
A Link-Level Communication Analysis for
Real-Time NoCs

by

Sina Gholamian

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Sina Gholamian 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis presents a link-level latency analysis for real-time network-on-chip interconnects

that use priority-based wormhole switching. This analysis incorporates both direct and indirect

interferences from other traffic flows, and it leverages pipelining and parallel transmission of

data across the links. The resulting link-level analysis provides a tighter worst-case upper-bound

than existing techniques, which we verify with our analysis and simulation experiments. Our

experiments show that on average, link-level analysis reduces the worst-case latency by 28.8%,

and improves the number of flows that are schedulable by 13.2% when compared to previous

work.

iii

Acknowledgements

This thesis would not have been possible without the valuable advices and the help of several

individuals who contributed and extended their valuable assistance in the fulfilment of this thesis.

First of all, I would like to thank my supervisor, Professor Hiren D. Patel, for his guidance,

advice, encouragement and his important support throughout my master’s program, which led

to the submission of this thesis. His great motivation and accurate view on research made a

priceless impression on me and I have learned so much from him. I would also like to thank my

co-supervisor, Professor Sebastian Fischmeister, for his great support in my research.

In addition, thanks to all the rest of the colleagues in the Embedded Systems and Computer

Architecture Group for giving me unforgettable help and for sharing with me their precious and

inspiring experiences.

Finally, I would like to express my sincere gratitude to my parents, Ahmad Gholamian and

Foroogh Mehdipoor, and also my sisters, Sara and Samira, for their permanent love and irre-

placeable support throughout my life.

iv

Dedication

This thesis is dedicated to my parents, Ahmad Gholamian and Foroogh Mehdipoor, who

offered me unconditional love and support throughout my life. It is also dedicated to my sisters,

Sara and Samira, who always supported me throughout my life.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Main Contribution . 3

1.2 Thesis Structure . 3

2 Background and Related Work 5

2.1 Networks on Chip . 6

2.1.1 NoC Basics . 6

2.1.2 Classifications . 7

2.2 Real-Time Service Implementation Related Work 11

2.2.1 Resource reservation . 12

2.2.2 Real-Time Service . 12

2.3 Real-Time Communication Categories . 13

2.3.1 Non Real-Time Communication . 14

vi

2.3.2 Soft Real-Time NoCs . 14

2.3.3 Hard Real-Time NoCs . 15

2.4 Real-Time Communication Related Work . 15

2.5 Resource Reservation . 16

2.6 Runtime Arbitration . 17

2.7 Summary . 18

3 Description of System model 19

3.1 Network Model and Architecture . 19

3.2 System Model . 21

3.2.1 Inter-Relationships between Traffic-Flows 24

3.3 Illustrative Example . 25

4 Flow Level Analysis (FLA) 27

4.1 Definitions . 27

4.2 Worst-case Latency . 28

4.3 An Illustrative Example . 29

5 Link Level Analysis (LLA) 31

5.1 Link-level Analysis (LLA) . 31

5.1.1 Worst-case Latency with Direct Interference 31

5.1.2 Worst-case Latency of a Route . 35

5.1.3 Worst-case Latency with Indirect Interference 35

5.1.4 Tightness Analysis . 37

5.2 An Illustrative Example . 38

vii

6 Simulator 41

6.1 UWNOC Features and Capabilities . 41

6.2 Configuration . 42

6.3 Switching Policy . 42

6.4 Routing Policy . 42

6.5 Communication Time Measurement . 43

6.6 Simulator Extension . 43

6.6.1 Task . 43

6.6.2 Router . 44

6.7 Configuration Files . 44

6.7.1 Application Configuration . 45

6.7.2 Router Configuration . 46

6.8 An example with simulator . 46

7 Multimedia Application Case Study 49

7.1 Case study: Set-top Box . 49

7.2 Case Study Result . 51

8 Experimentation Results 53

8.1 Experimentation . 53

9 Conclusion 60

9.1 Contributions . 60

9.2 Future Work . 61

References 62

viii

List of Tables

3.1 Motivating example data. 26

4.1 FLA example data . 30

5.1 Analysis results. 40

6.1 Simulator result. 48

7.1 Case study data. 51

8.1 Experiment setup. 54

ix

List of Figures

2.1 A simple NoC example showing the topological aspects. 7

2.2 A simple NoC example showing different topologies. 8

2.3 MANGO scheduling architecture. 16

3.1 Priority-aware router architecture. 20

3.2 Interference example. 24

3.3 Timeline of direct interference on flow τ6 in Figure 3.2. 25

4.1 Simple example of FLA. 29

6.1 Application configuration file. 45

6.2 Router configuration file. 46

6.3 Simulator example. 46

6.4 Application configuration. 47

6.5 Router configuration. 47

7.1 Set-top box block diagram. 50

7.2 Set-top box mapping. 50

x

8.1 Ratio of latencies against the number of flows. 55

8.2 Ratio of latencies against the link utilization. 56

8.3 Ratio of unschedulable flows against the number of flows. 57

8.4 Ratio of unschedulable flows against the link utilization. 58

8.5 Analysis time against the number of flows. 59

xi

Chapter 1

Introduction

Modern chip-multiprocessors (CMPs) connect a large number of embedded processing elements

using a network-on-chip (NoC) communication interconnect. Unlike traditional bus-based in-

terconnects, NoCs offer an extensible, and scalable interconnect solution [8]. While the use of

NoCs is becoming widespread in general purpose computing, its adoption for hard real-time sys-

tems has been cautious. This is because of the need to provide provable guarantees that the hard

real-time software always meets its timing requirements. However, traditional NoCs focus on im-

proving the average-case performance of the interconnect through dynamic routing algorithms,

and flow control policies. This makes analyzing the worst-case latencies of the communication

difficult and pessimistic. Therefore, the deployment and worst-case latency analysis of hard

real-time software on NoC-based CMPs remains a prominent challenge, and an impediment to

adopting CMPs for hard real-time systems.

To address this challenge, researchers propose the use of resource reservation, and run-time

arbitration as potential solutions. Resource reservation allocates resources before the start of the

communication to ensure that there is no contention between any two packets for a resource. An

example of resource reservation approach is the time-division multiplexing (TDM) [25, 19, 24].

This requires reserving resources for the flows, which prevents other flows from reusing and

sharing these resources. Furthermore, low latency flows in TDM are tightly coupled with the

1

bandwidth. This happens when a portion of the allotted slot is wasted resulting in over-allocation

of bandwidth, which results in under-utilization of the network resources. Similarly, Kandlur et

al. [15] present a connection-oriented packet-switched approach for multicomputers with point-

to-point interconnect network. Their approach uses message scheduling to enforce certain arrival

orders of the messages, which results in resource reservation issues similar to TDM.

