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Abstract

The design of power ampli�ers within a circuit simulator requires a good non-linear model
that accurately predicts the electormagnetic behaviour of the power transistor. In recent
years, a certain class of large signal frequency-dependent black-box behavioural model-
ing techniques known as Poly-Harmonic Distortion (PHD) models has been devised to
mimic the non-linear unmatched RF transistor. These models promise a good prediction
of the device behaviour under multi-harmonic periodic continuous wave inputs. This the-
sis describes the capabilities of the PHD modeling framework and the theoretical type of
behaviour that it is capable of predicting. Speci�cally, the PHD framework cannot neces-
sarily predict the response of a broadband aperiodic signal. This analysis will be performed
by deriving the PHD modeling framework as a simpli�cation of the Volterra series kernel
functions under the assumption that the power transistor is operating under continuous
periodic multi-harmonic voltage and current signals in a stable circuit. A PHD model will
be seen as a set of describing functions that predict the response of the DUT for any given
non-linear periodic continuous-wave inputs that have a speci�c fundamental frequency.

Two popular implementations of PHD models that can be found in the literature are
the X-parameter and Cardi� models. Each model formulates the describing functions of
the general PHD model di�erently. The mathematical formulation of the X-parameter and
Cardi� models will be discussed in order to provide a theoretical ground for comparing
their robustness. The X-parameter model will be seen as the �rst-order Taylor series
approximation of the PHD model describing functions around a Large Signal Operating
Point (LSOP) of the device under test. The Cardi� large-signal model uses Fourier series
coe�cient functions that vary with the magnitude of the large signal(s) as the PHD model
describing functions.

This thesis will provide a breakdown of the measurement procedure required for the
extraction of these models, the challenges involved in the measurement, as well as the
mathematical extraction of the model coe�cients from measurement data.

As each of these models contain have extended versions that enhance the predictive
capability of the model under stronger nonlinear modes of operation, a comparison is
used to represent the cost of increasing model accuracy as a function of the increasing
model complexity for each model. The order of complexity of each model can manifest
itself in terms of the mathematical formulation, the number of parameters required and the
measurement time that is required to extract each model for a given DUT. This comparison
will fairly assess the relative strengths and weaknesses of each model.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication has been becoming a major part of the lifestyle of most people

around the world. In 2001, it was estimated that there were around 5.6 billion mobile

phones in use globally [2]. In addition, wireless communication protocols like Wi-Fi and

Bluetooth are becoming quite common in many consumer appliances.

There are always two parties involved in any communication: the sender and the re-

ceiver of the message. To enable the sender to communicate over-the-air, there needs to be

a wireless transmitter architecture for the sending party and similarly, the receiver needs

a wireless receiver architecture. Since most wireless communication is a two-way commu-

nication, a wireless transmitter circuit is required in the vast majority of wireless-capable

devices.

Power ampli�ers are the most power consuming element of any wireless transmitter

circuit and thus e�cient power ampli�er designs are gaining ground and attention. A

wireless communication signal is the encoding of a message into an electromagnetic wave.

Before the electromagnetic wave can be propagated over the antenna through the medium

of free space (or air), it needs to have su�cient power to reach its intended receiver that

could be far away. In the case of mobile phone communication, this distance is as long as

the coverage area for the closest mobile network provider's base station. To achieve this

goal, there is a need to amplify the power of the communication signal without losing its

signal integrity. This is the raison d'être of the power ampli�er.

The power ampli�er is the component that consumes the most amount of power in the

wireless transmitter circuit. Improving the power e�ciency of power ampli�ers has become

a very important challenge for power ampli�er designers. The classic trade-o� in power

ampli�er design exists between the linearity of its performance and its power e�ciency.
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The typical example of this in power ampli�er design is the class F and F−1 modes of

operation that make use of the non-linearity to achieve better power e�ciency than more

linear classes of operation like class A or B [3]. It is becoming quite common to design

ampli�ers that are non-linear but have been optimized for power e�ciency and to use a

linearization technique to tackle the distortion caused by the non-linearity.

The process of designing a power ampli�er typically involves the choice of a power

transistor, setting DC bias conditions and the design of the input and output matching

networks (that expose the power transistor to speci�c impedances at frequencies of inter-

est). If the power ampli�er designer has access to a good model of the power transistor,

she can use CAD simulation approaches to design the power ampli�er matching networks

in simulation before implementing it in a microstrip printed circuit board (which is a costly

process). Because of this, proper simulation of the behaviour of power transistors within

power ampli�er circuits can become very important to the power ampli�er design process.

This thesis will explore an emerging power transistor black-box behavioural modeling

framework popularly known as poly-harmonic distortion (PHD) modeling [4]. There are

a few proposed models based on this framework that will be analyzed, implemented in

simulation and compared to one another. The relative strengths and weaknesses of these

PHD models are discussed and conclusions are made about the region of applicability of

each model.

1.2 Thesis Organization

Chapter 2 reviews the various techniques that have been developed to model the elec-

tromagnetic behaviour of a power transistor in simulation. The most common transistor

modeling and simulation approaches are discussed in this chapter. Chapter 3 starts the

analysis of the power transistor by using the Volterra framework as a means of modeling

its behaviour. The PHD modeling framework is derived and introduced in detail from the

assumption that the power transistor is in a stable circuit excited with a periodic signal.

Two popular PHD modeling techniques, the X-parameter model and the Cardi� PHD for-

mulation are derived and their modeling capabilities are discussed. Chapter 4 discusses the

important measurement considerations involved in extracting these PHD behavioural mod-

els from a power transistor. The measurement requirements of a PHD model are clearly

outlined and common impedance-pull techniques are discussed. The challenges involved in

the extraction of the models derived in chapter 3 are presented in this chapter. Chapter

5 discusses the extraction and implementation of these PHD models within a harmonic

balance simulator. Three di�erent behavioural models will be extracted from the same

2



non-linearity and their performances are compared to each other in this chapter. Chapter

6 concludes the thesis with a discussion of the applicability of the di�erent PHD model for-

mulations and the challenges and limitations involved. Also, possible future work related

to improving the modeling capabilities of future PHD models are presented here.
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Chapter 2

Background: Power Ampli�er Circuit

Simulation

In this chapter, the idea of power transistor modeling will be introduced and various

di�erent approaches to this problem will be discussed. Each modeling approach has its

strengths and limitations and some are more useful for some applications than others. Since

the power transistor is mainly used to design a power ampli�er circuit, the choice of the

circuit simulator also becomes important in the design process. The common time-domain

and frequency-domain non-linear simulation techniques are discussed here.

2.1 The Power Transistor Model

Electrical engineering is usually said to be at the intersection of applied science and applied

mathematics, but at least in the case of transistor modeling, it can be said that it also

intersects with applied epistemology. An important question that should be asked when

confronted with any proposed transistor model is this: Is this transistor model valid or

invalid and why?

As empiricists, we like to believe that the �proof is in the pudding�, meaning that

empirical observation (measurement) should be the basis of our judgment of models. A

good transistor model is a model that accurately represents what is happening in the

physical transistor, and if we do not make any mistakes in our measurement of the physical

behaviour of the device, a good transistor model is one that matches the measurement well.

The author of this thesis agrees with the caution of noted essayist and applied episte-

mologist Nassim Nicholas Taleb against naïve empiricism. Taleb argues that since positive

evidence supporting a model (or theory) can never fully prove that the model is correct,

negative empiricism becomes an important tool in tackling the question of validity of mod-
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els. He sums up the idea of negative empiricism by arguing that �you know what is wrong

with a lot more con�dence than you know what is right� [5]. In the same spirit, in the

absence of glaring measurement error or faulty equipment, a mismatch between a tran-

sistor model and measurement is strong evidence proving the invalidity of the model. So

instead of worrying about the validity of models, we should see where and under what

circumstances can a model be useful. It is not simply enough to have a model that is

mathematically consistent, the assumptions and underlying axioms of the theorems used

must be somehow related back to the transistor and how we know it behaves from our

understanding of physics.

Here we will discuss a few transistor modeling approaches and their usefulness.

2.1.1 Physics-based Transistor Modeling

The idea behind a physics-based model is to accurately describe the physical geometry,

material properties, surface chemistry, and manufacturing details of a transistor in CAD

software and use physics solvers to model the device characteristics. The type of physical

relations used are partial di�erential equations that require speci�c boundary conditions

for their solution. The solver uses relationships that are based on the quantum theory

of matter, electrodynamics, and non-equilibrium thermodynamics. Creating these physics

base models requires a profound knowledge of the material system [6].

These models when simulated in an electromagnetic solver result in a very accurate

prediction of the behaviour of the transistor at the cost of an exceptionally long and

complex simulation. This makes them unfeasible for use in simulating an entire power

ampli�er circuit when the objective is to design for matching network parameters. While

physics based models might not be used by power ampli�er designers because of their slow

simulation, they provide valuable insight to transistor design engineers that want to �nd

the optimal transistor dimensions that yield desired performance.

2.1.2 Compact Modeling

Unlike physics-based transistor models that focus on modeling the transistor itself inde-

pendently, there are other models that are suitable for modeling the transistor within the

context of its operating circuit that makes them suitable for power ampli�er design. This

class of transistor models that are based on circuit theory abstractions of the electromag-

netic material are known as compact models [7]. A circuit description of the transistor

will allow for fast simulation without the overhead necessary for computing the material

physics.
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Figure 2.1: Block diagram of a typical transistor compact model architecture[1]

Figure 2.2: Intrinsic transistor model

Figure 2.1 describes the overall architecture of a typical compact model. A compact

model like the one shown in this �gure tries to describe the phenomenon of FET operation

through the use of circuit components. This is why these compact models are referred to

as phenomenological models [7]. The transistor is seen here in di�erent layers. There is an

intrinsic transistor within the compact model that will describe the non-linear relationship

between the voltage and current. This intrinsic transistor is not really accessible through

direct measurement of the transistor die. This intrinsic model is surrounded by passive

linear extrinsic networks at each of the transistor terminals. Since power transistors usually

come packaged and have their currents directed from the transistor die through bond-wires,

the compact model can include models for these outer layers as well. In addition to the

electrical modeling described, some compact models even perform thermal based modeling

to vary the compact model circuit parameters based on varying substrate temperatures.

The intrinsic transistor is the main non-linear component of the transistor compact

model, since it holds both the conduction current and the displacement current non-
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linearity. Figure 2.2 shows the intrinsic model non-linear circuit components. Non-linear

voltage controlled current sources are used to model the conduction current non-linearity

and non-linear voltage controlled charge sources are used to model the displacement current

non-linearity. An intrinsic model of this form will have the following state equations where

the instantaneous voltages at both the gate and the drain and their �rst time derivatives

are the states of the intrinsic system:

idrain(t) = Id(Vgs(t), Vds(t)) +
d

dt
Qd(Vgs(t), Vds(t)) (2.1)

igate(t) = Ig(Vgs(t), Vds(t)) +
d

dt
Qg(Vgs(t), Vds(t)) (2.2)

Equations 2.1 and 2.2 describe the intrinsic transistor of a compact model using non-

linear di�erential equations that describe the dynamic non-linear behaviour of the device.

There have been further developments recently to complicate these equations further by

making the non-linear functions Id, Ig, Qd and Qg also as a function of the junction

temperature Tj and trap states of the device that would model the so-called trapping

e�ects of the power transistor [8].

The modeling capability of the power transistor is based on an in-depth knowledge of

the transistor technology that is used. The parameters of the compact models are extracted

from characterization and the model will then use its phenomenological constitutive equa-

tions to predict the behaviour of the power transistor under signals that are of interest to

power ampli�er designers.

2.1.3 Behavioural Modeling

If a compact model fails to accurately predict the behaviour of the transistor in measure-

ment, it could be because there are e�ects that are outside of the model. Instead of trying

to fully understand how the transistor works, the opposite approach assumes very little

about the transistor and is purely based on the measured behaviour of the transistor. This

behavioural modeling approach views the transistor as a black-box (unlike compact models

that try to fully describe what's inside the box), meaning that only the electromagnetic

behaviour of the power transistor at its interface to the rest of the world matters. Here,

unlike in the compact modeling approach, one does not need to have any insight into the

speci�c transistor technology used.

The behavioural modeling approach has been quite popular among RF engineers to even

model linear systems. In fact, it's quite common to perform an S-parameter measurement

on a passive RF component and use these measured black-box relations instead of using
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a circuit model. The motivation for using behavioural models for transistors follows this

same reasoning. Behavioural models are useful when we have access to measurement of

the device but no theory of its operation.

A behavioural model will use mathematical relationships to describe the behaviour

of the power transistor. This means that the model will have less detail compared to

the compact circuit model. However this also means that behavioural models will perform

better in simulation. A common mathematical framework for modeling deterministic time-

invariant non-linear systems is the Volterra series framework [9]. In chapter 3, we will

discuss this framework and other behavioural modeling approaches based on this framework

in great detail.

2.2 Circuit Simulation

Regardless of the type of transistor model used, these models are not useful for circuit

design unless they are a part of a circuit simulation. The two common non-linear cir-

cuit simulation approaches are time-domain simulation and frequency-domain simulation

techniques [10].

2.2.1 Time-domain Simulation

In time domain simulation, the circuit simulator uses a time-domain di�erential equation

representation of each circuit element. The simulator steps slowly in time and solves for

the voltage and current at each node and branch of the circuit that satisfy the time-

domain relationships imposed by the circuit elements [10]. The main disadvantage of time-

domain simulation is the relative slowness of it compared to frequency-domain simulation

techniques. Finding the circuit response for high frequency multi-tone (or modulated

signals) can take an extremely long time and would not be appropriate for a power ampli�er

designer that wants to sweep many di�erent matching network parameters and see the

response of the transistor to them.

