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Abstract

Cyclic sieving phenomenon (CSP) is a generalization by Reiner, Stanton, White of
Stembridge’s q = −1 phenomenon. When CSP is exhibited, orbits of a cyclic action
on combinatorial objects show a nice structure and their sizes can be encoded by one
polynomial.

In this thesis we study various proofs of a very interesting cyclic sieving phenomenon,
that jeu-de-taquin promotion on rectangular Young tableaux exhibits CSP. The first
proof was obtained by Rhoades, who used Kazhdan-Lusztig representation. Purbhoo’s
proof uses Wronski map to equate tableaux with points in the fibre of the map. Finally,
we consider Petersen, Pylyavskyy, Rhoades’s proof on 2 and 3 row tableaux by bijecting
the promotion of tableaux to rotation of webs.

This thesis also propose a combinatorial approach to prove the CSP for square
tableaux. A variation of jeu-de-taquin move yields a way to count square tableaux
which has minimal orbit under promotion. These tableaux are then in bijection to
permutations. We consider how this can be generalized.
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Chapter 1

Background

The purpose of this thesis is to give an overview of current understanding of promotion
of rectangular tableaux and to see how the cyclic sieving phenomenon of the promotion
can be shown.

1.1 Introduction

Cyclic sieving phenomenon was motivated by q = −1 phenomenon which Stembridge
introduced in 1993 [22]. Suppose we have a finite set of combinatorial objects S, a
natural involution ∗ : S → S, and an associated generating function F (q). We say that
the q = −1 phenomenon occurs if F (−1) evaluates the number of fixed points in S by
∗. This not only yields nice closed expressions for the number of self-dual objects, but it
also provides explanations (using representation theory) for previously known formulae.
Stembridge found that this phenomenon was exhibited in many instances, such as:

1. Minuscule posets with order reversing involution and the generating function for
multichains of order ideals [23].

2. Plane partitions with complementation and generating function for the size [22].

3. Set of tableaux of shape λ with evacuation and Schur function
sλ(q

0, q1, · · · , qn−1), which is the generating function for content [24].

In 2004, Reiner, Stanton, and White [26] defined cyclic sieving phenomenon (CSP),
generalizing the q = −1 phenomenon. Suppose we have a finite set of combinatorial
objects S, a cyclic action c on S, and an associated generating function F (q). We say
that the cyclic sieving phenomenon occurs if F (ζk) evaluates the number of fixed points
in S by ck where ζ is a nth root of unity.
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1.2. SYMMETRIC GROUPS

This phenomenon was also found to be exhibited in many instances, such as:

1. k-multisets of [n] with cycling of elements and q-binomial coefficient
(
n+k−1

k

)
q
.

2. k-subsets of [n] with cycling of elements and q-binomial coefficient
(
n
k

)
q
.

3. Rooted plane trees of size n with cycling of subtrees at the root and q-binomial
coefficient

(
2n−1
n

)
q
.

4. N -colorings of set S with cycling of colors and generating function for the number
of occurrences of color in an orbit.

5. Dissections of convex n-gon with rotation and generating function for the major
index of Young tableaux of certain shape.

6. Non-crossing partitions with rotations and q-analog of Narayana number.

CSP was then further generalized to study number of fixed points of any group action
with one polynomial. In 2005, it was conjectured by Abuzzahab, Korson, Li, and Meyer
in their undergraduate research that actions of promotion and evacuation may exhibit
dihedral sieving phenomenon [10]. This has now been resolved by Rhoades in 2010 and
by Purbhoo in 2011 for rectangular shape. Cyclic sieving of promotion in particular is
our focus for this thesis, although we may briefly touch on evacuations sometimes.

Rest of the chapter will be quick introductions to prerequisites, such as tableaux
theory, representation theory, and cyclic sieving phenomenon. See [16] [4] [13] [17] for
more thorough study of these subjects.

1.2 Symmetric Groups

We start off with a brief review of symmetric groups and their Coxeter presentation.

1.2.1 Symmetric Group

Definition 1.2.1. A symmetric group of degree n ∈ N is a set of bijections σ : [n]→
[n] with function composition as its group operation, where [n] := {1, 2, 3, · · · , n}. It is
denoted as Sn. The elements of Sn are called permutation of n.

There are n! := n · (n− 1) · · · · · 1 permutations in Sn.
Permutations can be written in multiple ways. In one line notation, we simply write

down σ(1)σ(2) · · ·σ(n). For cycle notation, the permutation is written as product of
cycles. Cycles are permutations with one non-trivial orbit, i.e. the permutation maps
a1 7→ a2 7→ · · · 7→ ak 7→ a1 and fixes the rest. This cycle is denoted as (a1 a2 · · · ak). All
permutations decompose into disjoint cycles. We call a cycle of length 2 transposition.

2



1.2. SYMMETRIC GROUPS

1.2.2 Coxeter Presentation

The symmetric group Sn is generated by the tranpositions:

s1 := (1 2), s2 := (2 3), . . . , sn−1 := (n− 1 n).

The group Sn has a following presentation with these transpositions as its generators,
called the Coxeter presentation of Sn.

Definition 1.2.2. Let si be the same as above, then

1. si commutes with sj if |i− j| > 1.

2. sisjsi = sjsisj if |i− j| = 1.

3. s2
i is 1 for all i.

All σ ∈ Sn can be written as a product of these generators:

σ = sa1sa2 . . . sak .

Definition 1.2.3. We say that the length of σ, l(σ), is the minimal number of gener-
ators needed to get σ as their product. Such minimal length products sa1sa2 . . . sak are
called reduced words of σ.

This Coxeter presentation comes with a poset structure called Bruhat ordering.

Definition 1.2.4. Let σ, τ ∈ Sn then we say σ ≤ τ in the Bruhat ordering if σ and τ
can be written as reduced words such that the first is the subword of the second. Here,
a subword of τ1τ2 · · · τn is defined as a word of form τa1τa2 · · · τak for some 1 ≤ a1 ≤ a2 ≤
· · · ≤ ak ≤ n.

Example 1.2.5. Below is the Hasse diagram of the Bruhat order in S3.

id = 123

s1 = 213

s2s1 = 231

s2 = 132

s1s2 = 312

s1s2s1 = s2s1s2 = 321

s1

s2

s1

s2

s1

s2

Lastly, we will name some special permutations: the permutation 123 · · ·n ∈ Sn is
called the identity permutation; a cycle of size n in Sn is called a long cycle, and
the permutation n, n − 1, · · · , 1 ∈ Sn is called the long element. The length of the
long element is

(
n
2

)
. This is the unique maximal element in the Bruhat order.

3



1.3. YOUNG TABLEAUX

1.3 Young Tableaux

1.3.1 Partitions

Definition 1.3.1. A partition is an weakly decreasing set of positive integers λ1 ≥
λ2 ≥ · · · ≥ λd. It is denoted as λ = (λ1, λ2, · · · , λd). It is often useful to write partitions
using multiplicities of parts. Thus, we define ab11 a

b2
2 · · · a

bk
k to be the partition

(a1, a1, · · · , a1︸ ︷︷ ︸
b1

, a2, a2, · · · , a2︸ ︷︷ ︸
b2

, · · · , ak, ak, · · · , ak︸ ︷︷ ︸
bk

).

We say that λ partitions n = λ1 + λ2 + · · ·+ λd and write λ ` n or |λ| = n.

Partitions are often presented in a Ferrers diagram. The Ferrers diagram (also
called Young diagram or partition diagram) of λ is a set of unit squares in integer
lattice grids such that there are λ1 squares horizontally in the top row, λ2 squares in the
second top row, and so on.

Example 1.3.2.

The Ferrers diagram of λ = (4, 4, 2, 1) = 422111 is .

Partitions can be conjugated by simply mirroring the Ferrers diagram at the diag-
onal. This yields a partition of the same size.

Example 1.3.3.

The conjugate of λ = (5, 4, 1) = is λ′ = (3, 2, 2, 2, 1) = .

We say λ contains µ and write λ ⊇ µ if λi ≥ µi for all i. A skew shape is a pair of
partition λ and µ such that λ ⊇ µ. It is denoted by λ/µ. The Ferrers diagram of λ/µ is
the Ferrers diagram of λ with the squares belonging to µ taken away.

Example 1.3.4.

The Ferrers diagram of the skew shape (5, 4, 1)/(3, 2) is .

Thoughout this thesis, we will be considering partitions that are rectangular i.e. has
the form ab. We will write to denote such partitions.

An another useful poset structure one can define on partitions is the dominance
order. We say λ dominates µ if

∑k
i=1 λi ≥

∑k
j=1 µi for all k = 1, 2, · · · and |λ| = |µ|.

This is denoted as λ D µ.

4



1.3. YOUNG TABLEAUX

1.3.2 Young Tableaux

A combinatorial object that is of extreme importance to us is Young tableaux. Young
tableaux were introduced by Alfred Young in 1900 and since then has been used and
appear in various fields such as representation theory, geometry, and algebra. For a
very brief introduction, see [27]. For more complete introduction of tableaux theory,
see [4] [21].

Definition 1.3.5. Let λ and µ be partitions such that λ ⊇ µ.

• A Young tableau (or simply tableau) of shape λ/µ is a filling of the Ferrers
diagram with positive integers such that the entries weakly increase from left to
right and weakly increase from top to bottom.

• A Young tableau is of normal shape λ if µ is the empty partition ∅. The tableau
is skew otherwise.

• A Young tableau is semistandard if the entries strictly increase from top to
bottom.

• A Young tableau is standard if the entires are 1, 2, 3, · · · , n and they strictly
increase from left to right, from top to bottom.

• The size of a tableau is the size of the shape.

• The content of a tableau is (c1, c2, · · · ) where ck is the number of k’s in the Young
Tableau. This is not necessarily a partition.

• The word of a tableau is a reading of the entries from left to right and bottom to
top.

Plural of ‘tableau’ is ‘tableaux’. Shape of tableau T is denoted as shT .

Example 1.3.6. An example of a semistandard Young tableau of shape λ = (4, 4, 2, 1)
is

2 2 4 5
3 4 5 6
6 6
8

which has the size 11, content (0, 2, 1, 2, 2, 3, 0, 1, 0, 0, · · · ), and reading
8, 6, 6, 3, 4, 5, 6, 2, 2, 4, 5.

An example of a standard Young tableau of shape λ is

1 2 7 8
3 6 9 10
4 11
5 .

5



1.3. YOUNG TABLEAUX

An example of a semistandard skew tableau of shape λ/µ = (4, 4, 2, 1)/(3, 2, 2) is

1
2 3

2 .

One can conjugate a tableau U to get a tableau of same size U ′, as we did to conjugate
partitions.

1.3.3 Ribbon Tableaux

Ribbon tableaux are more general form of the standard Young tableaux. An r-ribbon
(or rim-hook) is a connected skew shape that does not contain 2×2 block. Another way
to say this is that any north-west to south-east diagonal hits at most one box. Given
|λ/µ| = rl, a r-ribbon tableau of shape λ/µ is a filling of the Ferrers diagram λ/µ with
entries 1, 2, · · · , l such that the shape determined by the same entries are r-ribbons.

Example 1.3.7.
A 4-ribbon tableau of shape (6, 5, 5, 4, 2)/(2) is

1 4 5 5
1 1 1 4 5
2 2 3 4 5
2 3 3 4
2 3

.

Given a partition λ, we define r-core of λ as the unique partition obtained as one
removes r-ribbons from the partition until one cannot do so.

The uniqueness of r-core can be seen in the r-abacus diagram of the partition.
r-abacus consists of r columns with beads on some of them. We label the edges of the
partition diagram with 1, 2, · · · , as we traverse from bottom left to top right. For each
vertical edge labeled with qr + p for some integer 0 < p ≤ r, we place a bead in the pth
column at the qth position from the top in the abacus.

A removal of r-ribbon corresponds to decreasing a vertical label by r, which corre-
sponds to shifting of a bead on the abacus one step up. When we shift all the beads to
the top, we end up with the r-core.

6



1.3. YOUNG TABLEAUX

Example 1.3.8. Let r = 4 and λ = (6, 5, 5, 4, 2). Then removal of r-ribbons from λ
looks like this:

1 2
3

4 5
6

7
8
9
10

11

⇔
9

6

11

3

8

1
2
3

4 5 6 7
8
9
10

11

⇔
9

2

11

3

8

...

1
2
3
4

5 6
7

8 9 10 11

⇔
1 2

7

3 4

.

Thus, the r-core of λ is .

1.3.4 Littlewood Richardson Tableaux

An important class of tableaux that arises while studying symmetric polynomials is
the Littlewood-Richardson Tableaux. It first appeared in 1934 to claim Littlewood
Richardson Rule [9], which was proven by Thomas and Schützenberger four decades
later. It will come to be useful to us when we use jeu-de-taquin moves on tableaux.

Definition 1.3.9. A Littlewood-Richardson Tableau is a skew semistandard Young
tableau T if there exists a Young tableau U of a partition such that the number of i’s
in row j of T is equal to the number of j’s in row i of U .

Example 1.3.10.

T=

1 1 1
2 2

2 3
1

1 2
1 1 3

, U=
1 1 1 4 5 6 6
2 2 3 5
3 6

.

7



1.3. YOUNG TABLEAUX

1.3.5 Jeu-de-taquin

Jeu-de-taquin moves are operations on Young tableaux. Given a tableau of shape λ/µ,
pick a square that can be added to λ to get a new partition. Then repeat the follow-
ing: from the chosen square shift the entry above down, or the entry to the left right,
whichever is bigger (if it is same, take the vertical move). Continue this until there are
no entries above and to the left of the empty square. We now have a new tableau. This
operation can be done in reverse: pick a square that can be removed from µ and move
it out. This operation on tableaux is called jeu-de-taquin sliding.