Run-time arbitration, on the other hand, uses routers that arbitrate access to links at run-

time. Hence, contention is expected, and the proper analysis accounts for possible contention to

produce the worst-case latencies. Some of the approaches that use run-time arbitration are the

following: Bjerregaard et al.’s MANGO NoC [4], Kavaldjiev et al.’s round-robin arbiter [18], and

priority-aware arbiters by Shi and Burns [33, 34]. Even though the work by Bjerregaard et al.,

and Kavaldjiev et al. use run-time arbitration, they suffer from similar issues as TDM. That is,

the low latency flows need to be over-allocated resulting in a tight coupling between the latency

and the bandwidth.

Consequently, Shi and Burns [33] propose a wormhole switching policy with priority-based

arbiters that allow higher priority flows to preempt lower priority flows. Wormhole switch-

ing promotes reduced communication latencies, smaller buffers, and a simpler implementation.

Moreover, this approach overcomes the tight coupling of latency and bandwidth that by TDM

and TDM-like approaches suffer from, and it allows for a variety of traffic flow types with its use

of priorities. Shi and Burns [33, 34] assume a given mapping of source and destination nodes of

the flows, and the routes the flows take. They pioneer an elegant flow-level analysis (FLA) that

determines the worst-case communication latencies by incorporating direct and indirect interfer-

ences of the flows. They use FLA to ensure communication flow schedulability. However, FLA

assumes that the flows are indivisible units of communication. As a consequence, FLA does not

incorporate the effects of pipelining and parallel transmission of data in the network. This thesis

aims to incorporate these characteristics in an analytical method to provide tighter estimates than

FLA.

Neglecting the parallel and pipelining effects in data transmission through NoCs result into

loose communication latency upper-bound. More importantly, since of the loose latency upper-

2

bound, the flows assume to be unschedulable; however they can be schedulable with more ac-

curate analysis. These observations give us insights to present a more accurate technique that

captures the parallel and pipelining effects in NoCs, and results to lower upper-bound latency

and higher schedulability compared to FLA.

In this work, we present a novel link-level latency analysis to determine worst-case latencies

of communication on real-time network-on-chip interconnects that use priority-based wormhole

switching. The challenges of this analysis are to incorporate the pipelining and parallelism in

NoC framework to achieve tighter communication latency. We develop an approach that captures

direct and indirect interferences from communication flows as well as pipelining and parallel

transmission of data across the links. The results of this approach provide tighter worst-case

upper-bounds than existing techniques. Our experiments confirm that link-level analysis provides

tight upper-bounds when compared to a flow-based analysis.

1.1 Main Contribution

The main contribution of this work is a link-level analysis (LLA) for a NoC supporting wormhole

switching with priority-based arbiters. LLA analyzes the interference traffic flows suffer in a

NoC at the link-level by considering the pipelining, and parallel transmission of packets. We

show that LLA provides tighter worst-case bounds than FLA through analysis, and simulation

experiments. We implement a cycle-accurate simulation model of the NoC using SystemC, and

we deploy a set-top application on the NoC.

1.2 Thesis Structure

The remaining chapters of the thesis are organized as follows: Chapter 2 gives the related back-

ground of real-time communication for NoCs. Chapter 3 illustrates the system model that we ap-

plied. Chapter 4 gives the required theoretical background about flow level communication anal-

ysis (FLA) that forms a primary base for our work in the following chapter. Chapter 5 provides

3

our contribution for proposing a higher-granularity link-level analytical method for analysing de-

ployed hard real-time communication flows on a NoC. We call this Link-Level Analysis (LLA).

We present our cycle-accurate SystemC simulator in Chapter 6, which helps us perform ex-

periments that compares FLA and LLA. By utilizing this simulator, in Chapter 7 we present a

simulation of a dual-channel set-top box case study deployed on a 4 by 4 network-on-chip which

shows LLA provides tighter results compared to FLA. Chapter 8 provides experimental compar-

ison of FLA and LLA. Finally, Chapter 9 concludes our contributions and also provides some

interesting insights about the future work.

4

Chapter 2

Background and Related Work

Many electronic devices are used in everyday life ranging from handhold cellphones, laptops and

cars to industrial applications such as automotive and robotics industry. These electronic devices

utilize the system-on-chip (SoC) design methodology, which means that the system designer

embeds a section or the entire of computational and/or communication of the system into a

single chip[2].

Typically, a SoC consists of two major parts: processing units and communication medium.

The processing units, called intellectual properties (IPs), are data processor blocks that perform

data processing and computation. The communication elements provide a proper substrate for

IPs to exchange data and control signals among each other.

As the number of cores integrated into a System-on-Chip (SoC) increases, the role of the in-

terconnection system becomes more and more important. The on-chip communication issues are

the limiting factors for performance and power consumption in current and next generation SoCs.

Design in the era of ultra-deep submicron (UDSM) silicon is mainly dominated by issues con-

cerning the communication infrastructure. While SoCs consisting of tens of cores were common

in the last decade,the next generation of many-core SoCs will contain hundreds or thousands of

cores. With the evidence of multi-core systems, as the number of cores residing on the same SoC

increases significant, the communication infrastructure also need to change drastically in order

5

to support the new inter-core communication demands. One of the widely used and recognized

strategies nowadays is Network-on-Chip (NoC) architectures which represent the most viable

solution to cope with scalability issues of future many-cores systems and to meet performance,

power and reliability requirements [35].

2.1 Networks on Chip

The network-on-chip (NoC) is a promising solution for complex communication of SoCs and

outperforms the traditional buses or a point-to-point approach in many ways [7]. This section

provides the required background about NoC paradigm.

2.1.1 NoC Basics

NoC improves the on-chip communication and brings drastic improvements over conventional

bus and point-to-point connection. It also improves the scalability of system-on-chips (SoC).

Due to NoC multiple degrees of parallelism both in computation and communication, using NoC

in real-time systems requires new theoretical frameworks and concepts [6]. The major goal of

communication-centric design and NoC paradigm is to achieve greater design productivity and

performance. Greater design productivity results to a computer system that has higher perfor-

mance compared to traditional designs. By handling the increasing pipelining and parallelism

which is achievable with utilizing NoC framework, a higher design productivity is the target. A

typical NoC consist of the following fundamental components.

• Network interfaces implement the interface by which cores (IP blocks or simply the

Nodes) connect to the NoC. Their function is to decouple computation (the cores) from

communication (the network).

• Routing nodes route the data according to chosen protocols. NoCs implement the routing

strategies such as XY routing, west first, etc.

