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Abstract

Cancer is a complex, multi-scale disease marked by unchecked cellular growth and
proliferation. As a tumor grows, it is known to lose its capacity to maintain a compact
structure. This stage of development, known as invasion, is marked by the disaggregation
and dispersion of peripheral cells, and the formation of finger-like margins. This thesis
provides an overview of three multi-scale models of tumor growth and invasion. The hy-
brid discrete-continuum (HDC) model couples a cellular automaton approach, which is
used to direct the behavior and interactions of individual cells, with a system of reaction-
diffusion-chemotaxis equations that describe the micro-environment. The evolutionary
hybrid cellular automaton (EHCA) model maintains the core of the HDC approach, but
employs an artificial response network to describe cellular dynamics. In contrast to these
two, the immersed boundary (IBCell) model describes cells as fully deformable, viscoelastic
entities that interact with each other using membrane bound receptors.

As part of this thesis, the HDC model has been modified to examine the role of the
ECM as a barrier to cellular expansion. The results of these simulations will be presented
and discussed in the context of tumor progression.
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Chapter 1

Introduction

1.1 Cancer

Cancer is a complex, multi-scale disease [1]. Its prevalence has attracted broad resources
and the interest of scientists from varying disciplines [2]. Despite decades of research and
advancements in experimental techniques, the dynamics of tumor growth and invasion are
still poorly understood and the ability to predict and treat this disease is limited [3–5].
Regardless, a general optimism remains, in part due to the recent success of mathematical
modelling of cancer progression and tumor growth.

The goal of this thesis is twofold: 1) to present an overview of multi-scale mathemati-
cal models of avascular tumor growth and invasion; and 2) to modify the hybrid discrete-
continuum model in order to examine the role of the ECM as a barrier to cellular expansion.

A variety of different mathematical models are examined; however, all adhere to the
hypothesis that invasion is a property derived from the adaption1 of cancer cells to selec-
tive pressures from their microenvironment [6]. In these models, changes in the overall
morphology of the tumor are traced [7], with special attention given to the emergence of
fingering morphology and the fragmentation of the boundary [8] since these are among
the diagnostic and prognostic criteria used by pathologists [9] in qualitative evaluations of
tumor patterns.

1The cells in these models have varying properties and are subject to mutation. Those that are most
likely survive in a given environment are labelled as the best adapted.
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1.1.1 An Overview of Malignant Tumor Formation

The general motivation behind this research is to gain a better understanding of the early
stages of cancer invasion since early detection of neoplastic changes in healthy tissue is
the crucial step in the prevention and the successful treatment of cancer patients [10].
For a contextual understanding, it is important to have an idea of the progression of
this disease. To begin with, it is essential to differentiate between malignant and benign
tumors [5, 11]. Benign tumors are characterized by low rates of cell migration and pro-
liferation, are self-limited in growth and are unable to escape beyond well-defined tumor
boundaries. Malignant tumors on the other hand are composed of abnormal cells which
have a limitless capacity for proliferation, lack contact inhibition, and are able to survive
in hostile environments [5]. These cells are known to migrate into healthy tissue, either
through active penetration, matrix degradation, or entry into the circulatory system. Fur-
thermore, they tend to form tumors with poorly defined margins.

The formation of a malignant tumor is driven by the accumulation of genetic and epige-
netic mutations in a single cell line2 [12]. These mutations may be attributed to hereditary
effects, DNA damage during cell division, and the influence of mutagenic compounds or
external factors which set awry the cell cycle [13, 14]. In certain scenarios, a mutated cell
can gain a competitive advantage in its ability to reproduce and invade the surrounding
tissue [12]. Over successive divisions, its progeny will form a small cluster and eventually
develop into an avascular tumor [15]. However, such events are extremely rare when con-
sidering the fact that humans can undergo up to 1016 mitoses during their lifetime, each of
which confers the risk of a genetic disaster from the miscopying of DNA and the breakage
or segregation of chromosomes [16]. This suggests that various anticancer defenses have
co-evolved against DNA damage and are wired into intracellular signalling circuits where
they work in collaboration with the immune system. Weinberg [16] suggests that at least
five or six such mechanisms must be breached before a full-blown tumor can form.

Currently, there are two prominent points of view on the pathogenesis and evolution
of malignant cancers [17]. The cell-centric approach postulates that tumor formation is
a consequence of an aggressive form of differentiation that is induced by either internal
(e.g. an abnormal state of development) or external (e.g. the microenvironment) factors.
The gene-centric approach associates tumor development with the mutation of genes. It
is the latter that will be used in the models presented in this overview. In particular, it
will be assumed that it is the loss of function of tumor suppressor genes that promotes

2A cell line is a population of cells with a genetic mutation that enables them to replicative indefinitely.
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genome instability and permits mutated cells with a selective advantage to thrive [18]. It
is well known that mutation of the p53 gene3, commonly known as the Guardian of the
Genome [19], is linked with the accumulation of variability and heterogeneity at the ge-
netic level [20,21]. In its un-mutated form, this gene controls cell proliferation, death, and
DNA repair, and regulates cellular response to environmental pressure, such as hypoxia
and osmotic stress [22]. Furthermore, it is known to elicit cell cycle arrest to repair DNA
damage and apoptosis in events where the damage is irreparable [18]. Its loss of function
permits the propagation of damaged DNA to daughter cells and inhibits apoptosis during
hypoxia [21, 23, 24]. Based on experimental data, mutation of the p53 gene is estimated
to occur in approximately 50% of tumors, with the incidence rate increasing with disease
progression for certain forms of cancer [21].

1.1.2 Properties of Malignant Tumors

Although cancers vary widely in and amongst themselves, they are known to consistently
display certain properties. These traits, acquired through tumor-producing inflammation
and genome instability and mutation [25], drive tumor progression toward malignancy and
enable cancers to overcome intrinsic and extrinsic barriers that would otherwise thwart
their development and dissemination. Hanahan and Weinberg [18,25] claim that resisting
cell death, sustaining proliferative signalling, evading growth suppressors, activating inva-
sion and metastasis, enabling replicative immortality, and inducing angiogenesis are the
hallmarks of cancer. In addition, reprogramming energy metabolism and evading immune
destruction are listed as emerging hallmarks and believed to be involved in the pathogene-
sis of some if not all cancers. However, these have yet to be generalized and fully validated
(i.e., cancer biologists must show their inhibition would impair tumor growth and progres-
sion). A chart depicting the hallmarks of cancer is presented in Figure 1.1, while Figure
1.2 highlights the emerging hallmarks and enabling characteristics

Scientists hypothesize that it is sufficient for some of the traits to be acquired by a
reduced part of the tumor for the benefits to be shared by the tumor as a whole [26]. The
basic postulate behind this theory is that cancer is not one but many diseases that must
be de-convolved and treated independently [6].

3The p53 gene is a tumor suppressor gene that plays an active role in the arrest of cells with damaged
DNA. Inactivating mutations of this gene are commonly found in many human cancers.
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Figure 1.1: The hallmarks of cancer
Adapted from Hanahan and Weinberg [25].

Figure 1.2: The emerging hallmarks and enabling characteristics of cancer
Adapted from Hanahan and Weinberg [25].
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The growth advantage, sustained by the acquisition of these hallmarks, results in the
breakdown of homeostatic mechanisms [21]. This upsets the balance of proliferation, dif-
ferentiation, and death, disrupts tissue architecture and function, and makes coexistence
between normal and abnormal clones impossible [26, 27]. Above all, it allows the rapidly
proliferating cells to aggregate, and form avascular tumors. These tumors rely on diffusion
to provide nutrients and remove waste products and, hence, are limited in size to about
1− 2mm, or approximately 106 cells [2]. In general, they cause little to no damage to the
patient, who is unlikely to exhibit any of the symptoms of cancer at this stage [28].

Unable to fulfill their own metabolic needs, these tumors are characterized by a large
necrotic core [3], which is surrounded by a ring of quiescent cells and a rim of proliferating
cells [7]. However, they are able to overcome the constraints of diffusion-limited growth by
releasing chemicals that trigger the formation of new blood vessels. This process, known as
neoangiogenesis, is believed to be caused by the mutation of key genes and the exposure of
cells to stressful conditions such as hypoxia [29]. The newly formed neovascular networks
tend to be leaky, inefficient, and composed primarily of immature and tortuous vessels [30].
Regardless, they are still able to supply growing tumors with oxygen, glucose, blood, and
growth factors [3], albeit without proficiency.

As tumors progress, they are known to lose their capacity to maintain a compact struc-
ture [13, 27]. This stage of development, known as invasion, is marked by changes in the
balance of protease and antiprotease [31], a hypoxia-induced transition from collective mo-
tion to individual driven movement [30], and the formation of an uncontrolled feedback
loop, whereby cells are continuously stimulated to produce matrix degrading enzymes and
growth factors [32]. Concurrently, the tumor undergoes a series of morphological changes.
In particular, the disaggregation and dispersion of the peripheral cells [32], the formation
of finger-like margins [33], and the detachment of branch-like structures from the core of
the tumor [33] can be expected. Some of the cancer cells that escape from the primary
tumor are able to enter into the lymphatic or circulatory system [34]. These cells are then
able to circulate throughout the body and to transmigrate through vessel walls to establish
new colonies in distant organs [5,35]. It is at this stage that cancer is categorized as lethal,
and cure by surgery alone becomes impossible [36].

The quest for a general understanding of cancer and its inherent complexity highlights
the need for novel tools and techniques that provoke new insight into tumor progression
and potential therapies. Various mathematical techniques that can be applied to cancer
modelling described next.
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1.2 Mathematical Models and Techniques

A wide variety of approaches and techniques are used to study tumor growth. The most
commonly used are the so called in vivo, in vitro, and in silico studies [37]. In vivo methods
alter certain aspects or properties of a cell or tumor environment implanted in a living or-
ganism. Although this approach is the most realistic, it is difficult to control and interpret
since induced changes are typically compensated for by other (sometimes multiple) factors.
In vitro models fail to reconstruct the complexity of the in vivo environment but allow for
better control of individual factors and provide exceptional test systems with which the
effects of certain variables can be assessed [38].

Finally, in silico methods use computer simulations to systematically analyze the behav-
ior of individual cells and tumors. This approach attempts to reconstruct various aspects of
the in vivo environment using experimental measurements and must be properly parame-
terized and fine-tuned to accurately represent the biological processes being studied. Since
the parameters are often collected from various tumors grown under different environmen-
tal conditions (e.g., different cell lines implanted in various animal breeds), the results may
not correspond to a single real tumor. However, these models are cheap, accurate, quick
to provide results, and allow for the systematic analysis of variables under a spectrum of
different environmental conditions.

In this thesis we propose that an in silico mathematical model, which incorporates data
from multiple scales, may well provide the much needed rational approach and guidance
that is necessary to unravel the mysteries of cancer and to accurately predict tumor devel-
opment and control. In the next section, we will explore the different forms and features
that this model may take.

1.2.1 An Introduction to Multi-scale Models

Multi-scale mathematical models represent novel approaches that can be used to study how
genetic mutations are manifested as functional and morphological changes at the cellular
and tissue scales [17]. These models consist of a set of equations which focus on cellular
processes believed to be crucial to cancer development. In general, they consider how cells
grow, divide, move, and interact with their neighboring cells and microenvironment. Fig-
ure 1.3 illustrates two different ways in which the construction of a mathematical model

6



Figure 1.3: Building a mathematical model of cancer
Adapted from Byrne [39].

can be approached.

Ideally, a computational model of cancer should respect the structural and functional
complexity of cellular behavior. In order to accomplish this, one approach is to bridge
models that explore tumor progression on distinct spatial or temporal scales. Figure 1.4
highlights three scales that are often associated with tumor invasion. The microscale refers
to the ensemble of activities that take place within a cell or along its membrane and includes
DNA synthesis, gene expression, as well as the regulation of membrane receptors [40]. The
mesoscale (or cellular level) refers to the cell cycle and individual interactions among tumor
cells and the stroma. Lastly, the tissue scale encompasses the activity of the cell cluster as
a whole, and examines its interactions with the environment.

With regards to cancer, there are two broad categories of computational models [8]: de-
scriptive and mechanistic models. Descriptive models attempt to reproduce the dynamics
of a tumor without emphasizing the biological details. Mechanistic models address the un-
derlying biology in great detail and tend to focus on a specific aspect of tumor progression.
Of course, these are just the extreme ends of the spectrum and most models fall somewhere
in between these two. To be truly useful to a biologist, a model must be mechanistic to a
significant extent and must relate multiple components of the system in order to capture
the underlying behavior of the cells. To accomplish this, mathematicians use continuous,
discrete, and hybrid methods.
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Figure 1.4: The multiscale nature of cancer
Adapted from Preziosi [40].

Continuum Models

The continuum approach describes the relationship between the cell density and one or
more chemical species that influence the cell cycle or serve as nutrients [13]. Relying on
reaction-diffusion-convection equations, integro-differential equations, or continuum me-
chanics, such models are applicable in studies involving the tissue scale and high density
aggregations of tumors cells. They are often used to model mechanical and spatio-temporal
interactions, such as stress, strain, pressure, and changes in the network expansion rate.
The main advantages of using continuum models are that they require few parameters
and are typically amenable to mathematical analysis. However, the validity of the implicit
space averaging over cells is questionable and there are inherent challenges in incorporat-
ing the active nature of cells into these models, which assume gradual changes. Instead, it
seems more appropriate to use a discrete model when examining cell-cell interactions and
activity on the single cell scale.

Discrete Models

The cellular automaton (CA) model is a prime example of an individual-based model that
can be used to simulate the behavior of cells in response to their local environment [41].

8



Figure 1.5: The von Neumann and Moore neighborhoods
Adapted from Moreira and Deutsch [41].

Although they serve as simplified caricatures of the systems they represent, these mod-
els are still capable of capturing the underlying dynamics [42]. CA models use a regular
lattice to define the placement of cells with each site taking on one of a finite number of
states. All sites are considered equal and are subject to the same transition rules, which
may be deterministic (i.e., based on a series of thresholds) or probabilistic. These rules,
which regulate state dynamics, are dependent on the site’s current state and that of its
neighboring sites. As shown in Figure 1.5, a cell’s interactions may be restricted to either
its von Neumann neighborhood or its Moore neighborhood.

Another fundamental characteristic of these models is that they consider time to be a
discrete variable, with all of the sites updated simultaneously at each time step. Unlike
numerical schemes, which take great care to overcome spurious behavior that can be at-
tributed to discretization, CA models make no attempt to disguise such features [43].

There are a few commonly used variants of CA models. A coupled-map lattice approach
has a continuous state space while an asynchronous cellular automaton updates only a ran-
domly chosen subset of the cells at each time step. In addition, a nonhomogeneous cellular
automaton allows transition rules to vary from site to site and/or in time. Some models
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may have non-homogeneous, non-local transition rules that vary with the population size
while others have non-local transition rates that are dependent on the position of the site.
Moreira and Deutsch [41] also give examples of cellular automaton models where each lat-
tice site can represent a different number of cells, where a cell occupies multiple adjacent
sites, and where the state of a lattice site is determined by a stochastic energy minimization
technique.

In the context of this study, discrete models function as an abstraction of tumor dy-
namics, with simple rules that form a caricature of local interactions and serve as a gross
simplification of the biological system [26]. Nonetheless, these rules are able to incorporate
cell-based data and describe the life cycle of the cells, signal transduction pathways, and
biophysical laws [13, 41]. By incorporating statistical methods, differences and idiosyn-
crasies in the behavior of the cells can be modeled. Randomness is particularly relevant
when considering long-range dispersion or the migration of a population that is small in
size [13]. In these situations, the behavior of the population is predominantly statistical
and randomness may indeed play a larger role in the outcome than the average behavior
of the cell cluster [36].

Discrete models are easy to implement, allow cell tracking, and can provide visual
feedback that replicates, or at least resembles, experimentally observed patterns [44]. In
addition, it becomes feasible to describe the cells as individual entities with their own ar-
bitrary shape and location (albeit not in the context of a cellular automaton). However,
discrete models often require a large number of parameters, many of which have yet to be
determined experimentally [13]. Without these parameters, assumptions must be made.
This then calls into question the realism of these models, which provide qualitative insights
rather than detailed quantitative predictions. Furthermore, discrete models can be com-
putationally expensive and rigorous mathematical analysis of the results is difficult, if not
impossible [2].

Multi-scale models

By their very nature, multiscale models are the ideal tool to capture biophysical interac-
tions across spatial and temporal scales and to connect the chemical and physical details of
an invasive tumor [8]. One class of multi-scale models is the hybrid model. These models
blend continuum, discrete, and stochastic techniques in order to form a comprehensive
model which describes both chemical reactions and the tissue landscape [8,29]. The hybrid
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Figure 1.6: Modelling scales
Adapted from Rejniak and Anderson [46].

models discussed here treat individual cells as discrete entities that interact with various
continuum fields. Another option is to use differential equations to describe high density
regions and discrete algorithms to regulate cell behaviour along the low density rim of the
tumor.

Hybrid models link the interactions of individual cells to the overall population dy-
namics. By doing so, they bridge activity on the genetic, sub-cellular, cellular, and tissue
scales [45]. Some models focus on large populations of cells with a simplified geometry
while others consider small colonies of fully deformable cells. The former class of models
can consider thousands to millions of individual cells and provides an overview of the inter-
actions between immediate neighbors [7]. On the other hand, the latter allows for a more
realistic portrayal of cellular processes and early stage tumor development. A schematic
diagram of modeling scales is presented in Figure 1.6.

The focus of hybrid models can include cell cycle dynamics, the impact of mutations
on growth and division, phenotype survival, and cooperative and competitive behaviors
amongst cells. Signaling and metabolic pathways, the mechanical and molecular details
of cellular processes, and interactions amongst cells and their environment are among the
biological phenomena that are well suited to be described in this way. In addition, the
use of these models makes it possible to investigate the space and time dependent growth
of the cells, the orientation of cell division (i.e., the axis of cell division), and migration [46].

When developing a model, there are many intricacies that must be carefully considered.
One example is the evolution of cellular phenotypes. Some researchers choose to undertake
a deterministic approach, using a flow chart that compares the current state of a cell with
predetermined thresholds. For instance, the age of the cell, the nutrient levels, the number
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Figure 1.7: Examples of on-lattice and off-lattice models
Adapted from Rejniak and Anderson [46].

of neighbors, and the configuration of the cell membrane receptors can be examined to
determine whether the cell grows, divides, moves, dies, or stays as is. Another possibility
is to adopt a probabilistic approach with the cell’s phenotype altered via random muta-
tions acquired during cell division which modify the cell’s speed, doubling time, life span,
and oxygen consumption rate. Lastly, an artificial neural network can be implemented to
determine cellular activity.

Another important issue to consider is the partitioning of the lattice. As shown in Fig-
ure 1.7, the lattice may be fixed in time or may vary as the elements move. “On-lattice”
models constrain the cells to grid points and assume that the interactions between cells and
their surrounding are localized to small neighborhoods [13]. Although this simplifies the
task of reading cues from the cells’ microenvironment, it limits the directions of movement
and the number of neighboring cells. Among these models, there is variation in the dimen-
sion of the grid and the number of neighbours surrounding a single point. Furthermore,
some models allow multiple cells to co-exist at each site. Examples of on-lattice models
include multi-compartment cellular automata, square-lattice cellular automata, hexagonal-
lattice cellular automata, and the Potts or Glazier-Granier-Hogeweg (GGH) model. GGH
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models allow a cell to occupy several 2D square or 3D cubic lattice sites that, as an ensem-
ble, define its surface area or volume. The defining characteristic of these models is their
use of energy minimization and Monte Carlo simulations to determine the shape of the
cells and their interactions with one another and their microenvironment. Tumor invasion
is explored using the GGH approach in [33].

“Off-lattice” models do not require the spatial location of cells to be uniformly dis-
tributed on a fixed grid. This allows for a more realistic representation in which cells have
the freedom to move in any direction and to take on either spherical, elliptical, or polygonal
forms. The disadvantages of this approach are the inherent risk that an inappropriately
chosen discrete-time step will result in cell collision and the necessity of developing an
algorithm that can efficiently manage the interactions of cells with their immediate vicin-
ity. Examples of off-lattice models include spherical cell-centered, ellipsoidal cell-centered,
voronnoi tesselation, and fluid-based elastic cell models. Regardless of the approach taken
to model cell position and movement, chemical and physical fields are generally defined on
a regular (on-lattice) square or rectangular grid.