Example 1.3.11. Slide in the yellow square:

5 6
1 4 7 8
2 9
3

→

5 6
1 4 7 8
2 9
3

→

5 6
1 7 8
2 4 9
3

→

5 6
1 7 8

2 4 9
3

Given a skewed tableau, one can perform sliding repeatedly until we obtain a normal
tableau. This process is called rectification. Skewed tableaux become rectified to an
unique normal tableau, no matter what the order of the empty squares is. Also note
that Littlewood Richardson tableaux rectify to the shape that is same as its content,
ending up with only 1s on the first row, 2s on the second row, etc.

A related operation is row insertion. Given a normal tableau T , one inserts an entry
x by following the pseudocode:

1. Start at row r = 1 and entry x.

2. Find the leftmost entry y on row r that is bigger than x.

3. If it exists, swap x and y. Increase r by 1. Go to 2

4. Otherwise, add x to the end of the row and stop.

The new tableau is denoted T ← x.

Example 1.3.12.

Let T be
1 1 2 3 5
2 3 3 6
3 4 5
8

.

Then T ← 2 is obtained as follows:

1 1 2 3 5
2 3 3 6
3 4 5
8

← 2

⇒
1 1 2 2 5
2 3 3 6
3 4 5
8

← 3⇒
1 1 2 2 5
2 3 3 3
3 4 5
8

← 6
⇒

1 1 2 2 5
2 3 3 3
3 4 5 6
8

The following is an useful lemma:

Lemma 1.3.13. If skew tableau T has word W = w1, w2, · · · , wn, then rectification of
T is equal to the inserting wi’s into an empty tableau in order.

8



1.3. YOUNG TABLEAUX

1.3.6 Robinson Schensted Correspondence

Robinson Schensted Correspondence (RSK from now) is a bijective correspondence be-
tween permutations of size n and pairs of standard tableaux of shape λ ` n. This
correspondence has many applications and is extremely important in tableaux theory.

The bijection is defined as follows: given σ ∈ Sn, begin with empty tableaux P0 and
Q0. Pk is obtained from Pk−1 by inserting σk. To get Qk, we add a square to Qk−1 so
that sh(Pk) = sh(Qk) and then fill the square with k. We will end up with two standard
tableaux P := Pn and Q := Qn. One can see that this is reversible from any pair of
standard tableaux of same shape, so this is indeed a bijection. We write σ = RSK(P,Q),
P = P (σ), and Q = Q(σ) to denote this.

Example 1.3.14. Let σ = 351264 ∈ S6. Then

P1 = 3 ,

P2 = 3 5 ,

P3 =
1 5
3

,

P4 =
1 2
3 5

,

P5 =
1 2 6
3 5

,

P = P6 =
1 2 4
3 5 6

,

Q1 = 1

Q2 = 1 2

Q3 =
1 2
3

Q4 =
1 2
3 4

Q5 =
1 2 5
3 4

Q = Q6 =
1 2 5
3 4 6

.

We say that two permutations are Knuth equivalent if their insertion tableaux P
are the same. Here are some facts about Knuth equivalence (most are easy to check
using RSK):

1. There exists exactly one permutation such that it is also a reading of a normal
standard tableau.

2. The word of the tableau stays in the same Knuth equivalence class under jeu-de-
taquin slides.

3. Two skew standard tableaux with words in the same Knuth equivalence class
rectifies to the same normal tableau.

From RSK, we know the following:

Lemma 1.3.15. ∑
λ`n

f 2
λ = n!

where fλ is the number of standard tableaux of shape λ.

9



1.4. PROMOTION

1.3.7 Hook Length Formula

It is natural to ask what fλ is. The hook length formula yields a simple way to calculate
fλ.

Theorem 1.3.16.

fλ =
n!∏

α∈λ hook(α)

where α ∈ λ means that α is a square in the Ferrers diagram of λ and hook(α) is
the number of squares that are either below or to the right of α (including α).

Example 1.3.17. Let λ = (4, 4, 2, 1). Then the hook lengths are:

7 5 3 2
6 4 2 1
3 1
1

.

and fλ = 11!
7·5·3·2·6·4·2·1·3·1·1 = 1320.

1.4 Promotion

1.4.1 Definition of Promotion and Evacuation

Promotion is an operation on standard tableaux. It works as follows: given a standard
tableau T , take the square with 1 and slide it out. Then, cycle all the entries such that
k + 1 becomes k and 1 becomes n. The resulting filling is also a tableau, denoted as
j(T ).

Example 1.4.1. Let T =

1 2 4 10
3 5 8 11
6 7
9

. Then

2 4 10
3 5 8 11
6 7
9

→

2 4 10
3 5 8 11
6 7
9

→

2 4 10
3 5 8 11
6 7
9

→

2 4 8 10
3 5 11
6 7
9

→

2 4 8 10
3 5 11
6 7
9

→

1 3 7 9
2 4 10 11
5 6
8

= j(T )

The set of boxes traveled by the empty box during the computation of promotion is
called the promotion path. During promotion, all entries shift along the promotion
path and then every entry decrease by 1.

10



1.4. PROMOTION

A very closely related operation is evacuation: given a standard tableau T = T1,
slide k out from Tk to get Tk+1. Then we have a chain of shapes: sh(T1) ≥ sh(T2) ≥
· · · ≥ sh(tn+1) = φ. This defines a normal standard tableau of the same shape and we
call this evacuation on T , denoted as e(T ).

Example 1.4.2. Let T =
1 2 4
3 5

. Then

T1 =
1 2 4
3 5

, T2 =
2 4
3 5

, T3 =
3 4
5

,

T4 =
4
5
, T5 = 5 , T6 = φ.

Thus, e(T ) =
1 3 5
2 4

.

We can define dual promotion by taking the largest entry of the tableau and sliding
the empty square in, cycling the entries the other way to making a new tableau. Dual
evacuation is defined similarly: take the biggest entry left in the skew tableau Tk and
slide it in. The recording tableau is the result of dual evacuation. We denote these
operations by j∗ and e∗.

1.4.2 Properties of Promotion and Evacuation

We have the following theorem by Schützenberger [18] [19].

Theorem 1.4.3. The following properties are true:

1. e2 is the identity operation.

2. j−1 = j∗.

3. jn = ee∗ on tableaux of size n.

4. je = ej∗.

If the shape of the tableau T is rectangular (i.e. sh(T ) = ) then the evacuation has
a simpler description: rotate the diagram 180◦ and then re-label each k by (n+ 1)− k.
This also implies that e = e∗. Thus we have e2 = id, jn = id, and je = ej, obtaining a
dihedral group generated by e and j.

A key observation regarding promotion is that promotion cycles the descent set. The
descent set (often called extended descent set) of standard tableau T of size n is

D(T ) =

{
S if n− 1 is at right of n in j(T )

S ∪ {n} if n− 1 is on top of n in j(T )

where S = {k ∈ [n− 1] : k + 1 is in lower row than k}.

11



1.5. REPRESENTATIONS OF THE SYMMETRIC GROUP

Lemma 1.4.4. We have i ∈ D(T ) if and only if i+ 1 ∈ D(j(T )).

Lastly, we note that evacuation interacts nicely with RSK.

Lemma 1.4.5. Let U and V be normal standard tableau of same shape λ ` n. Suppose
RSK(U, V ) = σ ∈ Sn and ω0 ∈ Sn be the long element. Then

1. σ−1 = RSK(V, U).

2. ω0σ = RSK(U ′, e(V )′).

3. σω0 = RSK(e(U)′, V ′).

4. ω0σω0 = RSK(e(U), e(V ))

1.5 Representations of the Symmetric Group

Most proofs of CSP relies on representation theory. We give a brief overview of for
representations of the symmetric group. See [28], [13] for quick introduction and [16] for
complete introduction.

1.5.1 Representations

Let V be a complex vector space. The group of invertible linear maps from V to itself is
denoted as GL(V ). A group homomorphism [·] : G→ GL(V ) is called representation.

Having a representation is equivalent to taking V as a C[G]-module (i.e. algebraic
representation of C[G]). We will call representation V of G as G-module.

We say a representation is irreducible if there is no proper, non-trivial (i.e. [·] is not
a zero map) subrepresentation. Note that we can make new representations by direct
summing two representations. With this definition and observation, we can state the
following fundamental theorem for finite group representations:

Theorem 1.5.1. (Maschke’s theorem)
If V is a representation of a finite group G, then

1. V can be written as the direct sum of irreducible representations of G.

2. The regular representation of G, C[G], is isomorphic to ⊕iV ⊕ dimVi
i , where Vi

are all irreducible representations of G.

12



1.5. REPRESENTATIONS OF THE SYMMETRIC GROUP

Lastly, given a representation V of group G, we can also make a representation for
a subgroup H ≤ G by simply restricting the [·] map to H. We denote this by ResHGV .
We call this restricted representation. This can be done in reverse in a natural way:
given a representation ρ : V → H, we define induced representation for a group
G ≥ H as:

IndGHV = {f : G→ V : f(hg) = ρ(h)f(g) for all g ∈ G, h ∈ H}

with action (g(f))(h) := f(hg).

1.5.2 Characters

Given a choice of basis B on V , [g] can be written in a matrix form. Define the character
of a representation to be χ : G→ C such that χ(g) = tr[g]. Since the trace is independent
of choice of basis, χ(g) is well-defined.

Characters are very crucial when one studies representations. Here are some impor-
tant facts:

1. Two representations of a group G are isomorphic if and only if their characters are
equal.

2. The character of the direct sum of the two representations of G is the sum of the
characters of the two representations.

3. The character has the same value for conjugate elements. For symmetric groups,
this means that permutations with same cycle structure has the same character
value.

1.5.3 Specht Modules

We are interested in studying representations of the symmetric group. Specht Modules
are the irreducible representations of the symmetric group.

A tabloid of shape λ ` n is a filling of the Ferrers diagram of λ with 1, 2, · · · , n
where the order of the entries in the same row does not matter (e.g. 12

3 =21
3 ). Tabloids

are drawn without vertical lines to show this equivalence.
The symmetric group Sn acts on tabloids of shape λ ` n by simply permuting the

entries (e.g. (123)135
24 = 215

34 ). This action extends to the vector space whose basis is
the set of tabloids of shape λ ` n, and thus it is a representation of Sn. Let’s call this
vector space Mλ.

13



1.6. CYCLIC SIEVING PHENOMENON

Given λ ` n, define

eT :=
∑
π

sgn(π)π(T )

where T is a filling of λ and the sum is over permutations that fix the columns of T . eT
lies in Mλ.

The action of π on eT results in eπT . We now define Sλ to be a subspace of Mλ

spanned by eT . This is a representation of Sn and we will call it Specht Module.
This explicit construction of representations are all possible irreducible representa-

tions of Sn. We list some facts regarding Specht module. For proofs of them, see the
references listed at the beginning of this section.

Lemma 1.5.2.
dim(Sλ) = fλ.

The previously proven (in the RSK section) theorem again follows from this lemma
and the second part of the Maschke’s theorem:

Corollary 1.5.3. ∑
λ`n

(fλ)2 = n!.

Finally, we state the branching rule, which tells us what happens when we restrict
or induce a Specht module to a smaller or bigger symmetric group.

Theorem 1.5.4. (Branching Rule) Let λ ` n then

Res
Sn−1

Sn
Sλ ∼= ⊕µSµ

where the sum is over µ ` n− 1 obtained by removing one box from λ and

Ind
Sn+1

Sn
Sλ ∼= ⊕µSµ

where the sum is over µ ` n+ 1 obtained by adding one box to λ.

1.6 Cyclic Sieving Phenomenon

1.6.1 Definition of CSP

Suppose that we have a cyclic group C, generated by c, acting on a set X. In combina-
torics, it is natural to ask the number of fixed points: |Xg| = |{x ∈ X : gx = x}|. In
their 2004 paper, Reiner, Stanton, White describe a way to encode all these data in one
polynomial [26]. This is called cyclic sieving phenomenon.
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1.6. CYCLIC SIEVING PHENOMENON

Definition 1.6.1. Let C = {1, c, c2, · · · , cn−1} be a finite cyclic group acting on a finite

set X. Let ζ = e
2πi
n ∈ C be the root of unity of order n and let f(q) be a polynomial with

rational coefficients. We say that the triple (X,C, f(q)) exhibits the cyclic sieving
phenomenon (CSP) if for any nonnegative integer d, we have that the fixed point set
cardinality |Xcd | is equal to the polynomial evaluation f(ζd).

We closely follow this introduction article [14], which is based on Sagan’s survey
paper [17].

It is easy to see that f(q) is unique up to the cyclotomic polynomial Φn(q). If
(X,C, f1(q)) and (X,C, f2(q)) exhibit the CSP, then f1(q)− f2(q) is a polynomial that
has 1, ζ, ζ2, · · · , ζn−1 as roots, so Φn(q) divides f1(q)− f2(q).

If f(q) =
∑n−1

k=0 akq
k where ak is the number of C-orbits in X with stabilizer order

dividing k, then

f(q) =
n−1∑
k=0

akq
k =

∑
orbit O

1 + q|C|/|O| + q2|C|/|O| + · · ·+ q(|O|−1)|C|/|O|.

If f(q) is evaluated at q = ζd, 1 + q|C|/|O| + q2|C|/|O| + · · ·+ q(|O|−1)|C|/|O| is |O| if the
order of ζd divides |C|/|O| and 0 otherwise. Therefore, f(ζd) = |Xgd | and (X,C, f(q))
exhibits the CSP.

Note that in many situations, these polynomials are naturally associated to the
combinatoric structure. It is often a generating function associated to X.

1.6.2 q-analogs

A q-analog is an identity in the variable q that gives back a familiar identity in the
limit as q approaches 1. Define the q-analog of the number n as [n]q = 1 + q + q2 +

· · · + qn−1. Let [n]q! = [1]q[2]q · · · [n]q be the q-analog of n! and
(
n
k

)
q

= [n]q !

[k]q ![n−k]q !
be

the q-analog of
(
n
k

)
. These q-analogs are all polynomials in q and are our ordinary

numbers, factorials, and binomial coefficients as q approaches 1.
The q-binomial coefficient adds extra information on each object the binomial coeffi-

cient is counting, making it a generating function. If
(
n
k

)
counts the number of monotonic

lattice path inside (n−k)×k box, then its q-analog also takes the number of boxes that
are above the path into account.

