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Abstract 

Deep Brain Stimulation (DBS) is a developing therapeutic technique with a high potential to control 

and treat central nervous system diseases through neuromodulation. DBS utilizes through implanted 

electrodes that are inserted in the targeted brain structure. Being an emerging technology; 

neuromodulation introduces many challenges that are not yet comprehensively identified, 

characterized and resolved. The advancement of this technique requires qualitative and quantitative 

perception of the brain response to electrical stimulation which is controlled by the electric field 

distribution within the brain tissue. This can be realized by formulating the tissue-field interaction 

such that we will have a better understanding of the spatial extent and the direct effects of deep 

brain stimulation (DBS) on neurons activity. The focus of this research is to develop a model for 

encoding and decoding the neuron activity in the DBS region and to address all the parameters that 

affect this activity in order to have a complete understanding of the DBS problem and to develop a 

brain model that can be readily used in DBS analysis. Our goal is to study the immediate direct 

effects of the stimulating field and examine where the beneficial effects of DBS originate since the 

mechanism of DBS is not yet fully understand and hence an inclusive comprehensive performance 

study will be done for the DBS problem. 
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Chapter 1                                                                                   

Introduction 

1.1 Introduction to Deep Brain Stimulation (DBS) 

Deep brain stimulation (DBS) is one of the fastest developing fields within the neurological 

specialties. Even though this technique emerged only 20 years ago and had its real breakthrough 

as a clinical therapy around the millennium, more than 50,000 patients have already been treated 

with this therapy [1]. 

 DBS has provided dramatic clinical benefit for several central nervous system disorders 

including Parkinson's disease (PD), essential tremor (ET) and torsion dystonia [2], which regular 

surgical and chemical therapies fail to treat. Placement of electrical stimulating electrodes in the 

region of the ventral intermediate nucleus of the thalamus (VIM) without purposefully 

destroying the brain, can markedly reduce tremor in these conditions, and stimulation of either 

the subthalamic nucleus (STN) or the internal segment of the globus pallidus (GPi) may not only 

reduce tremor, but also decrease bradykinesia which plague people with PD [1, 2]. 

 DBS works with electrical stimulation of the central, peripheral and autonomic nervous 

systems which is currently a standard clinical practice for treating and investigating several 

diseases [3]. This electrical stimulation is a form of functional electrical stimulation (FES) which 

is employed in developing electrotherapeutic techniques. The electrical stimulation is adjustable 

and can be changed as the person's disease changes or his or her response to medications change. 

No further surgery is necessary to make the adjustments. 

In 1997, stimulation of the thalamus was approved by the FDA for the treatment of 

movement disorders and it was implemented in many patients using electrodes and stimulators 

supplied by Medtronic [4, 14]. In addition, a number of adverse effects can be generated by DBS 

including sensory motor impairments, involuntary movements (stimulation-induced dyskinesias), 

as well as speech, mood, and cognitive disturbances [5]. Often these side effects can be avoided 

or alleviated with proper adjustment of the stimulation settings [6]. 
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 Being an emerging technology; DBS introduces many challenges that are not yet 

comprehensively identified, characterized and resolved and is still being experimented and 

developed in order to be presented as a standard medical care [4]. It has the potential to provide 

substantial benefit for a variety of neuropsychiatric conditions. Despite the marked clinical 

benefit, we still have much to learn about the mechanism of action of DBS.  

The convincing clinical efficacy achieved by the DBS has occurred without a clear 

understanding of the therapeutic mechanism of the action, although different hypotheses 

involving neuronal excitation and inhibition have been discussed [7]. One fundamental step 

towards a deeper comprehension and a proper use of DBS in evoking neural responses is to 

characterize the electric potential, the electric field, and the activating function generated inside 

the brain [8]. 

1.2 Motivation 

There are many important issues to be addressed when considering deep brain stimulation. It is a 

reversible technique that is currently used for the treatment of PD and may be suitable for the 

treatment of psychiatric disorders. Whether DBS inactivates the target structure is still a matter 

of debate, this will give us the motivation to work in modeling these electrotherapeutic 

techniques.  

Nevertheless, neither the mechanism of action for DBS nor the neurophysiology of the PD 

state is characterized [9]. As a result, it is not known a priori which DBS waveform will be most 

effective and the standard DBS parameters (e.g., the frequency, duration, and amplitude of a 

square-wave pulse train) typically must be hand-tuned by neurologists, this is always done after 

many trials. 

 The advancement of these electrotherapeutic techniques requires qualitative and 

quantitative perception of the brain neuron response to the electrical stimulation. This response is 

controlled by the electric field distribution within the brain tissue that can be realized by 

formulating models to this tissue-field interaction. 
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 This field interaction generates an excitatory effect on the neurons and axons that are 

surrounded by the electrical field, the time dependent voltage distribution caused by this 

electrical field inside the brain tissue becomes as an input to those axons and neurons. Since it is 

very difficult to measure the effects of stimulation parameters of the neuron level, this will also 

be a motivation in the development of simulation models for implanted DBS electrodes in order 

to estimate the electric field distribution in the ambient brain tissue induced by deep brain 

stimulation patterns.  

1.3 Research Objective 

This research endeavor focuses on the modeling and decoding of neural activity inside the STN 

or globus pallidus pars interna (GPi) of the basal ganglia [10]. The fundamental goal of this 

research is to enhance our understanding of the target neural elements of the stimulation through 

models as well as providing an introduction to the investigational field of DBS. 

In order to achieve our goals, we will propose a model that we named the DBS model. It 

will develop an understanding of the dependence of electric field distribution within brain tissue, 

and its associated volume of tissue activated (VTA) on the different parameters that configure 

the DBS technique. Our DBS model will study the immediate effects of the DBS stimulating 

field and will examine where the beneficial effects of DBS originate since the mechanism of 

DBS is not yet fully understood.  

We will quantitatively evaluate the neural response to the deep brain stimulation 

parameters (Pulse amplitude, width and frequency), we will develop a brain neuron model that 

can be readily used in DBS analysis; also, we will study the effect of these stimulation 

parameters on neural firing activity. The different parameters will be mapped into mathematical 

functions to create a quantitative formulation for predicting the field distribution within brain 

tissue and estimating the volume of tissue activated (VTA).  

The effect of the brain medium properties on our DBS model will be studied, This includes 

several tissue dielectric properties that take into consideration the homogeneous medium 

surrounding the DBS electrode; also we will address the isotropic and anisotropic neural tissue 

surrounding the DBS electrode which can in turn affect the neural polarization [11].  
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Neuron cell and axon modeling with a different population will also be taken into 

consideration to have a complete field interaction. Another important goal of this research is to 

develop an appropriate algorithm for encoding and decoding the neural activity in the DBS 

region and to address all the parameters that affect this activity.  

The research major goals and objectives were successfully fulfilled and accomplished.  

1.4 Thesis Outline 

The first chapter of this thesis represents a brief introduction highlighting DBS and the role of 

neuromodulation as a medical procedure and outlines the objectives of the proposed research.  

Chapter two provides a survey of DBS history and definitions explaining its advantages and 

disadvantages as well as DBS electrode configurations and safety. The survey also outlines 

neuron models used and a comparison between them and explains the neuron activity terms used 

in modeling. In addition, it demonstrates current complete models of the STN. Chapter three 

provides the detailed proposed plan of our DBS system. Chapter four discusses the 

electromagnetic modeling and simulation of the implanted electrodes using finite difference time 

domain (FDTD). Finite element method (FEM) was considered in modeling the Medtronic DBS 

electrode to solve for the electric field and the voltage distribution to calculate the neuron 

activating function as been represented in chapter five. Chapter six discusses neuron simulations 

and modeling that validates our proposed DBS system. Finally, the thesis is concluded and future 

work is presented in chapter seven. 
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Chapter 2                                                                                        

Literature Survey 

In this chapter, we will survey the state of the art in DBS mechanism and the various biological 

neuron models that represent the action potential. We will identify the compartment model 

details for the STN regions in which DBS electrodes are implanted. 

2.1 History of Deep Brain Stimulation 

In the early 1950s, doctors found that lesioning, or destroying, specific areas within the brain 

could help treat certain movement disorders [12]. When areas of the brain involved in the 

disorder were lesioned, the symptoms often improved.  Unfortunately, lesioning surgery was not 

an ideal solution. They weren't always effective in reducing negative symptoms, and sometimes 

they resulted in damaging side effects. One of the main problems with lesioning surgeries is that 

lesioned brain structure is permanently destroyed. As a result, unwanted side effects are usually 

irreversible. 

In the 1970s a new drug therapy for movement disorders was introduced to control some of 

the same types of symptoms as lesioning, but without risky brain surgery [4]. Drug therapy 

quickly began to replace lesioning surgeries, after many years, however, long-term drug therapy 

was found to cause new problems. The brain eventually compensates for the effects of the drugs. 

The result was often serious. Patients were developing new movement control problems that 

were considered worse than the original symptoms. 

Then, in the late 1980s, a new discovery was made. Experts found that the same effects 

caused by lesioning brain tissue could be achieved by stimulating the tissue with harmless pulses 

of electricity [4, 9]. This was an exciting find, because the effects of electrical stimulation are 

completely reversible. In fact, when the stimulation is turned off, the brain resumes its normal 

behavior. Similar to drug treatments, doctors could tailor the electrical stimulation to fit the exact 

needs of each patient. Unlike drug treatments, the electrical stimulation could be localized so that 

only intended parts of the brain were affected. 
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Treatments with deep brain stimulation (DBS) were used on an experimental basis for 

several years [9, 13]. In 2002, the use of DBS for conditions such as Parkinson's disease was 

approved by the Food and Drug Administration (FDA). DBS remains the standard treatment for 

several brain disorders similar to, and including, Parkinson's. 

2.2 How Does DBS Work?  

Deep Brain Stimulation (DBS) involves implanting electrodes, thin wires, in some deep nuclei of 

the brain as shown in Figure ‎2-1. These electrodes are connected to a pace-maker placed under 

the skin. The pace-maker is set to send regular electrical pulses to the brain. This procedure aims 

at improving the patients' life by reducing the severity of their symptoms. This procedure is most 

frequently used to treat three conditions at present, Parkinson's disease, tremor and dystonia. 

After surgery patients need to be followed regularly. Today the treatment of Parkinson's disease 

using Deep Brain Stimulation is used world-wide. Current estimates are that more than 50,000 

patients with movement disorders have been treated [13]. 

 

Figure ‎2-1 DBS electrode implantation [4] 

DBS offers adjustable electrical stimulation patterns, whereas surgical destruction does 

not. The electrode has four metal contacts (Medtronic Electrode [14]) that can be used in many 

different combinations. Even if one electrode contact is not in the exact location, it is likely that 

one of the others or some combination of electrical contacts will be closer to the proper target. 

As the patient's response to surgery changes over time, the stimulation can be adjusted without 

the necessity of a repeat operation. The electrode that is implanted in the brain, and the electrical 
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systems that provide stimulation, are tolerated with no significant changes in brain tissue 

surrounding the electrodes  

Although it is known that DBS suppresses activity in the overactive STN of Parkinson's 

patients and the Globus Pallidus Interna (GPi) in Dystonia patients as shown in Figure ‎2-2, more 

research is still needed to understand the action of DBS. The mechanism by which DBS 

produces clinical benefit remains uncertain and there is definitely need for more research [15].  

 

 

Figure ‎2-2 DBS activity in STN of Parkinson's disease [18] 

Several types of neuronal behaviors that may be induced by STN stimulation are not 

clearly understood. Neurons can be affected directly by the stimulating field or can be indirectly 

affected by the trans-synoptically in the neuronal network. A key issue is to understand the 

mechanisms of DBS in order to determine which brain regions are directly affected by the 

electric stimulus and whether the target nucleus or other regions are affected or not. Indirect 

effects will then originate from these directly affected regions of the brain. 

2.3 Conditions Treatable by DBS  

 Parkinson's disease , Dystonia and Tremor  

FDA approves thalamic DBS in 1997 for Parkinson’s‎disease (PD) and Essential Tremor. 

In 2002 the use of DBS was expanded to treat other movement disorders (e.g., dystonia) [15]. 
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2.3.1 Parkinson's Disease 

Parkinson's is a progressive neurological condition affecting movements such as walking, 

talking, and writing. It is named after Dr James Parkinson (1755-1824) [16], the London doctor 

who first identified Parkinson's as a specific condition.  

2.3.2  Dystonia  

Dystonia is the term used to describe a condition dominated by involuntary sustained muscle 

spasms [4, 13, 15]. These spasms can affect various parts of the body and cause abnormal 

movements and postures, and can be extremely painful.  The condition is thought to be caused by 

a malfunction of the central nervous system, probably in those parts of the brain called the basal 

ganglia. There is some evidence that there may be a malfunction in the way 'sensory' signals are 

interpreted in the brain, and how 'motor' signals are instigated. 

2.3.3 Essential Tremor  

Essential tremor is a common movement disorder that usually affects the head, chin, outstretched 

hands or voice. This disease causes tremor that is disabling in some. The cause of essential 

tremor is unknown, although it does run in some families [15].  

2.4 DBS Advantages and Disadvantages 

DBS has many advantages which can be summarized as follows: 

 It‎doesn't‎destroy‎brain‎tissue‎and‎“won't”‎limit‎future‎treatment.‎ 

 The device can be removed at any time.  

 It is adjustable. 

 It is more effective than other operations in controlling tremors. 

While its disadvantages are listed below  

 Risks of chronically implanted device: infection, movement over time, erosion through 

skin 

 Finite battery life of generator 
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 Device malfunction 

 Time/staff investment for programming 

 Cost  

2.5 DBS Electrode Configuration 

The usual process in DBS is to keep the electrode configuration the same while a series of 

voltages, frequencies and pulse widths are manipulated in order to control the spatial distribution 

of the electrical field. Neuronal elements further from the active DBS contact will experience a 

lower voltage than those elements closer to the active DBS contact. Thus, the spread of the 

electrical field can be controlled by scheming the stimulating voltage [17].  

Fortunately, there are otherways to change the shape, size and strength of the electrical 

fields by changing the configuration of the active contacts. A monopolar configuration has a 

cathode (negative contact) on the DBS lead, and the impulse generator acts as the anode (positive 

contact) as shown in Figure ‎2-3, other configuration include bipolar and tripolar. The voltage in 

the monoploar falls off by the radius       where r is equal to the distance from the cathode. 

In bipolar the voltage drops by         while in the tripolar the voltage drops by        

 

 

 

 

 

 

 

 

 

 

Figure ‎2-3 A few of many possible electrode configurations 
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In Table ‎2-1 the relative advantages and disadvantages of various DBS lead active contact 

configurations have been introduced. 

Table ‎2-1 Advantages and disadvantages of various DBS lead active contact configuration 

Configuration Advantages Disadvantages 

Monopolar 

 Produces the widest spread 

of the electrical field at the 

same relative voltages. 

 More effective if large 

volumes of brain need to be 

activated. 

 Wider spread increases risk 

of activation of unintended 

neuronal elements. 

 Tends to require higher 

stimulation voltages and 

consequently could increase 

the drain from the battery. 

Bipolar 

 Produce a more intense 

electrical field at the same 

relative voltages. 

 May be an advantage if 

DBS lead is near 

unintended neuronal 

elements. 

 Produce the least spread of 

the electrical field at the same 

relative voltages. 

 Least effective if large 

volume of brain or more 

neuronal elements within the 

target volume need to be 

activated. 

2.6 DBS Active Contact Configuration and Safety 

Since different active contact configurations can have an impact on the electrical voltage field, 

the different configuration can also have a marked impact on the amount of electrical energy 

dumped into the brain, which has safety consequences. There is a limit to how much electrical 

energy can be safely given, and that is                [17]. This value refers to the amount 

of electrons (ions) passed into the brain with each stimulation pulse, where the per     refers to 

the surface area of the active contact and the per Phase refers to one component of the 

stimulation pulse as shown in Figure ‎2-4. 
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In Figure ‎2-4 the description of contact being cathode (negative) or anode (positive) is a 

misleading term. All contacts are cathode during the first phase and then anode during the second 

phase or vise verse. This is because the stimulation pulse is bi-phasic; it contains two phases 

where the polarity (negative and positive) reveres. 

 

 

Figure ‎2-4 Schematic representation of stimulus pulse [17] 

Actually, the amount of energy injected into the brain with each stimulation pulse is not 

directly controlled. Rather, the voltage level is controlled, which is indirectly related to the 

amount of energy injected into the brain for a given time. Since the current and voltage are 

related with Ohm’s‎ law‎ through‎ the‎ impedance,‎ thus,‎ if‎ the‎ voltage‎ is‎ kept‎ constant‎ but‎ the‎

impedance is reduced, then there will be an increase in the current being delivered to the brain.  

So changing the DBS active contact will have an effect on the impedance, i.e. for a single contact 

the impedance is very high relative to multiple active contacts as shown in Figure ‎2-5. So that 

there will be an increase in the current and the charge being delivered to the brain. Hence, it is 

very important to know the impedance of DBS active contacts to assure that the amount of 

current is within the safety limit. [17].  

However, another aspect of DBS electrical safety has to do with charge balanced biphasic 

stimulation pulses shown in Figure ‎2-6. If more electrical charge is passed into the brain by the 

cathodal (negative) current than is taken out by the anodal (positive) current then there will be a 
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buildup of electrical charge on the DBS contact, this residual electrical charge can cause 

chemical reactions at the DBS contact surface that can be dangerous for the tissue so that 

Biphasic current pulses are commonly used because the cathodal and anodal phases are charge-

balanced yielding zero net charge [17]. 

 

 

Figure ‎2-5 Analogy describes how multiple active contacts can lower the impedance [17] 

 

 

Figure ‎2-6 A schematic representation of the deposition and removal of electrical charge by the first 

and second phases [17] 
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2.7 Introduction to Neuronal System  

2.7.1 Elements of Neuronal Systems 

It is claimed that the human central nervous system is comprised of about 1.3x10
10

 neurons and 

about 1x10
10

 neurons are located in the brain. Some of these neurons are firing and the power 

dissipation due to this electrical activity is estimated to be about 10 Watts, even when asleep, 

5x10
7
 nerve impulses per second are being relayed back and forth between the brain and other 

parts of the body. This rate is increased significantly when awake [19]. 

Neurons are the elementary processing units in the nervous system.  A small portion of this 

neural network is shown in Figure ‎2-7 by Ramón y Cajal who is one of the pioneers of 

neuroscience around 1900 [20]. Beside these neurons there are a large number of supporter cells 

called Glial-cells which are non-neuronal cells and constitute the support for neurons which 

provides physical support, nutrition, protection and insulations of neurons.  

 

Figure ‎2-7 Neurons in the mammalian cortex representing cells, dendrites, and axons [20] 

Neurons are responsible for processing and transmitting signals and constitute the 

building elements of the nervous system. According to function, neurons can be classified as 

shown in Figure ‎2-8. 

 Sensory neurons (which provide inputs from sensory organs to the brain 

and spinal cord) 
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 Interneurons (carry information between other neurons only found in the 

brain and spinal cord.  

