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Abstract

Sensor networks are an important emerging class of networks that have many applications.

A sink in these networks acts as a bridge between the sensor nodes and the end-user (which

may be automated and/or part of the sink). Typically, convergecast is performed in which

all the data collected by the sensors is relayed to the sink, which in turn presents the relevant

information to the end-user. Interestingly, some applications require the sink to relay just

a function of the data collected by the sensors. For instance, in a fire alarm system, the

sinks needs to monitor the maximum of the temperature readings of all the sensors. For

these applications, instead of performing convergecast, we can let the intermediate nodes

process the data they receive, to significantly reduce the volume of traffic transmitted and

increase the rate at which the data is collected and processed at the sink: this is known as

in-network computation.

Most of the current literature on this novel technique focuses on asymptotic results for

large networks and for very elementary functions. In this dissertation, we study a new

class of functions for which we want to compute explicit solutions for networks of practical

size. We consider the applications where the sink is interested in the first M statistical

moments of the data collected at a certain time. The k-th statistical moment is defined as

the expectation of the k-th power of the data. The M = 1 case represents the elementary

functions like MAX, MIN, MEAN, etc. that are commonly considered in the literature. For

this class of functions, we are interested in explicitly computing the maximum achievable

throughput including routing, scheduling and queue management for any given network

when in-network computation is allowed.

Flow models have been routinely used to solve optimal joint routing and scheduling

problems when there is no in-network computation and they are typically tractable for

relatively large networks. However, deriving such models is not obvious when in-network

computation is allowed. Considering a single rate wireless network and the physical model
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of interference, we develop a discrete-time model for the real-time network operation and

perform two transformations to obtain a flow model that keeps the essence of in-network

computation. This model gives an upper bound on the maximum achievable throughput.

To show the tightness of that upper bound, we derive a numerical lower bound by computing

a feasible solution to the discrete-time model. This lower bound turns out to be close to the

upper bound proving that the flow model is an excellent approximation to the discrete-time

model.

We then adapt the flow model to a wired multi-rate network with asynchronous trans-

missions on links with different capacities. To compute the lower bound for wired networks,

we propose a heuristic strategy involving the generation of multiple trees and effective queue

management that achieves a throughput close to the one computed by the flow model. This

cross validates the tightness of the upper bound and the goodness of our heuristic strat-

egy. Finally, we provide several engineering insights on what in-network computation can

achieve in both types of networks.
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Chapter 1

Introduction

A spatially distributed group of autonomous sensor nodes that collectively serve an appli-

cation or applications by monitoring physical or environmental conditions, such as tem-

perature, sound, vibration, pressure, motion or pollutants, is commonly known as a sensor

network [2]. A sensor node (see Figure 1.1) also known as a mote or a pod, is a smart

device with a limited energy supply (usually a battery or a solar cell), limited memory

and limited computational power with a capability to communicate with other nodes and

with a base-station/sink. The sensor nodes are inexpensive and are easily manufactured in

bulk. They can monitor many ambient parameters like temperature, humidity, pressure,

speed and direction of the object it is attached to, soil makeup, etc. The sink has a more

powerful processor with a larger power supply and a larger memory and acts as a relay

conveying the information gathered by the sensor network to the end-user (which may be

automated and/or part of the base-station/sink). Communication among the nodes or with

the base-station happens via radio frequency or optical means using lasers or infrared.

This emerging new class of networks has many interesting applications and configuring

them to obtain the best performance is of prime importance. In several applications, the

sink requires a function of the information gathered by all the sensors for further decision
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Figure 1.1: Block diagram of a typical sensor node

making, for instance, a fire-alarm system where the sink is monitoring the maximum tem-

perature in a building. The standard approach known as convergecast or data collection in

the literature, is to send all the individual measurements to the sink that then computes

the required function. However, the volume of transmitted data can be significantly re-

duced by allowing the intermediate nodes to process the data they have received and send

only an essential summary to the next node along the route to the sink. This is known as

in-network computation in the literature [3]. This approach could potentially lead to signif-

icant improvements in the network performance in terms of lifetime, delay and throughput.

Although, in-network computation is mainly advocated for the performance improvement

of wireless sensor networks, in this dissertation, we also investigate its impact on wired

networks.

The nature of the function that the sink is interested in computing plays an impor-

tant role in determining the performance gains achievable utilizing in-network computation

compared to convergecast. Computing the first M moments of the data is of interest in

many sensor network applications in order to reconstitute the distribution of the measured

phenomenon via its moment generating function. The accuracy of this process depends on
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M with larger M resulting in better accuracy. We call these functions statistical functions

because their main application is in the calculation of the statistical moments of the em-

pirical distribution of the measured variables. An instance of an application is as follows.

Consider a wireless sensor network which is deployed to measure the level of air pollution in

a city at a given time. Factors such as wind, time of the day, cloud cover, etc., could effect

the measurement at any given point. Hence, we measure the pollution at multiple points

in the city at a given time. The average of the ensemble of data collected by all the sensors

at a given time is a very accurate indication of the level of air pollution at that time in the

city and the variance of this collected data shows how “non-uniform” the pollution is at

that time. Note that in this example we are interested in measuring a single phenomenon

(pollution) in a potentially noisy environment.

Formally, the k-th moment of a discrete random variable X, µk is defined as the expec-

tation of Xk, i.e.,

µk = E(Xk) (1.1)

We can estimate µk as the average of the k-th powers of all the observed data, i.e.,

µk ≃

∑N
i=1X

k
i

N
(1.2)

For any given network, we are interested in explicitly finding the optimal joint routing,

scheduling and queue management that gives the maximum throughput (defined in the next

section) when the sink is interested in computing the first M moments of the data collected

by the sensor nodes and in-network computation is allowed. This leads to an optimal

centralized solution. Although random access protocols have many desirable features such

as robustness to node and link failures, low maintenance, etc., they are outperformed by

centralized protocols, particularly in terms of throughput. Even if the optimal centralized

protocol is not implementable in certain contexts, e.g., random deployment of sensor nodes
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in war zones, it can serve as a benchmark, i.e., provide an upper bound on the performance

and guide the design of better distributed random access protocols.

In the next section, we explain the mechanism of in-network computation and how it

leads to data aggregation.

1.1 In-Network Computation: Data Aggregation

Assume that there are n nodes in the network and that time is slotted. Also assume that

every node i makes a measurement periodically after every δ time slots. Let the w-th

measurement of node i be xi(w). Let x(w) denote the collection of the w-th measurements

made by all the nodes. Assuming that all the nodes collect data at the same time, we call

the collection x(w), the w-th wave of information. In applications like the fire-alarm system,

the sink is interested only in some function f(x(w)) of these measurements. We say that

the sink has received the wave w if it is able to compute the function of the data in wave w.

We define throughput as the rate at which the sink receives the waves. This throughput can

be viewed as the “monitoring rate” of the phenomenon by the sensor network. However,

we use throughput in this dissertation as it is the term traditionally used in convergecast.

Consider the instance when the sink is interested in E[x(w)], the average of the measure-

ments in a wave over all nodes, i.e., f(x(w)) =
∑

i xi(w)/n = S(w)/n. In the convergecast

mode, all the raw data xi(w) are individually sent to the sink where the average is com-

puted. When in-network computation is allowed, each time a node i is allowed to transmit

(as defined by the schedule), it will aggregate all the data of the wave, w, it has in its

buffer (which may include its own data xi(w)) into one (partial) sum Si(w) and send it

as one packet to the next node along the path to the sink. Note that these partial sums

must be computed only among the measurements made at the same time, i.e., each wave

of information must be processed separately. Data from one wave cannot be aggregated

4



with that of another wave, i.e., there must not be mixing among different waves. This is

an important condition that we will have to take into account later on. Note also that care

should be taken so that a raw measurement is not used more than once in the creation of

partial sums. This requires that the routing has no loops and that a node empties its buffer

of all the information that was used to create a partial sum after its transmission.

Computation of more complicated functions, such as the first two moments, i.e., variance

and mean, can also be delegated to the nodes in the network. In this case, the sink needs

two pieces of information: S(w), the sum of the xi(w)
′s, and R(w), the sum of the squares

x2i (w)’s to compute them: var(x(w)) =
√

{R(w)− S(w)}/n and mean = S(w)/n. Thus,

in-network computation creates two types of partial sums, i.e., a node i now computes not

only the partial sum Si(w) but also the partial sum of squares Ri(w) and transmits these

two values and sends each value as one packet. Similarly, the sink can compute the first M

moments of the data if it receives just the M sums of the first M powers of the data. The

special case of M = 1 results in, what we call, perfect aggregation that covers functions like

MAX and MIN, in addition to the first moment, e.g., MEAN.

Data aggregation is the main reason for allowing in-network computation since it can

significantly reduce the total volume of the data transmitted compared to convergecast.

This comes at the expense of an additional complexity since processing has to be performed

at intermediate nodes. It is interesting to note that aggregation must not be performed

automatically at all nodes when we want to compute more than one moment. To see this,

consider a case where the sink is interested in the first two moments. Assume that some

node i which is allowed to transmit has only its own data xi(w) in its buffer. If node

i performs in-network computation blindly, it creates two packets corresponding to sum,

Si(w) = xi(w) and sum of squares, Ri(w) = x2i and would require two time slots to send

these packets. But, it is more efficient if i just sends its data as such and if in-network

computation is delayed to further nodes along the path to the sink. This can be done easily
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by allowing the existence of three (instead of just two) different types of packets per wave,

namely raw data, partial sum and partial sum of squares. More generally, when the sink

is interested in computing the first M moments, there would be M + 1 different types of

packets per wave.

In the next section, we summarize our contributions and give an overview of this dis-

sertation.

1.2 Our Contributions

Instead of focusing on asymptotic results for large networks as is the current practice [3],

we explicitly compute the maximum achievable throughput when the sink is interested in

the first M moments of the collected data. We first focus on multi-hop single rate wireless

networks. Flow models are routinely used in multi-hop wireless networks when there is no

in-network computation and are typically tractable for relatively large networks. However,

deriving such models is not obvious when in-network computation is allowed. We develop

a discrete-time model for the real-time network operation and perform two transformations

to obtain a flow model that keeps the essence of in-network computation. This gives an

upper bound on the maximum achievable throughput. To show its tightness, we derive a

numerical lower bound by computing a solution to the discrete-time model based on the

solution to the flow model. This turns out to be close to the upper bound proving that the

flow model is an excellent approximation to the discrete-time model.

We then adapt the flow model for a wired multi-rate network, whose underlying system

is very different from that of the wireless network as the transmissions are not synchronized

among different links that might have different capacities. Again, this gives an upper bound

on the maximum achievable throughput and we propose methods which are different from

those used for the wireless network, to obtain feasible solutions. We show via numerical
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results that these feasible solutions are near-optimal. We describe our methodology in more

detail in Chapter 3.

In summary, our main contributions in this dissertation are:

1. A novel non-intuitive modeling of the in-network computation when the sink is inter-

ested in the first M moments.

2. A rigorous derivation of a flow model and a proof that its solution is an upper bound

on the maximum achievable throughput using in-network computation.

3. Methods to compute a feasible solution and thus a lower bound on the maximum

achievable throughput for both the wired and the wireless networks. These methods

are also interesting in their own right as heuristics on how to operate the networks

allowing in-network computation with near optimal performance.

4. Numerical evidence that the two bounds are close. This validates our flow model

formulation and establishes the near-optimality of the feasible solutions.

5. Engineering insights and the quantification of the value of in-network computation.

Throughout the thesis, we use the physical interference model for the wireless network

and we make no restricting assumptions on the channel gains beyond the fact that they

should be quasi time-invariant.

1.3 Outline

The rest of the thesis is organized as follows. In Chapter 2, we review the related works. In

Chapter 3, we rigorously derive the flow model for a wireless single rate network and then

give an adaptation for a wired multi-rate network. In Chapters 4 and 5, we validate the

flow models and provide several insights on the value and effects of in-network computation
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on the network performance for the two types of networks. We treat the wireless and the

wired networks separately because the solution strategies for each of them are different. We

conclude in Chapter 6 with several possible extensions of this work.
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Chapter 2

Literature Review

In recent years, optimizing throughput or delay in wireless sensor networks for the two

modes of data gathering, viz., convergecast [4–6] and in-network computation [3, 7–9] has

received a lot of attention. On the other hand, for wired networks, although finding the

maximum flow using convergecast has been well studied as the evacuation problem in the

literature [10–12], in-network computation received little attention. The earliest study

on in-network computation was made by Tiwari [13]. They studied the communication

complexity, i.e., the number of bits needed to communicate the function to the sink in the

worst case, in a two source network. Another early work is by Gallager [14], who proposed

a distributed algorithm that computes the parity of the bits at the nodes in a broadcast

network with binary symmetric channels with a given accuracy using only O(ln lnN) bits

per node.

