for the quench conditions tested. The
beginning and end of the phase transformations is clearly shown by
the classic shape of the dilation curves and the martensite and
bainite start temperatures are denoted as MS and BS respectively,
while the martensite and bainite finish temperature are denoted as
MF and BF respectively. Please note that the dilation at 800 �C was
offset along the y-axis of the graph in Fig. 8 in order to distinguish
the curves for clarity.

3.2. Micro-hardness measurements

The measured hardness distribution through the thickness of
the FAQA specimens was relatively constant (see [24]) which
indicates a homogenous microstructure for each quench condition.
The average measured Vickers hardness (based on 15 individual
measurements) is presented in Table 2 and plotted versus cooling
rate as the black circular data points in Fig. 9a. A linear trendline
(black dashed line) is shown to fit the average FAQA hardness
measurements for cooling rates between 14 and 28 �C/s.

The average measured Vickers hardness of the specimens
quenched with the Gleeble apparatus are shown in Fig. 9a as the
blue data points. As expected, the average measured hardness of
the FAQA and Gleeble specimens is similar and within the scatter of
the data as shown by the error bars. The Gleeble 17 �C/s test
condition resulted in a hardness that was 11% less than the FAQA
result which may be due to some variability in the FAQA temper-
ature versus time curves used to construct the prescribed
temperature versus time input curves. A linear trendline (blue
dashed line) is shown to fit the average Gleeble specimen hardness
measurements for cooling rates between 14 and 28 �C/s and the
similarity of the Gleeble and FAQA trendlines indicates that the as-
quenched microstructures are similar as well. The average
measured hardness of the Gleeble processed specimens is plotted
versus the measured percent area fraction martensite for the five
quench conditions in Fig. 9b. Note that 0% and 100%martensite area

Table 2
Mechanical properties of the specimens quenched in the FAQA under the various quench rate condition. The average Vickers hardness and area fraction of martensite/bainite
measured from specimens processed using the Gleeble are shown as well.

App. cooling
rate (�C/s)

Avg. Vickers
hardness

Avg. Vickers
hardness (Gleeble Exp.)

Avg. % area fraction
martensite/bainite (Gleeble Exp.)

Avg. true
strain rate (s�1)

Avg. ultimate
tensile strength (MPa)

Avg. % area
reduction

14 268 272 3%/97%
Max: 3%/97%
Min: 2%/98%

0.0028 816 70%
0.9 833 e

90 899 e

1091 950 69%
17 318 283 12%/88%

Max: 15%/85%
Min: 10%/90%

0.0028 929 69%
0.9 967 e

84 1022 e

1098 1054 69%
24 399 392 57%/43%

Max: 61%/39%
Min: 50%/50%

0.0028 1203 63%
0.9 1235 e

81 1299 e

1074 1365 64%
28 442 449 86%/14%

Max: 89%/11%
Min: 80%/20%

0.0028 1360 63%
0.9 1380 e

82 1420 e

1063 1537 62%
50 466 472 97%/3%

Max: 99%/1%
Min: 94%/6%

0.0028 1447 58%
0.9 1457 e

83 1511 e

1053 1617 57%

Fig. 7. SEM micrographs of the Gleeble specimens showing (a) an almost fully martensitic microstructure for the 50 �C/s specimen (b) a mixed bainitic/martensitic microstructure
for the 24 �C/s specimen and (c) a predominantly bainitic microstructure for a 14 �C/s specimen. (B ¼ bainite, M ¼ martensite).
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fractions refer to 100% and 0% bainite area fractions, respectively. A
linear trendline was fit to the data and is shown as equation (1),
where HV is the Vickers hardness number and %M refers to the area
fraction of martensite (the balance of the area fraction being
bainite). As an indication of the goodness of fit, the R-squared value
was calculated to be 0.997, which suggests a strong linear rela-
tionship between Vickers hardness and area fraction of martensite
and bainite present in the microstructure.

HV ¼ 217:85ð%MÞ þ 263:15 [1]

3.3. Engineering stress versus strain results

Fig.10 presents the engineering stress versus strain curves for all
of the quench conditions tested in this work. The thin grey curves
are the individual tests and the thick black curves indicate the
average interpolated curves. To calculate an average interpolated
curve for each quench condition, the raw data set was interpolated
at strain increments of 0.00025. The interpolated curves were then
used to create a single average curve for each cooling rate and strain
rate as shown by the thick black curves in Fig. 10. The scatter in the

repeat tests was greatest for the 17 �C/s, 24 �C/s and 28 �C/s tests
because the as-quenched microstructure of these specimens con-
tained a mixed area fraction of martensite and bainite, as shown in
Table 2. The ratio of martensite to bainite and resulting strength is
muchmore sensitive to variations in the FAQA quench experiments
than the fully martensitic (50 �C/s) and fully bainitic (14 �C/s)
material conditions. For the cooling rate conditions which were
more repeatable, three repeat tests were used to establish the
average curve. For the intermediate quench rate conditions, up to
14 repeat tests were conducted for each condition.

The ultimate tensile strength (UTS) was extracted from each test
and used to determine an average UTS for each cooling rate and
strain rate is reported in Table 2. The average UTS is plotted against
the true strain rate in Fig.11a and the data for all of the cooling rates
indicates that the strain rate sensitivity is low from 0.003 s�1 to
1.0 s�1 andmoderate to high as the strain rate increases from1.0 s�1

to 1075 s�1. The average UTS for the 28 �C/s and 50 �C/s tests
conducted at 1075 s�1 is slightly exaggerated due to the oscillation
in stress level for these test conditions as shown in Fig. 10d. These
elevated UTS values suggest that the higher quench rate conditions
(or more martensitic) are more strain rate sensitive than the
specimens quenched at the lower cooling rates, which would be
a false assumption.

3.4. Flow stress results

All of the raw engineering stress versus strain curves were
converted into the true stress versus effective plastic strain (or flow
stress) curves, as shown by the thin grey curves in Fig. 12. Close
examination of the quasi-static, IFWI and TSHB tests shows a slight
variation in the elastic modulus, as shown in Fig. 10. The apparent
modulus was used to calculate the effective plastic strain by sub-
tracting the elastic strain from the total strain. This difference can
be attributed to rise-time effects associatedwith the IFWI and TSHB
experiments, as well as any small variations in alignment of the
samples. Hence, an “effective modulus” was determined for every
test by calculating the modulus from the raw engineering stress
versus strain data. The raw flow stress datawas then interpolated at
strain increments of 0.00025 and the individual interpolated curves
were used to create a single average flow stress curve for each
quench rate condition as shown by the thick black curves in Fig. 12.
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Fig. 11b is a plot of the true stress (at an effective plastic strain of
0.025) versus true strain rate. The strain rate dependence of the
true stress in Fig. 11b follows a similar trend to that observed in
Fig. 11a for the UTS. The data indicates a small increase in stress

from 0.003 s�1 to 1.0 s�1 and a moderate to high increase in stress
as the strain rate increases from 1.0 s�1 to 1075 s�1.

The average flow stress curves from the data presented in Fig. 12
are plotted together in Fig. 13 for the specimens quenched at
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14 �C/s, 17 �C/s, 24 �C/s and 50 �C/s. The 28 �C/s flow stress curves
were omitted for clarity. Due to the oscillation of the IFWI and TSHB
stress data, the strain at UTS was difficult to determine, therefore,
a larger part of the curve was used to create the flow stress curves
and resulted in a greater effective plastic strain than the quasi-static
curves shown in Fig. 13. The initial strain hardening behaviour

(up tow0.01 strain) observed in the quasi-static and TSHB testswas
not observed for the intermediate rate IFWI tests. This may be due
to the variation in strain rate (at low strains) during the IFWI test
which is a direct result of the damping pads used to reduce oscil-
lations in the stress data (see Fig. 6). The specimens quenched at
14 �C/s and 17 �C/s have a gradually increasing early strain hard-
ening behaviour up to a strain of approximately 0.06, while the
specimens quenched at 24 �C/s and 50 �C/s have a stronger hard-
ening behaviour that appears to saturate at lower effective plastic
strain levels.

3.5. Fractography

A qualitative assessment of the fracture behaviour for the
various quench conditions was conducted through metallographic
observation of the tensile fracture surfaces using a JEOL JSM 840
scanning electron microscope (SEM) and an Olympus BH60 optical
microscope. Specimens pulled at a strain rate of 0.003 s�1 were
observed and Fig. 14aec shows the SEM fracture surface images for
the 14, 24 and 50 �C/s specimens. Specimens quenched at 14, 17, 24,
28, 50 �C/s and pulled at a strain rate of 0.003 s�1, were mounted in
epoxy resin and polished to reveal the cross-section optical
microscope images of the fracture surface shown in Fig. 14d.

The 14 �C/s specimen exhibited ductile fracture behaviour as is
evident from the fibrous fracture surface due to dimpling and void
growth shown in Fig. 14a. Well defined and deep dimples are also
shown in the higher magnification image on the right. Fig. 14d
shows the classic cup and cone fracture surface, which indicates
ductile fracture behaviour for the 14 and 17 �C/s quench conditions.
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For the 24 �C/s cooling rate specimen in Fig. 14b, the fracture
surface is planar with small fibrous regions that surround surface
cracks. These characteristics are common to amaterial that behaves
in a ductile-shear manner as can also be seen by the mixed ductile
and shear fracture surface characteristics in Fig. 14d for the 24 �C/s
specimen. A shear failure mechanism was evident for the 50 �C/s
specimen as shown by the planar fracture surface in Fig. 14c. Large
surface cracks surrounded by small fibrous regions with very
shallow dimples confirm the shear fracturemechanism observed in
these specimens. The large shear lips and smooth fracture surface
shown in the optical images for the 28 �C/s and 50 �C/s specimens
in Fig. 14d suggest shear fracture behaviour.

The reduction in cross-sectional area at the fracture surface of
specimens pulled to failure was measured for all quench rate
conditions. SEM images of the fracture surface were taken for all
five quench condition specimens that were pulled under quasi-
static (0.003 s�1) and high strain rate (1075 s�1) loading. For each
condition, three specimensweremeasured and the average percent
area reduction is plotted as a function of percent area fraction of
martensite in Fig. 15a. The vertical scatter bands correspond to the
range of the area reduction measurements and the horizontal error
bars correspond to the variation in measured area fraction of
martensite from the Gleeble specimens. As expected, the area
reduction is greatest for the 14 �C/s specimens, which indicates
good ductility, and lowest for the 50 �C/s specimens which fail in
a shear manner and show poor ductility. The 17 �C/s to 28 �C/s
specimens also show a lower area reduction as the area fraction of
martensite increases. A linear trendline fit well to the data for both

the quasi-static and TSHB data, indicating improved ductility as the
area fraction of bainite increases for the measurements conducted
in this work. The trendlines suggest that ductility slightly decreases
for specimens pulled at higher strain rates, although the scatter in
the measurements is relatively high for some of the measurements
presented in Fig. 15a. It is interesting to note that the elongation to
failure does not follow the same linear trend with respect to
martensite fraction, rather a logarithmic trend as shown by the
trendline in Fig. 15b for the quasi-static cases. This difference can be
attributed to the elongation to failure being more a function of the
necking and localization behaviour of the sample whereas reduc-
tion in area is more a measure of the material fracture strain, often
after the onset of necking.