Most mathematical models are simulated in one or two spatial dimensions. Although
they display numerous features of interest, they provide an incomplete representation of
tumor invasion [27], particularly when the data is spatially heterogeneous [44]. Three
dimensional models, which are often studied by examining two orthogonal slices of the
simulated image [19], make it possible to analyze quantitative information and to examine
the network architecture and expansion rate, as well as properties of growth and invasion
in greater detail [47]. Enderling and his colleagues [44] suggest applying the marching cube
volume rendering technique to aid in the study of solid tumor growth in irregular, hetero-
geneous, three-dimensional domains. They describe the implementation of this method
and outline how it can aid in the visualisation of either Boolean information or the density
or concentration of variables in their publication.

1.2.2 Mathematical Models

We will consider the hybrid discrete-continuum (HDC), the evolutionary hybrid cellular au-
tomaton (EHCA) and the immersed boundary (IBCell) models. These hybrid models focus
on the interactions between cells and their micro-environment. Each model is agent-based
and the cells are considered to be distinct units whose behavior is determined by intrinsic
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Figure 1.8: The key variables involved in solid tumor gowth
Adapted from Anderson [19].

cellular kinetic and the surrounding medium [48]. During tumorigenesis and cancer pro-
gression, these cells must overcome a variety of micro-environmental barriers triggered by
the surrounding tissue [22]. To take this into account, the density of the extracellular ma-
trix (ECM) and the respective concentrations of oxygen and matrix degradative enzymes
(MDEs) are included in the models. These variables form a non-exclusive field that can
have non-zero values at any point on the lattice and can co-occupy the same space as a
cell [33]. Although an attempt is made to describe cell-microenvironmental interactions
in a manner that reflects physiochemical laws and biological knowledge [6], these models
are essentially gross simplifications that neglect precise biological details. However, their
intent is to provide a qualitative framework, rather than mimic a biological system, and
they are able to successfully fulfill this objective [6]. A schematic diagram labelling the
key variables that are considered in this thesis is presented in Figure 1.8.

Each cell is anchored into its position by the ECM and the connective tissue [27]. The
ECM is a heterogeneous melange of macromolecules that vary in their respective roles and
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functions. Some are vital to maintain the structural integrity of the cells whereas others
contribute to cellular adhesion, motility, and growth [45]. At times, the role played by
the ECM may seem contradictory. For instance, although this nondiffusive substance is a
barrier that must be physically removed to allow normal cellular motility, it also acts as a
substratum to which cells may adhere in order to move [49]. Furthermore, it can sequester
cell growth factors that speed up mitosis [26], and is known to do so when degraded [15].
It is a highly dynamic substance that, at any time, is actively secreted and degraded by
cells [28] and that co-evolves with cancer cells [26]. However, in these models, it will be
represented in a very generalized manner, without consideration of elastic forces or the
molecular structure of the tissue [22].

To degrade the ECM, tumor cells secrete MDEs, also referred to as proteases, which
diffuse slowly and locally degrade the ECM upon contact, creating gradients of bound cell-
adhesion molecules [21, 45]. MDEs are often secreted by cells as inactive precursors and
must be partially degraded to reach full activity [28]. They quickly bind to the matrix and
remain localized near the interface between the invading tumor and the receding connective
tissue [1, 50]. When the balance between proteases and anti-proteases is disrupted, exces-
sive matrix degradation may be observed in the vicinity of the tumor [31]. This promotes
motility and growth by providing the tumor cells with new space into which they can move
by a process analogous to diffusion [21]. However, the excessive production of proteases is
believed to incite a chemotactic pull that annihilates ECM gradients and prevents tumor
expansion [31].

The production and consumption of nutrients is at the heart of cell survival and main-
tenance. Although various chemicals are required for tumor growth and development, the
models that will be discussed typically focus on oxygen for the sake of simplicity. The
models make the assumption that the concentration of oxygen is sufficiently high to allow
successful application of partial differential equations and that its rate of diffusion occurs
at a much shorter time scale than cellular dynamics (e.g., cell division) [17]. Physically,
this means that the oxygen field is in a quasi-stationary state and hence satisfies the equa-
tion ∇2c(x, t) = 0 outside of the tumor. This implies that a linear function can be used to
approximate the nutrient prolife in the vicinity of the tumor [51].

The oxygen is supplied to the system via capillary blood vessels [18] and is consumed by
the cells at different rates, depending on their life cycle state [14]. The local concentration
of oxygen plays a significant role in determining cellular behavior. If it is above the growth
threshold, then proliferation may be observed. On the other hand, at a distance exceeding
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100 − 150µm from a blood vessel [52], the oxygen concentration falls below the hypoxic
threshold and cell death occurs due to nutrient deprivation. Above the hypoxic threshold
but below the growth threshold, quiescence is typically observed [6].

Cellular motion and proliferation are the crucial factors that determine tumor growth
and invasion [9]. Since both require space, they are heavily influenced by surface stresses,
which are often represented by cell crowding in mathematical models [43]. In some mod-
els, the cells must have access to a free lattice site in order to move; in other models, an
empty place is created as the surrounding cells are shifted outwards [53]. Proliferation is
typically most concentrated at the tumor’s border where the flux of oxygen is high, the
pressure is low, and the pH is normal [53]. In fact, the radius of the living region, which
surrounds the necrotic core, has a velocity of propagation which is proportional to the rate
of growth [43] and the growth rate is proportional to the gradient of the oxygen field [54].
On the other hand, motion is strongly influenced by adhesion [55]. Homotypic (cell-cell)
adhesion results in a decreased tendency to invade the surrounding tissue. Conversely,
heterotypic adhesion, whereby cells adhere to the connective tissue or different cell types,
will enhance invasion.

The heterogeneous nature of the tumor is a central factor underlying cancer progres-
sion, with variability among cells nurturing competitive and invasive behaviors. There are
three forms of variability that are believed to be important to tumor growth: phenotypic
variability, phenotypic plasticity, and intrinsic noise [17].

Phenotypic variability encompasses genetic mutations and epigenetic gene regulation,
while discrepancies between phenotypic traits are considered when examining phenotypic
plasticity. Finally, there is the inherent noise within biological systems which should not
be neglected when developing a model and analyzing simulation results.

In this thesis, three different single cell based multi-scale models will be used to inves-
tigate how various intrinsic and extrinsic factors influence the development of avascular
tumors. In all of these models, the cells are driven by their genetic makeup and cues from
their microenvironment.In addition, information from varying spatial scales are integrated
in order to create a cohesive view of tumor dynamics [1, 21]. However, many cellular
mechanisms have been either neglected or grossly simplified [1]. Although this greatly
reduces the scope of the models, it does not detract from their ability to provide a surface
description of how changes in the properties of the cells are manifested at the tissue scale [1].
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There are fundamental similarities in all three models [6,17]. First, the cells are treated
individually and their respective cell cycles dictate their proliferation, mutation, displace-
ment, and death. Second, three types of cells are considered. Proliferating and quiescent
cells compete for limited space and nutrients, while dead cells are labelled as necrotic.
As they compete for resources, the proliferating and quiescent cells are able to sense the
presence of, and interact with, other cells and their micro-environment. Proliferating cells
are highly competitive as they engage in cell division and hence require exposure to high
concentrations of oxygen. If the oxygen level remains above the hypoxic threshold but
the cell lacks the space or nutrients necessary for it to undergo mitosis, it will become
quiescent. A quiescent cell can revert back to a proliferative state if exposed to sufficient
space and nutrients.

The hybrid discrete-continuum (HDC) model couples a cellular automaton approach,
which is used to direct the behaviour and the interactions of the individual cells, with a
system of reaction-diffusion-chemotaxis equations that describe the tissue. The value of
this model is the novel insight it provides into cancer progression through the coupling of
activity on various spatial scales [23]. Certain HDC models assign a predefined phenotype
to each cell and examine how the different phenotypes respond under diverse environmen-
tal conditions [6]. Such models explore aspects of cellular activity such as motility and
adhesion.

The evolutionary hybrid cellular automaton (EHCA) model uses an artificial response
network to describe tumor growth and invasion and employs a feed-forward decision mech-
anism to determine the behavior of each cell. Every time a cell undergoes mitosis, the
response network of the parent is copied to the daughter cells with a small probability of
error to take into account mutations and noise. Each time an error occurs, it modifies the
processing of the input layer and, hence, the generated output. In this way, it alters the
ability of the cell and its progeny to compete for space and nutrients. Since the focus of
this model is connecting a cell’s genotype with its phenotype [23], the MDEs and the ECM
are neglected.

In contrast to those aforementioned, the immersed boundary (IBCell) model rejects the
notion of lattice sites and, instead, describes cells as fully deformable entities that inter-
act with each other using membrane bound receptors [23]. These receptors, which sense
free space, growth factors, nutrients, and other chemical concentrations [37], function as
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Figure 1.9: A comparison of the HDC, EHCA, and IBCell models
Adapted from Anderson et al. [23].

decision mechanisms and determine the state of each cell [56]. Although cellular receptors
transduce all forms of mechanochemical information in a living cell, the simulated receptors
here are abstractions which are grouped into broad categories based on their function (e.g.,
basal receptors and lateral receptors). A cell’s receptors are connected by fully deformable
elastics. These springs define the cell’s shape and enclose its nuceleus as well as the viscous
incompressible fluid which represents the cytoplasm and provides cell mass. The cells’ mi-
croenvironment is also modelled as an incompressible viscous Newtonian fluid. Focusing on
the cellular level, this approach links the physical mechanisms of elastic cells with the kinet-
ics of nutrient distribution [17] and attempts to discover how cells form invasive tumors [6].

When working with different models it is important to compare and contrast their
defining properties. Here, the HDC and EHCA models are phenotype/genotype driven
and consider cells at lattice sites, while the IBCell model is receptor driven and represents
cells as fluid filled elastic entities. In addition, the EHCA and HDC models are initiated
with a cluster of cells, among which some have undergone mutations, while the cells in
the IBCell model are considered normal cells and the tumor can progress without ever
undergoing mutations [6]. Tumor expansion in the EHCA and IBCell models is prolifer-
ation driven, but is influenced by both proliferation and migration (i.e., haptotaxis and
chemotaxis) in the HDC model. In all three models, oxygen acts as a nutrient. However,
its production and consumption differs from one model to the next. The source of oxygen
may be the boundary (i.e., the surrounding blood vessels), the ECM, or a combination of
both. A summary of the similarities and differences amongst the models is presented in
Figure 1.9.
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There are many advantages to building different types of models and juxtaposing their
respective results. When outcomes are comparable, the models pinpoint common assump-
tions and link them to the underlying biological mechanism. Thus, they provide experimen-
talists with new possible mechanisms on which they can focus. Alternatively, if outcomes
vary, the variables and the core mechanisms must be re-evaluated and the source of the
discrepancy uncovered. In this way, further insight can arise.

Although many aspects of these models can be manipulated and a variety of biological
phenomena can be incorporated, models tend to be phenomenological and predictions are
typically heuristic. Furthermore, rather than being cancer-specific, they tend to be general,
in part due to a paucity of experimental data available to parameterize and validate overly
detailed models. Nevertheless, mathematical models possess good predictive potential and
provide an efficient method by which the interplay between intracellular and extracellular
factors can be synthesized [1]. In addition, they have the capacity to integrate diverse
experimental measurements in order to generate testable predictions and to provide ex-
perimentalists with new subject matter. The last decade has seen increasing interaction
and collaborations between experimentalists and mathematicians. This synergy where the-
ory guides experiment and, conversely, where experimental data leads to developments in
theory, may well lead to dramatic advances in the future.

1.3 Outline of the Thesis

This thesis presents an overview of multi-scale mathematical models of tumor growth and
invasion. In Chapter 2, we consider Anderson’s hybrid discrete-continuum model of tumor
invasion. We present both the original “anaerobic model and the later “aerobic variants,
which include oxygen as one of the key variables and describe the life cycle of the individual
cells in greater depth. In addition, we perform simulations which study the role of the ECM
as a barrier to cellular expansion. We end the chapter by discussing our recommendations
for future work.

Chapter 3 describes the evolutionary hybrid cellular automaton model. In this chapter,
we explore the theory behind artificial networks and discuss how they can be applied to
our study of tumor progression. In particular, we explore how Gerlee and colleagues use
this approach to try to understand how the genotype, cell motility, and metabolism affect
the phenotype of a cell.
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An immersed boundary model is presented in Chapter 4. In contrast to the previous
methods, cell behavior in this model is receptor driven. Furthermore, the cells take on
varying shapes and change their configuration in response to environmental cues.

In Chapter 5, we summarize the salient results that are reiterated in all three models.
We also explore the advantages and disadvantages of mathematical modelling and conclude
by suggesting improvements and future directions in research.
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Chapter 2

Hybrid Discrete-Continuum Models

2.1 Anaeorbic Hybrid Discrete-Continuum Model of

Tumor Growth

In 2000, Anderson and Chaplain [45] published a model describing the invasion of host tis-
sue by cancerous cells. In this model, reaction-diffusion equations are used to express the
time evolution of the tumor cell density, the production and activation of matrix degrada-
tive enzymes, and the resulting disintegration of the matrix. To account for the multi-scale
nature of tumor growth, the authors couple this continuous system with a discrete one,
which aims to capture the small scale and stochastic interactions between individual cells.

2.1.1 Continuous model of anaerobic tumor growth

According to this model, a tumor undergoes changes in its density as it evolves through
time. Since the tumor is being mapped onto a regular 2-dimensional grid, this may seem
incongruous with our understanding of cancer cells as discrete entities. However, rather
than being construed in the literal sense, the density is meant to be interpreted as the
probability that there is a tumor cell at a given point in space and is modulated to take
on a value between 0 and 1.

Anderson and Chaplain [45] claim that the tumor cell density n is determined by the
random and haptotactic migration of the cells. The unbiased motion of the cells is com-
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parable to the phenomenon of Brownian motion [3] and is considered to be analogous to
molecular diffusion [47]. However, experimental data indicates an “overwhelming domi-
nance” of directed movement in invasive tumors [55]. Here, this behavior is attributed to
haptotaxis. Haptotaxis is defined as the directional migration of cells up gradients of cel-
lular adhesion sites or substrate-bound chemoattractants [4]. It is commonly described as
the motile response of cells to gradients of bound, insoluble, and non-diffusive stimuli [57].

Under this framework, the conservation of matter dictates that the tumor cell density
must satisfy

∂n

∂t
+∇ · (Jrand + Jhapto) = 0.

Here, Jhapto = χn∇f , χ > 0 describes the haptotactic flux that drives cells up gradients
of the ECM, where f is the density of the ECM, and Jrand = −Dn∇n describes the flux
attributed to random motion. Hence,

∂n

∂t
= ∇ ·Dn∇n− χ∇ · (n∇f), (2.1)

where Dn is the random motility coefficient and χ > 0 is the haptotactic coefficient. These
coefficients quantify the strength of the cellular response, with augmented values indicating
faster migration.

The tumor cells produce matrix degradation enzymes m (MDEs), which decay as they
diffuse through the tissue and degrade the extracellular matrix (ECM) . Expressed math-
ematically,

∂m

∂t
= Dm∇2m+ g(n,m)− h(n,m, f), (2.2)

where Dm is the diffusion coefficient, g(n,m) is the rate at which tumor cells produce
MDEs, and h(n,m, f) is the rate of decay. Anderson and Chaplain [45] explore a variety
of different ways to model the decay rate before selecting the one that best describes the
interactions between MDEs and heterogeneous ECM. In particular, they considered:

h(n,m, f) = λm, (2.3)

h(n,m, f) = λmf, and (2.4)

h(n,m, f) = λm(1− f), (2.5)

where equation 2.3 corresponds to natural decay and equations 2.4 and 2.5 are consistent
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with scenarios where the rate of decay is proportional and inversely proportional to the
density of the ECM, respectively. From a biological perspective, equation 2.4 asserts that
the production of MDE inhibitors is directly proportional to the density of the ECM. In
contrast, equation 2.5 describes a scenario where the MDEs bind to and degrade the tissue
in a more aggressive manner in regions with higher densities of ECM.

In order to select the appropriate decay pattern, simulations were performed and the
impact on the ECM was assessed. When the h(n,m, f) was proprotional to the density
of the ECM (equation 2.4), comparatively less decay was observed and the leading edge
of the tumor was not as well defined. However, the aforementioned differences were only
minimal. In fact, the presence of MDEs was deemed to be more significant than the precise
functional form of h(m,n, f) [45]. Ultimately, the decision was made to assume a linear
production of MDEs and natural decay with:

∂m

∂t
= Dm∇2m+ µn− λm, (2.6)

for some positive constants µ and λ.

The ECM f is assumed to be an insoluble matrix of macromolecules that are degraded
immediately upon contact with the MDEs. Since the macromolecules are much larger than
the cells, their motility is considered to be negligible [55]. This means that

∂f

∂t
= −δmf, (2.7)

where δ is a positive constant.

Anderson and Chaplain [45] non-dimensionalize their model [58]. Thus, the variables
are independent of units of measurement and are compared to intrinsic reference values
instead. Non-dimensionalization reduces the number of parameters and simplifies the anal-
ysis and simulation of the model [3]. However, this step necessitates knowledge of the main
features of the solution in order to make accurate order of magnitude and scaling estimates.
Moreover, spatial heterogeneity in the parameter range must also be considered [58].

Anderson and Chaplain [45] rescale distance using the length scale L, which corresponds
to the maximum invasive distance of the cancer cells at this stage of tumor progression. In
addition, they let τ = L2

D
to rescale time, where D is referred to as the “chemical diffusion
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coefficient”. Furthermore, the tumor cell density is rescaled with n0, the ECM density
with f0, and the MDE concentration with m0, where n0,m0, and f0 are the appropriate
reference variables, and

ñ =
n

n0

, f̃ =
f

f0

, m̃ =
m

m0

, x̃ =
x

L
, and t̃ =

t

τ
. (2.8)

Substituting into the equations above and dropping the tildes, the following system of
equations is obtained:

∂n

∂t
= dn∇2n− γ∇ · (n∇f) (2.9)

∂f

∂t
= −ηmf (2.10)

∂m

∂t
= dm∇2m+ αn− βm, (2.11)

where dn = Dn
D
, γ = χf0

D
, η = τm0δ, dm = Dm

D
, α = τµn0

m0
, and β = τλ.

Since the total number of cells is conserved and the system is closed, it is reasonable
to impose zero flux boundary conditions. The boundary conditions imposed are then:

ζ · (−dn∇n+ γn∇f) = 0 (2.12)

for the cells and
ζ · (−dm∇m) = 0 (2.13)

for the MDEs, where ζ is the appropriate outward unit normal

2.1.2 Discrete model of anaerobic tumor growth

Although a continuous approach can successfully capture cell-matrix interactions and other
forms of activity on the tissue scale, a cellular automaton model is better suited to capture
activity at the cellular and subcellular scales. The main advantage of using a discrete
model is that it allows for quantitative comparisons to be made between in vivo and in
silico results. Furthermore, the behavior of individual tumor cells can be monitored and
rules for cell proliferation and motion can be explicitly expressed.
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This model assumes that cells must be mature and have sufficient space in order to
proliferate. By definition, maturity is reached 500 time steps after birth and a cell has
sufficient space to undergo mitosis if at least one of its orthogonal neighbors is empty. If
more than one empty site is available, one daughter cell will occupy the position of the
parent cell and the position of the other one will be randomly1 selected.

For these simulations, the capacity of the grid is limited to 3000 cells. This restriction
implies that the structures which evolve will be a product of migration rather than prolif-
eration. To describe the motion of the cells, a discrete quasi-stochastic scheme is derived
using the principles of a biased random walk. In this scheme, the tumor cell density n at
the grid point (i, j) at time q is denoted nqi,j. The cell density at (i, j, q + 1) is calculated
by collecting the relevant data at the point (i, j) and at its four orthogonal neighbors at
time q and then averaging according to the equation

nq+1
i,j = P0n

q
i,j + P1n

q
i+1,j + P2n

q
i−1,j + P3n

q
i,j+1 + P4n

q
i,j−1 (2.14)

where P0 is proportional to the probability of staying stationary and P1, P2, P3, and P4 are
proportional to the probabilities of moving left, right, down, and up, respectively. Each of
these probability terms can be broken down into two mechanisms: random motion and a
directed response toward an external stimulus,

Pn = random motion + haptotaxis. (2.15)

When determining the direction of motion, the first step is to calculate

P0 = 1− 4dn∆t

∆x2
− γ∆t

∆x2
(f qi+1,j + f qi−1,j − 4f qi,j + f qi,j+1 + f qi,j−1) (2.16)

P1 =
dn∆t

∆x2
− γ∆t

4∆x2
(f qi+1,j − f

q
i−1,j) (2.17)

P2 =
dn∆t

∆x2
+

γ∆t

4∆x2
(f qi+1,j − f

q
i−1,j) (2.18)

P3 =
dn∆t

∆x2
− γ∆t

4∆x2
(f qi,j+1 − f

q
i,j−1) (2.19)

P4 =
dn∆t

∆x2
+

γ∆t

4∆x2
(f qi,j+1 − f

q
i,j−1). (2.20)

1The position of this cell will be determined using a computer algorithm that selects one of the empty
neighboring sites, without bias.
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These cofficients are obtained using a 5-point finite difference discretization2 of the partial
differential equation 2.9.

