
Scalable and Highly Available
Database Systems in the Cloud

by

Umar Farooq Minhas

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Umar Farooq Minhas 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Umar Farooq Minhas

ii

Abstract

Cloud computing allows users to tap into a massive pool of shared computing
resources such as servers, storage, and network. These resources are provided as a
service to the users allowing them to “plug into the cloud” similar to a utility grid.
The promise of the cloud is to free users from the tedious and often complex task of
managing and provisioning computing resources to run applications. At the same
time, the cloud brings several additional benefits including: a pay-as-you-go cost
model, easier deployment of applications, elastic scalability, high availability, and
a more robust and secure infrastructure.

One important class of applications that users are increasingly deploying in
the cloud is database management systems. Database management systems differ
from other types of applications in that they manage large amounts of state that
is frequently updated, and that must be kept consistent at all scales and in the
presence of failure. This makes it difficult to provide scalability and high availability
for database systems in the cloud. In this thesis, we show how we can exploit
cloud technologies and relational database systems to provide a highly available
and scalable database service in the cloud.

The first part of the thesis presents RemusDB, a reliable, cost-effective high
availability solution that is implemented as a service provided by the virtualization
platform. RemusDB can make any database system highly available with little or
no code modifications by exploiting the capabilities of virtualization. In the second
part of the thesis, we present two systems that aim to provide elastic scalability
for database systems in the cloud using two very different approaches. The three
systems presented in this thesis bring us closer to the goal of building a scalable
and reliable transactional database service in the cloud.

iii

Acknowledgements

I could not be more thankful to Almighty Allah who has always blessed me
with success in life. Next in line are my mother, father, six siblings, and my wife
who have always extended their unconditional support, love, and prayers that have
helped me throughout my personal and professional life. I would like to thank all
my friends in Waterloo for making my stay very special, and my friends in Pakistan
and world over for being a special part of my life.

My supervisor, Professor Ashraf Aboulnaga, deserves a great deal of appreci-
ation for his extensive support, both moral and financial, and his extraordinary
patience. I would like to thank Professor Kenneth Salem for his contributions to
the work presented in Chapter 3 and Chapter 5 of this thesis, and for his excellent
advice and continued support throughout my studies at Waterloo. I would further
like to thank Professor Kenneth Salem and Professor Tamer Özsu for serving on
my committee, and for their critical feedback on an earlier version of this work. I
would also like to thank my external examiner, Professor Donald Kossmann, and
my internal external examiner, Professor Ladan Tahvildari, for serving on my thesis
committee.

I would like to thank Professor Andrew Warfield and my colleagues Shriram
Rajagopalan and Brendan Cully, at the University of British Columbia, for their
collaboration on the RemusDB work presented in Chapter 3 of this thesis. I would
further like to thank my colleagues at the University of Waterloo: Jonathan Ng, Rui
Liu, Sean Robertson, and Taha Rafiq for their contributions to this work. I would
like to thank Dr. David Lomet and Dr. Chandramohan Thekkath for exceptional
mentoring during my internships at Microsoft Research and for their encouragement
and support. I would like to thank Professor Robin Cohen, Professor Jie Zhang, and
Professor Thomas Tran for providing me with an excellent opportunity to work on
trust modeling for vehicular ad-hoc networks (VANETs), considerably expanding
my research horizons beyond this thesis. And last but not least, I would like to
thank the administrative and technical staff at the University of Waterloo for always
helping me and providing me with an excellent environment to conduct top quality
research.

iv

Dedication

I dedicate this work to my beloved parents, siblings, and my loving wife.

v

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 High Availability . 2

1.2 Elastic Scalability . 2

1.3 Challenges of Deploying Database Systems in the Cloud 3

1.4 Cloud Storage Systems . 3

1.5 Database as a Service . 4

1.6 About this Thesis . 4

1.7 Organization . 6

2 Background 7

2.1 Cloud Computing . 7

2.2 Virtualization . 9

2.2.1 Virtualization and Cloud Computing 10

2.2.2 Deploying Database Systems in the Cloud 11

2.3 Building Highly Available Database Systems 12

2.3.1 High Availability Through Hardware 12

2.3.2 High Availability for Database Systems 13

2.3.3 High Availability Through Virtualization 16

2.3.4 Our Approach to High Availability for Database Systems . . 20

2.4 Scaling Database Systems . 21

2.4.1 Replication . 21

2.4.2 Data Partitioning . 23

vi

2.4.3 Caching . 24

2.4.4 Data Sharing . 25

2.4.5 Our Approach to Elastic Scale-out for Database Systems . . 25

3 RemusDB: Transparent High Availability for Database Systems 27

3.1 Background and System Overview 29

3.2 Related Work . 31

3.3 System Design . 33

3.4 Memory Optimizations . 34

3.4.1 Sending Less Data . 35

3.4.2 Protecting Less Memory . 36

3.5 Commit Protection . 38

3.5.1 Correctness of Commit Protection 40

3.5.2 Implementation of Protection and Deprotection 40

3.6 Reprotection After Failure . 41

3.7 Experimental Evaluation . 42

3.7.1 Experimental Environment 42

3.7.2 Behavior of RemusDB During Failover 44

3.7.3 Reprotection After a Failure 46

3.7.4 Overhead During Normal Operation 47

3.7.5 Effects of DB Buffer Pool Size 50

3.7.6 Effects of RemusDB Checkpoint Interval 55

3.7.7 Effect of Database Size on RemusDB 55

3.8 Modeling RemusDB’s Behavior for Effective Resource Scheduling . 57

3.8.1 Collecting Training Data . 59

3.8.2 Modeling Network Bandwidth Utilization 62

3.8.3 Modeling Performance Degradation 69

3.9 Summary . 73

4 Chimera: Elastic Scale-out Through Data Sharing 75

4.1 Introduction . 75

4.1.1 Different Database Architectures 75

4.1.2 Overview of Chimera . 77

vii

4.2 DBMS Architectures . 79

4.2.1 The Two Architectures . 79

4.2.2 Concurrency Control . 80

4.2.3 Recovery . 80

4.3 Simplified Data Sharing . 81

4.3.1 File-system Access . 83

4.3.2 Distributed Locking . 83

4.3.3 Distributed Buffer Management 84

4.3.4 Logging and Recovery . 85

4.4 Implementation . 85

4.4.1 Stored Procedure . 86

4.4.2 Enhanced Buffer Manager 87

4.4.3 Global Lock Manager . 87

4.4.4 Recovery Issues . 88

4.5 Experimental Evaluation . 89

4.5.1 Experimental Goals . 89

4.5.2 Experimental Setup . 89

4.5.3 Scalability . 90

4.5.4 Remote Execution Overhead 92

4.5.5 Prototype Overhead . 92

4.5.6 Cost of Updates . 94

4.5.7 Cost of Reads with Updates 95

4.6 Related Work . 97

4.7 Summary . 97

5 Elastic Scale-out for Partition-Based Database Systems 99

5.1 Related Work . 101

5.2 Overview of VoltDB . 102

5.3 Enabling Elastic Scale-out with VoltDB 104

5.3.1 Growing the Size of the Cluster 104

5.3.2 Moving Database Partitions Between Nodes 105

5.4 Partition Placement in an Elastically Scalable DBMS 106

5.4.1 Problem Definition . 107

viii

5.4.2 Problem Formulation for the Offline Optimizer 108

5.4.3 Problem Formulation for the Online Optimizer 110

5.5 Experimental Evaluation . 113

5.5.1 Experimental Setup . 113

5.5.2 Demonstrating Elastic Scale-out and Scale-in 113

5.5.3 Effectiveness of Optimal Partition Placement 118

5.5.4 Scalability of the Optimizers 123

5.6 Summary . 125

6 Conclusion 126

References 128

Appendix 141

A Detailed Results Showing Optimizer Effectiveness 141

ix

List of Tables

3.1 RemusDB Source Code Modifications (lines of code) 41

3.2 Experimental Settings . 43

3.3 Parameters Collected During Modeling Experiments 60

3.4 Accuracy of Non-linear Models for TPC-C (NetBand) 65

3.5 Accuracy of Non-linear Models for TPC-H (NetBand) 65

3.6 Robustness of Models for TPC-C (NetBand) 67

3.7 Robustness of Models for TPC-H (NetBand) 67

3.8 Accuracy of Non-linear Models for TPC-C (Perf) 71

3.9 Accuracy of Non-linear Models for TPC-H (Perf) 71

4.1 Overhead of Prototype Execution 93

4.2 Cost of Reads with Updates . 96

5.1 Optimizer Parameters . 118

5.2 Load Distributions . 118

x

List of Figures

2.1 Enabling Consolidation with Cloud Computing 8

2.2 Cloud Computing Abstractions . 9

2.3 Machine Virtualization . 10

2.4 Virtualization and Cloud Computing 11

2.5 Oracle RAC System Architecture 15

2.6 VMware HA System Architecture 17

2.7 Remus System Architecture . 18

2.8 Remus Checkpointing . 19

2.9 Transparent HA for DBMSes . 21

3.1 RemusDB System Architecture . 29

3.2 A Primary Server Execution Timeline 30

3.3 Checkpoint Compression Workflow 35

3.4 The Commit Protection Protocol 39

3.5 TPC-C Failover (Postgres) . 45

3.6 TPC-C Failover (MySQL) . 45

3.7 TPC-C Failover and Reprotection After Failure (Postgres) 47

3.8 TPC-C Overhead (Postgres) . 49

3.9 TPC-C Overhead (MySQL) . 49

3.10 TPC-H Overhead (Postgres) . 51

3.11 TPC-W Overhead (Postgres) . 51

3.12 Effect of DB Buffer Pool Size on Performance (TPC-H) 52

3.13 Effect of DB Buffer Pool Size on Data Transferred (TPC-H) 52

3.14 Effect of Checkpoint Interval on RemusDB (TPC-C) 54

3.15 Effect of Checkpoint Interval on RemusDB (TPC-H) 54

3.16 Effect of Database Size on RemusDB (TPC-C) 56

xi

3.17 Effect of Database Size on RemusDB (TPC-H) 56

3.18 Model Building Workflow . 58

3.19 Pairwise Plot of All Parameters (TPC-C, 10W/100C) 61

3.20 Linear Regression Models for Network Bandwidth 62

3.21 Pairwise Plot of All Parameters (TPC-H, SF=1) 63

3.22 Non-linear Models for Network Bandwidth (TPC-C) 66

3.23 Non-linear Models for Network Bandwidth (TPC-H) 66

3.24 Linear Regression Models for Performance Degradation 70

3.25 Non-linear Models for Performance Degradation (TPC-C) 72

3.26 Non-linear Models for Performance Degradation (TPC-H) 72

4.1 Chimera: Best of Both Worlds . 77

4.2 Shared Nothing Architecture with Data Sharing Software Layer . . 82

4.3 Chimera System Architecture . 86

4.4 Scalability with Increasing Number of Nodes 90

4.5 Remote Execution Overhead: Start Up (Cold Cache) 91

4.6 Remote Execution Overhead: Steady State (Warm Cache) 91

4.7 Cost of Updates . 94

5.1 Round-robin vs. Greedy Heuristic 106

5.2 Cluster Throughput with Varying Load 114

5.3 Per Host CPU Utilization with Varying Load 114

5.4 Cluster Throughput with Varying Load, Multiple Scale-out 116

5.5 Per Host CPU Utilization with Varying Load, Multiple Scale-out . . 116

5.6 Scale-out Illustration . 117

5.7 Overall Offered Load on the System 120

5.8 Overall Throughput . 120

5.9 Compute Units Used . 121

5.10 Number of Partitions Migrated . 122

5.11 Total Data Moved . 122

5.12 Scalability of Offline Optimizer . 124

A.1 Per Host CPU Utilization (SCO, UNIF) 142

A.2 Offered Load vs. Actual Throughput (SCO, UNIF) 143

xii

A.3 Number of Nodes Used (SCO, UNIF) 143

A.4 Per Host CPU Utilization (OFFLINE, UNIF) 144

A.5 Offered Load vs. Actual Throughput (OFFLINE, UNIF) 145

A.6 Number of Nodes Used (OFFLINE, UNIF) 145

A.7 Per Host CPU Utilization (ONLINE, UNIF) 146

A.8 Offered Load vs. Actual Throughput (ONLINE, UNIF) 147

A.9 Number of Nodes Used (ONLINE, UNIF) 147

A.10 Per Host CPU Utilization (GRD, UNIF) 148

A.11 Offered Load vs. Actual Throughput (GRD, UNIF) 149

A.12 Number of Nodes Used (GRD, UNIF) 149

A.13 Per Host CPU Utilization (SCO, TNORM) 150

A.14 Offered Load vs. Actual Throughput (SCO, TNORM) 151

A.15 Number of Nodes Used (SCO, TNORM) 151

A.16 Per Host CPU Utilization (OFFLINE, TNORM) 152

A.17 Offered Load vs. Actual Throughput (OFFLINE, TNORM) 153

A.18 Number of Nodes Used (OFFLINE, TNORM) 153

A.19 Per Host CPU Utilization (ONLINE, TNORM) 154

A.20 Offered Load vs. Actual Throughput (ONLINE, TNORM) 155

A.21 Number of Nodes Used (ONLINE, TNORM) 155

A.22 Per Host CPU Utilization (GRD, TNORM) 156

A.23 Offered Load vs. Actual Throughput (GRD, TNORM) 157

A.24 Number of Nodes Used (GRD, TNORM) 157

xiii

Chapter 1

Introduction

Cloud computing allows users to connect to a massive, shared pool of computing
resources that are provided as a service to users, allowing them to “plug into the
cloud” very similar to a utility grid. Such a computing model allows consolidation
on the server side and reduces costs by taking advantage of economies of scale. The
promise of the cloud is to free users from the tedious and often complex task of
managing and provisioning computing resources to run applications. The cloud also
brings several additional benefits including (1) a pay-as-you-go cost model, which
means that users only pay for what they use, (2) much easier and faster deployment
of applications, (3) dynamic and elastic provisioning of resources, which means that
unlike a traditional data center setting, there is no need to provision for peak load
since applications can grow and shrink processing capacity depending on the load,
and d) a more robust and secure infrastructure that is highly available and elastically
scalable. All these features of the cloud come to users at no additional cost, while
at the same time providing them with a lot of flexibility in using and provisioning
computing resources.

An important class of applications that are increasingly deployed in the cloud
is database management systems (DBMSes). In order to provide services to users,
applications deployed in the cloud need to store and query massive amounts of
data, and they need to do so in a scalable, reliable, and efficient manner. Database
management systems have been a very popular choice for storing data for many
data-intensive applications for over four decades. Relational DBMSes offer users
a simple and flexible data model in which data is stored persistently as tables.
DBMSes also provide the notion of transactions, which greatly simplify the task of
maintaining the database in a consistent state in the presence of concurrent users
issuing conflicting updates and in the presence of failures. Furthermore, DBMSes
allow users to define, manipulate, and query data using an easy-to-use declara-
tive query language known as the Structured Query Language (SQL). Database
transactions combined with a SQL interface greatly simplify the implementation of
applications on top of DBMSes which is a main reason for the popularity of DBM-
Ses. However, deploying DBMSes in cloud computing environments presents some
unique challenges in providing high availability and elastic scalability for these sys-

1

tems, which is the focus of this thesis. In the next sections, we first define what we
mean by high availability and elastic scalability. Then we discuss various challenges
related to building and deploying a highly available and elastically scalable DBMS
in the cloud, and how this thesis addresses some of these challenges.

1.1 High Availability

High availability (HA) refers to the ability of a system to remain accessible to users
in the presence of either software or hardware failures. For example, an application
may crash or a network card may go down or an entire physical machine can fail.
Various studies have shown that downtime is a “revenue killer”. Small to medium
sized businesses lose 1% of revenue per year to system downtime [71], while 40–50%
of businesses never fully recover after a major system outage [44]. The requirement
to provide high availability is no longer limited to mission critical applications.
Even the most simple applications require high availability, meaning that high
availability is no longer an option but rather a requirement. Indeed, most businesses
now implement some form of high availability for their IT infrastructure. Database
systems also need to provide high availability, where the database remains accessible
and consistent in the presence of failures, with little or no downtime. Since database
systems are increasingly being deployed in the cloud, providing database HA in the
cloud has become an important goal. Traditional HA mechanisms can be used in
the cloud, but cloud technologies may actually enable simpler HA solutions. We
present such a solution in this thesis.

1.2 Elastic Scalability

A software system is said to be scalable if it is able to handle increasing load simply
by using more computing resources. A system can be scaled up by adding more
computing resources to the physical machine it runs on. For example, by adding
more memory, or adding another CPU. Scale-out permits a system to handle even
larger workloads by adding more physical machines, for example in a cluster. Sys-
tems that are elastically scalable are able to respond to changes in load by growing
and shrinking their processing capacity on the fly. Cloud computing infrastruc-
tures favor systems that are able to scale in an elastic fashion. Ideally, at any given
time, an application deployed in the cloud should be using exactly the amount of
resources required to handle its load, even as this load fluctuates [16]. Such elas-
tic scalability coupled with the pay-as-you-go cost model of the cloud results in
significant cost savings for the applications.

2

1.3 Challenges of Deploying Database Systems in

the Cloud

Software systems vary in their ability to scale elastically and to provide high avail-
ability depending on how they are designed and what kind of work they handle.
Stateless systems, such as web and application servers, can be designed to be highly
available and scalable with little effort. One of the major challenges of deploying
database systems in the cloud can be attributed to their stateful nature. Database
management systems have to maintain the consistency of the database that they
store. Therefore, it is very hard to provide high availability and elastic scalability
while maintaining consistency of the database. This makes it particularly hard to
deploy a database system in the cloud. And because database systems are usually
coupled with other systems, e.g., with web and application servers in a three-tier
architecture, they limit the scalability and availability of the entire system stack.
In short, existing database management systems are not well suited for deployment
in the cloud. To address this problem, cloud database deployments can forgo the
power of SQL DBMSes and use simpler cloud storage systems, also called NoSQL
systems. Another alternative, which is the focus of this thesis, is to design SQL
DBMSes that are cloud friendly. We discuss the two alternatives in the next two
sections.

1.4 Cloud Storage Systems

In order to overcome the challenges faced by traditional DBMSes in the cloud,
recently various cloud storage systems [31, 62, 80] (also referred to as NoSQL sys-
tems), have been proposed. Such systems provide high availability and elastic
scalability, among other things, by limiting certain features of the system. The two
most common limitations are: (1) Weak or eventual consistency : As opposed
to traditional database systems, cloud storage systems, only guarantee that when a
change is made to the database, clients will eventually see the effect of this change.
Clients should be prepared to deal with inconsistent results. Some systems provide
strong consistency, but only for updates on a single row, with no support for multi-
row transactions. (2) NoSQL interface: Cloud storage system support a very
restricted query model that is less expressive than the full SQL model supported
by database systems. Typically, these systems only support read and write opera-
tions on individual rows. Because of these limitations of NoSQL cloud data storage
systems, applications that are built on top of these systems need to be much more
complex. A particular disadvantage of such systems is that the task of maintaining
consistency of the database is delegated to application developers, and is therefore
highly error prone.

3

1.5 Database as a Service

Cloud computing companies like Amazon, Google, and Microsoft offer what is called
Database-as-a-Service (DaaS) [8, 57, 97]. These services bridge the gap between
traditional database systems and cloud storage systems but only to some extent;
they too make certain trade-offs. For example, some DaaS systems do not support
elastic scalability, while others do not support the full SQL interface. There is a
need to develop new techniques that provide high availability and elastic scalability
similar to cloud storage systems, with support for strong consistency and the full
SQL interface similar to relational database systems. Developing such techniques
is the focus of this thesis.

1.6 About this Thesis

The goal of this thesis is to exploit our knowledge of database management systems
and emerging cloud technologies (e.g., virtualization and distributed cloud storage
systems) to improve the deployment and usability of database systems in the cloud.
More specifically, we want to use cloud technologies and relational database systems
to build a highly available and elastically scalable database service in the cloud while
providing strong consistency and supporting a full SQL interface. The techniques
presented throughout this thesis are a first step towards building “cloud-friendly”
database systems.

To show the practicality of the techniques developed as part of this thesis, we
have implemented three systems. The first system, called RemusDB, provides high
availability for database systems by exploiting virtualization. The remaining two
systems provide elastic scalability for database systems either by using data sharing
or data partitioning. We now present a brief overview of each of these systems:

1. RemusDB: Transparent High Availability for Database Systems:
Traditionally, expensive hardware coupled with customized software has been
used to provide high availability for business critical applications, including
database systems. The cost and complexity of deploying such a solution is
prohibitive for most small to medium sized businesses. With recent advances
in virtualization technologies, it is now possible to provide high availability
for the masses on cheap commodity hardware in an application and oper-
ating system agnostic manner. In the first part of this thesis, we present
a system called RemusDB for building a highly available database manage-
ment system. The proposed techniques that are part of RemusDB can be
applied to any DBMS with little or no customization, and with reasonable
performance overhead. RemusDB is based on Remus [37], a commodity HA
solution implemented in the virtualization layer that uses asynchronous vir-
tual machine (VM) state replication to provide transparent HA and failover
capabilities. We show that while Remus and similar systems can protect a

4

DBMS, database workloads incur a performance overhead of up to 32% as
compared to an unprotected DBMS. We identify the sources of this overhead
and develop optimizations as part of RemusDB to mitigate the problems.
We present an experimental evaluation using two popular database systems
and industry standard benchmarks showing that for the tested workloads,
RemusDB provides very fast failover (≤ 3 seconds of downtime) with low
performance overhead when compared to an unprotected DBMS. More de-
tails of RemusDB can be found in Chapter 3.

2. Chimera: Elastic Scale-out and Load Balancing Through Data Shar-
ing: The current parallel database market is split between shared nothing and
data sharing systems. While shared nothing systems are easier to build and
scale, data sharing systems have advantages in elastic scalability and load bal-
ancing. In this thesis, we explore adding data sharing functionality as an ex-
tension to a shared nothing database system. Our approach isolates the data
sharing functionality from the rest of the system and relies on well-studied,
robust techniques to provide the data sharing extension. This reduces the
difficulty in building systems that provide data sharing, yet enables much of
the flexibility of a data sharing system. We present the design and implemen-
tation of Chimera – a hybrid database system, targeted at load balancing for
many workloads and scale-out for read-mostly workloads. The results of our
experiments demonstrate that we can achieve almost linear scalability and
effective load balancing with less than 2% overhead during normal operation.
The details of this system can be found in Chapter 4.

3. Elastic Scale-out for Partition-Based Database Systems: An impor-
tant goal for database systems today is to provide elastic scale-out, i.e., the
ability to grow and shrink processing capacity on demand as the offered work-
load varies. Database systems are difficult to scale since they are stateful –
they manage a large database. It is important when scaling to multiple server
machines to provide mechanisms so that these servers can collaboratively
manage the database and maintain its consistency. Database partitioning is
often used to solve this problem, with each server being responsible for one
or more partitions. In this thesis, we propose that the flexibility provided by
a partitioned, shared nothing parallel database system can be exploited to
provide elastic scale-out. The idea is to start with a small number of servers
that manage all partitions, and to elastically scale out by dynamically adding
new servers and redistributing database partitions among these servers. We
present an implementation of this approach for elastic scale-out using VoltDB
– an in-memory, partitioned, shared nothing parallel database system [152].
Our approach to elastic scale-out gives rise to many interesting, and challeng-
ing research problems in database manageability. This thesis focuses on one
such problem – partition (data) placement with elastic scale-out. We present
more details of our implementation and the partition placement problem in
Chapter 5.

5

1.7 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides an overview
of cloud computing, virtualization, high availability, and techniques for scaling
database systems. In Chapter 3, we present RemusDB, a system that provides
high availability by exploiting virtualization. In Chapter 4, we present the details of
Chimera, a database system that provides elastic scalability through data sharing.
In Chapter 5, we present a system that provides elastic scalability by using data
partitioning. Finally, Chapter 6 concludes this thesis.

6

Chapter 2

Background

In this chapter, we present background on cloud computing, virtualization, high
availability, and elastic scalability for database systems. Without loss of continuity,
more advanced readers can directly skip to Chapter 3.

2.1 Cloud Computing

In today’s world, computing is central to running and managing a business. Busi-
ness applications need computing resources, and in order to provide these resources,
businesses need to make a significant investment in IT infrastructure. Depending
on the size of the business, this infrastructure can range from just a small number
of servers to an entire data center. However, provisioning and managing computing
resources is costly. There are three major costs: (1) capital costs, i.e., the cost of
buying the hardware, software, and installation costs, (2) maintenance and opera-
tion costs, i.e., the cost of personnel to maintain the infrastructure as well as cost
of power, cooling, and sever storage, and (3) additional costs, for example, to buy
extra hardware and software to provide high availability, reliability, scalability, and
security. All of these costs add up fairly quickly and can amount to a significant
portion of a company’s budget. This creates a high barrier to entry for small to
medium sized businesses which simply cannot afford spending much on IT infras-
tructure. There is a need to cut costs in order to improve profitability and lower
the barrier to entry.

In addition to economic factors, there are other issues related to provisioning and
managing computing resources. For example, in order to provision more capacity,
we need to buy new hardware, install the required software stack, and then finally
deploy or migrate existing applications to this new hardware. This can be a slow and
complex process. As a result, capacity is usually provisioned for peak load, which
results in under-utilization of computing resources. Secondly, upgrading software
is difficult. In today’s computing environments, applications typically run on top
of a complex, multi-tiered software stack. If not done carefully, upgrading just one

7

Business

Business

Business

Figure 2.1: Enabling Consolidation with Cloud Computing

piece of software in the stack can potentially bring down the entire system. These
problems become even more pronounced as the infrastructure grows and becomes
more complex leading to even more manageability problems.

Cloud computing aims to solve the problems outlined above. Cloud computing
provides computing resources at a low cost while at the same time freeing users
from the tedious and often complex tasks of maintaining and provisioning resources.
Instead of investing in an IT infrastructure in-house, businesses can connect to a
massive shared pool of computing resources, “the cloud”, and can outsource their
computing needs to the cloud. As shown in Figure 2.1, these resources can be
shared between multiple businesses, resulting in even better resource consolidation
and much lower costs.

Different service models used in cloud computing provide different levels of
abstraction to its users as shown in Figure 2.2. At the very bottom we have the
Infrastructure-as-a-Service (IaaS) model, where hardware resources such as server,
storage, and network are made available to the users in a flexible manner. Services
like Amazon EC2 [7] and Rackspace Open Cloud [121] are examples of IaaS. In
Platform-as-a-Service (PaaS), developers code and deploy application on the cloud
using an application programming interface (API) that is given to them by the cloud
providers. The specifics of how the applications are managed and provisioned on the
platform are automatically managed by the infrastructure. Google App Engine [56]
and Windows Azure [154] are examples of PaaS. Software-as-a-Service (SaaS) is at
the highest level of abstraction where users are provided with a complete hardware
and software stack, with pre-deployed applications to use. Examples of SaaS include
Google Docs [58] and salesforce.com [128]. Users of cloud computing can choose a
cloud service model depending on the desired level of abstraction that best suits
their specific needs and usage scenarios.

8

Infrastructure as a Service (IaaS)

e.g., Amazon EC2, Rackspace CloudFiles

Platform as a Service (PaaS)

e.g., Google AppEngine, Windows Azure

Software as a Service (SaaS)

e.g., Salesforce.com, Google Docs

Hardware resources (servers and

storage)are made available over the

Internet in a scalable and flexible

manner.

Developers code and deploy

applications using an API provided.

Infrastructure is managed

automatically.

Users are provided with a complete

hardware and software stack, with

pre-deployed applications to use.

Le
v
e

l
o

f
A

b
st

ra
ct

io
n

H

ig
h

Lo

w

Figure 2.2: Cloud Computing Abstractions

There are many new and emerging technologies which are the building blocks
for cloud computing. One such enabling technology for cloud computing is virtu-
alization. In the next section, we provide a brief overview of virtualization.

2.2 Virtualization

Machine virtualization is a technique that allows the resources of a physical ma-
chine to be shared among multiple partitions known as virtual machines (VMs).
Each virtual machine runs an independent (possibly different) operating system
and the associated set of applications. A layer of indirection known as a virtual
machine monitor (VMM) is introduced between the physical resources of a machine
and the virtual machines running over it. The virtual machine monitor manages
the physical resources and provides a mapping between the physical resources and
the abstractions known as virtual devices. A virtual device corresponding to each
physical resource, e.g., CPU, disk, memory, and network, is exported to every vir-
tual machine. Since a virtual machine is nearly an exact replica of the underlying
hardware, this makes it possible to run applications unmodified inside a virtual
machine. Xen [18] and VMware [150] are popular examples of virtual machine
monitors. Figure 2.3 provides an overview of machine virtualization.

The virtual machine monitor provides (1) performance isolation – each virtual
machine will use only its allocated share of resources thus will not affect the perfor-
mance of other virtual machines running on the same physical machine, (2) fault
isolation – a software bug or a security flaw in one virtual machine does not affect
other virtual machines, (3) dynamic resource allocation – the share of physical re-
sources allocated to each virtual machine can be adjusted on the fly, and (4) live
migration – a virtual machine running on one physical host can be migrated to
another physical host with minimum downtime.

9

Vi t l M hi 1 Vi t l M hi

AppA AppB AppC AppD AppE AppF

Virtual Machine 1 Virtual Machine n

Guest Operating SystemGuest Operating System Guest Operating SystemGuest Operating System

Virtual Resources

CPU Disk Memory Net MemoryCPU Disk Net

Virtual Resources

Virtual Machine Monitor

CPU Disk Memory NetPhysical Resources

Figure 2.3: Machine Virtualization

Server consolidation has often been cited as one of the most important benefits
of virtualization. Server consolidation allows multiple applications, each of which
typically runs on a separate physical machine, to be co-located on a single physical
machine, with each application running inside a separate virtual machine. For ex-
ample, in a multi-tiered application, the web server, the application server, and the
backend database management system can all be run on the same physical server.
This increases the utilization of physical resources while reducing the total cost of
ownership by requiring less hardware, less personnel to manage that hardware, and
reduced operational costs (e.g., power and cooling costs).

2.2.1 Virtualization and Cloud Computing

Virtualization is changing the way we develop, deploy, and use applications. A
virtual appliance is a novel way of deploying applications, enabled by virtualization.
A virtual appliance has pre-installed and pre-configured copies of operating system
and application software, ready to go out-of-the-box, which considerably reduces
time required to deploy, configure, and tune an application. Owing to these benefits,
virtual appliances are a popular way of deploying applications in the cloud.

In IaaS clouds such as Amazon’s Elastic Computing Cloud (EC2) [7], the cloud
provider manages and operates a pool of possibly tens of thousands of intercon-
nected machines. Users can rent out as much computing power as they need from
this pool of resources. In Amazon’s EC2, this is made possible by the use of vir-
tualization. Users are provided access to virtual appliances that come in varying
sizes in terms of physical resources allocated (e.g., CPU, memory), allowing users
to choose a size depending on their resource needs. By exploiting virtualization,
cloud providers are able to achieve higher resource consolidation, better resource
utilization, and flexibility in provisioning and managing computing resources.

10

Physical Resources

(CPU, Mem., Disk, Net.)

Applications

User

Cloud Provider

Virtualization Layer

Separates application’s view of

computing resources from the

actual implementation of these

resources

Figure 2.4: Virtualization and Cloud Computing

As shown in Figure 2.4, IaaS cloud providers introduce a layer of indirection
between the physical resources (e.g., CPU, memory, disk, and network) and the
applications that use those resources. By using such an approach, the actual im-
plementation details of the physical resources can be hidden from the applications.
As long as the interface exposed to the applications remains the same, a cloud
provider can change physical resources, for example, replace an older disk subsys-
tem with a newer, faster system, without affecting the applications. This flexibility
provided by virtualization is a key to the success of cloud computing platforms such
as Amazon EC2.

2.2.2 Deploying Database Systems in the Cloud

Database systems are increasingly being run in virtual machines in cloud comput-
ing environments (the virtual appliance model). Optimizing and scaling database
systems in such deployments presents unique challenges for database researchers.
There has been some recent research to quantify the overhead of running database
systems inside a virtual machine [103]. Researchers have also developed techniques
for automatically tuning database appliances to meet Service Level Agreements
(SLAs) in face of changing workloads by using the dynamic resource allocation
capabilities provided by virtual machine monitors [135, 136]. Techniques to op-
timally provision CPU capacity of a physical machine among multiple database
appliances competing for resources have also been proposed [1]. However, provid-
ing high availability and elastic scalability for database systems in the cloud are
still open research problems. In Chapter 3, we show how to exploit virtualization to
implement a highly available database system for cloud computing environments.
As background for that work, the next section provides an overview of different
techniques used to provide high availability for database systems.

11

2.3 Building Highly Available Database Systems

In this section we start by describing hardware solutions for high availability. We
then present techniques that have been used to implement highly available database
systems. Finally, we present an overview of some recent solutions that use virtual-
ization to provide high availability at a reduced cost.

2.3.1 High Availability Through Hardware

Hardware reliability is an important part of implementing a highly available solu-
tion. Today, systems are built in a modular fashion where each hardware module
can fail and be repaired or replaced independently of other modules in the sys-
tem. Furthermore, over the years reliability of individual hardware modules has
improved significantly due to improved designs and technological advancements.
Hardware solutions for achieving high availability typically involve redundancy of
individual modules, or of the entire system (through clustering).

Redundancy in hardware modules is the key in implementing a highly available
system. If one module fails, it is readily replaced by another spare module while the
failed module is repaired or replaced. Individual modules, in turn, may have also
been designed with internal redundancy. In this case, the module will fail only if a
majority of the internal (redundant) components fail. Techniques for automatically
detecting the failure of hardware components and failing over to backup compo-
nents have also become commonplace. Disk mirroring [115], redundant network
connections, or a redundant power supply may protect against disk, network, or
power failures, respectively.

By taking hardware redundancy to the level of an entire system, a cluster can
be formed by combining multiple physical machines or nodes. The cluster can have
one of the following three configurations:

1. Active/cold configuration where one of the servers is active while the second
is a cold backup, i.e., not serving workloads or attempting to keep up with
the active server.

2. Active/passive configuration where one of the servers is active while the sec-
ond is running the same workload (with some lag) and thus is a warm stand-
by.

3. Active/active configuration where both the servers are serving workloads ac-
tively.

In general, the warmer the configuration, the more expensive it would be. In
all the above configurations, the secondary server takes over execution from the
primary if the primary fails, providing high availability to the users of the system.
Also, the primary and secondary servers may be geographically distributed. This

12

provides better isolation from faults that may affect one site but not both sites at
the same time.

Use of hardware solutions to provide high availability has some drawbacks.
First, it requires redundant hardware such as disks for mirroring and replication,
Storage Area Networks (SAN), Network Attached Storage (NAS), or multi-path
storage devices for shared storage, and bonded network interfaces for added reli-
ability. All of these components add to the cost of deploying a high availability
solution. Second, for clustering solutions, we cannot just take any application and
run it on a cluster and expect it to be highly available. Applications need to be
made cluster-aware to exploit high availability features. For example, a clustered
database system is different from a stand-alone database system owing to the dif-
ferences in concurrency control, recovery, and cache management. This adds to the
cost and complexity of building and deploying cluster-aware applications. And last
but not least, the configuration and operation cost of a cluster is much higher than
a single system, which can be prohibitive for small or medium sized businesses.