In wired networks, to the best of our knowledge, [1] is the only other work (apart from

ours) that considers finding the optimal routing explicitly when in-network computation is

allowed. While we consider the case where the sink computes a statistical function, Shah

et al [1] consider a different class of functions that could be represented by a computational

schema. See Figure 2.1 which is taken from their work for an example of a schema. Their

9



X1X2

Θ

X3

X2X1

*

+

Figure 2.1: A schema to represent the function Θ = X1X2 +X3, courtesy of [1]

formulation is dependent on the schemas of the function and the computation time of

their algorithm is linear on the number of schemas that can be used for computing the

function. Thus, for a function with perfect aggregation property like AVERAGE or SUM

which has an exponentially large number of computational schema representations, it is

computationally difficult to find the optimal routings using their algorithm. In this thesis,

we develop techniques that can address the problem of finding the optimal routing for the

computation of functions with perfect aggregation. They are represented by M = 1 in this

thesis and we find the maximum achievable data generation rate and the optimal routing

not only for these functions but also for any M .

In-network computation has received much more interest in the wireless context and

many different aspects of this problem have been studied in the literature. In these works,

the two most commonly used models of wireless interference are the protocol model and the

physical model [15]. In the protocol model, a receiver can successfully decode the message

intended for it, if and only if it is within the transmission range of the sender and there

are no other nodes transmitting within its interference range while in the physical model,

a receiver can successfully decode if and only if its SINR exceeds a minimum threshold. In

our work, we consider the physical model because it depicts the wireless interference more

accurately [16, 17] than the protocol model. In Chapter 3, we describe this interference

model in more detail.
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Next, we discuss the work in wireless networks on throughput and delay with no in-

network computation followed with the one that considers in-network computation.

(A) Throughput with no in-network computation: Gupta and Kumar [15] stud-

ied the capacity of a wireless network and gave asymptotic results for the achievable

throughput under both the protocol and physical models of interference. Tassiulas and

Ephremides [18] have proposed the backpressure algorithm for scheduling in wireless

multi-hop networks and proved that it is throughput-optimal. Jain et al [5], Stuedi et

al [6], Karnik et al [4] have all studied the problem of explicitly finding the maximum

achievable throughput of a fixed wireless network. Lower and upper bounds on the

maximum achievable throughput are obtained in [5]. A linear program formulation

for explicitly computing the optimal throughput of a network under the physical in-

terference model is given in [4] and Luo et al [19] used linear programming techniques

like column generation to solve this problem efficiently for larger networks. In this

thesis, we are interested in a similar formulation when the network allows in-network

computation.

(B) Delay with no in-network computation: Another performance measure that is

considered in the literature is delay. Florens et al [20] considered the minimization of

delay for the convergecast problem under a protocol interference model. They assume

that there is a single communication channel and that time is slotted such that every

slot is long enough to send just one packet of data. They give closed form expres-

sions for delay in terms of the number of time slots for some special topologies like

line, multi-line, etc. However, they have considered only a restricted set of network

topologies where the distance between any two neighboring nodes is the same. Gargano

and Rescigno [21] also consider the problem of minimizing delay in the convergecast
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problem. They assume that the nodes have directional antennas so that any two links

can be active at the same time if they do not have any nodes in common. In effect,

the interference model they consider uses only transceiver constraints, i.e., a node can

either receive or transmit but cannot do both at the same time and if it is receiving, it

can receive from only one node. They present an algorithm using collision-free graph

coloring that gives the optimal solution for the overall delay. Chen et al [22] also stud-

ied the problem of minimizing the delay under a variation of the protocol interference

model. They showed that finding the optimal schedule for a general graph is NP-hard

and proposed an heuristic that performs better than the RTS/CTS scheme. In our

thesis, although the discrete-time model we formulate could be used to find the opti-

mal schedule that minimizes delay, our focus is on computing the maximum achievable

throughput when the network allows in-network computation.

(C) Throughput with in-network computation: Giridhar and Kumar [3] studied the

problem of distributively computing the maximum rate at which symmetric functions

of sensor measurements can be computed and communicated to the sink. They clas-

sified the symmetric functions into two subclasses, type-sensitive and type-threshold.

They show that the type-sensitive functions like mean, mode, median can be computed

at O(1/n) rate in collocated networks1 and at O(1/ log n) rate in random planar multi-

hop networks while the type-threshold functions like min, max, range can be computed

at O(1/ logn) rate in collocated networks and at O(1/ log logn) rate in random planar

multihop networks. Note however that these sub-classes do not cover all the symmet-

ric functions. These are asymptotic results and they do not compute the maximum

1In a collocated network, transmissions from any node are received at all the nodes, including the sink.
If protocol model of interference is assumed, then only one node can successfully transmit at a time. Hence,
no in-network computation is possible for a function like mean.
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achievable throughput explicitly which is the problem we consider in this thesis. To

the best of our knowledge, there is no other past literature on non-asymptotic results

when in-network computation is allowed.

(D) Delay with in-network computation: Sudeep and Manjunath [23] studied the

problem of computing MAX in an unstructured sensor network assuming the protocol

model of interference. In an unstructured network, the nodes need not have unique

identifiers. They show that in O(
√

n/ logn) slots, MAX can be made available at the

sink with high probability. This is interesting because the best coordinated protocol

given in [24] also takes the same O(
√

n/ logn) slots to compute MAX. Most-Aoyama

and Shah [25] give an elegant distributed scheme based on exponential random vari-

ables to compute the class of separable functions such as SUM in a wireless network

using gossip protocols. Ghosh et al [9] have considered in-network computation where

the sink is interested in a function like mean, min or max, i.e., aggregation results in

a single packet regardless of the number of input packets (perfect aggregation). They

assume multiple channels and the protocol model of interference and give some tree-

based heuristics to minimize delay and maximize throughput for the convergecast and

the perfect aggregation problems. There is a lot of similar recent work on perfect

aggregation [26–30] that consider the problem of minimizing delay. In this thesis, we

consider aggregation when the sink is interested in the first M moments, of which the

perfect aggregation is an example.

(E) Others: The modeling of compressed sensing in [31] is very similar to the way we

model the computation of M moments. Using compressed sensing, the sink could

retrieve all the raw data unlike in our current problem where it only retrieves the
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M moments of the data. However, they consider minimizing energy consumption as

their performance measure and do not consider finding the optimal joint routing and

scheduling that maximizes throughput which we consider.

To the best of our knowledge, there are no previous results on explicitly computing the

maximum achievable throughput of a given network that allows in-network computation in

a wireless network.
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Chapter 3

Problem Formulation

In this chapter, we define and formulate the problem of optimizing the throughput when

the sink is interested in the first M moments of the data collected by the sensor nodes.

3.1 System Model

Recall from Section 1.1, that all the sensors collect a new raw data every δ units of time.

In other words, new raw data is being generated by each of the sources at a rate of λ where

λ = 1/δ. This is the data generation rate of the sources. We assume that each of the

nodes in the network can be uniquely identified. We also assume that there is a background

mechanism that keeps the clocks of the sources synchronized so that they all collect new

data at the same time.

Also recall that, we call the vector of data collected at the same time x(w), the w-th

wave of information and consider applications where the sink is interested only in some

function f(x(w)) of these measurements. We say that the sink has received the wave w if

it is able to compute the function of the data in wave w and define throughput as the rate

at which the sink receives the waves. For the system to perform correctly, the sink needs to
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receive all the necessary data to compute the function, at the same rate at which the new

data is being generated at the sources. Thus, the throughput of the system is precisely equal

to the data generation rate of the sources. However, this does not imply that the sources

have to wait until the sink receives the current wave before they collect a new wave of data.

It is interesting to note that when the sink is receiving data of the wave w, it is possible

that some nodes (particularly the ones farthest from the sink) may already be relaying data

belonging to the later waves. This is known as the pipelining effect in which several waves

of data are being transmitted at the same time in the network. Due to this effect, minimum

delay (defined as the time between the collection of the data of a wave at the sources and its

reception at the sink) is not equal to the inverse of the maximum throughput. In this work,

we explicitly compute the maximum achievable throughput (or equivalently the maximum

data generation rate) supported by a given network when the sink needs to compute a

given statistical function, i.e., the first M moments. This computation implicitly assumes

the pipelining effect.

As the sink is interested just in the first M moments and in-network computation is

allowed, the intermediate nodes can perform partial computations on the data they receive.

Suppose a node is on the path to receive xi1(w), xi2(w) . . . xik(w), then it could combine

these data into M partial sums defined as Sp(w) =
∑k

j=1 x
p
ij
, ∀p = 1 . . .M and forward

only these M packets instead of the k packets it received. Note that this kind of aggregation

is beneficial only when k > M .

Consider the network in Figure 3.1. Let all the nodes other than the sink be sources

in this network. Assume that the sink is interested in the first two moments of the data

generated by these sources so that it can compute the mean and the variance. The sink

can compute these quantities if it receives all the data generated by the sources for a given

wave but this is a strain on the network resources. Instead, with in-network computation,

node D can be an aggregator, i.e., it can perform partial computations and aggregate the
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Figure 3.1: A network to illustrate in-network computation

packets it receives before forwarding. In order to minimize the total traffic carried in the

network and to take full advantage of in-network computation, node D would have to wait

until it receives the data of wave w from A, B and C before it sends any data for wave

w to E. Similarly, node E would have to wait to receive the data of wave w from node D

before forwarding any data from wave w to the sink. Note that if the nodes do not wait,

they might not be able to aggregate and the purpose of in-network computation would be

forfeited. The fact that waiting can be beneficial needs to be modelled carefully.

Under the assumption that it waits, node D, after it receives the raw packets xA(w), xB(w)

and xC(w) from A, B and C respectively, creates two partial sum packets, one for the sum

of data, SD
1 (w) = xA(w)+xB(w)+xC(w)+xD(w) and another for the sum of the squares,

SD
2 (w) = x2A(w) + x2B(w) + x2C(w) + x2D(w). It then sends only these two partial sum

packets to node E. Node E now combines its own data, xE(w) with these two partial sum

packets as SE
1 (w) = SD

1 (w) + xE(w) and SE
2 (w) = SD

2 (W ) + x2E(w) and sends only these

two partial sum packets to the sink which now has all the information to compute the two

moments. In this example, by waiting we have minimized the amount of traffic carried by

each link to a maximum of two packets. If we assume that the links are wireless with a

unit rate (in packets per second) and that no two links can be scheduled at the same time,

we achieve a throughput of 1/7 using in-network computation as opposed to a throughput

of 1/12 using convergecast. This example shows that in-network computation could in-

deed lead to significant improvements in network performance with appropriate scheduling,
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queue management (which involves waiting) and routing. For more complex networks, the

real challenge is in finding the optimal joint routing and scheduling along with the queue

management strategy that optimally utilizes this potential of in-network computation.

More generally, we see that in-network computation leads to the creation of new types

of packets, i.e., the partial sums. If the sink is interested in the first M moments, the partial

computations at the intermediate nodes (when performed) lead to M new types of packets

in addition to the raw data. We call the packet containing the partial sum of the p-th

powers of the data in the same wave as a packet of type p (1 ≤ p ≤M) and by convention

type 0 represents the raw data.

For any given network with in-network computation modelled as above, we are not

only interested in finding the maximum data generating rate that could be supported, i.e.,

the throughput using in-network computation but also in finding a solution detailing the

operation of the network (routing, scheduling and queue management) that achieves this

rate or close to it when implemented in a packet-based network.

In the next section, we present a systematic approach to solve this problem in a wire-

less single rate network. We then consider the multi-rate wired networks. We begin by

introducing the network model and the physical model of wireless interference.

3.2 Single Rate Wireless Network Model

We assume that there is a static wireless sensor network with n nodes and that the channel

gains are quasi time-invariant. In addition, there is a special node called the sink that

collects and analyzes the data from all the sensor nodes. We also assume that the sink knows

the unique identities of all the n nodes. Let them be labeled 0, 1, . . . n with 0 representing the

sink. We assume that there is a single communication channel and every node communicates

with its neighbors through a transceiver which can either transmit or receive but not do
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both at the same time. We assume that the time is slotted and each slot is long enough

to transmit one packet of data. We assume that the data collected by the sensor nodes is

real numbers each of which fits in a single packet. We also assume that all the arithmetic

operations that we do on the data result in a real number which remains within the allowed

range when represented in the binary format and thus still fits in a single packet of data.