2.2.2 Frequency-domain Simulation

Frequency-domain simulation techniques are faster than time-domain simulation since they

can focus the simulation only at frequencies of interest. Harmonic Balance simulation is a

very useful frequency-domain simulation technique that is suitable for non-linear circuits

and designing power ampli�ers [10].
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In Harmonic Balance simulation, it is assumed that the voltage at every node and the

current in every branch of the circuit is a periodic multi-harmonic signal. The solution

to a Harmonic Balance simulation is the set of the voltages and currents at every node

and branch respectively that satis�es the linear and non-linear equations of the circuit.

The linear circuit elements behave as they regularly would in linear simulators, except

now they are evaluated in the frequency domain at DC, the fundamental frequency of the

simulation and the harmonic frequencies (up to a certain threshold of the simulator). The

non-linear element of the circuit (which in the context of power ampli�er design would be

the power transistor) will behave as a frequency-mixing element (which is a result of its

non-linearity). The simulator tries to converge to a solution that satis�es both the linear

equations (at all frequencies) and the non-linear cross-frequency equations.

An extension of the Harmonic Balance simulator has been proposed in recent years

known as Envelope Transient simulation. This extends the usefulness of Harmonic Balance

simulation to modulated signals with a time-varying envelope. This type of simulation

works as a type of hybrid between frequency-domain and time-domain simulations as the

carrier frequency of the modulated signal is simulated with Harmonic Balance simulation

while the envelope is simulated with time-domain integration techniques [11].
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Chapter 3

Narrow-band Behavioural Modeling of a

Power Transistor

This chapter is focused on the methods used for describing the electrical behaviour of a

power transistor. The assumptions about the physical behaviour of power transistors are

clearly stated, and the use of a Volterra framework as a basis for the nonlinear analysis

of the power transistor is justi�ed. The poly-harmonic distortion (PHD) framework is

introduced and the various models based on this framework (namely the X-parameter

PHD model and the Cardi� PHD model) are discussed and their limitations clearly stated.

3.1 The Power Transistor as a System

The �rst question that should be asked when one wants to approach the behavioural

modeling of a power transistor is this: What type of behaviour of the power transistor

is important to us? As power ampli�er designers, we use the power transistor within the

context of an electrical circuit, and so naturally we are interested in its electromagnetic

behaviour. This behaviour is captured by the voltage and current at the terminals of the

power transistor.

Since the power transistor is a three-terminal device, we can take the electrical potential

at one of the terminals (namely the source terminal for FET devices) as a reference and

treat the potential di�erence between the other two terminals (the gate and the drain)

relative to the potential reference (the source) as the two variables that de�ne the voltage

state of the device. In terms of the current behaviour, we take the current �owing in

through the gate and drain terminals as the two variables de�ning the current state of the

device (the current �owing out of the source terminal is the sum of these two currents).

To view the power transistor of �gure 3.1 as a two-port system, we take the gate and
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Figure 3.1: The three-port transistor as a two-port system

the drain as the two ports of the transistor and the electromagnetic behaviour will be

described using these four voltage and current variables: vgs, vds, igs, and ids (or v1, v2, i1,

and i2 respectively).

Of the time-varying variables (or signals) that de�ne the electromagnetic state of the

power transistor, we can naturally pick the voltage variables as our input (stimulus) signals

and the current variables as our output (response) signals. This voltage controlled current

source view of the transistor is quite common among circuit designers. It allows us to

think about the voltage at both ports as what we subject our system to and the current

measured at the ports as how our device responds to this stimulus. Even though this view

of the transistor intuitively implies that the current is caused by the voltage, it should

be noted however that from elementary electromagnetics we know there is no causal link

here between the current and voltage which are related to the magnetic and electric �eld

respectively [12]. It is not appropriate to say that the voltage causes the current but

rather that we are using a voltage-controlled current source description of the relationship

between them. We could theoretically provide the same relationship using a current-

controlled voltage source description even though this is not common at all for transistor

descriptions.

Even though for a power ampli�er we are mostly interested in how the input signal

at the input port is ampli�ed at the output port, a simple unilateral description of the

device does not capture all the electrical behaviour of interest. We empirically know that

the matching networks connected to both the source side and the load side of a power

transistor has a signi�cant e�ect on the behaviour of the power transistor [3]. This is why

a complete two-port description of the power transistor is necessary for power ampli�er

design.

With this view of a power transistor as a two-port system with the voltage at each port

as the input signals and the current at each port as the output signals, we can write:

i1 = f1(v1, v2) (3.1)
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i2 = f2(v1, v2) (3.2)

The power transistor is a non-linear device and this means that the functions in equa-

tions 3.1 and 3.2 are non-linear functions. The power transistor is however much more

complicated than a static nonlinear function. This means that the instantaneous output

of the transistor is not simply just a function of the instantaneous input of the transis-

tor. Thus we will assume that the power transistor a dynamic non-linear system. The

dynamic non-linearity of the FET can be seen as the result of the reactive components

that constitute the transistor. These reactive components can be generally non-linear in

their behaviour (the non-linear gate capacitance in GaN FETs and the non-linear drain ca-

pacitance in LDMOS devices can be used as an example of this sort of non-linear dynamic

behaviour).

The power transistor, being a physical device following physical laws is best described

assuming that it is a causal system. This is intuitively the correct way of looking at this

device as we don't expect the output current at either port to be a function of anything

other than the voltage at the current instance in time and the past. Any dependency on

a future input would be unphysical (since the device would anticipate future inputs and

become a non-causal system).

We are also only interested in viewing the power FET as a deterministic system. This

assumption means that the behavioural model should determine the exact output signal

coming from the device given the past behaviour of the input stimulus. If the behaviour

of the power transistor is too random, then it wouldn't be suitable for use to design a

power ampli�er. Any probabilistic deviation from this deterministic prediction is seen as

undesirable noise. Even though the noise performance of a transistor is important, we will

ignore the e�ect of noise and focus our modeling on the deterministic signal behaviour

of the power transistor. Noise considerations however are important when measuring the

behaviour of the transistor and dynamic range issues can be signi�cant for non-linear

measurement.

Finally, we'd like to assume that the power transistor as a time-invariant system with

fading memory. Time-invariance implies that given the same input stimulus to the system,

we should get the same output response regardless of what time of the day it is. This

is a behaviour that we expect for most circuit components of interest, including power

transistors. Another empirical behaviour that is of interest to us with regard to power

FETs is that they have fading memory. This means that even though the behaviour of the

transistor is a function of its past input, the e�ect of the past is fading such that we can

begin to ignore the distant past in our modeling. This assumption signi�cantly simpli�es
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the modeling of the dynamic behaviour of the power FET.

3.2 The Volterra Series

In section 3.1 we argued that we can view the power transistor as a dynamic, non-linear,

time-invariant, causal and deterministic two-port system. If we also assume that the power

transistor is an equicontinuous and uniformly bounded system then according to the Arzela-

Ascoli theorem and Fréchet's approximation theorem [13], this system can be approximated

uniformly to an arbitrary degree of precision by a su�ciently high �nite order Volterra series

[14, 15, 16].

The uniformly bounded assumption is quite valid for a power transistor in a stable

circuit. Since we are making the assumption that the transistor is not unstable, then

any model that comes out of this formulation will not be able to predict instability. The

equicontinuous assumption is also valid for most physically realizable systems [14, 15] and

should be a valid assumption for the case of a power transistor. This means that we

can theoretically approximate the electromagnetic behaviour of a stable power transistor

arbitrarily closely with a su�ciently high �nite order Volterra series.

We can write the general in�nite order causal two-port Volterra series for each of the

output variables of the system as follows [9]:

i1(t) =
∞∑
n=0

∞∑
m=0

ˆ 0

−∞
· · ·
ˆ 0

−∞
h1nm(τ11, . . . , τ1n, τ21, . . . , τ2m)

v1(t+ τ11) . . . v1(t+ τ1n)v2(t+ τ21) . . . v2(t+ τ2m)dτ11 . . . dτ1ndτ21 . . . dτ2m (3.3)

i2(t) =
∞∑
n=0

∞∑
m=0

ˆ 0

−∞
· · ·
ˆ 0

−∞
h2nm(τ11, . . . , τ1n, τ21, . . . , τ2m)

v1(t+ τ11) . . . v1(t+ τ1n)v2(t+ τ21) . . . v2(t+ τ2m)dτ11 . . . dτ1ndτ21 . . . dτ2m (3.4)

The Volterra series expressions in equations 3.3 and 3.4 give the current response of the

transistor for any two R∞ voltage signals at each port of the device. The functions h1nm

and h2nm are the two-port Volterra series kernel functions (where k = n + m is the order

of the kernel function) that hold the non-linear dynamics of the system at di�erent orders.

Taking the Fourier transform of these expressions gives:
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Figure 3.2: Frequency mixing products of a Volterra system (up to the third order)

I1(ω) =
∞∑
n=0

∞∑
m=0

ˆ ∞
−∞
· · ·
ˆ ∞
−∞

H1nm(ω11, . . . , ω1n, ω21, . . . , ω2m)

V1(ω + ω11) . . . V1(ω + ω1n)V2(ω + ω21) . . . V2(ω + ω2m)dω11 . . . dω1ndω21 . . . dω2m (3.5)

I2(ω) =
∞∑
n=0

∞∑
m=0

ˆ ∞
−∞
· · ·
ˆ ∞
−∞

H2nm(ω11, . . . , ω1n, ω21, . . . , ω2m)

V1(ω + ω11) . . . V1(ω + ω1n)V2(ω + ω21) . . . V2(ω + ω2m)dω11 . . . dω1ndω21 . . . dω2m (3.6)

It is apparent from the frequency domain Volterra series expressions (equations 3.5

and 3.6) that the output spectral components are only a result of a mixing of all the

input spectral components. Figure 3.2 shows the �rst, second and third mixing products

produced at the output of the system if both the inputs of the system are stimulated

with simple sinusoidals at di�erent frequencies. The �rst order mixing products (shown

with solid arrowheads in the �gure) are at the same frequencies as the inputs. These are

generated by the �rst order Volterra series kernel functions. The second order mixing

products (shown with open arrowheads in the �gure) are located at the frequency addition
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Figure 3.3: Volterra system under non-linear CW stimulus signals

of both the positive and negative frequency components of the input on the frequency

spectrum of the output. These are generated by the second order Volterra series kernel

functions. Note that there is a frequency component generated at DC by the second order

kernels. The third order mixing products, generated by the third order Volterra series

kernel functions (shown with triangular arrowheads in the �gure) are then located at the

third order frequency addition of the input frequency components.

3.3 Poly-Harmonic Distortion Modeling

In section 3.2, the frequency domain formulation of the Volterra series (equations 3.5 and

3.6) was used to describe the output signals of the power transistor system as a function

of its input signals.

To simplify the problem, instead of focusing on the response of the Volterra system to

any two arbitrary R∞ voltage signals, we will restrict our two inputs to periodic multi-

harmonic signals with the same fundamental frequency (see �gure 3.3). These signals

are also called non-linear continuous wave (CW) signals. This means that the frequency

spectrum for both of the inputs (V1(ω) and V2(ω)) are only non-zero for values of ω0 =

2πnf0 for ∀n ∈ Z, where f0 is the fundamental frequency. By a quick observation of the

frequency domain Volterra series in equations 3.5 and 3.6, it becomes apparent that the
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output frequency spectrums (I1(ω) and I2(ω)) only have non-zero components at ω0 =

2πnf0 for ∀n ∈ Z. The time domain exponential expression for the real periodic multi-

harmonic (non-linear CW) input and output signals are as follows:

v1(t) = v10 + v11e
jω0t + v∗11e

−jω0t + v12e
j2ω0t + v∗12e

−j2ω0t + v13e
j3ω0t + v∗13e

−j3ω0t + . . . (3.7)

v2(t) = v20 + v21e
jω0t + v∗21e

−jω0t + v22e
j2ω0t + v∗22e

−j2ω0t + v23e
j3ω0t + v∗23e

−j3ω0t + . . . (3.8)

i1(t) = i10 + i11e
jω0t + i∗11e

−jω0t + i12e
j2ω0t + i∗12e

−j2ω0t + i13e
j3ω0t + i∗13e

−j3ω0t + . . . (3.9)

i2(t) = i20 + i21e
jω0t + i∗21e

−jω0t + i22e
j2ω0t + i∗22e

−j2ω0t + i23e
j3ω0t + i∗23e

−j3ω0t + . . . (3.10)

In equations 3.7 to 3.10, ω0 = 2πf0 and v10, v20, i10, and i20 are real numbers that

represent the DC component of each signal and the other variables vph and iph are complex

numbers representing the spectral component at port p and harmonic index h.

Since all of the input and output signals are real signals, we have that the negative

frequency components of the frequency spectrum are the complex conjugate of the positive

frequency components. This means that to identify the output signal completely, we need

to only �nd the relations describing the positive frequency components (i20, i21, i22, i23,

etc.) and the negative frequency components will just be the complex conjugate of these

values. However from the Volterra series formulation we know that each one of these output

frequency components is a function of both the negative and positive frequency components

of the inputs. So generally we can write for each output component iph:

iph = fph(v10, v20, v11, v
∗
11, v21, v

∗
21, v12, v

∗
12, v22, v

∗
22, . . .) (3.11)

Note that the functions fph in equation 3.11 emerge from the Volterra series formulation

of equations 3.5 and 3.6 and since the Volterra series is an analytic expression, these

functions are also analytic. The analyticity of the describing functions becomes important

when we want to approximate such a function using a Taylor series [17]. If we were to

write the expression of equation 3.11 in the following form (ignoring the conjugate, negative
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Figure 3.4: Non-linear periodic continuous waves in the time domain

frequency terms), it would generally be non-analytic:

iph = f̂ph(v10, v20, |v11|, v21, v12, v22, . . .) (3.12)

We can simplify equation 3.11 further by adding a phase reference to our periodic

signals. Since we have already assumed that the power transistor is a time-invariant system,

this means that only the relative phase of the output and input frequency components

matter and so we set the phase of v11 to zero and normalize the phase of all the complex

components by using the transformation ṽph = vphP
−h and ĩph = iphP

−h, where P =

v11/|v11|. This time-invariance principle further simpli�es the expression of equation 3.11

to:

ĩph = f̃ph(v10, v20, |v11|, ṽ21, ṽ∗21, ṽ12, ṽ∗12, ṽ22, ṽ∗22, . . .) (3.13)

The functions f̃ph in equation 3.13 for each port p and harmonic index h de�ne the

poly-harmonic distortion (PHD) model for the system at a single fundamental frequency

f0.