2.3.2 High Availability for Database Systems

Hardware solutions for high availability only provide limited advantage when faced
with faults in software applications. Applications, such as database systems, couple
hardware solutions with software techniques to implement a highly available system.
We discuss two common approaches for providing high availability for database
systems.

Database Replication

Replication is a technique where a database is fully or partially replicated locally
or at a remote site to improve performance and data availability [66]. The orig-
inal copy of the data is referred to as the primary (or master) replica while the
replicated copy is called a secondary replica. If the primary replica becomes un-
available, the data still remains accessible through the secondary replica. We can
also have N -way replication where a primary replica is copied to N-1 other replicas.
However, this additional replication comes at a higher cost. Replication may be
implemented within a single database system or between database systems across
machines possibly distributed across geographical boundaries. Changes from the
primary replica are periodically propagated to the secondary replica. Synchronous
or asynchronous replication are the two options for keeping the secondary replica
up-to-date with the primary replica.

Synchronous replication [20, 60] is usually implemented through a read any,
write all mechanism. Where a read transaction can read data from any replica
but a write transaction must update all replicas. For this type of replication, the
updating transaction must acquire exclusive access to all the replicas which might
involve lock requests across remote sites. Also, in order for an update transaction to

13

successfully commit, all the replicas must remain accessible during the transaction.
If the replicas are distributed among remote and local sites, a two-phase commit
protocol is required to ensure that each transaction either commits at all replicas or
is aborted. Synchronous replication offers the advantage of keeping all the replicas
strongly consistent. However, due to the high operational costs associated with
acquiring locks, and excessive message passing for two-phase commit, it is rarely
used in practice [60].

On the other hand, asynchronous replication [14, 23, 33, 60, 112] propagates
the changes from the primary to the secondary through transaction log shipping
or snapshots. The changes in the log records or a snapshot are then applied to the
secondary copy. Asynchronous replication offers a trade-off in terms of minimizing
overhead of normal operation and data consistency. With asynchronous replica-
tion, it is possible for a transaction to get slightly different results when accessing
different replicas because they are updated only periodically. In a typical setting,
asynchronous replication is run with two servers, a primary or a master, and a
secondary, with the secondary server’s database state being transactionally consis-
tent to that of primary server with some replication lag. Also, typically, only the
primary server can update the replicated data (e.g., in primary site asynchronous
replication). When the primary server fails, the secondary server takes over execu-
tion losing some work, for example, in-flight transactions are aborted and restarted
on the secondary server. Also, the secondary server needs to be brought up-to-date
after a failure, i.e., the transaction log of committed operations performed on the
primary server that were not yet propagated to the secondary server needs to be
replayed at the secondary. After a failure, the primary server can be recovered
while the backup server acts as the primary. Later, the roles of the two serves can
be switched again, or the backup server can remain as the primary, and vice versa.

By using replication, data remains accessible even when one or more replicas
become unavailable. The effect of communication link failures can be minimized
and performance can be improved by maintaining a local replica of data stored at a
remote site. Also, since the data can be geographically distributed, individual sites
are better shielded from a disaster, for example, fire in the data-center or a power
outage. Replication is widely supported by all major database vendors [94, 106, 110]
and is a popular tool for improving data accessibility and availability.

Parallel Database Systems

Parallel database systems [25, 94, 106, 107, 110], typically running on clusters
of physical machines, are a popular choice for implementing high availability for
database systems. A parallel (or clustered) database system executes database
operations (e.g., queries) in parallel across a collection of physical machines or
nodes. Each node runs a copy of the database management system. Data is either
partitioned among the nodes where each partition is owned by a particular node or
is shared by all nodes. Failure of individual nodes in the cluster can be tolerated
and the data can remain accessible. Such high availability and fault-tolerance is a

14

Management

Console
Network

Users

Oracle

Instance A

Oracle

Instance B

Oracle

Instance C
Clustered

database

Phy. h/w

Operating Sys.

Phy. h/w

Operating Sys.

Phy. h/w

Operating Sys.

database

nodes

shared storage

interconnect

Mirrored disk

sub system

Figure 2.5: Oracle RAC System Architecture

primary reason for deploying a parallel database system, in addition to improved
performance. Parallel database architectures in use today are mainly divided into
shared nothing and data sharing.

In a shared nothing system, data is partitioned among nodes where each node
hosts one or more partitions on its locally attached storage. Access to these par-
titions is restricted to only the node that hosts the data and so only the owner of
a data partition can cache it in memory. This results in a simple implementation
because data ownership is clearly defined and there is no need for access coordi-
nation. Shared nothing database systems have been a huge commercial success
because they are easier to build and are highly scalable [139]. Examples of shared-
nothing database systems include IBM DB2 [94], Microsoft SQL Server [106], and
MySQL Cluster [107].

Nodes in a data sharing system share access to all the data. Data is usually
hosted on shared storage (e.g., by using Storage Area Networks). Since any node
in the cluster can access and cache any piece of data in its memory, access coordi-
nation is needed in order to synchronize access to common data for updates. This
requires distributed locking, cache coherence, and recovery protocols which add to
the complexity of a data sharing system. However, data sharing systems do not
require a database to be partitioned and thus have more flexibility in doing load
balancing. Examples of data sharing systems include Oracle Real Application Clus-
ters (RAC) [110] and mainframe IBM DB2 [25]. We present the overall architecture
of an Oracle RAC system in Figure 2.5 as an example of a parallel database system
that is also used to provide high availability.

15

Figure 2.5 shows a cluster of three physical machines each running an instance
of the Oracle DBMS. Each physical machine is connected through a high-speed
interconnect to other machines and to the shared storage. Users and administrators
connect to the cluster using a high speed network. In order to provide reliability
against network failures, multiple network links are used. In order to provide fault
tolerance for individual disk crashes, a mirrored disk sub-system is used. Physical
host failures can be tolerated. As long as at least one of the hosts remains active,
users will get some service. In the rare event of all hosts failing simultaneously,
the database is left in a crash-consistent state on the disk sub-system which can be
used to recover the database using standard crash recovery procedures [20].

Database replication and parallel database systems provide high availability
at the cost of additional hardware and extra software complexity. An interesting
proposition is to use virtualization for providing cost-effective high availability for
businesses with modest budgets.

2.3.3 High Availability Through Virtualization

Exploiting virtualization to provide HA enables us to decrease the complexity of
the system because virtual machines are easier to configure and manage. At the
same time, using virtualization for HA lowers the cost of HA because less hard-
ware is required. A key technology that comes with virtualization is the ability
to migrate virtual machines from one physical host to another while they are run-
ning. This capability is known as live migration [34, 151]. Live migration has
been successfully exploited to minimize planned downtime, and it can be extended
to provide a solution that prevents unplanned downtime. Examples of commer-
cial and research prototypes that use virtualization to provide high availability for
applications running inside a VM include the following:

1. VMware HA [149]: VMware HA is a commercial offering that is part
of VMware Infrastructure 3 and provides automatic failover and restart for
applications running inside a virtual machine.

2. Remus [37]: Remus is a research prototype that provides whole virtual
machine replication with the open source Xen in an application and operating
system agnostic manner, running over commodity hardware. No external
state is ever lost, and the virtual machine is not restarted after a failure.
Instead, it continues execution from where it left off before failover.

3. everRun VM [50]: This technology provides HA for Xen Server virtualiza-
tion. It provides automated fault detection and failover for individual VMs.
Furthermore, it offers various levels of availability that can be selected on a
per VM basis.

4. Microsoft Hyper-V [96]: Hyper-V by Microsoft can use Window Server
2008 failover clustering to provide HA for VMs.

16

Virtual Client Server

Agent

VM

Agent

VM

Agent

VM

VM

heartbeatheartbeat

Phy h/w

ESX Server

Phy h/w

ESX Server

Phy h/w

ESX Server

VMWare Cluster

Figure 2.6: VMware HA System Architecture

We focus on VMWare HA and Remus as examples of two systems that provide high
availability through virtualization.

VMware HA

VMware HA is a part of VMware Infrastructure 3 which is a virtualization suite
that offers various features to efficiently manage IT infrastructure. It comprises
VMware’s live migration technology known as VMotion, Distributed Resource
Scheduling (VMware DRS) that allows for automated resource optimization, High
Availability (VMware HA), and VMware Consolidated Backup – a centralized
backup facility. VMware ESX Server provides server virtualization for this in-
frastructure. VMware ESX Server provides bare-metal virtualization capability,
i.e., it runs directly on the physical hardware, without an interposing operating
system, and allows virtual machines to run over it. This form of virtualization
has some added flexibility and performance benefits as compared to other types of
virtualization (e.g., desktop virtualization provided by VMware Workstation).

We present the overall system architecture for VMware HA in Figure 2.6.
VMware HA protects applications that are running inside a VM. It provides au-
tomatic failover and restart capabilities in case of physical machine failures. Re-
sources of multiple physical hosts are pooled together through what is called a
VMware Cluster. VMs can then be allocated resources from this pool on demand.
VMware HA can provide protection independent of the operating system and the
applications running inside the VM. VMware HA works in the following fashion: a
central virtual client server monitors all ESX servers running in the cluster. Heart-
beat messages are exchanged between individual hosts and the centralized server.
Loss of heartbeat is treated as a host failure and triggers the VM recovery pro-
cess. Protected VMs from failed hosts are restarted on other surviving nodes in the
cluster with minimum downtime.

In order to allow for VM failovers, VMware cluster needs to be over-provisioned.
The exact capacity by which the cluster needs to be over-provisioned is determined

17

Protected VM

Xen

Replication

Engine

Heartbeat

Memory

External

Devices

External

Network

Backup VM

Xen

Heartbeat

Memory

External

Devices

Active Host Backup Host

Replication

Server

Figure 2.7: Remus System Architecture

by the number of host failures a user wants to protect against, the number of VMs
hosted in the cluster, and the resource requirements of each VM. In case there
is not enough capacity to failover all VMs, failover priorities dictate which VMs
failover first. One thing to note here is that VMware Infrastructure depends on
other services such as VMotion and DRS, which in turn depend on shared storage,
usually implemented by Storage Area Networks (SANs). These other services and
the hardware needed for them are expensive parts of the whole HA solution. Also,
on failover a VM is not left running, but instead it has to be restarted from the
disk image.

More recently, VMware vSphere Fault Tolerance (FT) [130] implements mech-
anisms to provide high availability for virtual machines by using VWware deter-
ministic replay. In this approach, the two VMs are kept in synch by capturing
the execution state of the primary VM and replaying it in exactly that same order
at the backup VM. Such an approach requires low network bandwidth, imposes
low performance overhead (10%), while allowing transparent failover and restart
capabilities. However, this approach requires complex mechanisms to capture the
state of the primary VM in a deterministic fashion. Furthermore, it requires shared
storage, and does not work for multi-processor VMs.

Remus

Remus [37] is a research prototype that provides high availability using Xen virtu-
alization in an operating system and application agnostic fashion. We build upon
Remus in Chapter 3 and discuss our solution in detail there. Here, we present an
overview of Remus as background material.

Remus maintains a replica of an entire VM on a secondary physical machine
by extending Xen’s live-migration to implement live checkpointing, thus providing
efficient failover. High performance is achieved by running the primary VM slightly

18

Completed Execution Speculative Execution

State Buffer

Committed State

Primary Host

Backup Host

Client’s View

1

2

3

4

1

2

3

4

Checkpoint

Transmit

Sync

Release

Figure 2.8: Remus Checkpointing

ahead of the back-up using speculative execution. One key feature of Remus is that
once protection is enabled, no external state (e.g., network connections) is ever lost.
For a database system, this means that clients connected to the database will retain
their connections during/after failover. This is a key advantage of using Remus.
Other solutions [50, 96, 149] only provide VM restart capabilities on a failover.

Figure 2.7 presents a high-level architecture of Remus. Remus utilizes two
physical servers paired in an active/passive configuration. The application to be
protected is encapsulated in a VM running on the active host. The virtual machine
monitor is the open-source Xen hypervisor [18]. The replication engine copies the
protected VM’s state, such as CPU, memory, network, and disk, periodically to
the backup server maintaining a near exact replica on the backup VM. This entire
VM replication (known as checkpointing) can occur as frequently as 40 times per
second, every 25ms. A heartbeat is maintained between the active and the backup
host. Loss of heartbeat initiates the failover process. It is important to note that
the backup VM is not running the full workload of the primary VM on the backup
host until a failover happens. This means that only a small fraction of the backup
host’s resources are used. This allows for a many-to-one relationship between the
active and the backup host.

Remus aims to provide protection against fail-stop failure of any single host.
In case both hosts fail, the protected VM’s data is left in crash-consistent state
on persistent storage. And finally, no output is made externally visible until the
corresponding system state has been committed to the backup VM. Remus does
not aim to provide tolerance against non fail-stop failures, if some errors are caused
due to software errors they will be propagated to the backup VM. Note that Remus
provides a higher degree of protection when compared with other commercial prod-
ucts. Commercial products usually deal with host failures by simply restarting the
protected VM on another host from its crash consistent state. On the other hand,
Remus leaves the VM running while keeping all the network connections intact.

Remus uses an epoch-based system for checkpointing. Figure 2.8 presents the
state of the active host, the backup host, and a client’s view of execution. A
checkpoint consists of four steps:

19

1. Once per epoch, the protected VM is paused and the changed state is copied
into a buffer. The VM is then unpaused and continues execution on the active
host.

2. The state copied in the buffer is transmitted asynchronously to the backup
host.

3. The backup host acknowledges the checkpoint to the active host after the
complete state has been received and committed to the backup VM.

4. Finally, the buffered network output is released to the client.

There is considerable overlap between normal execution of the protected VM
and the replication process. This is the key to high performance of whole VM
replication with Remus.

In order to replicate memory, Remus makes use of Xen’s shadow page tables [18].
The Xen hypervisor maintains a replica of the page table for every VM and this
replica is known as a shadow page table. By making all VM memory pages read-
only, the Xen hypervisor can trap all updates to the pages that belong to the VM
and can build a map of dirty pages which is then used to replicate only changed
pages to the backup host. During each epoch, the protected VM is paused, the
changed memory and CPU states are copied to a buffer and then the VM resumes
execution. This entire process has been optimized for Remus in various ways by
extending Xen’s live migration mechanism. More details can be found in [37].

For network protection, it is very important that packets queued for transmis-
sion in each epoch are buffered and not released to the client until the corresponding
checkpoint is acknowledged by the backup host. This is implemented using queuing
mechanisms available in the Linux kernel.

For disk protection, Remus maintains a complete replica of the protected VM’s
disk image on the backup host. Before enabling protection, the initial disk state
is copied to the backup. Each write to the primary disk image is then treated as
“write-through”, i.e., a write is issued to the primary disk at the same time it is
sent to a buffer on the backup host. Writes remain in a main memory buffer on
the backup host and are committed to disk only when the associated checkpoint is
acknowledged.

2.3.4 Our Approach to High Availability for Database Sys-
tems

Figure 2.9 shows a high level overview of our approach to high availability for
database systems. The basic idea in our approach is that a database system which
is to be made highly available is encapsulated inside a virtual machine, and then
that virtual machine is made highly available by the virtualization infrastructure.

20

Changes to VM State

Backup
Server

DB DBMS

Primary
Server

VM

DBDBMS

VM

Figure 2.9: Transparent HA for DBMSes

The changes in the state of the virtual machine (including database updates) are
propagated from a primary server to a backup server by the virtualization layer. By
using such an approach, we can provide high availability for any database system
without requiring any code changes, while providing very low performance overhead.
In Chapter 3 of this thesis, we present a new system called RemusDB, based on
Remus [37], that has been specifically designed to provide high availability for
database systems through virtualization.

2.4 Scaling Database Systems

The scalability of a system is largely dependent on its design and use cases. Systems
that do not have a lot of internal state can be designed to be highly scalable with
little effort. On the other hand, systems that carry a lot of internal state are
difficult to scale beyond a single node. Examples of stateless systems include web
and application servers. On the other hand, a database management system is an
example of a stateful system, the database that it manages being its internal state.
This makes it particularly difficult to scale a database system. In this section, we
provide an overview of the main approaches used to scale database systems, namely
(1) replication, (2) data partitioning, (3) caching, and (4) data sharing.

2.4.1 Replication

As described in Section 2.3.2, replication [11, 14, 74, 153] is a fairly easy way to
improve scalability of a database system for certain read-mostly workloads [10, 12].
Synchronous (or eager) replication [20, 60] keeps all replicas consistent at all times at
the cost of reduced performance. Asynchronous (or lazy) replication [14, 23, 33, 60,
112] somewhat ameliorates this overhead, but in that case replicas are only weakly
consistent. Also, write-heavy workloads gain limited performance and scalability
benefits with the use of replication.

There has been some research to combine strong consistency of eager replication
with high scalability of lazy replication. As opposed to the popular belief that
synchronous replication in not practical owing to the high overhead [60], researchers

21

have shown that it can be implemented efficiently in clusters of computers and
database systems can be made to scale to a large number of nodes [74, 75, 153].
These techniques propose optimizations to reduce the message and synchronization
overheard, typical of an eager replication approach. Writes are propagated to all
replicas in an eager way, using group communication primitives [65, 76] that ensure
global serializablity.

Replication is widely used to scale backend database servers in a three-tier
architecture used for dynamic content web sites [11, 14, 74, 153]. Techniques based
on content-aware scheduling [10, 11, 30, 119, 125] of database queries for dynamic
sites build on earlier techniques [74, 153] to provide strong consistency with high
scalability. A total ordering is used for updates which are applied to all replicas
asynchronously in that same order. Maintaining information about the level of
consistency of each database replica helps schedule read queries to a fully consistent
replica, thus hiding any inconsistencies from the users. Such techniques typically
require an advance knowledge of all the tables accessed in a transaction and whether
it is a read or a write transaction for detecting conflicts [10].

Researchers have proposed various techniques to scale database systems using
dynamic replication on clusters formed out of commodity hardware [12, 119, 137].
Amza et al. evaluate various query scheduling and load balancing strategies for
a cluster of replicated backend database servers [12]. Conflict-aware scheduling
strategies [10] are shown to have a greater positive impact on performance and
scalability than other optimizations. Plattner et al. [119] propose the use of a
transaction scheduler to separate update queries from read queries and route them
to different nodes in the cluster. In their system, all transactions are guaranteed
to see a consistent database state, while providing better scalability as compared
to eager replication techniques. One advantage of their approach is that it does
not need to extract query access patterns as in [12]. Soundararajan et al. [137]
propose a technique to scale database backends by using dynamic replications on a
cluster. Multiple applications can share physical machines in the cluster. Replicas
are allocated on a per application basis to meet performance goals. Additional
replicas can be dynamically allocated/deallocated based on the workload. They use
partial overlap of replicas between different applications to reduce replica addition
delay. A delay-aware allocation policy is used to avoid fluctuations due to replica
allocations. Like other replication approaches, their approach is optimized for read-
heavy workloads.

Some previous work is specifically targeted at implementing a solution at the
middleware layer for database replication in a cluster. A few approaches [12, 29,
98, 125] focus on techniques for query routing and load balancing. While oth-
ers [30, 114, 116] are based on eager replication protocols coupled with group com-
munication. These approaches typically assume that there is a 1-1 relationship
between a middleware component (e.g., a scheduler) and a database replica. Yet
others [11, 119] use a single middleware component, possibly with a backup, with
either eager or lazy replication.

22

Maintaining consistency of data replicated to many nodes has a high overhead
which in many cases limits the scalability of the database system. To work around
this problem, most solutions based on replication relax consistency requirements
to improve scalability, as discussed above. In this work, we propose the use of
data partitioning (discussed in the next section) or data sharing to scale database
systems while providing strong consistency.

2.4.2 Data Partitioning

An alternate technique for scaling database systems is to partition the data and
spread it across the nodes of a cluster [36, 93]. A database is usually divided into
mutually exclusive partitions and distributed among the nodes of the cluster, where
each node is responsible for only its own partition. This technique is commonly
used in shared nothing parallel database systems [94, 106, 107, 141]. Database sys-
tems that use partitioning can exploit partitioned parallelism because now database
operations can be performed in parallel on each partition (or node) [46]. Since each
node exclusively accesses its partition, inter-node coordination is not required for
transaction and cache management. This allows for a simple implementation that
is ideal for scale-out [139]. Also, partitioning does not have consistency issues as in
the case of replication because typically there is just a single copy of the database
stored in a distributed fashion. Therefore partitioning based strategies can poten-
tially provide better scalability.

There are two common methods for defining partitions. In vertical partitioning,
a table with many columns can be split into multiple partitions where each partition
consists of a subset of the columns of the original table. Such a partitioning strategy
is beneficial if some columns of a table are more frequently accessed than others. In
horizontal partitioning, each partition consists of a subset of rows from the original
table. For example, rows where the value of the partitioning key is between 1
and 1000 might be stored at one node, while rows with the key value from 1001
to 2000 might be stored on another node, and so on. Database systems today
offer different ways of selecting rows for each partition. As the example above
shows, in range based partitioning, a range of value of a certain column defines
each partition. Another example is splitting a table containing information about
customers on zip codes, where rows belonging to a certain zip code range (e.g.,
for a county or a state) are always stored on a particular node. One problem
with this approach is data skew, i.e., if the values of zip codes are not uniformly
distributed in the customers table, some nodes will be more heavily loaded than
others. In hash based partitioning, a hash function is applied on a partitioning
key (e.g., customer id), and the output of this function determines which node
will store the corresponding row. If the hash function is chosen carefully, hash
based partitioning can avoid the data skew problem. A less commonly used way of
partitioning is list based partitioning where a list of values is associated with each
partition. If the partitioning key of a row is equal to any value in the list belonging
to a particular partition, that partition is chosen for this row.

23

As described above, designing a partitioning strategy for a database involves
choosing a partitioning key that is used to distribute data over a set of nodes, e.g.,
by applying a hash function on the partitioning key. Good partitioning allows the
majority of data accesses to be executed locally to each node, i.e., it minimizes
the need to access data from other nodes. Despite some recent efforts to automate
the process of partitioning [2, 113, 158], choosing a good partitioning still remains
a complex process. Furthermore, repartitioning has a high overhead due to the
cost of physically moving data around in the cluster and thus cannot be done to
accommodate short-term load fluctuations. Consequently, nodes have to be over-
provisioned, wasting valuable computing and storage resources.

There has been little research done on using dynamic partitioning for database
scale-out. As noted above, one of the difficulties with dynamic partitioning is the
high cost associated with repartitioning which requires physical movement of the
data. This can have undesirable effects such as disruption to ongoing transaction
processing [137, 148]. Copeland et al. [36] propose a technique for repartitioning of
database tables for load balancing but their method does not have any provisions
for dynamic partitioning or modeling the costs of repartitioning. Brunstrom et
al. [26] propose simple data repartitioning strategies for changing workloads in a
non-replicated partitioned distributed database system. Their goal is to maximize
access to local data for each node. Their strategy keeps a count of database blocks
accessed by different nodes and tries to repartition to maximize local accesses at
each node. The proposed technique was tested only on a two node system, assumes
that the workload does not change too rapidly, and does not model the cost of
moving partitions from one node to another. Finally, Rivera-Vega et al. [124]
propose scheduling strategies to minimize the time it takes to transfer database files
for repartitioning and to minimize the impact of repartitioning on transactions.

2.4.3 Caching

Caching [6, 82, 95] is often used in combination with other optimizations (e.g.,
replication [12]) for database scalability. Many database scaling techniques used in
practice involve a combination of replication, partitioning, and caching strategies
all combined in one solution [133]. Caching can be treated as a form of data repli-
cation, though in most cases the granularity of caching is finer than the granularity
of replication. Some approaches [9, 41] allow caching query results and check if
incoming queries can be satisfied from the cache. Other approaches [6, 82] use a
full-fledged database system that fully or partially caches a backend database or
table. In most cases, caching is fully transparent to the applications. Mechanisms
for cache invalidation are used to maintain consistency between a cached copy of
the data and the corresponding copy in the backend database. Typically, such
mechanisms simply discard outdated copies of the data from the cache, and repop-
ulate it with the latest copy from the backend database. All updates still go to the
backend database. Most of the approaches proposed in the literature use caching
in the middle tier of a three-tier architecture to boost performance and scalability

24

of a backend database for web applications [6, 9, 19, 43, 82, 91], while some other
approaches provide caching in multiple tiers [118]. Effectiveness of caching largely
depends on the objects being cached, the location of the cache, and most impor-
tantly on the frequency of updates in the backend database that affect the cached
objects. Therefore, as with replication, read-mostly workloads greatly benefit from
caching while write-mostly workloads have limited or no benefit.

2.4.4 Data Sharing

Data sharing is another technique for scaling database systems. As described in
Section 2.3.2, ownership of data is less clearly defined in data sharing systems
as compared to shared nothing systems that use data partitioning. Data sharing
systems require complex concurrency and coherency control protocols, a global
locking scheme, and a distributed recovery mechanism. The added complexity
of implementing data sharing systems brings some advantages when compared to
much simpler shared nothing systems. One of the key advantage of a data sharing
system is their ability to provide elastic scale-out and load balancing at a much
finer time granularity. In order to scale a data sharing system, one can readily
bring up other database server nodes that are provided access to the database by
means of shared storage. As opposed to partitioned database systems, data sharing
systems do no require any data movement for load balancing or elastic scale-out.
Examples of database systems that achieve scalability by using data sharing include
mainframe IBM DB2 [25] and Oracle Real Application Clusters (RAC) [110].

2.4.5 Our Approach to Elastic Scale-out for Database Sys-

tems

In a recent study [79], both data sharing and partition-based database architectures
have been shown to scale really well in cloud computing environments. In this thesis,
we present two systems that use either data sharing or partitioning to achieve elastic
scale-out and load balancing for database systems.

As noted above, data sharing systems are complex systems that require very
careful design and implementation to achieve good performance. In this thesis,
we explore providing data sharing as an extension to an existing shared nothing
database system. We start with a stand-alone database system and extend it to
provide some of the capabilities of a data sharing system, e.g., the ability to do
load balancing and elastic scale-out in response to short term load fluctuations.
The details of this system, which we call Chimera, are provided in Chapter 4.

An alternative approach to scaling database systems involves using data parti-
tioning. Current data partitioning schemes are not suitable for dynamic scale-out
because of disruptive effects of data movement on transaction processing, making
it particularly hard to use partitioning for elastic scale-out. Our basic approach

25

for elastic scale-out for partition based database systems involves coming up with
new, efficient techniques for moving data partitions to offload some of the work to
less loaded nodes in a cluster setting, e.g., in a cloud. The number of nodes serv-
ing a workload can be expanded or contracted based on the workload, i.e., if the
load is high, a new node can be dynamically introduced in the cluster, and some
existing partitions can be moved from existing nodes to this new node. The new
node is then assigned the task of serving queries against the partitions allocated to
it. Similarly, when the load subsides, partitions can be moved to a smaller set of
nodes and free nodes can be deallocated. We present the details of an elastically
scalable database system built using data partitioning in Chapter 5.

26

Chapter 3

RemusDB: Transparent High
Availability for Database Systems

We now present RemusDB, the first technical contribution of the thesis. Maintain-
ing availability in the face of hardware failures is an important goal for any database
management system (DBMS). Users have come to expect 24×7 availability even for
simple non-critical applications, and businesses can suffer costly and embarrassing
disruptions when hardware fails. Many database systems are designed to continue
serving user requests with little or no disruption even when hardware fails. How-
ever, this high availability (HA) comes at a high cost in terms of complex code in
the DBMS, complex setup for the database administrator, and sometimes extra
specialized hardware. In this research, we present a reliable, cost-effective HA so-
lution that is transparent to the DBMS, runs on commodity hardware, and incurs
a low performance overhead. A key feature of our solution is that it is based on
virtual machine (VM) replication and leverages the capabilities of the underlying
virtualization layer.

Providing HA guarantees as part of the DBMS can add a substantial amount of
complexity to the DBMS implementation. For example, to integrate a simple active-
standby approach, the DBMS has to support propagating database updates from
the active to the standby (e.g., by shipping log records), coordinating transaction
commits and aborts between the active and standby, and ensuring consistent atomic
handover from active to standby after a failure.

We present an active-standby HA solution that is based on running the DBMS
in a virtual machine and pushing much of the complexity associated with HA out
of the DBMS, relying instead on the capabilities of the virtualization layer. The
virtualization layer captures changes in the state of the whole VM at the active host
(including the DBMS) and propagates them to the standby host, where they are
applied to a backup VM. The virtualization layer also detects failure and manages
the failover from the active host to the standby, transparent to the DBMS. During
failover, all transactional (ACID) properties are maintained and client connections
are preserved, making the failure completely transparent to the DBMS clients.

27

As we already mentioned in Chapter 2, database systems are increasingly be-
ing run in virtual machines for easy deployment (e.g., in cloud computing environ-
ments [1]), flexible resource provisioning [136], better utilization of server resources,
and simpler administration. A DBMS running in a VM can take advantage of dif-
ferent services and capabilities provided by the virtualization infrastructure such as
live migration, elastic scale-out, and better sharing of physical resources. These ser-
vices and capabilities expand the set of features that a DBMS can offer to its users
while at the same time simplifying the implementation of these features. Our view
in this research is that adding HA to the set of services provided by the virtualiza-
tion infrastructure continues down this road: any DBMS running on a virtualized
infrastructure can use our solution to offer HA to its users with little or no changes
to the DBMS code for either the client or the server. Our design decisions ensure
that the setup effort and performance overhead for this HA is minimal.

The idea of providing HA by replicating machine state at the virtualization layer
is not new [24], and we presented a few examples of such systems in Chapter 2.
Our system is based on Remus [37], a VM checkpointing system that is already
part of the Xen hypervisor [18]. Remus targets commodity HA installations and
transparently provides strong availability guarantees and seamless failure recovery
(details in Chapter 2). However, the general VM replication used by systems such
as Remus imposes a significant performance overhead on database systems. In
this research, we develop ways to reduce this overhead and implement them in a
DBMS-aware VM checkpointing system that we call RemusDB [101, 102].

We identify two causes for the performance overhead experienced by a database
system under Remus and similar VM checkpointing systems. First, database sys-
tems use memory intensively, so the amount of state that needs to be transferred
from the primary VM to the backup VM during a checkpoint is large. Second,
database workloads can be sensitive to network latency, and the mechanisms used
to ensure that client-server communication can survive a failure add latency to the
communication path. RemusDB implements techniques that are completely trans-
parent to the DBMS to reduce the amount of state transferred during a checkpoint
(Section 3.4). To reduce the latency added to the client-server communication path,
RemusDB provides facilities that are not transparent to the DBMS, but rather re-
quire minor modifications to the DBMS code (Section 3.5). We also describe how
RemusDB reprotects a VM after failure by synchronizing the primary VM with
the backup VM after the primary VM comes back online (Section 3.6). We use
RemusDB to add high availability to Postgres and MySQL, and we experimentally
demonstrate that it effectively recovers from failures and imposes low overhead on
normal operation (Section 3.7). For example, as compared to Remus, RemusDB
achieves a performance improvement of 29% and 30% for TPC-C workload running
under Postgres and MySQL, respectively. It is also able to recover from a failure
in ≤ 3 seconds while incurring only 3% performance overhead with respect to an
unprotected VM. After establishing the effectiveness of RemusDB for HA, we turn
our attention to administrative issues related to RemusDB. We present an approach
for modeling the network bandwidth required by RemusDB and the performance

28

Hypervisor (Xen)

Unmodi!ed DBMS Clients

Active VM

Server 1 Server 2

Hypervisor (Xen)

DBMSDBMS

queries and

responses
queries and

responses

(after failover)

Standby VM
VM Checkpoints

Complete state

of memory and

disks.

Transparent Failover

DBMS IP Address and

state unchanged.

Figure 3.1: RemusDB System Architecture

overhead that it imposes on database workloads (Section 3.8). This modeling would
be useful for a database administrator deploying RemusDB.

3.1 Background and System Overview

In our setup, shown in Figure 3.1, two servers are used to provide HA for a DBMS.
One server hosts the active VM, which handles all client requests during normal
operation. As the active VM runs, its entire state including memory, disk, and
active network connections are continuously checkpointed to a standby VM on a
second physical server. Our objective is to tolerate a failure of the server hosting
the active VM by failing over to the DBMS in the standby VM, while preserving
full ACID transactional guarantees. In particular, the effects of transactions that
commit (at the active VM) before the failure should persist (at the standby VM)
after the failover, and failover should not compromise transaction atomicity.

During normal operation, Remus takes frequent, incremental checkpoints of the
complete state of the virtual machine on the active server. The time between two
checkpoints is referred to as an epoch. These checkpoints are shipped to the standby
server and “installed” in the virtual machine there. If the standby times out while
waiting for a checkpoint, it assumes that the active server has failed. This causes
a failover, and the standby VM begins execution from the most recent checkpoint
that was completed prior to the failure. This failover is completely transparent to
clients. The standby VM has the same IP address as the active VM, and similar
to live migration [34], after failover the standby host issues an Address Resolution
Protocol (ARP) update which ensures that network packets going to the (dead)
active VM are automatically routed to the (live) standby VM. In checkpoint-based

29

A B C

checkpoints failure
primary

time backup begins execution here

Figure 3.2: A Primary Server Execution Timeline

whole-machine protection systems like Remus, the virtual machine on the standby
server does not mirror the execution at the active server during normal operation.
Rather, the activity at the standby server is limited to installation of incremental
checkpoints from the active server, which reduces the resource consumption at the
standby.

Remus’s checkpoints capture the entire state of the active VM, which includes
disk, memory, CPU, and network device state. Thus, this captures both the state
of the database and the internal execution state of the DBMS, e.g., the contents of
the buffer pool, lock tables, and client connection state. After failover, the DBMS
in the standby VM begins execution with a completely warmed up buffer pool,
picking up exactly where the active VM was as of the most recent checkpoint, with
all session state, TCP state, and transaction state intact. This fast failover to a
warm backup and with no loss of client connections is an important advantage of
our approach. Some DBMS-level HA solutions provide similar features, but these
features add more code and complexity to the already complex systems. With our
approach, these features are essentially free.

Figure 3.2 shows a simplified timeline illustrating checkpoints and failover. In
reality, checkpoint transmission and acknowledgement is carefully overlapped with
execution to increase performance while maintaining consistency [37]. However,
the simplified timeline shown in Figure 3.2 is sufficient to illustrate the important
features of this approach to DBMS high availability. When the failure occurs in
Figure 3.2, all of the work accomplished by the active server during epoch C is
lost. If, for example, the active server had committed a database transaction T
during epoch C, any trace of that commit decision will be destroyed by the failure.
Effectively, the execution of the active server during each interval is speculative
until the interval has been checkpointed, since it will be lost if a failure occurs.
Remus controls output commit [140] to ensure that the external world (e.g., the
DBMS clients) sees a consistent view of the server’s execution, despite failovers.
Specifically, Remus queues and holds any outgoing network packets generated by
the active server until the completion of the next checkpoint. For example, outgoing
packets generated by the active server during epoch B in Figure 3.2 will be held
by Remus until the completion of the checkpoint at the end of B, at which point
they will be released. Similarly, a commit acknowledgement for transaction T,
generated during epoch C, will be held by Remus and will be lost when the failure

30

occurs. This network buffering ensures that no client will have been able to observe
the speculative commit of T and conclude (prematurely or incorrectly) that T is
durably committed. The output commit principle is also applied to the disk writes
generated at the active server during an epoch. At the standby server, Remus
buffers the writes received from active server during epoch B and releases them to
its disk only at the end of the epoch. In the case of failure during epoch C, Remus
discards the buffered writes of this epoch, thus maintaining the overall consistency
of the system.