For example, if x1(w), x2(w) and x3(w) are three real numbers sensed by three different

sensors for wave w, then, by our assumption Sk(w) = x1(w)
k + x2(w)

k + x3(w)
k can be

transmitted using just one packet. We do not consider power control and assume that all

the nodes transmit with the same power P . We model the wireless interference using the

physical model which is based on Signal to Interference and Noise Ratio (SINR) [4, 15].

Experimental results [16] show that this models wireless interference more accurately than

any other simpler model. Also, Iyer et al. [17] showed that the results obtained from simpler

interference models may be qualitatively different from those obtained from the physical

model. However, note that the techniques we present could be used to obtain the flow

model for any given interference model.

A directed link from node i to node j is said to exist if Pi,j ≥ βN0 where Pi,j is the

total power received from node i at node j. Here N0 is the thermal noise power and β is

the minimum Signal to Noise Ratio (SNR) required for successful decoding of the message.

Given a channel propagation model for Pi,j , we can compute the set of all feasible directed

links L in the network using this SNR condition. We make no restricting assumptions on

the channel propagation model.

In a wireless network, even though all the links use the same channel, we can typically

schedule a group of links to transmit at the same time without causing excessive interference

to any intended receivers. We call such a subset of links an independent set (Iset). The

interference model dictates which subset of links can be successfully activated at the same

time. In the physical interference model, when two or more links are active on the same
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channel, every receiver considers the power from the transmitters other than its own as

interference.

Under the physical interference model, a subset of feasible links, I, is an Iset only if they

form a matching i.e.,

i 6= i′ ∧ i 6= j′ ∧ j 6= i′ ∧ j 6= j′ ∀(i, j), (i′, j′) ∈ I (3.1)

and all the corresponding receivers have an SINR greater than or equal to β i.e., for all the

links (i, j) in the Iset I,

Pi,j ≥ β



N0 +
∑

(i′,j′)∈I\{(i,j)}

Pi′,j



 . (3.2)

The sum in (3.2) is the total interference received by the destination node j of link (i, j)

due to the transmissions on all other links (i′, j′) in I.

In the next section, we discuss the methodology we adopt and the reasons behind it

to solve the problem of computing the maximum achievable throughput using in-network

computation in a given wireless sensor network.

3.3 Methodology

The network model described above naturally results in a discrete-time model formulation

for computing the maximum achievable throughput for convergecast. However, the discrete-

time model is typically an integer program that is not tractable and is solvable only for very

small networks. For this reason, the standard approach taken in the literature is to ignore

the discrete nature of the packets and assume that packets flow on links like fluids flow

in pipes. This is known as the flow model and it does not require the notion of time

slots and waves. In the following, we say that a problem formulation is a flow model of
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the network operation (e.g., convergecast or in-network computation) if it can be used to

compute the maximum achievable throughput (exactly or approximately) and it does not

include the notion of time slots or of waves. Flow models have been typically derived

from intuition without any reference to the underlying discrete-time model. The nonlinear

multi-commodity flow model used to compute the minimum average packet delay in wired

networks [32] is an example of such a model. Deriving a flow model for convergecast in

wireless networks is also quite intuitive and they have worked well to explicitly compute

the maximum achievable throughput [4, 5, 19]. In all these cases, solving the flow model

has brought insights on the optimal network structure and operation that would have been

impossible to obtain from the discrete-time model as we cannot solve it within a reasonable

time.

Trying to derive a flow model straight away for in-network computation problem does

not result in a tractable accurate formulation. The reasons are

1. There is no conservation of flows at the nodes since some packets effectively disappear

when they are aggregated.

2. Aggregation can happen only between data belonging to the same wave. And this is

not easy to ensure using flows.

Hence, we have to start by formulating the problem using the discrete-time model.

There is more than one way to formulate a discrete-time model. The straightforward and

intuitive way to formulate a discrete model for the case of M = 1 is based on keeping track

of the number of packets on a per-wave basis at each node. This led to constraints with

product forms, i.e., non-linear constraints. We found that this problem is not tractable

even for small networks. In one of our attempts to simplify this formulation, we tried to

linearize these constraints but this led to a very poor approximation of the original problem.

Also, as the number of required moments M increased, the complexity of these constraints
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increased as well.

We have been able to overcome these difficulties by taking an implicit modelling ap-

proach which is a completely different view regarding the modeling of in-network computa-

tion in a sensor network. It is based on tracking each measurement, also called a piece of

information until it reaches the sink as opposed to the conventional method that focuses on

tracking packets at every node. In this problem, although packets are not conserved, infor-

mation is. To understand how we model the in-network computation, consider the example

of computing the mean, i.e., f(x(w)) =
∑

i xi(w)/n. Whenever a node has more than one

packet of data from the same wave, it computes their sum and transmits only the sum when

one of its link is activated. In our approach, although only the sum is being transmitted,

we track all the information units contained in the sum, i.e., we model the process as if

each information unit contained in the sum is transmitted in the same slot. We capture this

in our model by allowing the node to create a virtual information unit per wave for every

source that is involved in the sum and to transmit all the virtual information units in the

same time slot. The model thus keeps track of all the information units until they reach

the sink. Note that if the node is transmitting raw information, it can only send raw data

from one source in one time slot. This novel modeling technique results in a discrete-time

model which is a linear integer program, where the conservation property holds (nothing is

lost, everything is tracked and is applied to information as opposed to packets).

However, this integer program is still hard to solve. Thus, we transform it into a flow

model which could be solved optimally for much larger networks than that is possible for

the discrete-time model. We show that this flow model provides an upper bound on the

maximum achievable throughput. To validate the tightness of this upper bound, in Chapter

4, we derive a feasible solution to the discrete-time model based on the solution to the flow

model and show that it yields a throughput that is close to the optimal throughput computed

with the flow model. In summary,
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1. We formulate a novel information-based discrete time model and rigorously derive a

flow model formulation from it.

2. We show that this flow model provides an upper bound on the maximum achievable

throughput.

3. We show that this upper bound is tight by computing a near-optimal feasible solution

to the system operation based on the solution to the flow model. This validates our

flow model and enables us to use it to study the effects of in-network computation on

network performance.

4. When we apply our methodology (i.e., formulating the discrete model, followed by

the derivation of the flow model) to convergecast, it resulted in the same flow model

as the one given in the literature [4]. So, our method is consistent with what has been

done intuitively in the past.

5. We also show that when M = n, where n is the number of nodes in the network, the

flow model formulation for in-network computation is the same as the convergecast

formulation. This further strengthens the confidence in our model as the M = n case

is intuitively convergecast.

Next, we present the discrete-time model formulation.

3.4 The Discrete Model

Assume that we want to compute the number of time slots Tm, taken to receive m waves at

the sink. Recall that we say that the sink has received the wave w if it is able to compute

the function of interest of the data in wave w. Also, recall that for every wave, there are

M + 1 different types of data in the network, viz., the raw data (represented with p = 0),

the partial sums (represented with p = 1), the partial sum of squares (represented with
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p = 2) and so on. Define the state variable qs,w,p
i (k) as a binary variable that is 1 if the

information1 from source s, wave w and type p is stored at node i at the end of time slot k.

Hence, qs,w,p
i (k) tracks the information (raw or virtual) on a per wave, per source and per

type basis. By convention, we assume that it is 0 when k = 0.

Assume that the sensors are collecting data every δ slots, i.e., σ = 1/δ is the input rate

of the information. Let vw(k) be a binary value that is 1 if the sources collect the data of

wave w at the end of time slot k. Thus, we have

vw(k) ,















1 if k = δw

0 otherwise

The decision variables in the model are all binary variables with the following definitions:

1. xi,j(k): If the link (i, j) is active in slot k, it is 1, otherwise it is 0. This is the

scheduling variable.

2. ys,w,p
i,j (k): If the information from source s, wave w and type p is sent on link (i, j) in

slot k, it is 1, else 0.

3. us,wi (k): This variable tracks if node i aggregates raw data from source s and wave w

at the end of time-slot k, i.e., in the model if it is 1, M virtual information units are

created for this source out of the raw data.

4. zw,p
i,j (k): It is 1 if the information of type p in wave w is selected for transmission on

link (i, j) in slot k, else 0.

By convention, the x, y and z variables are defined only when the link (i, j) exists.

With these definitions, the discrete-time model formulation Pd(m) is as follows. All

constraints are over w = 1 . . .m, s = 1 . . . n and k = 1 . . . Tm wherever w, k or s appear,

1The information is raw data if p = 0 and virtual information if p > 0
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unless there is a summation over them. The constraints are also either over all nodes

i = 1 . . . n or over all links (i, j) ∈ L depending upon the constraint. Also, all the variables
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are non-negative. Recall that all the nodes except the sink collect data.

Pd(m) : Minimize
x,y,z,u

Tm (3.3)

subject to

Tm ≥ δm (3.4)

qs,w,p
i (Tm) = 0 (3.5)

qi,w,0
i (k) = vw(k − 1) + qi,w,0

i (k − 1)− ui,wi (k)

−
∑

j

yi,w,0
i,j (k) +

∑

j

yi,w,0
j,i (k) (3.6)

qs,w,0
i (k) = qs,w,0

i (k − 1)− us,wi (k)

−
∑

j

ys,w,0
i,j (k) +

∑

j

ys,w,0
j,i (k) ∀i 6= s (3.7)

qs,w,p
i (k) = qs,w,p

i (k − 1) + us,wi (k)

−
∑

j

ys,w,p
i,j (k) +

∑

j

ys,w,p
j,i (k)

∀p = 1 . . .M (3.8)

ys,w,p
i,j (k) ≤ qs,w,p

i (k − 1) (3.9)

m
∑

w=1

M
∑

p=0

zw,p
i,j (k) ≤ xi,j(k) (3.10)

n
∑

s=1

ys,w,0
i,j (k) ≤ zw,0

i,j (k) (3.11)

ys,w,p
i,j (k) ≤ zw,p

i,j (k) ∀p = 1 . . .M (3.12)

∑

(i,j)

xi,j(k) +
∑

(j,i)

xj,i(k) ≤ 1 (3.13)

Q (1− xi,j(k)) + Pi,j ≥ β×
[

N0 +
∑

(i′,j′)∈I 6=(i,j)

Pi′,jxi′,j′(k)

]

(3.14)
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Note that in this model, we do not explicitly force the in-network computation to happen

at any node. The solution of Pd(m) with the optimal throughput decides the nodes at which

it is most conducive for the aggregation of data to happen. The constraints (3.5–3.8) are

the information conservation equations which guarantee that all the information reaches

the sink. Constraint (3.4) ensures that the network operates at least as long as is necessary

to generate all the waves.

Constraint (3.5) is the final target state where all the information units have reached the

sink. Constraints (3.6–3.8) keep track of the flows of information. Whenever us,wi (k) = 1,

the raw information from source s and wave w disappears at node i which behaves as an

aggregator for this information, and appears at node i as M higher types of data for that

source and wave. This is how the information units, for the aggregated data are created.

The actual constraints on the decisions to transmit are modelled by (3.9–3.12). Con-

straint (3.9) states the fact that we cannot transmit a unit of information on a link if this

information is not in the buffer at the end of the previous time slot. Constraint (3.10) states

that information of at most one type of one wave can be transmitted in one time slot by a

node.

The actual effect of aggregation is represented by (3.11–3.12). Recall that some data

might be transmitted as raw data without aggregation. If there is no aggregation, a packet

carries the information for a single source. In other words, if we decide to transmit a

commodity (s, w, 0), we must choose a single value for s. This is modelled by constraint

(3.11) which restricts the flow of raw data on every link to utmost one packet in each time

slot, so that raw data is transmitted like in convergecast. When we use aggregation, on

the other hand, a packet can carry more than one virtual information unit for a given

commodity (s, w, p), for instance the aggregated values of the measurements of some subset

of sources. This is modelled by constraint (3.12), which allows multiple virtual information

units from different sources to be sent on the same packet if they belong to the same
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aggregated type and wave (for p ≥ 1). This constraint essentially captures the effect of in-

network computation. Comparing constraints (3.11) and (3.12), we can see the advantage

of aggregation which permits more than one unit of information to be carried on a given

packet.

