
The Discontinuous Galerkin Method on
Cartesian Grids with Embedded

Geometries: Spectrum Analysis and
Implementation for Euler Equations

by

Ruibin Qin

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Mathematics

Waterloo, Ontario, Canada, 2012

c© Ruibin Qin 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we analyze theoretical properties of the discontinuous Galerkin method (DGM)
and propose novel approaches to implementation with the aim to increase its efficiency. First, we
derive explicit expressions for the eigenvalues (spectrum) of the discontinuous Galerkin spatial
discretization applied to the linear advection equation. We show that the eigenvalues are related
to the subdiagonal [p/p+ 1] Padé approximation of e−z when the p-th degree basis functions are
used. We derive an upper bound on the eigenvalue with the largest magnitude as (p + 1)(p + 2).
We demonstrate that this bound is not tight and prove that the asymptotic growth rate of the
spectral radius is slower than quadratic in p. We also analyze the behavior of the spectrum near
the imaginary axis to demonstrate that the spectral curves approach the imaginary axis although
there are no purely imaginary eigenvalues.

Then, we extend the analysis to nonuniform meshes where both the size of elements and the
composition of the mesh influence the spectrum. We show that the spectrum depends on the
ratio of the size of the largest to the smallest cell as well as the number of cells of different types.
We find that the spectrum grows linearly as a function of the proportion of small cells present
in the mesh when the size of small cells is greater than some critical value. When the smallest
cells are smaller than this critical value, the corresponding eigenvalues lie outside of the main
spectral curve. We provide an easily computable estimate of the upper bound on the spectrum.
Numerical examples on nonuniform meshes are presented to show the improvement on the time
step restriction. In particular, this result can be used to improve the time step restriction on
Cartesian grids.

Finally, we present a discontinuous Galerkin method for solutions of the Euler equations on
Cartesian grids with embedded geometries. Cartesian grids are an alternative to a more popular
unstructured triangular/tetrahedral approach. Their advantage is a simplified mesh generation
and a computational efficiency resulting from the structure of a Cartesian grid. However, cutting
an embedded geometry out of the grid creates cut cells, which are difficult to deal with for two
reasons. One is the restrictive CFL number and the other is the integration on irregularly shaped
cells. Both of these issues are more involved for the DGM than for finite volume methods,
which most Cartesian grid techniques have been developed for. We use explicit time integration
employing cell merging to avoid restrictively small time steps. We provide an algorithm for
splitting complex cells into triangles and use standard quadrature rules on these for numerical
integration. To avoid the loss of accuracy due to straight sided grids, we employ the curvature
boundary conditions. We show that the proposed method is robust and high-order accurate.

iii

Acknowledgements

I would like to acknowledge my supervisor Lilia Krivodonova for her patience and support.
She patiently helped to improve my writing, and provided valuable guidance and discussion in
solving problems. I would not complete this thesis without her help.

I would also like to thank my colleagues for reading and providing helpful comments on the
draft. Special thanks are due to Noel Chalmers, Dale Connor and Martin Fuhry. Thanks are also
due to Cong Wang for his efforts on implementing the mesh generator.

I would like to acknowledge the examining committee, Hans De Sterck, Michael Waite,
Fue-Sang Lien and Sigal Gottlieb for reviewing this thesis. Their various insights are much
appreciated.

Finally, I would like to express my appreciation to my parents. Their encouragement and
love supported me during the years I was studying in Waterloo.

iv

Dedication

To my parents

v

Table of Contents

List of Tables viii

List of Figures ix

1 Background 1

1.1 Introduction . 1

1.2 Conservation laws . 2

1.3 DGM for one-dimensional scalar problems . 3

1.4 DGM for multi-dimensional problems . 7

2 Spectrum Analysis of the DGM on Uniform Grids 14

2.1 Introduction . 14

2.2 Derivation of the characteristic polynomial of L 16

2.3 Padé approximants . 20

2.4 Padé approximants and DG spatial discretization 22

2.5 Spectrum of the DG discretization . 29

2.6 Padé approximants and the dispersion relation 40

3 Spectrum of the DGM on Nonuniform Grids 42

3.1 Eigenvalues of L on nonuniform meshes . 42

3.1.1 Spectral curves . 44

vi

3.1.2 Mesh refinement by a factor m less than Mcr 47

3.1.3 Mesh refinement by a factor m greater than Mcr 49

3.1.4 Mesh with cells of arbitrary sizes . 54

3.1.5 Pseudospectra . 55

3.2 Numerical tests . 61

3.2.1 One dimensional linear advection equation 61

3.2.2 Burgers’ equation . 64

3.2.3 Two-dimensional problems . 66

4 DGM on Cartesian Grids with Embedded Geometries 69

4.1 Introduction . 69

4.2 Mesh generation and description . 71

4.3 Cut cell merging . 74

4.4 Solid wall boundary conditions . 76

4.5 Volume integration . 78

4.5.1 Polygon splitting . 79

4.5.2 Basis functions on cut cells . 80

4.6 Numerical examples . 82

4.6.1 Supersonic vortex . 82

4.6.2 Flow around a cylinder . 85

4.6.3 Flow around NACA0012 airfoil . 86

5 Conclusion and future work 95

References 97

vii

List of Tables

1.1 Butcher tableau for examples with s = 2, 3. 10

2.1 Part of the Padé table of ez [4]. 21

2.2 Polynomials Qn(z) and Rn(−z) defined in (2.32) 23

2.3 Real eigenvalues of L on a two cell grid. 35

3.1 Poles of fp+1(z) for p = 1, 2, 3, 4. 46

3.2 Values of Mcr for p = 1, 2, 3, 4. 47

3.3 Condition number of the largest eigenvalue of L on N = 200 meshes. k is the
number of small cells. 60

3.4 CFL number on meshes having a few small cells, m > Mcr. 63

3.5 Time restriction with varying mesh composition. 63

4.1 L1 errors in density and rates of convergence for the supersonic vortex. 83

4.2 L1 errors in pressure and rates of convergence for the supersonic vortex. 83

4.3 L1 errors in density and rates of convergence for the supersonic vortex using the
reflecting boundary conditions. 84

4.4 L1 errors in pressure and rates of convergence for the supersonic vortex using
reflecting boundary conditions. 84

4.5 Average L1 errors in density on cut cells only and rates of convergence for the
supersonic vortex example. 85

4.6 Average L1 errors on cut cells and rates of convergence for the linear problem. . . 85

4.7 L1 errors of entropy and rates of convergence for flow around cylinder. 86

viii

List of Figures

2.1 Eigenvectors of L with N = 20, p = 1, and k = 4 (left) and k = 17 (right). Each
point in plots correspond to an entry in an eigenvector. The two points connected
by a line show the first two entries of ṽ. 20

2.2 Eigenvalues of L for p = 1, 2, 3, 4, 5, 6 with N = 20. The inner curve corresponds
to p = 1 and the outer curve corresponds to p = 6. The right figure is a zoom of
the left one. 30

2.3 Illustration of | fn(z)| = 1 approaching the imaginary axis. For a randomly chosen
point ẑ = −2 + 10i, we can find | f5(ẑ)| > 1, so | f5(z)| = 1 passes through the right
of this point ẑ. 32

2.4 Absolute value of the negative real roots on a two cell grid, the upper bound
n(n + 1) and the lower bound 1.5n1.75 as a function of n = p + 1. 36

2.5 Absolute value of the negative real roots on a two cell grid and two bounds for
large values of n. 39

2.6 Comparison of e−z with | fp+1(z)| for p = 1, 2, 3. 40

3.1 Spectrum of the DG discretization plotted as a curve (3.6) for p = 1, 2, 3, 4, from
left to right, from top to bottom. 45

3.2 Left: isolines of | f2(z)| = 1, 10, 102, 103 (from the outer to the inner curve); plus
signs denote two poles. Right: surface plots of | f2(z)|, z = x + iy, log scale. 46

3.3 Spectral curves Γp (inner) and mΓp (outer). Dots denote solution of (3.9). p = 1,
m = 2. 48

3.4 Left: Eigenvalues of L for meshes consisting of 100 cells with 0, 20, 40, 60, 80,
and 100 half-size cells and p = 1. The inner curve corresponds to the mesh with
no half-size cells. Right: Largest eigenvalues by magnitude (vertical axis) versus
the number of half-size cells, k, in a N = 100 cell mesh (horizontal axis); dots
denote the eigenvalues and the solid line denotes z = 6[1 + k/N]. 49

ix

3.5 Plot of function g(m, α), p = 1. 50

3.6 Largest eigenvalues by magnitude (vertical axis) versus the number of half-size
cells, k, in a 50-cell mesh with p = 2 (left) and p = 3 (right). Dots denote the
eigenvalues and solid line denotes z = z?[1 + k/N]. z? = 11.84 with p = 2 and
z? ≈ 19.16 with p = 3 [38]. 50

3.7 Spectrum of L on a 100 cell mesh with 99 cells of size ∆x and one cell of size
∆x
5 . p = 1, 2, 3, 4, left to right, top to bottom. 51

3.8 Spectrum of L on a 100 cell mesh with 96 cells of size ∆x and four cells of sizes
∆x/4, ∆x/6, ∆x/8, and ∆x/10 with p = 1. Circles denote exact eigenvalues, plus
sizes denote approximations. 52

3.9 Left: The first cell in the N = 50 mesh has size ∆x
3 and the rest are of size ∆x.

Right: The first 5 cells in the N = 50 mesh have size ∆x
3 and the rest are of size

∆x. p = 1. 53

3.10 A half of the cells in the N = 50 mesh have size ∆x
3 and the other are of size ∆x. . 53

3.11 Eigenvalues and a bound given by (3.16) with p = 3, m j are random numbers
between 1 and 2.48. Dots denote the eigenvalues, plus signs denote the estimate. 55

3.12 Eigenvalues and a computed bound with p = 1. Dots denote the eigenvalues,
plus signs denote the estimate given by (3.16), and circles denote the estimate
in the directions of the poles given by (3.17). Left: The first 10 cells out of 100
cells have size ∆x

3 . Right: A mesh consists of 50 cells of random sizes ∆x j. 56

3.13 Lines denote pseudospectra corresponding to ε = 10−1, 10−2, . . . , 10−12, p = 1,
N = 50. Dots denote the eigenvalues. Meshes consists of cells of sizes ∆x and
∆x/m with one ∆x/m-sized cell (left) and five ∆x/m-sized cells. m = 2 (top row)
and m = 5 (bottom row). 57

3.14 Spectrum (dots) and pseudospectra (lines) corresponding to ε = 10−1, 10−2, . . . , 10−8.
Meshes consists ten ∆x and ten ∆x/m-sized cells. m = 2 (top row) and m = 5
(bottom row), interlaced cell sizes (left column) and cells arranged in blocks
according to size (right column). 58

3.15 Spectrum (dots) and pseudospectra (lines) corresponding to ε = 10−1, 10−2, . . . , 10−12.
Meshes consists of cells of sizes ∆x and ∆x/m with twenty ∆x/m cells. m = 2
(top row) and m = 5 (bottom row), N = 60 (left column) and N = 200 (right
column). 59

3.16 Numerical solutions for Example 3.2.1 at time T = 100 with p = 1, N = 101.
The left one is using ∆t = 0.537∆x

3 , the right one is using ∆t = 0.538∆x
3 62

x

3.17 Numerical solutions of Burgers’ equation with p = 1 at time T = 3, the left plots
are computed with ∆t = 0.5∆x

3 and the right ones with ∆t = 0.667∆x
3 . Top plots:

no limiter; bottom plots: with minmod limiter. 65

3.18 Left: A Cartesian grid with refinement. Right: Numerical solution at final time
10 using the time step given by (3.24). 67

3.19 Left: A Cartesian grid around a circular cylinder. Right: Zoom near the surface
of the cylinder. 68

4.1 Simplest cases of cut cells. The dashed lines indicate the part of the cell outside
the computational domain. 73

4.2 More complicated cut cells. The dashed lines indicate the part of the cell lying
outside the computational domain. 73

4.3 Illustration of the direction of merging, plots on the left indicate unacceptable
merging direction, and plots on the right show the acceptable merging direction. . 75

4.4 Badly shaped merged cell ABCGHD where the bounding box (shown as a dashed
line) overlaps the neighboring cell. 76

4.5 Illustration of curvature boundary conditions. 77

4.6 Splitting of triangle ∆Vi−1ViVi+1. 80

4.7 Division of a cut cell into triangles. 81

4.8 Division of a cut cell into triangles. 81

4.9 Cartesian grids used for the supersonic vortex example (after small cut cell merging. 88

4.10 Body-fitted grid for the supersonic vortex example. 89

4.11 Error in density with p = 1 for the supersonic vortex problem on a Cartesian
grid (left) and on a triangular mesh (right). Darker regions indicates where the
pointwise error belongs to 80-100% interval of the maximum absolute error. . . . 90

4.12 Left: Mesh around a cylinder containing 712 elements. Right: zoom of the same
mesh near the surface. 90

4.13 Isolines of the Mach number near the surface on the meshes with 176, 712, 2828
elements from top to bottom, and with p = 1 (left) and p = 2 (right). 91

4.14 Total pressure loss coefficient on the surface of the cylinder, N is the number of
elements and p = 1. 92

xi

4.15 Top: part of the mesh around NACA0012 airfoil. Bottom: mesh near the tail. . . 93

4.16 Isolines of the pressure (left) and Mach number (right) near the surface of the
airfoil with p = 1. 94

4.17 Isolines of the entropy near the surface of the airfoil. 94

xii

Chapter 1

Background

1.1 Introduction

The discontinuous Galerkin method (DGM) has become a popular approach to numerical so-
lution of hyperbolic conservation laws in the last twenty years. Such equations are used in
modeling of compressible flows [47], electromagnetics [53], acoustics [26], and other problems
involving wave propagation. The method has many attractive properties, including the poten-
tial for achieving arbitrary high-order accuracy. The DGM has excellent parallel efficiency and
is suitable for handling complicated geometries. This method can also easily handle adaptive
strategies since it does not require conforming meshes. However, it requires evaluation of in-
tegrals over elemental volumes and surfaces and its CFL condition depends on the order of
approximation. These make it more expensive than finite volume and finite difference schemes.
In this thesis, we analyze the theoretical properties of the method and propose novel approaches
to implementation with the aim to increase its efficiency.

We start with analysis of the spectrum of the DGM. In particular, we derive an explicit for-
mula for the eigenvalues of the DG spatial discretization operator for one dimensional linear
advection equation. These are important for two reasons. Firstly, it is interesting from a theoreti-
cal point of view, as it helps us to understand the restriction on the time step with the increase in
the order of spatial approximation. Secondly, it can be used to relax this restriction as we show in
[7, 39]. We show that the eigenvalues are related to the subdiagonal [p/p+1] Padé approximants
of e−z when p-th degree basis functions are used. We derive an upper bound on the eigenvalue
with the largest magnitude as (p + 1)(p + 2). We demonstrate that this bound is not tight, and
prove that the asymptotic growth rate of the spectral radius is slower than quadratic in p. We
also analyze the behavior of the spectrum near the imaginary axis to demonstrate that the spec-

1

tral curves approach the imaginary axis as p increases, although there are no purely imaginary
eigenvalues.

Cartesian grids, in practice, often contain cells of different sizes, which is a result of mesh
refinement and the presence of irregular cells. On nonuniform meshes, the global CFL restriction
is scaled according to the size of the smallest cell, which can be very inefficient [11]. More
sophisticated approaches group cells of similar sizes and advance each group with appropriate
locally defined fractional time steps [36, 17, 18]. This reduces the total number of times the DG
spatial approximation needs to be evaluated which leads to computational savings. Numerical
tests indicate that the restriction can be relaxed in a mesh containing a low number of small cells.
This motivates us to look at the spectrum of the DG spatial discretization on nonuniform meshes.
In chapter 3, we follow the derivations of chapter 2 and find that the eigenvalues also depend on
the subdiagonal Padé approximants of e−z. We show that not only the order of the approximation
but also the structure of the mesh affect the distribution of eigenvalues. We find that presence of
half-size cells in a mesh does not cause the spectrum to grow twice larger; instead, the spectrum
grows approximately linearly depending on the proportion of half-size cells. We also find that
presence of a few tiny cells in a mesh results in the eigenvalues of the largest magnitude to be
scaled according to the size of the smallest cell size. In both cases, the CFL restriction could be
relaxed.

In chapter 4, we seek a practical technique for solution of two dimensional problems. Carte-
sian grid methods can provide considerable computational savings for computationally intensive
schemes like the DGM. Cartesian mesh generation is also simplified compared to the body fit-
ted meshes. However, small cut cells may appear near the boundary of embedded geometries.
Analysis on nonuniform meshes reveals that the extremely small element still restricts the stable
time step. Thus, we develop an algorithm to eliminate small cut cells by merging them with their
neighbors. Beside the sizes of cut cells, the irregular shapes of cut cells also introduce difficulties
to the volume integrals. We provide an algorithm to split cut cells into triangles and use standard
quadrature rules on these for numerical integration [45].

1.2 Conservation laws

Hyperbolic systems of conservation laws are time-dependent systems of partial differential equa-
tions. A system of conservation laws can be written in a general form as follows

∂tu(~x, t) + div~F(u(~x, t)) = 0. (1.1)

2

Here, the variables with a superimposed arrow denote vectors in Rd, where d = 1, 2, 3 is the di-
mension of the space. The variable in bold type denote vectors in Rm, where m is the number of
equations in the system. Then, u is an m-dimensional vector of conserved quantities or state vari-
ables. ~F is an m×d matrix called the flux matrix, which allows us to determine the rate of flow of
each state variable at (~x, t). div is a vector valued divergence operator, div = [div, div, . . . , div]T .
Thus, the ith equation of this system is

∂tui + div ~Fi(u) = 0,

where ~Fi(u) is the ith row of the flux matrix ~F. If we write the flux matrix as ~F = [F1, F2, . . . , Fd],
where Fi, i = 1, . . . , d are the columns of the flux matrix, then system (1.1) is hyperbolic when

the matrix A B
d∑

i=1

αi
DFi

Dx
has only real eigenvalues and is diagonalizable for any α1, . . . , αd ∈ R.

The two-dimensional Euler equations describing compressible, inviscid flows are an example
of a system of hyperbolic conservation laws. In this case, u = [ρ, ρvx, ρvy, E]T , ~F = [ρ~v, ρvx~v +
p~ix, ρvy~v + p~iy,~v(E + p)]T , and the system can be written as

∂t

ρ
ρvx

ρvy

E

 + div

ρvx ρvy

ρv2
x + p ρvxvy

ρvxvy ρv2
y + p

vx(E + p) vy(E + p)

 = 0. (1.2)

Here, ρ is the density, ~v = (vx, vy) is the velocity with vx and vy being the components of the
velocity vector in x and y direction respectively, ~ix is the unit vector in the x-direction and~iy is
the unit vector in the y-direction. E is the total internal energy and p is the pressure. System
(1.2) has four equations and five unknowns. One more equation is needed to close this system.
An equation of state, which connects pressure, density and energy, serves this purpose. For the
ideal gas, it has the form

p = (γ − 1)
[
E − ρ

||~v||2

2

]
, (1.3)

where γ is the heat capacity ratio. For air, we take γ = 1.4.

1.3 DGM for one-dimensional scalar problems

First, we derive the DGM for one-dimensional scalar problems as a simple introduction to the
method. A general formulation for multidimensional systems is given in the next section.

3

Let us consider the equation
∂tu + ∂x f (u) = 0 (1.4)

on the interval [a, b] with the initial condition u(x, 0) = u0(x) and periodic boundary conditions.

The interval [a, b] is divided into N subintervals [x j−1, x j], j = 1, 2, . . . ,N, where a = x0 <
x1 < · · · < xN = b and ∆x j = x j − x j−1. On each interval [x j−1, x j], equation (1.4) is multiplied
by a test function v(x) ∈ H1(x j−1, x j), and integrated on this interval to yield∫ x j

x j−1

utvdx +
∫ x j

x j−1

f (u)xvdx = 0. (1.5)

Then, using integration by parts, we obtain∫ x j

x j−1

utvdx + f (u)v
∣∣∣x j
x j−1 −

∫ x j

x j−1

f (u)vxdx = 0. (1.6)

Now, we use ξ = 2
∆x j

(x − x j−1+x j

2) to map the interval [x j−1, x j] to the canonical element [−1, 1].
Changing the variable x in (1.6) gives

∆x j

2

∫ 1

−1
utvdξ + f (u)v

∣∣∣1
−1 −

∫ 1

−1
f (u)vξdξ = 0. (1.7)

Notice that we use u(ξ, t) in (1.7) to denote the function u(x(ξ), t).

The exact solution u(ξ, t) is approximated on element j by a polynomial of degree up to p,
and can be written as

u(ξ, t) ≈ U j =

p∑
k=0

c jk(t)ϕk(ξ), (1.8)

where {ϕk(ξ)} are the basis functions in the finite dimensional polynomial space. We use the
Legendre polynomials as a basis for one dimensional problems. The Legendre polynomials are
given by [1]

Pk(ξ) =
1

2kk!
dk

dξk (ξ2 − 1)k, k = 0, 1, (1.9)

They form an orthogonal set on [−1, 1] and satisfy∫ 1

−1
Pk(ξ)Pi(ξ)dξ =

2
2k + 1

δki. (1.10)

4

With the normalization (1.10), the Legendre polynomials have the following properties

Pk(1) = 1, Pk(−1) = (−1)k. (1.11)

Here are some examples of the Legendre polynomials

P0(ξ) = 1,

P1(ξ) = ξ,

P2(ξ) =
3
2
ξ2 −

1
2
,

P3(ξ) =
5
2
ξ3 −

3
2
ξ.