Once obtained, these values are normalized with P norm
i = Pi∑4

j=0 Pj
for i = 0, 1, 2, 3, 4.

Next, the probability ranges Ri are computed. Anderson and Chaplain let R0 = 0 to P norm
0

and Ri =
∑i−1

j=0 P
norm
j to

∑i
j=0 P

norm
j for i = 1, 2, 3, 4. They then generate a random num-

ber 0 ≤ grand ≤ 1 which determines the direction of motion based on the range into which
it falls.

According to this model, the geometry of the tumor, the concentrations of the nutrients
and the MDEs, the cell life cycle, and the interactions among neighboring cells are some of
the factors that impact cell migration [15, 34,59]. However, it is assumed that the motion
of the cells is most strongly influenced by their interactions with the macromolecules in
their immediate vicinity, with tumor cells moving up gradients toward higher densities of
the ECM. In the event that there is no ECM present, the values of Pj for j = 1, 2, 3, 4 are
all equivalent; thus, there is no bias and the random walk scheme dictates the direction of
motion.

One salient concern is that the probability coefficients can take on negative values.
According to Anderson [19,59], this problem should be addressed by making the grid size
and the time step sufficiently small to ensure that 4∆tdn

∆x2 < 1 is satisfied. However, it is
important to keep in mind that the grid size is fixed by the scale of the organism, that
a small time step might reduce the computational speed, and that the haptotaxis and
diffusion coefficients must remain within a reasonable range.

Anderson [59] lists various reasons why it makes sense to derive the discrete model
from the tumor cell density equation in this scenario. First, he claims that it is easier to
begin by establishing the continuum model when considering the migration of an organism
that is influenced by stimuli on various scales. Second, he declares that this approach
guarantees that the space and time step for the “biased random walk”3 will match that of
the continuous scheme. Ergo, it will be easier to interpret the interplay of the interactions
on the different scales. However, from a mathematical standpoint, it makes more sense to

2Although the application of a nine-point stencil may seem more favorable, the increased computational
time does not yield a corresponding increase in insight due to the sizeable impact of random motility [21].

3In the context of the model being considered, the “biased random walk” is more of an analogy than a
true definition [59].
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examine the motion of the individual cells and then derive a continuous equation describing
the motion of the tumor cluster, in the limit of a large cellular population size.

In order to confirm the validity of a related model, Othmer and Stevens [12] demonstrate
how discrete transitional probabilities can be used to derive a partial differential equation
in the continuous limit. Anderson [59] adopts this approach and implements it in one
dimension. Here, we will take it one step further and consider two dimensions. We begin
our analysis by considering the central difference semi-discretization of equation 2.9:

∂ni
∂t

= p1n
q
i+1,j + p2n

q
i−1,j + p3n

q
i,j+1 + p4n

q
i,j−1 − p0n

q
i,j (2.21)

where

p1 = $ −Υ(fi+1,j − fi−1,j)

p2 = $ + Υ(fi+1,j − fi−1,j)

p3 = $ −Υ(fi,j+1 − fi,j−1) (2.22)

p4 = $ + Υ(fi,j+1 − fi,j−1)

p0 = 4$ + 4Υ(fi+1,j + fi−1,j − 4fi,j + fi,j+1 + fi,j−1)

and x = ih, y = jh,$ = dn
h2 , and Υ = γ

4h2 .

To validate the assumption that the values P1, P2, P3, and P4 represent the probabilities
of motion and P0 is the probability of remaining stationary, we shall use equations 2.21 and
2.22 and attempt to recover equation 2.9. Upon substituting equation 2.22 into equation
2.21, we obtain:

∂ni
∂t

= nqi+1,j($ −Υ(fi+1,j − fi−1,j)) + nqi−1,j($ + Υ(fi+1,j − fi−1,j))

+ nqi,j+1($ −Υ(fi,j+1 − fi,j−1)) + nqi,j−1($ + Υ(fi,j+1 − fi,j−1))

− nqi,j(4$ + 4Υ(fi+1,j + fi−1,j − 4fi,j + fi,j+1 + fi,j−1))

which can be rearranged as

∂ni
∂t

= $(ni+1,j + ni−1,j − 4ni,j + ni,j−1 + ni,j+1)−Υni+1,j(fi+1,j − fi−1,j)

+ Υni−1,j(fi+1,j − fi−1,j)−Υni,j+1(fi,j+1 − fi,j−1) (2.23)

+ Υni,j−1(fi,j+1 − fi,j−1)− 4Υni,j(fi+1,j + fi−1,j − 4fi,j + fi,j−1 + fi,j+1).
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Since the domain is a regular two-dimensional lattice with mesh size h (i.e., x = ih, y =
jh), we can expand the right hand side of equation 2.23 as a Taylor series to second order
in h, to obtain,

∂ni
∂t

= $h2∇2n− 2Υhfx

(
n+ hnx +

h2

2
nxx

)
+ 2Υhfx

(
n− hnx +

h2

2
nxx

)
− 2Υhfy

(
n+ hny +

h2

2
nyy

)
+ 2Υhfy

(
n− hny +

h2

2
nyy

)
− 4Υh2n∇2f +O(h4).

which simplifies to

∂ni
∂t

= $h2∇2n− 4Υh2 (fxnx + fyny)− 4Υh2n∇2f +O(h4). (2.24)

Assuming that a scaling of transition rates f = ϑf̄ and $ = ϑ$̄ exists, such that

limh→0,ϑ→∞ϑh
2 = D

for some positive constant D, we let dn = D$̄ and γ = 4DΥ. Substituting back into
equation 2.24 we determine that the diffusion limit is

∂n

∂t
= dn∇2n− γ∇ · (n∇f),

which is as desired.

By acknowledging this intricate link between the discrete and the continuous models, we
are able to appreciate how this approach ties together the micro-scale with the macro-scale
and creates a cohesive model that links individual level and population level dynamics.
However, this method is only valid if we assume that the individual cells do not interact
with one another, a biologically infeasible constraint [19]. Furthermore, a biological ex-
planation behind the probability coefficients in the master equation is lacking. Expressing
the migration of the cells using stochastic differential equations would have been a more
appropriate approach.
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2.1.3 Simulation results

In their paper, Anderson and Chaplain [45] compare the results obtained from the discrete
and continuous models4. Their simulations are initiated with 500 tumor cells and run for
a duration of 4000 time steps.

To validate their model, Anderson and Chaplain [45] systematically vary the parame-
ters. They establish that increasing the value of the haptotaxis coefficient5 increases the
invasive behavior of the cells. On the other hand, invasion is more localized and the degra-
dation of the matrix is more prominent when the MDE diffusion coefficient6 is increased.
When both coefficients are increased simultaneously, there is a sizable augmentation in the
fraction of the cells that separate from the tumor mass. These cells invade the host tissue
at a faster rate and are driven primarily by haptotaxis.

In the litterature, the diffusion coefficient and its impact on tumor morphology are also
explored. When the diffusion rate is constant, haptotaxis-induced migration results in the
formation of small clusters of cells at the leading edge. With time, these clusters move
further away from the tumor core as they slowly but continually invade the extracellular
matrix. Anderson acknowledges that, with sufficient time, these cells will eventually aggre-
gate beyond the boundary of the domain. To prevent this biologically infeasible solution
from manifesting, Anderson and Chaplain present diffusion as a nonlinear chemokinetic
response, and let the rate of the random motility be directly proportional to the con-
centration of the MDEs (i.e., dn = dnnm where dnn is a positive constant). Under this
assumption, there is a pronounced build up of cells at the leading edge of the tumor within
a relatively short period of time. Furthermore, the cells are more likely to break away
from the main tumor mass and the speed of invasion is reduced. As this system begins to
stabilize, two distinct clusters form, with the cells driven by haptotaxis segregating from
the tumor body, migrating faster and further into the ECM.

Besides these parameters, Anderson and Chaplain [45] also study the relationship be-
tween the tissue environment and tumor growth. As shown in Figure 2.1, the leading edge
is the region of highest cell density, and will ultimately detach to form multiple separate
rings of invasive cells in the continuous model with homogeneous ECM. These findings are

4They use the same parameter values for both models.
5in 2.9
6in equation 2.11
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Figure 2.1: The spatio-temporal evolution of the tumor cell density in homogeneous ECM
The tumor is observed to break into concentric rings of cells that invade into the ECM.
These results are derived from the continuous model, under the assumption of a constant
diffusion coefficient. Reprinted from Journal of Theoretical Medicine, 2, A.R.A. Ander-
son, M.A.J. Chaplain, E.L. Newman, R.J.C. Steele, and A.M. Thompson, Mathematical
modelling of tumor invasion and metastasis, 129-154, Copyright (2000). [45]
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recognized as being blatantly unrealistic; fortunately, the authors have been able to ob-
tain more reasonable results when considering heterogeneous ECM. Figure 2.2 illustrates
how the symmetry in the cellular density is broken and how small regions with higher cell
density form under this assumption. Similar results are obtained when the focus moves
to the discrete model, although there are some notable differences with regards to tumor
progression in the heterogeneous environment. In particular, greater dispersion is seen,
followed by the emergence of numerous high density clusters, as illustrated in Figure 2.3.

Anderson and Pitcairn [15] combine the discrete and continuous systems into a single
hybrid model and use this framework to further investigate the relationship between the
distribution of the ECM and tumor morphology. In particular, they consider homogenous,
heterogeneous and random distributions of macromolecules in the ECM. Their simulations
indicate that large, symmetric tumors, that can rapidly invade the surrounding matrix,
form under the constraint of a homogeneous environment. In contrast, small tumors with
ragged boundaries are observed given a random distribution of MM and a heterogeneous
environment is seen to yield tumors which lack symmetry and compactness.

2.1.4 Conclusions

Comparing the continuous and the discrete models, more aggressive behavior is observed
in the latter where the cells invade further into the ECM and are more likely to separate
from the tumor body. Clinically, this corresponds to an increased risk of metastasis. Fur-
thermore, these results indicate an abatement of surgical efficiency since the small clusters
of detached tumor cells are likely to go unnoticed by a doctor who is trying to excise the
tumor.

Based on their simulations, Anderson and Chaplain [45] also conclude that ECM het-
erogeneity and haptotaxis are two key factors that shape tumor morphology. Furthermore,
they assert that parallels between these simulations and histological observations make
their results applicable in vivo [15]. Spurred on by these results, they decided to extend
this model to include phenotypic variation in cells and oxygen limited growth. Their ex-
tensions will be discussed in the next section. Additional suggestions regarding areas of
modification as well as potential extensions will be summarized in Section 2.4.
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Figure 2.2: The spatio-temporal evolution of the tumor cell density in heterogeneous ECM
The effect of the heterogeneous ECM becomes apparent for larger values of t. As above,
these results are also derived from the continuous model under the assumption of a constant
diffusion coefficient. Reprinted from Journal of Theoretical Medicine, 2, A.R.A. Ander-
son, M.A.J. Chaplain, E.L. Newman, R.J.C. Steele, and A.M. Thompson, Mathematical
modelling of tumor invasion and metastasis, 129-154, Copyright (2000). [45]
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Figure 2.3: The spatio-temporal evolution of discrete cells in a heterogeneous environment
The migration of the tumor cells into the heterogeneous ECM is illustrated. Anderson and
Chaplain claim there are similarities between the distribution of the cells and the density of
the ECM. Reprinted from Journal of Theoretical Medicine, 2, A.R.A. Anderson, M.A.J.
Chaplain, E.L. Newman, R.J.C. Steele, and A.M. Thompson, Mathematical modelling of
tumor invasion and metastasis, 129-154, Copyright (2000). [45]
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2.2 Aerobic Hybrid Discrete-Continuum Model

2.2.1 Continuous model of aerobic tumor growth

This section describes the modifications made by Anderson and colleagues [1,8,17,19–21,23,
35] to the hybrid model presented in Chapter 2. In particular, we discuss how they attempt
to capture tumor growth immediately following vascularization by modelling the tumor as
a cluster of cells enclosed by blood vessels which supply oxygen at a constant rate [23]. To
describe the macroscopic events, the authors supplement the reaction-diffusion-chemotaxis
equations presented by Anderson and Chaplain in [45] with an equation which describes
the time dependent evolution of the oxygen field. This nutrient is assumed to diffuse and
decay and is produced at a rate proportional to the density of the ECM at each lattice site.
This representation implies that haptotaxis drives cells toward the oxygen rich regions and
that tumors disrupt their oxygen supply as they grow [17].

The system of equations which describes activity at the tissue scale is

∂n

∂t
= dn∇2n− γ∇ · (n∇f)

∂f

∂t
= −ηmf (2.25)

∂m

∂t
= dm∇2m+ αn− βm

∂c

∂t
= dc∇2c+ λf − κn− µc

where n is the density of the tumor cells and f , m, and c are the concentrations of the
ECM, the MDEs, and oxygen, respectively. In addition, dn, dm, and dc are the diffusion
coefficients for the tumor cell density, the MDEs, and the oxygen, γ is the haptotaxis co-
efficient, and η, α, β, λ, κ, and µ are positive constants.

There have been a few variants of this model published over the years. For instance,
Anderson refers to f as the concentration of macromolecules (MM) rather than the con-
centration of ECM in [21]. In another article, he proposes that oxygen diffuses at a slower
rate at grid points that are occupied by cells and lets the diffusion coefficient be dcell < dc
at these points [19]. Finally, in [1], he and his colleagues consider discrete cells instead of
the tumor cell density and formulate the following system of reaction-diffusion-chemotaxis
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equations

∂f

∂t
= −ηmf

∂m

∂t
= dm∇2m+ αNi,j − βm

∂c

∂t
= dc∇2c− µc− κNi,jc+ λf

where Ni,j is used to denote the tumor cell located at lattice site (i, j).

For all variants of the HDC model, the behavior of the cells is mapped onto a 2-
dimensional lattice and the simulations are initialized with a predefined number of tumor
cells, aged 0 to 16 hours, positioned at the center of the grid. In terms of the initial condi-
tions, the concentration of the MDEs is set to 0, the oxygen concentration is set to 1, and
the concentration of the ECM falls within the range 0 ≤ f ≤ 1 [21]. In addition, zero-flux
boundary conditions are imposed on the system.

2.2.2 Discrete model of aerobic tumor growth

As the simulation proceeds, changes in the life cycle of the cells are obtained. To differ-
entiate between the cells, each one is assigned an identification number which determines
the order in which it will be updated during each time step. Since this may give prefer-
ence to certain cells and visibly bias the results, the identification numbers are distributed
randomly [19].

When a cell is being updated, its ability to move is assessed and its age is examined.
If the cell has reached maturity, Figure 2.4 outlines how it will respond based on the
distribution of its neighbors and its access to nutrients. A careful analysis of the life cell
cycle is presented in the sections below, with an emphasis on how the different constrain1ts
on the cell impact its behavior.
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Figure 2.4: The life cycle of a cell
Flowchart describing the life cycle of a cell subject to either linear or random mutations.
Adapted from Anderson [19].
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Motility

Since it cannot push its neighbors to create space, a cell will remain stationary if there are
no vacant sites in its von Neumann neighborhood7. However, if space is available and the
restriction on cell-cell adhesion is met, a combination of unbiased motility and haptotaxis
will drive its movements.

As with the anaerobic HDC model, the tumor cell density at grid point (i, j) at time t
is

nq+1
i,j = P0n

q
i,j + P1n

q
i+1,j + P2n

q
i1,j + P3n

q
i,j+1 + P4n

q
i,j−1. (2.26)

where

P0 = 1− 4dn∆t

∆x2
− γ∆t

∆x2
(f qi+1,j + f qi−1,j − 4f qi,j + f qi,j+1 + f qi,j−1) (2.27)

P1 =
dn∆t

∆x2
− γ∆t

4∆x2
(f qi+1,j − f

q
i−1,j) (2.28)

P2 =
dn∆t

∆x2
+

γ∆t

4∆x2
(f qi+1,j − f

q
i−1,j) (2.29)

P3 =
dn∆t

∆x2
− γ∆t

4∆x2
(f qi,j+1 − f

q
i,j−1) (2.30)

P4 =
dn∆t

∆x2
+

γ∆t

4∆x2
(f qi,j+1 − f

q
i,j−1). (2.31)

Figure 2.5 illustrates the movement probabilities and the layout of the tumor. For a de-
tailed examination of how cellular motion is implemented, see Section 2.1.2.

Quiescence and cell death

Once motility has been considered, the cell’s properties and its environment are revised to
reflect the passage of time. The age of the cell is increased and the oxygen concentration
is reduced to account for cellular consumption [21]. The cell is then categorized as prolif-
erating, quiescent, or dead.

7The von Neumann neighborhood of a cell on a two-dimensional square lattice is comprised of its its
four orthogonal neighbours (see Figure 1.5).
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Figure 2.5: The key variables and the movement probabilites
A schematic diagram of cell subpopulations, the MDEs, and the ECM (left). The movement
probabilities (right) are also shown. Springer and the Journal of Mathematical Biology, 58,
2009, 579-624, Microenvironment driven invasion: a multiscale multimodel investigation,
Alexander R.A. Anderson, Katarzyna A. Rejniak, Philip Gerlee, and Vito Quaranta, Fig.
8; with kind permission from Springer Science and Business Media. [17]

At birth, each cell is assigned a maturation age, chosen randomly from a normal dis-
tribution N(τ, σ), where τ is the mean age and σ = τ/2 is the variance [19]. After a cell
has reached maturity, it can proliferate as long as it has access to sufficient space (i.e., one
of its orthogonal neighbors is empty). However, if this condition is not satisfied, the cell
will become quiescent and proliferation will be delayed until the necessary space becomes
available. Since they are in a resting state, quiescent cells are assumed to require half as
much oxygen as normal cells. However, this value is much debated in the literature and
some sources claim that a normal cell may consume up to 5 times more oxygen than a
quiescent cell [21].

There are two forms of cell death that are often included in mathematical models. Apop-
tosis is programmed cell death in response to DNA mutation or physiological stress [18].
It is characterized by the systematic breakdown of the cell into small components which
are then engulfed by phagocytic cells. On the other hand, starved cells undergo necrosis, a
process whereby they become bloated and explode, releasing cytokines which stimulate the
proliferation of viable cells [25] and act as chemotactic signals that pull outer cells toward
the tumor’s core [36,38,41].

A lattice site occupied by an apoptotic cell becomes vacant at the next time step. In
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contrast, the necrotic cells are assumed to remain present but will cease to produce MDEs
and to consume oxygen. Necrosis occurs when the oxygen concentration drops below a
threshold level h. The value of this threshold is difficult to determine experimentally, in
part due to its dependency on the extent to which the tissue has been vascularized [21].
According to Anderson and colleagues [17], the oxygen concentration in the necrotic core is
estimated to be anywhere between 0.5−30% of the concentration in the surrounding tissue.

Cellular heterogeneity

Since tumors tend to have a large necrotic core, the viable cells are often isolated from
one another and subject to diverse environmental conditions and evolutionary pressures.
However, genetic and phenotypic heterogeneity can be detected even within the same le-
sion of the tumor tissue [29]. To incorporate this into his model, Anderson introduces the
concept of inheritable variation and assigns each cell a set of phenotypic traits (i.e., a set of
numbers which describe its response to the environment) [59]. The cell’s phenotype iden-
tifies its affinity for cell-cell adhesion and its rates of proliferation, migration, and nutrient
consumption, respectively.

