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Abstract

There have been several modes of operations available for symmetric key block ci-

phers, among which Galois Counter Mode (GCM) of operation is a standard. GCM

mode of operation provides con�dentiality with the help of symmetric key block ci-

pher operating in counter mode. The authentication component of GCM comprises

of Galois hash (GHASH) computation which is a keyed hash function. The most

important component of GHASH computation is carry-less multiplication of 128-

bit operands which is followed by a modulo reduction. There have been a number

of schemes proposed for e�cient software implementation of carry-less multiplica-

tion to improve performance of GHASH by increasing the speed of multiplications.

This thesis focuses on providing an e�cient way of software implementation of high

performance GHASH function as being proposed by Meloni et al., and also on the

implementation of GHASH using a carry-less multiplication instruction provided

by Intel on their Westmere architecture.

The thesis work includes implementation of the high performance GHASH and

its comparison to the older or standard implementation of GHASH function. It

also includes comparison of the two implementations using Intel's carry-less mul-

tiplication instruction. This is the �rst time that this kind of comparison is being

done on software implementations of these algorithms. Our software implementa-

tions suggest that the new GHASH algorithm, which was originally proposed for

the hardware implementations due to the required parallelization, can't take ad-

vantage of the Intel carry-less multiplication instruction PCLMULQDQ. On the

other hand, when implementations are done without using the PCLMULQDQ in-

struction the new algorithm performs better, even if its inherent parallelization is

not utilized. This suggest that the new algorithm will perform better on embedded

systems that do not support PCLMULQDQ.
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Chapter 1

Introduction

The three main goals of information systems security, namely con�dentiality,

integrity, and availability have always been a point of interest to the cryptographic

research world. Apart from being highly secure an important required feature

for some practical information systems is to perform cryptographic operations at

high speed. Block ciphers have proven themselves to be useful for this purpose.

Among many block ciphers, Advanced Encryption Standard (AES) is one of the

widely used symmetric key block ciphers [3]. National Institute of Standards and

Technology (NIST) standardized the operation of symmetric key block ciphers in

the Galois Counter Mode (GCM) due to its suitability for e�cient implementation

in hardware as well as software. A lot of research work has been done on proposing

e�cient ways of implementation, and its usage in di�erent types of networks and

applications. GCM provides data authentication/integrity by using the Galois hash

(GHASH), and supports data con�dentiality via encryption/decryption operations

of AES. Below we give a brief overview of previous research work related to the

implementations of GHASH.
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1.1 Brief Overview of Previous Work on GHASH

Over the past years, there have been various schemes proposed for improving data

authentication component of AES-GCM based systems, i.e., GHASH. One of the

research papers has proposed a GCM variation in [9], where the authors have ad-

dressed the slowness of computation of GHASH and the problem of memory re-

quirements for the pre-computed GHASH. There is also an e�cient GHASH im-

plementation on FPGA proposed in [25] which uses a parallel architecture for the

polynomial multiplication in Galois �elds [26]. Another e�cient implementation

has been presented in [5], again using the multiplier from [26], but this time com-

bined with the pipeline method for higher throughput. Hardware implementation

on a per key basis has been proposed in [7], and the GHASH has been implemented

using Verilog, resulting in improved throughput. In [18], an e�cient implementation

has also been proposed for GHASH using Intel's PCLMULQDQ instruction [17].

The work in [18] attempts to optimize the assembler implementation of GHASH

algorithm, and performs better than the standard implementation. Finally Intel

itself has proposed an optimized implementation of GHASH in GCM, using their

own PCLMULQDQ instruction [13].

Although there have been several implementations proposed for GHASH, they

all have one thing in common: they are all trying to implement or improve the

standard GHASH algorithm. Performance of the algorithm becomes slow as the

number of blocks being processed increases, since the number of 128-bit Galois

�eld multiplications in the standard GHASH algorithm is almost as many as the

number of blocks. Although there have been schemes proposed for utilizing parallel

hardware to overcome some problems, but in terms of software implementation it

is hard to mimic that level of parallelism.

Recently, a new GHASH algorithm has been proposed by Meloni, Negre and

Hasan [29]. We will refer to this new algorithm as MNH GHASH. This algorithm
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replaces all extension �eld multiplications in excess of 127 by an equal number of

polynomial reduction operations. This algorithm has been primarily designed for

dedicated hardware implementations to take advantage of its inherent parallelism.

To the best of our knowledge, no work has been reported yet investigating the per-

formance of the algorithm when implemented using software on a general purpose

processor.

1.2 Contributions

The work presented in this thesis is with regard to faster computation and timing

analysis of di�erent implementations of GHASH. The main contributions are as

follows:

• Using common place instructions, perform software design and implementa-

tion of the MNH GHASH algorithm recently proposed by Meloni et al.[29].

• Implement the above mentioned GHASH algorithm [29] using Intel's new

64-bit carry-less multiplication PCLMULQDQ instruction[17].

• Compare performance of the software implementations of the new and the

standard GHASH with and without Intel's carry-less multiplication instruc-

tion.

There have been other implementations of GHASH presented in the past, e.g.,

[13, 5, 18]. These are mainly to improve the implementation of the standard

GHASH algorithm and most of them are either FPGA or ASIC implementations.

On the other hand, in this work we deal with the new MNH GHASH algorithm
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[29], and present software implementations and comparison. Unlike previous re-

search papers on this topic, our work is not two implementations of the standard

GHASH algorithm, but rather comparison of two di�erent algorithms.

1.3 Organization

There are four more chapters in this thesis, starting with Chapter 2 in which we

give related background on Galois �eld (GF) arithmetic, GCM and cryptographic

hash functions. In Chapter 3, we discuss algorithms for computing GHASH in

GCM, and explain how using minimal polynomials we can improve the GHASH

algorithm as presented by Meloni et al. [29]. In Chapter 4, the software implemen-

tation, analysis and results obtained from them are discussed. In Chapter 5 some

concluding remarks are made on analysis and results. This chapter also includes

some discussions on possible future work.
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Chapter 2

Background

In order to better understand the GHASH, which is used in GCM, we �rst need to

understand how GCM mode works for a block cipher. Furthermore, to understand

GHASH we need to deal with Galois �eld operations, and to understand GCM we

need to know a bit about cryptographic hash functions and how are they computed.

This chapter starts with a brief introduction on Galois �elds, some of its basic op-

erations and a bit about characteristic polynomials. Then we discuss cryptographic

hash functions. The chapter ends with some discussions on GCM operation.

2.1 Galois Fields

Galois �elds are most widely used in coding theory and �eld of information security.

A Galois �eld has a �nite number of elements, with which one can perform addition,

subtraction, multiplicaion and division (by the non-zero element). The Galois �eld

of q elements is denoted as GF(q). The value of q must be a prime or a prime

power. If q is prime (respectively, prime power), �eld GF(q) is referred to as prime

(respectively, extension) �eld. For example, a prime Galois �eld is GF(2), which
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can be extended to �eld GF(2m), where m can be any integer greater than 1 [31].

2.1.1 Polynomial Representation of Galois Field

Although several representations for �nite �elds have been proposed, the one using

polynomial basis has been the most useful, specially when it comes to large �elds.

In order to give a more general representation of a Galois �eld in polynomial basis,

assume a Galois �eld GF(pn), where p is prime. Let us assume that F (x) is an

irreducible polynomial, whose coe�cients belong to GF(p), and is of degree n. An

irreducible polynomial does not have any polynomial as its factor which has a degree

greater than 0 or smaller than n. Since F (x) is a polynomial of degree n, it is often

convenient to write it as follows [15]:

F (x) = xn + f(x) (2.1)

where,

f(x) =
n−1∑
j=0

fjx
j, {fj ∈ GF(p)}

Now, if we assume that a root of F(x) is β, then any element B in �eld GF(pn) can

be represented as follows,

B(β) = bn−1β
n−1 + bn−2β

n−2 + bn−3β
n−3 + .....+ b1β

1 + b0 =
n−1∑
j=0

bjβ
j (2.2)

where, bj∈GF(p), and the polynomial basis of GF(pn) over GF(p) is formed using

{1, β, β2, β3, .....βn−2, βn−1}.
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2.1.2 Galois Field Arithmetic

In order to further proceed with our discussion, it is important to give a brief

introduction to some basic Galois �eld operations. In the next few paragraphs,

we will look into Galois �eld addition, multiplication and the concept of minimal

polynomial (importance of which we will see in the next chapter).

Addition Operation in Galois Field

Addition in Galois �eld is a very simple operation. For example, if we have Galois

�eld elements C(x) and D(x), in polynomial basis form for �eld GF(pn), then their

addition would be modulo p addition of the corresponding coe�cients of C(x) and

D(x). A better example could be in case of binary �eld GF(2n). Let C(x) be

x2 + x+ 1, and D(x) be x+ 1. Then their sum S(x) is

S(x) ≡ C(x) +D(x) ≡ ((x2 + x+ 1) + (x+ 1)) mod 2

S(x) ≡ (x2 + (x+ x) + (1 + 1)) mod 2 ≡ x2

Another way of looking at addition in binary �eld from the implemenatation

perspective is to observe that if the elements are stored in bit form, then addition

is nothing but XORing of corresponding bits.

Multiplication Operation in Galois Field

Multiplication in Galois �eld is a little more complicated operation than addition.

For multiplication of two elements of GF(pn), �rst the polynomials corresponding

to the �led elements are multiplied and then they go through a modular reduction
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using polynomial F (x), which as mentioned earlier is an irreducible polnomial of

degree n. To illustrate a small example, let us assume that we have two elements

C(x) and D(x) of Galois �eld GF(23). Let C(x) be x2 and D(x) be x, and the �eld

de�ning irreducible polynomial F (x) be x3 + x + 1. Then we can multiply C(x)

and D(x) as follows,

M(x) ≡ C(x) ·D(x) mod F (x),

M(x) ≡ (x2) · (x) mod (x3 + x+ 1),

M(x) ≡ x3 mod (x3 + x+ 1) ≡ x+ 1.

Minimal Polynomial in Galois Field

An important concept related to Galois �elds, which is worth mentioning here, is

minimal polynomial. The minimum polynomial of any element α of �eld GF(pn)

is a polynomial M(x), such that M(α) = 0, and its coe�cients are in �eld GF(p)

[31]. For example if we have element 0 in Galois �eld GF(2m), then its minimal

polynomial will be x, and similarly for element 1 the minimal polynomial is x+ 1.

