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Abstract

In wireless networks, reliable communication is a challenging issue due to many attenua-

tion factors such as receiver noise, channel fading, interference and asynchronous delays.

Lattice coding and decoding provide efficient solutions to many problems in wireless

communications and multiuser information theory. The capability in achieving the fun-

damental limits, together with simple and efficient transmitter and receiver structures,

make the lattice strategy a promising approach. This dissertation deals with problems

of lattice detection over fading channels and time asynchronism over the lattice-based

compute-and-forward protocol.

In multiple-input multiple-output (MIMO) systems, the use of lattice reduction sig-

nificantly improves the performance of approximate detection techniques. In the first

part of this thesis, by taking advantage of the temporal correlation of a Rayleigh fading

channel, low complexity lattice reduction methods are investigated. We show that updat-

ing the reduced lattice basis adaptively with a careful use of previous channel realizations

yields a significant saving in complexity with a minimal degradation in performance.

Considering high data rate MIMO systems, we then investigate soft-output detection

methods. Using the list sphere decoder (LSD) algorithm, an adaptive method is pro-

posed to reduce the complexity of generating the list for evaluating the log-likelihood

ratio (LLR) values. To form the list of appropriate candidates, the temporal correlation

of channel is used beside the lattice structure of the system.

In the second part of this thesis, by applying the lattice coding and decoding schemes

over asynchronous networks, we study the impact of asynchronism on the compute-and-

forward strategy. While the key idea in compute-and-forward is to decode a linear syn-

chronous combination of transmitted codewords, the distributed relays receive random

asynchronous versions of the combinations. Assuming different asynchronous models,

we design the receiver structure prior to the decoder of compute-and-forward so that the

achievable rates are maximized at any signal-to-noise-ratio (SNR). Finally, we consider

symbol-asynchronous X networks with single antenna nodes over time-invariant chan-

nels. We exploit the asynchronism among the received signals in order to design the

interference alignment scheme. It is shown that the asynchronism provides correlated

channel variations which are proved to be sufficient to implement the vector interference

alignment over the constant X network.
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Chapter 1

Introduction

Wireless communication is of major importance to the world economy and the way people

live in today’s interconnected world. The growing demand for high data rate services

has urged a massive research efforts to analyze the performance of various wireless

communications systems. Considering the limited resources of bandwidth and power,

designing efficient techniques for reliable communications is the major motivation for

these studies. The central bottlenecks for reliable communication over a wireless network

are the additive noise experienced in different receiver nodes across the network and

the signal variations produced by the wireless medium in terms of channel fading and

interference from the other users communications. Therefore, designing techniques that

can increase the efficiency of communications are of major importance. An interesting

approach to increase the data rate in a wireless system without increasing bandwidth

or power is to use multiple antennas at different nodes. It is well established that the

use of multiple antennas at both the transmitter and the receiver side, multiple-input

multiple-output (MIMO) system, creates multiple transmission channels and allows for

simultaneous increase in data rate (multiplexing gain) and reliability (diversity gain). To

be more specific, in a system with M transmitter antennas and N receiver antennas, one

can increase the transmission reliability up to MN and the data rate up to min(M,N)
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[1, 2]. Signal processing techniques that allow us to exploit the potential of MIMO

systems are called space-time codes [2, 3]. In fact, the space-time codes can be used to

decrease the error rate and increase the transmission rate while satisfying a fundamental

diversity-multiplexing gain tradeoff (DMT) that is specific to the physical medium and

the applied protocol [4].

Communication strategies based on lattice codes at the transmitters and/or lattice

decoders at the receivers provide solutions to different multiuser problems in informa-

tion theory. The capability in achieving the fundamental limits, together with simple

and efficient transmitter and receiver structures, make the lattice strategy a promising

approach [5–7]. Lattice codes were first proposed as an alternative to random Gaus-

sian codes in order to achieve the capacity of the additive white Gaussian noise channel

(AWGN) [8–11]. As an important progress, it was shown that lattice code combined

with lattice decoding can achieve the capacity of a point to point AWGN channel [12].

Then, applications in a wide variety of channels such as MIMO channel [13] and multi-

terminal channels [14] were proposed. Note that the capacity achieving results based on

the lattice codes are provided in spite of the restrictions that may come from the struc-

ture of code compared to the random case. Moreover, it is revealed in several examples

recently that structured codes provide strictly better result than random codes ( [15]

and references therein). Lattice codes are also used for interference management where

it was first shown that structured interference space may be more useful [16]. In fact,

instead of limiting the desired signal to the interference-free dimensions on a random

space, one can exploit the structured interference space and transmit signals such that

the desired and the interference levels align differently at each receiver [17–19].

Lattice decoding is an important application of lattices over MIMO systems where

the outputs can be represented as a linear combination of the inputs corrupted by an

additive noise. In point to point MIMO systems, decoding represents a challenging
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problem. Methods from lattice theory has been used as solutions to this challenging

problem [20–22]. In fact, the MIMO detection can be translated to the closest lattice

point search (CLPS) problem in the lattice theory. On the other hand, lattice reduc-

tion methods have proved themselves to be powerful tools in approximating the CLPS

problem [23,24]. Moreover, it is shown that the use of lattice reduction methods signifi-

cantly improves the performance of suboptimal detection algorithms, [25] and [26]. The

LLL algorithm introduced by Lenstra, Lenstra, and Lovász, [27] is the most widely used

lattice reduction method due to its efficiency in finding near orthogonal vectors with

short norms. Generally, the complexity of the reduction algorithm in a lattice reduction

aided detection method can be ignored in a quasi-static scenario where the channel is

considered fixed for the whole transmission frame or where the channel variations are

slow enough which makes it possible to use the same result for quite a large number

of received signals (e.g., [28]). However, in the practical scenarios, channel coefficients

vary throughout the frame and have temporal correlation. In other words, the frame

length over which the channel can be assumed to be constant is small. Therefore, the

complexity of lattice reduction need to be considered in MIMO detection methods. Over

correlated fading channels where the channel coefficients slowly vary through the frame,

this problem is addressed in Chapter 2. Exploiting the temporal correlation, adaptive

methods are proposed to reduce the computational complexity of lattice reduction. Ap-

plying high data rate MIMO systems, serially concatenated with a channel code as the

outer code ([29], [30] and [31]), we then extend the adaptive algorithms for soft-output

detection methods. To form the list of appropriate candidates in an adaptive manner,

the temporal correlation of channels is used beside the lattice structure of the MIMO

system.

Linear properties of lattices provide many applications for interference management

over wireless channels. Dealing with interference and noise over wireless relay networks
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are two challenging problems which has been addressed by various relaying strategies.

Mostly, the proposed schemes try to overcome the problems by performing one of the

following two actions [32–34]. In the first strategy, such as decode-and-forward, the

intermediate nodes try to totally remove the noise. Although this solves one of the

problems, the network becomes interference-limited. In the second approach, the inter-

mediate nodes try to repeat the transmitted signal (amplify-and-forward) or quantize

the observed signal (compress-and-forward) and then pass it towards the destination in

order to form a large multi-antenna channel. However, not performing the decoding

results in noise accumulation. A new approach referred to as compute-and-forward is

proposed in [15] to efficiently manage the interference and remove the noise at the relay

nodes. In the compute-and-forward scheme, the same nested lattice codes are applied

at the transmitters. With lattice codes, any integer combination of the transmitted

codewords is still a codeword. Thus, the intermediate node can decode the combination

using a lattice decoder and remove the noise. Therefore the relays are able to recover

integer linear functions of codewords and forward a noiseless version of the transmitted

signals to the destination. It is shown in [15] that decoding a linear function of trans-

mitted messages provides an opportunity to achieve higher rates over a network with

additive white Gaussian noise. On the other hand, the nested lattice implementation of

compute-and-forward relies on the algebraic structure of the applied codes to decode a

synchronous linear combination of the transmitted messages. Hence, time synchroniza-

tion is an important assumption in achieving the promising gains. However, because of

the distributed nature of the relays across the network, random asynchronous combi-

nation of the transmitted signals are received and thus, perfect synchronization is not

feasible. Different types of time asynchronism have been studied over AWGN channel

that show different performance characteristics. For instance, it is shown in [35] that

the symbol-asynchronism does not have an impact on the capacity region of the two-

user Gaussian multiple-access channel (MAC) with identical shaping waveform at the
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transmitters. In [36], it is shown that higher mutual information is achievable in an

asynchronous space-time coded system with appropriate shaping waveforms. In [37],

it is verified that the total capacity of memoryless MAC channel under the frame-

asynchronous assumption remains unchanged while it is significantly affected for the

channels with memory. Moreover, asynchronism can significantly degrade the coopera-

tive system performance if it is not dealt with appropriately [38], [39]. Therefore, the

impact of asynchronism on the system performance is an important issue both in practice

and in theory and needs to be carefully investigated. Hence, the effect of asynchronous

delays on the compute-and-forward rates is studied in Chapter 3.

The interference channel is a network communication model in which pairs of trans-

mitters and receivers use the same communication medium at the same time and fre-

quency. Therefore, each receiver’s signal is corrupted by the interference from the trans-

mitted signals intended for other receivers. The X channel is a general interference

network in which there is an independent message from every transmitter to each re-

ceiver. Characterizing the capacity region of the interference and X channels are very

challenging problems in information theory. The problem of locating this region, even

in a simple case of two-user Gaussian channel, is still unsolved [40–42]. A fundamental

measure to approximate the capacity of wireless channels at high values of SNR is known

as the degrees of freedom (DOF) which determines the capacity boundaries as the SNR

increases. Since it impacts the design of efficient methods of interference management,

investigating the DOF of distributed networks is an important issue in wireless com-

munications. Interference alignment is an intelligent way to manage the interference at

the receivers by restricting the undesired signals at some common directions. It was

first introduced in [43] wherein its capability in achieving the total number of degrees

of freedom of a class of two-user X channels was studied. It is shown in [43] that in a

two-user X channel with M antennas at each node, a total of b4M
3
c degrees of freedom
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1.1. SUMMARY OF THE DISSERTATION

is achievable. This interesting result was then improved in [44] by employing the idea of

channel extensions to achieve the total 4M/3 degrees of freedom almost surely over chan-

nels with constant coefficients. Interference alignment was then applied to the K-user

interference channel in [45] and for the M×N user X network in [46]. It is shown in [46]

that by using the symbol extension over the channel with varying coefficients, the upper

bound of the total number of degrees of freedom is achievable for the general X network

with single antenna nodes. However, the channel variation is a crucial assumption for

the mentioned achievable schemes. Thus, these schemes could not trivially be extended

to channels with constant coefficients. On the other hand, perfectly synchronized nodes

is an important assumption in the aforementioned alignment schemes. As mentioned

before, due to the distributed nature of the X network, perfect synchronization is not

feasible in many cases. Exploiting the symbol-asynchronous scheme in Chapter 3, we

finally investigate the vector interference alignment scheme over time-invariant single

antenna X network.

1.1 Summary of the Dissertation

In Chapter 2, we consider the problem of lattice reduction aided MIMO detection over

fading channels. Taking advantage of the temporal correlation of a Rayleigh fading

channel, new methods are proposed to reduce the computational complexity. Lattice

reduction is investigated in the first part of the chapter by adaptively updating the re-

duced lattice basis: instead of performing lattice reduction on each channel realization,

we consider two methods that utilize temporal correlation to reduce complexity. The

main idea is to use the results of past channel realizations to perform an efficient re-

duction of the new one. In the first method, lattice reduction is applied on the nearly

reduced channel matrix which is computed from the previous realization. It is shown

that this method achieves an error performance the same as the original lattice reduc-
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1.1. SUMMARY OF THE DISSERTATION

tion method but significantly reduces the computational complexity. For more saving

in computational complexity, the part that performs the lattice reduction algorithm on

the nearly reduced channel matrix can be removed. In other words, we can use the

same transformation matrix to reduce the latter channel matrices if the variations in the

channel are small enough. Based on this idea, the second method is introduced by using

an updating measure that offers a tradeoff between performance and complexity. It is

shown that the second method achieves the maximum receive diversity in an uncoded

MIMO system if the updating measure is selected properly. The proposed adaptive

methods can be used in conjunction with any lattice reduction algorithm and in any

multi-antenna scenario over correlated channels that requires lattice reduction, such as

MIMO detection and broadcast precoding. In the second part, we propose an adaptive

method for soft-output MIMO detection. It has been shown that a serially concatenated

scheme of MIMO channel with a channel code as the outer code, can provide impressive

performance for high data rate MIMO communications (e.g., [29], [30], and [31]). In

these systems, the iterative joint detection and decoding can be performed by employ-

ing a soft-input, soft-output (SISO) decoder for the outer code and exchanging the soft

information between the MIMO detector and the SISO decoder. However, the maximum

a posteriori probability (MAP) detector is not affordable even for moderate MIMO di-

mensions. To avoid the large complexity, sub-optimal detectors based on the practical

list of candidates, have been proposed. List sphere decoders (LSD) are generally used

for such a list construction. In [29], the list construction is performed by a modified

sphere decoder and the lattice points with the smallest distances to received point are

found within a centered sphere on the received point. To have a more stable spherical

list decoder, in the sense of the list size and the search radius selection, a new LSD

was proposed in [47]. In this case, at the first step, the ML point is found by a sphere

decoder. Then, by using the ML point as the center of another sphere decoder, the list

of best candidates are formed. In the second part of Chapter 2, we introduce an adap-
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1.1. SUMMARY OF THE DISSERTATION

tive version of the stable list construction algorithm over slowly varying fading channels.

The results of the previous channel realization is utilized for performing the detection

in the new channel realization. We use the adaptive hard-output detector as a low com-

plexity near-ML approximation. Then, this near-ML point is used for the initiation of

the list construction. After that, for finding the list of appropriate candidates around

this point, the temporal correlation of channels is used beside the lattice structure of

the MIMO systems and the list is formed in an adaptive manner. Employing a perfor-

mance/complexity tradeoff measure, the list of best candidates at the MIMO channel

output is shifted and updated from a past channel list.

In Chapter 3, we study the impact of asynchronism on the compute-and-forward

strategy. The lattice coding and decoding scheme is applied over asynchronous net-

works. While the key idea in compute-and-forward is to decode a linear synchronous

combination of transmitted codewords, the relays receive random asynchronous ver-

sions of the combinations. Therefore, we study the effect of asynchronous delays on

the compute-and-forward rate. We assume that the transmitters are not aware of the

asynchronous delays at different relays and the coder and decoder structures are kept

identical to the synchronous compute-and-forward scheme. At the first part, we consider

the symbol-asynchronism model in which the delays are assumed to be less than a symbol

interval. This model has been studied for the multiple-access channel in [35] and used

over simple relay networks in [36] and [48]. We show that the inter-symbol-interference

(ISI), resulted from the asynchronism, imposes additional interference at each relay. If

this asynchronous interference is considered as noise, it results in an interference-limited

system and the channel output scaling in the compute-and-forward scheme is not effec-

tive anymore specially at high SNRs. Therefore, it is useful to remove the asynchronous

interference from the received signal and provide an equivalent interference-free model.

Based on this idea, a whitening filter is used at the output of the channel to provide a

8



1.1. SUMMARY OF THE DISSERTATION

synchronous combination of the transmitted sequences for the decoder of compute-and-

forward, but with the cost of reduced channel gain. It is shown that this procedure is

equivalent to extracting the synchronous part of the received signal. Using the equalizer

output with less channel gain results in a gap compared to the synchronous rates but

it vanishes at high SNRs. A numerical example for the MAC channel is also presented

and it is shown that a simple 1-bit feedback to one of the transmitters fills almost half

of the gap in the compute-and-forward rate for all SNRs.

At the second part, we consider a general asynchronous model called frame-asynchronism

where delays are random multiples of a symbol interval. Over the MAC channel, the

impact of frame-asynchronism on the capacity region has been investigated in the litera-

ture (cf. [37] and references therein). Also, by using the idea of similar channel codes at

the transmitters over a three-node network coding scenario in [49], a practical decoder

for the frame-asynchronous model is presented. Over fading channels, a similar model is

considered in [50] for the interference channel and as a common scheme, it is called a line-

of-sight (LOS) interference channel. For the compute-and-forward scenario, to be able

to decode a synchronous sum of the transmitted codewords over the frame-asynchronous

network, we propose to use multi-antenna receiver with the number of antennas equal

to the number of transmitters. Multi-antenna receivers for a synchronous compute-and-

forward relaying is studied in [51] where it is shown that one can rotate the channel

coefficients toward integers to reduce the impact of the interference from the non-integer

parts of the channel. We show that by using extra antennas at the relays, in addition to

rotating the channel gains toward integers to reduce the impact of the interference from

the non-integer parts of the channel, we can efficiently remove the asynchronous delays.

By applying a linear filter whose structure is related to the integer delays prior to the

decoder of compute-and-forward, we also maximize the achievable rate at any SNR.