4. Constitutive model development

A variety of constitutive models have been developed to
describe the flow stress of materials loaded at different strain rates.
The Johnson-Cook [39,40] and Zerilli-Armstrong [41] constitutive
models were fit to the flow stress data but were not able to capture
the change in hardening behaviour for the various quench rate
conditions.

The Voce [42] hardening model is primarily used to describe the
flow stress of materials that exhibit a saturation in the stress level at
relatively large strains. This saturation response corresponds to the
end of the Stage III of multiple-stage work hardening shown by
mono-crystalline materials [43]. The Voce model on its own is not
strain rate sensitive, therefore the addition of a multiplicative strain

Fig. 14. SEM images of fracture surfaces for the (a) 14 �C/s (b) 24 �C/s and (c) 50 �C/s specimens pulled at a quasi-static strain rate (0.003 s�1). (d) Optical microscope images of the
fracture surface (cross-sectional views) for specimens quenched at 14e50 �C/s.
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rate sensitive term of the form adopted by Camacho and Ortiz [44]
and implemented within a Johnson-Cook model for a high strength
steel by Børvik et al. [45] was added as shown in equation (2). This
exponential-type strain rate sensitivity term was selected because
of the elevated strain rate sensitivity for the intermediate and high
strain rate test conditions as measured in the experiments and
shown in Fig. 11.

s ¼
h
Aþ

h
ðB� AÞe� 3

c

ii�
1þ _3

�D
[2]

where A is the saturation stress, B is the initial yield stress, C is the
relaxation strain and D is the strain rate coefficient.

For the TSHB tests, heat generated within the specimen due to
plastic work cannot be dissipated during the loading period and
subsequently acts to thermally soften the material. The rise in
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temperature due to plastic work can be calculated using the
following equation,

DT ¼ b

rCp

Z 3p

0

sd 3p [3]

where r is the steel density, Cp is the specific heat capacity of the
steel, b is the fraction of work converted into heat and the
remainder of the equation is the area under the flow stress curve.
Typically, a thermal softening term is added to a strain rate sensi-
tive constitutive model but in this case, due to the relatively low
strains at UTS observed for all of the quench conditions, the
maximum rise in temperature for the 1075 s�1 test did not exceed
18 �C; therefore thermal softening was not accounted for in this
model. While less rigorous, such an approach is often preferred in
the crash modelling community since it reduces computational
cost by avoiding a requirement to calculate temperature rise in
vehicle crash simulations.

In order to fit equation (2) to the measured flow stress data, the
average curves shown in Fig. 12 were first interpolated at strain
increments of 0.002 as shown by the symbols in Fig. 16. For each
quench rate condition, the interpolated data was truncated at the
lowest measured strain value which was dictated by the quasi-
static tests conducted at 0.003 s�1 and shown by the dashed line.
The true strain rate used in the analysis for each condition was the
average true strain rate measured from the tests and presented in
Table 2. The statistical analysis software MYSTAT 12 was used for
the non-linear regression analysis and the results of the fitted Voce
constitutive model for each quench condition is shown by the black
curves in Fig.16. The Vocemodel was able to fit the datawell and, as
an indication of the goodness of fit, the R-squared values are also
shown in the figure.

The Voce model parameters (A, B, C and D) are shown in Table 3
for each quench rate condition along with the Vickers hardness. As
expected, the saturation stress (A) and initial yield stress (B)
increase with Vickers hardness value. The relaxation strain (C)
decreases for increasing hardness and then changes very little for
the specimens quenched at 24 �C/s (399 HV) and higher which are
fully martensitic. This material parameter is related to the hard-
ening behaviour and shows that the higher strength materials
reach their saturation stress at lower effective plastic strains than
the lower strength materials, which was observed in the experi-
ments. Also, the hardening behaviour remains relatively
unchanged for hardness values greater than 399 HV. The strain
hardening coefficient (D) describes the strain rate sensitivity and
does not appear to change significantly for the different quench
rate conditions.

The Voce constitutive model parameters (A, B, C and D) from
Table 3 are plotted in Fig. 17a (the symbols) with respect to Vickers
hardness. This parameter data was then fit with simple linear and
polynomial mathematical expressions shown as equations (4)e(7)
for which the constants are presented in Table 4. The fits are also
plotted as black curves in Fig.17a. TheVickers hardnesswas chosen to
fit the Voce parameters rather than the apparent cooling rate because
the constitutive response of the as-quenched material is defined by
the final area fraction of martensite and bainite present in the
microstructure which was shown to behave linearly with respect to
Vickers hardness in Fig. 9b. In practice, the cooling rates in industrial
hot stamping operations are not constant and it is not recommended
to fit the Voce parameters with respect to cooling rate.

A
�
HV

�
¼ A2HV

2 þ A1HVþ A0 [4]

BðHVÞ ¼ B1HVþ B0 [5]

CðHVÞ266<HV<375 ¼ C3HV
3 þ C2HV

2 þ C1HVþ C0
CðHVÞHV>375 ¼ C0�

[6]

DðHVÞ ¼ D0 [7]

s ¼ f
�

3; _3;HV
�

¼
h
AðHVÞ þ

h
ðBðHVÞ � AðHVÞÞe

�
� 3

CðHVÞ
�ii�

1þ _3
�DðHVÞ

[8]

Table 3
The Voce constitutive model parameters used for the constitutive fits shown in
Fig. 16.

Apparent
cooling
rate (�C/s)

Vickers
hardness
(HV)

A, saturation
stress (MPa)

B, yield
stress
(MPa)

C, relaxation
strain
(mm/mm)

D, strain
rate coeff.

14 268 878.3 612.0 0.0229 0.0212
17 318 967.1 711.2 0.0105 0.0149
24 399 1246.9 918.0 0.0073 0.0161
28 442 1388.6 1019.7 0.0069 0.0182
50 466 1480.5 1113.6 0.0079 0.0180
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The constant Voce constitutive model parameters in equation
(2) were then replaced by equations (4)e(7) and the nowmodified-
Voce constitutive model, referred to as the “Tailored Crash Model
(TCM)”, becomes a function of effective plastic strain ( 3), true strain
rate ð_3Þ and Vickers hardness (HV) as shown by equation (8).
Alternatively, equation (8) can be expressed as a function of percent
area fraction of martensite (%M) by substituting equation (1) for the
variable HV in equation (8). This would allow further analysis of the
hardening behaviour with respect to the material composition. The
TCM accurately predicts the full range of flow stress curves
quenched to various Vickers hardness values and deformed at
different strain rates. Fig. 17b shows some of the measured exper-
imental flow stress curves and the predicted flow stress curves
using the TCM. Fig. 11b shows that the predicted (TCM) true stress
at an effective plastic strain of 0.025 for the five different quench
conditions matches the measured experimental data very well.

The TCM can be used to define the high strain rate constitutive
properties of tailored hot stamped components in finite element
(FE) crash simulations. In practice, component level or full scale
vehicle crash models are preceded by a hot stamping simulation to
predict the as-quenched microstructure within the tailored regions
of a single part. Currently, LS-DYNA [46] contains the hot stamping
constitutive model (*MAT_UHS_STEEL [47]) due to Akerstrom [5],
which is used to model both the high temperature material prop-
erties and the phase transformation kinetics that predict the as-
quenched percent volume fraction of daughter phases formed
(martensite, bainite, pearlite and ferrite) and the corresponding
Vickers hardness for each element in a hot stamping FE model. The
Vickers hardness predictions for each element within a hot stam-
ped FE model can then be used to define the crash model material
properties with the TCM equations. Bardelcik et al. [48] outline
a numerical procedure in which an impact model of a tailored hot
stamping is developed and modelled using the TCM.

5. Conclusions

Based on the results presented in this article, the following
conclusions can be made:

1. The Vickers hardness for the specimens quenched from 14 �C/s
to 50 �C/s showed a linear dependence with respect to the
percent area fraction of martensite/bainite present in the
microstructure.

2. For all of the quench conditions, the low to high strain rate
uniaxial tension data (UTS and flow stress) showed low strain
rate sensitivity from 0.003 s�1 to 1.0 s�1 and moderate to high
strain rate sensitivity from 1.0 s�1 to 1075 s�1. For the highest
quench rate condition, the strength was high and the ductility
was low due to the fully martensitic microstructure. By intro-
ducing bainite into the microstructure, and thus tailoring the
properties, the strength of the material was reduced and the
ductility improved.

3. A Voce hardening model, coupled with an exponential-type
strain rate sensitivity term was successfully fit to the

experimental uniaxial tension data for all of the quench
conditions. The model parameters were then fit with respect to
hardness (or area fraction martensite/bainite) and a single
constitutive model, the Tailored Crash Model (TCM) was
developed and shown to accurately capture the change in
hardening behaviour and strain rate sensitivity for the tailored
material properties examined in this work.

4. SEM and optical microscope images of the fracture surfaces
revealed that the specimens quenched at 14 �C/s behaved in
a ductile fracture mode while the 50 �C/s quench conditions
specimens displayed a strong shear fracture behaviour.
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ABSTRACT  

This paper examines the relationship between as-formed microstructure and mechanical 

properties of hot stamped boron steels used in automotive structural applications. Boron steel 

sheet metal blanks were austenized and quenched at cooling rates of 30 °C/s, 15 °C/s and 10 

°C/s within a Gleeble thermal-mechanical simulator. For each cooling rate condition, the 

blanks were simultaneously deformed at various temperatures.  Approximately 0.20 strain was 

imposed in the middle of the blanks, from which miniature tensile specimens were extracted. 

Depending on the cooling rate and deformation temperature imposed on the specimens, some 

of the as-quenched microstructures consisted of predominantly martensite and bainite, while 

others consisted of martensite, bainite and ferrite. Optical and SEM metallographraphic 

techniques were used to quantify the area fractions of the phases present and quasi-static 

(0.003 s-1) uniaxial tests were conducted on the miniature tensile specimens. The results 

revealed that an area fraction of ferrite greater than 6% led to an increased uniform elongation 

and an increase in n-value without affecting the strength of the material for equivalent 

hardness levels.  This finding resulted in improved energy absorption due to the presence of 

ferrite and showed that a material with a bainitic microstructure containing 16% ferrite (with 

257 HV) resulted in a 28% increase in energy absorption when compared to a material 

condition that was fully bainitic with a hardness of 268 HV.  Elevated strain rate tension tests 

were also conducted at 10 s-1 and 80 s-1 and the effect of strain rate on the ultimate tensile 

strength (UTS) and yield strength (Y) was shown to be moderate for all of the conditions with 

an average increase in UTS of ~80 MPa for an increase in strain rate from 0.003 s-1 to 80 s-1.  

The true stress versus effective plastic strain (flow stress) curves generated from the tension 

testing were used to develop the “Tailored Crash Model II” (TCM II) which is a strain rate 

sensitive constitutive model that is a function of effective plastic strain, true strain rate and 

area fraction of martensite, bainite and ferrite. The model was shown to accurately capture the 

change in hardening behaviour and strain rate sensitivity of the multiphase material conditions 

examined. 