6

• Links are physical connections between the nodes that provide raw bandwidth. They may

consist of one or more logical or physical channels.

Figure 1 shows a commonly used NoC topology. It represents a 4 × 4 2D mesh grid, which

provides an on-chip communication infrastructure for sixteen cores. All the components as dis-

cussed are shown in the figure. The figure consists of sixteen IPs, and routers adjacent to IPs.

Link

Core

Router

Network
Interface

Figure 2.1: A simple NoC example showing the topological aspects.

2.1.2 Classifications

NoCs are classified based on different aspects such as:

• Topology: defines nodes logical layout (connections) in the NoC. The most common

topologies are 2-D mesh and torus. Both have connections between 4 neighbour nodes

but torus has wraparound links connecting the nodes on network edges and mesh does not

7

have these edges. Network adapters implement the interface by which cores (IP blocks

or simply the Nodes) connect to the NoC. Their function is to decouple computation (the

cores) from communication (the network) [29]. Figure 2.2 shows different topologies for

a NoC.

(a) 2D mesh (b) 2D torus

(d) Ring(c) Fat tree

Figure 2.2: A simple NoC example showing different topologies.

• Routing: decides the path taken from source to the destination. Routing nodes route the

data according to chosen protocols, which can be deterministic or adaptive. In determin-

istic routing, the path of communication is solely defined by the address of the source and

the destination. On the other hand, adaptive routing decides based on the dynamic traffic

8

of the network at the routing time. Therefore, deterministic routing always generates the

same path for a given source and destination, but adaptive routing might choose different

path based on the current traffic of the network.

The highlighted feature of deterministic routing is its simplicity. Some examples of de-

terministic routing policy are like XY routing, west first, etc. On the other hand, adaptive

routing can prevent congested areas in networks by choosing alternative paths dynami-

cally. This scheme results in higher efficiency compared to deterministic routing when the

network is congested. DyAD [14] is an example of adaptive routing.

• Switching: decides the timing and control states of communication packets through the

routers within the network. A packet is a stream of bits and traverses through the physical

links of on-chip network starting from its source to the destination. A packet may contain

data or control information. The two most commonly used switching techniques are circuit

switching and packet switching.

Circuit switching is a connection-oriented technique. It establishes the connection be-

fore starting the transmission. This method reserves the required buffer and control states

through the path of message from the source to the destination. Because of this pre-

reservation requirement, this scheme results in low utilization of system resources, such as

routers buffer space and control states. Hence, designers prefer to use the other scheme,

which is packet switching.

By comparison, packet switching is a connectionless technique and packets of the same

message are routed independently, likely through different paths from the source to the

destination. Some examples of packet switching approaches are store-and-forward and

virtual cut-through. Virtual cut-through also could be done at a higher level of granularity

than packet. Each packet is divided to separate units called flits. Wormhole switching

applies this optimization to achieve higher throughput and efficiency compared to virtual

cut-through. In the following we explain the wormhole switching technique. We also

explain the advantages of this scheme that makes wormhole switching the most preferable

switching technique for on-chip communication domain.

9

– Wormhole Switching. The early approaches for routing and switching in packet

switching networks utilized store-and-forward switching scheme [9]. In this tech-

nique, each router along the path must receive the entire packet before forwarding

it to the next router of the path. Hence, this approach requires larger buffers and

results in longer communication latencies. To address these drawbacks, the virtual

cut-through scheme is applied. This switching policy forwards the packet as soon

as the routing decision has been made. Hence, it does not require waiting to receive

the entire packet before forwarding it to the next router, and therefore, this method

reduces the communication latency.

The wormhole switching scheme [26] has been proposed to achieve higher network

resource usage efficiency, The method utilizes the cut-through switching technique

and requires smaller buffer size and results to tighter communication latency com-

pared to store-and-forward and virtual cut-through approaches. Wormhole technique

performs the switching in the flit level instead of the packet level. Flits are smaller

data units compared to packets. This results in even reduced buffer size and latency

compared the cut-through switching. These highlighted features of wormhole switch-

ing make this method preferable to use for real-time communication switching and

analysis [34]. Our analysis is based on wormhole switching method. In fact, both

FLA and LLA analyses work based on wormhole switching.

• Flow control: determines how network resources (channel bandwidth, buffer capacity,

and control state) are allocated to a packet traversing the network. It concerns with the

allocation and deallocation of channels and buffers to a packet along its route from the

source to the destination.

Flow control may be buffered or bufferless [12], which determines the amount of buffer

inside the switching nodes in the network. Links connect the nodes, providing the raw

bandwidth. They may consist of one or more logical or physical channels. Bufferless flow

control has more latency and lower throughput than buffered flow control. Buffered flow

control can be further categorized into credit-based flow control, Ack/Nack flow control,

10

etc. Switching and flow control policies together define the timing of transfers. Circuit-

switching forms a path from source to destination prior to transfer by reserving the routers

(switches) and links. All data follow that route and path is torn down after the transfer has

completed. Packet-switching performs routing per-packet basis. Flow control assures the

enough amount of buffers and control states through the communication path.

• Quality-of-Service (QoS): refers to the levels of services guaranteed for data transfers.

Guarantees are related to timing (such as min. latency, max. latency, max. jitter, etc.),

integrity (such as max. error rate, max. packet loss), and packet delivery (in-order or

out-of-order). Most of the related research in QoS promises guarantees on performance

and average-time latency. Recently, some researches applied QoS for real-time system and

worst-case latency [33]. Three methods are employed to give timing guarantees: network

dimensioning, circuit-switching, and prioritized packet scheduling [31]. The quality of

service can be further categorized into best effort and guaranteed service schemes.

2.2 Real-Time Service Implementation Related Work

NoC platforms result to the tighter communication upper-bound compared to traditional buses

or a point-to-point approach in many ways [7]. Several communication schemes have been pro-

posed for NoCs to implement the message delivery policy within the on-chip network. Most of

these scheme are inspired from off-chip communication networks. Packet-routing and segmented

link communication offers maximum flexibility and scalability [3]. Normally, the network re-

sources, like buffers, physical or logical channels, are shared by the IP blocks on the chip, and

local performance is not degraded when scaling. Resource sharing brings higher utilization but

also introduces unpredictable network delays due to contention. In on-chip networks, multiple

parallel tasks running on different IP cores exchange information. When more than one packet

tries to access the shared resource at the same time, contention occurs. The contention problem,

which leads to packet delays and even missed deadlines, has become the major influence fac-

tor of network predictability. Hence, the way to solve the contention problem is a key issue in

11

implementing a guaranteed service in a NoC design [34].

Resource reservation and run-time arbitration are two well known disciplines that address the

contention problem.