The PHD model can also be understood by looking at the time-domain waveforms of
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equations 3.7 through 3.10. Figure 3.4 shows two examples of non-linear continuous wave

signals with the same fundamental frequency that could represent either the current or

voltage at either port of the power transistor. The windows A, B, C and D have the length

of the fundamental period of each of the two periodic non-linear CW tones. The windows

A and C are the reference windows for each of the two signals (since they line up with the

phase of the fundamental frequency component of the Fourier series of both waveforms).

The idea here is that even though frame A and B hold one period of the same periodic

signal, their Fourier series coe�cients are di�erent. To make the PHD model account

for this time-invariance e�ect, we will always represent the periodic signal with a known

reference signal.

As long as the currents and voltages at both ports of the power transistor are contin-

uous periodic waveforms with the same fundamental frequency, these waveforms can be

fully described by a high enough order Fourier series decomposition. The PHD model then

e�ectively maps the Fourier series coe�cients of both inputs to the Fourier series coe�-

cients at both outputs. The window used for each of these Fourier series coe�cient sets is

the one that corresponds to the phase reference of the fundamental frequency component

input at the �rst port of the system. Using the time-invariant property of the system,

we can �nd these phase-normalized Fourier series coe�cients using either of the following

transformations:

ṽph = vphP
−h (3.14)

ĩph = iphP
−h (3.15)

where P = v11/|v11|.
Even though the time-domain Volterra series formulations of equation 3.3 and 3.4 can

be used in a time-domain simulation of a circuit, the PHD model lends itself well to a

type of frequency-domain non-linear circuit simulation called Harmonic Balance simulation

(discussed in section 2.2.2). The cross-frequency equations used by the Harmonic Balance

simulator in the context of a PHD model are simply the f̃ph functions de�ned in equation

3.13.

3.3.1 Equivalent PHD Model Mappings

The PHD model expressed by the functions f̃ph of equation 3.13 can be equivalently ex-

pressed in other ways. Here we will discuss these equivalent PHD model mappings.
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3.3.1.1 The Power-wave de�ned PHD Model

A popular method for representing the behaviour of linear RF systems is the use of S-

parameters [18]. In the S-parameter framework, the re�ected power-wave at each port

is written as a linear combination of the incident power-waves at all of the ports of the

system. Incident and re�ected power-waves at a port (and a de�ned frequency) are de�ned

as follows:

a =
v + Z0i

2
(3.16)

b =
v − Z0i

2
(3.17)

where Z0 is a reference impedance (usually 50Ω for RF applications).

The incident wave at each port is usually represented by the letter a and the re�ected

wave by the letter b. These de�ne pseudowaves and are not physical. They are mathemat-

ical artifacts of an arbitrarily chosen reference impedance. They are mainly used because

they have convenient properties [19]. As can be seen from equations 3.16 and 3.17, the

power-waves at each port are a function of both the voltage and current at each port. In the

behavioural models we have discussed up to this point, the current was seen as an output

and the voltage as the input. We can equivalently describe the the re�ected power-waves

at each port as a function of the incident power-waves at each port. This is similar to the

equivalence between Y-parameters and S-parameters for linear electromagnetic multi-port

systems after a simple transformation [18].

Unlike voltage and current which describe a physical aspect of the behaviour of the

power transistor (where the voltage and current are directly related to the electric and

magnetic �eld respectively), the power-wave de�nitions described in equations 3.16 and

3.17 only refer to a physical parameter (energy transfer rate), that is the power �owing in or

out of a port, when the port has an output impedance of Z0. This means that if the port of

the device at the corresponding frequency has an output impedance di�erent from Z0, then

the a and b waves are simply a function of the voltage and current at the port and cannot be

directly related to the physics of the device. By convention RF engineers usually use Z0 =

50Ω as the reference characteristic impedance. The power transistor will normally provide

di�erent output impedances at both ports at the fundamental and harmonic frequencies

of interest and this output impedance is subject to variation throughout the range of its

non-linearity and di�erent operating states.

Traditionally however, RF engineers popularized the use of frequency-dependent S-

parameters which uses power-waves in its de�nition (as opposed to Z or Y-parameters)
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because the behaviour of linear systems are easier to measure using S-parameters when

using a Voltage Network Analyzer (VNA).

The reason for the equivalence of the power-wave de�nition of a non-linear systems

to its voltage-current de�nition in the presence of periodic multi-harmonic signals stems

from the fact that once the Harmonic Balance simulator has converged to a solution with

either method of de�ning the system, one can convert the state of the circuit from one

representation to another. This means that having the incident and re�ected wave at a

port gives us the current and voltage information as well and vice versa. This can be seen

from the following relationships:

v = a+ b (3.18)

i =
a− b
Zc

(3.19)

The implication of this equivalence in the context of PHD models is that we can write

the PHD model relations of equation 3.13 in the following form:

b̃ph = f̃
(p)
ph (v10, v20, |a11|, ã21, ã∗21, ã12, ã∗12, ã22, ã∗22, . . .) (3.20)

where b̃ph = bphP
−h and ãph = aphP

−h, where P = a11/|a11|.
This form of the PHD model formulation described in equation 3.20 is used in the

X-Parameter PHD formulation described in section 3.3.2.

3.3.1.2 The Polar PHD Model

The describing functions in the PHD model formulations of equations 3.13 or 3.20 can

maintain their analyticity if they are instead a function of the magnitudes and phases

of the complex inputs as opposed to being a function of the complex variables and their

conjugates. This is because you need two real parameters to equivalently describe a complex

variable and its complex conjugate. In this case the two real parameters are the magnitude

and phase of the complex number. For example, a function of complex variables c and c∗

can be written in terms of the two real variables |c| and ∠c by rewriting c = |c|ejω∠c and
c∗ = |c|e−jω∠c. This means that we can rewrite equations 3.13 and 3.20 as follows:

ĩph = f̃phpolar
(v10, v20, |v11|, |v21|,∠v21, |v12|,∠v12, |v22|,∠v22, . . .) (3.21)

b̃ph = f̃
(p)
phpolar

(v10, v20, |a11|, |a21|,∠a21, |a12|,∠a12, |a22|,∠a22, . . .) (3.22)

20



The form of the PHD model formulation described in equation 3.22 is used in the

Cardi� PHD formulation described in section 3.3.3.

3.3.1.3 The Re�ection Coe�cient PHD Model

For every point in the power-wave de�ned PHD model mapping of equation 3.20, we can

use the transformations:

Γph =
ãph

b̃ph
(3.23)

ãph = Γphb̃ph (3.24)

to get the following equivalent PHD model mapping (expressed in the polar form described

in section 3.3.1.2):

b̃ph = f̃
(p)
ph (v10, v20, |a11|,Γ21,∠Γ21,Γ12,∠Γ12,Γ22,∠Γ22, . . .)

3.3.1.4 The Rectangular PHD Model

In a similar line of reasoning as the one used in section 3.3.1.2, we can say that the PHD

model formulations of equation 3.13 or 3.20 can maintain their analyticity if the real and

imaginary parts of the input complex numbers are used as the inputs to the describing

functions. This is because a function of complex variables c and c∗ can be written in

terms of the two real variables Re{c} and Im{c} by rewriting c = Re{c} + jIm{c} and
c∗ = Re{c}− jIm{c}. This means we can also write the PHD model equations as follows:

ĩph = f̃phrect(v10, v20, |ṽ11|,

Re{ṽ21}, Im{ṽ21}, Re{ṽ12}, Im{ṽ12}, Re{ṽ22}, Im{ṽ22}, . . .) (3.25)

b̃ph = f̃
(p)
phrect

(v10, v20, |ã11|,

Re{ã21}, Im{ã21}, Re{ã12}, Im{ã12}, Re{ã22}, Im{ã22}, . . .) (3.26)

21



3.3.2 The X-Parameter PHD Model

The X-Parameter PHD model [4], uses a �rst order multi-variable Taylor series approxi-

mation for the analytic functions f̃
(p)
ph described in equation 3.20. Note that these functions

are complex functions so in order to perform calculus on these functions, we need to use a

de�nition of a derivative that is de�ned for complex functions. The Wirtinger derivative is

a derivative de�ned for complex functions. It is in fact a derivative from the abstract alge-

bra point of view and can be used in exactly the same places that ordinary real derivatives

are used. The Wirtinger derivative with respect to the complex variable z = x+ jy where

x, y ∈ R is de�ned as follows [20]:

∂

∂z
=

1

2
(
∂

∂x
− j ∂

∂y
) (3.27)

∂

∂z∗
=

1

2
(
∂

∂x
+ j

∂

∂y
) (3.28)

Using the de�nition of the Wirtinger derivative, we can de�ne the multi-variable Taylor

series for complex functions the same way we de�ne them for real functions.

The Taylor series approximation linearizes the function f̃
(p)
ph with respect to its input

variables around a certain point in the input space. We will call the point in the input

space of function f̃
(p)
ph that we linearize around the Large Signal Operating Point (hence-

forth referred to as the LSOP). In the X-Parameter PHD model, we �x the port DC

voltage biases (v10 = vp10 and v20 = vp20) and the magnitude of the fundamental input

port incidental power-wave (|a11| = |ap11|). The value of the rest of the input variables

(ã21, ã
∗
21, ã12, ã

∗
12, ã22, ã

∗
22, . . .) are set to be zero since they represent the small signals of the

system. The �rst-order Taylor series approximation will be as follows:

b̃ph = f̃
(p)
ph (v10, v20, |a11|, ã21, ã∗21, ã12, ã∗12, ã22, ã∗22, . . .) (3.29)

b̃ph = f̃
(p)
ph (vp10, v

p
20, |a

p
11|, 0, 0, 0, 0, 0, 0, . . .)

+ (v10 − vp10)
∂f̃

(p)
ph

∂v10
+ (v20 − vp20)

∂f̃
(p)
ph

∂v20
+ (|a11| − |ap11|)

∂f̃
(p)
ph

∂|a11|

+ ã21
∂f̃

(p)
ph

∂ã21
+ ã∗21

∂f̃
(p)
ph

∂ã∗21
+ ã12

∂f̃
(p)
ph

∂ã12
+ ã∗12

∂f̃
(p)
ph

∂ã∗12
+ ã22

∂f̃
(p)
ph

∂ã22
+ ã∗22

∂f̃
(p)
ph

∂ã∗21
+ . . . (3.30)

To simplify equation 3.30 further, we make all our model parameters (the partial deriva-
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tives with respect to the small signal inputs) a function of the LSOP variables. This way we

never linearize around the LSOP variables (v10, v20 and |a11|) and thus the corresponding

linearization terms can be removed from the �rst-order Taylor series approximation:

b̃ph = f̃
(p)
ph (vp10, v

p
20, |a

p
11|, 0, 0, 0, 0, 0, 0, . . .)

+ ã21
∂f̃

(p)
ph

∂ã21
(v10, v20, |a11|) + ã∗21

∂f̃
(p)
ph

∂ã∗21
(v10, v20, |a11|) + ã12

∂f̃
(p)
ph

∂ã12
(v10, v20, |a11|)

+ ã∗12
∂f̃

(p)
ph

∂ã∗12
(v10, v20, |a11|) + ã22

∂f̃
(p)
ph

∂ã22
(v10, v20, |a11|) + ã∗22

∂f̃
(p)
ph

∂ã∗21
(v10, v20, |a11|) + . . . (3.31)

Using the notation popularized as X-parameters, we can de�ne:

X
(F )
ph (v10, v20, |a11|) := f̃

(p)
ph (vp10, v

p
20, |a

p
11|, 0, 0, 0, 0, 0, 0, . . .) (3.32)

X
(S)
ph,qi(v10, v20, |a11|) :=

∂f̃
(p)
ph

∂ãqi
(v10, v20, |a11|) (3.33)

X
(T )
ph,qi(v10, v20, |a11|) :=

∂f̃
(p)
ph

∂ã∗qi
(v10, v20, |a11|) (3.34)

Thus we can re-write equation 3.31 as:

b̃ph = X
(F )
ph (v10, v20, |a11|) +

∑
q,i

(X
(S)
ph,qi(v10, v20, |a11|)ãqi +X

(T )
ph,qi(v10, v20, |a11|)ã

∗
qi) (3.35)

where {q, i} /∈ {{1, 1}}.
To get a feel for the individual role of the X

(F )
ph , X

(S)
ph,qi and X

(T )
ph,qi terms in equation

3.35 see �gure 3.5. In this �gure we clearly see that the X
(F )
ph term is the output b̃ph at the

LSOP when all small signal inputs ãqi are zero. If one of the small signals is varied (as in

the case of the �gure), we see that variations of constant magnitude for ãqi (each one of the

circles in the left graph of �gure 3.5) correspond to variations on an ellipse at the output.

The elliptical shape is the result of the X
(S)
ph,qi and X

(T )
ph,qi terms (and in fact varying the

X
(S)
ph,qi and X

(T )
ph,qi will always result in elliptical variation of b̃ph for circular variations of ãqi).