Substituting (1.8) into (1.7) gives

∆x j

2
d
dt

∫ 1

−1

p∑
k=0

c jkPkPidξ + Fn(U j)Pi

∣∣∣1
−1 −

∫ 1

−1
f (U j)P′idξ = 0, i = 0, 1, . . . , p. (1.12)

Using the orthogonal property of Legendre polynomials (1.10) and normalization (1.11), we
obtain

∆x j

2i + 1
d
dt

c ji + Fn(U j)

∣∣∣∣∣∣
ξ=1

− (−1)iFn(U j)

∣∣∣∣∣∣∣
ξ=−1

−

∫ 1

−1
f (U j)P′idξ = 0. (1.13)

Notice that in (1.12) and (1.13) we use Fn to denote the numerical flux at the interfaces. This is
due to the discontinuity of approximate solutions at the interfaces, e.g. at x = x j−1, U j−1(1, t) and
U j(−1, t) might take different values. Thus, a numerical flux function resolving the ambiguity is
needed. For example, the local Lax-Friedrichs flux that is easy to compute and works well for
relatively simple problems is given by

Fn(U j−1,U j) =
1
2

[f (U j−1(1)) + f (U j(−1)) − λmax(U j(−1) − U j−1(1))], (1.14)

where λmax is the maximum absolute value of f ′(u), for u varying between U j−1(1) and U j(−1).
Here time t is omitted since U j−1(1) and U j(−1) are taken at the same time t. When f ′ is constant,
(1.14) is equivalent to the upwind flux

Fn(U j−1,U j) =
{

f (U j−1(1)), f ′ > 0
f (U j(−1)), f ′ < 0. (1.15)

5

The integral
∫ 1

−1
f (U j)P′idξ in (1.13) is calculated using a numerical quadrature rule. For one

dimensional problems, this can be done using a Gauss-Legendre quadrature∫ 1

−1
f (ξ)dξ =

n∑
i=1

wif(ξi), (1.16)

which is exact for polynomials of degree not higher than 2n − 1. Some low order rules are listed
below:

n = 1,
∫ 1

−1
f (ξ)dξ = 2f(0);

n = 2,
∫ 1

−1
f (ξ)dξ = f

− √3
3

 + f
 √3

3

 ;

n = 3,
∫ 1

−1
f (ξ)dξ =

5
9

f

−√
3
5

 + 8
9

f(0) +
5
9

f

√3
5

 .
Higher order quadratures can be found in [1]. For p-th order approximation, the quadrature rule
is chosen to be exact for polynomials of degree at least 2p for nonlinear problems, and 2p − 1
for linear problems.

Moving the numerical flux terms and the volume integral to the righthand side, (1.13) can be
written as

d
dt

c(t) = Lh(c, t), (1.17)

where c is the vector of the degrees of freedom, which consists of c ji, j = 1, 2, . . . ,N, i =
0, 1, . . . , p.

Equation (1.17) is a system of ODEs that can be solved by an explicit or implicit ODE
solver. We employ explicit Runge-Kutta schemes to advance (1.17) in time. An advantage
of using an explicit scheme is that computations can be performed element-wise, i.e. do not
require construction of a global matrix and solution of a large linear algebra problem. Also,
explicit schemes are easier to implement than implicit schemes. Usually, the p-th order DG
approximation is coupled with a p + 1-th order Runge-Kutta scheme. The time step is chosen to
satisfy the CFL condition

∆t 6 min
j

∆x j

(2p + 1)λ j
, (1.18)

where λ is the absolute value of the wave speed f ′(u) [11].

The initial condition u(x(ξ), 0) = u0(x(ξ)) is projected onto the basis functions on element j

6

by the L2 projection∫ 1

−1
u0(x(ξ))Pi(ξ)dξ =

∫ 1

−1

p∑
k=0

c jk(ξ)Pk(ξ)Pi(ξ)dξ, i = 0, 1, . . . , p. (1.19)

Using the orthogonal property of the basis functions (1.10), we can compute the initial solution
coefficients as

c ji(0) =
2i + 1

2

∫ 1

−1
u0(x(ξ))Pi(ξ)dξ, i = 0, 1, . . . , p. (1.20)

In our test problems, we use periodic boundary conditions. To implement these, a ghost cell is
created before the first and after the last cell. In each stage of the computation, solutions on the
ghost cell next to the first cell are updated using the solutions on the last cell, and similarly to
the other ghost cell. When other boundary conditions are used, numerical flux at the boundaries
needs to be adjusted using the specified boundary conditions. Limiters are needed when the
solution has discontinuities.

1.4 DGM for multi-dimensional problems

In the previous section, we described the DGM applied to a one-dimensional scalar problem.
Now, we will extend this method to multi-dimensional system of equations. In order to construct
a discontinuous Galerkin method, the computational domain Ω is divided into a collection of
elements

Ω =

Nh⋃
j=1

Ω j.

Then, a Galerkin problem on an element Ω j is constructed by multiplying (1.1) by a test function
v ∈ H1(Ω j), integrating the result on Ω j, and using the Divergence theorem to obtain∫

Ω j

v∂tudτ −
∫
Ω j

~F(u) · gradvdτ +
∫
∂Ω j

vFndσ = 0, (1.21)

where ∂Ω j is the boundary of Ω j, Fn = ~F(u) · ~n, and ~n is the outward facing normal vector.
Several issues must be resolved before the above form can be used as a numerical method.

Basis functions
In the two-dimensional case, we use coordinate variables (x, y) to describe a point in the

physical space and (ξ, η) in the computational space. Triangular elements are usually mapped

7

onto a canonical triangle Ω0 = {(ξ, η)|0 6 ξ, η 6 1 and ξ + η 6 1}. The mapping between Ω j and
Ω0 is given by

ξ =

det

 1 x y
1 x1 y1

1 x3 y3

det

 1 x2 y2

1 x1 y1

1 x3 y3

, η =

det

 1 x y
1 x1 y1

1 x2 y2

det

 1 x3 y3

1 x1 y1

1 x2 y2

, (1.22)

where (xi, yi), i = 1, 2, 3 are the coordinates of the vertices of the triangle Ω j. We use this
mapping on triangular cut cells in Cartesian grids. Rectangular elements are usually mapped
onto a unit square Ω0 = {(ξ, η)| − 1 6 ξ, η 6 1} by a simple linear mapping.

Without the requirement of continuity, there is a great flexibility in the choice of basis func-
tions ϕk, k = 0, 1, . . . ,Np. A convenient choice is to make them orthogonal in L2(Ω0), which
will produce a diagonal mass matrix. Here the mass matrix refers to M = (

∫
Ω0
ϕiϕkdτ), i, k =

0, 1, . . . ,Np, which is introduced by the first term in (1.21). The diagonal mass matrix can sig-
nificantly simplify computations since it can be easily inverted and does not need memory space
to store.

On the canonical square [−1, 1] × [−1, 1], the tensor product of Legendre polynomials forms
an orthogonal basis,

{Pi(ξ)Pk(η)|i, k = 0, 1, . . . , p, (ξ, η) ∈ [−1, 1] × [−1, 1]},

where Pk(ξ), k = 0, 1, . . . are the Legendre polynomials (1.9). The tensor product basis is a
convenient choice since integration over Ω0 can be replaced by two sequential one-dimensional
integrals. Hence, a tensor product of one-dimensional quadrature rules can be used. However,
the tensor product basis is not optimal in terms of the number of basis functions for a given
order of approximation and not orthogonal on non-rectangular elements. Indeed, the number of
functions in a monomial basis 1, x, y, x2, xy, y2, . . . , yp is (p + 1)(p + 2)/2, while there are (p+1)2

functions in the tensor product basis.

The Gram-Schmidt orthogonalization provides us with a method to construct an orthogonal
set of polynomials on elements of arbitrary shape. Given a set of basis functions M = {mi, i =
1, 2, . . . ,Np} of degree up to p, we can form an orthogonal basis Ψ = {ψi}

Np

i=1 in L2(Ω j) as

ψi =
mi −

∑i−1
k=1(mi, ψk)ψk√(

mi,mi −
∑i−1

k=1(mi, ψk)ψk

) , i = 1, 2, . . . ,Np, (1.23)

8

where (f , g) is the inner product
∫
Ω j

f gdx on Ω j and the summations are zero when their upper
limit is less than their lower limit. This approach can be used to construct an orthogonal basis
on each cut cell, but we do not employ it. We will discuss basis functions on cut cells in Section
4.5.2.

Quadrature rules
The integrals in (1.21) need to be evaluated by numerical quadrature rules. Similar to one-

dimensional cases, quadrature rules for the volume integrals should be exact for polynomials of
degree 2p if the approximation and test functions are of degree p. The boundary integrals should
be evaluated using quadrature rules that are exact for polynomials of degree 2p + 1 in multi-
dimensional space [11]. On rectangular elements, we use the tensor product of one-dimensional
quadrature rules as we discussed above. For triangular elements, we use the quadrature rules
described in [20]. However, these quadrature rules can not be directly applied to irregular ele-
ments, e.g. cut cells in Cartesian grids. We will propose a technique to overcome this difficulty
in Chapter 4.

Numerical flux
For linear problems, we use the upwind numerical flux similarly to (1.15). For nonlinear

problems, we use the Roe’s flux [51, 32].

Time integration
After evaluating the numerical flux, computing integrals using a quadrature rule and inverting

the mass matrix, equation (1.21) can be rewritten in an ODE form (1.17). Notice that the basis
functions are discontinuous, the mass matrix is block-diagonal and the blocks can be easily
inverted. If a local orthogonal basis is chosen, the mass matrix is diagonal.

The equation (1.17) is solved using an ODE solver. To preserve stability of the scheme, we
use the strong stability preserving (SSP) explicit Runge-Kutta time discretization [49]. Let {tn}Mn=0
be a partition of [0,T], where T is the final time, and ∆tn = tn+1 − tn, n = 0, . . . ,M − 1. The time
stepping algorithm is given by:

• Initialize c0 by projecting the initial condition u0(x) onto the basis functions {ϕi(x)} on cell
Ω j using the L2 projection (1.19).

• For n = 0, . . . ,M − 1 compute cn+1 as follows:

1. Set K1 = Lh(tn, cn);

9

1. For i = 2, . . . , s compute the intermediate stages

Ki = Lh(cn + ∆tn

i−1∑
l=1

bilKl, tn + ai∆tn); (1.24)

2. Update cn+1 = cn + ∆tn(d1K1 + · · · + dsKs).

We use the second and third order Runge-Kutta time discretizations listed in the Butcher tableau
(Table 1.1) for the piecewise linear and piecewise quadratic approximations respectively.

0
a2 b21

a3 b31 b32
...

...
...

as bs1 bs2 · · · bs(s−1)

d1 d2 · · · ds−1 ds

0
1 1

0.5 0.5

0
0.5 0.5
1 −1 2

1
6

4
6

1
6

Table 1.1: Butcher tableau for examples with s = 2, 3.

The size of a stable time step depends on the order of a discontinuous Galerkin approximation
and the stability region of the chosen time integration scheme. For p = 1, 2, 3 and an s stage s
order Runge-Kutta method (s = 2, 3), the time step is given by (1.18). When solving nonlinear
problems or using an adaptive scheme, the time step needs to be recalculated after each iteration
as the wave speed might change.

Slope limiting
All linear numerical schemes of order higher than one can become unstable [24], so a pro-

cedure to stabilize the solution and remove spurious oscillations is needed. Such a procedure is

10

nonlinear even for linear problems. One approach to stabilization is to use limiters, which we
describe below.

In one dimension, a linear approximation can be written as

U j(x) = c j
(x − x j+1/2)
∆x j/2

+ ū j, (1.25)

where x j+1/2 is the middle point of interval [x j, x j+1], ∆x j = x j+1 − x j, ū j is the mean value of
U j(x) on the same interval and c j is the slope. The limited slope clim

j is determined as

clim
j = minmod(c j, ū j+1 − ū j, ū j − ū j−1), (1.26)

where the function minmod is defined by

minmod(a1, a2, . . . , am) =
{

s mini |ai|, if s = sign(a1) = · · · = sign(am),
0, otherwise. (1.27)

In a rectangular element [xi, xi+1] × [y j, y j+1], a linear approximating function can be written as

U(x, y, t) = c̄(t) + c1x(t)ϕi(x) + c1y(t)ψ j(y), (1.28)

where
ϕi(x) =

x − xi+1/2

∆xi/2
, ψ j(y) =

y − y j+1/2

∆y j/2
, (1.29)

and
∆xi = xi+1 − xi, ∆y j = y j+1 − y j.

The limiting is performed on the ’slope’ c1x and c1y in (1.28), using the differences of the means.
For a scalar equation, c1x will be limited by

minmod(c1x, c̄i+1, j − c̄i, j, c̄i, j − c̄i−1, j). (1.30)

Similarly, c1y is replaced by minmod(c1y, c̄i, j+1 − c̄i, j, c̄i, j − c̄i, j−1).

For a system of equations, the limiting is performed in the local characteristic variables. For
example, the vector c1x in element (i, j) is limited as follows:

1. Compute the matrix R such that

R−1∂F1(ūi j)
∂u

R = Λ,

11

where Λ is a diagonal matrix containing the eigenvalues of the Jacobian and the Jacobian
in x-direction (∂F1(ūi j))/(∂u) is evaluated at the mean ūi j in the element (i, j).

2. Transform c1x, c̄i+1, j− c̄i, j and c̄i, j− c̄i−1, j to the characteristic fields by left-multiplying them
by R−1.

3. Apply the scalar limiter (1.27) to each of the components of the transformed vectors.

4. Transform the result back to the original space by left-multiplying by R.

Limiting for higher orders of approximation can be performed using the moment limiter [35].

Interpolation Error
The accuracy of the scheme is influenced by a number of factors, such as the formal order

of approximation, smoothness of the solution and, for multidimensional problems, the quality
of the mesh. Thin or distorted elements are usually detrimental for the quality of the numerical
solution. This is an important issue as Cartesian grids with embedded geometries might produce
such thin cut cells. We list here two important theoretical results related to interpolation of an
arbitrary function u by a piecewise polynomial U on a given mesh [22].

Theorem 1. Let Ω be a polygonal domain that has been discretized into a set of triangles
Ω j, j = 1, 2, . . . ,N. Let ∆x and α denote the largest element edge and smallest angle in the
mesh respectively. Let U interpolate u such that no error results when u is any polynomial of
degree p or less. Then, there exists a constant C > 0, independent of u ∈ H p+1 and the mesh,
such that

|u − U |q 6
Chp+1−q

(sinα)q |u|p+1, ∀u ∈ H p+1(Ω), q = 0, 1. (1.31)

A similar result applies to rectangles.

Theorem 2. Let the rectangular domain Ω be discretized into a mesh of rectangular elements
Ω j, j = 1, 2, . . . ,N. Let ∆x and β denote the largest element edge and smallest edge ratio in the
mesh, respectively. Let U interpolate u such that no error results when u is any polynomial of
degree p or less. Then, there exists a constant C > 0, independent of u ∈ H p+1 and the mesh,
such that

|u − U |q 6
Chp+1−q

βq |u|p+1, ∀u ∈ H p+1(Ω), q = 0, 1. (1.32)

These two theorems mean that the error between numerical solution and the exact solution
has an upper bound depending on the quality of a mesh no matter which numerical method

12

we use. It can be shown that the upper bound can be achieved for certain types of u. Thus,
reducing upper bounds of error should make the solution more accurate. We conclude that a
mesh containing thin triangles or thin rectangles might result in a less accurate solution than one
obtained on a mesh of better quality as small α in (1.31) or small β in (1.32) will result in a higher
upper bound. We further address this issue in Chapter 4.

13

Chapter 2

Spectrum Analysis of the DGM on
Uniform Grids

2.1 Introduction

In this chapter we derive explicit expressions for the eigenvalues (spectrum) of the semi-discrete
discontinuous Galerkin method applied to the one-dimensional linear advection equation. Recall
from Section 1.3 the DG spatial discretization results in a linear system of ODEs

d
dt

c =
a
∆x

Lc (2.1)

for (p+1)N degrees of freedom c on an N element uniform mesh with p-th degree approximation
in space. Here, a is the wave speed and ∆x is the cell size. We show that for a discretization
with the upwind flux (1.15 and periodic boundary conditions, the eigenvalues of L are given
by fp+1(λ) = exp(2πi

N j), j = 0, 1, . . . ,N − 1, where fp+1(z) is the subdiagonal [p/p + 1] Padé
approximant of exp(−z).

A direct application of the eigenvalue analysis is to the linear stability of the fully discrete
scheme. Equation (2.1) is usually integrated in time using a suitable ODE solver. Thus, the
necessary condition for the stability of the method is to require the time step ∆t to be small
enough so that the full spectrum of a∆t

∆x L fits inside the absolute stability region of the chosen
time integration scheme. The eigenvalues of L can be computed using a linear algebra software
which has been done for a variety of combinations of spatial orders and time integration schemes
[14, 32]. However, the analytical form of the eigenvalues has not been previously known. It is
interesting from a purely theoretical point of view and can also be used to get further insight into

14

the DG method. We use it to improve the CFL number by manipulating the scheme so that the
spectrum of L is shrunk [7]. This is achieved by constructing a different rational approximant of
exp(−z) which seeks to preserve the order of accuracy in the L2 norm.

A linear stability analysis of (2.1) arising from a low order DG spatial discretization and
Runge-Kutta time integration was previously performed in [12, 8]. It was shown that the DGM
with p > 0 is not stable with a fixed CFL number when the forward Euler time integration is
used [8]. This is caused by the eigenvalues of (2.1) being located very close to the imaginary
axis which is not included in the stability region of the forward Euler method. It was proven in
[12] that the DG method with p = 1 and the second order Runge-Kutta scheme is L2 stable with
the CFL number equal to 1/3. It was further hypothesized there that a coupling of a pth degree
DG scheme with a (p + 1)st order RK scheme is stable under a CFL condition 1/(2p + 1). In
recent years, the DGM has been used with a variety of explicit time integration schemes, such as
Adams-Bashforth [23], strong-stability preserving schemes [25], low storage RK schemes [32].
In this view, the universal CFL number seems to be of less importance.

Using the obtained expressions for the eigenvalues, we analyze the asymptotic behavior of
the spectrum as the order of approximation p goes to infinity. The real eigenvalue, which is
conjectured to be the largest in magnitude, and the real component of complex eigenvalues is
shown to be bounded from below by −(p+1)(p+2) for any p. However, we prove that the actual
growth rate of the size of the largest eigenvalue is slower than quadratic. Numerical experiments
indicate that −1.5(p + 1)1.75 is an upper bound on the eigenvalues. The least square fitting gives
a growth rate of about 1.4(p + 1)1.78 for p < 100. We also demonstrate that although the curves
| fp+1(z)| = 1 move closer to the imaginary axis as p increases there are no purely imaginary
eigenvalues for any p.

A connection between the DG method and the Padé approximants has been observed previ-
ously. In [48], Le Saint and Raviart showed that the absolute stability region of the discontinuous
Galerkin method used to solve an ODE is given by |R(λ∆x)| ≤ 1, where R(z) is the [p/p + 1]
Padé approximant of exp(z). In [33], Hu and Atkins studied the dispersion properties of the DG
scheme applied to the scalar advection equation in one dimension. They showed that for the phys-
ical mode, the numerical dispersion relation is accurate to (k∆x)2p+2, where k is the wavenumber
and k∆x is small. Their reasoning was founded on the conjecture that certain polynomials in-
volved in the analysis are related to [p + 1/p] Padé approximation of exp(z). An extended
analysis of the dispersion and dissipation errors were given by Ainsworth in [3]. It was demon-
strated there that the numerical wave speed k̃ satisfies the relation fp+1(−i∆xk) = exp(i∆xk̃). The
proof is based on a demonstration that DG solutions satisfy a certain eigenvalue problem conjec-
tured in [33]. In Theorem 1 we show how this eigenvalue problem arises from the characteristic
polynomial of L.

15

The [p/p + 1] and [p + 1/p] Padé approximants of exp(z) are O(z2p+2) accurate for small
z. This explains the excellent dispersion and dissipation properties of the DGM which were
called “superconvergent” in [33, 3]. This makes the scheme very suitable for wave propagation
problems especially ones requiring long time integration. However, from our analysis it follows
that the same approximants are involved in defining the spectrum of the semi-discrete method
and, in this sense, are responsible for a severe time step restriction associated with the DGM. The
small CFL number is frequently quoted as an disadvantage of the DGM. It makes the method,
especially for low p and nonlinear problems, more expensive when compared to schemes that
are able to maintain the CFL close to unity, e.g. finite volume schemes.

The rest of this chapter is organized as follows. We begin by deriving the discontinuous
Galerkin formulation of the model problem with the aim to obtain a general form of the resulting
systems of ODEs. In Section 2.4, we derive the equations that describe the eigenvalues and
eigenvectors of the spatial discretization and prove our main result, i.e the relation between the
characteristic polynomial of L and Padé approximants. Section 2.5 contains an analysis of the
distribution of eigenvalues and the growth speed of the eigenvalue of the largest modulus. Finally,
the dispersion relation of the DGM is discussed in Section 2.6.

2.2 Derivation of the characteristic polynomial of L

We consider the one-dimensional linear advection equation

ut + aux = 0 (2.2)

subject to appropriate initial and periodic boundary conditions on interval I, a > 0. The domain
is discretized uniformly into mesh elements I j = [x j−1, x j] of size ∆x, j = 1, 2, ...,N. Following
the derivation in Section 1.3, substituting (1.8) into (1.13) with the Legendre polynomials as the
basis and test functions, and using the upwind numerical flux (1.15), we obtain that

∆x
2k + 1

ċ jk = −a

 p∑
i=0

c ji − (−1)k
p∑

i=0

c j−1,i

 + a
∫ 1

−1

 p∑
i=0

c jiPi

 P′k dξ, k = 0, 1, . . . , p, (2.3)

where the dot in ċ jk represents differentiation with respect to t. Collecting common terms of c ji

results in

ċ jk = a
2k + 1
∆x

(−1)k
p∑

i=0

c j−1,i +

p∑
i=0

(∫ 1

−1
PiP′k dξ − 1

)
c ji

 , k = 0, 1, . . . , p. (2.4)

16

This can be written in a vector form as

ċ jk = a
2k + 1
∆x

(
(−1)k[1, 1, ..., 1]c j−1 + [

∫ 1

−1
P0P′kdξ − 1, ...,

∫ 1

−1
PpP′kdξ − 1]c j

)
, (2.5)

where c j = [c j0, c j1, . . . , c jp]T and c j−1 is defined similarly. Combining cell solution-coefficient
vectors into a global vector c = [cT

0 , c
T
1 , . . . , c

T
p]T , equation (2.5) can be written as a system of

ODEs (2.1). With periodic boundary conditions, L is a block matrix of the form

L =

An 0 0 . . . 0 0 Dn

Dn An 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 Dn An

 , (2.6)

where Dn and An are n × n matrices, n = p + 1. For approximation of order p, there are p + 1
basis functions, so the size of each block is (p + 1) × (p + 1). In the following discussion this
notation of n is consistent and n can always be replaced by p + 1. In the matrix L,

Dn =

1 . . . 1
−3 . . . −3
...