2.2.1 Resource reservation

Resource reservation approach considers that contention is avoidable by trying to pre-arrange

and allocate resources before the start of the communication, so that two packets never access

the same resource at the same time. Time division multiplexing (TDM) and circuit switching are

two common resource reservation schemes. Goossens et al. [19] and Millberg et al. [25] apply

the TDM approach. In this scheme, the whole link transmission capacity is partitioned into

fixed time-slots, each of which represents a unit of time when a single traffic-flow can occupy

a physical link exclusively for data transmission. A time slot is the minimum time assigned to

each router of the network to read or write the data from/to the in/out ports. As a centralized

scheduler, TDM monitor assigns time slots to individual applications in a exclusive way. This

assures contention free time slot assignment. As a disadvantage, this scheme requires a global

notion of time in the network. Besides that, the latency is coupled to bandwidth, preventing low

latency from being provided to low rate requirements without over-allocating.

A circuit-switching technique is used in some works [30, 40]. A dedicated connection is

constructed between source and destination nodes by reserving a sequence of network resources.

The major problem of this scheme is that the resources that have been reserved for a flow can not

be used by any other flow which results in under utilized links.

2.2.2 Real-Time Service

The resource reservation policy requires the network to be Multiple IP-cores based design using

NoC architecture. This allows multiple tasks to run at the same time. These tasks undertake

data processing and exchange information through the underlying communication infrastructure.

12

Some tasks have very stringent communication service requirements; the correctness relies on

not only the communication result but also the completion time bound. A data packet received

by a destination too late could be useless. These critical communication tasks are called real-

time communications. For a packet transmitted over the network, the communication duration

is denoted by the packet network latency. The maximum acceptable duration is defined to be

the deadline of the packet. A traffic-flow is a packet stream which traverses the same route from

the source to the destination and requires the same grade of service along the path. For hard

real-time traffic-flows, it is necessary that all the packets generated by the traffic-flow must be

delivered before their deadlines even under worst case scenarios [34].

Recently, the adaptation of NoCs for hard real-time systems has been cautious at best. This

is because of the need to provide provable guarantees that the hard real-time software always

meets its timing requirements. However, traditional NoCs focus on improving the average-case

performance of the interconnect through dynamic routing algorithms, and flow control policies.

This makes analysing the worst-case latencies of the communication difficult and pessimistic.

Therefore, the deployment and worst-case latency analysis of hard real-time software on NoC-

based CMPs remains a prominent challenge, and an impediment to adopting CMPs for hard real-

time systems. However, the need to provide provable guarantees that the hard real-time software

always meets its timing requirements is still driving engine for real-time NoCs research. The

next section categorizes real-time communication for NoCs.

2.3 Real-Time Communication Categories

NoCs have the capability of allow several applications execute on different cores at the same

time. According to this nature of parallelism, these application may want to communicate to

each other and do handshaking. For real-time application, the correct functionality of system

is not only related to correct communication but also the timeliness of the communication [33].

This type of communication with limited upper-bound is called real-time communication. This

type of communication is common in critical applications such as robot control [33], multimedia

13

applications, and system verification which require guaranteed timing delivery and a high degree

of predictability.

For real-time systems, time is the most important characteristic that distinguishes them from

other type of computing systems. For on-chip communication, the time we concern with is

the packet transmission time which is defined as packet network latency. The packet network

latency is taken into account from the time which the first bit of a packet is generated from

the source until the last bit is received at the destination. The deadline is the boundary point

in time which defines the latest time that a packet should arrive to its destination. In other

words, assigning deadlines to each communication convert a non real-time communication to

real-time communication for on-chip networks. This implies that real-time communication is

about satisfying the timing constraints or meeting the deadlines.

According to the importance of real-time behaviour, the on-chip communication could be

classified to different categories: hard real-time, soft real-time, and non real-time (best effort)

communication [33].

2.3.1 Non Real-Time Communication

In non real-time communication, which is also known as best effort service, no guarantee is pro-

vided for communication deadline. In most NoC-related works, best effort communication refers

to a kind of communication which just correctness of communication is guaranteed [3]. It is also

very common that NoCs support a combination of real-time and non real-time communication at

the same time. By doing this, we can have the timing guarantees for very important communica-

tion and also at the same time the entire system performance and complexity remain reasonable

by integrating with best effort communication.

2.3.2 Soft Real-Time NoCs

Satisfying all of the deadlines, which is the case in hard real-time NoCs, is the matter of perfor-

mance and enforces high system reliability. However, it may lead to an over-constrained NoC

14

and very complex and expensive to implement. For being more practical, occasional missing

deadline can be tolerated and would not cause serious harm and only the system overall perfor-

mance gets hurt for some degree. This kind of service is defined as soft real-time communication.

Soft real-time communication is rarely required to prove strictly that the service surely meets its

real-time performance objective. In many cases, only an acceptable percentage of deadlines may

be required by any probability analysis or extensive simulation rather than a worst-case analy-

sis. In addition, system utility and efficiency are given preference over the worst-case behaviour

and a good average network latency instead of a guaranteed worst-case one becomes one of the

primary goals [33]. A classical example for soft real-time communication is multimedia system

[23].

2.3.3 Hard Real-Time NoCs

Hard real-time communications are used in applications where meeting the deadlines are abso-

lutely mandatory; otherwise the entire system might fail. This means that the behaviour of hard

real-time NoC should be totally predictable. It must be able to satisfy the hard real-time service

and meet the deadlines in terms of both correctness of computation and also communication la-

tency. Predictability implies that the implementation policies used in hard real-time NoCs must

be analysable mathematically to ensure deadlines satisfaction. The verification of hard real-time

model is reasoned by using precise mathematical models to assure each hard real-time service

finished within the time limit in all possible scenarios.

2.4 Real-Time Communication Related Work

There are several related research efforts that enable real-time communication over a NoC [19,

24, 34, 4]. To address this challenge, researchers propose the use of resource reservation, and

run-time arbitration as potential solutions. Resource reservation allocates resources before the

start of the communication to ensure that there is no contention between any two packets for a

15

resource. Run-time arbitration on the other hand, uses routers that arbitrate access to links at run-

time. Hence, contention is expected, and the analysis accounts for these contentions to produce

the worst-case latencies. Sections 2.5 and 2.6 explain these two schemes.

2.5 Resource Reservation

Bjerregaard and Sparso [4] present a clock-less NoC called message passing asynchronous network-

on-chip (MANGO) for guaranteed services. They use an asynchronous latency guarantee arbiter

(ALG), which consists of a set of virtual channels, and priority selection and arbitration modules

(SPQ) to support real-time communication. MANGO combines wormhole switching with vir-

tual circuits and provides guaranteed service in terms of bandwidth and latency [4]. Figure 2.3

shows the ALG and SPQ components of MANGO scheduling architecture.