For a DBMS, the size of a Remus checkpoint may be large, which increases
checkpointing overhead. Additionally, network buffering introduces message la-
tency which may have a significant effect on the performance of some database
workloads. RemusDB [101, 102] extends Remus with optimizations for reducing
checkpoint size and for reducing the latency added by network buffering. We present
these optimizations in the Sections 3.4 and 3.5.

3.2 Related Work

Widely-used logging and checkpointing techniques, such as ARIES [104], together
with database backups, allow DBMSes to recover from server failures. After a
failure, the DBMS runs a recovery protocol that uses the contents of the log to
ensure that the database (or a restored database backup) is in a consistent state that
includes all of the effects of transactions that committed before the failure. Once
the database has been restored, the DBMS can begin to accept new work. However,
since the DBMS cannot perform new work until the database has been restored, the
recovery process can lead to an unacceptably long period of unavailability. Thus,
many DBMSes provide additional high-availability features, which are designed to
ensure that little or no down time will result from a server failure.

As described in Chapter 2, several types of HA techniques are used in database
systems, sometimes in combination. In shared access approaches, two or more
database server instances share a common storage infrastructure, which holds the
database. The storage infrastructure stores data redundantly, e.g., by mirroring it
on multiple devices, so that it is reliable. In addition, the storage interconnect (e.g.,
a SAN), through which the servers access the stored data, must be made reliable
through the use of redundant access pathways. In case of a database server failure,
other servers with access to the same database can take over the failed server’s
workload. Examples of this approach include Oracle RAC [110], which implements
a virtual shared buffer pool across server instances, failover clustering in Microsoft
SQL Server [78], and synchronized data nodes accessed through the NDB backend
API in MySQL Cluster [108]. RemusDB differs from these techniques in that it
does not rely on a shared storage infrastructure.

Active-standby approaches, which we introduced earlier, are designed to oper-
ate in a shared-nothing environment. Many database systems [32, 78, 108, 109]

31

implement some form of active-standby HA. In some cases, the primary and backup
can be run in an active-active configuration, allowing some read-only application
work to be performed against the slave database, which may be slightly stale with
respect to the primary.

In active-standby systems, update propagation may be physical, logical (row-
based), or statement-based. Propagation, which is sometimes known as log shipping,
may be synchronous or asynchronous. In the former case, transaction commits are
not acknowledged to the database client until both the active and standby sys-
tems have durably recorded the update, resulting in what is known as a 2-safe
system [61, 120]. A 2-safe system ensures that a single server failure will not result
in lost updates, but synchronous update propagation may introduce substantial
performance overhead. In contrast, asynchronous propogation allows transactions
to be acknowledged as soon they are committed at the primary. Such 1-safe systems
impose much less overhead during normal operation, but some recently-committed
(and acknowledged) transactions may be lost if the primary fails. RemusDB, which
is itself an active-standby system, uses asynchronous checkpointing to propagate
updates to the standby. However, by controlling the release of output from the pri-
mary server, RemusDB ensures that committed transactions are not acknowledged
to the client until they are recorded at the standby. Thus, RemusDB is 2-safe. Re-
musDB also differs from other database active-standby systems in that it protects
the entire database server state, not just the database.

Like active-standby systems, multi-master systems (also known as update any-
where or group systems [60]) achieve high availability through replication. Multi-
master systems relax the restriction that all updates must be performed at a single
site. Instead, all replicas handle user requests, including updates. Replicas then
propagate changes to other replicas, which must order and apply the changes lo-
cally. Various techniques, such as those based on quorum consensus [54, 144] or on
the availability of an underlying atomic broadcast mechanism [74], can be used to
synchronize updates so that global one-copy serializability is achieved across all of
the replicas. However, these techniques introduce both performance overhead and
complexity. Alternatively, it is possible to give up on serializablility and expose
inconsistencies to applications. However, these inconsistencies must then somehow
be resolved, often by applications or by human administrators. RemusDB is based
on the simpler active-standby model, so it need not address the update synchro-
nization problems faced by multi-master systems.

Virtualization has been used to provide high availability for arbitrary applica-
tions running inside virtual machines, by replicating the entire virtual machine as
it runs. Replication can be achieved either through event logging and execution
replay or whole machine checkpointing. While event logging requires much less
bandwidth than whole machine checkpointing, it is not guaranteed to be able to
reproduce machine state unless execution can be made deterministic. Enforcing
determinism on commodity hardware requires careful management of sources of
non-determinism [24, 48], and becomes infeasibly expensive to enforce on shared-
memory multiprocessor systems [5, 49, 157]. Respec [83] does provide deterministic

32

execution recording and replay of multithreaded applications with good perfor-
mance by lazily increasing the level of synchronization it enforces depending on
whether it observes divergence during replay, but it requires intricate modifications
to the operating system. It also requires re-execution to be performed on a dif-
ferent core of the same physical system, making it unsuitable for HA applications.
For these reasons, the replay-based HA systems of which we are aware support
only uniprocessor VMs [130]. RemusDB uses whole machine checkpointing, so it
supports multiprocessor VMs.

3.3 System Design

While the simplicity and transparency with which Remus provides high availability
is desirable, applying Remus to database workloads is not an ideal fit for a number of
reasons. First, as described above, Remus continuously transmits checkpoints of the
running virtual machine to the backup host, resulting in a steady flow of replication
traffic that is commensurate with the amount of memory that has changed between
checkpoints; the large amount of memory churn in database workloads results in
a high degree of replication traffic. The large amount of replication data makes
checkpoints slower and results in a significant performance overhead for database
workloads.

Second, the fact that Remus controls output commit by buffering every trans-
mitted packet is over-conservative for database systems, which already provide
higher-level transactional semantics. Client-server interactions with a database sys-
tem typically involve several round trips on the fast, local area network. Within a
transaction, the delay introduced by network buffering on messages from the server
in each round trip results in an amplification of Remus’s existing latency over-
heads. Moreover, the high memory churn rate of database workloads compounds
this problem by requiring longer checkpoint epochs, resulting in longer delays for
network buffering. For example, in a run of the TPC-C benchmark on Postgres in
our experimental setting (described in Section 3.7) we observed that Remus intro-
duced an overhead of 32% compared to the unprotected case. Turning off network
buffering for this benchmark run reduced the overhead to 7%.

In designing RemusDB, we aimed to adapt Remus to address these two issues.
In both cases, we observed that Remus’s goal of providing HA that is completely
transparent to the DBMS was excessively conservative and could be relaxed, re-
sulting in a large reduction in overhead. More precisely, we made the following two
observations:

1. Not all changes to memory need to be sent to the backup. In attempt-
ing to maintain an exact replica of the protected VM on the backup system,
Remus was transmitting every page of memory whose contents changed be-
tween epochs. However, many page updates can either be reconstructed, as

33

with clean pages in the buffer pool that can be reloaded from disk, or thrown
away altogether, in the case of working memory that can be recomputed or
safely lost.

2. Not all transmitted messages need output commit. Buffering trans-
mitted messages until the checkpoint that generated them has been protected
prevents the system from exposing execution state that is rolled back (and so
lost) in the event of failure. In a DBMS environment, this intermediate state
is already protected by transaction boundaries. In light of this, we may relax
output commit to the point that it preserves transactional semantics.

In addition to relaxing the comprehensiveness of protection in Remus to reduce
overhead, our analysis of database workloads revealed one additional insight about
these workloads that allowed further optimization:

3. While changes to memory are frequent, they are often small. Remus
uses hardware page protection to identify the pages that have changed in a
given checkpoint, and then transfers those pages to the backup at page gran-
ularity. Our analysis revealed that memory updates in database workloads
were often considerably smaller than page size, and could consequently be
compressed fairly effectively.

Remus was adapted in light of each of these observations, in order to provide
more efficient high availability for database workloads. Section 3.4 discusses op-
timizations related to how memory is tracked on the primary VM and replicated
over the network to the backup. Section 3.5 describes how latency overheads have
been reduced by relaxing network buffering in some situations.

3.4 Memory Optimizations

Remus takes a deliberately simple approach to memory checkpointing: at every
checkpoint, it copies all the pages of memory that change from the active host and
transmits them over the network to the backup host. The authors of Remus argue
that this simplicity is desirable: it provides high availability with an acceptable
degree of overhead, with an implementation that is simple enough that one can
have confidence in its correctness, regardless of the target application or hardware
architecture. This is in stark contrast to the complexity of previous systems, even
those implemented in the hypervisor [24]. And while this argument for simplicity
holds for database systems, the overhead penalty is higher: database workloads
tend to modify more memory in each checkpoint epoch than other workloads. This
section describes a set of optimizations designed to reduce this overhead.

34

Protected VM

Xen

Dirty Pages

(epoch i)

2. Copy

LRU Cache

Dirty pages from

epochs [1 … i 1]

to backup
4. XOR + RLE

Compression

Domain 0

1. Suspend

3. Resume

Buffer

5. Update

Cache

Figure 3.3: Checkpoint Compression Workflow

3.4.1 Sending Less Data

Compressing checkpoints is beneficial when the amount of data to be replicated is
large, and the data contains redundancy. Our analysis found that both of these
conditions apply to database workloads: (1) they involve a large set of frequently
changing pages of memory (most notably buffer pool pages), and (2) the memory
writes often change only a small part of the pages on which they occur. This
presents an opportunity to achieve a considerable reduction in replication traffic by
only sending the actual changes to these pages.

To achieve this, we implemented an LRU-based cache of frequently changing
pages from previous checkpoints. This cache is maintained in domain 0, the priv-
ileged VM used for control by the Xen hypervisor. Our experimentation showed
that a cache size of 10% of VM memory offers the desired performance improvement
while maintaining an acceptable memory footprint in domain 0. When sending
pages to the backup, we first check to see if the previous version of the page exists
in this cache. If it does, the contents of the two pages are XORed, usually result-
ing in a page that contains mostly zeros, reflecting the large amount of identical
data. The result is then run-length encoded for transmission. If the page is not
found in the cache, it is sent uncompressed, and is added to the cache using the
standard LRU eviction policy. Figure 3.3 illustrates the workflow for checkpoint
compression.

The original Remus work maintained that asynchronous, pipelined checkpoint
processing while the active VM continues to execute is critical to minimizing its
performance impact. The benefits of this approach were evident in implementing
checkpoint compression: moving the implementation into an asynchronous stage
and allowing the VM to resume execution in parallel with compression and repli-
cation in domain 0 halved the overhead of RemusDB.

35

3.4.2 Protecting Less Memory

Compressed checkpoints help considerably, but the work involved in taking and
sending checkpoints is still proportional to the amount of memory changed be-
tween checkpoints. In this section, we discuss ways to reduce checkpoint size by
selectively ignoring changes to certain parts of memory. Specifically, a significant
fraction of the memory used by a DBMS goes into the buffer pool. Clean pages in
the buffer pool do not need to be sent in Remus checkpoints if they can be regen-
erated by reading them from the disk. Even dirty buffer pool pages can be omitted
from Remus checkpoints if the DBMS can recover changes to these pages from the
transaction log.

In addition to the buffer pool, a DBMS uses memory for other purposes such as
lock tables, query plan cache, working memory for query operators, and connection
state. In general, memory pages whose contents can be regenerated, or alternatively
can be safely thrown away may be ignored during checkpointing. Based on these
observations, we developed two checkpointing optimizations: disk read tracking and
memory deprotection.

Disk Read Tracking

Remus, like the live VM migration system on which it is based [34], uses hardware
page protection to track changes to memory. As in a copy-on-write process fork,
all of the page table entries of a protected virtual machine are set to read only,
producing a trap when any page is modified. The trap handler verifies that the
write is allowed, then updates a bitmap of “dirty” pages, which determines the
set of pages to transmit to the backup server at each checkpoint. This bitmap is
cleared after the checkpoint is taken.

Because Remus keeps a synchronized copy of the disk on the backup, any pages
that have been read from disk into memory may be safely excluded from the set of
dirty pages, as long as the memory has not been modified after the page was read
from disk. Our implementation interposes on disk read requests from the virtual
machine and tracks the set of memory pages into which the reads will be placed,
and the associated disk addresses from which those pages were read. Normally, the
act of reading data from disk into a memory page would result in that page being
marked as dirty and included in the data to be copied for the checkpoint. Our
implementation does not mark that page dirty, and instead adds an annotation to
the replication stream indicating the sectors on disk that may be read to reconstruct
the page remotely.

Normally, writes to a disk pass through the operating system’s (or DBMS’s)
buffer cache, and this will inform Remus to invalidate the read-tracked version of the
page and add it to the set of pages to transmit in the next checkpoint. However, it
is possible that the contents of the sectors on disk that a read-tracked page refers to
may be changed without touching the in-memory read-tracked page. For example,

36

a process different from the DBMS process can perform a direct (unbuffered) write
to the file from which the read-tracked page is to be read after failure. In this case,
read tracking would incorrectly recover the newer version of the page on failover.
Although none of the database systems that we studied exhibited this problem,
protecting against it is a matter of correctness, so RemusDB maintains a set of
backpointers from read-tracked pages to the associated sectors on disk. If the VM
writes to any of these sectors, we remove the page from the read tracking list and
send its contents normally.

Memory Deprotection

Our second memory optimization aims to provide the DBMS with a more explicit
interface to control which portions of its memory should be deprotected (i.e., not
replicated during checkpoints). We were surprised to find that we could not produce
performance benefits over simple read tracking using this interface.

The idea for memory deprotection stemmed from the Recovery Box [17], a facil-
ity for the Sprite OS that replicated a small region of memory that would provide
important recent data structures to speed up recovery after a crash (Postgres ses-
sion state is one of their examples). Our intuition was that RemusDB could do the
opposite, allowing the majority of memory to be replicated, but also enabling the
DBMS to flag high-churn regions of working memory, such as buffer pool descrip-
tor tables, to be explicitly deprotected and a recovery mechanism to be run after
failover.

The resulting implementation was an interesting, but ultimately useless inter-
face: The DBMS is allowed to deprotect specific regions of virtual memory, and
these addresses are resolved to physical pages and excluded from replication traf-
fic. On failover, the system would continue to run but deprotected memory would
suddenly be in an unknown state. To address this, the DBMS registers a failover
callback handler that is responsible for handling the deprotected memory, typically
by regenerating it or dropping active references to it. The failure handler is imple-
mented as an idle thread that becomes active and gets scheduled only after failover,
and that runs with all other threads paused. This provides a safe environment to
recover the system.

While we were able to provide what we felt was both a natural and efficient
implementation to allow the deprotection of arbitrary memory, it is certainly more
difficult for an application writer to use than our other optimizations. More im-
portantly, we were unable to identify any easily recoverable data structures for
which this mechanism provided a performance benefit over read tracking. One of
the reasons for this is that memory deprotection adds CPU overhead for tracking
deprotected pages during checkpointing, and the savings from protecting less mem-
ory need to outweigh this CPU overhead to result in a net benefit. We still believe
that the interface may be useful for other applications and workloads, but we have
decided not to use it in RemusDB.

37

To illustrate our reasoning, we ran a TPC-H benchmark on Postgres with sup-
port for memory deprotection in our experimental setting. Remus introduced 80%
overhead relative to an unprotected VM. The first data structure we deprotected
was the shared memory segment, which is used largely for the DBMS buffer pool.
Unsurprisingly, deprotecting this segment resulted in roughly the same overhead re-
duction we achieved through read tracking (bringing the overhead down from 80%
to 14%), but at the cost of a much more complicated interface. We also deprotected
the dynamically allocated memory regions used for query operator scratch space,
but that yielded only an additional 1% reduction in overhead. We conclude that for
the database workloads we have examined, the transparency vs. performance trade-
off offered by memory deprotection is not substantial enough to justify investing
effort in complicated recovery logic.

3.5 Commit Protection

Irrespective of memory optimizations, the single largest source of overhead for many
database workloads on the unmodified Remus implementation was the delay intro-
duced by buffering network packets for controlling output commit. Client-server
interactions in DBMS environments typically involve long-lived sessions with fre-
quent interactions over low-latency local area networks. For example, a TPC-C
transaction on Postgres in our experiments has an average of 32 packet exchanges
between client and server, and a maximum of 77 packet exchanges. Remus’s net-
work buffering delays all these packets; packets that might otherwise have round trip
times on the order of hundreds of microseconds are held until the next checkpoint
is complete, potentially introducing two to three orders of magnitude in latency per
round trip.

In RemusDB, we exploit database transaction semantics to avoid much of Re-
mus’ network buffering, and hence to eliminate much of the performance overhead
that network buffering introduces. The purpose of network buffering in Remus is
to avoid exposing the client to the results of speculative server processing until it
has been checkpointed. In RemusDB, we relax this behavior by allowing server
communications resulting from speculative processing to be released immediately
to the client, but only within the scope of an active database transaction. If the
client attempts to commit a transaction, RemusDB will buffer and delay the com-
mit acknowledgement until that transaction is safe, i.e., until the processing of that
transaction has been checkpointed. Conversely, if a failure occurs during the exe-
cution of such a transaction, RemusDB will ensure that the transaction is aborted
on failover. Relaxing Remus’s network buffering in this way allows RemusDB to
release most outgoing network packets without delay. However, failover is no longer
completely transparent to the client, as it would be in Remus, as a failover may
necessitate the abort of some in-progress transactions. As long as failures are in-
frequent, we expect this to be a desirable tradeoff.

38

At COMMIT WORK:

protect the client’s socket

perform normal DBMS commit processing

send the COMMIT acknowledgement

deprotect the socket

On failover (at the standby host):

for each active transaction t do

if t is not committing then ABORT t

end for

Figure 3.4: The Commit Protection Protocol

To implement this approach in RemusDB, we modified the hosted DBMS to
implement a protocol we call commit protection. The commit protection protocol
requires fine (message level) control over which outgoing messages experience net-
work buffering and which do not. To support this, RemusDB generalizes Remus’s
communication abstraction. Stream sockets, which are implemented on top of TCP,
guarantee in-order message delivery, and database systems normally use stream
sockets for communication with clients. In RemusDB, each stream socket can be in
one of two states: protected or unprotected. RemusDB provides the hosted DBMS
with protect and deprotect operations to allow it to change the socket state. Out-
going messages sent through a protected socket experience normal Remus network
buffering, i.e., they are delayed until the completion of the next Remus commit.
Messages sent through an unprotected socket are not subjected to network buffering
and are released immediately. RemusDB preserves in-order delivery of all messages
delivered through a socket, regardless of the state of the socket when the message
is sent. Thus, an unprotected message sent shortly after a protected message may
be delayed to ensure that it is delivered in the correct order.

The hosted DBMS implements the commit protection protocol using the socket
protection mechanism. The commit protocol has two parts, as shown in Figure 3.4.
The first part of the protocol runs when a client requests that a transaction commit.
The server protects the transaction’s socket before sending the commit acknowl-
edgement to the client. All transaction output up until the arrival of the commit
request is sent unprotected. The second part of the protocol runs at the standby
server after a failover, and causes all active transactions that are not committing to
abort. Remus is designed to run a recovery thread in the standby VM as soon as it
takes over after a failure. In RemusDB, the recovery thread runs inside the standby
DBMS and implements the failover part of the commit protection protocol. Once
the recovery thread finishes this work, the DBMS resumes execution from state
captured by the most recent pre-failover checkpoint. Note that, on failover, the
recovery handler will see transaction states as they were at the time of the last
pre-failure checkpoint.

39

3.5.1 Correctness of Commit Protection

In this section we state more precisely what it means for the commit protocol to
behave correctly. Essentially, if the client is told that a transaction has committed,
then that transaction should remain committed after a failure. Furthermore, if an
active transaction has shown speculative results to the client and a failure occurs,
then that transaction must ultimately abort. These guarantees are stated in the
following lemmas.

Lemma 3.5.1 (Fail-safe Commit). For all transactions T that are created at the
active server prior to the point of failure, if a client receives a commit acknowledge-
ment for T , then T will be committed at the standby site after failover.

Proof. COMMIT WORK acknowledgements are always sent using a protected
socket, which does not release messages to the client until a checkpoint has oc-
curred. If the client has received a commit acknowledgement for T , then a server
checkpoint must have occurred after T ’s commit message was sent and thus after
the active server made the commit decision for T . Thus, the active server’s commit
decision for T (and T ’s effects) will be captured by the checkpoint and reflected at
the standby site after the failure. Furthermore, at the time of the checkpoint, T
will either have been committing at the active site or it will have finished. Since
the recovery thread at the standby site only aborts active transactions that are not
committing, it will not attempt to abort T .

Lemma 3.5.2 (Speculation). For all transactions T that are created at the active
server prior to the point of failure, if T ’s client does not submit a COMMIT WORK
request for T prior to the failure, then either T will be aborted at the standby server
after the failure, or it will not exist there at all.

Proof. Let C represent the last checkpoint at the active server prior to its failure.
There are three cases to consider. First, T may have started after C. In this case, T
will not exist at the time of the checkpoint C, and therefore it will not exist at the
standby server after failover. Second, T may have started before C and remained
active at C. In this case, some of T ’s effects may be present at the standby site
because they are captured by C. Since the client has not submitted a COMMIT
WORK request, T cannot have been committing at the time of C. Therefore, the
recovery thread will see T as an active, non-committing transaction at failover and
will abort T . The third case is that T may have started, aborted, and finished prior
to C. In this case, the checkpoint will ensure that T is also aborted at the standby
site after failover.

3.5.2 Implementation of Protection and Deprotection

To provide a DBMS with the ability to dynamically switch a client connection
between protected and deprotected modes, we added a new setsockopt() option

40

Virtualization Guest VM DBMS
Layer Kernel

Commit Protection 13 396 103(Postgres), 85(MySQL)
Disk Read Tracking 1903 0 0

Compression 593 0 0

Table 3.1: RemusDB Source Code Modifications (lines of code)

to Linux. A DBMS has to be modified to make use of protection and deprotection
via the commit protection protocol shown in Figure 3.4. We have implemented
commit protection in Postgres and MySQL, with minor modifications to the client
connection layer. Because the changes required are for a small and well-defined
part of the client/server protocol, we expect them to be easily applied to any
DBMS. Table 3.1 provides a summary of the source code changes made to different
subsystems to implement the different optimizations that make up RemusDB.

One outstanding issue with commit protection is that while it preserves complete
application semantics, it exposes TCP connection state that can be lost on failover:
unbuffered packets advance TCP sequence counters that cannot be reversed, which
can result in the connection becoming inconsistent after failover and stalling until
it times out. In the current implementation of RemusDB we have not addressed
this problem: only a small subset of connections are affected, and the transactions
occurring over them will be recovered when the connection times out just like any
other timed out client connection. One possible direction for future work is to
explore techniques by which we can track sufficient state to explicitly close TCP
connections that have become inconsistent at failover time, in order to speed up
transaction recovery time for those sessions.

3.6 Reprotection After Failure

When the primary host crashes, the backup host takes over and becomes the new
primary. When the original, now-crashed primary host comes back online, it needs
to assume the role of backup host. For that to happen, the storage (i.e., disks)
of the VMs on the two hosts must be resynchronized. The storage of the VM on
the host that was failed and is now back online must catch up with the storage of
the VM on the other, now-primary host. After this storage synchronization step,
checkpointing traffic can resume between the primary and backup host.

For the protected DBMS to remain available during storage synchronization,
this synchronization must happen online, while the DBMS in the primary VM is
running. The storage replication driver used by Remus is based on Xen’s Blktap2
driver [156] and does not provide a means for online resynchronization of storage.
One way to perform the required online resynchronization is to use a brute-force
approach and copy all the disk blocks from the primary to the backup. This is
sufficient to ensure correctness, but it would impose unnecessary load on the disk

41

subsystem and increase the time to restart HA. A better approach, which we adopt
in RemusDB, is used by the SecondSite system [122] that uses Distributed Repli-
cated Block Device (DRBD) [47] to perform online synchronization of disk blocks
between the new primary/old backup VM and the old primary VM. In this ap-
proach, only the disk blocks changed by the new primary/old backup VM after
failure are copied over. The system also overwrites disk blocks written by the old
primary VM during the last unfinished checkpoint with data from the backup. Note
that we do not require the new backup VM to be present on the same physical host
as the old primary VM. DRBD can synchronize a disk to an empty target that may
reside on a new physical host. However, in this case the whole disk will have to be
synchronized, thus requiring more time. In general, the time to synchronize varies
depending on the amount of data, I/O bandwidth, and network bandwidth.

3.7 Experimental Evaluation

In this section we present an evaluation of RemusDB. The objectives of this evalu-
ation are as follows:

• First, we wish to demonstrate that RemusDB is able to survive a failure of
the primary server, and to illustrate the performance of RemusDB during and
after a failover.

• Second, we wish to characterize the performance overhead associated with
RemusDB during normal operation. We compare the performance of unopti-
mized Remus and optimized RemusDB against that of an unprotected DBMS
to measure this overhead. We also consider the impact of specific RemusDB
optimizations on different types of database workloads.

• Third, we consider how key system parameters and characteristics, such as
the size of the DBMS buffer pool and the length of the Remus checkpoint
interval, affect the overhead introduced by Remus.

3.7.1 Experimental Environment

Our experimental setup consists of two servers each equipped with two quad-core
Intel Xeon processors, 16GB RAM, and two 500GB SATA disks. We use the
Xen 4.0 hypervisor (64-bit), Debian 5.0 (32-bit) as the host operating system, and
Ubuntu 8.04 (32-bit) as the guest operating system. XenLinux Kernel 2.6.18.8 is
used for both host and guest operating systems, with disks formatted using the
ext3 filesystem.

We evaluate RemusDB with PostgreSQL 8.4.0 (referred to as Postgres) and
MySQL 5.0, using three widely accepted benchmarks namely: TPC-C [145], TPC-
H [146], and TPC-W [147]. We run TPC-C experiments on both Postgres and

42

DBMS Postgres MySQL
Benchmark TPC-C TPC-H TPC-W TPC-C

Performance Metric TpmC Execution Time WIPSb TpmC
Default Scale 20W/200C 1 10K Items 30W/300C

Test Duration (mins) 30 – 20 30
DB Size (GB) 1.9 2.3 1.0 3.0
BP Size (MB) 190 750 256 300
VM Mem (GB) 2 1.5 2 2

vCPUs 2 2 2 2
Remus CPI (ms) 50 250 100 50

Table 3.2: Experimental Settings

MySQL while TPC-H and TPC-W experiments are run on Postgres only. We
use a Remus checkpointing interval (CPI) of 50ms, 100ms, and 250ms for TPC-C,
TPC-W, and TPC-H experiments, respectively. These different CPIs for each type
of benchmark are chosen because they offer the best trade-off between overhead
during normal execution and availability requirements of that particular workload.
We evaluate the effect of varying CPI on the TPC-C and TPC-H benchmarks in
Section 3.7.6.

Our default settings for TPC-C experiments are as follows: The virtual machine
is configured with 2GB memory and 2 virtual CPUs. For MySQL, we use the
Percona benchmark kit [117] with a database of 30 warehouses and 300 concurrent
clients (10 clients per warehouse). The total size of the database on disk is 3GB.
For Postgres, we use the TPCC-UVa benchmark kit [86] with a database of 20
warehouses (1.9GB database on disk) and 200 concurrent clients. We modified
the TPCC-UVa benchmark kit so that it uses one TCP connection per client;
the original benchmark kit uses one shared connection for all clients. We choose
different scales for MySQL and Postgres due to differences in how they scale to
larger workloads when provided with fixed (equal) resources. The database buffer
pool is configured to be 10% of the database size on disk. We do not use connection
pooling or a transaction monitor; each client directly connects to the DBMS.

Our default settings for TPC-H experiments are a virtual machine with 1.5GB
memory, 2 virtual CPUs, and a database with TPC-H scale factor 1. The total size
of the database on disk is 2.3GB. We configure Postgres with a buffer pool size of
750MB. Our TPC-H experiments consist of one warmup run where we execute the
22 read-only TPC-H queries sequentially, followed by one power stream run [146]
where we execute the queries sequentially and measure the total execution time.
We do not perform TPC-H throughput tests or use the refresh streams.

Lastly, for TPC-W experiments we use the TPC-W implementation described
in [72]. We use a two tier architecture with Postgres in one tier and three instances
of Apache Tomcat v6.0.26 in the second tier, each running in a separate VM.
Postgres runs on a virtual machine with 2GB memory, and 2 virtual CPUs. We

43

use a TPC-W database with 10,000 items (1GB on disk). Postgres’s buffer pool is
configured to be 256MB. Each instance of Apache Tomcat runs in a virtual machine
with 1GB memory, and 1 virtual CPU. In these experiments, when running with
Remus, only the Postgres VM is protected. In order to avoid the effects of virtual
machine scheduling while measuring overhead, we place the Tomcat VMs on a
separate well provisioned physical machine.

Table 3.2 provides a summary of our experimental settings including the Remus
checkpointing interval (CPI). We use the following abbreviations to refer to different
RemusDB optimizations in our experiments: RT – Disk Read Tracking, ASC –
Asynchronous Checkpoint Compression, and CP – Commit Protection.

3.7.2 Behavior of RemusDB During Failover

In the first experiment, we show RemusDB’s performance in the presence of failures
of the primary host. We run the TPC-C benchmark against Postgres and MySQL
and plot throughput in transactions per minute (TpmC). We run the test for 1 hour,
and a failure of the primary host is simulated at 30 minutes by cutting power to it.
We compare the performance of a database system protected by unoptimized Remus
and by RemusDB with its two transparent optimizations (ASC, RT) in Figures 3.5
and 3.6. The performance of an unprotected database system (without HA) is also
shown for reference. The throughput shown in the figure is the average throughput
for a sliding window of 60 seconds. Note that MySQL is run with a higher scale
(Table 3.2) than Postgres because of its ability to handle larger workloads when
provided with the same resources.

Without any mechanism for high availability in place, the unprotected VM
cannot serve clients beyond the failure point, i.e., throughput immediately drops to
zero. All clients lose connections to the database server and cannot reconnect until
someone (e.g., a DBA) manually restores the database to its pre-failure state. After
restart, the database will recover from its crash consistent state using standard log
recovery procedures [104]. The time to recover depends on how much state needs
to be read from the write-ahead log and reapplied to the database and is usually
in the order of several minutes. Furthermore, the unprotected VM will have to
go through a warm-up phase again before it can reach its pre-failure steady state
throughput (not shown in the graph).

Under both versions of Remus, when the failure happens at the primary physical
server, the VM at the backup physical server recovers with ≤ 3 seconds of downtime
and continues execution. The database is running with a warmed up buffer pool, no
client connections are lost, and in-flight transactions continue to execute normally
from the last checkpoint. We only lose the speculative execution state generated
at the primary server since the last checkpoint. In the worst case, Remus loses one
checkpoint interval’s worth of work. But this loss of work is completely transparent
to the client since Remus only releases external state at checkpoint boundaries.
After the failure, throughput rises sharply and reaches a steady state comparable

44

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500

T
P

C
-C

 S
co

re
 (

T
pm

C
)

Elapsed Time (seconds)

Unprotected VM
Remus

ASC, RT

Figure 3.5: TPC-C Failover (Postgres)

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

T
P

C
-C

 S
co

re
 (

T
pm

C
)

Elapsed Time (seconds)

Unprotected VM
Remus

ASC, RT
Binlog

Figure 3.6: TPC-C Failover (MySQL)

45

to that of the unprotected VM before the failure. This is because the VM after the
failure is not protected, so we do not incur the replication overhead of Remus.

Figure 3.6 also shows results with MySQL’s integrated replication solution, Bin-
log [111, Section 5.2.3]. Our experiments use the stable release of Postgres at the
time of conducting this research, and this version does not provide integrated HA
support. MySQL Binlog replication, in combination with monitoring systems like
Heartbeat [85], provides performance very close to that of an unprotected VM and
can recover from a failure with ≤ 5 seconds of server downtime. However, we note
that RemusDB has certain advantages when compared to Binlog replication:

• Completeness. On failover, Binlog replication can lose up to one transac-
tion even under the most conservative settings [111, Section 16.1.1.1]. In
contrast, even with aggressive optimizations such as commit protection, Re-
musDB never loses transactions.

• Transparency. Client-side recovery is more complex with Binlog, which loses
all existing client sessions at failure. To measure Binlog performance after
recovery (not shown in Figure 3.6), we had to modify the TPC-C client to
reconnect after the failure event. This violates the TPC specification, which
requires that clients not reconnect if their server context has been lost [145,
Section 6.6.2]. Because we are comparing server overhead, we minimized the
client recovery time by manually triggering reconnection immediately upon
failover. In practice, DBMS clients would be likely to take much longer to
recover, since they would have to time-out their connections.

• Implementation complexity. Binlog accounts for approximately 18K lines of
code in MySQL, and is intricately tied to the rest of the DBMS implementa-
tion. Not only does this increase the effort required to develop the DBMS (as
developers must be cautious of these dependencies), but it also results in con-
stant churn for the Binlog implementation, ultimately making it more fragile.
Binlog has experienced bugs proportionate to this complexity: more than 700
bugs were reported over the last 3 years before the time of this writing.

3.7.3 Reprotection After a Failure

In Figure 3.7, we show RemusDB’s reprotection mechanism in action. Similar to
the failover experiment in Section 3.7.2, we run the TPC-C benchmark against
Postgres and plot throughput in transactions per minute (TpmC). We run the test
for 1 hour, a failure of the primary host is simulated at 30 minutes by cutting power
to it. The performance of an unprotected database system (without HA) is also
shown for reference. The setting used for these experiments is slightly different
from the other experiments in this section. In particular, the storage backend used
for reprotection experiments is different since it supports online resynchronization
of VM disks after a failure. Because of that, the performance numbers are slightly

46

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500

T
P

C
-C

 S
co

re
 (

T
pm

C
)

Elapsed Time (seconds)

Unprotected VM
Remus + Reprotection

ASC + Reprotection

Protected Outage
(Unprotected)

Protected

Resync Storage

Figure 3.7: TPC-C Failover and Reprotection After Failure (Postgres)

lower than other experiments, as can be clearly seen from the line for unmodified
Remus.

During the outage period, the VM does not incur any checkpointing overhead
and hence the throughput rises to that of an unprotected system. After a 15 minute
outage period, the primary host is brought back online. Note that we let the outage
last for 15 minutes in this experiment in order to adequately observe performance
during an outage. In reality, we can detect a failure within 3 seconds, and resynchro-
nize storage within approximately 29 seconds. The time required to resynchronize
can vary depending on the amount of data that needs to be resynchronized. Once
storage resynchronization completes, we restart the replication process: all of the
VM’s memory is copied to the backup, and then Remus checkpoints are resumed.
This process takes approximately 10 seconds in our settings for a VM with 2GB of
memory and a gigabit ethernet connection between the primary and backup hosts.
After this point, the VM is once again HA, i.e., it is protected against a failure of the
backup. Note that after reprotection, the throughput returns back to pre-failure
levels as shown in Figure 3.7. For implementing reprotection, we utilized a new
storage backend namely DRBD [47] which allows efficient online resynchronization
of VM disks. This storage backend does not support read tracking (adding this
support is a matter of implementation). Hence, Figure 3.7 only shows RemusDB’s
performance with the ASC optimization.