We can also see that scaling the magnitude of the circles in the ãqi, also scales the output

ellipses by the same factor. This is because the X-parameter formulation of equation 3.35

is linear with respect to the small signal partial derivative terms X
(S)
ph,qi and X

(T )
ph,qi. The
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Figure 3.5: Visual representation of the X
(F )
ph , X

(S)
ph,qi and X

(T )
ph,qi X-parameters

result of the variation of multiple ãqi inputs (for di�erent values of q and i) will be taken in

superposition. This linear approximation of the small signal e�ects is called the harmonic

superposition approximation which is another way of saying that we are using a linear �rst

order Taylor series approximation for the harmonic content.

Equation 3.35 de�nes the X-Parameter PHD model for the re�ected power-waves at

each port and harmonic frequency. To make this a complete PHD model, we also need to

model how the DC current varies when the input signal has changed. Agilent introduced

two other X-parameters to linearize for the DC current output. We will use the relation

3.26 for the DC current and use a �rst order Taylor approximation to get:

ip0 = f̃
(p)
phrect

(v10, v20, |ã11|, Re{ã21}, Im{ã21}, Re{ã12}, Im{ã12}, Re{ã22}, Im{ã22}, . . .)
(3.36)

ip0 = f̃
(p)
p0 (vp10, v

p
20, |a

p
11|, 0, 0, 0, 0, 0, 0, . . .)

+Re{ã21}
∂f̃

(p)
p0

∂Re{ã21}
(v10, v20, |a11|) + Im{ã21}

∂f̃
(p)
p0

∂Im{ã21}
(v10, v20, |a11|)

+ ∂Re{ã12}
∂f̃

(p)
p0

∂Re{ã12}
(v10, v20, |a11|) + Im{ã12}

∂f̃
(p)
p0

∂Im{ã12}
(v10, v20, |a11|)

+Re{ã22}
∂f̃

(p)
p0

∂Re{ã22}
(v10, v20, |a11|) + Im{ã22}

∂f̃
(p)
p0

∂Im{ã22}
(v10, v20, |a11|) + . . . (3.37)

We de�ne:

X(I)
p (v10, v20, |a11|) := f̃

(p)
p0 (vp10, v

p
20, |a

p
11|, 0, 0, 0, 0, 0, 0, . . .) (3.38)
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X
(Y,r)
p,qi (v10, v20, |a11|) :=

∂f̃
(p)
p0

∂Re{ãqi}
(v10, v20, |a11|) (3.39)

X
(Y,i)
p,qi (v10, v20, |a11|) :=

∂f̃
(p)
p0

∂Im{ãqi}
(v10, v20, |a11|) (3.40)

Thus we have:

ip0 = X(I)
p (v10, v20, |a11|) +

∑
q,i

(X
(Y,r)
p,qi (v10, v20, |a11|)Re{ãqi}+X

(Y,i)
p,qi (v10, v20, |a11|)Im{ãqi})

(3.41)

where {q, i} /∈ {{1, 1}} and X(I)
p , X

(Y,r)
p,qi and X

(Y,i)
p,qi are all real valued for the real valued

DC current at port p (ip0). De�ne X
(Y )
p,qi := X

(Y,r)
p,qi − jX

(Y,i)
p,qi ; we have:

ip0 = X(I)
p (v10, v20, |a11|) +

∑
q,i

Re(X
(Y )
p,qi(v10, v20, |a11|)ãqi) (3.42)

where {q, i} /∈ {{1, 1}}.
The X-parameters used in equation 3.42 are the parameters used by Agilent Technolo-

gies in their implementation of the X-Parameter PHD model. Note that the X
(I)
p and

X
(Y )
p,qi parameters are a function of the LSOP (including the DC bias voltage of the power

transistor). In the context of the PHD model being used in Harmonic Balance simulation,

it is important to note that DC current contribution resulting from the exposure of the

RF signal to the non-linearity in return varies the DC bias voltage away from the value

set by the DC bias circuit. Varying the fundamental input power (|a11|) for a given DC

supply voltage pair (VGG and VDD) will also vary the DC bias voltage at the FET device

(v10 and v20). Since we cannot �x v10 and v20 under various input power conditions, in

order to make the extraction of the X-parameter model possible, we can consider making

the X-parameters as a function of VGG and VDD (which we can �x), instead of v10 and v20.

3.3.2.1 LSOP Expansion for Highly Non-linear Devices

The region of validity of equation 3.31 is the same as the region of validity of a �rst-

order Taylor series. This means that if the value of the re�ection power wave at load

side or the harmonic input powers at both ports gets signi�cant (which is the case of the

operation of the power transistor in highly non-linear classes of operation), a simple �rst

order Taylor-series where the LSOP is de�ned with only v10, v20 and |a11| would not provide
a su�cient approximation of the poly-harmonic behaviour of the power-transistor. A way
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to alleviate this problem is to expand the number of variables of the LSOP to include

the most signi�cant variables of the non-linearity and linearize the rest of the PHD model

variables (which are assumed to be less signi�cant and thus modeled with a �rst-order

linear approximation).

For a typical power-transistor device, these extra LSOP variables from the polar form

of the PHD model input variable space (refer to equation 3.22) can typically include all

or some of these variables: |a21|, ∠a21, |a12|, ∠a12, |a22| and ∠a22. These variables become

signi�cant for highly non-linear classes of power ampli�er operation due to the passive

re�ection coe�cient provided by the matching networks on both the load and source side

of the power transistor. Since the re�ection coe�cient of the passive matching network is

re�ecting back some of the re�ected power-wave from the power transistor back into the

transistor (e.g. aph = Γphbph), we can make the X-parameters as a function of the LSOP

de�ned by v10, v20, |a11| and also as a function of the additional passive re�ection coe�cients

Γ21, Γ12 and Γ22 (using the re�ection coe�cient de�ned PHD model of section 3.3.1.3). For

the simple LSOP extension where we only make the X-parameters as a function of Γ21, we

have:

b̃ph = X
(F )
ph (v10, v20, |a11|, |Γ21|,∠Γ21)

+
∑
q,i

(X
(S)
ph,qi(v10, v20, |a11|, |Γ21|,∠Γ21)ãqi +X

(T )
ph,qi(v10, v20, |a11|, |Γ21|,∠Γ21)ã

∗
qi) (3.43)

where {q, i} /∈ {{1, 1}, {2, 1}}.
To extract the parameters in equation 3.43 in measurement, we need to vary the fun-

damental load and measure the partial derivative parameter dependencies for each load

condition. A measurement setup similar to a typical load-pull measurement is needed for

the extraction of a model described by this equation [18].

If passive impedance tuners are used for measurement, a further extension of the LSOP

to include re�ection coe�cients at harmonic frequencies at the source or the load side

of the power transistor will require at least two multi-harmonic impedance tuners. In

addition it quickly becomes apparent that the more the number of LSOP variables grows,

the measurement space complexity for the extraction of the X-parameter model grows

exponentially.

There is a trade-o� here that should also be considered, the more variables are added

to the LSOP, the more of the non-linearity is described solely by the X
(F )
ph function (which

unlike the X
(S)
ph,qi and X

(T )
ph,qi functions has no modeling capability and is only the scalar
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coe�cient in the �rst-order Taylor series approximation). Agilent has used an interpolation

of a look-up table (indexed for di�erent values of the LSOP variables) as an implementation

of the X
(F )
ph , X

(S)
ph,qi and X

(T )
ph,qi functions.

3.3.3 The Cardi� PHD Model

In the Cardi� PHD model formulation developed at Cardi� University, a multidimensional

Fourier series function is used as a basis to approximate the PHD function of equation 3.22

(f̃
(p)
phpolar

) [21]. The insight here is that the PHD model function described in polar form

is periodic with respect to the angle variables (∠a21, ∠a21, ∠a22 and so on). This means

that by �xing the values of the magnitude variables (v10, v20, |a11|, |a21|, |a22| and so on),

we can �t a multidimensional Fourier series to the PHD function for each value of the

magnitude variables. The parameters representing the Cardi� PHD model are then simply

these multidimensional Fourier series coe�cients as a function of the magnitude variables.

As an example, in the simpli�ed case where the re�ected power-waves of the Cardi�

PHD model is only a function of |a11|, |a21|, ∠a21, |a22| and ∠a22; for a �xed DC bias

voltage v10 and v20 we have:

b̃ph = f̃
(p)
phpolar

(v10, v20, |a11|, |a21|,∠a21, |a22|,∠a22) (3.44)

b̃ph =
∑
n

∑
r

Gph,n,r(|a11|, |a21|, |a22|)ej(n∠a21+r∠a22) (3.45)

The functions Gph,n,r in equation 3.45 are functions of the magnitude variables. These

functions de�ne the Cardi� model. A multi-variate polynomial (that is a function of

theses magnitude variables) can be used to �t these Gph,n,r functions. It is apparent that

the number of functions required by the Cardi� model increases when the order of the

Fourier series (signi�ed by the letters n and r in equation 3.45) increases and the model

complexity also increases. The solution provided by the Cardi� group is to prune these

functions and only include the most signi�cant Fourier series coe�cient functions in the

�nal model. This is done by looking at the relative magnitude of Gph,n,r functions and only

including the most signi�cant ones in the model.

For a simple two variable Cardi� PHD model with only a11 and a21 as the large signals,

we have:

b̃ph =
∑
n

Gph,n(|a11|, |a21|)ej(n∠a21) (3.46)
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Figure 3.6: Change in b21 with constant |a11| and a polar sweep of a21

For the simple case described by equation 3.46, �gure 3.6 shows an example variation

of the b21 power-wave when the input fundamental power-wave magnitude |a11| is held

constant and for each magnitude of the output port incident power-wave (|a21|), its phase
(∠a21) is swept. Each contour of variation of a21 (any one of the concentric circles on the

left graph) in this �gure corresponds to a contour of variation in b21. Each contour in the

graph of b21 shown in �gure 3.6 is described by its Fourier series coe�cients Gph,n for the

�xed value of |a11| and |a21| that represents the contour. The numbered line in the �gure

corresponds to a constant phase ∠a21 and increasing magnitude |a21|.
A limitation of the Cardi� PHD model compared to the X-Parameter PHD model

described in section 3.3.2 is that the e�ects of the higher harmonic input power-waves

cannot be included without blowing up the number of Fourier series functions needed to

describe the model. This is why most Cardi� PHD models are truncated up to the e�ects

of the second harmonic only [21].

3.4 What are Poly-Harmonic Distortion Models Good

For?

From the beginning of section 3.3 where PHD models introduced based on the Volterra

framework, the assumption was made that the voltage and current waveforms are non-

linear CW signals (described by equations 3.7 through 3.10). Since power ampli�ers are

used to amplify vector modulated signals and not CW signals, we should note that the PHD

model is not necessarily correct for modeling the power transistor behaviour under arbitrary

modulated signals. In fact, wide-band modulated signals exhibit long-term memory e�ects

that cannot be modeled by a PHD model that can only model quasi-static (non-linear CW)

responses.
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Figure 3.7: Narrow-band modulated signals in a Volterra system

The class of modulated signals that approach CW signal behaviour are narrow-band

modulated signals. Figure 3.7 shows how the spectrum of the voltage and current signals

would look for a Volterra system under the stimulus of a narrow-band modulated signal. It

seems apparent as the bandwidth of the modulation decreases, the envelope of the signal

around each harmonic frequency approaches constant tone behaviour (that is, �gure 3.7

approaches �gure 3.3). This means that the time-domain waveform for a narrow-band

modulated signal looks like a slowly varying version of the non-linear CW signals of �gure

3.4. If the window of the Short Term Fourier Transform (STFT) is small enough to be

on the order of magnitude of the period of the centre frequency of modulation, then the

STFT of the narrow-band modulated signal will look like the non-linear CW tone used to

derive the PHD model.

For power-ampli�ers stimulated with narrow-band modulated signals, the long term

memory e�ects are not signi�cant and the time-domain shape of the modulated signal is

close to the shape of non-linear CW signals. PHD models are thus suitable for designing

the matching networks of narrow-band power ampli�ers for desired behaviour.
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Chapter 4

Narrow-band Non-linear Measurement

of a Power Transistor

In chapter 3 the power transistor was described as a two-port Volterra system and various

PHD models were derived to describe the behaviour of the power transistor that is useful

for the design of narrow-band power ampli�ers. The PHD models described can only

become useful if their parameters are extracted from a physical power ampli�er device.

In this chapter, we will discuss the measurement approaches used to extract PHD model

parameters. This includes a discussion of the necessary measurement equipment and the

methods involved in exciting the power transistor to a state required by each model.

4.1 The PHD Model Measurement Requirements

The set of periodic signals described by equations 3.7 through 3.10 represent the behaviour

of the voltage and current signals at either port of the power transistor when it is excited

by a poly-harmonic periodic signal with a fundamental frequency of ω0 = 2πf0. This

quasi-static periodic behaviour of the power transistor represents a single point in the

PHD model space. To be able to extract a PHD model, we need to be able to traverse this

space by exciting the power transistor with di�erent poly-harmonic inputs and measuring

its poly-harmonic response.

Figure 4.1 shows the variables that should be set and the variables that should be

measured at each port in order to extract a PHD model. The DC voltage at each port

of the transistor (v10 and v20) can be set via a DC bias circuit connected to each side of

the transistor. The DC currents (i10 and i20) can then be measured at each port with DC

current meters.

The following sections will describe how we can excite the power transistor with speci�c
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Figure 4.1: PHD model measurement procedure at each port

periodic CW tones (with control over the magnitude and phase of the harmonic frequencies

as well as the fundamental) and how to measure the periodic current and voltage response

at fundamental and harmonic frequencies at either port of the power transistor.