 Motor neurons (which provide output from the brain and spinal cord to 

muscles and glands.  

 

Figure ‎2-8 Neuron classification in the brain [21] 

2.7.2 The Ideal Neuron 

There are many different types of neurons but most of them have certain structural and 

functional characteristics in common. A typical neuron can be divided into three functionally 

distinct parts; dendrites, soma, and axon as shown in Figure ‎2-9. The dendrites which branch 

from the body of the neuron act as input devices which collect signals from other neurons and 

transmit them to the soma, the soma containing the nucleus which represents the cell body where an 

important nonlinear processing takes part. If the total input exceeds a certain threshold, then an 

output signal is generated inside the neuron which is taken by a communication means named 

the axon. The axon is long and fine fiber that corresponds the signals with other neurons, at the 

axon ends it separates making several branches called synapses which are the junctions that 

transmit signals from one neuron to another. It is common to refer to the sending neuron as the 

pre-synaptic cell and to the receiving neuron as the post-synaptic cell.  

Axons are generally enclosed by a myelin sheath that is made of many wrappings of lipid 

as in Figure ‎2-9 which: Protects the axon and electrically isolates it from the extracellular fluid 

and increases the rate of action potential transmission. The speed of propagation down the axon 
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depends on the thickness of the myelin sheath. The myelin sheath is interrupted at regular 

intervals by narrow gaps called nodes of Ranvier [21]. Since the axons themselves are poor 

conductors, the action potential is transmitted as depolarization occurs at the nodes of Ranvier. 

The action potential effectively jumps from one node to another in a way like a regeneration 

amplifier to compensate for losses. 

 

Figure ‎2-9 A schematic representation of a motor neuron structure neuron indicating its detailed 

structure and how neurons are connected through Synapses [21] 

The nodes are the gaps between myelin segments that are referred to as internodes. The 

size and spacing of the internodes vary with the fiber diameter. The size of the nodes span from 

1-2 µm whereas the internodes can be a couple millimeters or more, depending on the axon 

diameter and fiber type [23]. 

The place where the axon of a pre-synaptic neuron makes contact with a dendrite (or soma) 

of a postsynaptic cell is a synapse [22]. The most common is a chemical synapse as shown in 

Figure ‎2-10. At a chemical synapse, the axon terminal comes very close to the postsynaptic 

neuron, leaving only a tiny gap between pre- and postsynaptic cell membrane, called the synaptic 
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cleft. When an action potential arrives at a synapse, it triggers a complex chain of bio-chemical 

processing steps that lead to a release of neurotransmitter from the pre-synaptic terminal into the 

synaptic cleft. As soon as the transmitter molecules have reached the postsynaptic side, they will 

be detected by specialized receptors in the postsynaptic cell membrane and open channels so that 

ions from the extracellular fluid flow into the cell transferring the chemical signal into an 

electrical current response again.  

 

Figure ‎2-10 Chemical synapse structure [22] 

2.8 Threshold and Action Potential 

The neuronal signals consist of short electrical pulses called action potentials or spikes. It 

has amplitude of about 60-100 mV and typically duration of 1-2 ms., the form of the pulse does 

not change as the action potential propagates along the axon. Since all spikes of a given neuron 

are the same, the form of the action potential does not carry any information but the number and 

the timing of spikes matter.  

The effect of a spike on the postsynaptic neuron can be recorded which measures the 

potential difference between the interior of the cell and its surroundings. This potential difference 

is called the membrane potential. Without any spike input, the neuron is at rest corresponding to 

a constant membrane potential. After the arrival of a spike, the potential changes and finally 

decays back to the resting potential as shown in Figure ‎2-11. It is impossible to excite a second 
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spike during or immediately after a first one [22, 23]. The minimal distance between two spikes 

defines the absolute refractory period of the neuron 

 

Figure ‎2-11 Action potential pulse levels and phases 

If the change is positive, the synapse is said to be excitatory. If the change is negative, the 

synapse is inhibitory. At rest, the cell membrane has already a strong negative polarization of 

about -70mV. An input at an excitatory synapse reduces the negative polarization of the 

membrane and is therefore called depolarizing. An input that increases the negative polarization 

of the membrane even further is called hyperpolarizing. 

2.8.1 Equilibrium Potential 

The cell membrane consists of a thin bilayer of lipids and is a nearly perfect electrical insulator. 

Embedded in the cell membrane are, however, specific proteins which act as ion gates. A first 

type of gate is the ion pumps, a second one are ion channels. Ion pumps actively transport ions 

from one side to the other as shown in Figure ‎2-12. As a result, ion concentrations in the intra-

cellular liquid differ from that of the surrounding. 

 While the sodium ions are continually removed from the intracellular fluid to 

extracellular fluid, the potassium ions are absorbed from the extracellular fluid in order to 

maintain an equilibrium condition [23]. Due to the difference in the ion concentrations inside and 

outside, the cell membrane becomes polarized. This difference in concentration generates an 

Action Potential 

Repolarization 

Resting state 

Refractory 
period 

Depolarization 

Threshold 

Stimulus 

Failed 

initiations 

  0        1         2         3         4         5 
Time (ms) 

 V
o

lt
ag

e 
(m

V
) 

 -7
0

   
-5

5
   

   
   

   
   

0
   

   
   

   
  +

4
0

  



18 
 

electrical potential which plays an important role in neuronal dynamics. In equilibrium the 

interior of the cell is observed to be 70 mV negative with respect to the outside of the cell which 

is called the resting potential. 

 

Figure ‎2-12 The cell membrane structure of the neuron cell [24] 

2.8.2 Nernst Potential 

It is known that the probability that a molecule takes a state of energy   is proportional to the 

Boltzmann factor k and the temperature T by the given equation: 

           
                                                                                   

At thermal equilibrium, positive ions in an electric field will be distributed so that fewer 

ions are in a state of high energy and more at low energy. Thus a voltage difference generates a 

gradient in concentration.  Similarly, a difference in ion concentration generates an electrical 

potential. The concentration n1 inside the neuron is different from the concentration n2 outside 

the neuron. The resulting potential is called the Nernst-potential [25] that is given by: 
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2.8.3 Reversal Potential 

The sodium concentration inside the cell (  60mM/l) is lower than that in the extracellular liquid 

(  440mM/l). On the other hand, the potassium concentration inside is higher (  400mM/l) than 

in the surrounding (  20mM/l) [23]. At equilibrium the difference in concentration causes a 

Nernst potential           . If the voltage difference   is smaller than the value of the 

Nernst potential     more Na
+
 ions flow into the cell so as to decrease the concentration 

difference. If the voltage is larger than the Nernst potential ions would flow out the cell. Thus the 

direction of the current is reversed when the voltage V is greater than    . While in potassium 

         . It is found experimentally that the resting potential (  ) of the membrane is 

about -70 millivolts. Since    <    <    , potassium ions will, at the resting potential, flow out 

of the cell while sodium ions flow into the cell.  

If VM reaches threshold, Na
+
 channels open and Na

+
 influx ensues, depolarizing the cell 

and causing VM to increase.  This is the rising phase of an Action Potential as shown in Figure 

‎2-13 [21]. Eventually, the Na
+
 channel will be inactivated and the K

+
 channels will be open.  

Now, K
+
 effluxes and repolarization occurs.  This is the falling phase of the curve.   Since K

+
 

channels are slow to open and slow to close, this causes the VM to take a brief dip below resting 

VM.  This dip is the undershoot and it is an example of hyperpolarization.  

 

Figure ‎2-13 Action potential phases indicating depolarization, repolarization and hyperpolarization 

of the neuron cell [21] 
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2.9 Neuron Models Responses 

There are various mathematical models that have been developed for biological neuron. These 

models are basically representing neural behavior in terms of membrane potential and action 

potential. While there is a tradeoff between detail and speed, Modeling always entails a balance 

between level of abstraction and computational tractability. A review of 8 of the most prominent 

features of biological spiking neurons has been introduced [26]. Table ‎2-2 introduces the spiking 

behavior of neurons in response to simple pulses of dc current.  

Table ‎2-2 A review of 8 of the most biological spiking neurons responses [26] 

Spiking Response Definition  

 Tonic spiking - periodic spikes in response 

to a step in input current 

 Phasic spiking - single spike in response to 

a step in input current 

 Tonic bursting - periodic bursts of spikes 

in response to a step in input current 

 Phasic bursting - single burst of spikes in 

response to a step in input current step in 

input current 

 

 Input dc-current 
20 ms 
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 Mixed mode - initial burst followed by 

periodic spiking 

 Spike frequency adaptation - spike 

frequency decreases over time 

 Class 1 excitable - fire at low (above 

threshold) current and spike frequency is 

proportional to current 

 Class 2 excitable - requires higher current 

to fire, then fires at constant, moderate 

Frequency 

No model can exhibit all of these response patterns with a single set of parameters; 
however, it is possible to achieve all of these behaviors using different parameter settings.  

2.10 Detailed Neuron Models 

Detailed neuron models can produce electrophysiological measurements to a high accuracy, but 

because of their complexity these models are difficult to analyze. For this reason, simple spiking 

neuron models are famous in neural coding. In this section we will discuss two of the most 

popular models of neuronal firing.  

2.10.1 Leaky Integrate-and-Fire Model (LIF) 

The leaky integrate-and-fire neuron (LIF) [27] is a well-known example of a spiking neuron 

model. The basic circuit of an integrate-and-fire model consists of a capacitor C in parallel with a 

resistor R driven by a current I(t) as shown in Figure ‎2-14.  
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Figure ‎2-14 LIF neuron model [24] 

The bilipid cell membrane acts like a capacitor, separating ions inside and outside the 

membrane; there is a passive flow of ions through the cell membrane ion channels that results in 

a‎‘leak’‎current.‎Neurons are firing spikes when the soma voltage passes a threshold. The spike 

cannot be repeated even with very high input for a short period (2ms) after a spike (absolute 

refractory period). 

2.10.1.1 Derivation of the LIF Model 

The LIF neuron is a passive RC circuit coupled to an active spike,     , generator. The capacitor 

is the cell membrane. The current across the membrane (soma) can be found by: 

                                                         (2.3) 

Where      
  

  
         and                    

   accounts for this passive leak of charge across the membrane.    is the current representing the 

input to the model resulting from all of the postsynaptic currents (PSCs) generated at the 

dendrites. It is comprised of two distinct components, the bias or background current, J
bias

, and 

the drive current, Jd. Then, 

        
     

                                 (2.4) 

  
       

   
                                   (2.5) 

Where        

V 

JR 

 

JM 

JC 
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Once V crosses the neuron threshold, Vth, the gate denoted by     
 closes and a delta 

function,      , spike is generated. By short-circuiting the capacitor and resistor, the gate sets 

the potential across the membrane to zero (i.e., the assumed resting potential) since there is no 

way for a difference in charge to build up. This gate stays closed for a length of time,     , equal 

to the absolute refractory period of the neuron as shown in Figure ‎2-15 [24]. 

 

Figure ‎2-15 LIF spike response [24] 

Evaluating the integral by assuming that the input current, JM, is constant. This will give 

the firing rate as a function of the input current [24], Figure ‎2-16.  

       
 

              
     

  
 
                                (2.6) 

 

Figure ‎2-16 Firing rate of LIF model for a constant input current 
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The LIF neuron is a good model to use as a standard because of the following reasons: 

 It is simple. 

 It produces spikes. 

 It is known to be a limiting case of more complex models. 

While weaknesses of this model are: 

 They are point neurons (i.e., no spatial extent; no dendrites, no axon, etc) 

 Different ion conductances inside the neurons are not modeled. 

 This model has many physiologically unrealistic assumptions such as R is constant, JM  is 

static, Vth is static, no adaptation, etc. 

2.10.2 Hodgkin-Huxley Model 

Hodgkin and Huxley [28] performed experiments on the giant axon of the squid and found three 

different types of ion currents; sodium, potassium, and a leak current that consists mainly of Cl
-
 

ions. Specific voltage dependent ion channels, one for sodium and another one for potassium, 

control the flow of those ions through the cell membrane. The Hodgkin-Huxley model as shown 

in Figure ‎2-17 represents the cell membrane as a capacitor. The Nernst potential generated by the 

difference in ion concentration is represented by a battery for each ion type. 

RNa C
RkR

ENaEkE

 

Figure ‎2-17 Schematic diagram for the Hodgkin-Huxley model 
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The current I(t) may be split in a capacitive current IC which charges the capacitor C and 

further components Ik which pass through the ion channels. There are only three types of 

channel: a sodium channel with index Na, a potassium channel with index K and an unspecific 

leakage channel with resistance R. The sum over all ion channels is given by [28]: 

                                                 (2.7) 

In Hodgkin-Huxley model All channels may be characterized by their resistance or, 

equivalently, by their conductance. The leakage channel is described by a voltage-independent 

conductance gL = 1/R; the conductance of the other ion channels is voltage and time dependent. If 

all channels are open, they transmit currents with a maximum conductance gNa or gK, 

respectively. Normally, however, some of the channels are blocked. The probability that a 

channel is open is described by additional variables m, n, and h [28]. 

The combined action of m and h controls the Na+ channels. The K+ gates are controlled 

by n. specifically; Hodgkin and Huxley formulated the three current components as [28]: 

                                                      (2.8) 

where the parameters VNa, VK, and VL are the reversal potentials. Reversal potentials and 

conductances are empirical parameters listed in Table ‎2-3. 

Table ‎2-3 The parameters of the Hodgkin-Huxley equations [23] 

        

Na 50mV 120 mS/Cm2 

K -77mV 36 mS/Cm2 

L -54.4mV 0.3 mS/Cm2 

The three variables m, n, and h are called gating variables; m and n variables are to activate 

and h is the inactivation variable. They evolve according to the equations [28]: 

  

  
                            (2.9) 

  

  
                                 (2.10) 
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                                (2.11) 

Where the values of         are empirical given by Table ‎2-4. 

Table ‎2-4 Values of         parameters of the Hodgkin-Huxley equations [23] 

                    

                                               

                                            

                  1/               

The three equations (2.9-2.11) are always rewritten in the form [23] 

  

  
  

 

     
                              (2.12) 

where x stands for m, n, or h. For fixed voltage V, the variable x approaches the value x0(V) 

with a time constant   (V) [23]. The asymptotic value x0(V) and the time constant   (V) are given 

by equations 2.13 and 2.14 [28] and plotted in Figure ‎2-18 [23]. 

      
     

             
                          (2.13) 

And 

      
 

             
                           (2.14) 

 

 

Figure ‎2-18 The asymptotic value x0(V) and the time constant   (V) for the three variables m, n, h 

in the Hodgkin-Huxley model.  
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2.10.2.1 Advantages and Weakness of HH Model 

The Hodgkin–Huxley model is one of the most important models in computational neuroscience. 

It consists of four equations and many parameters, describing membrane potential, activation of 

Na and K currents, and inactivation of Na current. It can actually exhibit all properties in Table 

‎2-2. Such a model is important because their parameters are biophysically meaningful. The 

model is extremely expensive to implement. It takes large numbers of floating points relative to 

simple models. Thus, one can use the Hodgkin–Huxley formalism only to simulate a small 

number of neurons or when simulation time is not an issue [26]. 

2.11 Ion Channels 

The equations of the Hodgkin and Huxley provide a good description of the spike generated by 

sodium and potassium ion channels. In Cortical neurons, there is a much richer range of electro-

physiological properties than the squid axon studied by Hodgkin and Huxley. These properties 

are mostly due to a large variety of different ion channels [29, 30]. 

2.11.1 Sodium Channels 

Apart from fast sodium ion channels, which are qualitatively similar to those of the Hodgkin-

Huxley model and denoted by INa, some neurons contain a non-inactivating sodium current INaP 

[29, 30]. Non-inactivating means it is described by an activation variable m only and does not 

have a separate inactivation variable h given by: 

                            (2.15) 

2.11.2 Potassium Channels 

Various neurons have more than just one type of potassium channel. In STN neurons, two 

different types of potassium channels are present, a rapidly inactivating potassium current IK 

(inactivation time constant    10 ms) and a slowly inactivating potassium current IK2 (time 

constant     200...2000 ms) [31]. 
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2.11.3 Low-Threshold and High-Threshold Calcium Current 

Many central neurons contain also channels for calcium ions. Calcium currents are described in 

terms of a maximum permeability times a combination of activation m and inactivation h 

variables.  Neurons of the deep cerebella nuclei, for example, contain two different types of 

calcium channels that give rise to a so-called high-threshold calcium current (IL) and a low-

threshold calcium current (IT), respectively [32]. 

2.12 Which model should we choose? 

In the previous sections many models of spiking neurons have been proposed. Which one to 

choose? The answer depends on the type of the problem. If the goal is to study how the neuronal 

behavior depends on measurable physiological parameters, then the Hodgkin–Huxley type model 

is the best [26]. In contrast, if you want to simulate thousands of spiking neurons in real time, 

then there are plenty of models to choose from. The most efficient is the LIF model as shown in 

Figure ‎2-19. 

 

Figure ‎2-19 Comparison of the neuro-computational properties of spiking models [26] 

2.13 Spatial Structure: the Dendritic Tree 

Neurons in the cortex and other areas of the brain developed dendritic trees that may extend over 

several hundreds of meters. There are spatial separation of input and output, the electrical 

properties of point neurons have been described as a capacitor that is charged by synaptic 

currents and other transversal ion currents across the membrane. A non-uniform distribution of 
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the membrane potential on the dendritic tree and the soma induces additional longitudinal current 

along the dendrite [23]. To take into account these spatial structures including all types of 

currents, a cable equation is used to describe the membrane potential along a passive dendrite as 

a function of time and space. 

2.13.1 Cable Theory 

Consider a piece of a dendrite decomposed in short cylindrical segments of length dx as shown in 

Figure ‎2-20 by the corresponding circuit diagram. First, the voltage drop across the longitudinal 

resistor RL can is given by: 

                                                  (2.16) 

where        and             is the membrane potential at the points   and        respectively. 

Second, the transversal current that passes through the RC is given by             + V(t, x)/RT. 

According to the conservation of current at each node, 

i(t, x + dx) - i(t, x) =             + V(t, x)/RT - Iext(t, x)      (2.17) 

RT C RT C

RL RL RL

RT C

RL

dX

iext(X)

i(X) i(X+dX)

V(X)

V(X+dX)

 

Figure ‎2-20 A schematic drawing of cable theory 

Given that the values of the longitudinal resistance RL, the transversal conductivity   
  , the 

capacity C, and the externally applied current can be expressed in terms of specific quantities per 

unit length. Substituting these expressions in equations 2.16 and 2.17, dividing by   , and taking 

the limit   
      
         leads to the cable equations [23]: 
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                                       (2.18) 

 

  
       

  

                 
 

  
                       (2.19) 

The cable equations can be easily interpreted and solved by using neuron computing. 

These equations describe the change in time of voltage and longitudinal current.  