...
(−1)n−1(2n − 1) . . . (−1)n−1(2n − 1)

 , (2.7)

An =

∫ 1

−1
P0P′0dξ − 1 . . .

∫ 1

−1
Pn−1P′0dξ − 1

3
(∫ 1

−1
P0P′1dξ − 1

)
. . . 3

(∫ 1

−1
Pn−1P′1dξ − 1

)
...

...

(2n − 1)
(∫ 1

−1
P0P′n−1dξ − 1

)
. . . (2n − 1)

(∫ 1

−1
Pn−1P′n−1dξ − 1

)

, (2.8)

or

An = (ai j) =
(
(2i − 1)(

∫ 1

−1
P j−1P′i−1dξ − 1)

)
. (2.9)

Noticing that the derivatives of the Legendre polynomials satisfy [1]

(2k + 1)Pk = P′k+1 − P′k−1, (2.10)

we derive
P′k+1 = (2k + 1)Pk + (2(k − 2) + 1)Pk−2 + (2(k − 4) + 1)Pk−4 + (2.11)

17

We use (2.11) with the orthogonality property of the Legendre polynomials (1.10) to simplify
the integrals in An. We obtain

∫ 1

−1
PiP′kdξ =

0, k 6 i,
2, k > i, and (k − i) ≡ 1 (mod 2),
0, k > i, and (k − i) ≡ 0 (mod 2).

(2.12)

Thus, An can be simplified as

An = −

a1 a1 a1 · · · a1 a1

−a2 a2 a2 · · · a2 a2

a3 −a3 a3 · · · a3 a3

−a4 a4 −a4 · · · a4 a4
...

...
...

...
...

(−1)n−2an−1 (−1)n−3an−1 (−1)n−4an−1 · · · an−1 an−1

(−1)n−1an (−1)n−2an (−1)n−3an · · · −an an

, (2.13)

where ai = 2i − 1, i = 1, 2, . . . , n. For example,

A3 = −

 1 1 1
−3 3 3
5 −5 5

 .
Next, we derive an expression for the eigenvalues of L. λ is an eigenvalue of L if it satisfies

An 0 0 . . . 0 0 Dn

Dn An 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 Dn An

v1

v2
...

vN

 = λ

v1

v2
...

vN

 , (2.14)

where vT = [vT
1 , v

T
2 , . . . , v

T
N] is the corresponding eigenvector and its components v j, j = 1, 2, . . . ,N,

are column vectors of length n = p + 1. Equivalently, we can write equation (2.14) as

Dnv j−1 + Anv j = λv j, j = 1, 2, . . . ,N, (2.15)

with an understanding that v0 = vN . We express Dn defined by (2.7) as an outer product Dn =

rn[1, 1, ..., 1], where rn = [1,−3, . . . , (−1)n−1(2n − 1)]T . Then (2.15) can be rewritten as

rn[1, 1, ..., 1]v j−1 = (λI − An)v j. (2.16)

18

Introducing a new variable S j = [1, 1, ..., 1] · v j, we write (2.16) as

S j−1rn = (λI − An)v j. (2.17)

Multiplying both sides of (2.17) by [1, 1, ..., 1](λI − An)−1 yields

S j = S j−1[1, 1, ..., 1](λI − An)−1rn. (2.18)

Let
fn(λ) = [1, 1, ..., 1](λI − An)−1rn. (2.19)

Then, (2.18) results in a recursive formula

S j = fn(λ)S j−1. (2.20)

Expansion of (2.20) starting with j = N gives

S N = f N−1
n (λ)S 1. (2.21)

Finally, taking into account periodicity of the boundary conditions, we obtain S N = f N
n (λ)S N .

This implies
f N
n (λ) = 1. (2.22)

Then, the eigenvalues of L are the roots of the equations

fn(λ) = ω j, ω j = e
2πi
N j, j = 0, 1, 2, . . . ,N − 1. (2.23)

Eigenvectors. For completeness of this discussion, we derive the eigenvectors of matrix L.
Since L is a block circulant matrix, we look for eigenvectors v in the form [ṽT , ωkṽT , . . . , ωN−1

k ṽT]T .
Substituting v into (2.14) gives

ω
j−1
k Dnṽ + ω j

kAnṽ = λkω
j
kṽ, 1 6 j 6 N, (2.24)

or
(ωkλkI − ωkAn − Dn)ṽ = 0, (2.25)

where λk is one of the roots of fn(λ) = ωk. ṽ can be easily obtained by solving the linear
system (2.25). The solutions are not particularly illuminating and we do not report them. Figure
2.1 shows the periodic property of the components of the eigenvectors. We plot one of the two
eigenvectors corresponding to k = 4 (left) and k = 17 (right). In figure 2.1 each point corresponds
to an entry in v. The entries of the eigenvectors represent sampling of a scaled unit circle at N

19

or, if N/k is an integer, N/k points. One of the circles in Figure 2.1, left and right, corresponds
to the first entry of ω j

kṽ, j = 1, 2, . . . ,N − 1, and the other to the second entry of ω j
kṽ. The line

connecting two points represents two consecutive entries of ṽ and, thus, the shift in sampling
between the two components of each ω j

kṽ, k = 1, 2, . . . ,N − 1,.

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Figure 2.1: Eigenvectors of L with N = 20, p = 1, and k = 4 (left) and k = 17 (right). Each point
in plots correspond to an entry in an eigenvector. The two points connected by a line show the
first two entries of ṽ.

2.3 Padé approximants

Before deriving a general formulation of function fn(z), we will give a short introduction to
Padé approximants. Let us suppose that we are given a power series representing a function

g(z) =
∞∑

i=0

cizi. A Padé approximant is a rational function

[L/M] =
a0 + a1z + · · · + aLzL

b0 + b1z + · · · + bMzM , (2.26)

20

that satisfies
∞∑

i=0

cizi =
a0 + a1z + · · · + aLzL

b0 + b1z + · · · + bMzM + O(zL+M+1). (2.27)

Coefficients a0, a1, . . . , aL, and b0, b1, . . . , bM are uniquely defined by c0, c1, . . . , if b0 is fixed. The
approximant is usually scaled so that b0 = 1. It is a common practice to display the approximants
in a table, which is called the Padé table. We show a part of the Padé table of g(z) = ez in Table
2.1.

Table 2.1: Part of the Padé table of ez [4].

0 1 2 3

0
1
1

1 + z
1

2 + 2z + z2

2
6 + 6z + 3z2 + z3

6

1
1

1 − z
2 + z
2 − z

6 + 4z + z2

6 − 2z
24 + 18z + 6z2 + z3

24 − 6z

2
2

2 − 2z + z2

6 + 2z
6 − 4z + z2

12 + 6z + z2

12 − 6z + z2

60 + 36z + 9z2 + z3

60 − 24z + 3z2

3
6

6 − 6z + 3z2 − z3

24 + 6z
24 − 18z + 6z2 − z3

60 + 24z + 3z2

60 − 36z + 9z2 − z3

120 + 60z + 12z2 + z3

120 − 60z + 12z2 − z3

The Padé approximants of ez are given by the following formula for non-negative integers
p, q [4]

[p/q]exp(z) =
1F1(−p,−p − q, z)

1F1(−q,−p − q,−z)
, (2.28)

where 1F1 denotes the confluent hypergeometric function defined by the series [1]

1F1(a, b, z) = 1 +
a
b

z +
a
b

a + 1
b + 1

z2

2!
+

a
b

a + 1
b + 1

a + 2
b + 2

z3

3!
+ · · · . (2.29)

When a, b are negative integers and b 6 a, 1F1(a, b, z) is a finite sum which is a polynomial of
degree |a|. Using the Pochhammer’s symbol, (a)k = a(a + 1) · · · (a + k − 1) and (a)0 = 1, we can
rewrite (2.29) in a compact form

1F1(a, b, z) =
∞∑

k=0

(a)k

(b)k

zk

k!
. (2.30)

21

2.4 Padé approximants and DG spatial discretization

In the following theorem, we state the main result of this section.

Theorem 3. If An is an n × n matrix given by (2.13), and fn(z) = (1, ..., 1)(zI − An)−1rn, where
rn =

[
1,−3, · · · , (−1)n−1(2n − 1)

]T
, then

fn(z) = 1F1(−n + 1,−2n + 1,−z)

1F1(−n,−2n + 1, z)
, (2.31)

which is the [n − 1/n] Padé approximant of e−z.

In order to prove the theorem, we will need to establish three auxiliary results which are
proved in the following three lemmas. We start by introducing additional notation.

Definition 1.

• Ãn: a matrix defined as Ãn = zI − An.

• Mn,i: the (n, i) minor of Ãn, i.e. the determinant of the (n − 1) × (n − 1) matrix obtained by
elimination of the n-th row and i-th column of Ãn, i = 1, 2, . . . , n.

• Ã j
n: the n × n matrix obtained by replacing the j-th column of Ãn with rn, j = 1, 2, ..., n.

• M j
n: the determinant of Ã j

n, j = 1, 2, . . . , n.

• M j
n,i: the (n, i) minor of the matrix Ã j

n, i, j = 1, 2, . . . , n.

We also introduce two sequences of polynomials which are essential to our proofs{
Qn(z) = (an + z)Qn−1(z) + anRn−1(z),
Rn(z) = anQn−1(z) + (an − z)Rn−1(z), (2.32)

where Q1(z) = a1+ z, R1(z) = a1, and an = 2n−1. As an example, Qn(z) and Rn(z) for small n are
listed in Table 2.2. Note that while Qn is a polynomial of degree n, Rn is a polynomial of degree
n − 1. We will show that Qn and Rn are proportional to the hypergeometric functions appearing
in (2.31) and give an alternative expression for fn(z)

fn(z) =
Rn(−z)
Qn(z)

. (2.33)

22

Thus, (2.32) is a recursive formula for generating [p/p+1] and [p+1/p] (sub- and superdiagonal)
Padé approximants for exp(−z).

Table 2.2: Polynomials Qn(z) and Rn(−z) defined in (2.32)

n Rn(−z) Qn(z)

2 6(1 −
1
3

z) 6(1 +
2
3

z +
1
6

z2)

3 60(1 −
2
5

z +
1

20
z2) 60(1 +

3
5

z +
3

20
z2 +

1
60

z3)

4 840(1 −
3
7

z +
1

14
z2 −

1
210

z3) 840(1 +
4
7

z +
1
7

z2 +
2

105
z3 +

1
840

z4)

5 15120(1 −
4
9

z +
1

12
z2 −

1
126

z3 +
1

3024
z4) 15120(1 +

5
9

z +
5

36
z2 +

5
252

z3 +
5

3024
z4 +

1
15120

z5)

We start with Lemma 1 which relates Qn(z) and Rn(z) to the determinant of Ãn and its minors.

Lemma 1. Let Qn(z) and Rn(z) be defined by (2.32). Then

Qn(z) = det(Ãn), (2.34a)

Rn(z) =
n∑

i=1

Mn+1,i. (2.34b)

Proof. We will use an induction argument to prove (2.34). By Definition 1 and (2.32), Q1(z) =
a1 + z = det(Ã1), and R1(z) = a1 = M2,1. This establishes the base of the induction. We assume
that (2.34) holds for Qn(z),Rn(z), and we will prove that it is valid for Qn+1(z),Rn+1(z).

Applying the cofactor expansion along the (n + 1)-th row of det(Ãn+1) while noticing that
Mn+1,n+1 = det(Ãn) yields

det(Ãn+1) =
n∑

i=1

(−1)n+1−ian+1(−1)n+1+iMn+1,i + (an+1 + z)Mn+1,n+1

= an+1

n∑
i=1

Mn+1,i + (an+1 + z) det(Ãn)

= (an+1 + z)Qn(z) + an+1Rn(z) = Qn+1(z).

(2.35)

23

This proves the recursion (2.34a) for Qn(z).

Next, we prove (2.34b) for Rn+1(z) =
n+1∑
i=1

Mn+2,i. We begin by relating Mn+2,i to Mn+1,i, i <

n + 1. In (2.36), we write an explicit expression for Mn+2,i, then subtract the n + 1st column from
the nth column and compute the determinant by a cofactor expansion based on the nth column,

Mn+2,i =

∣∣∣∣∣∣∣∣∣∣∣∣
a1 + z · · · a1 a1

−a2 · · · a2 a2
...

...
...

(−1)nan+1 · · · an+1 + z an+1

∣∣∣∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣

a1 + z · · · 0 a1

−a2 · · · 0 a2
...

...
...

(−1)nan+1 · · · z an+1

∣∣∣∣∣∣∣∣∣∣∣∣ = −zMn+1,i. (2.36)

Similarly, for i = n + 1, a cofactor expansion based on the last row yields

Mn+2,n+1 =

n∑
i=1

[
(−1)n+1−i(−1)n+1+ian+1Mn+1,i

]
+ an+1Mn+1,n+1

= an+1

n∑
i=1

Mn+1,i + an+1Mn+1,n+1.

(2.37)

Thus,
n+1∑
i=1

Mn+2,i =

n∑
i=1

(−z)Mn+1,i + an+1

n∑
i=1

Mn+1,i + an+1Mn+1,n+1

= (an+1 − z)
n∑

i=1

Mn+1,i + an+1Mn+1,n+1

= (an+1 − z)Rn(z) + an+1Qn(z)
= Rn+1(z).

(2.38)

This completes the proof. �

Lemma 2 relates Rn(z) and Qn(z) to the determinant of Ã j
n and its minors.

24

Lemma 2. Let Rn(z), Qn(z) be defined by (2.32). Then,

Rn(−z) =
n∑

j=1

M j
n, (2.39a)

Qn(−z) =
n+1∑
j=1

n∑

i=1
i, j

M j
n+1,i + (−1) j−1M j

n+1, j

 . (2.39b)

Proof. The case n = 1 is satisfied trivially by the involved variables given by Definition 1 and
(2.32). We assume that (2.39) is true for n, and we will prove it is also true for n + 1.

Applying cofactor expansion to M j
n+1, j = 1, . . . , n along the last row gives

M j
n+1 =

n∑
i=1
i, j

[
(−1)n+1−ian+1(−1)n+1+iM j

n+1,i

]
+ (−1)nan+1(−1)n+1+ jM j

n+1, j + (an+1 + z)M j
n+1,n+1

= an+1

n∑
i=1
i, j

M j
n+1,i + (−1) j−1an+1M j

n+1, j + (an+1 + z)M j
n+1,n+1.

(2.40)
Similarly, applying cofactor expansion to Mn+1

n+1 along the last row gives

Mn+1
n+1 =

n∑
i=1

(−1)n+1−ian+1(−1)n+1+iMn+1
n+1,i + (−1)nan+1Mn+1

n+1,n+1

= an+1

n∑
i=1

Mn+1
n+1,i + (−1)nan+1Mn+1

n+1,n+1.

(2.41)

Since M j
n+1,n+1 = M j

n, we can write

n+1∑
j=1

M j
n+1 = (an+1 + z)

n∑
j=1

M j
n + an+1

n+1∑
j=1

n∑

i=1
i, j

M j
n+1,i + (−1) j−1M j

n+1, j

= (an+1 + z)Rn(−z) + an+1Qn(−z)
= Rn+1(−z).

(2.42)

This proves (2.39a).

We split the proof of (2.39b) into 2 parts: j = 1, 2, . . . , n and j = n+1, n+2. For j = 1, . . . , n,

25

using an argument similar to one employed in (2.36), we can derive M j
n+2,i = (−z)M j

n+1,i, i =
1, 2, ..., n. This with a cofactor expansion on the last row of M j

n+2,n+1 gives

n+1∑
i=1
i, j

M j
n+2,i + (−1) j−1M j

n+2, j =

n∑
i=1
i, j

M j
n+2,i + (−1) j−1M j

n+2, j + M j
n+2,n+1

= (−z)

n∑

i=1
i, j

M j
n+1,i + (−1) j−1M j

n+1, j

+an+1

n∑

i=1
i, j

M j
n+1,i + (−1) j−1M j

n+1, j

 + an+1M j
n+1,n+1.

(2.43)

For j = n + 1, n + 2, we switch the last two columns of Mn+2
n+2,i to obtain

Mn+2
n+2,i =

∣∣∣∣∣∣∣∣∣∣∣∣
a1 + z · · · a1 a1

−a2 · · · a2 −a2
...

...
...

(−1)nan+1 · · · an+1 + z (−1)nan+1

∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣∣
a1 + z · · · a1 a1

−a2 · · · −a2 a2
...

...
...

(−1)nan+1 · · · (−1)nan+1 an+1 + z

∣∣∣∣∣∣∣∣∣∣∣∣
(2.44)

Comparing −Mn+2
n+2,i with Mn+1

n+2,i reveals that the entries in the determinants are identical except
for the (n + 1, n + 1) element, which is (an+1 + z) in −Mn+2

n+2,i and an+1 in Mn+1
n+2,i. Expanding the

determinants along the last rows of Mn+1
n+2,i and Mn+2

n+2,i and adding up the results, we have

Mn+1
n+2,i + Mn+2

n+2,i = (−z)Mn+1
n+1,i, i = 1, 2, ..., n. (2.45)

A similar observation gives

Mn+1
n+2,n+1 + Mn+2

n+2,n+2 = (−z)Mn+1
n+1,n+1. (2.46)

Combining (2.45) and (2.46) and using a cofactor expansion on Mn+2
n+2,n+1 along the last row, we

26

obtain
n+2∑

j=n+1

n∑
i=1

M j
n+2,i + (−1)nMn+1

n+2,n+1 + Mn+2
n+2,n+1 + (−1)n+1Mn+2

n+2,n+2

= (−z)
n∑

i=1

Mn+1
n+1,i + (−1)n(an+1 − z)Mn+1

n+1,n+1 + an+1

n∑
i=1

Mn+1
n+1,i.

(2.47)

Finally, combining (2.43) and (2.47) yields the result

n+2∑
j=1

n+1∑
i=1
i, j

M j
n+2,i + (−1) j−1M j

n+2, j

 = (an+1 − z)
n+1∑
j=1

n∑

i=1
i, j

M j
n+1,i + (−1) j−1M j

n+1, j

+an+1

n∑
j=1

M j
n+1,n+1

= (an+1 − z)Qn(−z) + an+1Rn(−z)
= Qn+1(−z),

(2.48)

which completes the proof. �

Lemma 3 relates polynomials Qn(z) and Rn(z) to the confluent hypergeometric functions.

Lemma 3. Let Qn(z) and Rn(z) be polynomials defined by (2.32). Then,

Qn(z) =
n∏

i=1

ai2n−1
1F1(−n,−2n + 1, z), (2.49a)

Rn(z) =
n∏

i=1

ai2n−1
1F1(−n + 1,−2n + 1, z). (2.49b)

Proof. When n = 1, (2.49) is validated by Definition 1 and (2.32). Assuming that (2.49) is true
for Qn(z),Rn(z), we will show it is also true for Qn+1(z),Rn+1(z). We start with (2.49a). By the

27

recurrence relation (2.32) and the assumption that (2.49) is true for Qn(z),Rn(z), we have

Qn+1(z) = (an+1 + z)Qn(z) + an+1Rn(z)

= (an+1 + z)
n∏

i=1

ai2n−1
1F1(−n,−2n + 1, z) + an+1

n∏
i=1

ai2n−1
1F1(−n + 1,−2n + 1, z)

=

n∏
i=1

ai2n−1 [(an+1 + z)1F1(−n,−2n + 1, z) + an+11F1(−n + 1,−2n + 1, z)]

=

n∏
i=1

ai2n−1

(an+1 + z)
n∑

k=0

(−n)k

(−2n + 1)k

zk

k!
+ an+1

n−1∑
k=0

(−n + 1)k

(−2n + 1)k

zk

k!

 .
(2.50)

Next, we collect the terms of the same degree k in (2.50) and simplify the obtained coeffi-
cients. The coefficients in front of zk, k = 2, 3, ..., n,

an+1
(−n)k

(−2n + 1)k

1
k!
+ an+1

(−n + 1)k

(−2n + 1)k

1
k!
+

(−n)k−1

(−2n + 1)k−1

1
(k − 1)!

= an+1(−n + k − 1)
(−n + 1)k−2

(−2n + 1)k−1

1
k!
+ (−n)

(−n + 1)k−2

(−2n + 1)k−1

1
(k − 1)!

= [an+1(−n + k − 1) + (−n)(k)]
(−n + 1)k−2

(−2n + 1)k−1

1
k!

= [(2n + 1)(−n + k − 1) + (−n)(k)]
(−n + 1)k−2

(−2n + 1)k−1

1
k!

= (−2n + k − 1)(n + 1)
(−n + 1)k−2

(−2n + 1)k−1

1
k!

= (−2n + k − 1)(n + 1)
(−2n − 1)(−2n)

(−n − 1)(−n)(−2n + k − 1)
(−n − 1)k

(−2n − 1)k

1
k!

= 2an+1
(−n − 1)k

(−2n − 1)k

1
k!
.