3.7.4 Overhead During Normal Operation

Having established the effectiveness of RemusDB at protecting from failure, its fast
failover time, and its effectiveness in reprotection after failure, we now turn our
attention to the overhead of RemusDB during normal operation. This section serves

47

two goals: (1) it quantifies the overhead imposed by unoptimized Remus on normal
operation for different database benchmarks, and (2) it measures how the RemusDB
optimizations affect this overhead when applied individually or in combination. For
this experiment we use the TPC-C, TPC-H, and TPC-W benchmarks.

Figures 3.8 and 3.9 present TPC-C benchmark results for Postgres and MySQL,
respectively. In each case the benchmark was run for 30 minutes using the settings
presented in Table 3.2. On the x-axis, we have different RemusDB optimizations
and on the y-axis we present TpmC scores normalized with respect to an unpro-
tected (base) VM. The normalized score is defined as: (TpmC with optimization
being evaluated)/(Base TpmC). The TpmC score reported in these graphs takes
into account all transactions during the measurement interval irrespective of their
response time requirements. Base VM scores are 243 and 365 TpmC for Postgres
and MySQL, respectively. The score of unoptimized Remus (leftmost bar) is around
0.68 of the base VM score for both DBMS – representing a significant performance
loss. It is clear from the graph that without optimizations, Remus protection for
database systems comes at a very high cost. The next three bars in the graph show
the effect of each RemusDB optimization applied individually. RT provides very lit-
tle performance benefit because TPC-C has a small working set and dirties many of
the pages that it reads. However, both ASC and CP provide significant performance
gains. Performance with these optimizations is 0.9-0.97 of the base performance.
TPC-C is particularly sensitive to network latency and both of these optimizations
help reduce latency either by reducing the time it takes to checkpoint (ASC) or by
getting rid of the extra latency incurred due to Remus’s network buffering for all
but commit packets (CP). The rightmost two bars in the graph show the effect of
combining optimizations. The combination of all three optimizations (ASC, RT,
CP) yields the best performance at the risk of a few transaction aborts (not losses)
and connection failures. In multiple variations of this experiment we have observed
that the variance in performance is always low, and that when the combination
of (ASC, RT, CP) does not outright outperform the individual optimizations, the
difference is within the range of experimental error.

The improvement in performance when adding (ASC, RT, CP) to Remus can
be seen not only in throughput, but also in latency. The average latency of the
NewOrder transactions whose throughput is plotted in Figures 3.8 and 3.9 for
Postgres and MySQL, respectively, is 12.9 seconds and 19.2 seconds for unoptimized
Remus. This latency is 1.8 seconds and 4.5 seconds for RemusDB. Compare this to
the latency for unprotected VM which is 1.2 seconds for Postgres and 3.2 seconds
for MySQL. Other experiments (not presented here) show that on average about
10% of the clients lose connectivity after failover when CP is enabled. In most cases,
this is an acceptable trade-off given the high performance under (ASC, RT, CP)
during normal execution. This is also better than many existing solutions where
there is a possibility of losing not only connections but also committed transactions,
which never happens in RemusDB.

Figure 3.10 presents the results for TPC-H with Postgres. In this case, the
y-axis presents the total execution time of a warmup run and a power test run

48

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Remus RT ASC CP ASC, RT ASC, RT, CP

N
or

m
al

iz
ed

 T
PC

-C
 S

co
re

Remus Optimization
PostgreSQL Buffer Pool Size = 10% of DB (DB size 1.9G)

Figure 3.8: TPC-C Overhead (Postgres) [Base Score = 243 tpmC]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Remus RT ASC CP ASC, RT ASC, RT, CP

N
or

m
al

iz
ed

 T
PC

-C
 S

co
re

Remus Optimization
MySQL InnoDB Buffer Pool Size = 1G (DB size 3G)

Figure 3.9: TPC-C Overhead (MySQL) [Base Score = 365 tpmC]

49

normalized with respect to the base VM’s execution time (921 s). The normalized
execution time is defined as: (Base execution time)/(Execution time with optimiza-
tion being evaluated). Since TPC-H is a decision support benchmark that consists
of long running compute and I/O intensive queries typical of a data warehousing
environment, it shows very different performance gains with different RemusDB
optimizations as compared to TPC-C. In particular, as opposed to TPC-C, we see
some performance gains with RT because TPC-H is a read intensive workload, and
absolutely no gain with CP because it is insensitive to network latency. A combi-
nation of optimizations still provides the best performance, but in case of TPC-H
most of the benefits come from memory optimizations (ASC and RT). These trans-
parent memory optimizations bring performance to within 10% of the base case,
which is a reasonable performance overhead. Using the non-transparent CP adds
no benefit and is therefore not necessary. Moreover, the opportunity for further
performance improvement by using the non-transparent memory deprotection in-
terface (presented in Section 3.4.2) is limited to 10%. Therefore, we conclude that
it is not worth the additional complexity to pursue it.

Finally, we present the results for TPC-W with Postgres in Figure 3.11. Each
test was run with the settings presented in Table 3.2 for a duration of 20 minutes.
We drive the load on the database server using 252 Emulated Browsers (EBs) that
are equally divided among three instances of Apache Tomcat, which in turn access
the database to create dynamic web pages and return them to EBs, as specified
by the TPC-W benchmark standard [147]. We use the TPC-W browsing mix with
image serving turned off at the clients. The y-axis on Figure 3.11 presents TPC-W
scores, Web Interactions Per Second (WIPS), normalized to the base VM score (36
WIPS). TPC-W behaves very similar to TPC-C workload: ASC and CP provide
the most benefit while RT does not provide any benefit.

RemusDB has a lot to offer for a wide variety of workloads that we study in this
experiment. This experiment shows that a combination of memory and network
optimizations (ASC and CP) work well for OLTP style workloads, while DSS style
workloads gain the most benefit from memory optimizations alone (ASC and RT).
It also shows that by using the set of optimizations that we have implemented in
RemusDB, we gain back almost all of the performance lost when going from an
unprotected VM to a VM protected by unoptimized Remus.

3.7.5 Effects of DB Buffer Pool Size

In the previous experiment, we showed that memory optimizations (ASC and RT)
offer significant performance gains for the TPC-H workload. The goal of this ex-
periment is to study the effects of database buffer pool size on different memory
optimizations on a micro level. In doing so, we hope to offer insights about how
each of these optimization offers its performance benefits.

We run a scale factor 1 TPC-H workload, varying the database buffer pool size
from 250MB to 1000MB. We measure the total execution time for the warmup

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Remus RT ASC CP ASC, RT ASC, RT, CP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Remus Optimization
PostgreSQL Buffer Pool Size = 750M (DB Size 2.3G)

Figure 3.10: TPC-H Overhead (Postgres) [Base Runtime = 921 s]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Remus RT ASC CP ASC, RT ASC, RT, CP

N
or

m
al

iz
ed

 T
PC

-W
 S

co
re

Remus Optimization
PostgreSQL Buffer Pool Size = 256MB (DB Size 1G)

Figure 3.11: TPC-W Overhead (Postgres) [Base Score = 36 WIPS]

51

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

250MB 500MB 750MB 1,000MB

 E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

PostgreSQL Buffer Pool Size (50% of VM Memory)

16
.6

%
9.

4%
6.

6% 16
.3

%
5.

8%
5.

8%

19
.8

%
13

.5
%

8.
3% 20

.1
%

6.
7%

7.
0%

24
.2

%
18

.9
%

9.
9% 24

.5
%

8.
6%

8.
5%

28
.1

%
24

.3
%

10
.3

%
30

.4
%

10
.6

%
11

.2
%

Base
Remus
RT
ASC
CP
ASC,RT
ASC,RT,CP

Figure 3.12: Effect of DB Buffer Pool Size on Performance (TPC-H)

 0

 20

 40

 60

 80

 100

 120

250M 500M 750M 1,000M

 T
ot

al
 R

ep
lic

at
io

n
D

at
a

Se
nt

 (
G

B
)

PostgreSQL Buffer Pool Size (50% of VM Memory)

Remus
RT
ASC
CP
ASC,RT
ASC,RT,CP

Figure 3.13: Effect of DB Buffer Pool Size on Amount of Data Transferred During
RemusDB Checkpointing (TPC-H)

52

run and the power test run in each case, and repeat this for different RemusDB
optimizations. To have reasonably realistic settings, we always configure the buffer
pool to be 50% of the physical memory available to the VM. For example, for a
250MB buffer pool, we run the experiment in a 500MB VM and so on. Results
are presented in Figure 3.12. The numbers on top of each bar show the relative
overhead with respect to an unprotected VM for each buffer pool setting. We
calculate this overhead as:

Overhead (%) = X−B
B

× 100

where B is the total execution time for an unprotected VM and X is the total
execution time for a protected VM with a specific RemusDB optimization.

Focusing on the results with a 250MB buffer pool in Figure 3.12, we see a 16.6%
performance loss with unoptimized Remus. Optimized RemusDB with RT and ASC
alone incurs only 9.4% and 6.6% overhead, respectively. The RemusDB memory
optimizations (ASC, RT) when applied together result in an overhead of only 5.8%.
As noted in the previous experiment, CP does not offer any performance benefit
for TPC-H. We see the same trends across all buffer pool sizes. It can also be seen
from the graph that the overhead of RemusDB increases with larger buffer pool
(and VM memory) sizes. This is because the amount of work done by RemusDB to
checkpoint and replicate changes to the backup VM is proportional to the amount
of memory dirtied, and there is potential for dirtying more memory with larger
buffer pool sizes. However, this overhead is within a reasonable 10% for all cases.

Another insight from Figure 3.12 is that the benefit of RT decreases with in-
creasing buffer pool size. Since the database size is 2.3GB on disk (Table 3.2), with
a smaller buffer pool size (250 and 500MB) only a small portion of the database
fits in main memory, resulting in a lot of “paging” in the buffer pool. This high
rate of paging (frequent disk reads) makes RT more useful. With larger buffer pool
sizes, the paging rate decreases drastically and so does the benefit of RT, since the
contents of the buffer pool become relatively static.

In Figure 3.13, we present the total amount of data transferred from the primary
server to the backup server during checkpointing for the entire duration of the
experiment. The different bars in Figure 3.13 correspond to the bars in Figure 3.12.
With a 250MB buffer pool size, unoptimized Remus sends 113GB of data to the
backup host while RemusDB with ASC and RT together sends 23GB, a saving of
90GB (or 80%). As we increase the buffer pool size, the network bandwidth savings
for RemusDB also decrease for the same reasons explained above: with increasing
buffer pool size the rate of memory dirtying decreases, and so do the benefits of
memory optimizations, both in terms of total execution time and network savings.
Recall that CP is not concerned with checkpoint size, and hence it has no effect on
the amount of data transferred.

53

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500 550

T
PC

-C
 S

co
re

 (
T

pm
C

)

Checkpoint Interval (milliseconds)
PostgreSQL Buffer Pool = 10% of DB (DB size 1.9G)

ASC, RT
ASC, RT, CP

Unprotected VM

Figure 3.14: Effect of Checkpoint Interval on RemusDB (TPC-C)

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 0 50 100 150 200 250 300 350 400 450 500 550

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Checkpoint Interval (milliseconds)
PostgreSQL Buffer Pool = 750M (DB size 2.3G)

ASC, RT
ASC, RT, CP

Unprotected VM

Figure 3.15: Effect of Checkpoint Interval on RemusDB (TPC-H)

54

3.7.6 Effects of RemusDB Checkpoint Interval

This experiment aims to explore the relationship between RemusDB’s checkpoint
interval (CPI) and the corresponding performance overhead. We conducted this
experiment with TPC-C and TPC-H, which are representatives of two very different
classes of workloads. We run each benchmark on Postgres, varying the CPI from
25ms to 500ms. Results are presented in Figures 3.14 and 3.15 for TPC-C and TPC-
H, respectively. We vary CPI on the x-axis, and we show on the y-axis TpmC for
TPC-C (higher is better) and total execution time for TPC-H (lower is better). The
figures show how different CPI values affect RemusDB’s performance when running
with (ASC, RT) and with (ASC, RT, CP) combined, compared to an unprotected
VM.

From the TPC-C results presented in Figure 3.14, we see that for (ASC, RT)
TpmC drops significantly with increasing CPI, going from a relative overhead of
10% for 25ms to 84% for 500ms. This is to be expected because, as noted earlier,
TPC-C is highly sensitive to network latency. Without RemusDB’s network opti-
mization (CP), every packet incurs a delay of CPI

2
milliseconds on average. With

a benchmark like TPC-C where a lot of packet exchanges happen between clients
and the DBMS during a typical benchmark run, this delay per packet results in low
throughput and high transaction response times. When run with memory (ASC,
RT) and network (CP) optimizations combined, RemusDB’s performance is very
close to that of unprotected VM, with a relative overhead ≤ 9% for all CPIs.

On the other hand, the results of this experiment for TPC-H (Figure 3.15)
present a very different story. In contrast to TPC-C, increasing CPI actually leads
to reduced execution time for TPC-H. This is because TPC-H is not sensitive to
network latency but is sensitive to the overhead of checkpointing, and a longer CPI
means fewer checkpoints. The relative overhead goes from 14% for 25ms CPI to 7%
for 500ms. We see a similar trend for both (ASC, RT) and (ASC, RT, CP) since
CP does not help TPC-H (recall Figure 3.12).

There is an inherent trade-off between RemusDB’s CPI, work lost on failure, and
performance. Choosing a high CPI results in more lost state after a failover since
all state generated during an epoch (between two consecutive checkpoints) will be
lost, while choosing a low CPI results in a high runtime overhead during normal
execution for certain types of workloads. This experiment shows how RemusDB’s
optimizations, and in particular the network optimization (CP), helps relax this
trade-off for network sensitive workloads. For compute intensive workloads that
are also insensitive to latency (e.g., TPC-H), choosing a higher CPI actually helps
performance.

3.7.7 Effect of Database Size on RemusDB

In the last experiment in this section, we want to show how RemusDB scales with
different database sizes. Results for the TPC-C benchmark on Postgres with varying

55

 0

 0.2

 0.4

 0.6

 0.8

 1

10W/100C/850M 15W/150C/1,350M 20W/200C/1,900M

N
or

m
al

iz
ed

 T
P

C
−

C
 S

co
re

TPC−C Scale (Warehouses/Clients/DB Size)

Base = 129 TpmC Base = 191 TpmC Base = 243 TpmC

 Remus
 ASC,RT
 ASC,RT,CP

Figure 3.16: Effect of Database Size on RemusDB (TPC-C)

 0

 0.2

 0.4

 0.6

 0.8

 1

1(2.3G) 3(7G) 5(11.5G)

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

TPC−H Scale Factor (DB size)

Base = 921s Base = 10,245s Base = 22,982s

 Remus
 ASC,RT

Figure 3.17: Effect of Database Size on RemusDB (TPC-H)

56

scales are presented in Figure 3.16. We use three different scales: (1) 10 warehouses,
100 clients, 850MB database; (2) 15 warehouses, 150 clients, 1350MB database;
and (3 20 warehouses, 200 clients, 1900MB database. The Postgres buffer pool
size is always 10% of the database size. As the size of the database grows, the
relative overhead of unoptimized Remus increases considerably, going from 10% for
10 warehouses to 32% for 20 warehouses. RemusDB with memory optimizations
(ASC, RT) incurs an overhead of 9%, 10%, and 12% for 10, 15, and 20 warehouses,
respectively. RemusDB with memory and network optimizations (ASC, RT, CP)
provides the best performance at all scales, with almost no overhead at the lower
scales and only a 3% overhead in the worst case at 20 warehouses.

Results for TPC-H with scale factors 1, 3, and 5 are presented in Figure 3.17.
Network optimization (CP) is not included in this figure since it does not benefit
TPC-H. Unoptimized Remus incurs an overhead of 22%, 19%, and 18% for scale
factor 1, 3, and 5, respectively. On the other hand, RemusDB with memory opti-
mizations has an overhead of 10% for scale factor 1 and an overhead of 6% for both
scale factors 3 and 5 – showing much better scalability.

3.8 Modeling RemusDB’s Behavior for Effective

Resource Scheduling

Having established the effectiveness of RemusDB as a transparent HA system, we
now turn our attention to modeling its performance impact to help in the admin-
istration of a RemusDB deployment. RemusDB has been highly optimized for
database workloads, but it still imposes some overhead during normal operation
when compared to an unprotected database system, as shown in the previous sec-
tion. Also, since RemusDB uses whole virtual machine replication to provide high
availability, it requires sufficient network bandwidth for checkpointing. Both of
these factors are important considerations for a database administrator (DBA) re-
sponsible for deploying RemusDB to protect database workloads, for example on a
cluster. Given a database workload and a VM resource allocation, it would be ideal
to know how much performance degradation this particular workload is expected
to experience and how much network bandwidth will be required when using Re-
musDB protection before executing the workload. This can help a DBA maintain
service level agreements (SLAs) for this given workload while effectively utilizing
system resources (e.g., network bandwidth).

In this section, our goal is demonstrate how to build a model that takes workload
type (OLTP, DSS), database size, buffer pool size, physical memory allocated to
the VM, and Remus checkpointing interval (CPI) and possibly some other high
level parameter(s) that a DBA can easily specify and then predict: (1) network
bandwidth required for RemusDB checkpointing, and (2) performance degradation
for a particular database workload when moving from an unprotected VM to a VM
protected by RemusDB. Such a model can be used by either a DBA or an automatic

57

Performance

OverheadExperiment-

driven

Models

Training

Experiments

P
e

rfo
rm

a
n

c
e

M
e

tric
s

Network

Bandwidth

Workload

Type

VM + DB

Config.

High-level

Parameters

DBMS

Model

Generation

Figure 3.18: Model Building Workflow

tool to do initial placement of the VMs on a cluster depending on their network
bandwidth requirements and also help meet SLAs by providing accurate estimates
of the overhead of RemusDB protection. A DBA should be able to answer questions
like: “What is the cost of enabling protection for a certain VM in terms of network
bandwidth requirements and performance overhead?”. Alternatively, for VMs that
are already protected a DBA can ask: “What is the effect of changing physical
memory allocation to the VM, DBMS BP size, and/or CPI on network bandwidth
utilization and performance?”. Our models aim to answer such questions.

In this work, we use experiment-driven modeling techniques [3, 4, 134] that have
recently gained wide popularity due to their general applicability, ability to model
complex interactions in workloads, and robustness. Experiment-driven modeling
relies on: (1) designing and running experiments to collect training data, then
(2) fitting statistical or machine learning models to this data. Figure 3.18 shows
the overall modeling workflow. In subsequent sections, we explain how we apply
these techniques to build models for predicting network bandwidth utilization and
performance overhead of RemusDB protection. The focus of this section is on
choosing the features to use for modeling and the structure of the statistical model
to use (e.g., linear vs. non-linear). We illustrate these steps by building models
for TPC-C as a representative of online transaction processing (OLTP) workloads,
and TPC-H as a representative of decision support (DSS) workloads. The same
approach we describe here can be applied for other OLTP and DSS workloads.

58

3.8.1 Collecting Training Data

The first step in experiment-driven modeling is to conduct experiments to collect
training data. For the experiments in this section, we use a different infrastructure
from the one used in Section 3.7. Our modeling experiments use two IBM blades
each with two dual-core AMD Opteron 2216 HE processors running at 2.2GHz,
8GB RAM, two 1Gb ethernet cards, and a 45GB SCSI hard disk. Each machine
runs Xen 3.2.3 with Linux Kernel 2.6.18 over Ubuntu Linux. One of the machines
is designated as the active host and the other as the standby host. The protected
VM is configured with two virtual CPUs and a 10GB disk image. Our training data
is collected using TPC-C and TPC-H runs over Postgres using the benchmarking
infrastructure described in Section 3.7.1. For building models we use R [142] – an
open source statistical modeling software.

For TPC-C, we run experiments to collect training samples with fixed VM
size and fixed buffer pool size for three different TPC-C scale factors: 10, 15,
and 20 warehouses. In each case, the number of clients is ten times the number
of warehouses, as required by the TPC-C specification. Each experiment is run
with 5 minutes ramp-up time followed by a 25 minutes measurement interval. For
each experiment, the VM is allocated 2GB RAM, and Postgres is configured with a
190MB buffer pool. Remus’s CPI is varied from 25ms to 500ms in 25ms increments,
resulting in a total of 20 experiments per scale factor or a total of 60 experiments
for all three scale factors.

For TPC-H, we run experiments with two TPC-H database sizes (scale factor 1
and 3) at a fixed configuration with 1.5GB RAM for the VM, and a 750MB buffer
pool size. Again, Remus’s CPI is varied from 25ms to 500ms in 25ms increments,
resulting in a total of 20 experiments per scale factor.

For the TPC-C experiments we measure total transaction throughput, and for
the TPC-H experiments we measure total execution time. In addition, we also
measure the total network bandwidth consumed. These variables are the response
variables that our models will predict based on some features. One of the questions
that we need to answer in this section is which features are best for modeling net-
work bandwidth and performance overhead. To answer this question, we collect a
large set of low level parameters showing CPU, memory, disk and network utiliza-
tion using the Linux sar monitoring tool which is run from inside the VM. These
resource utilization parameters are described in Table 3.3.

The result of our data collection experiments form our training and test samples.
We randomly select 80% of the collected samples for training and the remaining
20% for testing our models. We then construct a model using the R statistical
package. To evaluate the quality of each model we use the correlation coefficient
(R2), which measures how well the model fits the training data. We also use the
average prediction error (APE) which measures how well the model performs on
unseen test data. The APE is computed as:

AveragePredictionError(APE) = |Actual−Predicted|
Actual

× 100

59

Parameter Description
CPI Remus’s checkpointing

interval (ms)
netBand Total network bandwidth

utilized (GB)
TpmC Transactions per minute

(TPC-C only)
ExecTime Total execution time (s)

(TPC-H only)
pginPS Pages swapped in from

disk per second (KB/s)
pgoutPS Pages swapped out to

disk per second (KB/s)
breadPS Disk blocks read

per second (blocks/s)
bwrtnPS Disk blocks written

per second (blocks/s)
rxpckPS Network packets received

per second (packets/s)
txpckPS Network packets transmitted

per second (packets/s)
cpuUtil Average CPU

utilization (%)
diskUtil Average disk

utilization (%)

Table 3.3: Parameters Collected During Modeling Experiments

60

Figure 3.19: Pairwise Plot of All Parameters (TPC-C, 10W/100C)

61

●
●

●

●

●●

●●

●●
●

●●●●●

0 50 100 150 200

0
5

1
0

1
5

2
0

2
5

3
0

Packets Received/Sec

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
G

B
)

netBand = 0.096517*rxpckPS + 6.533658 (R^2 = 0.993)

(a) TPC-C

●

●

●

● ●
● ●

●
● ● ●

●

●
●

●

0 100 200 300 400 500

0
1

0
2

0
3

0
4

0

Checkpointing Interval (ms)

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
G

B
)

netBand = 0.0038*cpi + 22.9765 (R^2 = −0.02842)

(b) TPC-H

Figure 3.20: Linear Regression Models for Network Bandwidth

3.8.2 Modeling Network Bandwidth Utilization

We first focus on how to build regression models for predicting network bandwidth
consumption for OLTP and DSS style workloads. The training data for these
models is collected as described in the previous section. Our focus in this section is
on the model structure to use (linear vs. non-linear) and on the features to base the
modeling on. We will show that accurate models can easily be constructed using
simple model structures and features that are easy to identify and easy for a DBA
to collect.

Linear Regression Models

We first show the performance of linear regression models for TPC-C and TPC-H.
Focusing on TPC-C, we show linear regression models for TPC-C with a scale of 10
warehouses and 100 clients. Linear models for higher scales are very similar to the
ones presented here. We start with the question of which parameters to use as the
input parameters to the model. From the training samples, we calculate a pairwise
correlation matrix for all the parameters which showed that every parameter is
either positively or negatively correlated with network bandwidth. The strongest
positive correlation was found between network bandwidth (netBand) and packets
received per second (rxpckPS). Figure 3.19 presents a pairwise plot with every
parameter against every other parameter. The row showing graphs for the response
variable, i.e., netBand, is highlighted. This graph shows that packets received
(transmitted) per second has an almost linear relationship with network bandwidth.
TPC-C is a closed loop benchmark, i.e., a TPC-C client submits a requests to the
server and then waits for a response before issuing the next request. Furthermore,
the requests and responses all have a similar size. Therefore, the number of requests
(packets) received by the VM and the corresponding responses provides a relatively
accurate measure of the load on the DBMS server. Since the network bandwidth
consumed by the benchmark varies with the amount of work being done, the load

62

Figure 3.21: Pairwise Plot of All Parameters (TPC-H, SF=1)

63

on the DBMS server is a good indicator of the network bandwidth requirements.
Building on these insights, we learn a simple linear regression model with network
bandwidth (netBand) as the response variable and packets received per second
(rxpckPS) as the predictor variable. Figure 3.20(a) shows a graphic representation
of the linear model learned for TPC-C with 10 warehouses. The R2 value for the
model is quite high and the APE (not seen in the figure) is 4%, indicating the high
accuracy of the model.

To make predictions for a target TPC-C style workload, our model requires the
DBA to provide an estimate for only a single parameter, namely packets received
per second (rxpckPS). In a typical TPC-C setup every SQL statement incurs a
single round trip since the statement is submitted to the DBMS by the client
(one outgoing packet), and the DBMS sends the response in return (one incoming
packet). Since TPC-C consists of 5 transaction types each of which has a relatively
deterministic behavior, this allows a DBA to easily estimate the number of SQL
statements on average each type of transaction issues per second. The total rate of
SQL statements issued per second for the workload can then simply be calculated
by adding together the rate for each individual transaction type. Once the DBA
has this number, it can be directly translated to number of packets received per
second. We have experimentally verified the accuracy of such conversions.

Having looked at TPC-C, we now focus on TPC-H. Figure 3.21 shows a pairwise
plot of every parameter against every other parameter for a TPC-H scale factor 1
database. It is evident from this graph that network bandwidth (netBand) does
not depend linearly on any other parameter. However, there is a strong correlation
between netBand and CPI. As the graph shows, netBand varies non-linearly with
CPI so any linear model will be inaccurate. To show this we build a simple linear
model using CPI as the predictor variable and netBand as the response variable.
Figure 3.20(b) shows this model along with the model equation and R2 correlation
coefficient. The R2 value is quite low, but we observe that the model still has a
reasonable APE of 9%. The reason is that the variation in network bandwidth
usage is not high for TPC-H. This means that the predicted value will not deviate
from the actual value by much resulting in a low prediction error.

Non-linear Models

In the previous section we saw that linear models work well for predicting network
bandwidth for TPC-C, but not for TPC-H. In this section, we ask if more complex
non-linear models can give us more accuracy. We start with a TPC-C workload
with 10 warehouses and 100 clients. Models for the other two TPC-C scales are very
similar to the ones that we present here. Figures 3.22(a) and 3.22(b) present poly-
nomial and b-spline models, respectively, of degree 2, 3, and 9. Table 3.4 presents
the R2 and average prediction error (APE) for these models. It is evident that
these models do not offer much advantage in terms of goodness of fit or prediction
accuracy over the simpler linear model presented in Section 3.8.2. With a small
number of training samples, these models also have a higher chance of over-fitting

64

Model R2 APE (%)
Polynomial (degree=2) 0.99 4
Polynomial (degree=3) 0.99 4
Polynomial (degree=9) 0.99 5
B-Spline (degree=2) 0.99 4
B-Spline (degree=3) 0.99 3
B-Spline (degree=9) 0.99 6

Table 3.4: Accuracy of Non-linear Models for Network Bandwidth for TPC-C

Model R2 APE (%)
Polynomial (degree=2) 0.7707 3
Polynomial (degree=3) 0.9536 2
Polynomial (degree=9) 0.9767 3
B-Spline (degree=2) 0.7584 3
B-Spline (degree=3) 0.9300 2
B-Spline (degree=9) 0.9519 2

Table 3.5: Accuracy of Non-linear Models for Network Bandwidth for TPC-H

the data. We therefore conclude that the additional complexity of more sophisti-
cated models (polynomial, b-spline) is not worthwhile and henceforth consider only
linear models for TPC-C style workloads.

We now present non-linear models for TPC-H using CPI as the predictor and
netBand as the response variable. Figures 3.23(a) and 3.23(b) present polynomial
and b-spline models respectively, of degree 2, 3, and 9 for TPC-H scale factor
1. Table 3.5 presents the correlation coefficient and average prediction error for
each model. Either a polynomial or b-spline model with a degree ≥ 3 provides
an excellent fit and a very low prediction error. We see that the additional model
complexity is warranted for TPC-H. Among the choice of models, we choose a
polynomial model with degree 3 since it provides an excellent fit and the lowest
average prediction error with less chance of overfitting the data as compared with
higher degree polynomial (or b-spline) models.

Sensitivity Analysis

The goal of this section is to show that our models for TPC-C and TPC-H pre-
sented in the previous section are robust to small changes in configuration, e.g.,
DBMS buffer pool size. We also show that if we make substantial changes to the
configuration, e.g., VM size or buffer pool size, the average prediction error of our
model rises sharply. This shows that the parameters of the model are indeed rep-
resenting a particular state of the configuration. That is, while the model is robust

65

●
●

●

●

●●

●●

●●
●

●●●●●

0 50 100 150 200

0
5

1
0

1
5

2
0

2
5

3
0

Packets Received/Sec

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
G

B
) Degree of Polynomial

2 3 9

(a) Polynomial

●
●

●

●

●●

●●

●●
●

●●●●●

0 50 100 150 200

0
5

1
0

1
5

2
0

2
5

3
0

Packets Received/sec

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
G

B
) Degree of B−Spline

2 3 9

(b) B-Spline

Figure 3.22: Non-linear Models for Network Bandwidth (TPC-C)

●

●

●

● ●
● ●

●
● ● ●

●

●
●

●

0 100 200 300 400 500

0
1

0
2

0
3

0
4

0

Checkpointing Interval (ms)

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
G

B
)

Degree of Polynomial

2 3 9

(a) Polynomial

●

●

●

● ●
● ●

●
● ● ●

●

●
●

●

0 100 200 300 400 500

0
1

0
2

0
3

0
4

0

Checkpointing Interval (ms)

N
e
tw

o
rk

 B
a
n
d
w

id
th

 (
G

B
)

Degree of B−Spline

2 3 9

(b) B-Spline

Figure 3.23: Non-linear Models for Network Bandwidth (TPC-H)

66

Training Configuration Testing Configuration APE(%)

20W/2.0G-VM/190M-BP

20W/2.0G-VM/190M-BP 2
20W/2.0G-VM/256M-BP 17
20W/2.0G-VM/512M-BP 33
20W/1.5G-VM/190M-BP 18
20W/1.0G-VM/190M-BP 23
10W/2.0G-VM/190M-BP 40

Table 3.6: Robustness of Models for Network Bandwidth for TPC-C

Training Configuration Testing Configuration APE(%)

SF-3/1.5G-VM/750M-BP

SF-3/1.5G-VM/750M-BP 3
SF-3/2.0G-VM/750M-BP 7
SF-3/1.5G-VM/512M-BP 10
SF-3/2.0G-VM/512M-BP 10
SF-1/1.5G-VM/750M-BP 354
SF-1/1.5G-VM/512M-BP 356
SF-1/2.0G-VM/512M-BP 396

Table 3.7: Robustness of Models for Network Bandwidth for TPC-H

to small changes in configuration, it is still sensitive enough to detect large changes
in configuration.

Starting with TPC-C, we train a linear regression model presented in Sec-
tion 3.8.2, for 20 warehouses and 200 clients at 2GB VM and a 190MB buffer
pool and then test it at different configurations. Table 3.6 shows the default train-
ing configuration, the varying test configurations, and the average prediction error.
These results show that even though our models are robust to reasonably small
changes in configurations, DB, BP, and VM size are important parameters that
significantly affect network bandwidth utilization and therefore need to be incor-
porated in the model learning process.

Next, we analyze the sensitivity of our best model for TPC-H, i.e., a polynomial
model of degree 3, with respect to changes in configurations. We learn a model for a
TPC-H scale factor 3 database with 1.5GB VM, and a 750MB buffer pool and test
it against the same configuration as well as a set of varying configurations. Table 3.7
summarizes the results. These results show that our learned model for TPC-H is
robust to changes in VM and BP sizes. However, when we change the scale factor
from 3 to 1 while keeping all the other parameters constant, the average prediction
error reaches 354%. Additional results for scale factor 1 also show a very high
average prediction error. This shows that model learned at a certain scale factor
can only make predictions effectively when tested for that same scale factor, i.e.,
scale factor has a very significant effect on the total network bandwidth utilization.
In order to build a model that is able to make accurate predictions across different

67

DB sizes, we also have to learn the effects of DB size on total network bandwidth
utilized.

Unified Model

We show in the previous section that the linear model learned for TPC-C is sensitive
to changes in configuration parameters such as database size, VM size, and BP
size. The goal of this section is to build a model that learns the effects of all these
configuration parameters on network bandwidth utilization. Such a model is more
powerful than a model which is learned for a specific configuration, but a more
powerful model also requires more training data to capture the effects of all the
configuration parameters. Experimental design becomes much more important in
this case. With each additional parameter to learn, the number of experiments
required grows exponentially.

In order to establish the importance of each input parameter, and therefore
possibly reduce the number of total experiments required, we first use a 2k full
factorial experimental design, where k is the number of input parameters to the
model and each parameter takes two different values (high or low). We choose k = 4
with input parameters: CPI, DB size, VM size, and BP size, resulting in a total of
16 experiments (24). Analysis of the results shows that 83% of the total variation
in the response variable (netBand) is explained by CPI alone, with CPI, DB size,
VM size, and BP size together explaining 94% of the variation. This analysis also
yields that second degree interactions between these parameters are not important
and can therefore be ignored. This justifies an experimental design that chooses
more levels for CPI since it explains the most variation in the response variable and
fewer levels for other factors. This insight substantially reduces the total number
of experiments a DBA needs to conduct for building such models.

Reasonable values of CPI for TPC-C style workloads can range from 25ms to
500ms, although the sensitivity of TPC-C to network latency means that lower
values of CPI (25–100ms) will be chosen in practice. To collect training data, we
conduct a total of 90 experiments (5 × 3 × 3 × 2) using 5 different levels for CPI,
3 DB sizes, 3 VM sizes, and 2 different BP sizes. Each experiment takes about
20 minutes to finish. Note that we are still using a full factorial design, and there
is room for further optimization by using partial factorial design, especially since
our results with 2k full factorial design show that the interactions of all factors
are not meaningful, i.e., these interactions explain very little variation in the re-
sponse variable. Another possibility is to use full factorial design and then choose
a subset of the experimental space by using random sampling or Latin Hypercube
Sampling [64]. In this thesis we focus on building models, leaving the refinement
of experimental design to future work.

After collecting the training data from 90 experiments, we learn a unified linear
regression model that takes as input the CPI, DB size, VM size, BP size, and
packets received per second and predicts network bandwidth utilization. This model

68

has a very high correlation coefficient, i.e., R2 = 0.9718 and a very low average
prediction error of 5%, showing the effectiveness of our learning approach. When
equipped with such a model a DBA is able to accurately predict network bandwidth
utilization for any combination of input parameters, making the job of setting up
RemusDB protected virtual machines much easier.

Let us now focus on TPC-H. Section 3.8.2 shows that the model that we learn
for TPC-H is relatively non-sensitive to changes in VM size and BP size but very
sensitive to changes in database size (i.e., scale factor). We now present a model that
learns the effects of these different parameters on network bandwidth utilization.
Again for building such a model, we have to very carefully select a subset from the
possible set of experiments that still captures all the important effects of different
configuration parameters.