We note that f(1) = |X| when (X,C, f(q)) exhibits the CSP. In many cases, f turns
out to be the q-analog of the number of elements in X.
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1.6. CYCLIC SIEVING PHENOMENON

1.6.3 Canonical example of the multisets

The canonical example of the CSP is of the multisets. Let positive integers n
and k be fixed. A k-multiset of [n] := {1, 2, · · · , n} is an unordered family of k ele-
ments of [n] where repetitions are allowed. For example, the set of 3-multisets on [3] is
{111, 222, 333, 112, 113, 221, 223, 331, 332, 123}. Let X be the set of k-multisets on [n].

Let C be a cyclic subgroup of Sn that is generated by the cycle c = (1, 2, · · · , n).
C acts naturally on X: if M = m1m2 · · ·mk, then gM = g(m1)g(m2) · · · g(mk) where
g ∈ C. For example, (1, 2, 3)223 = 331.

It is well known that there are
(
n+k−1

k

)
such multisets. For our polynomial, we take

the q-analog. Define f(q) as
(
n+k−1

k

)
q
.

Theorem 1.6.2. The triple (X,C, f(q)) defined as above exhibits the cyclic sieving
phenomenon.

Example 1.6.3. Let n = 3 and k = 3. f(q) is(
3 + 3− 1

3

)
q

=
(1 + q + q2 + q3)(1 + q + q2 + q3 + q4)

1(1 + q)
= 1+q+2q2 +2q3 +2q4 +q5 +q6.

Clearly, |X id| = |X| is 10. Since f(ζ0) = f(1) = 10, |X id| = f(ζ0).
Only 123 is in the fixed set, so |X(1,2,3)| is 1. The value of f(ζ1) is 1 + ζ + 2ζ2 +

2ζ3 + 2ζ4 + ζ5 + ζ6 = 4 + 3ζ + 3ζ2 = 1 since ζ3 = 1 and 1 + ζ + ζ2 = 0. Therefore,
|X(1,2,3)| = f(ζ).

1.6.4 Proof by direct evaluation

One can prove the above theorem by simply evaluating both |Xcd | and f(ζd) explic-
itly.

Lemma 1.6.4. Let o be the order of cd. Then |Xcd | is
(
n/o+k/o−1

k/o

)
if o|k and 0 otherwise.

Proof. If g = c1c2 · · · ct ∈ C is the cycle decomposition of g ∈ C, then x ∈ X is fixed
under the action by g if and only if x can be written as disjoint union of the cycles ci
with repetition allowed. For example, if g = (1, 4)(2, 3, 5), then the multisets fixed by g
have the form 1a4a2b3b5b. This claim is easy to check.

The permutation cd decomposes into n/o cycles of size o, so no k-multiset is fixed
if o does not divide k. If it does, then one must choose k/o cycles with repetition
allowed to form a multiset of size k that is fixed under the action by cd. Therefore,
|Xcd| =

(
n/o+k/o−1

k/o

)
.
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1.6. CYCLIC SIEVING PHENOMENON

Lemma 1.6.5. Let o be the order of ζd. Then f(ζd) is
(
n/o+k/o−1

k/o

)
if o|k and 0 otherwise.

Proof. Note that [ao+k]q
[bo+k]q

is

1 + q + q2 + · · ·+ qao+k−1

1 + q + q2 + · · ·+ qbo+k−1
.

When q = ζd, this is equal to

1 + qo + q2o + · · ·+ q(a−1)o

1 + qo + q2o + · · ·+ q(b−1)o
=
a

b

if k = 0. Otherwise, it is
1 + q + q2 + · · ·+ qk−1

1 + q + q2 + · · ·+ qk−1
= 1.

If o does not divide k, then f(ζd) =
(
n+k−1

k

)
ζd

has more zeros in the numerator then

the denominator, so f(ζd) = 0. Otherwise,

f(ζd) =

(
n+ k − 1

k

)
ζd

=
[n]q
[k]q

[n+ 1]q
[1]q

· · · [n+ k − 1]q
[k − 1]q

=
n

k
· 1 · 1 · · · 1 · n+ o

o
· 1 · 1 · · · 1 · n+ 2o

2o
· · ·

=
n/o

k/o
· n/o+ 1

1
· n/o+ 2

2
· · ·

=

(
n/o+ k/o− 1

k/o

)
which is what we wanted.

By these two lemmas, we conclude that |Xcd | = f(ζd). Therefore, (X,C, f(q))
exhibits the cyclic sieving phenomenon.

1.6.5 Proof by representation theory

The previous proof is elementary, but it does not tell us much about why the equality
holds. We now present an another proof that uses representation theory and it will
provide more insight to our situation.

Given a set S = {s1, s2, · · · , sn}, we define a complex vector space CS as {c1s1 +
c2s2 + · · · + cnsn|ci ∈ C}. g ∈ Sn acts naturally on C[n]: g(c11 + c22 + · · · + cnn) =
c1g(1) + c2g(2) + · · · + cng(n). Define Symk(n) as CX where X is the set of multisets
of [n] of size k.

Clearly, X is a standard basis of Symk(n). The diagonal entry of [g]X is going to be
1 if multiset M ∈ X is fixed by g and 0 otherwise. Therefore, χ(gd) = tr[gd]X = |Xgd|.
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1.6. CYCLIC SIEVING PHENOMENON

Example 1.6.6. If n = 3 and k = 3 as before and g = (1, 2, 3), then

g(111) = 222, g(222) = 333, g(333) = 111, g(112) = 223, g(113) = 221,
g(221) = 332, g(223) = 331, g(331) = 112, g(332) = 113, g(123) = 123.

So [g]{111,222,333,112,113,221,223,331,332,123} is equal to

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1


.

Only one diagonal entry is 1 because only 123 is fixed under the action g. Therefore,
χ(g) = 1.

We want another way of evaluating this character χ(g), so that it yields f(ζd).
Let c = (1, 2, 3, · · · , n) ∈ Sn. The characteristic polynomial of c is xn − 1, which

has n distinct roots: x1 = 1, x2 = ζ, x3 = ζ2, · · · , xn = ζn−1. So there must be a basis
B = {b1, b2, · · · , bn} of C[n] such that the representation of c in GL(C[n]) is diagonalized
to diag(x1, x2, · · · , xn) by B. [cd]B is diag(xd1, x

d
2, · · · , xdn). LetB′ be the set of k-multisets

of B, then B′ is another basis for Symk(n).
We now evaluate the character of g = cd with this basis. We have

g(bi1bi2 · · · bik) = g(bi1)g(bi2) · · · g(bik) = xdi1x
d
i2
· · · xdikbi1bi2 · · · bik .

So it follows that the diagonal entries of [g]B′ is xdi1x
d
i2
· · ·xdik and the trace of [g] is∑

1≤i1≤···≤ik≤n x
d
i1
xdi2 · · ·x

d
ik

. This polynomial is called complete homogeneous sym-

metric polynomial and is denoted hk(x
d
1, x

d
2, · · · , xdn).
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Example 1.6.7. Again picking n = 3, k = 3, and g = (1, 2, 3),

g(b1b1b1) = x3
1b1b1b1, g(b2b2b2) = x3

2b2b2b2, g(b3b3b3) = x3
3b3b3b3,

g(b1b1b2) = x2
1x2b1b1b2, g(b1b1b3) = x2

1x3b1b1b3, g(b2b2b1) = x2
2x1b2b2b1,

g(b2b2b3) = x2
2x3b2b2b3, g(b3b3b1) = x2

3x1b3b3b1, g(b3b3b2) = x2
3x2b3b3b2,

g(b1b2b3) = x1x2x3b1b2b3.

So [g]{b1b1b1,b2b2b2,b3b3b3,b1b1b2,b1b1b3,b2b2b1,b2b2b3,b3b3b1,b3b3b2,b1b2b3} is equal to

x3
1 0 0 0 0 0 0 0 0 0

0 x3
2 0 0 0 0 0 0 0 0

0 0 x3
3 0 0 0 0 0 0 0

0 0 0 x2
1x2 0 0 0 0 0 0

0 0 0 0 x2
1x3 0 0 0 0 0

0 0 0 0 0 x2
2x1 0 0 0 0

0 0 0 0 0 0 x2
2x3 0 0 0

0 0 0 0 0 0 0 x2
3x1 0 0

0 0 0 0 0 0 0 0 x2
3x2 0

0 0 0 0 0 0 0 0 0 x1x2x3


.

Therefore, χ(g) = x3
1 + x3

2 + x3
3 + x2

1x2 + x2
1x3 + x2

2x1 + x2
2x3 + x2

3x1 + x2
3x2 + x1x2x3 =

h3(x1, x2, x3).

It remains to show that hk(1, q, q
2, · · · , qn−1) is equal to

(
n+k−1

k

)
q
. One can check

that hk(1, q, · · · , qn−1) = hk(1, q, · · · , qn−2) + qn−1hk−1(1, q, · · · , qn−1) and
(
n+k−1

k

)
q

=(
n+k−2

k

)
q

+ qn−1
(
n+k−2
k−1

)
q
. Since the recursions are identical, the equality can be proved

using induction.
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1.7. OUTLINE

1.7 Outline

The rest of the thesis is organized as follows: in chapter 2, we look at Rhoades’ original
proof of CSP of promotion. We first develop a bit of theory of Hecke algebra and its
Kazhdan-Lusztig basis. This theory will allow us an alternative way to construct all
irreducible representations of Sn. Specifically, the irreducible representation of Sn of
shape will be generated by basis elements that are labeled with standard tableaux
of shape . In this set-up, the promotion operator is simply representation of the long
cycle.

In chapter 3, we discuss the second proof of CSP of promotion by Purbhoo. We
review some basics of Schubert calculus and then introduce the Wroskian map: a map
from the Grassmanian Gr(d,Cn−1[z]) to P(Cn−1(z)). The Wronskian map has a finite
number of points in its fibre, each of which can be labeled by tableaux of shape
by identifying its degeneration to Richardson varieties. The rotation of the roots of
p(z) ∈ P(Cn−1(z)) then corresponds to the promotion of the points of the fibre, proving
that the number of tableaux fixed by jk is the number of points in the fibre of the generic
polynomial (xn/k + a1)(xn/k + a2) · · · (xn/k + ak) fixed by k rotations of the roots, which
can be alternatively counted as the number of ribbon tableaux of shape .

In chapter 4, we consider the result of Petersen, Pylyavskyy, and Rhoades, where the
promotion of rectangular tableaux with 2 or 3 rows is visualized as rotation of combina-
torial objects called webs. The bijection from tableaux to webs is quite elementary, but
it can also be formulated algebraically as invariant tensor of the special linear group.
The vector space generated by these webs is called web space. We realize these web
spaces as irreducible module of Sn, then the rotation is just the representation of the
long cycle.

In chapter 5, we give a new approach to this problem. We show a bijection between
square tableaux fixed by jn to permutation of size n where promotion corresponds to
the long cycle. This bijection is a simple modification of standard jeu-de-taquin moves.
We also discuss how this could be generalized to prove CSP for square tableaux.
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Chapter 2

Proof of Cyclic Sieving Using
Kahzdan-Lusztig Theory

We first look at Rhoades’ proof of CSP of promotion on rectangular tableaux. Rhoades’
proof uses Kahzdan-Lusztig theory, which yields a different construction of Specht mod-
ule, as seen in [6]. We start with a brief introduction of Kahzdan-Lusztig basis.

2.1 Hecke Algebra and Kahzdan-Lusztig Basis

The Hecke algebra is a one parameter deformation of the group algebra C[Sn].

Definition 2.1.1. Define the Hecke Algebra Hn(q) over the field of Laurent polyno-
mials C(q1/2) as follows:

1. The basis elements are Tσ for all σ ∈ Sn.

2. TσTτ is Tστ if l(σ) + l(τ) = l(στ).

3. (Tsi + 1)(Tsi − q) = 0 for all i.

Note that specializing q = 1 yields the group algebra C[Sn].
From the third property, we have ((Tsi − (1− q))/q) · Tsi = 1. Thus Tsi is invertible.

Since all σ ∈ Sn can be written as product of si’s in a reduced word, Tσ is invertible for
all σ ∈ Sn.

One can define an involution D on the Hecke algebra by letting D(q1/2) = q−1/2,
D(Tσ) = T−1

σ−1 .

Other than this standard basis {Tσ}σ∈Sn , we also have Kahzdan-Lusztig basis, defined
from the following theorem:
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2.2. µ FUNCTION

Theorem 2.1.2. There exists an unique basis{
C ′σ(q) = (q−l(σ)/2)

∑
τ∈Sn

Pσ,τ (q)Tν | σ ∈ Sn

}
of Hn(q) with the following properties:

1. C ′σ is invariant under D.

2. Pσ,τ is a polynomial in q with integer coefficient.

3. Pσ,σ = 1.

4. Pσ,τ = 0 if σ 6≤ τ .

5. The degree of Pσ,τ is at most (l(τ)− l(σ)− 1)/2.

The basis {C ′σ}σ∈Sn is called Kazhdan-Lusztig basis and Pσ,τ are called Kazhdan-
Lusztig polynomials.

By specializing to q = 1, we get a new basis for C[Sn]. To simplify some calculations,
we throw in some signs.

C ′σ(1) =
∑
τ∈Sn

(−1)l(τ)−l(σ)Pσ,τ (1)Tν .

2.2 µ Function

To help with calculations involving KL polynomials, we introduce the µ function.

Definition 2.2.1. The function µ(σ, τ) = [q(l(τ)−l(σ)−1)/2]Pσ,τ (q) is a statistic on a pair
of permutation. This is the coefficient of the maximal allowed degree term.

Note that µ(σ, τ) = 0 unless σ ≤ τ and l(τ)− l(σ) is odd.
KL µ function is important as it gives us a way to compute the KL polynomials

recursively: If σ ≤ τ and siτ < τ then

Pσ,τ (q) = q1−cPsiσ,siτ + qcPσ,siτ −
∑
siν<ν

q(l(τ)−l(ν))/2µ(ν, siτ)Pσ,ν(q)

where c = 1 if siσ < σ and c = 0 otherwise. Note that the second index of the KL
polynomials on the right hand side are all smaller than τ in Bruhat order.