(2.51)

For the constant term, k = 0, we have

an+1 · 1 + an+1 · 1 = 2an+1 · 1. (2.52)

For the term of degree 1,

an+1
−n

−2n + 1
+ 1 + an+1

−n + 1
−2n + 1

= 2(n + 1) = 2an+1
−n − 1
−2n − 1

. (2.53)

28

For the term of degree n + 1

(−n)n

(−2n + 1)n

1
n!
=

(−2n − 1)(−2n)
(−n − 1)(−n)

(−n − 1)n+1

(−2n − 1)n+1

1
n!
= 2an+1

(−n − 1)n+1

(−2n − 1)n+1

1
(n + 1)!

. (2.54)

Inserting (2.51)-(2.54) into (2.50), we obtain

Qn+1(z) =
n+1∏
i=1

ai2n
n+1∑
k=0

(−n − 1)k

(−2n − 1)k

zk

k!
=

n+1∏
i=1

ai2n
1F1(−n − 1,−2n − 1, z). (2.55)

Statement (2.49b) can be proven using a similar reasoning. To avoid repetition, the proof is
omitted. Thus, we proved that (2.49) is valid for any n ∈ N. �

Now we can complete the proof of Theorem 1.

Proof. Let wn = Ã−1
n rn, i.e. Ãnwn = rn. Using the Cramer’s rule, wn = det(Ãn)−1[M1

n ,M
2
n , ...,M

n
n]T .

Therefore,
fn(z) = [1, 1, ..., 1]Ã−1

n rn

= [1, 1, ..., 1]wn

=
1

det(Ãn)

n∑
j=1

M j
n

=
Rn(−z)
Qn(z)

(Lemma 1 and Lemma 2)

=
1F1(−n + 1,−2n + 1,−z)

1F1(−n,−2n + 1, z)
(Lemma 3)

�

2.5 Spectrum of the DG discretization

In the previous section we showed that the eigenvalues of the discontinuous Galerkin spatial
discretization matrix L are given by

fn(λ) = ω j, ω j = e
2πi
N j, j = 0, 1, . . . ,N − 1. (2.56)

Then, using (2.33) the eigenvalues can be computed as n roots of

Rn(−λ) − ω jQn(λ) = 0 (2.57)

29

for each 0 ≤ j ≤ N − 1.

−50 −40 −30 −20 −10 0
−30

−20

−10

0

10

20

30

−0.2 −0.15 −0.1 −0.05 0
−10

−5

0

5

10

Figure 2.2: Eigenvalues of L for p = 1, 2, 3, 4, 5, 6 with N = 20. The inner curve corresponds to
p = 1 and the outer curve corresponds to p = 6. The right figure is a zoom of the left one.

The computed eigenvalues with p = 1, 2, . . . , 6 on a twenty cell mesh are shown in Figure
2.2, left. We observe that the size of the spectrum grows with p. At the same time the curves
| fp+1(z)| = 1 (of which (2.56) is a discrete approximation) seem to approach and flatten near the
imaginary axis (Fig. 2.2, right) as p increases.

The leftmost eigenvalues are mainly responsible for the decrease of the CFL number with
increasing order of approximation and can be used as a proxy for the size of the spectrum. We
investigate the growth rate of the eigenvalue with the largest magnitude later in this section.
Flattening of the spectral curves near the imaginary axis means that for the fully discrete method
to be stable with a constant (mesh size independent) CFL number, the absolute stability region
of the time integration scheme should include a sufficiently large part of the imaginary axis. For
example, the DG with p > 0 is not stable with a fixed CFL number with the forward Euler time
stepping or p > 1 and a two stage second order Runge-Kutta schemes [14]. However, despite
approaching the imaginary axis, the eigenvalues are never purely imaginary when the upwind
flux is used in the DG discretization. This is proven in the following lemma and theorem.

30

Lemma 4. Let Qn(z) and Rn(z) be polynomials defined by (2.32). Then,

Qn(βi)Qn(−βi) = Rn(βi)Rn(−βi) + β2n, β ∈ R, n = 1, 2, (2.58)

Proof. When β = 0, it follows from (2.49) and the definition (2.29) that Qn(0) = Rn(0). Then,
(2.58) is trivially true.

When β , 0, we will use the mathematical induction on n to prove (2.58). For n = 1, from
(2.32), we obtain

Q1(βi)Q1(−βi) = (1 + βi)(1 − βi) = 1 + β2 = R1(βi)R1(−βi) + β2, (2.59)

which establishes the basis of induction. We assume (2.58) is valid for n, and we will prove it
consequently holds for n + 1. Using (2.32) yields

Qn+1(βi)Qn+1(−βi) =
[
(an+1 + βi)Qn(βi) + an+1Rn(βi)

] [
(an+1 − βi)Qn(−βi) + an+1Rn(−βi)

]
= (a2

n+1 + β
2)Qn(βi)Qn(−βi) + a2

n+1Rn(βi)Rn(−βi)
+(a2

n+1 + an+1βi)Qn(βi)Rn(−βi) + (a2
n+1 − an+1βi)Qn(−βi)Rn(βi).

(2.60)
Rn+1(βi)Rn+1(−βi) = [an+1Qn(βi) + (an+1 − βi)Rn(βi)][an+1Qn(−βi) + (an+1 + βi)Rn(−βi)]

= a2
n+1Qn(βi)Qn(−βi) + (a2

n+1 + β
2)Rn(βi)Rn(−βi)

+(a2
n+1 + an+1βi)Qn(βi)Rn(−βi) + (a2

n+1 − an+1βi)Qn(−βi)Rn(βi).
(2.61)

Thus,

Qn+1(βi)Qn+1(−βi) − Rn+1(βi)Rn+1(−βi) = β2[Qn(βi)Qn(−βi) − Rn(βi)Rn(−βi)]
= β2(n+1),

(2.62)

which completes the proof. �

Theorem 4. Equation (2.56) has no pure imaginary roots.

Proof. We start by observing that for any polynomial p(z) with real coefficients the following
holds

p(βi) = p(−βi). (2.63)

Next, let us assume that z = βi is a pure imaginary root of (2.56), where β , 0 is a real number.

31

Substitute z = βi into (2.33) and take the modulus to obtain

| fn(βi)|2 = fn(βi) fn(βi)
= fn(βi) fn(−βi)

=
Rn(βi)Rn(−βi)
Qn(βi)Qn(−βi)

=
Rn(βi)Rn(−βi)

Rn(βi)Rn(−βi) + β2n (Lemma 4)

=
|Rn(βi)|2

|Rn(βi)|2 + β2n < 1.

(2.64)

Since | fn(z)| = 1 is a necessary condition for z being a root of (2.56), | fn(βi)| < 1 implies that βi
is not a root of (2.56). �

−15 −10 −5 0
0

2

4

6

8

10

12

14

16

18

20

|f 5 (− 2 + 10i) | ≈ 1.74

|f 5 (z) | = 1

|f 4 (z) | = 1

Figure 2.3: Illustration of | fn(z)| = 1 approaching the imaginary axis. For a randomly chosen
point ẑ = −2 + 10i, we can find | f5(ẑ)| > 1, so | f5(z)| = 1 passes through the right of this point ẑ.

32

Padé approximants of the exponential function converge to the exponent at every point in the
complex plane [30], p.531-536. If we pick an arbitrary point z = α+ βi, α < 0, from the left half
plane, we have

| lim
n→∞

fn(z)| = |e−z| > 1, (2.65)

i.e. there exists a sufficiently large N such that | fN(z)| > 1. In the proof of Theorem 2, we
showed that | fN(βi)| < 1. Assuming that | fN(z)| is analytic on the line Im z = β (since there exists
only a finite number of poles of | fN(z)| this is not a restrictive assumption), there exists a point
z′ = α′ + βi, where α < α′ < 0, such that | fN(z′)| = 1. This implies that the curve | fN(z)| = 1
goes across the region between z = α + βi and βi. Since the point z is randomly chosen from
the left half plane, we can conclude that for any point close enough to the imaginary axis, there
exists a curve which is even closer to the imaginary axis. Thus, we demonstrated that | fn(z)| = 1
approach the imaginary axis as n grows. The reasoning is illustrated for a particular choice of a
point z and n = 5 in Figure 2.3.

Next, we analyze the growth of the eigenvalue largest in modulus. We conjecture it to be the
real eigenvalue located on the leftmost part of the spectral curves | fn(z)| = 1 in Figure 2.2. All
roots of (2.56) are located in the left half of the complex plane. This can be seen from Theorem
4.12 in [28], which states that the curve |R(z)| = 1, where R(z) is the [p/p+ 1] Padé approximant
of exp(z) is located in the right half of the complex plane. Since fn(z) is the same approximant
to exp(−z), | fn(z)| = 1 is a mirror image of |R(z)| = 1 with respect to the imaginary axis, and the
result follows. Below we make a few simple statements about the roots of (2.56).

Proposition 1. Equation (2.56) always has a zero root.

Proof. From (2.49) and (2.29), the zero order coefficients in R(−z) and Q(z) are the same and are
equal to

∏n
i=1 ai2n−1. Using (2.33), fn(0) = R(0)/Q(0) = 1. �

Proposition 2. The real roots of fn(z) = ωk correspond to ωk = ±1.

Proof. Consider fn(z) = ωk with a real z. Since fn is a rational function with real coefficients, the
right hand side must be a real number. Hence, ωk = ±1. �

Depending on the number of mesh cells N and the order of approximation p, there might be
one real root or a couple of complex conjugate numbers on the left most part of the curve. This
is not essential as (2.56) is a discrete version of | fn(z)| = 1. Below we state the conditions for
(2.56) to have a real negative root which we will denote by z∗ and without loss of generality we
will assume that the mesh is such that it exists.

33

Proposition 3. For a discretization with an even number of cells N, (2.56) has at least one
non-zero real root.

Proof. If n is an odd number, we rewrite fn(z) = −1 as R(−z) + Q(z) = 0. Since the zero order
coefficient in R(−z) and Q(z) is the same (Proposition 1), zero is not a root of R(−z) + Q(z) = 0.
Since n is odd, there exists at least one non-zero real root.

If n is an even number, we rewrite fn(z) = 1 as R(−z) − Q(z) = 0. Since the zero order
coefficient in R(−z) and Q(z) is the same, R(−z) − Q(z) = 0 can be expressed as zr(z) = 0, where
r(z) is a real polynomial of degree n−1. Consequently, it should have one real root which cannot
be zero because, as shown in (2.49) and (2.29), the first order coefficients of R(−z) and Q(z) are
not the same. �

For an odd number of cells N, an odd degree approximation (even n) results in at least one
nonzero real root. With an even degree of approximation, we conjecture that the only real root
is zero. Since the eigenvalues always locate on | fn(z)| = 1, which does not depend on N, we can
assume N is even for analyzing the size of the spectrum.

If the negative real root z∗ exists, it is conjectured to have the largest modulus, and this largest
modulus also performs as a bound of all roots when z∗ does not exist. Next, we will derive a
bound on z∗.

Using (2.31) to write (2.56) in a polynomial form

p(z) = 1F1(−n + 1,−2n + 1,−z) − e
2πi
N j

1F1(−n,−2n + 1, z), (2.66)

and collecting the terms of the same order, we obtain

p(z) = cnzn + cn−1zn−1 + · · · + c1z + c0, (2.67)

where
cn = −e

2πi
N j (−n)n

(−2n+1)n

1
n!

cn−1 = −e
2πi
N j (−n)n−1

(−2n+1)n−1

1
(n−1)! +

(−n+1)n−1
(−2n+1)n−1

1
(n−1)!

...

c0 = −e
2πi
N j + 1.

(2.68)

Since the sum of all the roots of p(z) = 0 satisfies

n∑
i=1

zi = −
cn−1

cn
= −n2 + ne−

2πi
N j, (2.69)

34

Table 2.3: Real eigenvalues of L on a two cell grid.

p 1 2 3 4 5 6
−z∗ 6 11.8424 19.1569 27.8419 37.8247 49.0518

(p + 1)(p + 2) 6 12 20 30 42 56
p 7 8 9 10 11 12
−z∗ 61.4815 75.0797 89.8181 105.6720 122.6204 140.6442

(p + 1)(p + 2) 72 90 110 132 156 182
p 13 14 15 16 17 18
−z∗ 159.7268 179.8529 201.0087 223.1817 246.3603 270.5337

(p + 1)(p + 2) 210 240 272 306 342 380
p 19 20 21 22 23 24
−z∗ 295.6920 321.8258 348.9264 376.9857 405.9960 435.9500

(p + 1)(p + 2) 420 462 506 552 600 650

we obtain that Re(− cn−1
cn

) > −n(n + 1). Noticing that all the roots have non-positive real parts,
−n(n + 1) is a lower bound of the real part of all roots including z∗ for all n. We are interested
whether this bound is tight and reasonably well represents the growth speed of the largest root.
Table 2.3 lists the roots of the largest modulus up to order 24, and Figure 2.4 shows the absolute
value of these roots up to order 100. We see that the bound overestimates the roots especially
for large n. Next, we show that the asymptotic growth rate is not quadratic. In particular, the
following theorem proves that −cn2 is not a root of (2.56) for all c > 0.

Theorem 5. For all c > 0, | fn(−cn2)| ∝ 1
n as n→ ∞.

Proof. Consider the hypergeometric function 1F1(a, b, z) defined in (2.29) and (2.30). When a
and b are negative integers, the function 1F1(a, b, z) is a polynomial of degree |a|. We factor out
the term of the highest degree of z and define the function

G(a, b, z) =
(b)|a|
(a)|a|

|a|!
z|a| 1F1(a, b, z), (2.70)

or, in an explicit form,

G(a, b, z) =
|a|∑

k=0

ck

zk , ck = Ck
|a|(a − b + 1)k, (2.71)

35

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

n

|z∗|

1.5n
1.75

n(n + 1)

Figure 2.4: Absolute value of the negative real roots on a two cell grid, the upper bound n(n + 1)
and the lower bound 1.5n1.75 as a function of n = p + 1.

where Ck
|a| are binomial coefficients. Substituting (2.70) into (2.31) yields

fn(z) = 1F1(−n + 1,−2n + 1,−z)

1F1(−n,−2n + 1, z)
=

(−1)n−1n
z

G(−n + 1,−2n + 1,−z)
G(−n,−2n + 1, z)

. (2.72)

Next, we will prove that lim
n→∞

G(−n,−2n + 1,−cn2) = e−
1
c . Substituting a = −n, b = −2n + 1, z =

−cn2 into (2.71) gives

G(−n,−2n + 1,−cn2) =
n∑

k=0

Ck
n

(n)k

(−cn2)k

=

n∑
k=0

n!
k!(n − k)!

(n)k

(−cn2)k

=

n∑
k=0

(−1)k

ckk!
[

n!
(n − k)!

(n)k

(n2)k]

= 1 +
n∑

k=1

(−1)k

ckk!
(1 −

1
n2)(1 −

22

n2) · · · (1 −
(k − 1)2

n2).

36

For simplicity, we call

d̃k =
(−1)k

ckk!
, en

0 = 1, en
k = (1 −

0
n2)(1 −

1
n2)(1 −

22

n2) · · · (1 −
(k − 1)2

n2), k = 1, 2, ..., (2.73)

and define dn
k as

dn
k =

1, k = 0,
(−1)k

ckk!
(1 −

0
n2)(1 −

1
n2)(1 −

22

n2) · · · (1 −
(k − 1)2

n2) = d̃ken
k , k = 1, ..., n,

0, k > n.

(2.74)

We also define two partial sums

Dn
l =

l∑
k=0

dn
k , D̃l =

l∑
k=0

d̃k, l = 0, 1, (2.75)

Then, G(−n,−2n + 1,−cn2) = Dn
n. Since for a fixed k lim

n→∞
en

k = 1, we conclude that

lim
n→∞

dn
k = d̃k, ∀k > 0. (2.76)

Noticing that lim
l→∞

D̃l = e−
1
c , we have

∀ ε > 0,∃ K1 > 0, s.t.∀ k > K1,
∣∣∣∣D̃K1 − e−

1
c

∣∣∣∣ < ε. (2.77)

And from the definition of d̃k,

∃ K2 > 0, s.t.∀ k > K2, |d̃K2+1| < ε. (2.78)

Let K = max(K1,K2), then

lim
n→∞

Dn
K =

K∑
k=0

lim
n→∞

dn
k =

K∑
k=0

d̃k = D̃K . (2.79)

The expression above implies that

∃N > K > 0, s.t.∀ n > N, |Dn
K − D̃K | < ε. (2.80)

37

On the other hand, since {dn
k } have alternating signs while |dn

k | decrease as k → ∞,

|Dn
K − Dn

n| < |d
n
K+1| < |d̃K+1| < ε. ∀ n > K (2.81)

Combining (2.77), (2.80) and (2.81), we obtain

|Dn
n − e−

1
c | 6 |Dn

n − Dn
K | + |D

n
K − D̃K | + |D̃K − e−

1
c | < 3ε, n > N,

i.e.
lim
n→∞

G(−n,−2n + 1,−cn2) = lim
n→∞

Dn
n = e−

1
c . (2.82)

Using the same reasoning, we can prove that

lim
n→∞

G(−n + 1,−2n + 1, cn2) = e
1
c . (2.83)

Combining (2.82), (2.83) and (2.72) yields

lim
n→∞
| fn(−cn2)| = lim

n→∞

∣∣∣∣∣∣G(−n + 1,−2n + 1, cn2)
G(−n,−2n + 1,−cn2)

∣∣∣∣∣∣ n
cn2 = lim

n→∞
e

2
c

1
cn
= 0. (2.84)

�

We have proved that regardless of the constant c, | fn(cn2)| is small for large enough n and
consequently cannot be a root of (2.56). In other words, any quadratic function will overcome
the curve |z∗(n)| (Fig. 2.4). If we assume that the real root z∗ grows as a power function −cnα, then
for α > 2, by following the steps in the proof of Theorem 2 we can show that lim

n→∞
G(−n,−2n +

1,−cnα) = 1 and lim
n→∞

G(−n+1,−2n+1, cnα) = 1. So, in this case, lim
n→∞

fn(−cnα) = 0 also implies
z∗ = −cnα is not the proper estimate for the root. We conclude that the spectrum of L should
grow slower than −cnα. Numerical experiments reveal that −1.5n1.75 is an upper bound on z∗ for
all n (Fig. 2.4). Least square fitting −cnα for the first one hundred roots gives −1.4n1.78. Bounds
on the eigenvalues for very large n are reported in Figure 2.5. The computations were performed
for a two cell grid using MATLAB. They are believed to be accurate in the sense of small error
in fn(z∗) − 1.

Remark 1. We should mention that the Padé approximants fn(z) are only a good approxima-
tion to e−z in regions close to the origin of the complex plane. In Figure 2.6 we plot | fp+1(z)|
for real negative z with p = 1, 2, 3. The spike in the p = 2 plot is related to the nearby pole of
f3(z). We note that this behavior, i.e. that the exponential function grows in magnitude while the
Padé approximants decay to zero as |z| increases, is similar for complex z but is more difficult to

38

900 920 940 960 980 1000
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
x 10

5

n

|z∗|

1.5n
1.75

1.5n
1.79

Figure 2.5: Absolute value of the negative real roots on a two cell grid and two bounds for large
values of n.

illustrate. Comparing Figures 2.2 and 2.6 reveals that for many eigenvalues λ, | fn(λ)| is far from
e−λ. Although the region where fn(z) ≈ e−z grows with n, it grows slower than the eigenvalues.
Consequently, the approximant fn should not be viewed as an approximation of exp(−z) as far as
eigenvalues of L are concerned.

Remark 2. When nonperiodic boundary conditions are used, it is sufficient to analyze the
zero inflow boundary conditions. Then, in the first row of (2.14) Dn is absent and we have

det(An − λI) = 0. (2.85)

From (2.85) and the third line of the proof of Theorem 1, λ must be the poles of fn. It is easy
to see that these λ are the only eigenvalues of L and that they have multiplicity N. Furthermore,
matrix L has only p + 1 linearly independent eigenvectors. As the result, the eigenvalues are
badly conditioned and cannot be used for stability analysis. For such matrices, the pseudospec-
trum is a more suitable analytical tool. Numerical experiments reveal that the pseudospectrum
for discretizations with nonperiodic boundary conditions converges to the spectrum with periodic
boundary conditions. Therefore, the presented analysis is applicable to a more general case of
nonperiodic boundary conditions. A more detailed discussion of the spectrum and pseudospec-

39

−6 −5 −4 −3 −2 −1 0
0

50

100

150

p = 2

p = 1

p = 3

e− z

z

Figure 2.6: Comparison of e−z with | fp+1(z)| for p = 1, 2, 3.

trum of the DG discretization can be found in [38].

2.6 Padé approximants and the dispersion relation

The one dimensional linear advection equation (2.2) admits non-trivial solutions of the form

u(x, t) = cei(kx−ωt), (2.86)

where wave number k and frequency ω satisfy the dispersion relation

ω = ak. (2.87)

The numerical scheme usually admits non-trivial solutions similar to (2.86) with k approximated
by a numerical wave number k̃(ω). This numerical wave number gives information on the ability
of the scheme to capture wave propagation. The real part of k̃ is responsible for a phase shift, i.e.
the dispersion error, in the numerical solution. The imaginary part of k̃ affects the dissipative or
diffusive property of the scheme.