We perform an analysis similar to the one presented above for TPC-C. We first
start with a 2k full factorial experimental design with k = 4 and the same input
parameters as for TPC-C. Analysis of the results of these experiments shows that
CPI and database size explain 4% and 94% of variation in network bandwidth
utilization, respectively. This demonstrates that a unified model must learn the
effects of database size on network bandwidth utilization. This analysis also reveals
that interactions between individual parameters are not significant which means
that we do not need a full factorial experimental design. Furthermore, for a specific
database size, 85% of the variation in network bandwidth is explained by CPI
alone, with CPI, VM, and BP size together explaining 89% of the variation. These
insights indicate that DB size is the most important parameter affecting network
bandwidth. For a specific DB size, CPI has the most significant impact on network
bandwidth. These insights are very useful in reducing the number of experiments
required for training.

To collect training data for building a unified model, we conduct a total of 40
experiments using 2 DB sizes, 5 different levels for CPI, 2 VM sizes, and 2 BP sizes.
We then learn a unified linear regression model that takes as input the CPI, DB,
VM, and BP size and predicts network bandwidth utilization. The resulting model
has a very high correlation coefficient of R2 = 0.9541 and an acceptable average
prediction error of 18%.

We conclude that simple models (linear or low-order polynomial) can be used
to predict the network bandwidth requirement of RemusDB for OLTP and DSS
workloads. We have also seen that these models can be generalized so that they
take into account the effects of parameters such as CPI, database size, and VM
size. The number of experiments needed to collect training data is not prohibitive
since the higher order interactions between parameters are low.

3.8.3 Modeling Performance Degradation

In this section we present models that predict the performance degradation that
a database workload is expected to incur when moving from an unprotected VM

69

●

● ●

●
●

●

●

●

● ●

●

●

●

●

● ●

0 100 200 300 400 500

0
.0

0
0

.1
0

0
.2

0
0

.3
0

Checkpointing Interval (ms)

S
c
o
re

 R
a
ti
o

scoreRatio = −0.0004205*cpi + 0.2563 (R^2 = 0.8748)

(a) TPC-C

●

●

●

●
●

● ●
● ● ● ● ● ● ● ●

0 100 200 300 400 500

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Checkpointing Interval (ms)

S
c
o
re

 R
a
ti
o

scoreRatio = −0.0014527*cpi + 1.7410989 (R^2 = 0.5637)

(b) TPC-H

Figure 3.24: Linear Regression Models for Performance Degradation

to a RemusDB protected VM. These models can be used by a DBA to check if
any SLAs will be violated if a database is protected using RemusDB. We use the
same learning strategy as that for building models to predict network bandwidth
consumption.

Linear Regression Models

First focusing on TPC-C, we start with simple linear regression models for a fixed
configuration, i.e, DB size, VM size, and BP size, and we vary only the CPI. We
learn a model for 20 warehouses and 200 clients with 2GB VM and a 190MB BP.
Again, models for other DB sizes are very similar. In this case, the response vari-
able that we are trying to predict is the ratio of the TPC-C score (TpmC) under
RemusDB to the TPC-C score under an unprotected VM, which we refer to as the
scoreRatio. Our experimental data shows that CPI is a very good predictor of scor-
eRatio and the relationship between CPI and scoreRatio is almost linear. Therefore
a simple linear regression model that uses CPI as the predictor variable and scor-
eRatio as the response variable, has a high correlation coefficient (R2=0.8748) and
a very low prediction error of 2%, as shown in Figure 3.24(a).

For TPC-H, we build a simple linear regression model with scale factor 3 using
1.5GB VM and 750MB BP, and we vary only the CPI. In this case, the scoreRatio
is the the ratio of the total execution time under RemusDB to the total execution
time of an unprotected VM. Our experimental data shows that CPI is a very good
predictor of scoreRatio but the relationship between CPI and scoreRatio is not
linear. As expected, a simple linear regression model that uses CPI as the predictor
variable and scoreRatio as the response variable, has a low correlation coefficient
(R2=0.5637) but still relatively low prediction error of 8%. This low error is a result
of low variation in scoreRatio. We present the resulting model in Figure 3.24(b).

70

Model R2 APE (%)
Polynomial (degree=2) 0.97 0.8
Polynomial (degree=3) 0.97 0.9
Polynomial (degree=9) 0.95 1.5
B-Spline (degree=2) 0.97 0.8
B-Spline (degree=3) 0.97 0.9
B-Spline (degree=9) 0.97 0.5

Table 3.8: Accuracy of Non-linear Models for Performance Degradation for TPC-C

Model R2 APE (%)
Polynomial (degree=2) 0.87 5.6
Polynomial (degree=3) 0.98 2.2
Polynomial (degree=9) 0.99 0.4
B-Spline (degree=2) 0.86 5.1
B-Spline (degree=3) 0.97 2.8
B-Spline (degree=9) 0.99 0.5

Table 3.9: Accuracy of Non-linear Models for Performance Degradation for TPC-H

Non-linear Models

We present non-linear models for predicting scoreRatio for TPC-C that try to
improve on the linear model presented above. Figures 3.25(a) and 3.25(b) present
polynomial and b-spline models, respectively, of degree 2, 3, and 9. Table 3.8
presents the correlation coefficient and average prediction error for each model.
A polynomial or b-spline model of degree 2 has a very high correlation coefficient
(R2=0.97) and the lowest prediction error (0.8%). With higher degree models there
is once again a chance of overfitting the data with a limited number of learning
samples. Therefore we choose a polynomial model of degree 2 as the best performing
model. Note that a b-spline model of degree 2 will work equally well.

For TPC-H with scale factor 3, Figures 3.26(a) and 3.26(b) present polynomial
and b-spline models, respectively, of degree 2, 3, and 9 for predicting scoreRatio.
Table 3.9 presents the correlation coefficient and average prediction error for each
model. A polynomial model of degree 3 has a very high correlation coefficient
(R2=0.98) and a low prediction error (2.2%). The polynomial and b-spline models
of degree 9 have the highest correlation coefficient and the lowest prediction errors
but they are very likely to overfit the data. Therefore, we choose a polynomial
model of degree 2 as the best performing model.

Unified Model

Linear and non-linear models for predicting scoreRatio that we presented in the
previous sections work well but they have certain limitations. The biggest limitation

71

●

● ●

●
●

●

●

●

● ●

●

●

●

●

● ●

0 100 200 300 400 500

0
.0

0
0

.1
0

0
.2

0
0

.3
0

Checkpointing Interval (ms)

S
c
o
re

 R
a
ti
o

Degree of Polynomial

2 3 9

(a) Polynomial

●

● ●

●
●

●

●

●

● ●

●

●

●

●

● ●

0 100 200 300 400 500

0
.0

0
0

.1
0

0
.2

0
0

.3
0

Checkpointing Interval (ms)

S
c
o
re

 R
a
ti
o

Degree of B−Spline

2 3 9

(b) B-Spline

Figure 3.25: Non-linear Models for Performance Degradation (TPC-C)

●

●

●

●
●

● ●
● ● ● ● ● ● ● ●

0 100 200 300 400 500

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Checkpointing Interval (ms)

S
c
o
re

 R
a
ti
o

Degree of Polynomial

2 3 9

(a) Polynomial

●

●

●

●
●

● ●
● ● ● ● ● ● ● ●

0 100 200 300 400 500

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Checkpointing Interval (ms)

S
c
o
re

 R
a
ti
o

Degree of B−Spline

2 3 9

(b) B-Spline

Figure 3.26: Non-linear Models for Performance Degradation (TPC-H)

72

is that these models were learned for a given DB, VM, and BP size and therefore
will have to be re-learned for a target configuration that is significantly different
from the training configuration. Our goal in this section is to build a unified model
that is able to handle changes in these configuration parameters.

To learn a unified model for TPC-C, we use the same training data for the
database running under RemusDB as in Section 3.8.2. In addition to those 90
experiments, we run 18 additional experiments with an unprotected VM using 3
DB sizes, 3 VM sizes, and 2 BP sizes (there is no CPI parameter for an unprotected
VM) and calculate the scoreRatio for each RemusDB training experiment. From
the previous section, we already know that a polynomial model of degree 2 in
CPI works best for predicting scoreRatio. Using the new training data we learn
an extended non-linear unified model that incorporates the additional parameters,
i.e., DB, VM, and BP size. The resulting model has a correlation coefficient R2

= 0.7869 and an average prediction error of 9%. This is a reasonable correlation
coefficient and APE.

To learn a unified model for TPC-H that is able to predict performance degra-
dation for any values of CPI, DB, VM, and BP size we use the same training data
for the database running under RemusDB as in Section 3.8.2. In addition to those
40 experiments, we run 8 additional experiments with an unprotected VM using
2 DB sizes, 2 VM sizes, and 2 BP sizes and calculate the scoreRatio for each Re-
musDB training experiment. Using the new training data we learn an extended
non-linear unified model that incorporates additional parameters, i.e., DB, VM,
and BP size. The resulting model has a correlation coefficient R2 = 0.8763 and an
average prediction error of 6%.

3.9 Summary

In this chapter, we presented RemusDB, a system for providing simple transparent
DBMS high availability at the virtual machine layer. RemusDB provides active-
standby HA and relies on VM checkpointing to propagate state changes from the
primary server to the backup server. It can make any DBMS highly available with
little or no code changes and it imposes little performance overhead. We presented
a detailed experimental evaluation that shows RemusDB’s performance for vari-
ous types of database workloads running under Postgres and MySQL. By using
RemusDB’s optimizations, we are able to provide very fast failover in ≤ 3 sec-
onds while incurring very low performance overhead during normal operation. We
also presented modeling techniques that can help a DBA build simple but effec-
tive models to predict the network bandwidth usage and performance degradation
for RemusDB deployments. The unified model that we presented has an average
prediction error of 5% and 9% for predicting network bandwidth usage and perfor-
mance degradation, respectively, for TPC-C workload. For TPC-H workload, the
unified model has an average prediction error of 18% and 6% for predicting net-
work bandwidth usage and performance degradation, respectively. These results

73

show that by using our experiment driven modeling approach, a DBA can build
fairly accurate models for predicting network bandwidth usage and performance
degradation for replication based HA systems like RemusDB.

Having investigated high availability, we now turn our attention to elastic scale-
out, and present two approaches for achieving elasticity for a DBMS. We discuss
one approach in Chapter 4 and the other in Chapter 5.

74

Chapter 4

Chimera: Elastic Scale-out and
Load Balancing Through Data
Sharing

In this chapter, we present design and implementation of a system that provides
elastic scale-out and load balancing for database systems through data sharing. A
detailed discussion about different techniques for scaling database systems can be
found in Chapter 2 (Section 2.4).

4.1 Introduction

4.1.1 Different Database Architectures

A number of different architectures for parallel database systems have been ex-
plored in the evolution of current commercial database systems. The “big picture”
categorization is the division into shared nothing and data sharing. We described
shared nothing and data sharing systems in detail in Chapter 2, but to remind
the reader, we begin by clearly defining these terms below. A more complete de-
scription of the relevant technical issues around database architectures is given in
Section 4.2.

Shared Nothing DBMS

A shared nothing database server, whether a single-node system or a member of
a multi-node cluster (recall that a node in this context is a server), has exclusive
access to the data that it manages. Data for a node is usually stored on a disk that
is locally attached to this node. A database is usually divided into mutually ex-
clusive partitions and distributed among the nodes of a cluster, where each node is
responsible for only its own partition(s). Only the node responsible for a partition

75

can cache data from this partition. This node can hence provide concurrency con-
trol and recovery for the data that it manages without the need to coordinate with
any other node, since this data can never be in the cache of any other node. This
simplicity is a great advantage and in many settings leads to higher performance
and scalability because there is no need for coordination among nodes. However,
defining a good data partitioning is hard, partitions are usually statically defined,
and repartitioning (which is typically necessary for elastic scale-out and load bal-
ancing) requires a reorganization of the entire database, and may require moving
data between nodes.

Data Sharing DBMS

In a data sharing DBMS, more than one node of a cluster can cache the same data
(hence the name “data sharing”) from the database stored on disk. All nodes in the
cluster require access to the storage devices, which may be provided by using storage
area networks (SANs) that enable shared access to disks. A data sharing DBMS
cluster can respond to changing system load by deploying additional nodes for “hot”
data to scale beyond single node performance, i.e., it can easily scale-out. As the
working set and the hot spots in the data change, work can be moved between nodes
for load balancing without the need to repartition the data. On the other hand,
a data sharing system is more complex to implement, since it requires distributed
concurrency control and recovery (CC&R) and distributed cache coherence, which
impose additional complexity and load on the system.

The current database market is split between data sharing systems and shared
nothing systems. In the data sharing camp are such long-lived commercial products
as Oracle [90], and IBM mainframe DB2 [25]. In the shared nothing camp are the
more recently implemented database systems such as IBM DB2/UDB [94] and
Microsoft SQL Server [106].

In the TPC benchmarking wars, shared nothing systems usually win the
price/performance battles, while data sharing systems have, with some frequency,
won on peak performance. An interesting aspect is that when set up to run the
benchmark, data sharing systems are frequently careful about partitioning access
to the data to reduce the burden of CC&R and cache management.

Thus, to summarize, shared nothing database systems are easier to implement
because they are less complex than data sharing systems [139]. For example, shared
nothing systems do not face the problems of distributed locking and complex failure
scenarios for recovery. Shared nothing systems can also be more scalable than data
sharing systems since there is less need for coordination among the nodes. On the
other hand, data sharing provides benefits such as increased responsiveness to load
imbalances, which is highly desirable for dynamically changing workloads such as
those in the cloud computing environments.

We would like a system with the flexibility of data sharing for load balancing and
scale-out, but with the simplicity of shared nothing, as shown in Figure 4.1. An ideal

76

Shared

Nothing
Chimera

Data

Sharing

H
ig

h
L

o
w

HighLow

Flexibility

S
im

p
lic

it
y

Figure 4.1: Chimera: Best of Both Worlds

solution would combine the advantages of data sharing with shared nothing without
any of its disadvantages, e.g., without the added complexity that arises from the
use of a distributed lock manager, global buffer manager, and complex logging and
recovery mechanisms. In this chapter, we present the design and implementation
of Chimera [100], a system that aims to achieve this objective by adding a data
sharing “extension” to a shared nothing DBMS. Chimera is built using off-the-shelf
components, providing effective scalability and load balancing with less than 2%
overhead during normal operation.

4.1.2 Overview of Chimera

We enable sharing of databases among all the nodes of a cluster. Each node,
acting as a remote node, can access a database hosted at any other node, the
local node in the cluster, if the local node chooses to share that database. We
start with a shared nothing cluster of low-cost desktop machines that can each
host a stand-alone shared nothing DBMS, with one or more databases stored on
their respective local disks. We carefully extend the DBMS with data sharing
capability while minimizing the amount of new code and limiting the frequency of
execution of this code. The techniques we use are applicable, in principle, to any
traditional shared nothing database system. Our contribution is in (1) the design
of a database architecture that is a hybrid of shared nothing and data sharing, (2)
the implementation of Chimera – a system based on the hybrid architecture, and
(3) the experimental confirmation of the validity of the approach.

“Full blown” data sharing can lead to both complexity and performance over-
head. Thus, our goal is to provide carefully chosen data sharing that provides load
balancing and scale-out benefits to a selected set of applications that are nonetheless
of great practical importance since they occur frequently in modern data centers.
Chimera provides the following:

1. Load balancing at table granularity. Chimera can offload the execution
cost of database functionality in units of tables. A remote node can become
the database server for accesses to one, several, or all tables. The node hosting
the data simply serves pages belonging to the shared table(s) from its disk.

77

Our experiments confirm that this is an effective load balancing approach,
not possible with a shared nothing system.

2. Scale-out for read-mostly workloads. Read-mostly workloads represent
a wide range of Internet based workloads (e.g., many of the services hosted
at Microsoft, Yahoo, or Google) and thus are important. Our experiments
confirm effective scale-out for these kinds of workloads.

3. Close to shared nothing simplicity. A key design decision in Chimera is
that only a single node can update a database at any time. The node doing
the updating may change to enable load balancing. This decision means that
the updating node has exclusive access to both the data and the transaction
log. Thus, while working on tables, including those delegated to it by other
nodes, a node executes as in a shared nothing system. Only in transitioning
ownership need it be aware of data sharing, taking active steps to invalidate
cached data at other nodes.

Our architectural goal is to minimize the number of system components im-
pacted by our extensions. Most parts of the shared nothing database system are
unaffected by the addition of data sharing. Chimera relies on three main software
components: (1) the data is stored in a shared file system such as Common Internet
File System (CIFS) [63] or Network File System (NFS) [129], so all nodes can access
it, (2) a distributed lock manager such as Boxwood [92] or Chubby [28] provides
ownership control, and (3) code added in the shared nothing DBMS coordinates
data access and sharing among the nodes.

To enable sharing of database files at the file-system level, we store these files
in a shared file system. This requires a very modest change to the DBMS and
allows sharing of all data and metadata as a single package. Each node can receive,
optimize, and compile queries using the metadata, as if the database were local.
We present more details about file-system access in Chimera in Section 4.3.1.

Locking in Chimera goes on at two levels. We have global locks for ownership
control, and local locks for transaction isolation. We do not modify the local lock-
ing mechanism at each DBMS node. We complement the normal locking protocol
at each DBMS node with our global ownership locks, implemented by a generic
distributed locking service as described above. Before any node in our system can
gain access to a shared table, it first acquires a global read/write lock, after which
it proceeds with the local locking protocol for transaction isolation, as it normally
would without our extension. Local locks have lifetimes which are tied to trans-
actions and follow standard locking protocols such as the two-phase locking (2PL)
protocol. On the other hand, each node in the system can hold global ownership
locks for extended periods of time, spanning multiple transactions. Furthermore,
these locks are leased to each node, and are released only if the lease expires or there
is a conflicting lock request. We present more details about our locking protocol in
Section 4.3.2.

78

In order to ensure a globally consistent buffer cache, we have implemented a “se-
lective cache invalidation” mechanism within the DBMS (Section 4.3.3). Another
key design decision that greatly simplifies the data sharing mechanism is that we
allow only a single writer of a shared database at any given time, even if each writer
is modifying a different table. This allows us to avoid the complexities of logging
and recovery protocols typical of a data sharing system. We can use the existing,
unmodified logging and recovery protocol of a shared nothing DBMS. More details
about logging and recovery in Chimera are presented in Section 4.3.4.

Another contribution of our work is that we present experiments demonstrating
that Chimera enables load balancing for general workloads and scale-out for read-
mostly workloads. Given the benefits of our approach and the simplicity of our
extensions to “shared nothing” systems, this may gradually erase the hard boundary
between data sharing and shared nothing.

The rest of this chapter is organized as follows. Section 4.2 describes data shar-
ing and shared nothing database architectures. It details the complexities of the
data sharing systems found in the database and systems literature. In Section 4.3,
we provide an overview of our approach and talk about system components im-
pacted when providing data sharing. Our implementation is described in some
detail in Section 4.4, showing how our goals shaped our implementation approach.
We report experimental results in Section 4.5 that demonstrate the value of the
approach. Related work is discussed in Section 4.6. The final section summarizes
the chapter.

4.2 DBMS Architectures

4.2.1 The Two Architectures

As we already mentioned in Chapter 2, a shared nothing database system (SN) deals
with an inherently simpler situation than does a data sharing system (DS). A SN
database system provides concurrency control and recovery where it has exclusive
ownership of, and complete information about, the data it manages. A DS system
must coordinate access to data that can change in flight, and provide recovery for
the data that it manages even as multiple nodes are updating the same data and
committing transactions.

Some of the issues in database systems apply also to distributed or cluster
file systems, e.g., [13, 45, 55, 143] to cite a few early examples. Each metadata
operation initiated by the file system is typically treated as an atomic operation
requiring locking and logging techniques analogous to database kernels. However,
distributed file systems (DFS) do not typically allow arbitrary client transactions.

The complexity of the task that DS systems face makes it inevitable that they
are more complex, with longer execution paths. DS systems must provide dis-
tributed concurrency control for access to the data and distributed cache coherence

79

as well. More complex and costly handling of system crashes is also typical. To pro-
vide recovery, a node in a DS system cannot simply write to a private log. Rather,
it either needs a shared log or must ensure that its log be correctly merged with
other logs. In the next two subsections, we delve more deeply into the challenges
that DS systems face in accessing “shared data” from multiple nodes in a cluster
of such nodes.

4.2.2 Concurrency Control

When data is shared by nodes of a cluster and lock based concurrency control is
used, the locks on shared data must be visible to all nodes that can access this
data. These are called distributed (or global) locks and the lock manager involved
is usually called a distributed lock manager (DLM). Any node accessing data must
request an appropriate distributed lock on the data from the DLM, which is costly.
The DEC Rdb [89] experience was that distributed locks required almost 50% of the
code path required for executing an I/O, and also introduced significant latency.

Achieving good performance in Rdb required a relentless effort to reduce the
number of distributed lock requests. These locks arise more frequently than one
might expect. Because a DS system has a distributed cache, costly distributed
locks, not cheap latches, are required to protect pages and keep the cache coherent.
In Rdb, locks are held by software processes, with each transaction assigned to a
single process. Rdb 7.0 introduced lock retention across transactions to avoid extra
trips to the DLM to re-acquire locks for the next transaction. The expectation was
that often (and especially with effective application partitioning) the lock would be
needed again soon by another transaction executing in the same process. A similar
technique, called leases [59], is used in distributed file/storage systems [28, 45, 143,
131].

When a node of a DS cluster crashes and locks are not persistent, its distributed
locks are lost. A very complex recovery process is needed to sort things out (see
below). Making the locks persistent avoids this, but introduces extra cost. Writing
the locks to disk results in very poor performance. IBM mainframe DB2, when
executing on a cluster that includes a “Sysplex”, specialized hardware that makes
distributed locks stable, improves performance though at a significant cost. Another
way to make locks persistent is to build the DLM as a replicated state machine [81],
an approach found in some distributed systems [28, 92, 143]. This requires no
special hardware support and the communication and disk bandwidth overhead
may be acceptable.

4.2.3 Recovery

Data sharing systems can use a variety of techniques to ensure that locks persist,
as indicated above, but they all add to the code path during normal execution.
When distributed locks are volatile, execution cost is reduced but a node crash

80

loses locks. This “partial” failure undermines a claimed advantage for data sharing
clusters, i.e., that single node failures do not necessarily make data inaccessible if
multiple nodes can access each disk. (Such “shared disk” hardware is sometimes
confused with data sharing database systems because DS systems have frequently
been built using shared disks.)

To cope with lost locks, Rdb instituted a “database freeze” [123]. This makes
data briefly unavailable. All transactions are aborted, both on crashed nodes and
on still up nodes. Transaction undo is guaranteed because sufficient locks are taken
during forward execution so that no additional locks (which may block) are needed
during undo. Undo returns the system to a state where no transactions are active
and it is known that no locks are held. At that point, access to data can resume
(and very quickly at the nodes that did not crash) while the crashed node itself is
recovered. This is both complicated, and briefly turns a partial failure into at least
a brief complete interruption of service. Some transaction aborts might be avoided
were Rdb to track, outside of the DLM, the locks held by transactions. But it does
not.

Another complication is how logging is handled. Two different ways to approach
this problem have been pursued.

1. Provide a shared log with all nodes posting log records to the shared log.
Coordinating high performance shared logging is subtle. One cannot afford
to access this log at every update as this involves interprocess communication.
Rdb’s shared log manager hands out log blocks to processes, which pass them
back when they are filled. At a crash, extra effort is needed to determine the
exact end of the log since the log tail typically had a number of noncontiguous
blocks.

2. Provide separate logs for each node. This changes the problem to how to
merge the logs during recovery. With separate logs, the usual log sequence
number (LSN) ordering no longer is guaranteed to match the time-sequence
of updates. This means that the notion of LSNs and how they are assigned to
log records and pages needs to be modified [87, 105, 143] so that, at recovery
time, the separate logs can be effectively merged. Finally, to make it possible
for a node to recover without involving other nodes in its recovery, one needs
to make sure that recovery for any single data item is confined to a single log.
When the node caching a data item changes, an up-to-date copy of the data
must be on stable storage (disk) before the data is cached at the new node.
This is coordinated via the DLM and often requires a disk write to flush dirty
data from the old node, adding to the performance overhead of logging.

4.3 Simplified Data Sharing

As we note in the previous section, providing full-fledged data sharing is hard
owing to the complexity of CC&R and cache management. However, we note

81

Disk

Node 1

Memory

CPU CPU

Disk Disk

Node 2

Memory

CPU CPU

Node N

Memory

CPU CPU

Figure 4.2: Shared Nothing Architecture with Data Sharing Software Layer

that both shared nothing and data sharing systems can be implemented using the
same shared nothing hardware architecture. Only the system software needs to be
different. A key challenge of a data sharing system is to maintain data integrity
without sacrificing performance. Careful design is needed to keep the overhead low.
Although software-only techniques for implementing shared disk systems have been
proposed (e.g., [84]), specialized hardware has frequently been used to implement
data sharing systems efficiently. This leads to specialized designs and increased
costs since this hardware is not commodity and is priced accordingly.

In this work, we take a stand-alone SN database architecture running on com-
modity hardware and change only the software to implement a system that exhibits
many of the characteristics of a data sharing system. We illustrate the resulting
architecture for such an approach in Figure 4.2. The added data sharing software
layer, which is carefully partitioned from the remainder of the system, distinguishes
this architecture from a shared nothing architecture. We present the design of this
layer later in this section, while the implementation details are presented in Sec-
tion 4.4.

We exploit three fundamental simplifications in designing our solution.

1. All metadata and associated structures of the database are accessible by each
node of a cluster as if it owned the database.

2. Only one node at a time can update a database, while multiple nodes can
share read access.

3. Nodes have ownership locks on tables that are separate from transactional
locking in order to share data access.

Sharing at table granularity limits the number of ownership locks and the fre-
quency of lock requests. However, it limits data sharing to the scenario that while

82

one node may be updating a table, other nodes can be sharing read access to the
other tables of a database. This is definitely not as powerful as a full-fledged DS
system, but it is quite useful, nevertheless. Moreover, this sharing is enabled at a
very modest implementation cost. Importantly, load balancing by doing a scale-out
of data from a “local node” to a “remote node” can be accomplished without mov-
ing the data from the local node’s disk to the remote node’s disk, and can easily
be done on a time scale of minutes, not hours. The following sections provide an
overview of different components required to build our data sharing system. We
show how one can use off-the-shelf components and make minor changes to the
DBMS to build a hybrid system such as Chimera.

4.3.1 File-system Access

For data sharing, the database files need to be accessible from multiple nodes.
Data sharing systems traditionally solve this problem by using SANs, or shared
disks. We posit that software-only techniques, for example, distributed or network
file systems, can be used for storing data and can provide adequate performance
for a data sharing system. We can use any network or distributed file system
(see [63, 129, 143] for some representative examples) to share access to the database
files from multiple nodes. Allowing a DBMS to use a DFS or NFS to store database
files requires simple changes to the DBMS. In Section 4.4 we present details of these
changes for one particular DBMS. Similar changes can be made to any existing
shared nothing DBMS.

By sharing the database files (using a DFS or NFS), we encapsulate all data
and metadata into a single package (design consideration (1)). When we provide
access to the data, we simultaneously provide access to the metadata. This permits
the remote (sharing) node to receive queries, compile, and optimize them as if the
database were local. The local node for the database acts as a disk controller for the
remote nodes, reading its disk to provide database pages requested by the remote
nodes. The result of this activity is invisible to the local node database system.
Each remote node caches data as required by the queries it executes.

4.3.2 Distributed Locking

We need some form of global locking with a data sharing system in order to syn-
chronize access to common data. It is very important to keep the overhead of
locking low. In the past, this has led to a highly complex distributed lock manager
usually paired with specialized hardware for maximum performance. Multi-version
concurrency control (MVCC) is an alternative to locking based concurrency control
and is typically used to implement snapshot isolation (SI). SI has been shown to
work well in a data sharing system such as Oracle RAC [110], and would obviate
the need for a distributed lock manager. In this work, we assume that locking based
concurrency control is used for data sharing, which is often the case. Distributed

83

locking does not scale well, but it is important to note that we do not need a full-
fledged distributed lock manager for our data sharing solution. We simply need a
lock manager that is able to handle lock requests on remote resources (e.g., in our
case, a remote table) in addition to local resources. Such a “global” lock manager
dealing with ownership locking is far less complex than a full-fledged distributed
lock manager more typical of data sharing systems.

Given the widespread deployment of Internet scale services, several highly scal-
able distributed coordination services have been proposed [28, 69, 92]. Chubby [28]
offers a coarse-grained locking service that is able to provide strong synchronization
guarantees for distributed applications. Chubby is used by Google File System [53]
and Bigtable [31] to coordinate between master servers and their clients as well as to
store metadata. ZooKeeper [69] offers a simple and efficient wait-free coordination
service for large scale distributed applications. ZooKeeper is not a lock manager
but the basic coordination primitives that it provides can be used to implement
a distributed lock manager. Boxwood [92] implements a fault-tolerant distributed
locking service that consists of a single master server and multiple slave servers.
It implements leases which are cached at each lock client. A lease on a lock is
released only if a conflicting request for the same lock is issued by another lock
client. Failures of lock servers and/or clients are detected and safety is guaranteed
by the use of a recovery procedure.

Our system exploits a global lock manager adopted from Boxwood [92]. While
distributed locking at a fine granularity for resources and lock owners has proven
to be complex and costly, simplified global locking at a coarse granularity has been
successfully exploited [28, 69, 92], as mentioned above. Locking in our system
goes on at two levels, globally for ownership sharing of tables among nodes and
locally for transactional isolation within each node. This global/local distinction
and its advantages were highlighted in [88]. We call the duration of ownership an
ownership period. It is important to note that once an ownership period is activated,
no changes to the shared nothing system are required to coordinate access among
transaction executions within the period.

Locking granularity for ownership sharing among nodes is at the table level.
This is a practical limitation designed to reduce the number of locks and hence
locking overhead. We assume that reader and writer nodes (not transactions) hold
ownership table locks for durations involving multiple transactions. Recall that we
are using data sharing as a way to do load balancing and scale-out in a low cost
manner. Our data sharing is not intended for continuous tightly coupled execution,
but rather to inexpensively respond to load changes.

4.3.3 Distributed Buffer Management

Since data from the database can be cached at multiple nodes simultaneously, we
need a distributed buffer manager to maintain consistency in the face of updates
to the database. A surprisingly modest extension to the existing buffer manager in

84

any shared nothing database system today can provide the capability of “selective
cache invalidation” which is sufficient to maintain global buffer consistency.

We limit the impact on readers of a writer updating a table via selective cache
invalidation. Readers cannot access pages of a table while it is being updated by
the writer. But pages of such a table can remain cached. Each writer, at the point
when it releases its exclusive lock on a table does two things:

1. Flushes updated pages to disk so that readers, when re-accessing changed
pages, find the latest page versions.

2. Sends invalidation notices to all reader nodes, notifying them of the changed
pages. Readers invalidate these pages by removing them from their caches,
requiring them to re-read these pages from disk when they are accessed again.

4.3.4 Logging and Recovery

Updates to the database can be executed from any node in the cluster so distributed
logging and recovery mechanisms are needed for a data sharing system as detailed
in Section 4.2. However, by making careful design decisions we can work with
existing unmodified shared nothing logging and recovery protocols.

By providing exclusive access on the database for updates (design consideration
(2)), we avoid dealing with multiple logs or with complex and costly interactions
on a shared log. An updating node treats the log as if it were a local log. Hence,
there are no logging changes required in the shared nothing system. Ownership of
the log changes hands when exclusive access to the database for updates changes
hands. When ownership of the log is transferred, the pages changed by the node
giving up control are all “checkpointed”. This kind of protocol is not essential, but
it simplifies the implementation. This restriction also simplifies how we deal with
system crashes. (1) Only one node needs to be involved in recovery. (2) Reader
nodes can, as long as the local node remains up, continue to execute queries on
their read-only tables, unaffected by an updater crash. There is no ambiguity
about which data is unavailable: it is the tables locked by the updater.

4.4 Implementation

In this section we present the implementation of Chimera using the techniques pre-
sented in Section 4.3. Our implementation is an extension to an existing shared
nothing DBMS, Microsoft SQL Server. We use a cluster of PC-based commodity
machines each running a stand-alone instance of SQL Server hosting one or more
databases on local storage. Chimera allows a remote SQL Server instance to ac-
cess a database hosted on a local instance. We share the database files among
the nodes using CIFS – a network file sharing protocol [63]. CIFS is a commonly

85

DB

DB Server 1

SP

EBM LC

DB Server 2

SP

EBM LC

DB Server N

SP

EBM LC

GLM

Queries Queries Queries

CIFS

(local) (remote) (remote)

GLM – Global Lock Manager

SP – Stored Procedure

EBM – Enhanced Buffer Manager

LC – Lock Client

CIFS – Common Internet File System

Figure 4.3: Chimera System Architecture

used protocol for file sharing over the network, any other similar protocol like NFS
may be used as well. This enables multiple nodes to access the same database
concurrently over the network, without physical data movement or repartitioning.
Since this is not the default behavior, a minor change in the server allows the same
database to be accessed remotely by multiple SQL Server instances. This setting
instantly gives us a read-only data sharing cluster. However, in order to enable
write data sharing, we need locks to synchronize access to common data. In addi-
tion, we also need to implement mechanisms to maintain global buffer consistency.
Chimera achieves this by implementing an enhanced buffer manager (EBM) and a
global lock manager (GLM) with corresponding local lock clients (LC). A stored
procedure (SP) coordinates locking and buffer management while executing user
queries against shared tables. A high-level architecture of an N -node data sharing
cluster running Chimera is shown in Figure 4.3.

4.4.1 Stored Procedure

We implement most of the required changes in a user defined stored procedure
that can be invoked like a standard stored procedure. An instance of this stored
procedure is installed at all nodes of the cluster and accepts queries that need to
be executed against one of the shared tables. Based on whether it is a read or an
update query, the procedure does appropriate locking and buffer management to
execute the query. As part of metadata, we maintain the information about other
nodes in the system and the databases (or tables) that they host in a SQL table
stored locally on each node. Maintaining this information can pose a scalability

86

Algorithm 1: Read Sequence

Acquire S lock on the abstract resource “ServerName.DBName.TableName”.
if lock granted then

execute the read query.

else
retry lock request.

Release S lock.

challenge for a fairly large cluster. However, this problem has been studied in the
domain of distributed file systems and we believe that the same techniques can be
applied here. For the scale of systems that we deal with (a few tens of nodes), any
of these techniques are sufficient.

4.4.2 Enhanced Buffer Manager

We extend the existing buffer manager in the database engine to implement a
cross-node selective cache invalidation scheme necessary to maintain global buffer
consistency. After an update period, dirty pages are forced to disk at the updating
node. The updating node also captures a list of dirty pages and broadcasts an
invalidation message to all the readers instructing them to evict these pages from
their buffer pool. Only after these pages are evicted at all nodes will the updating
node release the write locks, allowing other readers of the same table to proceed.
After an update, readers are required to re-read the updated pages from disk. Note
that the cache invalidation granularity is at the page-level which is finer than our
table-level sharing granularity. This means that after an update, only the pages
that got dirtied will be evicted. All other pages belonging to the shared table
remain in-cache and immediately accessible.