The µ function behaves nicely with the multiplication by long word ω0 ∈ Sn. Below
is a lemma that will be useful later:
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2.3. KAHZDAN-LUSZTIG REPRESENTATION

Lemma 2.2.2. For any σ, τ ∈ Sn,

µ(σ, τ) = µ(ω0σ, ω0τ) = µ(σω0, τω0) = µ(ω0σω0, ω0τω0).

Finally, we define a symmetrized version of µ: µ[σ, τ ] := max(µ(σ, τ), µ(τ, σ)).
This symmetric version only depends on one half of RSK, if one fixes the other half.

In other words, if S1, T1, S2, T2 ∈ SYT(λ) then

µ[RSK(S1, T1),RSK(S1, T2)] = µ[RSK(S2, T1),RSK(S2, T2)] and

µ[RSK(S1, T1),RSK(S2, T1)] = µ[RSK(S1, T2),RSK(S2, T2)].

Given this fact, we can now define µ function on a pair of standard Young tableaux
with same shape.

Definition 2.2.3. Given standard Young tableaux S, T of the same shape, µ[S, T ] is
defined as µ[RSK(S, U),RSK(T, U)] for any standard Young tableau U of the same
shape.

2.3 Kahzdan-Lusztig Representation

We now move on to construct representations of Sn using this basis.
Let λ ` n be a partition, T be a standard Young tableau of shape λ.
We have a left action by Sn on

Sλ,T0 :=
⊕
σ

C{C ′σ(1)}

where the sum is over permutations σ such that the shape of σ dominates the shape
of λ or P (σ) (first half of RSK) is T .

This action is invariant on a submodule

Sλ,T1 :=
⊕
σ

C{C ′σ(1)}

where the sum is over permutations σ such that the shape of σ dominates the shape
of λ.

Define Sλ,T as Sλ,T0 /Sλ,T1 . We have a basis identified with SYT(λ): for each S ∈
SYT(λ), take the image of C ′RSK(T,S)(1).

It turns out that for T, S ∈ SYT(λ), Sλ,T and Sλ,S are isomorphic up to some
reordering of the basis and Coxeter generators si acts identically on both modules. In
particular, the action is given by the following formula:
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Lemma 2.3.1. If T ∈ SYT(λ),

siT =

{
−T if i ∈ D(T )

T +
∑

i∈D(S) µ[T, S]S if i 6∈ D(T )

where D(T ) is the descent set of T.

We define the C[Sn] module Sλ as Sλ,T for any T ∈ SYT(λ). This is isomorphic to
the Specht module indexed by λ.

2.4 µ Function and Tableau Operators

In this second half of the chapter, we now move forward to the proof of CSP. We will
closely follow Rhoades’ paper for this proof [15].

From here, cn denotes long cycle (1 2 3 . . . n) ∈ Sn. := ba ` n, := ba−1(b−1) `
n− 1.

In this section, we will look at how tableau operators nicely interact with the µ
function and ultimately understand how promotion interacts with it.

Definition 2.4.1. The deletion operator d : SYT( )→ SYT( ) deletes the bottom
leftmost square from the rectangular standard tableau.

The creation operator c : SYT( ) → SYT( ) adds a cell with entry N at the
missing corner.

Note that promotion can be written as eced for rectangular tableaux, where e is the
evacuation operator.

We will now show that µ function interacts well with these operators.

Lemma 2.4.2. Let S, T ∈ SYT( ), then µ[S, T ] = µ[d(S), d(T )]

Proof. Let the column superstandard tableau CSS(λ) be defined as a standard

tableau obtained by filling top to bottom and from left to right (e.g.
147
258
36

). Let

σ = RSK(d(S),CSS( )) and τ = RSK(d(T ),CSS( )). Then

RSK(S,CSS( )) = σ1σ2 · · ·σn−anσn−a+1 · · ·σn−1 and

RSK(T,CSS( )) = τ1τ2 · · · τn−anτn−a+1 · · · τn−1.

Brenti’s result tells us that we can append n at the end of the permutation and
get the same KL polynomial, that is Pσ,τ = Pσn,τn where the permutations are in
one line notation. We can get to RSK(S,CSS( )) from σn by using transpositions
sn−1, sn−2, · · · , sn−a and the same holds for τ .
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2.5. PROMOTION IN KAHZDAN-LUSZTIG REPRESENTATION

Let σ(k) be sn−k · · · sn−1(σn) and τ (k) be sn−k · · · sn−1(τn). It is sufficient to show
that Pσ(k),τ (k) = Pσ(k+1),τ (k+1) for k = 0, 1, · · · , a − 1, since this implies Pσ,τ = Pσn,τn =
Pσ(0),τ (0) = Pσ(a−1),τ (a−1) = P

RSK(S,CSS( )),RSK(T,CSS( ))
.

We use the recursive formula of KL polynomial with c = 1.

Pσ(k+1),τ (k+1)(q) =

Pσ(k),τ (k)(q) + qPσ(k+1),τ (k)(q)−
∑
skν<ν

q(l(τ (k+1))−l(ν))/2µ(ν, τ (k))Pσ(k+1),ν(q).

We observe that σ(k+1) 6≥ τ (k) as σ(k+1) maps n − k to n but τ (k) maps n − k + 1 to
n. A non-zero term in the sum must have σ(k+1) < ν ≤ τ (k), which means ν = τ (k).
Therefore, only qPσ(k+1),τ (k)(q) term survives in the sum on the right hand side and this
shows that Pσ(k+1),τ (k+1)(q) = Pσ(k),τ (k)(q).

As a direct corollary, we get µ[S, T ] = µ[c(S), c(T )] for any S, T ∈ SYT( ). We can
now show that µ is also invariant under evacuation and promotion.

Lemma 2.4.3. Let S, T ∈ SYT(λ), then µ[S, T ] = µ[e(S), e(T )].

Proof. For any U ∈ SYT(λ), we have

µ(S, T ) = µ(RSK(S, U),RSK(T, U))

= µ(ω0 · RSK(S, U) · ω0, ω0 · RSK(T, U) · ω0)

= µ(RSK(e(S), e(U)),RSK(e(T ), e(U)))

= µ(e(S), e(T )).

Theorem 2.4.4. Let S, T ∈ SYT( ), then µ[S, T ] = µ[j(S), j(T )].

Proof. By the previous two lemmas, µ[j(S), j(T )] = µ[eced(S), eced(T )] = µ[S, T ].

2.5 Promotion in Kahzdan-Lusztig Representation

Before we go on to the proof of CSP, we will need the next technical lemma.

Lemma 2.5.1. Let cn = (1 2 · · · n) ∈ Sn be the long cycle. Recall that C ′ω(1) =∑
ν∈Sn(−1)l(ω)−l(µ)Pν,ω(1)ν is the specialization of KL basis for C[Sn]. The coefficient of

C ′
RSK(j(CSS( )),CSS( ))

(1) in the expansion of C ′
RSK(CSS( ),CSS( ))

(1) · cn is (−1)a−1.
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2.5. PROMOTION IN KAHZDAN-LUSZTIG REPRESENTATION

Proof. Denote RSK(CSS( ),CSS( )) by σ and RSK(j(CSS( )),CSS( )) by τ . Then
σ and τ in one-line notation is:

σ =a(a− 1)(a− 2) . . . 1

(2a)(2a− 1)(2a− 2) . . . (a+ 1)

. . .

(ba)(ba− 1)(ba− 2) . . . ((b− 1)a+ 1)

τ =(a+ 1)a(a− 1)(a− 2) . . . 31

(2a+ 1)(2a)(2a− 1)(2a− 2) . . . (a+ 3)2

. . .

(ba)(ba− 1) . . . ((b− 1)a+ 3)((b− 1)a+ 2)((b− 2)a+ 2).

Both of them are 3412, 4231 pattern avoiding, so by smoothness, Pν,σ(q) = 1 for ν ∈ Sab .
Thus, C ′σ(1) is ∑

ν∈S
ab

(−1)l(σ)−l(ν)ν

and C ′σ(1)cn is ∑
ν∈S

ab

(−1)l(σ)−l(ν)νcn.

The Bruhat maximal element ν0cn is

(a+ 1)a(a− 1)(a− 2) . . . 2

(2a+ 1)(2a)(2a− 1) . . . (a+ 2)

. . .

(ba)(ba− 1)(ba− 2) . . . ((b− 1)a+ 2)1,

so ν0 is

a(a− 1)(a− 2) . . . 1

(2a)(2a− 1)(2a− 2) . . . (a+ 1)

. . .

(ba− 1)(ba− 2) . . . ((b− 1)a+ 1)(ba).
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2.5. PROMOTION IN KAHZDAN-LUSZTIG REPRESENTATION

We observe that ν0 is one a-cycle away from σ, so

C ′σ(1)cn =
∑

ν≤ν0cn

aνC
′
ν(1)

for some aν ∈ C and aν0cn = (−1)a−1. The value we want is aτ .
Note that the permutations between τ and ν0cn in the Bruhat order must be of the

form

(a+ 1)a(a− 1)(a− 2) . . . 3x1

(2a+ 1)(2a)(2a− 1) . . . (a+ 3)x2

. . .

(ba)(ba− 1)(ba− 2) . . . ((b− 1)a+ 2)xb,

where x1 ∈ {1, 2}, x2 ∈ {2, a + 2}, xb−1 ∈ {(b − 3)a + 2, (b − 2)a + 2}, xb ∈
{(b − 2)a + 2, 1}. These permutations form a Boolean lattice of rank b − 1 and they
are all 3412, 4231 avoiding. Thus C ′ν(1) can be written as

∑
ω≤ν(−1)l(ν)−l(ω)ω. By

inclusion-exclusion principle, this is inverted to ν0cn =
∑

ν≤ν0cn C
′
ν(1).

No ν ∈ [τ, ν0cn] is in Sabcn other than ν0cn. Thus, if we consider C ′σ(1)cn in the
subalgebra of C[Sn] where ν = 0 if ν 6∈ [τ, ν0cn], it must be equal to (−1)a−1ν0cn =∑

τ≤ν≤ν0cn(−1)a−1C ′ν(1). Therefore, aτ = (−1)a−1.

We now show the key theorem. It shows that promotion is the action by long cycle
(1 2 . . . n) ∈ Sn in KL representation up to some sign.

Theorem 2.5.2. Let ρ : Sn → GL(S ) be the associated KL representation, with basis

identified with SYT( ). Define J : S → S by extending promotion j C-linearly.
Then,

ρ(cn) = (−1)a−1J.

Proof.
We would like to show that the action of Sn commutes with the operator J−1ρ(cn).

Then by Schur’s Lemma, J−1ρcn is cI for some c ∈ C. To show this, it is sufficient to
show that the Coxeter generators si commutes with it.

We approach this problem in two steps: first, we show that si commutes with
J−1ρ(cn) for all i = 1, 2, . . . , n − 2. Then we will show that this implies that sn−1

also commutes.
Clearly, cn · si = si+1cn, so J−1ρ(cn)ρ(si) = J−1ρ(si+1)ρ(cn). Thus it is sufficient to

show that J−1ρ(si+1) = ρ(si)J
−1.
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2.5. PROMOTION IN KAHZDAN-LUSZTIG REPRESENTATION

For some T ∈ SYT( ), we have

J−1ρ(si+1)(T ) =

{
−j−1(T ) if i+ 1 ∈ D(T )

j−1(T ) +
∑

i+1∈D(S) µ[T, S]j−1(S) if i+ 1 6∈ D(T )

=

{
−j−1(T ) if i ∈ D(j−1(T ))

j−1(T ) +
∑

i∈D(j−1S) µ[T, S]j−1(S) if i 6∈ D(j−1(T ))

=

{
−j−1(T ) if i ∈ D(j−1(T ))

j−1(T ) +
∑

i∈D(j−1S) µ[j−1(T ), j−1(S)]j−1(S) if i 6∈ D(j−1(T ))

= ρ(si)J
−1(T ).

Since has a unique corner, S ↓SnSN−1
is S by the Branching rule. So our

representation is irreducible when restricted to Sn−1. Since the operator commutes with
Sn−1, it also commutes with Sn.

Consider the basis element indexed by U := CSS( ) in S ∼= S ,U , which is
C ′U,U(1). The action of cn will yield C ′U,U(1)cn and J(C ′U,U(1)) is C ′j(U),U(1). Therefore,

ρ(cn) = (−1)a−1J by the previous lemma.

This brings us to the main theorem.

Theorem 2.5.3. (SYT( ), j, f (q)) exhibits the cyclic sieving phenomenon.

Proof.
We use the representation theoretic proof to show this CSP. Let ζ = e2πi/n. Consider

the KL representation ρ : Sn → GL(S ).
We turn to the theory of finite reflection groups, subgroups of the group generated

by linear transformations that has all but one eigenvalue 1. Springer’s result allows
evaluation of the character at a regular element, a group element that has an eigenvector
that is not fixed by any non-identity element [20]. The character at ckn is evaluated to
the q-analog of the hook length formula with scalar ζkba(a−1)/2 = (−1)k(a−1).

Clearly, ckn = ((−1)a−1J)k is a permutation matrix with sign. The character at
((−1)a−1J)k counts the number of fixed tableaux under jk with sign (−1)k(a−1). There-
fore, we have our cyclic sieving phenomenon.
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Chapter 3

Proof of Cyclic Sieving Using
Wronskian Map

In this chapter, we follow Purbhoo’s proof of the CSP of promotion by solving the inverse
Wroskian problem [11] [12]. To count the rectangular standard tableaux fixed by some
iteration of promotions, we show a one to one correspondence to the inverse image of a
certain point. We can also count the number of points in the inverse image in terms of
ribbon tableaux. Then the result follows right away, as the number of ribbon tableaux
is well studied [3].

As the focus of the thesis is on promotion, the last two sections on ribbon tableaux
will be less detailed. See [11] [12] for the complete proof.