40

Let us assume that the numerical solution has the form

c j = e−iωteik̃ j∆xc̃, (2.88)

where c j is the vector of the coefficients. Substituting (2.88) into (2.1) yields

d
dt

e−iωteik̃ j∆xc̃ =
a
∆x

(
Dne−iωteik̃(j−1)∆xc̃ + Ane−iωteik̃ j∆xc̃

)
, (2.89)

or (
−iω
∆x
a

eik̃∆xI − eik̃∆xAn − Dn

)
c̃ = 0. (2.90)

Equation (2.90) has a nontrivial solution when the determinant of the matrix in the bracket is
zero. Changing the variables λ = −iω∆x

a and ξ = eik̃∆x, and comparing (2.90) to (2.25), we obtain
that fn(λ) = ξ, i.e., the numerical dispersion relation is

fn(−iω
∆x
a

) = eik̃∆x. (2.91)

When ω∆x
a is small, fn(−iω∆x

a) = eiω ∆x
a + O(∆x2n). Thus, we can estimate

k̃ =
−i
∆x

[
−iω
∆x
a
+ O(∆x2n)

]
= k + O(∆x2n−1). (2.92)

Noticing that n = p + 1, we obtain that the dispersion and dissipation errors are of the order
O(∆x2p+1). We conclude that the growth of the spectrum with the order of approximation p and
the dispersion and dissipation errors of the DGM are defined by the way the scheme approximates
ez or e−z.

41

Chapter 3

Spectrum of the DGM on Nonuniform
Grids

3.1 Eigenvalues of L on nonuniform meshes

In this chapter we will analyze the eigenvalues of the spatial discretization matrix L when the
mesh is not uniform. We are interested in how small cells in the mesh influence the global
stability restriction given by the large cells with the aim to find a time step restriction less severe
than the one defined by (1.18). We are particularly interested in cases where small cells comprise
a small proportion of the mesh. This can be the case for Cartesian methods with embedded
geometries. The cut cells near the embedded boundaries are of irregular size but comprise a
small proportion of the mesh. Quite often, they are allowed to be a half of a regular cell size
reducing the global time step by a half.

Following the derivation in Section 2.2, we obtain a system of ODEs similar to (2.1)

ċ =
a
∆x

Lc, (3.1)

42

where ∆x = maxN
j=1 ∆x j. With the periodic boundary conditions, L is a block matrix of the form

L =

∆x
∆x1

An 0 0 . . . 0 0 ∆x
∆x1

Dn
∆x
∆x2

Dn
∆x
∆x2

An 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 ∆x

∆xN
Dn

∆x
∆xN

An

 =

m1An 0 0 . . . 0 0 m1Dn

m2Dn m2An 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 mN Dn mN An

 ,
(3.2)

where m j =
∆x
∆x j
, j = 1, 2, . . . ,N and Dn, An are n × n, n = p + 1 matrices described in (2.7) and

(2.13). Following the derivation in Section 2.2, we obtain that the characteristic polynomial of
the matrix L is

N∏
j=1

fp+1(
λ

m j
) = 1. (3.3)

Then, the eigenvalues of L are the roots of the equation (3.3). According to Theorem 3, function
fp+1(z) is the [p/p + 1] Padé approximant of e−z.

The time step restriction in numerical integration of the system of ODEs (2.1) on a uniform
grid is defined by the spectrum of L and the mesh size ∆x. If the mesh is refined uniformly by,
say, a factor of two, the time step will be reduced by the same factor. However, if only one cell is
refined, it is reasonable to assume that the spectrum of L will not change much. In this section,
we investigate how a presence of few small cells influences the eigenvalues of L.

Equation (3.3) gives a closed form formula for the eigenvalues of L. However, each fp+1(λ
m j

) is
a rational function. Thus, to solve for λwould require finding the roots of a high order polynomial
which is a more complicated task than directly finding eigenvalues of L using a linear algebra
method. Nevertheless, (3.3) can give us an insight into the behavior of the spectrum and useful
estimates on the eigenvalues.

We start with a simplifying assumption on composition of the mesh and derive a number
of results. In particular, we assume that the mesh has cells of two sizes only: ∆x and ∆x/m,
m > 1. We refer to the ∆x-sized cells as large cells and to the ∆x/m-sized cells as small or
refined cells (smaller cells in practice come from adaptive refinement aiming to resolve either
a solution features or the computational domain’s geometry). In Section 3.1.1 we establish that
there are two distinct cases: m greater and m smaller than some critical value. In the following
two sections, we obtain accurate estimates for the spectrum for these two cases. Based on these
results, we conjecture a bound on the spectrum when the simplifying assumptions are lifted
(Section 3.1.4).

Having obtained the estimates of the spectrum based on various bounds on the roots of (3.3),
we discuss when these estimates can be useful. The difficulty with the eigenvalues of L on

43

nonuniform meshes is that they can be badly conditioned. We try to quantify this in Section
3.1.5. Finally, we summarize the results of Sections 3.1.1-3.1.5 in Section 3.2.

3.1.1 Spectral curves

We start with a uniform mesh, i.e. m j = 1, ∀ j, in (3.2). Then, (3.3) becomes

N∏
j=1

fp+1(λ) = 1 (3.4)

or
fp+1(λ) = e

2πi j
N , j = 0, 1, 2, . . . ,N − 1. (3.5)

Passing N to infinity, we see that equations (3.4) and (3.5) describe points on the closed curve Γp

Γp =
{
z

∣∣∣| fp+1(z)| = 1 , z ∈ C
}
. (3.6)

In the discussion that follows, we will not make a verbal distinction between the discrete eigen-
values (3.5) and continuous equation (3.6) and refer to both as a spectral curve. Examples of the
spectral curves for p = 1, 2, 3, 4 are shown in Figure 3.1. A simple observation here is that the
spectrum size increases with p. This growth is responsible for the 1/(2p + 1) factor in (1.18).

By (2.26), fp+1(z) is a rational function with the degree of the denominator equal to p + 1.
Hence, it has p + 1 poles in the complex plane. We list the poles for p = 1, 2, 3, 4 in Table 3.1.
Denoting the poles by rp

i , i = 0, 1, . . . , p, we can write fp+1(z) as

fp+1(z) =
p∑

i=0

wp
i

z − rp
i

, (3.7)

where wp
i are some constants. It follows from (3.7) that | fp+1(z)| decreases as |z| increases when

z is sufficiently far away from {rp
i }. In particular, | fp+1(z)| → 0 as |z| → ∞. Then, Γp is a curve

enclosing all poles of | fp+1(z)| with | fp+1(z)| > 1 inside the curve and | fp+1(z)| < 1 outside the
curve. As an example, we plot f2(z) in Figure 3.2.

Next, we consider a nonuniform mesh with ∆x j = ∆x/m j. ∆x is taken to be the size of the
largest cell in the mesh. Analogous to the uniform case, we consider a curve

Γm
p =

z

∣∣∣∣∣∣∣
N∏

j=1

∣∣∣∣∣∣ fp+1

(
z

m j

)∣∣∣∣∣∣ = 1, z ∈ C

 , (3.8)

44

−7 −6 −5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

1

2

3

4

5

−12 −10 −8 −6 −4 −2 0
−8

−6

−4

−2

0

2

4

6

8

−20 −15 −10 −5 0

−10

−5

0

5

10

−30 −25 −20 −15 −10 −5 0
−20

−15

−10

−5

0

5

10

15

20

Figure 3.1: Spectrum of the DG discretization plotted as a curve (3.6) for p = 1, 2, 3, 4, from left
to right, from top to bottom.

and view solutions of (3.3) as points on this curve. Depending on m j and the location of the poles
of fp+1(z), Γm

p can be a closed curve or it can consist of several branches.

Let us first consider a simple case where the mesh consists of cells of two sizes only: ∆x
and ∆x/m. We assume that there are k smaller cells of size ∆x

m and N − k larger cells of size ∆x
with a total of N cells. Although the way ∆x− and ∆x

m −sized cells are distributed in the mesh
affects the composition of L (see (3.2)), its eigenvalues are given by (3.3) and, hence, depend
only on the relative number of cells of each size. We introduce a parameter α = k/N, with α = 0
corresponding to a mesh consisting only of cells of size ∆x and α = 1 corresponding to a mesh
consisting only of cells of size ∆x

m . Taking the root N of (3.3), we find that the eigenvalues of L

45

−7 −6 −5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

1

2

3

4

5

−8
−6

−4
−2

0

−5

0

5
−2

0

2

4

6

xy

lo
g

|f
|

Figure 3.2: Left: isolines of | f2(z)| = 1, 10, 102, 103 (from the outer to the inner curve); plus signs
denote two poles. Right: surface plots of | f2(z)|, z = x + iy, log scale.

p Poles
1 −2 ±

√
2i

2 −3.637834252744488
−2.681082873627759 ± 3.050430199247417i

3 −3.212806896871531 ± 4.773087433276634i
−4.787193103128471 ± 1.567476416895206i

4 −6.286704751729255
−3.655694325463563 ± 6.543736899360069i
−5.700953298671815 ± 3.210265600308537i

Table 3.1: Poles of fp+1(z) for p = 1, 2, 3, 4.

lie on the curve
Γm,α

p =

{
z

∣∣∣∣∣ | f 1−α
p+1 (z) f αp+1(

z
m

)| = 1, z ∈ C
}
, 0 < α < 1. (3.9)

We investigate how m influences the shape of Γm,α
p . We observe that the curve | fp+1(z

m)| = 1
is a simple scaling (enlargement) of the curve | fp+1(z)| = 1 by a factor m and denote it by mΓp.
The poles of fp+1(z

m) are multiples of the poles of fp+1(z) and are equal to mrp
i . Inside Γp, both

fp+1(z) and fp+1(z
m) are greater than one in magnitude (Figure 3.3). Similarly, outside mΓp, both

functions are less than one in magnitude. Then, the solution of (3.9) should lie in the region
between two curves where we have | fp+1(z

m)| > 1 and | fp+1(z)| < 1 (Figure 3.3). If all poles

46

p 1 2 3 4
M 2.26 2.40 2.48 2.53

Table 3.2: Values of Mcr for p = 1, 2, 3, 4.

of mΓp, mrp
i , are located inside Γp, then both functions are smooth in the region between two

curves. Then, there exists a solution to (3.9) that geometrically forms a closed curve. We cannot
make the same statement when fp+1(z

m) has poles in this region, i.e. some mrp
i lie outside Γp.

In this case, depending on the values of m and α, the curve Γm,α
p might consist of one or several

branches. Thus, the refinement factor m determines the type of spectral curves on nonuniform
meshes. In Table 3.2, we list the approximate critical values of m, Mcr, for p = 1, 2, 3, 4. The
critical values were obtained numerically by finding m such that mrp

i lies on Γp for one of the
poles. When m is smaller than Mcr, Γm,α

p is a closed curve; it may have a more complex form
otherwise.

3.1.2 Mesh refinement by a factor m less than Mcr

We continue with the simple case where the mesh contains N − k cells of size ∆x and k cells of
size ∆x

m . The refinement factor m is assumed to be greater than one but less than the critical value
Mcr reported in Table 3.2. We estimate growth of the spectrum as a function of α, i.e. the ratio
of small cells to the total number of cells, for a fixed m. In Figure 3.4, left, we plot the spectrum
of L on a hundred cell mesh with 0, 20, 40, 60, 80, and 100 small cells and p = 1. We also plot
the largest eigenvalue by magnitude versus the number of small cells in Figure 3.4, right. We
observe that the spectrum enlarges nearly linearly as a function of α.

Noting that −6 is the largest in magnitude root with α = 0 and −6m is the largest root with
α = 1, we substitute

z = −6[1 + (m − 1)α] (3.10)

into (3.9) to obtain function g(m, α)

g(m, α) =
∣∣∣∣∣ f 1−α

2 (−6[1 + (m − 1)α]) f α2 (
−6[1 + (m − 1)α]

m
)
∣∣∣∣∣ . (3.11)

We plot g(m, α) in Figure 3.5 with m ∈ [1, 2.26] and observe that g(m, α) = 1 when α = 0, 1, and
g(m, α) is strictly less than one when α ∈ (0, 1), m , 1. This means that for z satisfying (3.10),
| f 1−α

2 (z) f α2 (z
m)| < 1, i.e. these z must be located to the left of the curve Γm,α

1 . Thus, (3.10) is a
bound on the real root which we take to be a proxy for the size of the spectrum. We also note

47

f p(z) > 1
f p(z

m) > 1
f p(z) < 1
f p(z

m) > 1

f p(z) < 1
f p(z

m) < 1

Figure 3.3: Spectral curves Γp (inner) and mΓp (outer). Dots denote solution of (3.9). p = 1,
m = 2.

that the curve plotting the largest eigenvalue and the linear bound are close (Figure 3.4, right),
so the bound is tight. Additionally, we plot the largest eigenvalues by magnitude for p = 2 and
p = 3 with m = 2 in Figure 3.6 and observe that the growth rate of the spectrum is also slightly
lower than linear. The analysis with these orders of approximation is similar and is omitted here.

We conclude that if a mesh consists of only two types of cells and the refinement factor m is
less than the critical value given in Table 3.2, increasing the proportion of small cell α leads to
enlargement of the spectrum by a factor approximately equal to 1 + (m − 1)α.

48

−14 −12 −10 −8 −6 −4 −2 0 2
−8

−6

−4

−2

0

2

4

6

8

0 20 40 60 80 100
6

7

8

9

10

11

12

13

Figure 3.4: Left: Eigenvalues of L for meshes consisting of 100 cells with 0, 20, 40, 60, 80, and
100 half-size cells and p = 1. The inner curve corresponds to the mesh with no half-size cells.
Right: Largest eigenvalues by magnitude (vertical axis) versus the number of half-size cells, k,
in a N = 100 cell mesh (horizontal axis); dots denote the eigenvalues and the solid line denotes
z = 6[1 + k/N].

3.1.3 Mesh refinement by a factor m greater than Mcr

Next, we consider the case when m is greater than the critical factor Mcr. By discussion in Section
3.1.1, Γm,α

p might consist of several curves with eigenvalues of L located on those distinct curves.
Let us first consider the case when all cells have the same size ∆x except for one small cell of
size ∆x

m . We will look for an approximation of (p + 1)N roots of (3.3). Letting f̃p+1(z) = fp+1(z
m),

we can write (3.3) as

fp+1(z) = N−1

√
1

f̃p+1(z)
. (3.12)

Away from the poles mrp
i , we have 1 < | f̃p+1(z)| 6 c < ∞. Then, we obtain

∣∣∣ fp+1(z)
∣∣∣ = ∣∣∣∣∣∣∣ N−1

√
1

f̃p+1(z)

∣∣∣∣∣∣∣→ 1, as N → ∞.

So,
fp+1(z) ≈ ω, where ω =

N−1√
1. (3.13)

49

1

1.5

2
0

0.2
0.4

0.6
0.8

1

0.9

0.95

1

α
m

g(
m

,α
)

Figure 3.5: Plot of function g(m, α), p = 1.

0 10 20 30 40 50
10

12

14

16

18

20

22

24

0 10 20 30 40 50
15

20

25

30

35

40

Figure 3.6: Largest eigenvalues by magnitude (vertical axis) versus the number of half-size cells,
k, in a 50-cell mesh with p = 2 (left) and p = 3 (right). Dots denote the eigenvalues and solid
line denotes z = z?[1 + k/N]. z? = 11.84 with p = 2 and z? ≈ 19.16 with p = 3 [38].

50

−10 −8 −6 −4 −2 0
−8

−6

−4

−2

0

2

4

6

8

−20 −15 −10 −5 0 5
−20

−15

−10

−5

0

5

10

15

20

−25 −20 −15 −10 −5 0
−25

−20

−15

−10

−5

0

5

10

15

20

25

−35 −30 −25 −20 −15 −10 −5 0 5
−40

−30

−20

−10

0

10

20

30

40

Figure 3.7: Spectrum of L on a 100 cell mesh with 99 cells of size ∆x and one cell of size ∆x
5 .

p = 1, 2, 3, 4, left to right, top to bottom.

We can solve (3.13) to obtain (p + 1)(N − 1) distinct roots. Equation (3.13) is similar to the
previously considered case of a uniform mesh (3.4)-(3.5) which leads us to conclude that its
roots will be located on a curve similar and close to Γp.

Next, we seek to estimate the remaining (p + 1) roots of (3.3). We rewrite (3.3) as

f̃p+1(z) =
1

f N−1
p+1 (z)

. (3.14)

As discussed in Section 3.1.1, the solution of (3.3) is located outside Γp (Figure 3.3). Hence,
| fp+1(z)| < 1 in (3.14). Then, f N−1

p+1 (z) → 0 as N → ∞, i.e. z must be close to the poles of f̃p+1(z)
in order to satisfy (3.14). Thus, we have an estimate for those p + 1 roots with relatively large

51

modulus as
z = mrp

i . (3.15)

Similarly, when the mesh has a few small cells of different sizes ∆x
m j

, L has eigenvalues that are
close to the corresponding multiples of the poles, i.e. m jr

p
i .

−25 −20 −15 −10 −5 0 5
−15

−10

−5

0

5

10

15

Figure 3.8: Spectrum of L on a 100 cell mesh with 96 cells of size ∆x and four cells of sizes
∆x/4, ∆x/6, ∆x/8, and ∆x/10 with p = 1. Circles denote exact eigenvalues, plus sizes denote
approximations.

We illustrate our findings in Figures 3.7 and 3.8. In the results presented in Figure 3.7, the
meshes consist of one hundred cells with 99 cells of size ∆x and one cell of size ∆x/5 with
p = 1, 2, 3, 4. We observe that for all p all eigenvalues lie on a curve similar to one on uniform
meshes (Figure 3.1) except for (p + 1) outlying eigenvalues. We compute the eigenvalues using
MATLAB and their estimates according to (3.13) and (3.15) . Then, we compare the results
to find that they differ by 10e − 14. This indicates that even though (3.13) and (3.15) are only
asymptotically correct when N → ∞, the estimates on a modestly sized one hundred cell mesh
are extremely accurate. This is not very surprising given that the power function grows and
decays exponentially fast. Figure 3.8 shows eigenvalues on a one hundred cell mesh with first
four cells of size ∆x/4, ∆x/6, ∆x/8, and ∆x/10, with p = 1. The exact eigenvalues (circles)
and the approximation given by (3.15) (plus signs) are again extremely close. The outlying
eigenvalues are 4, 6, 8, and 10 multiples of (−2 ±

√
2i).

Next, we allow the mesh to have N − k cells of size ∆x and k cells of ∆x
m . When k is small,

the outlying roots cluster in the neighborhood of points given by (3.15) with the radius of the
neighborhood depending on the number of small cells (Figure 3.9). As k increases, the size of

52

the cluster enlarges until it mergers with the larger curve (Figure 3.10). We do not attempt to find
an estimate for these eigenvalues for two reasons. First, we treat it as a part of a more general
case considered in Section 3.1.4. Second, pseudospectra of L on such meshes is far from the
spectrum making the exact estimates not very useful. The second point is further discussed in
Section 3.1.5.

−7 −6 −5 −4 −3 −2 −1 0 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

−7 −6 −5 −4 −3 −2 −1 0 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3.9: Left: The first cell in the N = 50 mesh has size ∆x
3 and the rest are of size ∆x. Right:

The first 5 cells in the N = 50 mesh have size ∆x
3 and the rest are of size ∆x. p = 1.

−12 −10 −8 −6 −4 −2 0 2
−8

−6

−4

−2

0

2

4

6

8

Figure 3.10: A half of the cells in the N = 50 mesh have size ∆x
3 and the other are of size ∆x.

53

3.1.4 Mesh with cells of arbitrary sizes

We turn to a general case where we make no assumptions on the composition of a mesh. For
a given N-cell mesh, the size of the largest cell is called ∆x and m j = ∆x/∆x j, j = 1, 2, . . . ,N.
Finding the exact solution of (3.3) for an arbitrary set of {m j} does not seem feasible. Instead, we
seek to use the ideas from Sections 3.1.2 and 3.1.3 to conjecture a bound on the spectrum.

Given that the spectrum grows almost linearly as a function of the proportion of small cells
for low values of m when only two types of cell sizes are present (Section 3.1.2), we conjecture
a linear in m j bound on the size of the spectrum in the general case as well. That is, we estimate
the growth rate by the average of factors m j

m̄ =
1
N

N∑
j=1

m j (3.16)

if m j < Mcr, ∀ j. Thus, the estimate for the spectrum is m̄Γp. We present the spectrum of L where
cell sizes are random values between 1 and Mcr, p = 3 and N = 50 in Figure 3.11. The bound
appears to be accurate.

Next, we incorporate into the estimate where m j > Mcr for some j. From Section 3.1.3 and
equation (3.15), the largest eigenvalues are proportional to the poles (Figures 3.7 and 3.8). Let
zr,i, i = 1, 2, . . . , p+ 1, be a point of Γp lying on the line connecting the pole rp

i and the origin and
let βi = |zr,i|/|r

p
i |. Then we have the following estimate on the largest eigenvalue on this line

1
N

N∑
j=1

m̃ jr
p
i , (3.17)

where m̃ j = max
(
m jβi,m

)
and m = max j m j.

The complete bound on the spectrum of L is taken to be the combination of (3.16) and (3.17).
In Figure 3.12 we give a couple of examples. In the first example, we have the first ten cells
of a hundred cell mesh being of size ∆x

3 and the rest of size ∆x. In the second example, the
mesh consists of fifty cells of random sizes. The plus signs denote an estimate on eigenvalues
corresponding to the cells close in size to the largest cell. They were calculated using (3.16). The
circles denote an estimate on the outlying eigenvalues corresponding to the smaller cells. These
were computed using (3.17). Note the alignment of the larger eigenvalues along straight lines
which are the lines connecting the origin and r1

1 and the origin and r1
2. Both the estimate for the

eigenvalues corresponding to large cells and the estimate for the outlying eigenvalues are quite
accurate.

54

The estimates given in this section are less tight than the ones presented in Sections 3.1.2 and
3.1.3. However, they are much closer to the true spectrum than to the spectrum scaled by the
size of the smallest cell. We note that for the example in Figure 3.11 the spectrum scaled by the
size of the smallest cell ∆x/2.48, would have the largest eigenvalue by magnitude approximately
equal to 19.16 ∗ 2.48 = 47.71, where 19.16 is the largest eigenvalue by magnitude of the p = 3
discretization (Figure 3.1). Similarly, for the example in Figure 3.12, left, the value is 6 ∗ 3 = 18.
Thus, even though the estimates in this section are more relaxed, they are still quite accurate.
Finally, we note that the conjecture has been extensively tested on multiple cases in which it
consistently provides an upper bound on the exact eigenvalues.

−35 −30 −25 −20 −15 −10 −5 0 5
−20

−15

−10

−5

0

5

10

15

20

Figure 3.11: Eigenvalues and a bound given by (3.16) with p = 3, m j are random numbers
between 1 and 2.48. Dots denote the eigenvalues, plus signs denote the estimate.

3.1.5 Pseudospectra

In numerical simulations, components of L are evaluated at every time integration step. This
process is seldom exact, especially for nonlinear problems. In (1.13), we commit errors while
evaluating U j and Pk, using numerical quadratures, etc. Consequently, the entries of L used in
computations are perturbed values of the exact L. If L is such that its eigenvalues are very sensi-
tive to perturbations, i.e. small changes to its components result in large changes in eigenvalues,
the spectrum of the computed L might be far from the spectrum of the exact L.

55

−8 −7 −6 −5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

1

2

3

4

5

−90 −80 −70 −60 −50 −40 −30 −20 −10 0 10
−60

−40

−20

0

20

40

60

Figure 3.12: Eigenvalues and a computed bound with p = 1. Dots denote the eigenvalues, plus
signs denote the estimate given by (3.16), and circles denote the estimate in the directions of
the poles given by (3.17). Left: The first 10 cells out of 100 cells have size ∆x

3 . Right: A mesh
consists of 50 cells of random sizes ∆x j.

We define ε-pseudospectrum σε(L) of matrix L as the set of z ∈ C such that

z ∈ σ(L + E) (3.18)

for some E ∈ CN(p+1)×N(p+1) with ||E|| < ε, where σ(L) is the spectrum of L. Computation of the
pseudospectra in this section follows the algorithm from Section 39 in [52]. We use an equivalent
definition of σε(L)

σε(L) = {z ∈ C | smin(zI − L) < ε} , (3.19)

where smin(·) denotes the minimum singular value. We compute smin(zI−L) on a rectangular grid
in the domain of interest in the complex plane using MATLAB built-in functions. A contour plot
is used to show the boundaries of pseudospectra.

Computing pseudospectra using (3.19) is time intensive and cannot be done in run time,
especially for large-scale problems. Here, we examine spectra and pseudospectra of L on a
number of sample meshes with the aim to determine when they are close and when they are
far apart. First, we consider fifty-cell meshes where the first cell or the first five cells are of
size ∆x

m and the rest are of size ∆x with p = 1. We plot spectra and pseudospectra with m = 2
(top) and m = 3 (bottom) in Figure 3.13. When only one small cell is present in the mesh,
the pseudospectra are close to the spectrum (Figure 3.13, left). However, when five small cells

56

are located next to each other, the pseudospectra grows fast with ε (Figure 3.13, right). To test

−8 −7 −6 −5 −4 −3 −2 −1 0

−6

−4

−2

0

2

4

6

−8 −7 −6 −5 −4 −3 −2 −1 0

−6

−4

−2

0

2

4

6

−8 −7 −6 −5 −4 −3 −2 −1 0

−6

−4

−2

0

2

4

6

−8 −7 −6 −5 −4 −3 −2 −1 0

−6

−4

−2

0

2

4

6

Figure 3.13: Lines denote pseudospectra corresponding to ε = 10−1, 10−2, . . . , 10−12, p = 1,
N = 50. Dots denote the eigenvalues. Meshes consists of cells of sizes ∆x and ∆x/m with one
∆x/m-sized cell (left) and five ∆x/m-sized cells. m = 2 (top row) and m = 3 (bottom row).

whether the number of small cells or their location influences the size of pseudospectrum, we
consider two meshes consisting of twenty cells each with ten cells of size ∆x and ten cells of
size ∆x/m. However, the ordering of cells in these meshes is different. Mesh one has small and
large cells interlaced, i.e. large, small, large, small, etc. Mesh two has its cells arranged into two
blocks: ten cells of size ∆x followed by ten cells of size ∆x/m. The spectrum and pseudospectra
of these meshes are shown in Figure 3.14 with m = 2 (top) and m = 5 (bottom). The spectrum
of both meshes is the same by equation (3.3). However, the pseudospectra are quite different

57

with the pseudospectrum of the first mesh being close to the spectrum and the pseudospectra
of the second growing fast with ε. Finally, we test whether only the number of small cells or

−15 −10 −5 0
−10

−8

−6

−4

−2

0

2

4

6

8

10

−12 −10 −8 −6 −4 −2 0 2
−8

−6

−4

−2

0

2

4

6

8

−15 −10 −5 0
−15

−10

−5

0

5

10

15

−30 −25 −20 −15 −10 −5 0

−15

−10

−5

0

5

10

15

Figure 3.14: Spectrum (dots) and pseudospectra (lines) corresponding to ε =

10−1, 10−2, . . . , 10−8. Meshes consists ten ∆x and ten ∆x/m-sized cells. m = 2 (top row)
and m = 5 (bottom row), interlaced cell sizes (left column) and cells arranged in blocks
according to size (right column).

the proportion of the number of small cells to the total number of cells influence pseudospectra.
Again, we plot the spectra and pseudospectra with p = 1 and m = 2 and m = 5. All meshes have
20 small cells; the results in the left column of Figure 3.15 were computed on sixty cell meshes
and the results in the right column on two hundred cell meshes. The pseudospectra seem similar,
i.e. not influenced by the total number of cells.

58

−12 −10 −8 −6 −4 −2 0
−8

−6

−4

−2

0

2

4

6

8

−12 −10 −8 −6 −4 −2 0
−8

−6

−4

−2

0

2

4

6

8

−20 −15 −10 −5 0
−15

−10

−5

0

5

10

15

−20 −15 −10 −5 0
−15

−10

−5

0

5

10

15

Figure 3.15: Spectrum (dots) and pseudospectra (lines) corresponding to ε =

10−1, 10−2, . . . , 10−12. Meshes consists of cells of sizes ∆x and ∆x/m with twenty ∆x/m
cells. m = 2 (top row) and m = 5 (bottom row), N = 60 (left column) and N = 200 (right
column).

The conclusion from our experiments is that when small cells are isolated from each other, the
pseudospectra are close to the spectrum. However, when small cells are located adjacent to each
other in a block of cells the pseudospectra are far from the spectrum. An intuitive explanation
for this phenomenon is that the second mesh can be viewed as a composition of two meshes of
size ∆x and ∆x/m. Then, the pseudospectra on mesh two approaches the spectrum of ∆x/m sized
mesh as ε and/or the total number of cells in it increases. A formal argument can be based on
Theorem 2.4 for block matrices in [52], p. 20, as L can be split into two blocks corresponding to

59

Table 3.3: Condition number of the largest eigenvalue of L on N = 200 meshes. k is the number
of small cells.

p = 1 p = 2 p = 3 p = 4
k m = 2 m = 5 m = 2 m = 5 m = 2 m = 5 m = 2 m = 5
1 2.41 2.65 1.27 3.63 1.33 2.52 1.32 2.01
2 12.10 1.44E8 2.54 16.54 2.98 34.10 1.77 7.77
3 73.84 4.72E10 11.98 4.49E8 3.34 1.17E2 3.03 3.97E2
4 4.69E2 1.31E12 19.45 1.55E9 15.57 1.79E9 4.69 3.36E3
5 2.96E3 6.80E12 74.73 1.27E11 17.95 3.51E9 17.26 9.73E9

cells of each size.

The growth of the size of pseudospectra is the result of the nonnormality of L. L is always
diagonalizable with L = VΛV−1, but V might be nonunitary. Then, ||V || · ||V−1||might be large and
the powers of matrix L will depend not only on its eigenvalues but also on the basis of eigenvec-
tors V . The condition number of the matrix V provides an upper bound for the pseudospectrum
of L. This is described in the Bauer-Fike theorem ([52], p.20). The sensitivity of each eigenvalue
to perturbations is related to its condition number defined by the reciprocals of the cosines of the
angles between its left and right eigenvectors. In Table 3.3 we give the condition number of the
largest eigenvalues by magnitude for various numbers of small cells in a block in a two hundred
cell mesh. We note that when m > Mcr, the condition number is large when the number of small
cells is greater than one (p = 1) or two (p > 1). When refinement factors are smaller than critical
values, more cells can be entered in a row without affecting the condition number much. We also
note, that condition numbers grow slower for higher orders of approximation p.

To conclude, when cell sizes are intermingled in a mesh, the eigenvalues are well conditioned
and the spectrum can be used to calculate a less restrictive condition on a time step. However,
when cells are grouped according to size, the spectrum might not be a reliable instrument. Table
3.3 gives an idea how many cells can be grouped in a block before the pseudospectra starts to
grow. We finally note that the pseudospectra converge to the curve mΓp, where m is the largest
refinement factor, i.e. to the spectral curve defined by the smallest cells (Figure 3.1) and Figures
3.13 - 3.15).

In the next section, we demonstrate that we still can use the spectrum-defined time step for
solution of linear problems but such calculations become unstable for nonlinear equations. A
curious case is a mesh consisting of randomly sized elements (Figure 3.12, right), i.e. randomly
scaled Ap and Dp in L. Random matrices have well-conditioned eigenvalues [52] and so is L in

60

this case.

3.2 Numerical tests

In this section we solve a number of problems using the DGM with the time step determined
according to the analysis in Sections 3.1.2-3.1.4. We perform long time computations so that if
slight instabilities were present, they would become apparent.

Before moving on to numerical experiments, we summarize the findings of previous sections.

Summary of Results

• The spectrum can be used to find a stable time step that is larger than the one prescribed
by the classical theory.

• The size ratio of the largest to the smallest cell influences the shape of the spectrum. Two
cases need to be considered: the ratio greater and the ratio smaller than the order-dependant
critical value reported in Table 3.2.

– The ratio smaller than the critical one results in a continuous enlargement of the
spectrum.

– The ratio larger than the critical one results in appearance of large eigenvalues located
away from the main spectral curve.

• When the number of small cell located next to each other is small (Table 3.3), the spectrum
can be reliably used to find a stable time step that is much larger than the one given by the
classical CFL restriction.

• When the number of small cells located next to each other is large (Table 3.3), the pseu-
dospectrum converges to the spectrum defined by the smallest cells.

3.2.1 One dimensional linear advection equation

We solve the linear advection equation (2.2) on interval [−1, 1] with periodic boundary conditions
using linear approximation in space. The initial condition is u(x, 0) = sin(πx). The mesh has 100
cells of size ∆x and one small cell of size ∆x

5 , i.e. m = 5 and m > Mcr. The small cell is located
near the left endpoint. According to the analysis in Section 3.1.3, matrix L has two large outlying
eigenvalues approximately equal to 5(−2 ±

√
2i). For the fully discrete scheme to be stable ∆t

61

should be small enough so that the eigenvalues of ∆t/∆xL all lie in the absolute stability region
of the time integration scheme. We use the classical second order Runge-Kutta (RK2) scheme.
Its stability region is given by [27] ∣∣∣∣∣1 + z +

1
2

z2
∣∣∣∣∣ 6 1. (3.20)

Substituting z = ∆tm(−2 ±
√

2i), m > Mcr into (3.20) and solving for max∆t, we find that the
time step in this case should be ∆t 6 2.685

m
∆x
3 instead of 1

m
∆x
3 given by (1.18), i.e. it can be safely

increased by a factor of 2.685. We plot the result of the computation with ∆t = 2.685
5
∆x
3 = 0.537∆x

3
in Figure 3.16, left. In Figure 3.16, right, we present the computation performed with a slightly
larger time step ∆t = 0.538∆x

3 . This computation was clearly unstable. We conclude that our
estimate of the largest eigenvalue is accurate and tight. Similarly, we can compute the time step
restriction with p = 2 and p = 3 paired with RK 3 and RK4. These are given in Table 3.4.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

67

Figure 3.16: Numerical solutions for Example 3.2.1 at time T = 100 with p = 1, N = 101. The
left one is using ∆t = 0.537∆x

3 , the right one is using ∆t = 0.538∆x
3 .

Next, we solve the problem on a number of meshes with the refinement factor smaller than
the critical value and present the results in Table 3.5, where N is the total number of elements
and k is the number of small cells. We took m = 2. We note that ∆x in Table 3.5 is not the
same on the three meshes that we used because it depends on the number of small cells and their
size. The numbers in the “CFL-exact” column were determined by the exact eigenvalues and
were tested in numerical experiments by integrating to the final time T = 100. The data in the
“CFL-estimate” column refers to the time restriction obtained by using the approximate upper

62

Table 3.4: CFL number on meshes having a few small cells, m > Mcr.

p Time integration scheme Time step estimation Classical time step Improvement

1 RK2
0.895∆x

m
∆x
3m

2.685

2 RK3
0.594∆x

m
∆x
5m

2.970

3 RK4
0.455∆x

m
∆x
7m

3.185

Table 3.5: Time restriction with varying mesh composition.

N k Size of small cells CFL - exact CFl-estimate

100 1 ∆x/2
∆x
3
× 0.993

∆x
3
× 0.990

100 20 ∆x/2
∆x
3
× 0.865

∆x
3
× 0.833

100 50 ∆x/2
∆x
3
× 0.694

∆x
3
× 0.667

63

bound discussed in Section 3.1.4. Again the approximated values are slightly below the exact
values and provide a safe and tight estimate. We note that for this linear problem on a relatively
small mesh, the instabilities due to badly conditioned eigenvalues are not present and we are able
to carry out computations with a time step defined by the exact eigenvalues.

Finally, we consider a mesh with several levels of refinement. The mesh is composed as
follows: 3 × ∆x

16 , 500 × ∆x
8 , 500 × ∆x

4 , 500 × ∆x
2 , 1000 × ∆x, 500 × ∆x

2 , 500 × ∆x
4 , 500 × ∆x

8 , 2 × ∆x
16 ,

where 500 × ∆x
8 denotes five hundred cells of size ∆x

8 . Thus, the mesh consists of 4005 elements.
This simulates a Cartesian mesh with four levels of refinement and a few cut cells half the size
of the smallest regular cell located near the boundaries. The pseudospectrum of L in this case
approaches the spectral curve Γ1 scaled by m = 8, i.e. the spectrum defined by the smallest
regular cell. We solve the problem with p = 1 and ∆t = 1

8
∆x
3 and find the computations stable.

We repeat computations with p = 2 and ∆t = 1
8
∆x
5 and find them stable as well. We conclude that

a few cut cells with the half size of the smallest regular cell do not influence stability restriction
on a large mesh. The allowable number of such small cells in a block near the boundary is given
in Table 3.3. We also consider a mesh with cut cells that are smaller, i.e. the composition of the
mesh is ∆x

40 , 500× ∆x
8 , 500× ∆x

4 , 500× ∆x
2 , 1000×∆x, 500× ∆x

2 , 500× ∆x
4 , 500× ∆x

8 , ∆x
40 . The largest

eigenvalues in the spectrum correspond to the smallest cells. First, we notice that m = 40 for this
mixed-size element mesh and choose the time step using Table 3.4. We solve the problem with
p = 2 and observe a nearly three-fold improvement over the global time step ∆t = 1

40
∆x
5 .

3.2.2 Burgers’ equation

We solve the Burgers’ equation

ut + uux = 0, x ∈ [−1, 1], (3.21)

with the initial condition u0 = 1.5 + 0.5 sin(πx). The mesh contains 64 elements of which 32
elements are of size ∆x and the rest are of size ∆x

2 , ∆x = 1/24. The large and small elements
are located alternatively. With the linear basis functions, the time step ∆timprov can be taken to

be equal to
∆x
3
× 0.667 (Table 3.5), instead of ∆treg =

∆x
3
× 0.5 corresponding to the size of the

smaller cells. Results in Figure 3.17 show that the stability is preserved with the relaxed time
restriction. In the top plots we present solutions obtained without use of a limiter as limiters can
stabilize a weakly unstable scheme. Note that the amount of work to advance the solution to some
time t = T̄ with ∆timprov is equivalent to a local time stepping, i.e. taking 32 time steps of size
∆treg and 64 steps of size ∆treg/2 to advance the whole mesh in time by each ∆treg. Admittedly,
this example is more a numerical curiosity than a useful numerical technique as meshes of this

64

type do not appear in practice.

We also solve the problem on a mesh where the cells are arranged in two blocks so that 32 ∆x
2

cells are followed by 32 ∆x-sized cells. As expected, the solution with this time step is unstable.

−1 −0.5 0 0.5 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

−1 −0.5 0 0.5 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

−1 −0.5 0 0.5 1
1.2

1.3

1.4

1.5

1.6

1.7

−1 −0.5 0 0.5 1
1.2

1.3

1.4

1.5

1.6

1.7

Figure 3.17: Numerical solutions of Burgers’ equation with p = 1 at time T = 3, the left plots are
computed with ∆t = 0.5∆x

3 and the right ones with ∆t = 0.667∆x
3 . Top plots: no limiter; bottom

plots: with minmod limiter.

65

3.2.3 Two-dimensional problems

Even though our analysis is not directly applicable to two-dimensional problems, we test if a time
step larger than the one prescribed by the standard CFL conditions can be used for these problems
as well. We do not aim to predict a stable time step here. Rather, we test what time step can be
used before a solution becomes unstable and check if it is roughly in line with one-dimensional
findings.

Two-dimensional linear advection

We consider the two-dimensional linear advection equation

ut + aux + buy = 0, (3.22)

on the domain Ω = [−2, 2] × [−2, 2] with the initial condition u(x, y, 0) = sin π(x + y) and
periodic boundary condition. The velocity vector (a, b) is taken to be (a, b) = (2, 1). The exact
solution to this problem is u(x, y, t) = sin π(x + y − (a + b)t). We discretize the domain Ω into a
Cartesian grid with 400 elements and then refine four of them by a factor of two (Figure 3.18).
The CFL condition on a uniform Cartesian grid is given by [13]

∆t 6
∆x

(2p + 1)(|a| + |b|)
, (3.23)

where ∆x is the size of the edges. Due to the presence of 16 small cells, the time step defined by
the standard CFL condition for the mesh in Figure 3.18 would be a half of ∆t given by (3.23). We
ran a series of tests to find experimentally the largest stable time step. It is given approximately
by

∆t 6 0.95
∆x

(2p + 1)(|a| + |b|)
, (3.24)

where ∆x is the size of the larger elements. Assuming that the linear growth of the spectrum
as a ratio of small cells to the total number of cells is valid for two-dimensional problems, we
have two bounds: global and direction-wise. The global bound on the growth of the spectrum
is given by a factor (1 + (m − 1)α) = 1 + 16/(396 + 16) = 1.038. Consequently the time step
should be 1/1.038 of the uniform case, i.e. ∆t 6 0.96 ∆x

3(|a|+|b|) , which is slightly above (3.24). We
can also look for a bound in the direction of the wave propagation and arrive at the factor of
1 + 4/22 = 1.182 and ∆t 6 0.85 ∆x

3(|a|+|b|) .

Euler equations

We consider a flow around a circular cylinder with the free flow Mach number equal to 0.38.
The problem is modeled using two-dimensional Euler equations given by (1.2) We solve the

66

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.18: Left: A Cartesian grid with refinement. Right: Numerical solution at final time 10
using the time step given by (3.24).

67

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 3.19: Left: A Cartesian grid around a circular cylinder. Right: Zoom near the surface of
the cylinder.

problem on a 712 cell Cartesian grid with four levels of refinement shown in Figure 3.19. There
are 36 irregular cells located on the surface of the cylinder. The cut cells which were deemed
too small, i.e. less than a half of the size of the smallest regular cell, were merged with their
neighbors (Figure 3.19, right). More details on the implementation can be found in [45]. We
start computations with a uniform free flow and run them until the steady state is reached. Our
experiment has revealed that similarly to the one-dimensional case discussed in Example 3.2.1,
we can use a time step defined by the size of the smallest regular cell. In particular, the largest
stable step can be taken to be 1.15 times the size defined by the smallest regular cell. We note
that either a limiter or a smaller time step should be used at the beginning of computations to
avoid instabilities due to high gradients in the transient flow.

68

Chapter 4

DGM on Cartesian Grids with Embedded
Geometries

4.1 Introduction

Cartesian grid methods provide an appealing approach for solving problems in complex geome-
tries due to the relative simplicity of mesh generation which is often called the bottleneck of
computational fluid dynamics simulations. Creating a high quality body-fitted mesh is a time-
consuming process often requiring significant user input. Cartesian mesh generation consists of
cutting a geometry from the Cartesian grid which is a more straightforward process and one that
can be made more automated [2]. However, it creates the so-called cut cells where the Cartesian
grid intersects the boundary of the immersed body. Cut cells may have irregular shapes, which
makes integration on them difficult. In addition, the size of such cells can be magnitudes smaller
than the size of regular grid cells. Since the global time step is defined by the smallest cell in the
mesh (1.18), the CFL condition can be very restrictive when an explicit time integration scheme
is used. These two problems are major challenges in developing viable numerical methods for
solving convection dominated problems on Cartesian grids.

A number of approaches have been proposed in the literature for dealing with the time step
restriction. A particularly simple idea is to merge a small cut cell with its neighbors until a cell
of a sufficient size is created [15, 5, 46]. Though conceptually simple, this method is difficult
to implement robustly, especially for three-dimensional problems. This prompted development
of other approaches such as h-box [29] and flux redistribution [16] methods for finite volume
schemes. The h-box method works by reconstruction of the solution on a cut cell using the
information contained in a box of the size of a regular cell. Flux redistribution allows only

69

part of the flux to be used to compute the solution on a small cell. A number of finite difference
methods seek to avoid time step restriction and to take into account the curvature of the boundary
in treating boundary points, e.g. [19, 50]. Finally, implicit time stepping is used in practical
applications and for solving Navier-Stokes equations [44, 21, 42].

Computational savings provided by the structure of Cartesian grids can be especially bene-
ficial for the computationally intensive discontinuous Galerkin methods. Nearly every aspect of
evaluation of integrals over a regular cell’s boundary and volume can be simplified by exploiting
the regularity of the grid. For example, the mapping from physical elements to the canonical
element is a simple scaling on Cartesian grids which can simplify and speed-up computing of
gradients of the test functions. The issue that makes the Cartesian grid approach for the DGM
particularly difficult is evaluation of the integral of the flux and a test function product in (1.21) on
cut cells. The integration is usually performed using a numerical quadrature rule [34]. However,
classical quadrature rules are known only for standard elements such as triangles, quadrilaterals,
etc. While generalized quadrature rules for arbitrary polygons can be computed, e.g. [43], cre-
ation of such rules is expensive (a few minutes for each polygon) and very sensitive to round-off
errors. This makes them unsuitable for our applications. An interesting approach was proposed
in [21]. They generate a quadrature rule for each cut cell by randomly choosing sampling points
and computing weights that guarantee that basis functions are integrated exactly. The algorithm
requires the number of integration points to exceed the optimal number (upwards of 400 for
p = 5) and might suffer from a poor choice of points [42] .

We propose to compute the cell volume integration by splitting each irregular cell into tri-
angles and using a standard quadrature rule on each one of them. This has several advantages.
Firstly, the quadrature rule is fast to generate and does not suffer from bad conditioning arising
either because of the location of the integration points or the cell’s shape. Secondly, it is more
efficient as it does not involve storage of the values of basis functions at these points or reevalu-
ation of them at each time step. The algorithm for splitting an arbitrary polygon into triangles is
presented in Section 4.5. For an arbitrarily shaped cut or merged cell, it might, and often does,
produce very thin triangles. This issue cannot be avoided without remeshing, i.e. moving vertices
near the boundary, which is difficult to make robust. It is known that numerical approximation
on such triangles can be poor [9]. For this reason, creating standard shape cells from cut cells
is likely to be detrimental even when implicit time integration is used. However, it is easy to
see and we show this in Section 4.5, that numerical quadrature does not suffer from thin element
arising in splitting. For the same reason, i.e. to avoid ill-conditioning associated with mapping a
badly shaped cell onto a canonical element, we define basis function on a rectangular bounding
box containing a cut or merged cell.

We use explicit time integration and cell merging to avoid time step restriction imposed by
small cut cells. The reasons for this are as follows. Implicit time integrators are prohibitively

70

expensive for the DGM where the number of degrees of freedom increases quickly with the order
of approximation, especially in three dimensions. Also, one of the main advantages of the DGM,
i.e. the locality of approximation, is lost when a global system is constructed in implicit schemes.
More involved techniques like the h-box and flux distribution methods are not straightforward to
adapt to the discontinuous Galerkin framework. Both methods stabilize the solution on a small
cell by modifying the flux on its edges. However, the DGM has a contribution from the integral
over cell volume which needs to be stabilized as well.

4.2 Mesh generation and description

Generation of Cartesian grids is a more straightforward process than creation of body fitted
meshes. A fast and robust algorithm that we largely follow here is described in, e.g. [2]. Here
we briefly describe components of the mesh generator in two dimensions.

Embedded geometry description

The embedded geometry can be described by an analytical expression or given as a ordered
set of points. With analytical expressions, we can accurately compute the points where the ge-
ometry intersects the grid. A higher order geometrical approximation of the boundary is also
easy to obtain. However, for complex geometries, the analytical description might not be avail-
able. A more general way to describe a geometry is to provide enough points located on the
boundary. Usually, a fine description of the boundary is necessary in order to have enough data
points to allow geometry driven mesh refinement. In the discussion below, we will assume that
the embedded geometry is given by a set of points and line segments connecting them.

Data structure

Since most cells in a Cartesian grid are squares which are generated through a refinement
process, the tree data structure seems to be natural. However, unstructured approach can also
handle refinements easily with proper pointers to adjacent elements. Usually, each cell has con-
nections to its vertices and edges, while each edge has pointers to its endpoints and adjacent
cells. Connections between edges can be added if a line segment on top of an existing edge is
created by refinements.

Painting algorithm

Before dealing with refinement and cut cells, we need to identify whether an element is inside
the domain. We solve this problem with the ”ray-casting” approach. For any point not on the
boundary, we draw a ray from it and count the number of intersections with the boundary. If the
number is even, the starting point is outside the geometry, otherwise it is inside. When all the

71

vertices of an element are inside, we classify it as an inside element. One issue we need to be
careful of is that an arbitrary ray might be tangential to the boundary and give an odd number
of intersections. We suggest to cast more than one ray to avoid this issue. Then, the painting
algorithm starts from one element where we determine its “color”, i.e. if it is inside or outside,
and paints its neighboring elements with the same color if they do not intersect the boundary.
This algorithm speeds up the process since it greatly reduces the number of elements which need
”ray-casting” tests.

Cut cells and refinements

Cut cells appear when the boundary of the embedded geometry cuts through a Cartesian cell.
In the algorithm, we need to search for the boundary line segments to find candidates which
intersect a Cartesian cell, and then create new vertices and edges for the cut cell. We can launch
refinements based on the shape of those cut cells. Several boundary line segments might be
included in a single cut cell, so we introduce the total angular variation which is defined as
the sum of the difference in direction of two adjacent line segments. This variable measures
the change in direction of the boundary edges within a cell. We can assign a threshold for the
angular variation. If the variation is greater than the threshold, we decide to refine this cut cell.
After looping over all cut cells once, the refinement is propagated several layers into the mesh
by refining neighboring cells. Then we check the new cut cells again to see if they need further
refinements until the angular variation in each cut cell is less than the threshold or the refinement
level reaches a predetermined maximum refinement level.

We assume that the constructed Cartesian grid resolves the geometry to a reasonable degree
so that simulations can be carried out. However, we do not restrict types of admissible cut cells.
We use straight-sided elements and employ the boundary conditions described in Section 4.4 to
compensate for the curvature of the solid wall. Thus, our cut cells are polygons.

When a background frame element intersects the embedded geometry, the simplest case oc-
curs when the element is split into two parts by a straight line: one part inside the computational
domain and the other outside. Figure 4.1 shows three possible types of elements in the simplest
case. More complicated configurations are illustrated in Figure 4.2. In the region where the
embedded body is thin, the background cell might be divided into several parts Figure (4.2, left).
When a cell is split into more than two parts, it is natural to treat each part as an independent
cell since different parts belong to different flow regions. A part of a cell can be cut out by the
geometry (Figure 4.2, right) such as a tail of the airfoil. Assuming linear approximation of the
geometry, this type of a cell can be described by a polygon, which is usually concave. Coirier
and Powell [15] suggest to refine this frame element until the resulting elements are intersected
in the simplest way. Also, it can be argued that an approximation on such a cell might be of
poor quality. However, there is no guarantee that we can reach the aimed case in an acceptable

72

Figure 4.1: Simplest cases of cut cells. The dashed lines indicate the part of the cell outside the
computational domain.

number of refinements. For this reason, we choose to accept cells of this type once the specified
level of refinement is reached.

Figure 4.2: More complicated cut cells. The dashed lines indicate the part of the cell lying
outside the computational domain.

73

4.3 Cut cell merging

Using Cartesian grids to discretize the computational domain with an embedded geometry results
in fragmented cut cells near the boundaries. Cut cells might have small sizes which would lead to
a restrictive CFL number and, consequently, a small time step when an explicit time integrator is
used. To avoid this, we will merge a cut cell with a neighboring cell or cells so that the resulting
element is comparable in size to the regular cells. If the Cartesian grid has several levels of
refinement, e.g. Figure 4.15, we choose the size of the smallest cell as a comparison. We seek to
merge a cell if its size is less than a half of a regular cell. We make an assumption here that there
is always a neighboring cell or cells such that a merge will result in a reasonably sized cell. It is
not difficult to imagine an example where this is not possible. However, in such a case a body
fitted grid will also result in a great variation of cell sizes and explicit time integration might not
be a suitable approach.

Normally, a cut cell has several neighbors and, consequently, several candidates to be merged
with. Obviously, the optimal merging will result in a merged cell of the best possible size and
shape. To this effect we want to avoid poorly proportioned elements, e.g., thin triangles (Figure
4.3, top) or thin polygons (Figure 4.3, bottom). To measure irregularity of a polygon shaped
cut cell, we enclose it into a bounding box defined as the smallest rectangle with the edges
parallel to the main axis containing the cell (Figure 4.3). Denoting the vertices of an element by
{Pi(xi, yi)}ni=1, the bounding box of this element is B = {(x, y)|min

i
(xi) 6 x 6 max

i
(xi),min

i
(yi) 6

y 6 max
i

(yi)}. Note, that the cells in Figure 4.3 might even be created by discretization of simple
objects. The short edge of a bounding box (Figure 4.3, left) can be magnitudes smaller than the
long edge. This would result in not only a small CFL condition but a poor approximation as well.
The measure of thinness is the aspect ratio of the bounding box, i.e., the ratio of the lengths of
the short side to the long side of the box.

We also seek to avoid badly shaped cell such as the polygon ABCGHD in Figure 4.4. The
triangular cut cell CGH can be merged with the cell ABCD to the right of it or the cell DHGFE
below it. Based on the criterion of choosing the merging direction resulting in the largest bound-
ing box would require merging with the right cell ABCD which would create a badly shaped cell
ABCGHD. To avoid this situation, we make an additional requirement that the bounding box of
the merged cell does not intersect with the neighboring cells not involved in the current merging
process, e.g. cell EDHGF in Figure 4.4. In this example, the better merging direction results in
the merged cell DCGFE.

Finally, direction of merging is decided according to the following algorithm. If a small cut
cell has only one neighbor we simply merge them together. Otherwise, for each cut cell, we
construct bounding boxes for all its neighboring cells, i.e., cells that share an edge with this cut

74

cell. We eliminate merging directions whose bounding boxes overlap with the other neighboring
cells. Among the rest, we choose the merge resulting in a bounding box with the largest aspect
ratio. This operation can be performed until the merged cut cells have not reached the desired
size. Figure 4.3 illustrates the merging process for the majority of cells. If the cut cell E1 is

E1

E2E3

E4E1

E2E3

E4

E1

E2E3

E4E1

E2E3

E4

Figure 4.3: Illustration of the direction of merging, plots on the left indicate unacceptable merg-
ing direction, and plots on the right show the acceptable merging direction.

merged with its left neighbor E4, the merged cell is still inside a thin bounding box (dashed line).
Since merging the cut cell with its upper neighbor E2 will give us a better bounding box (dotted
line), we choose to merge it upwards and the merged cell is shown shaded.

75

C

B

G

F

E D A

H

Figure 4.4: Badly shaped merged cell ABCGHD where the bounding box (shown as a dashed
line) overlaps the neighboring cell.

4.4 Solid wall boundary conditions

In many applications, embedded geometries are described by curved and complex boundaries.
When the surface and the computational domain are discretized with straight-sided edges and
elements, such as the ones described in the previous section, a large numerical error is committed
near the boundary and a reduced overall convergence rate is observed [9, 37]. The proper way
to deal with this issue is to use high-order geometric approximation of the boundary. However,
these approximations are not always available, as in our case.

Instead, we follow the approach proposed in [37]. Regular solid wall boundary conditions
impose no flow through the wall requirement by creating a ghost state at boundary integration
points and setting it to be the mirror reflection of the inner state. The key idea of the curvature

76

boundary condition is to reflect the flow with respect to the physical (curved) boundary rather
than the computational domain. As shown in Figure 4.5, velocity v at an integration point is
sought to be orthogonal to the physical normal N instead of the normal to the computational
boundary n

v · N = 0. (4.1)

To achieve this, ghost state values at each integration point are computed using the physical
normal N and tangential vector T

ρg = ρ,
vg

N = −vN ,
vg

T = vT ,
pg = p,

(4.2)

where the superscript g denotes the ghost state and subscript N,T refers to the projection of the
velocity vector onto N and T respectively. These values are passed to a numerical flux evaluator.
The resulting Riemann state at the boundary mimics the flow around the physical domain. This
has been shown to significantly improve accuracy and convergence rates.

N

v

n

Figure 4.5: Illustration of curvature boundary conditions.

77

4.5 Volume integration

In order to compute the integral over cell volumes, we need a quadrature rule defined on each
computational cell. We create such a rule by splitting a cut cell into triangles. In the case of
straight-sided elements, i.e. when the cut cell is a polygon, the splitting algorithm is presented
in Section 4.5.1. In the case of curved elements, more care needs to be taken to insure that a
triangle being split off does not contain a part outside the domain. We can split polygon Ω0 into
triangles {Ti}

N
i=1 for which we have classic quadrature rules and sum those integrals up to get the

integral on Ω0 ∫
Ω0

f (x)dx =
N∑

i=1

∫
Ti

f (x)dx. (4.3)

Each of the integrals
∫

Ti
f (x)dx is calculated by mapping a canonical triangle T̂ to the triangle

Ti. Let us say the mapping is given by

F : ξ → x, x = Aiξ + bi. (4.4)

Since the mapping from T to Ti is linear, Ai is constant matrix and we can write∫
Ti

f (x)dx = det(Ai)
∫

T̂
f̂ (ξ)dξ. (4.5)

A quadrature rule on the canonical element T̂ automatically induces a quadrature rule on the
element Ti ∫

Ti

f (x)dx ≈ det(Ai)
Ni∑
j=1

ω̂ j f̂ (ξ j) = det(Ai)
Ni∑
j=1

ω̂ j f (x j). (4.6)

Then, the quadrature rule on the entire element is∫
Ω0

f (x)dx ≈
N∑

i=1

det(Ai)
Ni∑
j=1

ω̂ j f (x j) =
L∑

l=1

ωl f (xl). (4.7)

We introduce the quadrature error

E(f) =
∫
Ω0

f (x)dx −
L∑

l=1

ωl f (xl), (4.8)

78

and assume the quadrature rule we use is accurate for polynomials of degree up to p. Let us say
that B0 is the bounding box of Ω0, which has size ∆x, and all (p+1)th order derivatives of f (x, y)
are bounded by Mp+1. Following analysis in Section 7.2 in [34], the error has an upper bound

|E(f)| 6
(2∆x)p+1

(p + 1)
2Mp+1

∫
Ω0

dx. (4.9)

For quadrature rules with non-negative weights, this upper bound is related to the size of the
entire elementΩ0, and the (p+1)th derivatives of the integrand. Regardless a chosen subdivision
ofΩ0 into triangles for integration, thin or small triangles will not affect the accuracy of numerical
integration on the entire element.

4.5.1 Polygon splitting

In this section we describe an algorithm that we use for splitting an arbitrary polygon into trian-
gles. The algorithm recursively splits off a triangle from a given polygon until the remainder is a
triangle itself. If the polygon is convex, connecting a vertex to its neighbors gives us a candidate
for a triangle to be split. However, since we can not guarantee a cut cell to be a convex polygon,
we have to be careful not to create a triangle which does not belong to the domain.

1. Let us assume that a polygon is described by an ordered set of vertices {V j(x j, y j)}nj=1. First,
we check that vertices are ordered in the counterclockwise direction. We find the left most
vertex Vl(xl, yl), xl = min j(x j). Then, the angle ∠Vl−1VlVl+1 should be less than π since Vl−1

and Vl+1 are to the right of Vl. Calculating the cross product
−−−−→
Vl−1Vl ×

−−−−→
VlVl+1 and checking

for the direction of the resulting vector, we determine if the vertices need to be re-ordered.
The positive direction corresponds to the counterclockwise ordering.

2. We start from any vertex of the current polygon Vi and check whether the angle ∠Vi−1ViVi+1, i =
1, . . . , n is less than π by calculating the cross product

−−−−→
Vi−1Vi ×

−−−−→
ViVi+1.

counterclockwise

 ∠Vi−1ViVi+1 < π, if
−−−−→
Vl−1Vl ×

−−−−→
VlVl+1 positive direction,

∠Vi−1ViVi+1 > π, if
−−−−→
Vl−1Vl ×

−−−−→
VlVl+1 negative direction.

(4.10)

3. If ∠Vi−1ViVi+1 > π, as shown in Figure 4.6, left, the triangle ∆Vi−1ViVi+1 will not be inside
the cell and, consequently, the computational domain. So, we mark triangle ∆Vi−1ViVi+1

for splitting only if ∠Vi−1ViVi+1 < π. Before proceeding, we check if any of the rest of
the vertices is located inside ∆Vi−1ViVi+1 such as, e.g., vertex Vi+2 in Figure 4.6, right.

79

This is intended to check if the triangle marked for splitting is only partly contained inside
the domain. Obviously, this should be avoided. If ∆Vi−1ViVi+1 cannot be split from the
polygon, we move on to check the next vertex. Since the triangular subdivision exists for
any polygon, there exists a triangle that can be split in this way.

4. Repeat step 3 to the polygon formed by {V j}
n
j=1\Vi until only 3 vertices left. This process

splits the polygon into n − 2 triangles.

Vi

Vi-1

Vi+1

Vi

Vi-1

Vi+1

Vi+2

Figure 4.6: Splitting of triangle ∆Vi−1ViVi+1.

Figure 4.7 illustrates the process of splitting a typical cut cell. Since the majority of cut cells
have this relatively simple shape, the cost of integrating of them is modest: only two or three
times as many points as on a regular triangle. Figure 4.8 illustrates a possible subdivision of a
more complex cell. Note that starting the described algorithm with vertex V1 will result in an
inadmissable triangle ∆V7V2V3. This triangle is rejected with the algorithm moving to the next
vertex.

4.5.2 Basis functions on cut cells

Although we split a complex cut cell Ω j into triangles to calculate the volume integrals, the basis
functions are defined on the whole element Ω j. In particular, the basis functions are defined on
the rectangular bounding box B j which is then mapped to the canonical square [−1, 1] × [−1, 1].

80

Figure 4.7: Division of a cut cell into triangles.

P1 P2

P3P4

P5

P6
P7

Figure 4.8: Division of a cut cell into triangles.

This avoids the issue of poorly conditioned mappings. We then define the basis as a tensor
product of the one-dimensional Legendre polynomials Pk(ξ), k = 0, 1, . . . [1]. Thus, ϕi j =

Pi(ξ)P j(η), i = 0, 1, . . . , p, j = 0, 1, . . . , p. We can reorder ϕi j with a single index and denote
them as ϕi, i = 1, 2, . . . , (p + 1)2 in the local representation (1.8). This basis is not orthogonal
on cut cells which makes the mass matrix not diagonal. However, the number of cut cell is

81

small compared to the total number of elements and the extra expense in evaluating, inverting
and storing the mass matrix is modest. The basis can be made orthogonal using a Gram-Schmidt
orthogonalization. However, this process can be ill-conditioned for badly shaped cut-cells [43].

4.6 Numerical examples

In this section we present a number of computational examples. All problems are based on
solutions of the Euler equations given by (1.2). Computations were performed until the solution
reached a steady state, defined as the difference between solution coefficients in two successive
time steps being on the order of machine precision.

4.6.1 Supersonic vortex

We consider a supersonic isentropic flow between two concentric circular arcs Ω = {(r, θ)|1 6
r 6 1.384, 0 6 θ 6 π

2 } (Figure 4.9). This problem has a known analytical solution with the exact
density, velocity, and pressure given by

ρ = ρi

(
1 +

γ − 1
2

M2
i (1 − (

ri

r
)2)

) 1
γ−1

, (4.11)

and
||
−→v || =

ciMi

r
, P =

ργ

γ
, (4.12)

where ci is the speed of sound on the inner circle and γ = 1.4 for air. Initially, the Mach number
at the inner circle is 2.25 and the density is equal to one. We impose the solid wall boundary
conditions on the arcs. The inflow and outflow boundary conditions are imposed on the straight
segments of the boundary. The problem is solved on a sequence of uniform Cartesian grids shown
in Figure 4.9. Finer grids are obtained from coarser ones by successive division by a factor of
two. We compute the exact L1 errors in density and pressure and report them in Tables 4.1 and
4.2. We tabulate the computations obtained with the curvature boundary conditions (4.2) and the
exact boundary conditions, i.e. the boundary conditions given by (4.11) and (4.12). We observe
the theoretical p + 1 convergence rate for both the exact and curvature boundary conditions with
the errors being quite close. The convergence rates were calculated based on the size of regular
cells not on the number of elements in the grid. Note that due to the presence of irregular cells,
the total number of elements in the grids does not increase precisely by a factor of four under
h-refinement.

82

Curvature BCs Exact BCs
p p=1 p=2 p=1 p=2
N error rate error rate error rate error rate
156 1.84E-3 - 4.99E-5 - 1.84E-3 - 5.07E-5 -
614 4.26E-4 2.11 4.40E-6 3.50 4.26E-4 2.11 4.44E-6 3.51
2422 1.05E-4 2.02 6.39E-7 2.79 9.83E-5 2.12 4.99E-7 3.15
9661 2.49E-5 2.07 6.26E-8 3.35 2.39E-5 2.04 5.41E-8 3.21

Table 4.1: L1 errors in density and rates of convergence for the supersonic vortex.

Curvature BCs Exact BCs
p p=1 p=2 p=1 p=2
N error rate error rate error rate error rate
156 1.58E-3 - 5.88E-5 - 1.58E-3 - 5.98E-5 -
614 3.15E-4 2.33 4.77E-6 3.62 3.15E-4 2.33 4.81E-6 3.64
2422 7.47E-5 2.07 7.17E-7 2.73 7.04E-5 2.16 4.96E-7 3.28
9661 1.69E-5 2.14 6.45E-8 3.47 1.63E-5 2.11 4.92E-8 3.33

Table 4.2: L1 errors in pressure and rates of convergence for the supersonic vortex.

We also present the results of computations using the regular reflecting boundary conditions
(Tables 4.3 and 4.4). The results are poor, as expected, due to the large error near the curved
boundaries. Note that the accuracy of the solution decreases when the degree of the approxima-
tion is increased from p = 1 to p = 2. This is due to the ability of the higher order approximation
to resolve non-physical rarefaction fans at the sharp corners of the straight-sided boundary. This
is discussed in more details in [37].