4.4.3 Global Lock Manager

Chimera uses a global lock manager with local lock clients integrated with each
database server instance. Our extended locking scheme is adopted from Box-
wood [92] and complements the usual shared nothing locking protocol at each node
when the data sharing capability is used. Instead of locking a physical entity (e.g.,
a data or an index page), the Boxwood lock server grants or releases a lock in
shared (S) or exclusive (X) mode on an abstract resource represented by an arbi-
trary string. The use of Boxwood lock mechanism is ideal for Chimera as it does
not require any changes to the existing lock manager. Also note that any other
distributed coordination service such as Chubby [28] or ZooKeeper [69] would work
equally well.

87

Algorithm 2: Write Sequence

Acquire X lock on the abstract resource “ServerName.DBName”.
if lock granted then

Acquire X lock on the abstract resource
“ServerName.DBName.TableName”.
if lock granted then

execute write request

else
retry X lock.

else
retry X lock.

Flush updated pages to disk.
Do selective cache invalidation.
Release both X locks.

Locking Protocol

The locking protocol that we use is as follows: Assuming that a local server has
enabled sharing on a table named TableName in a database named DBName, a
reader always acquires a global shared (S) lock on an abstract resource created
as “ServerName.DBName.TableName”, where ServerName is the name of the lo-
cal server hosting the database. This naming scheme for abstract resources en-
sures that shared table names are unique among all nodes of the cluster. On
the other hand, writers of a shared table acquire global exclusive (X) locks on
resources “ServerName.DBName” and “ServerName.DBName.TableName” to block
other writers of the database and other readers of the table, respectively. This two
level locking scheme for writes prevents multiple writers of a database. Readers and
writers of the same table always block each other. Furthermore, a lock is cached at
the local lock client after it is released until the GLM revokes it, which can happen
when there is a conflicting lock request for the same resource.

The pseudocode for the read and write sequence implemented in the stored
procedure is summarized in Algorithm 1 and Algorithm 2, respectively.

4.4.4 Recovery Issues

Section 4.2 describes the complexity of recovery in a data sharing system. The
combination of our implementation technique and our restrictions on concurrency
permits us to avoid that complexity. Our ownership locking protocol permits only a
single writer at a time. That writer has access to the unique log associated with the
database for the duration of its update period. The single writer simply uses LSNs
associated with that log and the unmodified recovery protocol of the shared nothing
DBMS. This is the “common shared log” approach implemented in Chimera in a
simple and low-overhead way.

88

4.5 Experimental Evaluation

This section describes our experimental goals, the setup of physical machines used
for experiments, and a discussion of the experimental results in detail.

4.5.1 Experimental Goals

We focus our attention on a small number of issues for which we want to provide
quantitative results.

• Scalability: A key advantage of Chimera is that work can be spread among a
set of nodes during periods of high load by doing elastic scale-out. We want
to understand the limits of scalability of Chimera and the impact on shared
nothing performance.

• Overhead: Chimera can introduce overhead arising from several sources: (1)
The cost of executing database functionality from a remote node is likely to be
more than that of local execution of the same functionality. (2) The latency
of execution depends on the effectiveness of the cache. At startup, a cold
cache results in significant overhead due to cache misses, while we expect
steady state behavior, with warmed up caches, to be acceptable. (3) The
code changes we introduce into the common case execution path of a shared
nothing DBMS adds cost when used.

• Update Cost: Writes introduce a penalty in our system as they impact caching
behavior. We wish to quantify this write penalty and also understand the
read/write mix for which we can provide acceptable performance.

4.5.2 Experimental Setup

We use a 16 node cluster to conduct our experiments. Each node in the cluster has
identical hardware and software configurations. Each node has two AMD Opteron
CPUs running at 2.0GHz and 8GB RAM. The nodes run Windows Server 2008
Enterprise with SP2, and Microsoft SQL Server 2008 (SP1) with our modifications.

We use the TPC-H benchmark [146] for our experimental evaluation. We use
a TPC-H database with scale factor 1. The total size of the database on disk
including indexes is approximately 2GB. We configure SQL Server’s buffer pool
size to 2GB so that when the cache is warm the entire database can fit in main
memory.

89

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 6 8 10 12 14 16

M
a
x
 t

h
ro

u
g
h
p
u
t

(Q
P

S
)

Number of nodes

Ideal
Read-only
Read-mostly

Figure 4.4: Scalability with Increasing Number of Nodes

4.5.3 Scalability

In the first experiment, we measure how performance scales with an increasing num-
ber of nodes in a cluster having only a single local node, i.e., a single node hosting
the database. We run concurrent TPC-H streams first using only a single node (the
local node), and then incrementally add more (remote) nodes up to a maximum
of 16 nodes. The number of concurrent TPC-H streams is also increased with the
number of nodes adding increasingly more load to the cluster. We compare the
peak throughput in each case. We run this experiment with a read-only workload,
using only the TPC-H query streams and not the update streams. We also run
in a read-mostly case, in which the same TPC-H query streams are used but now
the lineitem table is updated by a single writer every 15 seconds. The results for
the read-only and read-mostly workloads are presented in Figure 4.4. These results
have been normalized with respect to the maximum throughput achieved using a
single node.

Focusing on the read-only case, with two nodes we achieve a maximum through-
put of about 1.95 queries per second (QPS), which is nearly twice as much as the
single node case. For four nodes, the performance peaks at about 3.81 QPS, which
is about twice as that of the two nodes case. We see a similar trend moving for-
ward, with 8 and 16 node clusters achieving a maximum throughput of 7.72 and
14.35 QPS, respectively. In the read-mostly case, we have the additional overhead
of locking and selective cache invalidation, which causes the throughput curve to
drop below the read-only curve. For both workloads, Figure 4.4 shows almost linear
scalability. There is a slight loss of performance with higher number of nodes in
both cases due to increased contention, but this is expected.

Nodes can be added or removed to/from the cluster in an on-demand and seam-
less fashion allowing the database to scale-out and scale-in as needed. This makes
Chimera suitable for cloud computing environments by allowing scale-out for load
balancing on a much finer time scale than what is possible with a pure shared
nothing DBMS cluster.

90

10

20

30

40

50

60

A
v
e
ra
g
e
�r
u
n
ti
m
e
�(
se
cs
)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Local 17.9 4.0 2.2 2.3 5.5 2.9 7.8 9.6 20.6 3.1 2.7 18.1 4.5 0.9 0.9 1.5 36.2 17.3 23.1 54.0 25.2 4.5

Remote 31.4 4.5 3.0 3.7 9.3 5.0 12.6 15.4 33.2 4.4 4.3 31.3 6.7 1.3 1.4 2.0 39.4 25.1 37.5 54.5 37.2 6.4

Slowdown 1.76 1.12 1.71 1.88 1.81 1.84 1.84 1.87 1.91 1.62 1.83 1.80 1.79 1.50 1.59 1.29 1.10 1.45 1.69 1.02 1.48 1.42

0

10

20

30

40

50

60

A
v
e
ra
g
e
�r
u
n
ti
m
e
�(
se
cs
)

Figure 4.5: Remote Execution Overhead: Start Up (Cold Cache)

1

2

3

4

5

6

A
v
e
ra
g
e
�r
u
n
ti
m
e
�(
se
cs
)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Local 4.39 0.25 0.16 0.20 0.50 0.17 0.43 0.37 2.28 0.39 0.46 1.22 1.33 0.16 0.33 0.92 0.08 3.75 0.17 1.53 2.68 0.48

Remote 4.44 0.25 0.16 0.20 0.50 0.19 0.40 0.36 2.29 0.40 0.46 1.24 1.35 0.18 0.32 0.93 0.08 3.64 0.16 1.52 2.69 0.49

Slowdown 1.01 0.97 1.00 1.01 1.00 1.13 0.93 0.99 1.00 1.03 0.99 1.02 1.02 1.15 0.96 1.01 1.06 0.97 0.96 0.99 1.00 1.02

0

1

2

3

4

5

6

A
v
e
ra
g
e
�r
u
n
ti
m
e
�(
se
cs
)

Figure 4.6: Remote Execution Overhead: Steady State (Warm Cache)

91

4.5.4 Remote Execution Overhead

Our next experiment measures the overhead of remote execution, i.e., the overhead
of executing a query from a remote node against a shared database hosted on a
local node. We run each of the 22 TPC-H queries 5 times, measure the query
execution time, and then take the average. To get startup costs, we flush the SQL
Server buffer cache between runs. Figure 4.5 presents the times to run TPC-H
queries locally and remotely, as well as the slowdown, i.e., the ratio of the remote
to the local running time. Queries experience an overhead ranging from moderate
(about 2%) to relatively high (about 91%) when run with a cold database cache. On
average it takes about 1.6 times longer to run a query on a remote node as compared
to a local node. The worst case occurs for Q9 where the remote execution time is
1.91 times that on the local node. We note that all the high overhead queries access
a significant portion of the TPC-H database. For example, Q9 is an aggregation
query over more than half the tables of the TPC-H database including the lineitem
and orders table, the two largest tables in the database. This causes the remote
node to request a large number of pages across the network from the local node
resulting in high overhead at startup.

We believe that most of the overhead observed in query runtimes presented in
Figure 4.5 can be attributed to the network latency of shipping database pages to
the remote system. Next, we conduct an experiment where we repeat the same
experimental runs except that we do not flush the database buffer cache between
runs, i.e., the system is in a steady state. Results are presented in Figure 4.6. In
this case queries have about the same runtime on both local and remote nodes
with an average overhead of less than 1%. We note that this is the common case
for such a data sharing system when executing a read-mostly workload. It is very
likely that the active pages of even a fairly large table will entirely fit in memory
on the remote node. Thus, the high overhead presented in Figure 4.5 should only
be incurred at startup, while subsequent execution times will have small overhead
similar to the results presented in Figure 4.6. In subsequent experiments, unless
stated otherwise, the system is in a steady state with a warm cache.

4.5.5 Prototype Overhead

Next, we present an experiment where we measure the overhead of running Chimera.
The goal is to show how vanilla SQL Server performs as compared to Chimera. Ta-
ble 4.1 shows the runtime and slowdown factor when we run the 22 TPC-H queries
on the local node with and without Chimera. Each value presented in Table 4.1 is
an average over 5 runs.

In most of the cases the query runtimes with and without Chimera are about
the same. In some cases (e.g., Q8, Q9), query runtime with Chimera is higher
than without, indicating a small overhead. In some other cases (e.g., Q2, Q13),

92

Runtime Runtime
TPC-H Without With Slowdown
Query Chimera Chimera Factor

(ms) (ms)

Q1 4477 4389 0.98
Q2 279 253 0.91
Q3 182 163 0.90
Q4 199 202 1.02
Q5 504 502 1.00
Q6 166 165 0.99
Q7 356 429 1.21
Q8 329 367 1.12
Q9 2257 2275 1.01
Q10 381 390 1.02
Q11 470 459 0.98
Q12 1209 1217 1.01
Q13 1350 1333 0.99
Q14 155 157 1.01
Q15 315 331 1.05
Q16 922 923 1.00
Q17 76 79 1.04
Q18 3763 3753 1.00
Q19 160 168 1.05
Q20 1524 1533 1.01
Q21 2673 2677 1.00
Q22 460 481 1.05

Table 4.1: Overhead of Prototype Execution

93

1.14

1.39 1.41

1.77

2.06

1.42

1.90

2.12 2.16

2.39

1

2

3

A
v
e
ra
g
e
�r
u
n
ti
m
e
�(
se
cs
)

Local Remote

1.21 1.55

1.34 1.52

Slowdown�(local)

�����������������(remote)

1.81

1.68

1.24

1.49

1.14

1.39 1.41

1.77

2.06

1.42

1.90

2.12 2.16

2.39

0

1

2

3

Baseline 1�Reader 2�Readers 4�Readers 8�Readers

A
v
e
ra
g
e
�r
u
n
ti
m
e
�(
se
cs
)

Local Remote

Figure 4.7: Cost of Updates

queries seem to be running faster with Chimera. However, most of these differences
are very small and fall within the range of experimentation error. Averaged over
all runs, the overhead is less than 2%. The conclusion that we draw from these
numbers is that Chimera adds a negligible overhead to query runtimes. Moreover,
this extra overhead is incurred only when our data sharing capability is exercised.

4.5.6 Cost of Updates

Even though Chimera has been designed to provide elastic scale-out for read-mostly
workloads, it is important to characterize how costly updates will be when readers
are present in the system. In this experiment, we perform a simple update on the
lineitem table on the local node and its runtime is measured to serve as a baseline.
We consider four different scenarios where 1, 2, 4, or 8 remote nodes are reading
the shared TPC-H database (including the lineitem table) in an infinite loop at the
same time that the update query is executed on the local node. The runtime of the
update query on the local node in different cases is presented in Figure 4.7. Each
value reported is an average over 5 runs. Slowdown in this case is calculated as the
ratio of the runtime in the multiple reader case to the baseline runtime.

In the local case, our baseline update query takes an average of 1.14 seconds.
With one reader in the system, the same query takes an average of 1.39 seconds,
which is about 1.21 times the baseline runtime. With two readers, the runtime
is about 1.24 times the baseline. We see a similar trend for 4 and 8 readers,
with slowdown factors of 1.55 and 1.81, respectively. At the updating node, each
additional read node adds to the overhead of acquiring X locks, as required by our
locking protocol. The global lock server has to wait for each reader node of the
lineitem table to release the S lock on the shared resource before it can grant the

94

X lock to the writer node. This adds some extra overhead with increasing number
of nodes, as shown in the local case in Figure 4.7.

In the next experiment we repeat the previous experiment except that the up-
date is performed on one of the remote nodes – this is our new baseline. The results,
presented as the remote case in Figure 4.7, show a similar pattern as the local case.
The difference in this case is that the average time it takes to complete the update
is slightly higher in all scenarios as compared to the local case. This increase is
a result of the additional cost of accessing data from the local node because the
update is executed on a remote node.

The results presented in this section show that the cost for acquiring X locks in
our system increases sub-linearly with the cluster size. This experiment illustrates
that there is a moderate cost to execute updates with conflicting reads, which is
acceptable for our target read-mostly workloads.

4.5.7 Cost of Reads with Updates

In our next experiment, we quantify the cost of reads while at least one of the
nodes (the local node in our case) is updating the database at varying intervals of
60, 30, 15, and 5 seconds. We repeatedly run one of the TPC-H read queries for
a fixed duration of 300 seconds and measure average response time, the number of
queries completed, and the number of queries executed per second (QPS). Results
are presented in Table 4.2 for TPC-H query 6, 13, 20, and 21. Query 6, 20, and 21
conflict with the update query (i.e., read the same table) while query 13 performs a
non-conflicting read. We have chosen this set to present a mix of queries with short
to relatively long runtimes and with conflicting/non-conflicting reads to show how
various update frequencies affect each group. Results with other TPC-H queries
(not presented here) follow the same general trend.

The results for Q6 show that if updates are ≥ 60s apart, we are able to achieve
performance very close to the state when updates are entirely absent. As we de-
crease the update interval from 60s down to 5s, we see a gradual decrease in per-
formance resulting in a slightly higher average runtime (or low QPS), which is to
be expected. However, note that the performance is adequate even at high update
frequencies (i.e., every 5s). We see a similar trend for Q20 and Q21. Note that
the overhead in these results includes the overhead of locking and selective cache
invalidation. For Q13, the performance remains constant at all update frequencies
because the query performs a non-conflicting read.

This experiment demonstrates that it is possible to provide adequate perfor-
mance for scenarios where reads run for relatively long intervals between writes,
which is the case in our target read-mostly workload.

95

Update Queries Avg Steady
Freq. Comp- Run- State QPS

leted time Avg
(sec) (ms) (ms)

Q6 60 1455 206 187 4.85
30 1363 215 4.54
15 1269 234 4.23
5 1130 264 3.77

Q13 60 220 1376 1353 0.73
30 220 1375 0.73
15 216 1388 0.72
5 218 1376 0.73

Q20 60 185 1616 1518 0.62
30 180 1654 0.60
15 148 1991 0.49
5 146 2039 0.49

Q21 60 107 2783 2687 0.36
30 104 2853 0.35
15 100 3011 0.33
5 83 3597 0.28

Table 4.2: Cost of Reads with Updates

96

4.6 Related Work

There is much work in the literature that is aimed at facilitating data sharing,
much like the goals of our system. Chimera has some similarity to work in the
areas of distributed file systems (DFS), global lock servers, replicated databases,
cloud databases that use data sharing, and scalable cloud stores.

Parts of Chimera are reminiscent of distributed file systems (DFS), e.g., [131,
143]. Our lock service is similar in spirit to modern file system lock managers
(e.g., [28, 69]). Furthermore, the caching of pages in the buffer pool in Chimera
shares aspects with the management of data in a DFS file cache. However, the
details of the design are considerably different due to the complexities imposed
by the database semantics compared to the simpler file and directory abstractions
supported by a DFS.

Our approach to load balancing is superficially similar to replication used for
the same purpose by some database vendors [90, 94, 106]. A replicated database
can be used effectively to balance load by sending read requests to one of the dif-
ferent replicas, making it similar in spirit to our system. However, write requests
have to be propagated to all replicas and this does not really benefit load balanc-
ing. Chimera is complementary to replicated databases in that it can be used in
conjunction with a replicated database to balance load. In particular, Chimera can
spread load to all server nodes in a cluster, even those that do not hold a replica.
This is in contrast to systems that use replication alone because requests can only
be handled by the nodes that hold a replica.

Similar to our work, there have been some recent efforts to implement rela-
tional databases in the cloud using data sharing techniques [22, 79]. The technique
presented in [22] makes data accessible to multiple nodes by storing it in cloud
storage. Low-level protocols are provided to read and write data from/to the cloud
storage. A detailed discussion and quantitative comparison of techniques that use
replication, partitioning, or data sharing to implement cloud databases is presented
in [79]. However, as opposed to Chimera, consistency is sacrificed in these systems
in favor of scalability and availability, and general purpose ACID transactions are
not provided.

Finally, providing scalability for large data sets is a property of cloud infras-
tructures like Bigtable [31] and PNUTS [35]. One important difference here is that
these infrastructures, while supporting atomic operations, do not support transac-
tions or database functionality. Chimera fully supports transactions and provides
database functionality.

4.7 Summary

Chimera demonstrates the design and implementation of data sharing as an exten-
sion to a shared nothing system. The goal of Chimera is to get the best of both

97

worlds – data sharing flexibility with shared nothing simplicity. Chimera uses a
hybrid database architecture to enable sharing at the granularity of tables, and has
been designed as a simple extension to a shared nothing database system. It uses
low-cost, coarse-grained global locks to control how data is shared among nodes and
selective cache invalidation for global buffer consistency. Chimera demonstrates the
ability to move database functionality from a local node storing the database to
a remote node for elastic scale-out without moving tables between the disks of
these nodes. This permits load balancing in a matter of minutes not hours. Using
a TPC-H database, we show that Chimera is able to serve read-mostly workloads
with acceptable performance overhead while providing nearly linear scalability with
increasing number of nodes.

The second approach in this thesis for elastic scale-out exploits data partitioning
as opposed to data sharing, and is presented in the next chapter.

98

Chapter 5

Elastic Scale-out for
Partition-Based Database Systems

As noted previously in this thesis, there is currently a lot of interest in elastically
scaling database systems, and in this chapter we argue that a good way to solve this
problem is to start with scalable (but not elastic) parallel database systems. The
approach that we present here relies on data partitioning and is different from the
approach presented in Chapter 4, which enables elasticity by using data sharing.

Traditional scalable database systems enable multiple nodes(i.e., servers) to
manage a database, but the set of nodes is static. These systems distribute the
database among the nodes by relying on replication [11, 14, 74, 153] or partition-
ing [36, 93]. Replication comes with a cost due to data duplication and maintaining
consistency among the replicas. Partitioning is also non-trivial since it requires users
to define how to partition the database, and it makes dealing with multi-partition
transactions problematic. However, partitioning is gaining popularity as a way to
scale database systems (e.g., [39, 40, 132, 133]), and in this chapter we argue that
partitioned, shared nothing database systems are a good starting point for DBMS
elasticity.

Our basic approach is to start with a small number of nodes that manage the
database partitions, and to add nodes as the database workload increases. These
new nodes could be (spare) physical servers that are dynamically provisioned from
a local cluster. Alternatively, in cloud computing environments such as Amazon’s
EC2 [7], the new nodes could be dynamically provisioned virtual machines. When
adding new nodes, the database partitions are redistributed among the nodes so
that the workload gets shared among a larger set of nodes. Conversely, when the
workload intensity decreases, the number of nodes can be reduced and partitions can
be moved to a smaller set of nodes. Redistributing partitions under this approach
can be costly and difficult to manage because of its disruptive effect on transac-
tion processing [137, 148]. Thus, this approach requires efficient mechanisms for
partition redistribution.

99

We have implemented this elastic scale-out and scale-in approach in VoltDB [152],
including the required efficient partition redistribution mechanism [99]. VoltDB is a
parallel shared nothing partition-based database system. Like other shared nothing
database systems [94, 106, 107, 141], VoltDB divides the database into disjoint par-
titions based on some partitioning key and distributes these partitions to the nodes
of a cluster. In this chapter, we describe the changes that we made to VoltDB to
enable us to dynamically add new nodes to the cluster and redistribute partitions,
and we experimentally demonstrate the effectiveness of our elastic scale-out and
scale-in mechanisms under varying load.

Our approach to database elasticity gives rise to a number of research problems
in the area of database provisioning and manageability. These research challenges
need to be addressed in order to implement a database management system that can
scale elastically in response to a time varying workload. For example, an elastically
scalable database system should be able to decide when to scale-out/in. Timing
of these scaling decisions is critical. Responding to a load spike too early or too
late will result in an over- or under-provisioned system, respectively, which in turns
leads to either lost customers or wasting of costly computing resources [16]. Also,
once the DBMS decides to scale out/in it also needs to decide which partitions to
move, to which nodes, during a scaling operation. In this chapter, we focus on
the latter problem which we call the partition placement problem. We show that
partition placement can have a significant impact on performance in an elastically
scalable database system. We then go on to present a workload-aware partition
placement strategy that relies on mathematical optimization to find an optimal
partition placement depending on the workload and whether the workload is known
in advance or not. More specifically, we present a problem formulation for the
partition placement problem as a mixed-integer program (MIP) in (1) an offline
setting where the entire workload and how it varies over time is known in advance,
and (2) an online setting where we do not know the future load. We use a general
purpose solver (IBM ILOG CPLEX [70]) to find a solution to the offline and online
optimization problems. We present a comparison of the two approaches through
actual experiments, and show that both of these approaches outperform a simple
partition placement strategy. Our partition placement algorithms can be used with
any partition-based elastic database system. In this thesis, we use these algorithms
with VoltDB extended with our elasticity mechanisms, but we can also use them
with any system that provides partition-based elastic scale-out.

The rest of this chapter is organized as follows. In Section 5.1, we present
previous work in the areas of scalable database systems and partition placement.
In Section 5.2, we present an overview of VoltDB. Section 5.3 presents the changes
that we made to VoltDB to make it elastically scalable. Section 5.4 then focuses
on the specific problem of partition placement with elastic scale-out. We present
experimental results that show the effectiveness of our implementation for time
varying workloads in Section 5.5, as well as the experiments that show the advantage
of our partition placement strategy. Section 5.6 summarizes the chapter.

100

5.1 Related Work

Improving scalability of database systems has been a focus of research for over
two decades. Interested readers are referred to Chapter 2 (Section 2.4) for a more
detailed survey of previous techniques used to build scalable database systems.
Most of the existing techniques for scaling database systems either rely on data
replication [11, 14, 23, 33, 60, 74, 112, 153] or data partitioning [26, 36, 46, 93,
124]. Our focus in this work is to use a partition-based, shared-nothing database
system as a starting point to build an elastically scalable database system. Previous
research does not deal with using partitioning for scale-out, mainly because of the
high cost of repartitioning and the cost of physically moving data around, which has
a negative impact on the performance of ongoing transaction processing [137, 148].
Furthermore, none of the existing techniques explicitly deal with elastic scale-out.
In this chapter, we present efficient mechanisms for moving database partitions for
elastic scale-out that also minimize the impact on normal database processing.

Similar to our work, the Relational Cloud project at MIT [38] aims to imple-
ment a scalable, relational database service for the cloud. As part of this project,
researchers have presented workload-aware techniques for consolidation of database
workloads [40] with an aim to minimize system resources and improve system uti-
lization while providing the desired level of performance. However, their focus is not
on elastic scale-out for time varying workloads. Other research related to the same
project [39] presents techniques for defining optimal database partitioning and/or
replication in a workload-aware fashion that improves database scalability. Our
focus in this work is not coming up with new partitioning or replication schemes.
Our approach can work with any existing partitioning scheme to implement elastic
scale-out for relational database systems.

ElasTraS [42] is an elastically scalable, fault-tolerant, transactional DBMS for
the cloud, and is closest to our work. Like VoltDB, ElasTraS uses database parti-
tioning and performs scaling at the granularity of a partition. However, ElasTraS
relies on a shared storage tier which allows for a simpler mechanism for data mi-
gration. VoltDB stores the data completely in-memory on each host, requiring a
more elaborate mechanism for data migration (Section 5.3). Furthermore, Elas-
TraS relies on schema-level database partitioning and limits update transactions to
a single partition. VoltDB, on the other hand, uses table level partitioning and al-
lows multi-partition transactions at the cost of reduced performance for only these
transactions. Aside from these differences, our work is very similar to ElasTraS and
the research problem of partition placement presented in this chapter is applicable
to both of these systems.

There is an increasing body of work in the area of elastically scalable data stores,
especially for cloud computing environments. Key-value stores [31, 62, 80] can be
scaled elastically, similar to our solution. At a superficial level, such systems bear
some resemblance to relational database systems in that they also store data as
rows and columns. However, these systems provide a very simple interface that
allows clients to read or write a value for a given key from the store. SQL is not

101

supported, hence the name “NoSQL” given to these systems. In addition, these
systems typically support only single-row atomic updates, not general application-
defined transactions like those that are supported by relational database systems.
Some key-value stores provide only eventual consistency guarantees. These limita-
tions make it easier for these systems to scale. In contrast, our system implements
elastic scalability in an ACID compliant DBMS (namely, VoltDB) that provides
full SQL functionality.

The problem of partition placement (or more generally data placement) and
re-distribution for load balancing has been studied extensively in the past both
in the context of database systems [15, 26, 36, 67, 93, 127] and file servers [51,
155]. This problem is also very similar to the problem of consolidating multiple
database workloads with an aim to minimize the number of physical servers used
and maximize load balance [40].

The possibility of the database cluster growing and shrinking dynamically adds
another dimension to the problem of partition placement. Previous research either
does not deal with the data re-distribution problem for load balancing, or if it does,
it works with a fixed number of nodes. Clearly, this is not sufficient for the case
where nodes can be added or removed dynamically for elastic scaling. Our goal in
this work is to find an optimal partition placement where the number of physical
servers used can change dynamically, with an aim to minimize the cost of running
the system and/or the data migration cost. This problem has not been addressed
before.

The general partition placement problem has been shown to be NP-
complete [127]. Various heuristic techniques are typically used to find a solution.
More generally, this problem bears close resemblance with the zero/one multiple
knapsack problem, and so similar techniques, such as genetic algorithms, can be
used for finding a solution [77]. In this work, we use mathematical programming
to solve this problem. Similar to our work, in [21, 138] authors adopt a mathemat-
ical programming approach to find an optimal allocation of servers to applications
(partitions in our case) in a virtualized data center environment. Their goal is to
use this approach for server consolidation to minimize the cost of operating a data
center. An integer programming approach to assign servers to applications has been
presented in [126], again with a goal of reducing server costs through consolidation.
In this work, we formulate the partition placement problem as a mixed-integer pro-
gram (MIP), with a goal of minimizing server costs through elastic scale-out/in,
and aim to find an exact solution instead of relying on heuristics. As such, our goal
is not to present a new heuristic for solving this problem. Instead, we use a general
purpose solver to find a solution.

5.2 Overview of VoltDB

VoltDB [152] is a in-memory database system derived from H-Store [73]. VoltDB
has a shared nothing architecture and is designed to run on a multi-node cluster. It

102

divides the database into disjoint partitions and makes each node responsible for a
subset of the partitions. Only a node that stores a partition can directly access the
data in that partition, and such nodes are therefore sometimes called the “owners”
of that partition. This shared nothing partitioning has been shown to provide good
scalability while simplifying the DBMS implementation.

VoltDB has been designed to provide very high throughput and fault tolerance
for transactional workloads. It does so by making the following design choices:
(1) all data is stored in main memory, which avoids slow disk operations, (2) all
operations (transactions) that need to be performed on the database are pre-defined
in a set of stored procedures that execute on the server, i.e., ad hoc transactions
are not allowed, (3) transactions are executed on each database partition serially,
with no concurrent transactions within a partition, thereby eliminating the need
for concurrency control, and (4) partitions are replicated for durability and fault
tolerance.

A VoltDB cluster comprises one or more nodes connected together by a local
network, each running an instance of the VoltDB server process. Each node stores
one or more database partitions in main memory. The VoltDB server at each node
is implemented as a multi-threaded process. For each partition hosted on a VoltDB
node, a separate thread within the server process manages that partition and is
responsible for executing transactions against that partition. The best practice for
achieving high performance with VoltDB is to keep the number of partitions on
a node slightly smaller than the number of CPU cores on that node. This way,
each thread managing a partition will always be executing on its own CPU core,
and there will still be some cores for the operating system and other administrative
tasks. Thus, threads never contend with other threads for cores. Furthermore,
these threads never wait for disk I/O since the database is in memory, and never
wait for locks since transactions are executed serially. This means that the CPU
cores can be running at almost full utilization doing useful transaction processing
work, which leads to maximum performance.

Clients connect to any node in the VoltDB cluster and issue transactions by call-
ing pre-defined stored procedures. Each stored procedure is executed as a database
transaction. VoltDB supports two types of transactions:

1. Single-partition Transactions: These transactions, as the name implies,
are the ones involving only a single database partition and are therefore very
fast.

2. Multi-partition Transactions: These transactions require data from more
than one database partition and are therefore more expensive to execute.
Multi-partition transactions can be completely avoided if the database is
cleanly partitionable, which is the case for the kinds of transactional work-
loads that VoltDB targets, and is our focus in this thesis.

In order to tolerate node failures, VoltDB replicates partitions on more than
one node. The replication factor can be specified as part of the initial configuration

103

of the VoltDB cluster. A VoltDB cluster configured with k-safety will have k+1
instances of every partition, and can tolerate at most k node failures. Transactions
are executed on the different replicas of a partition in the same serial order, and
VoltDB waits for all copies of a transaction to finish before acknowledging its success
to the client.

5.3 Enabling Elastic Scale-out with VoltDB

In order to implement elastic scale-out, we need to provide mechanisms to: (1)
dynamically add new nodes to the cluster, and (2) move database partitions from
one node to another. One of the reasons for choosing VoltDB for elastic scale-out
is that it already provides much of the needed functionality. This simplifies the
implementation of our scale-out mechanism.

5.3.1 Growing the Size of the Cluster

In large cluster deployments, node failures are common. Therefore, VoltDB im-
plements an efficient way of identifying failed (down) nodes and a node rejoin
mechanism which introduces a node back into the cluster after it recovers from
failure.

In our implementation, we violate the VoltDB best practices and assign more
partitions to a node than the number of CPU cores on that node. This means that
VoltDB threads will contend for CPU cores, but this is acceptable in a lightly loaded
system. As the load on the system increases and we need to scale out, we introduce
new nodes into the cluster and move some partitions to these new nodes. When the
system scales out to its limit, there is one VoltDB thread per core. We made the
design decision to build our system with the notion of a maximum scalability limit
since this notion greatly simplifies the scale-out mechanism. The simplification
stems from the fact that VoltDB can be made aware in advance of the number of
nodes that can potentially participate in the cluster, and the mapping of partitions
to these nodes. Knowing this information in advance enables us to use VoltDB’s
failure handling mechanism for managing scale-out as we describe next.

To enable the number of nodes in the cluster to grow dynamically we introduce
a new type of node called the scale-out node. A scale-out node is a node that
initially has no database partitions mapped to it, and that looks to VoltDB like
a “failed” node. We initialize the cluster with a fixed number of additional scale-
out nodes. These nodes begin as inactive (i.e., they do not store data or process
transactions), so the cluster will ignore them with little overhead. Note that at this
point, a scale-out node is merely a data structure with no physical counterpart.
When we need to actually introduce such a node into the cluster, we can bring
up an actual physical server (or a virtual machine) that corresponds to a scale-out
node. To dynamically grow the size of the cluster, we use a slightly modified version

104

of VoltDB’s node rejoin mechanism. At the completion of rejoin, the scale-out node
will have transitioned from the “failed” state to the “active” state, and will have
database partitions mapped to it. Effectively, we have made VoltDB think that
this node was part of the cluster all along, but was just failed, and is now back up.
However, at this point the node still has no data for any of the partitions. The
partitions need to be moved from one of the active nodes, which is the second step
of scale-out.

5.3.2 Moving Database Partitions Between Nodes

Introducing a new node into the cluster requires copying data from one of the exist-
ing nodes to the new node. This data copying step is also required when recovering
a failed node. For this purpose, VoltDB implements a recovery mechanism that
runs after a node has rejoined the cluster. The recovery mechanism works at the
database partition level, and copies the data from a source partition to a destina-
tion partition in a consistent manner. Note that source partitions reside on one of
the active nodes, while destination partitions reside on the node that has rejoined
the cluster. Once all the database partitions mapped to the rejoining node have
been recovered, this node can start accepting new transactions.

For scale-out, we made small changes to the recovery mechanism. Once the
scale-out node has rejoined the cluster, it will run recovery on all the database
partitions mapped to it to populate them. In the original recovery mechanism, after
the data is copied from the source node to the destination node, both nodes are
active and accept transactions. In contrast, once recovery is finished when scaling
out, the source partitions are shutdown – reflecting the change of “ownership” for
scaled-out partitions from the source node to the scale-out node.

The converse of the operations described above are used when scaling in because
the load on the system has become lower: partitions are moved away from scale-out
nodes and back to the original nodes, and when all the partitions on a scale-out
node are moved back to the original nodes, that node is shutdown and returned to
the pool of (inactive) scale-out nodes.

Similar to our approach, Microsoft has implemented mechanisms to provide
scale-out and scale-in in Windows Azure SQL Database (formerly SQL Azure)
through federations. A federation contains several members, each of which is an
instance of Windows Azure SQL Database. As with our scale-out and scale-in
mechanisms, federations can be SPLIT or MERGED to provide elastic scalabil-
ity [68]. Given this similarity, the research challenges that arise in both systems
(described next) are the same.

Having presented the scale-out mechanism that we implemented in VoltDB,
we now turn our attention to the research problem of partition placement in an
elastically scalable DBMS.

105

 0

 20

 40

 60

 80

 100

 120

 140

 0.4 0.6 0.8 1 1.2 1.4

V
ar

ia
nc

e
in

 P
er

 H
os

t L
oa

d

Zipf’s Skew Parameter

Round-robin
Heuristic

Figure 5.1: Round-robin vs. Greedy Heuristic

5.4 Partition Placement in an Elastically Scal-

able DBMS

In our approach presented above, we enable elasticity by moving database partitions
for scale-out. The key idea is that a database is stored as a collection of partitions,
and when the database server becomes overloaded, it transfers the “ownership” of
some of these partitions to another node that is dynamically added to the clus-
ter. Similarly, for scale-in, an underloaded node will transfer the ownership of its
partitions to some other node in the cluster. The loads placed on each partition
might not be the same, as is implicitly assumed by VoltDB and other similar sys-
tems. It is possible that certain partitions might be “hotter” than other partitions,
which may result in unbalanced load among the nodes of the cluster. Nodes host-
ing one or more hot partitions will always be more loaded than other nodes. With
non-uniform partition loads, the initial placement of partitions and the decision of
which partitions to move, and to which nodes, during a scaling operation become
non-trivial.

Figure 5.1 shows the result of a simulation that compares two data placement
strategies in terms of overall load balance when database partitions are not uni-
formly loaded. In our simulation, we use 40 partitions and the loads on these
partitions are distributed according to a Zipf distribution. The x-axis in Figure 5.1
shows the value of the Zipf’s skew parameter (the higher this parameter, the more
skewed the distribution), and the y-axis shows the variance in per host load. The
higher the variance, the more unbalanced the system. We compare VoltDB’s default
placement strategy (i.e., round-robin) with a simple greedy heuristic that places the
highest loaded partitions on the least loaded hosts. As shown in Figure 5.1, for mod-
erate skew (0.4) both strategies provide equally well balanced systems. As the skew
in partition load grows, the default (round-robin) strategy starts to perform worse
than the simple heuristic. We see the greatest opportunity for optimization when
Zipf’s skew coefficient is around 1. As the skew increases beyond 1, both strategies

106

start to perform worse. This is because with higher skew values, a few partitions
always have the most load, so the overall variance in per host load will be very high
regardless of the placement strategy used.

As shown by the simulation above, placement of database partitions matters
when the load is non-uniform. Moreover, there is room for improvement over a
simple strategy such as round-robin. An important research challenge is to devise
a technique that is able to provide close to optimal allocation of partitions to nodes
in the presence of skew in partition load, while maximizing system throughput and
minimizing the cost of running the system.

5.4.1 Problem Definition

Given a set of P database partitions, the load on each partition in transactions per
second, and a set of N nodes, where each node has a certain CPU and memory
capacity, we want to find the optimal number of nodes required M , where M ≤ N ,
and a mapping of partitions to these nodes. Optimality can be defined in terms of
balancing load among all nodes, maximizing overall throughput, and/or minimizing
the cost of running the system by minimizing M for a given workload.

The partition placement problem can be formulated using mathematical pro-
gramming (e.g., integer programming) and solved using mathematical optimization
techniques. We present two different optimizers:

1. Offline Optimizer: In an offline scenario, we want to compute a partition
placement, in advance, for a period of time, {1, ..., T}, which we call the
planning period. We assume that the future load on each database partition
is known in advance. We can use a workload predictor to acquire the workload
profile or we can extract it from the logs of an already executed workload.
This optimizer is most useful for the case where we have a periodic workload
that is executed on a regular basis, and so the workload is known in advance.
There are many practical data center workloads that are predictable due to
their periodic nature [16, 52]. The output of the offline optimizer is an optimal
schedule comprising the number of nodes required and a mapping of partitions
to nodes for each time interval t ∈ {1, ..., T}.

2. Online Optimizer: In the online case, we do not know the entire workload
in advance. We only know the instantaneous load on each partition and
the system state (e.g., current CPU utilization on each node) for a given
time interval t. Given this information, we want to make an instantaneous
decision of whether a scaling operation is required, and if so, we want to find
the optimal partition to node mapping for the the time interval t+ 1.

We now present a problem formulation for partition placement with elasticity
for the offline and online optimizers and show how we can use a general purpose

107

solver for finding an optimal solution. The main contributions of this work are: (1)
formulating the offline optimization problem, (2) finding a solution to this problem,
and (3) showing experimental results that quantify the benefits of our approach.
The online optimizer was developed separately, and we present it here for compar-
ison purposes only.

5.4.2 Problem Formulation for the Offline Optimizer

As noted above, there are various scenarios where we know the workload in advance,
e.g., periodic workloads, and we want to find an optimal placement of partitions
for, say, a daily, weekly, or monthly planning period. In this section, we present
a formulation for the problem of partition placement where we know the load on
each partition for the entire planning period. Our goal is to find an allocation of
partitions to nodes that minimizes the number of nodes used and the migration
costs for the entire planning period. We formulate this problem as a mixed-integer
program (MIP) and show how we can use a general purpose solver to find a solution
to this problem.

Notation

Let P denote the total number of unique partitions in a database, that are to be
placed on N nodes in a cluster, where each partition is replicated k times. We want
to find an optimal placement of partitions on nodes for a planning period with T

time intervals. Let At denote the assignment matrix of partitions to nodes in time
interval t, where the elements of this matrix are At

ij ∈ {0, 1}, where i = 1, 2, ..., P ,
j = 1, 2, ..., N . We have T such matrices for t = 1, 2, ..., T . A value At

ij = 1 means
that partition i is assigned to node j in the time interval t. Let X t

j denote the
assignment matrix for the nodes. A value of X t

j = 1 means that the j-th node is
used in the time interval t. A node is used if there are any partitions allocated to
it in a given time interval t. Let Cj denote the number of CPU cores of the j-th
node, each of which can handle a maximum CPU load of Lj (defined in the range
(0,1]). Let Sj denote the cost of running the j-th node and Mj denote the memory
capacity of the j-th node. Let lti denote CPU load generated by the i-th partition
in the time interval t, and mt

i denote the memory required by the i-th partition.
I denotes the fixed cost of migrating a partition. And finally, let k denote the
replication factor.

For our formulation, we assume that all the N nodes in the cluster are homo-
geneous, i.e., they have the same number of CPU cores C, same memory capacity
M , and same running cost S. We also assume that the memory required for each
partition mt

i is fixed, and that whenever a partition is migrated from one node to
another we pay a migration cost equal to I. Lastly, the value of T for a given
planning period is workload dependent. For example, for a planning period of one
hour, for a volatile workload, we may want to recalculate the optimal allocation

108

every minute, i.e., set T = 60. On the other hand, for a less volatile workload, we
may want to calculate an optimal allocation every five minutes by setting T = 12
for the same planning period of one hour. Choosing an optimal value of T for a
given workload is outside the scope of this work.

Objective Function

The goal of the optimizer is to find a set of assignment matrices A = {A0, ..., AT}
that minimizes the overall cost of nodes for the entire planning period while min-
imizing the migration cost as well. Using the above notation, such an objective
function can be expressed as:

minimize

T
∑

t=1

(

N
∑

j=1

(X t
j ∗ S)

)

+

T
∑

t=2

(

P
∑

i=1

(|At
ij − At−1

ij | ∗mt
i ∗ I)

)

(5.1)

The first part of the objective function minimizes the cost of running the system
by minimizing the number of nodes used at any time interval t. The second part
minimizes the migration cost by minimizing the number of partitions migrated.

By using the above objective function, we can emphasize either the cost of
running a node or the migration cost. If we set the cost of migration, I, low
relative to the cost of running a node, S, this objective function will output a fully
elastic schedule, where the number of nodes used at any time interval t will always
be minimal. On the other hand, if we set the migration cost high relative to the cost
of running a node, the optimizer will favor schedules that require less movement at
the expense of some extra nodes. The DBA chooses the values for S and I depending
on the workload and the particular server environment, taking into account issues
such as the difficulty of provisioning a new server, expected contention for network
bandwidth, and the need for stability in partition placement.

Constraints

We want to minimize the objective function given above subject to the following
constraints:

1. Replication: Since partitions are replicated for durability and fault toler-
ance, every replica of a partition must be assigned to exactly one server at any
time interval t, and the servers must be different. As the decision variables
At

ij are binary, the sum of every row must be equal to k:

N
∑

j=1

At
ij = k for i = 1, . . . , P (5.2)

109

2. CPU Capacity: The CPU load of all the partitions assigned to a node j

at any time interval t should not exceed the maximum CPU capacity of that
node L ∗ C:

P
∑

i=1

At
ij ∗ l

t
i ≤ L ∗ C ∗X t

j for j = 1, . . . , N and t = 1, . . . , T (5.3)

3. Memory Capacity: The memory required for all the partitions assigned
to a node j at any time interval t should not exceed the maximum memory
capacity of that node M :

P
∑

i=1

At
ij ∗m

t
i < M for j = 1, . . . , N (5.4)

Note that all of the above constraints are linear constraints but our objective
function is non-linear due to the presence of absolute values. This means that
the above formulation is a mixed-integer non-linear program (MINLP). A MINLP
formulation is generally more computationally expensive to solve than a mixed-
integer linear program (MILP). In order to remove an absolute value |x| from
an objective function, a new decision variable y can be introduced, replacing all
instances of |x| in the objective function. In addition, two constraints of the form
x− y ≤ 0,−x− y ≤ 0 are introduced. We used this technique to make the problem
formulation linear.

Finding a Solution

As stated above, the decision variables At
ij and X t

j are binary. Since now the
objective function and constraints are linear, this formulation is a mixed-integer
linear program (MILP), which can be solved by using any general purpose solver.
For this work, we use IBM ILOG CPLEX Optimization Studio [70]. The above
problem formulation was implemented in the Optimization Programming Language
(OPL), and solved using the CPLEX optimizer integrated in the Optimization
Studio. The ability to solve this optimization problem using a general purpose
solver instead of relying on a custom built solver is an added advantage of our
formulation.

5.4.3 Problem Formulation for the Online Optimizer

The goal of the online optimizer is to find an optimal partition placement at any
given time by taking into account only the instantaneous characteristics of the
workload. In contrast to the offline optimizer, where we are planning in advance,
the time to find a solution is critical for an online optimizer since it will be used in
live partition migration scenarios.

110

The online optimizer is also designed with slightly different optimization objec-
tives. First, similar to the offline optimizer, the online optimizer aims to minimize
migration costs by avoiding solutions that involve excessive partition migration.
The second objective of the online optimizer, in contrast to the offline optimizer,
is to prefer solutions that divide system load evenly across the nodes of a cluster,
i.e., to do load balancing. This is done with an aim to maximize overall resource
utilization in the cluster and to avoid any possible overload of a particular node,
which can negatively impact the throughput of the entire cluster.

Notation

We use notation similar to the offline optimizer, with a few additions. First, we
do not use the node assignment vector X t

j in the online optimizer. Instead, we
represent the number of live nodes at time t using a variable N t which is calculated
as:

N t =
∑

j

signum(
∑

i

At
ij) (5.5)

The signum function has a value of 1 if its argument is greater than 0, and it
has a value of 0 if its argument is equal to 0. Second, Oj denotes the optimal per
core CPU load allowed on the j-th node. This is the load at which that core gives
the best performance.

Objective Function

Given the current state of the system at time t, the objective of the online optimizer
is to find an optimal assignment matrix At+1. The number of hosts in this placement
is represented by N t+1, and it can be calculated in a manner similar to Equation
(5.5) by using At+1 as input to the signum function. The objective function is
defined as:

minimize

N
∑

j

P
∑

i

(|At+1

ij −At
ij | ∗m

t
i) +

ǫ ∗

∑Nt+1

j=1
|
∑P

i=1
At+1

ij ∗ lti −Oj ∗ C|

N t+1
(5.6)

The primary goal of the objective function is to minimize the movement of
data during migration. The secondary goal is to balance the load evenly across
nodes and to ensure that processing resources are utilized efficiently. The objective
function is a sum of two separate functions that correspond to the primary and
secondary goals of optimization. The first function represents the total movement

111

of partition data during the migration process. The second function represents the
average absolute deviation of the load generated by partitions assigned to a node
from the optimal load for a node, multiplied by a very small value ǫ.

The objective function is designed to ensure that the primary goal of optimiza-
tion is satisfied first. Among the solutions that satisfy the primary goal, the second
function selects the solution that has the minimum average absolute deviation from
the optimal load Oj. As the value of ǫ is small, the second function will not interfere
with the ordering of solutions produced by the first function. If there are multiple
solutions with the same amount of data movement, then the second function will
select the one that minimizes average absolute deviation from the optimal load.

The above problem formulation for the online optimizer is non-linear because
of (1) the presence of absolute values in the objective function and (2) the variable
N t+1 in the denominator. In order to remove the absolute values from the objec-
tive function, the method mentioned in Section 5.4.2 was used. We can remove the
variable N t+1 by fixing N t+1 to be a constant. This means that the solver will only
look for solutions that have exactly N t+1 nodes. This is not particularly inconve-
nient as it is easy to run the solver multiple times with different values of N t+1

and select the solution with the minimum value of the objective function. Since
we know the instantaneous load on each partition, we mathematically calculate the
lower bound on the number of nodes N t+1 required to handle the total load and
run the solver to obtain a solution that minimizes data movement and load balance
for this fixed N t+1. We set a time out of 15 seconds for the solver. If a solution is
not found within that time, we run the solver again, increasing the lower bound to
N t+1 = N t+1 + 1. We repeat until a solution is found.

Constraints

The constraints for the online optimizer are the same as the offline one, with minor
modifications outlined below.

1. Number of Active Nodes: First, we add constraints to ensure that
exactly N t+1 nodes are used in the returned solution. This is not required in
the offline optimizer as it determines the minimum number of nodes required
as part of the objective function using X t

j . For the online optimizer, there
must be exactly N t+1 active nodes in the returned solution.

P
∑

i=1

At+1

ij > 0 for j = 1, . . . , N t+1 (5.7)

P
∑

i=1

At+1

ij = 0 for j = N t+2, . . . , N (5.8)

112

2. CPU Capacity: Second, the right hand side of the constraint for CPU
capacity (Equation 5.3) is modified to remove X t

j :

P
∑

i=1

At+1

ij ∗ lti < L ∗ C for j = 1, . . . , N (5.9)

5.5 Experimental Evaluation

5.5.1 Experimental Setup

System Configuration

All the nodes used in our experiments have identical hardware and software con-
figuration. Each node is an IBM Blade Center server with two 2.4 GHz dual core
CPUs and 8GB of physical memory. All nodes run OpenSUSE 11.3 (64-bit) with
the Linux kernel version 2.6.34-12. The version of VoltDB that we use is 1.3.

Benchmark

For these experiments, we use a modified, cleanly partitionable version of the TPC-
C benchmark [145]. VoltDB is intended for transactional applications in which the
database fits in the total memory of all nodes in the cluster. A TPC-C database
grows continuously as transactions run. Thus, without modification, a TPC-C
workload is not suitable for VoltDB since the database will eventually grow beyond
the memory limit. Because VoltDB can execute transactions very quickly, the
memory limit will be reached very quickly – in less than 5 minutes in our server
environment. Thus, to produce a transactional test application suited to VoltDB’s
memory constraint, we made several changes to TPC-C to avoid database growth.
First, we removed the History table, which keeps track of payment history and
thus continues to grow. Second, in the original TPC-C specifications, the delivery
transaction removes rows from the NewOrder table. We modified the delivery
transaction to remove corresponding rows from the Orders and OrderLine tables
at the same time, to prevent these tables from growing. Finally, to make TPC-
C cleanly partitionable by warehouse, we eliminated new order transactions that
access remote warehouses.

5.5.2 Demonstrating Elastic Scale-out and Scale-in

In this section, we present experiments to illustrate that the mechanism that we
implemented in VoltDB can be used to efficiently grow and shrink the size of the
VoltDB cluster elastically, depending on the load.

113

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Actual Throuhput
Offered Load

Figure 5.2: Cluster Throughput with Varying Load

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0 (primary)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1 (scale-out)

Figure 5.3: Per Host CPU Utilization with Varying Load

114

The first experiment that we present here was run with a total of three physical
hosts. We have a total of 8 unique database partitions, and we run this experiment
without k -safety. One of the three hosts is used to run the TPC-C benchmark
clients and the other two are used as VoltDB servers. We start the VoltDB cluster
with just one physical host that stores all eight partitions. We call this the primary
host. We have one spare scale-out host which will be initially inactive. Clients
connect to the VoltDB cluster (which is just one primary host) and submit TPC-
C transactions. Clients in this experiment are open loop clients that submit the
requests at a fixed rate, which we call the offered load. Offered load is varied during
the experiment to vary the load on the VoltDB cluster. We run the test for a total
of 30 minutes and measure the throughput of the cluster in terms of transactions
per second (TPS). Our goal is to demonstrate that we can handle increases and
decreases in the offered load by adding or removing hosts to the VoltDB cluster.

Figure 5.2 shows the offered load and the actual throughput of the cluster.
Figure 5.3 shows the CPU utilization of each host (primary and scale-out) for the
duration of the experiment. Initially, there is just one host, which is offered a fixed
load of 10,000 requests/sec. The single host is able to service this load successfully,
with about 60% CPU utilization (Figure 5.3). At about 400 seconds into the test,
we increased the offered load to 20,000 requests/sec. A single host is not able to
handle this load, and can provide only 15,000 TPS, as shown by the green line in
Figure 5.2. We also see that the primary host (Host 0) is highly loaded now with
about 90% CPU utilization (Figure 5.3). At about 750 seconds into the test, we
do a scale-out operation by adding another host (Host 1) to the VoltDB cluster.
Note that before this point, Host 1 was idle thus its CPU utilization was at 0%.
During the scale-out operation, we move 4 of the 8 partitions from the primary
host (Host 0) to the scale-out host (Host 1). The amount of data moved was about
1 GB. After the scale-out operation, the cluster is once again able to successfully
service the offered load, now 20,000 TPS. We reduce the offered load back to 10,000
requests/second at around 1100 seconds. Now both hosts are very lightly loaded
at around 30% CPU utilization. We perform a scale-in operation at around 1450
seconds, once again leaving only one node in the cluster that stores all partitions.
The green line in Figure 5.2 shows that our scale-out and scale-in mechanisms have
a minimal transient effect on throughput. When doing a scale-out or scale-in there
is a small drop in throughput (as expected) but the drop lasts only for a very short
time.

The second experiment, which is similar to the first, was run with a total of
five physical hosts. Like before, one of the five hosts is used to run the TPC-C
benchmark clients but now we have four hosts in the VoltDB cluster instead of two.
We start the VoltDB cluster with just one physical host, the primary host. When
the offered load is increased, the number of hosts in the VoltDB cluster is also
increased, up to a total of four hosts (including the primary host). This approach
ensures that the cluster is always adequately provisioned to handle the offered load,
thus avoiding any overload conditions. Similarly, when the offered load is decreased,
we decrease the number of hosts in the VoltDB cluster to avoid under-utilization

115

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 200 400 600 800 1000 1200 1400 1600 1800

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

A
B

C
D

E

F

Actual Throuhput
Offered Load

Figure 5.4: Cluster Throughput with Varying Load and Multiple Scale-out Opera-
tions

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0 (primary)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1 (scale-out)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 2 (scale-out)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 3 (scale-out)

Figure 5.5: Per Host CPU Utilization with Varying Load and Multiple Scale-out
Operations

116

A (scale-out)

F (scale-in)

VoltDB ClusterVoltDB Cluster

4P 4P

4P 4P

Host 0 (primary)

2P 2P

2P 2P

Host 0 (primary)

2P 2P

2P 2P

Host 1 (scale-out)

VoltDB Cluster

P P

2P 2P

Host 0 (primary)

P P

2P P

Host 1 (scale-out)

P P

2P P

Host 2 (scale-out)

B (scale-out)

VoltDB Cluster

P P

P P

Host 0 (primary)

P P

P P

Host 1 (scale-out)

P P

P P

Host 2 (scale-out)

P P

P P

Host 3 (scale-out)

C
 (s

c
a

le
-o

u
t)

E (scale-in)

D
 (s

c
a

le
-in

)

= CPU Core

= DB PartitionP

Figure 5.6: Scale-out Illustration

of resources. In total, we perform three scale-out operations at points A, B, and C
in Figure 5.4, and we perform three scale-in operations at points D, E, and F. In
addition to showing the offered load and scale-out/scale-in points, Figure 5.4 shows
the throughput during this experiment. Figure 5.5 shows the CPU utilization of the
different hosts over time. The experiment starts with 16 TPC-C partitions on one
host, and through scale-out we get to four hosts, and then back to one host through
scale-in. Figure 5.6 shows the mapping of partitions to hosts at different points in
the experiment, along with the expected mapping of partitions to cores within a
host. (The mapping of partitions to cores is managed by the operating system and
not by VoltDB.) The total amount of data migrated during the scale-out operations
is approximately 3GB.

Note that a single host in our system can handle up to 10,000 TPS. With a total
of four hosts, the system is able to effectively handle approximately 40,000 TPS
at peak load. As the offered load starts to subside around 1,000 seconds into the
test, the cluster gradually becomes over-provisioned, so it is still able to handle the
offered load even after the scale-in operations at points D, E, and F in Figure 5.4.
Figure 5.5 shows that none of the hosts in the cluster is ever overloaded. In this
experiment, we add and remove hosts at fixed pre-defined points that we know will
match the pre-defined offered load. In a more realistic setting, a DBMS that is able
to scale elastically would implement a controller that would automatically add or
remove hosts from the cluster based on one of our partition placement algorithms
(offline or online).

These experiments show that the changes we implemented in VoltDB provide
an effective scale-out and scale-in mechanism that enables us to effectively handle
varying load by dynamically growing and shrinking the size of the VoltDB cluster.

117

Parameter Value
Time Intervals (T) 40
Number of Partitions (P) 16
Replication Factor (k) 1
Cores Per Node (C) 4
Maximum Load Per Core (L) 95%
Server Cost (S) 1000
Migration Cost (I) 100

Table 5.1: Optimizer Parameters

Abbreviation Distribution Name Parameters
UNIF Uniform Distribution N/A
TCATG Temporally Skewed Categorical Distribution p = 0.4, 0.3, 0.2, 0.1
TNORM Temporally Skewed Normal Distribution µ = 4.0
TZIPF Temporally Skewed Zipfian Distribution s = 0.5

Table 5.2: Load Distributions

5.5.3 Effectiveness of Optimal Partition Placement

Having established the effectiveness of the scale-out mechanism, we now present ex-
perimental results that show the advantage of using our partition placement strat-
egy. The goal of these experiments is to evaluate the effectiveness of our optimizers
in achieving their optimization goals. We evaluate the optimal placement strategy
calculated using our offline and online optimizers against a simple placement strat-
egy of greedy first fit. Greedy first fit starts with a node, allocates partitions to it
until its maximum capacity is reached, moves on to the next node, and so on, until
there are no more partitions to be allocated. For our baseline, we use a fully scaled
out system, i.e., one that uses the maximum number of nodes and the partition to
node allocation is static (no elasticity). For example, given 16 partitions, the fully
scaled out allocation will require 4 nodes with 4 cores each, statically allocating
one partition per core. In terms of overall performance, we do not expect to do any
better than such a fully scaled out system.

For these experiments, we use a total of 16 TPC-C partitions, distributed over a
maximum of 4 nodes. The test was run for a total of 2 hours. For both offline and
online optimizers, we recalculate the optimal placement every 3 minutes, i.e., T =
40. Table 5.1 provides a summary of parameters chosen for the offline optimizer.
As opposed to the TPC-C benchmark specifications, we assume that the load on
each database partition is not uniform. Our goal is to present a comparison of
different partition placement strategies under different load distributions. A list of
load distributions used in our experiments and their corresponding parameters is
presented in Table 5.2. Note that the distributions are “temporally skewed” which
means that the distribution of the skew varies with time. This is different from
varying the skew. For example, for the normal distribution, we shift the mean of

118

the distribution with time. The standard deviation or any other characteristics
of the distribution do not change. We simply “slide” the distribution over all the
partitions to ensure that all partitions experience high and low load. Also note that
these distributions dictate how the total load at any given time is distributed to
each partition. The overall load is varied according to a sine wave pattern with a
frequency 4, as shown in Figure 5.7. We set the minimum load to be 10,000 TPS
and the maximum load to be 52,000 TPS.

We want to evaluate the effectiveness of different placement strategies, with
different load distributions in achieving the following goals: (1) providing good
overall performance, (2) minimizing the amount of computing resources used, and
(3) minimizing the amount of data movement. We use the following abbreviations
to refer to the different placement strategies in our experiments: SCO – fully scaled
out case, OFFLINE – offline optimizer, ONLINE – online optimizer, and GRD –
greedy first fit.

Overall Throughput

Figure 5.8 presents the overall throughput achieved for each case. On the x-axis
we have different load distributions, and on the y-axis we plot overall through-
put in terms of transactions per second. As expected, for all load distributions,
the fully scaled out case (SCO) with static partition allocation achieves the best
performance. This is because SCO uses the maximum computing resources and
does not involve any partition migration and thus no data movement. Also note
that, for all placement strategies, throughput drops when going from a non-skewed
load (uniform distribution) to a highly skewed load (Zipf distribution), which is to
be expected. The throughput in case of SCO is better than the offline strategy
(OFFLINE) by 12%, 6%, 2%, and 4% for UNIF, TCATG, TNORM, and TZIPF,
respectively. The offline strategy (OFFLINE) is better than the online strategy
(ONLINE) in terms of throughput by 3%, 5%, 8%, and 7% for UNIF, TCATG,
TNORM, and TZIPF, respectively. The offline strategy (OFFLINE) is better than
the simple greedy first fit strategy (GRD) by 22%, 20%, 20%, and 15% for UNIF,
TCATG, TNORM, and TZIPF, respectively.

This experiment shows that in terms of overall performance, both the offline
and online partition placement strategies perform fairly close to the fully scaled
out case, and significantly better than the greedy first fit strategy. It also shows
that by having exact knowledge about the entire future workload, we can gain some
performance benefits by calculating the placement strategy for the entire planning
period by using the offline optimizer, as compared to the case when we cannot
predict the future load (online optimizer).

Computing Resources Consumed

We now evaluate the effectiveness of our placement strategies in minimizing the cost
of running the system, i.e., minimizing the number of nodes used. One node running

119

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 1000 2000 3000 4000 5000 6000 7000

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Figure 5.7: Overall Offered Load on the System

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

UNIF TCATG TNORM TZIPF

 T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
PS

)

 Load Distribution

SCO
OFFLINE
ONLINE
GRD

Figure 5.8: Overall Throughput

120

 0

 50

 100

 150

 200

UNIF TCATG TNORM TZIPF

 T
ot

al
 C

om
pu

te
 U

ni
ts

 Load Distribution

SCO
OFFLINE
ONLINE
GRD

Figure 5.9: Compute Units Used

for one time interval is defined as a compute unit. Figure 5.9 shows the compute
units summed over all time intervals, for different strategies and load distributions.
The y-axis shows the total compute units used in each case. As expected, SCO uses
the maximum compute units in all cases because it uses a static partition to node
allocation with maximum number of nodes. All the other strategies (OFFLINE,
ONLINE, and GRD), use a fairly similar amount of computing resources. One
point to note from Figure 5.9 is that OFFLINE achieves slightly better throughput
than ONLINE (as shown in Figure 5.8) at the expense of a few extra compute units.

This experiment shows that both OFFLINE and ONLINE achieve their goal
of minimizing total computing resources used as compared to SCO. By taking
advantage of elasticity, we can ensure that the performance goals are met while
minimizing computing resources.

Data Movement

Lastly, Figures 5.10 and 5.11 present the total number of partitions migrated and
the total amount of data moved between the nodes of the VoltDB cluster as a result
of these migrations. These figures do not include the fully scaled out case (SCO)
because there are no partition migrations and hence no data movement in that
case. Focusing on the results of Figure 5.11, we note that for all load distributions,
OFFLINE performs the least amount of data movement, an average of 63% and
286% less data movement than ONLINE and GRD, respectively.

From the results of these experiments, we conclude that both the offline and
online optimizers are able to meet their optimization objectives in terms of maximiz-
ing performance and minimizing server and migration cost over a simple placement
strategy. If we know the entire workload in advance, we can use the offline opti-

121

 0

 50

 100

 150

 200

 250

 300

 350

 400

UNIF TCATG TNORM TZIPF

 T
ot

al
 P

ar
tit

io
n

M
ig

ra
tio

ns

 Load Distribution

OFFLINE
ONLINE
GRD

Figure 5.10: Number of Partitions Migrated

 0

 20

 40

 60

 80

 100

 120

UNIF TCATG TNORM TZIPF

 T
ot

al
 D

at
a

M
ov

ed
 (

G
B

)

 Load Distribution

OFFLINE
ONLINE
GRD

Figure 5.11: Total Data Moved

122

mizer to gain slight performance benefits over the online optimizer, and can save
significant migration cost, at the expense of some extra computing resources. Ex-
cept for the differences in data movement, both the offline and online optimizers
perform adequately. As shown in the next section, the low complexity of the online
optimizer and its ability to find an optimal placement in a very short amount of
time will warrant its use in most practical situations.

In this section, we presented overall results only. More detailed results under
uniform and normal load distributions, showing per host CPU utilization, offered
load vs. overall throughput, and number of nodes used, can be found in Ap-
pendix A.

5.5.4 Scalability of the Optimizers

The goal of this section is to evaluate the scalability of the offline and online opti-
mizers with respect to the problem size. Ideally, the optimizer should always return
the optimal solution within a very short amount of time. For the online optimizer,
the time to find a solution is critical for it to be applicable in live partition migration
scenarios. On the other hand, as the name implies, we expect the offline optimizer
to be useful for scenarios where we have plenty of time to find a partition placement
schedule for a long-running, periodic workload. Nevertheless, the offline optimizer
should still be able to return the optimal (or close to the optimal) solution in a
reasonable amount of time.

We evaluate the online optimizer by varying the number of partitions (P) from
16 to 512 (results not presented here). For P ≤ 256, the optimizer always returns
the optimal solution within a few seconds. In the worst case, for P = 512, the
online optimizer returns the optimal solution within 20 seconds. This shows that
even for large problem sizes, the online optimizer returns a solution fairly quickly,
and is thus adequate for live partition migration scenarios.

In contrast to the online optimizer, the problem formulation for the offline op-
timizer is much more complex in terms of the number of decision variables. This
additional complexity arises from the fact that the offline optimizer has to take into
account another dimension (i.e., time) for each decision variable. Consequently, the
number of decision variables increase exponentially with the problem size. For rel-
atively small problem sizes (T = 15 and P ≤ 16), we are able to obtain the optimal
solution in less than a second. For larger problem sizes (P ≥ 32), we are not able
to obtain the optimal solution in a reasonable amount of time. The CPLEX solver
allows us to specify a time limit for the solution, and reports the best solution
obtained within this time limit plus a bound on how far this solution is from the
optimal solution (details in the next paragraph). For large problem sizes, we take
advantage of this feature of CPLEX and report the solution it obtains in a fixed
amount of time equal to 8 hours. We also report how far the reported solution is
from the optimal solution.

123

 0

 20

 40

 60

 80

 100

 8 16 32 48 64 80 96 112 128

G
ap

 f
ro

m
 O

pt
im

al
 S

ol
ut

io
n

(%
)

Number of Partitions

Figure 5.12: Scalability of Offline Optimizer

In Figure 5.12, we present results that show how the offline problem formulation
scales with the problem size. We fix the planning period to 15 time intervals, i.e.,
T = 15. The load on partitions is distributed according to a temporally skewed
normal distribution. In Figure 5.12, we vary the number of partitions from 8 to
128 on the x-axis. The gap between the actual optimal and the solution found
by our optimizer is plotted on the y-axis. The CPLEX optimizer first solves a
linear programming (LP) relaxation of the mixed-integer program, where decision
variables can take real values. The value of the objective function found with
LP relaxation is the optimal. The reported gap is the difference (in percentage)
between the optimal value of the objective function and the best solution found by
the optimizer so far that satisfies the integer constraints. Thus, it is guaranteed
that the solution to the mixed-integer program will be no worst than “gap %” from
the actual optimal solution (of the LP relaxation). From Figure 5.12, we can see
that the offline optimizer always finds a solution that is within 30% of the optimal
for relatively large problem sizes (P ≤ 96). For even larger problem sizes, the
solution found is within 60% of the optimal.

Note that the above results were obtained after we made several modifications to
the original problem formulation for the offline optimizer to improve scalability. One
such improvement has to do with how general purpose solvers, like CPLEX, deal
with symmetry in the problem formulation. Many of these solvers use traditional
branch and bound algorithms to explore the search space. It is well known that
these algorithms perform poorly on problems that have a lot of symmetry [27,
Chapter 3]. As mentioned earlier, we assume that all the nodes in our environment
are homogeneous. This assumption introduces a lot of symmetry in our problem

124

formulation. In order to break that symmetry, we added some additional constraints
to the offline problem formulation that improved its scalability. For example, we
included a constraint that specifies that host j+1 can only be used if host j is already
used. Even with these changes, admittedly, the offline optimizer is limited in its
scalability to very large problem sizes. Exploring advanced techniques available in
the mathematical optimization literature to improve the scalability of the offline
optimizer is an interesting direction for future work.

5.6 Summary

A self-managing database system should be able to automatically and elastically
grow and shrink the computing resources that it uses in response to variations in
load. Database systems today do not support this kind of elastic scale-out and
scale-in due to the challenges of maintaining consistency of the database while
elastically scaling. In this chapter, we presented a solution for database scale-out
using a shared nothing partition-based parallel database system, namely VoltDB.
We presented the required changes that need to be incorporated in a system like
VoltDB to make it elastically scalable. More specifically, we present mechanisms to
dynamically add more nodes to an existing VoltDB cluster and to move partitions
from existing nodes to the new nodes in an efficient manner.

In the second half of the chapter, we focus on the research problem of partition
placement with elastic scale-out. We presented a mixed-integer linear program
(MILP) formulation of the problem, showed how to use a general purpose solver to
find a solution, and presented experimental results that showed that our optimizer
is able to provide performance benefits and cost savings over a simple placement
strategy. We believe that a solution implemented using the techniques presented in
this chapter can provide effective elastic scaling for partitioned database systems.

125

Chapter 6

Conclusion

Cloud computing is rapidly changing the computing landscape by fundamentally
revolutionizing the way computing is viewed and delivered to the end user. Com-
puting is now treated as a “utility” that can be provisioned on-demand, in a cost-
effective manner. Cloud computing presents a paradigm shift in how we provision
and manage computing resources as well as how we develop, deploy, and use soft-
ware applications. We need to devise novel system architectures that can meet the
computing demands of the next generation of applications. Existing applications
might need to be altered or might need to be redesigned altogether from the ground
up for deploying in the cloud. In this thesis, we consider database management sys-
tem as one such application, and explore how these systems can be adapted for the
cloud computing platforms of today.

Database management systems are an important class of applications that are
frequently deployed in the cloud. In order to provide services to end users, most
applications need to store and retrieve persistent data, sometimes in large quan-
tities. Moreover, this data storage and retrieval needs to be done in a scalable,
reliable, and efficient manner. Relational database systems are a very popular
choice for storing data for such applications. Relational database systems provide
ACID transactions, which guarantee data consistency, and allow users to access and
manipulate their data using SQL, which is popular and simplifies application devel-
opment. However, the data consistency guarantees provided by relational database
systems significantly limit the high availability and scalability of these systems,
which presents a major challenge in deploying them in the cloud.

This thesis focuses on exploiting existing cloud technologies (e.g., virtualiza-
tion), and the entire cloud computing ecosystem in general, to provide transparent
high availability and elastic scalability for database systems. To that extent, we
have presented three different systems that achieve these goals.