4.2 Non-linear Continuous Wave Signal Measurement

Instruments

There are two main types of measurement devices that allow us to measure the spectral

contents (both magnitude and relative phase) of a periodic signal at a speci�c frequency

and its harmonics. These two devices are the Large Signal Network Analyzer (LSNA) and

the Non-linear Vector Network Analyzer (NVNA) [22]. In terms of their measurement

capability to capture the measurement data necessary to generate a PHD model, both

technologies result in the same measurement. That is, both devices measure the voltage

and current spectral contents at both ports of the power transistor with the relative phase

information.

The main di�erence between these RF non-linear measurement instruments is that

LSNAs are sampler-based while NVNAs are mixer-based instruments. Both techniques

are competitive for the measurement of PHD models.

An LSNA uses samplers to perform the down conversion of the high-frequency signals

to the IF spectrum by using harmonic sampling [23]. With an LSNA the whole spectrum

of the voltage and current is measured at once. To get an accurate relative phase reading

on an LSNA, a phase calibration needs to be performed against a phase reference element.

An NVNA on the other hand uses the heterodyne principle to down-convert the RF

signals to the IF spectrum [24]. The NVNA needs to extract each spectral component

separately. In order to measure the relative phase of the spectral components with respect

to each other, the NVNA uses a harmonic phase reference during measurement. When
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Figure 4.2: NVNA (or LSNA) measurement of the non-linear CW signal using dual direc-
tional couplers

calibrating the phase measurement of the NVNA, another harmonic phase reference is

needed to perform the calibration.

By targeting only a speci�c fundamental frequency and its harmonics, both instruments

are capable of reconstructing the non-linear continuous wave voltage and current at both

ports. The NVNA (or LSNA) usually interfaces with the power transistor through two

dual-directional couplers (one at each port). These couplers allow for a sampling of both

the forward traveling and backward traveling power-waves at the interfaces of the power

transistor. Using couplers allow us to measure the waves at the power transistor with

minimal interference with the signal itself. Figure 4.2 shows the non-linear measurement

(a
′
1, b

′
1, a

′
2 and b

′
2) is a low-power sampled version of the actual non-linear power-waves at

the interface of the power ampli�er (a1, b2, a2 and b2). From these measured power-waves

(and knowing the attenuation factor of the directional couplers), the NVNA (or LSNA)

can deduce the time-domain voltage and current waveforms through the use of equations

3.18 and 3.19 and the inverse Fourier transform [22].

4.3 Multi-harmonic Load and Source Pull

In section 4.2, the method used to measure the non-linear CW tones at each port was

described. Now it is necessary to consider the equipment necessary to force a speci�c

non-linear CW tone at the port of a transistor. A multi-harmonic load pull measurement

setup can help us vary the RF components on the right hand side of �gure 4.1, while a

multi-harmonic source pull measurement setup can help us vary the RF components on

the left hand side of the �gure.

The concept of a load pull measurement was introduced by RF engineers who wanted to

map out various performance measurements of interest produced by the power transistor

for varying loading impedance conditions. This way they are able to �nd an optimal

load matching network that allows for either maximum output power, maximum gain or

maximum e�ciency [3]. A varying load e�ectively imposes a voltage on the output port
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of the device based on what current is produced at that port. Meaning, that if we have a

load impedance of Z21 at the fundamental frequency presenting itself at the output port,

we will have:

v21 = Z21i21 (4.1)

a21 = Γ21b21 (4.2)

where a21 = v21+Z0i21
2

, b21 = v21−Z0i21
2

and Γ21 = Z0−Z21

Z0+Z21
. Note that Γ21 is the re�ection

coe�cient (at reference impedance Z0) presented to the power transistor at the load. Simple

algebra shows that equations 4.1 and 4.2 are equivalent. We can now see that the e�ect

of the load pull measurement is to re-introduce an input signal back at the load side of

the transistor (either a voltage or an incident power wave depending on the modeling

framework being used). We can extend this idea of presenting impedances to all the

harmonic frequencies as well as on both sides of the power transistor (meaning that we

control the Zph impedances presented at port p and harmonic index h). This is what is

meant by a multi-harmonic load and source pull system. By varying these impedances, we

vary the non-linear CW signal that is being presented to each port of the power transistor.

There are many highly-e�cient but non-linear emerging PA classes of operation that can

be de�ned by their matching network design space. This means that the set of impedances

that the input and output matching networks provide to the power transistor will determine

the class of operation of the PA. If we can steer our PHD model measurements into load

and source conditions that are highly non-linear but provide good power e�ciency, we can

design PAs for these classes of operation using CAD tools.

There are di�erent ways to synthesize the impedances at the load and source of the

power transistor device. In sections 4.3.1 through 4.3.2 we will discuss them.

4.3.1 Passive Load and Source Pull

If we use passive impedances to re�ect back voltages (or incident power-waves) into the

power transistor at both ports and the frequencies of interest, then we have a passive load

and source pull system. Generally passive multi-harmonic impedance tuners are used on

each side of the transistor. These impedance tuners are mechanical devices that recon�gure

themselves to tune for requested impedances at a fundamental frequency and multiple

harmonics (generally up to the 3rd harmonic). Figure 4.3 shows the multi-harmonic passive

load and source pull measurement setup.

The only active part of the transistor excitation comes from the fundamental frequency
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Figure 4.3: Passive load and source pull measurement setup (with the passive tuners
outside)

Figure 4.4: Passive load and source pull measurement setup (with the passive tuners inside)

signal source at the input (which provides |v11| or |a11|). This is similar to the condition that

the power transistor will be in when it is operated as a power ampli�er. The main signal to

be ampli�ed will be inserted at the fundamental frequency at the source and the matching

networks provide static impedances at either side. It should be noted that passive tuners

can only provide passive re�ection coe�cients (|Γ| < 1). For single PAs designed with

passive matching networks (with no cascading of PAs), the re�ection coe�cients seen at

the transistor ports will always be passive as a result (a passive-element matching network

can never provide a |Γ| > 1). Thus a PHD model derived from a passive load and source

pull measurement setup will span the PA matching network design space.

Passive tuners have certain physical limitations in terms of the impedances they can

produce. Usually there is a hard limit in terms of the maximum number of harmonic

impedances you can control. The values of the higher harmonic impedances can be mea-

sured by the tuner but setting them is not possible.

Not all impedances can be produced by the passive tuners. For example, a perfect short

or a perfect open circuit impedance can never be physically provided at a given frequency.

Typically, the value of the re�ection coe�cient that can be synthesized is limited to a

magnitude of 0.9 in a Z0 = 50Ω Smith chart.
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The directional couplers can either be inside the passive tuners (as they are in the �gure

4.3) or outside of them (as in �gure 4.4). In the case where the couplers are on the inside,

the re�ection coe�cient provided at the passive tuner needs to be de-embedded through

the coupler to get the re�ection coe�cient that the power transistor is seeing. However

if the coupled signal at the power transistor is already small, it might go below the noise

�oor when it propagates through the tuner. This is why for measuring low signals, it is

better to put the couplers in between the tuners and the power transistor.

If the couplers are put after the passive tuners, then the re�ection coe�cient synthe-

sized by the tuner will be exactly at the power transistor interface. However now the

measurement at the coupler needs to be de-embedded through the tuner in order for the

measurement to be at the transistor port plane. This is why having a good linear model of

the couplers and the passive tuners is necessary for an accurate measurement of the power

transistor behaviour.

A drawback of using passive tuners for load and source pull purposes is that since they

are mechanical devices, they take some time to recon�gure to change between impedance

settings. This means that if the RF measurement engineer wants to sweep many impedance

conditions, the total time needed for measurement can be very long.

The load-dependent X-parameter formulation developed in section 3.3.2.1 is well suited

to be extracted using the passive source and load pull measurement system described here.

For every passive load and source condition that is swept, an X-parameter model can be

extracted by sweeping the input power magnitude and injecting an extraction tone at each

input power level that will allow us to extract the partial derivative parameters of the

X-parameter model. We will discuss this extraction tone concept in more detail in section

4.4.

Since the X-parameter model uses the power-wave de�ned PHD model (refer to section

3.3.1.1), we can take advantage of the fact that the re�ected power-wave back into a

transistor is zero if the impedance seen is the same as reference impedance used to de�ne

the power-wave. This means that if we are using 50Ω de�ned power-waves, there is no

re�ection back into the power transistor from the load if the load is also at 50Ω.

4.3.2 Active Load and Source Pull

In the active load and source pull technique, the incident power-waves presented to the

power transistor at each port and harmonic index is not the result of re�ection o� a passive

impedance at the source or load side of the transistor. Instead the re�ected power-wave

from the transistor is absorbed and another power-wave generated by another source is
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Figure 4.5: The ideal circulator

Figure 4.6: Active load and source pull measurement setup

injected back into the power transistor. This active source presents an e�ective impedance

at the interface of the device. A measurement setup that presents active impedances to

both sides of the transistor at the fundamental frequency and its harmonic frequencies is

called a multi-harmonic active load and source pull measurement setup.

To be able to absorb the re�ected power-wave from the transistor and to inject our own

desired incident power-wave back into the transistor, we can use a three-port microwave

device known as a circulator (shown in �gure 4.5). For an ideal circulator we have:

b1 = a3 (4.3)

b2 = a1 (4.4)

b3 = a2 (4.5)

Figure 4.6 shows the active load and source pull measurement setup required to extract

a PHD model. We can see from this �gure that any power-wave re�ected from the power

transistor is detected so the appropriate incident power-wave can be re-injected back into

the transistor through the circulator. The RF signals that need to be varied at each port of

the power transistor (see �gure 4.1) are then generated by either multiple tone generators

at the fundamental and harmonic frequencies (that are synchronized for phase coherence)

or a single high-power arbitrary waveform generator. Regardless of how the non-linear CW

signal is generated, it is injected back into the power transistor to steer us where we want
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in the PHD model space.

Since active devices are used to generate the injected signal, we can produce active

re�ection coe�cients (Γ > 1) which correspond to negative resistance values. While these

operating conditions for the power transistor under a non-linear CW signal do not occur

when the transistor is used in a single power transistor PA with passive matching networks,

circuits with multiple transistors can have one transistor load another and produce an active

impedance at the interface of the other transistor. The Doherty PA con�guration is an

example of a case where one PA is actively loading another PA [3].

Since in active load and source pull we avoid the use of mechanical passive tuners,

measurement is quite faster in comparison to passive load and source pull. However unlike

the passive measurement where only a single frequency power source is needed, a much more

involved active waveform generation scheme is required by active loading measurement

systems.

To achieve high magnitudes of re�ection coe�cient at the load (primarily for the funda-

mental load re�ection coe�cient Γ21), we need to inject a signi�cantly high-power incident

power-wave. This is because Γ21 = a21/b21, and since b21 is large (it is after all the am-

pli�ed signal so it is the most signi�cant signal in the circuit), we need to inject a very

high power a21 to get a high re�ection coe�cient. This is why the linearity and high-power

performance of the active sources becomes important. This puts a requirement on the

capabilities of our active sources if we are to achieve these points in the PHD model space.

The Cardi� PHD model (discussed in section 3.3.3) has been developed and validated

using an active source and load pull measurement setup [21]. Since for the Cardi� model

one needs to vary multiple large signals relative to each other, it becomes apparent why

an active measurement setup is a lot more convenient than a passive measurement setup

for the extraction of this model.

4.3.3 Hybrid Load and Source Pull

In section 4.3.1 we mentioned that the there is a limit to what re�ection coe�cients the

passive tuners can provide (and sometimes for designing PAs, we need to put a re�ection

coe�cient right at the edge of the Smith chart). In section 4.3.2 we saw that to have

a high synthetic re�ection coe�cient, we sometimes need to inject back high magnitude

power-wave signals which requires very linear high power drivers. The hybrid load and

source pull techniques is a �best of both worlds� approach to the problem [25]. The idea

here is to use a passive impedance to re�ect back as much of the power-wave as the passive

tuners allow us to and then inject the rest of the power needed to reach the impedance of
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Figure 4.7: Hybrid power transistor loading technique

interest using an active signal.

Figure 4.7 shows the hybrid load and source pull concept. When the active power

source is o� (ap = 0 in �gure 4.7), we have:

a2 = b2s11 = b2ΓL (4.6)

where s11 is an S-parameter of the two-port passive tuner (which is the same as the passive

re�ection coe�cient ΓL). When the active power source is on (ap 6= 0), we get:

a2 = b2s11 + aps12 = b2ΓL + aps12 (4.7)

where s11 and s12 are S-parameters of the two-port passive tuner and ΓL is the passive

re�ection coe�cient. We can see that the incident power wave a2 in equation 4.7 is the

result of both the re�ection from the passive tuner and the active injected signal. This

increases the magnitude of the e�ective re�ection coe�cient at the power transistor load

interface. The e�ective re�ection coe�cient is thus:

ΓLeff
=
a2
b2

= ΓL +
aps12
b2

(4.8)

This technique will allow us to reach impedance terminations that are at the edge of

the Smith chart without using very high-power linear drivers.

4.4 The Extraction Tone Concept in the X-parameter

Model

While the multi-harmonic load and source pull concepts discussed in section 4.3 provide

enough measurement capability to extract a Cardi� PHD model (formulated in section

3.3.3), an X-parameter model (formulated in section 3.3.2) requires an extra stimulus signal
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known as an extraction tone in order to extract the partial derivative terms associated with

the model.

Since the X-parameter model is a �rst-order Taylor series linearization of the PHD

model space around an LSOP, we will �rst need to bring the power transistor to this

LSOP and perform slight deviations around this point in the PHD model space to extract

the partial derivative terms. One (or a few) secondary sources can be used to inject

the extraction tone at either side of the power transistor at the appropriate harmonic

frequencies.

In order to extract all the partial derivative terms of the X-parameter model (the X(S)

and X(T ) terms of equations 3.35 or 3.43), we need to make sure that each of the small

signal input variables of the PHD model (basically the input variables that are not LSOP

variables) varies slightly and the e�ect on all the outputs of the PHD model is measured.

