
Coordinated Landing and Mapping

with Aerial and Ground Vehicle

Teams

by

Yan Ma

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Mechanical Engineering

Waterloo, Ontario, Canada, 2012

c© Yan Ma 2012



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Micro Umanned Aerial Vehicle (UAV) and Umanned Ground Vehicle (UGV) teams present

tremendous opportunities in expanding the range of operations for these vehicles. An ef-

fective coordination of these vehicles can take advantage of the strengths of both, while

mediate each other’s weaknesses. In particular, a micro UAV typically has limited flight

time due to its weak payload capacity. To take advantage of the mobility and sensor cover-

age of a micro UAV in long range, long duration surveillance mission, a UGV can act as a

mobile station for recharging or battery swap, and the ability to perform autonomous dock-

ing is a prerequisite for such operations. This work presents an approach to coordinate an

autonomous docking between a quadrotor UAV and a skid-steered UGV. A joint controller

is designed to eliminate the relative position error between the vehicles. The controller is

validated in simulations and successful landing is achieved in indoor environment, as well

as outdoor settings with standard sensors and real disturbances.

Another goal for this work is to improve the autonomy of UAV-UGV teams in po-

sitioning denied environments, a very common scenarios for many robotics applications.

In such environments, Simultaneous Mapping and Localization (SLAM) capability is the

foundation for all autonomous operations. A successful SLAM algorithm generates maps

for path planning and object recognition, while providing localization information for po-

sition tracking. This work proposes an SLAM algorithm that is capable of generating high

fidelity surface model of the surrounding, while accurately estimating the camera pose

in real-time. This algorithm improves on a clear deficiency of its predecessor in its abil-

ity to perform dense reconstruction without strict volume limitation, enabling practical

deployment of this algorithm on robotic systems.
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Chapter 1

Introduction

1.1 Motivation

Micro Unmanned Aerial Vehicles (UAV) have generated tremendous research interest in the

field of mobile robotics with potential applications in building inspection, surveillance and

military operations. The recent occurrence of Fukushima nuclear crisis strongly motivates

the need for micro UAVs in autonomous exploration of complex, unknown and dangerous

environments.

Quadrotors have been one of the most popular UAV research platforms, due to ad-

vantages in maneuverability and Vertical Take off and Landing (VTOL) capability. It

has been demonstrated that they are capable of aggressive flight maneuvers [3, 4], coor-

dinated formation flight [5] and cooperative construction of physical structures [6]. While

impressive, these results are confined within environments with high precision positioning

system that provides sub-centimetre accuracy and fast (50-100Hz) update rate. Compara-

tively, there has been limited results in precise operation of these platforms in outdoor or

positioning-denied environments, which are common settings for potential applications of

UAV platforms.

An interesting aspect of UAV research is coordinated missions between an unmanned

ground vehicle (UGV) and a quadrotor UAV. Such capability greatly expands mission

flexibility and range by combining the benefits of both vehicles. UGVs typically have

greater payload capacity, and can be equipped with faster computation units and longer
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battery life, while UAVs provides much better mobility and vantage points for sensor

coverage.

A core prerequisite capability for UAV-UGV coordinated mapping is autonomous dock-

ing. Due to limited payload capacity, the onboard battery size for a UAV is constrained,

leading to a short operation duration (typically 1
2

hour). For long missions, therefore, there

is a need for a system to autonomously coordinate UAV landings for recharging or battery

replacement. While successful precise docking has been demonstrated indoors [7], outdoor

settings present additional challenges. The quality of outdoor position measurements is

reduced in terms of accuracy and update rate. A typical GPS unit provides 3-5m accuracy

at 5-10Hz. Such position measurement accuracy results in relative errors of up to 10m

between the vehicles, which is far from sufficient for the purpose of autonomous landing.

Also, wind gusts introduce time varying disturbances to the position controller, causing

errors in position tracking during landing.

For environments where global positioning is denied, Simultaneous Mapping and Lo-

calization (SLAM) is a core capability for unmanned system autonomy, and is still a major

emphasis of research effort within the robotics community. A successful SLAM algorithm

enables autonomous robotic missions in areas that are dangerous or inaccessible to hu-

man beings. The objective is to construct a map of the surrounding environment while

resolving the vehicle pose estimates with respect to the map. In the absence of position

measurements, the map and pose estimates provided by SLAM are the basis for vehicle

control, path planning and other aspects of vehicle autonomy.

1.2 Related Work

This work aims to improve on two aspects of UAV-UGV autonomy mentioned in Sec. 1.1:

autonomous landing coordination between a UGV and a quadrotor UAV, and real-time

SLAM deployable on UAV platforms. This section presents surveys of the current strate-

gies for UAV autonomous landing on a static or mobile platform, multi-agent rendezvous

coordination as well as SLAM algorithms.
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1.2.1 Autonomous Docking

Much of the research efforts on autonomous docking of aerial vehicles focuses on landing

via vision based estimation and control. In [8, 9], computer vision algorithms are developed

to track a known pattern on a fixed platform and estimate the vehicle position relative to

the landing pad. However, no successful landing experimental result has been reported.

Also, the vision algorithms mentioned use a static thresholding to segment pattern, leading

to sensitivities to lighting changes.

Saripalli and Sukhatme [10] present an algorithm to fly on Differential-GPS (DGPS)

measurements, search for a visual pattern and switch to behaviour based control for landing

once the pattern is detected. This algorithm is further extended in [11] to landing on a

moving platform, and rely on Kalman filtering for relative positioning and behaviour based

control for automated landing. No proof of stability is given; the ground vehicle is assumed

to have simple 1D dynamics and the helicopter landing control is based on feeding forward

the predicted errors from the simplified model.

In [12], a Infra-Red (IR) camera is mounted on a quadrotor UAV to track IR beacons

on a moving platform, and a tracking position controller is implemented to take off from,

follow and land on the ground platform. Again, a proof of stability is not provided in this

work; the usage of IR sensors is impractical for operations in outdoor settings where IR

spectrum light is often saturated in day time. Finally, the system has a very small range

of operation. The quadrotor helicopter needs to precisely follow the moving platform to

properly track the IR pattern, and such precise maneuvers may not be possible in an

outdoor setting where wind disturbance has significant impact.

In [13], a tether is used to relay state information between a helicopter and a moving

platform for performing an autonomous landing. The tether greatly limits the range of

operations for small UAVs and not suitable for many other applications.

Voos and Bou-Ammar [14] present a novel controller for landing a quadrotor on a

moving platform that moves freely at a constant velocity. Landing experiment results is

not presented in this work and practical application for this docking strategy is not yet

proven.

The landing schemes above all assume that the quadrotor is the only agent attempting

to track the ground station and perform landing operations. Another approach is to
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coordinate a cooperative landing between a moving UGV as landing platform and a UAV.

The objective of this problem is to control both vehicles such that the relative position error

between the vehicles are reduced sufficiently for landing, which is essentially a multi-agent

rendezvous problem.

A possible method to solve the rendezvous problem has been studied in the field of

optimal trajectory planning and control. In [15, 16], the rendezvous between a spaceship

and an orbiting planet is formulated as a nonlinear trajectory optimization problem. The

dynamics of the spaceship and the target planet are modelled, and the continuous trajec-

tories and control inputs of the space ship are discretized in time as optimization variables.

The trajectory state variables are related to each other with motion constraints, and the

control inputs constrained with upper and lower bounds, forming a standard NonLinear

Programming (NLP) optimization problem to solve for a set of spaceship inputs to meet

the planet at its predicted location. In cases of non-convex constraints and cost functions,

local extrema are present and optimality is not guaranteed.

In [17], a Mixed Integer Linear Programming (MILP) problem is formulated to co-

ordinate flight plans of multiple quadrotor UAVs, and the MILP problem can be solved

optimally. Although the original algorithm is not proposed to solve the rendezvous prob-

lem, the architecture is generic enough that changing the cost function of the optimization

problem can achieve this goal. MILPs are known to be NP-hard [18] and grows exponen-

tially in complexity. Therefore, the MILP approach is typically not applicable to real-time

control systems with hard timing constraints.

Rendezvous problem has also been a topic of interest in the field of multi-agent system.

Consensus algorithm [19, 20] is a decentralized method to drive the relative distances be-

tween N mobile agents asymptotically toward zero. The communication networks between

the agents can be modelled as a graph, and the agents, governed by a common control

law and sharing the same motion models (generally simple linear models), are guaranteed

to reach consensus assuming certain static graph topology. In [21], the algorithm is fur-

ther extended to time varying graph topology. The decentralized nature of this class of

algorithms leads to computation efficiency and implementation simplicity. Furthermore,

it provides a method to prove convergence of relative position errors between the agents.

However, consensus algorithms for mobile robotic platform with complex nonlinear plants

have yet to be thoroughly explored.
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1.2.2 SLAM

Bayesian stochastic estimation techniques have been well studied in the context of visual

SLAM algorithms [22, 23, 24]. A dynamic motion model is defined for the camera and

features are extracted and corresponded between consecutive images to provide measure-

ments dependent on both the feature locations and the current robot pose. Both the pose

and the measured feature states are estimated simultaneously through Bayesian inference,

often relying on linearization about the current state estimate. As a result, these filter-

ing methods work well for online applications, but slowly accumulate errors which lead

to warping and drift in the resulting map. Only by storing all measurement data and

incorporating some form of loop closure global optimization can these errors be corrected

to some extent [25, 26].

Structure from Motion (SFM) is a well known problem in the field of computer vision

that aims to reconstruct 3D structures observed by a sequence of 2D images. Various

techniques have been developed to solve the SFM problem. The early eight-point [27]

and five-point [28] algorithms solve a system of linear algebraic equations formulated by

matched feature pairs from two images taken from two different camera poses. While easy

to implement, the solutions are somewhat sensitive to measurement noise and correspon-

dence errors. Bundle-adjustment techniques formulate the relative camera pose estimation

as an NLP [25], solving the correspondence problem (finding the same feature in multiple

images) for a large number of feature points from images taken from a small number of

spatially well separated locations. This method, while well-suited for post processing and

robust to noise, is not ideal for real-time applications.

Due to their dependence on point features, both SFM and Bayesian estimation methods

are mostly only capable of sparse scene reconstruction, which may not be sufficient for ma-

chine perception applications such as object recognition. The recent development of Dense

Tracking And Mapping (DTAM) [29] is a monocular SLAM algorithm that uses iterative

image alignment to perform dense scene reconstruction and simultaneously estimate cam-

era motion in real-time. While the results are impressive, the tracking and reconstruction

performance can be sensitive to the type of camera motion and lighting conditions.