In Chapter 3, we presented a system called RemusDB. The goal of RemusDB
is to provide simple and cheap high availability for database systems in the cloud.
RemusDB is a reliable, cost-effective, active/standby high availability solution im-
plemented at the virtualization layer. RemusDB offers high availability as a service

126

provided by the underlying virtualization infrastructure to any database system
running over it, which fits well with the service oriented computing model of the
cloud. It requires little or no modification to the database system and imposes
minimal performance overhead.

The second system that we presented, in Chapter 4, is called Chimera – a hybrid
of a shared nothing and data sharing system. The goals of Chimera are to provide
elastic scale-out and flexibility in load balancing for time varying workloads in
dynamic environments such as the cloud. By combining the scalability of a shared
nothing system and the flexibility of a data sharing system, Chimera is able to
effectively achieve its goal for read-mostly workloads. We believe that this work is
an important step towards erasing the hard boundaries between the shared nothing
and data sharing system architectures, thus paving the way for novel architectures
that are more relevant in today’s computing environments.

The third system, presented in Chapter 5, proposes the use of a partition-based
parallel shared-nothing database system, namely VoltDB, as a starting point to pro-
vide elastic scale-out for database systems. We have implemented new mechanisms
in VoltDB that allow us to dynamically and efficiently move database partitions
to nodes (virtual or physical) that can be added or removed in response to time
varying workloads. Furthermore, by using this platform we address the research
problem of partition placement. We formulate the partition placement problem as
a mathematical optimization problem, and we show how a general purpose solver
can be used to find a solution. We present quantitative results that demonstrate
the effectiveness of our partition placement strategy in achieving good performance
while reducing both system and data migration costs. The elastic scale-out mech-
anism, coupled with the partition placement optimizer, presents an important step
towards building a self-managing, elastically scalable database system suitable for
cloud computing environments.

There are many avenues for future research in this general area of improving
the usability and scalability of database systems deployed in the cloud. As noted
above, we believe that cloud computing presents a paradigm shift in how we view
computing. Many applications welcome this shift and can be readily deployed on
the cloud, making full use of its capabilities including dynamic resource provision-
ing, fault tolerance, and elastic scalability. However, existing relational database
systems are not ideally suited for deployment in the cloud. We need to make fun-
damental design changes to make them “cloud friendly”. We have presented some
of these changes for making existing database systems highly-available and elasti-
cally scalable. However, this thesis presents only a first step towards implementing
a transactional database service in the cloud. We believe that our work opens
up many opportunities for new and interesting research in the areas of database
systems and cloud computing.

127

References

[1] Ashraf Aboulnaga, Kenneth Salem, Ahmed A. Soror, Umar Farooq Minhas,
Peter Kokosielis, and Sunil Kamath. Deploying database appliances in the
cloud. IEEE Data Engineering Bulletin, 32(1), 2009. 11, 28

[2] Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang. Integrating verti-
cal and horizontal partitioning into automated physical database design. In
International Conference on Management of Data (SIGMOD), 2004. 24

[3] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala.
Interaction-aware scheduling of report generation workloads. Very Large Data
Bases Journal (VLDBJ), 20(4), 2011. 58

[4] Mumtaz Ahmad, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu.
Predicting completion times of batch query workloads using interaction-aware
models and simulation. In Conference on Extending Database Technology
(EDBT), 2011. 58

[5] Gautam Altekar and Ion Stoica. ODR: Output-deterministic replay for mul-
ticore debugging. In Symposium on Operating System Principles (SOSP),
2009. 32

[6] Mehmet Altinel, Christof Bornhövd, Sailesh Krishnamurthy, C. Mohan,
Hamid Pirahesh, and Berthold Reinwald. Cache Tables: Paving the way
for an adaptive database cache. In International Conference on Very Large
Data Bases (VLDB), 2003. 24, 25

[7] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/. 8, 10,
99

[8] Amazon Relational Database Service (RDS). http://aws.amazon.com/rds/.
4

[9] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan.
Dbproxy: A dynamic data cache for web applications. In International Con-
ference on Data Engineering (ICDE), 2003. 24, 25

128

[10] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. Conflict-aware schedul-
ing for dynamic content applications. In USENIX Symposium on Internet
Technologies and Systems, 2003. 21, 22

[11] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. Distributed versioning:
Consistent replication for scaling back-end databases of dynamic content web
sites. In International Middleware Conference, 2003. 21, 22, 99, 101

[12] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. A comparative evalua-
tion of transparent scaling techniques for dynamic content servers. In Inter-
national Conference on Data Engineering (ICDE), 2005. 21, 22, 24

[13] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patter-
son, Drew S. Roselli, and Randolph Y. Wang. Serverless network file systems.
Transactions on Computer Systems (TOCS), 14(1), 1996. 79

[14] Todd Anderson, Yuri Breitbart, Henry F. Korth, and Avishai Wool. Repli-
cation, consistency, and practicality: are these mutually exclusive? In Inter-
national Conference on Management of Data (SIGMOD), 1998. 14, 21, 22,
99, 101

[15] Peter M. G. Apers. Data allocation in distributed database systems. Trans-
actions on Database Systems (TODS), 13(3), 1988. 102

[16] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Sto-
ica, and Matei Zaharia. A view of cloud computing. Communications of ACM
(CACM), 53(4), 2010. 2, 100, 107

[17] Mary Baker and Mark Sullivan. The Recovery Box: Using fast recovery to
provide high availability in the UNIX environment. In USENIX Conference,
1992. 37

[18] Paul T. Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L. Har-
ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the
art of virtualization. In Symposium on Operating System Principles (SOSP),
2003. 9, 19, 20, 28

[19] Philip A. Bernstein, Alan Fekete, Hongfei Guo, Raghu Ramakrishnan, and
Pradeep Tamma. Relaxed-currency serializability for middle-tier caching and
replication. In International Conference on Management of Data (SIGMOD),
2006. 25

[20] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987. 13, 16, 21

[21] Martin Bichler, Thomas Setzer, and Benjamin Speitkamp. Capacity planning
for virtualized servers. InWorkshop on Information Technologies and Systems
(WITS), 2006. 102

129

[22] Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and
Tim Kraska. Building a database on S3. In International Conference on
Management of Data (SIGMOD), 2008. 97

[23] Yuri Breitbart, Raghavan Komondoor, Rajeev Rastogi, S. Seshadri, and
Abraham Silberschatz. Update propagation protocols for replicated
databases. In International Conference on Management of Data (SIGMOD),
1999. 14, 21, 101

[24] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault-
tolerance. In Symposium on Operating System Principles (SOSP), 1995. 28,
32, 34

[25] Paolo Bruni, Roy Cornford, Rafael Garcia, Sabine Kaschta, and Ravi Kumar.
DB2 9 for z/OS Technical Overview. IBM Redbooks, 2007. 14, 15, 25, 76

[26] Anna Brunstrom, Scott T. Leutenegger, and Rahul Simha. Experimental eval-
uation of dynamic data allocation strategies in a distributed database with
changing workloads. In Conference on Information and Knowledge Manage-
ment (CIKM), 1995. 24, 101, 102

[27] Edmund K. Burke and Graham Kendall. Search methodologies: introductory
tutorials in optimization and decision support techniques. Springer, 2005. 124

[28] Mike Burrows. The Chubby lock service for loosely-coupled distributed
systems. In Symposium on Operating Systems Design and Implementation
(OSDI), 2006. 78, 80, 84, 87, 97

[29] Emmanuel Cecchet, George Candea, and Anastasia Ailamaki. Middleware-
based database replication: The gaps between theory and practice. In Inter-
national Conference on Management of Data (SIGMOD), 2008. 22

[30] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. C-JDBC: Flex-
ible database clustering middleware. In USENIX Conference, 2004. 22

[31] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: A distributed storage system for structured data. Transactions
on Computer Systems (TOCS), 26, 2008. 3, 84, 97, 101

[32] Whei-Jen Chen, Masafumi Otsuki, Paul Descovich, Selvaprabhu Arumug-
gharaj, Toshihiko Kubo, and Yong Jun Bi. High Availability and Disaster
Recovery Options for DB2 on Linux, Unix, and Windows. IBM Redbooks,
2009. 31

[33] Parvathi Chundi, Daniel J. Rosenkrantz, and S. S. Ravi. Deferred updates
and data placement in distributed databases. In International Conference on
Data Engineering (ICDE), 1996. 14, 21, 101

130

[34] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual
machines. In Symposium on Networked Systems Design and Implementation
(NSDI), 2005. 16, 29, 36

[35] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans Arno Jacobsen, Nick Puz, Daniel Weaver, and
Ramana Yerneni. PNUTS: Yahoo!’s hosted data serving platform. In Inter-
national Conference on Very Large Data Bases (VLDB), 2008. 97

[36] George P. Copeland, William Alexander, Ellen E. Boughter, and Tom W.
Keller. Data placement in bubba. In International Conference on Manage-
ment of Data (SIGMOD), 1988. 23, 24, 99, 101, 102

[37] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchin-
son, and Andrew Warfield. Remus: High availability via asynchronous virtual
machine replication. In Symposium on Networked Systems Design and Im-
plementation (NSDI), 2008. 4, 16, 18, 20, 21, 28, 30

[38] Carlo Curino, Evan Jones, Raluca Popa, Eugene Malviya, Nirmesh Wu, Sam
Madden, Har Balakrishnan, and Nickolai Zeldovich. Relational Cloud: a
database service for the cloud. In Conference on Innovative Data Systems
Research (CIDR), 2011. 101

[39] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: a
workload-driven approach to database replication and partitioning. Proceed-
ings of the VLDB Endowment (PVLDB), 3(1-2), 2010. 99, 101

[40] Carlo Curino, Evan P.C. Jones, Samuel Madden, and Hari Balakrishnan.
Workload-aware database monitoring and consolidation. In International
Conference on Management of Data (SIGMOD), 2011. 99, 101, 102

[41] Shaul Dar, Michael J. Franklin, Björn T. Jónsson, Divesh Srivastava, and
Michael Tan. Semantic data caching and replacement. In International Con-
ference on Very Large Data Bases (VLDB), 1996. 24

[42] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: an elastic
transactional data store in the cloud. In HotCloud, 2009. 101

[43] Anindya Datta, Kaushik Dutta, Helen M. Thomas, Debra E. VanderMeer,
Krithi Ramamritham, and Dan Fishman. A comparative study of alternative
middle tier caching solutions to support dynamic web content acceleration.
In International Conference on Very Large Data Bases (VLDB), 2001. 25

[44] Better Business Protection Through Virtualization.
http://www.dell.com/downloads/global/power/ps4q06-20070169-Ziff.pdf. 2

[45] Murthy Devarakonda, Bill Kish, and Ajay Mohindra. Recovery in the Calypso
file system. Transactions on Computer Systems (TOCS), 14(3), 1996. 79, 80

131

[46] David J. DeWitt and Jim Gray. Parallel database systems: The future of high
performance database systems. Commununications of the ACM (CACM),
35(6), 1992. 23, 101

[47] Distributed Replicated Block Device (DRBD). http://www.drbd.org/. 42,
47

[48] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and
Peter M. Chen. ReVirt: Enabling intrusion analysis through virtual-machine
logging and replay. In Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2002. 32

[49] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and Pe-
ter M. Chen. Execution replay of multiprocessor virtual machines. In Virtual
Execution Environments (VEE), 2008. 32

[50] everRun VM. http://www.marathontechnologies.com/high availability xen
server.html. 16, 19

[51] Derrell V. Foster, Lawrence W. Dowdy, and James E. Ames IV. File assign-
ment in a computer network. Computer Networks, 5, 1981. 102

[52] Prashant Gaharwar. Dynamic storage provisioning with SLO guarantees.
Master’s thesis, University of Waterloo, 2010. 107

[53] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file
system. In Symposium on Operating Systems Principles (SOSP), October
2003. 84

[54] David K. Gifford. Weighted voting for replicated data. In Symposium on
Operating System Principles (SOSP), 1979. 32

[55] Andrew C. Goldstein. The design and implementation of a distributed file
system. Digital Technical Journal, 1(5), 1987. 79

[56] Google App Engine. http://cloud.google.com/products/index.html. 8

[57] Google Cloud SQL. https://developers.google.com/cloud-
sql/docs/introduction. 4

[58] Google Docs. https://docs.google.com/. 8

[59] Cary Gray and David Cheriton. Leases: An efficient fault-tolerant mechanism
for distributed file cache consistency. In Symposium on Operating Systems
Principles (SOSP), 1989. 80

[60] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers of
replication and a solution. In International Conference on Management of
Data (SIGMOD), 1996. 13, 14, 21, 32, 101

132

[61] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993. 32

[62] Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
amazon’s highly available key-value store. In Symposium on Operating System
Principles (SOSP), 2007. 3, 101

[63] Christopher R. Hertel. Implementing CIFS: The Common Internet File Sys-
tem, chapter Introduction. Prentice Hall, 2003. 78, 83, 85

[64] Charles R. Hicks and K. V. Turner. Fundamental Concepts in the Design of
Experiments. Oxford University Press, 1999. 68

[65] JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi. The performance
of database replication with group multicast. In Fault-Tolerant Computing
(FTCS), 1999. 22

[66] Hui-I Hsiao and David J. DeWitt. A performance study of three high available
data replication strategies. Distributed and Parallel Databases (DAPD), 1(1),
1993. 13

[67] Kien A. Hua and Chiang Lee. An adaptive data placement scheme for parallel
database computer systems. In International Conference on Very Large Data
Bases (VLDB), 1990. 102

[68] George Huey. Scaling Out with SQL Azure Federation.
http://msdn.microsoft.com/en-us/magazine/hh848258.aspx. 105

[69] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: wait-free coordination for internet-scale systems. In USENIX
Conference, 2010. 84, 87, 97

[70] IBM ILOG CPLEX Optimization Studio. http://www-
01.ibm.com/software/integration/optimization/cplex-optimization-studio/.
100, 110

[71] The Costs of Downtime: North American Medium Businesses 2006.
http://www.infonetics.com/pr/2006/upna06.dwn.nr.asp. 2

[72] Java TPC-W implementation, PHARM group, University of Wisconsin, 1999.
http://www.ece.wisc.edu/pharm/tpcw/. 43

[73] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexan-
der Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stone-
braker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-Store: a high-
performance, distributed main memory transaction processing system. Pro-
ceedings of the VLDB Endowment (PVLDB), 1(2), 2008. 102

133

[74] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-
R, a new way to implement database replication. In International Conference
on Very Large Data Bases (VLDB), 2000. 21, 22, 32, 99, 101

[75] Bettina Kemme and Gustavo Alonso. A new approach to developing and
implementing eager database replication protocols. Transactions on Database
Systems (TODS), 25(3), 2000. 22

[76] Bettina Kemme, Fernando Pedone, Gustavo Alonso, André Schiper, and
Matthias Wiesmann. Using optimistic atomic broadcast in transaction pro-
cessing systems. Transactions on Knowledge and Data Engineering (TKDE),
15(4), 2003. 22

[77] Sami Khuri, Thomas Bäck, and Jörg Heitkötter. The zero/one multiple knap-
sack problem and genetic algorithms. In Symposium on Applied Computing
(SAC), 1994. 102

[78] Darmadi Komo. Microsoft SQL Server 2008 R2 High Availability Technolo-
gies White Paper. Microsoft, 2010. 31

[79] Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alter-
native architectures for transaction processing in the cloud. In International
Conference on Management of Data (SIGMOD), 2010. 25, 97

[80] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized struc-
tured storage system. Operating Systems Review, 44, 2010. 3, 101

[81] Leslie Lamport. The part-time parliament. Transactions on Computer Sys-
tems (TOCS), 16(2), 1998. 80

[82] Per-Åke Larson, Jonathan Goldstein, and Jingren Zhou. MTCache: Trans-
parent mid-tier database caching in SQL Server. In International Conference
on Data Engineering (ICDE), 2004. 24, 25

[83] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish
Narayanasamy, Peter M. Chen, and Jason Flinn. Respec: Efficient online
multiprocessor replay via speculation and external determinism. In Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2010. 32

[84] Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed virtual
disks. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 1996. 82

[85] Linux-HA Project, 1999. http://www.linux-ha.org/doc/. 46

[86] Diego R. Llanos. TPCC-UVa: An open-source TPC-C implementation for
global performance measurement of computer systems. SIGMOD Record,
35(4), 2006. 43

134

[87] David Lomet. Recovery for shared disk systems using multiple redo logs.
Technical Report 4, Digital Cambridge Research Lab, 1990. 81

[88] David Lomet. Private locking and distributed cache management. In Interna-
tional Conference on Parallel and Distributed Information Systems (PDIS),
1994. 84

[89] David Lomet, Rick Anderson, T. K. Rengarajan, and Peter Spiro. How the
Rdb/VMS data sharing system became fast. Technical Report 2, Digital
Cambridge Research Lab, 1992. 80

[90] Kevin Loney. Oracle Database 11g The Complete Reference. McGraw-Hill,
2008. 76, 97

[91] Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh, Honguk
Woo, Bruce G. Lindsay, and Jeffrey F. Naughton. Middle-tier database
caching for e-business. In International Conference on Management of Data
(SIGMOD), 2002. 25

[92] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. Thekkath,
and Lidong Zhou. Boxwood: Abstractions as the foundation for storage in-
frastructure. In Symposium on Operating Systems Design and Implementation
(OSDI), 2004. 78, 80, 84, 87

[93] Manish Mehta and David J. DeWitt. Data placement in shared-nothing par-
allel database systems. Very Large Data Bases Journal (VLDBJ), 6(1), 1997.
23, 99, 101, 102

[94] Roman B. Melnyk and Paul C. Zikopoulos. DB2: The Complete Reference.
McGraw-Hill, 2001. 14, 15, 23, 76, 97, 100

[95] Memcached. http://memcached.org/. 24

[96] Microsoft Hyper-V. http://www.microsoft.com/windowsserver2008/en/us/hyperv-
main.aspx. 16, 19

[97] Microsoft SQL Database. http://www.windowsazure.com/en-
us/home/features/data-management/. 4

[98] Jesús M. Milán-Franco, Ricardo Jiménez-Peris, Marta Patiño-Mart́ınez, and
Bettina Kemme. Adaptive middleware for data replication. In International
Middleware Conference, 2004. 22

[99] Umar Farooq Minhas, Rui Liu, Ashraf Aboulnaga, Kenneth Salem, Jonathan
Ng, and Sean Robertson. Elastic scale-out for partition-based database sys-
tems. In Workshop on Self Managing Database Systems (SMDB), 2012. 100

[100] Umar Farooq Minhas, David Lomet, and Chandramohan A. Thekkath.
Chimera: data sharing flexibility, shared nothing simplicity. In International
Database Engineering and Applications Symposium (IDEAS), 2011. 77

135

[101] Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully, Ashraf Aboul-
naga, Kenneth Salem, and Andrew Warfield. RemusDB: Transparent high
availability for database systems. Proceedings of the VLDB Endowment
(PVLDB), 4(11), 2011. 28, 31

[102] Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully, Ashraf Aboul-
naga, Kenneth Salem, and Andrew Warfield. RemusDB: Transparent high
availability for database systems. Very Large Data Bases Journal (VLDBJ),
2013. 28, 31

[103] Umar Farooq Minhas, Jitendra Yadav, Ashraf Aboulnaga, and Kenneth
Salem. Database systems on virtual machines: How much do you lose? In
Workshop on Self Managing Database Systems (SMDB), 2008. 11

[104] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
ARIES: A transaction recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. Transactions on Database
Systems (TODS), 17(1), 1992. 31, 44

[105] C. Mohan and Inderpal Narang. Efficient locking and caching of data in the
multisystem shard disks transaction environment. In Conference on Extend-
ing Database Technology (EDBT), 1992. 81

[106] Microsoft SQL Server 2008. http://www.microsoft.com/sqlserver/2008/. 14,
15, 23, 76, 97, 100

[107] MySQL Cluster. http://www.mysql.com/products/database/cluster/. 14,
15, 23, 100

[108] MySQL Cluster 7.0 and 7.1: Architecture and new features. A MySQL Tech-
nical White Paper by Oracle, 2010. 31

[109] Oracle. Oracle Data Guard Concepts and Administration, 11g release 1 edi-
tion, 2008. 31

[110] Oracle. Oracle Real Application Clusters 11g Release 2. Oracle, 2009. 14, 15,
25, 31, 83

[111] Oracle. MySQL 5.0 Reference Manual, 2010. Revision 23486,
http://dev.mysql.com/doc/refman/5.0/en/. 46

[112] Esther Pacitti, Pascale Minet, and Eric Simon. Fast algorithms for maintain-
ing replica consistency in lazy master replicated databases. In International
Conference on Very Large Data Bases (VLDB), 1999. 14, 21, 101

[113] Stratos Papadomanolakis and Anastassia Ailamaki. Autopart: Automating
schema design for large scientific databases using data partitioning. In Con-
ference on Scientfic and Statistical Data Base Management (SSDB), 2004.
24

136

[114] Marta Patiño-Mart́ınez, Ricardo Jiménez-Peris, Bettina Kemme, and Gus-
tavo Alonso. MIDDLE-R: Consistent database replication at the middleware
level. Transactions on Computer Systems (TOCS), 23(4), 2005. 22

[115] David A. Patterson, Garth A. Gibson, and Randy H. Katz. A case for re-
dundant arrays of inexpensive disks (RAID). In International Conference on
Management of Data (SIGMOD), 1988. 12

[116] Fernando Pedone and Svend Frølund. Pronto: High availability for standard
off-the-shelf databases. Journal of Parallel Distributed Computing (PDC),
68(2), 2008. 22

[117] Percona Tools TPC-C MySQL Benchmark, 2008.
https://code.launchpad.net/ percona-dev/perconatools/tpcc-mysql. 43

[118] Francisco Perez-Sorrosal, Marta Patiño-Mart́ınez, Ricardo Jiménez-Peris, and
Bettina Kemme. Consistent and scalable cache replication for multi-tier J2EE
applications. In International Middleware Conference, 2007. 25

[119] Christian Plattner and Gustavo Alonso. Ganymed: Scalable replication
for transactional web applications. In International Middleware Conference,
2004. 22

[120] Christos A. Polyzois and Hector Garcia-Molina. Evaluation of remote backup
algorithms for transaction processing systems. In International Conference
on Management of Data (SIGMOD), 1992. 32

[121] The Rackspace Open Cloud. http://www.rackspace.com/cloud/. 8

[122] Shriram Rajagopalan, Brendan Cully, Ryan O’Connor, and Andrew Warfield.
SecondSite: Disaster tolerance as a service. In Virtual Execution Environ-
ments (VEE), 2012. 42

[123] T. Rengarajan, Peter Spiro, and William Wright. High availability mecha-
nisms of VAX DBMS software. Digital Technical Journal, 1(8), 1989. 81

[124] Pedro I. Rivera-Vega, Ravi Varadarajan, and Shamkant B. Navathe. Schedul-
ing data redistribution in distributed databases. In International Conference
on Data Engineering (ICDE), 1990. 24, 101

[125] Uwe Röhm, Klemens Böhm, Hans-Jörg Schek, and Heiko Schuldt. FAS -
A freshness-sensitive coordination middleware for a cluster of OLAP compo-
nents. In International Conference on Very Large Data Bases (VLDB), 2002.
22

[126] Jerry Rolia, Artur Andrzejak, and Martin Arlitt. Automating enterprise
application placement in resource utilities. In Self-Managing Distributed Sys-
tems, volume 2867 of Lecture Notes in Computer Science. Springer, 2003.
102

137

[127] Domenico Saccà and Gio Wiederhold. Database partitioning in a cluster of
processors. In International Conference on Very Large Data Bases (VLDB),
1983. 102

[128] salesforce.com. https://www.salesforce.com/. 8

[129] Russel Sandberg, David Goldberg, Steve Kleiman, DanWalsh, and Bob Lyon.
Design and implementation of the Sun network file system. In UNIX Con-
ference, 1985. 78, 83

[130] Daniel J. Scales, Mike Nelson, and Ganesh Venkitachalam. The design and
evaluation of a practical system for fault-tolerant virtual machines. Technical
Report VMWare-RT-2010-001, VMWare, 2010. 18, 33

[131] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large
computing clusters. In Conference on File and Storage Technologies (FAST),
2002. 80, 97

[132] Database sharding whitepaper. http://www.dbshards.com/articles/database-
sharding-whitepapers/. 99

[133] Database sharding at Netlog with MySQL and PHP.
http://nl.netlog.com/go/developer/blog/blogid=3071854. 24, 99

[134] Muhammad Bilal Sheikh, Umar Farooq Minhas, Omar Zia Khan, Ashraf
Aboulnaga, Pascal Poupart, and David J. Taylor. A bayesian approach to
online performance modeling for database appliances using gaussian models.
In International Conference on Autonomic Computing (ICAC), 2011. 58

[135] Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem,
Peter Kokosielis, and Sunil Kamath. Automatic virtual machine configuration
for database workloads. In International Conference on Management of Data
(SIGMOD), 2008. 11

[136] Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem,
Peter Kokosielis, and Sunil Kamath. Automatic virtual machine configuration
for database workloads. Transactions on Database Systems (TODS), 35(1),
2010. 11, 28

[137] Gokul Soundararajan, Cristiana Amza, and Ashvin Goel. Database replica-
tion policies for dynamic content applications. In European Conference on
Computer Systems (EuroSys), 2006. 22, 24, 99, 101

[138] Benjamin Speitkamp and Martin Bichler. A mathematical programming ap-
proach for server consolidation problems in virtualized data centers. IEEE
Transactions on Services Computing (TSC), 3(4), 2010. 102

[139] Michael Stonebraker. The case for shared nothing. IEEE Data Engineering
Bulletin, 9(1), 1986. 15, 23, 76

138

[140] Rob Strom and Shaula Yemini. Optimistic recovery in distributed systems.
Transactions on Computer Systems (TOCS), 3(3), 1985. 30

[141] Teradata Database. http://www.teradata.com/t/products-and-
services/database/teradata-13/. 23, 100

[142] The R Project, 1993. http://www.r-project.org/. 59

[143] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangi-
pani: A scalable distributed file system. In Symposium on Operating Systems
Principles (SOSP), 1997. 79, 80, 81, 83, 97

[144] Robert H. Thomas. A majority consensus approach to concurrency control for
multiple copy databases. Transactions on Database Systems (TODS), 4(2),
1979. 32

[145] The TPC-C Benchmark, 1992. http://www.tpc.org/tpcc/. 42, 46, 113

[146] The TPC-H Benchmark, 1999. http://www.tpc.org/tpch/. 42, 43, 89

[147] The TPC-W Benchmark, 1999. http://www.tpc.org/tpcw/. 42, 50

[148] Patrick Valduriez. Parallel database systems: Open problems and new issues.
Distributed and Parallel Databases (DAPD), 1(2), 1993. 24, 99, 101

[149] VMware Infrastucture. http://www.vmware.com/products/vi/. 16, 19

[150] VMware. http://www.vmware.com/. 9

[151] VMware VMotion. http://www.vmware.com/files/pdf/VMware-VMotion-
DS-EN.pdf. 16

[152] VoltDB. http://voltdb.com/. 5, 100, 102

[153] Matthias Wiesmann, André Schiper, Fernando Pedone, Bettina Kemme, and
Gustavo Alonso. Database replication techniques: A three parameter classi-
fication. In Symposium on Reliable Distributed Systems (SRDS), 2000. 21,
22, 99, 101

[154] Microsoft Windows Azure. http://www.windowsazure.com/. 8

[155] Joel Wolf. The placement optimization program: A practical solution to the
disk file assignment problem. In International Conference on Measurement
and Modeling of Computer Systems, 1989. 102

[156] Xen Blktap2 Driver. http://wiki.xensource.com/xenwiki/blktap2. 41

[157] Min Xu, Rastislav Bodik, and Mark D. Hill. A “flight data recorder” for
enabling full-system multiprocessor deterministic replay. Computing Archi-
tecture News, 31(2), 2003. 32

139

[158] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J. Storm,
Christian Garcia-Arellano, and Scott Fadden. DB2 Design Advisor: Inte-
grated automatic physical database design. In International Conference on
Very Large Data Bases (VLDB), 2004. 24

140

Appendix A

Detailed Results Showing the
Effectiveness of the Elastic
Scale-out Optimizer

In this appendix, we present detailed results for the experiments that have been
presented in Section 5.5.3 with a goal to provide further insights into how our
optimizers achieve their benefits. We present these detailed results for the case
where the overall load is distributed according to a uniform (UNIF) and normal
(TNORM) distribution, and for each of the following cases: (1) scaled out system
(SCO), (2) offline optimizer (OFFLINE), (3) online optimizer (ONLINE), and (4)
greedy heuristic (GRD). For each case, we present results that show how each
approach affects load balancing by showing per host CPU utilization. We also
show how the the actual throughput and the number of nodes used vary over time.

Among all the approaches, SCO achieves the best load balance and stable
throughput, but this is because there is no elasticity, i.e., it uses the maximum
resources (4 nodes) throughout the experiment. However, these results show that
in each case, both the OFFLINE and ONLINE optimizers are able to (1) balance
load among all nodes, (2) effectively handle the offered load, and (3) minimize the
number of nodes used, when compared with SCO and GRD.

Note that the fluctuating patterns in the (instantaneous) CPU utilization and
throughput graphs for OFFLINE, ONLINE, and GRD are because of scale-out
and scale-in operations. We note that SCO, OFFLINE, ONLINE, and GRD, in
that order, provide the most to least stability, both for CPU utilization and overall
throughput. There is no data movement in case of SCO, and as shown in Sec-
tion 5.5.3, both OFFLINE and ONLINE move significantly less data as compared
to GRD and are therefore able to achieve better stability, and consequently better
performance.

141

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 2

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 3

Figure A.1: Per Host CPU Utilization (SCO, UNIF)

142

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Actual Throuhput
Offered Load

Figure A.2: Offered Load vs. Actual Throughput (SCO, UNIF)

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 N

od
es

Elapsed Time (seconds)

Figure A.3: Number of Nodes Used (SCO, UNIF)

143

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0 (primary)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 2 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 3 (scale-out)

Figure A.4: Per Host CPU Utilization (OFFLINE, UNIF)

144

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Actual Throuhput
Offered Load

Figure A.5: Offered Load vs. Actual Throughput (OFFLINE, UNIF)

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 N

od
es

Elapsed Time (seconds)

Figure A.6: Number of Nodes Used (OFFLINE, UNIF)

145

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0 (primary)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 2 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 3 (scale-out)

Figure A.7: Per Host CPU Utilization (ONLINE, UNIF)

146

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Actual Throuhput
Offered Load

Figure A.8: Offered Load vs. Actual Throughput (ONLINE, UNIF)

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 N

od
es

Elapsed Time (seconds)

Figure A.9: Number of Nodes Used (ONLINE, UNIF)

147

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0 (primary)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 2 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 3 (scale-out)

Figure A.10: Per Host CPU Utilization (GRD, UNIF)

148

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Actual Throuhput
Offered Load

Figure A.11: Offered Load vs. Actual Throughput (GRD, UNIF)

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 N

od
es

Elapsed Time (seconds)

Figure A.12: Number of Nodes Used (GRD, UNIF)

149

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 2

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 3

Figure A.13: Per Host CPU Utilization (SCO, TNORM)

150

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Actual Throuhput
Offered Load

Figure A.14: Offered Load vs. Actual Throughput (SCO, TNORM)

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 N

od
es

Elapsed Time (seconds)

Figure A.15: Number of Nodes Used (SCO, TNORM)

151

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0 (primary)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 2 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 3 (scale-out)

Figure A.16: Per Host CPU Utilization (OFFLINE, TNORM)

152

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Actual Throuhput
Offered Load

Figure A.17: Offered Load vs. Actual Throughput (OFFLINE, TNORM)

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 N

od
es

Elapsed Time (seconds)

Figure A.18: Number of Nodes Used (OFFLINE, TNORM)

153

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0 (primary)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 2 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 3 (scale-out)

Figure A.19: Per Host CPU Utilization (ONLINE, TNORM)

154

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Actual Throuhput
Offered Load

Figure A.20: Offered Load vs. Actual Throughput (ONLINE, TNORM)

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 N

od
es

Elapsed Time (seconds)

Figure A.21: Number of Nodes Used (ONLINE, TNORM)

155

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 0 (primary)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 1 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 2 (scale-out)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 U

til
iz

at
io

n
(%

)

Elapsed Time (secs)

Host 3 (scale-out)

Figure A.22: Per Host CPU Utilization (GRD, TNORM)

156

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

Elapsed Time (seconds)

Actual Throuhput
Offered Load

Figure A.23: Offered Load vs. Actual Throughput (GRD, TNORM)

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 N

od
es

Elapsed Time (seconds)

Figure A.24: Number of Nodes Used (GRD, TNORM)

157

	Contents
	List of Tables
	List of Figures
	Introduction
	High Availability
	Elastic Scalability
	Challenges of Deploying Database Systems in the Cloud
	Cloud Storage Systems
	Database as a Service
	About this Thesis
	Organization

	Background
	Cloud Computing
	Virtualization
	Virtualization and Cloud Computing
	Deploying Database Systems in the Cloud

	Building Highly Available Database Systems
	High Availability Through Hardware
	High Availability for Database Systems
	High Availability Through Virtualization
	Our Approach to High Availability for Database Systems

	Scaling Database Systems
	Replication
	Data Partitioning
	Caching
	Data Sharing
	Our Approach to Elastic Scale-out for Database Systems

	RemusDB: Transparent High Availability for Database Systems
	Background and System Overview
	Related Work
	System Design
	Memory Optimizations
	Sending Less Data
	Protecting Less Memory

	Commit Protection
	Correctness of Commit Protection
	Implementation of Protection and Deprotection

	Reprotection After Failure
	Experimental Evaluation
	Experimental Environment
	Behavior of RemusDB During Failover
	Reprotection After a Failure
	Overhead During Normal Operation
	Effects of DB Buffer Pool Size
	Effects of RemusDB Checkpoint Interval
	Effect of Database Size on RemusDB

	Modeling RemusDB's Behavior for Effective Resource Scheduling
	Collecting Training Data
	Modeling Network Bandwidth Utilization
	Modeling Performance Degradation

	Summary

	Chimera: Elastic Scale-out Through Data Sharing
	Introduction
	Different Database Architectures
	Overview of Chimera

	DBMS Architectures
	The Two Architectures
	Concurrency Control
	Recovery

	Simplified Data Sharing
	File-system Access
	Distributed Locking
	Distributed Buffer Management
	Logging and Recovery

	Implementation
	Stored Procedure
	Enhanced Buffer Manager
	Global Lock Manager
	Recovery Issues

	Experimental Evaluation
	Experimental Goals
	Experimental Setup
	Scalability
	Remote Execution Overhead
	Prototype Overhead
	Cost of Updates
	Cost of Reads with Updates

	Related Work
	Summary

	Elastic Scale-out for Partition-Based Database Systems
	Related Work
	Overview of VoltDB
	Enabling Elastic Scale-out with VoltDB
	Growing the Size of the Cluster
	Moving Database Partitions Between Nodes

	Partition Placement in an Elastically Scalable DBMS
	Problem Definition
	Problem Formulation for the Offline Optimizer
	Problem Formulation for the Online Optimizer

	Experimental Evaluation
	Experimental Setup
	Demonstrating Elastic Scale-out and Scale-in
	Effectiveness of Optimal Partition Placement
	Scalability of the Optimizers

	Summary

	Conclusion
	References
	Appendix