Physical link

VC Buffers SPQ SPQ

Figure 2.3: MANGO scheduling architecture.

Wiklund and Liu [39], and Wolkotte et al. [40] use circuit switching that requires establishing

a connection between source and destination before sending data packets. A circuit with the

fixed physical links is created between the source and the destination and all packets of the same

communication follow the same path over the circuit.

Millberg et al. [25] and Lu et al.[24] use the TDM approach for communication. TDM divides

the link access into equal time slots such that a traffic flow can use the slot time to transfer its own

16

packets. Æthereal [19] also uses TDM to guarantee worst-case bounds on real-time flows. Each

output port contains a slot table that multiplexes its access between different flows. The worst-

case latency depends on the slot allocation [24], which computes the time for the last flit of a flow

to reach its destination. During the connection establishment phase, a time slot per router will be

reserved through the communication path from the source to the destination. Since of exclusive

time slot assignment by the global monitor, no congestion can happen during the communication

time. While this provides worst-case bounds, resources are statically allocated before starting

communications. Consequently, a prominent criticism of the TDM approach is its inefficient use

of network resources. To address this concern, Æthereal, like MANGO, combines guaranteed

service with best-effort to increase its resource utilization [10]. MANGO and Æthereal only

support one priority level for their traffic flows.

The problem of the worst-case latency computation on inter-process communication in real-

time systems is addressed in [15, 28, 27]. Authors develop an upper bound on the delivery

time of messages. The downsides of these methods are the overhead of the establishment and

tear down of channels between source and destination pairs, as well as under utilization of the

system’s resources. They also store packets at intermediate nodes which leads to expensive buffer

capacity for storing early arriving packets and queueing packets in order of arrival [15].

2.6 Runtime Arbitration

An alternative option is to use wormhole switching, which increases throughput, and decreases

the required buffer capacity in the network. Shi and Burns [33, 34] propose the use of priority-

based routers with wormhole switching to support real-time communication. Shi et. al. proposed

flow level analysis (FLA), which considers a priority-aware NoC interconnect as its underlying

hardware architecture. The analysis incorporates direct and indirect interferences caused by

higher priority tasks transmitting data on the links. This approach supports multiple priorities,

and their routers ensure that higher priority flows can preempt lower priority flows and com-

putes tighter worst-case bounds compared to viewing the communication platform as a unique

17

resource.

2.7 Summary

This chapter presented the required background of research in real-time communication analysis

of NoCs which falls into either a time-division multiple access (TDMA) method or a priority

based method. TDMA methods divide the link bandwidth into multiple time slots. Each of these

time slots is then dedicated to a particular communication task for transmitting data. Depending

on the requirements of the communication tasks, different number of slots can be allotted to the

tasks. Examples of TDMA NoCs include those of AEthereal [19], and Nostrum [25]. While

real-time analysis of TDMA is straightforward, resources are statically allocated resulting in an

inefficient use of network resources.

The second alternative is priority aware communication analysis. Shi and Burns [34] present

a priority-based method with the assumption that routers implement wormhole switching with

fixed priority preemption. This method allows higher priority communication tasks to preempt

the transmission of data of lower priority tasks for better utilization of the network resources. We

refer to this approach as the flow-level analysis (FLA). The real-time analysis for FLA requires

a detailed study of the interferences communication tasks may suffer during transmission. Our

work in this paper extends FLA with considering the interferences in the link-level granularity.

In the next chapter, we explain the details of system model assumptions that FLA and LLA

analyses consider from on-chip network to provide us the safe communication upper-bound.

Later, we explain the FLA analysis and present an illustrative example that why FLA results into

overestimation in communication latency.

18

Chapter 3

Description of System model

3.1 Network Model and Architecture

Our analysis pertains to NoCs that employ wormhole switching with priority-aware routers. The

objective of priority-aware routers is to provide differentiated quality of service for flow with

different priorities. Applying priority-aware routers makes the analysis capable to determinis-

tically calculate the communication latency upper-bound. Priority-aware routers have multiple

virtual channels (VCs) with each VC designated a distinct priority, and a deterministic routing

algorithm. These priorities are used to preempt the routing of packets in lower priority VCs by

packets in higher priority VCs. Each node in the NoC consists of a processing element (PE), and

a router. Figure 3.1 presents the internals of a router. The router architecture we employ was

originally proposed by Shi and Burns [33, 34], but for clarity we briefly describe its architecture.

The router has a VC for every distinct communication flow with a unique priority that passes

through the router. Each communication flow also has a unique priority and all the flits belonging

to a flow have the same priority. Consequently, there exists a VC for each priority level in every

router. This one-to-one correspondence assures that each VC can only be used for a unique

communication flow. The VCs are designed as FIFO buffers at the input ports of the router.

These FIFOs store the data to be routed from different VCs. The unit of stored data is in the form

19

Routing &
Transmission

Control

Data Out
Data In

Flow Control
Flow Control

Priority ID

Highest priority with
remaining buffer

Figure 3.1: Priority-aware router architecture.

of flits. Note that a flit is also the unit of data transmitted over the NoC. A packet on the other

hand, is composed of multiple flits. The router selects the output port for a flit in the VCs based

its desired destination. When there are multiple flits waiting to be routed to the same output port,

the router selects and forwards the flit to the output port with the highest priority amongst all

the waiting flits if the next corresponding router has enough buffer connected to that output port.

This can be guaranteed by applying flow control mechanisms. This priority arbitration happens

at the cycle level. This means that if the highest priority flit arrives at the router at time t, it will

only be forwarded by the router at time t + 1 and will never preempt a lower priority flit being

sent at time t. Flow control guarantees that the router only sends data to the neighbouring router

if the neighbour has enough buffer space to store the data. If the highest priority flit is blocked in

20

the network, the next highest priority flit can access the output link. This architecture allows the

derivation of an upper bound on the latencies of all flows in the network due to the deterministic

priority-aware arbitration.

3.2 System Model

We present the definitions, terminology and the model necessary for describing the flow-level

and link-level analyses. These definitions extend and borrow definitions from previous work by

Shi and Burns [33, 34] for flow-level analysis. In our analysis, we assume the assignment of

distinct priorities to traffic flows, periodic flows, and that the deadline of a flow is less than or

equal to its periodicity. We also assume that the flows mapping into the NoC is given and the

flows paths are defined. It is possible to extend our analysis to priority sharing, like the scheme

presented in [32].