 

 

Keywords: hot stamping, boron steel, tailored properties, phase transformations, constitutive 

model, rate sensitivity 
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1 Introduction 

The current demand to reduce vehicle weight for improved fuel efficiency, while maintaining 

crash performance, has led to the application of new and innovative materials and 

manufacturing processes in the automotive industry.  One such process is hot stamping of 

boron steel, which allows conventionally stamped parts to attain ultra high strength steel 

(UHSS) properties with tensile strengths on the order of  1500 MPa.  The UHSS properties are 

a result of in-die quenching, which causes a hot blank to undergo a solid-state phase 

transformation from austenite to 100% martensite during the stamping process [1].  In order to 

achieve a fully martensitic phase transformation the hot stamping process must be designed to 

impose cooling rates greater than the critical cooling rate for the martensitic transformation, 

which is ~27 °C/s for the most commonly used boron steel grade, 22MnB5 [1-3]. The elevated 

strength of hot stamped parts allows the use of thinner gauge sheet metal, which results in 

weight reduction while maintaining structural integrity.  The hot stamping process is currently 

used to manufacture structural components such as bumper beams, door intrusion beams, A- 

and B-pillars, roof and side rails [1,3-7], which are critical crash components, providing 

intrusion protection within vehicles.   

 

Although components with a fully martensitic microstructure are often desired due to their 

exceptional high strength and intrusion resistance, some structural components, such as a B-

pillar, may benefit from the introduction of regions of lower strength and greater ductility for 

improved energy absorption [8-13]. One method that lower strength/higher ductility regions 

can be realized is by locally reducing the cooling rate imposed on the blank to less than the 

critical cooling rate.  The reduced cooling rate allows some volume fraction of the lower 

strength and more ductile bainite and/or ferrite phases to form.  These lower (or sub-critical) 

cooling rates can be achieved by heating a portion of the hot stamping die, which is a 

technique know as in-die heating that is reviewed by Karbasian and Tekkaya [1] and George et 

al. [14].  In the work of George et al. [14] the in-die heating technique was successfully 

implemented in the hot stamping of a lab-scale B-pillar which resulted in tailored properties.  

They showed that the Vickers hardness of the tailored region was 52% less than the fully 

martensitic region and tension tests were conducted on a specimen cut from the tailored region 

which revealed that the ultimate tensile strength decreased by 49% and the uniform elongation 
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increased by 84% when compared to the fully martensitic material state.  For all of the heated 

die temperature conditions tested, it was found that the reduced hardness and improved 

ductility can be attributed to the presence of bainite and ferrite (in addition to martensite) 

within the as-quenched microstructure.  The presence of ferrite was found to be more 

pronounced in regions of the B-pillar where deformation (thinning) was observed.   

 

Plastic deformation during simultaneous quenching of a hot stamping boron steel was 

examined by Barcellona and Palmeri [15].  They used as Gleeble thermal-mechanical 

simulator to quench and isothermally deform a boron steel at various temperatures and quench 

rates.  The results of their study revealed that plastic deformation caused the entire continuous 

cooling transformation (CCT) diagram to shift towards the left, or lower quench times.  This 

phenomenon resulted in the decomposition of austenite into bainite and ferrite at quench rates 

for which these phase transformations would normally be suppressed.  Also, the morphology 

of the bainite that was observed in the quenched and deformed specimens was that of granular 

bainite.  Min et al. [16] conducted similar experiments to those presented in [15] and 

concluded that the increase in stored energy due to the plastic deformation of austenite 

contributes to increasing the driving force and shortening the incubation time for the ferrite 

phase transformation.  The increase in driving force and shortening of the incubation time for 

the ferrite phase transformation was also shown to be increased as the deformation temperature 

was reduced.  Unlike the granular bainite morphology reported by Barcellona and Palmeri 

[15], Min et al. [16] reported that bainite transformed at the austenite grain boundaries was 

conventional bainite (CB) and appeared as packets of parallel ferrite laths separated by a 

martensite-austenite constituent, while the bainite transformed at intergranular sites was 

acicular ferrite (AF) which grows as randomly oriented ferrite laths or groups of laths which 

contain discrete martensite-austenite particles.  The CB and AF bainitic structures observed in 

this work were the same as those observed in a study by Zhang and Boyd [17] on bainite 

transformations of deformed austenite in a low-carbon microalloyed steel.  Naderi et al. [18] 

conducted similar experiments in which a cylindrical 22MnB5 boron steel specimen was 

quenched at 50 °C/s and simultaneously deformed (in compression) at various temperatures 

within a dilatometer apparatus. The imposed deformation in their experiments resulted in the 

phase transformation of martensite and bainite and also indicated that the CCT diagram shifted 
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towards the left and down.  Abassi et al.  [19] conducted isothermal hot compression tests 

using the same apparatus as in [18]. They showed that 50% deformation imposed at a quench 

rate of 50 °C/s resulted in the volume fraction of bainite and ferrite to increase as the 

deformation temperature was decreased from 900 °C to 650 °C.  Nikravesh et al.  [20] 

conducted experiments that were similar to those presented in [18].  They simultaneously 

quenched and compressed cylindrical specimens at various cooling rates and showed that the 

critical cooling rate (for a fully martensitic phase transformation) increased from 20 °C/s to 60 

°C/s when approximately 40% plastic deformation was imposed.  Micrographs of the 

quenched and deformed specimens revealed a greater area fraction of ferrite when compared to 

micrographs generated at equivalent cooling rates where no deformation was imposed. Shi et 

al. [21] used a Gleeble thermal-mechanical simulator to simultaneously quench and deform a 

22SiMn2TiB hot stamping boron steel and concluded that the diffusional phase 

transformations of polygonal ferrite and bainitic ferrite were facilitated by the non-isothermal 

deformation during quenching.  Fan et al. [22] conducted a smaller scale 

quenching/deformation study in which a small volume fraction of ferrite was detected in 

otherwise fully martensitic microstructures at quench rates of 25 °C/s and 30 °C/s for a boron 

steel.   

 

Based on the above cited research, a considerable effort has been undertaken to understand 

(and show) the effect of deformation during simultaneous quenching on the final 

microstructure of hot stamped boron steels.  For a conventionally hot stamped component 

which is fully martensitic, it is critical to avoid the transformation of bainite, ferrite or pearlite 

within the as-quenched microstructure.  However, hot stamped components with tailored 

properties created through the in-die heating process depend on the phase transformations of 

the softer phases which result due to sub-critical cooling rates.  It is inevitable that plastic 

deformation will occur during the hot stamping of a component with tailored properties and 

introduce some volume fraction of ferrite as shown in [14].  This is the main motivation for the 

current work which focuses on imposing various thermo-mechanical processing routes on a 

boron steel to produce as-quenched material conditions with varying volume fractions of 

martensite, bainite and ferrite.  Characterization and quantification of the as-quenched phases, 

and data from mechanical testing (at various strain rates) of the mixed-phase material 
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conditions is used to develop a strain rate sensitive constitutive model. The constitutive model 

developed in this work introduces the effect of ferrite to the TCM constitutive model 

developed by Bardelcik et al. [12] for as-quenched boron steel with a mixed volume fraction of 

martensite and bainite only. 

 

2 Experimental Methods 

 

2.1 USIBOR® 1500P Boron Steel 

The boron steel sheet metal used for this work is USIBOR® 1500P which is produced by 

ArcelorMittal and has a nominal thickness of 1.2mm.  This sheet metal has an Al-Si coating 

and the as-received microstructure of boron steel consists of ferrite/pearlite with a yield 

strength and ultimate tensile strength of 485 MPa and 612 MPa, respectively.  The chemical 

composition of the steel is given in Table 1. 

 

Table 1 - Chemical composition (wt. %) of the USIBOR® 1500P steel used in this work. 

C Mn B Si P Cu Ni Cr Al Ti Mo 

0.22 1.23 0.004 0.25 0.008 0.03 0.02 0.20 0.03 0.037 <0.02 

 

2.2 Simultaneous Quench and Deformation Experiments 

Boron steel blanks were quenched and simultaneously deformed in an effort to simulate the 

thermo-mechanical processing conditions present during a hot stamping process in which sub-

critical cooling rates are imposed.  A Gleeble 3500 thermo-mechanical simulator was used to 

heat up, austenize and quench boron steel blanks at constant cooling rates of 10 °C/s, 15 °C/s 

and 30 °C/s.  For each cooling rate condition, the blanks were subjected to simultaneous hot 

deformation at a temperature of 800 °C and 600 °C as shown in the temperature versus time 

schematics in Figure 1a.  In addition to the hot deformation tests, blanks were also quenched 

without deformation to serve as baseline conditions.  Figure 1b is a photograph of the 

experimental setup within the Gleeble during the austenization process and Figure 1c shows 

the dimensions of the boron steel blanks used in this work.  Custom quench heads with a large 

cooling zone were designed and built as a part of this work and shown in Figure 1b. 
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Prior to achieving the austenization temperature, the blanks were heated at 17 °C/s up to 600 

°C, then at 5 °C/s up to 900 °C, at which point the austenization process began and the 

temperature increased to a maximum of 973 °C in 4 minutes and 20 seconds.  This heating and 

austenization schedule replicates the average measured (via thermocouple) temperature-time 

for hot stamping experiments conducted by Bardelcik et al. [12].  Scanning electron 

microscopy was used to generate micrographs of rapidly quenched USIBOR® 1500P 

specimens that were subjected to the above mentioned austenization schedule.  The martensitic 

microstructure formed within the prior austenite grains, whose grain boundaries were quite 

evident from which an ASTM grain size of 6.8 was measured. Upon completion of the 

austenization process, the specimens were allowed to cool to 950 °C, to replicate the heat loss 

due to transfer from a furnace during industrial hot stamping operations.  Quenching initiated 

at 950 °C and the good thermal-mechanical control of the Gleeble resulted in almost no 

deviation from the prescribed temperature-time curves for all of the quench rates examined in 

this work.  It should be noted that a small tensile pre-load was applied to the blanks in order to 

prevent buckling of the specimens due to the thermal expansion during heating and 

austenization.  During quenching, the thermal contraction of the blank also contributed to the 

pre-load. The deformation imposed on the blank during each test was due to a 10 mm 

displacement of one end of the blank as indicated in Figure 1d.  The deformation imposed in 

the region of interest was measured by scribing a line pattern onto the blank and using a strain 

grid measurement system with a micro-CCD video camera to measure the change is spacing 

(or strain) after thermo-mechanical processing.  The 10mm blank displacement resulted in a 

deformation of approximately 0.20 engineering strain as indicated in Figure 1d.  The 

deformation time for all of the tests was 0.5 s, therefore the nominal strain rate during 

deformation was approximately 0.4 s-1, which is within the range of strain rates encountered 

during conventional stamping.  The as-quenched boron steel blanks were surface ground 

(equally from both sides) to a nominal thickness of 1.0 mm while being flushed with coolant to 

minimize heating of the blank. Miniature dog-bone style tensile specimens were machined 

from the middle of each blank as shown by the overlaid specimen schematic in Figure 1d.  A 

CNC milling machine was used to cut the tensile specimens, which were flushed with coolant 

during machining.  The depth of cut was kept small in order to ensure that heating of the 

specimens was minimized. 
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Figure 1 - (a) Temperature versus time schematic for the two hot deformation temperature 
conditions (b) An image of a Gleeble test showing the custom quench head and blank during 
austenization (c) A schematic showing the blank geometry, temperature distribution and an 
overlaid outline of the miniature dog-bone specimen geometry that was cut from the blank 
after thermal-mechanical processing.  (d) An image of a blank that was quenched at 15 °C/s 
and deformed at TDEF=800 °C (e) Dimensions of the miniature dog-bone specimen. 