Finally, constraints (3.13) and (3.14) represent the physical model of wireless interfer-

ence. In (3.14), Q is a very large positive constant [33]. The magnitude of Q is chosen so

that constraint (3.14) is trivially true whenever any link (i, j) is inactive, i.e., xi,j(k) = 0.

On the other hand, if the link is active, constraint (3.14) reduces to (3.2) which is the

minimum SINR requirement constraint of the physical model.

Let T d
m be the optimal solution to problem Pd(m). This problem is a very large integer

linear program that cannot be solved optimally except for very small networks and even

then, with large computation times. Thus, we are interested in obtaining a problem formu-

lation that is based on a flow model and hopefully is more tractable. The two dimensions,

time and waves are the primary sources of complexity in Pd(m). We transform Pd(m) such

that both time and waves disappear resulting in a flow model formulation.

We use two types of transformations on Pd(m) to derive the flow model formulation.

They are:

1. Averaging over time.

2. Bundling of waves.

We explain in detail how they are performed in the next two sections.
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3.5 First Transformation: Averaging Over Time

The idea is to sum the constraints over time and replace the variables with averages. Let

xi,j ,
1

Tm

Tm
∑

k=1

xi,j(k) (3.15)

ys,w,p
i,j ,

1

Tm

Tm
∑

k=1

ys,w,p
i,j (k) (3.16)

xi,j represents the fraction of time link (i, j) is active while ys,w,p
i,j represents the fraction of

time information from source s of wave w and type p is flowing on the link (i, j). We define

similar averages for the variables u and z as well. Note that as the input is just one packet

for every wave at every source, we have
∑Tm

k=1 v
w(k) = 1.

Averaging out the constraints (3.6–3.12) using these definitions is straightforward. How-

ever, time also appears in the interference constraints (3.13–3.14). It is possible in principle

to average them too but the resulting flow model is very inaccurate since the interfer-

ence model is averaged out. Instead, we reformulate these constraints using the extensive

formulation of the interference constraints. First, we generate all the ISets compatible

with (3.13–3.14). This is equivalent to computing the link-Iset incidence matrix

A(i,j),I ,















1 if link (i, j) ∈ I

0 otherwise

We then replace constraints (3.13–3.14) by introducing another set of variables αI(k), a

binary variable that is 1 if we use Iset I in slot k and 0 otherwise. The modified interference

constraints are
∑

I

αI(k) ≤ 1 (3.17)
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xi,j(k) ≤
∑

I

αI(k)A(i,j),I (3.18)

Constraint (3.17) ensures that only one Iset is chosen in slot k and constraint (3.18)

allows a link to be active in slot k if and only if an Iset containing it is active in that slot.

Note that all the links in any given Iset satisfy the interference constraints by construction

and hence the original interference constraints (3.13–3.14) are redundant in the problem

formulation and hence can be eliminated.

For the purpose of averaging, we then define

αI ,
1

Tm

Tm
∑

k=1

αI(k)

αI represents the fraction of time Iset I would be active in the schedule. The discrete

time dimension disappears from the constraints (3.5–3.12) and (3.17–3.18) when we sum

each of them over k and divide with Tm, leading to problem P2(m). Note that after this

summation, all qs,w,p
i (k) variables cancel from the equations (3.6), (3.7) and (3.8), except

when k = 0 and k = Tm. When k = Tm, the q′s are 0 due to the final condition and when

k = 0, the q′s are 0 by convention. The only non-zero entity in the R.H.S of constraints

(3.21) and (3.22) in P2(m) is due to the summation
∑Tm

k=1 v
w(k) which is equal to 1. All

constraints are over all w = 1 . . .m and all s = 1 . . . n wherever w, or s appear, unless there

is a summation over them. The constraints are also either over all nodes i = 1 . . . n or over
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all links (i, j) ∈ L depending upon the constraint. Also, all the variables are non-negative.

P2(m) : Minimize
α,y,z,u

Tm (3.19)

subject to

Tm ≥ δm (3.20)

∑

j

ys,w,0
i,j −

∑

j

ys,w,0
j,i + us,wi =















1

Tm
if i = s

0 otherwise

(3.21)

∑

j

ys,w,p
i,j −

∑

j

ys,w,p
j,i − us,wi = 0 ∀p = 1 . . .M (3.22)

m
∑

w=1

M
∑

p=0

zw,p
i,j ≤ xi,j (3.23)

n
∑

s=1

ys,w,0
i,j ≤ zw,0

i,j (3.24)

ys,w,p
i,j ≤ zw,p

i,j ∀p = 1 . . .M (3.25)

xi,j ≤
∑

I

A(i,j),IαI (3.26)

∑

I

αI ≤ 1 (3.27)

We can interpret the left-hand side of equation (3.21) as the average information rate

out of node i of wave w. It shows that in the time-averaged model, this rate is the same for

all sources s and all waves w since the right-hand side does not depend on either of these

indices. It is equal to the inverse of the total time Tm if i is the source of information s and

0 otherwise. Replacing 1/Tm with λm and changing the objective to maximize λm, we have

a linear program. Note however that because of constraint (3.20) and since the number of

constraints depends on m, this problem is not independent of m, the number of waves.

Since a feasible solution to P2(m) (3.19–3.27) can be constructed from any feasible
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solution to Pd(m) (3.3–3.14), we have

T 2
m ≤ T d

m

where T d
m is the optimal solution to Pd(m) and T 2

m is the optimal solution to P2(m).

Next, we transform P2(m) into Pf by bundling the waves. This gives us the flow model

for computing the maximum achievable throughput using in-network computation.

3.6 Second Transformation: Bundling of Waves

If T d
m is the optimal solution to Pd(m) then m/T d

m is the optimal rate at which the statistical

function of each of the m waves is made available at the sink. Bundling the waves of P2(m)

removes the dependence on m and formulates the problem as maximizing this rate. For

this, we define new variables that bundle the waves together, i.e.,

m
∑

w=1

ys,w,p
i,j , ys,pi,j

where ys,pi,j represents the total amount of information flow from source s, type p and all

waves on link (i, j). We define similar variables for z and u as well. The waves lose their

identity with the introduction of these variables. We sum constraints (3.21–3.25) over w

and obtain problem P3. Again, all constraints are over all s = 1 . . . n and all k = 1 . . . Tm

wherever k or s appear. The constraints are also either over all nodes i = 1 . . . n or over all
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links (i, j) ∈ L depending upon the constraint. Also, all the variables are non-negative.

P3 : Minimize
α,y,z,u

Tm (3.28)

subject to

Tm ≥ δm (3.29)

∑

j

ys,0i,j −
∑

j

ys,0j,i + usi =















m

Tm
if i = s

0 otherwise

(3.30)

∑

j

ys,pi,j −
∑

j

ys,pj,i − usi = 0 ∀p = 1 . . .M (3.31)

M
∑

p=0

zpi,j ≤ xi,j (3.32)

n
∑

s=1

ys,0i,j ≤ z0i,j (3.33)

ys,pi,j ≤ zpi,j ∀p = 1 . . .M (3.34)

xi,j ≤
∑

I

A(i,j),IαI (3.35)

∑

I

αI ≤ 1 (3.36)

The right-hand side of Eq. (3.30) can be interpreted as the number of waves flowing out

of node i per unit time when the node i is the source of information s. It is the average

rate of information flow out of it. We replace it as m/Tm , λm and define the objective as

the maximization of this rate. With this replacement, the constraint (3.29) changes to

λm ≤
1

δ
(3.37)

This implies that the output rate cannot exceed the input rate which is as expected.

The constraints and the variables are no longer dependent on m and we can replace λm
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with just λ. As we are interested in computing the maximum achievable throughput, it is

customary to remove constraint (3.29) (which corresponds to constraint (3.37)).

Thus, the final flow model formulation Pf is as follows.

Pf : Maximize
α,y,z,u

λ (3.38)

subject to

∑

j

ys,0i,j −
∑

j

ys,0j,i + usi =















λ if i = s

0 otherwise

(3.39)

∑

j

ys,pi,j −
∑

j

ys,pj,i − usi = 0 ∀p = 1 . . .M (3.40)

M
∑

p=0

zpi,j ≤ xi,j (3.41)

n
∑

s=1

ys,0i,j ≤ z0i,j (3.42)

ys,pi,j ≤ zpi,j ∀p = 1 . . .M (3.43)

xi,j ≤
∑

I

A(i,j),IαI (3.44)

∑

I

αI ≤ 1 (3.45)

Let λf be the optimal solution to problem Pf . Given a feasible solution to P2(m)

(3.19–3.27), we can construct a feasible solution to the flow problem Pf (3.38–3.45) so we

have

m

λf
≤ T 2

m ≤ T d
m (3.46)

This inequality (3.46) proves that the throughput computed by the flow model Pf is an

upper bound on the maximum achievable throughput using in-network computation when
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the sink is interested in the first M moments. Note that we would get the same problem

formulation Pf even if we have performed bundling of waves before averaging over time.

Formulation Pf (3.38–3.45) has all the desirable features. It is independent of m, has

continuous and fewer variables and constraints than in Pd(m) and it is also a linear program.

It has O(|I|) variables and O(Mn2+Ml) constraints, where |I| is the total number of feasible

Isets, n is the total number of nodes and l is the total number of feasible links in the network.

Recall from Chapter 1 that the partial sums must be computed only among the measure-

ments made at the same time, i.e., each wave of information must be processed separately.

Data from one wave cannot be aggregated with that of another wave, i.e., there must not

be mixing among different waves. Formulation Pf is independent of the identities of waves

and thus, there is no constraint that explicitly prevent mixing from occuring. This indi-

cates that there is a possibility that the upper bound on throughput computed by it may

not be close to the optimal throughput (obtained with the discrete-time model) as it may

implicitly violate the constraint of not mixing among the waves.

The intermediate problem formulation P2(m) maintains the distinction between different

waves. In this model, Constraint (3.23) shares each link among different waves and thus

explicitly prevents mixing from occuring. Next, we prove that the throughput computed

by Pf is exactly equal to the one computed by P2(m), independent of m. This can be

interpreted as either mixing does not occur in Pf or if it does occur, it does not improve

the throughput computed by Pf .

3.6.1 Proof that Pf and P2(m) yield the same throughput

We prove that either no mixing occurs in Pf or if it does occur, it has no impact on the

throughput computed by it, by showing that the throughput computed by P2(m) (which

explicitly prohibits mixing) is exactly equal to the throughput computed by Pf . The main

idea in this proof is to split P2(m) into m identical sub-problems, so that each of them is
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equivalent to Pf . This is accomplished by adding the following constraint to P2(m) which

aims at decoupling the waves in constraint (3.23).

M
∑

p=0

zw,p
i,j ≤

xi,j
m

∀s (3.47)

Let this new problem be P4(m) and since we add a potentially restrictive constraint, we

have

T 2
m ≤ T 4

m (3.48)

where T 4
m is the optimal solution of P4(m). The constraint (3.23) of P4(m) is redundant

so that it separates into m identical sub-problems for each w, each with the same optimal

solution T 4
m.
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The sub-problem is as follows.

Psub
4 (m) : Minimize

α,y,z,u
Tm (3.49)

subject to

Tm ≥ δm (3.50)

∑

j

ys,w,0
i,j −

∑

j

ys,w,0
j,i + us,wi =















1

Tm
if i = s

0 otherwise

(3.51)

∑

j

ys,w,p
i,j −

∑

j

ys,w,p
j,i − us,wi = 0 ∀p = 1 . . .M (3.52)

M
∑

p=0

zw,p
i,j ≤

xi,j
m

(3.53)

n
∑

s=1

ys,w,0
i,j ≤ zw,0

i,j (3.54)

ys,w,p
i,j ≤ zw,p

i,j ∀p = 1 . . .M (3.55)

xi,j ≤
∑

I

A(i,j),IαI (3.56)

∑

I

αI ≤ 1 (3.57)

But, this is precisely the flow model Pf (3.38–3.45) with the change of variables ys,w,p
i,j →

ys,pi,j /m and Tm → m/λ. Hence,

m

λf
= T 4

m (3.58)

From inequalities (3.48) and (3.58), we conclude

T 2
m ≤

m

λf
(3.59)

37



But from inequality (3.46), we know

T 2
m ≥

m

λf
(3.60)

so that T 2
m = m

λf = T 4
m. This equivalence implies that the potential implicit mixing of waves

in Pf has no impact on the λf computed by it.