Definition 1. A real-time NoC is a 5-tuple 〈G,Γ, Rhop, F, BW 〉 where G is the NoC’s intercon-

nection graph, Γ is a set of traffic flows deployed on the NoC, Rhop is the routing delay at each

node in the NoC, F is the flit size, and BW is the link bandwidth.

Definition 2. The NoC’s interconnection graph G is a directed graph G := 〈V,E〉, where V

is the set of processing elements (including the router), and E ⊆ V × V is the set of edges

describing the links between nodes. We use two directed edges to model a bidirectional link in

the NoC.

Definition 3. The set of traffic flows Γ := {τi : ∀i ∈ [1, n]} has n traffic flows and each traffic

flow is a packet stream which traverses the same route from the source to the destination and

requires the same grade of service along the path and it is formally represented by the tuple [33]:

τi = (vsi , vdi , Pi, Ti, Di, J
R
i , Li)

This describes a traffic flow τi from source node vsi ∈ V to destination node vdi ∈ V with priority

Pi, period Ti between successive packet transmissions, real-time deadline Di, release jitter JRi ,

and the basic link latency Li.

21

In the following we describe each of the flow characteristics in detail.

• Source vs and Destination vd. These present the source and the destination node of the

flow in the NoC respectively. We assume the mapping of communication flows is given

and each of the flows has a specific source and destination.

• Priority P . Each traffic flow has a distinct priority P compared to other flows and all

packets of the same flow have the same priority. P value equal to 1 shows the highest

priority flow and the greater the p value the lower the priority. In the prioritised flow

switching techniques, lower priority flows might get blocked with higher priority ones.

• Period T . The length of time between the release of two continuous packets of the same

traffic flow is a constant, which is called the period Ti for the traffic flow. For real-time ap-

plications, if the period is not constant, the minimum possible period should be considered

to satisfy the requirements of hard real-time systems.

• Deadline D. Each real-time traffic flow has deadline D, which means that all the flits

belonging to this traffic flow have the restriction to be delivered to the destination router

within a certain delay less than or equal to D value, even in the worst-case scenario. The

restriction for each flow is that each traffic flow’s deadline must be less than or equal to its

period, i.e. Di 6 Ti for all τi. This condition removes the self-blocking effect [32].

• Jitter JR. The attribute JR is the release jitter [1] of flow τ and denotes the maximum

deviation of successive packets released from its period. A periodic traffic flow τ has to

generate the communication instances within a fixed time which is its period, T , then it

will be released as soon as it generated. However, when this periodic flow τ is subjected

to release jitter, its generated time becomes under some circumstances different from its

release time. So, τ is not become strictly periodic and a variation in its release times has

arisen. Therefore, release jitter of a flow is defined as the maximum variation in its release

times. If an expected release time of packet from a periodic traffic flow τ is a, then the real

release time may occur later than normal, by the time no more than a + JR. Note that the

value a is the worst-case release jitter that can accrue.

22

• Basic network latency L. The basic network latency occurs when no traffic flow con-

tention exists. The basic network latency is determined by flow’s source/destination rout-

ing distance, flow packet size, NoC links bandwidth and some additional protocol control

overheads.

As the summary, a flow is schedulable if its worst-case latency is less than the deadline Di.

The release jitter JRi is the worst-case delay in a packet’s release time. Li is the latency that the

flow experiences on a link when it does not suffer interferences from any other flows on that link.

We compute Li as follows: Li = Flitsi∗F
BW

where Flitsi is the number of flits in one packet of

the traffic flow τi. Now, we can compute the total basic latency of a flow with no interferences

as Ci = Li + Rhop ∗ hops. Notice that hops is the number of links the flow traverses. Di is a

time constraint representing a flow’s deadline which is an upper bound on the flow’s latency from

the source node vs to the destination node vd. JRi represents an upper bound on the delay in a

packet’s release time originally designated by its period Ti. The route (or path) a flow τi traverses

is a sequence of edges denoting the multiple links it crosses to reach from the source node to the

destination node. For our work, we assume that these routes are fixed, and determined using

off-line analysis (e.g. shortest path algorithm). We define a route, a subroute and a link in a

network G as shown in Definitions 4 and 5, respectively.

Definition 4. A route δi for flow τi is a sequence of edges 〈(vsi , vsi+1), (vsi+1, vsi+2), . . . , (vsi+k, vdi)〉
such that k ∈ Z.

Definition 5. A subroute σiva for flow τi is a sequence of edges 〈(vsi , vsi+1), . . . , (vsi+l, va)〉 such

that σiva has the same source vertex vsi as route δi, and σiva ⊂ δi with va being the destination

node of the subroute.

We use |δi| and |σiva | to denote the number of edges (or the length) in the route and subroute,

respectively. We also use e′ = pre(δi, e) to denote that an edge e′ precedes edge e in the route δi
where e, e′ ∈ δi. For e, e′ ∈ δi, we use tick (e′) to denote an edge that precedes another edge e in

the route δi.

23

3.2.1 Inter-Relationships between Traffic-Flows

To capture the relations between traffic-flows and the physical links of the network, the mesh

network topology defined as a directed graph G : V × E. V is a set, whose elements are called

nodes, and each node vi denotes a router combined with an IP core in the mesh network. E is a

set of ordered pairs of vertices, called edges. Each edge represent a physical link in the NoC.

Based on whether flows share the same physical links or not, we categorize the competition

relationship between traffic-flows into two different types: direct competing relationship, and

indirect competing relationship. The direct competing relationship means a traffic-flow has at

least one physical link in common with the other traffic-flow. With the indirect competing re-

lationship, the two traffic-flows do not share any physical link but there is at least one direct

interference traffic-flow between the given two traffic-flows. For example, in Figure 3.2 flow τ6

has direct interference with flows τ5, τ2, τ3, and τ4. It also has indirect interference with flow

τ1; since flow τ2 has direct interference with both flows τ6 and τ1. We explain different type of

interferences with an example in the following section.

τ6

τ5

τ4

τ3

τ2

τ1

v1 v2 v3

v4 v5 v6

v7 v8 v9

Figure 3.2: Interference example.

24

3.3 Illustrative Example

We present an illustrative example of a 3× 3 NoC in Figure 3.2 to familiarize the reader with the

terminology and interferences. Figure 3.2 maps 6 flows on the NoC: Γ = {τ1, τ2, τ3, τ4, τ5, τ6}
with the priorities P1 > P2 > P3 > P4 > P5 > P6. Note that the choice of our paths in

Figure 3.2 are selected solely to illustrate, and explain the execution patterns of different flow

with a link-by-link approach. Also note that the choice of a mesh topology is only for illustration

purposes and the analysis we present is valid irrespective of the underlying network topology.