Now let us look at a more elaborate example. Let us consider �eld GF(24) with

�eld de�ning polynomial to be F (x) = x4 + x+ 1. Let α be a root of F (x). Then

for �eld element α2 + α, we have minimal polynomial x2 + x + 1, which can be

veri�ed as follows,

M(x) ≡ x2 + x+ 1,

M(α2 + α) ≡ (α2 + α)2 + α2 + α + 1,

M(α2 + α) ≡ α4 + α2 + α2 + α + 1,

M(α2 + α) ≡ α4 + α + 1,
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Since α is root of F (x), hence F (α) = α4 + α+ 1 = 0, resulting in M(α2 + α) = 0,

i.e., M(x) is the minimal polynomial of α2 + α.

2.2 Hash Functions in Cryptography

A cryptographic hash function can be considered to be an algorithm which takes

blocks of data and convert them to strings often referred to as tags. A tag can be

viewed as a �nger print of the message or representation of message and is unique.

In a normal hash function, there is no concept of key; but we will brie�y look into

keyed hash functions or message authentication code (MAC) as well, since the hash

function of our interest GHASH, which is used in GCM, uses keys. In short, a hash

functions provides an easy and e�cient way of representing a message of arbitrary

length and produces a tag of �nite bits string, which helps in signing messages and

resolves the issue of high computation and message overhead costs involved when

computing digital signatures without hash functions [34].

Hash functions are generally expected to be easily computed, and even if one

bit changes in the message the whole hash function generated again should not

be the same. That is they need to be highly sensitive to any change, and satisfy

other properties. Below we discuss a couple of important security properties of

hash functions.

2.2.1 Security Properties of Hash Functions

A cryptographic hash function should be one-way and collision resistance. One-

wayness, which is also known as preimage resistance, guarantees that it is ideally
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impossible to create the message back from a hash function or hash tag.

Collision resistance is one of the most important properties or requirements for

hash functions. It implies that there are no two input messages which can produce

the same hash tag. A hash function's collision resistance can be either weak or

strong. In the weak case, one message is already given and the attacker tries to

�nd a second message which can produce the same hash tag. In the strong case,

the attacker has an opportunity to select any two messages and see if it is possible

to get the same hash tag from both.

2.2.2 Types of Hash Algorithms

Hash algorithms can be divided into two major categories: dedicated hash functions

and block ciphers based hash functions [34]. It is also worth mentioning that hash

functions can be keyed or not keyed. Our hash function of interest, i.e., GHASH

is a keyed hash function. A keyed hash function uses both the message and the

key for computing a hash tag and is generally used in Message Authentication

Code (MAC). Un-keyed hash functions on the other hand are used mostly in error

detection codes, and their computations does not require any key.

Dedicated Hash Functions

As the name suggests, dedicated hash functions are speci�cally designed for com-

puting hashes and do not usually rely upon complex computations like discrete

logarithm or integer factorization. Examples of dedicated hash functions are MD4,

MD5 and various SHAs.
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Figure 2.1: Simpli�ed Davies-Meyer Hash function

Block Cipher based Hash Functions

In terms of computation speeds, the block cipher based hash functions are bit

slower as compared to the dedicated ones, but they give an added advantage of

using the same block cipher which is being used for encryption. There are again

many di�erent methods proposed in the past to generate hash tags using block

ciphers. In Fig. 2.1, a very basic method known as Davies-Meyer method [6] is

shown.

In the Davies-Meyer method, the hash is constructed by taking previous hash

value hi−1 as input to a block cipher encryption function E. Using the ith message

block mi as the key and then whatever output is generated is XORed with the

previous hash value to obtain new ith hash value hi. In the case of �rst hash tag,

usually a pre-computed speci�c initial hash value h0 is used.

2.3 Galois Counter Mode (GCM)

Galois Counter Mode (GCM) is a recommended mode of operation for symmetric

key block ciphers by NIST [17, 33]. Galois counter mode of operation handles con�-

dentiality through encryption in the counter mode and authentication is taken care

by computation involving a secure hash function. The Galois �eld used for easiness
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of hardware/software implementation is binary �eld GF(2128). GCM provides en-

cryption using the symmetric block cipher AES (Advanced Encryption Standard)

[33].

The term GMAC is often heard in the context to GCM, which only means that

if our input data does not contain any information which is needed to be encrypted

then the operation of GCM could be just called GMAC. In that case it is only

providing data authentication, and it is needless to say that authentication provided

by GCM is far stronger than any error detecting code or check sum [33]. GCM also

provides lot of opportunities for pre-computations and parallelized implementation

[33]. For example, even the length of input data is not required in advanced; but if

we know it, it is �xed, and if we also know about the initialization vector, then lot

of block cipher computations related to invocation can be done beforehand [33].

2.3.1 GCM Operation

As mentioned earlier, GCM is composed of two parts: authentication and encryp-

tion. Data authentication is achieved via the keyed hash function GHASH and

encryption via block cipher AES in the counter mode. As cryptographic hash func-

tions have already been discussed earlier, a brief description on block ciphers and

counter mode of operation will be given below.

Block Ciphers

A block cipher causes the input data to go through a particular transformation,

and in every transformation, a �xed amount of data from input is taken, which is

called a block. The operations of block ciphers are dependent on a random key,
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Figure 2.2: Simple Block Cipher in ECB Mode

say K, regulates the transformation which input block goes through. To achieve

con�dentiality, the block ciphers uses two functions that are inverse of each other,

and one is called encryption and the other decryption. To present a visual and sim-

pli�ed example of a block cipher, Fig. 2.2 shows a simple block cipher in electronic

code book mode.

So, as we can see in the above �gure, it has two functions: one for encryption

ENCK , and the other funtion DECK , where DECK = ENC−1
K .

Counter Mode of Operation for Block Ciphers

There are di�erent modes of operations for block ciphers. The mode used in Fig.

2.2 is known as electronic code book mode. The mode that is most important

from the GCM perspective is Counter Mode of operation. One important feature

of the counter mode of operation is that it doesn't require two functions like the

example of block cipher we saw earlier. It only needs forward cipher function,
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Figure 2.3: Encryption and Decryption in counter mode of operation

which is advantageous from the implementation point of view. In this mode of

operation, forward cipher function transformations are applied on counter blocks,

which are special input blocks, and have the property of being distinct per block

under same key. The output from those transformations is XORed to produce the

ciphertext. To get the plaintext back, the same counter goes through the forward

cipher function and, is then XORed with the ciphertext [32]. To give a simple

example, let us consider a counter block X1 , and we apply forward cipher function

with key K on as ForwK(X1). Now we XOR it with plaintext P1, then cipher text

C1will be P1 ⊕ ForwK(X1) . To get back P1, we just need to get forward cipher

function applied on the same counter, that is , ForwK(X1), and then XORing it to

C1, which will give us back our plaintext P1. A simpli�ed block diagram of Counter

Mode of operation of block ciphers can be seen in Fig. 2.3.

As we can see from Fig. 2.3, Count1 is a distinct counter block for a block,

P1 of plaintext, whereas the ForwCiphK , is the forward cipher function, with key

K, and cipher text is C1, and similarly in decryption we just reverse the XORing

14



operation.

GCM Speci�cation

As we already know, GCM requires a block cipher for establishing con�dentiality

feature. Let us assume that the cipher block function is using random key K, and

the input required is composed of the Plaintext P, which is the actual data to

be encrypted. Plaintext P is usually broken into blocks of 128 bits long except

for the last block. If the last block is not already 128 bits, then extra zeros are

padded. Another part of input comprises of additional Authentication Data (AD),

which is not encrypted and used only for the purpose of authentication. The length

restriction for blocks of this data is the same as for the plaintext [33, 28]. The

�nal part of input is Initialization Vector (IV), which is a nonce, and is unique

in reference to the context, and has a main role in invocation of forward cipher

function. Its construction and properties are discussed in more details in the NIST

speci�cation [33]. The resulting output of GCM operation is Ciphertext (C) and

authentication Tag (T). The decryption part takes, initialization vector, ciphertext,

authentication data, and tag as input, and using initialization vector and cipher

text it produces the plaintext. A simpli�ed version of encryption and decryption

blocks can be seen in Fig. 2.4. It does not include how authentication part works

in GCM, which is part of our following discussion.

Now as we can see in the �gure, input data for encryption goes through a block

called GCTRK , which is nothing much but a modi�ed counter block operation

as discussed earlier and uses the block cipher for encryption with key, K. The

ciphertext output is also broken into blocks and with the same length restrictions

and padding as plaintext, and the authentication tag produced is 128 bits in length.
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Figure 2.4: Encryption and Decryption in GCM.

Although shorter tags can be created, but due to some security concerns they are

not encouraged by NIST.

To create authentication tag, the ciphertext along with unencrypted authen-

tication data is passed through a GHASHH block and then through a GCTRK

block. Similarly at the receiving end during decryption, the authentication tag is

computed using the received authentication data, which is in clear, and ciphertext

again using hash subkey H. The computer tag is then compared to the received tag.

If the tags are the same, then it's a pass, else the authentication fails. A simpli�ed

version of authentication is shown in Fig. 2.5.

Hence, we can see from the above discussion on GCM that GCM provides

authentication as well as con�dentiality, and it allows some of the data to be in

clear, which is the additional authentication data. Such data in practice could

contain any addresses or any other information related to the encrypted data. If

there is no data to be encrypted then it can just act as authentication mechanism

called GMAC, which again can be classi�ed in the category of block cipher based
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Figure 2.5: Authentication in GCM

message authentication algorithms as we discussed previously. In the next chapter,

GHASH is discussed in more detail with mathematical speci�cations.
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Chapter 3

GHASH Algorithms and

Implementation Issues

As discussed in the previous chapter, one of the modes for symmetric key block

cipher recommended by NIST is GCM [33], which can provide encryption/decryp-

tion and authentication (i.e., integrity of data) at the same time. In case of au-

thentication computation, GCM has to generate a tag using keyed hash function

also known as GHASH. In this chapter, the discussion will start with a brief in-

troduction, followed by a description of the standard GHASH algorithm [28]. A

brief description will also be provided on parallelized computation of GHASH as

discussed in [29, 28]. We will then review a new GHASH algorithm proposed by

Meloni et al. Finally, we discuss the carry-less multiplication schemes that can be

used in GHASH computations.
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3.1 Standard GHASH Computation

There have been several proposals in the past for improving GCM implementation.

Some researchers have proposed faster computation of the associated symmetric

block cipher itself [11, 14], while some have tried to come up with faster ways

of multiplication [4, 27]. There have also been several implementations proposed

for e�cient implementation of AES-GCM combined [21, 9, 5]. Although these

proposed schemes vary, but in their core the GHASH algorithm is almost same,

that is involving as many GF(2128) multiplications as the number of blocks.