The meshes used in computations contain cut cells along the curved boundaries. In Figure
4.9, bottom, we show a schematic zoom of two irregular cells. The top cell is a result of merging,
the lower cell is a purely cut cell. The subdivisions of the cells into triangles for the purpose
of numerical integration are indicated by dashed lines. This splitting created thin triangles with
the smallest angles equal to 0.75o, 3o, and 4o (seen in thin triangles from top to bottom of the
two zoom inserts). Since both cells have one small edge, it is impossible to split them without
creating such badly shaped subelements. Despite this, the solution behaves well and converges
with the correct rate.

To better understand the behavior of the error, we compare solutions with p = 1 on the finest

83

p p=1 p=2
N error rate error rate
156 1.01E-2 - 1.60E-2 -
614 2.82E-3 1.84 4.75E-3 1.75
2422 1.09E-3 1.37 2.05E-3 1.21

Table 4.3: L1 errors in density and rates of convergence for the supersonic vortex using the
reflecting boundary conditions.

p p=1 p=2
N error rate error rate
156 1.39E-2 - 2.15E-2 -
614 3.80E-3 1.87 6.30E-3 1.77
2422 1.46E-3 1.38 2.73E-3 1.21

Table 4.4: L1 errors in pressure and rates of convergence for the supersonic vortex using reflecting
boundary conditions.

Cartesian grid in Figure 4.9 and a body-fitted triangular grid shown in Figure 4.10. The triangular
mesh has nearly uniform elements with edges of the cells lying on the straight sides being close
to the size of the Cartesian grid cells. Thus, the characteristic mesh size is used as a basis for
comparison rather than consideration of efficiency or accuracy. The regions where the error is
greater than 80% of the maximum L∞ error are shown in dark. We observe that the error seems
to be larger on the inner circle than elsewhere in the domain. However, there is no clear pollution
error originating from the boundaries.

We further investigate the error on cut cells. To do so, we compute the average error in
density only on cut cells in the L1 norm

ecut =

∑
cutcells

∫
Ωc
|ρ − ρexact|dx∑

cutcells

∫
Ωc

dx
. (4.13)

The results are presented in Table 4.5 for the curvature boundary conditions and the exact bound-
ary conditions. We observe that the errors with the two types of boundary conditions are close.
The quadratic approximation has the desirable p + 1 convergence rate. However, the linear
approximation has a reduced 1.5 convergence rate. A possible explanation is that the linear ap-
proximation cannot capture the complex behavior of the flow near the boundary on cut cells. To

84

test this, we solve a linear problem

ut + 2ux + uy = 0, (4.14)

on the same sequence of meshes with the exact solution u(x, y) = sin π(x − 2y). We report the
result in Table 4.6 where the theoretical rates of convergence can be seen.

Curvature BCs Exact BCs
p p=1 p=2 p=1 p=2
N error rate error rate error rate error rate
156 3.61E-3 - 7.58E-5 - 3.37E-3 - 6.98E-5 -
614 1.22E-3 1.57 7.45E-6 3.35 1.08E-3 1.64 6.72E-6 3.38
2422 4.47E-4 1.44 1.26E-6 2.57 3.31E-4 1.71 8.75E-7 2.94
9661 1.67E-4 1.43 1.49E-7 3.07 1.21E-4 1.45 1.09E-7 3.01

Table 4.5: Average L1 errors in density on cut cells only and rates of convergence for the super-
sonic vortex example.

p p=1 p=2
N error rate error rate
156 6.40E-3 - 2.21E-4 -
614 1.52E-3 2.08 2.99E-5 2.89
2422 4.07E-4 1.90 3.85E-6 2.96
9661 9.97E-5 2.03 4.66E-7 3.05

Table 4.6: Average L1 errors on cut cells and rates of convergence for the linear problem.

4.6.2 Flow around a cylinder

Next, we consider a subsonic flow around a circular cylinder. The cylinder of radius r = 1 is
located in the center of the domain [−10, 10] × [−10, 10] as shown in Figure 4.12. We solve
the problem on a sequence of meshes. Each mesh has two levels of refinement by a factor of
two. The overall structure of the coarsest mesh is shown in Figure 4.12, left; a zoom of the area
near the surface and merged cut cells is shown on the right plot. Finer meshes are obtained by
refining each cell in a coarser mesh by a factor of two with the cells located on the boundary

85

p p=1 p=2
N error rate error rate
176 1.38E-1 - 6.20E-3 -
712 1.85E-2 2.90 6.95E-4 3.16
2828 2.92E-3 2.66 9.81E-5 2.83

Table 4.7: L1 errors of entropy and rates of convergence for flow around cylinder.

updated with a more accurate geometric description. Computations are initialized with free flow
values as follows: the Mach number is M∞ = 0.38, the density and pressure are ρ∞ = 1.4,
P∞ = 1.0. Figure 4.13 shows Mach number isolines with p = 1 and p = 2 on the sequence of
meshes. We observe that the quality of the solution improves under both h- and p-refinement.
In particular, the solutions with p = 2 do not have a kink due to spurious entropy production on
the surface. Next, we investigate convergence under h-refinement. We measure errors in entropy
defined as

εent =
P

P∞
/(
ρ

ρ∞
)γ − 1. (4.15)

The results in the L1-norm are reported in Table 4.7. The p + 1 rate of convergence is observed.

To apprise solution accuracy on the surface we calculate the total pressure loss coefficient

P
(
1 +

γ − 1
2

M2
) γ
γ−1

/

P∞ (
1 +

γ − 1
2

M2
∞

) γ
γ−1

 . (4.16)

Figure 4.14 shows the total pressure loss coefficient on the surface for calculations performed
with p = 1 and h-refinement. We notice that this quantity converges to unity with decreasing ∆x,
as expected.

4.6.3 Flow around NACA0012 airfoil

In this example, we test the method in the presence of more complicated cut cells. The geometry
of the NACA0012 airfoil geometry is given by

y = ±0.6(0.2969
√

x − 0.126x − 0.3516x2 + 0.2843x3 − 0.1015x4).

The airfoil is enclosed in the box [−10, 10] × [−10, 10] and shifted by a small amount in the
vertical direction so that the resulting mesh is not symmetric. The mesh used in computations

86

is shown in Figure 4.15. The bottom plot shows a badly shaped element at the tail end of the
airfoil. There are one hundred cells lying on the surface which makes the mesh relatively coarse.
We observe that the merging algorithm described in Section 4.3 merges cut cells in the vertical
direction. It can be argued that it is a poor choice for this example as near the surface the flow
changes slower in the horizontal direction than in the vertical. However, the issue of anisotropic
mesh refinement is not being considered here. It is assumed that anisotropy in the mesh would
be created by either a mesh generator or a run time mesh refinement.

We perform computations with M∞ = 0.63, ρ∞ = 1., P∞ = 1.4 and the angle of attack
α = 2o. The isolines of the pressure and Mach number near the surface with p = 1 are presented
in Figure 4.16. The region near the tail is well resolved without a visible wake in the pressure.
We also plot the isolines of the error in entropy in Figure 4.16. There is a noticeable entropy
production at the tip of the airfoil which propagates along the surface (Figure 4.17 and Figure
4.16, right). This can be attributed to the coarse grid at the tip of the airfoil (Figure 4.15). The lift
and drag coefficients are 0.313 and 5.27e − 03. The results agree with body fitted computations
[37] though the drag is larger.

87

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4.9: Cartesian grids used for the supersonic vortex example (after small cut cell merging.

88

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.10: Body-fitted grid for the supersonic vortex example.

89

Figure 4.11: Error in density with p = 1 for the supersonic vortex problem on a Cartesian grid
(left) and on a triangular mesh (right). Darker regions indicates where the pointwise error belongs
to 80-100% interval of the maximum absolute error.

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 4.12: Left: Mesh around a cylinder containing 712 elements. Right: zoom of the same
mesh near the surface.

90

Figure 4.13: Isolines of the Mach number near the surface on the meshes with 176, 712, 2828
elements from top to bottom, and with p = 1 (left) and p = 2 (right).

91

−1 −0.5 0 0.5 1
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

N = 176
N = 712
N = 2828

Figure 4.14: Total pressure loss coefficient on the surface of the cylinder, N is the number of
elements and p = 1.

92

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

−0.1

0

0.1

0.2

0.3

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Figure 4.15: Top: part of the mesh around NACA0012 airfoil. Bottom: mesh near the tail.

93

Figure 4.16: Isolines of the pressure (left) and Mach number (right) near the surface of the airfoil
with p = 1.

Figure 4.17: Isolines of the entropy near the surface of the airfoil.

94

Chapter 5

Conclusion and future work

In this thesis we have analyzed the spectrum of the DG spatial discretization for one-dimensional
model problems on uniform and nonuniform meshes with the aim to understand the restriction
that needs to be imposed on a time step to obtain a stable fully discretized scheme. We have
also proposed a practical technique for implementation of the DGM on Cartesian grids with
embedded geometries. Major contributions of this thesis are summarized below.

• We have derived a closed form expressions for the eigenvalues of the DG spatial discretiza-
tion applied to the one-dimensional linear advection equation with periodic boundary con-
ditions and the upwind flux. We have proven that the characteristic polynomial of the
spatial discretization matrix L is related to the subdiagonal [p/p + 1] Padé approximant of
e−z.

• Based on the analytical equation for the eigenvalues, we have shown that (p + 1)(p + 2) is
a guaranteed bound on the size of the eigenvalues which can be used to compute the CFL
condition for large p. However, we have also proven that the growth rate of the largest
eigenvalue is less than (p + 1)2. We conjecture that a more accurate rate is proportional to
(p + 1)1.75. This is in contrast with the currently assumed quadratic rate for the DGM [32]
and various spectral methods [31].

• We have analyzed the spectrum of the DG spatial approximation on nonuniform grids for
one-dimensional problems. We have shown that the stability restriction on nonuniform
grids is global and depends on the composition of the mesh. We showed that when the size
ratio of the largest to the smallest cell is less than the critical value, the spectrum of the
discretization matrix enlarges roughly by a factor of the linear combination of cell sizes.
When the refinement ratio is larger than the critical value and a very few small cells are

95

present, the spectrum might have eigenvalues that are located far from the main spectral
curve but close to the multiples of singular points of the corresponding Padé approximants.

• We provide an estimate, which is easy to compute, on the upper bound of the spectrum on
nonuniform grids. We also show that in certain cases the spatial discretization matrix can
be highly nonnormal. In this case the pseudospectrum should be involved in determining
the CFL number. This estimate can be used to compute the size of a stable time step that
is less restrictive than the one defined by the size of the smallest cell. Numerical tests are
presented to validate our estimate on relaxing the CFL number.

• We have applied a discontinuous Galerkin method to solutions of the Euler equations on
Cartesian grids with embedded geometries. We have combined a number of techniques
including integration on cut cells, cell merging and treatment of curved boundaries and
demonstrated that the resulting method is accurate and quite viable. We obtain theoretical
convergence rates and errors similar to those reported in the literature for a number of
benchmark problems on unstructured two-dimensional meshes.

Many issues still remain to be addressed or investigated more deeply.

• A more accurate analytical estimate on the growth rate of the spectrum would be of inter-
est. In particular, more accurate estimate on the distribution of eigenvalues for the DGM
on general nonuniform meshes will be useful in determining a reliable and tight CFL re-
striction.

• An interesting direction of future work is to extend the analysis of the spectrum of the
DGM to two-dimensional structured and unstructured meshes.

• Another application of the spectrum analysis is to modify the original DG method to obtain
a method with a smaller spectrum. In [7], we show that the coefficients of the DG scheme
can be manipulated to decrease the radius of the spectrum, i.e. to increase the CFL number,
while preserving the convergence rate in the L2 norm. The improvement depends on the
order of approximation. For example, we can have an improvement up to a factor of three
for p = 1 and up to a factor of 5.5 for p = 3.

• For the DGM on Cartesian grids, the condition number of the mass matrix for different
types of irregular cells and the choice of the basis functions needs to be looked at. Con-
struction of higher order boundary elements needs to be incorporated, though this is mostly
a question of availability of high-order meshes. Finally, while limiting for high-order meth-
ods is difficult, limiting on cut cells is a particularly challenging problem.

96

References

[1] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions. Dover,
New York, 1965.

[2] M. J. Aftosmis, M. J. Berger, and J. E. Melton. Adaptive Cartesian mesh generation. 1999.

[3] M. Ainsworth. Dispersive and dissipative behaviour of high order discontinuous Galerkin
finite element methods. Journal of Computational Physics, 198:106–130, 2004.

[4] G. A. Baker and P. R. Graves-Morris. Padé Approximants. Addison-Wesley, Reading,
Mass.; Don Mills, Ont., 1981.

[5] S. A. Bayyuk, K. G. Powell, and B. van Leer. A simulation technique for 2-D unsteady
inviscid flows around arbitrarily moving and deforming bodies of arbitrary geometry. AIAA-
93-3391-CP, 1995.

[6] M. Berger, M. Aftosmis, and S. Murman. Analysis of slope limiters on irregular grids.
Technical Report NASA Report NASA-05-007, 2005.

[7] N. Chalmers, L. Krivodonova, and R. Qin. Relaxing the CFL number of the discontinuous
Galerkin method. Submitted to Journal of Computational Physics.

[8] G. Chavent and B. Cockburn. The local projection P0P1 discontinuous Galerkin method
for scalar conservation laws. RAIRO, Model. Math. Anal. Numer., 23:565, 1989.

[9] P. Ciarlet. The Finite Element Method for elliptic problems. SIAM, Philadelphia, 2002.

[10] B. Cockburn, S. Hou, and C.-W. Shu. The Runge-Kutta local projection discontinuous
Galerkin finite element method for the conservation laws IV: The multidimensional case.
Mathematics of Computation, 54:545–581, 1990.

97

[11] B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin
methods for scalar conservation laws II: General framework. Mathematics of Computation,
52:411–435, 1989.

[12] B. Cockburn and C.-W. Shu. The Runge-Kutte local projection P1 discontinuous Galerkin
method for scalar conservation laws. RAIRO Model. Math. Anal. Numer., 25:337–361,
1991.

[13] B. Cockburn and C.-W. Shu. The Runge-Kutta discontinuous Galerkin finite element
method for conservation laws V: Multidimensional systems. Journal of Computational
Physics, 141:199–224, 1998.

[14] B. Cockburn and C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for convection-
dominated problems. Journal of Scientific Computing, 16:173–261, 2001.

[15] W. J. Coirier and K. G. Powell. An accuracy assesment of Cartesian mesh approaches for
the Euler equations. Journal of Computational Physics, 117:121–131, 1995.

[16] P. Colella, D. T. Graves, B. J. Keen, and D. Modiano. A Cartesian grid embedded boundary
method for hyperbolic conservation laws. Journal of Computational Physics, 211:347–366,
2006.

[17] E. Constantinescu and A. Sandu. Multirate timestepping methods for hyperbolic conserva-
tion laws. SIAM Journal on Scientific Computing, 33:239–278, 2007.

[18] A.J. Crossley and N.G. Wright. Time accurate local timestepping for the unsteady shal-
low water equations. International Journal for Numerical Methods in Fluids, 48:775–779,
2005.

[19] A. Dadone and B. Grossman. Ghost-cell method for analysis of inviscid three-dimensional
flows on Cartesian grids. Computer and Fluids, 36:1513–1528, 2007.

[20] D. A. Dunavant. High degree efficient symmetrical gaussian quadrature rules for the trian-
gle. International journal for numerical methods in engineering, 21:1129–1148, 1985.

[21] K. J. Fidkowski and D. L. Darmofal. A triangular cut-cell adaptive method for high-order
discretizations of the compressible Navier-Stokes equations. Journal of Computational
Physics, 225:1653–1672, 2007.

[22] J. E. Flaherty. Course Notes on Finite Element Analysis.

98

[23] N. Gödel, S. Schomann, T. Warburton, and M. Clemens. GPU accelerated Adams-
Bashforth multirate discontinuous Galerkin simulation of high frequency electromagnetic
fields. IEEE Transactions on magnetics, 48(8):2735–2738, 2010.

[24] S. K. Godunov. A difference scheme for numerical solution of discontinuous solution of
hydrodynamic equations. Math. Sbornik, 47:271–306, 1969.

[25] S. Gottlieb, D. Ketcheson, and C.-W. Shu. High-order stability preserving time discretiza-
tions. Journal of Scientific Computing, 38(3):251, 2009.

[26] M. J. Grote, A. Schneebeli, and D. Schötzau. Discontinuous galerkin finite element method
for the wave equation. SIAM Journal on Numerical Analysis, 44:2408–2431, 2006.

[27] E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff
problems. Springer, Berlin, second edition, 2000.

[28] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and differential-
algebraic problems. Springer, Berlin, second edition, 2002.

[29] C. Halzel, M. J. Berger, and R. J. LeVeque. A high-resolution rotated grid method for
conservation laws with embedded geometries. SIAM Journal on Scientifical Computation,
26-3:785–809, 2005.

[30] P. Henrici. Applied and Computational Complex Analysis. Special functions-integral
transforms-asymptotics-continued fractions, volume 2. John Wiley & Sons, 1977.

[31] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for time dependent prob-
lems. Cambridge University Press, Cambridge, 2007.

[32] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods. Algorithms,
Analysis, and Applications. Springer, 2007.

[33] F. Q. Hu and H. L. Atkins. Eigensolution analysis of the discontinuous Galerkin method
with nonuniform grids. Journal of Computational Physics, 182:516–545, 2002.

[34] E. Isaacson and H. B. Keller. Analysis of Numerical methods. Dover, 1994.

[35] L. Krivodonova. Limiters for high-order discontinuous Galerkin methods. Journal of Com-
putational Physics, 226:879–896, 2007.

[36] L. Krivodonova. An efficient local time-stepping scheme for solution of nonlinear conser-
vation laws. Journal of Computational Physics, 229:8537–8551, 2010.

99

[37] L. Krivodonova and M. Berger. High-order accurate implementation of solid wall boundary
conditions in curved geometries. Journal of Computational Physics, 221:492–512, 2006.

[38] L. Krivodonova and R. Qin. An analysis of the spectrum of the discontinuous Galerkin
method. To appear in Applied Numerical Mathematics.

[39] L. Krivodonova and R. Qin. Linear stability analysis of the discontinuous Galerkin method
on nonuniform grids. In preparation.

[40] E. J. Kubatko, C. Dawson, and J. J. Westerink. Time step restrictions for Runge-Kutta
discontinuous Galerkin methods on triangular grids. Journal of Computational Physics,
227:9697–9710, 2008.

[41] R. J. LeVeque, editor. Finite Volume Methods for Hyperbolic Problems. Cambridge Uni-
versity Press, Cambridge, 2002.

[42] J. Modisette and D. Darmofal. Toward a robust, higher-order cut-cell method for viscous
flows. AIAA paper, 2010–721, 2010.

[43] S.E. Mousavi, H. Xiao, and N. Sukumar. Generalized gaussian quadrature rules on arbitrary
polygons. International Journal of Numerical Methods in Engineering, 82:1:99–113, 2010.

[44] S. M. Murman, M. J. Aftosmis, and M. J. Berger. Implicit approaches for moving bound-
aries in a 3-D Cartesian method. AIAA papers 2003-1119, 2003.

[45] R. Qin and L. Krivodonova. A discontinuous Galerkin method for solutions of the Euler
equations on Cartesian grids with embedded geometries. Journal of Computational Sci-
ence. Online available.

[46] J. J. Quirk. An alternative to unstructured grids for computing gas dynamics flows around
arbitrarily complex two-dimensional bodies. Comput. Fluids, 23:125–142, 1994.

[47] J. Remacle, J. E. Flaherty, and M. S. Shephard. An adaptive discontinuous Galerkin tech-
nique with an orthogonal basis applied to compressible flow problems. SIAM Review,
45:53–72, 2003.

[48] P. Le Saint and P. Raviart. On a finite element method for solving the neutron transport
equation. In C. de Boor, editor, Mathematical Aspects of Finite Elements in Partial Differ-
ential Equations, pages 89–145, New York, 1974. Academic Press.

[49] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. Journal of Computational Physics, 77:439–471, 1988.

100

[50] S. Tan and C.-W. Shu. Inverse Lax-Wendroff procedure for numerical boundary conditions
of conservation laws. Journal of Computational Physics, 229(21):8144–8266, 2010.

[51] E. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer, 1999.

[52] L. N. Trefethen and M. Embree. Spectra and pseudospectra - The behavior of nonnormal
matrices and operators. Princeton University Press, Princeton and Oxford, 2005.

[53] T.C. Warburton and G.E. Karniadakis. A discontinuous Galerkin method for the viscous
MHD equations. Journal of Computational Physics, 152:608–641, 1999.

101

	List of Tables
	List of Figures
	Background
	Introduction
	Conservation laws
	DGM for one-dimensional scalar problems
	DGM for multi-dimensional problems

	Spectrum Analysis of the DGM on Uniform Grids
	Introduction
	Derivation of the characteristic polynomial of L
	Padé approximants
	Padé approximants and DG spatial discretization
	Spectrum of the DG discretization
	Padé approximants and the dispersion relation

	Spectrum of the DGM on Nonuniform Grids
	Eigenvalues of L on nonuniform meshes
	Spectral curves
	Mesh refinement by a factor m less than Mcr
	Mesh refinement by a factor m greater than Mcr
	Mesh with cells of arbitrary sizes
	Pseudospectra

	Numerical tests
	One dimensional linear advection equation
	Burgers' equation
	Two-dimensional problems

	DGM on Cartesian Grids with Embedded Geometries
	Introduction
	Mesh generation and description
	Cut cell merging
	Solid wall boundary conditions
	Volume integration
	Polygon splitting
	Basis functions on cut cells

	Numerical examples
	Supersonic vortex
	Flow around a cylinder
	Flow around NACA0012 airfoil

	Conclusion and future work
	References