3.1 Schubert Calculus

Before we go on to the main content of the chapter, let us briefly review some Schubert
calculus. Specifically, we will define what Schubert variety and Richardson variety are
and also look at these variety in terms of Plücker coordinates.

Schubert calculus takes place in Grassmannian,

Definition 3.1.1. A Grassmannian Gr(d, V ) of a m-dim vector space V of field F
and 0 ≤ d ≤ m is a set of d-dim subspaces of V .

It is easy to see that Grassmannian is a topological manifold. When d = 1, the
Grassmanian is just the projective space P(V ).

For this section, we will fix V to have a standard basis {e1, e2, · · · , em}. In this basis,
one can represent a point in Gr(d, V ) by a d-by-m matrix of rank d; the d-dim subspace
it represents will be the row space of the matrix.

Definition 3.1.2. The Plücker map is
Gr(d, V )→ P(∧d(F)) : span(v1, v2, · · · , vd) 7→ v1 ∧ v2 ∧ · · · ∧ vd.

29



3.1. SCHUBERT CALCULUS

This map lets one define Grassmannian as a projective variety.
If we look at this map in terms of the standard basis, the map will send

A =

 a11 a12 · · · a1m
...

...
. . .

...
ad1 ad2 · · · adm

 7→ ∑
I⊆[m],|I|=d

pI(A) ∧dk=1 eIk

where pI(A) is the I-minor of A, det(AI) = det


 a1I1 a1I2 · · · a1Im

...
...

. . .
...

adI1 adI2 · · · adIm


.

Definition 3.1.3.
The Plücker coordinates of x ∈ Gr(d, V ) is the

(
m
d

)
-tuple (pI)I⊆[m](x).

Example 3.1.4. Let’s denote the set of complex polynomials of degree at most m as
Cm[z]. Let x ∈ Gr(2,C3(z)), where x is spanned by 1 + z + z2 and 2 + 2x2 − z3. Then
x is the row space of [

1 1 1 0
2 0 2 −1

]
in the standard basis of C3(z), {1, z, z2, z3}. Then

p{1,2} =

∣∣∣∣ 1 1
2 0

∣∣∣∣ = −2, p{1,3} =

∣∣∣∣ 1 1
2 2

∣∣∣∣ = 0, p{1,4} =

∣∣∣∣ 1 0
2 −1

∣∣∣∣ = −1

p{2,3} =

∣∣∣∣ 1 1
0 2

∣∣∣∣ = 2, p{2,4} =

∣∣∣∣ 1 0
0 −1

∣∣∣∣ = −1, p{3,4} =

∣∣∣∣ 1 0
2 −1

∣∣∣∣ = −1.

Thus, the Plücker coordinates of x is (−2, 0,−1, 2,−1,−1).
As we noted before, this is in the projective space and the coordinates are well defined

up to scaling by non-zero complex number.

Another observation is that d-subsets of [m] is in bijection with partitions λ that fits
in d-by-(m− d) rectangle (add/subtract d+ 1− i from ith entry). So we can also index
the Plücker coordinates with these partitions. e.g. Instead of

(p{1,2}, p{1,3}, p{1,4}, p{2,3}, p{2,4}, p{3,4}),

one can write
(p∅, p , p , p , p , p ).

We would like to define Schubert variety, which lives inside Grassmanian. In order
to do so, we first define what flags are.
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Definition 3.1.5. A complete flag of m-dimensional vector space V is a chain of
subspaces

F : F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm

where Fk is a k-dimensional subspace.
Given a standard basis {e1, e2, · · · , em} of V , the standard flag F• is defined as

(F•)k := span(e1, e2, · · · , ek).

The opposite flag F̃• is defined as

˜(F•)k := span(em, em−1, · · · , em−k+1).

Definition 3.1.6. Let λ be a partition contained in . Given a complete flag F of V ,
the Schubert variety is the subset of the Grassmannian Gr(d, V ):

Xλ(F ) :=
{
x ∈ Gr(d, V ) : dim(x ∩ Fi+(m−d)−λi) ≥ i

}
.

This definition may seem unnatural at a glance. One easy way to visualize the set
is to look at row reduced echelon form of the matrix representation. The shape of the
leading zeros before ones (flip it upside down to get a partition shape) contains the shape
(λi + i− 1)i if and only if the subspace is in Xλ(F•).

One can also see Schubert variety in terms of Plücker coordinates.

Theorem 3.1.7. Xλ(F•) = {x ∈ Gr(d, V ) : pµ(x) = 0 for µ ≤ λ}.

Finally, we define Richardson variety.

Definition 3.1.8. Given a standard basis of a vector space V , The Richardson vari-
ety Xλ/µ is Xλ(F•) ∩Xµ(F̃•) ⊆ Gr(d, V ).

From the previous theorem, the following lemma follows.

Lemma 3.1.9. Xλ/µ = {x ∈ Gr(d, V ) : pν(x) = 0 for ν /∈ Λλ/µ}, where Λλ/µ = {ν : µ ≤
ν ≤ λ}.

3.2 Wronski Map

We fix 0 < d ≤ m. Let f1(z), f2(z), · · · , fd(z) ∈ Cm−1(z).

Definition 3.2.1. The Wronskian of f1, f2, · · · , fd ∈ Cm−1(z) is the complex polyno-
mial

Wrf1,f2,··· ,fd(z) :=

∣∣∣∣∣∣∣∣∣
f1(z) f2(z) · · · fd(z)
f ′1(z) f ′x(z) · · · f ′d(z)

...
...

. . .
...

f
(d−1)
1 (z) f

(d−1)
2 · · · f

(d−1)
d (z)

∣∣∣∣∣∣∣∣∣ .
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We note some trivial properties of Wronskian:

Remark 3.2.2.

1. Wrf1,f2,··· ,fd(z) = 0⇔ f1, f2, · · · , fd are linearly dependent.

2. If span(f1, f2, · · · , fd) = span(g1, g2, · · · , gd), then Wrf1,f2,··· ,fd(z) is equal to
Wrg1,g2,··· ,gd(z) up to scaling by a non-zero complex number.

These observations lead us to consider Wronski map to be defined as a map on a
Grassmannian Gr(d,Cm−1(z)) by taking any basis of the d-dimensional subspace and
evaluating the Wronskian. The answer we get will be up to a scalar, so it lives in
P(Cm−1(z)).

The inverse Wronskian problem asks that given h(z) ∈ P(Cm−1(z)), find all x ∈
Gr(d,Cm−1(z)) such that Wr(x) = h(z). We will denote the set of solutions to this as
X(h(z)).

The Wronski map can be written in terms of Plücker coordinates.

Lemma 3.2.3. Let x ∈ Gr(d,Cm−1(z)), then

Wr(x) =
∑
λ⊆

qλpλ(x)z|λ|

where := dn−d and qλ is the Vandermonde determinant:∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 + λd 2 + λd−1 3 + λd−2 · · · d+ λ1

(1 + λd)
2 (2 + λd−1)2 (3 + λd−2)2 · · · (d+ λ1)2

...
...

...
. . .

...
(1 + λd)

d−1 (2 + λd−1)d−1 (3 + λd−2)d−1 · · · (d+ λ1)d−1

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i≤j≤d

(j + λd+1−j − i− λd+1−i).

Proof. Let A be a d-by-m matrix of C such that x is the row space of A in the standard
basis 1, z, z2, · · · , zm−1. Let B be a d-by-m matrix such that Bi,j = ( d

dzi−1 )zj−1. Then
the Wronskian Wr(x) is simply equal to |BAt|, which can be calculated with Cauchy-
Binet formula. The maximal minors of A are just the Plücker coordinates, pλ(x). The
maximal minors of B are qλz

|λ|. The lemma follows from here.

Now that we translated everything to Plücker coordinates, we can prove a key theo-
rem:

Theorem 3.2.4. Every point in X(h(z)) lies in an unique Richardson variety such that
|λ| = deg h(z) and |µ| = mindeg h(z).
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Proof. For x ∈ X(h(z)), let λ be the unique maximal partition such that pλ(x) 6= 0
and µ be the unique minimal partition such that pµ(x) 6= 0. Because of the Plücker
coordinates characterization of the Richardson variety, x is in the Richardson variety
Xλ/µ.

Because of the Plücker coordinates characterization of the Wronskian, we know that
coefficients of zk terms are 0 if k > |λ| or k < |µ|. However, the coefficient of z|λ| is
qλpλ(x) 6= 0 and the coefficient of z|µ| is qµpµ(x) 6= 0. Therefore, |λ| = deg h(z) and
|µ| = mindeg h(z).

If x is in two distinct Richardson variety, then it must be in their intersection.
However, this intersection is a proper Richardson subvariety, which is a contradiction.
Therefore, x lies in an unique Richardson variety.

3.3 Roots on a Circle

Let r = {r1, r2, · · · , rn} be a multiset where r1, r2, · · · , rn ∈ RP1. We denote the poly-
nomial (x + r1)(x + r2) · · · (x + rn) by r. In particular, X((x + r1)(x + r2) · · · (x + rn))
is denoted as X(r).

A very important result on Wronski map is the theorem by Mukhin, Tarasov, and
Varchenko [2], formally Shapiro-Shapiro conjecture.

Theorem 3.3.1. (Mukhin, Tarasov, Varchenko)
If r1, r2, · · · , rn are real, then X(r) is reduced and is real (i.e. it has a basis with real

coefficients).

We will use this theorem to associate a tableau Tx ∈ SYT( ) to a point in the fibre
of the Wronski map x ∈ X(r).

Put a total order on RP1 as follows: a ≤ b if and only if a = b or |a| < |b| or
0 < a = −b <∞. When r is a set, we have r1 < r2 < · · · < rn without loss of generality.

Define rk(t) = {tr1, tr2, · · · , trk, rk+1, · · · , rn} for k = 0, 1, 2, · · · , n and t ∈ [0, 1]. If
t 6= 0, rk(t) is still a set, so by Mukhin-Tarasov-Varchenko, X(rk(t)) is reduced. Then
there is an unique lifting of path rk(t), t ∈ [0, 1] to a path xk(t) ∈ X(rk(t)).

The polynomial rk(0) has mindeg k. So xk(0) ∈ X(rk(0)) lies in an unique Richardson
variety Xνk/λk where λk ` k. These λk’s form a chain: ∅ = λ0 ⊂ λ1 ⊂ · · · ⊂ λn = .
This defines a standard young tableau of shape . Call this tableau Tx.

By construction, if a path r(t) stays in the same total order for all of t ∈ [0, 1] and
x(t) ∈ X(r(t)) is a lifting of r(t), then Tx0 = Tx1 .

To understand the situation when r(t) does not stay in the same order, we look at
the case where two adjacent elements swap their place. Once we can handle this, we
can concatenate these “transposes” and get the general behavior.
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Theorem 3.3.2. Let r(t) be a path such that r1(t) < r2(t) < · · · < rk(t) and rk+1(t) <
rk+2(t) < · · · < rN(t) for all t ∈ [0, 1]. Let rk(0) < rk+1(0) and rk(1) > rk+1(1). Let
x(t) ∈ X(r(t)) be a lifting of r(t). Then

1. If rk(0) and rk+1(0) have the same sign, then Tx(0) = Tx(1).

2. If k and k + 1 are in the same row or column in Tx(0), then Tx(0) = Tx(1).

3. Else, Tx(1) is obtained by switching k and k + 1 from Tx(0).

This operation is best visualized by real valued tableaux: tableaux obtained by
replacing k’s in Tx by rk.

Example 3.3.3. Let d = 2 and n = 5. Let r(t) = {r1(t), 3, 7, 18, 42, 61} where r1(0) = 0
and r1(1) = ∞, r1(t) moving along the negative numbers. Assume that our tableau is

Tx(0)(r(0)) = 1 2 5
3 4 6

.

As t goes from 0 to 1, the tableau Tx(t)(r(t)) changes as follows:

1 2 5
3 4 6︸ ︷︷ ︸
r1(t)=−1

→ 1 2 5
3 4 6︸ ︷︷ ︸
r1(t)=−4

→ 1 3 5
2 4 6︸ ︷︷ ︸
r1(t)=−12

→ 1 3 5
2 4 6︸ ︷︷ ︸
r1(t)=−27

→ 1 3 4
2 5 6︸ ︷︷ ︸
r1(t)=−50

→ 1 3 4
2 5 6︸ ︷︷ ︸
r1(t)=−98

As a real valued tableaux, this operation looks like:

−1 3 42
7 18 61︸ ︷︷ ︸
r1(t)=−1

→ 3 −442
7 18 61︸ ︷︷ ︸
r1(t)=−4

→ 3 -12 42
7 18 61︸ ︷︷ ︸
r1(t)=−12

→ 3 18 42
7 -27 61︸ ︷︷ ︸
r1(t)=−27

→ 3 18 42
7 -50 61︸ ︷︷ ︸
r1(t)=−50

→ 3 18 42
7 61 -98︸ ︷︷ ︸
r1(t)=−98

It is very clear that following this path results in promotion of the associated tableau.
So the following theorem is true.

Theorem 3.3.4. Let 0 < r1(0) < r2(0) < r3(0) < · · · < rN(0) < ∞. Take a path such
that rk(t) decreases from rk(0) to rk−1 for all k 6= 1 and r1(t) decreases to 0, goes along
the negative numbers to ∞ and then down to rn(0) (i.e. the rk’s are rotated once) and
let x(t) be a lifting of this path. Then T (0) = j(T (1)).

We remind ourselves of projective general linear group. This will come to be useful
to us, since this rotation of roots can be neatly written as a PGL2(C) action. The group
PGL2(C) (quotient group of the general linear group by non-zero scalings) acts on CP1

by Möbius transformation: φ =
[
φ11 φ12
φ21 φ22

]
acts on a ∈ CP1 as

φ(a) =
φ11a+ φ12

φ21a+ φ22

.