The Galois counter mode of operation provides opportunities for paralleliza-

tion of computation steps. However, the computation of GHASH, which involves

GF(2128) multiplications, poses a bottleneck to the whole operation. There has

been a solution proposed by the authors of GCM itself [28], which we will see later

in the chapter, but that method increases the number of required multipliers. Be-

low, we �rst give a description of the standard GHASH algorithm as speci�ed in

[28, 33].

3.1.1 GHASH Description

As a brief description of how GCM handles con�dentiality has been given in the

previous chapter, let us assume that the associated block cipher uses block size of

m bits. In order to authenticate data, the ciphertext generated by the block cipher

goes through a series of GF(2128) multiplications, using a key say H, which is also

in GF(2128). Also, assume that the block cipher being used for encryption and

decryption is AES.

In order to understand the operation of GHASH, assume that there is an input

data stream of bits P , divided into n blocks of size m bits. Let us represent those
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blocks as P1, P2, P3. . . . . .Pn, and they are all m-bit long as mentioned. There might

be an exception with the last block Pn, which might not be m bits in length. In

order to �x the length of the last block, if it falls short of m bits, extra 0's are

padded to it to increase its length to m bits [33]. The hash key H, which we have

mentioned earlier, is also m bits in length. Based on the GCM speci�cation in

[33], the input blocks are 128 bits in length and could be either actual input data,

which is the output from ciphertext, or just additional authentication data (which

is also divided into equal block sizes of m bits as seen in the previous chapter), but

to avoid any confusion and to give a more formal de�nition of algorithm, we will

assume that any kind of block used as an input will be represented byPi, where

i = 1, 2, 3, ....n. So, using all these representations we can de�ne the resultant or

required GHASH as follows:

GHASHH(P ) = P1H
n + P2H

n−1 + P3H
n−2 + · · ·+ PnH (3.1)

where, hash subkey H, is obtained by applying block cipher to the zero block, i.e.,

all of its bits are zero, and let us assume that GHASH computed using key H to

be represented as GHASHH .

We assume a scenario of two parties communicating using GCM-AES, and de-

cide to use one shared key, K as the session key. Now, they can actually pre-compute

H, which will be nothing but application of AES encryption using key K on a zero

block. This H can also be shared between the two parties and use throughout

the session, without any need to compute H every time GHASH computation is

performed.

As it can be seen from Eq. (3.1), computation of GHASH is nothing but a

series of multiplication and addition operations in �eld GF(2m). In a more formal

form, and also as described by its authors [28], the operation can be represented in

Algorithm 3.1.
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Algorithm 3.1 GHASH Standard [29, 33]

Input: P,H

Output: Tn

Steps: T0 ← 0

for i = 1 to n do

Ti ← (Ti−1 ⊕ Pi) ·H

end for

return Tn

Algorithm 3.1 can be graphically represented as Fig. 3.1. The zero block T 0 in

Fig. 3.1 can be seen as the step in Algorithm 3.1,where variableT0 is initialized to

be 0 , and the tag Tn produced in the last step of �gure actually represent the the

computed GHASH tag.

From Fig. 3.1 it is evident that if we have n blocks of m-bits each, it will require

n multiplications in GF(2m). It can also be seen from Fig. 3.1 and Algorithm 3.1,

that overall architecture of GHASH computation has essence of feedback in it.

Using this feedback characteristic a more compact graphical representation using

one multiplier and XOR operator in feedback can be seen in Fig. 3.2. This is a more

practical approach to the GHASH implementation as it requires less hardware. On

the other hand, it takes more time to compute GHASH.

In order to determine the computation time of GHASH using the feedback

structure of Figure 3.2, let us assume that delay due to XOR-operation of whole

block is dxor, and delay due to one multiplication is dmul. The total delay for

computing GHASH using this architecture can be approximated as,

dtotal = (dxor + dmul) · n (3.2)

The multiplication used in GHASH function in �eld GF(2128) is carry-less mul-
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Figure 3.1: GHASH Computation

Figure 3.2: Feedback architecture for GHASH
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tiplication. Intel has proposed a carry-less instruction to multiply two 64 bit

operands, and has used it to come up with e�cient software implementations of

GHASH. It has also been mentioned earlier, GHASH operation can be parallelized,

but has its restrictions in practical implementation. Before we move onto Intel's

proposed scheme, we give a brief overview of parallel architecture for GHASH com-

putation.

3.1.2 Parallel Architecture For GHASH

GHASH formulation allows its computation to be parallelized [28, 35]. To under-

stand a parallel architecture, assume that we have g multipliers and adders, and

also assume that data stream P is our input. Now for simpli�cation we assume that

g is a factor of n, where n is the number of blocks P is divided into, depending on

the block size. Let us assume the block size to be m bits. Now we divide P again,

but into g sections S1, S2, S3. . . .Sg, with each section having n
g
blocks. From this

we can now rede�ne the GHASH, using key H as follows [29],

GHASHH = S1H
g + S2H

g−1 + S3H
g−2 + ...+ SgH (3.3)

and we de�ne all the Si's as in [29],

Si = Pi (H
g)n/g−1 + Pi+g (H

g)n/g−2 + ...+ Pn−g+i (H
g)0 (3.4)

Now, these Si's, can be computed in parallel in (n
g
− 1) steps with, a delay

of (n
g
− 1)(dmul + dxor), where dmul is delay due to a single multiplier and dxor

is a delay due to single XOR gate. Additional multiplier delay dmul, will also be

included due to multiplication of all Si's with their respective H
i's, where1 ≤ i ≤ g,

and assuming that their values are already computed. We can also represent this

in a more graphical form as in Fig. 3.3 [29].
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Figure 3.3: Parallel GHASH Computation

After all the parallel computations, we can add all the result in a binary tree

fashion (to allow parallel XORing operations), which can be seen in the Fig. 3.3.

This addition (XOR operations) will require a delay of, log2 g, and as a result will

add to the delay component, and total delay then can be computed as follows,

dtotal =

(
n

g
− 1

)
· (dmul + dxor) + dmul + (log2 g) · dxor (3.5)
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3.2 Characteristic Polynomial Based GHASH

A high performance GHASH computation algorithm has been proposed in [29],

based on the concept of characteristic or minimal polynomial. For the purpose of

GHASH, in [29] a characteristic polynomial for an element E in �eld GF(2m) is

de�ned to be a polynomial χE(t) of degree m with all the coe�cients belonging to

GF(2) such that χE(E) = 0. Now, in case of GHASH computation, let us assume

that the characteristic polynomial for hash sub-key H be χH . If the characteristic

polynomial is irreducible, then it can be shown that it is the minimal polynomial

as de�ned in Chapter 2. Now let us assume that χH(H) can be mathematically

represented as,

χH(H) =
m∑
i=0

ciH
i = 0 (3.6)

Since, all the ci's are either 0 or 1, and we know that degree of χH is m, hence

cm = 1 and we can write,

Hm =
m−1∑
i=0

ciH
i (3.7)

Now, let us consider the following polynomial of degree m

G = P1H
m + P2H

m−1 + P3H
m−2 + · · ·+ PmH (3.8)

where, all the Pi's are in �eld GF(2m). If we apply modular reduction on G using

χH , we get,

G mod χH = c0P1 + (Pm + c1 · P1) ·H + ...+
(P3 + cm−2P1) ·Hm−2 + (P2 + cm−1P1) ·Hm−1 (3.9)

Since, ci's can only have a 0 or 1, the term (Pm−i+1 + ci · P1)is no computation if

ci = 0 and an addition in GF(2m) if ci = 1. These operations can be represented in

form of a circuit as shown in Fig. 3.4.The registers shown in the �gure are loaded

in the following sequence: P1, P2, ..., Pn → Ym−1, Ym−2...Y0. We can see from Fig.
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3.4 and Eq. (3.9) that, the addition computations can be peroformed in parallel.

This circuit to perform these parallel operations is called Polynomial Reduction

Unit (PRU) [29].

Now, let us consider a polynomial similar to Eq. (3.8) but of degree n > m and we

can break that polynomial as follows,

G = ((...((P1H
m + P2H

m−1 + ...+ Pm+1)H + Pm+2)H + ...+ Pn−1)H + Pn)H

which can be simpli�ed after applying modulo reduction χH as [29],

G mod χH = ((...((P1H
m + P2H

m−1 + ...+ Pm+1 mod χH)H
+Pm+2 mod χH)H + ...+ Pn−1 mod χH)H

+Pn mod χH)H mod χH

(3.10)

Basically, the idea here is to replace n−m+1 multiplications by H with that many

polynomial reductions using a circuit shown in Fig. 3.4. In a more formal way and

as de�ned in [29] the algorithm can be represented as in Algorithm 3.2. For the

sake of simplicity this GHASH algorithm, which is proposed by Meloni, Negre, and

Hasan [29], and from here and onwards will be referred to as the MNH GHASH

algorithm.

We clearly see that compared to older Algorithm 3.1, the new one requires

fewer number of multiplications when n ≥ m. For example, if we have n blocks to

compute GHASH, the older algorithm will require n multiplications, but the MNH

algorithm restricts the number of multiplications to m − 1, and replaces rest of

multilpications with n−m + 1 parallel rounds of a PRU, which mainly comprises

of XOR operation, and AND operations for �xed ci's. One important thing to

note here is that, inside the �rst loop, the computations of all the Yi's , and Y0,

represent operation of PRU, and are computed in parallel at every iteration of j.
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Figure 3.4: Polynomial Reduction Unit
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Algorithm 3.2 MNH GHASH Algorithm

Input: P = P1, P2, ..., Pn , χH(H) =
∑m

i=0 ciH
i where, (n ≥ m)

Output: GHASHH(P ) = P1H
n + P2H

n−1 + P3H
n−2 + · · ·+ PnH

Steps:

P1, P2, ..., Pn → Ym−1, Ym−2...Y0

T → 0, Pn+1 = 0

for j = m to n do

Ym−1 → C

Yi ← Yi−1 + ciC, m− 1 ≥ i ≥ 1

{
in parallel

Y0 ← Pj+1 + c0C


done in

parallel with

Yis

endfor

for i = m− 1 down to 1 do

T ← (T + Yi) ·H

endfor

return (T + Y0)
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Such parallel computations are easily possible in special purpose hardware. On

the hand, this is not the case in software using general purpose processors. In

software these computations are most likely to be performed in sequence which will

be discussed in the next chapter. A brief description will be also given on how to

compute the characteristic polynomial required for the operation of algorithm. For

now, we give an example to clarify the operation of Algorithm 3.2.

Let us assume that, we have GF(24), i.e., m = 4, and the reduction polynomial

is x4 + x + 1. Now, let us assume that we have �ve blocks P1 = 1, P2 = x, P3 =

x + 1, P4 = x2, P5 = x2 + 1, for computation of GHASHH , where H = x3 and

P6 = 0. Now, from the assigned value of H, we can get value of ci's through

characteristic polynomial which is x4 + x3 + x2 + x + 1 for the given H. The

expression for GHASHH is

GHASHH(P ) = P1H
5 + P2H

4 + P3H
3 + P4H

2 + P5H (3.11)

Now, using the MNH GHASH algorithm we will �rst assign input block values to

PRU registers as follows,

Y3 = P1 = 1

Y2 = P2 = x

Y1 = P3 = 1 + x

Y0 = P4 = x2

Now, to apply the PRU iteration for j = 4,

C = Y3 = 1
Y3 = Y2 + C = x+ 1
Y2 = Y1 + C = x
Y1 = Y0 + C = x2 + 1
Y0 = P5 + C = x2

Again, applying PRU iteration for j = 5,
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C = Y3 = x+ 1
Y3 = Y2 + C = 1

Y2 = Y1 + C = x2 + x
Y1 = Y0 + C = x2 + x+ 1
Y0 = P6 + C = x+ 1

Now, applying iterations of multiplicaiton loop, starting with i = 3 and T = 0,

T = (T + Y3) ·H = (0 + 1) · x3 = x3

for i = 2,

T = (T + Y2) ·H = (x3 + x2 + x) · x3 = 1 + x3

again, for i = 1,

T = (T + Y1) ·H = (x3 + 1 + x2 + x+ 1) · x3 = 1 + x3

Now, for the �nal step we add Y0 and T ,

GHASHH(P ) = Y0 + T = 1 + x+ 1 + x3 = x3 + x

As mentioned earlier the MNH algorithm restricts combined multiplication and

XOR operations to m−1, and rest of the multiplicaitons are replaced by n−m+1

PRU operations. Hence, the GHASH computation time using the MNH algorithm

is

dtotal = (n−m+ 1) · (dxor + dand) + (m− 1) (dmul + dxor) (3.12)

3.3 Implementation Issues in Software

The most challenging task in the software implementation of GHASH using either

the standard or the MNH algorithm is the multiplication in GF(2128). As mentioned

earlier, such multiplication can be performed by �rst multiplying two polynomials

of degree less than 128 over the ground �eld GF(2) and then reducing the resultant

30



polynomial of degree 254 or less using the �eld de�ning polynomial of degree 128.

The polynomial multiplication over GF(2) can be viewed as a carry-less multiplica-

tion, which is described below. We also present Intel's new instruction to speed-up

such carry-less multiplication and its use to the Karatsuba algorithm.

3.3.1 Carry-less Multiplication

Carry-less multiplication in simple words can be de�ned as multiplication of two

operands, with no propagation and generation of carries during the process. Let us

assume that we have two operands, X & Y and we represent them in an array of

m bits.

X = [x1, x2, x3, ........., xm]

Y = [y1, y2, y3, ........., ym]

The carry-less product generated will be of size 2m − 1 bits and let us call it Z,

where Z can be represented as,

Z = [z2m−1, z2m−2, z2m−3, ........., z2, z1]

The resultant or output of multiplication can mathematically be also represented

as in [17],

zi =


i
⊕
j=1
xjyi−j, 1 ≤ i ≤ m,

m
⊕

j=i−m+1
xjyi−j, m+ 1 ≤ i ≤ 2m− 1

It is also evident from the equation above the result is similar to integer multi-

plication, but without any carry. A small example to understand it in a better way

is as follows, assume X = [1100] and Y = [1100].
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1100

1100

−−−−

0000

0000×

1100××

1100×××

−−−−−−−

1010000

As, it can be seen the result of normal multiplication of X and Y should be 144

i.e., in binary [10010000], but result of carry-less muliplication is [1010000], which

is equvalent to 80.

3.3.2 E�cient Carry-less Multiplication for Large Operands

For GHASH, the size of the operands for carry-less multiplication is m or 128 bits.

There are basically two types of techniques used in e�cient software implementa-

tions of carry-less multiplication of such large size operands: look-up table and the

Karatsuba methods.

Look-up table based implementation is based on two major steps. First is pre-

processing, where all the tables are generated in GF(2128) and stored. Second

step involves �nding the right matches based on the given input and XOR all the

matches to obtain the output. Further details for the look-up table based is not

that relevant for our discussion, so has been avoided, but the key idea is that, the

scheme involves memory storage cost and can be ine�cient when high performance

(speed) is required.
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The other popular technique is to use a carry-less Karatsuba algorithm. The

multiplication is then followed by a reduction algorithm. A brief introduction to

Karatsuba algorithm is presented, followed by a brief description of the modi�ed

Karatsuba algorithm.

3.3.3 Basics of Karatsuba Algorithm

The Karatsuba algorithm was named after its inventor, Anatolii A. Karatsuba. The

Karatsuba algorithm enables faster multiplication of two n-digit numbers, and has

proven to be faster than traditional algorithms. The older algorithm also called

ordinary multiplication (OML) [20, 19], has an algorithmic complexity of O(n2),

which is reduced to O(nlog23) by the Karatsuba algorithm.

In order to get better understanding of algorithm, assume two n-digits numbers,

a and b, and let them be in base B. Also, assume a positive integer less than n and

call it x, such that we can divide the two numbers as follows,

a = a1 ·Bx + a0, (3.13)

b = b1 ·Bx + b0. (3.14)

We also have to make sure that Bx, is greater than a0 and b0, and as a result

product of a and b, p can be represented as

p = a · b = c2 ·B2x + c1B
x + c0 (3.15)

where,

c2 = a1 · b1

c1 = a1 · b0 + a0b1
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c0 = a0 · b0

Now, it appears that we need to perform four multiplications, but Karatsuba,

reduced these to three multiplications at the cost of extra additions as follows,

c1 = (a1 + a0) · (b1 + b0)− c2 − c0

So, by computing c1 as above the number of multiplications has been reduced by

one. Let us see a small example to verify working of this algorithm. Let us assume

that we want to multiply two 3-digit numbers, a = 123 and b = 456, the base used

is 10, and the value of x used is 1. So, we can split those two numbers like Eq.

(3.13) and Eq. (3.14),

a = 123 = 12 · 101 + 3

b = 456 = 45 · 101 + 6

So, values of c2, c1, and c0, can be computed as,

c2 = a1 · b1 = 12 · 45 = 540

c0 = a0 · b0 = 3 · 6 = 18

c1 = (a1 + a0) · (b1 + b0)− c2 − c0 = (12 + 3) · (45 + 6)− 540− 18 = 207

Now, using Eq. (3.15), we can compute the �nal result as,

p = a · b = c2 ·B2x + c1B
x + c0 = 540 · 102 + 207 · 10 + 18 = 56088

3.3.4 Karatsuba Algorithm for GHASH

Intel has proposed the use of the Karatsuba algorithm for computing GF(2128) �eld

multiplications, using their PCLMULQDQ instruction. Since the instruction can
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multiply operands of 64-bits long, only one recursion of the Karatsuba algorithm is

needed. If we assume that we have two 128-bit operands, A and B, then to apply

the Karatsuba algorithm we will need to divide them into two parts each 64 bit long

represented as A[A1 : A0] and B[B1 : B0], where �:� corresponds to concatenation

[16]. As we saw in the previous section, for the Karatsuba algorithm we compute

c2, c1 and c0; here we compute their equivalents, [G1 : G0], [E1 : E0] and [D1 : D0],

respectively. To understand the multiplication by splitting into two 64 bit halves,

let us assume that in polynomial form A and B can be represented as (addition in

following equations is not normal addition, but addition used in �eld arithmetic,

which is equivalent to XOR operation),

A = A1x
64 + A0

B = B1x
64 +B0

Similarly,[G1 : G0], [E1 : E0] and [D1 : D0] can be computed as,

A1B1 = [G1 : G0] = G1x
64 +G0

A0B0 = [D1 : D0] = D1x
64 +D0

(A0 + A1) · (B1 +B0) = [E1 : E0] = E1x
64 + E0

and we can write the product of A and B as,

A ·B =
(
A1x

64 + A0

)
·
(
B1x

64 +B0

)
A ·B = A1B1x

128 + ((A0 + A1) · (B1 +B0) + A1B1 + A0B0)

x64 + A0B0

(3.16)

Now, substituting values of [G1 : G0], [E1 : E0] and [D1 : D0], in Eq. (3.16), and

simplifying we get,
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A ·B = G1x
192+(G1 +G0 +D1 + E1)x

128+(D1 +D0 +G0 + E0)x
64+D0 (3.17)

So, Eq. (3.17) represents the �nal product and shows how using 64 bit halves the

carry-less multiplication of 128-bit operands can be performed. Implementation

details will be discussed in the next chapter.

Next step right after multiplication is modulo reduction of multiplication result

using g(x) = x128+x7+x2+x+1. In terms of implementation, this can be achieved

in a simpler way, by only using some shifts and XOR operations which we will see

in the next chapter.
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Chapter 4

Software Implementation of GHASH

Algorithms

In the previous chapter we discussed the standard GHASH algorithm [33] and the

new MNH GHASH algorithm [29]. There we also mentioned about Intel's new

instruction PCLMULQDQ [17] and its usage towards the GHASH computation.

In this current chapter we will look at the performance of the old and the new

GHASH algorithms. Here our discussion will be primarily based on software imple-

mentations of those two GHASH algorithms. At the start of the chapter, we will

look into the �eld multiplication algorithm suggested in [33], and how a modi�ed

implementation of this algorithm is done, followed by a small example in GF (24). A

brief descripton of Gordon's algorithm for computing characteristic polynomials is

presented, again followed by a small example in GF(24). In the later sections of the

chapter, GHASH implementation using Intel's carry-less instruction PCLMULQDQ

is presented. The chapter also includes implementation results and a comparison

between the standard and the MNH GHASH algotithms.
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4.1 GHASH Building Blocks

It is evident from the discussion in the previous two chapters that the most impor-

tant part of GHASH computation is carry-less multiplication. If we closely look

at the standard way of computing GHASH, it is nothing but �eld multiplication

and XOR operation done repeatedly. The carry-less multiplication algorithm used

in our peformance comparison is the modi�ed implementation of multiplication

algorithm proposed in [33]. In order to implement the MNH GHASH algorithm,

one of the most important ingredients required is computation of the characteristic

polynomial χH , for the corresponding sub-key H [29]. In order to compute char-

acteristic polynomial, implementation of Gordon's algorithm, as presented in [29],

has been implemented. Before, we can discuss the implementation results, brief

discussions with examples are provided on the modi�ed multiplication algorithm,

Gordon algorithm, and algorithms needed to utilize PCLMULQDQ instruction.

4.1.1 Implementation of Standard GF(2m) Multiplication

An algorithm of multiplication in GF(2128) has been given in [33]. The operations

involved in it are based on right shifts and XORing. The algorithm's implemen-

tation is modi�ed to use the left shift operations instead of the right shift. The

modi�cation allows us to avoid bit re�ection, which was required previously as men-

tioned in [33, 17], and it also makes algorithm easier to understand. The modi�ed

scheme is described in Algorithm 4.1, and in the literature it is known as the least

signi�cant bit �rst multiplication algorithm.

In order to clarify the working of Algorithm 4.1, we give a small example. Let

us start by assuming that we have two 4-bit blocks, A = 0110 and B = 0011 in

�eld GF(24). The �eld polynomial used for modulo reduction is x4 + x + 1, i.e.,
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Algorithm 4.1 Least Signi�cant Bit First Multiplication.

Input : A,B (Input blocks) and R is reduction polynomial block

Output : Dm = A ·B

Steps :

A→ am−1am−2...a2a1a0(Input block A represented as bits string)

D0 ← 00 · · · 0, E0 ← B

for i = 0 to m− 1 do

Di+1 ←


Di if ai = 0

Di ⊕ Ei if ai = 1

Ei+1 ←


Ei � 1 if MSB(Ei) = 0

(Ei � 1)⊕R if MSB(Ei) = 1

endfor

return Dm

x4 ≡ x + 1, which is represented as a 4-bit block, R = 0011. Let us initialize the

values of D0 and E0 as follows

D0 = 04 = 0000,
E0 = B = 0011.

Now, we can also represent block A as

A = a3a2a1a0 = 0110

Now, going thorugh iterations of the for loop, for i = 0, a0 = 0 and MSB(E0) = 0

we have,

D1 = D0 = 0000
E1 = E0 � 1 = 0110

Now, for i = 1, a1 = 1 and MSB(E1) = 0 we have,
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D2 = D1 ⊕ E1 = 0110
E2 = E1 � 1 = 1100

Now, for i = 2, a2 = 1 and MSB(E2) = 1 we have,

D3 = D2 ⊕ E2 = 1010
E3 = (E2 � 1)⊕R = 1011

Again, for i = 3, a3 = 0 and MSB(E3) = 1 we have our result D4 as follows,

D4 = D3 = 1010.

Hence, our result for the carry-less multiplication of blocks A = 0110 and B = 0011,

over �eld GF(24) using Algorithm 4.1 is 1010.

4.1.2 Gordon's Algorithm

In order to calculate the characteristic polynomial, Gordon's method is used, which

can be represented in mathematical form as follows,

χH (t) =
m−1∏
i=0

(
t+H2i

)
(4.1)

where, χH is the characteristic polynomial of hash sub-key H, and where, H ∈

GF(2m), this can be reresented in form of Algorithm 4.2 [29].

The for loop in Algorithm 4.2 starts from i = 1, not i = 0 as suggested by

Eq. (4.1). It is because the initialization step χH ← t +H already represents the

stage when i = 0. In order to clarify the working of Algorithm 4.2, let us assume

that we have, H = x3. The �eld we are using is, GF(24), and the �eld polynomial

x4 + x+ 1. Let us begin with the initialization step,

χH = t+H = t+ x3

Z = H = x3

Now, the �rst iteration of for loop, when i = 1,
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Algorithm 4.2 Gordon's Algorithm [29]

Input : H ∈ GF(2m)

Output : χH (characteristic polynomial of H)

Steps :

χH ← t+H

Z ← H,

for i = 1 to m− 1 do

Z ← Z2

χH ← χH · t+ χH · Z

endfor

return χH

Z = Z2 = (x3)2 = x6 = x3 + x2

χH = χH · t+ χH · Z
χH = (t+ x3) · t+ (t+ x3) · (x3 + x2)
χH = t2 + tx2 + x3 + x

When i = 2,

Z = Z2 = (x3 + x2)2 = x3 + x2 + x+ 1

χH = χH · t+ χH · Z
χH = (t2 + tx2 + x3 + x) · t+ (t2 + tx2 + x3 + x) · (x3 + x2 + x+ 1)
χH = t3 + (1 + x+ x3)t2 + (1 + x)t+ x2 + x3

Again when i = 3,

Z = Z2 = (x3 + x2 + x+ 1)2 = x3 + x

χH = χH · t+ χH · Z
χH = (t3 + (1 + x+ x3)t2 + (1 + x)t+ x2 + x3) · t

+(t3 + (1 + x+ x3)t2 + (1 + x)t+ x2 + x3) · (x+ x3)
χH = t4 + t3 + t2 + t+ 1
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Now, χH is our required characteristic polynomial.

In order to implement Gordon's algorithm, only two major components are

needed: a �eld multiplier and a XOR operator. For XOR operations, Intel's in-

trinsic XOR operation is used, and for �eld multiplications, the carry-less multplier

modi�ed implementation discussed in the previous Section 4.1.1 is used.

4.1.3 Intel's PCLMULQDQ instruction

Intel proposed the PCLMULQDQ instruction in 2010, for carry-less multiplication

on their Westmere architecture [17]. This instruction can be used to multiply two

operands, which are 64 bits in length. This instruction provides a faster way of

computing carry-less multiplication as compared to the methods available before it

[17]. This instruction can further be used to compute carry-less multiplication of

two 128-bit operands, as we will see in the next subsection. In its assembly usage

form this instruction can be written as [17],

pclmulqdq immbyte, reg1, reg2

where, reg1 and reg2 are two 128-bit registers. The carry-less multiplication is

performed on a quadword (8 bytes) of reg1 and a quadword of register reg2. The

selection of the quadwords from reg1 and reg2 depends on the value of immbyte

(the result gets stored in reg2, and in C instruction can be used by calling a

function which returns the result of multiplication). If we assume that reg1, reg2

and immbyte are represented by referring to their number of bits as

reg1 [127 : 0]
reg2 [127 : 0]
immbyte [7 : 0]

then, we can rperesent the selection of quadwords, on basis of immbyte values as

in Table 4.1,
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immbyte (in hex) Quadword Selection

0x00 reg2 [63 : 0], reg1[63 : 0]
0x01 reg2 [63 : 0], reg1[127 : 64]
0x10 reg2 [127 : 64], reg1[63 : 0]
0x11 reg2 [127 : 64], reg1[127 : 64]

Table 4.1: Selection of quadwords

In terms of software implementation intrinsic function for the PCLMULQDQ

can be used. Intel allows the use of the intrinsic function without explicitly speci-

fying PCLMULQDQ [2]. A small example is also given on how to use this intrinsic

function in [2], in C language. The intrinsic function _mm_clmulepi64_si128( ),

can be formally de�ned as [2],

_m128i _mm_clmulepi64_si128 (_m128i a1,_m128i a2, const int

immbyte )

The de�nition above means that function returns a value of type _m128i, and

as inputs it takes two 128-bit parameters and a constant integer immbyte, which

decides the halves of reg1 and reg2 are to be taken for multiplication using the

criteria as shown in Table 4.1.

4.1.4 Intel's Karatsuba Implementation using PCLMULQDQ

In chapter 3, we have already discussed Intel's modi�ed Karatsuba algorithm and

how it works in terms of polynomial arithmetic. In this subsection we will look more

closely in terms of implementation. A more formal de�nition of Intel's carry-less

Karatsuba algorithm as proposed in [16] is presented in Algorithm 4.3.

In Algorithm 4.3, X and Y represent the two blocks to be multiplied and are

divided into two halves. In case of GF(2128) �eld, X1 and Y1 are the upper 64-bit
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Algorithm 4.3 Intel's modi�ed Karatsuba algorithm [16]

Input : X = [X1 : X0], Y = [Y1 : Y0]

Output : X · Y

Steps :

[Z1 : Z0 ] = X1 · Y1

[W1 : W0] = X0 · Y0

[V1 : V0 ] = (X1 ⊕X0) · (Y1 ⊕ Y0)

X · Y = [Z1 : Z0 ⊕ Z1 ⊕W1 ⊕ V1 : W1 ⊕ Z0 ⊕W0 ⊕ V0 : W0]

Return X · Y

halves, and X0, Y0 represent the lower 64-bit halves of 128-bit operands, which are

X and Y respectively. The symbol �:� represents concatenation of blocks, and the

symbol � ·� represents carry-less multiplication operator.

Below we use a small example to clarify the working of Algorithm 4.3. In order

to keep things simple, assume that we have two blocks: X and Y in a �eld GF(24).

These blocks can be divided into two halves of 2 bits each to keep the representation

consistent with Algorithm 4.3.

X = [ X1 : X0 ] = [01 : 10]

Y = [ Y1 : Y0 ] = [00 : 11]

Th expected result of multiplication is 1010, and the steps of operation can be seen

below, where � ·� represents carry-less multiplication with XOR operations in the

third step.

[ Z1 : Z0 ] = X1 · Y1 = 01 · 00 = [00 : 00]
[ W1 : W0 ] = X0 · Y0 = 10 · 11 = [01 : 10]
[ V1 : V0 ] = (X1 ⊕X0) · (Y1 ⊕ Y0) = 11 · 11 = [01 : 01]
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Now, the �nal step of computing product involves XOR operations, and concate-

nating four 64-bit blocks to produce a 256-bit output.

X · Y = [Z1 : Z0 ⊕ Z1 ⊕W1 ⊕ V1 : W1 ⊕ Z0 ⊕W0 ⊕ V0 : W0]
X · Y = [00 : 00⊕ 00⊕ 01⊕ 01 : 01⊕ 00⊕ 10⊕ 01 : 10]
X · Y = [00 : 00 : 10 : 10]

Hence, the result is same as expected result.

As we can see from Algorithm 4.3, the �rst three steps involve only multiplica-

tion, and the last step involves multiple XOR operations. In terms of implementa-

tion, the three carry-less multiplications are implemented using the PCLMULQDQ

instruction, in the same manner as we discussed in last subsection. Implementation

of the XOR operations can be again done using the intrinsic function for XORing

two 128-bit operands. Similar to PCLMULQDQ, intrinsic funtion for XOR opera-

tion de�ned in [1], can be represented as shown below

_m128i _mm_xor_si128 (_m128i x,_m128i y)

where x and y are two 128-bit operands.

4.1.5 E�cient Reduction Modulo Implementation

In [16, 17] Intel has proposed a modular reduction algorithm by taking into con-

sideration �eld de�ning polynomial x128 + x7 + x2 + x + 1. The algorithm is then

implemented in combination with the carry-less Karatsuba algorithm explained in

the previous section. A more formal description of this modular reduction is given

in Algorithm 4.4.

In terms of implementation, a combined implementation of this algorithm with

carry-less Karatsuba as presented in [17] is used. The combined implementation
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Algorithm 4.4 Modular Reduction in GF(2128) [17, 16]

Input : [X4, X3, X2, X1], where X4, X3, X2, X1, are each 64-bit long.

Output : [Y1, Y0] (128-bit long reduciton result, where Y1, Y0, are each 64-bit long

)

Steps :

U = X4 � 63

V = X4 � 62

W = X4 � 57

Z = U ⊕ V ⊕W ⊕X3

Now, using Z we form [X4 : Z] , and proceed as follows,

[P1 : P0] = [X4 : Z]� 1

[Q1 : Q0] = [X4 : Z]� 2

[R1 : R0] = [X4 : Z]� 7

[H1 : H0] = [P1 : P0]⊕ [Q1 : Q0]⊕ [R1 : R0]⊕ [X4 : Z]

Y1= H1 ⊕X2

Y0= H0 ⊕X1

Return [Y1, Y0]
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serves the purpose of GF(2128) �eld multiplication, and then using it implementa-

tions of the standard and the MNH GHASH algorithms are done.

4.2 GHASH Implementation Results

4.2.1 Implementation using Common Place Instructions

A software implementation of the standard and the MNH GHASH function has

been done using the C programming language and without using Intel's special

carry-less multiplication instruction. The 128-bit multiplication is performed by

using the modi�ed version of the algorithm provided by NIST in [33] (see Section

4.1.1). The standard GHASH implementation can be viewed in Appendix A.1. In

order to compute the characteristic polynomial, a Maple code has been written.

The input or hash sub-key value (H), used for the Maple code is selected to be a

large 128-bit random value with half of its bits are 1 and half of it are 0. The result

of the Maple code is in polynomial form, and then that resultant characteristic

polynomial is used in the C code for the MNH GHASH in form of an array of

1's and 0's. The MNH GHASH implementation has been included in Appendix

A.2. Both GHASH algorithms are compared in terms of computation time. In

order to increase accuracy of timing result each algorithm was run 10,000 times

for each value of input blocks (each block is 128 bits long), and then average time

was obtained by dividing the total by 10,000. The system used for running the

implementations was Xeon E3-1270 (quad-core 3.4GHz) and the operating system

used was Linux Ubuntu Server 11.10 (with gcc 4.6.1). Computation time was

calculated using 'time' command in Linux. The values of the computation time

for the standard and high performance GHASH can be seen in Table 4.2, and a
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No. of Blocks Standard GHASH (x 10−4sec) MNH GHASH(x 10−4sec)

128 3.056 3.000
192 4.681 3.316
256 6.236 3.615
384 9.357 4.179
512 12.470 4.758
768 18.707 5.855
1024 24.930 6.980
1280 31.170 8.144
1536 37.400 9.240

Table 4.2: Computation Time of Implementations with Customary Instructions

graphical representation of results can be seen in Fig. 4.1.

As it can be seen from Fig. 4.1, the MNH GHASH shows smaller delay than the

standard GHASH, and the delay result improves as the number of blocks increases.

The improved delay is due to the fact that the MNH GHASH algorithm keeps the

number of 128-bit multiplication operations �xed at 127. The rest of the 128-bit

multiplications, which are part of the standard GHASH algorithm, are replaced

by PRU computations as discussed in Section 3.2. PRU computations in terms of

implementation are much more faster than the implementation of 128-bit multipli-

cation. In case of software implmentation, the PRU operations are not implemented

in parallel, but rather computed sequentially, as it is not feasible to compute 128

operations exactly in parallel using software implementation on our processors. It

is interesting to note that even though the PRU operations are not occuring in

parallel, but still the new algorithm gives better results than the standard one.

4.2.2 Implementation using PCLMULQDQ Instruction

The GHASH algorithms have been implemented using Intel's PCLMULQDQ in-

struction. In order to perform 128-bit multiplication, the algorithm mentioned by

Intel in [17], and which we also discussed in Section 4.1.4 is used. The implementa-
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Figure 4.1: Performance Comparison of Implementations with Customary Instruc-
tions

tion of reduction algorithm discussed in Section 4.1.5 is used in combination to get

128-bit multiplication result. The characteristic polynomial for the MNH GHASH

algorithm is obtained in a similar way as mentioned in Section 4.2.1. The results

of computation time for the two algorithms can be seen in Table 4.3, and graphical

representation of the results can be seen in Fig. 4.2.

As it can be seen from Fig. 4.2, the MNH GHASH algorithm does not perform

well when compared to the standard one. The reason for better performance of the

standard GHASH algorithm in this case is due to the usage of Intel's PCLMULDQ

instruction, which really speeds up the carry-less multiplication operation. Another

reason for the improved performance of the standard GHASH algorithm is that,

the software implementation of the MNH GHASH algorithm is not able to utilize

the parallelism required by the PRU operations, as we also mentioned it in section
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No. of Blocks Standard GHASH (x 10−4sec) MNH GHASH(x 10−4sec)

128 0.095 0.103
192 0.137 0.378
256 0.181 0.660
384 0.267 1.216
512 0.357 1.766
768 0.531 2.891
1024 0.704 3.990
1280 0.880 5.107
1536 1.052 6.220

Table 4.3: Computation Time of Implementations with PCLMULQDQ

Figure 4.2: Performance Comparison of Implementations with PCLMULQDQ
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4.2.1.
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Chapter 5

Concluding Remarks

5.1 Summary

In this thesis, software implementations of the MNH GHASH are compared with

those of the standard GHASH. In implementations, where Intel's PCLMULQDQ

instruction is not used, the MNH GHASH has performed well as compared to

the standard GHASH. In contrast, implementations where Intel's PCLMULQDQ

instruction was used, the standard GHASH has proven to be better in performance

than the MNH GHASH. In its core, the MNH GHASH algorithm attempts to reduce

the number of multiplications required to compute the GHASH by using multiple

XOR operations in parallel. Regardless of using or not using PCLMULQDQ, the

implmentations have not been able to take advantage of parallelism present in the

MNH GHASH algorithm. The parallelism can be utilized by having a hardware

polynomial reduction unit, which today's main stream processors do not have.

Even though parallelism is not utilized by our software implmentations due to

the above-mentioned limitations, the MNH algorithm performs better than the

standard implementation in case where PCLMULQDQ is not used. This suggests,

that on architectures which are older than Westmere, or architectures which do
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not support Intel's PCLMULQDQ instruction, the MNH GHASH algorithm will

perform better than the standard GHASH one.

5.2 Future Work

As we discussed, due to the inability of software implementations to exploit the

parallelism of the MNH GHASH algorithm, the latter has not performed better than

the standard GHASH algorithm. It is hard to compute 128 XOR operations, which

are needed for the polynomial reduction unit, in exact parallel through software

implementation. It is however possible to try on high end systems with multi-

core and/or programmable logic equipped processors to at least do some part of

computation in parallel. If, for example, we can perform four XOR operation in

parallel, we can reduce 128 bit sequential XOR operations to 32 rounds of XOR

operations, with each round having 4 XOR operations. Further work can be done

on exploiting parallelism available on various high end systems to speed up software

implementation of the MNH GHASH algorithm.
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Appendix A

Software Implementation of

Algorithms

A.1 Standard GHASH without PCLMULQDQ

// Uses implementation o f mu l t i p l i c a t i o n from s e c t i o n 4 . 1 . 1
#inc lude <s td i n t . h>
#inc lude <in t type s . h>
#inc lude <wmmintrin . h>
#inc lude<emmintrin . h>
#inc lude<smmintrin . h>
#inc lude <s td i o . h>
#inc lude <time . h>
s t r u c t aes_block { uint64_t a ; uint64_t b ; } ;
void gfmulos (__m128i x , __m128i y , __m128i ∗ r e s ) ;
void print_m128i_with_string ( char ∗ s t r i ng ,__m128i data ) ;
i n t main ( ) {
unsigned long long a [1537]=
{1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,0ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
// 192 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 256 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,
// 384 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
//512 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 768 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 1024 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
//1280 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,5ULL,6ULL,0ULL} ;
unsigned long long b [ 1 5 3 7 ] =
{1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,0ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
// 192 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 256 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,
// 384 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
//512 t i l l here The p a r a l l e l i sm can be u t i l i z e d by having a hardware polynomial r educt i on unit , which today ' s main stream pro c e s s o r s do have
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 768 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 1024 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
//1280 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,5ULL,6ULL,0ULL} ;

__m128i X[ 1 5 3 7 ] ;
i n t i = 0 ;
// Input I n i t i a l i z a t i o n
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f o r ( i = 0 ; i <=1536 ; i++){
a [ i ] = a [ i ] ∗ 1000000000000000000ULL; // en l a r g i ng input
b [ i ] = b [ i ] ∗ 1000000000000000000ULL; // en l a r g i ng input
X[ i ] = _mm_set_epi64 ( (__m64) a [ i ] , (__m64)b [ i ] ) ;

}
__m128i H = _mm_set_epi64 ( (__m64)5708010131839353156ULL,

(__m64)3405470159317640703ULL) ; //Hash Sub−key
/// Standard GHASH

__m128i temp = {0x00 , 0x00 } ;
i n t k = 0 ; // f o r mu l t ip l e runs . . . to magnify t iming r e s u l t s

// The commented f o r loop i s only used when running the code f o r
// t iming ana l y s i s
// f o r ( k =0 ; k<=10000; k++){

f o r ( i = 0 ; i <=1535 ; i++){
temp = _mm_xor_si128( temp , X[ i ] ) ;

gfmulos ( temp ,H,&temp ) ;
}

// } //−−−−−−−−−−−−−−
print_m128i_with_string (" TagResult f : " , temp ) ;

}
void print_m128i_with_string ( char ∗ s t r i ng ,__m128i data ){

unsigned char ∗ po in t e r = ( unsigned char ∗)&data ;
i n t i ;
p r i n t f ("%−40s [ 0 x" , s t r i n g ) ;
f o r ( i =0; i <16; i++)
p r i n t f ("%02x" , po in t e r [ i ] ) ;
p r i n t f ( " ] \ n " ) ;

}

void gfmulos (__m128i x , __m128i y ,__m128i ∗ r e s ) {
__m128i R = _mm_set_epi64 ( (__m64)0ULL, (__m64)135ULL ) ;
__m128i Z = _mm_set_epi64 ( (__m64)0ULL, (__m64)0ULL ) ;
__m128i V = y ; __m128i X = x ;
i n t i = 0 ;
__m64 ch ;
__m64 che ;
f o r ( i =0; i < 128 ; i++ ){

i f ( i <64){ ch = (__m64) X [ 0 ] ; }
e l s e { ch = (__m64) X[ 1 ] ; }

uint64_t ch1 = ( uint64_t ) ch&1ULL;
i f ( ch1 ){

Z = _mm_xor_si128(Z , V) ; }
che = (__m64) V [ 1 ] ;

uint64_t che1 = ( uint64_t ) che&9223372036854775808ULL;
i f ( che1 ) {
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__m64 ad = (__m64)V [ 0 ] ;
uint64_t tx1 = ( uint64_t ) ad&9223372036854775808ULL;
V = _mm_slli_epi64 (V, 1 ) ; //
i f ( tx1 ){
V[ 1 ] = ( uint64_t ) _mm_or_si64 ( (__m64)V[ 1 ] , (__m64)1ULL) ;
}
V = _mm_xor_si128(V, R) ;

} e l s e {
__m64 ad1 = (__m64)V [ 0 ] ;

uint64_t tx2 = ( uint64_t ) ad1&9223372036854775808ULL;
V = _mm_slli_epi64 (V, 1 ) ; / /

i f ( tx2 ){
V[ 1 ] = ( uint64_t ) _mm_or_si64 ( (__m64)V[ 1 ] , (__m64)1ULL) ;

}
}
i f ( i <64){ X[ 0 ] = ( uint64_t ) _mm_srli_si64 ( (__m64)X[ 0 ] , 1 ) ; }
e l s e { X[ 1 ] = ( uint64_t ) _mm_srli_si64 ( (__m64)X[ 1 ] , 1 ) ; }

}
∗ r e s = Z ;

}

A.2 High Perfromance GHASH without PCLMULQDQ

// Uses modi f i ed implementation o f mu l t i p l i c a t i o n from s e c t i o n 4 . 1 . 1 ,
// and array f o r ' c i ' va lue s ( which i s assumed as precomputed )
// i s cons t ruc ted from c h a r a c t e r i s t i c polynomial computed us ing
// Gordon ' s Algorithm Maple implementation de s c r ib ed in Appendix A. 5 .
#inc lude <s td i n t . h>
#inc lude <in t type s . h>
#inc lude <wmmintrin . h>
#inc lude<emmintrin . h>
#inc lude<smmintrin . h>
#inc lude <s td i o . h>
#inc lude <time . h>
s t r u c t aes_block { uint64_t a ; uint64_t b ; } ;
void gfmulos (__m128i x , __m128i y , __m128i ∗ r e s ) ;
void print_m128i_with_string ( char ∗ s t r i ng ,__m128i data ) ;
i n t main ( ) {
unsigned long long a [1537]=
{1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,0ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
// 192 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 256 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,
// 384 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
//512 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 768 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 1024 t i l l here
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0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
//1280 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,5ULL,6ULL,0ULL} ;
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unsigned long long b [ 1 5 3 7 ] =
{1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,0ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
// 192 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 256 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,
// 384 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
//512 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 768 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 1024 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
//1280 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,5ULL,6ULL,0ULL} ;

__m128i X[ 1 5 3 7 ] ;
i n t i = 0 ;
// Input I n i t i a l i z a t i o n
f o r ( i = 0 ; i <=1536 ; i++){
a [ i ] = a [ i ] ∗ 1000000000000000000ULL; // en l a r g i ng input
b [ i ] = b [ i ] ∗ 1000000000000000000ULL; // en l a r g i ng input
X[ i ] = _mm_set_epi64 ( (__m64) a [ i ] , (__m64)b [ i ] ) ;

}
__m128i H = _mm_set_epi64 ( (__m64)5708010131839353156ULL,

(__m64)3405470159317640703ULL) ; //Hash Sub−key
/// Standard GHASH

__m128i temp = {0x00 , 0x00 } ;
i n t k = 0 ; // f o r mu l t ip l e runs . . . to magnify t iming r e s u l t s

// New GHASH −−−−−−−−−−−−−−−
i n t j = 0 ;
// Values o f c i s e t based on c h a r a c t e r i s t i c polynomial
// from Maple Code

i n t c i [ 1 2 9 ] ={1 ,0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 ,
0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 ,
1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 ,
0 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 ,
1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 0 ,
1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 ,
1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 ,
0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 } ;

__m128i Y[ 1 2 8 ] ;
// The commented f o r loop i s only used when running the code f o r
// t iming ana l y s i s
// f o r ( k = 0 ; k <=10000; k++){

f o r ( i =0; i <=127; i++){
Y[ i ] = X[127− i ] ;

}
f o r ( j = 127 ; j<= 1535 ; j++){
__m128i C = Y[ 1 2 7 ] ;
f o r ( i = 127 ; i >=1 ; i−−){
i f ( c i [ i ]==1){Y[ i ] = _mm_xor_si128(Y[ i −1] , C) ; }
e l s e {Y[ i ] = Y[ i −1] ;}
}
i f ( c i [ 0 ] == 1){Y[ 0 ] = _mm_xor_si128(X[ j +1] , C) ; }
e l s e {Y[ 0 ] = X[ j +1] ;}
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}
f o r ( i = 127 ; i >=1 ; i−−){
temp = _mm_xor_si128( temp , Y[ i ] ) ;
gfmulos ( temp ,H, &temp ) ;

}
temp = _mm_xor_si128 ( temp , Y [ 0 ] ) ;

//}
print_m128i_with_string (" TagResult f : " , temp ) ;

}
void print_m128i_with_string ( char ∗ s t r i ng ,__m128i data ){

unsigned char ∗ po in t e r = ( unsigned char ∗)&data ;
i n t i ;
p r i n t f ("%−40s [ 0 x" , s t r i n g ) ;
f o r ( i =0; i <16; i++)
p r i n t f ("%02x" , po in t e r [ i ] ) ;
p r i n t f ( " ] \ n " ) ;

}

void gfmulos (__m128i x , __m128i y ,__m128i ∗ r e s ) {
__m128i R = _mm_set_epi64 ( (__m64)0ULL, (__m64)135ULL ) ;
__m128i Z = _mm_set_epi64 ( (__m64)0ULL, (__m64)0ULL ) ;
__m128i V = y ; __m128i X = x ;
i n t i = 0 ;
__m64 ch ;
__m64 che ;
f o r ( i =0; i < 128 ; i++ ){

i f ( i <64){ ch = (__m64) X [ 0 ] ; }
e l s e { ch = (__m64) X[ 1 ] ; }

uint64_t ch1 = ( uint64_t ) ch&1ULL;
i f ( ch1 ){

Z = _mm_xor_si128(Z , V) ; }
che = (__m64) V [ 1 ] ;

uint64_t che1 = ( uint64_t ) che&9223372036854775808ULL;
i f ( che1 ) {
__m64 ad = (__m64)V [ 0 ] ;
uint64_t tx1 = ( uint64_t ) ad&9223372036854775808ULL;
V = _mm_slli_epi64 (V, 1 ) ; //
i f ( tx1 ){
V[ 1 ] = ( uint64_t ) _mm_or_si64 ( (__m64)V[ 1 ] , (__m64)1ULL) ;
}
V = _mm_xor_si128(V, R) ;

} e l s e {
__m64 ad1 = (__m64)V [ 0 ] ;

uint64_t tx2 = ( uint64_t ) ad1&9223372036854775808ULL;
V = _mm_slli_epi64 (V, 1 ) ; / /
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i f ( tx2 ){
V[ 1 ] = ( uint64_t ) _mm_or_si64 ( (__m64)V[ 1 ] , (__m64)1ULL) ;

}
}
i f ( i <64){ X[ 0 ] = ( uint64_t ) _mm_srli_si64 ( (__m64)X[ 0 ] , 1 ) ; }
e l s e { X[ 1 ] = ( uint64_t ) _mm_srli_si64 ( (__m64)X[ 1 ] , 1 ) ; }

}
∗ r e s = Z ;

}

A.3 Standard GHASH with PCLMULQDQ

// Uses mu l t i p l i c a t i o n implementation from In t e l ' s PCLMULQDQ white paper
// , which i s combination o f a lgor i thms in 4 . 1 . 4 and 4 . 1 . 5 Se c t i on s .
#inc lude <s td i n t . h>
#inc lude <in t type s . h>
#inc lude <wmmintrin . h>
#inc lude<emmintrin . h>
#inc lude<smmintrin . h>
#inc lude <s td i o . h>
#inc lude <time . h>
s t r u c t aes_block { uint64_t a ; uint64_t b ; } ;
void g fmu l i n t e l (__m128i a , __m128i b , __m128i ∗ r e s ) ;
void print_m128i_with_string ( char ∗ s t r i ng ,__m128i data ) ;
i n t main ( ) {
unsigned long long a [1537]=
{1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,0ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
// 192 t i l l here
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0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 256 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,
// 384 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
//512 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 768 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 1024 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
//1280 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,5ULL,6ULL,0ULL} ;
unsigned long long b [ 1 5 3 7 ] =
{1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,0ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
// 192 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 256 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,
// 384 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
//512 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 768 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 1024 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,

76



1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
//1280 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,5ULL,6ULL,0ULL} ;

__m128i X[ 1 5 3 7 ] ;
i n t i = 0 ;
// Input I n i t i a l i z a t i o n
f o r ( i = 0 ; i <=1536 ; i++){
a [ i ] = a [ i ] ∗ 1000000000000000000ULL; // en l a r g i ng input
b [ i ] = b [ i ] ∗ 1000000000000000000ULL; // en l a r g i ng input
X[ i ] = _mm_set_epi64 ( (__m64) a [ i ] , (__m64)b [ i ] ) ;

}
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__m128i H = _mm_set_epi64 ( (__m64)5708010131839353156ULL,
(__m64)3405470159317640703ULL) ; //Hash Sub−key

/// Standard GHASH
__m128i temp = {0x00 , 0x00 } ;
i n t k = 0 ; // f o r mu l t ip l e runs . . . to magnify t iming r e s u l t s

// The commented f o r loop i s only used when running the code f o r
// t iming ana l y s i s
// f o r ( k =0 ; k<=10000; k++){

f o r ( i = 0 ; i <=1535 ; i++){
temp = _mm_xor_si128( temp , X[ i ] ) ;

g fmu l i n t e l ( temp ,H,&temp ) ;
}

// } //−−−−−−−−−−−−−−
print_m128i_with_string (" TagResult f : " , temp ) ;

}
void print_m128i_with_string ( char ∗ s t r i ng ,__m128i data ){

unsigned char ∗ po in t e r = ( unsigned char ∗)&data ;
i n t i ;
p r i n t f ("%−40s [ 0 x" , s t r i n g ) ;
f o r ( i =0; i <16; i++)
p r i n t f ("%02x" , po in t e r [ i ] ) ;
p r i n t f ( " ] \ n " ) ;

}
void g fmu l i n t e l (__m128i a , __m128i b , __m128i ∗ r e s ){

__m128i tmp0 , tmp1 , tmp2 , tmp3 , tmp4 , tmp5 , tmp6 ,
tmp7 , tmp8 , tmp9 , tmp10 , tmp11 , tmp12 ;
__m128i XMMMASK = _mm_setr_epi32 (0 x f f f f f f f f , 0 x0 , 0 x0 , 0 x0 ) ;
tmp3 = _mm_clmulepi64_si128 (a , b , 0x00 ) ;
tmp6 = _mm_clmulepi64_si128 (a , b , 0x11 ) ;
tmp4 = _mm_shuffle_epi32 (a , 7 8 ) ;
tmp5 = _mm_shuffle_epi32 (b , 7 8 ) ;
tmp4 = _mm_xor_si128( tmp4 , a ) ;
tmp5 = _mm_xor_si128( tmp5 , b ) ;
tmp4 = _mm_clmulepi64_si128 ( tmp4 , tmp5 , 0x00 ) ;
tmp4 = _mm_xor_si128( tmp4 , tmp3 ) ;
tmp4 = _mm_xor_si128( tmp4 , tmp6 ) ;
tmp5 = _mm_slli_si128 ( tmp4 , 8 ) ;
tmp4 = _mm_srli_si128 ( tmp4 , 8 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp5 ) ;
tmp6 = _mm_xor_si128( tmp6 , tmp4 ) ;
tmp7 = _mm_srli_epi32 ( tmp6 , 3 1 ) ;
tmp8 = _mm_srli_epi32 ( tmp6 , 3 0 ) ;
tmp9 = _mm_srli_epi32 ( tmp6 , 2 5 ) ;
tmp7 = _mm_xor_si128( tmp7 , tmp8 ) ;
tmp7 = _mm_xor_si128( tmp7 , tmp9 ) ;
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tmp8 = _mm_shuffle_epi32 ( tmp7 , 147 ) ;
tmp7 = _mm_and_si128(XMMMASK, tmp8 ) ;
tmp8 = _mm_andnot_si128(XMMMASK, tmp8 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp8 ) ;
tmp6 = _mm_xor_si128( tmp6 , tmp7 ) ;
tmp10 = _mm_slli_epi32 ( tmp6 , 1 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp10 ) ;
tmp11 = _mm_slli_epi32 ( tmp6 , 2 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp11 ) ;
tmp12 = _mm_slli_epi32 ( tmp6 , 7 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp12 ) ;
∗ r e s = _mm_xor_si128( tmp3 , tmp6 ) ;

}

A.4 High Perfromance GHASH with PCLMULQDQ

// Uses mu l t i p l i c a t i o n implementation as presented in
// In t e l ' s PCLMULQDQ white paper , and which i s combination
// o f a lgor i thms in s e c t i o n 4 . 1 . 4 and 4 . 1 . 5 , and a l s o uses
// Gordon ' s a lgor i thm in a s im i l a r way as in Appendix A. 2
#inc lude <s td i n t . h>
#inc lude <in t type s . h>
#inc lude <wmmintrin . h>
#inc lude<emmintrin . h>
#inc lude<smmintrin . h>
#inc lude <s td i o . h>
#inc lude <time . h>
s t r u c t aes_block { uint64_t a ; uint64_t b ; } ;
void g fmu l i n t e l (__m128i a , __m128i b , __m128i ∗ r e s ) ;
void print_m128i_with_string ( char ∗ s t r i ng ,__m128i data ) ;
i n t main ( ) {
unsigned long long a [1537]=
{1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,0ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
// 192 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 256 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,
// 384 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
//512 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 768 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 1024 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
//1280 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,5ULL,6ULL,0ULL} ;
unsigned long long b [ 1 5 3 7 ] =
{1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,0ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
// 192 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 256 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,
// 384 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
//512 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 768 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
// 1024 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
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1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,
//1280 t i l l here
0ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,5ULL,6ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,1ULL,2ULL,3ULL,4ULL,
1ULL,2ULL,5ULL,6ULL,0ULL} ;

__m128i X[ 1 5 3 7 ] ;
i n t i = 0 ;
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// Input I n i t i a l i z a t i o n
f o r ( i = 0 ; i <=1536 ; i++){
a [ i ] = a [ i ] ∗ 1000000000000000000ULL; // en l a r g i ng input
b [ i ] = b [ i ] ∗ 1000000000000000000ULL; // en l a r g i ng input
X[ i ] = _mm_set_epi64 ( (__m64) a [ i ] , (__m64)b [ i ] ) ;

}
__m128i H = _mm_set_epi64 ( (__m64)5708010131839353156ULL,

(__m64)3405470159317640703ULL) ; //Hash Sub−key
/// Standard GHASH

__m128i temp = {0x00 , 0x00 } ;
i n t k = 0 ; // f o r mu l t ip l e runs . . . to magnify t iming r e s u l t s

// New GHASH −−−−−−−−−−−−−−−
i n t j = 0 ;
// Values o f c i s e t based on c h a r a c t e r i s t i c polynomial
// from Maple Code

i n t c i [ 1 2 9 ] ={1 ,0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 ,
0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 ,
1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 ,
0 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 ,
1 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 0 ,
1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 ,
1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 1 ,
0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 } ;

__m128i Y[ 1 2 8 ] ;
// The commented f o r loop i s only used when running the code f o r
// t iming ana l y s i s
// f o r ( k = 0 ; k <=10000; k++){

f o r ( i =0; i <=127; i++){
Y[ i ] = X[127− i ] ;

}
f o r ( j = 127 ; j<= 1535 ; j++){
__m128i C = Y[ 1 2 7 ] ;
f o r ( i = 127 ; i >=1 ; i−−){
i f ( c i [ i ]==1){Y[ i ] = _mm_xor_si128(Y[ i −1] , C) ; }
e l s e {Y[ i ] = Y[ i −1] ;}
}
i f ( c i [ 0 ] == 1){Y[ 0 ] = _mm_xor_si128(X[ j +1] , C) ; }
e l s e {Y[ 0 ] = X[ j +1] ;}

}
f o r ( i = 127 ; i >=1 ; i−−){
temp = _mm_xor_si128( temp , Y[ i ] ) ;
g fmu l i n t e l ( temp ,H, &temp ) ;

}
temp = _mm_xor_si128 ( temp , Y [ 0 ] ) ;

//}
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print_m128i_with_string (" TagResult f : " , temp ) ;
}
void print_m128i_with_string ( char ∗ s t r i ng ,__m128i data ){

unsigned char ∗ po in t e r = ( unsigned char ∗)&data ;
i n t i ;
p r i n t f ("%−40s [ 0 x" , s t r i n g ) ;
f o r ( i =0; i <16; i++)
p r i n t f ("%02x" , po in t e r [ i ] ) ;
p r i n t f ( " ] \ n " ) ;

}
void g fmu l i n t e l (__m128i a , __m128i b , __m128i ∗ r e s ){

__m128i tmp0 , tmp1 , tmp2 , tmp3 , tmp4 , tmp5 , tmp6 ,
tmp7 , tmp8 , tmp9 , tmp10 , tmp11 , tmp12 ;
__m128i XMMMASK = _mm_setr_epi32 (0 x f f f f f f f f , 0 x0 , 0 x0 , 0 x0 ) ;
tmp3 = _mm_clmulepi64_si128 (a , b , 0x00 ) ;
tmp6 = _mm_clmulepi64_si128 (a , b , 0x11 ) ;
tmp4 = _mm_shuffle_epi32 (a , 7 8 ) ;
tmp5 = _mm_shuffle_epi32 (b , 7 8 ) ;
tmp4 = _mm_xor_si128( tmp4 , a ) ;
tmp5 = _mm_xor_si128( tmp5 , b ) ;
tmp4 = _mm_clmulepi64_si128 ( tmp4 , tmp5 , 0x00 ) ;
tmp4 = _mm_xor_si128( tmp4 , tmp3 ) ;
tmp4 = _mm_xor_si128( tmp4 , tmp6 ) ;
tmp5 = _mm_slli_si128 ( tmp4 , 8 ) ;
tmp4 = _mm_srli_si128 ( tmp4 , 8 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp5 ) ;
tmp6 = _mm_xor_si128( tmp6 , tmp4 ) ;
tmp7 = _mm_srli_epi32 ( tmp6 , 3 1 ) ;
tmp8 = _mm_srli_epi32 ( tmp6 , 3 0 ) ;
tmp9 = _mm_srli_epi32 ( tmp6 , 2 5 ) ;
tmp7 = _mm_xor_si128( tmp7 , tmp8 ) ;
tmp7 = _mm_xor_si128( tmp7 , tmp9 ) ;
tmp8 = _mm_shuffle_epi32 ( tmp7 , 147 ) ;
tmp7 = _mm_and_si128(XMMMASK, tmp8 ) ;
tmp8 = _mm_andnot_si128(XMMMASK, tmp8 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp8 ) ;
tmp6 = _mm_xor_si128( tmp6 , tmp7 ) ;
tmp10 = _mm_slli_epi32 ( tmp6 , 1 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp10 ) ;
tmp11 = _mm_slli_epi32 ( tmp6 , 2 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp11 ) ;
tmp12 = _mm_slli_epi32 ( tmp6 , 7 ) ;
tmp3 = _mm_xor_si128( tmp3 , tmp12 ) ;
∗ r e s = _mm_xor_si128( tmp3 , tmp6 ) ;

}
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A.5 Gordon's Algorithm in Maple

// Input i s v a r i a b l e 'A' . For ac tua l r e s u l t s ,
// a l a r g e va lue o f input i s used . x+1 here
// i s j u s t to g ive an example .
A := x+1
G := GF(2 , 128 , x^128+x^7+x^2+x+1);
aa := G:−ConvertIn (A) ;
T := x ;
t t := G:−ConvertIn (T) ;
XA := G:− `+ `(aa , t t ) ;
Z := aa ;
f o r i to 127 do
aa := G:− `∗ ` ( aa , aa ) ;
XA := G:− `+ `(G:− `∗ ` (XA, t t ) , G:− `∗ ` (XA, aa ) )
end do ;
y := x^128+x^7+x^2+x+1;
XA := G:−ConvertOut (XA) ;
r e s u l t := `mod ` ( y+XA, 2)
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