During mitosis, the phenotypic traits are inherited by the daughter cells. However,
there is a small chance Pmutat that at least one of its daughter cells will mutate. When
determining the value of the mutation rate, a balance must be drawn between having a
high enough value which allows selection pressures to act within a realistic timescale, while
ensuring the rate is not so high that the effects of selection disappear among the stochastic
noise [11]. Another important decision to make is how the mutations will transpire. In
their work, Anderson and colleagues have described the application of both a linear and a
random mutation scheme.

The linear approach considers four distinct phenotypes and assumes that subsequent
mutations result in the manifestation of increasingly aggressive traits [1, 19, 21, 35]. Phe-
notype I corresponds to the first p53 mutation. Whenever a type I cell undergoes mitosis,
there is a small probability that a mutation will cause at least one of the daughter cells to
adopt the properties of the slightly more aggressive Phenotype II. Similarly, Phenotype II
cells can mutate to become Phenotype III and so on. The most aggressive cells are those
labeled Phenotype IV. These have a low maturation age, high rates of oxygen consumption
and MDE production, large haptotaxis coefficients, and prefer not to adhere to other cells.
Although this approach may appear to be extreme or greatly simplified, mutations are
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Figure 2.6: The parameter values for the phenotypes in the linear and random mutation
schemes.
Adapted from Anderson [19].

known to provoke radical behavior when there are strong selective pressures which favor
such a change [60].

The random mutation scheme offers a simple yet astute representation of genetic insta-
bility [1,17]. According to this approach, the cells are already mutated when the simulation
is initialized, with each one adopting the properties of one of 100 randomly predefined phe-
notypes. When a mutation occurs, the affected cell assumes the characteristics of a different
phenotype, which is selected randomly and without bias.

The phenotypic traits

Figure 2.6 lists the phenotypic traits. The interpretation and implementation of these
traits is straight forward, with the exception of cell-cell adhesion which is described using
a very crude set of rules. According to the adhesion algorithm, each cell is given an internal
adhesion value Ai which designates the number of neighbors to which the cell preferentially
adheres. If the number of external neighbors Ae is such that Ae ≥ Ai, the cell is allowed
to migrate; otherwise, it must remain stationary. In this way, cell-cell adhesion serves to
mediate contact inhibition with the motion of the cells restricted for larger internal adhe-
sion values [22,35].
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Figure 2.7: Tumor growth in (a) homogeneous, (b) random, and (c) hypoxic environments
This diagram presents a comparison of the tumor morphologies (top) and the phenotype
distributions (bottom). Reprinted by permission from Macmillan Publishers Ltd: Nature
Reviews Cancer ( [8]), copyright (2008). http://www.nature.com/nrc/

2.2.3 Simulation results

Anderson and colleagues place 50 tumor cells around the centre of a 400x400 grid and run
their simulations for 2000 time steps. They scale their variables such that 0 ≤ c,m, f ≤ 1
and set the initial conditions m0 = 0 and c0 = f0 = 1. To compare and contrast the mor-
phologies produced, they use morphocharts [61]. These mapping allow them to juxtapose
tumor growth in environments with homogeneous (i.e., f0(x, y) = 1), heterogenenous (or
“bumpy”), and random (or “grainy”) distributions of the ECM and to assess the impact
of low oxygen availability (i.e., c0(x, y) = 0.25).

Tumor progression is characterized by the depletion of resources and the development
of a large necrotic core. Figure 2.7 compares the growth of tumors in homogneous, hypoxic,
and random environments, respectively. Examining the plots, a large, compact, circular
tumor is seen to form in the homogeneous ECM [21, 35]. In contrast, a small tumor with
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a jagged rim is seen in the environment with scant oxygen8. However, the most significant
finding is the correlation between branched fingering morphology and randomly distributed
ECM [1, 21]. In terms of the phenotype distribution, the tumor population is seen to be
dominated by six, two, and three phenotypes, respectively, in the homogeneous, random,
and low oxygen environments. In all three scenarios, the dominant phenotypes favor zero
cell-cell adhesion, and have short proliferation cycles and high haptotaxis coefficients. In
addition, the most aggressive phenotype is always expressed by the largest fraction of the
population. In Anderson [21], tumor growth is also simulated in a heterogeneous environ-
ment, which is generated from a combination of sine and cosine functions. As expected,
these tumors display invasive features, although to a lesser extent than those in the random
environment, and favor the propagation of aggressive clones [6].

The formation of a smooth tumor in a homogeneous environment is labeled an “ar-
tificial” result and is described as “unsurprising” given the unrealistic nature of this as-
sumption [21]. In contrast, the tumor in the random environment is deemed to be the
most realistic representation of invasive growth since the cells receive conflicting migration
signals and are subject to selective pressures which favor the proliferation of aggressive
clones [19].

Oxygen availability

Various environmental stress factors are known to favor the selection of aggressive clones
and to promote the emergence of morphologically invasive features [1]. They include hy-
poxia, low nutrient availability, ECM densities that are difficult to navigate, a low level of
growth factors, and a lack of vascularity [8]. Antithetically, low competition in normoxic
and homogeneous tissue allows cells with various phenotypes to peacefully coexist as a
large conglomerate with a smooth, noninvasive margin [8].

These findings seem to suggest that a potential treatment could involve suppressing the
selective influence of the micro-environment while simultaneously starving the malignant
cells [19]. To test this hypothesis, the oxygen available to a group of cells in a homoge-
neous environment is alternated between high and low levels. Initially, oxygen is readily
available to the cells and a large, circular tumor forms. This tumor is composed of various
phenotypes that peacefully co-exist and there is a low incidence of necrosis. When the

8The ECM is assumed to be homogeneous in this environment.
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oxygen concentration is lowered, wide-scale cell death and a steep decline in tumor size are
observed. Within a short timeframe, the tumor core becomes necrotic and thin, finger-like
extensions protrude from its boundary. During this phase, the quiescent cells become ex-
tinct and, among the few proliferating cells that survive, a single aggressive clone thrives.
Once the cellular response has stabilized, the oxygen concentration is modelled to increase.
This causes the space between the finger-like structures to fill up and merge into a smooth
boundary. Quiescent cells become populous once more and a slight increase in phenotype
diversity is observed. When the oxygen concentration is lowered a second time, cellular
activity analogous to that seen during the previous hypoxic phase is observed. The changes
in morphology described above can be seen in Figure 2.8, while the evolution of the tumor
population and the phenotype abundance are mapped in Figures 2.9 and 2.10, respectively.

Population dynamics are also examined for the oxygen switching experiment. Although
aggressive and nonaggressive cells are seen to co-exist during the first period of hypoxia,
phenotypes with different adhesive properties later segregate, forming distinct lobes at the
edge of the tumor [1]. During both the hypoxic and subsequent normoxic periods, the
same two phenotypes dominate the population. In fact, this pair is also selected in the
follow-up trials where the ECM is assumed to be heterogeneous. Their common feature is
that they favor cell-matrix adhesion in lieu of forming cell-cell bonds.

Oxygen consumption and the necrotic threshold

In Anderson [17], the HDC model is used to study how the tumor’s morphology changes as
the oxygen consumption rate and the apoptotic threshold are altered. As shown in Figure
2.11, increasing either the consumption rate or the apoptotic threshold instigates the emer-
gence of finger-like patterns and yields an overall decrease in tumor size. In contrast, low
oxygen consumption rates and apoptotic thresholds can be seen to foster symmetric growth.

Mutations

In numerous publications, the authors examine how the phenotype distribution changes
as the tumor grows. To describe the evolution of the mutations, a linear and a random
scheme are used. Both are deemed to portray realistic representations of cellular dynamics
and are observed to elicit a trend toward increasingly aggressive behavior [1]. Figure 2.12
compares the results obtained by Anderson and his colleagues when they examined the

43



Figure 2.8: The tumor cell distribution for the oxygen switching experiment
Springer and the Journal of Mathematical Biology, 58, 2009, 579-624, Microenviron-
ment driven invasion: a multiscale multimodel investigation, Alexander R.A. Anderson,
Katarzyna A. Rejniak, Philip Gerlee, and Vito Quaranta, Fig. 8; with kind permission
from Springer Science and Business Media. [17]
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Figure 2.9: The time evolution of the fraction of proliferating, quiescent, and dead cells in
the oxygen switching experiment
Springer and the Journal of Mathematical Biology, 58, 2009, 579-624, Microenviron-
ment driven invasion: a multiscale multimodel investigation, Alexander R.A. Anderson,
Katarzyna A. Rejniak, Philip Gerlee, and Vito Quaranta, Fig. 9; with kind permission
from Springer Science and Business Media. [17]
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Figure 2.10: The time evolution of the relative phenotype abundance for the oxygen switch-
ing experiment with random mutations
Springer and the Journal of Mathematical Biology, 58, 2009, 579-624, Microenviron-
ment driven invasion: a multiscale multimodel investigation, Alexander R.A. Anderson,
Katarzyna A. Rejniak, Philip Gerlee, and Vito Quaranta, Fig. 10; with kind permission
from Springer Science and Business Media. [17]
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Figure 2.11: Tumor morphologies for various combinations of the apoptotic threshold (h)
and the nutrient consumption rate (k)
Springer and the Journal of Mathematical Biology, 58, 2009, 579-624, Microenviron-
ment driven invasion: a multiscale multimodel investigation, Alexander R.A. Anderson,
Katarzyna A. Rejniak, Philip Gerlee, and Vito Quaranta, Fig. 4; with kind permission
from Springer Science and Business Media. [17]
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impact of these schemes on growth in environments with homogeneous, heterogeneous,
and random distributions of the ECM, respectively.

Linear mutation scheme

During the early stages of its development, a tumor subject to linear mutations evolves as a
growing disk in which the four phenotypes coexist. However, with passing time, a necrotic
core develops and type IV cells prevail. In the figure above, the tumor in the homogeneous
ECM is the only one which maintains its smooth boundary. In both the heterogeneous
and random ECM, the living cells emanate from the necrotic core in the form of finger-like
structures [1, 21].

Random mutation scheme

Differences in morphology are also observed under the assumption of a random mutation
scheme. In the simulations involving heterogeneous and random ECM, the tumor develops
invasive features [1]. In contrast, a thin, smooth rim of proliferating cells encloses the
necrotic core in the trials involving homogeneous ECM [1]. In all three environments, the
tumor population is composed primarily of aggressive clones which are driven to migrate
via haptotaxis [1,21]. These cells have internal adhesion values of zero, short proliferation
cycles, high haptotaxis coefficients, and, in antithesis to the linear mutation scheme, low
oxygen consumption rates [21].

2.2.4 Conclusions

According to the literature, a harsh environment can induce genetic and biomechanical
changes that yield the development of finger-like margins [17,23]. Anderson and colleagues
emphasize hypoxia and heterogeneous ECM as prime examples of hostile environments;
however, similar results are expected in tissue with elevated levels of interstitial pressure,
substrate stiffness, or oxygen tension. Unfortunately, there is no formal definition of in-
vasion which means that theories regarding the formation of malignant tumors remain
unverified. In addition, gaps in the current understanding of cancer suggest that it is pos-
sible that some unquantifiable features, which drive tumor progression, may exist.
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Figure 2.12: Comparing linear and random mutations schemes
(A) A comparison of the tumor morphologies in (left) homogeneous, (middle) hetero-
geneous, and (right) random distributions of the ECM is presented, as well as a (B)
chart depicting the phenotype abundance for the random mutation scheme. Reprinted
from Cell, 127, Alexander R.A Anderson, Alissa M. Weaver, Peter T. Cummings, and
Vito Quaranta, Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure
from the Microenvironment, 905-915, Copyright (2006), with permission from Elsevier.
http://www.sciencedirect.com/science/journal/00928674 [1]
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In the next section, we will describe how we expand the aerobic HDC model to examine
the impact of the ECM on tumor growth.

2.3 Examining the Role of the ECM as a Barrier to

Cellular Expansion

There is always some way to improve or to expand an existing model. For example, one
can obtain more accurate parameters, incorporate a new variable, or apply the model to
a new problem. This section describes how the aerobic hybrid discrete-continuum model,
presented in section 2.2, has been modified as part of this thesis work,to study the role of
the ECM in cellular expansion.

Consider the equations

∂n

∂t
= dn∇2n− γ∇ · (n∇f) (2.32)

∂m

∂t
= dm∇2m+ αn− βm (2.33)

∂f

∂t
= −ηmf (2.34)

∂c

∂t
= dc∇2c+ λf − κn− µc, (2.35)

where m, f, c ≥ 0 represent the concentrations of the MDEs, the ECM, and oxygen, respec-
tively. The diffusion coefficients of the cells, the MDEs, and the oxygen are dn, dm, and
dc, respectively, and γ denotes the haptotactic coefficient. α and β are the respective rates
at which the MDEs are produced and naturally degraded, and η is the rate at which the
MDEs degrade the ECM. Finally, oxygen is produced by the ECM at a rate λ, consumed
by cells at a rate κ, and degraded at a rate µ.

Following Anderson’s lead, the equation which describes the time evolution of the cel-
lular density n is discretized to obtain

nq+1
i,j = P0n

q
i,j + P1n

q
i+1,j + P2n

q
i1,j + P3n

q
i,j+1 + P4n

q
i,j−1. (2.36)
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where

P0 = 1− 4dn∆t

∆x2
− γ∆t

∆x2
(f qi+1,j + f qi−1,j − 4f qi,j + f qi,j+1 + f qi,j−1) (2.37)

P1 =
dn∆t

∆x2
− γ∆t

4∆x2
(f qi+1,j − f

q
i−1,j) (2.38)

P2 =
dn∆t

∆x2
+

γ∆t

4∆x2
(f qi+1,j − f

q
i−1,j) (2.39)

P3 =
dn∆t

∆x2
− γ∆t

4∆x2
(f qi,j+1 − f

q
i,j−1) (2.40)

P4 =
dn∆t

∆x2
+

γ∆t

4∆x2
(f qi,j+1 − f

q
i,j−1). (2.41)

In Anderson et al. [23], dn = 0.0005, γ = 0.01, dm = 0.0005, α = 1, β = 0, η = 50, dc =
0.5, λ = 0.5, κ = 0.57, and µ = 0.025 are cited as the values of the parameter upon non-
dimensionalization. In this thesis, the same parameters are used with the exception of γ,
which we set to 0.

Examining the parameters, it is evident that the diffusion of oxygen occurs at a sig-
nificantly higher rate than MDE diffusion and cellular motion. In fact, Gerlee and An-
derson [51] state that the oxygen field can be assumed to be in a quasi-stationary state.
Accordingly, we replace equation 2.35 with the time-independent equation

0 = dc∇2c+ λf − κn− µc, (2.42)

and isolate for c,

c =
(
dc∇2 − µ

)−1
(κn− λf) . (2.43)

A finite difference discretization is used to determine the solution to these equations
and zero flux boundary conditions are applied to confine the cells, MDEs, and oxygen to
the grid. It is difficult to ensure that the laplaican will have an inverse if we think of it as
an operator that acts on a space of functions. However, in this thesis, we consider it in a
numerial sense. Based on our boundary conditions, the inverse for the laplacian exists so
long as µ 6= 0.

One of the challenges of performing these calculations is that the matrix of the laplacian
is n2xn2 when discretized, where n2 is the number of lattice sites on the grid. Even though
we can build a sparse matrix dc∇2 − µ, we cannot guarantee that its inverse will also be
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sparse . To account for the increased computation cost, it is necessary to downgrade from
the 400 by 400 grid, used by Anderson and colleagues, to one which is 100 by 100. Despite
changing the dimensions of the grid, we continue to scale the mesh spacing so that each grid
point corresponds to the size of a single cell (i.e., ∆x = 1 since we are considering activity
on the cellular scale). With respect to the time step, we let ∆t = 1

2000
and we run the

simulations for 200 time steps. The simulations are initialized by setting an optimal con-
centration of oxygen, c(x, 0) = 1, and it is assumed that there are no MDEs, m(x, t) = 0.
Furthermore, we assume a random distribution of the ECM, with 0 ≤ f(x, 0) ≤ 1, and set
f(x, t) = 0 at any point occupied by a cell.

We begin by placing 81 proliferating cells at the centre of the grid (i.e., forming a
circle of radius 5). Each cell is given an identification number and a mutation number
between 1 − 100. In addition, each is also randomly assigned an age 0 ≤ age ≤ 15, a
maturation age 5 ≤ ageproliferation ≤ 15, and an internal adhesion value Ai. The value Ai
specifies the number of external neighbors Ae to which the cell preferentially adheres. If
Ai ≤ Ae, the cell will attempt to migrate. In this way, an overcrowded cell will be given the
opportunity to move toward a less dense region, provided that it has access to empty space.

To determine the effects of the ECM, we impose the condition that a cell is allowed to
move into a grid space only if the concentration of the ECM at that point is below a thresh-
old value ft. One argument is that the lower bound of this interval should be greater than
0 to account for the fact that the ECM acts as a scaffold on which the cell moves. How-
ever, since the ECM is randomly distributed, we argue that it is the length of this interval,
rather than its endpoints, that matters. Furthermore, selecting 0 as the lower bound seems
appropriate since Anderson and colleagues set f(x, t) = 0 at lattice sites occupied by a cell.

At each time step, we randomize the identification numbers of the cells is randomized
to ensure that this numbering system will not bias the final configuration of the tumor.
Then each cell is updated, one at a time. When considering a cell, we begin by examining
the oxygen concentration at the lattice site where it is positioned. If the input value is
below 0.05 or the consumption rate of the cell exceeds the amount available, the cell is
declared necrotic. Although these cells continue to occupy space, they ceases to produces
MDEs and to consume oxygen. On the contrary, if sufficient oxygen is available to a cell,
its age is increased and the focus shifts to its neighbors. The concentration of ECM at
each of the lattice sites which lie orthogonal to the cell is then analyzed, and information
is retained regarding the presence of other cells.
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If a cell has access to a sufficiently degraded, empty lattice site and has not yet reached
maturity, it is given the opportunity to migrate. If more than one lattice site is available,
the new position of the cell is selected at random. However, if the cell has reached maturity
but does not have access to empty space, it will enter quiescence. It will remain in this
resting state until one of its orthogonal neighbors becomes vacant, at which point it will
become proliferative once more. Any mature cell that has access to a sufficiently degraded,
empty lattice site will choose to proliferate rather than migrate. Of the two daughter cells
which result from the mitosis, one will remain at the same location as the parent cell while
the position of the other cell will be randomly selected among the available sites. The age
of the newly formed daughter cells is set to 0 and these cells are categorized as prolifera-
tive. Each time a cell is placed into an empty grid point xnew, whether by proliferation or
migration, the concentration of the ECM is reduced9 to f(xnew) = 0.

With each cell division, comes the potential for mutation, Pmut = 0.01, which we model
by overwriting the properties of the cell. Specifically, we randomly select 1 of the 100 pre-
defined phenotypes, each of which has an equal chance of being selected, and alter the cell’s
properties accordingly. During this process, the daughter cells’ proliferative age, oxygen
uptake, MDE production rate, and internal adhesion value may change.

Using this framework, we simulate how cellular dynamics unfold. In particular, changes
in the behavior and the properties of the cells are monitored. Close attention is also given
to the concentrations of oxygen, MDEs, and the ECM. The findings from our simulations
will be summarized next.

2.3.1 Results

Since oxygen is assumed to be in a steady state, it is not surprising that it is only the cells
around the leading edge which survive past the first time step. Even though the rate of
oxygen diffusion is high, it is not enough to offset the fact that the inner cells must share it
amongst themselves. Throughout the simulations, it is a combination of the consumption
rate, the oxygen diffusion rate, and the vicinity of the ECM which determines whether a
given cell survives.

9This indicates that oxygen is no longer produced at these points.
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Figure 2.13: An example of the distribution of the cells, the oxygen, the MDEs, and the
ECM after 200 time steps when ft = 0.4
.

An example of the final configuration of a tumor when ft = 0.4 is presented in Figure
2.13. One observation is the high concentration of oxygen surrounding the tumor10. This
is a consequence of the fact that oxygen is produced at each empty lattice site at a rate
proportional to the concentration of the ECM at that point. However, when the magni-
tude of the oxygen production term is reduced, the entire tumor dies during the first time
step. This suggests that this method may not be the best to accurately study the effects
of oxygen. Nevertheless, the spatial distribution of the subpopulations and the gradients
in the oxygen concentration suggest that we are still able to capture important properties
of oxygen-limited growth.