2.14 Compartmental Models 

Cable theory gives us the voltage along a passive cable with uniform geometrical and electrical 

properties. If we want to apply this method to describe the membrane potential along the 

dendritic tree of a neuron, many problems arise. Numerous bifurcations and variations in 

diameter and electrical properties are varying along the dendritic making it difficult to find a 

solution for the membrane potential analytically [33]. 

Numerical treatment of partial differential equations arises which requires a discretization 

of the spatial variable. This leads to changing derivatives with respect to space into differences 

by a discretizing method.  In order to solve for the membrane potential of a complex dendritic 

tree numerically, compartmental models are used that use discretization [34]. 

 The dendritic tree is divided into small cylindrical compartments with a uniform 

membrane. Each compartment is characterized by its capacity and transversal conductivity. 

Adjacent compartments are coupled by the longitudinal resistance that is determined by their 

geometrical properties as shown in Figure ‎2-21. And all nonlinear ion channels responsible for 

generating spikes are usually lumped together at the soma so that the dendritic tree is treated as a 

passive cable. As an example for a realistic neuron model, a model for cerebellar granule cells in 

a turtle was developed by Gabbiani and coworkers [35]. One of the major problems with multi-

compartment models is the fact that the spatial distribution of the dendritics along the surface of 

the neuron is almost completely unknown.  
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Figure ‎2-21 Multi-compartment neuron model [34] 

2.15 Axon Models 

A multi-compartment cable model of myelinated axons was proposed by McIntyre et al. [36], the 

models consisted of 21 nodes of Ranvier separated by 20 internodes. Each internode section of 

the model consisted of 2 paranodal myelin attachment segments (MYSA), 2 paranodal main 

segments (FLUT), and 6 internodal segments (STIN) regions of fiber as shown in Figure ‎2-22. 

The Model Geometric Parameters with fiber diameters ranging from 2 μm to 16.0 μm is listed in 

Table ‎2-5 [36, 37]. 

 

The nodal membrane dynamics included fast (Naf) and persistent (Nap) sodium, slow 

potassium (Ks), and linear leakage (Lk) conductances in parallel with the nodal capacitance (Cn). 

A parallel combination of the membrane resistance with the membrane capacitance is connected 

in series with a parallel combination of the myelin resistance and the myelin capacitance. FLUT 

(paranode), MYSA (myelin attachment segment), Ra (axoplasmic resistance), Rp (periaxonal 

resistance), Rm (specific myelin resistance in Ωcm
2
), Cm (specific myelin capacitance in μFcm

-2
), 

Ci (specific membrane capacitance in μFcm
-2

), RL (specific leakage resistances in Ωcm
2
) and Kf 

(fast K
+
 channel).  

 

Table ‎2-6 includes all electrical model parameters [37].  
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Figure ‎2-22 The axon segment model [37] 
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Table ‎2-5 Axon geometric parameters for different fiber diameters from 2-16 μm [36, 37]. 

 Fiber Diameters 

2.0 3.0 5.7 7.3 10.0 11.5 14.0 15.0 16.0 

 

Node-node separation 

(μm) 
200 278 500 750 1150 1250 1400 1450 1500 

Number of myelin 

lamella 
30 43 80 100 120 130 140 145 150 

Node‎length‎(μm) 1 1 1 1 1 1 1 1 1 

Node‎diameter‎(μm) 1.4 1.52 1.9 2.4 3.3 3.7 4.7 5.0 5.5 

MYSA‎length‎(μm) 3 3 3 3 3 3 3 3 3 

MYSA‎diameter‎(μm) 1.4 1.52 1.9 2.4 3.3 3.7 4.7 5.0 5.5 

MYSA periaxonal 

space‎width‎(μm) 
0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

FLUT length (μm) 10 17 35 38 46 50 56 58 60 

FLUT‎diameter‎(μm) 1.6 2.1 3.4 4.6 6.9 8.1 10.4 11.5 12.7 

FLUT periaxonal 

space‎width‎(μm) 
0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

STIN‎length‎(μm) 57.7 79 70.5 111.2 175.2 190.5 213.5 221.2 228.8 

STIN diameter‎(μm) 1.6 2.1 3.4 4.6 6.9 8.7 10.4 11.5 12.7 

STIN periaxonal space 

width‎(μm) 
0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

MYSA compartments 

between nodes 
2 2 2 2 2 2 2 2 2 

FLUT compartments 

between nodes 
2 2 2 2 2 2 2 2 2 

STIN compartments 

between nodes 
3 3 6 6 6 6 6 6 6 

MYSA, myelin attachment section of paranode; FLUT, main section of paranode; STIN, intermodal section 
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Table ‎2-6 Axon model electrical parameters [36] 

Nodal capacitance (Cn) 2 µF/ cm2 

Internodal capacitance (Ci) 2 µF/cm2 

Myelin capacitance (Cm) 0.1 µF/cm2 

Axoplasmic‎resistivity‎(ρa) 70‎Ω‎cm 

Periaxonal‎resistivity‎(ρb) 70‎Ω‎cm 

Myelin conductance (gm) 0.001 S/cm2 

MYSA conductance (ga) 0.001 S/cm2 

FLUT conductance (gf) 0.0001 S/cm2 

STIN conductance (gi) 0.0001 S/cm2 

Maximum fast Na+ conductance (gNaf) 3.0 S/cm2 

Maximum slow K+ conductance (gKs) 0.08 S/cm2 

Maximum persistent Na+ conductance (gNap) 0.01 S/cm2 

Nodal leakage conductance (gLK) 0.007 S/cm2 

Na+ Nernst potential (ENa) 50.0 mV 

K+ Nernst potential (KNa) -90.0 mV 

Leakage reversal potential (ELK) -90.0 mV 

Rest potential (Vrest) -80.0 mV 

2.16 Complete STN Neuron Model 

A multi-compartment cable model of a STN neuron was also proposed by (McIntyre et al. [38]). 

This model was discovered by (Destexhe et al. [39]). It consisted of a 3-D branching dendritic 

tree, a multi-compartment soma and an initial segment, and a myelinated axon with explicit 

representation of the myelin and underlying axolemma. (Figure ‎2-23, Table ‎2-7 ). The cell body 

and dendritic compartments included the parallel combination of nonlinear fast Na
+
, delayed 

rectifier K
-
, slow K

-
, T-type Ca

2+
,  Na

+
, K

-
 linear leakage conductances, and the membrane 
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capacitance. The initial segment compartments included the parallel combination of nonlinear 

fast Na
+
, delayed rectifier K

-
, slow K

-
  conductances, a linear leakage conductance, and the 

membrane capacitance as shown in Figure ‎2-23 and Table ‎2-8. 
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Figure ‎2-23 Cable model of a STN neuron [38] 
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Table ‎2-7 STN model geometric parameters 

[38] 

Table ‎2-8 STN cell body and dendrite electrical 

parameters [38] 

Cell body  

Soma compartments 3 

Soma surface area 3.171 

µm2 
Initial segment compartments 3 

Initial segment surface area 173 µm2 

Dendrites  

Dendritic compartments 251 

Primary dendrites 11 

Dendritic surface area 21.356  

Myelinated axon  

Fiber diameter 2 µm 

Number of myelin lamella 30 

Node length 1 µm 

Node diameter 1.4 µm 

MYSA length 3 µm 

MYSA diameter 1.4 µm 

MYSA periaxonal space width 0.002 µm 

FLUT length 10 µm 

FLUT diameter 1.6 µm 

FLUT periaxonal space width 0.004 

STIN length 57.7 µm 

STIN diameter 1.6 µm 

STIN periaxonal space width 0.004 µm 

 

Na+ Nernst potential (ENa) 45 mV 

K+ Nernst potential (KNa) -95 mV 

Leakage reversal potential 

(ELK) 

-70 mV 

Soma and dendrite   

Max. T-type Ca2+ permeability 

(PCaT)  

0.0001 cm/s 

Max. fast Na+ conductance 

(gNaf)  

0.03 S/cm2 

Max. delayed rectifier K+ 

conductance (gKdr) 

0.003 S/cm2 

Max. slow K+ conductance 

(gKs)   

0.0007 S/cm2 

Max. Ih conductance (gh)  0.0005 S/cm2 

Na+ leakage conductance (gNaL) 0.00095 S/cm2 

K+ leakage conductance (gKL) 0.00005 S/cm2 

Initial segment parameters  

Max. fast Na+ conductance 

(gNaf)  

0.3 S/cm2 

Max. delayed rectifier K+ 

conductance (gKdr) 

0.03 S/cm2 

Max. slow K+ conductance 

(gKs)   

0.007 S/cm2 

leakage conductance (gLK) 0.00005 S/cm2 
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2.17 Rate versus Time Codes 

The information (code) that comes from the spiking of neurons can be defined by:  

1- Rate codes (Temporal Average): The firing rate of the neuron is what carries information. 

2- Timing codes: The precise pattern of spike generation carries information.  

The firing rate is usually defined by a temporal average as shown in Figure ‎2-24. A time 

window of T = 100ms or T = 500ms is set and counts the number of spikes        that occur in 

this interval then the mean firing rate is equal to:               

 

 

 

Figure ‎2-24 Mean firing rate vs. a temporal average 

Measurement of firing rates is considered a standard tool for describing the properties of 

all types of sensory or cortical neurons [40]. Temporal averaging can work well in cases where 

the stimulus is constant or slowly varying since it neglects all the information possibly contained 

in the exact timing of the spikes. 

The other type of coding which is the time code, the exact time at which the firing occurs is 

very important and has to be determined precisely in order to get the full neuron information. In 

this case the temporal details of the input signal      are a significant measure in order to 

reconstruct the stimulus input and do a reverse correlation.  
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2.18 Summary of the Survey 

Deep Brain Stimulation explores the functionality of biological neural networks in processing 

sensory information and controlling different motor functions. The administration of high-

frequency continuous electrical stimulation to the subthalamic nucleus (STN) through a 

surgically implanted device has been shown to improve motor symptoms in patients with 

advanced‎ stages‎ of‎ Parkinson’s‎ disease. The progress of DBS requires understanding and 

quantifying the functionality of biological neural networks in processing sensory information and 

controlling different motor functions. 

The signal processing in the brain takes place by the neurons which provide access to 

motor intent and sensory perception. There are various mathematical models that have been 

developed for biological neurons. These models are basically representing neural behavior in 

terms of membrane potential and action potentials. While there is a tradeoff between detail and 

speed, the proposed DBS modeling will deal with the H-H cell model with all its compartment 

details for the STN regions as discussed in section 2.16. This proposed model will describe the 

spiking rate activity that comes from the neural structure that is surrounded by the DBS electrode 

and hence it takes into consideration the applied physical parameters to the electrode.  
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Chapter 3                                                                                          

Proposed Interactive Real Time Comprehensive DBS System 

3.1 Introduction 

The Deep Brain Stimulation (DBS) problem is tackled in this research from an engineering point 

of view. DBS employs electrical stimulation of a specific part of the brain called the subthalamic 

nucleus (STN), a small but integral part of the basal ganglia. Different types of motor disorders 

have been treated by this electrical stimulation produced from an implanted electrode inside the 

brain.  

The main goals of this research are to determine the DBS stimulation parameters and to 

develop a brain neuron model that can be readily used in DBS analysis. We will also study the 

effect of these stimulation parameters on the neurons firing activity. In order to achieve our goal, 

we propose a model that we named the DBS model. Figure ‎3-1 shows a schematic diagram for 

input and output components of the proposed DBS model. 

DBS ModelInput Output

DBS 

Electrode 

Dimensions

Excitation: 

DBS 

stimulation 

Parameters 

No. of 

Neurons 

activated

Firing activity 

(Tuning 

Curves)

Volume of 

Tissue 

Activated 

(VTA)
 

Figure ‎3-1 A schematic diagram of the proposed DBS model with its input and output parameters  
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To have a complete quantitative analysis of the DBS problem, we develop a DBS model 

that its input is controlled by the DBS stimulation electrode and the stimulation parameters 

applied on this electrode as an excitation to our model. The output of this model represents the 

region in the brain that is excited through the numbers of neuron that are activated, the firing 

activity of the neurons which will be used to build the neurons tuning curves and finally the 

volume of tissue activated (VTA).  

The proposed DBS model has many components and phases of interaction to build up the 

real time comprehensive DBS model as shown in Figure ‎3-2. 

DBS Electrode 
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Brain Medium 
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Electric Field 

Distibution

Neuron Cell 

Model

Brain Neuron 
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Parametrs

Activation 
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Second Order 

Spatial Voltage

Error 
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Input DBS 
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(Optimal 
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Decoding)
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Electrode – Neuron Interaction

Phase 2 

Neuron - Electrode  Interaction

Tuning Curves

 

Figure ‎3-2 A complete detailed diagram of the proposed DBS model 

There are two main phases of interaction in our DBS model: Electrode-Neuron Interaction 

and Neuron-Electrode Interaction. The first interaction phase is responsible for calculating the 

electric field distribution inside the brain medium due to the DBS electrode. While the second 

phase is developed for calculating the neuron firing activity from the neuron cells due to the 

calculated activating function. 
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DBS stimulation parameters are the input to the DBS model and play an essential role in 

stimulating the brain neural cells through the electric field intensity produced by the DBS 

electrode. To find the electric field distribution produced by the DBS electrode, we are going to 

introduce the brain as passive medium which means that taking into account only its microscopic 

properties (conductivity and permittivity). Of course the electric field intensity distribution that 

comes from this step is not accurate since the brain neurons have in themselves an electric charge 

which also produces an electric field. Therefore to study these phenomena of DBS interaction 

with brain neurons we need to use some sort of superposition theory; stimulation parameters 

applied on the DBS electrode produced electric field and brain neurons at this stage have no 

electric effect (i.e., voltage source is short circuit as in superposition theory in circuit) then we 

activate the neurons and the electrode has no applied electric effect. In our model we need two 

additional processes to implement this superposition theory; the conversion of the electric field 

to second order spatial voltage and the optimal linear decoder filter.   

Thus to have a complete study of the DBS problem and taking into consideration the 

charge distribution of the neuron cells (as our neurons now no longer behave like a switch on/off 

firing elements as many previous research proposed [18,38]), two components were added 

between the two interaction phases. The first component is responsible for the conversion from 

electric field distribution to the activating function, while the other component is the optimal 

linear decoder which is responsible for calculating the stimulation parameters and applied them 

back to the DBS electrode. Thus by minimizing the error between the applied electrode 

stimulation parameters and the estimated ones, the DBS model will be completed.  

3.2 The Main Components of the DBS Model 

As we mentioned in the last section, the proposed DBS model is divided into two phases of 

interaction to build up the real time comprehensive DBS model. In this section we define the 

components inside this model. 

We start with a standard DBS electrode manufactured by Medtronic which is an FDA 

approved. This electrode will be the source of the electrical stimulation which is controlled by 

pulse width, amplitude and frequency. All of these values will be taken from a standard 

experiments conducted with the DBS problem.  However, we will study the impact of changing 
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the DBS input parameters on the electric field distribution and the volume of tissue activated 

(VTA) during the stimulation process of the brain as shown in Figure ‎3-3. 

The DBS electrode in this stage of the analysis is assume to be inserted in a brain medium 

that does not account for the charges inside the neurons and their coupling to the brain medium. 

Therefore, the LaPlacian equation is used to find the electric field distribution inside the passive 

brain region. 

 In a charge-free region of space, LaPlace's equation is given by: 

                                  (3.1) 

which is the divergence of the gradient of an electric potential. 

The study will include the effect of the characteristics of different brain tissue layers 

(different dielectric properties such as permittivity and conductivity) on the electric field 

distribution. We will start with the case of a homogeneous and isotropic tissue medium, rather 

than biophysically based conductivities. Next we will use inhomogeneous medium. Also, we will 

take into account the low conductivity encapsulation layer that surrounds the electrode in vivo 

and limits the spread of electric field around the electrode and can reduce the VTA  

In order to proceed to the second phase of the interaction and to calculate the neuron firing 

rates (spikes/s.) and the volume of tissue activated (VTA) within the brain, we have to measure 

the‎ second‎ spatial‎difference‎of‎ the‎ field’s‎ electric‎potential,‎known‎as‎ the‎activating‎ function.‎

The concept of this function was developed and suggested in [41]. This function is defined as the 

second derivative of the extracellular potential along the neurons axon and represents the driving 

function of the cable equation for the neurons for studying its firing pattern and activity. Thus the 

brain region under study becomes an active medium due to this introduced neural coupling. This 

activating function will take into consideration all of the issues that control the electric fields 

within the brain, i.e., DBS electrode configuration and DBS stimulation pulse width, amplitude 

and frequency. We will study the firing of neurons evoked by the activating function during DBS 

and the electrophysiological parameters will be implemented through computer simulations. 
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There are many neural cell models that describe the dynamic behavior of the neural cell, 

but in this research we are going to focus on the Hodgkin-Huxley model. The population and 

distribution of these neural cells will vary in order to study their effect on the VTA as shown in 

Figure ‎3-3. Also, the proposed DBS model will address the position of the electrodes with 

respect to the neuron axons orientation which has the effect on facilitating the inward current 

flow into the cell and hence maximal depolarization and firing. 

All of the performance analysis will make the proposed DBS model robust. Our goal is to 

study the immediate direct effects of the stimulating field and examine where the beneficial 

effects of DBS originate since the mechanism of DBS is not yet fully understood and hence a 

comprehensive performance study will be done for the DBS problem. 

The research proposed in this chapter is a novel approach to study the interaction between 

the DBS electrode and the firing activity of brain neural cells. This approach will lead to better 

understanding of the DBS problem in real time. Our target is to build a complete DBS model that 

is capable to interact with the DBS problem in a forward and backward relation. In the forward 

manner for certain stimulation parameters applied to the DBS electrode we will be able to 

calculate the neural firing activity and the volume of tissue activated. In the backward manner we 

will use the measured firing activities to calculate the stimulation parameters. Thus, a closed loop 

system will be established to develop the proposed DBS model.  
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Figure ‎3-3 A detailed flow chart of some of the components in the proposed DBS model 
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3.3 Methodology 

3.3.1 Electrode Modeling 

Progress in DBS techniques requires the knowledge of the brain response to electrical 

stimulation which is manipulated by the electric field distribution within the brain tissue. This 

motivated the development of simulation models for the implanted Medtronic 3387 DBS 

electrode (Medtronic Inc, Minneapolis, MN) in order to estimate the electric field distribution in 

an ambient brain. Since the electric field is dependent on the electrode geometry, the distribution 

of pads contact and their separation are one of the goals of this proposal. We are planning to 

quantitatively evaluate a range of DBS electrode parameters and examine the effects of electrode 

geometry on the VTA by varying the height and radius of the electrode contact to maintain a 

constant surface area. In all cases, the results are evaluated relative to the Medtronic 3387 

electrode contact dimensions (1.27 mm diameter, 1.5 mm height, 5.98 mm
2
 surface areas) 

3.3.2 Brain Modeling 

Different brain tissue medium (permittivity and conductivity) have a specific response to the 

electric fields. The permittivity and conductivity of brain tissues are frequency dependant; as 

frequency decreases, conductivity drops and the dielectric constant increases remarkably.  The 

values for the dielectric properties of brain tissue were extracted from a parametric database of 

biological tissue which was developed based on the Gabriel model [42-44]. As a first step, we 

will start to model the STN inside the brain as a homogeneous layer of a lossy dielectric with 

isotropic and frequency independent characteristics disregarding the anatomical details of the 

brain. Next, we will propose the inhomogeneous tissue medium. 

3.3.3 Electric Field Solver 

We apply two approaches to calculate the electric field intensity within the brain; these two 

solvers are the Finite Difference Time Domain (FDTD) technique and the Finite Element 

Method (FEM). For both methods of solving, a detailed model of the electrode and the brain 

tissue mediums is built and simulated. In the FDTD model, we solve time domain computational 

electrodynamics modeling technique developed for solving time-dependent Maxwell's equations. 

While in the FEM model, we solve the Laplace equation to find the tissue medium. The problem 
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with‎ the‎FEM‎is‎ that‎ it‎doesn’t‎ account for the time dependence of the stimulus waveform. In 

order to address this problem, we use a Fourier decomposition of the stimulus signal and solve 

the LaPlacian equation at multiple frequencies to calculate the voltage distribution due to this 

time-dependent stimulus waveform. 

3.3.4 Stimulation Waveform 

Electric field intensity calculated from the previous sections is depending on the stimulation 

input signal parameters which are localized in the stimulated amplitude (V), pulse width ( s), 

and frequency (Hz). Each of these parameters have a direct effect on our models and hence on 

the VTA. According to DBS experimental results, the stimulus amplitude is changing from 1-10 

volts in an increment of 0.5V [45], while the pulse width is changing from 60 and 450  s and the 

stimulation frequency ranging from 100-185Hz [45]. We will address all of these parameters and 

build quantitative equations that describe these relations.  

3.3.5 Neural Modeling 

The activating function of the neuron which is the second spatial difference of the extracellular 

potential distribution along the brain is providing an estimate of the polarization of the neuron in 

response to an applied electric field and can be used to predict action potential initiation. This 

activating function is coupled to the neurons surrounding the electrode through NEURON v7.0 

program [46]. Then, this action potential prediction determines the neuron spiking activity (firing 

rate) and the VTA. 

We propose a complete neuron model that interacts with this activating function, we not only 

deal with the axons model but we also take into effect the neuron cell body using Hodgkin-

Huxley which concerns about the dynamics of the action potential inside the cell, H-H model 

takes into consideration the adaptation of the firing rate and hence all of temporal neuron spiking 

data. For the axon models used in this research, we use a multi-compartment cable model of 

myelinated axons (5.7 μm) proposed by McIntyre et al [36]. We focus on a short axon length 

with 4 nodes of Ranvier. 
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 We start with a neuron population (N) uniformly spaced and perpendicular to the electrode 

shaft in a matrix form. A comparison is made on the percentage of neurons that are firing and 

hence affecting the calculation of VTA. Another issue studies the neurons orientation with 

respect to the position of the electrode shaft. We change this orientation angle between the two 

extreme scenarios which are the perpendicular and parallel cases. 

In the next section, the algorithm that estimates the electrode stimulation parameters is 

proposed based on the study of the spiking activity measured at the neuron level.  

3.3.6 Neuron Decoding 

To find the accurate decoding of neural firing activity representing the input parameters, we 

propose a linear filter analysis decoding algorithm that deals with neuron rate codes (temporal 

average).  

3.3.7 Linear Filter Technique 

We define the biological representation as encoders representing the neurons, and the decoding is 

linear with unknown weights [24]. We then have an encoder: 

                                    (3.2) 

Where       is called the tuning curve (spikes/s.) that directly relates an external signal,  , to 

neural reponses    ,       is a non linear function that is neuron cell dependent . One of the most 

neurally plausible cell models is the leaky integrate and- fire (LIF) model which was discussed in 

Chapter 2 section 2.10. Then the decoder is given by a linear representation as: 

                                  (3.3) 

Where   indexes the neuron number,   is the physical external signal and   the weighting 

function, we want the error between   and the estimate,   , to be small over the range of signal so 

that: 

Minimize                                   (3.4) 



48 
 

We normalize the range of the input signal from 0 to 1 so that the error is given by: 

              
 
       

 

 
                           (3.5) 

To minimize this error we differentiate with respect to    to calculate the MMSE. 
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This can be written using matrix vector notation 

                                  (3.7) 

then                                                                                      

Where                                                                         

This is defined as the Gram matrix or the correlation matrix and can be written as: 

                                  (3.8) 

Where A matrix        is the transpose of the neuron tuning curves. Let the input signal   be 

discretized by interval    such that we have    steps then: 

   

 
 
 
 
 

                                       

                   
     

                       

                                        
 
 
 
 

             (3.9) 

So                      while, 

                                                     (3.10) 
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Where   is a      ) matrix  then 

       
   

                                (3.11) 

Which is a       matrix, and then the estimate signal is given by [24]: 

                              (3.12) 

                                       

3.3.8 Singular Value Decomposition (SVD)  

The major assumption in the previous technique is that we can take the inverse of the   matrix 

but because this matrix has no noise term and hence some tuning curves that are likely to be 

similar for a large population [24], the matrix   is likely to be singular or not invertible. That is 

why we have to use Singular Value Decomposition (SVD) in analyzing such matrices. 

 SVD decomposition of a     matrix, B is a result of this factorization which gives three 

matrices whose products gives B such that: 

                
                         (3.13) 

 Obtaining an approximation of the original matrix is quite easy. This is done by truncating 

the three matrices obtained from a full SVD. Essentially we keep the first k columns of   

, the first k rows of    and the first k rows and columns of S; that is, the first k singular 

values. This removes noisy dimensions and exposes the effect of the largest k singular 

values on the original data.  

 The reduction process is illustrated in Figure ‎3-4 and is often referred to as "computing the 

reduced SVD", dimensionality reduction or the Rank k Approximation.  
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Figure ‎3-4 The reduced SVD or rank approximation 

In case when B is square and symmetrical as the Gram matrix   , this can be simplified to: 

                             (3.14) 

or in summation notation,  

                          (3.15) 

 In the case where   is singular, some elements of   are zero or very small so the inverse of 

  will include infinite or very large terms which is an indication that the matrix   is ill-matrix. So 

that the SVD is defined where for      , the inverse is set to zero. 

 Thus, given the properties of SVD, we guarantee that our optimal decoding functions that 

minimizing the error is given by: 

                      (3.16) 
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3.4 Challenges 

One of the challenges that we are facing in this research is to have a measured imaging or 3D 

model anatomy to the STN regions which act as a representative stimulation target to have 

biophysically based conductivities, our model is highly simplified in comparison with the real 

basal ganglia.   

 Another challenge is to find clinical and experimental recorded data that we can use to 

verify our models and give us a close insight about how close or far our estimation input 

parameters are from real and experimental data. 

3.5 Conclusion 

In this chapter, a complete proposal for the DBS model has been introduced. The proposed 

algorithm is a novel approach to study the interaction between DBS electrodes and the neuron 

world. The proposed model is capable of quantifying and analyzing the spiking rate activity and 

to estimate the DBS parameters that were applied to the electrode and hence a reverse 

engineering concept can be applied to determine the proper input parameters of the DBS 

electrode needed by a physician to stimulate a given part of the brain. 

This proposal is a fundamental step toward the full understanding of mechanisms and 

effects of the DBS problem and in order to gain a complete optimization of the DBS technique. 

In the next three chapters, the implementation of the DBS model and the results that come from 

applying these proposed algorithms are discussed. 
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Chapter 4                                                                                                  

The Effect of Medium Brain Tissue and Stimulation Pulse Parameters 

on the Electric Field Distribution in a Deep Brain Stimulation System  

4.1 Introduction  

As mentioned in the literature survey, the advancement of electrotherapeutic techniques requires 

qualitative and quantitative perception of the brain response to electrical stimulation which is 

controlled by the electric field distribution within the brain tissue. Many papers concerned with 

the quantitative description of electric field inside the subthalamic brain tissue have been 

published [51, 72], but all of these previous studies have assumed that the DBS electrode is 

located in a large homogenous isotropic medium as in free space. Our contribution in this 

research is that we build a model for a DBS electrode inside the brain taking into effect the low 

conductivity encapsulation layer that surrounds the electrode in vivo and limits the spread of 

electric field around the electrode which can reduce the VTA. Also, due to the lack of 

information on the exact position of the DBS electrode inside the STN which consist of Grey 

tissue matter surrounded by a region of White tissue matter, we studied the position of the DBS 

electrode with respect to the boundary regions between the White and Grey tissue matter and 

how this affects the electric field distribution around the DBS electrode. This motivated us to 

develop simulation models for implanted DBS electrodes in order to estimate the electric field 

distribution in ambient brain tissue. 

This chapter introduces modeling, simulation and analysis of an implanted Medtronic deep 

brain stimulation (DBS) electrode. The analysis are developed using the finite difference time 

domain (FDTD) method (which is a time-domain analysis) and a single simulation run with a 

wide frequency range is used to calculate the electric field due to the DBS electrode. While the 

simulation is applicable to electrodes with uniform and non-uniform shapes, we will focus in the 

analysis in this proposal on the Medtronic 3387 DBS electrode (Medtronic Inc., Minneapolis, 

MN) because it is FDA approved commercial electrode.   

In this study we focus on three different situations of the implanted electrode inside brain 

tissue, starting with the electrode represented and surrounded with a homogenous and isotropic 
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brain tissue medium (Model-I) which represents the main Grey tissue matter of the STN and this 

will be our basic brain model to study the influence of brain tissue dielectric properties 

(permittivity and conductivity) on the electric field distribution around the DBS electrode 

Moreover as we explained earlier, the encapsulation layer surrounding an implanted electrode 

will be added to the basic brain model, thus we have Model-II which represents the aging 

process of implanted electrode inside brain tissue. Finally a non-homogenous tissue structure 

situation which will be presented in Model-III includes the Grey and White tissue matters in 

order to investigate the effect of the electrode position with respect to different tissue layers. All 

three models were investigated to study their effect on the electric field distribution. Also, the 

effect of DBS pulse parameters (amplitude, width and frequency) on controlling the electric field 

distribution inside brain tissue Model-I have also been discussed in this chapter.  

These analyses are used to provide a relationship between brain tissue properties, the DBS 

electrode configuration, DBS stimulation parameters and the electric field inside the brain. A 

quantitative formulation of all of the previous issues is created for predicting the field 

distribution within brain tissue and estimating the volume of tissue activated (VTA).  

Moreover, the voltage distribution in brain tissue is calculated from the electric field values 

as is shown in Chapter 5. This voltage distribution is our input to the neurons surrounding the 

electrode through the activating function concept that was discussed before. The firing neurons 

activity is executed using the NEURON program which is the link between the calculated 

electric field distribution and the neuron models shown in Chapter 6. This will finally allow us to 

find the interaction between the inputs and the outputs of the proposed DBS model.  

Information elicited from the simulation results will provide: 

 Guidelines for the design specifications and development of new DBS 

electrodes as well as the optimum electrode configuration, pad geometry 

and layout that are best fit for DBS operation. 
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4.2 Brain Tissue Properties 

The brain tissue represents the ambient medium in which the electrode is implanted. The 

dielectric properties of these tissues affect the electric field distribution inside the brain and thus 

control the neurons responses to the applied electric fields produced by stimulation. Brain tissue 

dielectric properties (dielectric constant and conductivity) are functions of frequency [49]. An 

accurate brain tissue model has to embrace detailed data covering the bandwidth being studied. 

At extremely low frequencies (<100Hz); dielectric constant of body tissue can reach values of 

10
6

 or 10
7
 [42] and conductivity drops to a few milli-Siemens per meter (mS.m

-1
) [49, 50]. As 

frequency increases, conductivity increases and the dielectric constant values drop along the 

spectrum. 

4.2.1 Brain Conductivity 

Different materials have specific responses to externally applied electric fields; this can be 

expressed by dielectric material properties. Values for brain tissue conductivity range between 

0.05 – 3.3 S.m
-1

, the exact value depends on the type of brain tissue and the anisotropic electric 

characteristics of the biological tissue [50]. The composition of brain tissue differs according to 

the species (rodents, primates and humans) and this affects the conductivity as well as the 

dielectric constant values. Moreover, different tissue types (e.g. White matter, Grey matter and 

encapsulation tissue) have different conductivities and directivity. Table ‎4-1 lists the average low 

frequency conductivity values used in modeling brain tissue [51-56]. 

4.2.2 Brain Permittivity 

In studying the effect of time varying fields, complex permittivity      is used to model the tissue 

response and express the phase shift of polarization with respect to the polarization field as well 

as the magnitude represented by    and    respectively: 

                    (4.1)
 

Complex permittivity is a function of frequency and it exhibits dispersions through the 

spectrum. Experimental data collected was modeled in several forms. Several models were 

developed to represent the experimental dielectric properties data (e.g. Debye and Cole-Cole 
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models) and a parametric biological tissue model database was developed [42] and adopted by 

commercial simulation tools. 

Table ‎4-1 Mean values for brain tissue conductivity 

Tissue σ [S.m
-1

] Reference 

Bulk neural tissue (average value) 0.2 Buston et al [51, 52] 

encapsulation layer (0.5mm thick) 0.1 Buston et al [51, 52] 

encapsulation layer (0 – 1mm thick) 0.05 – 0.2 Grill and Mortimer [52] 

White matter 0.15 
Geddes and Baker, Malmivuo and 

Plonsey [52] 

Grey matter 0.45 
Geddes and Baker, Malmivuo and 

Plonsey [52] 

Mean conductivity 0.17 
Geddes and Baker, Malmivuo and 

Plonsey [52] 

Average head conductivity 0.33 Geddes and Baker [53, 54] 

Grey matter 0.1 
Gabriel [42], Nicholson [55], Apollonio 

[56] 

4.2.3 Biological Tissue Parameters Database 

Based on large experimental studies and data published by Gabriel and his group, experimental 

database for the dielectric properties of biological tissue was collected and established in 1996 

from excised animal tissue at 37
o
C. 

The values for relative permittivity, conductivity and loss tangents for White and Grey 

human brain tissue extracted from the Gabriel model [42-44, 57-58] are shown in Figure ‎4-1, 

Figure ‎4-2, Figure ‎4-3 and Figure ‎4-4. 
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Figure ‎4-1 Semi-log plot of the relative permittivity of White and Grey matter             

 

Figure ‎4-2 Semi-log plot of the relative permittivity of White and Grey matter              
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Figure ‎4-3 Conductivity of White and Grey matter            

 

Figure ‎4-4 Loss Tangent of White and Grey matter               
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4.2.4 Discussion 

The effect of the Grey and the White brain tissue layers were discussed for different dielectric 

properties (permittivity and conductivity). The dielectric properties of the biological tissue are 

frequency dependant, they also vary widely between different species (rodents, primates and 

humans) according to the tissue composition. As frequency decreases, tissue conductivity drops, 

on the other hand, its dielectric permittivity constant increases considerably along the spectrum 

[44, 57]. The values for the dielectric properties of the brain tissue are extracted from the 

parametric database of the biological tissue which was developed based on Gabriel model. 

Dielectric properties of biological tissue is a function of frequency exhibiting remarkable 

leaps in value as the frequency approaches low and near DC values (<1MHz). The accuracy of 

the models relies on the abundance of experimental data which is elaborately detailed for high 

frequencies motivated by wireless and mobile communication industry. On the other hand, 

available low frequency data is not enough to provide accurate models. Moreover some of the 

available data is distorted by electrode polarization errors as well as errors inherent in low 

frequency in vitro measurements. These factors limit the truthfulness of low frequency data 

available in the 1996 database and commercial simulators. In summary, low frequency 

simulation results are to be considered as an estimate and further accurate experimental 

measurements would be of much value to the biological tissue database. 

4.3 Finite Difference Time Domain (FDTD) 

FDTD is a time domain computational electrodynamics modeling technique developed for 

solving time-dependent Maxwell's equations after discretizing the model using central-difference 

approximations to the space and time partial derivatives. This yields a set of finite-difference 

equations which are solved in a leapfrog manner to evaluate the electric field vector components 

in a volume of space at a given instant in time followed by solving for the magnetic field vector 

components in the same spatial volume at the next instant in time. This time stepping technique 

makes FDTD more privilege than FEM which requires solving a system of equations at each 

time step and requires multiple runs to achieve similar temporal detail.  Also in FDTD, there is 

no matrix to be stored during the solution, which reduces memory requirements. 
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Simulations were executed using Empire XCcel 5.2 (IMST GmbH, Kamp-Lintfort 

Germany) [59]. EMPIRE XCcel is a 3-D electromagnetic field simulator which employs the 

Finite Difference Time Domain (FDTD) method for modeling and solving electromagnetic 

problems. This algorithm together with the embedded human body models makes it a suitable 

tool for modeling and simulating implanted DBS electrodes capable of providing accurate results 

using readily available computational resources (desktop PCs). FDTD also is able to solve 

electromagnetic problems ranging from near DC (quasistatic) models to all the way through 

microwaves. 

4.4 Brain Modeling 

As was discussed before, three different situations (Model I-III) of the implanted electrode 

inside brain tissue was modeled. In the next section the steps to build these models as well as the 

biological parameters for each of these models are introduced.  

4.4.1 Modeling a DBS Electrode Inside Homogeneous Brain Tissue (Model-I) 

The first model (Model-I) is a simple representation of brain Grey tissue as a homogenous 

lossy dielectric with isotropic and frequency independent characteristics. This model disregards 

anatomical details of the brain [7, 51]. Figure ‎4-5 illustrates a schematic diagram of the 

Medtronic 3387 deep brain stimulation electrode at the right section of the figure. The electrode 

is made of a cylindrical polyurethane polymer core (         ) with four platinum contact 

rings on its perimeter for charge delivery. The rings have a thickness of       and        in 

height with a spacing of       . FDTD has a limited ability to mesh non-cartesian grids [60], 

and in order to model the circular features of the electrode while maintaining high accuracy, the 

perfect geometric approximation (PGA) algorithm [59] was used. The PGA algorithm can map 

the circular features to a Cartesian grid by adjusting the FDTD coefficients to minimize the 

staircasing effects as shown in Figure ‎4-6. 

In addition, the electrode was located at the center of a cubic Model-I with its length equal 

to 15.0 mm.  This Model-I is comprised of isotropic homogeneous brain tissue from Grey matter 

of the subthalamic nucleus (STN) located in the basal ganglia where the electrode is usually 

inserted. An x-y cross section of this model is shown in the left section of Figure ‎4-5. 
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Figure ‎4-5 Schematic diagram of the proposed Model-I  

 

Figure ‎4-6 FDTD Medtronic 3387 DBS electrode 
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Since FDTD problems involve open regions and of course it is not practical to discretize an 

infinite region, instead, cubic boundaries have been used to terminate the computational region; 

these boundary conditions serve to absorb outgoing waves, and are called absorbing boundary 

conditions (ABC). A popular set of absorbing boundary conditions is the perfectly matched layer 

(PML) invented by [73]. The PML is a layer of artificial material surrounding the computational 

region and designed to damp waves propagating in the normal direction as shown in Figure ‎4-5. 