 

In order to ensure that the machined dog-bone specimens had a homogeneous microstructure 

throughout their gauge length, it was critical that the thermal gradient across the boron steel 

blank was minimal at the location where the gauge length of the tensile specimens was located, 

as shown in Figure 1c.  Thermocouple measurements revealed that during the austenization 

process, the temperature was 2 °C lower at a position 6 mm (along the longitudinal axis) from 

the centre of the blank and 2 °C lower at 2 mm from the centre of the blank (perpendicular to 

the longitudinal axis) as shown in Figure 1c.  This thermal gradient was small enough to 

ensure that the gauge region of the dog-bone specimens was subjected to a relatively uniform 

temperature-time schedule during quenching and deformation.  Also, the deformation zone 

over which the strain was uniform and approximately 0.20, as shown in Figure 1d, was 

sufficiently large to contain the entire gauge length of the tensile specimens. 
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2.3  Metallography 

In order to identify and measure the area fractions of the as-quenched phases present within the 

quenched and deformed blanks, a metallographic analysis was conducted for all of the 

conditions.  For the phase identification analysis, a single specimen was observed for each 

quench rate/deformation condition.  The authors recognize that a single part introduces 

uncertainty in the data and may not be representative of the sample population, but the 

excellent repeatability of the Gleeble apparatus (see [12]) supports the use of measurements 

from a single part.  All of the specimens were mounted in epoxy resin, ground and polished 

using 500, 1200 and 4000 grit SiC paper, followed by 3 µm and 1 µm diamond paste.  Two 

different metallographic observations were made on micrographs that were created using (i) 

scanning electron microscopy (SEM) images after etching with nital and (ii) a two-stage colour 

tint etching procedure that was used to reveal the various phases in different colours when 

observed with an optical microscope.  The same procedure was undertaken in the work by 

George et al. [14] and it was shown that it is critical to have both the SEM and optical 

micrographs to discern some nuances in the bainitic and martensitic structures due to the 

different quenching/deformation conditions. 

 

For the SEM procedure, specimens were etched with a 2% nital solution and a JEOL JSM 

6460 SEM was used to create micrographs of the specimens using secondary electron imaging 

(SEI).  High resolution micrographs revealed the characteristic structures of the various 

phases, but the images were not useful for quantifying volume fractions when multiple phases 

were present. The two-stage colour tint etching procedure adopted for this work was developed 

for multiphase steels by De et al. [23]. For the first stage, the specimens were etched in a picric 

solution that was followed by etching in a sodium metabisulfite solution.  Details of the 

preparation and etching procedure can be found in [14].  Using this procedure, martensite is 

tinted brown, bainite is tinted black/blue and ferrite is revealed as white.  The etched 

specimens were observed using an Olympus BH60 optical microscope equipped with 

ImagePro Plus image analysis software.  The ImagePro Plus software was used to manually 

colour the various phases and subsequently conduct a pixel count to quantify the area fractions 

present.  For each specimen, three 220 µm x 160 µm micrographs were used to generate an 

average measured area fraction.  The optical micrograph images were extracted at the mid-
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thickness of the sheet and along the longitudinal axis as shown in Figure 1c.  One image was 

taken at the center of the miniature dog-bone specimen gauge length, while the other two 

images were taken at a location that was approximately ± 5 mm from the center of the 

specimen gauge length. 

 

2.4  Micro-Hardness 

A LECO MHT Series 2000 micro-hardness tester (with 1000 g load) was used to measure the 

Vickers hardness in this work.  All of the micro-hardness specimens were mounted in epoxy 

resin and polished to a mirror finish.  The micro-hardness was measured along the gauge 

length of the subsequently cut miniature dog-bone specimens.  A total of seven measurements 

were made for each specimen and the location of the indents was along the mid-thickness of 

the sheet and along the longitudinal axis as shown in Figure 1c. 

 

2.5  Quasi-Static and Intermediate Uniaxial Tension Tests 

Uniaxial tension tests were conducted on specimens that were machined from the quenched 

and deformed blanks at the following nominal strain rates; 0.003 s-1, 10 s-1 and 80 s-1.  The 

following section briefly describes the specimen geometry and equipment used to conduct the 

uniaxial tension tests.   

 

Specimen Geometry - The miniature dog-bone style specimen (see Figure 1e) used in this work 

was developed by Smerd et al. [24] for aluminum alloy sheet metal.  The thermal-

mechanically processed blanks shown in Figure 1d contain a uniformly quenched and 

deformed region that is too small to accommodate the gauge length of a conventional ASTM 

(E 8M) specimen; hence, the use of the miniature tensile specimen.  For aluminium [24] and 

martensitic/bainitic steels [12], it was demonstrated that that stress versus strain curves from 

quasi-static tension tests conducted on ASTM (E 8M-04) specimens matched those of the 

miniature specimens up to the ultimate tensile strength (UTS), which is acceptable since this is 

the useful range of test data that can be used to develop constitutive models.   

 

Quasi-Static Strain Rate - An Instron model 1331 servo-hydraulic testing machine was used to 

conduct the quasi-static, low strain rate tests.  Specimen elongation was measured using a ±5 



 83

mm extensometer and the specimens were mounted in a pair of custom grips as shown in [12].  

A cross-head velocity of 0.0375 mm/s was used to deform the specimens at a nominal strain 

rate of  0.003 s-1. 

 

Intermediate Strain Rate - The intermediate strain rate tensile experiments were conducted 

using a hydraulic intermediate strain rate (HISR) apparatus, which is shown in schematic form 

in Figure 2.  The apparatus functions by accelerating the engagement sleeve to a constant 

velocity which then contacts the engagement piston at the bottom of the stroke at which point 

the specimen elongation commences. A KISTLER piezoelectric load cell, which is located 

directly above the upper grip assembly, measures the load during the test while an enhanced 

laser velocity system (ELVS) is used to measure the specimen elongation, as illustrated in 

Figure 2.  Refer to [12]  for a detailed explanation of the elongation measurement using the 

ELVS.  The ELVS system is composed of a diode laser which emits a diverging sheet of light 

that is then collimated by a plano-cylindrical lens and fixed to a 25.4 mm width by a 

rectangular aperture.  A convex lens is used to focus the laser sheet to a point, where the 

intensity is measured by a high-speed PIN photodetector.  The intensity is converted to a 

voltage which is recorded by the data acquisition system and converted to elongation upon 

processing.  The sample rate of the data acquisition was 60,000 samples/s for the 10 s-1 tests 

and 250,000 samples/s for the 80 s-1 tests. Due to electromagnetic noise present in the ELVS 

voltage signal, a running 25 point central average is applied to the signal upon processing.  The 

load and displacement are acquired using a National Instruments data acquisition module that 

is coupled with a desktop computer. Due to the nature of the metal-on-metal contact within the 

engagement piston/sleeve assembly of the HISR, wave effects can cause ringing in the force-

time signal, resulting in data that contains mechanical oscillations.  To reduce ringing, a 

damper (rubber o-ring) is placed at the piston and sleeve interface, as shown in Figure 2.  

Although the oscillations were reduced substantially, the addition of the damper increases the 

rise time prior to which a constant strain rate is achieved; however, the rise time is confined to 

relatively low strain levels (~2%) which is judged to be acceptable.  For this work, the velocity 

of the hydraulic actuator was 125 mm/s and 1000 mm/s to deform the specimen at a nominal 

strain rate of 10 s-1 and 80 s-1, respectively. 
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Figure 2 - A schematic of the Hydraulic Intermediate Strain Rate (HISR) apparatus. 

 

True Strain Rates - The true strain rate versus true strain for a single test conducted at each 

nominal strain rate is shown in Figure 3.  The strain rate becomes relatively constant after the 

approximate yield point (at ~ 0.01 true strain) is reached for all of the material conditions 

tested in this work.  The effect of using a damper to prevent ringing in the force-time signal is 

evident in the slight delay in achieving a constant strain rate.  The increased rise time is 

minimal and deemed to have a negligible effect on the test results. For each repeat test, the true 

strain rate was calculated as the average strain rate from a true strain of 0.02 to the end of the 

test.  The average true strain rate for each quench rate condition is reported in the experimental 

results, below.   
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Figure 3 - True strain rate versus true strain for tests conducted at the three nominal strain 
rates. The results shown are for the following material condition C.R. = 30°C/s, TDEF = 600 °C. 

 

3 Experimental Results  

 

3.1 Continuous Cooling Transformation Diagram (5 °C/s to 50 °C/s) 

Figure 4a is a plot of the continuous cooling transformation (CCT) diagram for the material 

(coil) used in this study.  The CCT was generated using a Gleeble 3500 thermal-mechanical 

apparatus with the same blank geometry and experimental procedure as described in [12].  

Constant cooling rates were applied from a start temperature of 950 °C and varied from 5 °C/s 

to 50 °C/s.  The heating and austenization schedule was the same as the schedule described in 

section 2.2.  During quenching, the dilation of the blank was measured with a quartz C-gauge 

and the change in the constant dilation rate (with respect to temperature) was used to define the 

martensite and bainite, start and finish temperatures which are shown as the data points in 

Figure 4a.  Approximate curves (dashed lines) were fit to the data points which indicate the 

shape of the CCT diagram.  It should be noted that no metallographic analysis was conducted 

on the as-quenched microstructures to verify the phases present in the as-quenched condition, 

but due to the general CCT diagram supplied for this material by ArcelorMittal [2] and shown 

overlaid with the CCT diagram determined in this work in Figure 4b, one can assume that the 

transformation start temperatures indicated by the dashed lines are those for the martensite and 

bainite phase transformations.  Because the transformation of ferrite occurs at cooling rates 

less than 8 °C/s for this material [2], the single data point labelled (FS) is expected to be the 
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ferrite start temperature since this point was due to a 5 °C/s cooling rate. The three constant 

cooling rates imposed in this work are shown in Figure 4a, along with the start of deformation 

for the TDEF=600 C and TDEF=800 C conditions.  The temperature-time curves with 

simultaneous deformation shown overlaid on the CCT diagram in Figure 4a define the sub-

critical cooling rates and deformation temperatures that will result in the as-quenched mixed 

phase material conditions examined in this work.  From an industrial process perspective, 

similar cooling rates (albeit not constant) may be achieved in practice due to quenching within 

a heated die, thus defining a process window when hot stamping a tailored component.  