Thus, we have rigorously derived the problem formulation Pf (3.38–3.45) which is the

desired flow model for a wireless single rate network. In the next section, we adapt this

flow model Pf to a wired multi-rate network.

3.7 Wired Multi-rate Network

The underlying system of a wired multi-rate network is very different from that of a wireless

network as we no longer have time-slots and the transmission of packets is not synchronized

among different links which may have different capacities. Thus, a feasible solution for a

wired network is fundamentally different from that of a wireless network. Interestingly,

regardless of these differences, a simple adaptation of the flow model constructed for the

wireless network computes a very tight upper bound on the maximum achievable throughput

for wired networks (see Chapter 5). In the following, we present this adapted flow model

for wired multi-rate networks.

Consider a directed wired network with n nodes and l links with one of the nodes

designated as the sink. Let the set of nodes and the set of links be denoted by N and

L respectively. Assume that the maximum transmission rates supported by each of the

links, i.e., their capacities, are also given. The transmission of packets on different links is

asynchronous and is uncoordinated. In this network, a subset of nodes are sources, denoted

as S ⊆ N , that are periodically collecting new data and the sink is interested in the first

M moments of this data.
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Let ci,j be the capacity of the link (i, j). Let ys,0i,j be the amount of information corre-

sponding to the raw data from source s carried on link (i, j) and let ys,pi,j be the amount of

information of type p from source s carried on link (i, j). The following is the flow model

that we propose to compute the maximum achievable data generation rate in a given wired

multi-rate network when the sink is interested in the first M moments.

Pwired
f : Maximize

u,y,z
λ (3.61)

∑

j

ys,0i,j −
∑

j

ys,0j,i +usi =















λ if i = s ∈ S

0 otherwise

(3.62)

∑

j

ys,pi,j −
∑

j

ys,pj,i −u
s
i = 0 ∀p = 1 . . .M (3.63)

M
∑

p=0

zpi,j ≤ ci,j (3.64)

∑

s

ys,0i,j ≤ z0i,j (3.65)

ys,pi,j ≤ zpi,j ∀p = 1 . . .M (3.66)

Constraints (3.62) and (3.63) conserve the information. The variable usi models ag-

gregation, i.e., it is the amount of information from the raw data flow from source s that

disappears due to aggregation at node i and appears as information in the M higher flows.

The variable zpi,j is the fraction of the capacity of link (i, j) that is allocated to the flow

of type p. Using z’s, constraint (3.64) restricts the total transmission rate supported by

the link (i, j) to its capacity ci,j which is shared among the M + 1 different types of flows.

The difference between a raw data flow and a higher type flow is modelled in constraints

(3.65) and (3.66) which captures the essential nature of in-network computation and its

advantage. A higher type of flow, say p > 0 can utilize the entire allocated link capacity for
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type p (zti,j) simultaneously with the same type of flows from all the other sources available

at node i. But, as the raw data packets from different sources cannot be transmitted at

the same time, the raw data flows crossing node i have to share the allocated portion of

the link’s capacity for raw data (z0i,j) and hence there is a summation over all the sources

in (3.65).

The flow model (3.61–3.66) for a wired network is a linear program that is not very

different from the flow model for convergecast [10]. It has O(Mnl + n2) variables and

O(Mn2 +Ml) constraints where l is the total number of links and n is the total number of

nodes in the network (in the worst case of every node being a source). Thus, it can be solved

in polynomial time [34]. Let λ∗
M be the solution to (3.61–3.66) for a given M . The solution

λ∗
M computed using this flow model is an upper bound on the maximum achievable data

generation rate in a real network due to two reasons. The first is because we have ignored

the packet nature of the flows in this formulation. And the second reason is that there

is no constraint ensuring that the aggregation does not happen between different waves.

This might lead to higher rates than that is permissible by the network operation which

restricts aggregation to happen only between data of the same wave. We cannot introduce

a constraint to ensure this without introducing integer variables which would increase the

computational complexity of the problem. Thus, there is a need to validate this model, i.e.,

we have to show that the λ∗
M computed by this flow model is close to the achievable data

generation rate in a network that is operated with in-network computation restricting the

aggregation between packets of the same wave.

In the next two chapters, we validate the flow models and provide some insights on the

value and effects of in-network computation on the network performance for the two types

of networks. We treat the wireless and the wired networks separately because the solution

strategies for each of them are different.
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Chapter 4

Wireless Networks: Validation and

Insights

In this chapter, we first validate the flow model for the single rate wireless networks and

then provide several engineering insights on the value of in-network computation for these

networks.

4.1 Validation

In this section, we validate our flow model formulation for wireless networks, Pf , i.e., we

attempt to show that it computes an excellent upper bound to the solution of the discrete-

time model Pd(m). We first prove several propositions related to the maximum achievable

throughput of the system. Next, we propose a heuristic that computes a feasible solution

to the discrete-time model (and thus a method of operation of the network that utilizes

in-network computation) based on the solution to the flow model. As this solution gives a

throughput that is very close to the one computed by the flow model for all values of M ,

we have validated our flow model formulation.
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In the following, λM represents the maximum achievable throughput with in-network

computation when the sink is interested in the first M moments. This relates to the optimal

solution of the discrete-time model Pd(m) as follows.

λM = lim
m→∞

m

Tm
(4.1)

As explained in the introduction (Section 1.1), in-network computation leads to data

aggregation. This reduces the total volume of data transmitted in the network and po-

tentially increases the achievable throughput. This indicates that using in-network compu-

tation could never perform worse than convergecast in terms of the maximum achievable

throughput. We prove this in the following proposition.

Proposition 4.1. If λM is the maximum achievable throughput with in-network computa-

tion when the sink is interested in the first M moments of the data collected by the sensor

nodes and λC is the maximum achievable throughput using convergecast, then

λM ≥ λC ∀M ≥ 1 (4.2)

Proof: In Pd(m), if we set us,wi = 0 (no aggregation) and qs,w,p
i (k) = ys,w,p

i,j = zw,p
i,j =

0 ∀p = 1 . . .M (only raw data exists), then the problem reduces to the discrete-time model

for convergecast. Thus, a solution to convergecast is always a feasible solution to Pd(m),

irrespective of M . Thus, λM ≥ λC .

Next, we prove that λM is a non-decreasing function of M .

Proposition 4.2. If λM is the maximum achievable throughput with in-network computa-

tion when the sink is interested in the first M moments of the data collected by the sensor

nodes then

λM ≥ λM+1 ∀M ≥ 1 (4.3)
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Proof: By ignoring the variables corresponding to the (M + 1)th type of data in the

optimal solution to Pd(m) when the sink is interested in (M+1) moments, we get a feasible

solution to Pd(m) when the sink is interested in M moments. Thus, λM ≥ λM+1.

In the next sub-section, we prove that when M = n, the throughput computed by Pf ,

i.e., λf
n is equal to the throughput computed by the flow model for convergecast (λC) given

in [4]. This is interesting because intuitively we do not expect any benefit from in-network

computation when M ≥ n. Thus, our flow model is consistent with our intuition.

4.1.1 The Special Case of M = n

Let λf
n be the optimal throughput of Pf whenM = n and let λC be the optimal convergecast

throughput obtained by solving the following convergecast problem PC [4]. Recall that there

is a flow from every source s to the sink in convergecast.

PC : Maximize
α,y

λ (4.4)

∑

j

ysi,j −
∑

j

ysj,i =















λ if i = s

0 otherwise

(4.5)

n
∑

s=1

ysi,j ≤
∑

I

A(i,j),IαI (4.6)

∑

I

αI ≤ 1 (4.7)

Since λf
n is an upper bound on λn and using Proposition 4.1, we have

λf
n ≥ λn ≥ λC (4.8)

Next, we perform a series of transformations on Pf when M = n. The idea is to get rid
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of the dependence on the flow type p and show that when M = n, Pf is equivalent to PC .

From constraint (3.40), we get the value of usi

usi =
∑

j

ys,pi,j −
∑

j

ys,pj,i

Replacing usi in constraint (3.39) and rearranging the terms gives

∑

j

(ys,0i,j + ys,pi,j )−
∑

j

(ys,0j,i + ys,pj,i ) =















λ if i = s

0 otherwise

We sum on both sides over all p to get

n
∑

p=1

∑

j

(ys,0i,j + ys,pi,j )−
n
∑

p=1

∑

j

(ys,0j,i + ys,pj,i ) =















nλ if i = s

0 otherwise

Next, we add constraint (3.42) to constraint (3.43) and get

n
∑

s=1

(ys,0i,j + ys,pi,j ) ≤ z0i,j + nzpi,j ∀p ∀(i, j) ∈ L

We sum the above inequality over all p to get

n
∑

p=1

n
∑

s=1

(ys,0i,j + ys,pi,j ) ≤ n
n
∑

p=0

zpi,j

Now, we replace
n
∑

p=1

(ys,0i,j + ys,pi,j )→ nysi,j and
n
∑

p=0

zpi,j → zi,j

44



With these changes, problem Pf becomes problem P5

P5 : Maximize
α,y,z

λ (4.9)

∑

j

ysi,j −
∑

j

ysj,i =















λ if i = s

0 otherwise

(4.10)

zi,j ≤ xi,j (4.11)

n
∑

s=1

ysi,j ≤ zi,j (4.12)

xi,j ≤
∑

I

A(i,j),IαI (4.13)

∑

I

αI ≤ 1 (4.14)

It is not hard to see the equivalence of this new problem with the flow model for con-

vergecast (4.4–4.7). Thus, if λ5 is the optimal throughput of this new problem, then we

have

λC = λ5 (4.15)

Since, a feasible solution to P5 can be constructed from the optimal solution to Pf with

M = n, we have

λ5 ≥ λf
n (4.16)

From (4.8), (4.15) and (4.16), we conclude that λf
n = λC , which means that when

M = n, the throughput computed by Pf (3.38–3.45) is equal to the throughput computed

by the convergecast formulation given in the literature [4].

In the next subsection, we discuss the difficulties in obtaining numerical solutions to Pf

and how we address them.
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4.1.2 Numerical Solution to Pf

By design, the flow model Pf (3.38–3.45) gives an upper bound on the maximum achievable

throughput. Recall that it has O(|I|) variables and O(Mn2 +Ml) constraints, where |I| is

the total number of feasible Isets, n is the total number of nodes and l is the total number

of feasible links in the network. As the number of possible Isets is exponentially large in the

number of links, Pf is a very large linear program and thus, solving Pf is not straightforward.

The most common technique used in the literature to solve such large programs is column

generation. We use this technique to solve Pf to optimality, which involves solving a series

of small linear programs [19]. Unlike the column generation technique in [19], we a priori

enumerate all the possible Isets (using the efficient algorithm for enumeration proposed

in [19]). In the first iteration, we solve Pf with only the single link Isets as the input.

For every iteration after this, the most useful Isets to be added are determined using the

dual values of the constraints of the current iteration. We iterate until all the constraints

have non-positive dual values which ensures optimality. We have successfully employed this

technique for networks with up to 30 nodes. For larger networks, a priori enumeration of

Isets is not scalable and we need more sophisticated column generation techniques that

generates new Isets as required after every iteration. However, past work on wireless sensor

networks suggests that a clustering approach which divides a large network into many small

manageable clusters is the most efficient approach for many applications [35], [36]. Thus,

the approach we took in this work is useful in most practical scenarios.

In the next subsection, we give an heuristic to construct a feasible solution to the

discrete-time model formulation, whose achievable throughput is close to the optimal.

4.1.3 Feasible Solution: Lower Bound

An obvious question now is how close the upper bound computed by Pf is to the optimal

solution of the discrete-time model given in Section 3.4. We answer this question by nu-
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merically computing the optimality gap between the upper bound and some lower bound.

If the gap is small, we know that the upper bound is good. In this subsection, we show that

this is the case by obtaining a feasible solution (based on the solution to the flow model) to

the discrete-time model. The achievable throughput of this feasible solution is naturally a

lower bound on the maximum achievable throughput that we would compute for Pd(m).

Typically, a feasible solution to the discrete-time model Pd(m) is a sequence of Isets

(one Iset per time slot generally with some periodic pattern). This solution is also a way

to operate the network with in-network computation. In order to compute the throughput

given by a feasible solution, it is much simpler to simulate the network operation than

to solve Pd(m). So, we simulate the actual network operation according to the rules of

in-network computation given below and the given feasible solution.

1. If the node receives a raw data packet and it already has M packets of the same wave

(irrespective of their type) in its buffer, then all the raw data packets get aggregated

(effectively disappearing) and M different types of packets (corresponding to the M

partial sums described above) are created (some of them may already exist and are

replaced by the updated version). Else, no aggregation is performed.

2. If the node receives a packet of type p > 0, three cases arise

(a) The node already has a packet of the same type for the same wave, then the new

packet is just added to this packet.

(b) The node does not have the same type of packet for the same wave but it already

has M packets of the same wave, then all raw data packets of this wave disappear

and M different types of partial sum packets are created.

(c) Else no aggregation is performed.

In addition, we also assume that in the simulator, whenever a node transmits, it chooses

the packet with the lowest type from the oldest wave in its queue.
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In the simulation, we activate the Isets in the sequence given in the feasible solution and

update the buffers at all nodes after every time slot according to the rules of in-network

computation. From this, we get the number of time slots (∆m) required to empty the

network of the first m waves (we use m = 10, 000). We can now compute the throughput

of the given feasible solution as m/∆m and compare it with the solution λ of Pf .

The question now is how to obtain a good feasible solution. One would naturally guess

that we should derive it from the optimal solution to the flow model. However, much

information is lost in the transformation from Pd(m) to Pf so that converting back the

optimal solution of Pf to a feasible solution of Pd(m) is difficult. Especially, the routing

produced by the flow model is generally too complex to be of any practical use. We observed

that if the routing was simple with no loops, the solution to Pf would readily convert to

a feasible solution to Pd(m) and thus gives a routing and scheduling to operate a network

with in-network computation.

The idea thus, is to find a simple routing and solve Pf assuming this routing. This new

solution is also a set of Isets with the fractions of time each of them should be activated

for. It is straight-forward to convert this solution to a feasible solution of Pd(m). We just

normalize the fractions of time each Iset is active for and find the number of times each

Iset needs to be active. We assume a random order of activation of these Isets and obtain

a sequence of Isets that is a feasible solution to the discrete model. In the simulator, we

assume that this Iset pattern is repeated until all the waves reach the sink and compute the

throughput of this feasible solution.

For validation purposes, we use three different techniques to fix the routing. They are

as follows.

1. Impose new constraints on Pf to force a single path routing or

2. Fix the routing to a min-hop tree or
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3. Restrict the routing to a tree on the most active links1 in the optimal solution to Pf .

Clearly, the throughput achieved with these three routings is lower than the optimal.

Luo et al [19] show that for convergecast, imposing a single path routing (our first option)

achieves close to the optimal throughput [19]. So, we expect the same even when in-network

computation is allowed.

For the first method, in order to add constraints that impose a single path routing, we

define a new set of binary variables wi,j that indicate whether the link (i, j) is used or not.

The new constraints are

ys,pi,j ≤ wi,j ∀(i, j) ∀s ∀p

∑

j

wi,j ≤ 1 ∀i, wi,j ∈ {0, 1}

With these constraints, Pf has been transformed from a standard LP into a mixed

integer program (IP). There are l binary variables and Mln+n constraints involving those

binary variables. So, computing an optimal solution becomes extremely time consuming as

M or the size of the network increases. In the cases where M becomes too large to solve

this problem within a reasonable time, we fix the routing using the other two techniques

and obtain a solution to Pf which we can then convert to a feasible solution of Pd(m) and

compute the throughput using the simulator. For some instances, the min-hop tree gives

better throughput than the other tree and for some other instances, it is vice versa.

Next, we present numerical results for three randomly generated networks2, viz., two

16-nodes networks (netA and netB) and a 30-nodes network (netC), given in Figure (4.1).

We used the network parameters given in Table 4.1 with the following channel propagation

1Activity of a link is defined as the total fraction of time it is active for in the optimal solution to the
flow model.

2We have calculated these results for 10 random networks. All these results are similar to the ones
presented in this document.
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sink

(c) A 30 nodes network, netC

Figure 4.1: Random Networks
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model.

Pi,j =
Gi,jP

(
di,j
d0

)η

SNR =
Pi,j

N0

where di,j is the physical distance between nodes i and j, Gi,j is the channel gain on

link (i, j) that accounts for channel fading and shadowing, d0 is the near-field cross over

distance, η is the path-loss exponent and N0 is the thermal noise power in the frequency

band of operation. Recall that we assume the channel gains to be quasi time-invariant. For

simplicity in numerical calculations, we have assumed the same constant G on all the links.

However, this should not be construed as a limitation as computations with different G on

different links are not more complex.

β 6.4 dB

N0 -100 dBm

η 3

d0 0.1 m

Gl 1

Table 4.1: Network parameters used for obtaining numerical results

Network At the lowest power At the highest power

netA 2 15

netB 3 15

netC 6 29

Table 4.2: Average node degree in netA, netB and netC

The average node degrees of the three networks at the lowest and the highest powers

are given in Table 4.2. For the two 16-nodes networks, we were able to optimally solve

the single-path problem for M < 8 but for higher M , we have fixed the routing using the

two methods described before. For the 30-nodes network, CPLEX was unable to solve the
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Figure 4.2: λ vs P for the 16-nodes network, netA when M = 1
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Figure 4.3: λ vs P for the 16-nodes network, netA when M = 3

optimal single-path problem for any M as it is a very large binary program. So, we use the

other two methods to fix the routing and obtain the feasible solutions.

Plots of the maximum achievable throughput λ versus the transmit power P (used by all

the nodes) for some selected M for the three networks (netA, netB and netC) are given in

Figures (4.2 – 4.9). All these plots except Figure (4.8) show that the upper bound (labelled

optimal flow) is close to the lower bound (labelled feasible solution which is the best of the

three heuristics). This validates the flow model Pf .
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Figure 4.4: λ vs P for the 16-nodes network, netA when M = 15
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Figure 4.5: λ vs P for the 16-nodes network, netB when M = 2

However, note that the feasible solutions in Figure (4.8) for the 30-nodes network when

M = 1 are not as close to the upper bound as those for the 16-nodes network in Figures (4.2).

The reason for this is that we were unable to optimally solve the large binary program (that

imposes single path routing) for the 30-nodes network that gives the best feasible solutions

for the 16-nodes network for small M .

In the next section, we give several engineering insights on the value and effects of

in-network computation in single-rate wireless networks.
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Figure 4.6: λ vs P for the 16-nodes network, netB when M = 5

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

-32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12

λ

P

Optimal Flow
Feasible Solution

Figure 4.7: λ vs P for the 16-nodes network, netB when M = 10

4.2 Insights

As mentioned in the introduction, in-network computation is expected to potentially im-

prove the throughput significantly compared to convergecast. In this work, we have at-

tempted to quantify this improvement and to the best of our knowledge, this is the first

such attempt in the literature. For a given M , we define γM as the relative increase in

throughput due to in-network computation, with respect to that of convergecast. Mathe-

matically, we have
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Figure 4.8: λ vs P for the 30-nodes network, netC when M = 1
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Figure 4.9: λ vs P for the 30-nodes network, netC when M = 12

γ
M

=
λM − λC

λC
(4.17)

In Figures (4.10–4.11), we have plotted γM with respect to M for different transmit

powers. We observe from these plots that for low M , in-network computation does lead

to significant gains in throughput compared to convergecast at all powers. For M = 1,

the throughput using in-network computation is several times larger than that is possible

using convergecast and even for relatively large M like M = 5, the gains in throughput
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Figure 4.10: γ (gain) vs M for netA at three different powers
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Figure 4.11: γ (gain) vs M for netB at three different powers

are surprisingly still significant. We also note that these gains are much larger at lower

powers than at higher powers which implies that λM increases slower than λC when the

transmission power increases. This is because the increased spatial reuse resulting from

higher transmission power is more useful for convergecast that transports larger volume of

data compared to when in-network computation is allowed.

The high gains in throughput at low M can be utilized in two different ways. Using

in-network computation, we could either use the sensor network to monitor at a very high
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Figure 4.12: Comparison of throughputs when M = 1, M = 2 and convergecast for netA
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Figure 4.13: Comparison of throughputs when M = 1, M = 2 and convergecast for netB

frequency or we could put the nodes into a sleeping mode more often saving energy and

increasing the lifetime of the network. In Figures (4.12–4.13), we compare the throughputs

when M = 1, M = 2 and convergecast with respect to power. We observe that irrespective

of the power, there is an almost constant gain in throughput due to in-network computation

when M = 1 and when M = 2.

Another insight for wireless networks comes from Figures (4.2–4.7). Because of the way

we have constructed the feasible solution, these results show that we can get near-optimal
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throughput using a single-path routing. This is important since single path routing is easy

to implement and our results confirm that this is not a bad idea. These results also show

that at higher M , a simple routing based on min-hop tree is sufficient to achieve a near

optimal throughput.

In the next chapter, we consider the validation of the flow model adapted for the multi-

rate wired networks.
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Chapter 5

Wired Networks: Validation and

Insights

In this chapter, we validate the flow model for the multi-rate wired networks and provide

several engineering insights on the value of in-network computation for these networks.

5.1 Validation

In this section, we consider the validation of the flow model (3.61–3.66) for the wired multi-

rate networks (given in Section 3.7). Recall that the underlying system of a wired multi-rate

network is very different from that of a wireless single rate network considered in the last

chapter. In the wired network, there are no time-slots and the transmission of packets is

not synchronized among different links which may have different capacities. Also, unlike in

a wireless network, all the links can be active at the same time in a wired network. Owing

to these fundamental differences, the validation technique used in the last chapter does not

work unaltered for the wired networks. In the following, by heuristic strategy we mean

the routing, scheduling and queue management that is required to operate a network with
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in-network computation.

The basic methodology of validation is still the same in essence as in the last chapter.

The key difference is that we did not define a discrete-time model for the wired networks.

However, it has no impact on the validation method as we simulate the network to compute

the throughput of a given heuristic strategy, i.e., a feasible solution of the operation of

the network. In the next subsection, we present a heuristic strategy that could be used to

operate the wired network that allows in-network computation of the first M moments. We

compare the throughput of this heuristic strategy with the upper bound computed by the

flow model and if they are close, we have validated the flow model. We show that both

throughputs are indeed close, validating the flow model.

5.1.1 Heuristic Strategy

Recall that λ∗
M is the upper bound computed by the flow model on the maximum achiev-

able throughput for a wired multi-rate network when the sink is interested in the first M

moments. In this subsection, we propose a heuristic strategy that could be implemented

in a wired network and use the rules of in-network computation given in Section 4.1.3. It

is based on the idea that to enable the largest number of opportunities for aggregation,

some delay needs to be imposed at intermediate nodes. However, note that this does not

impact the end-to-end delay to compute the function for a given wave since the sink cannot

compute this function before it has received all the data for that wave. We show that this

heuristic strategy yields a data generation rate close to λ∗
M for two sets of 200 random wired

networks (one set with links of unit capacity and the other with links of random capacity).

This validates our flow model. This strategy is also useful in itself as a heuristic to operate

a network and achieve a near optimal data generation rate for a given M .

Any strategy for operating a network has three components, viz., scheduling, routing

and queue management. In a wired network, scheduling seems meaningless as any link can
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be actively transmitting all the time as long as there are packets to be sent on that link.

However, when in-network computation is allowed, it could be beneficial to wait sometimes

to take advantage of aggregation. Thus, scheduling could be understood as when to stop

the transmissions and wait to receive data from other nodes so as to aggregate.

Now, the next question is how to arrive at such a strategy. One attractive way would

be to derive some information about that strategy from the solution to the flow model.

Unfortunately, the numerical solution does not give much useful information beyond the

value of λ∗
M which we know is an upper bound on the maximum achievable data generation

rate for the given M . There are typically multiple solutions that result in the same optimal

λ∗
M and in general, the solution we get for the flow model by using a commercial solver like

CPLEX is not amenable for deriving an implementable strategy from it.

We illustrate this statement in the following example. Consider solving the flow model

with M = 1 on the 4 × 4 (directed) grid network, given in Figure 5.1. Every link in this

network represents two directed links of unit capacity in either direction. This is a very

simple case and it can easily be seen that the optimal throughput for this network is 2

which can be achieved by operating two independent trees (i.e., the two trees do not share

any links) such that each tree connects all the nodes and uses one of the links (1, sink) or

(2, sink) as its final link to the sink (see Figure 5.2 for the trees and we explain later in this

section in more detail how to operate a tree and multiple trees). However, the only useful

information from the solution obtained using CPLEX to this flow model is that the value

of λ∗
1 is 2 and the numerical solution, i.e., the optimal values of the variables y,u and z for

which this λ∗
1 is computed, does not reflect these trees and is quite complicated. We have

tried to add constraints to the flow model to gear its solution towards something simpler

that can be interpreted but we were unsuccessful even for this simple network. Thus, there

is a need to develop a heuristic strategy that is both implementable in a network and yields

a good throughput. We believe that strategies such as these which are implementable in
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Figure 5.1: A grid network: Every link represents two directed links, one in either direction

Sink

1

2

(a) Tree-1
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(b) Tree-2

Figure 5.2: Two independent trees of the grid network in Figure 5.1

a packet-based network have not received much attention in the literature. Our proposed

heuristic strategy is the first of its kind that has all the components necessary to implement

in-network computation in a wired network.

The heuristic strategy presented in this chapter is based on a set of observations and

a set of assumptions. The first fact it depends upon is that we know how to operate a

network with in-network computation and achieve the maximum possible throughput if

the network is a single path tree rooted towards the sink (see Section 5.1.2 for details).

Another observation is that in a wired network, multi-path routing is necessary to provide

high throughput. For example, any single path routing is sub-optimal for the wired network

in Figure 5.3 for both convergecast and in-network computation and it is sub-optimal for
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 Links with capacity c1

Links with capacity c2

Figure 5.3: An example network

the wired grid network in Figure 5.1 when in-network computation is allowed. A routing

with two trees achieves significantly higher data generation rates than the one with just one

of the trees. Thus, for a general wired network, we have to consider multi-path routing for

higher performance.

A difficulty when multi-path routing is used is that it might result in cycles like in the

network in Figure 5.4 which has two trees, viz., one with solid links and the other with

dotted links. The combination of these two trees results in a cycle ABCA and any packet

being stuck in this cycle is undesirable. It is known that to avoid loops in convergecast, a

source-based path routing (as opposed to a hop by hop routing) needs to be used in which

the sources arbitrarily map the packets they generate to one of the paths originating from

them towards the sink. The proportion of packets mapped to a path depends on the fraction

of the total data rate the path is expected to carry.

Thus, the main idea of our heuristic strategy comes from the following facts.

1. There is a need for multi-path routing.

2. We know how to develop an optimal strategy to achieve the maximum achievable

data generation rate in a tree network. This is an important building block towards
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Figure 5.4: Multi-path routing

developing a strategy for a general network. This single tree strategy is presented in

sub-section 5.1.2.

Hence, our heuristic strategy generates multiple trees, computes the maximum data

generation rate supported by each of the trees and operates them simultaneously so that

the network supports a data generation rate which is the sum of the data generation rates

of the individual trees. In sub-section 5.1.3, we propose a multiple tree generating algorithm

based on depth-first search algorithm. In this algorithm, we do not impose any condition

to generate only independent trees, i.e., we allow the trees to share links if the capacities of

the links allow it.

When in-network computation is allowed and multiple trees are used, we note that to

enable aggregation, we have to facilitate the “meetings” in time and space of the packets of

the same wave. We try to enforce this by assigning all packets (irrespective of their type)

from a given wave to the same tree. This assignment has to be done locally at each source

node but in a way that ensures that all nodes map the same wave to the same tree. This

also prevents the packets from entering a cycle that could result from operating multiple

trees together. We propose a distributed “wave to tree assignment” algorithm to perform

this in sub-section 5.1.4.

Finally, we need to extend the queue management and the aggregation strategy devel-

oped for a single tree to the case of multiple trees that might not be independent.

In summary, our strategy is based on the following three components.
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1. An optimal strategy for a given tree which is the main building block for our heuristic

strategy for a general network;

2. An algorithm to generate multiple trees;

3. A queue management scheme that is an extension of the optimal queue management

scheme for a single tree. This extension also ensures that packets of the same wave

are assigned to the same tree using a distributed wave to tree assignment algorithm.

We address each of these components in the next three sub-sections. We begin with

presenting the optimal strategy for a tree network.

5.1.2 Strategy for a Single Tree

Consider a network with a tree topology directed towards the sink, i.e., there is exactly

one path from every node to the sink (e.g., the network with just solid links in Figure

5.3). Without any loss of generality, assume that some of the nodes (except the sink) are

sources and let the data generation rate of each source be λ(M), assuming that the sink is

interested in the first M moments. For this network, there is only one choice of routing.

Let the capacity of a link (i, j) in this network be ci,j . As the link (i, j) is the only outgoing

link from node i, if Gi is the number of sources in the children of node i (including i), then

the link (i, j) carries the data from all these Gi sources. Since in-network computation is

possible, the expected traffic on link (i, j) is between (Mλ(M), Giλ(M)) if Gi ≥M , else it

is between (Giλ(M),Mλ(M)). So, we have either ci,j ≥ Giλ(M) or ci,j ≥ Mλ(M) which

implies that

λ(M) ≤ max{
ci,j
M

,
ci,j
Gi
} (5.1)

The bottleneck link is the one that has the least λ(M) computed using equation (5.1).

Thus, we have
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λ(M) = min
(i,j)
{max{

ci,j
M

,
ci,j
Gi
}} (5.2)

If a strategy on the tree network supports the λ(M) computed by (5.2), then it is optimal

as it an upper bound because of the bottleneck. Hence, the expected amount of traffic to be

carried on a link (i, j) is min{Mλ(M), Giλ(M)}. In order to ensure that the traffic carried

is indeed the expected amount, we propose the following queue management strategy. First,

the nodes need to determine if the minimum traffic on their outgoing link is Mλ(M) or

Giλ(M). A simple centralized or a distributed algorithm can be used to accomplish this

task.

If the minimum expected traffic is Mλ(M) on the outgoing link of a node, then it waits

for the data from all the sources in its children. In particular, the node maintains two

buffers, one for in-network computation which we call the nodal buffer and the other for the

outgoing link (in the case of a tree, each node has exactly one outgoing link), which we call

the output queue. The packets move from the nodal buffer to the output queue when they

are ready to be transmitted. All the incoming and the generated packets first enter the

nodal buffer. The node performs aggregation on the packets in this buffer using the rules

given in Section 4.1.3. After the node receives all the expected packets from its immediate

children for a given wave, it sends the aggregated packets of that wave to the output queue.

In the output queue, the packets are ordered from oldest to the newest wave and packets

of the oldest wave are transmitted first.

On the other hand, if the minimum expected traffic is Giλ(M), then the node maintains

just the output queue and transmits the packets in the order of the wave number without

the need to wait. This queue management strategy ensures that the least possible amount

of traffic is carried on every link. Although, it seems that we are delaying some of the data

from reaching the sink quicker, it should be noted that the sink can compute the function
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of the data in a wave only after it receives all the data of the wave. Thus, from that point

of view, there is no additional delay. However, it should be noted that this is just one of

the many possible heuristics that achieve the optimal throughput for a tree network.

In the next sub-section, we present our algorithm for generating multiple trees from a

given network.

5.1.3 Generation of Multiple Trees

We address the task of generating multiple trees by proposing Algorithm 1. It generates

trees by performing the following three steps in a loop until the network is disconnected,

i.e., until there is at least one source for which there is no path to the sink.

1. Extract a tree directed towards the sink from the network.

2. Compute the λ(M) supported by it using equation (5.2).

3. Update the capacities of the links in the network by subtracting the capacity needed

by the links in the tree to support λ(M). We remove the links whose capacity after

update becomes 0.

Since, we are reducing the capacity of the links of the network in every cycle of the while

loop, the network would eventually become disconnected terminating the algorithm.

Algorithm 1 Heuristic to generate multiple routings

Input: A connected graph, G with link capacities
Output: A set of routings, R
1: G′ ← G
2: while G′ is connected do

3: T ← DFS (G′) // Extract a tree T from G′

4: R ← R∪ T
5: Compute λ for tree T using equation 5.2
6: ∀(i, j) ∈ T, ci,j(G′) = ci,j(G′) −min{Mλ, (Gi)λ} // We perform G′ ← G′ − T in this

step
7: end while
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For the task of generating a tree (the step (3) in Algorithm 1), we use an adaptation

of the well-known depth-first search DFS(G′) algorithm [37] to extract a tree T from the

network G′. DFS(G′) 1 is given in Algorithm 2. It uses Algorithm 3. The key difference

between our depth-first search and the classic depth-first search (given in [37]) is that our

algorithm tries to find up to M nodes at the same depth before it increases the depth of

exploration. This adaptation was done so as to increase the opportunities for aggregation

as much as possible in the generated trees.

Algorithm 2 Extract a tree using depth-first search: DFS(G′)

Input: A connected graph, G′

Output: A tree T // i.e., parent[i] ∀i ∈ Nodes(G)′

1: ∀i ∈ Nodes(G′), color[i]←WHITE
2: ∀i ∈ Nodes(G′), parent[i]← NIL
3: DFS VISIT(sink)

Let λh
M

be the sum of the data generation rates supported by all the trees generated by

Algorithm 1. This value is a measure of the performance of the algorithm. The higher it is,

the better is the performance of the task of generation of multiple trees. If λ∗
M

is the upper

bound computed by the flow model on the maximum achievable data generation rate, cmin

is the capacity of the link with minimum capacity and C is the minimum of the min-cuts

as defined in Chapter 3, then for any algorithm that generates trees (in any order), we have

the following bound on its performance because the algorithm would generate at least one

tree which in the worst case has the link with cmin capacity as the bottleneck.

λh
M

λ∗
M

≥
cmin

C
(5.3)

Later, in Section 5.2 we show that our algorithm performs very well on many random

networks.

1A bread-first search (BFS) approach was also tested but its performance was inferior in comparison to
DFS
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Algorithm 3 Recursive subroutine for DFS: DFS VISIT(i)

Input: A connected graph, G′, node i and M
Output: Updates parent vector
1: color[i]← BLACK // Node i is explored
2: m← 0
3: if i is not sink then

4: for each vertex j such that i ∈ Adj(j) do

5: if color[j] = WHITE then

6: parent[j]← i
7: color[j]← GRAY
8: m← m+ 1
9: if m = M then

10: DFS VISIT(j)
11: end if

12: end if

13: end for

14: if m 6= 0 then

15: for each vertex j such that i ∈ Adj(j) do

16: if parent[j] = i and color[j] = GRAY then

17: DFS VISIT(j)
18: end if

19: end for

20: end if

21: else

22: for each vertex j such that i ∈ Adj(j) do

23: if color[j] = WHITE then

24: parent[j]← i
25: color[j]← GRAY
26: DFS VISIT(j)
27: end if

28: end for

29: end if
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In the next sub-section, we present a queue management strategy for the operation of

multiple trees. This is based on the optimal strategy we have presented for a single tree

network.

5.1.4 Queue Management Strategy for Multiple Trees

Assume that the heuristic in Algorithm 1 has generated k trees with λ1
M , λ2

M . . . λk
M as the

respective data generation rates supported by each of them individually. We assume that

each node uses the same tree numbering and knows the corresponding λi
M . Then, the aim

of our queue management strategy is to ensure that the network supports a total rate of

λh
M where

λh
M =

k
∑

i=1

λi
M . (5.4)

Every source is generating new packets at rate λh
M . Every newly generated raw data

packet is assigned a new wave number and is saved in the nodal buffer of the source. All

the raw data packets carry the wave number in their header. All packets of type p > 0

also carry the same wave number as the raw data they are created from. For enabling as

many opportunities for aggregation as possible, we have to ensure that all the nodes map

packets of the same wave to the same tree. For this task, we propose Algorithm 4 that can

be run by any node to determine the assignment of the waves to the trees. It is simply a

weighted round robin that allocates a wave to a tree based on the weights
λi
M

λh
M

. All nodes

use the same MAX WAVE = ⌈ 1
λmin
⌉ in Algorithm 4, where λmin is the rate of the tree with

the minimum rate. The assignment generated by Algorithm 4 would be repeated cyclically

every MAX WAVE number of waves. Since all the nodes run the algorithm with the same

inputs (λi
M ’s), a given wave is mapped to the same tree at all the nodes. The mapping for

a wave w to a tree i is saved at a node until all the packets of wave w that are supposed to
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be forwarded by the node have been transmitted.