This restricts to PGL2(R) on RP1.
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3.3. ROOTS ON A CIRCLE

Let’s define r = {r1, r2, r3, · · · , rn} to be a subset of RP1 such that

φ(r) := {φ(r1), φ(r2), · · · , φ(rn)}

is also a subset of RP1 for some φ ∈ (PGL2(R)). If x ∈ X(r) then φ(x) ∈ X(φ(r)) since
the Wronskian map and Möbius transformations commute. From here, we can define
the action of PGL2(R) on real valued tableaux: φ(Tx(r)) := Tφ(x)(φ(r)).

If φ is in the same connected component as [ 1 0
0 1 ], then φ(T ) can be computed by the

previous theorem, simply by lifting the path from [ 1 0
0 1 ] to φ.

If φ(r) = r, then φ acting on Tx(r) can be viewed as an operator on SYT( ).

Lemma 3.3.5. Let φ ∈ PGL2(R), φ(r) = r where 0 < r1 < r2 < · · · < rn < ∞. If φ
is in the same component as [ 1 0

0 1 ], then the operation on SYT( ) corresponds to the
action of jk for some integer k.

This immediately follows from the previous theorem, since a path r(t) lifted from
[ 1 0

0 1 ] to φ must look like rotation of ri’s by k steps.
To get our main theorem, we will transform the RP1 circle into the unit circle S1 ⊂

CP1. This with a specific choice of points will give us a simple realization of j in
PGL2(R).

Let ψ :=
[

1+η̄ −(1+η)
1+η −(1+η̄)

]
∈ PGL2(C) where η := eiπ/2n. With this map, we can trans-

form all our work in RP1 to S1. The group PGL2(S1) := ψPGL2(R)ψ−1 acts on subset

of S1. We now have c :=
[
e−iπ/n 0

0 eiπ/n

]
∈ PGL2(S1) fixes

s := {eiπ/(2n), e3iπ/(2n), · · · , e(2n−1)iπ/(2n)}.

Not only that, since it rotates the points in s, it operates on SYT( ) as a promotion.
We can finally count the number of tableaux fixed by jk.

Theorem 3.3.6. Let h(z) = (xn/k+a1)(xn/k+a2) · · · (xn/k+ak) be a generic polynomial.
Then the number of points in X(h(z)) fixed by the cyclic group generated by ck is equal
to the number of jk-fixed tableaux in SYT( ).

Proof. The polynomial s(z) = zn + (−1)n = (x + s1)(x + s2) · · · (x + sn) is fixed by
c and is reduced. So this is a generic case. x ∈ X(s(z)) is ck-fixed if and only if the
associated tableau Tx is jk-fixed. So the theorem follows.
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3.4 Components of Xr

Following from the theorem, we are now interested in |Xr(h(z))| where h(z) = (xn/k +
a1)(xn/k + a2) · · · (xn/k + ak) is a generic polynomial, where Xr(h(z)) is the set of points
in the fibre of h(z) fixed under the action ck with order r := n/k. We will enumerate
these points with ribbon tableaux. In order to do so, we introduce components of Xr,
each of which corresponds to a r-core.

We have that ck, considered as an element of SL2(C), acts on Cn−1[z] such that
ck(zl) = ζn−1−2lzl where ζ := e2kiπ/n. The ζn−1−2l-eigenspace for l = 0, 1, · · · , r − 1 is
generated by {zl, zr+l, · · · , z(k−1)r+1}.

If x ∈ Xr, the ck action on Cn−1[z] induces an action on x. Define specr(x) :=
(specr0(x), specr1(x), · · · , specrr−1(x)) where specrl (x) is the multiplicity of the eigenvalue
ζn−1−2l for the action ck on x. We know that specrl (x) ≤ k and that

∑
l specrl (x) = d.

For s = (s0, s1, · · · , sr−1) with sl ≤ k and
∑

l sl = d, we define

Xs := {x ∈ Xr| specr(x) = s}

to be the components of Xr.

Example 3.4.1. Let d = 3, m = 7, n = d(m − d) = 12, k = 4, r = n/k = 3, and
s = (2, 0, 1) and consider X(2,0,1) component of Xr. The points in X(2,0,1) are direct
sum of a 2-dimensional subspace of span({1, z3, z6}) and the 1-dimensional subspace of
span({z2, z5}). In other words, they are row spaces of matrices of the form ∗ 0 0 ∗ 0 0 ∗

∗ 0 0 ∗ 0 0 ∗
0 0 ∗ 0 0 ∗ 0


with zl as its basis.

There are only
(

3
2

)
·
(

2
1

)
= 6 Plücker coordinates that could be non-zero. They are:

p134, p137, p347, p146, p167, p467.

In partition notation, they are:

p , p , p , p , p , p .

We see that these partitions all have the same r-core. In fact, these are all possible
partitions with the same r-core in the shape .

In r-abacus notation, these partitions look like:

, , , , , .
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Note that the number of beads on lth column is sl.

These observations lead us to the next lemma:

Lemma 3.4.2. Let Xs be a component of Xr. There exists an unique r-core κ such
that for every x ∈ Xs and λ ⊆ whose r-core is not κ, we have pλ(x) = 0.

Proof. We pick such r-core κ by putting sk beads in the kth column in r-abacus and
taking its corresponding r-core. Let λ ⊆ be a partition whose r-core is κ′ 6= κ, the
r-core corresponding to s′ 6= s. For some choice of l, s′l > sl. Then pλ(x) = 0 for x ∈ Xs

because of the dimension of the ζn−1−2l-eigenspace.

3.5 Ribbon Tableaux

We note that we are free to work in any algebraically closed fields, as this does not
change the number of points in a fibre. For the rest of the chapter, we now use the field
of puiseux series K := F{{u}} := ∪n≥1F((u1/n)) where F is an algebraically closed field
of characteristic zero. This change of field gives us an advantage since K is a complete
valuation ring.

We define valuation of g(u) = cl +
∑

r>l cru
r ∈ K× to be val(g(u)) := l and the

leading term to be LT(g(u)) := clu
l.

Given ai ∈ K× such that val(a1) > val(a2) > · · · > val(an), we wish to associate a
tableau Ux ∈ SYT( ) to each x ∈ X(a) (this will be r = 1 case of 1-ribbon tableaux
corresponding to points in the fibre fixed by the trivial action cn = id). Note that Ux is
not related with Tx. Since it is known that |X(a)| = | SYT( )|, we work the other way:
given U ∈ SYT( ), we find x ∈ X(a) such that U = Ux.

Theorem 3.5.1. Let U ∈ SYT( ) be a tableau defined by the chain of partitions
∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λn = . Then, there exist x ∈ X(a) such that

LT(pµ(x)) =
∏
i

(
ai
qλi+1

qλi

)
for all µ ⊆ where the product is over the entries of U that are not in the shape µ and
where qλi is the Vandermonde determinant defined in lemma 3.2.3.

Since |X(a)| = | SYT( )|, such x is unique. Also note that val(pλk(x)) ≥ val(pµ(x))
for all µ ` k.
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3.5. RIBBON TABLEAUX

We are interested in the more general case where a = h(z) = (zr+h1)(zr+h2) · · · (zr+
hk). In generic case, we have val(h1) > val(h2) > · · · > val(hk). If we sort the roots by
valuation, we have

val(a1) = val(a2) = · · · = val(ar)

> val(ar+1) = val(ar+2) = · · · = val(a2r)

> · · ·
> val(a(k−1)r+1) = val(a(k−1)r+2) = · · · = val(an)

The above theorem does not apply here, but one can prove a similar version of the
theorem with a bit more work.

Theorem 3.5.2. Let h(z) be as above. Then for x ∈ Xr(h(z)), there exists a chain of
partitions ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λn = (this may not be unique) such that

LT(pλlr(x)) =
n∏

i=lr+1

(
LT(ai)

qλi+1

qλi

)
for l = 0, 1, · · · , k − 1 and

val(pλlr(x)) > val(pµ(x))

for all µ ` lr and µ 6= λlr.

Although the corresponding chain of partitions may not be unique, the second con-
dition identifies the unique partition λlr for l = 0, 1, · · · , k−1. This yields us a uniquely
corresponding tableau of with content (r, r, · · · , r).

Suppose x ∈ Xs. Then by the lemma 3.4.2, there exists an r-core κ such that
pλ(x) = 0 for all λ ⊆ whose r-core is not κ. We know that pλlr(x) are all non-zero.
Therefore, the r-core of λlr are all κ and the chain of partitions results in a r-ribbon
tableau.

Once we show that Xr(h(z)) is reduced and that this correspondence is surjective,
we can conclude the following theorem.

Theorem 3.5.3. Let h(z) = (xn/k+a1)(xn/k+a2) · · · (xn/k+ak) be a generic polynomial.
Then the number of points in X(h(z)) fixed by the cyclic group generated by ck is equal
to the number of n/k-ribbon tableaux of shape .

Together with theorem 3.3.6, we have that the number of jk-fixed tableaux is equal to
the number of n/k-ribbon tableaux. The number of ribbon tableaux is well studied [3] [1].
In particular, we know that the number is the Kostka-Foulkes polynomial evaluated at
a root of unity, which turns out to be the q-analog of the hook length formula when the
shape is a rectangle. Hence, the CSP of promotion of rectangular tableaux is proven
again.

38



Chapter 4

Proof of Cyclic Sieving Using Webs

In this chapter, we look at another proof of the main theorem. The proof realizes
tableaux as combinatorial objects called webs. In this realization, the promotion corre-
sponds to the rotation. Currently, only 2 and 3-row tableaux can be studied this way, as
the webs corresponding to tableaux with more rows are yet to be found with combinato-
rial interpretation, but this approach yields a very strong way to visualize the rotating
behavior of the promotion of rectangular tableaux.

4.1 2-Row Tableaux and Non-Crossing Matching

We start by looking at the web corresponding to 2-row tableaux. This web, A1-web, is
more well known as non-crossing matching.

Definition 4.1.1. A non-crossing matching of size 2n is a perfect matching with
vertex set [2n] such that for any two edges (a, b) and (c, d), we cannot have a < c < b < d.

The condition is equivalent to saying that if the vertices are arranged in a circle in
order, then no two edges cross.

Example 4.1.2. There are 5 non-crossing matchings of size 6 = 2 · 3:

1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6
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4.1. 2-ROW TABLEAUX AND NON-CROSSING MATCHING

It is well-known that the number of non-crossing matchings of size 2n is the nth
Catalan number, 1

n+1

(
2n
n

)
.

We know that the number of 2-by-n tableaux are also nth Catalan number, so we
suspect that there is a bijection between these two objects. There does exist such
bijection: given a non-crossing matching {(ai, bi) : i ∈ [n], ai < bi} (let’s call vertices
ai’s initial and bi’s final), construct a {1, 2}-word of length 2n by inserting 1s at aith
positions and 2s at bith positions. This is a lattice word, so we have a corresponding 2-
row tableau. One can trivially reverse the process and obtain the non-crossing matching
corresponding to a 2-row tableau. This bijection can be stated in much simpler terms,
but we leave it like this to draw parallel to the 3 row case.

Example 4.1.3.
We start with a non-crossing matching:

1

2

3

4

56

7

8

9

10

.

Cut between 1 and 10, the diagram looks like (initials are circled):

1 2 3 4 5 6 7 8 9 10

.

Then the corresponding lattice word is:

1211211222.

And the resulting tableau is:

1 3 4 6 7
2 5 8 9 10

.
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4.1. 2-ROW TABLEAUX AND NON-CROSSING MATCHING

Let us consider the promotion under this bijection.

Example 4.1.4. The orbits of the 5 2-by-3 standard tableaux by promotion are:

1 2 3
4 5 6

1 3 4
2 5 6

1 2 5
3 4 6

1 2 4
3 5 6

1 4 5
2 3 6

Under the bijection, this becomes:

1

2

34

5

6

1

2

34

5

6

1

2

34

5

6

1

2

34

5

6 1

2

34

5

6

From this example, we can observe the following main theorem.

Theorem 4.1.5. The promotion of a 2-row standard tableaux corresponds with the
rotation of a non-crossing matching under the bijection.

Proof. Suppose that 1 is connected to 2k in a non-crossing matching, then 2k is the
kth entry in the second row in the corresponding tableau. Consider the sub-non-crossing
matching {(ai, bi) : i ∈ [2, 3, · · · , 2k− 1], ai < bi}. Since the jth biggest initial is smaller
than the jth biggest final, we conclude that j + 1th entry in the first row is smaller
than the jth entry in the second row. Thus the promotion path on the tableau follows
the first row up to kth column, go down, and then takes the rest of the second row.
This means that promotion will change the set of initials by removing 1, adding 2k, and
decreasing all elements by 1.

The rotation can be described as re-labelling 1 as n + 1 and then decreasing all the
label by 1. Thus set of initials change exactly the same under rotation.
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4.2 3-Row Tableaux and A2-Webs

We now generalize this notion of rotation of non-crossing matching for 3-row tableaux.

Definition 4.2.1. An A2-web is a planar, bipartite graph embedded on a disk, satis-
fying the following conditions:

1. The boundary vertices (on the boundary of the disk) have degree 1.

2. The internal vertices (not on the boundary) have degree 3.

An A2-web is irreducible (or elliptic) if all internal faces have at least 6 sides.

Example 4.2.2. An example of size 9 irreducible A2-web is:

.

Note that the number of boundary vertices must be a multiple of 3. We will label
them with [3n] going clockwise.

There exists a natural bijection between 3-row tableaux and irreducible A2-webs
where all boundary vertices are in the same part in the bipartition. We now describe
the bijection.

First, we embed the graph such that the disk is now the half plane, cut between 1
and 3n. Label the faces by the distance to the outer face in the dual graph. In other
words, these labels indicate the minimum number of edges one needs to cross to reach
the outer face. We also label each edges with

1 if the label of the face on the left side is greater than the label of the face

on the right side as one travels on the edge (blue in the example diagram)

2 if the labels are the same (black in the example diagram)

3 if the right label is greater (red in the example diagram)

with direction of the edge given from the bipartition, edges pointing away from the
partition with the boundary vertices. Looking at the labels of the edges incident to
the boundary vertices, we get a lattice word of length 3n, from which we get our 3-row
tableau.
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4.2. 3-ROW TABLEAUX AND A2-WEBS

Example 4.2.3. The A2-web from the previous example becomes:

1 2 3 4 5 6 7 8 9

1 1

1

1

2

2 2 2

3

and the lattice word is 112213323, yielding the tableau

1 2 5
3 4 8
6 7 9

The inverse is mostly straight forward, except for the part where we have to con-
struct the A2-web from the labeled edges. This uses the growth rule (shown below in
a diagram), which tells us local construction given uncompleted neighbouring edges. It
is proven by Khovanov and Kuperberg [8] that the end result does not depend on the
choices one makes in the growth rule algorithm.

A2-web gives an excellent picture of behavior of promotion on 3-row tableaux: its
equivalent action is simply a rotation. We have the main theorem for A2-webs.

Theorem 4.2.4. The promotion of a 3-row standard tableaux corresponds with the
rotation of a A2-webs under the bijection.

The proof can be found in [25]. The proof is elementary and is similar to the 2-
row case. To show the correspondence, keep track of how the lattice word changes
under rotation. The two key vertices, which represent the two column changes in the
promotion path, can be determined from two alternating paths one can follow in the A2
webs. These two paths divide the web into 3 sections and the change of depth in each
section after the rotation can be understood to be in agreement with the promotion.
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4.3 Web Space

We now look at algebraic interpreatation of these webs. Our goal here is to see the
motivation for webs and its reduction rules and to get enough algebra to prove the cyclic
sieving. Thus we will not dive into the invariant theory in depth. We will only provide
definitions and theorems without proofs and see how it relates to our combinatorial
object.

A classic problem from the invariant theory is the following:
Given irreducible representations of group G, V1, V2, · · · , Vn, characterize the sub-

space of {f : V1 × V2 × · · · × Vn → F} which is invariant under the action of G (i.e.
f(v1, v2, · · · , vn) = f(gv1, gv2, · · · , gvn) for any g ∈ G).

This is to characterize the invariant tensor: Inv(V1 ⊗ V2 ⊗ · · · ⊗ Vn).
Consider G = SL2(C) (the A1 Lie group) , and V = C2 as the irreducible represen-

tation of G, acting in the obvious way. The map V ⊗ V → C : (x1, y1) ⊗ (x2, y2) 7→
x1y2− x2y1 is an invariant contraction under any basis, since the action by A ∈ SL2(C)
yields

(A11x1 + A12y1)(A21x2 + A22y2)− (A11x2 + A12y2)(A21x1 + A22y1)

=det(A)(x1y2 − x2y1)

=x1y2 − x2y1.

One can also think of the contraction as the natural map of V ⊗ V ∗ → C since V is
self-dual.

Therefore, we have a contraction operation Inv(V ⊗ V ∗ ⊗ W ) → Inv(W ) where
W = V ⊗n. In addition, we have cyclic permutation Inv(V ⊗W ) → Inv(W ⊗ V ) and
join operation Inv(V )⊗ Inv(W )→ Inv(V ⊗W ) defined naturally.

It turns out that this is closely related to non-crossing matchings. With non-crossing
matchings, we also have contraction (adding a loop to adjacent pair of vertices), cyclic
permutation, and join operation. The following theorem makes this connection.

Theorem 4.3.1. (Rumer, Teller, and Weyl [5])
There exists an unique isomorphism φ between the space of formal linear combination

of non-crossing matchings and
⋃
n Inv(V ⊗2n) where

1. The join operator ./n,m: Inv(V ⊗2n)⊗ Inv(V ⊗2m)→ Inv(V ⊗2(n+m)) corresponds to
the merging of two non-crossing matching.

2. The cyclic operator ρn : Inv(V ⊗2n) → Inv(V ⊗2n) corresponds to the rotation of
the non-crossing matching.

3. The contraction operator σn : Inv(V ⊗2n) → Inv(V ⊗2n−2) corresponds to contrac-
tion of the non-crossing matching.
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Say we want to construct such isomorphism φ2n : W2n → Inv(V ⊗2n). If one can pick
φ2( ) to be r, then all other values can be deduced from here. For instance,

φ10

  = φ2( )⊗ φ8

 
= r ⊗ ρ8

(
φ8

( ))
= r ⊗ ρ8(φ2( )⊗ φ4( )⊗ φ2( ))

= r ⊗ ρ8(r ⊗ ρ4(r ⊗ r)⊗ r).

Note that contracting vertices 2 and 3 of yields . In invariant tensor
setting, this is (I⊗σ⊗ I)(r⊗ r) = r. One can now solve for σ. The most natural choice
is r = e1⊗ e2− e2⊗ e1 and σ = (e2⊗ e1)∗− (e1⊗ e2)∗. Regardless of the choice of r and
σ, σ(r) = −2. This means that a loop (result of contraction of vertices 1 and 2 of )
should count as -2 scalar.

Lastly, let’s consider what crossing should evaluate to. Sticking to our choice of
φ2( ) = e1 ⊗ e2 − e2 ⊗ e1, we have

φ4( ) = swap 2nd and 3rd component of r ⊗ r
= e1122 − e1221 − e2112 + e2211

φ4( ) = r ⊗ r
= e1212 − e1221 − e2112 + e2121

φ4( ) = ρ(r ⊗ r)
= −e2121 + e1122 + e2211 − e1212

where eijkl := ei ⊗ ej ⊗ ek ⊗ el.
Since, φ4( ) = φ4( ) + φ4( ), we define

:= +

in the A1 web space.
It is helpful to introduce crossing to our language of webs. It can be used to express

some complicated webs in a simpler way. It also allows us to have these knot theory-like
‘Reidemeister’ moves to ‘unknot’ the web.

=

,

= −
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This correspondence between the invariant tensor and linear space of A1 webs can be
generalized one rank higher: there exists a canonical correspondence between Inv(V ⊗n)
where V = C3 and C-linear combination of irreducible A2 webs such that join, rotation,
and stitching operations are respected.

Reducible webs are reduced by the following rules:

= 3, = −2 , = +

This allows us to reduce any A2 webs to linear combinations of irreducible webs.

4.4 Proof of CSP

Finally, we put together our understanding of web space and its connection to promotion
to prove the cyclic sieving of promotion. We will proceed by proving the 2-row case,
while noting the differences that arises when 3-row proof is carried on.

We begin by defining the action of S2n on W
(2)
n . Given a Coxeter generator si of S2n,

define si(D) by the sum of D with added at the vertices i and i + 1 (For rank 3
case, add instead of ).

Example 4.4.1.

s2


1

2

34

5

6
 = +

= + .

It is easy to check that this satisfy the Coxeter rules, because it is simply crossing
ith and i+ 1th vertices. Therefore, this extends to S2n acting on W

(2)
n .

We note that the long cycle cn ∈ S2n acts on W
(2)
n as rotation.

46



4.4. PROOF OF CSP

Lemma 4.4.2. For any D ∈ W (2)
n , p(D) = −cn ·D.

Proof. Clearly, cn = sn−1sn−2 · · · s1, so adding the crossings, we get this swirl:

cn · = = − .

By performing Reidemeister type moves from the earlier section, we can transform
the line from 1 to n into the dashed line, with one sign change. Therefore, the action by
the long cycle is equivalent to rotating the web clockwise by one step.

One can check that W
(2)
n is an irreducible S2n-module of shape (n, n) (and W

(3)
n is an

irreducible S3n-module of shape (n, n, n)). This can be shown by the fact that 1. W
(2)
n

factors through Temperley-Lieb algebra, showing that the irreducible components have
at most two rows 2. we can construct an action that does not act trivially, showing that
the irreducible components must have shape containing (n, n) 3. the dimension of W

(2)
n

is 1
2n+1

(
2n
n

)
, showing that W

(2)
n is the irreducible module of shape (n, n).

Finally, we are at the same situation as we were in the Rhoades’ proof. We have a
irreducible representation of Sn of shape (n, n) and the action of cn corresponds to the
promotion of the basis elements up to some sign. The same calculation of characters
yields CSP.
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Chapter 5

Square Tableaux and Promotion

In this chapter, we see a combinatorial way of enumerating n-by-n square tableaux fixed
by n promotions. There are n! such tableaux, so it is natural to ask whether there exists
a bijection to permutations. We define a procedure, which is a variation of jeu-de-taquin
rectification, that constructs such tableaux from a permutation. This map can be shown
to be an one-to-one correspondence. We also consider how this could be generalized to
show CSP for square tableaux. The material in this chapter is a work in progress with
K. Purbhoo.

5.1 Three Equivalent Procedures

Before we begin, let’s define some terminology: given a square shape � := nn, a diagonal
refers to the set of cells in row i and column k− i for some fixed k, i = 1, 2, · · · , n. The
main diagonal is a diagonal with k = n+1. Upper/lower triangular part will mean
the set of cells that are weakly north-west/south-east of a cell in the main diagonal (i.e.
upper triangular part will be the staircase shape := (n, n− 1, · · · , 1)). We denote the
set of tableaux of shape λ fixed by k iterations of promotion as SYTk(λ).

We define a sliding procedure which takes σ = σ1σ2 · · ·σn ∈ Sn as its input and
outputs T ∈ SYT. We first compute the upper triangular part. Begin by filling the
main diagonal with σ1, σ2, · · · , σn from bottom left to top right.

Choose an empty box and slide it out until it reaches the main diagonal . Fill the
empty box on the main diagonal by a number that is n bigger than the previous entry.
Repeat the sliding until the shape becomes normal. We will denote the result of this
procedure by s(σ) ∈ SY T ( ).
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5.1. THREE EQUIVALENT PROCEDURES

Example 5.1.1. Let σ = 3124 ∈ S4. Then

4
2

1
3

→
4

1 2
5

3

→
4

1 2
3 5
7

→
2 4

1 6
3 5
7

→
1 2 4
5 6

3 9
7

→
1 2 4

3 5 6
7 9
11

→
1 2 4 8
3 5 6
7 9
11

.

There are other ways of computing s(σ). Let aug(σ) be the sequence σ1, σ1 +n, σ1 +
2n, · · · , σ1+n(n−1), σ2, σ2+n, σ2+2n, · · · , σ2+n(n−1), · · · , σ1, σn+n, σn+2n, · · · , σn+
n(n − 1). Inserting aug(σ) into the empty tableau will produce a tableau. Taking the
staircase part of this tableau, we get s(σ). We will call this insertion procedure.

Example 5.1.2. Let σ = 3124 ∈ S4. Then

aug(σ) = 3, 7, 11, 15, 1, 5, 9, 13, 2, 6, 10, 14, 4, 8, 12, 16,

ins(aug(σ)) =

1 2 4 8 12 16
3 5 6 10 14
7 9 13
11 15

,

s(σ) =

1 2 4 8
3 5 6
7 9
11

.

There is a third way of computing s(σ), which we will call rectification procedure.

Denote the tableau a1 a2 · · · an by Tk(σ) where al = σk + n(l − 1). Begin with T1(σ).
Place T2(σ) right on top of T1(σ). If σ2 > σ1, shift T2(σ) right by one cell so that the
resulting tableau is an young tableau. Continue in this manner until we get a skewed
standard young tableau with entry from 1 to n2. Call this tableau T (σ). Now, rectify
T (σ) and look at the entries in the shape . This is s(σ).

Example 5.1.3. Let σ = 3124 ∈ S4. Then

T (σ) =

4 8 12 16
2 6 10 14

1 5 9 13
3 7 11 15

, rec(T (σ)) =

1 2 4 8 12 16
3 5 6 10 14
7 9 13
11 15

, s(σ) =

1 2 4 8
3 5 6
7 9
11

.

Since the word of the T (σ) is aug(σ), the last two procedure yields the same result.
However, the equivalence of the first procedure is not proven.
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5.2. DUAL PROCEDURES

Conjecture 5.1.4. The sliding procedure and the rectification procedure yield the same
result.

Our effort on this conjecture has been unsuccessful. The weaker claim that the sliding
procedure is well defined also resisted our attempts. However, our computer search did
not yield any counterexample. For the rest of the chapter, we will assume that this
conjecture is true. The conjecture is used to assume that the diagonal of s(σ) is distinct
in mod n, and also in the proof of surjection of our correspondence. If the former is
true, the later is also true as we know that the sets have the same cardinality by other
results. It is therefore suspected that the bijection could be proven independent of the
conjecture, but we did not pursue this approach.

Assuming the conjecture, this lemma follows:

Lemma 5.1.5. When the rectification/insertion procedure is terminated, the entries
outside the upper triangular part is in form of d+ n, d+ 2n, · · · , d+ kn for each row.

5.2 Dual Procedures

We can also define the dual of this procedure that takes σ ∈ Sn as its input but outputs
a tableau of shape := (n, n, · · · , n)/(n− 1, n− 2, · · · , 1, 0). All three dual procedures
are simply the previously defined procedures rotated 180 degrees and then performed
with the revered ordering of the entries.

The dual sliding procedure will start with filling the main diagonal with σ1 + n(n−
1), σ2+n(n−1), · · · , σn+n(n−1) and boxes will slide out northwest instead of southeast.
The main diagonal entries will be replaced by an entry that is n less than the previous
entry. We will call the result of the dual procedure s∗(σ).

Example 5.2.1. Let σ = 3124 ∈ S4. Then

16
14

13
15

→
16

14
13

1115

→
16

10
1314

1115

→
16

10
9 14

111315

→
12

1016
9 14

111315

→
8

1012
9 1416

111315

→
8

6 12
9 1014

11131516

.

This procedure is also well defined.
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5.2. DUAL PROCEDURES

The dual insertion procedure is to ‘dual’ insert aug∗(σ) := σ1 + n(n− 1), σ1 + n(n−
2), · · · , σ1, σ2 +n(n− 1), σ2 +n(n− 2), · · · , σ2, · · · , σn +n(n− 1), σn +n(n− 2), · · · , σn.

Example 5.2.2. Let σ = 3124 ∈ S4. Then

aug∗(σ) = 15, 11, 7, 3, 13, 9, 5, 1, 14, 10, 6, 2, 16, 12, 8, 4,

ins∗(aug∗(σ)) =

4 8
2 6 12

1 5 9 10 14
3 7 11 13 15 16

,

s∗(σ) =

8
6 12

9 10 14
11 13 15 16

.

The dual rectification procedure is just ‘dual’ rectifying T (σ) and looking at part
of it.

Example 5.2.3. Let σ = 3124 ∈ S4. Then

T (σ) =

4 8 12 16
2 6 10 14

1 5 9 13
3 7 11 15

, rec∗(T (σ)) =

4 8
2 6 12

1 5 9 10 14
3 7 11 13 15 16

, s∗(σ) =

8
6 12

9 10 14
11 13 15 16

.

These three dual procedures produce the same result as well.
We would like to merge s(σ) and s∗(σ) together to construct a square standard young

tableaux that corresponds to σ ∈ Sn. However, we need to show that the main diagonal
of s(σ) and s∗(σ) are identical in order to define such square tableau.

Let µ be the shape of rec(T (σ)). In a previous lemma, we saw that rec(T (σ)) is
composed of two parts: s(σ) and the rest where the entries increase by n as we move
right. The entries on the main diagonal of s(σ) are congruent to σ1, σ2, · · · , σn in mod
n (this is implied from our conjecture). Thus, it is possible to write the entries on the
main diagonal of s(σ) in terms of µ and σ.

Example 5.2.4. Let σ = 3124 ∈ S4 and µ = sh(rec(T (σ))) = (6, 5, 3, 2), then

rec(T (σ)) =

* * * 8 12 16
* * 6 10 14
* 9 13
11 15

8 = 4 · (4 + 4− µ1 − 1) + σ4

6 = 4 · (4 + 3− µ2 − 1) + σ3

9 = 4 · (4 + 2− µ3 − 1) + σ2

11 = 4 · (4 + 1− µ4 − 1) + σ1

.

In general, the entry in s(σ) on the main diagonal and on the kth row is equal to
n(n+ (n+ 1− k)− µk − 1) + σn+1−k.
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5.2. DUAL PROCEDURES

Clearly, rec∗(T (σ)) has the same shape as rec(T (σ)), so we can also write the entries
on the main diagonal of s∗(σ) in terms of µ and σ. The entry in s∗(σ) on the main
diagonal and on the kth row is equal to n · (µn+1−k − k) + σn+1−k.

Therefore, in order to show that the main diagonal s of s(σ) and s∗(σ) is equal, it is
sufficient to show that:

n(n+ (n+ 1− k)− µk − 1) + σn+1−k = n(µn+1−k − k) + σn+1−k

⇔ µk + µn+1−k = 2n.

Let (ν + �)/ν be the shape of T (σ). This is determined by the descent set of σ.
T (σ) rectifies to the shape µ, so there exists a Littlewood-Richardson tableau of shape
(ν +�)/ν that rectifies to the shape λ, thus having the content λ.

A Littlewood-Richardson tableau could be constructed in the shape of (ν +�)/ν by
filling every column with entries 1, 2, 3, · · · . The content of this tableau dominates the
content of any Littlewood-Richardson tableau of the same shape. Therefore, (n + νk −
νn+1−k)k dominates µ. This bounds µ from above in the dominance order.

On the other hand, we can use Greene’s theorem [7] to bound µ from below.

Theorem 5.2.5. Let π ∈ Sn and λ = RSK(π). Then λ1 + λ2 + · · · + λk is bigger or
equal than the sum of lengths of k disjoint increasing subsequences of π.

We are left with finding k disjoint increasing subsequence of aug(σ). We noted that
the entries increase as we traveling north-east in T (σ). Therefore, a path that travels
east or north-east in T (σ) yields an increasing subsequence of aug(σ).

We now construct k such disjoint paths as follows. Pick “initial” boxes on T (σ) one
by one by going up each column, starting from the left most column and going right.
When a box is picked, cross off all boxes that are north-east of that box. Stop after k
boxes are picked. Pick “final” boxes on T one by one by selecting the rightmost box on
each row, starting from the top row going down. Stop after k boxes are picked.

Each diagonal has at most one initial boxes. By the construction of the tableau
T (σ), the leftmost diagonal will reach the top row, the second left most diagonal will
reach the second row from the top, and so on. To construct the k paths, start from the
k initial boxes, go along the k diagonals until they reach the top k rows and then go
along these rows to reach the k final boxes.

Example 5.2.6.

4

2

1 3

1

2

3

4
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5.3. CONNECTIONS TO THE PROMOTION

It is easy to see that the sum of the lengths of these k paths are also
∑k

i=1 n+ νi −
νn+1−i and (n + νi − νn+1−i)i is dominated by µ. Therefore, µk = n + νk − νn+1−k and
µk + µn+1−k = 2n. We can now conclude the following:

Proposition 5.2.7. The main diagonal s of s(σ) and s∗(σ) are equal.

To show that t(σ) ∈ SYT, it remains to show that the set of entries is exactly
{1, 2, · · · , n2}. This is clear if one considers the sliding procedure. Consider the numbers
in this set that are congruent to m mod n. Exactly one of the numbers in the set is
on the main diagonal. If a number in the set is smaller than this entry, than it must
show up in s∗(σ), otherwise it must be in s(σ). Therefore, all the numbers in the set is
present in t(σ).

Corollary 5.2.8. t(σ) is well defined and is in SYT.

5.3 Connections to the Promotion

We now have a map from Sn to SYT. It is easy to see that it is injective: reading the
main diagonal of t(σ) in mod n retrieves σ ∈ Sn. We claim that t maps Sn to SYT(nn)n
and that this is an one to one correspondence.

Lemma 5.3.1. j(t(σ)) = t(σ · (n(n− 1) · · · 1))

Proof. If we perform promotion after sliding procedure with σ, only watching the
upper triangular part, we will see that we are taking out 1, sliding the now empty box
up to the main diagonal (we don’t know what number will fill this cell on the main
diagonal, but let’s not worry about this cell for now), and then decreasing all entries by
1. This is equivalent to starting the sliding procedure with n+ 1 instead of 1 and then
decreasing all entries by 1, which is also equivalent to starting the sliding procedure with
σ · (n(n− 1) · · · 1). This shows that j(s(σ)) = s(σ · (n(n− 1) · · · 1)) if we ignore one cell
on the diagonal. We similarly have j(s∗(σ)) = s∗(σ · (n(n − 1) · · · 1)). From these two
facts, we can conclude that j(t(σ)) = t(σ · (n(n− 1) · · · 1)).

Corollary 5.3.2. t(σ) ∈ SYT(nn)n

Proof. This follows since σ · (n(n− 1) · · · 1))n = σ.

The above corollary shows that t is an injection to SYT(nn)n. It remains to show
that it is also surjective.

Lemma 5.3.3. Let T ∈ SYT(nn)n. Then, diag(T ) ∈ Sn and diag(j(T )) = diag(T ) ·
(n(n − 1) · · · 1), where diag(T ) is the sequence of remainders mod n of the n entries in
the main diagonal of T .
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5.3. CONNECTIONS TO THE PROMOTION

Proof. Suppose that two entries on the main diagonal of T is congruent in mod n. Say
that the difference between the two entries is mn. In T = jmn(T ), the bigger entry could
only have traveled up or left and is now mn smaller. This cannot be on a diagonal, so
this is a contradiction. Therefore, diag(T ) ∈ Sn.

Consider the n promotion path as we compute jn(T ). At least one of these path will
go through a chosen box in �; the box will contain an entry that is n smaller after the n
promotions otherwise. There are n boxes on the main diagonal and each path can only
go through one of them. Therefore, a box on the main diagonal is passed by exactly
one promotion path. In other n − 1 promotion steps, the entry will be decreased by 1.
Since jn(T ) = T , the promotion step where the promotion path passes through the box
must increase that box’s entry by n − 1. Therefore, all entries on the main diagonal is
decreased by 1 in mod n in every promotion and this is equivalent to multiplying diag
by (n(n− 1) · · · 1) on the right side.

Theorem 5.3.4. For each T ∈ SYT(nn)n, there exists σ ∈ Sn such that t(σ) = T .

Proof. As we mentioned before, we can find σ by taking diag(T ).
Starting from T , slide out the top left entry. We will call this procedure a. The inverse

procedure a−1 is to perform RSK backwards with recording tableau e(T ). Focusing on
the lower triangular part in reverse, we see that this is exactly like computing s∗(T )
using sliding procedure. All we need to make sure is that the replacement of the diagonal
entries are done in the same way: it must be n less than the previous entry.

Example 5.3.5.

1 2 5
3 4 8
6 7 9

a


a−1

2 4 5
3 7 8
6 9

a


a−1

3 4 5
6 7 8
9

a


a−1

4 5 8
6 7
9

a


a−1

5 7 8
6
9

a


a−1

6 7 8
9

a


a−1

7 8
9

a


a−1

8
9

a


a−1

9

Disregarding the empty boxes, ak(T )’s entries are same as jk(T ) + k’s entries (where
the addition is to each entry), so

diag(ak(T )) = diag(jk(T ) + k)

= diag(T ) · (n(n− 1) · · · 1)k + k

= diag(T )− k + k

= diag(T )

in mod n, disregarding the empty boxes. Therefore, the replacement is congruent to the
previous entry in mod n.
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5.4. GENERALIZATION

However, it cannot be replaced by an entry with difference more than n, since the
entry that is exactly n more must exist in the lower triangular part of the final result
but has no more opportunity to enter. Therefore, computing the lower triangular part
of T = a−n

2
(ε) is identical to computing s∗(σ) = s∗(diag(T )) using sliding procedure.

The same holds for the upper triangular part. Therefore, T = t(σ) and we are done.

5.4 Generalization

We note a possible generalization of this bijection in order to show CSP for square
tableaux. We remind ourselves that the number of n-by-n square tableaux fixed by n2/k
promotion is equal to the number of k-ribbon tableaux of the square shape. In order
to work with ribbon tableaux, we define i-diagonal to mean the set of cells on row k
and column k + i (note that these new diagonals are in different orientation than the
previously defined diagonals).

Example 5.4.1. Labelling each box with i if it is in the i-diagonal, we get:

0 1 2 3 4 5
-1 0 1 2 3 4
-2 -1 0 1 2 3
-3 -2 -1 0 1 2
-4 -3 -2 -1 0 1
-5 -4 -3 -2 -1 0

.

Let’s k-color the Ferrers diagram of � by coloring each i-diagonal by i (mod k). A
ribbon takes exactly one of each color. So if there exists a k-ribbon tableaux of shape
�, then there must be equal number of cells of each color. This is not the case when
k - n. So we only concern ourselves with k that divides n.

Let k be the shape

nm((k − 1)m)m((k − 2)m)m · · ·mm/((k − 1)m)m((k − 2)m)m · · ·mm

where m = n/k. It forms a diagonal chain of k (n/k)-by-(n/k) squares.
We make the following observation:

Lemma 5.4.2. The number of n-by-n k-ribbon tableaux is equal to the number of
standard tableaux of shape k.

Proof. One can see this using hook length formula and Kostka-Foulkes polynomial.
However, we present a bijective proof.

Given a standard tableau of shape k, we construct a k-ribbon tableaux by placing
each entry from d-diagonal of ith square (from the bottom, although the order does not
matter) to a ribbon that spans i − k(d + 1) to i − kd − 1-diagonal. Then the ribbon
tableau is uniquely determined by sorting each i-diagonal. This will be much clearer
after peaking at the example below. The inverse is also simple to carry out, showing
that we have a bijection.
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5.4. GENERALIZATION

Example 5.4.3. Start with a tableau of shape 3:

4 7
5 8

2 6
9 12

1 3
10 11

.

We list which i-diagonals the ribbons span:

i-diagonal
5 7
4 6 7
3 3 6 7
2 3 6 4 8
1 3 2 12 4 8
0 1 11 2 12 4 8
-1 1 11 2 12 5
-2 1 11 9 5
-3 10 9 5
-4 10 9
-5 10

.

Sorting this yields:

i-diagonal
5 7
4 6 7
3 3 6 7
2 3 4 6 8
1 2 3 4 8 12
0 1 2 4 8 11 12
-1 1 2 5 11 12
-2 1 5 9 11
-3 5 9 10
-4 9 10
-5 10

,

which results in the 3-ribbon tableau:

1 2 3 3 6 7
1 2 3 4 6 7
1 2 4 4 6 7
5 5 5 8 8 8
9 9 9 11 11 12
10 10 10 11 12 12

.
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5.4. GENERALIZATION

We studied k = n case and gave a bijection between SYT( n) and SYTn(�). In
general, we would like a bijection between SYT( k) and SYTn2/k(�). When k = 1, the
bijection is trivial since 1 and � is the same shape.

When k = 2, we can rectify T ∈ SYT( 2) to get the first half of a tableaux in
SYTn2/2(�) and ‘dual’ rectify it to get the second half.

Example 5.4.4. Let n = 4, k = 2, and

T =

4 6
5 8

1 2
3 7

∈ SYT( 2).

rect(T ) =
1 2 4 6
3 5 8
7

, rect∗(T ) =
4

2 5 6
1 3 7 8

.

Combining the two tableaux, we get

1 2 4 6
3 5 8 12
7 10 13 14
9 11 15 16

∈ SYT8(�).

After n(n/2) promotions on the end result, the second half rectifies to the first half.
After −n(n/2) promotions, the first half ‘dual’ rectifies to the second half. Since all
square tableaux are fixed under n(n/2) − (−n(n/2)) = n2 promotions, these two end
results are the same tableau. Therefore, this tableaux is also same as the original tableau,
which then is fixed by n(n/2) promotions. Other details can be checked to see that this
is indeed a bijection between SYT( 2) and SYTn2/2(�).

Under this bijection, the promotion of tableaux in SYTn2/2(�) corresponds to the
promotion of tableaux in SYT( 2). This can also be said for cases where k = 1 and
k = n. These special cases seem to imply that the sliding/rectification procedures could
be generalized to prove CSP for square tableaux.
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