For experiencing the worst-case communication latency, the critical time instant should be

defined. Critical time instant is a known term in the real-time systems theory that explains the

conditions which results to the worst-case scenario [22]. We define the critical time instant as

follows:

Definition 6. Critical time instant on each link is defined as the time that all flows on that link

attempt transmission at that time, which introduces the worst-case interference scenario.

Table 3.1 presents the link latency, the period, the deadline, and the jitter for each of the flows

in Figure 3.2. We use Figure 3.3 to show the transmission of flits for τ6 on each of the links in

route δ6 for the example configuration in Figure 3.2. We assume a routing delay Rhop = 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(v1,v2)

(v2,v5)

(v5,v6)

(v6,v9)

(v9,v8)

28 29 30 31 32 33 34 35 36 37 38 39 40

R6(v6,v9)

41 42 43 44

��
��
��
��
��

Figure 3.3: Timeline of direct interference on flow τ6 in Figure 3.2.

For example, on link (v1, v2) the first flit transmits on at time 1 instead of 0 due to the routing

delay. The number of flits from other flows that interfere with a flit of τ6 on a particular link

25

depends on the timespan of the τ6 flit on that link. For experiencing the critical instant scenario,

we assume the interfering flows start transmitting whenever τ6 reaches that link.

Since τ5 has a higher priority than τ6, flits of τ5 will preempt flits of τ6. Observe that only two

flits from τ5 interfere with τ6 on link (v1, v2). However, on link (v2, v5), flits from τ5 and τ2 cause

interferences for τ6. White spaces on link (v5, v6) represent gaps caused by interfering flows on

the predecessor link (v2, v5). These flows no longer interfere with τ6 on link (v5, v6), but the flits

of τ6 remain separated by the gaps shown due to interferences on previous links. Note that for

facilitating the analysis on subsequent links, we assume that these gaps are part of the τ6 flits as

we show in more detail in Section 5.1.

Flow L T D J

τ1 2 8 8 0

τ2 2 8 8 0

τ3 2 8 8 0

τ4 2 8 8 0

τ5 2 8 8 0

τ6 9 50 50 0

Table 3.1: Motivating example data.

26

Chapter 4

Flow Level Analysis (FLA)

We present an overview of a method to compute the worst-case latencies of communication

tasks, which we call the flow-level analysis (FLA). Shi and Burns [33, 32] proposed FLA, which

considers a priority-aware NoC interconnect as its underlying hardware architecture, and they

incorporate direct and indirect interferences caused by higher priority communication tasks. For

additional details and proofs, we refer the reader to [33, 32]. The analysis incorporates direct and

indirect interferences caused by higher priority tasks transmitting data on the links. FLA com-

putes tighter worst-case bounds compared to viewing the communication platform as a unique

resource.

4.1 Definitions

Let a communication task under analysis be τab, and its worst-case latency be Rab. Direct inter-

ference occurs when a higher priority task τij preempts τab along its path δab. The set of higher

priority communication tasks preempting τab are identified as the direct interference set SD(τab).

Task τab suffers indirect interference from task τkl when task τab has direct interference with task

τij which has direct interference with task τkl; however, tasks τab and τkl do not directly interfere

with each other.

27

Definition 7. A task τab suffers direct interference from task τij on its path δab if and only if

δab ∩ δij 6= ∅, and Pab < Pij .

Definition 8. The set of tasks directly interfering with τab on its path δab is:

SD(τab) = {τij | ∀τij ∈ ΓMi , δab ∩ δij 6= ∅ and Pab < Pij}.

Definition 9. A task τab suffers indirect interference from task τkl on its path δab if and only if:

(δab ∩ δij 6= ∅) ∧ (δij ∩ δkl 6= ∅) ∧ (δab ∩ δkl = ∅), and Pab < Pij < Pkl.

Definition 10. The set of tasks indirectly interfering with task τab on its path δab is:

SI(τab) = {τkl | ∀τij ∈ ΓMi ,∀τkl ∈ ΓMk , (δab ∩ δij 6= ∅) and (δij ∩ δkl 6= ∅)
and (δab ∩ δkl = ∅) and Pab < Pij < Pkl}.

4.2 Worst-case Latency

FLA assesses the interference on the communication path of τab to compute its worst-case la-

tency. It incorporates indirect interference as interference jitter that directly interfering flows

suffer. Suppose that task τab suffers interference from a higher priority task τij . The time interval

during which interference occurs is Rab + JRij + J Iij where JRij and J Iij are the release and inter-

ference jitters of task τij , respectively. The interference jitter J Iij is the interference that task τij
suffers from tasks in the indirect interference set of task τab. Hence, the maximum number of

times τij preempts τab is computed by dRab+J
R
ij+J

I
ij

Ti
e. The amount of time task τij contributes to

the worst-case latency of τab is simply the transmission latency Cij multiplied by the number of

preemptions: dRab+J
R
ij+J

I
ij

Ti
e ∗ Cij . For all higher priority communication tasks on the path δab,

FLA computes the worst-case latency of τab as:

Rab =
∑
∀i

∑
∀j∈SD

ij

d
Rab + JRij + J Iij

Ti
e ∗ Cij + Cab

28

This only considers interference from higher priority tasks but not jobs from the same task

under analysis τab, which is necessary if the deadline is greater than the period. To incorporate

this self-blocking, we define a busy period Bab as the contiguous time interval during which the

links on the path for communication task τab suffer interferences from communications tasks of

equal or higher priority. Thus, the busy period is given by:

Bab =
∑
∀i

∑
∀j∈SD

ij

d
Bab + JRij + J Iij

Ti
e ∗ Cij + dBab + JRab

Ta
e ∗ Cab

The number of instances of task τab in the busy period pB,ab is equal to dBab+J
R
ab

Ta
e. The worst-case

latency Rab of task τab is then the maximum response time of all instances and is given by:

Rab = max
p=1...pB,ab

(wab(p)− (p− 1)Ta + JRab)

where p is the index of the job of task τab. wab(p) is the completion time of job p in the busy

period Bab and is given by:

wab(p) = p ∗ Cab +
∑
∀i

∑
∀j∈SD

ij

d
wab(p) + JRij + J Iij

Ti
e ∗ Cij

4.3 An Illustrative Example

Figure 4.1 shows a simple example to demonstrate FLA.

τ41τ21

τ31τ11

v1 v2 v3 v4

Figure 4.1: Simple example of FLA.

Table 4.1 characterizes tasks τ11, τ12, τ13, and τ14 (task under analysis) in the figure. Assum-

ing P41 < P31 < P21 < P11, then SD(τ41) = {τ21.τ31} and SI(τ41) = {τ11}.