Algorithm 4 Assignment Algorithm: waves to trees

Input: λ1
M , λ2

M , . . . , λk
M

1: w ← 0
2: for i = 1 to k do

3: ti ← 0
4: tpi ← 0
5: end for

6: while w ≤ MAX WAVE do

7: for i = 1 to k do

8: ti ← tpi +
1

λi
M

9: end for

10: tmin ← mini ti and j ← {i : ti = tmin}
11: w ← w + 1
12: Map wave w to Tree j
13: tpj ← tmin

14: end while

Next, we propose a queue management strategy when the k generated trees are operated

simultaneously. We assume that every node knows its outgoing link for every tree. As was

the case for the single tree, every node first determines for every tree if it is an aggregator

or just a forwarder using either a centralized or a simple distributed algorithm. If a node is

an aggregator in a tree, it also determines the total number of packets it expects to receive

from all of its immediate children in that tree. A node could be an aggregator in some trees

and just a forwarder in others. As was the case in the single tree strategy, the aggregator

of any tree waits for its immediate children in that tree to send all the data of the wave

before it performs in-network computation and forwards the aggregated data to the output

buffer of the outgoing link in that tree.

If an outgoing link is shared among multiple trees then its output queue receives packets

corresponding to all those trees from the nodal buffer and the packets of the oldest wave

(irrespective of the tree number) gets priority in transmission. This strategy ensures that

a link is never used beyond its capacity, even when it is shared among many trees.
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We have implemented a discrete event simulator in C++ that imitates the network

operation to check that the λh
M , our heuristic strategy claims to support in a network is

indeed feasible. This simulator was used not only as an additional check that our heuristic

strategy works but also to check if any other simpler queue management strategy (one that

does not force the aggregator nodes to wait before transmitting data for a given wave) could

have worked. We have seen that there are networks for which a queue management without

the waiting in the nodal buffer did not work.

In the next section, we compare the throughput achieved by this heuristic strategy

against the upper bound computed by the flow model.

5.2 Numerical Results

In this subsection, we present numerical results on two sets of 200 instances of 30-node

random networks (one set with links of unit capacity and the other with links of random

capacity) that show that the upper bound computed by the flow model is close to the

practical achievable data generation rate using the heuristic strategy for different values of

M . Thus, cross-validating the flow model and the proposed heuristic strategy. In all the

networks considered, we assume that all the nodes other than the sink are sources.

We generate a random network by letting a link (i, j) exist with probability p and we

have used values of p from 0.04 to 0.5. We have ordered the network ids in terms of the

number of links in the network (the lower the network id, the lower the number of links).

The first set of 200 random networks have unit capacity on all their links while the second

set have links with random capacity between 1 and 2. Note that for the 200 networks in

a set, multiple networks might have the same number of links. Table 5.1 gives a rough

mapping of the number of links to the network ids. Note that the connectivity increases

when the network id increases.
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We can observe that when M = 1, the data generation rate supported by the heuristic

strategy (labeled λh
1) is almost always the same as the upper bound (labeled λ∗

1) computed

by the flow model (see Figure 5.5). When M = 2, the comparison is given in Figure 5.6.

The average difference between the two throughputs is 15.58% for the set of networks with

unit capacity links and it is 14.76% for the set of networks with random capacity. As it takes

longer to compute the upper bound using the flow model for M = 3, we have computed

λ∗
3 for every fourth network in each set. The comparison for these 50 networks in each set

when M = 3 is shown in Figure 5.7. The average difference between the two throughputs is

9.13% for the networks with unit capacity links and it is 11.6% for the set of networks with

random capacity links. Thus, the heuristic strategy achieves data generation rates close to

the upper bound. The implications of this is two-fold. First, it validates the flow model,

i.e., it shows that even though the flow model does not take waves into account and ignores

the discrete nature of the packets, it gives a tight upper bound on the maximum achievable

data generation rate. Second, it shows that the heuristic strategy is close to the optimal.

Network ID Number of links

1 to 50 30 to 125

51 to 100 126 to 230

101 to 150 231 to 350

151 to 200 351 to 450

Table 5.1: The range of the number of links in the networks

In the next section, we provide engineering insights for wired networks when in-network

computation is enabled.

5.3 Insights

In Figure 5.8, we have plotted the throughputs computed using the flow model when M = 1,

M = 2 and for convergecast on the two sets of 200 instances of 30-node random wired
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networks used for validation. The throughput of convergecast is very low when compared

to the throughput when in network computation is enabled and hence for ease of illustration,

we have magnified its throughput by a factor of ten in the plots in Figure 5.8. We see from

these plots that in-network computation results in significant improvements in network

performance when compared to convergecast. The throughput possible when M = 1 or

M = 2 is almost always at least 10 times higher than that possible with convergecast,

especially at higher connectivity. Recall that the number of links and thus the connectivity

of the networks increases with ID.

In Figure 5.8, we also observe that the increase in throughput when connectivity is

very high, can be very significant when in-network computation is allowed compared to

when convergecast is used. Although, connectivity helps in increasing the throughput of

convergecast, the increase is not as significant as it is when in-network computation is

allowed.

In the same plot, we note that λ∗
1 ≥ λ∗

2 and observe that at low connectivity (for network

ID < 50), the throughput possible when M = 1 is twice that possible when M = 2. But as

the connectivity increases, the throughputs of these are not very different and the average

difference between them is only 19.30% for networks with unit capacity links and 19.126%

for networks with random capacity links.

From the operation point of view, we have noted that queue management is important

if the routing is based on multiple trees. If we do not force the aggregation to happen at

the nodes where it is expected by making them delay their transmissions, it would result

in unstable queues. This was not an issue in wireless networks as the routing comprised of

just a single tree.

We conclude this chapter with bounds on λ∗
M using the max-flow min-cut theorem.
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5.3.1 Bounds on λ
∗
M

Convergecast in wired networks is an instance of a multi-commodity maximum flow problem

with an additional constraint that the output flow from all the sources is equal. The multi-

commodity maximum flow problem is well studied in the literature [38]. In this subsection,

we use the solution to a single commodity maximum flow problem and prove tight bounds

on λ∗
M .

Let Cs be the solution to the single commodity maximum flow problem for the source

s and the sink in the given network. From the max-flow min-cut theorem, Cs is also the

value of the minimum cut between the source s and the sink. Let C , Minimiums Cs.

Then, we have

λ∗
1 ≤ C (5.5)

λ∗
1

M
≤λ∗

M ≤ C (5.6)

Inequality (5.5) is true because if all sources have to maintain equal data generation rates

and the links have to operate within their capacity then no source can send more than the

rate allowed by the minimum of all the min-cuts. The upper-bound in the inequality (5.6)

also follows from this argument. The lower bound in (5.6) is true because given a solution

achieving λ∗
1, we can achieve λ∗

1/M when the sink is interested in the first M moments if

we simply replace every source with M sources (at the price of over aggregation) and scale

down the ci,j ’s of the links by M . With this replacement, we have M identical problems

with a scaled down network capacity and M = 1 for the data aggregation.

We can further show that the upper bound in inequality (5.5) is tight by constructing a

feasible solution to (3.61–3.66) when M = 1. The feasible solution is as follows. Let uss = λ,

ys,0i,j = 0 and z0i,j = 0. This means that the data is converted to type 1 at the sources
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itself. Since M = 1, it simply replaces the type 0 data with type 1 and does not create

any redundant additional data to transmit. With this, the problem separates into identical

sub-problems, one for every source s. Each of these sub-problems is a single commodity

maximum flow problem, each with a solution of Cs for a given source, s. Thus, we have a

feasible solution with a rate of C. Thus, we have

λ∗
1 = C (5.7)

C

M
≤λ∗

M ≤ C (5.8)

An example that shows that λ∗
M could be strictly greater than C

M
is as follows. Consider

the network given in Figure (5.3). It can be decomposed into a tree rooted at the sink with

every link having a capacity c1 and a star network with each link of capacity c2. For this

network, irrespective of M , the star with dotted links always achieves a data generation

rate of c2 (no need for aggregation) while the tree achieves a minimum data generation rate

of c1
M
. Thus, for this network, we have C = c1 + c2 but the lower bound is

λ∗
M ≥ c2 +

c1
M

>
c1 + c2
M

=
C

M
(5.9)

We conclude this chapter with two interesting facts. The first one is that there is one

network, the star network (all nodes are directly connected to the sink), for which in-

network computation does not help. The throughput is equal to the capacity of the link

with minimum capacity and it is the same as that of convergecast for all M . The second

fact is on the networks with unit capacity links. For these networks when M = 1, any tree

achieves a data generation rate of exactly 1. And thus, λ∗
1 is also equal to the number of

trees needed to achieve it. This shows that a single path routing could be λ∗
1 times worse

than a multiple path routing. Thus, for wired networks, whenever the sink is interested in
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a statistical function of the data being collected, in-network computation should be used

with multiple tree routing.

We conclude this thesis in the next chapter with several directions of possible future

work.
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Figure 5.5: For 200 instances of 30-node random networks for each set, data generation
rate obtained by the heuristic strategy vs the upper bound computed by flow model when
M = 1
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Figure 5.6: For 200 instances of 30-node random networks for each set, data generation
rate obtained by the heuristic strategy vs the upper bound computed by flow model when
M = 2
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Figure 5.7: For 50 30-node random networks for each set, data generation rate obtained by
the heuristic strategy vs the upper bound computed by flow model when M = 3
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Figure 5.8: For 200 instances of 30-node random networks for each set, the comparison of
throughputs when M = 1, M = 2 and convergecast
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, we have identified and addressed some of the key challenges posed

by allowing in-network computation. We have rigorously developed a framework to study

the introduction of in-network computation in sensor networks for the class of statistical

functions. In particular, we have formulated a discrete-time model that accurately models

a single rate wireless network with in-network computation when the sink is interested in

the first M moments of the collected data. This formulation is based on a novel and non-

intuitive modelling of in-network computation based on conservation of information. From

this discrete-time model, we have derived a flow model that computes a tight bound on the

maximum achievable throughput for these networks. We have then adapted this flow model

to a multi-rate wired network. In addition, we have given methods to obtain near-optimal

feasible solutions that can be implemented in a real network for both the wireless and the

wired networks. Using these methods, we have also presented numerical evidence that the

flow model computes a tight upper bound on the maximum achievable throughput.

We observed that for single rate wireless networks, there are significant gains in the
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throughput even for relatively large M . These gains are also much larger at lower powers

than at higher powers. For these networks, we have also seen that it is possible to achieve

close to the optimal throughput using a single path routing.

For wired networks, we have developed a heuristic strategy (involving generation of

multiple trees) that can be implemented in practice in a network. This strategy achieves

a data generation rate close to the upper bound computed by the flow model. It is based

on the idea that to enable the largest number of opportunities for aggregation, some delay

needs to be imposed at intermediate nodes. However, note that this does not impact the

end to end delay to compute the function for a given wave since the sink cannot compute

this function before it has received all the data for that wave. Even for wired networks,

throughputs are observed to be substantially higher when in-network computation is allowed

compared to the performance of convergecast.

6.2 Extensions

Several extensions of the work done in this thesis are possible. They are as follows.

1. Energy and lifetime: Maximizing the lifetime of a wireless sensor network is an

important objective due to the scarcity of the power at the nodes. The lifetime of a

sensor network can be extended by efficiently using the limited energy resource. In-

network computation has the potential to reduce the energy consumption per node and

thus increase the overall lifetime. Given a model for power consumption, modifying

our flow model to study this problem is straightforward.

2. Delay: Several sensor network applications are delay sensitive. Maximizing the

throughput which we have studied in this thesis does not ensure the minimization

of the delay. For the wireless networks, minimization of delay involves solving the

discrete-time model Pd(m) for a single wave of data, i.e., m = 1. The challenge is
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that it is a large integer program which is hard to solve for non-trivial networks.

3. Advanced physical layer techniques: Studying the impact of advanced physical

layer techniques like SIC, superposition coding, etc. with in-network computation on

network performance is a promising direction of further research on this topic.

4. More functions: We have considered only the statistical functions in this thesis.

Extension of the models developed in this thesis to more functions needs to be ex-

plored.

5. Multiple rates: Wireless networks with multiple rates have not be considered in this

thesis. However, extension of the flow model to these type of networks is straight-

forward.

6. Power control: We have considered that all the nodes transmit with the same

equal power in the models presented in this thesis. Power control might result in

more efficient use of the network resources and thus, is an interesting direction of

exploration.

Thus, there are many interesting future directions of work to explore in this field and

we believe that our work is a stepping stone for a more comprehensive understanding of the

fascinating field of in-network computation.
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