 

  

Figure 4 – (a) Continuous cooling transformation (CCT) diagram for the USIBOR® 1500P 
boron steel used in this work. This CCT was generated using cooling rates that varied from 5 
°C/s to 50 °C/s.   The three constant cooling rate curves shown in the CCT diagram are those 
from the measured control thermocouple temperature versus time data for the ND conditions.  
The stars indicated the time when simultaneous deformation occurred for the TDEF = 600 °C 
and TDEF = 800 °C conditions. MS=martensite start, MF=martensite finish, BS=bainite start, 
BF=bainite finish, FS=ferrite start (b) A comparison of the CCT diagram generated for this 
work (dashed lines) and a general CCT diagram supplied for this material by ArcelorMittal [2]. 
(c) A schematic of a conventional CCT diagram and (d) a schematic of a shifted CCT diagram 
due to plastic deformation during quenching. B=bainite, M=martensite, F=ferrite, P=pearlite, 
UB=upper bainite type morphology, GB=granular bainite. 
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3.2 Effect of Quench Conditions on Measured Micro-Hardness 

One miniature dog-bone specimen from each test condition was not tension tested, but instead 

was used to measure the micro-hardness along the gauge length, as shown in the Figure 5 

inset.  The measured hardness distributions are shown in Figure 5 and presented in Table 3 for 

each condition.  Based on the fairly constant measured hardness distributions, the majority of 

the specimens are expected to have a homogeneous microstructure throughout the gauge 

length, but some results, such as the 30 °C/s specimen with TDEF = 600 °C in Figure 5c, show a 

deviation from the average hardness which suggests that the microstructure may be slightly 

different.  Figure 5d shows the average measured Vickers hardness versus cooling rate for the 

simultaneously quenched and deformed experiments.  Also shown in Figure 5d is the standard 

deviation calculated for each quench condition.  As expected, the no deformation (ND) 

average hardness for the 30 °C/s quench rate condition was 458 HV, which is in the expected 

range for a material condition that is predominantly martensitic  [12,14,25].  The TDEF = 800 

°C result shows little softening due to deformation during quenching for the 30 °C/s cooling 

rate condition, but considerable softening for the two lower cooling rates.  The level of 

softening due to deformation at TDEF = 600 °C is significant for all three cooling rates.  
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Figure 5 - Measured Vickers hardness distributions within the gauge length of the thermal-
mechanically processed specimens at (a) 10 °C/s (b) 15 °C/s and (c) 30 °C/s. (d) Vickers 
hardness versus cooling rate. The error bars indicate +/- the standard deviation as measured 
from the population of repeat measurements and the values adjacent to the data points indicate 
the calculated standard deviation. (ND = no deformation). 

 

3.3 Effect of Quench Conditions on Area Fraction of Phases 

The micrographs used to quantify the area fraction of martensite, bainite and ferrite for the 30 

°C/s, 15 °C/s and 10 °C/s quench rate conditions are shown in Figure 6, Figure 7 and Figure 8, 

respectively. The SEM images provide a detailed view of the mixed microstructures for each 

condition while the color tint-etched optical micrographs were used to generate the post-

processed images for which a pixel count was conducted and the area fractions quantified.  For 

each condition, the micrographs are shown at the same scale for comparison, but do not 

correspond to the same image. Table 2 summarizes the average measured area fractions for all 

of the quench rate conditions and Figure 9 plots the average area fractions of martensite, 

bainite and ferrite as a function of deformation condition.  
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The specimen quenched at 30 °C/s with no deformation (ND) revealed a predominantly 

martensitic microstructure as would be expected based on the high hardness of 458 HV. The 

ND SEM micrograph in Figure 6a exhibits packets of parallel lath crystals that are 

characteristic of martensite containing less than 0.6% carbon [26].  Bainite was also found 

within the microstructure as shown by the characteristic carbides that are oriented along a 

common direction and dispersed throughout the sheaves of a bainitic ferrite matrix.  These 

morphological characteristics are typically used to describe upper bainite [27], but have also 

been used to describe lath-like bainitic structures [28] and conventional bainite structure as 

well [16,17].  A very small area fraction of ferrite is also distinguishable as the flat and 

featureless constituent in the SEM micrograph.  Ferrite is not expected for this cooling rate 

condition and may have formed due to a small tensile pre-load on the blank as the specimen 

thermally contracted during quenching.  The colour tint-etching procedure resulted in an 

optical micrograph that revealed martensite as brown or straw colour, bainite as blue/black and 

ferrite as white as shown in Figure 6a. Plastically deforming the specimen at TDEF = 800 °C 

during the 30 °C/s quench resulted in a small reduction in hardness which was due to an 

increased area fraction of bainite when compared to the ND case as shown in Figure 6b.  The 

bainitic structure in this case was similar to that observed for the ND case.  The TDEF = 600 °C 

case resulted in the transformation of bainite with a structure characterized by a relatively 

coarse constituent dispersed throughout a ferritic matrix as shown in the SEM micrograph in 

Figure 6c. This bainitic structure is consistent with that of granular bainite which is 

characterized by either martensite, retained austenite or martensite/retained austenite islands 

dispersed within a ferritic matrix [15,27,29-31].  It is widely accepted that the morphology of 

bainite transitions from an upper bainite type morphology to a granular type morphology as the 

continuous cooling rate is decreased [29,30,32] as shown by the schematic CCT diagram in 

Figure 4c.  This phenomenon can be used to explain the formation of granular bainite in the 

current study, which is illustrated by Figure 4d.  The addition of plastic deformation during 

quenching shifts of the CCT diagram towards the left, or lower transformation times.  This in 

effect, is similar to reducing the cooling rate, since a constant cooling rate of 15 °C/s plotted on 

a conventional CCT diagram would appear further to the right of the bainite window when 

plotted on a CCT diagram that has been shifted towards the left.  Barcellona and Palmeri [15] 

also observed granular bainite in their as-quenched microstructure of quenched and deformed 
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22MnB5 boron steel, which is identical to the USIBOR® 1500P boron steel used in this study.  

Min et al. [16] also observed this type of bainitic structure, but referred to it as acicular ferrite.  

The characteristic martensite structure is also present with islands of ferrite dispersed 

throughout.  Based on the colour tint-etched optical micrograph in Figure 6c, it appears that 

ferrite (white) is a dominant constituent.  This would be a false assumption because the ferritic 

matrix within the bainite appears white and should not be counted as purely ferrite.  This fact 

must be taken into account when selecting the bainite and ferrite phases during post-processing 

to quantify area fractions using an image analysis software. 

 

The 15 °C/s quench specimens are shown in Figure 7 and the ND condition shows a mixed 

martensite/bainite structure with a small area fraction of ferrite. The bainite appears as islands 

throughout the mostly martensitic microstructure and consists of an upper bainite-type 

morphology.  For the TDEF = 800 °C deformation condition, the dominant structure is granular 

bainite and martensite appears as small irregularly shaped islands throughout, while ferrite is 

observed as large islands throughout the microstructure. When compared to the TDEF = 800 °C 

condition, a more refined ferritic microstructure is observed for the TDEF = 600 °C condition 

and granular bainite is the dominant structure. The more refined ferritic structure observed in 

the optical micrograph (Figure 7d), which was used to quantify the area fractions, may have 

contributed to a measured area fraction of 12%, which is lower than the measured area fraction 

of 18% for the TDEF = 800 °C condition. 

 

At a quench rate of 10 °C/s, the effect of deformation has a minimal role on the volume 

fraction of bainite that is transformed, but increases the area fraction of ferrite and decreases 

the area fraction martensite by nearly equal proportions.  Although the area fraction of bainite 

changes little as the temperature during deformation changes, the morphology of bainite 

changes from the upper bainite-like structure for the ND condition, to granular bainite for the 

two deformation conditions.  The structure of martensite also becomes irregular and dispersed 

throughout the microstructure for the two deformation conditions. 

 

Figure 9 shows the effect of deformation during quenching on the measured area fraction of 

martensite, bainite and ferrite for the three different quench rates and deformation 
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temperatures. For the 30 °C/s and 15 °C/s quench rate conditions, the results indicate 

decreasing martensitic area fractions and increasing area fractions of bainite and ferrite as the 

deformation condition changes from ND to TDEF = 600 °C.  At 10 °C/s, the area fraction of 

bainite remains almost unchanged for the three deformation conditions examined and the 

decrease in martensite is offset by the increase in ferrite as the deformation condition changes 

from ND to TDEF = 600 °C. 

 

  

Figure 6 - The SEM micrographs and color tint-etched optical micrographs for the specimens 
quenched and deformed at 30 °C/s. 
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Figure 7 – The SEM micrographs and color tint-etched optical micrographs for the specimens 
quenched and deformed at 15 °C/s. 
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Figure 8 - The SEM micrographs and color tint-etched optical micrographs for the specimens 
quenched and deformed at 10 °C/s. 
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Figure 9 - The average measured area fraction of martensite, bainite and ferrite for all of the 
quenching and deformation conditions.  The error bars indicate +/- the standard deviation as 
measured from the population of repeat measurement results (3 micrographs used per 
condition). GB-granular bainite, UB-upper bainite like morphology. 

 

Table 2 - Summary of the area fraction measurements. For each condition, three different 
micrographs were used and the standard deviation for each condition is shown by the error 
bars in Figure 9. 
Cooling 

Rate 
(°C/s) 

TDEF 
(°C) 

Avg. 
Vickers 

Hardness 

Avg. Area 
Fraction 

Mart., M (%) 

Avg. Area 
Fraction 

Bainite, B (%) 

Avg. Area 
Fraction 

Ferrite, F (%) 

Mart.-Bain. Area 
Fraction Relationship, 

M/(M+B) (%) 

10 
ND 339 22 72 6 23 
800 282 17 71 12 20 
600 257 14 70 16 16 

15 
ND 413 57 37 6 61 
800 326 53 29 18 64 
600 288 12 76 12 14 

30 
ND 458 78 19 3 81 
800 450 71 27 2 72 
600 348 37 49 14 43 

 

3.4 Measured Mechanical Behavior 

Stress-Strain Analysis of Quasi-Static Results - The average engineering stress versus strain 

curves from the uniaxial tension tests conducted at a strain rate of 0.003 s-1 are presented in 

Figure 10a-c and the average mechanical properties can be found in Table 3.  Each of the 

curves represent an average of three repeat tests which showed excellent repeatability as 

indicated by the low scatter of the ultimate tensile strength (σUTS) and 0.2% yield strength (σY) 

shown in Figure 11a.  To calculate an average curve for each condition, the raw data set was 

interpolated at strain increments of 0.002 and the interpolated values were then used to create a 
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single average curve for each condition.  In addition to the simultaneously quenched and 

deformed tensile data generated in this work, the average engineering stress versus strain 

curves from [12]  are shown as the dashed curves in Figure 10d for comparison to the ND 

condition curves.  These specimens were quenched without deformation using a forced air 

quenching apparatus (FAQA) which resulted in as-quenched area fractions that varied from 

martensitic to bainitic.  The area fraction of ferrite for the FAQA quenched specimens was not 

quantified, but was assumed to be negligible due to the absence of deformation during 

quenching.  The average measured Vickers hardness and average area fraction (%) of ferrite 

present in the microstructure for each material condition are shown adjacent to the curves in 

Figure 10a-d. 
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Figure 10 – Average engineering stress versus strain curves for the (a) 30 °C/s (b) 15 °C/s and 
(c) 10 °C/s specimens pulled at a strain rate of 0.003 s-1.  The numbers that correspond to each 
curve are the average measured Vickers hardness and the percent values represent the average 
measured area fraction of ferrite within the microstructure. (d) A comparison of the ND curves 
from a-c to the average engineering stress versus strain curves for specimens quenched in the 
FAQA and pulled at a strain rate of 0.003 s-1 [12]. The microstructure of the FAQA specimens 
ranges from approximately martensitic to bainitic.  

 

The average UTS and Y for the quenched and deformed specimens is plotted as a function of 

the average measured Vickers hardness in Figure 11a (round data points).   Both the UTS and 

Y data lie along linear trend lines, irrespective of quench condition or the area fraction of 

phases present in the microstructure.  Also plotted in Figure 11a are the UTS and Y data 

points from the FAQA processed specimens which do not contain ferrite.  With respect to the 

yield strength, the FAQA data lies along the same trend line as the quenched and deformed 

results measured in the current work for equivalent hardness levels.  When compared to the 
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FAQA data, the ultimate tensile strength measured for the quenched and deformed specimens 

was slightly elevated for an equivalent hardness level.  This is shown by the two trend lines 

that were fit to both data sets as labeled in Figure 11a.  The trend line of the quenched and 

deformed material conditions, which containing ferrite, is offset (vertically) by approximately 

60 MPa when compared to the FAQA trend line.  

 

 

Figure 11 - (a) The measured ultimate tensile strength (UTS) and 0.2% yield strength (Y) 
versus average Vickers hardness from the quasi-static tension tests conducted at a strain rate of 
0.003 s-1 (b) The average uniform elongation versus the average measured Vickers hardness.  
The percent values indicate the average measured area fraction of ferrite within the 
microstructure. The error bars indicate +/- the standard deviation as measured from the 
population of repeat measurements. The FAQA results are those measured from Figure 10d 
and presented in [12]. The microstructure of the FAQA specimens ranges from approximately 
martensitic to bainitic with negligible levels of ferrite. 

 

While a linear relationship exists between strength level and hardness for the quenched and 

deformed specimens, this is not the case for the strain hardening behaviour observed for the 

curves presented in Figure 10a-c.  Qualitatively, it appears that the degree of strain hardening 

occurs over a larger range of strain when the area fraction of ferrite is greater than ~6%, even 

though the hardness and strength levels are similar.  This behaviour is illustrated in Figure 12 

which serves to compare the average stress versus strain curves at material conditions with 

similar hardness levels. For the two pairs of curves with a hardness of ~260 HV and ~330 HV, 

the material exhibits a larger uniform elongation strain when the amount of ferrite present 

within the microstructure increases.  Figure 11b plots the average uniform elongation strain 
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(engineering) for the quenched and deformed specimens (also in Table 3) and the specimens 

quenched in the FAQA for which it is assumed that no ferrite formed and only martensite and 

bainite are present within the microstructure.  Polynomial trend lines were fit to the two data 

sets and are shown as the dashed trend lines in Figure 11b.  The quenched and deformed 

specimens containing area fractions of ferrite greater than 6% are indicated by the ferrite area 

fraction values adjacent to the round data points.  The two trend lines shown in Figure 11b 

indicate that for equivalent hardness levels less than 400 HV, the uniform elongation is greater 

for the quenched and deformed materials when compared to the FAQA curves. As the 

hardness level approaches approximately 250 HV, the difference in uniform elongation 

between the quenched and deformed specimens and the FAQA specimens is amplified as 

shown in Figure 12 for the two pairs of curves with a hardness of ~260 HV and ~330 HV.   

 

 

 

Figure 12 – The effect of area fraction of ferrite on the uniform elongation strain. Shown for a 
variety of as-quenched material conditions. Average engineering stress versus strain curves for 
a variety of as-quenched material conditions tested in this work and from the FAQA 
experiments [12].  The tensile tests were conducted at a strain rate of 0.003 s-1 and the label 
corresponding to each curve indicates: [avg. Vickers hardness, avg. measured area fraction of 
ferrite, cooling rate, deformation condition]. 

 

The slightly elevated ultimate tensile strength and increased uniform elongation for a given 

hardness level leads to an increase in the energy absorption potential of the quenched and 

deformed material conditions. To illustrate the increased energy absorption, Figure 13a is a 

plot of the toughness for each material condition.  For each individual repeat test, the 
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toughness was calculated as the area under the engineering stress versus strain curve.  The 

toughness data points plotted in Figure 13a are the average calculated based on the population 

of repeat tests.  A polynomial trend line was fit the data set and shows an improvement in 

energy absorption as the toughness increases from 127.3 MJ/m3 at a hardness of 458 HV with 

2% ferrite to 144.2 MJ/m3 at a hardness of 257 HV with 16% ferrite.  This increase in 

toughness represents a 13% increase in energy absorption potential. The calculated toughness 

is also plotted for the FAQA materials that are void of ferrite and the results show that the 

toughness decreased from 126.0 MJ/m3 at a hardness of 466 HV to 113.0 MJ/m3 at a hardness 

of 268 HV. Although a 10% reduction in energy absorption is observed as the microstructure 

transitions from martensitic to bainitic, the benefits of the improved ductility (uniform 

elongation strain) for the bainitic material condition may offset the relatively small reduction 

in energy absorption.  At the lowest hardness condition for which the main constituent is 

bainite, the quenched and deformed specimen containing 16% ferrite with a hardness of 257 

HV resulted in a 28% increase in toughness when compared to the FAQA specimen that did 

not contain ferrite and had a hardness of 268 HV. For both the quenched and deformed and 

FAQA specimen toughness distributions shown in Figure 13a, the lowest toughness values 

occur at approximately 375 HV and increase as the hardness increases.  This trend is due to the 

small increase in uniform elongation strain as the hardness increases from approximately 375 

HV as shown in Figure 11b. This observation is unexpected since these material conditions 

have minimal to no ferrite and increasing volume fractions of martensite as the hardness 

increases from approximately 375 HV to 460 HV. This phenomenon may be due to the shape 

effect of the bainite islands as the volume fraction of bainite diminishes for increasing 

hardness levels.  From a structural component design perspective, the toughness distribution 

shown in Figure 13a indicates that tailored hot stampings with as-quenched hardness levels 

ranging from approximately 300 HV to 425 HV may be undesirable due to their reduced 

energy absorption capacity.  Although toughness is typically measured up to the point of 

fracture, some may consider the onset of necking (uniform elongation strain) as the point 

where material failure initiates.  Figure 13b is a plot of the toughness, which was calculated up 

to the uniform elongation strain rather than fracture.  The trend lines plotted in Figure 13b 

indicate that the reduction in energy absorption capacity for hardness ranging from 

approximately 300 HV to 425 HV is less severe than presented in Figure 13a. At the lowest 
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hardness condition, the quenched and deformed material containing 16% ferrite had a 

toughness of 88.7 MJ/m3 at a hardness of 257 HV, while the toughness of the FAQA 

specimen, which is void of ferrite, is 54.9 MJ/m3 at a hardness of 268 HV.  This increase in 

toughness, due to the addition of ferrite, resulted in a 62% increase in energy absorbing 

capacity.  For the highest hardness condition (~ 460 HV), the toughness was approximately 60 

MJ/m3 for the quenched and deformed and the FAQA specimens. 

 

  

Figure 13 – (a) Toughness (or energy absorption) versus Vickers hardness for the quenched 
and deformed specimens (b) Toughness (or energy absorption) up to the uniform elongation 
strain versus Vickers hardness for the quenched and deformed specimens (c) The strain 
hardening exponent versus the Vickers hardness for the quenched and deformed specimens.  
Also included in (a) and (b) is the data for the specimens quenched in the FAQA, from [12].  
The percent values indicate the average measured area fraction of ferrite within the 
microstructure and the error bars indicate +/- the standard deviation as measured from the 
population of repeat measurements. 
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Strain Hardening Rates - The strain hardening behaviour for all of the average curves 

presented in Figure 10 was quantified by converting the engineering stress versus strain data 

into true stress versus strain and fitting the curves with the power law function due to 

Hollomon [33], 

 

ߪ   ൌ  ௡     (1)ߝܭ

 

where K is the strength coefficient (MPa) and n is the strain-hardening exponent that is also 

referred to as the n-value.  The n-value provides an empirical parameter used to rank the 

stretch formability of similar metallic systems and is useful for estimating the true strain at the 

onset of necking in a uniaxial tension test [34,35].  Materials that are characterized by high n-

values strain harden more, than similar materials with low n-values.  The average engineering 

stress versus strain curves were converted into true stress versus strain for each test condition 

and fit with equation 1 from a strain level of 0.016 up to the limit of uniform elongation.  This 

portion of each curve was selected because changes occur in the n-value at low strains for most 

metals and in particular for martensitic steels [36,37].   The K, n-value and R-squared fitting 

parameters are presented in Table 3 and the n-values are plotted versus the Vickers hardness in 

Figure 13c.  A trend line was fit to the data and clearly shows that the n-value increases from 

~0.10 at the highest hardness levels to ~0.15 at the lowest hardness levels which indicates 

increased ductility and an increase in strain hardening as the material hardness (or strength) 

reduces.  The n-value was also captured and plotted in Figure 13c for the specimens quenched 

in the FAQA where no ferrite was present.  A trend line was also fit to this data, which clearly 

indicates that the presence of ferrite increases the n-value and strain hardening behaviour of 

the materials for equivalent hardness (or strength) levels.  

 

 

 

Effect of Strain Rate on Mechanical Properties – For the intermediate strain rate tests, two 

repeat tests were conducted for the no deformation (ND) conditions and three repeat tests were 

conducted for the remainder of the conditions.  The average ultimate tensile strength (UTS) 

and 0.2% yield strength (Y) for both strain rates can be found in Table 3 and are plotted in 
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Figure 14a.  The tests showed excellent repeatability as indicated by the low scatter of the UTS 

and Y shown in Figure 14a. Figure 14b is a plot of the average UTS versus the average true 

strain rate and shows moderate strain rate sensitivity for the majority of the conditions tested.   

 

 

Figure 14 – (a) The ultimate tensile strength (UTS) for and 0.2% yield strength (Y) versus 
Vickers hardness for all of the quenched and deformed specimens tested at nominal strain rates 
of 0.003 s-1, 10 s-1 and 80 s-1 (b) The effect of strain rate on UTS. The error bars indicate +/- 
the standard deviation as measured from the population of repeat measurements. 

 

Figure 15 is plot of the average increase in ultimate tensile strength (ΔUTS) for an increase in 

strain rate from 0.003 s-1 to 80 s-1 as a function of the Vickers hardness. The average ΔUTS for 

the quenched and deformed specimens is ~80 MPa.  Also plotted in Figure 15 is the ΔUTS 

(between 0.003 s-1 to 85 s-1) for the specimens quenched in the FAQA, from [12].  A trend line 

was fit to all of the data shown in Figure 15 and the general trend indicates slightly elevated 

strain rate sensitivity for the softer and lower strength material condition, as suggested in the 

initial work on tailored properties by Bardelcik et al. [25]. The percent values adjacent to the 

data points in Figure 15 are the average measured area fraction of ferrite within the 

microstructures of each material condition.  There does not appear to be a correlation between 

the value of ΔUTS and the presence of ferrite in the as-quenched material condition; therefore 

the increased strain rate sensitivity is thought to be solely a function of material strength.  
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Figure 15 - The change in average ultimate tensile strength (ΔUTS) due to a nominal strain 
rate increase from 0.003 s-1 to 80 s-1 versus the Vickers hardness for the quenched and 
deformed specimens. Also shown are the results for the FAQA specimens [12], where the 
change in ultimate tensile strength (ΔUTS) due to an average true strain rate increase from 
0.003 s-1 to 85 s-1 is plotted.  The percent values indicate the average measured area fraction of 
ferrite within the microstructure. 

 

All of the measured engineering stress versus strain curves were converted into true stress 

versus effective plastic strain (or flow stress) curves. For each individual repeat test, the 

effective plastic strain was calculated using an “effective modulus” (see [12]) which was 

extracted from the raw engineering stress versus strain data.  To calculate an average curve for 

each condition, the raw data set was interpolated at strain increments of 0.002 strain and the 

interpolated curves were then used to create a single average curve for each condition 

corresponding to the data points in Figure 16.  For all of the quench rate conditions, the strain 

rate sensitivity is clearly shown by a scaling of the flow stress curves to higher stress levels at 

the higher strain rate conditions.  The yield point for each material condition shown in Figure 

16 appears to be scaled up for increasing strain rates.  This effect of strain rate on yield point 

observation is also shown in Figure 14a, which suggests that a multiplicative term can be used 

within a constitutive model to capture the strain rate sensitivity.  Figure 17a-c are plots of the 

true stress (data points) at an effective plastic strain of 0.03 versus the true strain rate.  Similar 

to the effect of strain rate on UTS , the rate dependence of the true stress in Figure 17a-c is 

moderate when the loading rate increases from 0.003 s-1 to 80 s-1 as indicated by an average 

change in flow stress of approximately 76 MPa for all of the conditions. 
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Figure 16 - The average measured flow stress curves for the specimens quenched at (a) 30 °C/s 
(b) 15 °C/s (c) 10 °C/s.  The data points represent the measured flow stress data and the 
continuous curves represent the predicted flow stress due to equation 2 (see Section 4) for each 
quenched and deformed condition. 
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Figure 17 - The true stress versus true strain rate for the specimens quenched at (a) 30 °C/s (b) 
15 °C/s (c) 10 °C/s.  (d) The true stress versus true strain rate for the specimens quenched in 
the FAQA, from [12]. The data points represent the measured true stress data and the dashed 
curves represent the predicted true stress due to the TCM II model (see Section 4). The error 
bars indicate +/- the standard deviation as measured from the population of repeat 
measurements. 
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Table 3 - Tensile properties of the simultaneously quenched and deformed specimens. 

Cool-
ing 

Rate 
(°C/s) 

TDEF 
(°C) 

Avg. 
Vickers 

Hardness 

Avg. 
True 
Strain 

Rate (s-1) 

Avg. 
UTS 

(MPa) 

Avg. 
Yield Str., 

0.2% 
(MPa) 

Avg. Uni. 
El. Strain 
(mm/mm) 

Avg. 
Toughness, 

(MJ/m3) 

Strength 
Coeff., 

K (MPa) 

n-
Value 

R2 
Value 

   0.003 1041 736 0.049 92.8 1542.9 0.111 0.99 
 ND 339 9.4 1100 794 - - - - - 
   73.0 1130 809 - - - - - 
   0.003 878 576 0.081 119.0 1388.2 0.145 0.99 

10 800 282 8.8 950 598 - - - - - 
   77.6 970 706 - - - - - 
   0.003 811 545 0.121 144.2 1273.5 0.116 0.98 
 600 257 8.7 874 623 - - - - - 
   78.0 899 645 - - - - - 
   0.003 1332 978 0.042 100.7 2021.7 0.114 0.98 
 ND 413 9.5 1360 1110 - - - - - 
   67.4 1403 1185 - - - - - 
   0.003 1080 689 0.067 111.2 1641.5 0.125 0.98 

15 800 326 9.1 1144 836 - - - - - 
   76.9 1176 897 - - - - - 
   0.003 943 591 0.108 137.7 1482.5 0.150 0.99 
 600 288 9.4 980 655 - - - - - 
   79.4 1019 742 - - - - - 
   0.003 1457 1052 0.047 127.3 2178.2 0.103 0.97 
 ND 458 9.5 1495 1237 - - - - - 
   64.6 1506 1218 - - - - - 
   0.003 1390 982 0.044 101.1 2113.8 0.116 0.98 

30 800 450 9.1 1440 1088 - - - - - 
   68.9 1461 1189 - - - - - 
   0.003 1146 740 0.057 95.2 1827.6 0.139 0.98 
 600 348 8.6 1158 840 - - - - - 
   73.8 1223 877 - - - - - 

 

4 Constitutive Model Development 

The Taylor model [38] forms the basis of many physically based constitutive models (such as 

the Bergstrom model [39]) which are capable of capturing the constitutive response of 

crystalline materials by mathematically expressing the competitive interaction of dislocation 

storage and annihilation.  Fitting the results of the current work to the Bergstrom model was 

initially considered in an attempt to understand the role of dislocation dynamics on the 

constitutive behaviour of these multiphase materials, but due to the complexity of the of 

martensitic and bainitic phases, which themselves behave as composite structures, this 

approach was deemed intractable at present.  Considering the complexity of the multiphase 

material conditions examined in this work, it was deemed that a phenomenological approach to 

characterizing the constitutive response would be taken. 
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In previous work, Bardelcik et al. [12] developed the strain rate sensitive Tailored Crash 

Model (TCM) for quenched boron steel with tailored properties.  The model is 

phenomenological and the material conditions that were used to develop the TCM varied from 

martensitic to bainitic.  Due to the variation in strain hardening rate between these material 

conditions, it was found that the Voce [40] hardening model with a multiplicative strain rate 

sensitive term in the form of an exponential type function was able to capture the change in 

hardening rate better than other strain rate sensitive constitutive models such as Johnson-Cook 

[41,42] and Zerilli-Armstrong [43], for example.  The maximum temperature rise due to 

adiabatic heating for tests conducted at a strain rate of ~1075 s-1 was minimal at 18 °C and 

therefore thermal softening was not accounted for in the model. The Voce hardening model 

with the exponential-type strain rate sensitivity term is shown in equation 2 where constant A 

is the saturation stress, B is the initial yield stress, C is the relaxation strain and D is the strain 

rate coefficient. 

 

ߪ ൌ ൥ܣ ൅ ቈሾܤ െ ሿ݁ቀିܣ
ഄ
಴
ቁ቉൩ ሾ1 ൅  ሶሿ஽     [2]ߝ

  

The TCM was developed by fitting equation 2 to the various as-quenched material conditions 

from the FAQA [12].  The Voce constants were then plotted with respect to Vickers hardness 

for each of the five material conditions, which revealed that constants A and B varied linearly 

with respect to hardness and constant C varied in a polynomial manner with respect to 

hardness. The strain rate coefficient did not vary significantly and was taken to be a constant.  

Although the TCM was developed as a function of as-quenched Vickers hardness, the model 

could also be expressed as a function of martensite/bainite area fraction due to the linear 

relationship between hardness and area fraction martensite/bainite [12]. 

 

In the current work (Section 3.4), it has been shown that the Vickers hardness and strength 

levels can be similar for an as-quenched microstructure composed of bainite/martensite and 

bainite/martensite/ferrite, but significant differences in hardening rate occur depending upon 

the level of ferrite present in the as-quenched microstructure.  This effect of ferrite on the 

hardening rate has motivated the development of a new model, presented herein and referred to 
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as the “Tailored Crash Model II” (TCM II) constitutive model, which is a function of effective 

plastic strain, true strain rate and area fraction of martensite, bainite and ferrite.  The following 

three sections (4.1 to 4.3) lay out the steps undertaken to develop the TCM II: (i) for each 

material condition, fit equation 2 to the flow stress data; (ii) mathematically relate the equation 

2 constants for each material condition to area fraction martensite, bainite and ferrite; and, (iii) 

construct and verify the TCM II.  This approach is similar to the one taken to develop the TCM 

in [12]. 

 

4.1 Fitting of Flow Stress Data with Rate-Sensitive Voce Hardening Model 

The Voce hardening model with the exponential-type strain rate sensitivity term shown in 

equation 2 was fit to the average measured flow stress curves (from 0.003 s-1 to 80 s-1) for each 

of the quenched and deformed conditions shown in Figure 16.  A non-linear regression 

analysis was conducted to fit the model using the statistical analysis software MYSTAT 12.  

Table 4 presents the model parameters determined from the regression analysis for each 

material condition and Figure 16 plots the predicted flow stress curves using those constants.  

Examination of the predicted curves reveals that equation 2 was able to fit the measured data 

very well for all of the strain rates considered.  The goodness of fit, indicated by the high R-

squared values in Table 4 confirms the excellent fit of equation 2 to each material condition.  

 

4.2 Effect of Martensite, Bainite and Ferrite on the Voce Model Parameters 

In order to introduce the dependency of the strain rate sensitive Voce model parameters on the 

phases present after thermo-mechanical processing, the following approach was taken. There 

are three potential phases present, of which the volume fraction of any two can be regarded as 

independent variables. For the first independent variable, the martensite – bainite area fraction 

relationship, which is calculated as the ratio of area fraction martensite to the total area fraction 

of martensite plus bainite [M/(M+B)] was adopted and is shown in Table 2 for all of the 

conditions tested in this work.  This parameter was adopted since it allows one-to-one 

comparison with the TCM model for cases in which no ferrite is formed (no deformation 

during quenching). The second independent parameter adopted was the volume (area) fraction 

of ferrite (F) formed after processing.  
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By simply fitting the A,	B and C Voce parameters (Table 4) with respect to the [M/(M+B)] 

independent variable (Table 2) for each material condition, there was no clear mathematical 

relationship that could be implemented within a new model, hence the introduction of the area 

fraction ferrite (F) was considered since it was shown to play a significant role in the hardening 

behaviour of these steels.  It was found that a three-dimensional surface function was able to 

capture the Voce model parameters with respect to [M/(M+B)] and F.  The regression tool 

within MATLAB 2012a was used to fit the Voce model parameters presented in Table 4, along 

with the Voce parameters determined in [12] for the FAQA experiments.  The [M/(M+B)] and 

F values used in the fitting procedure can be found in Table 2 for the quenched and deformed 

materials and in [12] for the FAQA values.  The polynomial surface function shown in 

equation 3 was used to fit the A,	B and C parameters with respect to [M/(M+B)] and F. 
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The surface function constants that were determined from the regression analysis are shown in 

Table 5 for each of the constants. As an indication of the goodness of fit, the R-squared values 

from the regression analysis are shown in Table 5 and indicate good agreement between the 

surfaces and data points.  The surface function for the saturation stress (A) and yield stress (B) 

are plotted in Figure 18a and b, respectively. The shape of the surface indicates the expected 

increase in A and B for greater [M/(M+B)].  The concavity of these two surfaces for increasing 

area fractions of ferrite indicate a slight strengthening effect for area fractions of ferrite from 0 

to  ~10% and then a decrease in A and B for area fractions of ferrite from ~10% to 20%.  Since 

the saturation stress (A) and ultimate tensile strength (UTS) are directly related, the observed 

increase in UTS due to the presence of ferrite (Figure 11a) agrees with the strengthening effect, 

but the strengthening effect of the yield strength (Y) cannot be explained and may be a 

numerical artifact of the non-linear regression analysis conducted in section 4.1.  The 

relaxation strain (C) surface plot shown in Figure 18c fits the data points very well and 

provides some insight into the effect of area fraction of ferrite on the strain hardening 

behaviour of the multiphase steel examined in this work.  Because C is directly related to the 

strain hardening rate of a material (high C → high n-value), Figure 18c accurately reproduces 
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the findings from [12] for a martensitic/bainitic material (zero F) condition.  The addition of 

ferrite for low [M/(M+B)] (or predominantly bainitic) conditions increases C rapidly which 

indicates an increase in uniform elongation strain as observed in the experiments. For high 

[M/(M+B)] conditions the effect of area fraction of ferrite is less significant since the strain 

hardening behaviour of these materials appears to be dominated by the high area fractions of 

martensite present. 

     

Figure 18 - The three-dimensional surface function plots for the Voce model parameters (a) A 
(b) B (c) C. 

 

 

4.3 Tailored Crash Model II (TCM II) 

The final step in developing the new “Tailored Crash Model II” (TCM II) requires the constant 

Voce constitutive model parameters (A,	B,	C,	D) in equation 2 to be replaced by the functions 

that defined these parameters as per equation 3 and Table 5. TCM II now becomes a function 

of effective plastic strain (ε), true strain rate (ߝሶ), martensite – bainite area fraction relationship 

[M/(M+B)] and area fraction of ferrite (F) as shown by equation 4.  Figure 19a-b shows the 

measured experimental flow stress curves and the predicted flow stress curves using the TCM 

II for the quenched and deformed specimens at strain rates of 0.003 s-1 and 80 s-1, respectively. 

The TCM II accurately predicts the flow stress curves for the majority of the conditions and 

also captures the measured increase in flow stress due to the elevated loading rate. Figure 17a-

c shows the predicted (TCM II) true stress at an effective plastic strain of 0.03 versus the strain 

rate for all of the quenched and deformed material conditions.  The predicted stress values are 

in excellent agreement with the measured data and support the use of the exponential type 

strain rate sensitivity term used in the model.  In order to ensure that the TCM II can also 
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predict the flow stress curves measured from the FAQA experiments [12], the flow stress 

curves from that work are plotted in Figure 19c-d at strain rates of 0.003 s-1 and 1000 s-1, 

respectively.  Again, the TCM II accurately captures the measured flow stress curves at both of 

the strain rates.  Figure 17d also shows excellent agreement between the predicted (TCM II) 

true stress at an effective plastic strain of 0.025 versus the strain rate for all of the FAQA 

specimens tested in [12].  

 

It should be noted that the surface functions used to develop the TCM II were fit based on a 

total of 14 (quenched/deformed and FAQA data) unique combinations of area fraction ferrite 

(F) and martensite – bainite area fraction relationship [M/(M+B)].  Although the TCM II will 

predict the flow stress behaviour for [M/(M+B)] and F combinations outside those examined in 

this work, it has not been validated experimentally and is the focus of future work.   In cases 

where the TCM II may be applied to predicted the flow stress behaviour of an as-quenched 

material condition where the area fraction of ferrite (F) is greater than 18% (the maximum 

measured in this study), it is recommended that	 F be held at a constant value of 0.18 in 

equation 4, in order to prevent mathematical instabilities that may arise due to the surface 

functions used to define the TCM II.  Based on the current and previous work [14,25] on as-

quenched boron steel with fully or nearly fully martensitic microstructures, it was found that 

the measured Vickers hardness can range from 466 HV to as high as 516 HV.  With this 

increase in hardness, also came an increase in material strength with seemingly no to very little 

change in area fraction martensite which remained at ~ 100% based on the metallography 

techniques used to quantify the area fraction.  Bardelcik et al. [25] showed that very high 

quench rates resulted in a more refined martensitic structure, which most likely resulted in the 

observed strengthening effect observed for the as-quenched martensite.  Based on these 

finding, it is recommended that the TCM II be used for as-quenched material conditions with 

Vickers hardness values less than and equal to 466 HV.  For as-quenched material conditions 

with hardness values greater than 466 HV, the original TCM model [25] should be applied 

(with respect to hardness) since it is capable of predicting the strengthening effect observed for 

high hardness martensitic material conditions.  
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Table 4 - The Voce constitutive model parameters used for the constitutive fits shown in 
Figure 16. 

Cooling 
Rate 

(°C/s) 

TDEF 
(°C) 

Avg. 
Vickers 

Hardness 
(HV) 

A, Saturation 
Stress (MPa) 

B, Yield 
Stress 
(MPa) 

C, 
Relaxation 

Strain 
(mm/mm) 

D, Strain 
Rate 

Coefficient 

R-squared 
Value 

10 
ND 339 1118.7 756.0 0.0134 0.0175 0.99 
800 282 989.8 617.9 0.0279 0.0215 0.98 
600 257 963.2 587.2 0.0486 0.0218 0.99 

15 
ND 413 1391.5 1049.6 0.0103 0.0161 0.98 
800 326 1168.9 799.7 0.0175 0.0215 0.99 
600 288 1061.1 654.8 0.0336 0.0187 0.99 

30 
ND 458 1538.7 1169.1 0.0097 0.0105 0.97 
800 450 1463.1 1061.7 0.0098 0.0141 0.99 
600 348 1232.4 803.0 0.0176 0.0155 0.98 

 

 

Table 5 - The three-dimensional surface function constants. 

 β1 β2 β3 β4 β5 β6 
R2 

Value 

ܣ ൬൤
ܯ

ܯ ൅ ܤ
൨ ,  ൰ 853.0 809.3 3050.0 -152.9 2.016 -2.051x104 0.96ܨ

ܤ ൬൤
ܯ

ܯ ൅ ܤ
൨ ,  ൰ 602.7 631.8 1438.0 -98.36 980.5 -1.599x104 0.96ܨ

ܥ ൬൤
ܯ

ܯ ൅ ܤ
൨ ,  ൰ 0.01875 -0.03875 0.16570 0.03009 -0.23000 0.24470 0.95ܨ

D 0.018 - - - - - - 
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Figure 19 - The measured and predicted (TCM II) flow stress curves for the quenched and 
deformed specimens pulled at a strain rate of (a) 0.003 s-1 and (b) 80 s-1. The TDEF=600 °C and 
30 °C/s results were omitted for clarity. The measured (from [12]) and predicted (TCM II) 
flow stress curves for the FAQA specimens pulled at a strain rate of (a) 0.003 s-1 and (b) 1075 
s-1.  The numbers adjacent to the predicted curves indicate (cooling rate, [M/(M+B)], F). 

 

5 Discussion 

It has been shown that for an equivalent Vickers hardness level, the presence of ferrite within a 

tailored microstructure results in an increase in the uniform elongation and n-value, a slight 

increase in ultimate tensile strength, but does not affect the yield strength.  These combined 

mechanical properties resulted in increased energy absorption capacity (toughness) when 

compared to a material with tailored properties that is void of ferrite.  From a crash 

perspective, one could argue that the introduction of ferrite into the soft regions of tailored hot 
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stampings (due to inevitable or intentionally imposed deformation) can be beneficial rather 

than harmful.  Further investigation concerning the fatigue life, impact properties and fracture 

toughness of material conditions tested in this work need to be conducted for a complete 

assessment of the overall material performance. 

 

Although these enhanced properties have been shown to exist due to the presence of ferrite 

within the soft regions of the tailored microstructure, it should also be noted that the 

morphology of the bainite present within the tailored microstructure changes from an upper 

bainite type structure for a low ferrite area fraction material to a granular bainite morphology 

when the area fraction of ferrite is greater than approximately 6%.  Limited research has been 

conducted into the difference in mechanical properties between a granular bainite and the 

upper bainite type structures observed in this work.  The work of Caballero et al. [28] on the 

influence of bainite morphology on impact toughness revealed that the impact toughness of a 

lath-like upper bainite structure exhibits a higher impact toughness than a granular bainite 

structure due to the ease of crack propagation through the large packet size within granular 

bainite.  Given this analysis, the enhanced mechanical properties measured for the quenched 

and deformed tailored microstructures containing granular bainite and ferrite (>6%) may be 

due to the presence of ferrite rather than the different morphology of the bainite present.  

 

Due to inevitable plastic deformation during hot stamping of components with tailored 

properties, the presence of ferrite in the as-quenched microstructure is likely and must be 

accounted for. The primary motivation for the development of the TCM II is for improve 

predictive capability to more accurately predict the high strain rate (crash) constitutive 

behavior of tailored hot stampings in finite element crash simulations.  Commercial finite 

element codes, such as LS-DYNA [44], contain material models developed specifically for hot 

stamping.  These material models predict the decomposition of austenite into martensite, 

bainite, pearlite and ferrite due to the thermo-mechanical route that each element undergoes 

during a hot stamping simulation.  The element history variable data after a hot stamping 

simulation can then be used in conjunction with the current TCM II to define the high strain 

rate properties as outlined for the numerical procedure described by Bardelcik et al. [11].  
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6 Conclusions 

Based on the results presented in this article, the following conclusions can be made: 

 

 The effect of simultaneous deformation during quenching of boron steels resulted in a 

significant reduction in the as-quenched hardness when the cooling rate was sub-

critical, 15 °C/s and 10 °C/s.  At a quench rate of 30 °C/s the as-quenched hardness was 

similar for the specimens that were not deformed and the specimens deformed at TDEF = 

800 °C.  A reduction in the deformation temperature to TDEF = 600 °C resulted in a 

significant decrease in hardness even for specimens quenched at 30 °C/s.  Optical and 

SEM observations revealed that the softening effect was due to the presence of ferrite 

(in addition to martensite and bainite) within the as-quenched microstructure. 

 

 Quasi-static uniaxial tension tests conducted on the quenched and deformed specimens 

revealed that for an equivalent hardness level, the presence of ferrite within the 

microstructure did not affect the initial yield strength (Y), mildly increased the 

ultimate tensile strength (UTS) and significantly increased the uniform elongation 

strain which in effect increased in the n-value.  The observed effects of ferrite on the 

stress-strain response also improved the toughness (or energy absorption) of the 

materials as shown by the 28% increase in toughness for a bainitic material condition 

containing 16% ferrite (with 257 HV) when compared to a fully bainitic condition with 

a hardness of 268 HV.  By analysing the toughness distribution with respect to material 

hardness, it was shown that as-quenched materials with hardness values ranging from 

approximately 300 HV to 425 HV resulted in reduced energy absorbing capacity, 

which must be considered during the design/development of a hot stamped component 

with tailored properties. 

 

 In addition to the quasi-static (0.003 s-1) uniaxial tension tests, intermediate strain rate 

tension tests were also conducted at approximately 10 s-1 and 80 s-1. The effect of 

elevated strain rate on the UTS and Y was shown to be moderate as indicated by a 

change in UTS of ~80 MPa for all of the conditions tested in this work when the 

loading rate was increased from 0.003 s-1 to 80 s-1.   It was also shown that the increase 
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in UTS (due to a change in ߝሶ from 0.003 s-1 to 80 s-1) was slightly greater for the lower 

hardness (lower strength) material conditions.   

 

 A Voce hardening model, coupled with an exponential-type strain rate sensitivity term 

was successfully fit to the experimental uniaxial tension data for the quench and 

deformed materials developed in this work and material conditions that did not contain 

any area fraction of ferrite from [12]. The model parameters were then fit with respect 

to effective plastic strain (ε), true strain rate (ߝሶ), martensite – bainite area fraction 

relationship [M/(M+B)] and area fraction of ferrite (F).  This resulted in the new 

Tailored Crash Model II (TCM II) constitutive model that was able to accurately 

capture the change in hardening behaviour and strain rate sensitivity of the multi-phase 

materials examined in this work. 
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