The non-linear CW voltage and current signals at either port of the power transistor

for every single extraction tone insertion should be recorded and grouped together for a

single LSOP point. The partial derivative parameters will then be extracted from this set

of measurements as a function of the LSOP.

Injecting an extraction tone is basically the same as performing a small active loading

at the frequency where the extraction tone is injected. If the LSOP includes a speci�c

value for a load (or source) re�ection coe�cient, it is important that no extraction tones

are injected at that port and harmonic index. This causes the e�ective re�ection coe�cient

seen by the transistor to vary because of the hybrid loading e�ect seen in equation 4.8.

Since we do not wish to change the LSOP variables when extracting the partial derivative

terms, it is important not to inject the extraction tone at incident power-wave locations

that we are not linearizing around.

Figure 4.8 shows the passive multi-harmonic load and source pull measurement setup

with two phase coherent power sources to extract an X-parameter PHD model. One power

source will sweep the fundamental frequency power at the source side of the transistor. The

other power source will be used to inject a small signal tone at either side of the transistor

and at one of the frequencies of interest (f0, 2f0, 3f0, . . .). If the four switches in �gure 4.8

are set to position 1, the extraction tone will inject a signal a small signal extraction tone

at the source side of the transistor, while if the switches are at position 2, the extraction

tone will be injected at the load side of the transistor.

We will now study the e�ect of using an extraction tone in the measurement of various

X-parameter models.
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Figure 4.8: Extraction tone injection using switches and two power sources

4.4.1 Extraction Tone Injection in 50Ω-matched Conditions

To study the e�ect of the injection of an extraction tone, we will take as a case study the

example of a power transistor that is conjugately matched at the fundamental frequency

at the input port (to ensure optimal power transfer from the power source to the power

transistor) and the impedance is set to 50Ω at all port p and harmonic index h (where

{p, h} /∈ {{1, 1}}).
Here we will be using the power-wave de�ned PHD model (de�ned by equation 3.20).

This is a simple case where the LSOP is only de�ned by the magnitude of the funda-

mental input power |a11|. In this example, Γ11 in �gure 4.8 is set to provide good power

transfer from the fundamental input power source to the transistor while all other re-

�ections coe�cients set by the passive tuners (Γ12, Γ13, Γ21, Γ22, Γ23) are all set to

zero. If using power-wave de�nitions with a reference impedance of Z0 = 50Ω (see

equations 3.16 and 3.17), this is easily done by setting the impedances of the tuner to

Z12 = Z13 = Z21 = Z22 = Z23 = 50Ω.

When the fundamental input power source is turned on (while the extraction tone source

is o�), the transistor will generally scatter power at both ports and at the fundamental

frequency and its harmonics. That is, generally in the PHD model space, the re�ected

power-wave at port p and harmonic index h, bph is non-zero (for {p, h} /∈ {{1, 1}}). Here,
the re�ection coe�cients set to zero above will result in the incident power-wave at port p

and harmonic index h, aph is zero (for {p, h} /∈ {{1, 1}}) by de�nition. This is because:

aph = Γphbph (4.9)
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When the extraction tone source is turned on at a single port p′ and set to harmonic

frequency index h′, the re�ection coe�cient seen by the transistor will vary away from zero.

This is because of the hybrid-loading e�ect seen in equation 4.8. In this case Γp′h′ 6= 0, and

the small signal extraction tone ap′h′ will be injected into the power transistor. However

for all the incident power-waves at port p and harmonic index h, we have aph = 0 (where

{p, h} /∈ {{1, 1}, {p′, h′}}). This results in the X-parameter formulation of equation 3.35

collapsing into the following form when each extraction tone is injected:

b̃ph = X
(F )
ph (v10, v20, |a11|) +X

(S)
ph,p′h′(v10, v20, |a11|)ap′h′ +X

(T )
ph,p′h′(v10, v20, |a11|)a∗p′h′ (4.10)

The relationship of equation 4.10 shows that we can potentially individually extract the

partial derivative X-parameter coe�cients (X(S)and X(T ) parameters) by making sure the

extraction tone is only injected at a single side of the transistor and only at one frequency.

This can only be achieved if the device is matched to 50Ω impedances at all frequencies of

interest.

To extract all the partial derivative parameters of the X-parameter model, we need to

inject the extraction tone at all the port p and harmonic index h (where {p, h} /∈ {{1, 1}})
in order to make sure that the device sees variation in all the inputs of the PHD model

space. At each port and harmonic that the injection of an extraction tone is necessary, it is

required to inject multiple di�erent extraction tones with varying phases (with respect to

the fundamental input phase reference) and measure the response of the device separately

for each extraction tone injection. This will assure that we get a good permutation around

the LSOP in the PHD model space in order to extract the partial derivatives of the non-

linearity in this space.

4.4.2 Extraction Tone Injection in Unmatched Conditions

In a more general case than examined in section 4.4.1, all the impedances at all the har-

monics cannot practically be realized at 50Ω. For example, if the passive tuners in �gure

4.8 are set to provide 50Ω impedances up to the third harmonic, there is no guarantee that

the impedance seen by the power transistor at the fourth and �fth harmonic frequencies

are also 50Ω (in fact they generally aren't 50Ω). In addition, if we want to expand the

LSOP of the X-parameter model to include the variation of the model parameters with

respect to certain impedance variations at the load and/or source side of the transistor,

then these re�ection coe�cients will also be non-zero.

In the most general unmatched condition of the device, none of the impedances at
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either port of the device will be 50Ω at any of the frequencies of interest. In this most

general case, the injection and variation of an extraction tone ap′h′ at port p′ and harmonic

index h′ will generally result in a variation of the re�ected power-wave bph at all ports p

and harmonic indices h. Since the re�ection coe�cient at ports p and harmonic indices h,

Γph is generally non-zero, then the incident power-wave aph at all ports p and harmonic

indices h will also vary as a result. This means that the injection and variation of one

extraction tone at one port p′ and harmonic index h′ results in the variation of the incident

power-wave at all the ports p and harmonic indices h.

It should be noted that the hybrid-loading e�ect seen in equation 4.8 and discussed in

section 4.3.3 only happens at the port and harmonic index where the extraction tone was

injected. All the other re�ection coe�cients are set by the passive tuners. This means that

as long as the extraction tone is not injected at the port and harmonic index corresponding

to a re�ection coe�cient that is part of the LSOP, the LSOP does not vary as the extraction

tones are injected.
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Chapter 5

Extraction and Validation of

Poly-Harmonic Distortion Models

In chapter 3 various poly-harmonic distortion models were derived based on the Volterra

framework assumption for modeling the electromagnetic behaviour of a power transistor.

Then in chapter 4 the measurement procedure required and the various techniques em-

ployed to extract these PHD models were discussed. In this chapter, we explore how the

parameters of each of these models is extracted from the measurements and how these

models are implemented within a commercial harmonic balance simulator. The perfor-

mance of each model will be compared at various impedance matching conditions of the

power transistor and the strengths and weaknesses of each model will be discussed.

5.1 Extraction of NVNA Measurements from Simula-

tion of Compact Model

For the purpose of comparing the various PHD behaviour models discussed in this thesis,

instead of measuring the behaviour of a power transistor on a lab bench using an NVNA (or

LSNA) and a load and source pull measurement setup, the behaviour of the power transistor

will be extracted from a known fairly accurate compact model (with periodic continuous

wave stimulus) of the device under harmonic balance simulation (discussed in section 2.2.2).

A compact model, as discussed in section 2.1.2, is a time-domain representation of the non-

linear behaviour of the power transistor (as seen in the time-domain intrinsic transistor

relations of equations 2.1 and 2.2), while the PHD models that we plan to extract from this

model will be de�ned solely in the frequency domain. This ensures that the comparison

between the behavioural models is done based on the ability of each formulation to �t a

43



Figure 5.1: DC voltage and current characteristics of the 45W Cree transistor compact
model

deterministic non-linear representation of the transistor that does not vary over time and

is not susceptible to measurement, calibration or human error. For the purpose of the

comparison here a manufacturer compact model of a 45W Cree transistor is used.

Figure 5.1 shows the variation of the drain DC current against the variation of the drain

and gate DC voltages. All the behavioural models extracted will have to have the same DC

bias conditions for a proper comparison between them. This is because all PHD models

discussed in this thesis are dependent on the DC bias voltages (v10 and v20). A typical

class A power ampli�er bias point is chosen for this comparison. For class A operation,

the power ampli�er will be mostly linear up to a certain input power threshold where after

that point the non-linearity starts increasing [3]. From the DC analysis of the 45W Cree

power transistor (�gure 5.1), we choose a DC bias of v10 = −1V and v20 = 20V .

Performing a harmonic balance simulation on the power transistor compact model un-

der the stimulation of various power tones or impedance matching conditions will emulate

the NVNA (or LSNA) measurement done on the lab bench. Here as long as the simulator

does not fail to converge to a periodic solution for the voltages at the nodes of the circuit,
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we do not have to worry about the accuracy of the power, vector and phase calibration of

the NVNA or the correct measurement of the S-parameters of the various passive compo-

nents or the accuracy of the passive (or active) impedance tuners at emulating the desired

re�ection coe�cient. By performing the extraction of these PHD models in simulation, we

avoid all these issues and instead focus on how well each formulation can match the typical

electromagnetic behaviour of a power transistor.

In this chapter, we will compare the performance of the following frequency-domain

PHD behavioural models extracted from the same compact model:

1. 50Ω-matched X-parameter model

2. ΓL-dependent X-parameter model

3. 2-variable (a11 and a21) Cardi� model

The following steps outline the extraction and validation process used for the comparison

performed in this thesis:

1. Stimulate the power transistor compact model with the conditions required by each

model and simulate it using a harmonic balance simulator.

2. Export the voltage and current waveforms (with all the necessary harmonic content)

solved for by the harmonic balance simulator.

3. Use these simulated measurements to extract each model's parameters.

4. Implement each behavioural model within a harmonic balance simulator based on

the model parameters extracted in the previous step.

5. Perform fundamental input power sweeps on each of the behavioural models under

various load and source impedance matching conditions and compare the scattered

power at both ports and harmonic frequencies with the behaviour of the compact

model under the same stimulus conditions.

5.2 Simulated PHD Model Extraction Procedure

To extract the 50Ω-matched X-parameter, ΓL-dependent and 2-variable Cardi� PHD mod-

els in simulation, the circuit of �gure 5.2 was used in the commercial harmonic balance

simulator of Agilent ADS [26]. The DC bias is fed to the power transistor compact model

through ideal RF choke components and the RF signals at both sides of the power tran-

sistor are fed through ideal DC block (RF pass) components. Two 2-port equation based
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Figure 5.2: PHD model extraction simulation circuit

S-parameter blocks are used on either side of the simulated measurement circuit to emulate

the e�ect of an arbitrarily set impedance (or more precisely the re�ection coe�cients with

a 50Ω reference impedance) at all frequencies of interest. These passive tuner blocks are

set up to fully let through the power injected through them by the power sources on either

side of the power transistor. In this simulation circuit, power can arbitrarily be injected at

either side of the power transistor at either the fundamental frequency (chosen to be 1GHz

here) or its harmonic frequencies (set in the simulation circuit of �gure 5.2 by setting the

variables P11, P12, . . ., P21, P22, . . .).

The procedure used for extracting the behavioural models of interest here will be to

sweep the powers and re�ection coe�cients (as required by each model) and perform a

single harmonic balance simulation for each swept value. This means that the more swept

variables we have to go through, the longer the entire simulation will take as there are

more harmonic balance simulations that need to be performed.

All three of the PHD models compared here are dependent at least on the magnitude

of the input fundamental frequency power-wave (|a11|). This can be easily done in the

simulation by sweeping the P11 variable in the simulation circuit of �gure 5.2. Since the

power source labeled as PORT1 has an input impedance of 50Ω, the value of P11 determines

power available from the power source (Pavs). This will be the power delivered to the

source only if the impedance seen at the terminal input of the power transistor is 50Ω. By

using the reference impedance of Z0 = 50Ω to de�ne the incident and re�ected power-waves

(described in equations 3.16 and 3.17) at the ports of the power transistor, we will have

the following relationship between the power available from the 50Ω power source and the
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50Ω-referenced fundamental input power-wave:

Pavs =
|a11|2

2Z0

(5.1)

The relationship of equation 5.1 holds since the input power-wave de�ned by equation

3.16 has a unit of Volts but the power available from source has a unit of Watts.

5.2.1 Simulated 50Ω-matched X-parameter Model Measurement

For the extraction of the 50Ω-matched X-parameter model in simulation, the following

parameters are �xed:

1. The DC gate and drain bias voltages (v10 and v20) are �xed to −1V and 20V respec-

tively (for class A power ampli�er operation).

2. The impedances at the source and load side are set to 50Ω at all frequencies (to get

a re�ection coe�cient of zero for a 50Ω referenced system).

3. The magnitude of the extraction tone power injected for this X-parameter model

extraction is �xed to 0.1dBm.

The variable sweep required for this extraction is performed in the following way:

1. Sweep the input fundamental frequency incident power-wave (|a11|). For the purpose
of this comparison, the input power is swept from 0W to 62W linearly with steps of

2W , which results in 32 di�erent power levels.

2. For each fundamental frequency incident power-wave magnitude, sweep the extrac-

tion tone injection port (the side of the transistor that the extraction tone will be

injected in). Since this is a two-port system, there are two states for this swept

parameter.

3. For each extraction tone input port, sweep the extraction tone injection frequency

(the harmonic index that will have an extraction tone injected in). For the purpose

of this comparison, we will have extraction tones injected up to the �fth harmonic

so there will be �ve states for this swept parameter. The only point of caution is to

not inject an extraction tone when the harmonic index is 1 and the injection port is

1 as we want to keep |a11| constant for each extraction tone injection.