29

Table 4.1: FLA example data

Task C T JR

τ11 3 9 0

τ21 2 9 0

τ31 4 12 0

τ41 3 8 0

To compute R41, we first need to compute R21 to get the interference jitter of task τ21.

B21 = dB21

9
e ∗ 3 + dB21

9
e ∗ 2 = 5

pB,21 = 1

∴ R21 = 5 and J I21 = 5− 2 = 3

B41 = dB41 + J I21
T2

e ∗ C21 + dB41

T3
e ∗ C31 + dB41

T4
e ∗ C41

= dB41 + 3

9
e ∗ 2 + dB41

12
e ∗ 4 + dB41

8
e ∗ 3 = 23

pB,41 = d23

8
e = 3

w41(1) = 11 and R41(1) = 11− 0 = 11

w41(2) = 20 and R41(2) = 20− 8 = 12

w41(3) = 23V R41(3) = 23− 16 = 7

R41 = max(R41(1), R41(2), R41(3)) = 12

(4.1)

30

Chapter 5

Link Level Analysis (LLA)

5.1 Link-level Analysis (LLA)

Link-level analysis (LLA) incorporates direct and indirect interferences with other traffic flows.

We describe the details of this analysis in this section, and we continue to use Figure 3.3 as a

running example to provide the intuition behind the mathematical formulation. We first present

the worst-case latency with direct interference of flits on a particular link. Then, we use this to

compute the worst-case latency for the entire route. We later augment the worst-case latency

with indirect interferences as well.

5.1.1 Worst-case Latency with Direct Interference

Direct interference on a link occurs when a higher priority flow τj preempts a lower priority flow

τi on a shared link. We formalize direct interference at the link-level in Definition 11, and the

set of flows resulting in direct interferences on a link in Definition 12. Notice that we use Ri

and Rie to represent the worst-case latency of flow τi on its route δi, and on a particular link e,

respectively. We use Rie′
to denote the worst-case latency of τi on a predecessor link e′. We

31

also use SDie and SIie to denote the set of direct and indirect interfering flows with τi on link e,

respectively.

Definition 11. A flow τi suffers direct interference from flow τj on a link e if and only if e ∈ δi∩δj ,
and Pi < Pj .

Definition 12. The set of flows directly interfering with τi on a link e is SDie = {τj | ∀τj ∈ Γ, e ∈
δi ∩ δj and Pi < Pj}.

From Figure 3.2, we observe that τ6 has direct interference with τ2 and τ5 on link (v2, v5)

such that SD6(v2,v5) = {τ2, τ5}.

To compute the worst-case latency of a flow, we must incorporate the effect of direct inter-

ferences. However, a link’s contribution to the latency due to direct interference depends on its

predecessor link’s direct interference as well. For example in Figure 3.3, the latency of flits on

link (v9, v8) depend on the direct interference that they suffer on link (v6, v9). Hence, we com-

pute the worst-case latency contribution of a flow τi on a link e asRie . This depends on the direct

interference the flits suffered on the predecessor link e′. For example, R6(v6,v9)
is the worst-case

latency of flow τ6 on link (v6, v9) and is equal to 33− 4 = 29 time units. Theorem 1 presents the

worst-case latency on a link including direct interferences from higher priority flows.

Theorem 1. The worst-case latency Rie of a flow τi suffering direct interferences from other

flows in SDie on link e ∈ δi is given by the following:

Rie = Rie′
+

∑
∀τj∈SD

ie

d
Rie + JRj

Tj
e ∗ Lj −

∑
∀τj∈SD

ie
∩SD

ie′

d
Rie′

+ JRj
Tj

e ∗ Lj

Proof. Assume flows τi, τj ∈ Γ with Pj > Pi, and let the set of flows directly interfering with

τi on links e and e′ be SDie and SDie′ , respectively. The first term of the equation is Rie′
which is

the worst-case latency on the predecessor link e′. The reason is that we need to take into account

interferences from previous links as we compute latencies along the route δi. For the first link of

the route δi, we replace Rie′
by Li.

32

The second term of the equation accounts for interference from all higher priority flows on

link e. The duration that flits of flow τi suffer direct interference from flow τj on link e is

given by Rie + JRj , which sums the release jitter from τj with the worst-case latency of τi. The

number of times τj preempts τi is d(Rie + JRj)/Tje, and the latency of the preemptions by τj is

d(Rie + JRj)/Tje ∗ Lj .

When a flow τj interferes with τi on several consecutive links, the interference has to be

accounted for only once. If SDie ∩S
D
ie′
6= ∅, the term

∑
∀τj∈SD

ie
∩SD

ie′
d(Rie′

+JRj)/Tje∗Lj represents

the latency of preemptions on e′ from common flows between links e and e′. We subtract this

term from the worst-case latency on link e because common flows are re-accounted for in the

second term of the equation. The worst-case latency on link e, therefore, becomes

Rie =
∑
∀τj∈SD

ie
dRie+J

R
j

Tj
e ∗ Lj +Rie′

−
∑
∀τj∈SD

ie
∩SD

ie′
dRie′

+JR
j

Tj
e ∗ Lj .

Illustrating LLA for Direct Interference:

We explain how the worst-case latency analysis works using different scenarios of interference

and use Figure 3.3 for illustration.

Scenario 1: This case applies to the first link on the route δi. We illustrate this case on link

(v1, v2). For this link, Rie′
is replaced by Li; the basic link latency of flow τi. Since the previous

link e′ is undefined in this case, the third term evaluates to 0. Therefore, the analysis computes

only the interference from τ5 and adds it to L6.

Scenario 2: We illustrate this case on links (v2, v5) and (v5, v6). In this case, SDie′ ⊇ SDie .

This occurs when there are some flows directly interfering on e′ that are no longer causing any

interference on e. Therefore, SDie ∩ S
D
ie′

= SDie . Solving the equation yields Rie = Rie′
. This

is because of the interference on e′, and the absence of new flows causing interference on e, the

worst-case latency on e is the same as that on e′. On link (v2, v5), the flits of flow τ6 take from

time 2 to 23 to be transmitted. This includes delay from interferences from τ2 and τ5. On link

33

(v5, v6), τ5 and τ2 no longer interfere. Hence, the only delay visible on the flits of τ6 on link

(v5, v6) is the routing delay shown as the shift of one time unit. Also notice the white gaps that

are a result of interferences on the previous link from flows τ2 and τ5. To analyze subsequent

links, we assume that these gaps are part of the delay of the flits.

Scenario 3: We show this case using on links (v1, v2) and (v2, v5). In this case, SDie′ ