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Abstract

Software developers often encapsulate reusable code as Application Programming Inter-
faces (APIs). The co-evolution of applications and APIs may motivate an API migration:
the replacement of application dependencies to an original API by dependencies to an
alternative API that provides similar functionality and abstractions.

In this dissertation, we investigate issues associated with API migration in object-
oriented systems, with special focus on wrapping approaches. We present two studies and
a set of developer interviews that elicit issues in the process and techniques used in API
migration in practice. The results suggest that the most pressing issues relate to discovery
and specification of differences between APIs, and to assessment of migration correctness.
This dissertation introduces techniques and a method to address these issues.

We propose the use of design patterns to support the specification of API wrappers.
API wrapping design patterns encode solutions to common wrapping design problems. We
present an initial catalog of such patterns that were abstracted from programming idioms
found in existing API wrappers.

We introduce the concept of compliance testing for API migration, a form of automated
testing. Compliance testing supports the discovery of behavioral differences between a
wrapper and its corresponding original API, as well as assessment of wrapper correctness.
Compliance testing uses API contracts and assertion tunings to explicitly capture and
enforce the notion of a “good enough” wrapper that is informal in practice.

We present the Koloo method for wrapper-based API migration. The method prescribes
practical steps to use compliance testing as a means to elicit the requirements for the API
migration, and to assess its correctness. Koloo fits within the iterative, sample-driven
general API migration process usually followed by developers in practice.

We evaluate the Koloo method in an empirical study. The subjects cover the domains
of XML processing, GUI programming and bytecode engineering. The results provide
evidence that Koloo is superior to alternative methods in driving the development of a
wrapper that is tailored for the application under migration. The results also show that
API contracts help driving the evolution of the wrapper, and assertion tuning is necessary
to relax the semantics of strict equality contracts, and useful to compromise on features that
are difficult to emulate perfectly. Finally, we validate that the proposed design patterns
are used in practical wrappers.
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Chapter 1

Introduction

Software developers modularize source code to improve extensibility and reusability [60, 40].
In object-oriented systems, code can be modularized by several means, such as methods,
classes, packages, components, libraries, and frameworks. These modules provide reusable
code encapsulated as Application Programming Interfaces (APIs). In this dissertation, API
refers to the programming elements exported by a module as well as the implementation
details clients may depend upon. Consequently, the term API also denotes the resulting
packaged module, usually a component, library, or framework. This focus on modulariza-
tion fosters separation of concerns and reliance on third-party code. Domain experts can
concentrate on the specialized tasks of their APIs, whereas application developers focus on
the application logic. It is common for modern applications to rely on dozens of third-party
APIs [48].

Useful software is constantly evolving [49]. The dependency of applications on third-
party APIs means that significant maintainability issues may arise whenever any of these
APIs evolve. New requirements or better designs drive API changes that often break
existing dependent applications [26]. To capitalize on the API evolution, such applications
need to undergo an API upgrade.

Yet, many reasons may motivate an API migration: the replacement of an API by an
alternate API that provides similar functionality and abstractions. A motivation may be
to replace an aged API with a novel API that provides better solutions, new features or
improved performance. The development of an API may stagnate, making it prudent to
migrate to an actively maintained API. An in-house or project-specific API may be replaced
by a standard API. Applications may need to be integrated and their APIs consolidated.
Finally, API migration may be motivated by license and copyright issues.
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Principled solutions to API upgrade exist. Many API upgrade approaches [37, 91,
25, 70, 90, 44, 77, 78, 27] exploit the fact that most client-breaking API changes are
refactorings [26]: simple code modifications that preserve behavior [32]. These approaches
use comparison algorithms or recording tools to detect the refactorings applied to the API;
then, clients are upgraded by replaying the refactorings or generating adaptation layers.
Techniques using change rules [19] and semantic patches [67, 14] can also address localized
changes more complex than refactorings. Finally, manual upgrade can be supported by
recommending modifications based on how the API itself has adapted to its changes [21].

Unfortunately, API upgrade approaches cannot be directly applied to API migration
because independently developed APIs may differ substantially. Our studies [10, 9], for
example, have revealed that different feature sets must be accommodated, and similar
features may be offered in different ways or diverge significantly in their details. Thus,
refactorings and localized changes alone do not suffice in this context.

Previous work on API migration is limited to special cases, such as migrating from
inheritance to annotation-based frameworks [83] and removing dependencies on legacy
classes by migrating to similar replacement classes [8]. No previous work addresses API
migration comprehensively.

This dissertation presents a comprehensive approach to API migration. We first studied
the process and challenges of API migration in practice; we conducted two studies and a set
of developer interviews. The results have suggested that the most pressing issues are related
to discovery and specification of differences between APIs, and to assessment of migration
correctness. This dissertation thus proposes a method called Koloo that addresses these
issues and fits within the general process followed by developers in practice.

The remainder of this chapter presents an overview of Koloo—its assumptions, novel
contributions, evaluation, and limitations—and outlines the structure of the dissertation.

1.1 Technical Approaches to API Migration

Wrapping and rewriting are the main technical approaches to API migration. Wrapping
is a general re-engineering technique to provide access to existing functionality through
a preferred interface. In object-oriented systems it amounts to the systematic use of the
ADAPTER design pattern [34] to create an adaptation layer—a wrapper—between the
APIs. That is, the interface of the original API is re-implemented using the replacement
API. Rewriting is the substitution, within an application’s source code, of references to
the original API by corresponding features of the replacement API.

2



A hybrid approach is sometimes more appropriate. We have found in our interviews
that limited application modifications can be expected when doing so significantly simplifies
a wrapper implementation. In rewriting approaches, the Facade pattern [34] can be used
to encapsulate adjustment code and simplify application code changes [8]. In this case,
application source code that cannot be directly rewritten to a corresponding replacement
API feature is instead redirected to an adjustment Facade.

In the context of API migration, wrapping has the following advantages over rewriting.
First, no automation is necessary. Wrapping may benefit from tools that automate wrap-
per generation and additional development tasks, but automation is not as crucial as in
rewriting. Rewriting approaches must be automated because code changes are scattered in
application code, making manual rewriting a tedious, error prone, mostly repetitive task.

Second, wrapping does not modify application source code, except for the limited man-
ual changes described above. In our interviews we have learned that developers may not
trust automated rewriting tools because the resulting code may be unfamiliar and, there-
fore, difficult to maintain. Maintainability issues have also been identified in the context
of rewriting for language migration [84], which often include API migration.

Finally, wrapping naturally enables incremental development, which is essential to dis-
cover API differences. It is trivial to construct or generate a wrapper with the original
API interface but no implementation. Client applications can be compiled against this
wrapper skeleton, which is then incrementally extended. An existing wrapper may also
be the starting point to migrate additional applications. Automated rewriting specifica-
tions could also be reused across applications; however, developing the initial specification
is more intricate because abstractions of original and replacement API may temporarily
coexist in the application. Wrapping cleanly isolates original and replacement APIs.

Rewriting, on the other hand, truly removes original API abstractions from application
source code. This may be necessary, for example, if the goal of the migration is to access
new features of the replacement API directly, achieve better standardization in integration
efforts, or to avoid license and copyright issues.

Nevertheless, in this dissertation we assume the use of wrapping. The development of
a wrapper may be itself the goal of the API migration. If the goal is rewriting, then the
wrapper can play the role of a migration specification. That is, wrapping can be used to
incrementally discover and specify API differences, and subsequently guide manual or au-
tomated rewriting. For example, wrapper methods that simply delegate to the replacement
API could be inlined in the client application; complex adjustments in wrapper methods
could be encapsulated in a Facade. Thus, our research concentrates on the development
and correctness assessment of API wrappers.

3



1.2 API Migration in Practice

This dissertation proposes the Koloo method to address the most pressing issues in API
migration. These issues have been identified in two studies and a set of developer interviews.

We first designed an exploratory study to examine behavioral mismatches between APIs:
differences in behavior occurring in seemingly corresponding features, such as methods with
the same name and parameter types. Our goal was to understand the types of behavioral
adjustments necessary to adapt the behavior of the replacement API to comply with the
expected behavior of the original API, and observe how behavioral mismatches affect client
applications. We chose to study XML APIs because they are structurally similar, which
allows the focus on the low-level mismatches, such as differences in method contracts, that
prevent simple delegation in the wrapper.

Next, we conducted a comprehensive artifact study to examine general wrapper design
problems, and design problems caused by structural mismatches between APIs. We chose
Graphical User Interface (GUI) APIs because they differ significantly in interfaces and
inheritance hierarchies. We then studied the source code of two large, independently
developed, open source GUI wrappers.

Finally, we conducted semi-structured interviews with seven developers who had ex-
perience in API migration. We asked general open questions about which development
process, migration techniques and criteria for verification of results they used, and about
existing and desired tool support. We also validated the findings of our second study with
the main developer of one of the GUI wrappers.

We observed three pressing issues in API migration, and insights into their solutions.

The first issue is lack of support for the specification of differences between APIs.
That is, there are no design guidelines to the development of wrappers. However, certain
wrapper design problems and behavioral mismatches occur very frequently: we noticed
some problems occur in multiple instances in a single wrapper and also across wrappers.
The insight is that we can leverage programming idioms created by developers to solve
these commonly occurring problems to guide wrapper development.

The second issue is how to discover the behavioral differences between APIs that are
to be neutralized by a wrapper. Client applications use the original API in many ways
and may depend on different implementation details. Thus, it is impractical for a wrapper
to cover all and every case in advance. The insight from the studies is that a viable API
migration targets a specific application under migration. Our interviews have confirmed
that, in practice, API migration has usually a single target application.
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The third issue is how to assess the correctness of the API migration. A formal ap-
proach to correctness is currently impractical because it involves the formalization of many
artifacts: two APIs and one wrapper. A pragmatic approach is the use of testing to en-
force behavioral equivalence between the original API and the wrapper in limited cases.
However, we have learned from the studies that API differences may be too difficult to be
neutralized completely. The insight is that, in practice, developers are often content with
a wrapper that is “good enough”. Behavioral equivalence can therefore often be relaxed.
Nevertheless, this notion of a “good enough” wrapper is still too informal, and there is
limited test automation to enforce it.

1.3 The Koloo Method for API Migration

The Koloo method for API migration addresses the issues discussed above. Koloo is based
on the concepts of API wrapping design patterns and compliance testing.

Design patterns [34] are reusable solutions to commonly occurring problems in a par-
ticular context. Koloo guides developers in the specification of wrappers via a catalog
of design patterns tailored to wrapper-based API migration. These API wrapping design
patterns were abstracted from idioms created by developers of the studied wrappers.

We introduce compliance testing for API migration as a form of automated testing.
Compliance testing supports the discovery of behavioral differences between original API
and wrapper, and explicitly captures and enforces the notion of a “good enough” wrapper
that is informal in practice. A compliance test captures the behavior of the original API
as an API interaction trace: a runtime trace of the interaction between the API and the
application under migration. The behavior of the original API embodied in the trace
represents a behavioral specification to be verified in the wrapper. The trace is then re-
executed against the wrapper while API contracts, which are oracles such as return value
equality, enforce strict behavioral equivalence. But, since behavioral equivalence often
needs to be relaxed, compliance tests accept assertion tunings that specify acceptable
contract deviations for selected assertions.

We designed the Koloo method to evolve wrappers with respect to an application under
migration. It can be used to create new wrappers or to evolve existing wrappers. The
method prescribes compliance testing as a means to elicit the requirements for the API
migration as well as assessment of its correctness; it prescribes design patterns to solve
commonly occurring wrapping design problems. Koloo fits within the iterative, sample-
driven general API migration process usually followed by developers.
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A Koloo iteration starts with the design of an application scenario. The scenario de-
fines the requirements for the wrapper in this iteration. Developers execute the scenario
and capture an API interaction trace to be used as a compliance test. Then, developers
execute the compliance test. Contract violations drive the evolution of the wrapper and
the refinement of a specification of assertion tunings. The iteration ends when all con-
tract violations are resolved—by development or tuning—and the scenario is asserted as
migrated. Previously asserted scenarios can be re-executed to avoid wrapper regressions.

By the end of an iteration, the wrapper is demonstrably compliant with the original API
in the exercised scenarios. The specification of contracts and assertion tunings precisely
documents the unresolved differences between wrapper and original API. Developers can
iterate over this process, creating new scenarios until they are satisfied with the coverage
and quality of the wrapper.

1.4 Implementation and Evaluation

We have implemented the Koloo toolkit to automate several aspects of the method. The
main tools are a tracer to collect API interaction traces, and an interpreter to re-execute
traces and verify contracts. The toolkit provides tools to support additional tasks, such
as manipulation of stored traces, and analysis of API source code to collect metrics and
generate wrapper skeletons.

We performed an empirical evaluation of the method and a validation of the API
wrapping design patterns.

The empirical evaluation compared the Koloo method against three alternatives. Our
hypothesis was that Koloo is better than alternative methods in identifying the behavioral
differences between the original API and a wrapper that are important to the application
under migration. In particular, we hypothesized that Koloo is better than i) a test suite
that targets the original API, because the suite may be too demanding or miss important
cases; ii) an application test suite, because it may not contain assertions focused on the
interaction with the API; and iii) the current industry practice, because Koloo may detect
behavioral mismatches before they cause crashes or visible effects.

In this evaluation we used the XML wrapper we had created for our first study; its de-
velopment had been driven by an original API test suite. We also used a GUI wrapper from
the second study; it had been independently developed using the current industry practice.
Then, we designed scenarios for applications of the original APIs and used Koloo to evolve
the wrappers. Finally, we used Koloo to migrate an existing application across bytecode
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engineering APIs. Since we used application test cases as scenarios—to extract compliance
tests—we were able to compare Koloo against a method driven by an application test suite.

Throughout the study we recorded contract violations and the use of tunings to relax
contracts at selected assertions.

The results of the study provide evidence to support our hypothesis. Koloo was able
to detect the behavioral differences that are important to the application under migration.
Furthermore, we have found that the method is effective in driving the development of a
compliant wrapper: violations of API contracts help drive the evolution of the wrapper,
and assertion tunings are necessary to relax the semantics of strict equality contracts, and
useful to compromise on features that are difficult to emulate perfectly.

The validation of API wrapping design patterns provides evidence of their use in prac-
tice. We designed source code metrics that capture instances of the design patterns. Then,
we applied these metrics to the wrappers from which the patterns were abstracted, and to
the wrappers we developed in our additional studies. The results show that the patterns
are indeed extensively used in the studied practical wrappers.

1.5 Limitations

The main limitations of our research arise from limitations of wrapping and compliance
testing. Object-oriented wrappers are effective to support the migration across traditional
object-oriented APIs at a similar level of abstraction because they naturally encapsulate
behavioral adjustments. However, the design of wrappers to migrate across APIs with
different programming models, such as from inheritance to annotation-based frameworks or
from XML parsers to XML object binding APIs, is often convoluted. Moreover, compliance
testing focuses on functional equivalence between wrapper and original API; non-functional
aspects are not immediately addressed.

The Koloo method focuses on driving the development process via API contract vio-
lations on selected scenarios. However, Koloo does not support developers in the design
of good scenarios: we have not defined quality criteria for scenarios. Nevertheless, in our
evaluation, scenario design was mostly simple, and existing application test cases could
be leveraged. Generally, the cost of API migration is dominated by the actual wrapper
refinement, which often requires a deep understanding of original and replacement APIs.
General program comprehension techniques can assist developers in this task.

The catalog of API wrapping design patterns offered by Koloo is also limited. The
design patterns have been abstracted from programming idioms detected in existing wrap-
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pers. The catalog is therefore limited by the choice of subject wrappers, and our ability to
identify and abstract the idioms. As we gain more experience in wrapping we expect the
catalog to eventually reach a established state with a core set of mature, reusable patterns.

Finally, our evaluation is limited. We have only evaluated Koloo in terms of its ability
to drive the development of behaviorally compliant wrappers. However, we have not per-
formed user experiments nor assessed the quality of the developed wrappers. Furthermore,
we need more extensive studies to understand the generality and usefulness of the proposed
API design patterns.

1.6 Research Contributions

The primary research contributions of this dissertation are the following:

• API Wrapping Design Patterns: We propose the use of design patterns to encode
solutions to common design problems occurring in API wrappers. We present an
initial catalog of API wrapping design patterns abstracted from programming idioms
found in existing API wrappers.

• Compliance Testing: We introduce the concept of compliance testing for API
migration, a form of automated testing that supports the discovery of behavioral
differences between a wrapper and its corresponding original API. Compliance testing
uses API contracts and assertion tunings to explicitly capture and enforce the notion
of a “good enough” wrapper that is informal in practice.

• Method for Wrapper-Based API Migration: We propose the Koloo method
for wrapper-based API migration. The method prescribes compliance testing as a
means to elicit the requirements for the API migration as well as assessment of its
correctness. Koloo fits within the iterative, sample-driven general API migration
process usually followed by developers in practice.

• Evaluation: We evaluate the Koloo method in an empirical study. The subjects
cover the domains of XML processing, GUI programming and bytecode engineering.
The results provide evidence that Koloo is superior to alternative methods in driving
the development of a wrapper that is tailored for the application under migration.
The results also show that API contracts help driving the evolution of the wrapper,
and assertion tuning is necessary to relax the semantics of strict equality contracts
and useful to compromise on features that are difficult to emulate perfectly. Finally,
we validate that the proposed design patterns are used in practical wrappers.
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1.7 Outline of the Dissertation

In this chapter we have introduced API migration and presented an overview of our re-
search. The remainder of this dissertation is organized as follows. Chapter 2 describes
the two studies and the developer interviews we conducted to improve our understanding
of API migration in practice. Chapter 3 presents the design patterns we abstracted from
existing wrappers. Chapter 4 introduces a novel concept of compliance testing to assess cor-
rectness of API wrappers. Chapter 5 describes the Koloo method for API migration, which
is grounded on compliance testing and design patterns. Chapter 6 presents evaluation of
the method and validation of the proposed design patterns. Chapter 7 examines related
work. Finally, Chapter 8 concludes with a discussion of the implications and limitations
of our research, and future research directions.

1.8 Publications

This dissertation contains material from the following publications:

• Thiago Tonelli Bartolomei, Mahdi Derakhshanmanesh, Andreas Fuhr, Peter Koch,
Mathias Konrath, Ralf Lämmel, and Heiko Winnebeck. Combining multiple dimen-
sions of knowledge in API migration. In Proceedings of the 1st International Work-
shop on Model-Driven Software Migration (MDSM) at the 15th European Conference
on Software Maintenance and Reengineering (CSMR), March 2011

• Thiago Tonelli Bartolomei, Krzysztof Czarnecki, and Ralf Lämmel. Swing to SWT
and Back: Patterns for API Migration by Wrapping. In Proceedings of the 26th
International Conference on Software Maintenance (ICSM), pages 1–10, September
2010

• Thiago Tonelli Bartolomei, Krzysztof Czarnecki, Ralf Lämmel, and Tijs van der
Storm. Study of an API Migration for Two XML APIs. In Proceedings of the
2nd International Conference on Software Language Engineering (SLE), pages 42–
61, October 2009
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Chapter 2

API Migration in Practice

In this chapter, we identify the most pressing issues in API migration in practice. We
first introduce the basics of API migration by wrapping with a simple example. Then,
we present an exploratory study on behavioral mismatches between XML APIs. Next,
we report on an artifact study on structural mismatches between GUI APIs. Finally, we
describe a set of interviews we conducted with developers experienced in API migration.

2.1 Basics of API Wrapping

2.1.1 The Tailored ADAPTER Pattern

The ADAPTER design pattern is the classic solution for integrating a client class with
types that have different interfaces than the client expects. The GoF [34] book describes
two variants of adapters: class and object. In both cases, an adapter class extends the
type expected by the client to intercept method calls and redirect them to the new target,
called the adaptee. Application constructor calls must still be rewritten to the instantiate
the adapter type instead of the original type. Class adapters integrate the adaptee through
inheritance whereas object adapters use object composition.

In the context of API migration, adapters do not extend expected types; instead,
adapters replace them. We use the term surrogate to denote such adapters. A surro-
gate re-implements an original API type, often using an adaptee of the replacement API,
while preserving its interface. Thereby, constructor calls in client applications can also be
retained. A wrapper is a collection of such surrogates and possibly internal helper types.
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1 public class Vector extends AbstractList implements ... {
2 ArrayList adaptee;
3 public Vector() {
4 adaptee = new ArrayList();
5 }
6 public void add(Object o) {
7 adaptee.add(o);
8 }
9 public void setSize(int ns) {

10 while (adaptee.size() < ns) adaptee.add(null);
11 while (adaptee.size() > ns) adaptee.remove(ns);
12 }
13 public Enumeration elements() {
14 return new EnumerationImpl(adaptee.iterator());
15 }
16 ...
17 }
18 public class EnumerationImpl implements Enumeration {
19 Iterator adaptee;
20 EnumerationImpl(Iterator i) {
21 this.adaptee = i;
22 }
23 public Object nextElement() {
24 return adaptee.next();
25 }
26 ...
27 }

Figure 2.1: Vector and Enumeration surrogates.

Surrogates may populate the same namespace as original API types. In this case, a
client application is migrated by simply linking to the wrapper instead of linking to the
original API. If the wrapper populates a different namespace, trivial namespace rewriting
of the application is required.

2.1.2 A Simple Example

The Java source code in Figure 2.1 is an example of wrapping. The scenario is borrowed
from previous work on migration by rewriting [8]. We migrate applications using Vector

to ArrayList; thus, we re-implement Vector (line 1). Note that we preserve the superclass
AbstractList. The Vector surrogate acts as an object adapter, maintaining the adaptee
in an ArrayList field (line 2). Both objects have associated life-cycles: an ArrayList

object is created in the constructor of a Vector (line 4). Because original and replacement
APIs are very similar in this example, most client requests can be simply delegated to the
adaptee (as in line 7) while some semantic adjustments are encapsulated in the adapter
(lines 9-12).
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As we migrate clients from Vector to ArrayList, we also need to migrate them from
Enumeration to Iterator. Since Enumeration is a Java interface, we simply copy it to
the wrapper (not shown in the figure). We need to provide a concrete implementation
of the interface that acts as an adapter to Iterator and can be used by other types of
the wrapping layer. For instance, Vector’s elements method (lines 13-15) creates a new
adapter around the iterator returned by its ArrayList adaptee.

2.2 Challenges of XML API Wrapping

In this section, we present an exploratory study on behavioral mismatches between XML
APIs. We first describe our overarching research questions and our general approach. Next,
we detail the subjects of the study, our methodology, and the results. We then discuss how
the results reveal important issues in API migration and suggest requirements for possible
solutions. Finally, we consider threats to validity.

2.2.1 Research Questions

In this study we sought to understand how behavioral mismatches between APIs impact
the implementation of a wrapper. Thus, we designed the study to address the following
research questions:

RQ1 — What types of behavioral adjustments are necessary to adapt the behavior of
the replacement API to comply with the expected behavior of the original API?

RQ2 — How do behavioral mismatches affect client applications?

To answer these questions we first manually developed a wrapper for the XML do-
main. Then, we analyzed the behavioral adjustments present in the wrapper. Finally, we
evaluated the wrapper against a client application of the original API.

2.2.2 Subjects

We chose two APIs that offer a document object model (DOM) for XML because they are
structurally similar: they define classes for the main elements of the XML specification.
This allows us to concentrate on the low-level behavioral mismatches.
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Subjectversion
XOM1.2.1 JDOM1.1 CDK1.2.0

www.xom.nu www.jdom.org cdk.sf.net

Top-Level Packages nu.xom org.jdom org.openscience.cdk

Types 110 73 1,079
Visible 50 52 1,008

Top-Level 50 50 998
Methods 884 908 10,643
Visible 358 644 9,291

Implementations 352 603 8,582
Fields 279 256 3,590
Visible 17 52 640

Constants 17 29 315
NCLOC 19,330 8,735 105,855

Table 2.1: Subjects of the XML wrapping study.

Table 2.1 presents the subjects of the study. XOM and JDOM are two of the principal
DOM-like XML APIs for Java. They were developed independently, by different architects,
in different code bases, and based on different design rationales [86]. CDK is a library
for structural chemo- and bio-informatics; in the study, it represents an application to be
migrated. We selected CDK because it is the largest open-source application in sourceforge1

that makes substantial use of XOM in test cases.

The table lists the main packages and presents size metrics for the subjects (including
sub-packages). Visible entities are accessible by client applications. In Java, public types
count as visible whereas public and protected members of public types count as visible.
We include protected members because clients may access them by inheritance. Top-level
types exclude nested types. Method implementations exclude abstract methods. Constant
are fields marked with final. NCLOC stands for Non-Comment Lines of Code.

XOM exposes around the same number of types as JDOM but fewer methods. JDOM
provides many “convenience methods” that duplicate access to certain functionality [86];
however, XOM, is substantially more complex in terms of NCLOC. This difference involves
several factors, including incidental ones such as programming style; most importantly,
XOM makes considerable effort to guarantee XML well-formedness [86] by means of pre-
condition checking, which directly affects NCLOC.

In the study, we developed a xom2jdom wrapper. That is, we implemented surrogates
for XOM types by wrapping the JDOM API. Although wrapping an older API (JDOM)

1Sourceforge is a web-based, open-source code repository—www.sf.net

13

www.xom.nu
www.jdom.org
cdk.sf.net
www.sf.net


Test Suite XOM CDK

Test Classes 42 593
Test Methods 1,414 4,806
Assertions 3,483 10,478
NCLOC 22,157 60,462

Used Test Classes 17 57
Test Methods 720 484
Assertions 2,860 3,993

Table 2.2: Metrics on XOM and CDK test suites.

as a newer one (XOM) might appear counter-intuitive, this scenario is plausible in practice
because migration drivers such as legal issues do not necessarily follow technical criteria.
The main reason for selecting this migration direction is the availability of an extensive
API test suite for XOM. The test suite represents the expected behavior of the API.

Table 2.2 shows metrics on the test suites provided by XOM and CDK. The upper part
of the table shows information about the whole suites. Test classes are JUnit2 test cases;
test methods are methods in those classes that conform to JUnit 3’s conventions: public,
void, parameterless, and name starts with “test”. We include the number of statically
identified assertions in test classes to indicate properties checked by developers; an assertion
is not guaranteed to be executed by a test case, but may be executed multiple times.

The lower part of Table 2.2 shows information about the test cases used in our study.
We concentrated the development effort in types of the main XOM package; therefore,
only test cases that target those types were used. We excluded test cases that target
specialized topics, such as canonicalization and encoding. We also selected only the CDK
test cases that use XOM and pass with the original XOM implementation. To this end, we
executed the whole test suite and performed dynamic analysis to detect calls and references
to XOM methods and fields, respectively. However, the number of assertions is the number
of statically identified assertions found on the used test methods.

2.2.3 Methodology

The study was performed in three phases: wrapper development, analysis of behavioral
adjustments, and analysis of test suite-based compliance.

2JUnit is a framework for unit tests in Java—www.junit.org
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Wrapper Development

We started the development with an exception-throwing wrapper. We re-implemented each
class of the original API with the same interface but with exception-throwing method
implementations. We declared only visible entities (see Table 2.1), and set visible fields to
null. We reused interfaces are as-is. The wrapper is compilable by construction with any
client application of the original API.

The next step was the implementation of proper surrogates. We systematically applied
the ADAPTER pattern as described in Section 2.1. We analyzed the APIs’ inheritance hi-
erarchies and made each XOM surrogate an object adapter to corresponding JDOM types.
We implemented surrogate methods by delegating to similarly named adaptee methods.

Then, we iteratively evolved the wrapper to comply with the selected XOM test cases.
In each iteration we executed the test suite, selected a failing test and tried to implement
adjustments to make the test pass. We initially focused on tests that seemed easier to
adjust and gradually implemented more difficult adjustments. We arbitrarily stopped the
development when no clearly simple adjustments remained.

Analysis of Behavioral Adjustments

In this phase we addressed RQ1. We first defined categories of general behavioral adjust-
ments, which we call adaptation levels. Then, we classified surrogate methods according
to their adaptation levels. We defined the following possible adaptation levels for a given
surrogate method m:

Adaptation Level 0 (Missing) — m is not implemented. This occurs when there
is no straightforward way to implement the method using the replacement API or by
complete re-implementation.

Adaptation Level 1 (Delegation) — m performs only basic delegation to a single
adaptee method. Argument positions may be filled by defaults, and wrapping and
unwrapping of parameter and return objects is allowed (as in Figure 2.1, line 14).

Adaptation Level 2 (Adaptation) — additional adaptations are involved in com-
parison to level 1: arguments may be pre-processed (converted or checked); results may
be post-processed; exceptions may be translated; error codes may be converted into ex-
ceptions and vice-versa; the delegation may also be subject to simple argument checks.
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Adaptation Level 3 (Composition) — m may invoke any number of adaptee meth-
ods, but without re-implementing any functionality of the original API. In informal
terms, a level 3 method is effectively missing in the replacement API, but can be re-
composed from some of its methods.

Adaptation Level 4 (Re-implementation) — m is a re-implementation of the
original API method. In informal terms, level 4 methods violate the “intention to
reuse” the replacement API.

Analysis of Test Suite-based Compliance

In this phase we addressed RQ2. We executed the selected CDK test cases with the
wrapper instead of XOM. We then contrasted the wrapper compliance as asserted by the
XOM test suite with the compliance according to the CDK test suite. We associated each
surrogate method m with one of the following compliance levels, relative to each test suite:

All — all tests that exercise m pass: m is always compliant in the test suite.

Some — some tests that exercise m pass; others fail: m is sometimes compliant.

None — all tests that exercise m fail: m is never compliant.

Unused — m is not exercised by the test suite.

2.2.4 Results

RQ1 — Analysis of Behavioral Adjustments

Table 2.3 shows the main surrogates implemented in xom2jdom. We include only the
surrogates targeted by test cases; additional surrogates were implemented as necessary,
but were not systematically tested. Most adaptee types are JDOM counterparts found in
org.jdom; types between parenthesis are JRE types. All surrogates except Text have a
single adaptee type. Text, as indicated by the | symbol, has alternative targets : a single
object of either type is used as adaptee (see Section 2.3.4).

Basic delegation (level 1) suffices for about 45% of all methods; around 28% requires
some pre- or post-processing (level 2); the remainder need to be composed from other
methods (level 3) or developed from scratch (level 4). Some methods of the Serializer

surrogate were not implemented due to high complexity.
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xom2jdom Surrogate Adaptee Types Methods Adaptation Level

nu.xom. org.jdom. 0 1 2 3 4

Attribute Attribute 28 - 16 7 1 4
Attribute$Type (java.lang.Integer) 4 - 2 2 - -
Builder input.SAXBuilder 15 - - 14 - 1
Comment Comment 13 - 7 2 3 1
DocType DocType 22 - 12 8 1 1
Document Document 27 - 15 8 2 2
Element Element 51 - 23 16 10 2
Elements (java.util.List) 2 - 2 - - -
Node - 2 - - - - 2
NodeFactory JDOMFactory 11 - - - - 11
Nodes (java.util.List) 9 - 6 - 3 -
ParentNode - - - - - - -
ProcessingInstruction ProcessingInstruction 17 - 14 1 2 -
Serializer output.XMLOutputter 16 4 2 1 8 1
Text Text | CDATA 13 - 4 7 1 1
XPathContext (java.util.Map) 5 - 4 - - 1

Total 235 4 107 66 31 27

Table 2.3: Adaptee types in xom2jdom surrogates and methods at each adaptation level.

Figure 2.2 presents examples for each adaptation level. All methods are from the
Element surrogate, which has a org.jdom.Element adaptee. The getChildCount method
simply delegates to the adaptee. The insertChild method needs to check pre-conditions
which JDOM does not enforce, but which are enforced by XOM and its test suite. The
removeChild method can be composed from JDOM’s indexOf and removeContent, plus
additional checking. Finally, JDOM’s Element does not offer base URI functionality. The
surrogate attempts to reproduce the behavior by resorting to the URI stored in the XML
document that contains the element.

RQ2 — Analysis of Test Suite-based Compliance

Table 2.4 shows the results of executing the test suites using xom2jdom. The first row
presents the total number of test method executions. For XOM this number equals the
number of declared test methods in Table 2.2. But CDK’s test suite contains an inheritance
hierarchy of test cases, so that test methods in super types are executed for each sub-type.
Thus, the number of test method executions is larger than the number of declared test
methods. Subsequent rows present the breakdown into passed and failed executions.
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1 // Level 1 − Delegation
2 public int getChildCount() {
3 return adaptee.getContentSize();
4 }
5

6 // Level 2 − Adaptation (pre−processing)
7 public void insertChild(Node child, int position) {
8 if (child == null) {
9 throw new NullPointerException(“inserting null child”);

10 }
11 if (child instanceof Document) {
12 throw new IllegalAddException(“documents cannot be childs of elements”);
13 }
14 if (child.getParent() != null) {
15 throw new MultipleParentException(“child has a parent”);
16 }
17 adaptee.addContent(position, child.getAdaptee());
18 }
19

20 // Level 3 − Composition
21 public Node removeChild(Node child) {
22 int index = adaptee.indexOf(child.getAdaptee());
23 if (index == −1) {
24 throw new NoSuchChildException(“child is not a child of this adaptee”);
25 }
26 adaptee.removeContent(child.getAdaptee());
27 return child;
28 }
29

30 // Level 4 − Re−implementation
31 public String getBaseURI() {
32 org.jdom.Attribute base = adaptee.getAttribute(“base”,
33 org.jdom.Namespace.XML NAMESPACE);
34 if (base != null) {
35 if (base.getValue().equals(“”)) {
36 String uri = adaptee.getDocument().getBaseURI();
37 return uri == null ? “” : uri;
38 }
39 return base.getValue();
40 }
41 if (getParent() != null) {
42 return getParent().getBaseURI();
43 }
44 return “”;
45 }

Figure 2.2: Examples of adaptation levels from Element surrogate methods.
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Test Suite XOM CDK

Test Method Executions 720 761
Passed 419 761
Failed 301 0

Table 2.4: xom2jdom compliance with respect to XOM and CDK test suites.

All CDK test cases pass, while approximately 40% of XOM test cases fail. This result
was achieved without any adaptation of CDK, except for three test cases whose dependence
on the order of XML attributes had to be relaxed. One of the reasons for the increased
compliance is lower coverage: out of 235 implemented XOM methods, XOM’s test suite
exercises 156 (about 66%), but CDK’s test suite exercises only 35 (about 15%).

Figure 2.3 presents compliance levels for xom2jdom methods, according to the catego-
rization described in Section 2.2.3. For each surrogate type (see Table 2.3), we classified
method implementations with respect to XOM and CDK test suites. XOM and CDK bars
are side-by-side to show the classification of individual methods in the y axis. For instance,
two methods of Attribute that were classified as All in XOM stayed in All in CDK; 11
changed from All to Unused; one changed from Some to All; and three went from Some
to Unused. Since all CDK test cases pass, CDK bars show only All and Unused.

The plot shows that several methods with compliance issues (classified as Some) with
regard to XOM are used without problems in CDK (classified asAll): Attribute, Builder,
Document, Element, Elements, Nodes, and Serializer. Furthermore, some implementa-
tions that were not exercised by the API’s test suite were exercised and found compliant
by CDK’s test suite: Element and XPathContext.

2.2.5 Discussion

RQ1 — Behavioral Adjustments

In the study, approximately half of the surrogate methods were implemented with basic
delegation; the other half demanded behavioral adjustments or re-implementation. Three
factors are necessary to require a behavioral adjustment: i) a behavioral mismatch between
the APIs must exist, ii) the mismatch must be exposed by the client, and iii) the client
must enforce the original behavior, say, via a test case assertion. The more the APIs differ
and the more the client exercises and enforces the behavior of the original API, the more
methods will need more adjustments and, hence, will go up in the adaptation level scale.
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Figure 2.3: Compliance levels of xom2jdom methods w.r.t. XOM and CDK test suites.

The results suggest that a methodology is needed to systematically uncover API behav-
ioral mismatches and, crucially, to identify the adjustments that are relevant to the client.
The results also have implications to rewriting approaches. We discussed in Section 1.1
that two options to implement adjustments are via a Facade or by inlining the adjustments
at call sites. While it is simple to inline level 1 methods, level 2 methods would bloat call
sites with checking code. Also, there is no straightforward solution to inline methods at
levels 3 and 4. A Facade can encapsulate these adjustments, but many call sites (about
25% in our study) will be redirected to it instead of the replacement API.

RQ2 — Test Suite-based Compliance

Our results indicate that behavioral mismatches do not necessarily affect client applica-
tions. The xom2jdom wrapper passed all client CDK test cases, while it failed many
internal XOM test cases. The breakdown in Figure 2.3 suggests that a surrogate method
that does not comply with the behavior enforced by one application may participate in the
execution of another application without problems, as long as the new application either
does not expose the mismatch or the mismatch is not enforced.

The principal insight of this study is that a viable API migration must be performed
with respect to an application under migration. The results show that applications exercise
the original API in different ways and expect different levels of behavioral compliance.
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It may be impractical to cover all and every case in advance. But even if a particular
application is not available, the migration can target a generalized reference application,
created with test cases that exercise the parts of the original API deemed most valuable.

2.2.6 Threats to Validity

The main threats to internal validity concern errors in the classification of surrogate meth-
ods, and general experimenter bias. We developed the xom2jdom wrapper, defined cate-
gories for adaptation and compliance levels, and classified wrapper methods without ex-
ternal validation. Compliance level classification, however, is objective, determined by test
cases implemented by other developers. We tried to minimize the errors in adaptation level
classification by having two of the authors of the study [10] independently classify methods
and then compare the results and resolve differences.

The main threat to external validity relates to our choice of subjects. We studied a single
domain, using a single programming language in a single migration instance. We expect
the results to generalize to other object-oriented languages and migration instances. The
use of the XML domain, however, may have exaggerated the amount of adjustments, with
more methods classified in levels 3 and 4 than in other domains. This does not invalidate
our claim that applications may exercise the API in different ways and, thus, one should
concentrate the migration effort on API behavior needed by specific applications.

2.3 Challenges of GUI API Wrapping

In this section, we report on an artifact study about structural mismatches between GUI
APIs. We follow the same organization as the previous study: we describe research ques-
tions, approach, subjects, methodology, and results. Finally, we discuss the implications
of the results and threats to validity.

2.3.1 Research Questions

In this study we investigated how structural mismatches between APIs impact the design
of a wrapper. The study addresses the following research questions:

RQ1 — What are the design challenges faced by developers when implementing wrap-
ping layers around object-oriented APIs?
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RQ2 — What are the solutions employed by developers in practice?

To answer these questions we selected existing large, open-source wrappers for the GUI
domain. Then, we studied the wrappers and identified key design challenges faced by
their developers. Next, we abstracted design patterns from idioms created by developers
as solutions to the identified challenges. Finally, we validated the design patterns by
demonstrating their use in practical wrappers.

2.3.2 Subjects

The study is based on two open-source projects implementing wrappers for both direc-
tions between the principal Java GUI APIs. Table 2.5 presents the wrappers and APIs3.
SwingWT implements surrogates for Swing on top of SWT; SWTSwing implements the
other direction. While SWTSwing preserves SWT’s namespace—indicated by the top-
level packages—SwingWT declares its own namespace, parallel to Swing’s packages. Thus,
Swing applications must rewrite their package import declarations to use the wrapper.

We selected these wrappers for the following reasons: they are the most extensive
wrappers we could find; they wrap large, complex, varied APIs, which allows us to focus
on design issues; they are open-source, so we can study their source code; and we had
access to their main developers to corroborate our findings.

Table 2.5 presents size metrics for wrappers and APIs (see the description of metrics
for Table 2.1). The table shows that all wrappers have fewer visible elements (types,
methods and fields) than their original APIs. That is, the wrappers are not complete. A
client application that references some of the missing elements would not compile if used
with the wrappers. As expected, the majority of fields exposed by the APIs are constants
(about 65%). Even though the wrappers cover only parts of the APIs, the wrapper sizes
are substantial: SwingWT has about 34% the NLOC of SWT; SWTSwing has about 28%
of Swing. We compare a wrapper with the corresponding replacement API because it
indicates the amount of source code needed to adapt and reuse that API.

2.3.3 Methodology

The study was conducted in three phases: analysis of design challenges, abstraction of
idioms into design patterns, and validation.

3Swing is built on top of AWT; both are core Java APIs. SWT is an independent API under Eclipse.

22



Subjectversion
SwingWT0.90 SWTSwing3.2 Swing1.4 SWT3.3.2

swingwt.sf.net swtsing.sf.net Core Java API www.eclipse.org/swt

Top-Level

Packages

swingwt.awt java.awt

swingwtx.swing org.eclipse.swt javax.swing org.eclipse.swt

swingwtx.accessibility javax.accessibility

Types 864 752 2,032 696
Visible 527 361 1,212 432

Top-Level 475 308 791 432
Methods 6.537 6,044 18,702 9,607
Visible 5,650 3,246 12,833 5,966

Implementations 5,124 2,785 11,995 5,851
Fields 2,356 2,636 7,440 5,414
Visible 1,845 1,068 2,965 2,691

Constants 1,196 572 1,943 1,743
NCLOC 33,582 66,104 234,731 99,205

Table 2.5: Wrappers and APIs subject of the GUI wrapping study.

The first phase addressed RQ1. It consisted in uncovering important design challenges
faced by developers. We initially studied the APIs and detected incompatibilities that
would potentially impact the wrapper design. We then talked to the developers about
the general structure of their wrappers and the main challenges they experienced. Finally,
we investigated the source code to understand the correspondences between types of the
original and replacement APIs. The results of this phase are described in Section 2.3.4.

The second phase addressed RQ2. It comprised understanding the idioms employed by
developers to solve the identified challenges and eventually abstracting idioms as design
patterns. To this end, we performed architectural code queries and manual inspection of
source code. Our investigation resulted in the five design patterns presented in Chapter 3.

In the last phase we designed simple metrics to provide evidence that the patterns are
indeed applied in practice. These results are described in Section 6.2.

2.3.4 Results

In this section, we describe the results of the first phase, which concern RQ1. We examine
the challenges that emerge when designing wrappers around Swing and SWT. We use two
versions of a simple program with a GUI: one version using Swing, another version using
SWT. First, we observe the differences between the two versions. Then, we discuss the
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Figure 2.4: Swing and SWT versions of a simple GUI.

issues that arise in defining wrapping layers that serve both directions. We use swing2swt
and swt2swing to refer to these wrappers. The swing2swt layer wraps SWT and exposes it
with Swing’s interface; application code written for Swing can execute with this wrapper
and get SWT widgets instead. The swt2swing wrapper implements the opposite direction,
wrapping Swing and exposing SWT.

Sample-based Inquiry into API Differences

Figure 2.4 shows the Swing and SWT-based GUIs for a program that translates words
from a list box: all words or only the selected ones. Figure 2.5 shows the source code of
the program with the Swing and SWT versions next to each other.

Lines 1-34 create the window and the three widgets: a scrollable list of predefined words,
a checkbox, and a push button. The handler of the button calls the reusable Translator
class which is also configured with the value of the checkbox (lines 20-21). The called
method (lines 36-40) recursively searches for lists in a window, and depending on the all
boolean flag, translates all words in the list or just the selected ones.
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1 final JFrame frame = new JFrame();
2 Container pane = frame.getContentPane();
3
4 JScrollPane scroll = new JScrollPane();
5 scroll.setPreferredSize(new Dimension(100, 70));
6 DefaultListModel model = new DefaultListModel();
7 model.addElement(“red”);
8 model.addElement(“yellow”);
9 model.addElement(“green”);

10 model.addElement(“blue”);
11 JList list = new JList(model);
12
13 final JCheckBox check = new JCheckBox(“Translate All”);
14
15
16 JButton translate = new JButton(“Translate”);
17
18 translate.addActionListener(new ActionListener() {
19 public void actionPerformed(ActionEvent e) {
20 new Translator().translateLists(
21 frame, check.isSelected());
22 }
23 });
24
25 pane.setLayout(new FlowLayout());
26
27 scroll.getViewport().setView(list);
28 pane.add(scroll);
29 pane.add(check);
30 pane.add(translate);
31
32 frame.pack();
33 frame.setVisible(true);
34 frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
35 ...
36 public class Translator {
37 public void translateLists(Container container, boolean all) {
38 for (Component c : container.getComponents()) {
39 if (c instanceof JList) { ... }
40 }}}

1 Display display = new Display();
2 final Shell shell = new Shell(display);
3
4 List list = new List(shell,
5 SWT.BORDER | SWT.MULTI | SWT.V SCROLL);
6 list.setLayoutData(new RowData(100, 70));
7 list.add(“red”);
8 list.add(“yellow”);
9 list.add(“green”);

10 list.add(“blue”);
11
12
13 final Button check = new Button(shell, SWT.CHECK);
14 check.setText(“Translate All”);
15
16 Button translate = new Button(shell, SWT.PUSH);
17 translate.setText(“Translate”);
18 translate.addSelectionListener(new SelectionAdapter() {
19 public void widgetSelected(SelectionEvent e) {
20 new Translator().translateLists(
21 shell, check.getSelection());
22 }
23 });
24
25 RowLayout layout = new RowLayout();
26 layout.center = true;
27 shell.setLayout(layout);
28
29 shell.pack();
30 shell.open();
31 while (!shell.isDisposed ()) {
32 if (!display.readAndDispatch()) display.sleep();
33 }
34 display.dispose();
35 ...
36 public class Translator {
37 public void translateLists(Composite composite, boolean all) {
38 for (Control c : composite.getChildren()) {
39 if (c instanceof List) { ... }
40 }}}

Figure 2.5: Swing (left) and SWT (right) source code versions of the GUI application displayed in Figure 2.4.
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The two source code versions are relatively straightforward. In Swing (Figure 2.5 on
the left), JFrame (line 1) represents the main window and JScrollPane (lines 4-5) creates
the scrollable area in which the list resides. JList (line 11) implements the Model-View-
Controller [73] (MVC) view, while DefaultListModel (lines 6-10) implements the MVC
model expected by JList. JCheckBox (line 13) and JButton (line 16) are the button
widgets. Lines 18-23 register an ActionListener with the JButton. The listener receives
a callback from the API when the button is pressed. A layout is created for the window
(line 25) and the widgets are wired together (lines 27-30). Swing maintains its own thread;
therefore, lines 32-34 just open the window and set the default operation for when the
window is closed, leaving the application thread free from GUI concerns.

The SWT version (Figure 2.5 on the right) is startlingly similar. Shell (line 2), List
(lines 4-5) and Button (line 13 and line 16) represent the window, list, and button widgets,
respectively. Notable differences include Button being configured to behave as a checkbox
(line 13) or a push button (line 16), and the lack of a scroll pane widget since List can be
configured to show a scroll bar (line 5). Furthermore, widgets do not have to be wired since
they must always receive a parent in the constructor, except for top level widgets such as
Shell. Finally, SWT does not maintain its own thread; thus, lines 31-33 implement a loop
to control the application’s main thread.

Non-trivial Mapping Multiplicities

The correspondences between original and replacement API types form an API type map-
ping. The trivial Vector example of Section 2.1 involved only one-to-one correspondences
between adapter and adaptee. The GUI wrappers require additional mapping multiplici-
ties, as presented in Table 2.6, that pose challenges to the wrapper design.

By analyzing the code of Figure 2.5 we note that SWT’s Display (line 1) does not have
a counterpart in Swing: this is a case of No Target. While swing2swt can simply ignore
this type, swt2swing has to re-implement its services completely.

A challenge caused by Alternative Targets arises when an original API type implements
variants distributed over different replacement API types. SWT’s Button, for example,
maps to both of Swing’s types JButton and JCheckBox, but each specific Button object
maps to either a JButton or a JCheckBox object. This represents an issue for swt2swing
because a surrogate for Button must decide at runtime which type of adaptee object is
to be created. This issue also occurs in the Text surrogate of the xom2jdom wrapper: it
must select between JDOM’s Text and CDATA (see Table 2.3).
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Name
Multiplicity

Example
(type/object)

No Target 0/0 Display→ ∅
Single Target 1/1 Vector→ArrayList
Alternative Targets */1 Button→JButton | JCheckBox
Composite Targets */* List→JList, ListModel

Table 2.6: Mapping multiplicities w.r.t. a single original API object.

Figure 2.5 also suggests mappings from JFrame to Shell and JList to List. But closer
inspection shows that a Shell object in fact corresponds to a JFrame plus its content pane,
an object of type Container. Further, SWT’s List already encapsulates its model and can
be scrollable. It should map, therefore, to a JList plus a ListModel and a JScrollPane.
These are examples of Composite Targets, which force surrogates to maintain multiple
adaptees of potentially many types. The swt2swing List surrogate, for example, must
keep JList and ListModel adaptees.

Note that Composite and Alternative Targets can be simultaneously present in a type
mapping. SWT’s List, for example, can have variants with and without scroll bars. Its
mapping with respect to Swing would then be:

List→ (JList, ListModel)|(JList, ListModel, JScrollBar)

Table 2.6 shows only multiplicities with respect to a single original API object. The
opposite direction of a Composite Targets mapping, however, also represents an issue to
wrappers because surrogates must coordinate around a single adaptee object. In swing2swt,
for example, JScrollPane, JList, and DefaultListModel surrogates have to share a
reference to a single List object. Finally, mapped types may not completely match in the
features they offer and data they carry. Shell’s disposed flag (line 31), for example, is
missing in JFrame, and must be re-implemented by the surrogate.

Mapping Varying Type Hierarchies

Figure 2.6 shows an excerpt of Swing and SWT’s class hierarchies, with the type mappings
conjectured above. Further, Component is mapped to Widget since they are the super-
types of all widgets in their corresponding APIs. Also, Container is mapped to Composite
because they represent widgets that can have child widgets in the sense of the COMPOSITE

design pattern [34]. For List’s case of a Composite Target we use a directed edge to
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Figure 2.6: One option for Swing and SWT Type Mappings.

JScrollPane which expresses uni-directionality. Finally, we note that the mappings of the
open-source wrappers SwingWT and SWTSwing are slightly different from Figure 2.6.

Wrappers must provide surrogates for the whole inheritance hierarchy of the original
API for two reasons. First, client applications can reference and extend any visible type of
the original API. Clients using surrogates that do not comply with the hierarchy may not
even compile. For instance, if swing2swt only exposes JList, without exposing its super-
types, clients such as Translator (l.36), which references JList’s super-type Container,
would break.

Second, wrappers can take advantage of the original API’s inheritance decomposition
to reuse wrapping code. For instance, JList and JButton have Component as a com-
mon super-type and could reuse its methods. However, this kind of reuse can only be
achieved if type mappings respect covariance. Figure 2.6 shows that Component→Widget

and Container→Composite are covariant mappings. Therefore, swing2swt can implement
Component methods using a Widget adaptee and Container will be able to reuse these
methods since its adaptee, Composite, is a Widget. Breaking covariance indicates a poten-
tially serious API mismatch. In Swing, for example, buttons extend Container and can,
thus, have child widgets. Since SWT’s Button does not extend Composite, Swing clients
that attach widgets to buttons cannot be easily migrated to SWT.
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Different functional decomposition of types in the inheritance hierarchy can lead to
additional challenges, besides broken covariance. In SWT, for example, a widget becomes
scrollable through inheritance, by extending Scrollable, whereas Swing uses composition
with JScrollPane. Finer grained functionality can also be offered at different levels in the
hierarchy. SWT’s Control.pack method, called in the shell object (line 29), for instance,
maps to Window.pack in Swing. Since Control maps to Component, the surrogate must
verify that the adaptee is actually a Window before delegating the method call.

Varying Creation and Wiring Protocols

Swing provides distinct methods for creating widgets and wiring them to parents. Swing
clients can dynamically create and modify their compositions. In contrast, SWT enforces
the parent-child relationship in constructors, which constrains its clients.

Migrating from an API that is relaxed in how it establishes object relationships to
one that enforces relationships at construction time presents a challenge to wrappers.
Surrogates may need to delay adaptee construction. For example, when a surrogate for
JCheckBox is instantiated (l.13), it cannot immediately construct the corresponding SWT
Button adaptee because the parent widget is unknown until the checkbox is wired to the
content pane (l.29). This also means that operations cannot be delegated as usual: they
may need to be re-implemented.

Mapping from a strict to a relaxed API does not present major challenges: surrogate
constructors can create the adaptee and wire it to its parent immediately.

Inversion of Control

Wrappers may need to delegate control from the replacement API back to the applica-
tion. A common scenario is that an application receives control from the wrapper through
callbacks, by implementing suitable interfaces or extending suitable classes of the original
API. If there is a correspondence between callbacks of both APIs the wrapper can delegate
events generated by the replacement API to callbacks designed for the original API.

For instance, our Swing application registers an ActionListener with a JButton

(lines 18-23), which corresponds to adding a SelectionAdapter to an SWT’s Button.
In swing2swt, the JButton surrogate must register a SelectionAdapter to its Button

adaptee and keep the ActionListener. When SWT generates a SelectionEvent, it must
be translated into an ActionEvent and delegated to the original ActionListener. The
analogous opposite mapping is implemented by swt2swing.
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Object Schizophrenia

A surrogate must wrap all objects of the replacement API before they are returned to the
application. For instance, the surrogate method for Container.getComponents (line 38)
calls the corresponding Composite.getChildren on its adaptee and receives objects of
replacement API types. The surrogate must then wrap those objects in original API types
before returning to the application.

It can happen that the same object flows many times from the replacement API to the
application. This may create garbage and potentially cause object schizophrenia [36] if a
new surrogate is created each time the method is called. That is, the application will receive
two objects with different identities but that represent a single object of the replacement
API. Thus, it is necessary to manage the surrogate identities of objects of the replacement
API so that new surrogates are only created when necessary. This challenge is exacerbated
by the fact that the type of the surrogate is not always fully implied only by the type of
the object from the replacement API. For example, an SWT Button could be encapsulated
in a surrogate for JButton or JCheckBox, depending on its runtime properties.

Additional Design Challenges

We found additional challenges specific to the studied APIs. First, Swing and SWT ap-
proach thread handling differently. In Swing, the application thread is released after creat-
ing the GUI, and a Swing-specific daemon thread maintains the windows and sends events
to registered handles. In SWT, the application must control the main thread, looping while
the window is not disposed and dispatching widget events. The result is that swing2swt
must control SWT’s thread on behalf of client applications since they are not designed with
this concern in mind. On the other hand, swt2swing has to synchronize the application’s
and Swing’s threads.

Second, Swing and SWT use layouts to determine how widgets are arranged in a win-
dow, but perfect correspondences between the layout types available in the APIs is rare.
Even for the simple layouts used in the example, FlowLayout in Swing and RowLayout

in SWT, the way in which applications provide layout information varies: while in Swing
the desired size is set in the JScrollPane (line 5), in SWT the information is passed as
LayoutData to the List (line 6). Because layouts are a well modularized concern of the
APIs, the studied wrappers re-implemented the original API layouts completely, without
trying to reuse replacement API layouts.
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2.3.5 Discussion

The artifact analysis shows that developers face considerable design challenges in imple-
menting adaptation layers around object-oriented APIs. The results presented in this
section elucidate RQ1 : we have identified several issues caused by structural mismatches
between Java GUI APIs. Unfortunately, developers lack clear guidance on how to solve
these issues.

The main insight of this study is that design patterns can be used to guide developers.
While studying the wrappers with respect to RQ2 we noticed that developers often create
informal idioms to overcome design issues in their projects. In Chapter 3 we present a
catalog of API wrapping design patterns we abstracted from some of the idioms.

2.3.6 Threats to Validity

The main threat to internal validity is related to the identified challenges and idioms.
Although we were systematic in analyzing the projects, we may have missed important
challenges and idioms.

Threats to external validity concern the generalization of our results and involve our
choice of subjects. We think that the challenges, idioms and patterns identified are not de-
pendent on the specific APIs and could be generalized to other settings. The quality of the
selected wrappers could also influence the validity of the identified idioms and, therefore,
of the abstracted patterns. We hold that the GUI wrappers are successful projects worth
being studied given the complexity of the APIs they wrap, their claims of compatibility
with the respective original APIs and the extensive user base.

2.4 Interviews

In this section, we describe a set of interviews we conducted with developers experienced
in API migration. The overarching goal of the interviews was to understand the process
and techniques developers use in practice and to corroborate the findings of our previous
studies. First, we describe the interview questions, subjects, and methodology. Then, we
present the results, discussion and threats to validity.
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2.4.1 Interview Questions

We asked developers the following general open questions:

IQ1 — What is the development process used in practical API migration?

IQ2 — What are the techniques used for verification of results?

IQ3 — What is the existing and desired tool support?

2.4.2 Subjects and Methodology

We conducted interviews with seven developers familiar with some form of API migration:
wrapping and/or rewriting. We sought experienced developers from a varied background,
but were constrained by familiarity with API migration. We contacted three developers of
the GUI wrappers we presented in Section 2.3, two developers we were acquainted with, and
two developers from a company specialized in porting applications across mobile devices4.
Our subjects came from four different countries, had at least five years of professional
development experience and participated in at least one API migration effort, in domains
such as banking, gaming, GUI, web services, logging and geographical information systems.

We performed five guided interviews by phone and two interviews by email. The phone
interviews were recorded and ranged from 30 minutes to 1:30 hours. We organized the
interviews around IQ1-3, but left developers free to express their views on the subject of
API migration. Due to the small sample size, we were only able to perform a qualitative
evaluation. We analyzed the recordings of phone interviews and the responses in the
email interviews, and created interview summaries. Then, we analyzed the summaries to
categorize recurrent statements, and to collect observations we found interesting.

2.4.3 Results

We summarize the outcome of the interviews as follows.

4Porting is related to API migration in that mobile devices offer different APIs to access device services.
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Specific Applications

All reported API migration efforts used specific applications to drive the development
process. Even wrapping projects aiming at general wrappers initially targeted a single
application. For instance, the SWTSwing wrapper studied in the previous section, which
is one of the wrappers covered by the interviews, was developed initially to migrate the
Java Integrated Development Environment (IDE) of Eclipse5 from SWT to Swing. One of
the developers of SwingWT also reported that his contributions to the wrapper originated
from attempting to migrate a personal application from Swing to SWT.

Simple Samples

Even with specific applications in mind, developers usually start with simple samples. In
the case of API migration by rewriting, developers reported initially targeting samples
so that they can assess the migration effort. In the case of API migration by wrapping,
developers reported to create small samples that imitate API usage in the application.
Such samples are then used to evolve the wrapper until it becomes possible to execute the
target application with it. In addition to hand-coded samples, developers also reported
leveraging simple open-source applications that exercise the original API.

Limited Test Automation

Developers reported that, in most cases, they simply try to informally compare the behavior
of the application before and after migration. For example, they look at the resulting GUI
snapshots, files, or the return value of some important functions. A simple crash-driven
method is often used: developers try to run the application under migration until it crashes;
such crashes are debugged and analyzed as they indicate incompleteness or non-compliance
of the wrapper with respect to the original API.

One interviewee reported an approach for a more rigorous testing process in bank-
ing applications. Developers first recreate missing, incomplete or outdated requirements
documents. Then, they derive use cases from the requirements. Finally, they manually
implement automated test cases for the use cases, so that essential business flows can be
verified automatically. In essence, the migration is considered correct if tests designed for
application use cases pass; no API-specific tests are created. Nevertheless, this approach
is restricted to critical systems because it is labor intensive.

5Eclipse is an extensive open-source development platform in Java—www.eclipse.org
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Relaxed Behavioral Equivalence

All developers of wrappers mentioned that strict behavioral equivalence between the origi-
nal API and wrapper was never a goal. No developer aimed for strict behavioral equivalence
between the original and the migrated application. These expectations match the results
of our previous studies: differences between APIs are often too hard to be neutralized com-
pletely. Strict equivalence is reportedly considered unnecessary. Developers are content
with a migration that is “good enough”.

In the case of wrapper-based API migration, some developers reported that limited,
manual adaptation of the application is sometimes recommended when it simplifies the
wrapper implementation or enables better utilization of the replacement API. SWTSwing,
for example, recommends that applications add initialization code that greatly improves
SWTSwing’s synchronization between application and Swing threads (see Additional De-
sign Challenges in Section 2.3.4).

Conceivable Tool Support

Developers varied in their opinions about conceivable tool support. Some developers ex-
pressed interest in automated comparison of results. In certain domains, such as in the
GUI domain, developers expressed concerns about the feasibility of automated compar-
ison. For instance, developers of SWTSwing used a tool for opening side-by-side the
same application—once with SWT, once with SWTSwing—thereby simplifying the man-
ual comparison of states of the GUI, including details of appearance. A general, automated
comparison was considered infeasible.

One developer argued that automated rewriting tools should not be trusted for complex
migration tasks because the code may become unmaintainable, while the same could be true
for generated wrappers. Finally, one developer expressed that debugging and regression
testing may benefit from the selective use of injected observation functionality to be applied
to objects of interest. That is, a tool to observe abstracted state of objects during execution
with the original API and then compare with the state during execution of the wrapper.

Wrapper Design

Most developers of wrappers expressed that wrapping is especially well suited for encap-
sulating and localizing behavioral adjustments. Developers of GUI wrappers also reported
that one of the main issues related to the design and organization of source code to imple-
ment a mapping between very different APIs.
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2.4.4 Discussion

The results of the interviews corroborate the findings of our XML study (Section 2.2):
developers confirm the use of a reference application as the main migration target, and
report difficulties in achieving strict behavioral compliance. The results also confirm the
importance of the design challenges we have found in our GUI study (Section 2.3).

The interviews also reveal the current industry practice, which we call the crash-driven
method. First, developers use small samples that exercise the original API to evolve the
wrapper until the application under migration can be executed. Then, developers execute
the application, linked with the wrapper, in use cases deemed important. The development
is driven by application crashes and informal assessment of application behavior.

Furthermore, the interviews suggest requirements for an improved method. Developers
express difficulties in uncovering API differences that are important to the application
under migration. Tool support for behavioral comparison using relaxed equivalence, and
state observation of selected objects is desired. Finally, test automation is mostly missing.

2.4.5 Threats to Validity

The main threat to internal validity relates to our interpretation of the interviews. We
mitigated the threat by striving to conduct and analyze the interviews as impartially and
systematically as possible.

A major threat to external validity is sampling. We were able to interview only seven
developers and we used convenience sampling. We tried to minimize this threat by selecting
subjects with varied backgrounds. We think that the subjects adequately represent the
current industry practice.

2.5 Summary

In this chapter, we have introduced the basics of API migration by wrapping, and presented
two studies and a set of interviews we have conducted to better understand API migration
in practice. Together, these activities suggest that the most pressing issues involve discov-
ery and specification of differences between APIs, and assessment of migration correctness.
In the next chapter, we tackle the issue of how to specify the differences between APIs. We
address the lack of guidelines for wrapper design with a catalog of API wrapping design
patterns we have abstracted from the solutions used by developers in practice.
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Chapter 3

API Wrapping Design Patterns

In this chapter, we present a catalog of API wrapping design patterns. The catalog ad-
dresses RQ2 of the study presented in Section 2.3. The patterns abstract idioms found
in the practical GUI wrappers of the study. Each pattern addresses at least one of the
challenges described in Section 2.3.4. We abstracted the following patterns:

• Layered Adapter decomposes surrogates into layers, providing flexibility to implement
mappings with Alternative and Composite Targets (see Table 2.6 and Section 2.3.4).

• Stateful Adapter keeps additional state in an adapter to re-implement features missing
in the adaptee or to adjust differences in interaction protocols (see discussion of
Shell’s disposed flag in Section 2.3.4).

• Delayed Instantiation delays the instantiation of adaptees until enough data is present;
placeholders are used to store interim data and execute operations, thereby address-
ing the challenge of varying creation and wiring protocols.

• Inverse Delegation provides adapters in the inverse direction, in order to delegate
replacement API events to the application, thereby addressing the challenge of in-
version of control.

• Wrapping Identity Map maintains the correspondence between adaptees and surro-
gates in an identity map that is consulted when returning data to the application.
This pattern addresses the challenge of object schizophrenia.

In the next sections, we present each pattern in detail. However, we refrain from using
the heavy structure of the GoF catalog [34]. Instead, we detail patterns with examples
taken from the wrappers, and focus on discussing challenges addressed and design options.
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3.1 Layered Adapter

The classic ADAPTER pattern can be directly applied to Single Target mappings, as defined
in Table 2.6. No Target mappings, on the other hand, must be completely re-implemented
by a surrogate. Mappings with Alternative and Composite Targets demand more flexibility
because the surrogate may need to chose different combinations of adaptees at runtime.

In practice, we have seen that this flexibility is achieved by decomposing the surrogate
into a layered adapter. The class diagram in Figure 3.1 shows the general structure of
the pattern in the context of swt2swing’s List surrogate implementation (swt2swing is the
example wrapper described in Section 2.3). Instead of directly referencing replacement API
types, List maintains an object of an interface type, JListAdapter. Alternative mappings
are uniformly accessed by the surrogate through the implementation of different variants
of the interface. Each variant is an adapter with potentially many Composite Targets.

For example, the SimpleJListAdapter variant composes JList and ListModel, whereas
ScrollableJListAdapter additionally inherits JScrollPane. This structure naturally
represents the mapping definition for List given as a regular expression in Section 2.3.4:
List→ (JList, ListModel)|(JList, ListModel, JScrollBar)

3.2 Stateful Adapter

The main goal of the ADAPTER pattern is to reuse existing functionality. Unfortunately,
delegation is often not possible because mapped types may not agree on the features they
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Figure 3.2: Stateful Wrapper examples.

offer and data they carry. If an original API type assumes a richer state than its replacement
API counterparts, requests cannot be simply delegated to adaptees—a Stateful Adapter
must carry the missing data.

Figure 3.2 outlines the structure of the two main scenarios in which the pattern is
used. In the first, Shell’s surrogate re-implements functionality missing from JFrame, the
disposed flag (see Section 2.3.4). The second scenario comes from xom2jdom, the wrapper
described in Section 2.2, and exemplifies adjustment of interaction protocols. XOM clients
use Serializer to write XML documents to an output stream. Clients first set the output
stream in the constructor and then call write methods passing only the document to be
written. XMLOutputter, JDOM’s counterpart, uses a different protocol: clients must pass
both the stream and the document at each method call. Thus, the surrogate collects the
state and adjusts the protocol when dispatching operations.

3.3 Delayed Instantiation

Surrogates usually have their lifecycles bound to adaptees. When migrating to replace-
ment APIs that enforce object relationships at construction time, surrogates may need to
delay construction of adaptees until the relationship is established in terms of original API
protocols. For example, in the swing2swt excerpt of Figure 3.3, JButton cannot create its
Button adaptee in a constructor because the parent object is yet unknown—the parent-
child relationship is only established when the JButton object is added to a Container

with Container.add (line 16).

The FACTORY METHOD pattern [34] provides infrastructure for delayed instantiation
since it decouples surrogate and adaptee lifecycles. In the example, the Component surro-
gate declares the createAdaptee factory method (line 3) to be implemented by sub-classes.
While no adaptee is available, operations on surrogates must be deferred or re-implemented
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1 public abstract class Component {
2 Widget adaptee;
3 abstract void createAdaptee(Composite parent);
4 ...
5 }
6 public class Container extends Component {
7 List<Component> pending = new ...;
8 void createPending() {
9 if (pending != null) for (Component c : pending) wire(c);

10 pending = null;
11 }
12 void wire(Component c) {
13 c.createAdaptee((Composite) getAdaptee());
14 if (c instanceof Container) ((Container) c).createPending();
15 }
16 public Component add(Component c) {
17 if(getAdaptee() == null) pending.add(c);
18 else wire(c);
19 return c;
20 }
21 ...
22 }
23 public class JButton extends AbstractButton {
24 String text;
25 void createAdaptee(Composite parent) {
26 Button button = new Button(parent, SWT.PUSH);
27 button.setText(text);
28 setAdaptee(button); ...
29 }
30 public void setText(String text) {
31 if(getAdaptee() == null) this.text = text;
32 else getAdaptee().setText(text);
33 }
34 ...
35 }

Figure 3.3: Delayed Instantiation example.

without delegation. We call re-implemented operations safe, because they can be executed
by client applications prior to adaptee instantiation. For example, JButton stores interim
data in a field text (line 24) and re-implements its accessor methods (line 30). The factory
method then creates the adaptee (line 25) and ensures interim data is delegated (line 27).

Although Container.add sets the parent-child relationship, it cannot trigger adaptee
instantiation if the container itself does not have an adaptee—if the adaptee is available,
the objects are wired (line 18), otherwise, the object is added to a list of child components
pending adaptee instantiation (line 17). Eventually a component will be added to a top-
level widget, which always has an adaptee; this is when wire (line 12) will be executed.
This will trigger the factory method on the component, passing the parent widget’s adaptee
as parameter (line 13). If the component is a container it may have pending children, so
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createPending is called (line 14) to iterate the list and cascade wiring (line 9) of children.

Implementations of delayed instantiation must decide how to store interim data and
which operations to re-implement. In SwingWT, interim data is stored directly in surrogate
fields, as in our example. Surrogate methods must always check if the adaptee has already
been instantiated to decide whether the operation should be delegated or simulated with
the placeholder fields (such as setText in line 30).

Another option is to use the layered adapter pattern. An internal adapter variant im-
plements a placeholder and the surrogate swaps it to a final variant once the parent widget
is known. This solution has the advantage that surrogates delegate to the uniform internal
adapter interface without having to check if the adaptee has already been instantiated. In
this case, factory methods can be implemented in both layers: the surrogates (to create
internal adapters) and the adapters (to create adaptees).

Factory methods in surrogates also prevent object adapters from instantiating multiple
adaptees. In Java, every constructor must call a constructor of the super-class (except
Object). If adaptees are instantiated in all constructors, super-classes will always instanti-
ate an adaptee, which is then stored in a field (as in line 2). Sub-classes can only refine the
adaptee by overwriting the field after the fact, causing multiple adaptees to be instantiated
when only the refined one would suffice. Factory methods allow smoother refinement since
sub-classes can override the method to prevent instantiation on super-classes, even if the
factory method is called by constructors.

Delayed instantiation should be used with care because reproducing all operations of
a surrogate ultimately violates the intention of reuse. Only simple operations that are
often performed in client applications before the trigger should be allowed to be delayed.
Wrappers should also provide documentation regarding the operations that are safe. In
SwingWT, for example, mostly getters and setters are considered safe.

3.4 Inverse Delegation

This pattern deals with control flowing from the replacement API to the application.
In particular, Inverse Delegation allows application callbacks designed to work with the
original API to be executed when corresponding events occur in the replacement API.

There are two main approaches to implement the pattern. First, it is possible to
apply the ADAPTER pattern in the inverse direction, as outlined in Figure 3.4. When
MyActionListener is registered to a surrogate (such as JButton), the surrogate creates an
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Figure 3.4: Inverse Delegation for callbacks.

equivalent listener of the replacement API (InverseActionListener), which becomes an
inverse adapter to the original listener. When the replacement API generates an event in
Button, InverseActionListener translates and delegates it back to its ActionListener
inverse adaptee.

Another approach, implemented in SwingWT and SWTSwing, is to use the surrogate
itself as inverse adapter. In Figure 3.4, JButton would implement SelectionListener (the
interface equivalent to SelectionAdapter) and register itself to Button. JButton would
keep a list of ActionListeners. When MyActionListener is registered, JButton simply
adds it to the list. An event in Button would then trigger JButton, which would then
translate the event and dispatch to the listeners in its list, including MyActionListener.

The advantage of the approach found in the GUI wrappers is simplicity: the role of
InverseActionListener is played by JButton without an extra class. The main disad-
vantages are that surrogates implement an additional concern, and that the inheritance
hierarchies of surrogates and replacement API get tangled.

3.5 Wrapping Identity Map

The semantics of some original API operations, such as the elements method in Figure 2.1
and the event objects in Figure 2.5, is to return a new object at each call. In this case, a
surrogate can simply wrap replacement API objects into new surrogates before returning
to the application. For other operations it is necessary to maintain the correspondence
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1 public abstract class Component {
2 static Map<Widget, Component> map = new ...;
3 static Component getSurrogate(Widget adaptee, Class<?> sClass) {
4 if (! map.containsKey(adaptee))
5 map.put(adaptee, createSurrogate(adaptee, sClass));
6 return map.get(adaptee);
7 }
8 ...
9 }
10 public class Container extends Component {
11 public Component add(Component c) { ... }
12 public Component[] getComponents() {
13 Control[] controls = ((Composite) getAdptee()).getChildren();
14 Component[] components = new Component[controls.length];
15 for(int i = 0; i < controls.length; i++)
16 components[i] = getSurrogate(controls[i], Component.class);
17 return components;
18 }
19 ...
20 }

Figure 3.5: Wrapping Identity Map example.

between adaptees and surrogates to avoid object schizophrenia (see Section 2.3.4).

In Figure 3.5, for example, Container.getComponents (line 12) delegates the call to its
adaptee (line 13) and gets an array of sub-widgets. It then iterates over the array wrapping
the replacement API objects into corresponding surrogates (line 16). Instead of creating a
new surrogate at each call, Component.getSurrogate (line 3) consults aWrapping Identity
Map (line 2) to get the Component surrogate already mapped to the Widget adaptee. If
the adaptee does not have a surrogate yet, the component creates a new surrogate on the
fly (line 5).

Note that createSurrogate (code omitted) receives as parameter the surrogate class
to be instantiated. This allows the method to either instantiate the surrogate object
reflectively—in which case surrogates must conform to certain rules, such as having a
default constructor and setters for adaptees—or implement a hard-coded type mapping.
Furthermore, because the operation requests a surrogate of a certain type (Composite in
line 16) it is possible to have an adaptee mapped to different surrogates depending on the
context, which is necessary when many surrogates share a single adaptee.

The identity map is only required if the surrogate is an object adapter because class
adapters are already typed by both APIs and do not require translation. Maps can also
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be designed on a per-type or system-wide basis; they can be manually implemented using
available map data structures, or a library can be designed to maintain the map and
instantiate surrogates reflectively if necessary. An additional issue with identity maps is
memory leak: correspondences should be weak. That is, garbage collection should not be
prevented from cleaning up objects only because they are in the map.

3.6 Summary

In this chapter, we have presented an initial catalog of API wrapping design patterns. The
patterns have been abstracted from the idiomatic solutions used by developers in practical
wrappers. The catalog addresses the lack of guidance to the specification of wrappers.
In the next chapter, we introduce the concept of compliance testing, which addresses two
additional issues in API migration: discovery of behavioral differences across APIs and
assessment of migration correctness.
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Chapter 4

Compliance Testing

In this chapter, we introduce the notion of compliance testing for API migration. Com-
pliance testing addresses many of the issues found in practical API migration that we
described in Chapter 2. In particular, compliance testing:

• supports developers in uncovering behavioral differences between a wrapper and its
original API, focusing on behavior exercised by the application under migration; and

• enables the assessment of wrapper correctness, making explicit the notion of a “good
enough” wrapper that is informal in practice.

This chapter is organized as follows. First, we motivate compliance testing by discussing
the unique challenges of testing for API migration. We argue that existing techniques fail
to address these challenges adequately. Next, we introduce a running example to illustrate
how compliance testing can uncover compliance issues between a wrapper and its original
API. Finally, we detail the components of compliance testing: API interaction trace, trace
interpretation, API contracts, and assertion tuning.

4.1 Unique Challenges of Testing for Wrapper-based

API Migration

Testing for wrapper-based API migration involves unique challenges. Compliance testing
is a form of automated testing motivated by the inadequacies of existing testing techniques
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in addressing these challenges comprehensively. In this section, we discuss this unique
context and the shortcomings of existing testing techniques. Furthermore, we indicate how
compliance testing addresses these challenges. It does so partly by leveraging aspects of
existing techniques.

4.1.1 Focus on API Behavior Relevant to the Application

API migration usually targets a specific application (Chapter 2). Therefore, testing must
concentrate on the behavior of the original API that is exercised by this application. Tradi-
tional testing techniques, however, concentrate on finding most faults, usually by achieving
high code coverage [81]. API-specific test suites also focus on exploring most possible us-
age scenarios. These techniques are of limited use for API migration because they may
demand too much of the wrapper—behavior that is not needed by the application under
migration—and may still fail to enforce behavior relevant to the application.

Compliance testing focuses on the behavior that is important to the application. To
this end, it uses a record and replay technique inspired by approaches for regression test
extraction [64, 75, 54, 30]. The idea is to record application execution traces with respect
to a certain module—in our case an API—and then replay the execution after the module
evolves. The replay tool mocks the application behavior and checks whether the module
behaves as when recorded. While regression testing focuses on preserving behavior of an
earlier version in a later version of a module, compliance testing focuses on preserving the
recorded behavior of the original API in the wrapper.

4.1.2 Focus on API Interaction

Testing for wrapper-based API migration must focus on assessment of API behavior. Ap-
plication test suites, however, do not necessarily target the interaction of the application
with the API. While the ultimate goal may be to satisfy application tests, such tests may
be of little use to assess wrapper compliance and to drive wrapper development.

Compliance testing focuses on the API interaction. The record and replay technique
captures only the interaction of the application with the API. Still, the technique requires
application usage scenarios. However, developers can reuse existing application test cases
or rely on some of the many automatic test generation techniques (such as [12, 20, 66, 3])
to generate new application test cases. Then, compliance testing enhances application test
cases with assessment of API-specific behavior.
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4.1.3 Test Oracle Selection and Limited State Observation

Test oracles [81] determine the correctness of a wrapper. In API migration, the underlying
assumption is that the wrapper should strive to reproduce the behavior of the original
API triggered by the application. Thus, baseline oracles must enforce in the wrapper the
behavior observed in the original API.

Compliance testing uses API contracts to define oracles (see Section 4.5). We use the
term contract to suggest that the original API has a contract with the application to
behave in a certain way and the wrapper should honor this contract. Here we discuss the
main categories of oracles relevant to API migration. Compliance testing, however, can be
extended with new oracles via implementation of new API contracts.

Many existing approaches provide test oracles for input/output behavior [75, 64, 69,
38, 54, 93, 41, 85, 66, 89]. They observe the result of functions for a given input, and
then generate assertions that enforce the output behavior. Exceptional behavior is often
handled as a possible output.

We saw in Section 3.4 that APIs often delegate control back to applications via call-
backs. Hence, it is important to verify that the wrapper reproduces the callbacks of the
original API that are triggered by the application. Some approaches provide oracles for
synchronous callbacks [75, 64, 38, 54], when the callback is executed in the same thread
as the triggering call. While approaches to deterministically replay multi-threaded appli-
cations exist [39, 74], they are tailored to find concurrency bugs instead of verifying that
asynchronous callbacks are executed. Instead, we support a heuristic approach.

The behavior of a module can also be observed by changes to its state. Orstra [89],
for example, is a tool for augmenting generated tests with regression oracle testing. It
includes a concrete-state contract that observes the state of a module based on its fields.
In wrapper-based API migration, however, concrete state observation is impossible because
surrogates usually do not contain the same fields as the classes they are replacing. The
form of state observation that is most relevant to wrappers, therefore, is interface-based.

4.1.4 Relaxed Behavioral Equivalence

The studies and interviews of Chapter 2 have shown that developers are often content
with a wrapper that is “good enough”. In most cases, strict behavioral equivalence be-
tween wrapper and original API is desired. But in some cases, the wrapper is allowed to
produce slightly diverging behaviors while still being considered correct. This may occur,
for example, because some mismatch is too difficult to be neutralized by the wrapper, some
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output or state values should be interpreted differently, some behavior is non-deterministic,
or the difference is not important to developers. Current testing techniques, however, focus
only on strict behavioral equivalence.

In terms of the framework proposed by Staats et al. [81], the problem is that, in the
context of API migration, the oracles described above are not complete. In other words,
a deviation detected by an oracle does not imply necessarily that the wrapper is incorrect
with respect to the specification, which is the idealized behavior expected by developers.

Compliance testing introduces the notion of assertion tunings to overcome this problem
(see Section 4.6). Tunings are executable specifications of acceptable behavioral differences.
For example, a developer of a GUI wrapper may accept that widget positions diverge by
10% of the original values. They are executable in that they modify the default semantics
of API contracts. Tunings capture and document the expectations of wrapper developers,
thereby making explicit the notion of a “good enough” wrapper.

4.2 Motivating Example

In this section, we illustrate compliance issues between a wrapper and its original API. As
previously discussed, the aim of wrapper development is to reduce such issues until the
wrapper is “good enough” for use in applications. Original and replacement APIs may
contain arbitrary differences (Chapter 2); the wrapper must neutralize these differences.

Our example concerns SwingWT, the wrapper between Swing and SWT presented in
Section 2.3. Using compliance testing and the Koloo method—and associated toolkit—
presented in Chapter 5, we developed a revision of SwingWT, which we call evolved
SwingWT in the sequel. The evolution of SwingWT is detailed in Section 6.1.

Figure 4.1 illustrates compliance issues of SwingWT versus Swing; it also illustrates
how our systematically evolved wrapper reduces the compliance issues. In the figure, we
exercise one scenario of the Tooltip demo of SwingSet21, which is a set of Swing demos
originally distributed by Sun. The scenario displays a specific tooltip as it is triggered
when the user positions the mouse over the cow’s mouth. We chose this scenario because
the Tooltip demo is clearly concerned with triggering tooltips.

On the left, the reference Swing behavior is that the cow moos. In the middle, the
original SwingWT wrapper, prior to our efforts, is used. Three problems are noticeable
in the image: the background color is gray instead of white, the tooltip shows a different

1Source code can be found in Sun JDK folder demo/jfc/SwingSet2/
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Figure 4.1: SwingSet2’s Tooltip demo in Swing, SwingWT, and evolved SwingWT.

message, “Cow.” instead of “Mooooooo”, and the tooltip font is different. On the right,
the evolved SwingWT wrapper is used. The background color and the tooltip message
now comply with the original API; the font is still different, however, which demonstrates
a limitation of our approach. The example is visually striking, but compliance testing
also reveals issues that are not easily spotted by looking at particular screenshots; it also
applies to domains other than GUI programming.

Compliance testing reveals behavioral differences automatically. The behavior of the
original API represents a baseline behavior that is checked via assertions generated from
API contracts. Revealed differences are referred to as violations of compliance. Compliance
testing can be exercised with varying levels of scrutiny in terms of API contracts to be
enforced. In the following we briefly discuss how different contracts implemented in Koloo
tools helped us evolve SwingWT.

The API contract for return values detects a violation: SwingWT returns a different
boolean value than Swing in a call to the method contains(Point) of class java.awt.Polygon.
An investigation reveals that the Tooltip demo uses the method to map areas of the image
to corresponding messages. The violation is directly linked to the observable fact that a
wrong message is displayed in the middle of Figure 4.1.

The API contract for asynchronous calls from the original API to the application also
detects a violation: SwingWT does not reproduce an asynchronous callback to the method
contains(int, int) of class java.awt.Component. An investigation reveals that the
Tooltip demo overrides the method to select the appropriate tooltip to display. The viola-
tion is also directly linked to the observable fact that a wrong message is displayed.

The contract for state integrity also flags a violation for diverging background colors.
This violation cannot be revealed by looking at return values because the application does
not exercise the getter of the background color in any way. We note that additional scrutiny
in terms of API contracts may also imply noise in reporting violations (see Section 6.1);
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event E ::= (eid, tid, pid, d, T , sig, P [], R)
execution id eid ∈ N

thread id tid ∈ N

parent id pid ∈ {eid}
direction d ∈ → | ←֓
event entity T ,P ,R ::= (type, content)
entity content content ::= | value | id | (id, entity[])
signature sig ∈ string

type name type ∈ string

object id id ∈ N

content value value ∈ string | primitive

Figure 4.2: Event structure of captured traces.

elimination of these violations is not necessarily expected by a “good enough” wrapper.

Finally, a difference in tooltip fonts remains. This issue occurs because Swing handles
HTML whereas SWT does not support HTML in tooltips. This API difference eventually
led to an observable GUI difference that was manually resolved during wrapper develop-
ment by stripping HTML off the tooltip. Although an API contract could conceivably
observe and enforce this type of side-effect, such a contract is not implemented in Koloo.

In the next sections, we detail the components of compliance testing that allow develop-
ers to detect such behavioral differences, automate their enforcement, and make decisions
regarding their importance to the application at hand.

4.3 API Interaction Trace

The execution of a compliance test is captured as an API interaction trace. The trace
represents the interaction between the application under migration and the original API
as recorded during an application run. It is a sequence of events that denote method calls,
constructor calls and field accesses to API-defined elements. An element is API-defined if
it is declared by the API or it is an application extension of an element declared by the
API. The trace is meant to abstract from execution events that do not involve API types
or subtypes thereof in the application. A compliance test, thus, consists of the re-execution
of trace events against the wrapper, together with an assessment of its behavior.

Figure 4.2 defines the structure of events more precisely. An event is an eight-tuple
uniquely identified by its execution id, which captures the order in which events were
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e1, t0 → :Robot.<init>():0 ...
e16, t0 → :ToolTipDemo.<init>( ):1 ...
e22, t0 → :JPanel.<init>():2 ...
e29, t0 → :ToolTipDemo$Cow.<init>(1):3 ...
e32, t0 → :Polygon.<init>():4 ...
e62, t0 → 3:ToolTipDemo$Cow.setToolTipText(“Cow”): ...
e66, t0 → 2:JPanel.add(3):3 ...
e68, t0 → :JFrame.<init>(“ToolTip Demo”):5 ...
e72, t0 → 5:JFrame.getContentPane():6
e73, t0 → 6:Container.add(2, “Center”): ...
e77, t0 → 5:JFrame.show(): ...
e85, t0 → 0:Robot.mouseMove(’342’, ’312’):
e86, t0 → :Thread.sleep(’3000’):
e87, t1 ←֓ 6:Container.contains(’155’, ’112’):’true’
e88, t1 → :Point.<init>(’155’, ’112’):7
e89, t1 → 4:Polygon.contains(7):’true’
e90, t1 → 3:ToolTipDemo$Cow.setToolTipText(

“<html><center><font color=blue size=+2>
Mooooooo
</font></center></html>”)):

Figure 4.3: API interaction trace for the example in Figure 4.1.

detected. A thread id identifies the active thread. The parent id indicates the state of the
execution stack: event eid occurred in the control flow of its parent event pid. The event
signature identifies the replacement API element, including the static target type. From
the viewpoint of the application an event is either outgoing (→), if it originates from an
application type, or otherwise incoming (←֓). Incoming events express callbacks, when the
API calls a method implemented by the application. A callback is synchronous, if it is
the response to a call in the same thread. It is asynchronous otherwise, that is, if it is a
top-level event of a thread that is controlled by the API. In this case, the trace contains
only callbacks at the top-level, meaning that the API created the thread.

The remaining items correspond to the target object, a sequence of parameters, and a
return object, all encoded as event entities. An entity represents a runtime value or object
as a tuple with a string (the runtime type of the entity) and a content item. The content
can be (null or void), a value (primitive or string), an object reference id, or the reference
to an array (which has an id and points to a sequence of entities). Exceptions thrown by
events are encoded by the return value being a reference with the exception type.

Figure 4.3 shows an excerpt of the trace underlying the motivating cow example of
Section 4.2. This is the trace as recorded with the original Swing API; in Section 6.1
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we describe the design of the application scenario that originated the trace. The trace is
edited for readability; for instance, type names are abbreviated. No parent id is included
because it is clear from indentation. Numbers represent object ids, single quotes represent
primitive values, and double quotes represent string values.

The trace shows the construction of GUI elements (e1-e73), the method call to show the
window (e77), and a call to move the mouse over the cow (e85). It also contains calls to the
two different contains methods that we encountered during the discussion of behavioral
differences in Section 4.2: the asynchronous callback (note the different thread ids) missing
in SwingWT (e87), and the computation of the area check (e89). The last event assigns the
specific tooltip’s text using HTML format.

4.4 Trace Interpretation

A trace interpreter re-executes the API interaction trace. The interpreter mocks the appli-
cation by reproducing its role in the interactions recorded in the trace. Since interpretation
is borrowed from regression test extraction techniques [64, 75, 54, 30] we refrain from ex-
haustive details; instead, we give an overview of the process.

The interpreter builds a model of all types and methods from the trace so that mock ap-
plication types and methods can be provided for trace re-execution. In particular, receiver
objects of incoming events are associated with mock application types. Each mock appli-
cation method is essentially a sequence of outgoing API interactions, such as method calls
and field accesses. Events without parents are stored in a special main method. Our imple-
mentation in the Koloo toolkit uses a custom classloader that generates bytecode for the
mock application types with method implementations that call back into the interpreter.

Interpretation starts with the main method and proceeds sequentially. Each outgoing
event is executed in turn. The interpreter keeps a map from trace object id to runtime
object so that it can determine the target and parameters of events; primitive values are
used directly. After returning from an event execution, the interpreter registers the return
value in the object map and uses the selected contracts to verify the result. Contracts can
issue fatal violations that immediately interrupt interpretation or can register the violation
but allow interpretation to continue. After the last event has been executed, the interpreter
reports the set of detected violations.
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4.5 API Contracts

Compliance testing uses API contracts to evaluate wrapper behavior during re-execution
of an API interaction trace. As described earlier, API contracts are oracles that check
whether the wrapper honors a behavioral contract established by the original API.

API contracts enrich the trace with assertions. Different API contracts may use different
oracle data [81]. That is, the generated assertions can observe different aspects of the trace,
and even data available during trace interpretation. Since developers can select which
contracts to apply, simpler contracts can be used in initial stages of development, while
more demanding ones are postponed.

The Koloo toolkit can be extended with new API contracts via implementation of
a simple Java interface. In the following sections we detail the API contracts currently
implemented in Koloo and used during its evaluation (Section 6.1).

4.5.1 Basic Contracts

Basic contracts represent the simplest level of compliance expected from wrappers. Their
oracle data is information readily available in traces, such as data and control flow.

Value Equality — Checks the return value of a method call or field access. The
primitive value or string returned by the wrapper must equal the value returned by the
original API.

In the motivating example of Figure 4.1, this contract detected a violation in the method
call to Polygon.contains (e89 in Figure 4.3). In this case, the original API returned true,
but the wrapper returned false in the re-execution.

Reference Integrity — Checks the returned object reference of a method call or field
access. The identity of the object returned by the wrapper must equal the identity
observed with the original API, modulo consistent renaming of identities.

This contract can flag the need for the Wrapping Identity Map pattern (Section 3.5),
and detect bugs in its implementation. The contract detects violations if the semantics
of wrapper and original API diverge with respect to caching of objects to be returned.
Note, however, that a violation is only detected if the application exercises the API in a
susceptible way, for instance, by calling a certain method twice.

52



Value equality and reference integrity are also applied to arrays and their contents. The
array must preserve reference integrity and its contents must all preserve value or reference
integrity, depending on the element type. Arrays, thus, have list semantics.

Exception Conformance — Checks the exceptional behavior of method calls. If a
method call throws an exception with the original API, it must also throw an exception
of the same type during re-execution. Furthermore, re-execution must not throw any
additional exceptions.

Callback Conformance — Checks callback triggering behavior. If a callback is trig-
gered by the original API, it must also be triggered during re-execution.

To verify callback conformance, the event for triggering a callback must be associated
with an actual callback. Invocation of callbacks is tracked globally so that they can be
matched with triggering events.

In the case of synchronous callbacks, the association between callbacks and the preced-
ing triggering event is unambiguous: the callback must be reproduced by its parent event.
In the case of asynchronous callbacks, the triggering event could date back more arbitrar-
ily. In fact, there is no guarantee that multi-threaded callbacks re-execute deterministically
in the order of trace capture [33], and deviations from the captured order do not imply
incorrect behavior. Assertions are checked conservatively. A check for re-execution of the
callback is issued at the preceding event (which is not necessarily the trigger), and the
check does not need to succeed immediately, but it is attempted repeatedly and in parallel
to re-execution (in a separate, auxiliary thread), subject to a large timeout.

The callback conformance contract can indicate the need for the Inverse Delegation
pattern (Section 3.4) and may detect bugs in its implementation. Missing callbacks indicate
that inverse delegation may be missing in the wrapper. However, in this formulation,
wrapper callbacks that were not called by the original API are not considered violations.

In our example, this contract detected a violation because the asynchronous callback
to Container.contains (e87 in Figure 4.3) was not performed by the wrapper.

4.5.2 State Integrity

Value equality and reference integrity are applied only to data returned by the API. We
can also verify wrapper behavior by observing additional state of objects in the trace. For
instance, the diverging background color in our example (Figure 4.1) occurred because the
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Modifier Observer Description

setX(... v) getX() getter returns v
setX(boolean v) isX() predicate returns v
addX(... v) getXs() result contains v
add(T v) getTs() result contains v
put(... k, ... v) get(k) getter returns v

Table 4.1: The modifier/observer pair heuristic for the set/get contract.

default background color of SwingWT was computed differently than in the original Swing.
This behavioral difference was not directly exercised by the application.

The state integrity contract checks the state of receiver objects in the trace: targets of
method calls and field accesses. State is collected by observer methods, since it must be
interface-based, and compared by value equality and reference integrity contracts.

Koloo allows users to control the behavior of state collection. One supported approach
is selective observation, in which users declare, in a point-wise manner, the methods to
collect state. For instance, a declaration to observe Container.getBackground.getRed

collects state at every event in which the receiver object is of type Container; the state is
collected by calling getBackground on the receiver object and then getRed on the object
returned by getBackground.

Another supported approach is to select all available observer methods in receiver ob-
jects. Koloo uses a trivial heuristic for detecting observer methods: they start with get,
has, is, or count. In this case, users can also control the depth of collection, such that the
results of observers are observed recursively. By default, however, collection is shallow.

4.5.3 Set/get Integrity

This contract checks the set/get law : a getter following a setter must retrieve the argument
of the setter. More precisely, if a method for object modification is executed and there is an
associated observer, then the observation must retrieve the argument of the modification.

The set/get integrity contract is an example of an extension that was added to Koloo.
We implemented this contract because it is simpler than state integrity—it is subsumed
by it—and yet may reveal important API behavior to be emulated by the wrapper.

This contract can detect behavioral differences in setters and getters. Such integrity,
however, is only required for the re-execution of the trace if the original API respects the
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law. It may be reasonable that APIs do not satisfy “laws” as this. For instance, a setter
may handle nulls or perform parameter normalization.

Koloo uses a heuristic to determine methods that are modifiers, as well as correspond-
ing observers. Table 4.1 shows the considered pairs of modifiers and observers; we use X

for variable postfixes of method names and T for type names. For each trace event that
represents a call to a method that is considered a modifier by this table, the contract gen-
erates an assertion using the corresponding observer. For example, a call to a setEnabled

method is enriched with an assertion that checks whether the value passed as parameter
equals the one returned by a call to isEnabled on the same object.

4.6 Assertion Tuning

The major source of control in compliance testing is the selection of contracts for which
assertions are to be checked, as we discussed above. A further source of control is the
tuning of the semantics of assertions. For instance, value equality can be relaxed. Also,
tunings can account for non-deterministic and non-repeatable behavior.

A tuning specification is a list of assertion tunings applied during trace re-execution.
An assertion tuning overrides the semantics of selected assertions. Thus, an assertion
tuning consists of a selection of events to be tuned, and a match operation that defines the
modified semantics. The match operation compares expected results (captured with the
original API) against actual results (recorded during re-execution).

Koloo implements some default match implementations and provides a framework
for extensions. Technically, Koloo accepts tuning declarations of the form Package /
Type.Method : MatchOperation Parameters. This coarse mechanism for event selection
was sufficient in our experiments (Section 6.1); finer event selection mechanisms may be
implemented if necessary.

Figure 4.4 demonstrates an example in more detail. The BytecodeTuning occurred in
a wrapper study in the domain of bytecode engineering. The example is concerned with
the comparison of the result returned by the central getBytes method of the API, which
is supposed to return the bytecode of a given Java class. The following declaration applies
a tuning to getBytes (no parameter is passed):

org/apache/bcel/classfile/JavaClass.getBytes : BytecodeTuning

The challenge is that the original API and the replacement API may use different orders
for the constant pool that is part of the returned bytecode sequence. We need to compare
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1 public class BytecodeTuning implements ... {
2 public boolean matches(byte[] expected, byte[] actual) {
3 return serialize(expected).equals(
4 serialize(actual));
5 }
6 private static String serialize(byte[] bytecode)
7 StringWriter w = new StringWriter();
8 new ClassReader(bytecode).accept(
9 new TraceClassVisitor(new PrintWriter(w)), 0);

10 return w.toString();
11 }
12 }

Figure 4.4: The match operation for the bytecode tuning.

bytecodes at a higher level of abstraction, where constant pool order is immaterial. By
serializing the bytecode into strings the constants are essentially inlined and, thus, this
difference is neutralized. The replacement API readily provides a visitor for serialization,
which is accordingly used by the match operation in the figure.

Figure 4.5 shows additional examples of tunings that were used in our evaluation (see
Section 6.1). These tunings were implemented as needed and the corresponding match
operations were incorporated in Koloo.

4.7 Summary

In this chapter, we have presented the novel concept of compliance testing for API mi-
gration. We have discussed the challenges posed by the unique context of testing for API
migration and argued that they are not adequately addressed by existing testing tech-
niques. Compliance testing borrows aspects from many of these techniques and offers a
unified, tailored solution. We have then detailed the components of compliance testing:
API interaction trace, trace interpretation, API contracts, and assertion tuning.

In the next chapter, we propose a method called Koloo. In essence, the method describes
the practical steps needed to apply compliance testing and design patterns to API migration
while fitting within the general process followed by developers in practice.
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org/apache/bcel/generic/InstructionHandle.getTargeters : ArrayIsSet

Compliance of bytecode engineering APIs: a specific method’s result of an array
type is declared to have set semantics instead of the default list semantics.

java/awt/Component.getHeight : Percentage 10

Compliance of GUI APIs: a percentage-based divergence between expected and
actual height of a component is admitted.

java/awt/Point.x : Margin 15

Compliance of GUI APIs: a margin-based divergence between expected and actual
value of a point’s coordinate is admitted.

javax/swing/JFrame.pack : SkipCallbacks

Compliance of GUI APIs: a tuning that turns off checking of callbacks that are
triggered by calling pack.

Figure 4.5: Diverse assertion tuning examples.
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Chapter 5

The Koloo Method for
Wrapper-based API Migration

In the previous two chapters, we presented API migration design patterns and the concept
of compliance testing for API migration. Together, these approaches address the three key
issues identified in Chapter 2, namely: how to design wrappers, how to discover behavioral
differences across APIs to be neutralized, and how to assess migration correctness.

In this chapter, we propose a method that integrates these approaches. The Koloo
method is designed to evolve wrappers with respect to an application under migration.
It can be used to create new wrappers or to evolve existing wrappers. The input is an
application, a pair of APIs (original and replacement APIs), and optionally an existing
wrapper; the output is a wrapper that is demonstrably “good enough” for the application.

Koloo addresses key issues without being intrusive. In particular, Koloo:

• fits within the iterative, sample driven general API migration process usually followed
by developers in practice (Chapter 2);

• suggests the use of API migration design patterns (Chapter 3) to support the design
and implementation of wrappers;

• prescribes practical steps to use compliance testing (Chapter 4) as a means to elicit
the requirements for the API migration as well as assessment of its correctness; and

• is supported by a toolkit that automates many of its tasks.
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Figure 5.1: An overview of an iteration according to the Koloo method.

This chapter is organized as follows. First, we present an overview of the method.
Koloo is iterative and each iteration is composed of three phases. Next, we present each
phase: trace collection, trace validation, and wrapper development.

5.1 Overview

Figure 5.1 shows an overview of a Koloo iteration. Each iteration consists of three phases
that describe how to apply compliance testing in practice. First, in trace collection, de-
velopers design an application scenario and extract an API interaction trace (Section 4.3).
Then, in trace validation, an interpreter (Section 4.4) validates the re-execution of the
trace, still using the original API. Validation supports detection of unreproducible and
non-deterministic behavior. In this phase, settings are aggregated to decide on API con-
tracts (Section 4.5) to be asserted. Finally, in wrapper development, the interpreter re-
executes the trace with the wrapper. In this phase, the final decisions on applicable API
contracts and corresponding tunings (Section 4.6) are made. Violation of contracts guide
the evolution of the wrapper, possibly using the design patterns presented in Chapter 3.

Koloo defines the overall structure of an iteration, but admits adjustments. For in-
stance, initially a migration effort may concentrate on the design of scenarios that cover
the most important use cases of the application. Multiple traces could, thus, be collected
and validated at once, prior to wrapper development. Most importantly, by the end of an
iteration, the wrapper is demonstrably compliant with the original API in terms of the
exercised scenarios, and the specification of contracts and tunings precisely documents the
unresolved differences between wrapper and original API on the tested executions.
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The Koloo toolkit implements support for the tasks defined as automated in Figure 5.1.
Koloo-specific manual efforts concern identification of API types for configuration, selection
of contracts to be checked, definition of tunings, and decisions on the relevance of violations.
As reported by developers (Section 2.4), scenario design is also common and not specific to
Koloo. Generally, the cost of API migration is dominated by the actual wrapper refinement,
which is also not specific to Koloo.

5.2 Phase: Trace Collection

5.2.1 Scenario Design

Trace collection starts with the design of scenarios that will be automated as tests. A
scenario is an execution of the application using the original API. It is important to de-
sign scenarios that cover the desired uses of the application because they represent the
requirements for the migration: the wrapper will be considered compliant when it properly
replaces the original API in these scenarios with respect to the verified contracts.

Scenarios usually target the applications at hand, as opposed to directly using the API.
Tests for an application, if available, can be used as scenarios. Traditional test generation
techniques, such as [12, 20, 66, 3], can be used to generate application test cases to be
used as scenarios. Automatically generated or manually developed tests usually contain
assertions related to application logic, which might also indirectly check some aspects of
API usage. Koloo’s interpreter enriches application scenarios with assertions for selected
API contracts.

Traces that are derived from scenarios must not depend on external actions and all
results should be reproducible; this is a common requirement for automated testing. In the
context of API migration, however, this requirement may imply extra challenges. Consider,
for example, API migration for GUI APIs: GUI actions would need to be automated by
using a GUI record and replay tool, such as GUITAR [59], or by manually writing scripts
that automate actions upon the GUI. In the example of Figure 4.1, we designed a scenario
that positions the mouse over various areas of the image, and automated the scenario with
AWT’s Robot class and JUnit.

It is the responsibility of the developer to design scenarios that explore interesting
interactions with the API. Depending on the selected contracts, those interactions are
more or less strongly verified. By using basic contracts (Section 4.5.1), verification is
passive: assertions only check the data and control flow ocurring at trace re-execution.
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Scrutiny of verification is increased when more active contracts are selected, such as set/get
(Section 4.5.3), and the various levels of state integrity (Section 4.5.2). However, in our
evaluation (Section 6.1), we have found that actively collecting state can be problematic
because it demands more of the wrapper than the application actually needs.

5.2.2 API Tracing

A tracer executes the scenarios and collects API interactions as traces. Koloo uses the
bytecode engineering framework ASM1 for tracing. To this end, the tracer is also con-
figured with a description of the types that belong to the application and the API; this
metadata is also incorporated into traces. Trace collection should abstract away details of
the underlying application that are not important from an API compliance testing point
of view. This also helps with automating the scenario and making it reproducible. Such
abstraction is similar to other approaches for extracting regressions tests from application
traces [30, 64, 75, 69].

5.2.3 Type Rules

Developers need to identify application and API types. Such identification boils down
to type rules such as regular expressions over their fully qualified names. For instance,
java.awt.*, javax.swing.* and javax.accessibility.* identify Swing/AWT types.

The interaction between application and API may also be mediated by objects of aux-
iliary types : objects that are essential for the scenario even though their types should
not be migrated. For example, APIs often use collections, iterators, and files. In order
to reproduce the scenario in subsequent phases, events for such auxiliary types must be
incorporated into traces. Thus, developers must also identify auxiliary types.

The tracer reports unbound object references in API events, which detect missing
auxiliary types. Developers need to add type rules for auxiliary types until traces can be
constructed completely. In the study of Section 6.1, however, few rules were needed: one
scenario needed eight auxiliary types but most did not need any. Koloo defines Java’s
Thread and Runnable types to be auxiliary types by default, thereby enabling it to mock
multi-threaded applications.

1http://asm.ow2.org
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Additional type rules may be needed if wrapper and original API are implemented in
different namespaces. These rules rewrite package names. For instance, the SwingWT
wrapper presented in Section 2.3 requires the type rule java.awt ⇒ swingwt.awt.

5.3 Phase: Trace Validation

Traces must be validated before they are attempted with the emerging wrapper. By val-
idation we mean that interpretation of the trace is checked to reproduce the captured
behavior. We also include the effort for contract selection, including the corresponding
aggregation of state that is needed by some contracts but not readily available from the
trace. In particular, state collection is needed for checking state and set/get integrity.

5.3.1 Reproducibility

Validation of reproducibility for the original API assures interpretation does not attempt
to verify in the wrapper behavior that is even unreproducible with the original API. For
instance, if the trace contains a call to a time method, then the corresponding event will
not be validated and will be accordingly omitted from the verification of the wrapper. Such
omission of events that fail to be reproducible also decreases the chance of attempting to
verify non-deterministic behavior common in multi-threaded APIs. The reproducibility
can depend on the selected contracts. For instance, the broad use of contracts for state
integrity may potentially invalidate objects from the trace, thereby providing feedback to
developers so that they backtrack on their selection.

5.4 Phase: Wrapper Development

Trace collection and validation permits actual development (evolution) of the wrapper.
The trace validation interpreter is used to verify the traces for the wrapper. Type rules
for namespace rewriting may now apply, and aggregated state from trace validation can
be used as well.

If interpretation does not result in a violation, the validated trace is deemed asserted,
meaning that the wrapper is known to comply with the corresponding scenario, modulo
tunings, with respect to the verified contracts. If desired, the level of scrutiny can be
increased by selecting stronger contracts and repeating the process. The set of asserted
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traces constitutes a regression suite that should be used any time the wrapper evolves,
thereby guaranteeing that no regression goes undetected. Koloo contains a corresponding
regression running tool to automate this part of the process.

5.4.1 Wrapper Scaffolding

The wrapper should provide all types, methods, and fields of its original API (see Sec-
tion 2.3.4). We have observed three different approaches to implementing methods on the
initial wrapper scaffolding. In xom2jdom (Section 2.2), we used exceptions to signal unim-
plemented methods, the so-called exception throwing approach. SwingWT uses best effort
in that it leaves void methods empty and returns bogus values when necessary in hope that
it is “good enough”. Finally, from our interviews (Section 2.4) we know that SWTSwing
uses a mixed approach: best effort, but logging usage of unimplemented methods.

The advantage of exception throwing is explicitness about the reason for method invo-
cation failure: the method is unimplemented. Best effort may be “good enough” in some
cases, but is not recommended because the reason for failure is lost. The mixed approach is
recommended for production wrappers since they can be exercised in ways not expected by
the designed scenarios. Nevertheless, during development, exception throwing fits better
with compliance testing since exercised unimplemented methods raise explicit violations.

5.4.2 Wrapper Evolution

Any given violation can imply that developers need to evolve the wrapper. Developers
should use the catalog of design patterns presented in Chapter 3 to solve common issues
detected by assertions. For example, violations of reference integrity may indicate the need
for a wrapper identity map (Section 3.5). Developers can also use additional sources of
knowledge to support wrapper evolution, such as structural models of APIs, databases
with information about API usage in applications, and API ontologies [11].

Violations can also be addressed by tunings. Developers may decide to add a tuning
declaration to relax the API contracts for certain assertions (see Section 4.6). Alternatively,
developers may decide to reconfigure the settings to reduce scrutiny by selecting fewer or
less demanding API contracts.

By the end of an iteration the wrapper demonstrably complies with the original API
in the asserted scenarios. The specification of contracts in use documents the level of
scrutiny while the specification of tunings precisely capture the unresolved differences be-
tween wrapper and original API.
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5.5 Summary

In this chapter, we have presented the Koloo method for API migration. It addresses the
issues identified in Chapter 2 and fits within the general process followed by developers
in practice. Furthermore, it guides developers in the steps needed to apply compliance
testing and API wrapping design patterns in practice. In the next chapter, we describe an
empirical evaluation of the method and validation of the API wrapping design patterns.
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Chapter 6

Evaluation

In previous chapters, we introduced the Koloo method for API migration. Chapter 2
motivated our work with two studies and a set of interviews. In Chapter 3, we presented
a catalog of design patterns that encode solutions to commonly occurring API wrapping
problems. In Chapter 4, we introduced the concept of compliance testing to uncover API
differences and assess wrapper correctness. Together, API wrapping design patterns and
compliance testing are the foundation of the Koloo method, discussed in Chapter 5.

In this chapter, we consider evaluation. First, we present an empirical study in which we
compared the Koloo method against three alternative methods, and assessed the usefulness
of API contracts and assertion tuning. Next, we describe validation of the API wrapping
design patterns by identifying their usage in practical wrappers.

6.1 Method Evaluation

In this section, we present an empirical evaluation of the Koloo method. We compare the
method against alternative methods and evaluate aspects of compliance testing included
in Koloo. We start with our research questions and follow with descriptions of subjects,
methodology, and results. Then, we discuss how the results elucidate the research questions
and consider threats to validity.
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6.1.1 Research Questions

The overarching goal of this study was to evaluate the Koloo method in general and com-
pliance testing in particular. Compliance testing addresses two of the issues identified in
Chapter 2: uncovering of behavioral API mismatches and assessment of wrapper correct-
ness. The study evaluates to what extent compliance testing achieves these goals.

Our first research question is the following:

RQ1 — How does the Koloo method compare with alternatives in terms of the ability
to produce a wrapper behaviorally compliant with the application under migration?

This question refers to the ability to uncover behavioral API mismatches. Our hypoth-
esis, which is part of the motivation for compliance testing (see Section 4.1), is that Koloo
is better than:

• API test suites in uncovering the specific behavioral differences between wrapper and
original API that are needed by the application under migration;

• application test suites in consistently focusing assertions on the API interaction; and

• application crashes in detecting important compliance issues.

Therefore, we compare Koloo against methods that represent these categories and break
down RQ1 into specific questions for each compared alternative:

RQ1.1 — Can Koloo uncover behavioral differences between original API and
wrapper that are not uncovered by the original API test suite?

RQ1.2 —CanKoloo compliance tests detect more compliance issues than application-
specific test suites? In other words, can Koloo enrich application test suites with
useful API-specific assertions?

RQ1.3 — Can Koloo detect important compliance issues in wrappers developed
with a traditional crash-driven method?

Note that RQ1.1 addresses the failure of API test suites in detecting API mismatches
that are relevant to the application. The study presented in Section 2.2 already provides
evidence in support that API test suites may demand too much of the wrapper.

The following research questions relate to the ability to assess wrapper correctness,
while also driving the development. In other words, they address the usefulness of API
contracts and assertion tunings.
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RQ2 — How do API contracts help in driving the evolution of wrappers in practice?

RQ3 — Which types of assertion tunings may be necessary? How often are they used?

6.1.2 Subjects

Table 6.1 presents general information for the applications, wrappers, and APIs that were
subjects of our study; APIs are highlighted with a gray background. The data correspond
to artifacts prior to the evolution of the wrappers. We chose representatives of three
domains and covered the wide range of development methods for comparison.

For the XML domain we used the xom2jdom wrapper developed in the study presented
in Section 2.2. We described the methodology used to develop xom2jdom in Section 2.2.3:
it was driven by XOM’s test suite. Thus, xom2jdom is a representative of an API test suite-
driven method. For the application under migration we selected Memoranda1, a scheduling
tool that uses XOM to store data in XML files. We selected Memoranda because it provides
a GUI, making it suitable to design scenarios without looking at source code.

We selected Quilt2 as the application for the Bytecode domain. Quilt relies on the
BCEL3 library to modify the bytecode of applications to perform code coverage analysis.
We selected Quilt because it contains a large test suite, allowing the comparison against an
application test suite-driven method. During the study we developed the bcel2asm wrapper
from scratch to migrate Quilt from BCEL to ASM.

Finally, we used the SwingWT wrapper for the GUI domain. As discussed in Sec-
tion 2.4.4, SwingWT was developed in the traditional application crash-driven method and
offered the opportunity of consulting its developers for validation of our results. The appli-
cation under migration was SwingSet2, the set of Swing demos we discussed in Section 4.2.
We chose SwingSet2 because SwingWT developers reported that SwingSet2 crashes ini-
tially drove the development of SwingWT.

6.1.3 Methodology

Using theKoloo method we evolved the two existing wrappers and developed the xom2jdom
wrapper from scratch. For each wrapper, we followed the phases of the Koloo method:
trace collection, trace validation, and wrapper development. We recorded the violations

1http://memoranda.sf.net
2http://quilt.sf.net
3http://commons.apache.org/bcel/
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Artifact Subjectversion Types Methods NCLOC

Kind Type Definitions

XML

Application Memoranda1.0−RC3.1 461 1,684 23,891
net.sf.memoranda.*

Original API XOM1.2.1 110 884 19,395
nu.xom.*

Wrapper xom2jdom 0.1 43 602 5,203
nu.xom.*

Replacement API JDOM1.1 73 908 8,735
org.jdom.*

Bytecode

Application Quilt0.6−a−5 74 641 5,393
org.quilt.*

Original API BCEL5.2 408 3,386 27,384
org.apache.bcel.*

Wrapper bcel2asm - - -
org.apache.bcel.*

Replacement API ASM3.3.1 174 1,526 23,348
org.objectweb.asm.*

GUI

Application SwingSet21.4 131 425 6,421
swingset2.*

Original API Swing1.4 2,032 18,702 234,731
java.awt.*

javax.swing.*

javax.accessibility.*

Wrapper SwingWT0.90 864 6,537 33,582
swingwt.awt.*

swingwtx.swing.*

swingwtx.accessibility.*

Replacement API SWT3.3.2 696 9,607 99,205
org.eclipse.swt.*

Table 6.1: Metrics on study subjects prior to wrapper development.
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detected by Koloo and the assertion tunings used in the development. This allowed us to
compare Koloo against alternative methods and gather evidence with respect to compliance
testing (RQ2 ) and assertion tunings (RQ3 ). In the following we detail wrapper-specific
procedures.

xom2jdom

We designed a single scenario for Memoranda: we opened and closed a complex schedule
document. We performed the scenario manually in the GUI while tracing the interaction
between Memoranda and XOM.

Then, we validated the trace. We started with basic contracts and incrementally in-
creased the scrutiny, first with set/get contracts and then with state integrity contracts.
The set/get contract implemented in Koloo uses the modifier/observer pair heuristic (Ta-
ble 4.1). The state contract uses by default the shallow observer heuristic (Section 4.5.2).

Finally, we evolved xom2jdom based on the detected violations. We started with basic
contracts, and subsequently used contracts for set/get and state integrity. After the wrap-
per was compliant, we re-executed XOM’s test suite. The goal was to check whether the
suite was able to spot the same behavioral differences as Koloo (RQ1.1 ).

bcel2asm

We leveraged Quilt’s test suite to create scenarios. We executed the 65 test cases in
Quilt’s suite and collected traces for the 33 that actually use BCEL. Next, we validated
the traces with increasingly stronger contracts. Whenever necessary, we created tunings
for the original API.

Then, we started development of bcel2asm from scratch. We started with an exception-
throwing wrapper such that every method throws an UnsupportedOperationException

(see Section 5.4 for scaffolding considerations). Quilt could already be compiled with this
initial wrapper. Next, we developed the wrapper using one trace at a time, and only basic
contracts. For each trace we executed the interpreter, picked a violation, and either evolved
the wrapper or created a tuning. After each of these iterations we executed the suite of
asserted traces to detect regressions. Furthermore, because each trace corresponds to the
execution of a Quilt test case, we re-executed the original suite. This let us compare the
contract checking of manually written test cases against Koloo (RQ1.2 ).

We mostly used basic contracts; sometimes, however, we resorted to selective state-
based contracts to verify the state of specific types of objects. In two occasions, we decided
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Subjectversion Types ∆ Methods ∆ NCLOC ∆

xom2jdom 0.2 43 (0) 602 (0) 5,205 (+2)
bcel2asm 0.1 102 (+102) 495 (+495) 3,115 (+3,115)
SwingWT0.91 892 (+28) 6,658 (+121) 34,400 (+818)

Table 6.2: Metrics on evolved wrappers, and difference w.r.t Table 6.1.

to add a call to an API object in the original Quilt test case because we wanted to observe
a certain behavior at a particular point in the trace and the relevant behavior was not
exercised by the application. When all traces were asserted for basic contracts, we collected
compliance data for contracts for set/get and state integrity.

SwingWT

We designed 59 scenarios, between two and six for each of the 16 SwingSet2 applications.
We simulated the practice communicated by the SwingWT developers: exercising GUI
elements trying to imitate a user exploring the possible application use cases. For example,
in the Button demo we selected all possible push buttons, check boxes, and radio buttons.
We automated the scenarios using AWT Robot.

We collected a trace for each scenario and validated the traces against Swing. Similarly
to the previous domains, we incrementally increased the contract scrutiny, and created
assertion tunings when necessary.

We used SwingSet2 validated traces in two ways. First, we verified the initial compliance
of SwingWT with respect to all kinds of contracts. This provides an overview of the
overall compliance achieved by SwingWT developers for each category of contracts. Second,
we selected two applications of the set, Button and Tooltip demos, to evolve SwingWT.
We proceeded as usual, evolving by resolving violations and tuning, but using only basic
contracts. We validated that the contracts were indeed valuable by submitting a patch to
the developers of SwingWT, thereby providing evidence regarding RQ1.3.

6.1.4 Results

Table 6.2 shows wrapper size metrics after the evolution performed in the study. It also
shows the increase for each metric when compared to the initial wrappers.

Table 6.3 presents an overview of the main results. This table consists of one block
for each domain. The first row presents the client application, number of scenarios and
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number of auxiliary types specified for the scenarios (see Section 5.2 for a description of
auxiliary types). The subsequent left column presents data on trace validation against
the original API. For XML and Bytecode, the right column presents the data on wrapper
development. For GUI, the right column presents data on verification of the compliance
of SwingWT, without proper wrapper development. The wrapper was evolved only with
respect to two of SwingSet2’s applications; these results are presented below in the table.

Table 6.4 and Table 6.5 present the specifications of assertion tunings for the Bytecode
and GUI domains, respectively. Tunings were not needed for the XML domain.

In the sequence we describe the results for each wrapper in more detail.

xom2jdom

We needed three auxiliary types and validation occurred without violations. Koloo detected
four violations that we corrected in the wrapper. By executing XOM’s suite before and
after the modifications we noticed that a single API test case accounted for one of the state
contract violations; three violations had no corresponding API test case. Two of these were
related to reference integrity, and one to the execution of an unexpected operation (call to
getParent on an XML object without a parent). All modifications applied to xom2jdom
were simple and localized: only two new lines of code were added.

bcel2asm

Table 6.2 reflects the fact that we developed bcel2asm from scratch. We re-implemented
around 25% of the BCEL types and 18% of its methods in around 13% of ASM’s NLOC.

We needed eight auxiliary types (Table 6.3) because BCEL extensively uses JRE
types like streams and classloaders. During validation we found one trace that our tool
could not interpret due to classloader use, which we discarded. The BCEL reference
integrity violation is due to a returned array with set semantics. We implemented an as-
sertion tuning (Table 6.4) to accommodate this behavior. State contracts were violated
twice due to side-effects caused by MethodGen.getLocalVariables (which is called by
MethodGen.getMethod), and they were tuned with a Skip tuning.

During the development of bcel2asm we resorted to seven additional tunings. One was
the BytecodeTuning presented in Figure 4.4. The other six were methods with reference
integrity problems that we ignored with Skip because they were caused by our decision
not to implement reuse of handles. In two occasions, state violations helped detecting
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XML

Memoranda 1 Scenario 3 Auxiliary Types

XOM Validation xom2jdom Development

No violations Reference 1
State 3
Tunings/Regressions 0

Bytecode

Quilt 32 Scenarios 8 Auxiliary Types

BCEL Validation bcel2asm Development

Reference 1 Reference 50
State 2 Exception 5
Tunings 3 State 2

Tunings 7
Regressions 19

GUI

SwingSet2 59 Scenarios 1 Auxiliary Type

Swing Validation SwingWT Verification

Sync 3 Value 72
Async 3 Reference 4
Set/Get 4 Exception 1
State 6 Sync 32
Tunings 14 Async 6

Set/Get 8
State 100s

SwingWT Development

Button 4 Scenarios Tooltip 5 Scenarios

Value 18 Value 1
Sync 4 Async 1
Tunings 6 Tunings/Regressions 0
Regressions 3

Table 6.3: A summary of the empirical study results.
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BCEL Validation

Value Equality/Reference Integrity Assertion Tunings

org/apache/bcel/generic/InstructionHandle.getTargeters : ArrayIsSet
Object State Assertion Tunings

org/apache/bcel/generic/MethodGen.getMethod : Skip
org/apache/bcel/generic/MethodGen.getLocalVariables : Skip

bcel2asm Development

Value Equality/Reference Integrity Assertion Tunings

org/apache/bcel/classfile/JavaClass.getBytes : BytecodeTuning
org/apache/bcel/generic/InstructionHandle.getNext : Skip
org/apache/bcel/generic/InstructionList.getStart : Skip
org/apache/bcel/generic/InstructionList.append : Skip
org/apache/bcel/generic/InstructionList.insert : Skip
org/apache/bcel/generic/InstructionList.getTargets : Skip
org/apache/bcel/generic/Select.getTargets : Skip

Table 6.4: The specification of assertion tunings for the Bytecode domain.

problems in the wrapper. Repeated re-execution of asserted traces resulted in detection of
19 regressions.

In all traces that presented violations—some passed directly due to previous evolution
of the wrapper—the corresponding Quilt test case started to pass while Koloo still detected
violations. That is, while fixing the assertion violations detected by Koloo we have also
fixed the assertions manually written by Quilt developers.

Furthermore, while trying to reproduce the behavior of BCEL using ASM, we discovered
four problems in BCEL. The problems were reported as three bugs and one enhancement
proposal4, and all were acknowledged by BCEL developers to be relevant. Two bugs were
detected by comparing the bytecode after BytecodeTuning tuned return value contracts
and the other was a reference integrity problem that detected a memory leak. The enhance-
ment proposal concerns a custom sort algorithm used by BCEL that we had to reproduce:
we proposed the use of a standard sort.

SwingWT

Only one application of SwingSet2 needed an auxiliary type (from java.bean). During
Swing validation Koloo detected six callback violations caused by missed asynchronous

4See BCEL bugs 52422, 52433, 54368 and 52441 at http://issues.apache.org
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callbacks in an application that uses threads to paint a canvas. We added a SkipCallbacks
tuning (Table 6.5) to avoid checking this non-deterministic behavior in the wrapper. We
found that four methods in Swing do not follow the set/get rule. When receiving a null
parameter, one method sets a default and another ignores the call completely. Two other
methods enforce bounds on the parameter value. We introduced Skip tunings for these
four methods.

Swing Validation

Value Equality Assertion Tunings

java/awt/Dimension.height : SkipIfState
java/awt/Dimension.width : SkipIfState
java/awt/Point.y : SkipIfState

Callback Assertion Tunings

javax/swing/JColorChooser.showDialog : SkipCallbacks
javax/swing/JFileChooser.showOpenDialog : SkipCallbacksIfState
javax/swing/JDialog.show : SkipCallbacksIfState
javax/swing/JDialog.pack : SkipCallbacksIfState

Set/Get Assertion Tunings

javax/swing/AbstractButton.setMargin : Skip
java/awt/Graphics2D.setPaint : Skip
javax/swing/JInternalFrame.setSelected : Skip
javax/swing/JScrollBar.setValue : Skip

Object State Assertion Tunings

java/awt/Component.getLocationOnScreen : Observer isShowing
javax/swing/tree/DefaultMutableTreeNode.getLastChild : Observer getChildCount
javax/swing/tree/DefaultMutableTreeNode.getFirstChild : Observer getChildCount

SwingWT Development wrt. Button

Value Equality Assertion Tunings

java/awt/Dimension.height : Percentage 1
java/awt/Component.getHeight : Percentage 10
java/awt/Component.getWidth : Percentage 10
java/awt/Point.x : Margin 15
java/awt/Point.y : Margin 15

Callback Assertion Tunings

javax/swing/JFrame.pack : SkipCallbacks

Table 6.5: The specification of assertion tunings for the GUI domain.

Most state contract violations refer to side effects of getting size and position infor-
mation, or state from unprepared objects. For example, getLocationOnScreen throws
an exception if the widget is not showing. We added an Observer tuning that verifies
getLocationOnScreen only if the same object returns true to isShowing. We also added
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Observer tunings to avoid checking tree nodes if the tree does not have children. Finally,
we used SkipIfState and SkipCallbacksIfState tunings to silence violations of value equality
and callback contracts that occur due to side-effects of state gathering.

Koloo detected many contract violations in SwingWT verification. 53 value equality
violations were about size and positioning, 12 about missing functionality and seven about
wrong state or default value in widgets. A total of 38 callbacks were found missing.
SwingWT did not comply with the set/get contract in eight methods: six were empty
setters, one method wraps its parameter in another object, and another method explicitly
deviates from the original API behavior (as described in code comments). Hundreds of
violations were detected with state contracts. Many were thread invalid access exceptions
and two applications deadlocked; most violations were value equality problems and the
side-effects of state gathering caused the GUIs to be distorted.

Most of the violations that drove the evolution of SwingWT were related to size and
positioning. We tried to solve them until we were content with the visual result and applied
tunings when required. For the Button application we used three Percentage and two
Margin tunings to accommodate small differences in size and positioning (Table 6.5). We
also added a SkipCallbacks because SwingWT delays the callbacks called by JFrame.pack

until the frame is shown, which does not affect the application. Asserted traces helped us
detect three regressions while developing for Button. Violations detected for Tooltip were
discussed in Section 4.2.

The patch we created for SwingWT version 0.90 added 818 NLOC, 121 methods and
28 types (Table 6.2). SwingWT developers used our patch to release version 0.915.

6.1.5 Discussion

RQ1 — Alternative Methods

Of the four violations detected by Koloo in xom2jdom, only one could be detected by the
original XOM test suite. This means that either the application exercises the API in ways
that even a very complete test suite, like XOM’s, fails to foresee (like calling getParent

on a document without parent), or that the test case which asserts this behavior may be
failing for other causes already (in Section 2.2.4 we showed that around 40% of XOM test
cases still fail with xom2jdom). By concentrating on scenarios, Koloo can better pinpoint
the wrapper evolution that is needed by the application at hand (RQ1.1 ). Furthermore,

5http://swingwt.svn.sf.net/viewvc/swingwt/swingwt/trunk/CHANGELOG?revision=86
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the three additional violations revealed internal wrapper bugs that would seldom be target
of assertions in API test suites.

Another result of the study is that manually written Quilt test cases were subsumed by
Koloo’s basic contracts with respect to the behavior they asserted (RQ1.2 ). This suggests
that the type of contracts used by developers in practice may be similar to the basic
contracts Koloo checks, but are not consistently applied to all interactions with the API.

We also have evidence that Koloo leads to a much more compliant wrapper than the
customary crash-driven method (RQ1.3 ). The verification of SwingWT showed that many
compliance violations were detected, even with respect to an application that is used by
the project to showcase itself. The fact that our patch for Button and Tooltip was accepted
by SwingWT validates that developers were interested in solving those compliance issues.
In conclusion, Koloo uncovered previously missing, important compliance issues.

RQ2 — API Contracts

The study showed that basic contracts indeed represent a minimum level of compliance to
be achieved by wrappers, modulo tunings. Basic contracts allowed us to develop bcel2asm
to be compliant with Quilt’s test suite, to find bugs in BCEL, and to successfully evolve
SwingWT. Value equality contracts helped detecting missing functionality, deviations in
size and positioning of widgets in SwingWT, and differences in the generated bytecode
in bcel2asm. A reference integrity contract helped detect a small memory leak in BCEL.
Callback conformance contracts were essential to understand which functionality of the
API was being overridden by SwingWT applications.

Set/get contract assertions were useful to better understand the behavior of four meth-
ods in Swing. None of the corresponding methods in SwingWT complied with such behav-
ior, and this deviation did not occur in the interaction with applications.

For relatively complete and compliant wrappers, such as xom2jdom, state-integrity
contracts helped in finding compliance violations. However, state gathering often triggered
side-effects that affected other contracts, even when applied to the original APIs (BCEL
and Swing). This is evidence that developers do not always comply with the convention of
side-effect-free getters, which is assumed by the interface-based state-gathering heuristic.

Neither bcel2asm nor SwingWT are close to be compliant in terms of state integrity.
State contracts naturally demand more of the wrapper than what the application directly
needs, and may force the wrapper to implement additional functionality. Nevertheless,
they appear to be useful for mature, general wrappers. Selective observation, on the other
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hand, was useful during the development of bcel2asm to understand the effects of the trace
on specific state.

RQ3 — Assertion Tunings

We used a total of 17 tunings for validation and 13 tunings for development. In validation,
tunings were used to accommodate non-deterministic behavior and side-effects of state
gathering, and to relax the semantics of strict equality contracts, such as ArrayIsSet

(Figure 4.5). In development, tunings were additionally used to document unimplemented
features, such as handle reuse in BCEL, and to compromise on features that are difficult
to emulate perfectly, like positioning and sizes of widgets. The results provide evidence of
the need and usefulness of tunings for development and documentation of wrappers.

6.1.6 Threats to Validity

The main threats to internal validity concern possible bugs in Koloo, errors in the collection
of data during the execution of the study, and experimenter bias. Because we manually
checked each violation it is unlikely that there are false positives. However, false negatives
would not affect our results. We minimized experimenter bias by looking for external
confirmation of findings, such as with BCEL and SwingWT developers.

The main threats to external validity involve the subjects of the study and sample
size. We mitigated the threat of subject selection by choosing subjects in three different
domains of API programming. However, our results are constrained by the nature of the
used APIs: object oriented libraries. Also, we were only able to study a single migration
instance for each of the compared methods. More studies are thus required to corroborate
our findings since the results might be affected by particularities of the studied cases.

6.2 Design Patterns Validation

In this section we turn to the validation of the design patterns proposed in Chapter 3. We
validate that the patterns are useful by providing evidence for their presence in practical
wrappers. To this end, we designed simple metrics that detect the presence of particular
instances of the patterns from source code. We also measure auxiliary properties of wrapper
types and adapters.
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Wrapperversion SwingWT0.90 SWTSwing 3.2 xom2jdom 0.1 bcel2asm 0.1

Surrogates 474 248 37 97
Interfaces 121 46 0 6
Classic Adapters 19 27 28 62
Layered Adapters 50 49 4 0
Remakes 284 127 5 29

Internal Types 390 504 6 5
Internal Adapters 290 267 4 0

Anonymous Adapters 261 161 0 0

Stateful Adapter 106 184 15 14
Delayed Instantiation ✔ ✘ ✘ ✘

Inverse Delegation 34 76 1 0
Adapted Replacement API Types 21 29 1 0

Wrapping Identity Map ✔ ✔ ✔ ✔

Class Adapters 37 207 1 0
Object Adapters 107 131 31 78
Single Adaptee 22 46 19 78
Multiple Adaptees 85 85 12 0

Other Adapters 240 60 3 2

Table 6.6: Wrapper metrics for types, patterns, and adapters.

Table 6.6 presents measurements for the studied wrappers. We used the same versions
of the GUI wrappers used in the study of Section 2.3, from which the patterns were derived,
and prior to the SwingWT evolution discussed above. We also measured the xom2jdom
wrapper resulting from the study of Section 2.2 and the bcel2asm wrapper we developed
for the evaluation of the Koloo method in Section 6.1.

In the following sections we discuss the collected data for each pattern and for auxiliary
adapter properties. Then, we consider threats to validity.

6.2.1 Layered Adapter

A type present in a wrapper project can be either a surrogate, when it represents a type of
the original API, or an internal type; see the breakdown of types at the top of Table 6.6. A
surrogate can be one of four kinds: an interface, which is simply a copy of an original API
interface; a remake, which is a class that re-implements an original API’s type without any
reference to the replacement API (neither directly nor indirectly through internal types);
a classic adapter, which is a class that references the replacement API directly but never
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indirectly; or a layered adapter, which references the replacement API indirectly through
internal types.

Internal types can provide services to the wrapper, such as ListTargetAdapter in
Figure 3.1 (Section 3.1), and can themselves be adapters, like JListAdapter. Internal
adapters in Java can also be implemented as anonymous types.

The measurements show that the majority of surrogates in the GUI wrappers are re-
makes and interfaces. This is expected since the projects concentrate on wrapping widget
types. GUI wrappers also have more layered adapters than classic adapters and encapsu-
late much of the adaptation code in internal types, which reflects the high complexity of
the mappings. Because xom2jdom and bcel2asm map structurally similar APIs, they can
rely mostly on classic adapters.

Most of SWTSwing implements the layered adapter as described in Figure 3.1; SwingWT
uses a simpler form without the uniform interface, which is indeed not required when no
alternatives have to be handled. This is reflected in SWTSwing having many more internal
types than SwingWT.

6.2.2 Stateful Adapter

The Stateful Adapter pattern is frequently used in the studied projects. The metric shows
all classic adapters, layered adapters, and internal types that carry additional data; we
consider additional data a non-constant field whose type is neither of an original API
type (a relationship among surrogates) nor of a replacement API type (an adaptee). We
exclude fields that are referenced in methods for delayed instantiation because they could
represent interim data. Note that the defining characteristic of the stateful adapter pattern
is that the replacement API cannot carry the data, whereas in delayed instantiation the
replacement API can carry the data but is not ready.

6.2.3 Delayed Instantiation

The Delayed Instantiation pattern is needed for one of the two GUI wrappers. SwingWT
needs to account for SWT’s strict construction time enforcement of parent-child relation-
ships. All SwingWT widgets implement delayed instantiation by collecting interim data in
surrogate fields. On the other hand, xom2jdom and bcel2asm do not need delayed instan-
tiation because the lifecycles of surrogates and adaptees are bound. Nevertheless, other
XML wrappers may very well require delayed instantiation. For instance, a migration from
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XOM or JDOM to DOM6 would face the challenge that DOM enforces document-element
relationships at construction time.

6.2.4 Inverse Delegation

The Inverse Delegation pattern is implemented by both GUI wrappers and xom2jdom. The
GUI wrappers use surrogates as inverse adapters. The table shows a lower bound on the
number of inverse delegation instances in that it only counts class adapters to replacement
API listeners (name ends with Listener or Adapter). We show the number of wrapper
types that implement inverse delegation and the number of unique replacement API types
being adapted. The xom2jdom wrapper implements a single one-to-one inverse adapter
approach for node factories used in de-serialization, while bcel2asm does not require any
inverse delegation.

6.2.5 Wrapping Identity Map

The Wrapping Identity Map pattern is implemented by all wrappers. SwingWT uses a
static hash map field for the whole system hosted by Component, whereas SWTSwing uses
a hash map per Display instance. The xom2jdom and bcel2asm wrappers use a dedicated
library that maintains a map per adaptee type and instantiates surrogates reflexively when
necessary.

6.2.6 Other adapter properties

Table 6.6 also summarizes how wrappers reference replacement API types: class adapters
reference through inheritance; object adapters reference through object composition; other
adapters reference in some other way, such as through calling replacement API static
methods or having methods with replacement API return types. A given wrapper type
may be class and object adapter simultaneously. We have not found any classic class
adapter in the wrappers: all class adapters were part of a layered adapter pattern. This is
also expected because Java does not allow multiple class inheritance and surrogates already
implement the original API class hierarchy.

Further, the table summarizes the multiplicity of field-based references for adaptees
in object adapters. A single adaptee is an object adapter type has a single field with a

6DOM is a standard W3C API for XML: www.w3.org/DOM
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replacement API type; if there is more than one, then it is a multiple adaptees adapter. We
count both immediate and inherited fields. The high number of multiple adaptees in GUI
wrappers indicates a high structural mismatch between APIs: surrogates need multiple re-
placement API types to reproduce the behavior of one original API type. While xom2jdom
implements a more uniform mapping that needs fewer multiple adaptees, bcel2asm uses
only single adaptees, which suggests a simple type mapping between BCEL and ASM.

6.2.7 Threats to Validity

The main threat to internal validity is related to the metrics for detecting the presence
of patterns. The measurements were extracted by custom made tools and may present
small deviations. Because the data only support our claim that patterns are indeed used
in practice small errors do not compromise the conclusions.

Threats to external validity concern the generalization of our results. We validated the
patterns using projects from which the patterns were derived. This provides evidence that
the patterns we abstracted are indeed present in those wrappers, which is expected. We
tried to generalize our findings by measuring additional wrappers, xom2jdom and bcel2asm.
Although these wrappers are simpler than the GUI wrappers, most of the proposed design
patterns were still needed, which attests their generality.

6.3 Summary

In this chapter, we have presented an empirical evaluation of the Koloo method, and a
validation of the API wrapping design patterns. The results provide evidence that Koloo
is founded on empirically valid assumptions: that API- and application-specific tests are
inadequate for API migration. The empirical study also shows that API contracts support
the development of wrappers, and that assertion tunings are in fact necessary for several
reasons, such as accommodating mismatches that are difficult to overcome and relaxing
strict equivalence in API contracts. In the next chapter, we examine previous research on
areas related to this dissertation.
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Chapter 7

Previous Research

In this chapter, we discuss previous research work related to the migration of applications
across APIs. Because API migration finds itself in the intersection of many disciplines,
we limit our discussion to the research that is most relevant to our work. We begin with
an examination of existing work on software re-engineering, of which API migration is a
particular form. Next, we consider previous research on API upgrade and API migra-
tion. Then, we discuss research on software testing. We conclude the review with a brief
discussion of previous research on wrapping.

7.1 Software Re-engineering

API migration is a particular form of software re-engineering, the “examination and alter-
ation of a subject system to reconstitute it in a new form and the subsequent implementation
of the new form” [18]. As such, it involves some sort of reverse engineering, a careful anal-
ysis of a system, usually at a higher level of abstraction, aiming at a better understanding
of its structure and behavior [23]. Re-engineering is also concerned with the modification
of the system via forward engineering, whereby higher level abstractions are implemented
in code, and restructuring, when the system is modified without changes to its external
behavior [18]. In object-oriented settings, restructuring is commonly called refactoring [32].

Software re-engineering is probably as old as programming itself. As soon as there was a
software system providing value, there was need for its maintenance and evolution [50, 68].
Of special interest to us is the more recent proposition of utilizing patterns to encode
expertise in software re-engineering [82, 24, 23]. Patterns are well established abstract
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solutions to recurrent problems [1], and were popularized in software engineering by design
patterns [34]. Stevens and Pooley [82] argued that organizations often employ modern
techniques and practices to support re-engineering but have difficulties in transferring this
knowledge. As a consequence, new developers have a steep learning curve before becoming
productive in re-engineering tasks. They proposed systems re-engineering patterns as a
“unit of transferable expertise” [82], and introduced a set of example patterns [24].

Demeyer et al. [23] went further and created a catalog of re-engineering patterns based
on the experience of the FAMOOS project [28]. They suggested a method based on reverse
engineering and re-engineering activities. For each activity type they presented small pat-
tern languages with varying levels of abstraction, from code to requirements. Each language
contains a set of related re-engineering patterns, which communicate best practices identi-
fied in the project. Their patterns are process oriented; whereas design patterns describe
the design solutions as structures, re-engineering patterns describe solution processes.

Extensive work exists on tools and techniques for software re-engineering. One of the
most comprehensive toolsets is Moose [29, 61], an extensible environment for re-engineering.
Moose offers a common infrastructure to provide reverse engineering, refactoring, and IDE
support in a language-independent fashion.

Recent research has focused on Domain Specific Languages (DSLs) to support re-
engineering. DSLs provide constructs at the appropriate abstraction level for a given
task, such as querying code and designing refactorings, thereby releasing developers from
lower level concerns. .QL [22], for instance, is an object-oriented language that allows
developers to express domain-specific queries over a relational representation of programs.
JunGL [87] is a powerful functional language for expressing refactorings. Kniesel and Koch
[46] proposed formal definitions of refactorings so that they can be statically composed by
tools. Also, Framework-Specific Modeling Languages (FSMLs) [4] were proposed as an
approach to capture the abstractions provided by frameworks, and to encode how these
abstractions are represented in code. Antkiewicz et al. [5, 6] showed that reverse engineer-
ing framework abstractions with FSMLs is efficient and can result in high quality models.
A similar approach is Metanool [13], a Moose extension that uses domain-specific annota-
tions to support reverse engineering. Finally, Verbaere et al. [88] provided a recent account
on the use of query languages for program comprehension, including re-engineering.

Reverse engineering approaches have also been used migrate applications across pro-
gramming languages, such as from PL/IX to C++ [47], or from C to Java [56]. Language
migration also involves the migration of the APIs used by the application and, therefore,
is inherently more complex than API migration. In Malton’s barbell process [53], for in-
stance, API migration is restricted to the normalization and optimization phases, which
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are deemed much simpler than the language translation step. Zhong et al. [94] proposed
an approach to deal specifically with API migration during language migration. It infers
simple API mappings by comparing structure and names of an application before and after
language conversion; the mappings can later be useful to migrate other applications. Fi-
nally, an excellent report on the major problems facing language migration attempts was
given by Terekhov and Verhoef [84].

Our work builds on the research presented in this section in many ways. We use
design patterns to encode domain knowledge on API wrapping techniques (Chapter 3).
Compliance testing (Chapter 4) can be seen as a reverse engineering technique to query
the behavior of the original API, and to understand how it differs from the wrapper.
Finally, the Koloo method (Chapter 5) is essentially a re-engineering methodology that
may benefit from the techniques and tools that support understanding and modification
of applications and APIs.

7.2 API-related Application Migration

Most research on migration of applications with respect to the used APIs focus on API
upgrade, the migration of an application across subsequent versions of the same API. Dig
and Johnson showed that during evolution of object-oriented APIs, around 80% of the
client-breaking changes are in fact refactorings [26]. The authors suggest [25] that tools
should concentrate on detecting API refactorings and then replaying on client applications
or generating adaptation layers. CatchUp! [37] is possibly the first tool to record refactor-
ings while they are being performed by API developers and then replaying at client side. A
disadvantage of this approach is that API developers must use this specific tool to record
refactorings. Additional work on structural comparison focused on detecting refactorings
or relationships between elements across dAPI versions. UMLDiff [91] creates UML mod-
els of programs and applies a comparison algorithm which results in a tree of differences.
The same authors described Diff-CatchUp [90], a system that uses UMLDiff to detect
differences between versions of a framework and store them in a database. Later, when
clients upgrade to the new version and are confronted with compilation errors, the system
uses the database to suggest plausible replacements. The comparison algorithm is a sim-
ple top-down traversal enriched with similarity metrics, which makes it difficult to detect
refactorings involving different entities, such as moving a method between classes [44]. Kim
et al [44] proposed an algorithm to generate change rules by detecting structural changes
from method signatures, therefore mitigating the problem of a top-down traversal. Origin
analysis, the determination of the origin of program elements during system evolution [35],
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was also used to detect relationships between elements of subsequent versions [45].

Replaying refactorings on client applications is complicated because of the unexpected
contexts that may require complex analyses [77]. Some approaches, therefore, concen-
trate on generating adaptation layers instead. Şavga and Rudolf [77] considered record-
ing refactorings and generating adapters through comebacks. They formally proved that
comebacks are the reverse operators of the corresponding refactorings. The same authors
presented a practical implementation of their approach and perform evaluations on realis-
tic projects [78]. ReBa [27] records not only the refactorings but also deletions. It replays
by inlining an adaptation layer in the API itself, such that the two versions of the API
are merged, with the old version redirecting to new features. Clients are preserved intact,
but can still take advantage of the new features if desired. Pointer analyses on the client
code are performed to eliminate portions of the layer that are unnecessary for a particular
application, which may improve size, performance and understandability of the API.

Some approaches go beyond refactorings, concentrating on upgrading applications in
face of arbitrary API upgrade. Chow and Notkin [19] proposed that library developers
should write rules that specify how clients are to be adapted in response to API changes.
The main drawback is that developers must always document their changes explicitly.
Perkins [70] suggested a simple mechanism for upgrading clients when API methods be-
come deprecated. The API developer marks the method as deprecated and changes its
implementation to contain the recommended fix. The system then inlines the solution into
clients that depended on the deprecated method. Dagenais and Robillard [21] proposed
an algorithm that looks at how the API itself adapted to changes. The assumption is that
when the API changes, other portions of its code also have to adapt to the changes, and
this provides valuable hints to client application developers. The implemented system,
SemDiff, gathers this information and recommends adaptations to clients.

The Coccinelle system [67] was devised to support the co-evolution of Linux drivers.
When Kernel developers change some aspect of the API, they apply a diff algorithm to
generate a patch file. Kernel developers must then abstract away syntactic differences and
control flow variations, crafting manually a semantic patch. Driver developers can use
these patches on their own code. The main novelty is the use of computational tree logic
with variables and witnesses (CTL-VW) [14] as a query language to match source code
in an abstract fashion. Although proposed in a different context, Tracematches [2] offers
similar matching mechanisms for Java, using AspectJ pointcuts and an automaton-based
specification language.

The approaches discussed so far are related to API upgrade, when a client application
needs to be migrated across API versions. We turn now to the few attempts to tackle the

85



problem of migrating applications across different APIs. Balaban et al. [8] implemented
a static analysis based on type constraints and rewrites to support the migration of ap-
plications across very similar classes. The migration between two classes is specified as
a mapping between their methods, with bindings to describe parameter correspondence.
Source methods that lack direct correspondents on the replacement side can be redirected
to arbitrary static methods, usually encapsulated as a FACADE, that must be implemented
with the correct migration code. The authors showed that the approach is very effective for
simple migrations, such as the Vector to ArrayList example presented in Section 2.1.2.
The system, however, assumes that original and replacement types are very similar, and
that developers can easily determine the behavioral differences between the APIs to specify
a migration script. Furthermore, it does not consider callbacks, fields, and type extensions.
Another similar approach is twinning [62], a simple technique that rewrites applications or
generates adaptation layers from simple type and method mappings between APIs.

A common recent trend in frameworks is the migration from inheritance-based to
annotation-based means to ascribe domain roles to application entities. For example, while
in JUnit 3 a test case must inherit from the framework’s TestCase class and implement
test methods starting with the string test, in JUnit 4 one can use any class as a test case,
provided that test methods are annotated with @Test. Tansey and Tilevich [83] propose
an approach to migrate applications from inheritance to annotation-based frameworks. A
rule-based migration DSL is used to specify how to detect instances of framework concepts
in source code, and how to modify those instances. A machine learning algorithm creates
a migration specification from examples of applications that were already migrated, allevi-
ating the burden of learning the specification language. This approach, nevertheless, has
a very narrow scope, since it only tackles the specific inheritance to annotation migration.

In Section 7.1 we discussed how FSMLs may be used to reverse engineer framework-
specific concepts from application code. Cheema [17] extended FSMLs by enriching the
meta-models with code transformations that migrate concepts to corresponding elements
of a different framework. The approach, however, relies on simple custom transformations,
which were only implemented for a migration across the Struts1 and JSF2 web frameworks.

Finally, there are industrial examples of applying wrapping to migrate across APIs.
Saillet [76] developed an adaptation layer between small parts of Java’s Swing and SWT
GUI libraries, and provided a detailed description of his experience. The open source
projects SwingWT and SWTSwing, discussed throughout this dissertation, provide more
comprehensive wrappers across the Swing and SWT. We have shown in our evaluation in

1http://struts.apache.org/
2Java Server Faces—http://java.sun.com/javaee/javaserverfaces/
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Section 6.1 that compliance testing can help improve the compliance of such wrappers with
respect to particular client applications.

7.3 Software Testing

Software testing is a broad sub-area of software engineering that has been extensively
researched. In this section, we focus on research relevant to API migration, and extend
the discussion on related techniques presented in Section 4.1.

Differential testing, as initially proposed by McKeeman [57], is a special case of ran-
dom testing whose goal is to detect differences between different implementations, such
as different compilers for the same language. As a random testing approach, differential
testing lacks the focus on the behavior relevant to the application under migration. More
recently, a similar approach called compatibility testing was applied to Commercial Off-
The-Shelf (COTS) systems. BCT [55] is a technique to capture the behavior of components
in a COTS system and generate invariants that represent the input/output and interac-
tion behavior of components. These invariants represent an oracle that can be verified on
competing implementations for compatibility [54]. BCT, however, cannot verify properties
such as referential integrity because it uses object flattening to store state. It also does not
allow for relaxed behavioral equivalence: violations can only be ignored. BCT’s approach
targets large components and it is not clear whether it will be effective for APIs that allow
many relationships among fine-grained objects, and whether the extracted input/output
invariants capture asynchronous callbacks.

There is a large body of work in regression testing, which is focused on preserving the
behavior of an earlier version in a later version of a system. Elbaum et al. [30] proposed
differential unit tests to detect differences between versions of the same unit. In this
approach the system state is serialized prior to the execution of a method. During regression
testing, the state is deserialized, the method is executed and results are compared. Hoffman
et al. [38] proposed a framework for analyzing traces and present RPRISM, a tool that
analyzes traces to identify the cause of regressions.

Koloo is mostly inspired by the test factoring [75] and SCARPE [64] techniques. These
approaches capture the interaction of an application with a certain module and mock the
module’s behavior via a replay system that reproduces return values and callbacks. These
approaches can be used, for example, to abstract costly APIs during regression tests.
GenUTest [69] further generates smaller unit tests from the traces, one for each trace event
that returns some value. Koloo presents many differences with these systems, including
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the verification of asynchronous callbacks, contracts for state integrity, and support for
assertion tunings. The approach of [30] is state-based in that it stores the necessary state
of the system prior to a method execution; Koloo, test factoring, SCARPE and GenUTest
are action-based since they restore the state by reproducing the original events.

GUITAR [59] is a framework for automated model-based GUI testing. GUITAR ana-
lyzes a GUI application at runtime and builds a model of the available user interactions. A
tool then generates regression test cases by traversing the GUI in various ways and collect-
ing state information. A replayer can re-execute the regression tests to detect differences
in the state information across versions of the application. In contrast to Koloo, GUITAR
is domain specific and needs platform-specific rippers to create GUI models.

Traditional testing generation techniques concentrate on finding most faults. Jartege
[63] performs random generation of unit tests based on JML specifications. The Korat
framework [12] generates systematically all non-isomorphic test cases for the arguments of
a method under test using an advanced backtracking algorithm that monitors the execution
of predicates for class invariants. For these methods to be applicable to API migration,
the API implementations would need to provide detailed contracts; such contracts are not
available for APIs in the migrations we have performed or encountered.

JCrasher [20] generates random sequences of calls to a given API in an attempt to make
it crash, thereby detecting faults. Eclat [65] performs dynamic inference of certain (API)
properties (manifested as assertions) from the execution of a given test suite, and it uses the
inferred properties to generate further possibly fault-revealing test cases. Randoop [66] also
generates random sequences of calls, but improves efficiency by using dynamic feedback to
guide the generation of additional sequences. Randoop checks default contracts (exception
throwing and equals) and allows users to implement additional contract checking code.
Orstra [89] is a tool for augmenting generated tests with regression oracle testing. Koloo
implements the interface-based object-state contract proposed by Orstra; the concrete state
contract is not implemented since wrappers usually do not contain the same private fields
as the classes they are replacing.

Various approaches were proposed with the main goal of improving structural branch
coverage: Nighthawk uses a genetic algorithm to find parameters for randomized unit
testing. Ocat [41] captures and stores object state during execution and mutates the state
during random testing. Palus [93] uses a combination of static and dynamic analyses to
generate behaviorally diverse tests. Finally, DyGen [85] combines dynamic trace analysis
with symbolic execution. All these methods are not well aligned with the objectives of API
migration, where testing should be limited to behavior relevant to the client application.
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Finally, some related techniques may be used to improve Koloo. The empirical evalua-
tion (Section 6.1) showed that the violations uncovered by Koloo helped in understanding
the deviation from the original API. However, finding the cause of the deviation in the
wrapper and fixing it are orthogonal problems for which Koloo gives little help. Delta-
debugging [15] might be promising in helping determine the root cause, although its appli-
cability to APIs with long start-up times like Swing is not clear. The same work proposes
a technique to automatically determine which objects to trace from an initial trace. This
technique could also be adapted to support the discovery of needed auxiliary types in the
type rules (see Section 5.2). Techniques for removing non-determinism from replaying of
multi-threaded applications [39, 74] could also be used to better support the verification
of asynchronous callbacks.

7.4 Wrapping

Wrapping is an established re-engineering technique to encapsulate existing functionality
in a new interface. In object-oriented systems wrapping is the systematic application of
the ADAPTER design pattern [34] to create an adaptation layer.

The emergence of the object-oriented paradigm created interest in migrating old pro-
cedural source code to object-oriented abstractions; this is commonly achieved via wrap-
ping [80]. Wrapping received renewed interest recently as an approach to encapsulate
legacy systems as services, from single procedures [51] to interoperable GUI elements [92].
Canfora et al. [16] propose wrappers to encapsulate the interaction with interactive legacy
systems as web services. The service provides a simple request/response protocol, but it
actually implements a wrapper that interacts with the legacy system. The interaction is
specified as state machines. In the context of API upgrade, we have seen that wrapping
has been used to migrate applications across API versions [77, 27, 78].

In this dissertation, we advance substantially the state-of-the-art in wrapping for object-
oriented systems. In Chapter 3, we present a catalog of API wrapping design patterns that
encode solutions to design problems specific to the API migration context. We address
layered adaptation, delayed adaptee instantiation, and other peculiarities that were not
addressed by previous research.
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7.5 Summary

In this chapter, we have discussed previous research work related to the migration of
applications across APIs. We have positioned the contributions of this dissertation while
considering research in software re-engineering, API-related software migration, software
testing, and wrapping. In the next chapter, we conclude the dissertation with a discussion
of implications and limitations of our contributions, and future work.
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Chapter 8

Conclusion

In this dissertation, we have presented our research on migration of applications across
object-oriented APIs, also known as API migration. In Chapter 1 we introduced the prob-
lem and discussed the main technical approaches: wrapping and rewriting. In Chapter 2
we described two studies and a set of interviews we conducted to explore API migration
in practice. The results of these activities informed the remainder of our work.

We introduced a catalog of API wrapping design patterns in Chapter 3. The patterns
guide developers in the design and implementation of wrappers across APIs. Then, we
presented the novel concept of compliance testing for API migration in Chapter 4. Com-
pliance testing supports the discovery of behavioral mismatches between a wrapper and
its original API, and the assessment of wrapper correctness. Compliance tests may use
assertion tunings to document acceptable deviations a wrapper makes from the behavior
of its original API, thereby making explicit the notion of a “good enough” wrapper, which
exists informally in practice. The Koloo method for API migration, discussed in Chap-
ter 5, prescribes a methodology for developing an API wrapper using compliance testing
and design patterns. The method fits within the iterative, sample-driven approach used in
practice. We evaluated the method, and compliance testing in particular, in an empirical
study presented in Chapter 6. Finally, we discussed related research in Chapter 7.

In this chapter, we consider the implications and limitations of the research presented
in this dissertation. Then, we conclude with a discussion of future research directions.

91



8.1 Implications and Limitations

API migration is complex. Developers must understand how the application uses the origi-
nal API. Then, they must discover how the replacement API can reproduce the behavior of
the original API in the use cases exercised by the application. Next, they must specify this
translation, either by wrapping or rewriting. Finally, developers must determine the level
of equivalence considered “good enough” and enforce this equivalence, thereby verifying
migration correctness.

Our work proposes techniques and a method to manage this complexity. We focus on
a wrapping approach because it may be the objective of the migration or may guide a
subsequent rewrite. We showed that compliance testing supports the discovery of behav-
ioral differences between a wrapper and its original API. Compliance testing also makes
explicit the compromises and assumptions of a wrapper, and automates the enforcement
of behavioral equivalence under these assumptions. Developers can follow the steps of
the Koloo method to incrementally develop a wrapper tailored for the application under
migration. The method guides the extraction of compliance tests from scenarios that en-
code the requirements for the migration. The Koloo toolkit executes compliance tests
that drive wrapper development and support detection of regressions. Wrapping design
patterns guide the design and implementation of the wrapper.

We now discuss some limitations of our research. We identify limitations related to
our choice of wrapping as the technical approach, limitations of the compliance testing
technique, of the Koloo method, and of our evaluation.

Object-oriented wrappers effectively support migration across traditional object-oriented
APIs because they can naturally encapsulate behavioral adjustments; however, modern
APIs increasingly employ declarative specifications, such as annotations and configuration
files, to assign domain roles to application entities. In this situation, the design of the
wrapper is convoluted. Thus, the Koloo method supports the development of wrappers
that may be used, for example, to derive rewriting specifications across traditional class
libraries [8]. The special case of migration from inheritance to annotation based frame-
works [83] is not immediately handled by Koloo.

Compliance testing focuses on functional equivalence between a wrapper and the origi-
nal API. Non-functional requirements, such as performance and memory consumption, are
not immediately addressed. Nevertheless, we can extend compliance testing with new types
of contracts, including contracts that observe side-effects. For example, a contract that
observes memory allocation performed by API methods can enforce memory consumption
requirements on the wrapper.
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The Koloo method guides the wrapper development process by focusing on the ex-
traction of test cases to enforce behavioral equivalence on selected scenarios. However,
much is still left to developers. In particular, Koloo does not provide quality criteria for
scenario design. For example, developers must design scenarios that cover important mi-
gration requirements, but Koloo offers no guidance on how to design scenarios for best
coverage, or how to select among potential scenarios. Furthermore, scenario design may
involve technical challenges, such as test automation for GUI APIs. Finally, the cost of
API migration is largely dominated by the actual wrapper refinement, which often involves
deeply understanding original and replacement APIs. Koloo does not provide any program
comprehension technique specific to API migration, so developers must rely on existing,
general approaches.

Our evaluation also contains limitations. We compared Koloo against alternative meth-
ods in terms of the ability to drive the development of behaviorally compliant wrappers.
Our empirical study provides good evidence that Koloo is superior in this regard, but
many important aspects were not evaluated. For example, we have not performed a user
experiment so we have no evidence on how Koloo works in practice. We also have not
assessed the quality of the wrappers developed with the different techniques. Lastly, the
validation of the wrapping design patterns used the projects from where they originated,
so we need more studies to understand their generality and usefulness.

Finally, throughout this thesis we have focused on migration across object-oriented
APIs. We have not investigated the challenges that may arise in other paradigms, such as
APIs in logic or functional programming languages. We have also assumed that original and
replacement APIs provide domain concepts at a similar level of abstraction. For example,
in the XML domain we investigated migration across document object model APIs, such
as DOM, XOM, and JDOM. However, we have not looked at migration across APIs with a
completely different programming model, such as from XOM to an XML parser like SAX
or StAX, or to an object binding API like JAXB.

Despite its limitations, the research presented in this dissertation represents a step
towards effectively managing API migration. The Koloo method guides the wrapper de-
velopment life-cycle. The patterns guide the design and implementation of solutions to
some common wrapping problems. While these contributions improve the state-of-the-art
in API migration, compliance testing is particularly important to enable further research.
Compliance tests precisely define the requirements of an API migration and support the
assessment of migration correctness. Therefore, compliance testing determines the quality
of a wrapper. This, in turn, enables new research to focus on support for wrapper devel-
opment: new approaches can count on compliance testing to evaluate the results of the
proposed techniques.
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8.2 Future Work

We next outline research directions enabled by the contributions of this dissertation.

API Matching

Matching is an operator common to the management of database schemas [71, 52, 79, 7],
model-driven engineering meta-models [31, 43], and ontologies [42]. Matching takes two
distinct representations of the same data and produces an alignment: a set of mappings
between corresponding elements.

We believe that matching can play an important role in supporting wrapper devel-
opment. We could create models of original and replacement APIs, and use matching
algorithms to find corresponding elements at various levels of granularity. For example, we
could bootstrap the wrapper skeleton using a mapping over API types to specify adaptee
types for surrogates; and during surrogate method implementation, the mapping over API
methods may be used to suggest replacement API methods for that particular context.

We performed some experiments with the general similarity flooding matching algo-
rithm [58] to match API models. The early results were promising, particularly when the
APIs are structurally similar, as is the case for the XML and Bytecode domains. Other
work on semi-automatic identification of an API mapping by a combination of API match-
ing techniques [72] could also be leveraged.

Language Support

The API design patterns proposed in this dissertation guide the design and implementation
of wrappers to neutralize certain API differences. However, the implementation of some
patterns may involve a large amount of boilerplate code, such as layered adapter or code
that is difficult to get correct, as in delayed instantiation.

Programming language support may help developers overcome these difficulties. For
instance, a construct that allows explicit type mappings may be used to generate code for
layered adapter and API wrapping identity map. Also, explicit classification of delayed
instantiation operations enables generation of difficult code to detect when the adaptee
may be instantiated and interim data transferred to it.
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Static Program Analysis

Wrappers make assumptions about how client applications interact with the original API.
For example, if delayed instantiation is used, only a sub-set of surrogate operations are safe;
the wrapper assumes only those operations will be called prior to adaptee instantiation.
Compliance testing also assumes that the wrapper will be used only with the data and call
sequences exercised by the designed scenarios.

Wrappers are implemented with respect to a client application. However, developers
may desire to leverage existing wrappers to migrate additional applications. They can
follow the Koloo method, design scenarios, collect traces and verify the wrapper. But
static program analyses may provide better guarantees (that the wrapper will work in all
cases) and be cheaper to execute (no need to design scenarios) for an initial assessment. A
program analysis can verify whether a client application calls any unsafe operation prior
to adaptee instantiation.

Wrapper Inlining

This dissertation assumes the goal of the API migration is to produce a compliant wrapper
that may guide rewriting if desired. As discussed before, rewriting needs automation to
be effective, because it is an error prone, repetitive task. Thus, we need an approach to
leverage wrappers as specifications to automate client application rewriting. We call this
approach wrapper inlining.

Wrapper inlining is a generalization of the API upgrade approach by Perkins [70].
While his work proposes to inline the implementation of deprecated methods at call sites,
we would like to inline the whole wrapper implementation. That is, application variables
of surrogate types need to be translated to corresponding adaptee types; surrogate method
implementations need to be inlined at application call sites; and additional data carried
by surrogates may need to be stored by the application.

We see two main challenges in wrapper inlining. First, wrappers may contain complex
structures that may be difficult to inline. A possible solution is to identify patterns in these
structures and provide programming language support for their specification. This may
restrict how wrappers are implemented, but enable more powerful analyses to support
wrapper inlining. Second, the resulting application code can be unmaintainable after
rewriting because the complexity hidden in the wrapper is spread over application code.
In Section 2.2.5 we discussed the implications of a large number of complex adjustments to
rewriting approaches. We believe partial evaluation might be employed to simplify inlined
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code for specific calling contexts. For example, a partial evaluation analysis could decide
that a given compliance issue does not need to be dealt with at a particular call site and
the handling code can be removed.

IDE Support

Based on our experience developing wrappers, we believe the following IDE features have
potential to greatly improve development productivity and deserve further research:

Recommendation system — controlled by a developer, a recommendation system
may use information from API matching algorithms to recommend replacement API
elements to be used in the implementation of a given wrapper type or method.

Trace analysis — compliance tests are encoded as dynamic API interaction traces.
IDEs may support analysis of traces by, for example, providing GUIs with syntax
highlighting and views for selective trace slices based on control and data dependen-
cies. While compliance testing supports the detection of wrapper problems by raising
assertion violations, trace analysis should support root-cause analysis of the detected
violations to guide wrapper evolution. Trace minimization [15] techniques are promising
in this area.

Multiple dimensions of knowledge — IDEs could integrate multiple dimensions of
knowledge to support API migration [11]. For instance, API documentation, sample
applications, and API usage data should be integrated in editors to assist developers
with relevant information for a specific task.
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Study of an API Migration for Two XML APIs. In Proceedings of the 2nd International
Conference on Software Language Engineering (SLE), pages 42–61, October 2009.

[11] Thiago Tonelli Bartolomei, Mahdi Derakhshanmanesh, Andreas Fuhr, Peter Koch,
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[28] Stéphane Ducasse and Serge Demeyer. The FAMOOS Object-Oriented Reengineering
Handbook. University of Bern, October 1999.
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