At the third part of Chapter 3, we use the symbol-asynchronous scheme over a

9



1.1. SUMMARY OF THE DISSERTATION

constant X network with arbitrary number of single antenna nodes. By employing the

asynchronism in the design of the interference alignment, we achieve the upper bound for

the total number of degrees of freedom of this network which is argued to be the same as

that of the synchronous case. Interference alignment over asynchronous networks based

on propagation delays has been considered before for two user X channel and interference

channels. It was first proposed in [45] as an example and then explored in [52] by proper

node placement in a network with four nodes to align the interference signals. In [50],

a K-user interference channel is modeled by a time indexed graph where the alignment

task is associated with finding the maximal independent set of the graph. A signaling

scheme for the interference alignment over the asynchronous K user interference channel

was also proposed in [53] where it was shown that the total degrees of freedom of K/2 is

achievable. In this thesis, by exploiting the asynchronous delays, achievable schemes are

investigated for the general X network with constant channel coefficients. We consider

an M × N symbol-asynchronous X network with single antenna users and study the

effect of the asynchronism among the users on the total number of degrees of freedom

of this network and show that is the same as that of the corresponding synchronous

network. Then, we achieve the upper bound for the total number of degrees of freedom.

The interference alignment scheme is implemented by using the asynchronous delays

in the received signals at each receiver which results in ISI among the symbols from

different transmitters and hence provides the channel variation required for the vector

alignment.

Finally, in Chapter 4 we present a summary of the thesis contributions and discuss

future work directions.

10



1.2. LATTICE BACKGROUNDS

1.2 Lattice Backgrounds

In this section, we provide some basic definitions for lattices and the lattice basis reduc-

tion algorithms. A lattice , Λ, is a discrete set of points in Euclidean space Rn such that

it is closed under ordinary vector addition and for any point in the lattice, the additive

inverse is included in the set. In fact, any translate of the form Λ+x by a lattice point x

is again a lattice. A lattice can be represented by a lattice generator matrix H ∈ Rn×n.

Let H = [h1,h2, · · · ,hn] be an n × n full-rank generator matrix. Then, the set of all

linear combinations of columns by integer coefficients is a lattice, i.e.,

Λ = {x = Hz : z ∈ Zn}. (1.1)

Moreover, we call lattice Λ1, the coarse lattice, is nested in lattice Λ2, the fine lattice, if

Λ1 ⊆ Λ2.

From the discrete structure of lattices, we can associate any lattice point with a

bounded region in Rn. A fundamental region of a lattice is a block which fills Rn by

repeating it for just one lattice point in each copy. Voronoi region of a lattice is an

important fundamental region. For each lattice point x in Λ, its Voronoi region Vx
consists of all points in the real space which are closer to it than any other lattice point.

Specifically,

Vx = {r ∈ Rn : ‖x− r‖ ≤ ‖y − r‖,y 6= x ∈ Λ}. (1.2)

All fundamental regions of a lattice with generator matrix H have the same volumes

which is given by Vol(V) = det(H) (or for a general non-square basis H ∈ Rn×m,

Vol(V) =
√

det(HTH)).

A lattice nearest-neighbor quantizer maps a real point r ∈ Rn to the nearest lattice

point. It is defined by

QΛ(r) = arg min
λ∈Λ
‖λ− r‖. (1.3)

11



1.2. LATTICE BACKGROUNDS

Note that from the symmetry of lattice points, fundamental Voronoi region V of a

lattice can be defined as the set of all points in Rn that are closest to the zero point as

V = V0 = {r ∈ Rn : Q(r) = 0}.

The modulo-lattice function of r ∈ Rn is defined as the nearest-neighbor quantization

error:

[r] mod Λ = r−QΛ(r). (1.4)

The second moment of a lattice is defined per dimension as

σ2
Λ =

1

n
E[‖u‖2] =

1

nVol(V)

∫
V
‖r‖2dr, (1.5)

where u is a random vector uniformly distributed over V . The normalized second moment

associated with Λ is given by

G(Λ) =
σ2

Λ

Vol(V)2/n
. (1.6)

1.2.1 Lattice Reduction

The goal of the lattice basis reduction is to find a new basis in which the columns of the

new generator matrix B have small norms and they are as orthogonal as possible. The

impact of lattice reduction in two-dimensional space can be seen in Fig. 1.1. This concept

was proposed more than a century ago. There is no unique definition for lattice reduc-

tion. In fact, the basis for representing a lattice is not unique. The method for finding a

basis for a lattice, which is composed of relatively short and nearly orthogonal vectors, is

called lattice reduction. Minkowski proposed a definition in 1890s. Minkowski reduction

is equivalent to finding the shortest vector in the lattice and there is no polynomial time

algorithm known for this method. In 1982, Lenstra, Lenstra, and Lovász (LLL) [27]

proposed a breakthrough algorithm for lattice reduction which has complexity of poly-

nomial time in lattice dimension. A further improved version was developed by Schnorr

12



1.2. LATTICE BACKGROUNDS

and Euchner [54] which is called deep insertion LLL (DILLL). This modification gives

significantly shorter vector in comparison to the original LLL algorithm. However, the

complexity of the deep insertion LLL in worst case can be exponential, but simulations

show that on average it does not require much more iterations than the original LLL [55].

h1

h2b2

b1

Figure 1.1: Reduction Effect, Solid line: Reduced basis, Dashed Line: Original basis

Definition 1.1. The basis (b1, · · · ,bi−1) is called LLL-reduced if

• ||µij|| 6 1
2

for 1 6 i < j 6 m, and

• p · ||b∗i ||2 6 ||b∗i+1 + µi+1,ib
∗
i ||2

where b∗i s and µijs are the Gram-Schmidt mutually orthogonal vectors and coefficients,

respectively, and 1
4
< p < 1. Choosing larger values for constant p, results in a better

reduction but also a higher complexity.
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1.2. LATTICE BACKGROUNDS

In the original LLL algorithm, to check if a basis is LLL reduced, only adjacent

columns are checked against each other. One can argue that this condition can be ex-

tended so that the earlier columns are considered as well. This leads to a non-polynomial

algorithm both in theory and practice. However, Schnorr and Euchner proposed the

method DILLL to strengthen the condition without losing much practical speed [54].

To measure how reduced a basis is, orthogonality defect factor is used which is defined

as follows:

δ(B) ,
(||b1||2||b2||2 · · · ||bm||2)

det BTB
, (1.7)

where bi’s are the columns of the basis B. Clearly, δ(B) ≥ 1 with equality for an

orthogonal basis. In fact, the goal of lattice reduction is to determine a basis with

smaller orthogonality defect factor. Therefore, for a lattice with bases B1 and B2, we

can say that B1 is better reduced than B2 if δ(B1) < δ(B2). When different bases of

the same lattice are compared, the product of the norms can also be used because the

determinant is equal for all of them. We define this product as

D(B) , ||b1||||b2|| · · · ||bm||. (1.8)
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Chapter 2

Adaptive Lattice Detection in

MIMO Systems

2.1 Introduction

The application of multiple antenna for communications over wireless fading channels

has attracted a large interest as they promise a large capacity increase. In point to

point MIMO systems, decoding represents a challenging problem. Many researchers

have used some of the methods from lattice theory as solutions to this challenging

problem ([20], [21], [22] and [28] and the references therein). In fact, the outputs in

MIMO systems can be described as a linear combination of the inputs corrupted by

an additive noise. As a result, the detection is translated to the closest lattice point

search (CLPS) problem in the lattice theory. Lattice reduction methods have proved

themselves to be powerful tools in approximating the CLPS problem [23,24]. Moreover,

the use of lattice reduction methods significantly improves the performance of suboptimal

detection algorithms, [25] and [26]. There exist different methods for lattice reduction.

Among them, the LLL algorithm due to Lenstra, Lenstra, and Lovász, [27] is the most

widely used due to its efficiency in finding near orthogonal vectors with short norms.
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2.1. INTRODUCTION

Generally, the complexity of using lattice reduction in a lattice reduction aided de-

tection method can be ignored in a quasi-static scenario where the channel is considered

fixed for the whole transmission frame or where the channel variations are slow enough

which makes it possible to use the same result for quite a large number of received signals

(e.g., [28] and references therein). But in this work, the channel is not assumed to be

constant throughout the frame. We consider the practical scenario where channel coeffi-

cients slowly vary throughout the frame and have temporal correlation. This scenario is

justified in many practical situations where the channel slowly varies through the frame.

In other words, the frame length over which the channel can be considered constant is

small.

Taking advantage of the temporal correlation of a Rayleigh fading channel, new

methods are proposed to reduce the computational complexity. Lattice reduction is

investigated in the first part of this chapter by adaptively updating the reduced lattice

basis: instead of performing lattice reduction on each channel realization, we consider

two methods that utilize temporal correlation to reduce complexity. The main idea

is to use the results of past channel realizations to perform an efficient reduction of

the new one. In the first method, lattice reduction is applied on the nearly reduced

channel matrix which is computed from the previous realization. This method achieves

an error performance the same as the original lattice reduction method but significantly

reduces the computational complexity. For more saving in computational complexity,

the part that performs the lattice reduction algorithm on the nearly reduced channel

matrix can be removed. In other words, we can use the same transformation matrix

to reduce the latter channel matrices if the variations in the channel are small enough

(substituting lattice reduction algorithm by a matrix multiplication). Based on this idea,

the second method is introduced by using an updating measure that offers a tradeoff

between performance and complexity. Using the results of [56], it is shown that this
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2.1. INTRODUCTION

method achieves the maximum receive diversity in an uncoded MIMO system if the

updating measure is selected properly. The proposed adaptive methods can be used

in conjunction with any lattice reduction algorithm and in any multi-antenna scenario

over correlated channels that requires lattice reduction, such as MIMO detection and

broadcast precoding.

In the next part of this chapter, we extend the adaptive schemes to soft-output

detection. It has been shown that a serially concatenated scheme of MIMO channel

with a channel code as the outer code, can provide impressive performance for high data

rate MIMO communications (e.g., [29], [30], and [31]). In these systems, the iterative

joint detection and decoding can be performed by employing a soft-input, soft-output

(SISO) decoder for the outer code and exchanging the soft information between the

MIMO detector and the SISO decoder. However, the maximum a posteriori probability

(MAP) detector is not affordable even for moderate MIMO dimensions. To avoid the

large complexity, suboptimal detectors based on the practical list of candidates, have

been proposed. List sphere decoders (LSD) are generally used for such a list construction.

In [29], the list construction is performed by a modified sphere decoder and the lattice

points with the smallest distances to received point are found within a centered sphere

on the received point. To have a more stable spherical list decoder, in the sense of the

list size and the search radius selection, a new LSD was proposed in [47]. In this case,

at the first step, the ML point is found by a sphere decoder. Then, by using the ML

point as the center of another sphere decoder, the list of best candidates are formed.

Using this method and also the lattice linearity property, one can construct a shifted

list over block fading channels. A list of candidates can be formed only once for each

block around the origin (i.e., the all zero point of the corresponding lattice). Then, for

the given received signal, the ML point is found at first and then a new list is generated

by shifting the original list around the newly found ML point. Based on this idea, we
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2.2. LATTICE REDUCTION AIDED DETECTION

introduce an adaptive version of the stable list construction algorithm over slowly varying

fading channels. Taking advantage of the temporal correlation, an adaptive scheme can

be used in which the results of the previous channel realization is utilized for performing

the detection in the new channel realization. We use the adaptive hard-output detector

as a low complexity near-ML approximation. Then, this near-ML point is used for

the initiation of the list construction. After that, for finding the list of appropriate

candidates around this point, the temporal correlation of channels is used beside the

lattice structure of the MIMO systems and the list is formed in an adaptive manner.

Employing a performance/complexity tradeoff measure, the list of best candidates at

the MIMO channel output is updated from a past channel list.

2.2 Lattice Reduction Aided Detection

2.2.1 System Model

Consider a MIMO system with M transmit and N receive antennas. If we assume

sc = [sc1, ..., s
c
M ]T , yc = [yc1, ..., y

c
N ]T , wc = [wc1, ..., w

c
N ]T and the N ×M matrix Hc as

the transmitted signal, the received signal, the noise vector and the channel matrix,

respectively, then one has1

yc = Hcsc + wc, (2.1)

where the channel is assumed to be Rayleigh, i.e., the elements of Hc, hci,j, are inde-

pendent and identically distributed (i.i.d), with zero mean and unit variance complex

Gaussian distribution. The noise is considered to be complex Gaussian. The input sig-

nal components are chosen from a Q2-QAM constellation, χ, with energy ρ
M

, in which

ρ can be interpreted as the SNR observed at any receive antenna. The vector sc can

1Superscript c denotes complex values.
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2.2. LATTICE REDUCTION AIDED DETECTION

be obtained by Gray mapping from the vector of data bits, to the QAM constellation

points. Note that the number of transmitted bits in each channel use is 2M log2(Q).

This system model can be transformed to its real counterpart by using the following

transformations defined for vectors and matrices:

uc 7→ u =
[
<{uc}T ={uc}T

]
,

Hc 7→ H =

 <{Hc} −={Hc}

={Hc} <{Hc}

 . (2.2)

In this manner, H is a n×m real matrix with m = 2M and n = 2N and the components

of vector s are chosen from a Q-PAM constellation, with energy ρ
2M

. We can further

simplify the model by mapping the equivalent PAM signals to integers using the following

mapping:

s = κc + v, (2.3)

in which the elements of c are in {0, 1, ..., Q − 1}, κ is a constant scalar related to the

PAM constellation energy, and v is a constant vector. Substituting (2.3) into (2.2), the

system model is given by

y = H(κc + v) + w, (2.4)

where vector c has integer elements. Hence, our problem over a MIMO channel converted

to the detection of a lattice point transmitted over a linear channel with additive white

Gaussian noise [57].
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2.2. LATTICE REDUCTION AIDED DETECTION

2.2.2 Hard-Output Detection

Following the system model in Section 2.2.1, the maximum-likelihood (ML) solution to

the MIMO system in (2.1) is given by,

ŝc = arg min
sc∈XM

||yc −Hcsc||2, (2.5)

where XM denotes the M -dimensional hyper-cube with components from Q2-QAM con-

stellation. Using the mentioned transformations which resulted in (2.4), the minimiza-

tion in (2.5) can be rewritten as,

ĉ = arg min
c∈U
||y −Hv −Hκc||2

= arg min
c∈U
||y′ −H′c||2, (2.6)

where U refers to the hyper-cube {0, 1, ..., Q− 1}m, y′ = y −Hv, and H′ = κH.

For a general H, finding the optimal solution to this problem has exponential com-

plexity and hence approximate methods are preferred for use in practical systems. A

low-complexity approximate solution is the linear zero forcing (ZF) decoder which can

be written as

ĉ = d(H′)−1y′c, (2.7)

where dc denotes the nearest integer function. In this way, the interference is totally

suppressed which causes the noise effect to be amplified. Applying the decision feedback

equalizer (DFE) can lessen this effect. DFE can be done by performing QR decomposi-

tion on the channel matrix to get

H′ = [Q,Q′]

 R

0

 , (2.8)

20



2.2. LATTICE REDUCTION AIDED DETECTION

where R is m ×m upper triangular matrix with positive diagonal elements, 0 is (n −

m) × m zero matrix, Q is a n × m unitary matrix, and Q′ is a n × (n − m) unitary

matrix. Using the QR decomposition the system model is given by

y′′ = Rc + w′′, (2.9)

where y′′ = QTy′. Since R is upper triangular, the last symbol can be estimated

as ĉm = dy′′m/Rm,mc. We can then substitute the estimated value to cancel the noise

interference in y′′m−1. This approach is continued till the first symbol is detected. The

solution can be written as

ĉi =

⌈
y′′i −

∑m
j=i+1 ri,j ĉj

ri,i

⌋
for i = m,m− 1, · · · , 1. (2.10)

However, symbol detection in each step depends on the previous ones which causes error

propagation in this method. The error performance of ZF and DFE algorithms is far

from ML specially at high SNRs. Therefore, further efforts have been done to develop

methods with low complexity and error performance close to the ML solution.

If the boundaries of the search region in (2.6) are relaxed to be the whole cubic

lattice Zm instead of U , lattice decoding or detection is performed which is related to

the Closest Lattice Point Search (CLPS). Solution to this problem is vastly investigated

in lattice theory (e.g., [20], [28], [58], [21], and [22]). In fact, efficient lattice detection

methods perform lattice reduction followed by a closest point search algorithm such as

sphere decoder. However, the complexity of the closest point search problem is shown to

be NP-hard in general. Therefore, approximate lattice decoders with lower complexity

were proposed. Interestingly, lattice reduction methods are powerful tools for improving

the error performance of approximate detection techniques. Therefore, they are used in

conjunction with ZF and DFE decoders. The idea was first proposed by Babai in [24]

and then employed in [25] and [26] for detection and precoding in MIMO systems.
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2.3. ADAPTIVE LATTICE REDUCTION AIDED DETECTION

Performing the lattice reduction on H′ results in

B = H′G, (2.11)

where B is the reduced basis and G is a unimodular transformation matrix.2 Applying

the lattice reduction aided detection method, the minimization (2.6) can be approxi-

mated as

ĉ ' arg min
c∈Zm

||y′ −H′c||2. (2.12)

Using the reduced matrix in (2.11), one can equivalently solve

ĉ ' arg min
c∈Zm

||y′ −H′GG−1c||2

= G arg min
c′∈Zm

||y′ −Bc′||2, (2.13)

where c′ = G−1c. Assuming the lattice reduction aided detection over correlated fad-

ing channels, we present adaptive methods in the next section in order to reduce the

computational complexity.

2.3 Adaptive Lattice Reduction Aided Detection

2.3.1 Method I

Here we assume that the Rayleigh fading channel is slowly varying during the transmis-

sion frame. Our method hinges on the observation that a lattice basis transformation

(i.e., the unimodular matrix associated with the LLL) of the previous channel realiza-

tion can still reduce the actual channel (though not in the sense of LLL) if the channel

variation is slow enough. Then, applying the LLL reduction on the already reduced

2Unimodular matrices and their inverses have integer elements GZm = Zm.
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channel matrix should cost much less than applying the LLL on the original unreduced

channel matrix. As mentioned before, the output of the LLL algorithm is a reduced

matrix and a transformations matrix. The transformation matrix is used to convert the

initial channel matrix to the reduced one. This relation can be expressed as

B1 = H1G1, (2.14)

where B1,H1 and G1 are the reduced matrix, channel matrix, and the transformation

unimodular matrix, respectively.

Without loss of generality, assume that the fading process is a first-order Gauss-

Markov process as

Hk = aHk−1 + Zk, (2.15)

where 0 ≤ a < 1 shows the channel variations between consecutive transmissions and Zk

has i.i.d entries distributed as circular complex Gaussian with zero mean and variance

equal to ε2 = 1−a2, [59]. Assuming small variation in each element of the MIMO fading

channel through time, a is close to one and so ε is close to zero.

Considering these small changes, it seems quite reasonable to make use of the previous

transformation of lattice reduction for H1 in computing a reduced matrix for the new

channel H2. Therefore, using the previous transformation on the new channel matrix

results in,

B′2 , H2G1 = (aH1 + Z2)G1 (2.16)

= aH1G1 + Z2G1 = aB1 + Z2G1. (2.17)

By the fact that G1 is a unimodular matrix, B′2 is still a basis for the space spanned by

columns of H2. Consider the LLL algorithm, as B1 is already LLL reduced, it satisfies

all column swap and size reduction conditions. If the other term in equation (2.17) is
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small enough, the Gram-Schmidt coefficients of the resulting matrix in the right-hand

side of equation (2.17) are close to those of the B1. Therefore, performing LLL on B′2,

does not require many more basis updates. In other words, starting from an almost

LLL reduced matrix results in less complexity for LLL reduction. Thus, using B′2 as

the initial input for the LLL algorithm in comparison with starting from the original

channel matrix H2, reduces the complexity of the LLL algorithm significantly.

Performing LLL on B′2 results in

B2 , B′2G̃2 = (H2G1)G̃2 = H2G2 (2.18)

in which G2 , G1G̃2 is the transformation matrix for reducing H2. Note that the

proposed adaptive method of matrix reduction results in a reduced matrix which might

be different from the result of applying the LLL algorithm directly on H2, but as both

resulting matrices are LLL reduced, the error performances of the MIMO decoder are

close to each other.

In fact, the orthogonality defect factor and the product of the norms (respectively,

defined in (1.7) and (1.8), for near reduced basis B′2 is close to the one for the previous

reduced basis, B1, if the channel slowly changes. Assume B1 = [b1|b2 · · · |bM ], B′2 =

[b′1|b′2 · · · |b′M ] and G1 = [g1|g2 · · · |gM ]. The product of the norms for the near reduced

basis can be written as

D(B′2) = ||b′1||||b′2|| · · · ||b′M || (2.19)

= ||H2g1||||H2g2|| · · · ||H2gM || (2.20)

= ||(aH1 + Z2)g1||||(aH1 + Z2)g2|| · · · ||(aH1 + Z2)gM || (2.21)

=
M∏
i=1

||(aH1 + Z2)gi||, (2.22)

where the definition of B′2 and H2 are used from (2.17) and (2.15), respectively. By
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applying the triangle inequality on (2.19) for the norms, we get

D(B′2) ≤
M∏
i=1

[a||H1gi||+ ||Z2gi||] (2.23)

=
M∏
i=1

||H1gi||
[
a+
||Z2gi||
||H1gi||

]
(2.24)

=
M∏
i=1

||bi||
[
a+
||Z2gi||
||H1gi||

]
(2.25)

= D(B1)
M∏
i=1

[
a+
||Z2gi||
||H1gi||

]
. (2.26)

Furthermore, the ratio of the norms in (2.26) can be written as

||Z2gi||
||H1gi||

=
||Z2H

−1
1 bi||

||bi||
≤ ||Z2H

−1
1 ||, (2.27)

where the inequality came from the matrix norm definition, ||A||2 = maxx 6=0 ||Ax||2/||x||2.

By applying (2.27) in (2.26), we get

D(B′2) ≤ D(B1)
M∏
i=1

[a+ ||Z2H
−1
1 ||]

= D(B1)[a+ ||Z2H
−1
1 ||]M

= D(B1)[a+ ε||Z′2H−1
1 ||]M , (2.28)

where the elements in Z′2 have unit variance. Although the upper bound in (2.28) might

not be tight, it shows that with high probability, the norm products for the near reduced

matrix is close to the previously reduced one for small channel variations.

To improve this upper bound, one needs to investigate the norms of the two ma-

trices which are related to the maximum and minimum singular values of a Gaussian

distributed matrix ( [60] and [61]). Here, for our purpose, the ratios of norm prod-

ucts, D(B′2)/D(B1) and D(H2)/D(B1), are computed for the LLL algorithm with small
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changes in fading parameters. Fig. 2.1 shows the CDF of these ratios in a four dimen-

sional system with ε = .01. As it can be seen from the figure and the upper bound

(2.28), in Method I the norm products for the near reduced matrix is very close to the

previous one which has an LLL reduced basis with a small products of the norms. In

fact, in the LLL algorithm after each size reduction the product of the norms becomes

smaller. Thus, applying the LLL on B′2 = H2G1 with smaller products of the norms

instead of H2 needs fewer reduction steps. In other words, we have already done most

of the reduction steps during the previous reduction.
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Figure 2.1: CDF of the ratio of the norm products for the channel and the near reduced
basis

To bound the number of iterations in the main body of the LLL algorithm (the

number of times we check the second test in Definition 1.1), the condition number of

the basis, κ(H), is used [62,63]. Number of iterations K in an m-dimensional system is
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upper bounded by

K ≤ m2 logt

(A(H)

a(H)

)
+m

≤ m2 logt κ(H) +m (2.29)

where t = 1√
p
, A(H) and a(H) are the maximum and the minimum norm of the Gram-

Schmidt vectors corresponding to H, respectively. Based on this upper bound, the CDF

of the condition number for the channel, the LLL reduced basis and the near reduced

basis is depicted in Fig. 2.2 for ε = .05. It can be seen that for a small variation in

channel, the near reduced basis is better conditioned than the actual channel. Therefore,

less number of iterations is needed on average to perform the reduction on the near

reduced basis.
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Figure 2.2: CDF of the condition number for the channel, the reduced basis and the
near reduced basis
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2.3.2 Method II

If further saving in computational complexity is required, one can omit the part that

performs the LLL reduction algorithm on B′2, and use B′2 itself as the reduced basis

for H2. This means that if the variations in the channel are slow enough we can use

the same unimodular transformation matrix to reduce the later channel matrices. If

we generalize the bounds in (2.28) for small channel variations, we can see that the

product of the norms (and orthogonality defect factor) for consecutive realizations are

close to each other. In other words, with high probability, the product of the norms and

orthogonality defect factor are bounded within a time frame in which the tightness of

the bounds is related to the frame length. Considering that the method proposed is an

approximate one, as the difference between the current channel and the reference channel

gets larger with time, the effect of basis reduction using the unimodular transformation

matrix decreases. Therefore, it is required to update the unimodular transformation

matrix after it no longer produces acceptable results. Note that, the update rate can be

used as a tradeoff between complexity and accuracy.

We propose to update the unimodular transformation matrix using the orthogonality

defect factor defined in (1.7). To adaptively track the channel variations and be sure

that the orthogonality defect factor for the adaptive reduction stays bounded, we use a

lower and an upper bound for the orthogonality defect factor in Method II. Therefore,

in each channel realization we check the ratio of the near-reduced basis to the reference

one (the last time the LLL was performed). If it is within the assumed bound, the

reduced basis is computed just by multiplying the reference unimodular matrix to the

new channel matrix, otherwise the reduction is performed on the new channel and the

reference basis and its corresponding unimodular are reset. If we denote the last time we

performed LLL as the reference point, the channel at that time by Href , and the defect

factor of the output of the LLL as δ(Bref ), the condition for keeping the unimodular

28



2.3. ADAPTIVE LATTICE REDUCTION AIDED DETECTION

transformation matrix is defined as

1

α
≤ δ (HiGref )

δ(Bref )
≤ α , (2.30)

where α is chosen according to the fading parameters, computational complexity con-

straints and the desired error performance. The minimum value for α is 1 which denotes

the non-adaptive reduction method. The greater α provides less complexity but worse

performance. Note that, by performing QR decomposition for detection at the end,

the orthogonality defect factor can be computed simply by using the upper triangular

matrix, R, with O(n2) complexity.

To investigate when the adaptive lattice reduction in Method II achieves the max-

imum diversity, the techniques from [56] are used. It was shown that lattice reduction

aided detection achieves the maximum receive diversity which is the number of receive

antennas. In fact, for a point-to-point MIMO system with the V-BLAST transmission

with M transmit antennas and N receive antennas, when we use the LLL lattice aided

decoding,

lim
SNR→∞

− logPe
logSNR

= N, (2.31)

where Pe is the average error probability. Considering the updating condition in (2.30),

the orthogonality defect factor for adaptive reduction Method II is upper bounded by

αδ(Bref ). On the other hand, Bref is an LLL reduced matrix and δ(Bref ) is less than

CM(M−1) in which C is a constant(see [64]). Therefore, for all channel matrices, the

adaptively reduced basis has an upper bound as

δ(B)Adp−LLL ≤ αδ(B)LLL ≤ αCM(M−1). (2.32)
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Applying the above bound, we have the following proposition for for adaptive reduction

Method II :

Proposition 2.1. The LLL reduction aided detection by the adaptive Method II with N

receive antennas achieves the maximum receive diversity if limSNR→∞
logα

logSNR
= 0.

Proof. Using Theorem 2 in [56], it can be shown that

Pe ≤
c1α

N

SNRN
(2.33)

which c1 in a constant. Therefore, we have

lim
SNR→∞

− logPe
logSNR

≥

lim
SNR→∞

N logSNR− log c1 −N logα

logSNR
= N. (2.34)

Remark 2.1. Note that there is always a gap in performance between the basic re-

duction and the adaptive Method II because the adaptive method is an approximate

one with lower complexity. In fact, we have a a tradeoff between detection complexity

and performance in the adaptive reduction Method II which can be controlled by α for

different SNRs.

Remark 2.2. It is also possible to combine Method I and Method II to get even more

efficient adaptive algorithm. This means that when it is required to update the unimod-

ular transformation matrix in Method II, we can perform it using the adaptive algorithm

we proposed in Method I, i.e. at the time instant i, that it is required to update the

unimodular matrix we can perform the LLL algorithm on HiGref instead of Hi. This

method makes it possible to save more in computational complexity. In the simulation

results, this method is named as Method III.
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2.4 Soft-Output Detection for Multiple Antenna Sys-

tem

2.4.1 MAP Detection with List sphere decoder

A soft-output detection for MIMO system is used in this work as in [29] and [30]. Using

a soft-input, soft-output (SISO) decoder for the outer code and exchanging the soft

information between the MIMO detector and the SISO decoder, iterative joint detection

and decoding can be performed (see Fig. 2.3). In this system and at the transmitter

side, 2M log2(Q) coded bits are transmitted per each channel use by means of an M -

dimensional vector of QAM symbols. Let xj, j = 0, ...., 2M log2(Q)− 1 be the jth bit in

transmitted vector x. The maximum a posteriori (MAP) probability bit detection for

xj conditioned on received vector y can be expressed in the log-likelihood ratio (LLR)

form as

L(xj|y) = ln
P [xj = +1|y]

P [xj = −1|y]
(2.35)

where xj ∈ {−1,+1} is the representation for the logical zero and one, respectively. The

LLR values are used to verify the reliability of decisions.

Using the interleaver, we can assume that the bits within the transmitted vector are

statistically independent of each other. Following our system model in (2.4) and using

Bayes’ theorem and likelihood function for computing the LLRs as in [65] and [29], soft

output values L(xj|y) can be written as

L(xj|y) = ln

∑
x∈X+1

j
exp(− 1

2σ2 ||y′ −H′c||2 + 1
2
xT[j] · LA,[j])∑

x∈X−1
j

exp(− 1
2σ2 ||y′ −H′c||2 + 1

2
xT[j] · LA,[j])

(2.36)

in which X+1
j and X−1

j are the set of 22M log(Q)−1 bit vectors having xj = +1 and xj = −1,

respectively, i.e. X+1
j = {x|xj = +1}, X−1

j = {x|xj = −1}. Vector x[j] is obtained from
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x and LA,[j] is the vector of a priori LLR values of x, both by omitting xj. Note that, c

is the vector of translated symbols from s by (2.3) and s = map(x). Moreover, for the

first iteration between the MIMO detector and SISO decoder, all symbols are assumed

to be equally likely and thus LA is a zero vector. To simplify equation (2.36), the a

posteriori LLR associated with each transmitted bit can be approximated by using the

max-log approximation [66] as

L(xj|y) ≈1

2
max
x∈X+1

j

{
− 1

σ2
||y′ −H′c||2 + xT[j] · LA,[j]

}
−1

2
max
x∈X−1

j

{
− 1

σ2
||y′ −H′c||2 + xT[j] · LA,[j]

}
. (2.37)

After computing L, it is deinterleaved to get the a priori input L′ to the SISO decoder.

Binary
Source

Binary
Sink

Channel
Encoder

SISO
Decoder

MIMO
Detector

Interleaver

Deinterleaver

Interleaver

Constellation
Mapper

Iterative

Scheme

Channel

Figure 2.3: Transmitter and receiver in iterative detection/decoding for MIMO systems
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The MAP detector, even for the simplified LLR computation by the max-log approx-

imation (2.37) has an exponential complexity in the length of bit vectors or the number

of transmit antennas and the bits in each constellation symbols. Therefore, searching

over all possible transmitted signals is not an efficient way of solving this problem and to

avoid this high complexity procedure, sub-optimal detectors based on the practical list

of candidates, have been proposed, (e.g., [29], [30] and [31]). To have a reliable result,

by means of lattice representation of the system, the most likely lattice points must be

included in the list with a practical size. List sphere decoders (LSD) are used commonly

to provide the list of best candidates of the transmitted symbols and their correspond-

ing Euclidean distances as the output. In this search algorithm, the list construction is

performed by a sphere decoder and the lattice points with the smallest distances to the

received point are placed in the list. For example, in [29], the list sphere decoder is in

fact an ML estimator with a fixed radius of searching sphere which fills the list of size

L, with the closest lattice points. When y′ is outside this finite lattice constellation,

which is highly probable (specially in lower SNRs or in higher MIMO dimensions), the

sphere centered on the received point, searches within a large number of points to find

a small number of constellation points. Considering this fact, a new LSD was proposed

in [47]. In this case, as the first step, the ML point can be found by a sphere decoder and

then the center of spherical list L is selected on H′ĉML instead of y′. A double Pohst

recursion [67] is used to construct the list. One of them is used to find the points at a

distance less than R from the ML point and the other recursion computes the squared

Euclidean distances between the valid points in the search sphere and the received point,

||y′−H′ĉlist||2, in a parallel manner. In the next part, based on this LSD technique, we

propose the adaptive list detector for slow fading channels.
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2.4.2 Adaptive Soft-Output Detection

To generate the list, we modify the algorithm in [47] by finding a near-ML point in the

first step using our adaptive hard-output detection method developed in Section 2.3.

Considering the adaptive near-ML point as the beginning point of the LSD and as the

center of spherical list L, the list sphere decoding algorithm with a fixed radius is used

to construct the list. One can see by the numerical results that by choosing a large list

size, the performance of the soft-output detector which uses the near-ML point as the

center of the sphere, is nearly the same as the one with the ML point at the center.

In the second step and for arranging the list of appropriate candidates, if the temporal

correlation of channels is used beside the lattice structure of the MIMO systems, the list

can also be formed in an adaptive manner. To perform it, a reference list is constructed

by finding the points inside the sphere centered at the zero point of the lattice and then

shifting it to the estimated near-ML point. In the reference list, the lattice points are

sorted by their distance to the zero point. For the subsequent channel realizations, we

check if the variation between the new channel and old one is within a certain bound or

not. If that is the case, we simply shift the reference list around the new estimated near-

ML point and just update the Euclidian distances, ||y′new −H′newĉlist||2, where ĉlist are

the shifted lattice points. This procedure continues until the variation from the reference

channel to the new one is greater than the selected bound. In this case, the reference

lattice is updated by the new channel basis and the new reference list is constructed.

As a measure of the channel variation, the orthogonality defect factor (1.7) is used

as follows. Using this measure as an overall measure for tracking the basis variation, the

aforementioned bound for updating the reference list is defined as

1

β
<
δ(Hnew)

δ(Href )
< β (2.38)
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where β is a measure of the performance/complexity tradeoff for the adaptive list con-

struction. Note that the intersection between the shifted reference list and the finite

lattice constellation may be small. Thus, we can construct a larger reference list to

assure that we always have a sufficient number of points in the shifted list around the

estimated lattice point. In the next section, the simulation results are provided for

different channel codes.

2.5 Simulation Results

2.5.1 Hard-Output Detection

In this part, the performance and complexity of the adaptive reduction methods for hard-

output detection are studied and compared with the conventional reduction methods.

Correlated Rayleigh fading coefficients are generated according to [68]. The motiva-

tion for this was the ability to generate the channel samples sequentially with accurate

statistical properties and low computational complexity. The fading parameters of the

channels for all the simulations are fd = 100Hz and fs = 270ksps where fd is the max-

imum Doppler frequency and fs = 1/Ts is the sampling rate. We consider the MIMO

channel with M = N transmit and receive antennas. A 4-QAM constellation is used to

investigate the error performance of the adaptive methods. The bit error performances

are figured versus Eb/N0 in which Eb is the average energy of a bit at each receiver

antenna. Figs. 2.4 and 2.5 show the bit error rates of different detection methods. In

these simulations, the adaptive methods are used to modify the LLL and the deep in-

sertion LLL algorithms. It can be seen that using Method I does not affect the error

performance of the detection method, where the degradation in performance is small

for different value of α for Method III. Note that to provide near-ML performance, the

MMSE-DFE detection method is used.

35



2.5. SIMULATION RESULTS

To study the complexity, we compare the average number of required flops for differ-

ent reduction algorithms where a flop is either a multiplication, a division, an addition

or a subtraction. Figs. 2.6 and 2.7 show the computational complexity savings by using

the adaptive methods. Fig. 2.6 shows the average number of flop counts for the LLL

and the adaptive methods. The results for the deep insertion LLL are depicted in Fig.

2.7. In these figures, the average number of flops are sketched for different number of

antennas where in all cases M = N is considered. Fig. 2.8 compares the average number

of basis updates for the LLL algorithm and the adaptive algorithms. As you can see

in this figure, there exist an obvious gain in using the adaptive methods. Also, Fig.

2.9 shows the average number of required size reductions and insertions for both deep

insertion LLL and adaptive methods. Note that reduction, swap and insertion are the

basic basis updates used in LLL and deep insertion LLL. As it was expected from the

adaptive nature of the proposed methods, there is a significant gain in terms of number

of basis updates. This admits that for the channel we have considered in these simula-

tions, using the transformation matrix of the previous channel realization gives, a quite

good reduction for the current channel realizations. In fact, multiplication of the trans-

formation matrix by the new channel matrix becomes the main part of computational

complexity in the adaptive methods.

2.5.2 Soft-Output Detection

The performances of using the near-ML point and the adaptive method for soft-output

detection are studied. We consider a MIMO channel with M = N = 4 transmit and

receive antennas. The coded data stream with length of 9216-bits is modulated by a

16-QAM constellation using the Gray mapping. At first, a half rate convolutional code

with generator polynomials (5, 7) is used. For the sphere detection, a list with the

maximal length of L = 512 is computed. Fig. 2.10 shows the bit error performance for
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the soft-output detection and the iterative scheme for the LSD with ML and near-ML

as the starting point, respectively. It can be seen that although the performance of ML

estimation is better than the adaptive near-ML, using the near-ML point as the center

of the spherical list construction does not affect the performance of the soft-output

detection method.

Fig. 2.11 shows the error performance of the adaptive scheme for the soft-output

detection. Here, β is selected as 1.5, 3, and 5. The average updating time of the reference

list construction for these selections of adaptive measures is 36, 117 and 170, respectively

(i.e., for a chosen β = 3 we just need to construct the reference list every 117 channel

realization, on average, and simply shift the list for the rest of channel realizations). As

discussed before, there is a tradeoff between the performance and the complexity for the

soft-output detection. Based on the fading speed, the appropriate β should be selected

for a desired performance and complexity.

Finally, the performance of the proposed adaptive soft-output detection method in-

vestigated by using a turbo code as the outer code. The parallel concatenated turbo

code with two memory and feedback polynomial 1+ D + D2 and feedforward polynomial

1 + D2 with β selected as 1.5 and 3 is used over the slow fading channel. For the sphere

detection, a list with the maximal length of L = 128 is employed. Fig. 2.12 shows the

bit error rate performance and the tradeoff between the performance and the complexity

for the adaptive scheme.
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Figure 2.4: Bit error performance of the adaptive hard-output detection methods using
the LLL reduction for a 4× 4, 4-QAM MIMO system.
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Figure 2.5: Bit error performance of the adaptive hard-output detection methods using
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Figure 2.8: Average number of basis updates for the LLL and the adaptive methods for
different number of antennas.
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Figure 2.9: Average number of basis updates for the DILLL and the adaptive methods
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Figure 2.11: Error performance for the adaptive soft-output sphere detection centered on
the near-ML point (with no iteration between the detector and the decoder) for different
values of β by using a convolutional code with generator polynomials (5, 7) for 16-QAM.
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Figure 2.12: Error performance for the adaptive soft-output sphere detection centered on
the near-ML point (with no iteration between the detector and the decoder) for different
values of β by using a two memory parallel concatenated turbo code (eight iterations
inside turbo decoder) for 16-QAM.
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2.6 Conclusion and Discussion

Adaptive lattice reduction methods were studied over slowly varying fading channels.

Two adaptive methods which improve the complexity of lattice reduction algorithms

were introduced and analyzed. The first method achieves the same error performance

as the original lattice reduction aided detector. In the second method which is an

approximate one, a measure for tradeoff between detection complexity and performance

was proposed. It was shown that if the variations in the channel are slow enough, we

can use the past transformation matrices to reduce the future channel matrices and

convert lattice reduction algorithm to just performing a matrix multiplication without

sacrificing the diversity order achieved in an uncoded MIMO system. Next, a reduced

complexity list decoder for soft-output detection in MIMO systems was introduced over

the slow fading channels. Using the adaptive near-ML estimated point as the center of

the sphere in the list decoder, an adaptive list is constructed by means of the past channel

information. It was shown that one can save significantly in computational complexity

if a shifted list from a past realization is used. Employing an appropriate value for the

performance/complexity factor, the soft-output channel detector with different channel

decoders was used to investigate the performance of the adaptive list construction.

The adaptive lattice reduction methods can be used in conjunction with any MIMO

scenario that requires lattice reduction. In the MIMO broadcast systems, search based

precoding scheme is a straightforward method which requires a lattice decoder, [69].

To have a less complex precoder, approximate methods have been proposed in [70] by

applying the lattice reduction. When the channel realizations are correlated in time, as

the one we are using here, it is possible to take advantage of this correlation to reduce

the complexity of the precoding stage in the system. Therefore, the proposed adaptive

lattice reduction method can be used in the lattice reduction aided broadcast precoding

to reduce the computational complexity.
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Chapter 3

Asynchronous

Compute-and-Forward

3.1 Introduction

Dealing with interference and noise over wireless relay networks are two challenging

problems which have been addressed by different relaying strategies. Mostly, the pro-

posed schemes try to overcome the problems by performing one of the following two

actions [32–34]. In the first strategy, such as decode-and-forward, the intermediate

nodes try to totally remove the noise. Although this solves one of the problems, the

network becomes interference-limited. In the second approach, the intermediate nodes

try to repeat the transmitted signal (amplify-and-forward) or quantize the observed sig-

nal (compress-and-forward) and then pass it towards the destination in order to form a

large multi-antenna channel. However, not performing the decoding results in noise ac-

cumulation. A new approach referred to as compute-and-forward was proposed in [15] to

efficiently manage the interference and remove the noise at the relay nodes. Although the

idea has been proposed before in the two-way relay channels as physical-layer network

coding (e.g. [71]), the compute-and-forward scheme assumes a general multiple-access
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channel at the intermediate nodes. Furthermore, reliable physical layer network coding

is also an application of compute-and-forward [72], [73].

In the compute-and-forward scheme, the same structured codes are applied at the

transmitters. Therefore the relays are able to recover integer linear functions of code-

words and forward a noiseless version of the transmitted signals to the destination. It

is shown in [15] that decoding a linear function of transmitted messages provides an

opportunity to achieve higher rates over a network with additive white Gaussian noise.

Nested lattice codes from [12] are used to develop such a protocol. In fact, with lattice

code, any integer combination of the transmitted codewords is still a codeword. Thus,

the intermediate node can decode the combination using a lattice decoder and remove

the noise. However, the combination provided by the fading channel has real coefficients

rather than integer ones. Scaling the output towards integers and optimizing the prob-

lem for maximum achievable rates is proposed in [15]. Note that, while the scaling can

reduce the impact of non-integer parts of the channel, it may increase the noise power.

It is shown in [74] that lattice implementation of compute-and-forward is interference-

limited at high SNR values. Therefore, there is a significant loss in achievable rates

compared to the MIMO upper bound resulting from full cooperation at the transmitter

and the receiver side. To overcome this problem and match the MIMO upper bound,

an asymptomatic compute-and-forward design is presented in [74] based on the real

alignment scheme [75].

On the other hand, the lattice implementation of compute-and-forward relaying strat-

egy relies on the algebraic structure of the applied codes to decode a synchronous linear

combination of the transmitted messages. However, because of the distributed nature of

the relays across the network, random asynchronous combination of the transmitted sig-

nals are received and hence, perfect synchronization is not feasible. Therefore, the impact

of asynchronism on the performance of this scheme is an important issue both in practice
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and in theory and needs to be carefully investigated. In general, time synchronization is

an important assumption in achieving the promising gains in many communication sys-

tems. Different types of asynchronism have been studied over AWGN channel that show

different performance characteristics. For instance, it is shown in [35] that the symbol-

asynchronism does not have an impact on the capacity region of the two-user Gaussian

multiple-access channel (MAC) with identical shaping waveform at the transmitters.

In [36], it is shown that higher mutual information is achievable in an asynchronous

space-time coded system with appropriate shaping waveforms. In [37], it is verified that

the total capacity of memoryless MAC channel under the frame-asynchronous assump-

tion remains unchanged while it is significantly affected for the channels with memory.

Moreover, asynchronism can significantly degrade the cooperative system performance if

it is not dealt with appropriately [38], [39]. In this chapter, we study the effect of asyn-

chronous delays on the compute-and-forward rate. We assume that the transmitters

are not aware of the asynchronous delays at different relays and the coder and decoder

structures are kept identical to the synchronous compute-and-forward scheme.

In Section 3.3, we consider the symbol-asynchronism model in which the delays are

assumed to be less than a symbol interval. This model was studied for the multiple-

access channel in [35] and used over simple relay networks in [36] and [48]. We show that

the ISI, resulted from the asynchronism, imposes additional interference at each relay. If

this asynchronous interference is considered as noise, it results in an interference-limited

system and the channel output scaling in the compute-and-forward scheme is not effec-

tive anymore specially at high SNRs. Therefore, it is useful to remove the asynchronous

interference from the received signal and provide an equivalent interference-free model.

Based on this idea, a whitening filter is used at the output of the channel to provide a

synchronous combination of the transmitted sequences for the decoder of compute-and-

forward, but with the cost of reduced channel gain. It is shown that this procedure is
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equivalent to extracting the synchronous part of the received signal. However, using the

equalizer output with less channel gain results in a gap compared to the synchronous

rates, which vanishes at high SNRs. A numerical example for the MAC channel is also

presented and it is shown that a simple 1-bit feedback to one of the transmitters fills

almost half of the gap in the compute-and-forward rate for all SNRs.

In Section 3.4, we consider an asynchronous model called frame-asynchronism where

delays are random multiples of a symbol interval. Over the MAC channel, the impact

of frame-asynchronism on the capacity region has been investigated in the literature

(cf. [37] and references therein). Also, by using the idea of similar channel codes at the

transmitters over a three-node network coding scenario in [49], a practical decoder for

the frame-asynchronous model is presented. Over fading channels, a similar model is

considered in [50] for the interference channel and as a common scheme, it is called a line-

of-sight (LOS) interference channel. For the compute-and-forward scenario, to be able

to decode a synchronous sum of the transmitted codewords over the frame-asynchronous

network, we propose to use multi-antenna relays with the number of antennas equal to

the number of transmitters. Multi-antenna receivers for a synchronous compute-and-

forward relaying is studied in [51] where it is shown that one can rotate the channel

coefficients toward integers to reduce the impact of the interference from the non-integer

parts of the channel. We show that by using extra antennas at the relays, in addition

to rotating the channel gains, we can efficiently remove the asynchronous delays. By

applying a linear filter whose structure is related to the integer delays prior to the decoder

of compute-and-forward, we maximize the achievable rate at any SNR.
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3.2 Asynchronous System Models

Consider a relay network with M transmitters and K relays. Because of the distributed

structure of this network and the effect of propagation delay, the received signals from

different transmitters at each relay are not synchronous. We consider two types of

asynchronism in the received signals. At the first part, we assume that the received

signals at each relay are frame-synchronous but not symbol-synchronous. Therefore, the

transmitted signals from distributed transmitters are aligned up to random delays of

length less than a symbol interval Ts. This type of asynchronism may also be resulted

from the small amount of time synchronization mismatch in the assumed channel model

(using the continuous-time shaping waveforms). At the second part, we consider frame-

asynchronous scheme as a general asynchronous model for the delays in propagation. In

this manner, each relay receives the transmitted codewords from different transmitters

with random delays as finite integer values of the symbol interval.

Assume the continuous-time channel where each transmitter uses a unit energy shap-

ing waveform ψm(t) to transmit its codeword symbols to the relays. Thus, the transmit-

ted baseband signal from the m-th transmitter, m = 1, 2, . . . ,M , is given by

xm(t) =
n∑
i=1

xm(i)ψm(t− iTs), (3.1)

where xm(i) is the transmitted symbol from the m-th transmitter at the i-th symbol

interval and n is the length of the resulting transmitted vector xm. Moreover, each

transmitted vector is subject to the power constraint given by

1

n
‖xm‖2 ≤ SNR, m = 1, 2, . . . ,M. (3.2)

The transmitted signals are received asynchronously at each relay. Let τkm denote the

delay of the received signal from the m-th transmitter at the k-th relay, k = 1, 2, . . . , K.
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The received signal is specified by

yk(t) =
M∑
m=1

hkmxm(t− τkm) + zk(t), (3.3)

where hkm is the channel coefficient between the m-th transmitter and the k-th relay

and zk(t) is the additive white Gaussian noise signal at the k-th receiver node with zero

mean and power spectral density equal to σ2. We assume that the channel coefficients are

constant during the transmission of a codeword (frame). Furthermore, the transmitters

do not have channel state information (CSI) and each relay knows its channel coefficients

to the transmitters. The same assumption is made for the delay information at both

sides.

Consider the symbol-asynchronous channel model. We assume that 0 < τkm < Ts

for k = 1, 2, . . . , K, m = 1, 2, . . . ,M . The asynchronous delays τkm are continuous-time

random variables which depend on the propagation medium. We assume that τkm’s are

constant during the transmission of one frame. Assume that the transmitters use the

shaping waveforms with a time support equal to pTs, i.e., ψm(t) = 0,∀ t 6∈ [0, pTs]. Using

the signal models in (3.1) and (3.3), the received signal at the k-th relay can be obtained

as

yk(t) =
M∑
m=1

hkm

n∑
i=1

xm(i)ψm(t− iTs − τkm) + zk(t). (3.4)

To provide the equivalent discrete channel model, the above received signal yk(t) is

passed through M matched filters at each relay sampled at t = (i + 1)Ts + τkm, for

m = 1, 2, . . . ,M . Therefore, the matched filter outputs at each relay result in M streams

which can be written as follows:

ykm(i) =

∫ (i+p)Ts+τkm

iTs+τkm

yk(t)ψ
∗
m(t− iTs − τkm)dt, (3.5)
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for i = 1, . . . , n and m = 1, 2, . . . ,M . The integration is performed over p ≥ 1 symbol

intervals which is equal to the length of the shaping waveforms. It can be seen from

(3.4) and (3.5) that every symbol ykm(i) is interfered by at most (p−1) past and (p−1)

future symbols from transmitter m and also by 2p−1 symbols of past and future of each

of the other transmitters. In the next section, we will discuss the output of matched

filters in more details for the case when there are two transmitters.

Note that the aforementioned signaling scheme is a general framework and it can be

used over any asynchronous network. For example, we will consider it at the end of this

chapter over an X network with constant channel coefficients. In the next section, we

apply it to the symbol-asynchronous compute-and-forward scheme and for simplicity we

assume that all transmitters use the same shaping waveform ψ(t), with a single time

support, p = 1, i.e., ψ(t) = 0,∀ t 6∈ [0, Ts].

Now consider the frame-asynchronous network where the random delays at each

receiver are integer multiples of the symbol interval. The discrete-time channel model

at each relay can be written as

yk(i) =
M∑
m=1

hkmxm(i− dkm) + zk(i). (3.6)

where dkm is the delay of the received signal from the m-th transmitter at the k-th

relay. We assume that dkm are drawn i.i.d according to a uniform distribution from

the integer interval {0, 1, . . . , D} where D is the maximum delay in the network. Note

that each node can be equipped with multiple antennas. In Section 3.4, we consider the

frame-asynchronous channel model with single-antenna transmitters and multi-antenna

receivers in which the delays are the same across each receiver antennas.

Remark 3.1. When the system is synchronous and hence the delays are equal to zero,

then the channel model is simply given by a noisy synchronous combination of the
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transmitted vector as

yk =
M∑
m=1

hkmxm + zk. (3.7)

for k = 1, 2, . . . , K.

3.2.1 Compute-and-Forward

A relay strategy referred to as compute-and-forward is proposed in [15], where each relay

decodes a linear equation of the transmitted messages and forward it to a destination.

At the destination node, the original messages can be recovered if sufficient equations are

available. The key idea is using the same structured codebook at all transmitters so that

a linear combination of codewords at each relay is also a codeword. Over a synchronous

network, each transmitter uses the same encoder which maps the finite field messages to

the real (or complex) field. Each relay receives a linear combination of the transmitted

vectors provided by the channel plus additive noise. The goal is to reliably compute a

linear combination of the messages at each relay. Let κm be the length of the message

vector at transmitter m and κ = maxm κm. Vector wm of length κ is the zero-padded

message of transmitter m over a prime-sized finite field Fp. The encoder at transmitter

m maps wm to a codeword of length n to provide the channel input xm. The k-th relay

exploits the channel output to decode the following message:

uk =
M∑
m=1

qkmwm,

where qkm are coefficients in the finite field and mapped to the desired integer coefficients

akm at relay k over the channel. In Fig. 3.1, the system between the transmitters and

the relays are depicted.

Using nested lattice codes, it is shown in [15] that for a coefficient vector ak ∈ ZM ,
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+

+

Figure 3.1: Compute-and-forward: computing integer linear functions over the channel

one can achieve the following computation rates:

R(hk, ak) =

[
1

2
log

(
SNR

α2
k + SNR‖αkhk − ak‖2

)]+

, (3.8)

where hk = [hk1, . . . , hkm]T , [R]+ , max(R, 0) and αk ∈ R. For the choice αk as the

MMSE coefficient, the computation rate in (3.8) is uniquely maximized and given by

R(hk, ak) =

[
1

2
log

((
‖ak‖2 − SNR(hTk ak)

2

1 + SNR‖hk‖2

)−1
)]+

. (3.9)

The computation rates are achievable if for sufficiently large n, there exist encoders and

decoders such that all relays can recover the desired combinations with arbitrarily small

average probability of error while the message rates satisfy

rm < min
{k:akm 6=0}

R(hk, ak), (3.10)

where rm , (κm log q)/n. Moreover, to achieve the highest computation rates for a given

channel vector at each relay, a maximization over integer coefficients can be performed.
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3.3 Symbol-Asynchronous Compute-and-Forward

To study the impact of asynchronism on the compute-and-forward scheme, the signaling

scheme in Section 3.2 is applied. Consider two transmitters that are using the same

shaping waveform in order to send their corresponding codewords to the relays. At each

relay, the sum of the delayed transmitted signals multiplied by the channel coefficients

plus an additive noise is observed as in (3.3). Note that for the choice of real shaping

waveform, the asynchronous coefficients affect the real and the imaginary parts of the

signal separately. Thus, all relations are valid for both real and complex system models.

For simplicity, we consider a real system model here. Following the system equation in

(3.5), by using two matched filters at the k-th relay we obtain

yk1(i) = hk1x1(i) + λk1hk2x2(i) + λk2hk2x2(i− 1) + zk1(i), (3.11)

yk2(i) = hk2x2(i) + λk1hk1x1(i) + λk2hk1x1(i+ 1) + zk2(i), (3.12)

where λk1, λk2 are defined in (3.13) and zkm(i), m = 1, 2, is a discrete white Gaussian

noise with zero mean and unit variance.

λk1 =

∫ Ts

0

ψ(t)ψ(t− τ̄k)dt,

λk2 =

∫ Ts

0

ψ(t)ψ(t+ Ts − τ̄k)dt, (3.13)

where it is assumed that τ̄k = τk2 − τk1 ≥ 0. Furthermore, assume that the rectangular

shaping waveform is used, i.e., λk1 + λk2 = 1.

As can be seen in (3.11) and (3.12), the symbol-asynchronous channel at each relay

is converted to a multi-antenna multiple-access channel with memory and a correlated

noise sequence, [z1(i), z2(i)]T . Note that the asynchronous signals are added together

with different random delays at each relay and the transmitters do not have the delay
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information. Thus, no variation at the transmitter side of the synchronous compute-

and-forward scheme is considered. To remove the memory and provide a linear sum of

the transmitted vectors over a channel plus an additive white noise, a whitening filter

is used as follows. By rearranging the channel outputs in (3.11) and (3.12), and writing

the system model in a vector form as in [35], we get

ỹk = Γkx̃k + z̃k, (3.14)

where ỹk, x̃k, z̃k are 2n × 1 vectors and Γk is a 2n × 2n block diagonal matrix, which

are given by

ỹk = [yk1(1), yk2(1), yk1(2), · · · , yk1(n), yk2(n)]T ,

x̃k = [hk1x1(1), hk2x2(1), · · · , hk1x1(n), hk2x2(n)]T ,

z̃k = [zk1(1), zk2(1), zk1(2), · · · , zk1(n), zk2(n)]T ,

Γk =



1 λk1 0 · · · 0 0 0

λk1 1 λk2 0 · · · 0 0

0 λk2 1 λk1 0 · · · 0

...
. . .

...

0 0 · · · 0 λk2 1 λk1

0 0 0 · · · 0 λk1 1


. (3.15)

The noise vector is zero mean Gaussian with covariance matrix equal to Γk. In order

to whiten the noise at the output of the matched filters, the Cholesky factorization of

the covariance matrix is used as Γk = WT
k Wk in which Wk is an upper triangular

matrix [76]. Multiplying the vectors in (3.14) by the whitening filter W−T
k gives the
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equivalent system model with white unit variance noise as

ȳk = Wkx̃k + z̄k, (3.16)

where the new channel matrix is the upper triangular matrix resulted from the Cholesky

factorization. Using the definition of Cholesky factorization, it is shown in Appendix A.1

that there are only two non-zero entries at each row of Wk (except for the last row which

has one non-zero entry). The sequence of the entries on odd and even rows converge to

two different numbers as n goes to infinity. For our choice of shaping waveform, the limits

are
√
λk1 and

√
λk2 for odd and even rows, respectively. Moreover, it is discussed that as

far as the decoder of the compute-and-forward scheme with nested lattice codes is used

for the channel model in (3.16), one can replace the entries of the varying channel matrix

Wk with the convergence limits and hence obtain the following equivalent equation at

each relay:

ȳk1(i) =
√
λk1hk1x1(i) +

√
λk1hk2x2(i) + z̄k1(i), (3.17)

where z̄k1(i) is a zero mean unit variance noise vector.

Note that if we are able to change the general structure for the matched filter defined

in Section 3.2 and adapt it to the asynchronous delays, the above equations can be

obtained directly from a new matched filter output. In this manner, the synchronous

and the asynchronous parts of the received sequences are considered separately. For

example, for the first equation, one can define

y′k1(i) =

∫ (i+1)Ts+τk1

iTs+τk2

yk(t)ψ(t− iTs − τk1)dt, (3.18)
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and get the output as

y′k1(i) = λk1hk1x1(i) + λk1hk2x2(i) + z′k1(i), (3.19)

where the noise sequence has a variance equal to λk1. This procedure is depicted in Fig.

3.2 for the i-th section of the received signal at the k-th relay.

hkx i hkx i hkx i

hkx i hkx i hkx i

τk

τk

τk

Figure 3.2: The synchronous part of the received signal at the k-th relay.

3.3.1 Achievable Rates

The sensitivity of the computation rates (which relies on the structure of the applied

codes) are considered here. By using the aforementioned asynchronous model and the

rate regions in [15], the results for the synchronous and the asynchronous receiver struc-

tures are given in this part. Note that in comparison with the synchronous scheme, a

combination of matched filters output and a whitening filter is added to the asynchronous

relay structure. In fact, the filters are applied just as a part of the signaling scheme at

each relay to provide useful sequences for the decoder of compute-and-forward.

At first, we compute the achievable rates of the symbol-asynchronous compute-and-

60



3.3. SYMBOL-ASYNCHRONOUS COMPUTE-AND-FORWARD

forward with synchronous receiver structure (without the whitening filter). Consider

the matched filter outputs in (3.11) and (3.12) at the decoder input. Assume h1
k =

[hk1, λk1hk2]T as the channel gain vector for the signal part in (3.11) and similarly, h2
k =

[λk1hk1, hk2]T in (3.12). By considering another source of interference other than the

one from the non-integer part of the channels and computing the MMSE coefficient for

maximizing the rate for a given integer vector as in (3.9), the corresponding computation

rates can be obtained at each relay. Then, the best synchronous equation from (3.11) and

(3.12) is applied to the decoder of compute-and-forward to get the highest computation

rate at each relay. This result for two transmitters is summarized in the following

theorem:

Theorem 3.1. The symbol-asynchronous compute-and-forward with synchronous re-

ceiver structure achieves the computation rate

R(hk, ak,λk) = max[R1
k, R

2
k]. (3.20)

where, for m = 1, 2,

Rm
k =

[
1

2
log

((
‖ak‖2 − SNR(hmTk ak)

2

1 + SNR‖hmk ‖2 + SNR(λk2hkm)2

)−1
)]+

.

Now, consider the equalizer at each relay which was introduced in this section. A

synchronous equation is provided to the decoder and hence the equivalent channel output

in (3.17) is applied which is simply a noisy sum of the two faded signals. Therefore, the

computation rate for two transmitters is given by:

Theorem 3.2. The symbol-asynchronous compute-and-forward with the whitening filter

achieves the computation rate R′(hk, ak,λk) as[
1

2
log

((
‖ak‖2 − λk1SNR(hTk ak)

2

1 + λk1SNR‖hk‖2

)−1
)]+

. (3.21)
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Note that since only the synchronous part of the received signal is exploited, the

equivalent channel gains are reduced compared to the synchronous case. Thus, the

resulted computation rate is strictly less than the one for the synchronous system in

(3.8), but as it can be seen in (3.21), the gap vanishes as SNR increases.

Remark 3.2. The above results can be generalized to more than two transmitters with

different choices of shaping waveforms. The synchronous part and different combinations

of the asynchronous part of the received signal are provided to the decoder accordingly.

In the general form, the matched filter output for the synchronous part can be written

as

y′k1(i) =
M∑
m=1

αkmhkmxm(i) + z′k1(i), (3.22)

where αkm is related to the selected shaping waveforms at the transmitters and the

asynchronous delays at each relay.

3.3.2 Numerical Results

The symbol-asynchronous compute-and-forward is considered for the two-user multiple-

access channel. It is assumed that the transmitters do not have any information about

the channel or the computation rates which leads to an outage probability. For a given

outage probability, the achievable computation rates are computed for different SNRs.

The computation rates are maximized over the integer vectors. Moreover, it is assumed

that none of the integer coefficients are zero and the receiver always have a linear com-

bination of signals from both transmitters.

As it can be seen from (3.21), a larger relative delay results in less computation rate.

To lessen the effect of a large delay, a 1-bit feedback scheme is considered here in which
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the receiver asks one of the transmitters to send its data with one symbol delay if it

results in a higher computation rates. In this way, the system with close to one symbol

delay will be converted to an almost synchronous system. Note that for more than two

transmitters, different combinations of relative asynchronous delays can be examined

for the 1-bit feedback scenario to maximize the computation rate. The performance for

synchronous compute-and-forward and asynchronous compute-and-forward with differ-

ent receiver structures for an outage probability equal to 0.3 are depicted in Fig. 3.3.

It can be seen that with the synchronous receiver, the asynchronous interference results

in an interference-limited system. Moreover, by applying the whitening filter, one can

see the loss in the achievable rate of the asynchronous compute-and-forward compared

to the synchronous case. However, the resulting gap vanishes as the SNR increases.

Additional gains for the 1-bit feedback model is also noticeable.
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Figure 3.3: Outage rates of the symbol-asynchronous compute-and-forward maximized
over non-zero integer coefficients for an outage probability of 0.3.
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3.4 Frame-Asynchronous Compute-and-Forward

In the previous section, we considered an asynchronous network where delays are less

than a symbol interval. In order to study the impact of asynchronism with larger

delays on the lattice coding implementation of compute-and-forward, in this section,

we assume a basic asynchronous model where delays are arbitrary (finite) multiples of a

symbol interval. To be able to decode a synchronous sum of the transmitted codewords

on a frame-asynchronous network with fixed channel gains, we propose to use multi-

antenna receivers. Over a network with M single-antenna transmitters, we assume that

each receiver equipped with M antennas, equal to the number of transmitters. Multi-

antenna receivers in compute-and-forward relaying is studied in [51] for a synchronous

network where it is shown that one can rotate the channel coefficients toward integers

to reduce the impact of the interference from the non-integer parts of the channel on

the achievable rates. Here, we show that by using extra antennas at the receivers, in

addition to rotating the channel gains we can efficiently remove the asynchronous delays.

To be more specific, consider the frame-asynchronous system model in (3.6) for the

case of multi-antenna receivers. The received signal at receiver k at time i is specified

by

yk(i) = Hkxk(i) + zk(i), (3.23)

where Hk = [hk1,hk2, · · · ,hkM ] and hkm ∈ RM is the channel vector between the trans-

mitterm and the receiver k antennas, and xk(i) is the asynchronous vector of transmitted

symbols with different delays as

xk(i) = [x1(i− dk1), x2(i− dk2), · · · , xM(i− dkM)]T . (3.24)

Note that we assume that all antennas at the receiver obtain the symbols with the same

65



3.4. FRAME-ASYNCHRONOUS COMPUTE-AND-FORWARD

delay from a specific transmitter. We can also add cyclic prefix symbols (CPS) to the

beginning of each transmitted vectors with length equal to the maximum delay in the

system, D. In this case, regardless of the value of delays, each receiver can initiate the

decoding after D symbols and take the next n symbols for processing. Since the delays

are finite, the rate loss due to the adding CPS is negligible as the codeword length goes

to infinity. In this manner, the total n-block system equation is given by

ỹk = Gkx̃k + z̃k, (3.25)

where Gk is a block circulant Mn×Mn matrix generated from Hk based on the asyn-

chronous delays, x̃k is the sequence of transmitted symbols as

x̃k = [x1(1), x2(1), · · · , xM(1), · · · , x1(n), x2(n), · · · , xM(n)]T , (3.26)

and ỹk, z̃k are Mn × 1 vectors of received symbols and noise at different antennas

respectively which, by using (3.23), are defined as follows:

ỹk = [yTk (1),yTk (2), · · · ,yTk (n)]T ,

z̃k = [zTk (1), zTk (2), · · · , zTk (n)]T . (3.27)

Considering the above system model, the receivers are able to convert the asyn-

chronous channel with real coefficients to a synchronous channel with integer coefficients

by multiplying the matrix Bk before the decoding. In this manner, we have BkGk = Ak

where Ak = In
⊗

aTk and
⊗

is the kronecker product. Therefore, the resulted channel

output is the synchronous linear sum of the transmitted lattice points and can be applied

to the lattice decoder. However, although we are able to remove the non-integer parts of

the channel and the asynchronous delays simultaneously, a higher rate at finite SNR may

be achievable if we just remove the asynchronous delays and try to minimize the the sum
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of the noise and the non-integer interference. In other words, if we put Bk = QkG
−1
k ,

where Qk = In
⊗

qTk and qk is a M × 1 real vector, then for a given channel matrix

Gk and a desired integer vector ak, one can minimize the total noise plus interference

over the decoder multiplying matrix Bk (or bk since the structure of Bk is fixed for a

given delay vector dk). In this manner, the synchronous system equation after the filter

is given by

y′k =
M∑
m=1

qkmxm + z′k. (3.28)

Note that the additive noise z′k is now a self-correlated Gaussian noise with power equal

to ||bk||2, where bTk is a row of Bk with at most M2 nonzero elements in case of dis-

tinct delays, and covariance matrix BkB
T
k . Moreover, the density of the non-integer

interference term is upper bounded in [15] by the density of a white Gaussian vector

with variance SNR||qk − ak||2. Since the noise is independent of the signal, we can still

use the nearest lattice point in Euclidean distance at the decoder. Thus, it is shown

in Lemma A.3 that over the channel with colored noise, we can achieve the same rates

as the channel with white Gaussian noise at the same power. Therefore, the equivalent

noise variance at the decoder of compute-and-forward is

||bk||2 + SNR||qk − ak||2. (3.29)

Using this result, we have the following theorem for the achievable rates:

Theorem 3.3. Applying the above filter before decoding, the frame-asynchronous compute-

and-forward with M antennas at each receiver and no CSI at M transmitters achieves

the computation rate

R(Hk, ak,dk) = max
bk

[
1

2
log

(
SNR

||bk||2 + SNR||qk − ak||2

)]+

, (3.30)

and for given Hk, ak and dk, this rate is uniquely maximized by choosing bk as the
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solution to the equality constrained quadratic programming problem

min
b

(||b||2 + SNR||G1b− a||2)

s.t. G2b = 0, (3.31)

where G1 and G2 are specified by the channel matrix and asynchronous delays at receiver

k.

The proof is given in Appendix A.3.

To clarify the above expression, consider an example of two-user frame-asynchronous

MAC where the receiver is equipped with two antennas. Assume that the asynchronous

delays are d1 = 0 and d2 = 1. Thus, the symbols from the second transmitter is received

with one symbol delay with respect to the ones from the first transmitter. Consider the

channel matrix H in (3.23) with columns h1 = [h11, h21]T and h2 = [h12, h22]T . Applying

the aforementioned structure at the decoder, the first row of matrix B has first four

nonzero entries which can be defined by b = [b1, b2, b3, b4]T and the next rows are simply

the cyclic shift of b by two entries to the right. To obtain the desired vector q before

the decoder of compute-and-forward, there is a set of four equations which needed to be

satisfied:  h11b1 + h21b2 = q1

h12b3 + h22b4 = q2

,

 h11b3 + h21b4 = 0

h12b1 + h22b2 = 0
. (3.32)

Therefore, to uniquely minimize ||b||2 + SNR||q − a||2 over b ∈ R4 in (3.30), one can

use the above conditions and form the optimization problem in (3.31) with the matrices

G1 and G2 given by

G1 =

 h11 h21 0 0

0 0 h12 h22

 , G2 =

 0 0 h11 h21

h12 h22 0 0

 . (3.33)
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Note that with the synchronous receiver, the optimization is in fact an unconstrained

problem and the optimal solution will be simplified to bopt = ( 1
SNR

I + HTH)−1Ha in R2

as in synchronous MIMO compute-and-forward.

3.4.1 Numerical Results

The achievable rates for the frame-asynchronous compute-and-forward with a multiple-

antenna receiver is considered here. In Fig. 3.4 and Fig. 3.5, we compare the average

rate over the channel states for the synchronous and the frame-asynchronous case with

a two-antenna and a three-antenna receiver (two transmitters and three transmitters),

respectively. It can be seen that forcing the structure of the filter to remove the asyn-

chronism results in a gap in the achievable rates which becomes larger as the number of

users increases. Note that at high SNR values, the optimal solution results in removing

all the non-integer part of the channel. Therefore, the gap between the synchronous

and the asynchronous rates for a given number of users becomes constant as the SNR

increases.
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Figure 3.4: Average rate of the frame-asynchronous compute-and-forward with a two-
antenna receiver, integer vector a = [1, 1]T and delay vector d = [0, 1]T .
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Figure 3.5: Average rate of the frame-asynchronous compute-and-forward with a three-
antenna receiver, integer vector a = [1, 1, 1]T and delay vector d = [0, 1, 2]T .
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3.5 Asynchronous Application in Interference Align-

ment over X Networks

The X channel is a general interference network in which there is an independent message

from every transmitter to every receiver. Characterizing the capacity region of the

interference and the X channel is an important and challenging problem in information

theory. The problem of locating this region, even in a simple case of two-user Gaussian

interference channel, is still unsolved [40–42]. A fundamental measure to approximate

the capacity of wireless channels at high values of SNR is known as the degrees of freedom

which determines the capacity boundaries as the SNR increases. The the degrees of

freedom or the multiplexing gain is defined as the ratio of the capacity to the logarithm

of the SNR as SNR tends to infinity. Since it impacts the design of efficient methods of

interference management, investigating the DOF of distributed networks is an important

issue in wireless communications. Interference alignment is an intelligent way to manage

the interference at the receivers by restricting the undesired signals at some common

directions. It was first introduced in [43] wherein its capability in achieving the total

number of degrees of freedom of a class of two-user X channels was studied. It is shown

in [43] that in a two-user X channel withM antennas at each node, a total of b4M
3
c degrees

of freedom is achievable. This interesting result was then improved in [44] by employing

the idea of channel extensions to achieve the total 4M
3

degrees of freedom almost surely

over channels with constant coefficients. Interference alignment was then applied to the

K-user interference channel in [45] and for the M×N user X network in [46]. It is shown

in [46] that by using the symbol extension over the channel with varying coefficients,

the upper bound of the total number of degrees of freedom is achievable for the general

X network with single antenna nodes. In [77], for the K-user interference channel with

time-varying fading, it is shown that by pairing proper channels one can achieve at least

half the interference-free ergodic capacity at any SNR.
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However, the channel variation is a crucial assumption for the mentioned achievable

schemes. It is argued in [44] that in a single antenna two-user X channel, at least one link

must have the variations in time/frequency in order to perform the alignment task. Thus,

these schemes could not trivially be extended to channels with constant coefficients.

Interference alignment over a time-invariant two-user X channel with single antenna

nodes is addressed recently in [18] and [78] where the upper bound of 4
3

for the total

number of degrees of freedom was shown to be achieved. In [18], by using the properties

of real numbers and incorporating rational dimensions in the transmission, the authors

have shown that it is possible to perform an alignment scheme called real interference

alignment in the single dimensional systems. Also, [78] shows that with asymmetric

complex signaling, the upper bound of 4
3

is achievable for the complex Gaussian channel

with constant fading coefficients almost surely.

On the other hand, perfectly synchronized nodes is an important assumption in the

aforementioned alignment schemes. Mostly, it has been assumed that the nodes are

synchronous such that the received signals at each receiver are aligned with respect to

their symbols. However, due to the distributed nature of the X network, perfect syn-

chronization may not be feasible in many cases. In fact, asynchronism inherently exists

in distributed communication systems and the receivers obtain an asynchronous com-

bination of the transmitted signals. Interference alignment over asynchronous networks

based on propagation delays has been considered before. It was first proposed in [45] as

an example and then explored in [52] by proper node placement in a network with four

nodes to align the interference signals. In [50], a K-user interference channel is modeled

by a time indexed graph where the alignment task is associated with finding the maximal

independent set of the graph. A signaling scheme for the interference alignment over the

asynchronous K user interference channel was also proposed in [53] where it was shown

that the total degrees of freedom of K/2 is achievable.
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In this section, by exploiting the asynchronous delays, achievable schemes are inves-

tigated for the X network with constant channel coefficients. We consider an M × N

symbol-asynchronous X network with single antenna users and study the effect of the

asynchronism among the users on the total number of degrees of freedom of this network

and show that is the same as that of the corresponding synchronous network. Then,

by using the symbol asynchronism over the network with time-invariant channel coeffi-

cients, we achieve the upper bound for the total number of degrees of freedom. In fact,

asynchronous delays provide the variation required for the interference alignment over

the constant channel. The interference alignment scheme is implemented by using the

asynchronous delays in the received signals at each receiver which results in ISI among

the symbols from different transmitters and hence provides the channel variation re-

quired for the vector alignment. Moreover, the channel state information of the links

has no impact on the design of the alignment scheme. The relative delays among the

received signals at each receiver only need to be globally known to all nodes.

3.5.1 Asynchronous X Networks

Consider an M × N user X network with M transmitters and N receivers where each

node is equipped with a single antenna. Over the X network, there is a total MN

independent messages, one from every transmitter to every receiver. Considering the

distributed nature of the network and the effect of propagation delay, the received signals

at each receiver are not synchronous. In this section, we assume that the received signals

are frame-synchronous but not symbol-synchronous.

Using the symbol-asynchronous model, at each receiver, the transmitted signals are

aligned up to delays of length less than a symbol interval, Ts. To be more specific,

let τkm denote the delay of the received signal from the m-th transmitter at the k-th

receiver node. We assume 0 < τkm < Ts, k = 1, 2, . . . , N and m = 1, 2, . . . ,M . The
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delays are continuous-time random variables which depend on the propagation medium.

We assume that τkm’s are constant during the transmission of a frame. We define the

relative delay between the transmitted signal from the u-th and the m-th transmitters

at the k-th receiver as

τ [k]
u,m , τku − τkm, (3.34)

where k{1, 2, . . . , N} and u,m ∈ {1, 2, . . . ,M}. Since the asynchronous delays, τkm’s,

are continuous independent random variables spanned over a symbol interval, τ
[k]
u,m’s are

distinct with probability one. To perform the alignment task, the relative delays among

the received signals at each receiver need to be globally known to all nodes.

We assume that each transmitter uses a unit energy shaping waveform ψm(t), m =

1, 2, . . . ,M , to transmit its signal. Therefore, the transmitted signal from the m-th

transmitter is given by

xm(t) =
`−1∑
i=0

xm(i)ψm(t− iTs), (3.35)

where xm(i) is the transmitted symbol from the m-th transmitter at the i-th symbol

interval and ` is the length of the transmitted vector over the channel. The transmitted

signals are received asynchronously at each receiver node. Thus, the received signal at

the k-th receiver is modeled as

yk(t) =
M∑
m=1

hkmxm(t− τkm) + zk(t), k = 1, 2, . . . , N, (3.36)

where hkm is the channel coefficient between the m-th transmitter and the k-th receiver

and zk(t) is the noise signal at the k-th receiver node. It is assumed that the chan-

nel coefficients are non-zero finite random variables and they are constant during the

transmission of a codeword.

Assume that the average power at each transmitter is equal to ρ. Let Rkm(ρ), for

k ∈ {1, 2, . . . , N} and m ∈ {1, 2, . . . ,M}, be the transmission rate for the corresponding
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message from transmitter m to receiver k and C(ρ) be the capacity region of the X

network (i.e., the set of all achievable rates at this SNR). The region of degrees of

freedom, D, for the M × N user X network is defined as the set of all real positive

matrices [(dkm)] ∈ RM×N
+ such that ∀[(αkm)] ∈ RM×N

+ ,

∑
k∈{1,2,...,N},
m∈{1,2,...,M}

αkmdkm ≤ lim sup
ρ→∞

 sup
[(Rkm)](ρ)∈C(ρ)

1

log ρ

∑
k∈{1,2,...,N},
m∈{1,2,...,M}

αkmRkm(ρ)

 , (3.37)

where [(Rkm)](ρ) is an achievable rate-matrix [46]. Finally, the total number of degree

of freedom defined as

max
[(dkm)]∈D

∑
k∈{1,2,...,N},
m∈{1,2,...,M}

dkm. (3.38)

We assume that all transmitters use the same shaping waveform, ψ(t), that has a

time support equal to pTs, i.e., ψ(t) = 0,∀ t 6∈ [0, pTs]. At the m-th transmitter, a

codeword of length n, xm = [xm(0), xm(1), . . . , xm(n−1)]T , is supported by cyclic prefix

and cyclic suffix symbols (CPS) each of length p+1 such that the first and the last p+1

symbols of xm are repeated at the end and at the beginning of this vector, respectively.

Resulted vector xcpsm = [xm(n−p−1), xm(n−p), . . . , xm(n−1), xm(0), xm(1), . . . , xm(n−

1), xm(0), xm(1), . . . , xm(p)]T of length ` = n + 2(p + 1) is then transmitted over the

channel. Using the signal model in (3.35) and (3.36), the received signal at the k-th

receiver can be written as

yk(t) =
M∑
m=1

hkm

`−1∑
i=0

xcpsm (i)ψ(t− iTs − τkm) + zk(t), (3.39)

where xcpsm (i) is the i-th entry of the vector xcpsm .

This signal is then passed through a matched filter at each receiver. Without loss

of generality, we assume that the output of the matched filter at the k-th receiver is
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sampled at t = (i + 1)Ts + τk1, where i = 0, . . . , ` − 1. Note that unlike the relay

structure at the Section 3.3 where M matched filters were used, here, we just use one

matched filter at each receiver. Thus, we get

yk(i) =

∫ (i+p)Ts+τk1

iTs+τk1

yk(t)ψ
∗(t− iTs − τk1)dt

=
M∑
m=1

hkm

p∑
q=−p

γkm(q)xcpsm (i+ q) + zk(i), (3.40)

where xcpsm (q) = 0, ∀q < 0 and

γkm(q) =

∫ pTs

0

ψ(t− qTs + τ
[k]
1,m)ψ∗(t)dt,

zk(i) =

∫ (i+p)Ts+τk1

iTs+τk1

zk(t)ψ
∗(t− iTs − τk1)dt. (3.41)

Note that the shaping waveform has a length equal to p ≥ 1 symbol intervals. Therefore,

in each transmitted stream every symbol is interfered by (p − 1) previous and (p − 1)

future symbols of the same stream and also by 2p − 1 symbols of each of the other

streams.

By discarding CPS symbols at the output of the matched filter at each receiver, we

obtain

yk =
M∑
m=1

hkmΓkmxm + zk, k = 1, 2, . . . , N, (3.42)

where

xm = [xm(0), xm(1), . . . , xm(n− 1)]T , (3.43)

yk = [yk(p+ 1), yk(p+ 2), . . . , yk(n+ p)]T ,

zk = [zk(p+ 1), zk(p+ 2), . . . , zk(n+ p)]T ,

Matrix Γkm is the circulant convolution matrix of generator sequence γ̂km where γ̂km =
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[γkm(0), γkm(1), . . . , γkm(p), 0, . . . , 0, γkm(−p), . . . , γkm(−1)]T of length n and zk is a col-

ored noise vector. For all k,m, matrix Γkm is given in (3.44). It can simply be verified

that n should be large enough such that n ≥ 2p. Note that adding cyclic prefix and cyclic

suffix, makes the processed channel, hkmΓkm, circulant. In fact, by using the effect of

asynchronism among the users, the original quasi-static links with constant coefficients

hkmIN are converted into variable links with correlated coefficients over time as hkmΓkm.



γkm(0) · · · γkm(−p+ 1) γkm(−p) 0 . . . 0 γkm(p) γkm(p− 1) . . . γkm(1)

γkm(1) · · · · · · γkm(−p+ 1) γkm(−p) 0 . . . 0 γkm(p) . . . γkm(2)

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 · · · 0 γkm(p) · · · γkm(1) γkm(0) · · · γkm(−p)
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

γkm(−1) · · · γkm(−p) 0 · · · · · · 0 · · · γkm(p) · · · γkm(0)


.

(3.44)

Considering the eigenvalue decomposition of a circulant matrix, [79], we obtain

Γkm = UHΛkmU, (3.45)

where U is the discrete Fourier transform (DFT) matrix of dimension n given by

U(q, s) =
1√
n
e−j

2π(q−1)(s−1)
n , q, s = 1, 2, . . . , n, (3.46)

and Λkm is a diagonal matrix containing the elements of the DFT of the generator

sequence of Γkm. i.e., Λkm = diag{λkm(0), λkm(1), . . . , λkm(n− 1)}, where

λkm(i) =
n−1∑
q=0

γ̂km(q)e−j
2π
n
qi, i = 0, . . . , n− 1, (3.47)
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and γ̂km(q) is the q-th element of γ̂km. Using (3.45), we get

y′k =
M∑
m=1

hkmΛkmx′m + z′k, k = 1, 2, . . . , N, (3.48)

where y′k,x
′
m, z

′
k are the linear transformations of yk,xm, zk by the DFT matrix U, re-

spectively. We refer to the channel model in (3.48) as the transformed channel through-

out the paper.

It is shown in [53] that for a well-designed waveform, Λkm’s are diagonal matrices

with non-zero bounded diagonal elements. Therefore, one can interpret equation (3.48)

as a model of the received signal at the k-th receiver of a synchronous X network with

varying fading coefficients. Moreover, it is demonstrated that by using an appropriate

shaping waveform with sub-linear decaying rate in time, Λkm can be approximated as

follows

Λkm = Λ0E
(
τ̂

[k]
1,m

)
+ ε, (3.49)

where the approximation error, ε, is a bounded value and goes to zero as p increases,

τ̂
[k]
1,m =

τ
[k]
1,m

Ts
, E(τ̂

[k]
1,m) = diag{1, e−j

2π
n
τ̂
[k]
1,m , . . . , e−j

2π(n−1)
n

τ̂
[k]
1,m} and Λ0 is defined similar to

Λkm when τ̂
[k]
1,m = 0. In this case, the received signal at the k-th receiver can be simplified

as

y′k = Λ0

M∑
m=1

hkmE
(
τ̂

[k]
1,m

)
x′m + z′k, k = 1, 2, . . . , N. (3.50)

Employing this signaling scheme, in the next parts we perform the vector interference

alignment over X networks.

3.5.2 Degrees of Freedom and Interference Alignment

Consider the M×N user asynchronous X network with single antenna nodes. In order to

show that this network has the same total degrees of freedom as that of the corresponding
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synchronous network, we first argue that the total degrees of freedom of this channel is

upper bounded by MN
M+N−1

. Then, we present the interference alignment scheme which

employs the asynchronous delays among the users to achieve the total MN
M+N−1

degrees of

freedom of the network. Finally, the achievable scheme with finite channel extension is

considered for the M × 2 user network. In the asynchronous X network, the vectors are

transmitted over constant channels and received with random delays. Considering the

presented model in the previous part, at first, the model of the underlying asynchronous

network is converted into a synchronous network with varying fading coefficients and

then the interference alignment is performed. In fact, we apply the vector interference

alignment schemes from [46] on the transformed channel. However, note that in the

introduced asynchronous network model, the channel coefficients are correlated in a way

that the assumptions in [46] are no longer satisfied. Therefore, it is required to show

that the interference alignment is still applicable here. The results are summarized in

the following theorem:

Theorem 3.4. The total number of degrees of freedom for the M×N user asynchronous

X network with single antenna nodes is MN
M+N−1

.

The converse of Theorem 3.4 is proved here by considering the asynchronous X

network in the frequency domain. Assume that all transmitters use ψ(t) as the shaping

waveform with bandwidth W . At each receiver, by taking the Fourier transform of both

sides of equation (3.36), we get

Yk(f) =
M∑
m=1

hkme
−j2πfτkmXm(f) + Zk(f), k = 1, 2, . . . , N. (3.51)

Using equation (3.35) and Fourier transform of the shaping waveform Ψ(f) to compute
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Xm(f), the above relation is simplified to

Yk(f) =
M∑
m=1

hkmΨ(f)e−j2πfτkm
∑
i

xm(i)e−j2πfiTs + Zk(f)

=
M∑
m=1

Hkm(f)X ′m(f) + Zk(f), k = 1, 2, . . . , N, (3.52)

where X ′m(f) is the discrete time Fourier transform (DTFT) of the sequence transmitted

by the m-th transmitter and Hkm(f) is defined as follows:

Hkm(f) = hkmΨ(f)e−j2πfτkm .

Equation (3.52) represents a synchronous X network with varying channel coeffi-

cients, Hkm(f), in the frequency domain. Since ψ(t) has the bandwidth equal to W , the

corresponding channel has W degrees of freedom per second, each of them represents

a constant synchronous X network. Applying the upper bound for the total number of

degrees of freedom of the synchronous X network in [46], one can see that the total num-

ber of degrees of freedom of the asynchronous X network is upper bounded by MN
M+N−1

per orthogonal time and frequency dimension.

3.5.3 Achievable Scheme for the M ×N Network

In this part, the M ×N user asynchronous X network is considered. The coefficients in

the transformed channel model for the asynchronous case are highly correlated and we

need to show that the interference alignment is still feasible. The interference alignment

scheme achieves a total N(u+1)K+(M−1)NuK degrees of freedom over n = N(u+1)K+

(M − 1)uK symbol extensions on the transformed channel where K = (M − 1)(N − 1)

and u is an arbitrary positive integer. In fact, for every message in the first transmitter,

(u+ 1)K degrees of freedom and for every message in the other transmitters, uK degrees
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of freedom are achievable. By taking the supremum over all u and for negligible length

of CPS symbols, the total number of degrees of freedom is achieved arbitrary close to

the upper bound.

In order to simplify the model and apply the transformed channel model presented

in (3.48), an inverse discrete Fourier transform (IDFT) filter at each transmitter and a

DFT filter at each receiver are used. The transmitted signals can be written as

x′m =
N∑
k=1

Vkmxkm =


∑N

k=1

∑(u+1)K

i=1 xk1(i)vk1(i), m = 1∑N
k=1

∑uK

i=1 xkm(i)vkm(i), m 6= 1
(3.53)

where xk1 is the (u + 1)K × 1 vector of symbols for the k-th receiver and Vk1 is the

corresponding n × (u + 1)K matrix containing all directions as its columns. Similarly,

for m = 2, . . . ,M , xkm is a uK × 1 vector and Vkm is a n × uK matrix. Using the

transformed channel model, we can write the received signal at the k-th receiver as

y′
k

=
M∑
m=1

hkmΛkm

(
N∑
k=1

Vkmxkm

)
+ z′k, k = 1, 2, . . . , N, (3.54)

Note that the constant channel coefficients, hkm, just scale the vectors and do not have

any effect on the interference alignment scheme. Therefore, we neglect them for describ-

ing the achievable scheme.

To perform the interference alignment by beamforming at the transmitters and

zero-forcing at the receivers, the beamforming matrices, Vkm, are chosen such that

at each receiver all the interfering signals from transmitters 2, 3, . . . ,M, are aligned

to the interference space from the first transmitter. Therefore, the dimension of the

interference from the first transmitter, (N − 1)(u + 1)K , is the total interference di-

mension. Considering total dimension n, the available space for desired signal has

n− (N − 1)(u+ 1)K = (M − 1)uK + (u+ 1)K dimensions at each receiver.

82



3.5. ASYNCHRONOUS INTERFERENCE ALIGNMENT OVER X NETWORK

To choose the beamforming matrices, we write K = (M − 1)(N − 1) relations for

each receiver resulting in a total KN relations for the network. At the k-th receiver,

k = 1, 2, . . . , N , the K relations can be written as

span(ΛkmVrm) ⊂ span(Λk1Vr1), r 6= k, m = 2, 3, . . . ,M, (3.55)

where span(P) represents the vector space spanned by the columns of P. By these

choices of alignment equations, at the each receiver all the interferences are aligned to

the space of interference from the first transmitter as required. Note that since ΛkmVkm

is the desired signal space, it is not included in the above relations. Rearranging the

above relations at the k-th receiver, k = 1, 2, . . . , N , we get

span(ΛrmVkm) ⊂ span(Λr1Vk1), r 6= k, m = 2, 3, . . . ,M. (3.56)

To simplify the relations in (3.56), the following selection is used for the beamforming

matrices at the left-hand side of this equation.

Vkm = Vk2, k = 1, 2, . . . , N, m = 3, . . . ,M. (3.57)

By applying the above selections, equation (3.56) at the kth receiver, k = 1, 2, . . . , N ,

can be written as

span(TrmVk2) ⊂ span(Vk1), r 6= k, m = 2, 3, . . . ,M. (3.58)

where Trm’s are defined as

Trm , Λ−1
r1 Λrm.
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Using (3.49) from the system model, Tkm’s are generally expressed as

Tkm = diag
{

1, e−j
2π
n
τ̃km , . . . , e−j

2π(n−1)
n

τ̃km
}

= diag
{

1, φkm, . . . , φ
n−1
km

}
, (3.59)

where τ̃km = τ̂
[k]
1,m and φkm , e−j

2π
n
τ̃km for k = 1, 2, . . . , N and m = 2, . . . ,M .

To construct the resulted beamforming matrices for each receiver, Vk2 and Vk1, we

first generate a vector wk. Let τ̃k0 be a finite random variable drawn from a continuous

distribution. Vector wk has n× 1 dimension and it is selected as

wk = [1, φk0, · · · , φn−1
k0 ]T , (3.60)

where φk0 , e−j
2π
n
τ̃k0 . Using wk and applying the K relations for the k-th receiver in

(3.58), Vk2 and Vk1 are constructed by two sets of columns vectors which are generated

as following:

Vk2 ,


 ∏
m=2,3,...,M

r 6=k

Tαrm
rm

wk : αrm ∈ {1, 2, . . . , u}

 ,

Vk1 ,


 ∏
m=2,3,...,M

r 6=k

Tβrm
rm

wk : βrm ∈ {1, 2, . . . , u+ 1}

 . (3.61)

where k = 1, 2, . . . , N . From this construction, one can check that the alignment con-

ditions in (3.58) are satisfied. After selecting Vk2 and Vk1, the other beamforming

matrices, Vkm, m = 3, . . . ,M, are generated by using (3.57). To show that Vk2 and

Vk1 are full-rank matrices, we use the following Lemma:

Lemma 3.1. Let T = [τ1, τ2, . . . , τu]
T be a vector of length m in which the elements

are drawn independently from a continuous distribution and Φ = [φ1, φ2, . . . , φu]
T be the

84



3.5. ASYNCHRONOUS INTERFERENCE ALIGNMENT OVER X NETWORK

corresponding column vector where φk = e−j
2π
n
τk . Let z be a vector of length n with the

elements of the form zk =
∏

i
(φi)

qi where φi’s are entries of Φ, qi ∈ {0, 1, . . . , n − 1}

and n ∈ N. If all pairs with different elements of z (any two elements) have at least one

component, φk, with different exponent, qk, then all the elements of z are distinct with

probability one.

Proof. Writing the equality of two different elements of z, we get

(q1 − s1)τ1 + (q2 − s2)τ2 + . . . (qu − su)τu + in = 0,

where i ∈ Z and qk, sk are the corresponding exponents of the two elements. Having

at least one base with different exponent ensures that the equation in τk is not trivially

equivalent to zero. Moreover, by integer coefficients, (qk − sk), the probability that the

τk’s with continuous distributions are the roots of the equation is zero. Therefore, the

elements of z are distinct almost surely.

Using (3.59) and (3.60) for generating Vk2 and Vk1 in (3.61), one can see that

these matrices have a Vandermonde structure in which the k-th row is the (k − 1)-th

exponent of the elements of the vectors zk2 and zk1, respectively. For m = 2, 3, . . . ,M

and k = 1, 2, . . . , N, we get

zk2 = [. . . , φk0

∏
m
r 6=k

φαrmrm , . . .], αrm ∈ {1, 2, . . . , u},

zk1 = [. . . , φk0

∏
m
r 6=k

φβrmrm , . . .], βrm ∈ {1, 2, . . . , u+ 1}. (3.62)

Matrices Vk2 and Vk1 have full rank if the elements of the above vectors are distinct.

This condition is satisfied by construction. Therefore, by applying Lemma 3.1, it can be

shown that both matrices are full-rank.
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Finally, we need to show that the space spanned by all the desired signals and

the interferences at each receiver has full rank. In other words, the desired and the

interference direction vectors at each receiver should be linearly independent. Consider

the first receiver. The desired signals are received along the column vectors of S1 as

in (3.63) where Λ1mV1m is the vector space spanned by the desired signal from the

m-th transmitter. V1m,m = 3, . . . ,M have been replaced by V12 as required in (3.57).

Moreover, the beamforming matrices are designed such that all the interferences are

along those from the first transmitter. Therefore, the interference matrix can be written

as I1 in (3.64) where Λ11Vr1, r = 2, . . . , N, refers to the one of N − 1 undesired signals

from the first transmitter intended for the other receivers.

S1 = [Λ11V11 Λ12V12 . . .Λ1MV12], (3.63)

I1 = [Λ11V21 Λ11V31 . . .Λ11VN1]. (3.64)

Thus, the vector space spanned by the desired and the interfering signals at the first

receiver can be written as T1 = [S1 I1]. Multiplying by Λ11, we now show that the rank

of the following n× n matrix is equal to n with probability one.

T̃1 = [V11 T12V12 . . .T1MV12 V21 V31 . . .VN1],

where T1m = Λ−1
11 Λ1m, m = 2, 3, . . . ,M, is defined in (3.59). Rewriting the above

matrix by replacing Vk2 and Vk1 vectors, we get an n × n vandermonde matrix where

the k-th row is the (k − 1)-th exponent of the elements of the vector z given as follows

z = [z11 φ12z12 . . . φ1Mz12 z21 z31 . . . zN1],

where zk1 and z12 are defined in (3.62) and each of them has distinct elements inside.

Note that zk1 has a unique base of φk0, k = 1, 2, . . . , N, by construction. Furthermore,
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there is a unique base, φ1m, for every φ1mz12,m = 2, 3, . . . ,M, term in the vector.

Therefore, one can see that all the elements in z have at least one different base with

different exponent and according to Lemma 1 they are all distinct. Considering z with

length n as the second row in the n×n Vandermonde matrix T̃1, we conclude that it has

full rank almost surely. The same argument can be made for the vector space spanned

at the other receivers.

This scheme achieves a total N(u + 1)K + (M − 1)NuK degrees of freedom over

N(u+1)K+(M−1)uK+2(p+1) symbols on the actual channel. By taking the supremum

over all u and for negligible length of CPS symbols, 2(p+1), the total number of degrees

of freedom is achieved arbitrary close to the upper bound. Together with the converse

result, this completes the proof of Theorem 1.

3.5.4 Achievable Scheme for the M × 2 Network

While the total number of degrees of freedom of the X network is asymptotically

achieved, in the special case when N = 2, the total 2M
M+1

can be achieved with a fi-

nite channel extension [46]. To limit the rate loss due to adding the CPS symbols, we

combine Q > 1 supersymbols each of length M + 1 and add the CPS symbols to the

resulted vector of length Q(M + 1). Thus, the actual transmitted frame has a length of

` = Q(M + 1) + 2(p + 1). In this manner, for each of the 2M messages, one degrees of

freedom is achieved over every M + 1 channel use on the transformed channel model.

Therefore, for this transmission scheme the total number of degrees of freedom is equal

to Q(2M)
Q(M+1)+2(p+1)

. For large values of Q, one can achieve the total degrees of freedom

arbitrary close to 2M
M+1

.

At each transmitter, beamforming is performed over every M+1 symbol extension of

the transformed channel. Then, Q supersymbols are combined together to construct the

vector of length Q(M + 1) which is the input to the transformed channel. The resulting
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vector is then passed through the IDFT filter and supported by the CPS symbols to

form the transmitted vector. At each receiver, the received vector is passed through

the matched filter and then the CPS symbols are discarded. Finally, the DFT filter

is used to provide the required output vector. Fig. 3.6 shows the block diagram for

the interference alignment scheme over the 2 × 2 asynchronous X network in which Q

represents the procedure for constructing the beamforming vectors and the combined

vector of length Q(M + 1) for the transmitting stream.

Consider the channel with the extended symbols for q = 0, 1, . . . , Q− 1, as

y′
k
(q) =

M∑
m=1

hkm∆km(q)x′m(q) + z′k(q), k = 1, 2, (3.65)

where ∆km(q), x′m(q) and y′
k
(q) are the q-th M + 1 symbol extension of the transformed

channel and the corresponding input and output vectors, shown as follows, respectively.

∆km(q) , diag{λkm(q(M + 1) + 1), λkm(q(M + 1) + 2), . . . , λkm((q + 1)(M + 1))},

x′m(q) , [x′m(q(M + 1) + 1), x′m(q(M + 1) + 2), . . . , x′m((q + 1)(M + 1))]T ,

y′
k
(q) , [y′k(q(M + 1) + 1), y′k(q(M + 1) + 2), . . . , y′k((q + 1)(M + 1))]T . (3.66)

In the M × 2 user X network, the interference alignment scheme uses two directions

at every transmitter node to transmit the two independent streams x1m and x2m in M+1

symbol extensions, resulting in the total 2M
M+1

degrees of freedom. Over one extended

channel use, the input vector at the m-th transmitter can be written as

x′m = x1mv1m + x2mv2m, (3.67)

where v1m and v2m are the transmission directions at each transmitter for the first and
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second receiver, respectively. Replacing the input vector in the channel model, we obtain

y′
k

=
M∑
m=1

∆km(x1mv1m + x2mv2m) + z′k, k = 1, 2.

Then, at the receivers side, each receiver detects its M desired signals by ZF all the

interference vectors which are intended for the other receiver. To be able to recover M

desired vectors out of the total M + 1 available direction by using ZF, the set of all

interfering vectors should be squeezed to a single dimension. Consider the first receiver,

we choose the beamforming vectors v2m such that the resulting interference vectors at

this receiver, ∆1mv2m, align at the same dimension. Similarly, at the second receiver,

all the interference vectors ∆2mv1m should occupy only one dimension. These two

conditions can be written as

At Receiver1: ∆1mv2m = ∆11v21,

At Receiver2: ∆2mv1m = ∆21v11, (3.68)

where m = 2, . . . ,M .

We need to show that from the total M + 1 available dimensions at each receiver, all

the interference signals aligned in a single dimension and the desired signals span the

other M dimensions. In other words, the desired vectors should be linearly independent

of the interference vector. For this sake, the beamforming vectors should be chosen

properly such that the following (M + 1)× (M + 1) matrices have linearly independent

column vectors almost surely.

At Receiver1: T1 = [∆11v11 ∆12v12 . . .∆1Mv1M ∆11v21] ,

At Receiver2: T2 = [∆21v21 ∆22v22 . . .∆2Mv2M ∆21v11] , (3.69)

where ∆11v21 and ∆21v11 are the common interference directions at the first and the
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second receiver, respectively.

Let τ̂0 and τ̂1 be two independent continuous random variables and n = Q(M + 1).

The two vectors v11 and v21 are selected as follows

v11 = [1, φ0, · · · , φM0 ]T ,

v21 = [1, φ1, · · · , φM1 ]T , (3.70)

where φ0 , e−j
2π
n
τ̂0 and φ1 , e−j

2π
n
τ̂1 . Applying these selection and then using (3.68)

to choose the other beamforming vectors, we now show that the matrices in (3.69) have

full ranks.

Consider the first receiver. Equivalently, by multiplying T1 by the full-rank matrix

∆−1
11 and replacing v1m, m = 2, 3, . . . ,M , by the corresponding values from (3.68), we

show that the following matrix, T̃1, is full rank.

T̃1 = [v11 F2v11 . . .FMv11 v21] , (3.71)

where the product channel matrix Fm is defined as

Fm ,∆−1
11 ∆1m∆−1

2m∆21, m = 2, . . . ,M.

By using well-designed shaping waveforms, (3.49) is applicable with a negligible approx-

imation error. Therefore, the diagonal product matrices can be written as

Fm = diag{1, e−j
2π
n
τ̂m , . . . , e−j

2π(M)
n

τ̂m}, (3.72)

where τ̂m , τ̂
[1]
1,m − τ̂

[2]
1,m, m = 2, . . . ,M and τ̂

[k]
1,m ,

τ
[k]
1,m

Ts
, k = 1, 2. Note that τ̂m’s are

continuous independent random variables for all m = 2, 3, . . . ,M . Replacing (3.70) and

(3.72) in (3.71) yields
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T̃1 =



1 1 1 · · · 1 1

φ0 φ2 φ3 · · · φM φ1

φ2
0 φ2

2 φ2
3 · · · φ2

M φ2
1

...
...

...
. . .

...
...

φM0 φM2 φM3 · · · φMM φM1


, (3.73)

where φm , e−j
2π
n

(τ̂m+τ̂0), m = 2, . . . ,M, and φ0, φ1 are defined in (3.70). Since τ̂m’s

are drawn independently from a continuous distribution, φm’s are distinct almost surely.

Therefore, the Vandermonde matrix T̃1 has full rank of M + 1 with probability one.

Similarly, one can show that at the second receiver the corresponding matrix, T2

in (3.69), has full rank almost surely. Therefore, the proposed asynchronous scheme

achieves 2M
M+1

degrees of freedom over the transformed channel, or equivalently, Q(2M)
Q(M+1)+2(p+1)

degrees of freedom over the actual channel. For large values of Q, the total degrees of

freedom can be achieved arbitrary close to 2M
M+1

.

Remark 3.3. The random nature of the asynchronous delays provides the feasibility

of interference alignment. Having independent random delays is necessary to apply

vector interference alignment in this work. However, inserting artificial delays at the

transmitters will not have the same effect because it is the delay differences at each

receiver that makes matrix T̃k full rank.

3.6 Conclusion

In this chapter, the compute-and-forward relaying strategy over asynchronous networks

was considered. By applying the nested lattice coder and decoder over a network with

distributed nodes, the challenge arising from time asynchronism was addressed. With
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Figure 3.6: Block diagram of the interference alignment scheme over the 2 × 2 asyn-
chronous X network

symbol-asynchronous network model, matched filters followed by a whitening filter were

used at each relay as part of a signaling scheme to extract appropriate sequences for

the decoder of compute-and-forward. Over a frame-asynchronous network, multiple

antennas at the each relay were used to remove the asynchronous delays along with

rotating the channel coefficients. Using a linear filter with structure related to the

delays, the computation rate at each receiver is maximized at any SNR. At last, we

extended the symbol-asynchronous network model to the M ×N X network with single

antenna users over time-invariant channel. By taking advantage of the asynchronous

delays in the received signals, achievable schemes were studied. It was shown that the

asynchronism causes ISI among received symbols from different transmitters and hence

provides correlated channel variations which were proved to be sufficient to implement

the vector interference alignment in the network with single antenna nodes.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

Communication strategies based on lattice codes at the transmitters and/or lattice de-

coder at the receivers provide solution to various multiuser problems in wireless commu-

nications. Over correlated fading channels, adaptive lattice reduction aided detection

methods were studied in the first part. Two adaptive methods which improve the com-

plexity of lattice reduction algorithms were introduced and analyzed. The proposed

methods can be used in conjunction with any multi-antenna scenario that requires lat-

tice reduction, such as MIMO decoders and broadcast precoders to reduce the com-

putational complexity. A reduced complexity list decoder for soft-output detection in

MIMO systems was then introduced over the slow fading channels. Using the adaptive

hard-output estimated point as the center of the sphere in the list decoder, an adaptive

list was constructed. It was shown that one can save significantly in computational

complexity if a shifted list generated from a past realization of the correlated channel

is used. Employing an appropriate value for the performance/complexity tradeoff, the

soft-output channel detector with different channel codes was used to investigate the

performance of the adaptive list construction.
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Considering asynchronous nodes in a wireless network, the compute-and-forward re-

laying strategy was studied in the second part. By applying the nested lattice coder

and decoder over a network with distributed nodes, the challenge arising from the time

asynchronism was addressed. With symbol-asynchronous network model, matched fil-

ters followed by a whitening filter were used at each relay as part of a signaling scheme to

extract appropriate sequences for the decoder of compute-and-forward. Over a frame-

asynchronous network, multiple antennas at the each relay were used to remove the

asynchronous delays along with rotating the channel coefficients. Using a linear filter

with structure related to the delays, the computation rate at each receiver was maxi-

mized at any SNR. At the end, by extending the application of asynchronous model,

we considered a general symbol-asynchronous X network with single antenna nodes over

time-invariant channels. It was shown that the upper bound for the total number of

degrees of freedom of the asynchronous network is the same as the corresponding syn-

chronous network. Furthermore, taking advantage of the asynchronous delays in the

received signals, achievable schemes were studied. It was shown that the asynchronism

provides correlated channel variations which were proved to be sufficient to implement

the vector interference alignment over the constant X network.

In summary, in this thesis, communication schemes with lattice codes and lattice

decoders were considered over the wireless channels. Exploiting the channel properties,

new algorithms were designed to save in computational complexity and provide feasible

communication methods over asynchronous networks.
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4.2 Future Works

Adaptive Lattice Reduction

The proposed adaptive lattice reduction technique in this thesis is a general framework

that can be used with any lattice reduction algorithm and in any lattice reduction aided

MIMO scenario. However, one can select a reduction algorithm and also adjust the

algorithm steps according to the temporal correlation of the fading channel. Moreover,

the impact of spatial correlation in the MIMO channel coefficients can be considered in

the detection model. For example, unlike the LLL reduction which performs a reduc-

tion step on two adjacent vectors in an ordered manner, the Seyen lattice reduction [80]

considers all basis vectors simultaneously and chooses the vectors that reduce its reduc-

tion measure. Therefore, using such an algorithm on a correlated channel matrix may

provide more saving in the computational complexity.

Lattice Interference Alignment and Decoding Techniques at the Receiver

The use of lattice codes in interference and X networks will allow us to benefit from

the structured interference created by these kinds of codes. In fact, the discrete space

structure can be exploited to transmit the desired signals over the interference-free di-

mensions. Considering the compute-and-forward strategy which uses lattice codes at

any SNRs, one can design and investigate lattice based interference alignment methods

with regard to practical assumptions on the channel such as synchronization, availabil-

ity of channel state information at the transmitters and the scalability of the achieved

performance with the SNR. Additionally, the lattice alignment schemes should take into

account the use of practical lattice decoders. Considering the nature of the interference

network, each receiver is interested in only one of the received signals, all the others are

unwanted. Therefore, there is no need to decode all the received signals from interfering
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transmitters individually. It is more efficient to just decode the sum of the interfer-

ers, especially if they are designed to align along certain dimensions. In this way, the

challenging part of the alignment method can be converted into designing an efficient

decoder that separates the sum of interferers from the desired signal.

Structured Codes in Downlink Systems

Compute-and-forward offers protecting against noise at the same time with possibility of

exploiting the interference for cooperation in the network. Utilizing the algebraic struc-

ture in the codes and designing an invertible precoder, compute-and-forward can be used

in downlink systems at any SNR. Note that the main idea in the compute-and-forward

is to decode a linear combination of the transmitted signals. To make this strategy

useful over broadcast channels, one need to exchange the routine at the transmitters

and receivers. Moreover, exploiting the powerful structures in compute-and-forward,

opportunistic broadcast strategies can be investigated in which good performances are

provided with limited (integer) feedback properties. On the other hand, considering the

distributed structures in compute-and-forward model and utilizing the asynchronous

schemes, one can investigate it a potential candidate for multi-cell broadcast channels.
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Appendix A

Some Proofs of Chapter 3

A.1 Cholesky factorization in the symbol-asynchronous

compute-and-forward

Consider the n× n covariance matrix Γ = (γj,i) at one of the relays which is a positive

definite matrix (the index k is dropped for simplicity). The corresponding Cholesky

decomposition is in the form of Γ = WTW, where W is an upper triangular matrix.

Assuming the covariance matrix in (3.15) for two transmitters and the choice of shaping

waveform in this work, the entries of the upper triangular matrix are given according to

the the following lemma:

Lemma A.1. There are only two non-zero entries in each row of matrix Γ which for

n→∞ converge to
√
λ1 and

√
λ2 at the odd and the even rows, respectively (except for

the last row which has one nonzero entry). Specifically, for s ∈ N, we obtain

lim
j→∞

wj,j = lim
j→∞

wj,j+1 =


√
λ1, if j = 2s− 1,

√
λ2, if j = 2s.

Proof. Following the definition of the Cholesky decomposition, the matrix W = (wq,j)
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satisfies

γj,i =
i∑

q=1

wq,jwq,i, 1 ≤ i ≤ j ≤ n.

It can be shown that there are only two non-zero entries at the main and upper diagonal.

Simplifying the above relation results in

γj,j = w2
j,j + w2

j−1,j = 1,

γj,j+1 = wj,j+1.wj,j = λ1, j = 2s− 1,

γj,j+1 = wj,j+1.wj,j = λ2, j = 2s.

Solving for wj,j and wj,j+1 provides continued fractions, where for λ1 = 1 − λ2 they

converge to λ1/
√
λ1 and

√
λ1 at the odd rows and to λ2/

√
λ2 and

√
λ2 at the even rows,

respectively.

Note that for the general system model with more than two transmitters and different

shaping waveforms, one can check that the continued fractions in the upper-triangular

matrix convergence to different values depending on the system parameters.

Finally, by considering the equations in the odd rows, it remains to be shown that

the varying channel coefficients can be replaced by the convergence limit λ1, and the

equivalent system equation can be written as in (3.17). Assume δm’s are the difference

vectors between the varying coefficients and the limit. The convergence of the continued

fractions results in ‖δm‖2 = o(n). Therefore, as n → ∞ the variance of the additional

noise goes to zero and the system equation can be shown with the constant channel

coefficients. This argument can be summarized as follows:

Lemma A.2. As n→∞, the odd rows of W result in the following system equation:

ȳ(i) =
√
λ1h1x1(i) +

√
λ1h2x2(i) + z̄(i),

where z̄ has unit variance.

98
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A.2 Closest point decoding in the frame-asynchronous

compute-and-forward

Considering the receiver filter in Section 3.4, we use the following lemma to show that

in the achievable computation rates, the noise power is the sum of the self-correlated

additive Gaussian noise and the non-integer part of the equation at the output of the

filter.

Lemma A.3. For the n-dimensional nested lattice codes over the frame-asynchronous

compute-and-forward scheme, the decoding error probability approaches zero as n goes

to infinity if the rate is below the computation rates of the equivalent channel with white

Gaussian noise.

Proof. Consider the ensemble of lattices resulted from Construction A as in [12] with

the closest point decoding. The decoding error probability Pk at receiver k can be upper

bounded as

Pk ≤ Pr(z′k /∈ Vk), (A.1)

where Vk is the fundamental Voronoi region of the fine lattice and z′k is the total noise

at the output of the filter with variance given in (3.29). For white Gaussian noise, it is

shown in [15] that the probability of error in (A.1) goes to zero as n tends to infinity.

Moreover, it can be verified that Pk only depends on the norm of the noise. Following

in the footsteps of [81], we need to show that the error probability is monotonically

nondecreasing with the length of the noise (in a specific direction). In other word, for a

positive δ, if for some lattice point λi 6= 0 we have ‖z′k−λi‖ ≤ ‖z′k‖ then ‖(1+δ)z′k−λi‖ ≤

99



A.2. CLOSEST POINT DECODING IN THE FRAME-ASYNCHRONISM

(1 + δ)‖z′k‖. Using the triangular inequality we obtain

‖(1 + δ)z′k − λi‖ ≤ ‖z′k − λi‖+ ‖δz′k‖

≤ ‖z′k‖+ ‖δz′k‖

= (1 + δ)‖z′k‖.

Therefore, the error probability can be smaller only when the noise vector become

shorter. In this case, proving that the error probability can be arbitrary small for

white Gaussian noise with variance N is sufficient to show that it is small for any noise

with variance less than or equal to N .
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A.3 Proof of theorem 3.3

Considering the receiver filter in Section 3.4, to maximize the computation rate at re-

ceiver k at any SNR, the equivalent noise power ||bk||2 + SNR||qk − ak||2 needs to be

minimized. From the structure of the filter, we have an equality constrained quadratic

programming problem which gives the optimal solution. For simplicity, we drop the

index k here. Depending on the number of distinct integer delays, there is a set of equa-

tions that needs to be satisfied in order to remove the asynchronism before decoding a

linear sum of the transmitted vectors. The total number of equations is equal to d̃M

where d̃ is the number of distinct delays, from which M equations form the matrix G1

in the objective function and the remaining generate G2 as the conditions. Therefore,

the optimization problem is given by

min
b

(||b||2 + SNR||G1b− a||2)

s.t. G2b = 0, (A.2)

where b ∈ Rd̃M . Using the standard quadratic form, the above problem can be written

as

min
b

(
1

2
bTCb + eTb + c)

s.t. G2b = 0 (A.3)

where the associated parameters are given by

C = 2(I + SNRGT
1 G1),

eT = −2SNRaTG1,

c = SNRaTa. (A.4)

101



A.3. PROOF OF THEOREM 3.3

The solution to the above equality constrained quadratic programming problem is given

by the Lagrange multiplier method as C GT
2

G2 0

 bopt

λopt

 =

 −e

0

 . (A.5)

where bopt is the optimal solution and λopt is the set of associated Lagrange multipliers

[82].

In order to have a unique solution to the above problem, the matrix of coefficients in

(A.5) needs to be nonsingular. Let Z be the matrix whose columns span Ker(G2), i.e.,

G2Z = 0. It can be verified that if G2 has full row rank and ZTCZ is positive definite,

then the matrix of coefficients is invertible and hence, there exists a unique solution to the

above equality constrained quadratic problem. Considering the asynchronous channel

with random channel coefficients, G1 and G2 have full row rank with probability one.

Moreover, from the definition of C in (A.4) and the fact that Z is the kernel of G2

with full column rank, it is easy to show that uTZTCZu > 0 for all nonzero vector

u ∈ R(d̃−1)M and hence, matrix ZTCZ is positive definite which yields the desired result.

�
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