Figure 2.14 presents the final configuration of the cells for various values of the threshold
ft. Based on these results, we conclude that the ECM plays a significant role in restricting

10This result is consistent throughout all of the simulations for all values ft.
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(a) (b)

(c) (d)

tumor growth for ft ≤ 0.5. In support of this conclusion, we note that there are no pro-
liferating cells and that the quiescent cells form a thin ring around the necrotic core for
ft ≤ 0.3. The tumors maintain their small, compact structure and there does not appear
to be any sort of phenotype selection or preference. However, even if there was any, it
would be difficult to detect due to the low growth rate. The invasive distance of the tumor
and the population size slowly climb as the value of ft increases. When ft = 0.4, 0.5, the
tumor begins to exhibit branch- and finger-like margins, with proliferating cells located at
the very tip of these invasive extensions.

When we let ft = 0.6, the tumor’s size burgeons, with the cells growing around the
high density regions of the ECM. Moreover, a surge in the population of proliferating and
quiescent cells is observed. Some of the rapidly proliferating cells have a low maturation
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(e) (f)

(g) (h)

age or a low oxygen consumption rate, while others produce high quantities of MDEs.

When ft ≥ 0.7, a ring of proliferating cells encircles the quiescent cells which surround
the necrotic core. Within the tumor, the cells that border the impenetrable, high density
regions of the ECM have access to oxygen and are more likely to remain quiescent, re-
gardless of their distance from the leading edge. For larger values of ft, there are fewer
lattice sites with impenetrable ECM densities and phenotypes with a low proliferative age
dominate the tumor population. Thus, the size of the tumor increases and the number of
quiescent cells declines.

During these simulations, the migration of the cells could not be detected. This is
attributed to the fact that the migration probabilities dn∆t

∆x2 are of the order 10−7.
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(i) (j)

Figure 2.14: An example of the final configuration of the tumor for thresholds (a) ft = 0.1,
(b) ft = 0.2, (c) ft = 0.3, (d) ft = 0.4, (e) ft = 0.5, (f) ft = 0.6, (g) ft = 0.7, (h)
ft = 0.8, (i) ft = 0.9, (j) ft = 1.

2.3.2 Conclusions

The density of the ECM plays a vital role in the expansion of the tumor. For ft ≤ 0.3,
the invasion into the surrounding tissue is restricted, and the tumor remains small and
compact. When ft = 0.4, 0.5, long branches extrude from the core of the tumor into the
tissue. A significant change is seen for larger threshold values (i.e., ft ≥ 0.6), with the cells
growing around the high density barriers. Although various factors contribute to pheno-
type selection (i.e., high MDE degradation coefficient, low oxygen consumption rate), cells
with a low proliferation age are consistently selected, whenever the ECM poses little to no
restriction on the propagation of the cells.

The results we obtained are promising. As future work, we suggest incorporating
biological information about variation in the density of the tissue and including obstacles
such as organs in the simulation studies. Furthermore, the effects of cellular migration
should be examined.
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2.4 Analyzing and extending the HDC model

Despite an extensive investigation of related literature, no publication was found which
rigorously reviewed and analyzed the stability of the HDC model. However, models that
are similar to the continuous system discussed in Section 2.1.1 have undergone both sta-
bility and phase plane analysis (see: [50,55,62]).

Besides conducting the necessary mathematical analysis, we can expand this model
by including more biologically relevant details. For instance, cell preference to moderate
levels of stress can be addressed [49]. In general, this is incorporated into a model via an
algorithm which respects the well-known transition away from cell-cell adhesion in favor of
forming cell-matrix bonds. However, Armstrong [63], Gerisch [64], Chaplain [49] and their
colleagues present more intricate methods that can be used.

Armstrong et al. [63] present a continuous model which describes the binding of cell
adhesion molecules and cell sorting in response to surface tension. Their descriptions of
self-population adhesion and cross-population adhesion are particularly relevant to our
study of tumor progression. In the context of our investigation, we can apply their ideas to
replicate the development of a rim of proliferating cells which surrounds a ring of quiescent
cells and encloses the tumor’s necrotic core.

On the other hand, Gerisch and Chaplain [64] compare and contrast the effects of local
versus non-local adhesion. By systematically varying the radius of sensitivity of the non-
local adhesive pull, the ECM density, and cell-cell and cell-matrix adhesion coefficients,
they examine the role these variables play with regards to the speed and intensity of inva-
sion. Their work also takes into account cell crowding and its role in inhibiting haptotaxis
and regulating the ECM.

Chaplain et al. [49] take a markedly different approach by formulating a model which
explores the idea that the incorrect sensing of its contacts and its compressive state allows
a mutated cell line to induce hyperplasia and abnormal cell growth. In this model, biome-
chanical factors, such as the perception and response to stress, are discussed in the context
of porous media. In addition, tumor progression is shown to trigger morphological and
chemical changes in the ECM and the concept of normal and abnormal ECM is introduced.

This ties well with a study conducted by by Anderson and colleagues [22] which ex-
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plores the concept of micro-environmental independence. Anderson et al. claim that since
cancer is a disease marked by deregulation and the disruption of normal controls, it is
reasonable to assume that the fitness of cancer cells may be independent of environmental
controls, such as the availability of space, growth factors, and nutrients. The results from
this model suggest a preference for micro-environment dependent cells in environments
with a low cost of reliance, and micro-environment independent cells in a resource-limited
scenario.

In keeping with the theme of incorporating new parameters, another topic that can
be examined is biased migration in response to gradients of multiple external stimuli, r.
To accomplish this, Anderson [59] suggests using a modified version of the cell density
equation
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where r = [r1r2r3...rw]T is a vector representing the different external stimuli, and f rep-
resents other forms of directed migration (i.e., convection). Here it is assumed that the
diffusive stimuli satisfy

∂r

∂t
= D∆r + g(r, n).

where g specifies the reaction kinetics.

When considering migration, it seems reasonable to allow variance in the distance trav-
elled by the cells during each time step, and to explicitly incorporate chemotaxis. To
take chemotaxis into account, one can either model cellular motion up gradients of oxygen
or couple a forward-pulling haptotactic force with a retarding or restraining chemotactic
pull [31]. Before incorporating these changes it is important to keep in mind that there is
no experimental evidence that cancer cells respond chemotactically to nutrients [36] and
that haptotaxis has only been measured in vitro [8]. Currently, the existence of haptotaxis
is a hotly contested and controversial issue. Perumpanani and his colleagues [31] claim
that our understanding of the architecture of tissue suggests that haptotaxis is a major
component of directed motion. However, Anderson and Quaranta [8] refute this statement,
expressing their opinion that it is more likely that proteolytic activity in the tissue results
in the rearrangement of the ECM rather than in the generation of smooth haptotactic
gradients. This highlights the need to develop new tools which extract biological details
and increase our knowledge of the biomechanics of cancer progression.
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In addition to these ideas, it seems reasonable to incorporate the effects of cell metabolism.
To accomplish this, Ferreira and colleagues [65] model a tumor which is supplied nutrients
via a single capillary vessel at the top of the lattice. In this case, two types of nutrients are
considered: a generic one that is necessary for cell survival and motility and one specific
to cell division. It is in this context that migration, morphological patterns, and nutrient
distribution and demand are examined.

In Ferreira’s model and in the one presented by Piotrowskia and Angus [10], more than
one cancer cell is able to occupy a single lattice site. The significance of this feature is
that it allows for the restrictions on division to be eased and for the increased density of
the proliferative rim to be taken into account [10]. Piotrowskia and Angus use this frame-
work to describe the induction of glycolysis (i.e., anaerobic respiration) by hypoxia. They
then examine the concentration of acid that is produced through glycolysis and its impact
on the cell population. Their model suggests that acid alone is not sufficient to generate
necrosis in the absence of nutrient deficiency and that the toxicity caused by the decline
in pH serves solely to provoke quiescence.

Smallbone et al. [52] explore tumor progression and metabolism in the context of ductal
anatomy. Their results indicate that the depletion of the oxygen source allows cells which
have acquired hyperplastic, glycolytic, and acid resistant properties to flourish. These
traits are acquired and accumulated via random mutations and are reversible albeit with
small probability. By examining population dynamics, the benefit of each mutation can
be gauged. Based on their analysis, Smallbone and colleagues suggest an overwhelming
preference for cells which first acquire hyperplasticity, then switch to glycolysis, and finally
become acid-resistant.

In a related study on pre-neoangiogenic tumor development, Patel et al. [66] examine
cell metabolism and the relationship between pH and tissue vasculature. The key variables
in this model are normal cells, tumor cells, blood vessels, oxygen, glucose, and lactic acid.
To take into account the blood flow, a random microvascular network is generated through
which metabolic substrates are delivered and metabolites are removed. This model suggests
that cancer cells favor environments where the acid level is sufficiently high to eliminate
normal cells but the vasculature is still able to prevent self-toxification.

The hybrid discrete-continuum model highlights the evolutionary nature of cancer pro-
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gression [8]. In particular, we see how the selective pressures in a harsh environment impact
tumor genetics by favoring mutations that drive competitive behavior. Thus, clonal selec-
tion oversees that the best adapted phenotypes emerge to dominate the tumor population.
A different way to examine the evolution of cellular phenotypes is by using a feed-forward
neural network to model the decision-making mechanisms of the cells. This approach will
be examined in the next chapter and will be used to analyze tumor growth, motility, and
cellular metabolism.
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Chapter 3

Evolutionary Hybrid Cellular
Automaton

The evolutionary hybrid cellular automaton (EHCA) model builds upon the foundations
of the HDC model and employs an artificial neural network to drive the behavior of the
cells. The strength of this approach is its ability to provide insight into the dynamics at
the subcellular scale and to illustrate how a cell’s genotype may drive its response to cues
from its microenvironment [21,23].

To build an artificial network, we can train a system by collecting a set of read-
ings from the tumor environment and then linking each sample with the appropriate re-
sponse [14,51,67]. Once sufficiently trained, the system can be used to predict the outcome
for an unknown sample that has not been previously considered. An error minimizing al-
gorithm, such as back-propagation, is often used to optimize the accuracy of this approach.

3.1 The Response Network

In this chapter, we will describe an EHCA model of tumor development. We will consider
a pre-vascular stage of cancer where various phenotypes co-exist and propose that the dis-
ruption of the response network is at the root of abnormal tumor growth [51,67].
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To model a 2-dimensional slice of the tumor tissue, Gerlee and colleagues use an NxN
grid on which each lattice site contains a cancerous cell or is empty. Initially, the oxygen
concentration is evenly distributed over the domain and aggressive subclones1 that lack
growth inhibition are placed at the centre of the grid [17]. There are many different ways
the network can be designed to capture the appropriate cellular interactions. Gerlee and
colleagues claim that this does not pose a problem since they are interested in studying the
evolution of the network, which is largely independent of the initial wiring [51], and aim
to produce the appropriate response rather than to mimic particular signaling pathways.

To increase the reliability of their model, Gerlee and Anderson update the tumor cells
at random. At each time step, the cells sample their local environment (i.e., the grid
point). In the simplest case2, they retrieve the number of neighbors n(x, t) and local oxy-
gen concentration c(x, t), and let ξi = (n(x, t), c(x, t)) denote a cell surface receptor. The
emphasis on these two variables stems from the ability of cancer cells to avoid hypoxia
induced apoptosis and their tendency to separate from their neighbors [17].

To model the transfer of information from the cell surface receptors through molecular
pathways, a deterministic artificial feed-forward neural network is used, with the behavior
of the cells predicted and classified based on the network weights and thresholds. Although
this is a very abstract approach, Gerlee and Anderson assert that it embodies features of
in vivo signaling and regulatory networks [51].

A visual representation of the response network is illustrated in Figure 3.1 [51]. In this
diagram, node j in the hidden layer Vj is equipped with a threshold θj. Similarly, node i
in the output layer Oi has a threshold φi. Links of varying strength connect the nodes in
the different layers. Use of the transform function

T (x) =
1

1 + e−βx
. (3.1)

ensures that the value of these nodes remains within the range of [0, 1].

To define the connections between the input and hidden layers, Gerlee and colleagues
use the matrix w where wjk is the connection strength between the kth node in the input

1Two cells are considered to be subclones if they have an identical response network.
2In later sections the concentrations of glucose and hydrogen ions will also be considered.
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Figure 3.1: The response network
A schematic of the connections linking the input, hidden, and output layers. Adapted from
Gerlee and Anderson [67].

layer ξk and the jth node in the hidden layer Vj [67]. The value of node Vj is determined
using a weighted sum and the transfer function T (x) with

Vj = T

(∑
k

wjkξk − θj

)
. (3.2)

A similar procedure is applied when examining the connections between the hidden and
output layers. Here, the connections are defined by a matrix W where Wij determines the
connection strength between node j in the hidden layer Vj and node i in the output layer
Oi with

Oi = T

(∑
j

WijVj − φi

)
= T

(∑
j

WijT

(∑
k

wjkξk − θj

)
− φi

)
. (3.3)

To successfully interpret the response network, we must understand the biological as-
sumptions made by the authors. In the next section, we will review the interpretation of
the cell cycle presented by Gerlee and colleagues.
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Figure 3.2: The life cycle of a cancer cell
Adapted from Gerlee and Anderson [54].
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3.2 The Life Cycle of the Cells

The mitotic age of a cell is a normally distributed variable with N(Ap,
Ap
2

) where Ap is the
base proliferation age [51]. A newly formed cell has age 0 and develops according to the
life-cycle flow chart presented in Figure 3.2.

When a cell attains its proliferative age and cell division is determined as the network
response, the network parameters are copied to the daughter cells and then adjusted to
account for mutations. The probability of mutation is pmut = 0.01 and the number of
mutations is generated using a Poisson distribution. Mutations are assumed not to pos-
sess directionality and are randomly dispersed throughout the matrices which specify the
threshold levels, the properties of the nodes, and the strength of the connections. To model
a mutation, a normally distributed number s is summed with the appropriate matrix entry,
where s ∈ N(0, σ) and σ indicates the mutation strength. Hence, if x is an entry selected
for mutation, then x→ x+ s.

Mutations will up-regulate or down-regulate the connections between the nodes [67]
and thereby control the fitness of the cell and its response to its micro-environment. In
this so called open-ended model, the cell’s genotype is not confined to a predefined set.
In fact, a mutation can occur at a link that was initially set to zero (i.e., a mutation can
create new connections between nodes).

Consider a mutation that decreases the weight between the nodes which correspond to
the number of neighbors and the proliferative response. This will cause increased prolif-
eration if the cell has a weak response to contact inhibition. On the other hand, the cell
will become more resilient to hypoxia if subject to a mutation that increases the weight
connecting the nodes that designate the oxygen concentration and the apoptotic response.

Biologically, the strength of the connections linking the input and the hidden layers
represents the signaling strength of the receptors. Hence, a mutation in these connections
corresponds to a change in the expression level of the receptors. On the other hand, the
hidden layer can be thought of as the processing layer [51,67]. Mutations here are akin to
modifying the expression of the regulatory genes.

The output layer determines the cellular response based on the input vector, the weight
matrices, and the threshold vectors. To describe the phenotype of the cell, the response
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vector R = R(ξ,G), where G is the genotype, may provide continuous or Boolean in-
formation [17, 23]. This vector conveys the “average” response of the cell and should be
interpreted as the likelihood of observing the different outcomes. Accordingly, this vector
can also be viewed as the steady-state of the gene regulatory network if the intra-cellular
dynamics are assumed to occur at a significantly faster rate than the changes in the cell’s
environment [67].

By examining the magnitude of each component of the output vector, one can deter-
mine whether the cell proliferates, becomes/remains quiescent, or dies3. Of these three
mutually exclusive outcomes, the strongest response is declared to be the cell’s state. If
proliferation is the determined response, it is necessary to ensure that the maturation age
has been attained and that sufficient space is available for the daughter cells to form (i.e.,
n(x, t) ≤ 3). If these conditions are not satisfied, the cell enters quiescence. Cell death
occurs when apoptosis is selected as the network response, via necrosis when the oxygen
level falls below a predetermined threshold h(x, t) < 0.15, or at a random rate indepen-
dent of the network response [14]. Regardless of the cause of mortality, dead cells are not
updated.

In some studies, the grid point which holds the dead cell is declared empty at the begin-
ning of the next time step, regardless of the cause of death [14,67]. In others, necrotic cells
occupy space while the apoptotic cells are discarded at the next time step [51]. To account
for the immune system, Gerlee and Anderson [54] also model a scenario where a necrotic
cell will occupy space until it is removed after a given timeframe, specifically tN = 5 cell
cycles. It should be noted that the value of the apoptotic threshold, h, is difficult to obtain
experimentally and is known to depend on the properties of the cell and the vasculature.

Although various chemicals are indispensable for cell maintenance and division, oxygen
c is the focus of these simulations. In this model, oxygen production is expressed in a
manner consistent with a scenario where the tissue is surrounded by blood vessels that
supply nutrients at a constant rate [23]. Specifically,

∂c(x, t)

∂t
= Dc∆c(x, t)− fc(x, t) (3.4)

3Motility and the metabolic pathways will also be considered in the following sections.
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where Dc is the diffusion constant and

fc(x, t) =

{
0 if the automaton element at x is empty
κF (x) if the automaton element at x is occupied

(3.5)

The variable κ denotes the base consumption rate and F (x) = max{k(R − Tr) + 1, 0.25}
is a modulation function with target response4 Tr, life cycle response R, and strength k.
By using this modulation function, it is ascertained that the nutrient consumption rate is
proportional to the strength of the network response and cellular metabolism is restricted
to at least a quarter of the base-line consumption rate. Proliferating cells are assumed to
consume oxygen at a rate k0 while the consumption rate of the quiescent cells is kq < k0 [17].

3.3 Oxygen Modulated Growth

Motivated by clinical trials that indicate a strong correlation between hypoxia and poor
prognosis, Anderson and colleagues explored the relationship between oxygen availability
and tumor growth. As expected, the results from their simulations clearly demonstrate
that decreased oxygen levels are conducive to the selection of aggressive phenotypes and
the expression of invasive features [23].

Stable growth can be observed when a high concentration of oxygen, c(x, 0) = c0, is
dispersed throughout the domain. In this environment, a large, compact tumor forms.
This tumor has a smooth boundary and is characterized by a wide proliferating rim which
encloses a small cluster of quiescent cells [51,67]. After the tumor attains a critical size, a
slowly expanding necrotic core is seen to emerge, as illustrated in Figure 3.3. Meanwhile,
Figure 3.4 shows that tumor growth is slowed, both in terms of the invasive distance5

and the total number of cells, when the initial oxygen level is decreased. In this case,
the tumors which form are noted to exhibit finger-like and branched patterns along their
gradually disintegrating boundaries. In addition, they are composed almost exclusively of
dead cells and only those cells which are at the very tips of the finger-like margins survive
in the face of stiff competition [19]. Hence, the only way that a cell can ensure the survival
of its progeny is by placing the daughter cells outside of the tumor boundary, where oxygen

4Tr is the response of a normal cell.
5The invasive distance is the distance from the centre of the grid (e.g., the centre of the tumor) to the

most distant cell. To compensate for stochasticity in the system, this value is averaged over 20 simulations.
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Figure 3.3: The effect of oxygen on tumor growth
Tumor growth is assessed in environments with high (top) and low (centre) oxygen avail-
ability. The proliferating cells are red, quiescent cells are green, and dead cells are blue.
The bottom panel illustrates the oxygen concentration in the low oxygen scenario. Reprinted
from Biosystems, 95, P. Gerlee and A.R.A Anderson, Modelling evolutionary cell behaviour
using neural networks: Application to tumour growth, 166-174, Copyright (2009), with per-
mission from Elsevier. http://www.sciencedirect.com/science/journal/03032647 [67]
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Figure 3.4: Time evolution of the (a) invasive distance and (b) the total number of the
cells for oxygen background concentrations: c0

10
, c0

2.5
, and c0.

Reprinted from Journal of Theoretical Biology, 24, P. Gerlee and A.R.A.
Anderson, An evolutionary hybrid cellular automaton model of solid tu-
mour growth, 583-603, Copyright (2007), with permission from Elsevier.
http://www.sciencedirect.com/science/journal/00225193 [51]
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is more readily available.

In Anderson et al. [17], the effects of oxygen switching on tumor growth are assessed.
In these simulations, each cell has a unique genotype that is one mutational step away from
an ancestral clone. Initially, a high concentration of oxygen is available to the cells. This
allows the tumor to develop a thin proliferating rim around its quiescent core. The tumor’s
area expands at a rate that is proportional to its radius while the number of quiescent cells
increases at a rate proportional to the square of the radius. When the oxygen level is
lowered, a necrotic core develops. As shown in Figure 3.5, widespread cell death kills all
but a few isolated groups of cells that form finger-like structures around the leading edge
to maximize their access to space and nutrients. When the oxygen concentration is sub-
sequently increased and then decreased, periods of rapid proliferation and invasive growth
are observed, respectively.

From their simulations, Anderson et al. ascertain that the width of the proliferating
rim d is

d ∼ 1− h
τk

, (3.6)

where τ is the maturation age, h is the apoptotic threshold, and k is the consumption
rate [17]. This means that a large flux in the oxygen concentration will amplify spatial
perturbations, contributing to the instability of the system. Likewise, a high consump-
tion also correlates well with unstable growth and the development of a thin proliferating
rim [68].

3.3.1 Population Dynamics

In order to study population dynamics, the proportion of proliferating, quiescent and
apoptotic cells S = (|xP |, |xQ|, |xA|) is determined using the formula |xi| = 1

B

∫
I
δi,R(x)dx

for i = P,Q,A where B is the volume of the input space. Once these calculations have
been performed, each entry in the response vector is grouped into one of 10 equal sized
bins. In this way, the number of phenotypes is reduced to a manageable size [22].

In Figure 3.6, the effect of oxygen on the phenotype distribution is examined. When
oxygen is readily available, there is a steady decline in the initial phenotype and several
mutants emerge, albeit in low abundance. There is a slight network bias which favors
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Figure 3.5: The effect of oxygen switching on tumor morphology
The spatial distribution of the cells (left, centre) and the oxygen concentration (right) for
the oxygen switching experiment. The proliferating cells are red, quiescent cells are green,
and dead cells are blue. Springer and the Journal of Mathematical Biology, 58, 2009, 579-
624, Microenvironment driven invasion: a multiscale multimodel investigation, Alexander
R.A. Anderson, Katarzyna A. Rejniak, Philip Gerlee, and Vito Quaranta, Fig. 11; with
kind permission from Springer Science and Business Media. [17]
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Figure 3.6: The time evolution of the relative phenotype abundance
in high (left) and low (right) oxygen environments. The response vectors of the most
abundant phenotypes are displayed. Reprinted from Biosystems, 95, P. Gerlee and
A.R.A Anderson, Modelling evolutionary cell behaviour using neural networks: Appli-
cation to tumour growth, 166-174, Copyright (2009), with permission from Elsevier.
http://www.sciencedirect.com/science/journal/03032647 [67]
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cells with a shorter maturation period, but this effect is weak [22]. In contrast, the ini-
tial phenotype becomes extinct in the hypoxic environment. In its place, a single clone is
seen to flourish, encompassing approximately 70% of the population within 100 time steps.
This clone is characterized by the loss of growth inhibition and will attempt to proliferate
regardless of environmental stress.

The Shannon index

H = − 1

ln(N)

N∑
i=0

piln(pi), (3.7)

where pi is the probability of finding genotype i and N is the number of distinct genotypes,
is a helpful tool that can be used to accurately measure genotype diversity [17]. The value
of H ranges from 0 (i.e., all of the cells have the same genotype) to 1 (i.e., no two cells
have the same genotype).

In Gerlee and Anderson [67], the authors set H(0) = 0 and examine how differences in
the availability of oxygen impact the Shannon index. The results of this study are illus-
trated in Figure 3.7. In a highly oxygenated environment, a slow increase in the Shannon
index can be seen, with this value rising to H ≈ 0.5. In comparison, a sharp increase is
observed when there is only scarce oxygen and the value settles around H ≈ 0.7. In the
latter scenario, a faster convergence toward the aggressive phenotypes is noted, with com-
petition favoring cells with a high proliferative potential and low consumption rate [51].
Directionality in mutation and phenotype selection is strongly implied based on the obser-
vation that these highly heterogeneous tumors have low variance in size [51].

In a series of simulations, the results of which can be seen in Figure 3.8, oxygen switch-
ing is examined. At the onset of these simulations, the Shannon index is set to H(0) = 1 in
a highly oxygenated environment. As the tumor grows, genotype diversity decreases and,
although different phenotypes continue to peacefully co-exist, rapidly proliferating cells
become increasingly abundant. A drop in the background oxygen concentration, and the
resulting cell death, generate extreme fluctuations in the phenotype distribution, as the
number of distinct phenotypes plummets from 39 to 4 within a few time steps. A simulta-
neous spike in genotype diversity is observed. Once the cells’ behavior has stabilized, the
oxygen concentration is raised. This prompts a steep drop in genotype diversity but only
minor changes in the phenotype distribution. When the oxygen concentration is lowered
one last time, the Shannon index quickly converges to a value of approximately 0.9 and
over 80% of the cells are observed to have the response vector S = (1, 0, 0).
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Figure 3.7: The time evolution of the Shannon index in low and high oxygen environments
Reprinted from Biosystems, 95, P. Gerlee and A.R.A Anderson, Modelling evolutionary cell
behaviour using neural networks: Application to tumour growth, 166-174, Copyright (2009),
with permission from Elsevier.http://www.sciencedirect.com/science/journal/03032647
[67]
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Figure 3.8: The time evolution of the relative phenotype abundance and the Shannon index
The relative abundance of each of the 100 randomly defined phenotypes (left) and the
Shannon index (right) is shown for the oxygen switching experiment. In both diagrams, the
grey areas correspond to periods with high oxygen availability. Springer and the Journal of
Mathematical Biology, 58, 2009, 579-624, Microenvironment driven invasion: a multiscale
multimodel investigation, Alexander R.A. Anderson, Katarzyna A. Rejniak, Philip Gerlee,
and Vito Quaranta, Fig. 13; with kind permission from Springer Science and Business
Media. [17]
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At first glance, the inverse relationship between phenotype and genotype diversity may
seem peculiar. However, it seems reasonable to observe higher genetic variability in an
oxygen starved environment by virtue of the increased selective pressures and the high cell
turnover rate. Furthermore, it is important to keep in mind that many of the genotypes
are redundant and correspond to the same phenotype. Some may be concerned that the
number of phenotypes is influenced by the manner in which they are binned. To take this
into account, Anderson et al. group the data using a variety of different techniques [17].
Regardless of the method used, their results remained consistent.

These simulations corroborate current views of cancer biologist regarding the influence
of oxygen on the evolution of phenotype and genotype diversity and tumor morphology. In
particular, aggressive cells with a reduced apoptotic potential are recognized as being the
best suited to survive under harsh conditions and are consistently shown to drive tumor
progression. Two other characteristics of malignant cells are a reliance on glycolysis and
an increase in motility. These topics will be explored in the next section.

3.4 Metabolism and Motility

3.4.1 Metabolism

Under normal conditions, cells produce energy via aerobic respiration (i.e., the Krebs-cycle)
with

Glucose + 6O2 → 6CO2 + nAATP (3.8)

where nA is the number of ATP molecules6,7 produced during the oxidation of a glucose
molecule. However, according to the Warburg effect, cancer cells tend to rely on anaerobic
metabolism (i.e., glycolysis) [52] with

Glucose → 2lactic acid + 2ATP. (3.9)

Comparing equations 3.8 and 3.9, glycolysis is observed to produce an excess of hydrogen
ions and is 18 times less efficient at creating ATP molecules.

6Although this value is cell specific, Gerlee et al. consistently assume that nA = 36.
7ATP is defined as the energy unit of the cell [51].
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Since anaerobic respiration will allow cells to survive in a poorly oxygenated environ-
ment, it seems logical that it is upregulated during hypoxia. However, it is somewhat
surprising that glycolysis persists even in the abundance of oxygen, especially when con-
sidering the fact that it is a less efficient way to produce energy and may limit cell prolifer-
ation [52]. In addition, if the production of hydrogen ions overcomes the buffering capacity
of the tissue, the vasculature may be unable to transport the ions away from the cells at a
sufficiently high rate [19]. Ultimately, this will cause the pH in the tissue to decrease and
self-acidification may follow [54].

To incorporate glycolysis, Gerlee and Anderson [51,54,69] expand their model to include
the concentrations of glucose and hydrogen ions as input nodes, and establish a connection
network which determines whether a cell will undergo anaerobic or aerobic metabolism.
The value of this output node specifies both the metabolic pathway and the metabolic
rate. Although, anaerobic and aerobic metabolism are considered to be two mutually ex-
clusive biological processes here, a cell may rely on a combination of these two pathways
in vivo [54].

The amount of nutrients consumed by a cell depends on its metabolic pathway and life
cycle status. If the oxygen concentration dips below the threshold cm, then there is an
automatic switch to anaerobic metabolism [51]. On the other hand, a cell will die from
starvation if it tries to consume more glucose than is available or if the concentration drops
below the threshold gap = 0.5g0.

As mentioned above, the production of hydrogen ions is a by-product of anaerobic
metabolism. Although cancer cells are able to survive in more acidic environments, a nor-
mal cell will undergo apoptosis if the pH drops below 7.1 in its micro-environment. If the
pH continues to decline and falls below hap = 6.5, the cell will die from apoptosis regardless
of its network response. Gerlee and Anderson [54] propose that chronic acidification de-
grades the ECM, creating an acellular gap between the normal tissue and the tumor. This
grants cancerous cells a clear advantage, allowing them to invade into the tissue without
having to compete against normal cells when 6.5 ≤ pH ≤ 7.1.
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3.4.2 Cell Motility

To describe the motion of the cells, Gerlee and Anderson consider a path-finding mode
in which the cells move by pushing through existing gaps and pores in the ECM [69].
Since they are not interested in the degradation of the matrix when they adopt this ap-
proach, they ignore specifics regarding the composition and the density of the ECM and
the size of the different cells. Initially, they let the ECM density be f(x, 0) = 1 + s
where s ∈ [−0.2, 0.2] is a uniformly distributed variable that is determined randomly at
each grid point. At each time step, max{∆xf,∆yf} is input into the response network,
where fi,j is the concentration of the ECM at the point (i, j), ∆xf = |fi+1,j − fi−1,j|, and
∆yf = |fi,j−1 − fi,j+1|.

Suppose that the network’s decision is that the cell will migrate. Since migration, pro-
liferation, and chemical diffusion are all on different time scales, a random number r ∈ [0, 1]
is generated and an additional constraint is imposed, namely that the cell will be allowed
to move only if R(ξ,G) · pm > r. If this condition is satisfied, the cell will move one grid
point up the larger gradient, provided that this lattice site is unoccupied.

Gerlee and Anderson [54] also propose a path generating mode in which the cells de-
grade the ECM at a constant rate, ec = 0.1. When considering this approach, the density
of the matrix at each grid point is closely monitored and a cell is allowed to migrate to a
neighboring site only if the density there falls below the threshold et ∈ [0.65, 0.9].

For both the path-finding and path-generating algorithms, the changes in the ECM
satisfy:

∂f(x, t)

∂t
= −ecI(x, t)f(x, t)− eh(h(x, t)− h0)f(x, t) (3.10)

where ec = 0.1 is the rate at which the ECM is degraded by short-range MDEs at sites
adjacent to the lattice point being considered and eh = 10−3 is the rate at which the acid
degrades the ECM. The latter value is considerably smaller to signify the fact that the
effects of acid on the matrix are poorly understood, and to limit the growth advantage
of the glycolytic cells [17]. The indicator function I(x, t) designates the number of cells
adjacent to x and alternates between examining the cells’ orthogonal and diagonal neigh-
bors to avoid acid anisotrophy [17]. Finally, h0 is the acid concentration in normal tissue;
hence, the expression h(x, t)− h0 signifies that the acid-induced degradation of the ECM
occurs at a rate proportional to the amount of excess acid.
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When modeling the environment around the cells, oxygen, glucose, and hydrogen ions
are also considered. In particular, it is the set of equations

∂c(x, t)

∂t
= Dc∇2c(x, t)− fc(x, t) (3.11)

∂g(x, t)

∂t
= Dg∇2g(x, t)− fg(x, t) (3.12)

∂h(x, t)

∂t
= Dh∇2b(x, t) + fh(x, t) (3.13)

where

fi(x, t) =

{
0 if the automaton element at x is empty
κiF (x) if the automaton element at x is occupied

(3.14)

which describe tissue dynamics. Here c, g, and h are the concentrations of oxygen, glucose,
and hydrogen ions, respectively and Dc, Dg, and Dh are the respective rates of diffusion.
fc(x, t) and fg(x, t) denote the respective rates at which oxygen and glucose are consumed,
while fh(x, t) is the rate at which hydrogen ions are produced. As mentioned above, κi is
the base consumption rate and F (x) = max{k(R−Tr) + 1, 0.25} is a modulation function
where Tr is the target response, R is the life cycle response, and k determines the strength
of the modulation.

In equation 3.13, the hydrogen ions are modeled to diffuse through the tissue as they
move toward the blood vessels, through which they are then transported away from the
tumor. One immediate concern with this assumption is that basic diffusion laws would
induce charge separation. In truth, these ions diffuse in association with mobile buffering
species, such as bicarbonate, phosphate, or amino acids. Although their movements may
be approximated by simple diffusion, Smalbone et al. [52] emphasize that the diffusion
coefficient must be properly modified.

To model the blood vessels that surround the tissue, supply nutrients, and remove
hydrogen ions, the boundary condition c(x, t) = g(x, t) = h(x, t) = 1 for x ∈ ∂Ω are intro-
duced [51]. In addition, the initial conditions are set to c(x, 0) = g(x, 0) = h(x, 0) = 1.
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3.4.3 Population Dynamics

In Gerlee and Anderson [54], the cells can mutate to become hypoxia adapted, glycolytic,
or acid resistant. In an environment with weak selection pressures, only a few mutant
cells are visible and they tend to die out. However, if the oxygen source is gradually
depleted, a sharp increase in the hypoxia adapted and glycolytic cells will be observed
as the necrotic core beings to expand. As seen in Figure 3.9, over 70% of the cells be-
come glycolytic when exposed to a low oxygen environment for a prolonged period of time.
This switch to anaerobic respiration gives rise to a surge in the production of hydrogen
ions and ultimately alters the fitness landscape to favor the survival of acid-resistant clones.

For a given acid production rate, Gerlee and Anderson [54] note that there is an optimal
range of vessel densities that maximize tumor growth. Outside of this range, high vessel
densities ensure that the hydrogen ions are removed at a rate which prevents acid induced
tissue degradation, while low densities evoke cell death from self-acidification.

The morphochart presented in Figure 3.10 shows that increasing the matrix density
stabilizes growth and contributes to the formation of compact tumors with smooth, circu-
lar boundaries. In particular, we note that the tumors in the low oxygen environment form
progressively wider fingers as the matrix density is increased. In the least dense matrix, a
rough tumor boundary is observed, regardless of the availability of oxygen.

It is not surprising that glycolytic phenotypes thrive in dense and poorly oxygenated
tissue [54]. As the matrix density is decreased and the selection pressures become weaker,
there is a steady decline in the probability that the glycolyic cells will dominate. In fact,
there is a near zero probability in a low density matrix with abundant oxygen. Results
for acid resistance are similar; however the probability that the acid resistant clones will
dominate the cell population is notably higher in oxygen rich, high density regions.

With an “almost universal presence of aerobic glycolysis in . . . a wide range of cancers
arising in multiple different sites” [52], the importance of studying cell metabolism can-
not be sufficiently stressed. As Smallbone and colleagues [52] point out, there is a direct
correlation between the presence of aggressive clones and the rate of glucose consumption.
Furthermore, increased glucose uptake and high lactate levels indicate an increased chance
of tumor recurrence and an overall poor prognosis [52, 66]. Without a doubt, this is a re-
search area which will continue to offer keen insight into tumor dynamics in the near future.
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Figure 3.9: The time evolution of the hypoxia adapted, glycolytic, and acid resistant
phenotypes
The bottom panel illustrates the evolution of the tumor morphology during the simula-
tion. Reprinted from Journal of Theoretical Biology, 250, P. Gerlee and A.R.A. Ander-
son, A hybrid cellular automaton model of clonal evolution in cancer: The emergence
of the glycolytic phenotype, 705-722, Copyright (2008), with permission from Elsevier.
http://www.sciencedirect.com/science/journal/00225193 [54]
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Figure 3.10: Tumor development for various background oxygen concentrations and matrix
densities
The proliferating cells are red, quiescent cells are green, necrotic cells are yellow, and
apoptotic cells are blue. Reprinted from Journal of Theoretical Biology, 250, P. Gerlee and
A.R.A. Anderson, A hybrid cellular automaton model of clonal evolution in cancer: The
emergence of the glycolytic phenotype, 705-722, Copyright (2008), with permission from
Elsevier. http://www.sciencedirect.com/science/journal/00225193 [54]
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Figure 3.11: The spatial distribution of the cells in a high oxygen environment
In this simulation, the asymmetric morphology on the left side of the tumor is attributed
to the emergence of a haptotactic clone. The proliferating cells are red, quiescent cells are
green, necrotic cells are yellow, moving cells are cyan, and dead cells are blue. Reprinted
from Journal of Theoretical Biology, 259, P. Gerlee and A.R.A. Anderson, Evolution of
cell motility in an individual-based model of tumour growth, 67-83, Copyright (2009), with
permission from Elsevier. http://www.sciencedirect.com/science/journal/00225193 [69]

3.4.4 Go versus grow

When describing movement through the ECM, Gerlee and Anderson [69] model a system
in which proliferation and migration are mutually exclusive and a mutation is required to
allow a cell to switch from one mode to the other. However, even if the cell prefers to
migrate, it must sense a sufficiently large gradient in the ECM to do so, and will prolif-
erate otherwise. To emphasize hypoxia-driven motility, the magnitude of this gradient is
reduced in a low oxygen environment. Likewise, a steeper ECM gradient is required when
the cell is surrounded by many neighbors to account for contact inhibition. According to
the simulations performed by Gerlee and Anderson, a tumor composed of motile subclones
tends to have an asymmetric and fragmented boundary, low cell density, and a sparse
distribution [69]. Depending on whether the oxygen concentration is high or low, it will
exhibit either a compact or branched morphology, as seen in Figures 3.11 and 3.12.

Gerlee and Anderson [69] also examine the selection of haptotactic clones in various
environments. They claim to obtain inconclusive results (i.e., see Figure 3.13) but mention
that there is an indication that motile cells are favored in soft tissue and in environments
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Figure 3.12: The spatial distribution of the cells in a low oxygen environment
Branched morphology is observed, with the motile subclones located in the top part of the
tumor. The proliferating cells are red, quiescent cells are green, necrotic cells are yellow,
moving cells are cyan, and dead cells are blue. Reprinted from Journal of Theoretical
Biology, 259, P. Gerlee and A.R.A. Anderson, Evolution of cell motility in an individual-
based model of tumour growth, 67-83, Copyright (2009), with permission from Elsevier.
http://www.sciencedirect.com/science/journal/00225193 [69]
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Figure 3.13: The time evolution of the proliferating, quiescent, apoptotic, and migratory
cells
Panels (a) and (b) map the time evolution of the average response vector of the tumors
shown in Figures 3.11 and 3.12, respectively. In panels (c) and (d), the cells are subject to
identical micro-environmental conditions as (a) and (b), respectively, but evolve to form
proliferating clusters (instead of motile clusters). Reprinted from Journal of Theoretical
Biology, 259, P. Gerlee and A.R.A. Anderson, Evolution of cell motility in an individual-
based model of tumour growth, 67-83, Copyright (2009), with permission from Elsevier.
http://www.sciencedirect.com/science/journal/00225193 [69]
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with intermediate oxygen levels. Sensitivity analysis also shows that increasing the prob-
ability of mutation corresponds to an increase in the growth rate but, generally, will not
alter evolutionary dynamics. As an exception to this rule, the migratory phenotypes will
become suppressed when movement and proliferation are on the same time scale and no
clear advantage is conferred to these cells (i.e., the cells can invade the tissue faster if they
proliferate rather than migrate).

3.5 Conclusion

Using the EHCA model allows researchers to study how the genotype drives the behavior
of the cell and how mutations in the signaling network can alter the cellular response to
the environment. Hence, a cell’s evolution and adaptation can be assessed as well as the
relationship between the fitness of a clone and its micro-environment [51, 67]. Initially,
a limited supply of oxygen drives evolutionary forces that favor cells that can effectively
compete for nutrients [67]. Accordingly, glycolytic and migratory phenotypes will often
come to dominate the population [69]. However, a by-product of glycolysis is the produc-
tion of acid. Although the precise impact of acidification on peritumoral tissue is relatively
unknown, Gerlee’s model indicates that if it promotes the degradation of the ECM, it will
increase the prominence of glycolysis and stimulate tumor invasion [54].