4. For each extraction tone harmonic index, sweep the extraction tone phase. This

ensures that partial derivative parameters are extracted with reference to the phase
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variation of the small signal extraction tone. Even though we need a minimum of

3-phase variations to extract the parameters of equation 4.10, we will use eight swept

extraction tone phases (spaced equally across 360◦) to get a robust partial derivative

extraction.

The parameter sweep described above will result in 32 × 2 × 4.5 × 8 = 2304 di�erent

harmonic balance simulations. For each of these simulations the current and voltage at

DC and the frequencies of interested are extracted and indexed by their swept parameters.

These measurements will be used to extract the 50Ω-matched X-parameter model.

5.2.2 Simulated ΓL-dependent X-parameter Model Measurement

For the extraction of the ΓL-dependent X-parameter model in simulation, the following

parameters are �xed:

1. The DC gate and drain bias voltages (v10 and v20) are �xed to −1V and 20V respec-

tively (for class A power ampli�er operation).

2. The impedances at the source and load side are set to 50Ω at all frequencies except the

fundamental frequency at the load side. We will refer to the fundamental frequency

load side 50Ω-referenced re�ection coe�cient as ΓL. The X-parameter parameters of

this model will include this variable in its LSOP de�nition.

3. The magnitude of the extraction tone power injected for this X-parameter model

extraction is �xed to 0.1dBm.

The variable sweep required for this extraction is performed in the following way:

1. Sweep the magnitude and phase of the fundamental frequency load re�ection co-

e�cient ΓL. For the purpose of this comparison, a polar sweep of the re�ection

coe�cient is used with four di�erent magnitudes (0.25, 0.5. 0.75 and 1) and eight

phases (equally spaced from 45◦ to 360◦) are swept for this complex parameter. In

addition, the case of ΓL = 0 is added into the measurements to get behaviour of the

50Ω-matched system. This results in a total of 4× 8 + 1 = 33 di�erent ΓL values.

2. For each swept fundamental load re�ection coe�cient, sweep the input fundamental

frequency incident power-wave (32 levels), extraction tone injection port (2 possi-

ble states), extraction tone injection frequency (from the second to �fth harmonic)

and extraction tone phase (8 phases) exactly as was swept for the 50Ω-matched
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X-parameter model parameter sweep. The only reason why we do not inject an ex-

traction tone at the fundamental frequency is because we want to keep both |a11| and
ΓL constant for each extraction tone injection.

The parameter sweep described above will result in 33× 32× 2× 4× 8 = 67584 di�erent

harmonic balance simulations. For each of these simulations the current and voltage at

DC and the frequencies of interested are extracted and indexed by their swept parameters.

These measurements will be used to extract the ΓL-dependent X-parameter model.

5.2.3 Simulated 2-variable Cardi� Model Measurement

For the extraction of the 2-variable (a11 and a21) Cardi� model in simulation, the following

parameters are �xed:

1. The DC gate and drain bias voltages (v10 and v20) are �xed to −1V and 20V respec-

tively (for class A power ampli�er operation).

2. The impedances at the source and load side are set to 50Ω at all frequencies (to get

a re�ection coe�cient of zero for a 50Ω referenced system). The variation of the

fundamental load re�ection coe�cient will be the result of the active tone injected

at the load.

The variable sweep required for this extraction is performed in the following way:

1. Sweep the input fundamental frequency incident power-wave (|a11|). For the purpose
of this comparison, the input power is swept from 0W to 62W linearly with steps of

2W , which results in 32 di�erent power levels.

2. For each fundamental frequency incident power-wave magnitude, sweep the mag-

nitude of the output fundamental frequency incident power-wave (|a21|). For the

purpose of this comparison, the load fundamental power is swept from 0W to 16W

linearly with steps of 0.5W , which results in 33 di�erent power levels.

3. For each load fundamental power magnitude, sweep the load fundamental power

phase (∠a21). Since the re�ected power-waves at all ports and harmonic indices bph

vary periodically with the variation of ∠a21 (for any �xed |a11| and |a21| combination),
we can extract the Fourier series coe�cients of this variation by performing a discrete

Fourier transform on the simulated measurements over the sweep of this variable. For

the purpose of this comparison, 21 di�erent phases (spaced equally within 360◦) are

swept.
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The parameter sweep described above will result in 32×33×21 = 21176 di�erent harmonic

balance simulations. For each of these simulations the current and voltage at DC and the

frequencies of interested are extracted and indexed by their swept parameters. These

measurements will be used to extract the 2-variable Cardi� model.

5.3 PHD Model Extraction From NVNA Measurement

Data

Whether the measurements indexed by the swept parameters required by each PHD model

discussed are extracted from a simulated measured (described in sections 5.2.1 through

5.2.3) or if they are extracted from an NVNA (or LSNA) on the lab bench, the model

parameters will need to be extracted from each measurement set before we can imple-

ment them as a behavioural model in a simulator. Sections 5.3.1 and 5.3.2 will describe

the process of extracting the X-parameter and Cardi� models respectively from appropri-

ately swept NVNA measurement data of the power transistor periodic voltage and current

behaviour.

5.3.1 Parameter Extraction of the X-parameter Models

For each swept value of the LSOP variables (|a11| for the 50Ω-matched X-parameter model;

|a11|, |ΓL| and ∠ΓL for the ΓL-dependent X-parameter model), group the NVNA measure-

ments together. These measurements will include the variation of the voltage and current

at both ports and all frequencies of interest due to the injections of varying extraction

tones.

A simple way to extract the X-parameter model parameters for each LSOP condition

is to use a linear least squared error (LSE) �t of the NVNA measurements to �nd the

X-parameter formulation coe�cients of equation 3.35 (for 50Ω-matched X-parameters) or

equation 3.43 (for ΓL-dependent X-parameters). We can use the LSE algorithm to extract

the parameters of the X-parameter formulation since it describes each re�ection power-

wave bph as a linear combination of the aph and a∗ph terms. The coe�cients of this linear

combination are the X-parameter model coe�cients. We will use the complex variable

version of the LSE which uses the de�nition of the Wirtinger derivative in its formulation

[20].

If the matrix X is de�ned such that each row re�ects an NVNA measurement of the

injection of a single state of the extraction tone (of the k di�erent extraction tone injection

states) as follows:
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X =


1 a211 a∗211 a121 a∗121 a221 a∗221 . . .

1 a212 a∗212 a122 a∗122 a222 a∗222 . . .
...

...
...

...
...

...
... . . .

1 a21k a∗21k a12k a∗12k a22k a∗22k . . .

 (5.2)

and the vector y of length k is de�ned to include the variation of a single one of the re�ected

power-waves bph as follows:

y =


bph1

bph2

...

bphk

 (5.3)

then following relationship give us the linear LSE �t to the X-parameter formulation of

equation 3.35:

β̂ = (XTX)−1XTy (5.4)

where the vector β̂ will contain the relevant X-parameters that describe the behaviour of

bph as a variation of the small signal variation of incident power-waves aqi as follows:

β̂ =



X
(F )
ph

X
(S)
ph,21

X
(T )
ph,21

X
(S)
ph,12

X
(T )
ph,12

X
(S)
ph,22

X
(T )
ph,22
...


(5.5)

The main di�erence between the extraction of the 50Ω-matched X-parameter and ΓL-

dependent X-parameters here is that the X matrix of equation 5.2 will not include the

second and third columns that look at the variation with respect to an extraction tone

injection at a21 since there will be no injection at this port and harmonic index (since

injecting an extraction tone here will vary ΓL).

All the X-parameter coe�cients extracted using the above method are listed in a text �le

indexed by the LSOP parameters to be linearly interpolated in the simulation component.
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5.3.2 Parameter Extraction of the Cardi� Models

To extract the 2-variable Cardi� model from the simulated measurement procedure de-

scribed in section 5.2.3, we need to group the NVNA measurements for each combination

of |a11| and |a21|. For each of these input power magnitudes there will be k = 21 di�erent

NVNA measurements (one for each swept phase ∠a21).

To extract each of the Gph,n(|a11|, |a21|) parameters of the Cardi� model formulation of

equation 3.46, for each �xed |a11| and |a21| we use a discrete Fourier transform (DFT) to

�nd the following k coe�cients:

bph =
10∑

n=−10

Gph,n(|a11|, |a21|)ej(n∠a21) (5.6)

Since there are 21 swept ∠a21 phases, we will have 21 Gph,n(|a11|, |a21|) DFT coe�cients.

The lower frequency DFT components will give a good approximation of the variation of

the bph re�ected power-wave as a function of the variation of the relative phase of the

second large signal variable with respect to the �rst large signal variable (∠a21). For the

purpose of this comparison we will limit the parameters of the Cardi� model to the 9th

order (covering n = −4 to 4). Thus our 2-variable Cardi� model will be described by the

following equation:

bph =
4∑

n=−4

Gph,n(|a11|, |a21|)ej(n∠a21) (5.7)

For each of the DFT coe�cients Gph,n(|a11|, |a21|), we will �t a 7th-order polynomial to

its |a21| variation as follows:

Gph,n(|a11|, |a21|) =
7∑

m=0

|a21|mαph,n,m(|a11|) (5.8)

To �nd the polynomial parameters of equation 5.8 we can use the same linear LSE �t

algorithm that was used to extract the X-parameters in section 5.3.1 as follows. De�ne for

r = 33 di�erent |a21| levels:

X :=


1 |a21|1 |a21|21 . . . |a21|71
1 |a21|2 |a21|22 . . . |a21|72
...

...
...

...

1 |a21|r |a21|2r · · · |a21|
7
r

 (5.9)
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y :=


Gph,n(|a11|, |a21|1)
Gph,n(|a11|, |a21|2)

...

Gph,n(|a11|, |a21|r)

 (5.10)

we have through the LSE �t algorithm of equation 5.4:

β̂ =



αph,n,0(|a11|)
αph,n,1(|a11|)
αph,n,2(|a11|)

...

αph,n,7(|a11|)


(5.11)

Using the above method to extract the polynomial coe�cients that �t the Fourier series

parameters Gph,n(|a11|, |a21|), we have the following 2-variable Cardi� model formulation:

bph =
4∑

n=−4

7∑
m=0

|a21|mαph,n,m(|a11|)ej(n∠a21)

The αph,n,m(|a11|) parameters are extracted and listed in a text �le indexed by |a11| to
be linearly interpolated in the simulation component.

5.4 Implementation of PHD Models in a Harmonic Bal-

ance Simulator

We will use the commercial harmonic balance simulator of the Agilent ADS software suite

[26] to implement each of our PHD models and compare their results with the simulation

performance of the compact model that was used to extract these models. Agilent ADS

provides a frequency domain equation-based non-linear component called the Frequency

De�ned Device (FDD) that is very suitable for harmonic balance simulation and the im-

plementation of PHD models. The 2-port FDD component as available in Agilent ADS

allows one to de�ne the current at each of the two ports and harmonic frequencies as a

function of the voltages at both ports and all the harmonic frequencies of interest. This

means that we can implement the voltage-current formulations of the PHD model 3.13 as

simply as writing out their constitutive relations within the simulator.

However the PHD models that we will be comparing here are described using the power-

wave input and output variables (as described in section 3.3.1.1). This means that we can't
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Figure 5.3: Implementation of a power-wave-de�ned PHD model using an FDD component
in Agilent ADS

use the FDD component directly to implement the X-parameter and Cardi� models that

were extracted in section 5.3 since the harmonic balance simulator as implemented by

Agilent ADS solves for the voltages at each node of the circuit (not the re�ected power-

waves). The equivalence of power-wave-de�ned and voltage-current PHD models allows us

to use a mathematical trick to implement the power-wave de�ned PHD model using the

voltage-current de�ned FDD component.

Figure 5.3 shows this mathematical trick. Here two 2-port Y-parameter blocks are used

to transform the incident and re�ected power-waves at the interface of the power transistor

behavioural model into voltages and currents at the interface of the FDD component. Note

that these Y-parameter blocks do not actually physically exist. They are only there to

implement the power-wave relations of equations 3.16 and 3.17. For each of these 2-port

Y-parameter blocks we have: [
I1

I2

]
=

[
Y11 Y12

Y21 Y22

][
V1

V2

]
(5.12)

For the values of Y11 = − 1
Z0
, Y12 = 2

Z0
, Y21 = −1 and Y22 = 1 implemented at the

source side of the FDD component (where we have I1 = i1, I2 = b1, V1 = v1 and V2 = a1),

we have the relations:
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i1 = − v1
Z0

+ 2
a1
Z0

(5.13)

b1 = −v1 + a1 (5.14)

The relations of equations 5.13 and 5.14 are equivalent to equations 3.16 and 3.18

respectively through simple algebra. The same transformation holds for the load side of

the power transistor.

All three model equations are implemented in the equation editor of Agilent ADS and

the model parameters are read from the text �les generated by the methods described in

section 5.3. The Data Access Component (DAC) of this commercial simulator was used

to linearly interpolate the parameters of each model from the respective text �les so they

can be used within the simulator. This interpolation is performed based on the LSOP

variables for each of the X-parameter models and it is done based on the fundamental

input power-wave magnitude (|a11|) for the Cardi� PHD model.

5.5 Comparison of PHD Models

To compare the three PHD behavioural models described in this thesis, we implemented

each model in Agilent ADS's harmonic balance simulator using the method described in

section 5.4. These three behavioural models will be compared to each other and to the

manufacturer compact model that was used to extract these behavioural models. The

comparison will be performed using the following strategy:

1. Fix a set of passive re�ection coe�cients seen by the transistor at both sides of the

transistor up to the �fth harmonic except the fundamental input re�ection coe�cient

which we �x to 50Ω for maximum pseudo-power-wave transfer to the device model

from the fundamental input power source. This means that we �x values for Γ12,

Γ13, Γ14, Γ15, Γ21, Γ22, Γ23, Γ24 and Γ25 for each comparison test case.

2. For each of the four models (the three PHD behavioural models and the compact

model), we will sweep the fundamental input power of the 50Ω power source from

0W to 62W in small increments of 0.1W . This is the same power range that the

behavioural models were extracted using but with a much �ner linear sweep.

3. Perform harmonic balance simulations of each of the models for every power level

and plot the magnitude and phase of the variation of the re�ected power-waves at

both ports and the harmonic frequencies up to the third order. This means we will
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be looking at the variation of b11, b12, b13, b21, b22 and b23 versus the power available

from the source (Pavs) for each comparison test case. This will show how well each

PHD model is modeling the harmonic interactions resulted by the non-linearity of

the power ampli�er.

We will now explore some test cases of interest that will highlight the di�erences in the

modeling capabilities of each PHD behavioural model.

5.5.1 Case A: Power Sweep in a 50Ω-matched Network

In this test case, all the 50Ω-referenced re�ection coe�cients are set to zero. That is:

Γ12 = Γ13 = Γ14 = Γ15 = Γ21 = Γ22 = Γ23 = Γ24 = Γ25 = 0 (5.15)

Figures 5.4 through 5.6 show the variation of the re�ected power-waves versus a fun-

damental power sweep up to the third harmonic. For this case we see that all of the PHD

models track the behaviour of the compact model well. This result is expected for all

of these PHD models since the matching condition described by equation 5.15 does not

result in the usage of the partial derivative X-parameter model terms (the X(S) and X(T )

parameters). The X-parameter models are basically linearly interpolating the X(F ) terms

in the simulator. The Cardi� PHD model under this matched network also collapses to a

simple interpolation of values in a look-up table.

5.5.2 Case B: Power Sweep in a Mildly Unmatched Network

Here the re�ection coe�cients will be randomly generated to have a magnitude in the

(0, 0.4) interval with a random phase from the interval [0◦, 360). Three di�erent random

sets of re�ection coe�cients were generated and the fundamental input power was swept

to see whether there is any trend in the prediction capabilities of the implemented PHD

behavioural models.

Tables 5.1 and 5.2 show the three randomly generated mildly unmatched test conditions

used.

Figures 5.7 through 5.15 show the variation of the re�ected power-waves versus a fun-

damental power sweep for each of the cases represented in tables 5.1 and 5.2. From these

plots it can be seen that all of the extracted behavioural models show good prediction

of the compact model behaviour. The X-parameter models seem to have an advantage

here. This is mainly to do the fact that the two-variable Cardi� model generates the re-

�ected power-waves bph only as a function of |a11|, |a21| and ∠a21. This means that the
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.4: Case A: First harmonic re�ected power-wave variations versus Pavs
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(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.5: Case A: Second harmonic re�ected power-wave variations versus Pavs
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(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.6: Case A: Third harmonic re�ected power-wave variations versus Pavs
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Table 5.1: Case B: Source side re�ection coe�cients

Test Case ID Γ12 Γ13 Γ14 Γ15

B1 0.218∠236◦ 0.383∠12◦ 0.194∠305◦ 0.320∠336◦

B2 0.068∠99◦ 0.282∠244◦ 0.013∠235◦ 0.111∠58◦

B3 0.175∠42◦ 0.153∠179◦ 0.306∠345◦ 0.318∠122◦

Table 5.2: Case B: Load side re�ection coe�cients

Test Case ID Γ21 Γ22 Γ23 Γ24 Γ25

B1 0.056∠244◦ 0.169∠272◦ 0.366∠267◦ 0.317∠141◦ 0.383∠235◦

B2 0.329∠210◦ 0.278∠80◦ 0.127∠270◦ 0.380∠91◦ 0.014∠182◦

B3 0.196∠345◦ 0.178∠196◦ 0.258∠49◦ 0.284∠53◦ 0.302∠92◦

two-variable Cardi� model is invariant to the harmonic re�ection coe�cient terminations

while the X-parameter models have the linear partial derivative modeling of the e�ect of

the harmonic terminations.

5.5.3 Case C: Power Sweep with Highly Unmatched Γ21 andMildly

Unmatched Network

Here the re�ection coe�cients will be randomly generated to have a magnitude in the

(0, 0.4) interval with a random phase from the interval [0◦, 360), except for Γ21 which will

have a random magnitude in the (0.7,1) interval. Three di�erent random sets of re�ection

coe�cients were generated and the fundamental input power was swept to see whether there

is any trend in the prediction capabilities of the implemented PHD behavioural models.

Tables 5.3 and 5.4 show the three randomly generated mildly unmatched test conditions

used.

Figures 5.16 through 5.24 show the variation of the re�ected power-waves versus a

fundamental power sweep for each of the cases represented in tables 5.3 and 5.4.

Here the case C1 and C3 cases had great performance from all of the behavioural

models extracted (see �gures 5.16 through 5.18). However the random set of impedances

of case C2, resulted in worst performance from the ΓL-dependent X-parameter model (see

�gures 5.19 through 5.21). This is most likely an artifact of the interpolation used in this

model. In extracting the ΓL-dependent X-parameter model (see section 5.2.2), we used a

polar sweep of Γ21 and a separate X-parameter model was extracted for each Γ21 value. In

simulation, when we used the ΓL-dependent X-parameter model for a point that is not one

of the points used in the ΓL sweep, the simulator will linearly interpolate the X-parameters

(in polar coordinates) and use the interpolated parameters for the model. Case C2 is at
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.7: Case B1: First harmonic re�ected power-wave variations versus Pavs
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(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.8: Case B1: Second harmonic re�ected power-wave variations versus Pavs
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(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.9: Case B1: Third harmonic re�ected power-wave variations versus Pavs
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.10: Case B2: First harmonic re�ected power-wave variations versus Pavs
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(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.11: Case B2: Second harmonic re�ected power-wave variations versus Pavs
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(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.12: Case B2: Third harmonic re�ected power-wave variations versus Pavs
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.13: Case B3: First harmonic re�ected power-wave variations versus Pavs
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(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.14: Case B3: Second harmonic re�ected power-wave variations versus Pavs
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(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.15: Case B3: Third harmonic re�ected power-wave variations versus Pavs
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Table 5.3: Case C: Source side re�ection coe�cients

Test Case ID Γ12 Γ13 Γ14 Γ15

C1 0.303∠112◦ 0.079∠190◦ 0.100∠59◦ 0.246∠216◦

C2 0.152∠94◦ 0.189∠235◦ 0.141∠248◦ 0.332∠269◦

C3 0.227∠162◦ 0.220∠30◦ 0.367∠82◦ 0.114∠328◦

Table 5.4: Case C: Load side re�ection coe�cients

Test Case ID Γ21 Γ22 Γ23 Γ24 Γ25

C1 0.952∠54◦ 0.030∠297◦ 0.022∠193◦ 0.212∠358◦ 0.312∠28◦

C2 0.776∠159◦ 0.374∠38◦ 0.052∠346◦ 0.227∠1◦ 0.188∠278◦

C3 0.805∠294◦ 0.005∠312◦ 0.135∠30◦ 0.065∠143◦ 0.318∠93◦

least one example that shows that this interpolation of parameters could lead into a worse

model than a standard 50Ω model that does not interpolate parameters. The fact that

the interpolation is open to arbitrary implementation decisions (using a polar grid versus a

rectangular grid, using a linear sweep in the 50Ω Smith chart versus some other arbitrarily

chosen reference impedance or simply interpolating the real and imaginary parts of the load

impedance ZL) should cause one to be very cautious of the region of validity of interpolated

X-parameter models.

5.5.4 Case D: Power Sweep with Highly Unmatched Network

Here all the re�ection coe�cients will be randomly generated to have a magnitude in the

(0.7, 1) interval with a random phase from the interval [0◦, 360) . This case will try to push

the power transistor into very non-linear regions. Three di�erent random sets of re�ection

coe�cients were generated and the fundamental input power was swept to see whether there

is any trend in the prediction capabilities of the implemented PHD behavioural models.

Tables 5.5 and 5.6 show the three randomly generated mildly unmatched test conditions

used.

Figures 5.25 through 5.33 show the variation of the re�ected power-waves versus a

fundamental power sweep for each of the cases represented in tables 5.5 and 5.6.

The major trend here is that all the PHD behavioural models implemented for this

thesis degrade in their harmonic prediction under highly unmatched conditions. The two-

variable Cardi� model obviously is only sensitive to the fundamental incident power-wave

components and so it is quite understandable why it had trouble predicting the harmonic

content under these highly unmatched test cases. The X-parameter models being that

they are �rst-order Taylor series approximations start degrading in performance when the
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.16: Case C1: First harmonic re�ected power-wave variations versus Pavs
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(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.17: Case C1: Second harmonic re�ected power-wave variations versus Pavs

72



(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.18: Case C1: Third harmonic re�ected power-wave variations versus Pavs
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.19: Case C2: First harmonic re�ected power-wave variations versus Pavs
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(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.20: Case C2: Second harmonic re�ected power-wave variations versus Pavs
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(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.21: Case C2: Third harmonic re�ected power-wave variations versus Pavs
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.22: Case C3: First harmonic re�ected power-wave variations versus Pavs

77



(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.23: Case C3: Second harmonic re�ected power-wave variations versus Pavs
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(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.24: Case C3: Third harmonic re�ected power-wave variations versus Pavs
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Table 5.5: Case D: Source side re�ection coe�cients

Test Case ID Γ12 Γ13 Γ14 Γ15

D1 0.970∠288◦ 0.811∠155◦ 0.733∠327◦ 0.934∠65◦

D2 0.817∠94◦ 0.772∠52◦ 0.821∠48◦ 0.729∠312◦

D3 0.740∠208◦ 0.983∠197◦ 0.987∠52◦ 0.873∠307◦

Table 5.6: Case D: Load side re�ection coe�cients

Test Case ID Γ21 Γ22 Γ23 Γ24 Γ25

D1 0.718∠223◦ 0.770∠126◦ 0.806∠184◦ 0.946∠144◦ 0.705∠27◦

D2 0.713∠86◦ 0.751∠44◦ 0.895∠66◦ 0.920∠86◦ 0.894∠150◦

D3 0.835∠17◦ 0.864∠324◦ 0.789∠340◦ 0.923∠176◦ 0.757∠176◦

simulation is far away from the LSOP condition. Even the ΓL-dependent X-parameter

model didn't manage to do much better at harmonic content prediction.
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.25: Case D1: First harmonic re�ected power-wave variations versus Pavs
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(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.26: Case D1: Second harmonic re�ected power-wave variations versus Pavs
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(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.27: Case D1: Third harmonic re�ected power-wave variations versus Pavs
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.28: Case D2: First harmonic re�ected power-wave variations versus Pavs
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(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.29: Case D2: Second harmonic re�ected power-wave variations versus Pavs
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(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.30: Case D2: Third harmonic re�ected power-wave variations versus Pavs
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(a) b11 vs. Pavs

(b) b21 vs. Pavs

Figure 5.31: Case D3: First harmonic re�ected power-wave variations versus Pavs
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(a) b12 vs. Pavs

(b) b22 vs. Pavs

Figure 5.32: Case D3: Second harmonic re�ected power-wave variations versus Pavs
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(a) b13 vs. Pavs

(b) b23 vs. Pavs

Figure 5.33: Case D3: Third harmonic re�ected power-wave variations versus Pavs
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Chapter 6

Conclusions and Future Work

In this chapter the conclusions of the thesis will be restated regarding the applicability of

the PHD modeling framework and the speci�c implementations of PHD models extracted

in this thesis. Also, possible future research work based on improvements to the PHD

model application are discussed here. The work presented in this thesis is the analysis

and comparison of the major implementations of behavioural modeling techniques that are

mainly suitable for the design of narrow-band power ampli�ers.

6.1 Conclusions

From the analysis in chapter 3 and validation of models in chapter 5, we can conclude that:

1. The Poly-Harmonic Distortion behavioural modeling framework as applied to power

transistor devices is derived from the assumption that the power transistor is a

Volterra system and it is embedded within a stable circuit under the stimulus of

periodic inputs. Since narrow-band communication signal approach the behaviour

of periodic signals (they are almost-periodic signals), the PHD modeling framework

is theoretically capable of providing a black-box power transistor model that can be

used to design power ampli�ers.

2. The X-parameter models, being that they are �rst-order Taylor series approximations

of the PHD framework describing functions, are mainly useful for modeling the power

transistor behaviour under mildly unmatched conditions. Under highly unmatched

conditions the �rst-order approximation used in the model breaks down and the

models degrades in performance.

3. Using an LSOP expansion of an X-parameter model should be performed with caution
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as the choice of interpolation used can potentially degrade the predictive capability

of the model. Increasing the LSOP variables further than what was performed in

this thesis would result in a very highly dimensional model that will take exponen-

tially longer to extract, implement and simulate. There is no guarantee that LSOP

expansion will result in better performance under highly unmatched conditions.

4. The Cardi� model �ts the measurement where it is extracted really well. However it

breaks down quicker than the normal X-parameter models when there is signi�cant

harmonic content that is outside the model. Increasing the dimension of the Cardi�

model to account for further harmonic content should improve this model's capability

but it comes at the cost of the same complexities that come with the LSOP expansion

of the X-parameter models.

6.2 Future Work

Other models can be potentially implemented within the PHD modeling framework. A

few ideas for further research work are:

1. The implementation of the describing functions used in the PHD modeling framework

can be done by using arti�cial neural networks (ANNs). This might prove to be a

lot easier to extract and implement in simulation for measurement conditions that

are not on a grid. The complexity of the ANNs that are capable of �tting the PHD

describing function could be a topic of further research.

2. Multi-variate complex polynomials can be used instead of a Taylor series approxi-

mation to model the describing functions of the PHD modeling framework. These

polynomials can be designed with regards to the Volterra framework that the PHD

framework is based on.
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