Since the stimulus waveform is a train of square voltage pulses with a main frequency 

between 100-150 Hz. To account for all frequency dependence of brain tissue; permittivity, 

conductivity and the constant loss tangent of the brain medium for a Grey and White matter are 

extracted at 130 Hz (median frequency) from the Figure ‎4-1, Figure ‎4-2, Figure ‎4-3 and Figure 

‎4-4. 

The DBS electrode usually resides in the internal globus pallidus (GPi) or subthalamic 

nucleus (STN) located in the basal ganglia; these tissues are composed of Grey matter which at 

       has a dielectric constant              , conductivity              , and a constant 

loss tangent equal to 5.20 [58]. The outer layer is made of White matter with a dielectric constant 

              , conductivity                and a constant loss tangent equal to 7.71 at 

130 Hz [58] as shown in Table ‎4-2.  

Table ‎4-2 Tissue conductivities, σ, relative permittivity, εr , and loss tangent calculated at a median 

frequency of 130 Hz for the Grey and White tissue matter. 

Layer σ‎(s/m) εr Loss Tangent 

Grey Matter                5.20 

White Matter                   7.71 

4.4.2 Foreign Body Response and Encapsulation Formation (Model-II) 

Neuro compatibility represents the quality of the electrode-tissue interface. Because these 

electrodes are intended for prolonged application, tissue active response has to be considered due 

to the tendency of proteins and cells to adhere to foreign bodies inserted in the human body. 

Proteins adhere to the electrode being a foreign body which encourages further skin adhesion 

forming an organic layer. This layer encapsulates the electrode by an inexcitable tissue layer 



62 
 

increasing the contact impedance and degrading functionality. The capsule thickness depends on 

the degree of reactivity of the tissue to the implanted object as well its shape and surface 

condition. 

Inserting an electrode in a body provokes a Foreign Body Reaction (FBR) [63-66] and this 

inflammatory reaction attempts to get rid of the foreign body by an encapsulation effect. The 

capsule can be fully formed within 15 days to four months [67] depending on the 

provocativeness of the electrode material [68] and the thickness of the capsule depends on the 

electrode biocompatibility which is a function of electrode material and geometry [69]. 

During a period of 2–12 weeks, a continuous sheath of cells grows (in a loosely organized 

pattern within 2 weeks and develops a highly compacted and continuous layer in 6 to 12 weeks) 

and is capable of electrically isolating the electrode. During the development process of the 

layer, the sheath is more strongly attached to the surface of the electrode than surrounding tissue 

[70]. Metals that invoke high tissue response exhibited formation of thick capsules after 15 days 

[67]. Also, the electrode geometry and size control the formation of capsules; for example, 

micro-sized implants invoke thin capsule [69].  

The conductivity of the encapsulation layer has a minimum value of            ranging 

between                [55, 61]. The second Model-II (Figure ‎4-7) includes the 

encapsulation tissue layer which has a similar permittivity value as Grey tissue and a lower 

conductivity of           . The encapsulation layer thickness varies between 0.1 to 1 mm [52] 

and is influenced by the electrode material biocompatibility and the inserting duration. 

4.4.3 DBS Electrode Position with Respect to Two Different Brain Tissues (Model-III) 

Model-III has two layers representing the Grey and White tissue as shown in Figure ‎4-8. Several 

models were proposed in [51, 72] assuming a homogeneous tissue structure and including a fixed 

thickness encapsulation of 0.5 mm. In order to investigate the effects of non homogeneousity on 

the field distribution, model-III with nonhomogeneous layers and a variable thickness of Grey 

matter layer was used. The results exhibited effects on the electric field distribution which 

accordingly controls the spatial penetration of the electric field. 
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Figure ‎4-7 A schematic diagram of the proposed Model-II representing the electrode surrounded 

with an encapsulation layer inside the Grey tissue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4-8 A schematic diagram of the proposed Model-III representing the electrode surrounded 

with Grey tissue and inserted in White matter 
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width). In this section we discuss these parameters as well as the discretization and model 

stability. 

The deep brain stimulation pattern is a sequence of monophasic square pulses with pulse 

duration of 0.1µs and a frequency of                  and maximum amplitude ranging from 

          and can reach 10 volts [37, 51, 71]. In the FDTD analysis, the monophasic pattern is 

replaced with a Gaussian pulse (Figure ‎4-9) which is more appropriate for time domain analysis. 

When a Gaussian pulse is used, the electric field intensity is underestimated by           [74, 

75]. Figure ‎4-10 presents‎the‎developed‎and‎simulated‎Medtronic‎3387‎electrode’s‎information‎

using the Empire package and different excitation voltages at its different cylindrical rings.  Each 

ring is excited with the voltage values shown in Figure ‎4-10. 

 

 

 

Figure ‎4-9 Time domain normalized Gaussian 

stimulation pulse 

Figure ‎4-10  Excitation voltage values 

applied to a Medtronic 3387 electrode 

4.5.1 Discretization and Model Stability 

Mesh resolution has a significant effect on simulation results and the Raytrace meshing 

algorithm was used to maintain second order accuracy of the FDTD scheme [60]. Manipulating 

the grid line spacing optimizes memory consumption and this fulfills the following conditions: 

First, the smallest cell size determines the time step for the simulation; very small cells will 

create long simulation runs. The space has to be resolved such that the smallest wavelength is 

sampled properly:          , where    is the smallest cell dimension and   is the wavelength 

of the input signal (stimulation pulse). Second, if the field values are changing rapidly in a 

 t in Msteps 
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region, the resolution of the space should be chosen in a way that the desired accuracy is 

obtained. The automatic discretization algorithm was configured to control the meshing density 

and resolution. Meshing is disabled for all contact rings to save memory. On average, a total of 

1.844 Mcells were used for meshing the model. Finally, to create a finite computational domain, 

a level 6 perfect matched layer (PML6) was used as an absorbing artificial boundary condition. 

A simulation pulse was tuned to test its effect on model accuracy and stability. The optimal 

simulation pulse configuration was automatically set by the simulator. Lower oversampling 

values degrade the smoothness of the input voltage waveform as shown in Figure ‎4-11a, 

increasing the oversampling value to 3 improves the waveform shape (Figure ‎4-11b) and further 

increase in its value has no apparent effect (Figure ‎4-11c, d).  

  

(a) Oversampling factor = 1 (b) Oversampling factor = 3 

  

(c) Oversampling factor = 9 (d) Oversampling factor = 18 

Figure ‎4-11 Effect of oversampling on the input simulation pulse 
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A number of input voltage pulses are plotted for oversampling values of 1, 3, 9 and 18; 

where 9 is the optimal value set by the simulator. The number of stimulation steps and the 

bandwidth must be large enough for sweeping the input voltage pulse waveform; otherwise 

simulation will terminate prior to completion of the input pulse which can yield non-converging 

incomplete results. Expanding the value of the simulation bandwidth consumes more memory 

and requires more processing time. 

4.6 Simulation Results 

Several parameters of deep brain stimulation were controlled to study their influence on the 

electric field distribution within the brain tissue and the associated volume of tissue activated. 

These parameters include: tissue dielectric properties (permittivity and conductivity), non-

homogenous tissue structure, encapsulation tissue thickness, stimulation pulse characteristics 

(width and amplitude) and finally the firing pattern (current steering). The output of the 

simulations is the maximum electric field intensity distribution within the brain tissue 

represented by equipotential contours. This output can be used to estimate the (VTA) according 

to the depth of the electric field penetration into the brain tissue as shown in Figure ‎4-12. 

  

Figure ‎4-12 Electric field distribution for Gaussian pulse,                      
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Starting with Model-I which is a homogenous and isotropic representation of the Grey 

tissue; the tissue exhibits a significant increase in dielectric permittivity and a drop in the 

conductivity values near DC (10 – 1000   ) demonstrating the characteristics of a poor 

conductor. This leads to lowering the associated field intensity and accordingly the electric field 

penetration will drop. The electric field intensity due to different dielectric properties values are 

plotted in Figure ‎4-13 and the results show that the elevated permittivity values have a dominant 

influence on the field distribution. On the other hand, a variation in tissue conductivity has a 

negligible effect, the maximum field values are listed in Table ‎4-3. The electric field penetration 

depth values for different relative permittivity values are listed in Table ‎4-4. The field 

penetration depth reaches        at a relative permittivity of 10
5
 which drops to 1    at εr 

=10
6
, and increases to      when the relative permittivity drops to 10

4
. 

 

Figure ‎4-13 Maximum electric field values for different permittivities estimated for several 

conductivities. 
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Table ‎4-3 Maximum electric field intensities [V/m] for different tissue dielectric properties 

Stimulation Pulse and 

Permittivity 

Conductivity 

0.02 0.04 0.06 0.1 0.2 0.3 

Gauss,‎εr = 10
4
 948 948 946 946 946 946 

Monophasic, εr = 104 968 968 967 967 967 966 

Gauss,‎εr = 5x10
4
 502 502 502 502 502 502 

Monophasic, εr = 5x10
4
 529 529 529 529 529 529 

Gauss,‎εr = 10
5
 369 369 369 369 369 369 

Monophasic, εr = 10
5
 370 370 370 370 370 370 

Gauss,‎εr = 5x10
5
 134 134 134 134 134 134 

Monophasic, εr = 5x10
5
 135 135 135 135 135 135 

 

 

Table ‎4-4 Electric field penetration depth activated vs. tissue permittivity values 

Permittivity Electric field penetration depth 

1x10
4
 6.0 mm 

1x10
5
 1.5 mm 

1x10
6
 1.0 mm 

 

The effect of tissue dielectric constant on the field intensity distribution for        up to 

    is modeled. Matlab Linear regression with the power series equation provided the most 

accurate model with a minimum root mean square error (RMSE) and maximum coefficient of 

determination   , with confidence bounds of 95% Figure ‎4-14. The extracted equation is:  

                                                           
                    

where       , and           , 

Equation (4.2) represents the relation between the maximum electric field intensity and 

tissue relative permittivity values. The results in Figure ‎4-13 exhibit the negligible influence of 

the conductivity on the field distribution.  
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The coefficient of determination    measures the goodness of the estimated regression 

equation. The higher the r-squared, the more confidence one can have in the equation. It also   

provides a measure of how well future outcomes are likely to be predicted by this equation. r-

squared has the range of values between 0 and 1 in this analysis. 

 

Figure ‎4-14 Electric field intensity vs. permittivity @             

Since from Model-I we conclude that the variation in tissue conductivity has a negligible 

effect on  the maximum field values and even its distribution, i.e. the relative permittivity value 

is the only parameter that controls the distribution of the electric field inside the brain. Due to 

computational time and capability, we can scale down the relative permittivity values by a factor 

of 2.5 (the same factor between the Grey and White tissue matter calculated at 130Hz), thus in 

model-II and model-III we have chosen the relative permittivity value of the Grey tissue matter 

equal to 1x10
5
 and hence the White tissue matter will be 4x10

4
. These factors were the largest 

values suitable to our processing time. 

Model-II (Figure ‎4-15) shows the encapsulation tissue layer and its thickness. This 

thickness is varied from        to      with        increments to investigate its effect on the 

field distribution. The results are plotted in Figure ‎4-16 showing that the field intensity is 

inversely proportional to the capsule thickness. In order to compensate for the field attenuation 
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due to the formation of the capsule, the stimulation pulse has to be altered to maintain the 

targeted depth of the electric field. The results were modeled to demonstrate the effect of capsule 

thickness (        ) on the field distribution: 

                             
     

                 

where       , and           

 

Figure ‎4-15 Model-II: Homogenous model with encapsulation layer;         , gray box (Grey 

tissue):                       , red box (encapsulation layer):                     
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Figure ‎4-16 Maximum electric field intensity vs. capsule thickness (        ) for tissue permittivity 

of ;          and                                            

To simulates the change of the electrode proximity to the Grey-White tissue boundary. 

Model-III represents the electrode position within the tissue boundary by changing the Grey 

tissue layer thickness (     ) from       . The results in Figure ‎4-17 exhibit a pinch in the 

field lines at the Grey-White matter boundary associated with more dense distribution of the field 

equipotential lines. As a result; the penetration of the electric field within the Grey matter 

decreases. The effect of Grey tissue thickness (     ) on the field intensity is plotted in Figure 

‎4-18 and expressed by equation 4.4. 

                        
      

              

        , and           
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Figure ‎4-17 Model-III: Non-homogeneous model for Grey and White tissue layers, red box (Grey 

tissue):                                            , gray box (White tissue):                 

                                

 

Figure ‎4-18 Maximum electric field intensity vs. Grey matter thickness (     ) for                

                             and                                                
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4.7 Stimulation Pulse  

The stimulation pulse has two degrees of freedom (amplitude and width) that are manipulated to 

study the effect of the pulse characteristics on the field distribution. In this study, a single layer 

homogenous (Model-I) was used and the simulation was iterated for two different values of 

relative permittivity (    and    ) and conductivity             as shown in Figure ‎4-19. 

Sweeping the pulse amplitude ( ) from   to           had no effect on the depth of field 

penetration within the tissue while it directly controlled the levels of field intensity. The results 

were modeled by linear relation characteristics which provided the most accurate model with a 

minimum           and      for        and        respectively, and maximum 

coefficient of determination          as shown in Figure ‎4-20. The extracted equations are: 

                                   

                                   

  

Figure ‎4-19 Effect of pulse amplitude on field distribution, (left:    , right:     ) @          
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Figure ‎4-20 Electric field intensity vs. simulation pulse amplitude ( ) for        and     @ 

            

The results in Figure ‎4-19 and Figure ‎4-20 show the dominance of the pulse amplitude on 

the field intensity at lower tissue permittivity, where the slope at           is almost 3 times 

that of         . 

 

To study the effect of pulse width on the electric field distribution, a constant amplitude 

pulse of 5 volts and width (  ) varying from    to             (time step is set to          

due to computational limitations) was defined for the stimulation pattern using Model-I with 

         and              (Figure ‎4-21). A semi-log presentation of the maximum electric 

field versus pulse width is shown in Figure ‎4-22. These results infer that the electric field spatial 

depth is mainly controlled by changing the simulation pulse width rather than its amplitude. 

Therefore the amplitude of the stimulation current injected can be reduced by increasing the 

pulse width, to obtain the same effect on the spatial distribution of the electric field. The results 

were represented by power relation characteristics with          and       , the model 

equation is: 
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Figure ‎4-21 Effect of pulse width on field distribution (   and            ) @          

          

 

Figure ‎4-22 Electric field intensity vs. simulation pulse width @                    
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4.8 Firing Pattern Stimulation 

In order to improve the effectiveness of DBS it is required to enhance the spatial precision of 

charge delivery and to minimize the risk of undesired stimulation of non-targeted regions. 

Current steering mechanisms can be employed to control the spatial distribution of the created 

electric field by sculpturing it within the brain tissue. Several parameters can be manipulated to 

achieve current steering and electric field shaping; these include contact shapes and distribution, 

stimulation pulse waveform and tissue dielectric properties.  

 

To investigate the influence of current steering on sculpturing the electric field, a variable 

firing pattern was applied as differential currents between the contact rings using 2 and 3 rings. 

A constant current source model was used for stimulation, and the weights of the differential 

currents applied between the rings were controlled to yield different ratios. A single layer 

homogenous model is used (                    ).  

 

The electric field distribution for different firing patterns is shown in Figure ‎4-23 which 

shows the flexibility in shaping the electric field distribution and controlling it as the number of 

firing rings increases. As an example of the effect of current steering on field distribution: single 

ring firing yields electric spatial distribution represented in Figure ‎4-23a; this distribution is 

doubled by applying half the stimulation current level while simultaneously firing from two rings 

as shown in Figure ‎4-23d. It is obvious that it is possible to shape the electric field distribution 

within the brain tissue by changing the stimulation pattern as well as the pads distributions. 

Figure ‎4-24 shows the maximum electric field versus current steering ratio for different 

permittivity                                      . 
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(a)100/0% (b) 90/10% (c) 80/20% (d) 50/50% 

    

(e) 100/0/0% (f) 90/0/10% (g) 80/0/20% (h) 50/0/50% 

Figure ‎4-23 Current steering and field shaping, top: 2 rings firing, bottom: 3 rings firing 

 

Figure ‎4-24 Maximum electric field vs. current steering ratio for different permittivity    
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4.9 Electrode Array 

Electrode array arrangement improves current steering and the spatial precision of charge 

delivery to targeted regions. A multi-shaft electrode array with      inter-electrode spacing was 

modeled and simulated as shown in Figure ‎4-25. The results emphasized the improved flexibility 

provided by electrode arrays in controlling field distribution. 

 

Figure ‎4-25 Two DBS electrode array, left: 100% current level on all rings, right: 0-100-0% (left 

shaft), 100-0-100% (right shaft). 
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4.10 Conclusion  

The objective of this analysis was to investigate the effects of several DBS electrode 

parameters and brain tissue in controlling the electric field distribution within brain tissue and to 

provide a quantitative evaluation of the maximum electric field within the brain. These 

parameters include: tissue dielectric properties (permittivity and conductivity), non-homogenous 

tissue structure (Grey and White matter), encapsulation tissue thickness, stimulation pulse 

characteristics (width and amplitude) and stimulation pattern (current steering ratio). Low 

frequency models representing the Medtronic 3387 DBS electrode in the STN were developed 

based on the Gabriel biological tissue model. 

Finite difference time domain (FDTD) was used for modeling and simulating the DBS 

electrode and the brain tissue medium for different DBS parameters. It is a very accurate method 

to solve the electric field since it deals with the temporal details of the input DBS parameters, 

hence, the influence of each parameter on the electric field distribution can be readily observed 

using FDTD analysis compared to FEM analysis. For the FEM method, we need to solve a 

system of linear equations at each time step and to run multiple executions to achieve similar 

temporal detail. 

All of these parameters have an effect on the calculation of the activating functions as 

discussed in section 3.2, i.e. we do not need to study the effect of changing brain conductivity 

values (0.02 - 0.3 S.m
-1

) on the activating function since we already show that it has no effect on 

the electric field distribution, then a mean value of 0.1 S.m
-1

 was chosen in our analysis. 

The simulation results showed that it is possible to maximize the efficacy of the charge 

delivered to a tissue by maximizing the spatial electric field distribution ; this can be achieved 

first by increasing stimulation pulse width especially when we used model-III as there was a 

shrink in the field between the layers in brain tissue (White and Grey matter). Second, when we 

took the encapsulation layer thickness into considerations (Model-II) as the values of the 

maximum electric field decreases when the encapsulation thickness increases. This encapsulation 

tissue layer was created in response to implanting a foreign body and thus attenuated the electric 

field. 
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Finally, we show that increasing stimulation pulse amplitude has only affected the field 

values without changing the depth of the field distribution.  Also, stimulation pattern was 

modeled to investigate their efficacy in controlling the charge delivery and field shaping through 

current steering. The simulation results exhibited the ability to manipulate the electric field 

distribution within the brain tissue though controlling the ratios of the differential stimulation 

signal components between ring pairs. 

In conclusion, we have focused on three different models of the implanted electrode inside 

brain tissue, starting with a homogenous and isotropic brain tissue medium (Model-I), an 

encapsulation layer surrounding the implanted electrode (Model-II) which represents the aging 

process of the implanted electrode inside brain tissue  and finally, a non-homogenous tissue 

structure (Model-III) including Grey and White tissue matter in order to investigate the effect of 

the insertion of the electrode with respect to different tissue layers. All of these three models 

were investigated to study their effect on the electric field distribution and the results show the 

capability of controlling the field distribution to conform to the brain target of the stimulation 

and thus minimizing the stimulation of undesired brain structures. 
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Chapter 5                                                                                                 

Evaluating the Activating Function in Deep Brain Stimulation System 

5.1 Introduction 

As mentioned in Chapter 3, Figure ‎3-2, there is a component (second order spatial voltage) that 

is responsible for conversion from electric field distribution to activating function. This 

activating function is needed to stimulate neuron cells inside the brain. This conversion 

component uses the electric field as its input in order to calculate the second order spatial voltage 

as shown in  

Figure ‎5-1.   

Second 

Order 

Spatial 

Voltage

Input

Output

Electric 

Field 

Distribution

Activating 

Function

 

Figure ‎5-1 A schematic diagram for the input and output of the second order spatial voltage 

component  

The EMPIRE XCcel 5.2 tool (FDTD electromagnetic solver) allows only dealing with 

electric field distribution. Using this tool, we cannot integrate the electric field along any path 

around the DBS electrode. This spatial integration along any path emitted from the DBS 

electrode at any position is required to find the spatial voltage distribution which as mentioned 

before is required to stimulate the neuron cells. This was a major reason behind changing the 

simulation tool and searching for another electromagnetic solver with such capabilities to find 

the electric field and voltage distribution at any spatial position from the DBS electrode.      

The finite element method (FEM) was considered in the modeling of the Medtronic DBS 

electrode to solve for the electric field and the voltage distribution. However, FEM is a 
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frequency domain solver which does not handle temporal signal details, thus, in order to estimate 

the field distribution associated with a certain pulse; the time domain signals should be sampled, 

transformed into the corresponding discrete frequency domain representation using Finite 

Fourier Transform (FFT). The result at each component frequency is converted back to the time 

domain with an inverse Fourier transform. Although this technique allows calculation of the 

voltage distribution, it doesn’t lend itself easily to investigate the effects of the DBS electrode 

stimulation parameters on the electric field as we showed in the previous chapter. 

In DBS, pulse widths are varied and it was clinically suggested that stimulus pulse 

durations should range from 60-450μs. The Fourier transform of the stimulus waveform in the 

frequency domain using a 1024 point FFT technique is shown in Figure ‎5-2 for a 60 µs 

Monophasic Pulse.   

 

Figure ‎5-2 A 60 µs monophasic pulse and its FFT magnitude 

5.2 Electromagnetic Solution  

The electric and voltage field distribution were solved using a numerical technique based on 

Finite Element Methods (FEM). The commercially available software package COMSOL 

Multiphysics v3.2 (Comsol Inc, Burlington, Massachusetts) [48] was used to determine the 

electric field and the electric potential (V) distribution in the brain medium due to the stimulating 

electrodes by solving the Laplace Equation: 
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where    is the electrical conductivity of the media involved in the model. 

The stimulus waveform is a train of voltage square pulses with a main frequency between 

100-150 Hz. To account for frequency dependence of the brain tissue, complex conductivities of 

tissues were considered: 

           
                     

where   is the ionic conductivity,    (free charge) and      (bound charge) are the real and 

imaginary parts of the tissue permittivity. These values were extracted at 130    from the Figure 

‎4-1, Figure ‎4-2, Figure ‎4-3 and Figure ‎4-4 

5.3 Finite Element Model 

Axisymmetric finite element models of DBS electrodes were created with 17,560 nodes 

using COMSOL. The axisymmetric volume representing the brain medium measured 20 mm tall 

by 10 mm wide to evaluate the electric field and voltage distribution. This axisymmetric 2D 

space was chosen instead of a more realistic 3D to achieve a reliable solution without a high 

computational effort as shown in Figure ‎5-3. 

 

Figure ‎5-3 Finite element meshing for the DBS electrode in Model-I 
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The brain tissue medium was modeled as Grey tissue as a homogenous lossy dielectric 

(Model-I) with isotropic conductivity of 0.1 S/m, a representative value for brain tissue. The 

electrode geometry was based on the Medtronic 3387 quadripolar DBS electrode with four 

platinum contact rings (σ‎=‎8.6*10
6
 S/m) on its perimeter for charge delivery. The rings have a 

thickness of       and        in height with a spacing of       . The voltage sources were 

specified at the electrode contacts, and the electrode shaft was modeled as an electrical insulator 

polyurethane polymer.  

5.4 Stimulation Results 

Monophasic stimulation pulse was considered because it is the common approach used in DBS 

procedure. All the stimulus pulses applied to the electrode contacts have a frequency of 130 Hz 

and 60 µs width. First, we implied a negative square pulse voltage at the first DBS electrode 

contact of negative 0.5 volt. Therefore, we set contact No. 1 to V = − 0.5 volt and the system 

were solved using a FEM solver. Figure ‎5-4 shows the electrical potential contour results. The 

data provided by the simulations is the maximum electric field intensity distribution within the 

brain tissue. 

 

Figure ‎5-4 Finite element potential contour of DBS electrode for V= -0.5 Volt 
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Secondly, this scenario was repeated for different negative square pulse voltages applied at 

the first electrode contact with the same width 60 µs but different amplitudes ranging -1,-2 and -

3 voltages. Figure ‎5-5, Figure ‎5-6 and Figure ‎5-7 show the electrical potential contour results for 

this applied voltages as well as how the electrical voltage intensities increase through the brain 

tissue with the applied voltage. We kept the same voltage scale legend for all figures.  

 

Figure ‎5-5 Finite element potential contour of DBS electrode for V= -1.0 Volt 

 

Figure ‎5-6 Finite element potential contour of DBS electrode for V= -2.0 Volt 
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Figure ‎5-7 Finite element potential contour of DBS electrode for V= -3.0 Volt 

From these electric field distributions, we can integrate the electric field along any path 

from the DBS electrode shaft which was the main reason behind the switching from FDTD into 

FEM. As an example, the electrical voltage distribution along a vertical line passing 1 mm on the 

right of the active Contact No. 1 is calculated for two applied voltage cases of -1 and -3 

respectively as shown in Figure ‎5-8 and Figure ‎5-9.  

The maximum electric field intensity within the brain tissue was found to be equal to 7.828 

KV/m within 4.5 mm penetration depth for the case when the applied voltage equal to -1 Volt; 

this estimates the volume of tissue activated (VTA) according to the depth of the electric field 

penetration into the brain tissue. This calculation was repeated for a different contact voltage of -

3 volt and the maximum electric field intensity within the brain tissue was equal to 33.484 KV/m 

within the same 4.5 mm penetration depth. This confirms the same result done before with 

FDTD that the pulse amplitude had no effect on the depth of field penetration within the tissue 

while directly controlled the levels of field intensity.  
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Figure ‎5-8 Electric potential along a vertical line passing 1 mm on the right of the active contact No. 

1 for V= -1 volt. 

 

Figure ‎5-9 Electric potential along a vertical line passing 1 mm on the right of the active contact No. 

1 for V= -3 volt. 
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Finally, the DBS electrode four contacts were activated with a pattern (-3, -2, -1 and -0.5 

volts) for contacts 1 to 4 respectively, the electric potential contours around the electrode were 

shown in Figure ‎5-10 where the maximum electric field within the tissue was found to be 23.637 

KV/m which is approximately the same value when we applied a negative 3 volt on one active 

contact. Figure ‎5-11 also shows the voltage distribution along a horizontal axis passing through 

the first contact and the brain tissue. 

 

Figure ‎5-10 Finite element potential contour of DBS electrode for 4 active contacts                            

(-3, -2, -1 and -0.5 volts.)  

 

Figure ‎5-11 Electric potential along a horizontal axis passing through the first active contact. 

Contact 4 (-0.5 Volt) 

Contact 3 (-1 Volt) 

Contact 2 (-2 Volt) 

Contact 1 (-3 Volt) 
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5.4.1 Activating Function Calculation along Lateral Axis of the Electrode 

The space-dependent voltages are used to calculate the activating functions for neurons. 

The concept of an activating function was developed and suggested in [41]. In order to describe 

and simplify the computations involved in determining the response of excitable tissue to an 

electric field. This function is defined as the second derivative of the extracellular potential along 

a fiber and represents the driving function of a neuron. It has mainly been used to estimate the 

existence of regions of polarization in the (depolarization and hyperpolarization) and can be used 

to predict action potential initiation.  

The activating function was calculated along multiple vertical lines located at different 

distances from the DBS electrode shaft. These positions will later represent locations of neuron 

cells. In this way we will be able to find the activity of each neuron relative to its position with 

respect to either a positive activating or negative activating function as shown in Figure ‎5-12. 

 

Figure ‎5-12 A schematic diagram of DBS electrode with respect to surrounding neurons where the 

activating function will be calculated at positions lateral to the electrode shaft  

Electrode Axis 
Neurons axis at 2 mm apart 

from DBS electrode shaft 
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First, We will start our calculations by applying a negative one voltage at the first contact 

of the DBS electrode, Figure ‎5-13 reports the voltage distribution (panel a) and the activating 

function (panel b) along a vertical line passing 1 mm to the right of the active contact No. 1 with 

-1 volt. It can be shown that positive activating function value will lead to a higher probability of 

depolarization and negative activating function values lead to hyperpolarization. 

 

Figure ‎5-13 Electric potential and activating function along a vertical line passing 1 mm from DBS 

active contact No. 1 for V= -1 volt. 

 

The activating function was then calculated along multiple vertical lines passing 2mm and 

3mm to the right of the position of the DBS electrode due to symmetry as shown in Figure ‎5-14 

and Figure ‎5-15. It can be shown that the maximum and the minimum values of the activating 

function are decreasing relative to the distance apart from the electrode which will affect action 

potential initiation and hence the volume of tissue activated (VTA) inside the brain. Table ‎5-1 

summarizes these values.  
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Figure ‎5-14 Electric potential and activating function along a vertical line passing 2 mm from DBS 

active contact No. 1 for V= -1 volt. 

 

Figure ‎5-15 Electric potential and activating function along a vertical line passing 3 mm from DBS 

active contact No. 1 for V= -1 volt. 
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Table ‎5-1 Maximum and minimum activating function (AF) [V/m
2
] for different positions from the 

electrode shaft 

Position AF(Max) V/m
2  

AF(Min) V/m
2 

1mm 3.919*10^3 -3.601*10^3 

2mm 0.1936*10^3 -0.08646*10^3 

3mm 0.05804*10^3 -0.03072*10^3 

 

The effect of neuron position from the DBS electrode shaft, were calculated based on the 

activating function maximum value, is modeled for the case when a negative one voltage was 

applied to the DBS electrode first contact. Matlab Linear regression with Power series equation 

provided the most accurate model with a minimum root mean square error (RMSE) and 

maximum coefficient of determination   , with confidence bounds of 95% (Figure ‎5-16). The 

extracted equation for the maximum activating function AFmax is: 

 

                                           

where                      , and            

 

Figure ‎5-16 Maximum activating function (AFmax)[V/m
2
] for different positions from the electrode 

shaft  for V= -1 volt applied to the DBS electrode first contact. 
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Secondly, we applied a negative three volts at the first contact of the DBS electrode (V= -3 

Volt); Figure ‎5-17 reports the voltage distribution and the activating function along a vertical line 

passing 1 mm on the right of the active contact No. 1 with -3 volt. 

 

 

Figure ‎5-17 Electric potential and activating function along a vertical line passing 1 mm from DBS 

active contact No. 1 for V= -3 volt. 

The activating function was subsequently calculated along a multiple vertical line passing 

2mm, 3mm and we add the 4mm distance from the DBS electrode since we are expecting the 

values of this function to decay at a lower rate compared to the case when we applied negative 

one voltage. It can be shown in Figure ‎5-18, Figure ‎5-19 and Figure ‎5-20 that the maximum and 

the minimum values of the activating function are still decreasing relative to the distance apart 

from the electrode but these values are greater than the previous case when a negative one volt 

was applied. Hence, the probability of the number of neurons that are firing and the volume of 

tissue activated are expected to be much larger. Table ‎5-2 summarizes these values.  
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Figure ‎5-18 Electric potential and activating function along a vertical line passing 2 mm from DBS 

active contact No. 1 for V= -3 volt. 

 

Figure ‎5-19 Electric potential and activating function along a vertical line passing 3 mm from DBS 

active contact No. 1 for V= -3 volt. 
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Figure ‎5-20 Electric potential and activating function along a vertical line passing 4 mm from DBS 

active contact No. 1 for V= -3 volt. 

 

Table ‎5-2 Maximum and minimum activating function (AF) [V/m
2
] for different positions from the 

electrode shaft 

Position AF(Max) V/m
2  

AF(Min) V/m
2 

1mm 4.942*10^3 -4.261*10^3 

2mm 1.351*10^3 -0.851*10^3 

3mm 0.6242*10^3 -0.2926*10^3 

4mm 0.1674*10^3 -0.07671*10^3 

 

Again, the effect of the position of neurons from the DBS electrode shaft is modeled for 

this case as shown in Figure ‎5-21 (we used the activating function curve for the case when V= -

1volt and we deduce the value of the AFmax at 4 mm from equation 5.3 which leads to a value of 

0.0102*10
3
 V/m

2
) to show how this function is affected with respect to the applied voltage. 

Matlab Linear regression with Power series equation provided the most accurate model with a 

minimum root mean square error (RMSE) and maximum coefficient of determination   , with 

confidence bounds of 95% The extracted equation for AFmax is: 
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where                      , and            

 

Figure ‎5-21 Maximum activating function (AFmax)[V/m
2
] for different positions from the electrode 

shaft  for V= -3 volt compared to the case when V= -1 volt applied to the DBS electrode contact. 

5.4.2 Activating Function along Tilted Axis with Respect to DBS Electrode Shaft 

In the previous section, we calculated activating function along parallel axis to the DBS 

electrode shaft, in this section we studied the effect of calculating the activating function on 

multiple tilted axes along different degree angles from the DBS electrode shaft as shown in 

Figure ‎5-22. To prove that maximum depolarization at which there is a highest possibility for the 

neurons to fire occurs when‎ activating‎ function‎ calculated‎ on‎ axis’s‎ that‎ are‎ parallel to the 

electrode shaft due to the rate of change of the electric field assigned to the DBS electrode.  

The electric potential and activating function was calculated along multiple axes with 

different degree angles starting from 10 degree angle till 55 degree as shown in Figure ‎5-23, 

Figure ‎5-24, Figure ‎5-25, Figure ‎5-26 and Figure ‎5-27.  

The maximum and the minimum values of the activating function are decreased relative to 

the different angles from the DBS electrode shaft and it drops to relatively small values when the 
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angle between the DBS electrode and axis of calculation reached 30 degree or more indicating 

less probability of firing neurons. Furthermore, the electric potential and activating function were 

calculated at an axis that is perpendicular to the DBS electrode shaft (90 degree) as shown in 

Figure ‎5-28 which shows only a negative value of activating function meaning that there will be 

no action potential initiated and hence all the neurons located along this path are in the 

hyperpolarization region and there will be no firing initiated. Table ‎5-3 summarizes these values.  

 

 

 

Figure ‎5-22 A schematic diagram of DBS electrode with respect to surrounded neurons where the 

activating function will be calculated along tilted axis with respect to electrode shaft 

Neurons Axis at 

any angle   

Neurons Axis at 

angle =90o  
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Figure ‎5-23 Electric potential and activating function along a 10 degree angle from the electrode 

axis  

 

Figure ‎5-24 Electric potential and activating function along a 20 degree angle from the electrode 

axis  
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Figure ‎5-25 Electric potential and activating function along a 30 degree angle from the electrode 

axis  

 

Figure ‎5-26 Electric potential and activating function along a 45 degree angle from the electrode 

axis  
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Figure ‎5-27 Electric potential and activating function along a 55 degree angle from the electrode 

axis  

 

Figure ‎5-28 Electric potential and activating function along a 90 degree angle from the electrode 

axis  
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Table ‎5-3 Maximum and minimum activating function (AF) [V/m
2
] for different degree angles from 

the electrode shaft 

Position AF(Max) V/m2  AF(Min) V/m2 

10 degree 14.98*10^3 -7.621*10^3 

20 degree 2.889*10^3 -0.725*10^3 

30 degree 0.740*10^3 -149.8*10^3 

45 degree 0.270*10^3 -0.020*10^3 

55 degree 0.090*10^3 -0.008*10^3 

 

The value of the zero degree position was not considered in this analysis because it 

represents a parallel position to the DBS electrode shaft and it was considered before in section 

5.4.1. Also, we noticed that after the 55 degree position, the maximum value of the activating 

function dropped to zero values, and it even goes to negative values at 90 degree angle from the 

DBS electrode shaft as shown in Figure ‎5-28. 

We observed that the maximum value of the activating function calculated at the 10 degree 

angle position was extremely increased to 14.98*10
3
 V/m

2
, this is due to the rapid change of the 

voltage distribution along this position from its minimum to maximum values which guaranteed 

a higher activating function, while in the other cases (different angle positions greater than 10 

degree or even parallel manner positions), the voltage distribution changing smoothly from its 

minimum to maximum values. 

The effect of the different degree angle from the DBS electrode shaft (where activating 

function was calculated) on the maximum activating function is modeled. Matlab Linear 

regression with exponential equation provided the most accurate model with a minimum root 

mean square error (RMSE) and maximum coefficient of determination   , with confidence 

bounds of 95% (Figure ‎5-29). The extracted equation of AFmax is: 

                                                                       

 

where                          , and           , 
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Figure ‎5-29 Maximum activating function (AFmax)[V/m
2
] for different angels from the electrode 

shaft 

5.5 Effect of Pulse Width 

In all previous sections, we have only studied the effect of the DBS pulse amplitude on the 

maximum activating function. In this section we will vary the width of the DBS pulse from 60s 

- 450s in steps of 30s. For each of these pulse widths, we did vary the DBS pulse amplitude 

and it was held constant at 1 volt. 

The activating function along a vertical line passing 1 mm on the right of the active contact 

no. 1 was calculated for different DBS pulse widths as shown in Figure ‎5-30. The maximum 

values of the activating function are summarized in Table ‎5-4, and the relation between the 

maximum values of the activating function at 1mm position from the electrode shaft and 

different DBS pulse widths are shown in Figure ‎5-31 
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Figure ‎5-30 Activating function along a vertical line passing 1 mm from DBS active contact No. 1 

for DBS pulse width = 90s. 

 

Table ‎5-4 Maximum activating function (AF) [V/m
2
] for different DBS pulse widths at 1.0mm from 

the DBS electrode shaft 

DBS Pulse width AF(Max) V/m2  

60 3.919*10^3 

90 5.870*10^3 

120 7.680*10^3 

150 9.309*10^3 

180 10.580*10^3 

210 11.660*10^3 

240 12.540*10^3 

270 13.220*10^3 

300 13.720*10^3 

330 14.108*10^3 

360 14.497*10^3 

390 15.020*10^3 

420 15.279*10^3 

450 15.542*10^3 
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Figure ‎5-31 Maximum activating function (AFmax)[V/m
2
] for different DBS pulse widths (s) 

5.6 Effect of DBS Electrode Encapsulation Thickness  

Moreover as we explained earlier, encapsulation layer surrounding the implanted DBS electrode 

will be added to the basic brain model as discussed in (Model-II, Figure ‎4-7) which represents 

the aging process of the implanted electrode inside the brain tissue. 

We will study the effect of the DBS electrode encapsulation thickness on the electric field 

and voltage distribution as well as the behavior of the activating function inside the brain tissue, 

also, we will calculate the injected current from the electrode contact through the brain tissue in 

order to determine how the impedance of the DBS electrode contact is changing with the aging 

process of the DBS electrode. The conductivity of the encapsulation layer was taken at a value of 

           and the brain Grey tissue was kept at           while the encapsulation tissue layer 

permittivity value remains the same as the brain Grey tissue. The thickness varied between 0.1 to 

1 mm. 
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5.6.1 Electric Field Distribution Calculation 

The electric field distribution was calculated at two different encapsulation thicknesses of 0.36 

and 1.0 mm where a negative one volt was applied to the DBS electrode contact.  The maximum 

electric field intensity within the brain tissue was found to be equal to 2.78 KV/m within 3.9 mm 

penetration depth for 0.36 mm encapsulation thickness as shown in Figure ‎5-32 which represents 

a drop of the field intensity and shrinkage of the electric field region from 4.5 mm where there 

was no encapsulation layer assigned. For the other case of 1.0 mm encapsulation thickness, the 

field valued dropped to 1.56KV/m within a 3.5mm region inside the brain tissue as shown in 

Figure ‎5-33.   

 

  

Figure ‎5-32 Finite element potential contour of 

DBS electrode surrounded by 0.36 mm 

encapsulation thickness with conductivity 

σ=0.05 S.m
-1

 

Figure ‎5-33 Finite element potential contour 

of DBS electrode surrounded by 1.0 mm 

encapsulation thickness with conductivity 

σ=0.05 S.m
-1
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5.6.2 Effect of Encapsulation Thickness on Voltage and Activating Function 

The electric potential and the activating function was calculated at 2mm distance from the 

electrode shaft for the case of 1.0 mm encapsulation thickness as shown in Figure ‎5-34 since this 

encapsulation layer represents a dead tissue and there is no meaning to calculate the activating 

function inside it. The maximum value of the electric potential dropped to 0.09 Volt while the 

activating function dropped to 0.0645*10^3 V/m
2
 which is approximately 3 times less than the 

case when no encapsulation thickness inserted.    

 

 

Figure ‎5-34 Electric potential and activating function at 2 mm from DBS contact for V= -1 volt with 

1.0 mm encapsulation thickness of conductivity σ=0.05 S.m
-1
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5.6.3 Current Density and Impedance Calculation 

For the case when a negative 1 volt stimulus applied to the DBS electrode contact, the injected 

current density through the brain tissue was calculated for different encapsulation thickness 

ranging from 0-1 mm as shown in Figure ‎5-35, Figure ‎5-36 and Figure ‎5-37. Current density was 

integrated around the contact surface to determine the current injected into the brain tissue. 

Ohms law was used to determine the impedance from Z=V/I. Encapsulation thickness around the 

electrode shaft had a strong effect on impedance. Variations in its thickness caused changes of 

impedance from 220-450  as shown in Figure ‎5-38. These low values of calculated impedance 

matched the measured impedance of DBS electrode contacts in Vitro done by [76].    Hence, 

encapsulation around the electrode contact had a strong effect on DBS system impedance.  

 

  

Figure ‎5-35 Surface current density distribution at DBS contact center with 0 mm encapsulation 

thickness of conductivity σ=0.05 S.m
-1
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Figure ‎5-36 Surface current density distribution at DBS contact center with 0.36 mm encapsulation 

thickness of conductivity σ=0.05 S.m
-1

  

  

  

Figure ‎5-37 Surface current density distribution at DBS contact center with 1.0 mm encapsulation 

thickness of conductivity σ=0.05 S.m
-1
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Figure ‎5-38 DBS electrode contact impedance vs. encapsulation thickness from 0-1 mm 

Matlab Linear regression with linear equation provided the most accurate model, with 

confidence bounds of 95%. The relation between electrode contact impedance and encapsulation 

thickness is extracted in equation (5.5) 

                                             

with                                       

5.7 DBS Electrode in Anisotropic Conductivity Medium 

The electric field distribution inside the brain tissue is controlled by the electrical conductivity 

and permittivity of brain tissue as was discussed before. In all previous models we assumed that 

the brain tissue is isotropic conductor but in the real case it is anisotropic medium. The effect of 

this anisotropic conductivity medium on the field distribution and hence the activating function 

was studied. The values of the conductivities used for the Grey tissue matter was extracted by 

diffusion tensor MR imaging (DTI) [77].  

The DBS electrode was surrounded by anisotropic medium of                and 

               in x, y directions respectively. The electric field distributions were calculated 

as shown in Figure ‎5-39. It shows a drifting of the major axis of the electric field towards the 

DBS electrode axis.  
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The voltage distribution and the activating function were subsequently calculated at 1mm 

distance from electrode shaft, the results were plotted with respect to the isotropic case as shown 

in Figure ‎5-40. It can be shown that there is a slight change in the values of the voltage and the 

activating function except there is a shifting in the values of both curves due to the new 

orientation of the electric field around the DBS electrode.    

 

Figure ‎5-39 Finite element potential contour of DBS electrode surrounded by anisotropic medium 

of conductivity                and                  respectively 

  

 Figure ‎5-40 Electric potential and activating function at 1 mm from DBS electrode 

surrounded by anisotropic medium of conductivity                and 

                 respectively. 
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5.8 DBS Electrode Representation versus Point Source Approximation 

Calculation of the electrical potentials generated by DBS electrode and subsequently, the 

activating function calculation will affect the firing neurons and the VTA. All these values 

depend on the electric field distribution assigned from the geometry of the DBS electrode.  

The objective of this section is to quantify the voltage distribution around the DBS 

electrode contact at different degree angles in order to prove that the DBS electrode contact 

(which is the source of the electric field) cannot be approximated as a point source as provided 

by [78]. This approximation will be less accurate in the electric field calculation and this will 

greatly affect the accuracy of calculating the activating function around the DBS electrode.  

The electric potential was calculated along a multiple axis with different degree angles at 

10 and 55 degrees respectively. These electric potentials were quantified using Matlab Linear 

regression technique. The extracted model equations that provided the most accurate model with 

a minimum root mean square error (RMSE) and maximum coefficient of determination   , with 

confidence bounds of 95%  are shown in Figure ‎5-41 and Figure ‎5-42. The behavior of this 

voltage distribution was observed as a linear combination of Gaussian pulses which is different 

from the voltage distribution of any point source.   

Also, we approximate the voltage distribution located at a 90 degree angle from the real 

DBS contact as shown in Figure ‎5-43 and from a point source as shown in Figure ‎5-44. We 

determined that maximum coefficient of determination            in the case of a point 

source approximation which is 4.52% less accurate than the real DBS contact representation. 

Hence, approximation of the DBS electrode contact as a point source is not an accurate one.  

 

 



112 
 

 

Figure ‎5-41 DBS voltage distribution at 10 degree 

 

Figure ‎5-42 DBS voltage distribution at 55 degree 

Extract equation is Gauss4: 

       

 V(x) =  

             -0.1207*exp(-((x-0.04483)/ 3.801)^2) - 

0.3112*exp(-((x-0.6302)/ 0.4168)^2) +  

              0.5734*exp(-((x-0.8523)/ 0.7742)^2) - 

1.119*exp(-((x-1.061)/ 1.025)^2)   (5.6) 

 

        

  R-square = 99.96% and  RMSE = 0.00495 

 Extract equation is Gauss6: 

        

V(x) =  

0.01722 *exp(-((x-4.2 )/ 0.5929)^2) - 0.3153 *exp(-

((x-0.3074)/ 1.37)^2) +  

              -0.01721*exp(-((x-0.8574)/ 0.3215)^2) - 

0.1222*exp(-((x-0.3139)/ 0.4085)^2) +  

              -0.02021*exp(-((x-2.332)/ 0.8256)^2) - 

0.02236*exp(-((x-0.1748)/ 0.1893)^2)   (5.7) 

 

  R-square = 99.99% and  RMSE = 0.0003547 

 

Figure ‎5-43 DBS voltage distribution at 90 degree 

 

Figure ‎5-44 Point source approximation 

Extract equation is Exp2: 

 

       V(x) = -1.603*exp(-1.384*x) -            

0.4697*exp(-0.6153*x)    (5.8) 

 

  R-square = 99.84% and RMSE = 0.009474 

Extract equation is Power1: 

 

       V(x) = -0.6045*x-1.438    (5.9) 

        

 

  R-square = 95.32% and RMSE = 0.03878 



113 
 

5.9 Conclusion  

The objective of the analysis in this chapter is to calculate the second order spatial voltage 

distribution (Activating Function) for an implanted DBS electrode which is needed to be coupled 

with the neuron cells inside the brain. Finite Element Method (FEM) was used for modeling and 

simulating the DBS electrode and brain tissue medium. Low frequency models representing the 

Medtronic 3387 DBS electrode in the STN are developed in this chapter based on Gabriel 

biological tissue model. 

The roles of the DBS stimulation parameters (Pulse width and amplitude) have been 

studied and their role in affecting activating function is demonstrated. AFmax, and AFmin have 

been considered for different voltage values of the input waveform and the maximum electric 

field intensity within the brain tissue and its penetration depth have been studied. In the case of 

changing stimulation pulse amplitude, the values confirms with the result obtained before by 

FDTD analysis in part one; the pulse amplitude had no effect on the depth of field penetration 

within the tissue while it directly controlled the levels of the field intensity. 

 Also, the activating function was studied for different distances from the DBS electrode 

shaft since it will be the input signal to stimulus the neurons placed at these different positions. 

This activating function will affect the action potential initiation and hence the volume of tissue 

activated (VTA) with respect to the applied stimulation parameters (The results of this study will 

be discussed in the next chapter). In order to calculate the value of the activating function at any 

position, we must integrate the electric field distribution along parallel and perpendicular axis to 

the DBS electrode. The integration of the electric field along any perpendicular axis to the DBS 

electrode will only result in small negative values of activating function with respect to the 

values obtained from the integration along parallel axis to the electrode as shown from Figure 

‎5-13 and Figure ‎5-28 respectively. From these figures we can observed that the activating 

function value at 1.0 mm from the center of the first active contact is equal to +2000 V/m
2
 from 

parallel calculation (Figure ‎5-13) and -80V/m
2
 from perpendicular calculation which is 25 times 

less (Figure ‎5-28). Thus, the total activating function value at this position is equal to 1920 V/m
2
 

and can be approximated to the value of the activating function (2000 V/m
2
) calculated from 

parallel position manner with a ~4% less accurate. We can conclude that only parallel calculation 
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of AF with respect to the DBS electrode will be considered in the calculation of the neuron firing 

activity and the VTA as will be discussed in the next chapter.  

The effect of the DBS electrode encapsulation thickness on the electric field and the 

behavior of the activating function inside the brain tissue have been studied. We showed that the 

maximum activating function values dropped 3 times less than the case when no encapsulation 

thickness inserted. Also, we calculated the injected current from the electrode contact and 

determined the impedance of the DBS electrode contact and how the encapsulation thickness 

around the electrode contacts increased the DBS system impedance.  

Finally, we took into consideration for the region surrounding the DBS electrode the 

anisotropic brain medium characteristics rather than the simple isotropic medium. The 

integration of the electric field and the activating function were calculated and the results show a 

minor change on the values of the activating function except for the shifting due to the new 

orientation of the electric field around the DBS electrode. 
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Chapter 6                                                                                               

Deep Brain Stimulation Neuron Simulations and Modeling 

6.1 Introduction 

In this chapter, we are going to study the last phase for the proposed DBS model as 

described in section 3.1, Figure ‎3-2.  The interaction between the activating function calculated 

inside the brain medium tissue due to the implanted DBS electrode and the neuron cells will be 

analyzed. As mentioned before, The output of this DBS model will represent the region in the 

brain that is excited through the numbers of neuron that are activated and the firing activity of 

the neurons which will be used to build the neuron tuning curves and finally the volume of tissue 

activated (VTA) as shown in Figure ‎6-1. 

Neuron Cell Model 

(N)

N1

N2

.

.

Input

FEM

Activating 

Function

Action 

Potential 

generation

No 

generation

Brain Neuron 

Activity 

Parametrs

Tuning 

Curves

 

Figure ‎6-1 A schematic diagram of the inputs and outputs of the neuron environment indicating the 

coupling between the activating function calculated from FEM model and neuron environment tool 

to detect neuron firing activity 

Finite element electric field and activating functions that have been calculated in the 

previous chapter will be coupled to the neuron structure in this chapter. The brain medium will 

be an active source by taking the effect of the neurons inside the STN. In order to build all the 

details of the neuron structure; dendrite, soma and its axon, we use of the NEURON program in 

our simulation. NEURON is a simulation environment for modeling individual neurons and 

networks of neurons [46]. NEURON models individual neurons via the use of sections which are 

http://en.wikipedia.org/wiki/Neurons
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subdivided into individual compartments by the program; it is used as the basis for instruction in 

computational neuroscience in many papers. 

6.2 STN Neuron Cell Model  

Neural excitation by the activating function was calculated for one STN neuron cell as a start to 

get used to the NEURON program. To build this neuron model, a multi-compartment cable 

model of a STN neuron was used as discussed in chapter 2. It consisted of soma and multi-

compartment myelinated axon with explicit representation of the myelin and underlying 

axolemma. All the parameters related to this neuron cell model were shown in Figure ‎2-23, 

Table ‎2-7 and Table ‎2-8.  

A short axon cable model of a 5.7 μm diameter myelinated axon was implemented in 

NEURON to quantify the response of this cell to extracellular spatial voltage distribution. The 

model consisted of 4 nodes of Ranvier separated by 3 internodes. Each internode section of the 

model consisted of 2 paranodal myelin attachment segments (MYSA), 2 paranodal main 

segments (FLUT), and 6 internodal segments (STIN) regions of fiber as shown in Figure ‎2-22. 

The Model Geometric Parameters with this 5.7 μm fiber diameter is listed in Table ‎2-5. 

 Each node of Ranvier was modeled as a single electrical compartment connected to other 

nodes via a series resistance and to the extracellular medium by a parallel circuit consisting of a 

voltage-gated sodium channel, a linear leakage conductance and a membrane capacitance. 

Internodal lengths were 500 μm which is about 88 times the axon diameter, and the diameter of 

the node of Ranvier was 1.9 μm which is 0.3 times the axon diameter. 

The position of the neuron with respect to the electrode shaft was set into two different 

scenarios; all of the scenarios were set at 1mm apart from the electrode shaft with the first 

position set into the middle of the DBS electrode first active contact. In the second position the 

neuron was set into the middle of the DBS second non active contact as shown in Figure ‎6-2. A 

stimulus pulse with negative one volt was applied to the first contact, and the others contacts are 

set to zero voltage. The activating function along a line passing 1 mm apart from the electrode 

shaft were calculated as shown in the previous chapter and coupled to the neuron program. 

Simulations were conducted to measure neuron’s‎action potential. 

http://en.wikipedia.org/wiki/Computational_neuroscience
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Figure ‎6-2 Position of the electrode with respect to the neuron for two different scenarios 1 and 2 

In the first scenario, the neuron is set into a high positive activating function and hence it 

will lead to a higher probability of depolarization. It can be shown that the activating function 

due to stimulation of -1 volt at the first active contact triggers a spike that propagates actively 

along the axon as shown in Figure ‎6-3. 

 

 

Figure ‎6-3 Propagation of action potential along the axon 

2mm 

1
m

m
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 In the second scenario the neuron is placed into the middle of the non-active DBS contact 

and a negative activating function is calculated. This lead to hyperpolarization and no action 

potential or spikes were triggered as shown in Figure ‎6-4. This verified that the coupling between 

the calculated activating function and the generation or no generation of the action potential was 

successfully integrated. This allowed us to investigate the effect of the DBS stimulation 

parameters on neuron firing activity (spikes/second) and the volume of tissue activated can be 

readily investigated. 

 

Figure ‎6-4 Action Potential cannot be triggered due to hyperpolarization effect 

To study the effect of the DBS pulse amplitude voltage on the firing activity of the neuron, 

the STN neuron cell was placed in the middle of the DBS electrode first contact at a distance 1 

mm from the electrode shaft as was done before in the first scenario. The pulse amplitude was set 

for a value of -0.5 volt and the activating function was calculated at this position. The AF was 

coupled to the NEURON program and the firing activity at this position was recorded as shown 

in Figure ‎6-5.  

 A time window of T = 500ms is set and the number of spikes        that occur in this 

interval is counted. The mean firing rate which is equal to:               is calculated for 

this specific voltage and is found to be 60 spikes/second. 
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Figure ‎6-5 Firing activity rate (spikes/second) for DBS electrode stimulation amplitude voltage of -

0.5 volt 

The scenario was repeated for a negative 2 voltage. The firing rate was recorded from the 

neuron as shown in Figure ‎6-6. This represents 146 spikes/second. It can be deduced that higher 

stimulation voltage (-2) will lead to higher firing activity rate (spikes/second) while negative 0.5 

volt will cause smaller amount of activity.  

 

Figure ‎6-6 Firing activity rate (spikes/second) for DBS electrode stimulation amplitude voltage of -

2.0 volt 
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6.3 DBS STN Tuning Curves 

In this section we are going to build the tuning curves for neurons; they are a family of curves 

that describe the relation between neurons firing activity and the parameters under study for 

which we want to investigate its effect on the neurons, i.e., we can study the effect of DBS pulse 

parameters (Amplitude, width and frequency) on the neurons firing rates. We started with a 

population of two neurons (N=2) located at 1.0 mm and 1.50 mm apart from the electrode shaft 

and centered into the middle of the DBS electrode first active contact as shown in Figure ‎6-7. 

The DBS pulse amplitude varied from 0 - 3 volts in steps of 0.25 volt and for each voltage, the 

system was solved and the activating function was calculated and coupled to the STN cell model 

using the NEURON program. The firing activity from each neuron was recorded, calculated and 

tuning curves were constructed for those two neurons as shown in Figure ‎6-8.    

 

 

 

 

 

 

 

Figure ‎6-7 Position of the 

electrode with respect to two 

neurons (N=2) 

Figure ‎6-8 Tuning curves for two neurons (N=2) located at 1.0 

mm and 1.5 mm from electrode shaft at the center of the first 

DBS electrode contact 

 

 

1.0 mm 

1 2 

0.5 mm 
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6.4 Neurons Firing Decoding 

Back to the proposed DBS model in Figure ‎3-2, since we need to use some sort of superposition 

to study the DBS interaction with brain neurons as discussed before. We have implemented 

optimal linear decoder filter to find the accurate decoding of neural firing activity representing 

the input DBS parameters. This optimal linear decoder represent last block in our DBS model 

implementation as shown in Figure ‎6-9 .  

Error 

Measurment

Input DBS 

Stimulation 

Parameters

( Optimal 

Linear 

Decoding)

Tuning Curves

 

Figure ‎6-9 A schematic diagram of the inputs and outputs of the optimal linear decoder filter 

 The input of the optimal linear decoder depends on the neurons tuning curves in a way that 

we need to build this tuning curves in order to calculate the matrix A which was given by 

equation (3.9). This matrix dimension depends on the number of neurons used to build the tuning 

curves. Figure ‎6-10, Figure ‎6-11, Figure ‎6-12, Figure ‎6-13 and Figure ‎6-14 Show the tuning 

curves for different neuron populations (N=10 to N=50).     
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Figure ‎6-10 Tuning curves for neuron population (N=10) oriented perpendicular to the electrode 

shaft with 0.25mm inter distance  

 

Figure ‎6-11 Tuning curves for neuron population (N=20) oriented perpendicular to the electrode 

shaft with 0.25mm inter distance  
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Figure ‎6-12 Tuning curves for neuron population (N=30) oriented perpendicular to the electrode 

shaft with 0.25mm inter distance  

 

Figure ‎6-13 Tuning curves for neuron population (N=40) oriented perpendicular to the electrode 

shaft with 0.25mm inter distance  
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Figure ‎6-14 Tuning curves for neuron population (N=50) oriented perpendicular to the electrode 

shaft with 0.25mm inter distance  

 The tuning curves are discritized by an interval of   =0.1 volt to build this matrix, the 

linear filter coefficients     were calculated according to equation (3.11) in such a way to 

minimize the error between the applied DBS pulse amplitude and the reconstructed pulse 

amplitude. The values of the optimal linear filter coefficients for the case when the number of the 

neurons N=10 are shown in Figure ‎6-15. The decoded pulse amplitude was applied back to the 

DBS electrode and hence all of the previous calculations of the electric field distribution, the 

activating function and then the firing activity were recalculated to build a new tuning curves and 

the matrix A until the difference between the effect of applied DBS parameters and the 

reconstructed ones were negligible. This step guaranteed that electric field distribution that 

comes from the applied pulse on the DBS electrode matches with the electric field distributions 

(electric charge) from the neurons inside the brain.  The reconstructed DBS pulse amplitude 

versus the applied input DBS pulse amplitude for the case when N=10 are shown in Figure ‎6-16.  
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Figure ‎6-15 Optimal linear filter coefficients for N=10 

 

Figure ‎6-16 Reconstructed DBS pulse amplitude versus applied input DBS pulse amplitude 
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 The Optimal linear filter coefficients were calculated for the other cases when the number 

of neurons used was equal to N=20, 30, 40 and 50 respectively, the values of theses decoder 

coefficients are plotted in Figure ‎6-17, Figure ‎6-18, Figure ‎6-19 and Figure ‎6-20. 

 
 

Figure ‎6-17 Optimal linear filter coefficients 

for N=20 

Figure ‎6-18 Optimal linear filter coefficients 

for N=30 

  

Figure ‎6-19 Optimal linear filter coefficients 

for N=40 

Figure ‎6-20 Optimal linear filter coefficients 

for N=50 

 The Optimal linear‎ decoder’s‎ minimum‎ errors‎ versus neuron populations are shown in 

Figure ‎6-21, and it was found that this error is proportional to the number of neurons used 

through the extracted equation: 
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           (6.1) 

 

Figure ‎6-21 Mean square error versus number of neurons (N) used to build tuning curves 

 This last step guaranteed the complete developing of our DBS model which was proposed 

in chapter 3, and it the first time, to the best of the author knowledge; we are able to build family 

of tuning curves for STN regions versus the effect of the stimulation pulse amplitude. This type 

of information is very important to the physician to determine the activity of the neurons and 

hence the volume of tissue activated due to different DBS pulse amplitude.      

6.5 Volume of Tissue Activated (VTA) of Neurons 

In this section we develop a quantitative technique to estimate the VTA (the numbers of neurons 

that is being active within the brain tissue) as a function of DBS pulse amplitude. DBS electrode 

was coupled to a collection of 225 STN neurons which were distributed in a 15 ×15 matrix 

oriented perpendicular to the electrode shaft with 0.25mm inter distance.‎ A‎ 5.7‎ μm‎ diameter‎

myelinated axon models were used as previously explained in section 2.16. The DBS pulse 

amplitude was changed at -0.5V, -1V, -2V and -3 respectively with a constant width of 60µs and 
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a frequency of 130Hz.  The electric field distribution generated in the tissue medium from the 

FEM solution was calculated, the activating function was introduced onto the position of each 

neuron, and the time dependent transmembrane potential variations induced by the stimulation 

were calculated in NEURON program. Red spheres indicate positions of neurons that were fired 

and hence VTA can be estimated for the different DBS pulse amplitude used as shown in Figure 

‎6-22, Figure ‎6-23, Figure ‎6-24 and Figure ‎6-25 respectively. It also shows the positions of the 

activated neurons with the respect to the electric potential intensities and contours generated 

inside the brain tissue. 

The resulting volumes of the tissue activated (VTA) produced by the Medtronic DBS 

electrode are listed in Table ‎6-1. It can be seen that VTA was ∼1.25mm radius with a volume of 

8.18 mm
3
 using stimulation voltage of -0.5 V while it increased to ∼27 times (220.89 mm

3
) 

when using a -3.0 V stimulating voltage as shown in Figure ‎6-26. From those values of VTA 

(activated neurons around the DBS electrode at many distances apart from the electrode shaft), 

we can conclude that the threshold for activation is ∼ 200.0 V/m
2 

inside brain tissue. 

  

Figure ‎6-22 Prediction of neuron model activation for pulse amplitude V = - 0.5 Volt 
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Figure ‎6-23 Prediction of neuron model activation for pulse amplitude V = - 1 Volt 

 
 

Figure ‎6-24 Prediction of neuron model activation  for pulse amplitude V = -2 Volt 
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Figure ‎6-25 Prediction of neuron model activation for pulse amplitude V = -3 Volt 

 

 

Figure ‎6-26 Effect of DBS pulse amplitude on VTA for different four voltage values (−0.5 V, −1.0 V, 

−2.0 V, and −3.0 V) 
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Table ‎6-1 Effect of DBS pulse amplitude on VTA and its equivalent radius 

V(Pulse) volt Rmax(mm) VTAmax [mm
3
] 

-0.5 1.25 8.18 

-1.0 2.00 33.50 

-2.0 2.75 87.11 

-3.0 3.75 220.89 

 

Once more, this is the first time, to the best of the author knowledge; we are able to 

determine the threshold for activation, and hence the volume of tissue activated for a given pulse 

amplitude which is again a very crucial for the physician to determine the stimulation parameters 

of DBS electrode.  

6.6 Stochastic STN Neuron Model 

In this section, we will study the effect of the neuron gating variables (n, m and h) on the spiking 

activity inside the STN region and hence the tuning curves, we want to prove that the proposed 

DBS model is still capable in analyzing and decoding these changes in a rigid manner.  

Following the study of Hodgkin and Huxley, most of the neurons models have treated the 

generation and propagation of action potentials using deterministic differential equations since 

the gating variables n, m and h describes the mean ratios of the open gates of the working 

channels. Back to the Hodgkin-Huxley model, the dynamics of the membrane potential V, 

measured throughout this work in mV is given by: 

 
 

  
      

                                        

The combined action of m and h controls the Na
+
 channels. The K

+
 gates are controlled by n. 

The mean values of these gating variables are determined according to the equations (2.9) to 

(2.11) which as shown before can be inserted in the form of: 
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where x stands for m, n, or h. For fixed voltage V, the variable x approaches the value 

x0(V) with a time constant   (V). The asymptotic value x0(V) and the time constant   (V) are 

plotted in Figure ‎2-18. We can see from Figure ‎2-18 that m and n increase with V whereas h 

decreases. Thus, if some external input causes the membrane voltage to rise, the conductance of 

sodium channels increases due to increasing m. As a result, positive sodium ions flow into the 

cell and the action potential can be changed; this is the same scenario with                     as 

it is changed too with the voltage and hence the values of m, n, or h will be changed hence the 

action potential can be changed.  

In all our previous simulations we had fixed the time constant   for a mean value of 5ms 

[23] and according to Figure ‎2-18, this value can change from 0 to 1 from its maximum value. 

The effect of randomized this time constant   on the neuron firing activities has been studied so 

that our STN neuron model is no longer deterministic but will be a stochastic STN neuron 

model. 

We started with one STN neuron model (N=1) that is positioned at 1mm apart from the 

electrode shaft and placed into the middle of the DBS electrode first active contact. A negative 

0.35 pulse amplitude voltage has been applied and as before, the system was solved and the 

activating function was calculated and coupled to the STN cell model using NEURON program. 

The firing activity was recorded for three different time constant   output (0, 5 and 10ms 

respectively). The effect of this changing on the spikes rates are shown in Figure ‎6-27, Figure 

‎6-28 and Figure ‎6-29 and listed in Table ‎6-2. 

Table ‎6-2 Neurons spiking rate for different time constant    at DBS pulse amplitude = - 0.35 V 

Time constant   (ms) Spikes/Sec. 

0 24 

5 20 

10 17 
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Figure ‎6-27 Firing activity rate (spikes/second) for DBS amplitude voltage of v= -0.35 volt with 

 =0ms  

 

Figure ‎6-28 Firing activity rate (spikes/second) for DBS amplitude voltage of v= -0.35 volt with 

 =5ms 
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Figure ‎6-29 Firing activity rate (spikes/s) for DBS amplitude voltage of v= -0.35 volt with  =10ms  

In order to study the effect of changing the time constant   on our DBS model, we need to 

rebuild the tuning curves as was done before. We started with one STN neuron located at 1.5 mm 

from the DBS electrode shaft and centered at the middle of the first active contact, 10 different 

voltages were applied and for each voltage the time constant   was randomly changed between 0 

and 10ms in order to find properties of this stochastic process. The system was solved and the 

activating function was calculated and coupled to the STN cell model using NEURON program 

and the firing activity was recorded. The variations of this spikes/second around its mean values 

(time constant     ) were plotted in Figure ‎6-30.  

 

Figure ‎6-30 Neuron firing rates variation on a tuning curve for a neuron located at 1.5 mm from 

electrode shaft at the center of the first DBS electrode contact 
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 The effect of spikes variation on our optimal linear decoder filter implementation to find 

the accurate decoding of neural firing activity representing the input DBS parameters has been 

studied. From these spike variations, the standard deviation σ was calculated at each DBS pulse 

amplitude voltage and was set to its maximum value where it is found to be      . This 

standard deviation σ has added to the tuning curve matrix A and the linear filter coefficients     

were again recalculated according to equation (3.11) in such a way to minimize the error 

between the applied DBS pulse amplitude and the reconstructed pulse amplitude. The optimal 

linear‎decoder’s‎minimum‎errors‎versus‎neurons‎population‎are‎calculated‎in‎Figure ‎6-31. It was 

found that this error is proportional to the extracted equation: 

                    
          (6.4) 

 This stochastic STN model variation has increased the error of the optimal linear filter 

decoder used with compared to the deterministic STN neuron model as shown in Figure ‎6-32.  

 
Figure ‎6-31 Mean square error versus neuron populations N for        
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Figure ‎6-32 Comparison of Mean square error versus neuron populations N for deterministic STN 

model and stochastic STN model of        

6.7 Conclusion 

The objective of this chapter was to introduce the interaction between the calculated 

activating function in the previous chapter and the STN neurons model inside the brain medium. 

The results of DBS STN neuron stimulation were used in many scenarios to show the effect of 

the activating function on the firing activity of the neurons.  

Neurons which placed in the regions of depolarization and hyperpolarization have been 

introduced and the results confirmed the action potential concept. Also the rates at which the 

neurons are fired have been studied for different stimulation DBS electrode amplitude voltages 

indicating high rates of activity with the increasing of the stimulation amplitude.  

A quantitative evaluation of the volume of tissue activated (VTA) has been performed for a 

range of different DBS pulse amplitude variations and it was in order of mm
3
 which matched 
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with many clinical studies. Our intentions were to define specific characteristics of the VTA that 

corresponds to certain DBS stimulating voltage. 

STN tuning curves were built for different number of neurons population N. The firing 

rates from these curves were the key to design our optimal linear decoding filter that can 

reconstruct the DBS input parameters from these neurons spiking activity. Also, these firing rates 

values played an important role in explaining the DBS mechanism as discussed in our DBS 

proposal model. These firing rates have successfully give us the role of the neurons charge 

distribution and how their electric field is interacted with the external electric field that is 

produced from the stimulation pulses applied on the DBS electrode. 

Finally, a stochastic STN neuron model was introduced to study its effect on the neuron 

firing rates and hence on the tuning curves. Our proposed DBS model was a rigid system that its 

optimal linear filter was still capable of minimizing the error between the applied stimulation 

pulses and the reconstructed ones. Showing how the error is increased with respect to the case of 

deterministic STN neuron model. 
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Chapter 7                                                                                           

Conclusions and Future Work 

In this Chapter, we present our conclusions and outline our future research directions. 

7.1 Conclusions 

Deep brain stimulation techniques are spreading to new ailments such as depression, and 

obsessive compulsive disorder as the numbers of patients who benefit from this surgical 

intervention are increasing. The ultimate challenge is to develop a computational model for the 

electrode–brain interaction that can to predict the best stimulation parameters for each individual 

patient. 

In this thesis, we have proposed a comprehensive model that will help to understand the 

mechanism of deep brain stimulation (DBS) for a commercially approved electrode (Medtronic) 

that is implanted inside the STN brain region. Our results have shown that the proposed DBS 

model can achieve the targeted neurons’‎electric‎field‎distribution‎and hence the required electric 

input parameters for the DBS electrode. In addition, detailed analysis of the  problem has 

indicated that the proposed DBS model can work for either a deterministic STN neurons model 

or stochastic ones. The achievements accomplished in this thesis can be summarized as follows. 

In Chapter 2, we surveyed the state of the art in deep brain stimulation mechanisms and the 

various biological neuron models that represent an action potential. We have identified the 

challenges for better understanding of the DBS mechanism by compartment details for the STN 

regions for which the DBS electrode is implanted. 

In Chapter 3, we have proposed a novel DBS model for implanted electrodes surrounded 

by different neurons populations, which offers a new approach to study the interaction between 

the DBS electrodes and the neuron world. In addition, our DBS model is capable of quantify 

neurons’‎firing‎activity‎and‎hence‎their‎volume‎of‎tissue‎activated‎assigned.‎  

In Chapter 4, Finite Difference Time Domain (FDTD) has been proposed for modeling and 

simulating the DBS electrode and brain tissue medium. The effect of many DBS electrode 
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parameters and brain tissue in controlling the electric field distribution have been analyzed and 

quantitatively evaluated. FDTD had the advantage compared to FEM in this computational study 

since it can analyze the importance of the DBS parameters in one simulation execution. 

Three models (Model-I to Model-III) were developed representing DBS electrode inside 

brain tissue and their effect on the electric field distribution around the DBS electrode have been 

studied and quantified. 

In Chapter 5, the integration of the electric field and the second order spatial voltage 

distribution (Activating Function) were successfully calculated using Finite Element Method 

(FEM) which was used in modeling and simulating the DBS electrode and brain tissue medium. 

All the parameters of brain conductivity and permittivity were chosen according to the results of 

chapter 4.  

The FEM results confirm the results we have obtained in Chapter 3 where the DBS pulse 

amplitude has no effect on the electric field penetration inside the brain tissue but only changes 

its strength. The maximum value of the activating function was studied for different parallel and 

tilting positions from the DBS electrode shaft, also, different brain mediums (isotropic or 

anisotropic) and even the DBS electrode encapsulation thickness were implemented and 

analyzed their effect on the activating function. 

In Chapter 6, we represented the significance of the proposed DBS model for implanted 

DBS electrode inside STN brain region as we were successfully capable of finding the 

interaction between the electric field produced from DBS electrode (source) and the internal 

electric field generated from the STN neurons charge.     

 It is the first time, to the best of the author knowledge; we built STN tuning curves and we 

determined the threshold for activation (∼ 200.0 V/m
2 

inside the brain tissue). Also, the volume 

of tissue activated were calculated for a given pulse amplitude. All of this information is very 

vital for the DBS physicians.  

Neurons depolarization and hyperpolarization regions have been confirmed in this study 

through the generation or non-generation of the neuron membrane potential (action potential). 



140 
 

Also, neurons spiking activity have been studied under altering the DBS electrode pulse 

amplitude voltages demonstrating high activity (spikes/second) with the increasing of the 

stimulation amplitude. 

We have proposed an optimal linear decoder that was successfully used with the neurons 

tuning curves to quantify the‎ interaction‎ between‎ neurons’‎ electric‎ field‎ and‎ DBS input 

parameters which was our finest goal in the design of our proposed DBS model. In addition we 

proved that as the numbers of neurons population (N) increased; the better is the system 

performance and hence a more realistic neurons’‎charge‎distribution‎is‎achieved.‎   

The rigidity of our proposed DBS model appears in providing the VTA and the neurons 

spiking activity at different applied DBS pulse amplitude to the physician without letting him 

goes through an iteration loops of trial and error. These kinds of iterations inside the operation 

room is very time consuming for either the patience or the physician and it can last for many 

hours until the disease symptoms relieved or a certain motion occurred when the physician 

targeted the right position and the volume of the brain needed.   

7.2 Future Work 

The research done in the thesis provides the basics steps for understanding the DBS mechanism 

and there are still many open research areas that should be tackled to completely understand the 

DBS mechanism. In the following paragraph, we outline future work. 

Establishing DBS models that are assigned to a specific patient history which is an 

emerging technology named as patient-specific modeling (PSM).  

Taking into account the changes occurred at the interface between the brain and the 

electrode on both short and long timescales on the DBS model. 

Furthermore, the current study did not focus on the stimulation efficiency of electrode 

geometry, electrode dimensions, pad size and layout. To go further, the DBS model should also 

foresee the influence of different electrodes dimensions in the brain.    
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