On the contrary, if the cells are exposed to high levels of nutrients and the acid can be
effectively removed by the vasculature, the selective pressures favoring aggressive clones
disappear and invasive features in the tissue fail to materialize [54]. This suggests that
treatments should aim to normalize the tissue since hostile environments serve only to
destabilize the morphology and to induce aggressive behavior in the cells. Alternatively,
there is no longer a preferred phenotype associated with a given micro-environment when
the cells can take on either migratory or proliferative capabilities [69]. In this case it be-
comes much more difficult to develop and generalize an optimal treatment.

Artificial networks are able to capture important features of clonal evolution and reg-
ulatory pathways [51, 67]. Since there is no restriction on the inputs, outputs, and the
connections between the nodes, this framework is both versatile and open-ended [67]. How-
ever, this simplified approach yields results of questionable accuracy. As future work, this
model needs to be properly parameterized, with gene expression levels determined using
microarrays [67]. Not only is it time consuming and difficult to obtain this data, it is also
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expensive. Another problem is that this method is not capable of memory storage, while
many cellular processes, such as the cell cycle and chemotaxis, are memory-dependent [67].
Finally, we must concur that mathematical analysis of this model is, at best, difficult.

One limitation of the HDC and EHCA models is that the cells are represented as gird
points, without any regard for variability in their shape or size [22,70]. In the next section,
we will explore the Immersed Boundary model, in which a tumor is conceived as a collection
of elastic cells immersed in an incompressible, viscous fluid.
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Chapter 4

Immersed Boundary Models

The immersed boundary model attempts to capture the behavior of neutrally buoyant1,
elastic (or viscoelastic) bodies submerged in an incompressible, viscous fluid [71]. In this
model, the fluid is described using Cartesian coordinates while the boundary forces and
the configuration of the elastic bodies are represented in Lagrangian form. The Lagrangian
variables move along a curvilinear mesh that overlaps, but is not constrained by, the Carte-
sian grid [71]. In terms of physical assumptions, the laws of conservation of energy and
momentum are enforced.

4.1 The Model

In this chapter, we will describe the immersed boundary model developed by Rejniak and
colleagues [72]. Unlike the HDC and EHCA models, this approach models cells as fully
deformable entities [72]. To interact with one another, these viscoelastic bodies [73] use
membrane bound receptors that function on a local scale. These receptors, shown in Figure
4.1, sense cues, send signal, and play a major role in determining cellular dynamics.

All of the cells are governed by the same set of laws that regulate their growth, divi-
sion, polarisation, death, and communication [74,75]. Unlike the HDC and ECHA models,

1This property signifies that the elastic links occupy so little volume that their mass can be neglected
[71].
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Figure 4.1: The microenvironment of a cell
The microenvironment inside (light grey) and outside (dark grey) the cell is shown in (i).
In addition, the membrane bound receptors are illustrated in (ii). Adapted from Rejniak
and Anderson [75].

the cell cycle here is not subject to mutation [74]. Rather, it is assumed that it is varia-
tion in the distribution of the surface receptors that accounts for cellular heterogeneity [61].

In their model, Rejniak et al. examine the cross-section of the tumor in a two-
dimensional domain Ω and map it onto a Cartesian grid with fixed coordinates x = (x1, x2).
This grid integrates information about fluid transport and nutrient availability, and pro-
vides a physical representation of the elastic tumor cells [72].

The plasma membrane of each cell is composed of a mesh of massless linear springs,
which link a set of evenly distributed boundary points Xi,l(t) , where l is the position of
the point along the cell’s membrane2 and t is time [74]. Besides defining the shape and
the size of the tumor, the boundary points also play the role of membrane bound recep-
tors. These receptors act locally and sense information in the cell’s microenvironment,
Θε

Γ =
⋃

X∈Γ{x : ||x−X|| < ε}, where Γ denotes the configuration of the membrane.

Although the receptors are structurally identical, they can be differentiated based on
their function. In this chapter, we will consider two types of receptors: lateral receptors,
which link neighboring cells, and basal receptors, which connect cells to the ECM. Contrary
to biological receptors, which are created and relocated in response to extrinsic signals, the
simulated receptors preserve their location, and change their status and function to direct

2taken modulo the total number of boundary points
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the initiation and progression of various cell life processes [56].

Within the plasma membrane, a cell has no internal structure besides the fluid cy-
toplasm, which provides cell mass, and a single point nucleus that contains the genetic
material. To compensate for the fact that the cytoskeleton and organelles are neglected,
the fluid is assigned a high viscosity [75]. This homogeneous, incompressible, Newtonian
fluid is also used to represent the ECM [72]. It is assumed that its density and viscosity are
constant [75] and that cellular expansion and contraction are a result of its flow patterns.
The boundary points and the nuclei move along at the local fluid velocity [72,74], and are
influenced by sources and sinks and the forces that act on the elastic boundaries of the
cells [72].

One of the fundamental properties that must be enforced at every point in the domain
Ω at all times t is the law of conservation of mass,∫

Ω

sdx = ρ

∫
Ω

∇ · udx = 0, (4.1)

where s(x, t) is the local fluid expansion based on the distribution of sources and sinks [4]
and ρ and u(x, t) are the density and the velocity of the fluid, respectively.

In addition, the tumor must satisfy the law of mass balance,

ρ∇ · u = s(x, t). (4.2)

The fluid inside and around the cells is assumed to be incompressible and to satisfy
∇ · u = 0 at all points, except for a discrete collection of isolated point sources and sinks.
To describe the motion of the fluid, Rejniak and colleagues use the Navier-Stokes equation,

ρ

(
∂u(x, t)

∂t
+ (u(x, t) · ∇)u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) +

µ

3ρ
∇s(x, t) + f(x, t) (4.3)

where f(x, t) is the external force density and µ and p(x, t) are the viscosity and the pres-
sure of the fluid, respectively.

One concern is that ∇ · u need not be continuous. This can be problematic when the
gradient ∇s(x, t) is determined in equation 4.3. Despite a thorough search, no mathemat-
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ical justification could be found for the term ∇s(x, t) in either Rejniak’s papers or in the
sources they referenced. This suggests that finding a new method or appropriate justifi-
cation for incorporating the distribution of the sources and sinks into the Navier-Stokes
equation in this manner is an important direction for future research in this area.

Another issue is that s(x, t) is a discrete field. This calls into question the validity
of the formulations for the law of conservation of mass and the law of mass balance in
equations 4.1 and 4.2, respectively.

Along the boundary of the cells, Rejniak et al. apply the no-slip condition. The
condition

∂Xi(l, t)

∂t
= u(Xi(l, t), t) =

∫
Ω

u(x, t)δ(x−Xi(l, t))dx. (4.4)

implies that the material points on the membrane are carried along with the viscous fluid.

In the following sections, the external force density f (mentioned in equation 4.3) and
the mechanics of the point sources and sinks will be described.

4.1.1 The boundary forces

The force density f is the sum of the local contractive-repulsive forces Fi(l, t), which deter-
mine the boundary configuration of the cells [74,75]. These forces control the direction of
cellular expansion and fluid flow, and are influenced by cell-cell adhesion, mitosis, and the
elastic properties of the membrane [4, 76]. They are assumed to follow Hooke’s law and
are applied directly to a 2-dimensional δ-layer in the fluid, δ(x) = δ(x1)δ(x2), around the
boundary Γi of the cell being considered. The external force density f(x, t) satisfies

f(x, t) =
∑

i fi(x, t) where fi(x, t) =
∫

Γi
Fi(l, t)δ(x−Xi(l, t))dl,

and Fi(l, t) =
∑

αFα(i)(l, t),

and Fα(i)(l, t) = Fα ‖Xi,k(t)−Xi,l(t)‖−Lα
‖Xi,k(t)−Xi,l(t)‖

(Xi,k(t)−Xi,l(t)), (4.5)

where α is the acting force, and Lα and Fα are the resting length and the spring stiffness,
respectively.
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When studying tumor growth, Rejniak and colleagues discuss adjacent, adhesive, and
contractile forces. The adjacent force connects each boundary point X(l, t) to its two
adjacent neighbors X(l+1, t) and X(l−1, t) by linear springs that satisfy Hooke’s law and
have constant resting length Ladj and spring stiffness Fadj. This force

Fadj(i)(l, t) = Fadj
‖ Xi,l+1(t)−Xi,l(t) ‖ −Ladj
‖ Xi,l+1(t)−Xi,l(t) ‖

(Xi,l+1(t)−Xi,l(t)) (4.6)

determines the cells’ structure and geometry.

The adhesive force is the force exerted on the ith cell by a boundary points belonging
to the jth cells where i 6= j,

Fadh(i,j)(l, t) = Fadh
‖ Xj,k(t)−Xi,l(t) ‖ −Ladh
‖ Xj,k(t)−Xi,l(t) ‖

(Xj,k(t)−Xi,l(t)). (4.7)

This force can only be introduced between two receptors that are within a distance3

‖ Xj,k − Xi,l ‖≤ Lmaxadh and is otherwise set to zero [74] . Typically, this force results
in the contraction of the springs and reduces the separation distance between the recep-
tors that link the adjacent cells [75]. However, if the membrane receptors are within the
distance of the resting length Ladh, then this force Fadj will become repulsive in nature.

Finally, the contractile force

Fdiv(i)(l, t) = Fdiv
‖ Xi,k(t)−Xi,l(t) ‖ −Ldiv
‖ Xi,k(t)−Xi,l(t) ‖

(Xi,k(t)−Xi,l(t)). (4.8)

is defined between two opposing boundary points Xi,k(t) and Xi,l(t) of a single cell. This
force causes the boundary points to compress together until they are within a distance
Lmindiv , at which point, the force nullifies and the parent splits into two daughter cells.

4.1.2 The distribution of sources and sinks

It is assumed that the motion of each cell is governed by the forces discussed above as well
as the distribution of local sources S+(Y+

i,k, t) and sinks S−(Y−i,k, t). In some cases, a finite

3 Ladh ≤ Lmax
adh
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collection of these “water channels” are positioned along the cell’s boundary Γi, gathered
together in small groups Ξp

i of isolated points Yp
i,k (where p = + or p = −). Alternatively,

another representation clusters these material points around the nuclei of the cell and the
outside of its boundary4.

The fluid flux through each of the water channels is assumed to be the same; hence,
the overall fluid transport depends only on the number of active channels [75]. Suppose
that the strength of each fluid source S+

0 (Y+
i,k, t) is

|S+
0 (Y+

i,k, t)| =
{
S+

0 if the cell is growing
0 otherwise .

(4.9)

Since mass must be conserved globally, the sources and sinks must balance. However,
Rejniak et al. enforce the condition that the fluid created on one side of the cell boundary
is lost on the other [74]. Given that the number of point sources and sinks need not be the
same, the following condition is applied:∑

k∈Ξ+
i

S+(Yi,k, t)
+ +

∑
m∈Ξ−i

S−(Y−i,m, t) = 0. (4.10)

From equation 4.10, Rejniak and colleagues calculate that, given K point sources and M
point sinks, the strength of each sink is

|S−0 (Y−i,m, t)| =
{
S−0 if the cell is growing
0 otherwise

(4.11)

where

S−0 =
1

M

K∑
k=1

S+(Y +
k (t), t) (4.12)

4When distributing the water channels around the outside of the cell, special care must be taken to
ensure that the assumption that that sources and sinks act locally is upheld [74].
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Figure 4.2: The growth and division of a cell
When a cell is ready to undergo mitosis, (ii) the location of the contractile ring is de-
termined. The cell then (iii) divides along the contractile connection, (iv) forming two
daughter cells. Adapted from Rejniak [74].

In summary, the source distribution, s(x, t), can be defined as follows:

s(x, t) =
∑
i

si(x, t)

where si(x, t) =
∑
k∈Ξ+

i

S+(Y+
i,k, t)δ(x−Y+

i,k) +
∑
m∈Ξ−i

S−(Y−i,m, t)δ(x−Y−i,m)

and
∑
k∈Ξ+

i

S+(Y+
i,k, t) +

∑
m∈Ξ−i

S−(Y−i,m, t) = 0.

From here, we focus more on the inner workings of the cell and the basic assumptions
regarding its life cycle.

4.1.3 The life cycle of the cells

If more than 20% of its receptors are free from cell-cell contact, cell growth can be observed
as the fluid is transported from the extracellular medium into the cell (i.e., point sources
are placed inside the cell, while point sinks are positioned outside its boundary). This
condition restricts growth to cells around the leading edge; those in the interior are consid-
ered to be too crowded to grow. Visually, cellular expansion is depicted by the continuous
deformation of the elastic membrane in response to the accumulation of fluid inside the
cell. To account for the increase in area, an addition boundary point is placed halfway
between two adjacent ones, whenever the spring connecting them exceeds its prescribed
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Figure 4.3: The orientation of cell division
In (i) and (ii), the axis of cell division (dashed line) is orthogonal to the longest axis and
the part of the membrane in contact with the ECM, respectively. Adapted from Rejniak and
Anderson [75].

resting length [56].

To indicate proliferation, two nuclei (corresponding to two sets of sister chromatids) are
placed inside the cell5 [72] and fluid flow is directed to induce cellular growth. As seen in
Figure 4.2, the sources and sinks are deactivated and the axis of cell division is determined
once the total area of the cell has doubled. The appropriate springs are then introduced
and a contractile ring forms between two opposing boundary points. Once these boundary
points are within a distance of Lmindiv , the contractile forces are deactivated and the host
cell divides into two daughter cells, each of which has its own nucleus [75]. The daughter
cells are approximately the same size and are regulated to be within 5% of the area of the
parent cell [75].

One factor which will impact the shape and the size of the daughter cells is the orienta-
tion of cell division [61]. When it is orthogonal to the longest axis or determined randomly,
inhomogeneous and irregularly shaped daughter cells form degenerate tumors [76]. On the
other hand, the cluster is more structured when the axis of division is determined to be or-
thogonal to the portion of the membrane that is in contact with the extracellular space [75].
A diagram depicting cell division is presented in Figure 4.3.

5Hence, when fluid flows through sources located around the nuclei, two clusters of sources will be
considered, with one at each nucleus.
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Figure 4.4: Apoptosis
During apoptosis, a cell becomes detached from its neighbours and gradually shrinks in size.
Adapted from Rejniak and Anderson [75].

In contrast to cellular growth, apoptosis is a process characterized by the contrac-
tion of volume, the collapse of the cytoskeleton, and the detachment of the cell from its
neighbors [17]. To model the release of fluid into the extracellular space, Rejniak et al.
disassemble the cell’s adherent links and re-arrange the sink-source couplets such that the
sources are placed outside of the membrane while the sinks are located inside the cell [4,75].
Figure 4.4 shows how the cell’s area shrinks as the fluid flows from its interior. This process
continues until only 15% of the cell’s initial area remains, at which point it is be declared
“dead”.

4.1.4 Nutrients

For a cell to propagate, it must have access to oxygen, nutrients, and growth factors [74].
In this model, oxygen c(Xi(l, t), t) is assumed to diffuse uniformly on the whole domain
and is locally degraded according to the Michaelis-Menten formulation. ΘΓ is defined to
be ΘΓ =

⋃
i ΘΓi and

∂c(x, t)

∂t
= D∇2c(x, t)− k c(x, t)

κ+ c(x, t)
· χΘΓ

(x)
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where k is the maximum consumption rate, κ is the Michaelis constant, and χ is a set of
characteristic functions defined as

χΘΓ
(x) =

{
1 if x ∈ ΘΓ

0 if x /∈ ΘΓ.
(4.13)

Although, its kinetics are defined on the entire domain, the amount of oxygen available
to a cell is equal to the concentration in its microenvironment,

c(Xi(l, t), t) =

∫
Ω

c(x, t)δ(x−Xi(l, t), t)dx. (4.14)

Typically, the consumption rate is independent of the amount available. However, when
only a low concentration is present, consumption will generally decrease.

Rejniak assumes that the concentration of oxygen must exceed some threshold value h
for the fluid source of the ith cell to be activated. In the event that the concentration falls
below this threshold, hypoxia is observed. The authors note that growth is dependent on
the concentration of c(x, t) and label the fluid source S+ = S+(c(Y+

i,k, t), t).

According to the initial condition,

c(x, 0) = c0 for x ∈ Ω, (4.15)

the domain Ω is uniformly saturated with an optimal concentration of oxygen, c0. Through-
out the simulations, a constant source of value c0 is continuously applied at the boundary,
with

c(x, t) = c0 for x ∈ ∂Ω and t ≥ t0.

4.2 Numerical implementation

To implement this model numerically, Rejniak and colleagues use the fast Fourier transform
method and impose periodic boundary conditions. They assume that the local neighbour-
hood around each boundary point consists of 16 grid points in the fluid domain (see Figure
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Figure 4.5: Fluid-cell interactions
A schematic diagram of the 16-point local neighborhood around a cell (black curve) is
presented. This representation provides insight into the manner in which the sources (◦)
and sinks (4) may be distributed during cell growth. Adapted from Rejniak [4].

4.5) and use a bell-shaped continuous function of bounded support,

δh(r) =

{
0 if |r| ≥ 2h
1

4h

(
1 + cos

(
Πr
2h

))
if |r| < 2h,

(4.16)

to model the Dirac delta function, δh(x) = δh(x1) · δh(x) [4].

When performing their simulations, Rejniak and colleagues begin by revising the oxy-
gen field to account for cellular consumption. During this process, cells that do not have
access to sufficient nutrients are automatically declared to be necrotic. Although necrotic
cells maintain their physical structure, they are no longer updated and do not consume
any oxygen.

Next, Rejniak et al. examine fluid flow through the sources and sinks, and calculate the
local growth rate sn by “spreading” the fluid to its neighboring grid points. In a similar
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manner, they also determine the force Fn around each boundary point and again spread
this value to the neighboring grid points to determine the local force density fn.

The authors then proceed to solve the Navier-Stokes equation in order to determine
the fluid velocity field. They interpolate this field to calculate the fluid velocity at each
immersed boundary point and, when applicable, the cell’s nucleus6. Using this informa-
tion, they determine the position of the sources and sinks.

4.3 Simulation results

Simulations suggest that exponential growth is observed during the early stages of tumor
development [74]. However, as the tumor continues to grow, a signification reduction in
the expansion rate is seen, as mitotic events become confined to the leading edge. Concur-
rently, the cells located at the centre of the tumor begin to acquire an increasingly polyg-
onal shape due to their tendency to develop multiple cell-cell adhesive connections [74].
Although these cells are too crowded to grow freely, pressure from growing neighbors may
still cause them to move or deform. In an environment with significant competition for
space and high selective pressures, small aggregates with irregular and elongated shapes
form [74]. However, when abundant nutrients are available and selection pressures are
weak, the tumors generally exhibit a round shape.

The total area7 increases rapidly when small aggregates are considered, since all of the
cells can actively proliferate. However, due to the small population size, this coincides with
long intervals of constant cell count. In later stages of tumor development, the increase in
the total area slows (due to contact inhibition) [4], but new cells are created more often.
As shown in Figure 4.6, this corresponds to infrequent plateaus in the cell count, that last
only a short period of time. Some factors that influence cell growth include the maturation
age, the fluid flow, and the growth receptor threshold (i.e., the minimum number of basal
or unbound receptors required to trigger growth).

In Figure 4.7, the impact of the hypoxic threshold and the oxygen consumption rate on
tumor growth is shown [17]. Based on these results, Anderson et al. claim that the condi-

6It is only necessary to consider the nucleus when it is assumed that sources or sinks are located there.
7The total area refers to the net area of the individual cells.
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Figure 4.6: The time evolution of the total number of cells and the net area of the tumor
The solid line denotes the total number of cells while the dashed line represents the
total area. Panel (b) is a magnification of the time interval 0 − 40h in panel (a).
Reprinted from Journal of Theoretical Biology, 247, Katarzyna A. Rejniak, An immersed
boundary framework for modelling the growth of individual cells: An application to the
early tumour development, 186-204, Copyright (2007), with permission from Elsevier.
http://www.sciencedirect.com/science/journal/00225193 [74]
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Figure 4.7: The effect of the hypoxic threshold and the consumption rate on tumor growth
The spatial distribution of the cells for various hypoxic thresholds and consumption rates
is presented. The growing cells are red, quiescent cells are green, and hypoxic cells are
blue. Springer and the Journal of Mathematical Biology, 58, 2009, 579-624, Microenviron-
ment driven invasion: a multiscale multimodel investigation, Alexander R.A. Anderson,
Katarzyna A. Rejniak, Philip Gerlee, and Vito Quaranta, Fig. 6; with kind permission
from Springer Science and Business Media. [17]
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tions favoring the selection of aggressive clones correspond to the diagonal rising from left
to right. Above this line, the tumors have smooth boundaries and grow at a constant rate.
In contrast, invasive fingers and growth arrest are observed below the diagonal, regardless
of the availability of space. This seems to suggest that the development of finger-like mar-
gins is related to growth suppression rather than overcrowding.

Intrigued by its effect on cellular behavior, Anderson and colleagues [17] set about doc-
umenting the cellular response to oxygen availability. To accomplish this, they consider
an environment with a high concentration of oxygen uniformly distributed over the en-
tire domain, but supply no additional nutrients to the tumor once the simulations begin.
Initially, the cells sense the abundance of nutrients and proliferate continuously, forming
a rapidly expanding, round cluster of growing cells [4]. However, the tumor eventually
attains a size at which the diffusion of oxygen to its core is limited. As the first necrotic
cells appear, the growth rate slows and the proportion of quiescent cells declines. At this
stage, there is a near zero concentration of nutrients at the center of the tumor and steep
gradients around its rim [74]. Although the cells at the boundary are exposed to elevated
concentrations of oxygen, they are still subject to high competition. To maximize their
proliferative potential and their ability to compete for nutrients, these tumors develop a
rim of finger-like sprouts. Regardless of this structural adaptation, which is presented in
Figure 4.8, the increasing prevalence of hypoxia triggers the extinction of the quiescent
cells and a 95% reduction in the number of proliferating cells within a dozen cell cycles.
The cells which survive often display an elliptical shape, with boundary points closer to
the nutrients moving at a relatively faster pace [4].

Repeating these simulation using 7 color-coded clones [72], asymmetric growth is ob-
served, even though the cells have identical properties. As illustrated in Figure 4.9, those
that have access to high levels of oxygen proliferate readily, while the centrally located cells
becomes extinct due to a lack of space. For future work, the authors suggest exploring the
effects of mutations that alter properties such as the doubling time and the strength of the
cell-cell connections.

4.4 Conclusions

IBCell models describe the behavior of cells that vary in shape and function and generate
novel information regarding cell plasticity and fluid flow [4,77]. The architectural stability
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Figure 4.8: Nutrient-driven tumor growth
The development of a tumor is shown in panels (a-c). Moreover, the oxygen distribution
for the tumor configurations in panels (b) and (c) is presented in (e) and (f), respectively.
The necrotic cells are black, proliferating cells are grey, and the viable cells are white.
The color bar in (d) provides a numerical description of the oxygen concentrations in
panels (e) and (f). Reprinted from Journal of Theoretical Biology, 247, Katarzyna A.
Rejniak, An immersed boundary framework for modelling the growth of individual cells: An
application to the early tumour development, 186-204, Copyright (2007), with permission
from Elsevier. http://www.sciencedirect.com/science/journal/00225193 [74]
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Figure 4.9: Tumor expansion in a nutrient limited environment
The 7 cells in (i) form an asymmetric cluster whose final configuration is shown in (ii).
Adapted from Rejniak [72].

these models exhibit over a wide range of parameters [56, 74, 76] attest to their robust
nature; however, the increased biological realism, comes with a computational cost. To
compensate for the expense of calculating the deformations in the spring network that re-
sult from cell growth and division, a population of at most 100 cells can be considered [30]
and specific features of the internal cell structure are neglected in favor of choosing a suf-
ficiently high fluid viscosity [75].

Besides tumor growth, Rejniak and colleagues have also used this approach to study
the development of acinar structures and the conditions under which degenerate clusters
form. In particular, they have examined the impact of the cell cycle, differentiation, and
polarization on growth [75,76]. Likewise, Rejniak and Dillon [70] have investigated the de-
generate microarchitectural patterns that emerge in response to changes in the orientation
of cellular division and the replicative potential of the cells.
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4.5 Future work

There are many directions in which this model could be improved. For starters, formulating
a 3D representation of the tumor would be ideal, albeit challenging. Rejniak [74] recom-
mends using parallel algorithms to overcome the increased computational costs associated
with this modification, but acknowledges the inherent difficultly given that the location of
the boundary points will change during the simulation. Rejniak and colleagues [61] also
propose fine-tuning the model by obtaining the necessary experimental data. This would
allow for a more faithful representation of in vivo dynamics and individual cell processes.

To integrate new components, such as organelles, extracellular fibers, stromal cells or
the cytoskeleton, additional immersed bodies can be included. Rejniak has made contra-
dictory claims about the relative ease with which this may be accomplished [4, 74] and
how expensive this could be from a computational standpoint. However, an extension
that is discussed at length and straightforward to incorporate is the inclusion of the basal
membrane. In fact, Rejniak and Dillion [70] describe two different layouts which can be
implemented. As shown in Figure 4.10, one consists of a single closed curve while the other
is a crossed network of springs that interlink two concentric circles.

To model how the basement membrane maintains the cell as a stiff and immobile
structure, the concept of a linear tethered force Fth is introduced. This force,

Fth(l, t) = Fth(Zi,l(t)− Z
′

i,l(t)), (4.17)

links each point along the basement membrane Zi,l to its initial location Z
′

i,l(t) using springs
with stiffness Fth.

Rejniak [4] suggests that the cells should be able to sense the direction and the relative
steepness of gradients in the oxygen field. These gradients would then guide the motion of
the cells, with cellular sensitivity derived based on exposure to the chemoattractant. Given
membrane receptor Xi,k, Rejniak lets xi,∗ denote the point in the receptor’s microenviron-
ment ΘXi,k

with the highest concentration of the stimulus γ(xi,∗, t) and defines the drag
motility force as

Fmov(Xi,k) = Fmov(γ(Xi,k, t))||Xi,k − xi,∗||
∇γ(xi,∗, t)

||∇γ(xi,∗, t)||
. (4.18)
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Figure 4.10: Two distinct representations of the basal membrane
The cell wall is depicted as (a) a single closed curve, with each boundary point connected
to its four nearest neighbours, and as (b) a mesh of linear elastics that interlink two closed
curves. The distribution of the sources (+) and sinks (o) is also presented in this diagram.
Reprinted from Computational and Mathematical Methods in Medicine, 8, Katarzyna A.
Rejniak and Robert H. Dillon, A single cell-based model of the ductal tumour microarchi-
tecture, 51-69, Copyright (2007). http://www.hindawi.com/journals/cmmm/ [70]

According to the author, the spring stiffness Fmov is dependent on the concentration of γ
to account for the fact that a receptor will become dormant if the concentration of oxygen
falls below some threshold value γmin in its microenvironment.

The next chapter summarizes the results from our analysis of the HDC, EHCA, and
IBCell models, and examines the advantages and disadvantages of using multi-scale math-
ematical models to study cancer progression. To conclude, we present future areas of
research.
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Chapter 5

Conclusions

5.1 Overview of Model Outcomes

Current theories postulate that the mutation of critical genes triggers the unchecked prolif-
eration of malignant cells [8]. As these cells multiply, the limited availability of both space
and nutrients ultimately drives selection pressures which favor the survival of the most fit
clones [54]. However, as a precursor, there must first be variability either within the cell
population or the micro-environment [7]. It is this which permits adaptation and com-
petition in response to environmental stressors and hence provokes invasion into healthy
tissue [6]. In the context of tumor progression, the best adapted clones are believed to
be those which are least likely to become dormant upon crowding and lack sensitivity to
apoptotsis [6].

During the early stages of tumor expansion, cell-cell interactions regulate growth. How-
ever, tumor progression is associated with a transition into a phase where cellular migration
and cell-matrix interactions direct tumor dynamics [46]. In a highly vascularized, nutri-
ent rich environment, the cells form rapidly expanding, spherical clusters with a dense,
compact core and a smooth, symmetric boundary [6,33,39]. On the other hand, in an en-
vironment with limited space, low nutrient availability, or a high hypoxic threshold, small
tumors with finger-like margins emerge and growth suppression is often observed [6].

The simulations conducted by various researchers and for the purpose of this thesis
suggest that the behavior of a cell affects and is affected by its microenvironment [17]. In
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other words, the adaptions that enable a cell to survive unfavorable conditions increase
the hostility of its environment [23]. This promotes the selection of invasive phenotypes
and the progression toward malignancy. Although these findings suggest that the micro-
environment regulates tumor growth, they do not refute the claim that certain phenotypes
may have intrinsically invasive properties [6, 7].

5.2 The Advantages and Disadvantages of Mathemat-

ical Modeling

Just as there is no single, all-encompassing biological approach to cancer, there is no ideal
mathematical or computational model [26]. Each mathematical model described in the
previous chapters has its particular strengths and limitations, and each is best suited to
address certain types of questions. In terms of cancer, we can examine the expression of
genes, proteins, and signalling pathways, or focus on the cell, tissue, or organ scales. Only
when activity on each scale is understood, should we attempt to explore how changes in
one or more variables may impact the system as a whole.

Adopting a computational approach allows us to systematically manipulate variables
that are difficult to control experimentally and to reproduce in vivo conditions that may be
impossible to replicate in vitro. [7]. In addition, we are able to perform sensitivity analyses
and to examine how the system responds to the simultaneous variation of multiple param-
eters [7,53,63]. This allows researchers to examine various interactions and to differentiate
between the crucial and the peripheral factors [31].

Mathematical models complement conventional experimental methods both logistically
and financially [7, 31]. They are straightforward to use, and easy to adapt and modify.
In addition, they are helpful since they provide an intuitive framework for analyzing a
problem and for making predictions [13]. In light of recent developments in biotechnology
and continually increasing computational power, it is not surprising that this approach is
becoming increasingly prevalent in cancer research [43,78].

The main drawback of multiscale modeling is that it presents an oversimplification of
biological processes [1]. This is expected given our lack of knowledge regarding the un-
derlying mechanisms that give rise to cancer [29, 40], and makes it difficult to define the
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properties of the cells and to create algorithms that describe how a cell transitions from one
state to the next [34]. For instance, even though they can capture individual cell processes,
the HDC and the EHCA models establish only a vague outline of cell-cell and cell-matrix
adhesion [1,23]. In addition, our assumptions of linear dynamics and constant coefficients
seem unreasonable in the context of such a complex biological system. Accordingly, we
cannot expect our simulations to mirror exact tumor dynamics, although morphological
similarities between in vivo and in silico tumors could indicate that our theoretical model
is in line with the biomechanics of cancer [9, 68].

5.3 Future Research

The models summarized here are very basic and deal with a limited number of variables.
In terms of improvements, a reasonable starting point is to fine-tune our representation of
angiogenesis, oxygen production, and cell-cell adhesion. A more accurate representation
of the structure of the ECM and how it helps and hinders tumor development is also a
promising avenue of research. Furthermore, Rejniak and Anderson [46] suggest modifying
the system to alter only one aspect of the cell’s phenotype during each mutation and en-
abling the cells to displace their neighbors (i.e., to create space for proliferation).

When modelling such an intricate system, it is important to guard against creating an
overly complicated and poorly parameterized in silico representation which may appear
sophisticated but is little more than curve fitting [13]. Having too many interacting vari-
ables makes parameter analysis difficult and is unlikely to provide new information [6,47].
Nevertheless, a model is only as good as the assumptions and the data on which it is
based [26, 39]. Thus, it is important to have the correct biochemistry and to represent it
faithfully using models that have been properly parameterized [39].

Integrating cutting-edge biological knowledge and experimental data is necessary to
validate a model and to spur on the necessary refinements [26]. Biologists may also benefit
from this partnership, with models inspiring new hypotheses and guiding experimental
design and interpretation [36, 37]. The ultimate goal of this type of cross-disciplinary
collaboration is to optimize treatments, build patient-specific models, and guide the design
of novel therapeutics [5,79]. By means of a co-operative approach, we may be able to speed
up this process, and better diagnose and treat cancer patients.
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Appendix A

Appendix A: Continuous Model of
Tumor Growth

In this continuous, multi-scale model [80], a tumor is regarded as a heterogeneous agglom-
eration of invasive cells, and proliferation, quiescence and necrosis are the three cell cycle
states. Proliferating cells are motile and consume oxygen at a faster rate than the immobile
resting (quiescent) cells. Specifically, pi(x, a, s, t) is the density of the proliferating tumor
cells of type i, size s, and age a, located at x at time t. Similarly, qi(x, a, s, t) denotes the
density of quiescent tumor cells with mutation type i, age a, and size s at grid position x
and time t. Here, i = 0 corresponds to a mutated p53 gene and i = 1, 2, ..., n correspond
to a sequence of mutated phenotypes, which exhibit linearly increasing levels of aggressive
behavior. In this framework, the aggressiveness of the phenotype positively correlates with
its proliferative potential and its capacity for movement.

Cellular age a is defined as the time that has elapsed since the cell last underwent
mitosis and is bounded by aM with 0 ≤ a ≤ aM . Similarly, cell size s varies from sm to
sM , with sm ≤ s ≤ sM . No specific interpretation is provided for the concept of cell size;
rather, the authors state that this variable may denote any measurable property, including
mass, volume, and diameter.

Initially, the tumor mass is radially symmetric and surrounded by a heterogeneous dis-
tribution of macromolecules (MM). When building this model, the authors consider the
variables listed below:
f(x, t) is the density of MM at position x and time t. The macromolecules are distributed
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heterogeneously and are immobile inside the domain.
m(x, t) is the concentration of the MDEs produced by the tumor cells. These enzymes
degrade the surrounding tissue and thus generate gradients of adhesion, which induce hap-
totactic migration in the cells. Moving toward regions with high oxygen availability, the
cells are provided with nutrients which enable them to grow and flourish.
c(x, t) is the oxygen concentration. The extracellular macromolecules produce the oxygen,
which diffuses throughout the domain Ω and is consumed by the tumor cells
P (x, t) =

∑n
i=0

∫ aM
0

∫ sM
sm

pi(x, a, s, t)dsda is the population density of proliferating cells at
position x and time t.
Q(x, t) =

∑n
i=0

∫ aM
0

∫ sM
sm

qi(x, a, s, t)dsda is the population density of quiescent cells at po-
sition x and time t.
N(x, t) = P (x, t) +Q(x, t) is the population density of the cells in the tumor at position x
and time t.

The density of the proliferating cells is governed by the equation

∂

∂t
pi(x, a, s, t) = − ∂

∂a
pi(x, a, s, t)−

∂

∂s
(κi(a, s, c)pi(x, a, s, t))

+ ∇ · (Dpi(x, a, s,N)∇pi(x, a, s, t))− χi∇ · (pi(x, a, s, t)∇f(x, t))

− ρi(x, a, s, c, N)pi(x, a, s, t)− θi(x, a, s, c, N)pi(x, a, s, t)) (A.1)

− σi(x, a, s, c, N)pi(x, a, s, t) + τi(x, a, s, c, N)qi(x, a, s, t).

and is subject to the age-boundary condition

pi(x, 0, s, t) = 4(1− ψi)
∫ aM

0

θi(x, a, 2s, c,N(x, t))pi(x, a, 2s, t)da

+ 4ψi−1

∫ aM

0

θi−1(x, a, 2s, c,N(x, t))pi−1(x, a, 2s, t)da (A.2)

where ψi is the fraction of the type i cells with a type i + 1 mutation. κi is the rate of
cell growth, Dpi is the diffusion coefficient, χi is the haptotaxis coefficient, ρi is the rate of
cell death (from insufficient oxygen), θi is the rate of cell division, σi is the rate at which
proliferating cells become quiescent, and τi is the rate at which quiescent cells re-enter a
proliferative state.

To study proliferation, Ayati et al. let the probability density function k(s, u) denote
the likelihood that a daughter cell of size s results from the division of a mother cell of size
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u. Assuming that the two daughter cells are equal in size, they let k(s, u) = k(u − s, u)
and k(s, u) = δ(s− u

2
) where δ is the Dirac delta function. In their work, they claim that

a mother cell of size 2s will produce two daughter cells of size s at a rate equivalent to

2

∫ sM

sm

∫ aM

0

k(s, u)θi(x, a, u, c,N(x, t))pi(x, a, u, t)dadu

= 2(2

∫ sM

sm

∫ aM

0

δ(s− û)θi(x, a, 2û, c, N(x, t))pi(x, a, 2û, t)dadû) (A.3)

= 4

∫ aM

0

θi(x, a, 2s, c,N(x, t))pi(x, a, 2s, t)da

The equation

∂

∂t
qi(x, a, s, t) = − ∂

∂a
qi(x, a, s, t)− νi(x, a, s, c, N(x, t))qi(x, a, s, t) (A.4)

+ σi(x, a, s, c, N(x, t))pi(x, a, s, t)− τi(x, a, s, c, N(x, t))qi(x, a, s, t)

describes the change in the density of the quiescent cells. Specifically, νi is the rate at
which the quiescent cells die from insufficient oxygen, σi is the rate at which proliferating
cells become quiescent, and τi is the rate at which quiescent cells re-enter a proliferative
state.

Changes in the density of the MM, the MDEs, and the oxygen are represented by the
equations

∂

∂t
f(x, t) = −δm(x, t)f(x, t), (A.5)

∂

∂t
m(x, t) = Dm∇2m(x, t) + µP (x, t) + ωQ(x, t)− λm(x, t), (A.6)

and
∂

∂t
c(x, t) = Dc∇2c(x, t) + βf(x, t)− γP (x, t)− ηQ(x, t)− αc(x, t), (A.7)

respectively. Equation A.5 denotes the degradation of the tissue at a rate δ, while equation
A.6 describes the diffusion (Dm), production (µ and ω), and decay (λ) of MDEs. Lastly,
equation A.7 represents the diffusion (Dc), production(β), uptake (γ and η), and decay
(α) of oxygen.
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Ayati et al [80] also consider this system in two spatial dimensions (x, y) ∈ Ω, under
the assumption of no size structure, and propose that the equations

∂

∂t
p(x, y, a, t) = − ∂

∂a
p(x, y, a, t)

+ Dp∇2p(x, y, a, t)− χ∇ · (p(x, y, a, t)∇f(x, y, t))

− ρ(x, y, a, c)p(x, y, a, t)− θ(x, y, a, c)p(x, y, a, t) (A.8)

− σ(x, y, a, c,N(x, t))p(x, a, s, t) + τ(x, y, a, c)q(x, y, a, t)

and

∂

∂t
q(x, y, a, t) = − ∂

∂a
q(x, y, a, t)− ν(x, y, a, c)q(x, y, a, t) (A.9)

+ σ(x, y, a, c,N(x, t))p(x, a, s, t)− τ(x, y, a, c)q(x, y, a, t)

describe the density of the tumor cells and are subject to the age-boundary condition

p(x, y, 0, t) = 2

∫ aM

0

θ(x, y, a, c)p(x, y, a, t)da. (A.10)

In equations A.8 and A.9, Dp is the diffusion coefficient, χ is the haptotaxis coefficient, ρ
and ν are the rates at which proliferating and quiescent cells die from insufficient oxygen,
respectively, θ is the rate of cell division, σ is the rate at which proliferating cells become
quiescent, and τ is the rate at which quiescent cells become proliferative..

In both the one dimensional and two dimensional models, zero flux boundary conditions
are imposed on the domain.

A.1 Results

To implement this approach numerically, Ayati et al. use the Galerkin finite element
method on a moving grid. Their results reconfirm many of the standard outcomes of the
HDC model. As before, the tumor consists of a band of proliferating cells surrounding a
large necrotic core. Nestled in between these two layers are the quiescent cells which thrive
in environments with high cell densities and limited oxygen availability. The abundance of
oxygen and a sparse distribution of cells favor the ‘recruitment [of proliferating cells] from
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quiescence,’ while low oxygen levels are associated with necrosis.

There are two major concerns that stem from the use of a moving grid. One is de-
termining how to establish size nodes along the boundary in a way that respects the fact
that growth may slow once a cell has reached a certain size. The second issue is deter-
mining the size of the discretizations. Although the convergence of size-time characteristic
curves suggests that the interval size should strictly decrease in length, the nonlinearities
of cellular activity make this assumption questionable [80].
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