The Microsoft Kinect Red, Green, Blue and Depth (RGB-D) camera offers a low cost

range sensor capable of producing dense point cloud measurements, and has generated

tremendous interest from the SLAM community. The RGB-D mapping system [30] is an
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offline algorithm that combines RGB-D point features and the iterative closest-point (ICP)

algorithm [31] for image alignment, and therefore remains subject to the sensitivity to

illumination changes. A photometric ICP algorithm has been proposed [32] to align RGB-

D image data based on correspondences in both geometric and colour similarities. The

resulting map for both of these systems, however, is derived by simply stitching noisy depth

images taken from the resolved camera pose, leading toin low quality surface reconstruction.

KinectFusion [33] is an algorithm which achieves dense scene reconstruction and ego

motion estimation using the Kinect camera in real-time. The method represents the global

3D volume as a discretized Truncated Signed Distance Function (TSDF), from which a

stable model of the environment surface can be extracted by ray marching through the

TSDF voxel grid to identify the zero level set. An ICP algorithm, based on perspective

projection association, is used to track camera pose by aligning the raw depth image with

the current global surface model. The computation of the TSDF function and each of

the ICP iterations is highly parallelizable, and real-time performance is achieved by the

use of a Graphic Processing Unit (GPU). The resulting algorithm has been demonstrated

to provide detailed 3D maps by accurately estimating 6-DOF camera motion and fusing

depth images. However, the algorithm requires the entire map to be stored as a 3D voxel

grid in the GPU global memory. The inefficient volume representation and limited memory

resource prevent the algorithm from being used on a large scale environment, which is a

common requirement for mobile robotics applications.

In a similar effort to the WAVELab KinectFusion extension described in this thesis, the

recent Kintinuous project [34] removes the KinectFusion spatial limitation by representing

the cubic volume about the camera as a cyclical buffer of TSDF volume slices. As a slice

exit the volume, it is processed to extract resulting surface points from the dense recon-

struction. The algorithm also replaces the KinectFusion ICP algorithm with the FOVIS

visual odometry algorithm [35] for camera pose estimation, allowing the camera pose to

be tracked in scenes with planar structures. Finally, it incorporates the visual loop closure

detection with incremental Smoothing and Mapping (iSAM) [36] pose graph optimization

to ensure global map consistency. The surface slices are not reused for mapping once

it exits the capture volume, discarding the advantage of having a global map to match

against in the original KinectFusion. Furthermore, the positioning of the TSDF volume

cube centered around the camera implies that more than of cube outside of the camera

fields of view, resulting in inefficient allocation of GPU memory.
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In [37], LIDAR point clouds are aggregated in a 3D probabilistic occupancy grid and

dense surface reconstruction is achieved through rasterization in a CPU cluster, a similar

approach to the KinectFusion algorithm with different volume representation and rendering

technique. The method overcomes the GPU memory limitation by decomposing the large,

global voxel grid into multi-axis aligned volumetric tiles. The tiles are loaded into the GPU

and processed individually to extract the reconstructed surface, and surface points from

all tiles are combined to form the global surface model. The system is intended for post

processing purpose, and does not provide online position estimation needed for autonomous

robotics exploration in unknown environments. It does, however, inspire the extension to

KinectFusion algorithm discussed in this thesis.

1.3 Research Approach and Contribution

The goal of this work is to address the two current limitations of coordinated missions

with UGV-UAV teams: autonomous docking between a UGV and a quadrotor, and the

development of a real-time SLAM algorithm for both vehicles.

Chapter 2 presents the system developed to autonomously coordinate docking operation

between a skid-steered UGV and a quadrotor. The novelty of our system lies in the fact

that both vehicles are actively actuating to minimize their relative position error. Previous

research efforts assume that the ground vehicle does not have knowledge of quadrotor

states, and that tracking is all performed by the quadrotor, leading to difficulty in proving

stability for the overall system. By establishing a communication link between the vehicles,

state information of each vehicle is shared, and a provably stable controller is developed to

coordinate a rendezvous. The simulation and experimental results for successful landings

are also captured in this chapter. We first validated theories developed in simulations.

Using standard sensor suites for both vehicles, we successfully coordinated a landing in

outdoor setting between a quadrotor UAV and a skid-steered UGV.

An algorithm to perform dense reconstruction and localization using a RGB-D camera

is described in Chapter 3. With a low-cost point cloud sensor, the algorithm is capable

of detail reconstruction of the environment while accurately localizing itself in real-time.

Due to hardware memory limitation, this algorithm is limited in operation volume. An

extension is presented to expand the operation space of this algorithm without sacrificing
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map quality, while maintaining real-time performance.

In Chapter 4, we present the experimental results for the extended SLAM algorithm.

Real-time 3D reconstruction of a large environment is shown to demonstrate the effec-

tiveness of the algorithm in building detailed surface model without volume constraint.

The algorithm is also tested against published RGB-D camera datasets with camera pose

groundtruth information to validate its localization performance. We prove that our al-

gorithm is successful in delivering solid localization accuracy with real-time computation

efficiency.

Finally, Chapter 5 provides a conclusion of the work presented in this thesis, as well as

a discussion for future improvements on the developed systems.

The main results which will be presented in this thesis are:

• a novel rendezvous controller between a UGV and a quadrotor UAV

• Simulation and Experiment validation for the controller

• Verification for outdoor coordinated autonomous docking

• a SLAM algorithm using RGB-D sensor capable of generating large high-fidelity map

and real-time localization

• Experimental validation for the SLAM algorithm

With these advances in autonomous rendezvous and 3D dense scene reconstruction, the

goal of autonomous aerial and ground vehicle team mapping mission is two steps closer to

practical deployment.
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Chapter 2

Autonomous Docking

In this chapter, an autonomous docking controller is designed to enable quadrotor vehi-

cles to land on ground vehicles, with both vehicles aiding in the process in a coordinated

manner. Feedback linearization nonlinear control technique is applied to a quadrotor UAV

and a skid-steered UGV based on known models, and a provably stable linear controller

is designed to coordinate rendezvous of the vehicles. Simulation results of the coordinated

controller are presented to verify the stability of the controller. Using the Aeryon Scout

quadrotor and the Clearpath Robotics Husky skid-steered UGV, successful landings are

experimentally demonstrated in both indoor and outdoor settings. This work is an ex-

tension of the controller we presented in [38] with modifications to the quadrotor control

strategy. Unlike the orignal work, we only feedback linearize the position portion of the

quadrotor model, leading to ease of implementation and, therefore, achieving successful

experimental results.

2.1 System Models

2.1.1 Quadrotor Model

Quadrotor UAVs have four rotors arranged in a cross configuration. The angular speed

of each rotor can be independently controlled to produce different thrusts. Let Ω =

(Ω1,Ω2,Ω3,Ω4) be the angular velocity of rotors as enumerated in Fig. 2.1(a), the thrust
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(a) Freebody diagram (b) Coordinate frames

Figure 2.1: Forces and coordinate frames of a quadrotor

generated by the ith rotor, fi, is given by fi = bΩ2
i and the reaction torque is obtained via

ti = dfi, where b, d ∈ R are the aerodynamic constants of the rotors.

The roll and pitch moments about the corresponding axes can be achieved by varying

the difference in rotor speeds and, hence, the thrusts for opposite pairs of rotors; the sum

of all four rotor thrusts provides acceleration in altitude, and the net torque from all four

rotors results in a yaw moment.

We use the quadrotor model presented in [39] for controller design in a East-North-

Up (ENU) frame of reference. Denote

pq = [ Xq Ẋq Yq Ẏq Zq Żq φq φ̇q θq θ̇q ψq ψ̇q ]

the state vector of the quadrotor dynamic model, where ζ = [Xq, Yq, Zq] is the quadrotor

position coordinate vector in the inertial frame, φq, θq and ψq are Euler angles with respect

to North-East-Down (NED) inertial frame axes, and g = 9.81m/s is the gravitational

constant, as illustrated by Fig. 2.1(b). We also denote

U =


U1

U2

U3

U4

 =


1 1 1 1

−l 0 l 0

0 l 0 −l
d −d d −d



f1

f2

f3

f4

 (2.1)

the control input vector, where U1 is the sum of thrusts of all four rotors, U2, U3 and U4 the

angular accelerations induced by the rotors about x, y and z body frame axes respectively,
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l is the distance from a motor to the center of mass (COM) of the quadrotor. Denote

ω = [p, q, r]T the body angular rates, m the weight, I ∈ R3x3 the inertial matrix of the

following form

I =

Ix 0 0

0 Iy 0

0 0 Iz

 (2.2)

and Ix, Iy, Iz ∈ R are the inertia about x, y and z body axes. Also denote R ∈ SO3 the

rotation matrix from the body frame to the global frame, and

R =

cφqcψq −cφqsψq + sφqsθqcψq sθqsψq + cφqsθqcψq

cθqcψq cφqsψq + sφqsθqsψq −sθqsψq + cφqsθqsψq

−sθq sφqcθq cφqcθq

 (2.3)

where cφq = cosφq and sφq = sinφq, and the similar notation applies to θq and ψq.

The Newton-Euler equations for a quadrotor helicoptor is given by[
mζ̈

Iω̇ + ω × Iω

]
=

[
F

τ

]
(2.4)

where F = [FX , FY , FZ ]T ∈ R3 is a the sum of all external force vectors acting on the COM

of the quadrotor in the global frame, τ = [τx, τy, τz] ∈ R3 is the sum of external torques

applied on the body frame. Ignoring aerodynamic drag forces and other disturbances, the

only external forces applied on the quadrotor air frame is the gravity and the total thrust

U1, giving

F = U1Re3 −mge3 (2.5)

The gyrocopic torque introduced by of the rotors is given by τg = IrΩr, where Ωr =
∑

Ωi

is the sum of rotor speeds that introduces a gyroscopic torque affecting the vehicle. The

sum of external torque, τ , is the combination of the thrust induced torque vector, τt =

[U2, U3, U4]
T and the gyroscopic torque vector, τg,

τ = τg + τt (2.6)

Combining (2.4), (2.5) and (2.6), the full quadrotor dynamic model derived using New-
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ton formalism is the following,

Ẍq

Ÿq

Z̈q

ṗ

q̇

ṙ


=



ux
1
m
U1

uy
1
m
U1

(cosφq cos θq)
U1

m
− g

qr Iy−Iz
Ix

+ q Ir
Ix

Ωr + l
Ix
U2

pr Iz−Ix
Iy

+ p Ir
Iy

Ωr + l
Iy
U3

pq Ix−Iy
Iz

+ l
Iz
U4


(2.7)

where

ux = cosφq sin θq cosψq + sinφq sinψq (2.8)

uy = cosφq sin θq sinψq − sinφq cosψq (2.9)

The transformation matrix, M , between Euler angular velocities and pqr rates is given

by, φ̇qθ̇q
ψ̇q

 =

1 sinφq tan θq − cosφq tan θq

0 cosφq − sinφq

0 sinφq
cos θq

cosφq
cos θq


︸ ︷︷ ︸

M

pq
r

 (2.10)

⇒

φ̈qθ̈q
ψ̈q

 = M

ṗq̇
ṙ

 (2.11)

At hover position, we have [φq, θq]
T ≈ 0, leading to M ≈ I3×3. Therefore, we can make

the following approximations,

[φ̇q, θ̇q, ψ̇q]
T ≈ [p, q, r]T

[φ̈q, θ̈q, ψ̈q]
T ≈ [ṗ, q̇, ṙ]T
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This gives the state space representation ṗq = f(pq, U) of the plant,

f(pq, U) =



Ẋq

ux
U1

m

Ẏq

uy
U1

m

Żq

(cosφq cos θq)
U1

m
− g

φ̇q

θ̇qψ̇q
Iy−Iz
Ix

+ θ̇q
Ir
Ix

Ωr + l
Ix
U2

θ̇q

φ̇qψ̇q
Iz−Ix
Iy

+ φ̇q
Ir
Ix

Ωr + l
Iy
U3

ψ̇q

θ̇qφ̇q
Ix−Iy
Iz

+ l
Iz
U4



(2.12)

Finally, we define the position subplant as fpos(pg, U) = [Ẍq, Ÿq]
T and altitude subplant

as fz(pg, U) = Z̈q,

2.1.2 Skid-steered UGV Model

A 2-D planar kinematic model of the skid-steered ground vehicle based on work in [40]

is used for the Husky UGV, and the coordinate frames are illustrated in Fig. 2.2. The

Husky platform expects linear and yaw angular velocity inputs, and a kinematic model is

deemed appropriate. Let the UGV state pg = [Xg, Yg, ψg]
T , where Xg and Yg are the global

position coordinates of the vehicle centre of mass (COM) and ψg is the yaw angle. The

vehicle kinematic model is given by, Ẋg

Ẏg

ψ̇g


︸ ︷︷ ︸

ṗg

=

 cosψg xICR sinψg

sinψg −xICR cosψg

0 1


︸ ︷︷ ︸

S(pg)

[
vx

ωg

]
︸ ︷︷ ︸

vc

(2.13)

where vc = [vx, ωg]
T represents the body frame velocity inputs with vx being the forward

velocity and ωg the angular velocity. Furthermore, xICR is the projection of the Instanta-

neous Centre of Rotation (ICR) of the vehicle into the x axis of the body-fixed frame, and
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Xg

Yg

x
y

Figure 2.2: Coordinate frames for the skid-steered UGV kinematic model

a graphical illustration for xICR is given by Fig. 2.3. This projection relates the angular

velocity, ωg, to the y component of body frame velocity, vy, via ωg = −vy/xICR [41]. It

is the local x projection of the point about which the vehicle rotates at any given instant.

In practice, due to the skid steering, the location of the ICR will move [41]. However, in

this work a constant approximation of the xICR is used, denoted x0. This approximation

implies the assumption that the ratio between foward velocity, vx, and lateral velocity,

vy, is constant and the ICR is always in the same location for a given steering direction.

While we ignore this assumption in the controller design for the UGV in Sec. 2.2.2, it can

be demonstrated in simulation that the error introduced is reasonably inconsequential. In

fact, it has been shown in [40] that using a constant non-zero x0 in the controller imposes

a motion constraint on the vehicle that limits lateral skidding, which might lead to loss of

motion stability.
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Vc

V1

V2

V3

V4

ICRX

Figure 2.3: Body, wheel velocity relationships and the resulting xICR

2.2 Controller Design

2.2.1 Quadrotor Feedback Linearization

This section entails the derivation for the feedback linearization of the position subplant of

the quadrotor model, fpos, presented in [39]. We firstly start with the altitude subplant,

fz, as follows

fz(pq, U1) =
cosφq cos θq

m
U1 − g (2.14)

Using the following control law for the total thrust input vz

U1 =
m

cosφq cos θq
(vz + g) (2.15)

we can feedback linearize the model into the following form ∀φq, θq ∈ (−π
2
, π
2
)

fz(pq, U
′
1) = Z̈g = vz (2.16)

where the set (−π
2
, π
2
) ensure that cosφq cos θq is nonzero and divisible.
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After computing total thrust U1 from (2.15), we can use it to compute θq and φq required

to regulate x and y positions. It is known from (2.8) and (2.12) that[
Ẍg

Ÿg

]
=

[
ux

uy

]
U1

m

=

[
cosφq sin θq cosψq + sinφq sinψq

cosφq sin θq sinψq − sinφq cosψq

]
U1

m
(2.17)

Using small angle approximation we can compute that, we convert (2.17) into the following[
Ẍg

Ÿg

]
=

[
θq cosψq + φq sinψq

θq sinψq − φq cosψq

]
U1

m

=

[
cosψq sinψq

sinψq − cosψq

][
θq

φq

]
U1

m

We choose the virtual input vector vq ∈ R2 such that[
θq

φq

]
=

[
cosψq sinψq

sinψq − cosψq

][
vq,1

vq,2

]
m

U1

(2.18)

⇒

[
Ẍq

Ÿq

]
=

[
vq,1

vq,2

]
Using these virtual inputs, we feedback linearize the quadrotor position plant as a linear

double integrator in x, y and z directions. When vq is computed, we derive the desired

attitude commands, denoted as φd and θd, using (2.18) in the place of φq and θq. Relying

on time scale separation of the attitude and position control loops, and we use a PID

controller for the attitude inner loop control to track φd and θd.

2.2.2 UGV Feedback Linearization

To design a controller for the skid-steered UGV model mentioned in Sec. 2.1.2, input-

output feedback linearization is used to derive a linear plant in the UGV inertial positions,

Xg and Yg based on the work in [40, 38]. Choosing Xg and Yg as outputs, the input-output

dynamics of the system is as follows,[
Ẋg

Ẏg

]
=

[
cosψg x0 sinψg

sinψg −x0 cosψg

][
vx

ωg

]
(2.19)
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The feedback linearizing controller for this set of dynamics is determined to be,[
vx

ωg

]
=

[
cosψg sinψg
sinψg

x0
− cosψg

x0

][
vg,1

vg,2

]
(2.20)

Applying this controller to (2.19) yields [Ẋg, Ẏg]
T = [vg,1, vg,2]

T .

2.2.3 Joint State Rendezvous Control

This section presents a control approach proposed by our work in [38] to coordinate a

rendezvous between the quadrotor and the ground vehicle with a slight modification. The

original work employs a full feedback linearization of the quadrotor model, which results

in quintuple integrators in X, Y and Z directions. This leads to difficulties in practical

implementation of the controller due to the requirement of the 5th order time derivative of

the states, which is not measurable and noisy to estimate. We, therefore, choose to feedback

linearize the inertial position portion of the quadrotor model into double integrators in its

inertial position. The primary goal of this controller is to drive the relative X-Y position

error of the two vehicles to zero. If only position errors are stabilized, the vehicles may

continue to drive together at some unknown velocity, resulting in unpredictable behaviours.

Hence, the decision was made to ensure that the velocities of both vehicles are also driven

to zero. Once landing is successfully performed, the ground vehicle can carry on with the

rest of the mission while transporting the quadrotor.

The feedback linearization controllers mentioned in Sec. 2.2.1 and Sec. 2.2.2 result

in linear plants for both of the vehicles. The closed feedback linearized model for the

quadrotor position plant [Ẍq, Ÿq]
T = vq and [Ẋg, Ẏg]

T = vg for the UGV. The goal is to

ensure that Xq −Xg = Xq − Yg = 0 and Ẋq = Ẏq = 0. To stabilize inertial velocities for

both vehicle to zero, we only need to ensure that the quadrotor velocity and the relative

position of the vehicles converges to the equilibrium. In developing the controller, since

the plants for X and Y are decoupled and symmetric, we only need to design a control law

for X and apply the same control to Y . It is possible to extend this controller to the Z

state as well. However, it is much safer to command the quadrotor in Z only once one is

certain that the X and Y positions of the vehicles are close to each other.
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Defining e ∈ R2, the relative position error of the vehicles, as,

e =

[
Xq

Yq

]
−

[
Xg

Yg

]
(2.21)

the state vector of the dynamics to be stabilized may be expressed as [e1, Ẋq]
T . The

dynamics of the outputs are given by,[
ė1

Ẍq

]
=

[
0 1

0 0

][
e1

Ẋq

]
+

[
−1 0

0 1

][
vg,1

vq,1

]

evidently, rank of the controllability matrix for the dynamics above is 2. The system is,

therefore, completely controllable and can be stabilized with the following control law,[
vg,1

vq,1

]
= −K

[
e1

Ẋq

]
(2.22)

where K ∈ R2×2 can be selected using standard linear state feedback control techniques

such as pole placement or LQR design.

2.3 Experimental Platforms

The autonomous docking experiments are performed using a Aeryon Scout quadrotor and

a Clearpath Husky skid-steered UGV.

The Aeryon Scout is equipped with a U-Blox GPS unit capable of outputting raw

satellite information for Real-Time Kinematic (RTK) GPS fix acquisition. It also carries

an on-board Inertial Measurement Unit (IMU) that includes a 3-axis gyroscope and ac-

celerometer, as well as a magnetometer. The measurements from these sensors are fused

with a complementary filter to estimate its roll, pitch and yaw for attitude and position

regulation at 100Hz. The quadrotor is designed to have the capability of maintaining posi-

tion in 70km/h winds, which is a desirable feature for our outdoor experiments. Modeling

the quadrotor position subplant as a linear double integrator, we designed a Kalman filter

to estimate the position vehicle states, including inertial frame quadrotor position and ve-

locity required by the joint state feedback rendezvous controller in Sec. 2.2.3. Fig. 2.4 is a

picture of the Aeryon quadrotor platform.
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Figure 2.4: Aeryon Scout [1]

Figure 2.5: Clearpath Huskty [2]
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The Clearpath Robotics A200 Husky, as shown in Fig. 2.5, also carries a U-Blox unit

for RTK GPS. It is equipped with a digital compass for heading information, as well as

an optical encoder on each side of the differential drive for odometry measurements and

velocity control. The UGV can be controlled by requesting linear and angular velocities,

and is an ideal option for the kinematic control scheme we developed.

Indoor landing experiments are performed within a OptiTrack positioning system. IR

reflectors are mounted on both the vehicles, and six IR cameras are positioned around

the test environment to capture the reflectors and triangulate their 3-D positions. The

system provides 50Hz of position and yaw measurements with sub-centimetre, sub-degree

accuracy.

For outdoor relative position feedback, an RTK GPS computation engine is also imple-

mented to provide accurate relative position error between the quadrotor and the UGV.

C/C++ software is written to interface with the U-Blox GPS to extract raw satellite infor-

mation. A User Datagram Protocol (UDP) communication socket is established between

the vehicles over WiFi, and raw satellite packets are sent from the UGV to the quadrotor,

where the RTK fix computation takes place. The relative position error [e1, e2] computed

from the RTK fix along with inertial quadrotor velocities [Ẋq, Ẏq, Żq] are subsequently re-

layed back to the Husky as required by the UGV portion of the joint rendezvous controller.

We propose to control the height of the quadrotor UAV using the relative altitude error

from the RTK GPS. Conventional systems use a SOund Navigation And Ranging (SONAR)

sensor to measure the distance from the UAV to the closest surface within the SONAR

measurement volume. This leads to discrete jumps in height measurements as the quadro-

tor flies over the landing platform of the UGV, resulting in a sudden increase in thrust as

the height controller tries to overcome the change in altitude measurement that results.

Such behaviors cause disturbances in position control during the critical landing stage

when the UAV is within the proximity of the landing platform. The RTK relative altitude

information, on the other hand, provides much more consistent height measurements, and

is deemed more suitable for this application.
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2.4 Simulation Results

The controller described in Sec. 2.2 is now verified in simulations. The joint controller is

used to control the inertial X and Y positions of both vehicles, while the altitude of the

quadrotor is controlled using the feedback linearizing tracking controller.

The effects of wind gusts and sensor noise are included in the simulations. Varying wind

speed is simulated using the Dryden wind gust model, and affects the quadrotor through

the resulting aerodynamic drag force, Fd, given the following model,

Fd =
1

2
ρv2CdA (2.23)

where v is the relative speed between the wind and the quadrotor, the coefficient of drag

for the quadrotor, Cd, was chosen as 0.5, and the reference area of the vehicle, A, was

computed as 0.2027 m2 assuming a circle with a radius of 25 cm. Zero mean Gaussian

noise is added to all measurements. The standard deviation of the noise added to position

measurements is 10 cm. The orientation measurements are corrupted with noise that has

a standard deviation of 5 degrees, and orientation rate measurements with noise having a

standard deviation of 0.1 degrees/s.

In the UGV model, x0 is set to 3.7 cm, and the same value is used in the UGV controller.

The initial state is [Xg, Yg, ψg]
T = [0, 1, 45]T , where the linear units are in metres and the

angular units in degrees. For the quadrotor, the full nonlinear dynamic model in (2.7) is

used to test the robustness of this controller against remaining nonlinearities. The mass,

m, was set to 1 kg, Ir is set to 0.01, and Ix = Iy = Iz = 1. Since this work is not focused

on system identification of quadrotor parameters, values used for the system parameters

are not necessarily realistic, and the re-tuning of the controller is expected when testing

on real platforms.

A PD controller is used for attitude inner loop control, and the proportional gain is

chosen as kp = 10 and derivative gain as kd = 30 for φq, θq and ψq. The gains for

the joint controller (2.22) were chosen as K1 = 0.04, K2 = 0.2. Tracking in Zq is also

achieved using a PD controller to control the double integrator altitude subplant (2.16)

as a result of feedback linearization in (2.15), with the proportional gain kz,p = 0.04 and

derivative gain as kz,d = 0.2. To ensure that the reference trajectory for Zq is a gradual

descent for safe landing operation, the reference signal for Zq was passed through a first
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Figure 2.6: Difference between the quadrotor and ground vehicle trajectories in simulation

order low-pass filter with poles at s = −2. The initial pose of the quadrotor was set to

[Xq, Yq, Zq, φq, θq, ψq]
T = [5, 4, 5, 10, 10, 10]T , where the linear units are in meters and the

angular units in degrees. The initial linear and angular velocities are set to zero for both

vehicles. The simulations were implemented using a first order Runge-Kutta solver with a

fixed sample period of 0.01 seconds.

The position states of the quadrotor are shown for this simulation in Fig. 2.8. After 120

seconds, the X and Y states have converged. The Zq state remains stable and executes

the commanded landing trajectory from 5m to 1m after 25 seconds. This demonstrate the

robustness of the proposed controller against sensor noises and wind disturbances.

2.5 Experimental Results

Using the experimental setup described in Sec. 2.3, landing experiments were performed

in both indoor and outdoor environments.

A successful indoor landing experiment within the OptiTrack positioning environment
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Figure 2.7: Simulated trajectories of the quadrotor (blue) and ground vehicle (green)
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Figure 2.8: Position of the quadrotor for the simulation
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Figure 2.9: Relative error during a landing from RTK baseline measurements

is recorded. As shown in the top-down view of the vehicle trajectories in Fig. 2.9, both the

ground vehicle and the quadrotor drive toward each other to eliminate the relative position

error. The error quickly decays toward zero and oscillate about the equilibrium as observed

in Fig. 2.10. As the relative position error becomes small enough at 24 second mark of

the experiment, a landing command is triggered, and the quadrotor landed on the UGV

landing pad shown by the pink square. The oscillation may be caused by the transient

in quadrotor roll and pitch to meet the requested angles by the position controller, which

introduces unmodelled phase lag into the control system.

Successful outdoor landings are performed in the presence of wind disturbances and

sensor noises. Integral efforts are added to the quadrotor portion of the joint controller

to overcome the wind disturbances. The control inputs on the quadrotor are saturated to

prevent exit from the region of attraction due to large position error.

The RTK baseline measurements from a successful outdoor landing in East-North-

Up (ENU) are presented in Fig. 2.11. As shown, the relative error between the vehicles

quickly decreases within the first 10 seconds of the experiments, and oscillates about the

origin due to the varying wind disturbance at 15km/h and sensor noises in GPU and IMU
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Figure 2.10: Trajectories taken by the quadrotor (blue) and ground vehicle (green) during

an indoor landing experiment

measurements. The altitude subplot in Fig. 2.12 indicates oscillation in height control

due to the impact of ground effect. At the 10s mark, as the quadrotor X-Y relative

position error approaches zero, the quadrotor is above the ground vehicle, as indicated

by the steady difference in altitude measured by the the sonar and GPS sensors. Large

variations in the sonar measurement are then visible at 25, 30, 38, 52 and 59 seconds.

The result is significant increase in the thrust produced by the quadrotor when over the

ground vehicle due to ground effect, and this leads to oscillation in the GPS altitude

control. This unmodelled disturbance also leads to extra horizontal acceleration at nonzero

φq and θq, also contributing to the observed oscillation in X-Y plane. Such oscillations

continue until the relative errors and quadrotor horizontal velocities are small enough for

safe docking, and a landing command is triggered at 50s mark. Videos are also captured

for a successful indoor landing at http://tinyurl.com/d93jgwd and an outdoor landing

at http://tinyurl.com/98rpz7b.

One advantage of joint controller docking strategy is its cooperative nature. Fig. 2.13

contains a 2D plot of the trajectories of both vehicles during the outdoor docking ex-

periment. The UGV trajectory is derived from the NED coordinate measurements from
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Figure 2.11: Relative error during a landing from RTK baseline measurements

1 2 3 4 5 6 7 8

4

5

6

7

8

9

X[m]

Y
[m

]

Figure 2.12: Trajectories taken by the quadrotor (blue) and ground vehicle (green) during

an outdoor landing experiment
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Figure 2.13: Trajectories taken by the quadrotor (blue) and ground vehicle (green)
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the GPS, while the quadrotor trajectory is extracted by offsetting each measurement of

the UGV trajectory with the RTK baseline measurements at the same time step. In

Fig. 2.13(a), a spike in position error is introduced when the quadrotor is driven away

by a wind disturbance, while the trajectories shown in Fig. 2.13(b) indicate that both

vehicles are actively trying to converge to each other and eliminate relative position error,

effectively utilizing all available control inputs of the UGV-UAV joint system.

We have successfully demonstrated autonomous coordinated landing of a small UAV

on a ground vehicle, in the presence of wind and despite difficulty with ground effect. This

paves the way for multi-vehicle teams to be applied to persistent surveillance problems, and

allows short lived UAVs to operate indefinitely with recharge or swap on moving support

platforms.
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Chapter 3

Dense Reconstruction and

Localization with RGB-D Camera

While landing is a core capability for long range, long duration UGV-UAV coordination in

outdoor setting, mapping and localization is essential for safe operations for both vehicles

in unknown environment. With this purpose in mind, the spatially extended KinectFusion

algorithm is developed using the Microsoft Kinect RGB-D camera to perform dense recon-

struction of the physical environment while localizing the camera pose with respect to the

constructed map.

The original KinectFusion algorithm [33] stores the global 3-D map in a voxel grid

containing values of a discretized truncated signed distance function (TSDF), which is a

mathematical tool to encode the locations of vertices in the surface model of obstacles. The

TSDF grid is used to aggregate depth measurements into a global map through weighted

averaging, effectively removing raw depth image noise from the resulting surface recon-

struction. From a given camera pose, a stable surface model of the environment can be

extracted by performing ray tracing in the TSDF voxel grid to locate the surface vertex.

While TSDF leads to high fidelity surface reconstruction, it is memory inefficient, limiting

the original KinectFusion algorithm in small work space. In this work, the TSDF voxel

grid is divided into smaller, multi-axis aligned grid of TSDF tiles, and a swapping system

between Graphics Processing Unit (GPU) memory and the hard-drive is implemented to

enable large scale maps to be constructed.

Another issue with the original KinectFusion algorithm lies in its inability to track
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camera position when viewing environment that lacks geometric textures. To address this

issue, a visual odometry algorithm is developed in house to extract and track features in

subsequent images with the optical flow method. The flow vectors are processed with the

RANdom SAmple Consensus (RANSAC) algorithm [42] to estimate the relative camera

motion, while rejecting outlying measurements. Using the visual odometry camera motion

estimate as an initial solution, the modified point-to-plane iterative closest point (ICP)

algorithm [31] from KinectFusion is used to refine camera pose solution by aligning the

raw depth image with the current global surface model when geometric texture is present.

This hybrid approach combines color and shape information for camera pose estimation,

allowing robust localization in real-time.

The algorithm consists of the following main steps.

1. New Measurement Processing: The raw Kinect data is processed to extract a

vertex and a surface normal at each pixel.

2. Camera Pose Estimation: The new vertex image is aligned with the global surface

model using an ICP algorithm, generating a rigid transformation matrix to describe

the camera pose.

3. Memory Management: The active and inactive map regions are identified based

on the current camera pose and sensor measurement volume, and appropriate mem-

ory slices are swapped between hard drive and GPU memory.

4. TSDF Update: The TSDF voxel grid is updated with a weighted average of the

new depth map and the existing voxel grid values, based on the estimated camera

pose.

5. Surface Prediction: Ray marching is performed at each image pixel to find the

zero crossing of the TSDF voxel grid, to update the global surface model matched

by a ICP algorithm for the next iteration.

Using these five steps, the proposed algorithm leads to a rich description of the en-

vironment while provide accurate localization information in real-time, further enhancing

the autonomy of UAV-UGV team in positioning denied environment.
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3.1 Preliminaries

The intrinsic characteristics of the Kinect depth camera are captured by the camera cal-

ibration matrix K ∈ R3×3, and U ⊂ R2 is the set of pixel locations in the image. A ray

r ∈ R3 from pixel location u ∈ U can be computed via r = K−1u̇, where u̇ = [u, 1]T is the

homogeneous vector of u. A point pc in the camera coordinate frame can be projected onto

the image plane via u = π(Kpc), where π : R3 → R2 transforms a point, pc = [x, y, z]T ∈ R3

to a point on the image plane, u = [x
z
, y
z
] ∈ R2. Denote pi as the ith element of a point,

p ∈ R3, where i ∈ {1, 2, 3}.

The inertial camera 6DOF pose at time step k is encoded within the rigid transformation

matrix from camera coordinate frame c to global coordinate frame g,

T gc,k =
[
Rg
c,k tgc,k

]
where Rg

c,k ∈ SO3 is a rotation matrix and tgc,k ∈ R3 is the translation vector. The global

location pg ∈ R3 of a point pc ∈ R3 in the camera frame is computed via pg = T gc,kṗc. The

homogeneous form of T gc,k is given by,

Ṫ gc,k =

[
Rg
c,k tgc,k
0 1

]

and let w(Ṫ gc,k) = T gc,k

Each new depth image at time step k is denoted Dk, while the vertex map and surface

normal in coordinate frame j are denoted as Vj,k and Nj,k. Denote Dk(u) ∈ R as the

depth value of the point recorded in image pixel u ∈ U . Similarly, denote Vj,k(u) ∈ R3 as

the surface vertex point projected on image pixel u, and Nj,k(u) ∈ R3 the surface normal

vector for Vj,k(u). We define an image feature as f = [uf , df ]
T , where uf ∈ U is the

image pixel location and df is the depth value associated with this pixel. A feature vector

Fk = f1, f2, ..., fn is a set of n image features extracted from an RGB-D image Ik at time

step k.

A Truncated Signed Distance Function (TSDF) voxel grid consists into smaller chunks

of TSDF volumetric tiles. Let Ck denote the active set of TSDF tiles, or those tiles that

reside in the GPU memory at the kth iteration; the set Ak contains the list of memory

slots available for loading from the file system; and the proximity set, Bk, indicates the set
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of TSDF tiles whose volume center positions are within a certain constant radius of the

camera position, tgc,k. The function n : X → Z+ returns the number of element in set X.

3.1.1 Optical Flow

Optical flow is a well-studied technique for estimating relative motion between image

frames. Given two subsequent images in time, Ik−1 and Ik, feature set Fk−1 is a set of

point feature extracted from Ik−1. Provided with a squared window size of w pixels, de-

note the tracking region for each feature, f ∈ Fk−1, at pixel location uf as Wf = {u ∈
U|u1 ∈ [uf,1−w, uf,1 +w], u2 ∈ [uf,2−w, uf,2 +w]}. The objective of optical flow problem

is to estimate the relative motion, d ∈ R2, that image patch Wf about each f ∈ Fk−1

experience between Ik−1 and Ik, also known as the optical flow of Wf .

The following assumptions are made for optical flow algorithm to function:

Assumption 3.1. All pixels within Wf experience the same displacement vector d ∈ R2.

Assumption 3.2. The overall image intensity of pixels within Wf stay constant spatially

and temporally, i.e.

Ik−1(u) = Ik(u+ d), ∀u ∈ Wf (3.1)

Assumption 3.3. The relative motions and time difference between consecutive images

are small.

Assumption 3.4. All pixels within the window, Wf , for each feature, f ∈ Fk−1, in Ik−1

are also viewable in the subsequent image Ik

Assumption. 3.2 provides the basis for formulating the optical flow solution as an op-

timization problem. Given the small relative spatial and temporal difference between two

subsequent image frames in Assumption. 3.3, we can perform Taylor series expansion on

Ik(u+ d) as follows,

Ik(u+ d) = Ik−1(u) +5I(u)d+ It(u)∆t (3.2)

where 5I(u) = [Ix(u), Iy(u)] ∈ R2 is the spatial gradient at pixel u, typically calculated by

filtering the image with edge detection gradient kernels; and It is the derivative of image
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intensity over time at u and ∆t is the time difference between two image frames. We

substitute 3.2 into 3.1 to derive the following,

Ik−1(u) = Ik−1(u) +5I(u)d+ It(u)∆t (3.3)

0 = 5I(u)d+ It(u)∆t (3.4)

We can use (3.4) to formulate a least square problem,

J =
∑
u∈Wf

‖ 5 I(u)d+ It(u)∆t‖22 (3.5)

and optimal solution d∗ for J is given by

d̂∗ =

[ ∑
I2x

∑
IxIy∑

IxIy
∑
I2y

]−1 [∑
IxIt∆t∑
IyIt∆t

]
(3.6)

where d̂∗ is the estimated optical flow vector experienced by image patch Wf .

Using the process illustrated above, we can estimate the optical flow of the image

patch about every feature f ∈ Fk−1 to generate their corresponded feature f ′ in Ik via

f ′ = [uf + d̂∗, Dk(uf + d̂∗)]T . This results in a vector of corresponded RGB-D feature pairs,

which can be used to estimate 6 Degree Of Freedom (DOF) relative motion the camera

experiences between subsequent images, Ik and Ik1 .

The issue with the optical flow approach is that its derivation is based on the strong

assumptions of spatial and temporal locality, and it suffers from erroneous flow estimation

when these assumptions are violated. As a result, a method is needed to detect and reject

erroneous optical flow vectors the relative 6DOF motion solution. The RANSAC algorithm,

as described in Sec. 3.1.2 can be used for this purpose.

3.1.2 RANSAC Algorithm

The RANSAC algorithm [42] is a probabilistic method for fitting a mathematical model

on a set of measurements. It differs from the regular least square fitting scheme in that the

RANSAC algorithm fundamentally assumes the existence of outliers in the measurements.

Least square model fitting includes all samples within the solution for the model, and results

in optimal solutions when the noise in measurements is sampled from a zero-mean Gaussian
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distribution. The presence of outliers, however, injects large error into the quadratic cost

evaluation that dramatically degrades the resulting solution.

To mediate the impact of outliers, RANSAC iteratively selects a smaller cluster of

samples from the measurement set, and a model is fit on the cluster of samples. This

model is subsequently evaluated by checking if other remaining samples agree with the

model, and store the model with the highest number of inliers. This process is repeated

for a certain number of iterations, and the final model is generated from the inliers of the

best model.

Let M the measurement space that contains all permutations of a generic measurement

type, S the model space that includes all models generated from any set of measurements

M ∈ Mn. We define α : Mn → Mm as a function that takes in a set of measurements

and returns a random subset of the input with size m where n,m ∈ R and n ≥ m; the

function β : M → S returns a model in S derived from a measurement set of size m;

finally, γ : M × S → R take a measurement and a model as inputs, and returns 1 if the

measurement is considered an inlier of the measurement set described by the model, 0 if

otherwise. Given these definitions, Algorithm. 1 illustrates the operations of RANSAC.

The RANSAC algorithm has been applied extensively to fitting a rigid transformation

model for visual odometry, which refers to the estimation of relative camera motion between

two image frames. The common approach is to use a either feature tracking technique (op-

tical flow) or feature matching (extracting point features and matching them across two

image frames) techniques to generate a set of corresponded feature pairs. The correspon-

dences are subsequently filtered using the RANSAC algorithm to reject the outliers, and

a final model is computed from the remaining feature pairs.

3.1.3 Rigid Transformation Model Fitting

The section describe a method to calculate the relative motion experienced by the camera

between two subsequent image frames, given two corresponded set of RGB-D feature set

Fk−1 and Fk. Firstly, a RGB-D feature f can be converted to a 3-D point p via p =

dfK
−1u̇f , and denote PK the 3-D point set generated from features from Fk.

The rigid transformation model fitting technique from [43] is used in the RANSAC

visual odometry algorithm in place of the function β : M → S described in Sec. 3.1.2.
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Algorithm 1 RANSAC Algorithm
M ∈Mn

b← ∅, b ∈ S
b∗ ← ∅, b∗ ∈ S
c← 0, c ∈ R
c∗ ← 0, c∗ ∈ R
for i = 1 : K do

c← 0

Mr ← α(M)

s← β(Mr)

for j = 1 : n do

c← c+ γ(Cj, s)

end for

if c > c∗ then
c∗ ← c

b∗ ← b

end if

end for
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Given two sets of 3-D points Pk−1 = {pi ∈ R3|i ∈ [1, N ] ∈ N} and Pk = {p′i ∈ R3|i ∈
[1, N ] ∈ N}, and we arrange the points such that pi is corresponded with p′i. Assuming

that the correspondence is correct, there exists a rigid transformation T = [R|t] where R

is the rotation matrix and t is the translation, such that

p′i = Rpi + t (3.7)

Let p = 1
N

∑
pi and p′ = 1

N

∑
p′i denote the centroids of Pk−1 and Pk, we let qi = pi−p,

q′i = p′i − p′ and H =
N∑
i=0

q′iqi. It is proven in [43] that the optimal estimated rotation R̂

can be obtained by performing singular value decomposition (SVD) on H, i.e.

H = UΛV T (3.8)

where U, V ∈ R3×3 are unitary matrices containing the left and right singular vectors

of H, and Λ is a diagonal matrix containing the singular values. The optimal rotation is

constructed via R̂ via R̂ = V UT . Finally, we derived the estimated translation vector t̂ from

t̂ = p′ − R̂p. Note that it is also possible to formuate the relative transformation solution

as an iterative least square optimization problem [44], but this algorithm provides a non-

iterative closed form solution, delivering better computation efficiency while minimizing

the cost function of the least square problem.

3.1.4 Kinect RGB-D Camera

The Kinect camera, captured by Fig. 3.1 consists of a RGB camera, infra-red (IR) camera

and a IR projector. To extract depth information, a IR pattern is projected onto the

environment, and images from the IR camera are processed for correspondence of the

constellation. Since the extrinsic characteristics between the projector and the IR camera

are fixed and pre-calibrated, the depth to each point in the pattern can be computed

through ray triangulation. Through hardware acceleration, the Kinect camera is capable

of outputting 640×480 RGB-D images at 30 frame-per-second (fps), providing a dense 3-D

point cloud with speed and quality for $150. Despite all these benefits, the Kinect camera

has a limited range of 8m. Due to the usage of IR imaging, the sensor is only operatinal
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Figure 3.1: Kinect RGB-D Camera

in indoor environment. Finally, the resulting depth image contains has difficulty resolving

depth of around the edges of an object, due to occlusion of the IR pattern from the IR

camera viewing angle.

3.1.5 CUDA Toolchain

General-purpose computing on graphics processing units (GPGPU) refers to the incorpo-

ration of GPUs to perform computations other than graphic processing. The interest in

GPGPU originates from the inherent advantage of GPU hardware architecture to perform

parallel computations. To put it in perspective, a high-end Intel i7 CPU has 4 hyper-

threaded cores at clock speed of 2GHz or more, while a consumer-grade NVIDIA graphics

card has up to 1000 CUDA cores with 700MHz clock that can all run concurrently, leading

to the efficiency of GPUs in processing large number of independent, simple calculations.

GPGPU is particularly suitable for image processing applications, which typically involve

performing the same computation on every image pixel. In [45], the author demonstrated

up to 200x speed-up in processing speed for CUDA implementation of numerous image

processing techniques over a single-core, sequential implementation.

CUDA is a set of proprietary tools and libraries that allows software developers to

perform parallel computation using NVIDIA GPUs. Developers only need to write software

for a single unit of computation - commonly referred to as a kernel - and specify how many

kernels are required to launch. The GPU driver takes in this information and distributes

the computation tasks to the GPU cores for executions, abstracting task scheduling from

developers. An example is shown in Listing. 3.1 to demonstrate the advantage of parallel

computation.
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g l o b a l memCopy( f loat ∗A, f loat ∗B) {
int i = blockId ∗blockDim . x + threadId . x ;

A[ i ] = B[ i ] ;

}
Listing 3.1: CUDA Code Example: Sample Kernel

The memCopy function is a sample CUDA kernel that copies the value of every element

in a float array to a corresponding element of another array of the same size. Typically

this is achieved by using a for-loop that sequentially writes to each array element, and the

execution time is the sum of every write operation. In the above parallel implementation,

the execution time is compressed to one of a single unit of computation as long as the

number of elements is less than the number of GPU cores.

Overhead is introduced, however, in steps required to launch the kernel and retrieve

computation results as illustrated in Listing. 3.2. Since the computer Random Access

Memory (RAM) is physically separated from the GPU memory, memory transfer opera-

tions between RAM and GPU memory are necessary to download the RAM content to

proceed with the memCopy in the GPU, as well as collecting the results from it. Such

memory transfer operations are expensive, bottlenecked by communication bandwidth of

the motherboard, and are to be avoided as much as possible.

int main ( int argc , char∗∗ argv ) {
f loat ∗ Acpu = ( f loat ∗) mal loc (N∗ s izeof ( f loat ) ) ;

f loat ∗ Bcpu = ( f loat ∗) mal loc (N∗ s izeof ( f loat ) ) ;

f loat ∗ Agpu = NULL;

int threads = N;

// a l l o c a t e GPU g l o b a l memory

cudaMalloc(&Agpu , N∗ s izeof ( f loat ) ) ;

cudaMalloc(&Bgpu , N∗ s izeof ( f loat ) ) ;

// t r an s f e r the content o f A array to GPU

cudaMemcpy(AGpu, ACpu, N∗ s izeof ( f loat ) ,

cudaMemcpyHostToDevice ) ;
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// launch ke rne l

memCopy<<<1, N>>>(Agpu , Bgpu ) ;

// r e t r i e v e r e s u l t s

cudaMemcpy(Bcpu , Bgpu , N∗ s izeof ( f loat ) ,

cudaMemcpyDeviceToHost ) ;

}
Listing 3.2: CUDA Code Example: Kernel Launch

One method to mediate memory transfer overhead is stream processing. A stream

in CUDA is a queue for sequential GPU tasks, including memory transfers and kernel

launches. Kernel launches on different streams are executed in parallel, while memory

transfer requests are sequentially serviced by the Direct Memory Access (DMA) peripheral

built into the GPU. The DMA device performs asynchronous memory transfer without us-

ing clock cycles of the processors (GPU and CPU). Fig. 3.2(a) demonstrates the advantage

of the stream processing technique over synchronous handling of GPU tasks. As shown

in Fig. 3.2(b), DMA memory transfers allow the kernel execution and memory transfer

to be overlapped in time, hiding the memory transfer overhead. The stream processing

technique is extensively utilized in the extended KinectFusion algorithm as illustrated in

Sec. 3.2.3.

3.2 Spatially Extended KinectFusion Algorithm

This section describe the mathematical formulation and software implementation details

of each of the five components of the spatially extended KinectFusion algorithm.

3.2.1 New Measurement Processing

The raw surface model is generated in the same manner described in KinectFusion. Upon

receiving a new depth image, Dk, the value of the new camera frame vertex map Vc,k at

pixel u is given by the following equation,

Vc,k(u) = Dk(u)Ku̇ (3.9)
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(a) Synchronous Processing

(b) Asynchronous Stream Processing

Figure 3.2: Timing diagrams for synchronous and asynchronous stream processing

The camera frame surface normal Nc,k can be generated at each pixel u ∈ U with a cross

product of two surface tangent vectors,

δVi = Vc,k(i+ 1, j)− Vc,k(i, j)

δVj = Vc,k(i, j + 1)− Vc,k(i, j)

Nc,k(u) = v(δVi × δVj) (3.10)

where v : R3 → R3 is the normalization operator, v(p) = p/‖p‖2. The global frame vertex

map, Vg,k, is computed by the transformation Vg,k = T gc,kV̇c,k(u) applied to each vertex,

and the global frame surface normal is derived with the rotation Ng,k = Rg
c,kNc,k(u). The

computations of vertex and surface normals are trivially parallelizable, and are performed

on the GPU.

3.2.2 Camera Pose Estimation

The camera pose estimation component of the algorithm aims to track the camera pose

with respect to the global map. We first extract relative rigid transformation using vi-
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sual odometry technique with on optical flow based correspondence of RGB-D features

in subsequent image frames. In the second step of the camera estimation, we seed the

KinectFusion iterative closest point (ICP) algorithm implemented in GPU with the visual

odometry solution, and refine it further with the geometric shape information in the scene.

Given two consecutive images Ik−1 and Ik, Shi-Tomasi features are extracted from Ik−1

to generate feature set Fk−1, and track them in Ik using optical flow to generate a second set

of features Fk. The feature correspondences are further filtered using RANSAC algorithm

to reject outlying feature pairs. A final relative transformation solution between step k and

k − 1, denoted as Tv, is derived using the transformation model fitting method mentioned

in Sec. 3.1.3 on the filtered set of 3-D points features pairs.

Fig. 3.3 demonstrates the robustness of the RANSAC visual odometry algorithm. The

red features indicates outlying correspondence while green features are included in the

relative camera motion solutions. As shown, the erroneous feature correspondences are

successfully discarded to derive the clean relative transformation solutions between two

consecutive camera pose.

Figure 3.3: RANSAC based visual odometry

In KinectFusion, an ICP algorithm based on projective association is used to optimize

the camera pose estimation further, and is introduced as follows. The objective of this

step is to find the camera transformation matrix, T gc,k, that minimizes the function J :

SE(3) → R+, the error sum of squares between the new global frame vertex map, Vg,k,
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and the predicted vertex map, V̂g,k, from the previous surface prediction step (details of

this step is described in Sec. 3.2.5). J(T gc,k) is given by the following equation,

J(T gc,k) =
∑
u∈U

Ω(u)=1

E(u)2 (3.11)

=
∑
u∈U

Ω(u)=1

‖(T gc,kV̇c,k(u)− V̂g,k(û))T N̂g,k(û)‖22 (3.12)

where E(u) is denoted as the reprojection error, N̂g,k is the predicted surface normal,

û = π
(
Kw((Ṫ gc,k−1)

−1)T gc,kV̇c,k(u)
)

is the predicted pixel location of the new vertex in the

previous camera frame at step k− 1. Furthermore, Ω(u) ∈ {0, 1} is a binary function that

indicates if the vertices Vg,k(u) and V̂g,k(û) are corresponded. For Ω(u) ∈ {0, 1} to return 1,

the depth image Dk must contain a valid value at pixel u; the distance between the vertices,

‖Vg,k(u) − V̂g,k(û)‖, has to be smaller than a tunable threshold, εd ∈ R+, for rejecting

outliers from the ICP optimization; finally, the angle between the surface normal vectors

of both vertices, given by acos(Ng,k(u)T N̂g,k(û)), needs to be within another threshold,

εθ ∈ R+. Compiling these criteria, Ω(u) can be defined as the following,

Ω(u) = 1 ⇐⇒


Dk(u) 6= ∅

v(Vg,k(u)− V̂g,k(û)) ≤ εd

acos(Ng,k(u)T N̂g,k(û)) ≤ εθ

To find the minimum of J , an iterative optimization scheme is used. Let T z denote

the iterative solution of T gc,k at ICP iteration z, where T 0 is initialized with TvṪ
g
c,k−1.

Also let T zinc denote the linearized (with small angle approximation) incremental rigid

transformation between iteration z and z − 1,

T zinc = [Rz | tz] =

 1 α −γ tx

−α 1 β ty

γ −β 1 tz


We can obtain the update step of each ICP iteration T z = Ṫ zincT

z−1. Denoting Ṽg,k =

T z−1V̇c,k(u) = [v1, v2, v3]
T , the reprojection error function E(u) from (3.12) is reconstructed

42



with T z as follows,

E(T z) = [T zV̇c,k(u)− V̂g,k(û)]T N̂g,k(û)

= [T zinc
˙̃Vg,k(u)− V̂g,k(û)]T N̂g,k(û)

= [G(u)x+ Ṽg,k(u)− V̂g,k(û)]T N̂g,k(û) (3.13)

where

G(u) =

 0 −v3 v2 1 0 0

v3 0 −v1 0 1 0

−v2 v1 0 0 0 1


x =

[
β γ α tx ty tz

]
∈ R6

The optimal solution x∗ of the modified cost function, J , is then given by

x∗ =
(∑

ATA
)−1 (∑

AT b
)

where

A = N̂g,k(û)TG(u)

b = N̂g,k(û)T (V̂g,k(û)− Ṽg,k)

ATA and AT b are calculated in parallel for each corresponded pixel u within the GPU

software. A GPU tree reduction algorithm [46] is implemented to perform accelerated

summation across the entire image. The solution x is obtained by solving the linear system

(3.14) on the CPU with SVD method described in Sec. 3.1.3.

The linear system is ill-conditioned when the geometric structure of the scene is predom-

inately planar, resulting in erroneous ICP solutions. To address this issue, the condition

number from the diagonal matrix from the SVD solution is checked. Let Λ denote the

diagonal matrix from the SVD solution to the linear system. Λ has the following structure,

Λ =

λ1 · · · 0
...

. . .
...

0 · · · λ6
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and the condition number c is given by c = λ1
λ6

. If c is larger than a certain threshold Tsvd,

the transformation solution from the visual odometry algorithm, given by TvT
g
c,k−1, will be

accepted without further ICP refinement as the ICP solution is likely to fail.

3.2.3 GPU Memory Management

The original KinectFusion operates within a single TSDF voxel grid stored in the GPU

global memory, and the operation space of the algorithm is upper bounded by the limited

memory size. A possible solution is to split the operation space voxel grid into smaller

volumetric tiles.

Each TSDF tile s is assigned a descriptor, ds = [ag, pv, f ]T ∈ R3, which contains the

following information:

• ag: GPU memory address

• pv: volume center position

• f : file ID

Upon initialization, a kd-tree is constructed from a set of tile descriptors (k = 2 in our

implementation). Global GPU memory is initially allocated for a tunable number of tiles

that make up the active tile set, denoted C0, and n(C0) > n(Ck),∀k > 0 to allow extra

buffer for loading operations.

The pseudo-code of the memory swapping process is described in Algorithm 2, where

memcpyAsync(a, b, streams) is the command for asynchronous memory copy from source ad-

dress, b, to destination address, a, executed by CUDA stream streams; TSDFUpdate(as, streams)

is the kernel launch command to invoke the calcTSDF function in Algorithm 3 on every

voxel within tile s that resides in GPU memory address as, and the kernel launch request

is again handled by the CUDA stream streams.

Line 2-7 of Algorithm 2 describes the unloading operations. Denote Rl(T
g
c,k) ⊂ R3 as the

loading region fixed about the body frame origin of the camera pose T gc,k, and Ru(T
g
c,k) ⊂ R3

the unloading region. For the kth iteration, each tile s ∈ Ck−1 is checked to see if it is in

Ru(T
g
c,k). If so, the memory content within s is transferred from the GPU memory to a
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corresponding file on the hard drive, and the index of this memory slot is inserted into the

previous set of available memory addresses, Ak−1, resulting in intermediate set, A′
k. Also,

s is removed from previous active set Ck−1 to construct intermediate C ′
k.

The loading operation is captured by Line 8-21 of Algorithm 2. After every unloading

stream execution is completed, loading operations are commenced. A search is performed

for all tiles with their volume centers located within a ball of radius upper bounded by

the GPU memory size and the maximum sensor range, returning proximity set, Bk. A tile

s ∈ Bk that falls within loading region, Rl(T
g
c,k), is loaded into the GPU memory if there

is a memory slot address left in A′
k. The newly loaded GPU memory slot index is removed

from A′
k to construct Ak and assigned to the tile descriptor of s. Such a radius search for

Bk in a kd-tree is efficient with complexity O(log n).

Each memory loading operation is performed using the CUDA asynchronous stream

processing API [47]. A stream is assigned to perform an asynchronous memory transfer

to the GPU using the GPU direct memory transfer (DMA) unit, and the TSDF update

kernel launch request is sent to the same stream to be processed after the loading is

completed. The advantage of stream processing is that the execution of kernel launches

and asynchronous transfers from different streams are concurrent. This allows multiple

memory transfers followed by kernel launches (i.e. multiple tiles loaded into the GPU

memory and updated right after) to be processed more efficiently.

Launching CUDA kernels via streams also enables concurrency of the kernel executions

in different streams, a beneficial feature for TSDF updates in a multi-tile map. The orig-

inal KinectFusion has one large volume in a continuous block of memory, allowing linear

conversion from each CUDA kernel thread index to their corresponding voxel memory ad-

dress. The multi-tile system instead has multiple blocks of continuous memory that are not

necessarily continuous with each other. Therefore, one KinectFusion TSDF update kernel

can only concurrently update voxels within an individual tile, while multiple kernels still

need to be launched to cover all active tiles in Ck. Stream kernel launching allows further

parallelization on a tile basis. The GPU execution is blocked until all concurrent TSDF

update kernels are executed, ensuring that all tiles will be ready for surface prediction step.

A spatial hysteresis, Rh(T
g
c,k), is also introduced between Rl(T

g
c,k) and Ru(T

g
c,k), and

defined as follows:
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Rh(T
g
c,k) = Rl(T

g
c,k) ∪Ru(T

g
c,k)

The purpose of this feature is to prevent excessive loading and unloading requests as a

tile moves back-and-forth across the region boundaries due to small changes in the camera

pose estimate. A 2D example of the hysteresis is illustrated in Fig. 3.4. For the 3-D

case, the loading region is defined as the camera frustum volume, and the hysteresis is a

band of volume around the loading volume with a certain thickness. The selection for a

hysteresis thickness is a trade-off between the amount of GPU memory overhead and the

chance of triggering a memory transfer. Increasing the thickness allows more tiles in the

hysteresis region to simply idle in the GPU memory, requiring more slots to be allocated to

accommodate loading requests. Decreasing thickness leads to less tolerance for back-and-

forth camera motion before transfer requests are triggered, which is taxing on the realtime

performance of the algorithm. In our implementation, the thickness value is empirically

tuned, and the investigation of more intelligent selection remains an area for future work.

Load 
Region

Unload
Region

Hysteresis

Camera

Figure 3.4: Hysteresis between loading and unloading regions

3.2.4 TSDF Update

KinectFusion aggregates the depth measurements into an online global surface representa-

tion using TSDF [33]. Signed distance function (SDF) [48] is a mathematical representation
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Algorithm 2 memSwap(Ak−1, Ck−1, T
g
c,k)

1: A′
k ← Ak−1

2: C ′
k ← Ck−1

3: for all s ∈ Ck−1 ∩Ru(T
g
c,k) do

4: memcpyAsync(ds,3, ds,1, streams)

5: A′
k ← Ak−1 ∪ ds,1

6: C ′
k ← C ′

k \ s
7: end for

8: for all s ∈ Bk ∩Rl(T
g
c,k) do

9: if ds,1 6= ∅ then
10: TSDFUpdateKernel(ds,1, streams)

11: continue

12: end if

13: ds,1 ← a where a ∈ A′
k

14: A′
k ← A′

k \ a
15: if ds,1 = ∅ then
16: continue

17: end if

18: C ′
k ← C ′

k ∪ s
19: memcpyAsync(ds,1, ds,3, streams)

20: TSDFUpdateKernel(ds,1, streams)

21: end for

22: Ak ← A′
k

23: Ck ← C ′
k
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of an set boundary, which in this case describes the environment surface. Any point in front

of the surface is assigned a positive value, while any point behind the surface is negative.

The zero crossing of the SDF is therefore where the surface lies.

KinectFusion uses a truncated, discrete approximation of the full SDF [49, 33]. A 3-D

volume is discretized into voxel grids stored in the global memory of the GPU, and each

voxel contains a 32-bit structure S = [F,W ]T ∈ R2, where F is the TSDF value, and W

is the weight that describes the current confidence in this value. Given some maximum

truncation distance µ, the new TSDF for a point pg ∈ R3 in the global coordinate frame

is calculated by projecting pg onto some pixel, u ∈ U , and calculating the difference

between the depth of pg relative to the camera and Dk(u). The difference is truncated

and normalized by µ to derive F . A point pg with truncated TSDF value F (F = 1.0 or

F = −1.0) are labeled as unseen if F < 0, and empty space if F ≥ 0. The reason for

truncation is that the TSDF value approximates the true SDF well only when the voxel is

close to the isosurface. Furthermore, this truncation labeling strategy only assigns unique

meaningful values to a small band of volume around the surface, potentially allowing room

for effective compression.

The new TSDF value of each voxel is the weighted average between the new and the

existing values. The weighted averaging over time offers robustness against noise in the

resulting global surface model. A unit weight is chosen for new values for simplicity of

implementation, but alternative weight selection schemes can be used. The weight value

is truncated by parameter Wmax not only to avoid variable register overflow, but also to

allow map adaptation to dynamically changing environments. The algorithm is detailed in

Algorithm 3. where the function nearestPixel(u) finds the nearest neighboring integer

pixel coordinates to the projected pixel location, u; Empty is a flag defined to label empty

space with a TSDF value of 1.0, and Unseen defined to label unseen space with a TSDF

value of −1.0. Note that u can be outside of the camera frustum and depth value at u,

Dk(u), can be an invalid measurement, hence the need to check for validity of u as done

in Line 3-5.

Since we only invoke Algorithm 3 for each point in the active set Rl, which has a fixed

volume, the worst-case runtime is constant for the voxel grid update step. Each TSDF

calculation can be handled independently, and so parallelization is again trivial in the

GPU.
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Algorithm 3 calcTSDF(pg, T
g
c,k)

1: pc ← T gc,kpg

2: u ← nearestPixel(π (Kpc))

3: if u /∈ U or pc,3 ≤ 0 or Dk(u) = ∅ then
4: return

5: end if

6: d← pc,3 - Dk(u)

7: if d < 0 then

8: tsdf ← min(Empty, −d
µ

)

9: else

10: tsdf ← max(Unseen, −d
µ

)

11: end if

12: [F,W ]T ← Spg
13: if W = 0 then

14: Spg ← [tsdf, 1]T

15: else

16: F ← tsdf+F×W
W+1

17: W ← min(Wmax, W + 1)

18: Spg ← [F,W ]T

19: end if
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3.2.5 Surface Prediction

The predicted vertex map V̂g,k+1 and surface normal N̂g,k+1 need to be updated for ICP

alignment in the next step of the main loop using raycasting through the updated TSDF

voxel grid as in the original algorithm.

Given the current camera pose T gc,k, a ray r(u) ∈ R3 for each pixel u ∈ U is given

by r(u) = Rg
c,kK

−1u̇. To generate the vertex map V̂g,k+1(u), we march along each r(u)

within the TSDF voxel grid until we find the first negative TSDF value. To adapt the

original KinectFusion ray tracing algorithm to operate in multiple TSDF tiles, the global

coordinates of pg ∈ R3 visited by a ray are mapped to the index of the corresponding tile

descriptor to find the memory slot to which pg belongs. The index of the TSDF element

corresponding to pg within this tile is then computed to access the element content. Fig. 3.5

demonstrates the quality of surface reconstruction relative to the surface normal map

created from raw Kinect depth data. Some spacing is inserted between map tiles to visualize

the boundaries, which are visible as black borders in the image in Fig. 3.5(a). To more

accurately estimate the intersection of the ray with the isosurface, trilinear interpolation

is used. The global surface normal, N̂g,k+1(u), corresponding to the vertex V̂g,k+1(u), can

be calculated by finite differencing the TSDF values of the neighboring voxels about the

vertex point [33].

N̂g,k+1(u) = v

([
∂F

∂x
,
∂F

∂y
,
∂F

∂z

]T)

The TSDF representation provides efficiency to the raycasting process. Instead of

performing binary ray marching where every voxel along the ray is visited, step size5t ≤ µ

is taken until the first positive TSDF value less than 1 is encountered (such an encounter

is guaranteed), at which point binary ray marching takes place. Significant speed-up is

achieved using this ray skipping strategy.
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(a) Reconstruction from Raycasting

(b) Raw surface normal

Figure 3.5: Raycasting vs Raw Surface Model
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Chapter 4

Extended KinectFusion Experimental

Results

To demonstrate the operation of the algorithm, we use a Kinect camera to map the Wa-

terloo Autonomous Vehicle Laboratory (WAVELab) area - a 10×10×3m3 space - with a

centimeter voxel resolution. Each TSDF tile has a volume of 100×100×400 voxels and

uses 35MB of memory; 1GB of global memory is allocated on the GPU for 29 TSDF tiles.

Given a hard drive with a moderate size of 500GB, a 100×100×4m3 area can be covered.

The current algorithm initiates a 2D square grid of TSDF tiles fixed on a certain

height, assuming the operation space does not have much height variation (extension to

a 3D TSDF tile grid is trivial). This allows the tile descriptors to be stored in a matrix,

providing direct access of tiles about the camera position to find the proximity set, Bk,

without the need for a kd-tree radius search. An alternative is to dynamically grow the

tile kd-tree during runtime. New slices can be added in the directions required by robotic

exploration, and the active and inactive sets are identified using an efficient radius search

within the kd-tree. The algorithm is implemented using NVIDIA CUDA architecture,

achieving real-time performance at 13Hz on a computer equipped with a Intel i7 2630

CPU and a NVIDIA GTX 590 GPU. The frame rate can be further improved by enforcing

coalesced global memory access in the GPU software [47].

A video of this experiment is available at http://tinyurl.com/7ehyhqw. The captured

Kinect depth data images are processed at 13Hz, and resulting video frames are encoded

at 30fps. As demonstrated, tiles of the global map are being swapped in and out of
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GPU memory for successful update and rendering with minimum impact on the tracking

performance.

To extract the resulting map, each file of the corresponding tile is checked to find voxels

with TSDF value F ≤ Fmax ≤ 1, where Fmax is a tunable threshold. The global vertex and

surface normal of these voxels are extracted and stored in a point cloud. Fig. 4.1 shows a

birds-eye view of the resulting surface model of the WAVELab. As demonstrated by the

surface normal image presented in Fig. 4.1(b), the aggregated surface model extracted from

TSDF tile grid is dense with well-defined surface normals, achieving detailed reconstruction

of the environment. The resulting global map appears to show minimal warping without

explicit loop closure. This indicates accurate camera pose tracking, as a result of performing

ICP with respect to the stable global surface model rather than with the previous frame.

These two desirable qualities from the original KinectFusion method are retained, while

the operation space is expanded from 7m3 [33] to 240m3 despite maintaining 1cm voxel

resolution.

To demonstrate the accuracy of localization of the algorithm, it is tested against a

depth image dataset with indoor positioning ground truth from the Technical Univer-

sity Munich (TUM) computer vision group and numerically evaluated using their RGB-D

SLAM benchmarking toolkit [50]. The Kinect RGB-D video sequence captures a camera

moving in a half circle trajectory in X and Y while following a zig-zag motion in Z with

a length of 17.044m. Furthermore, a person moves into the camera FOV during the video

sequence, introducing dynamic motion into the scene. The video of this dataset can be

found at http://vision.in.tum.de/data/datasets/rgbd-dataset/download, and the

name of the dataset is freiburg2 desk with person.

Fig. 4.2 captures the camera trajectory groundtruth as well as the motion estimation

during the experiment. To calculate the Absolute Trajectory Error (ATE), the evaluation

tool first associates each estimated pose with a groundtruth pose measurement using time

stamps; it subsequently aligns the trajectory using Singular Value Decomposition (SVD) to

find a relative transformation between the estimated and true trajectories that minimizes

the sum of errors for all associated poses; once the trajectories are aligned with the resulting

transformation, the ATE is calculated by taking the euclidean difference between each each

corresponding point of the aligned trajectories. As shown, the algorithm is able to estimate

the camera motion with a Root-Mean-Square (RMS) ATE of 9.88cm over the 17m long

camera trajectory, without any explicit loop closure mechanism. It also demonstrates its
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Dataset Name Length Avg.

Angular

Velocity

Avg.

Trans.

Velocity

Translation

RMSE

Rotation

RMSE

FR1 xyz 7.11m 8.920deg/s 0.24m/s 3.5068cm 3.247638◦

FR1 rpy 1.66m 50.15deg/s 0.06m/s 3.3157cm 2.555076◦

FR1 desk 9.26m 23.33deg/s 0.41m/s 6.4690cm 4.048444◦

FR1 desk2 10.16m 24.86deg/s 0.43m/s 5.5079cm 4.066718◦

FR2 deskwp 17.04m 21.32deg/s 0.32m/s 9.2322cm 3.745877◦

Table 4.1: Localization results against TUM RGB-D datasets

robustness against outliers introduced by the dynamic motion, effectively ignoring the time

varying surface measurements from the person, while maintaining tracking of the camera

pose. The algorithm is also tested against other TUM RGB-D datasets and the results

are captured in Table. 4.1. Comparing against results described in [50], our algorithm is

comparable with the state-of-the-art in terms of localization accuracy, while surpassing it

in computation efficiency and reconstruction quality.

The weakness of the algorithm is exposed when a loop is formed in the camera trajectory

and a previously mapped area is revisited. The position estimate with accumulated drift

results in a surface prediction from an incorrect perspective when viewing the revisited area.

The deviation between the surface prediction and the new measurements, when sufficiently

large, leads to difficulties for the ICP pose optimization to converge to the correct solution,

causing errorneous integration of depth information into the TSDF grid and degradation

of the surface model. A vicious cycle is then triggered, in which a failure to estimate

the camera location diminishes the map quality, and subsequently further decreases the

localization accuracy. This indicates a need for a method to detect localization failure and

a mechanism for relocalization.
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(a) Color mapped image of the map point cloud

(b) Surface normal of the map point cloud

Figure 4.1: Surface reconstruction from raycasting
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Figure 4.2: Estimated trajectory with 9.23cm RMS ATE
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Chapter 5

Conclusion and Recommendations

Quadrotor UAVs have shown tremendous potential in applications such as unmanned ex-

ploration, surveillance, building inspection and disaster relief. Given sufficiently fast and

accurate positioning measurements, quadrotors have demonstrated excellent mobility and

controllability. To enable practical deployment of quadrotor platforms, it is essential to

develop technologies that allow operations in outdoor settings or positioning denied re-

gions. This work aims to develop methods to improve quadrotor UAV autonomy in these

settings.

One of the main limitations of electrically powered micro UAVs is that they have

limited payload, constraining the size of their onboard battery source and, therefore, their

operating range and flight duration. This limitation motivates the search for a strategy to

autonomously land the quadrotor on a ground station for battery recharge or swapping.

The idea can be further expanded with the introduction of an autonomous mobile platform

that introduces more mission flexibility by combining the advantages of both vehicles.

UGVs have strong payload and power capacity, allowing them to equip heavy-duty, high-

precision sensors and more powerful computation units. Micro UAVs, on the other hand,

provides better mobility and sensor coverage, enabling access to regions with undrivable

terrain.

A system is presented to coordinate an autonomous landing between a quadrotor UAV

on a skid-steered UGV. A provably stable, joint-state decentralized controller is designed

to drive the relative position error between the vehicles to zero, and a landing sequence is

triggered when the relative error is below a certain threshold. The controller is validated
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in simulations to be stable, and using a standard sensor suite on commercially available

UAV and UGV platforms, a successful landing in both indoor and outdoor settings was

demonstrated.

The system can be further improved by modeling the aerodynamic effects such as wind

disturbance and ground effects. During the landing coordination experiments, the combi-

nation of these unmodelled disturbances lead to difficulties in relative error convergence

of the vehicles. It will be a very interesting improvement to the current scheme to intro-

duce online estimation of wind and ground effect, and to actively cancel these disturbances

within the controller.

This work also aims to enable further quadrotor autonomy in a positioning-denied en-

vironment. The KinectFusion algorithm [33] is implemented in house to perform dense

surface reconstruction and simultaneous localization with a lowcost RGB-D camera. We

further extended the algorithm by developing a memory swapping system that removes the

volume constraint imposed by GPU memory upperbound, allowing the algorithm to op-

erate in large environment without sacrificing surface reconstruction quality. A RANSAC

visual odometry algorithm is integrated into the system that eliminates camera pose esti-

mate divergence when viewing planar geometric structures in the scene. To demonstrate

the effectiveness of the resulting system, we mapped a volume that far exceeds the Kinect-

Fusion upper volume limit, generating detailed and smooth surface model of the envi-

ronment. The algorithm is also tested on published datasets with motion groundtruth,

demonstrating comparable accuracy to the TUM RGB-D SLAM system without explicit

use of loop closure, while surpassing it in terms of real-time performance and the quality

of scene reconstruction.

A weakness of the algorithm lies in its inefficient map representation. While the 3D

TSDF voxel grid allows a high degree of parallelization, it is expensive in its memory

usage. An area for improvement could be an integration of a compression algorithm that

further reduces the size of the voxel grid before its transfer to the hard-drive, expanding

the mapping volume allowed by the storage amount of hard drives. One potential method

for more efficient representation of the voxel grid is octree compression [51]. The entire

mapping volume is assigned to the parent node of the Octree, and is divided into eight

sub-regions, each further divisible up to the point that the desired volumetric resolution

is obtained. In the TSDF map representation, only a thin crust of voxels within the

truncation distance from the surface contain meaningful values, while the others contain
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truncated values (1 or -1) to represent empty space. Therefore, we can represent the large

sub-regions of voxels with the same truncated value as a single node in the Octree, while

keeping fine resolution in sub-region near the surface.

Another problem with the our dense reconstruction algorithm is the lack of a relocal-

ization mechanism. When we revisit the same area after a loop is formed in the camera

trajectory, the pose estimate can accumulate enough drifts that lead to erroneous surface

prediction that the camera estimation algorithm cannot localize against. While the detec-

tion of pose estimation failure can be achieved by checking the resulting number of outliers

from ICP, we have yet to find an effective method to recover our position after failures. A

potential solution is proposed in the recent GPSlam system [52]. The authors introduce a

simple state machine to handle pose estimation failure, relocalization and map morphing to

maintain global map consistency in an occupancy grid. The algorithm starts in exploration

mode, aggregating depth measurements into the occupancy grid in a similiar manner to

the KinectFusion algorithm. When a failure is detected, the algorithm creates a new map

for measurement aggregation, and operates in relocalization mode where the algorithm

extracts visual features and matches them to previously recorded features to relocalize its

pose. Once the camera position is recovered, the separate maps are merged into a global

map based on the corrected poses. Due to the similarity between an occupancy grid and

a TSDF grid, this mechanism is very transferable to the KinectFusion architecture.

In conclusion, this work presents two advancements in the autonomy of coordinated

UGV and UAV teams. With the coordinated landing strategy, the UGV-UAV vehicle

teams will soon be able to execute autonomous missions with long range and flight du-

ration in outdoor settings. In positioning denied environments, we can now generate a

detailed 3D reconstruction of the physical environments, providing important information

for other aspects of robotic intelligence such as path planning and object recognition. The

applications enabled by these technologies are quickly becoming viable and will very likely

have a tremendous impact on humanity.
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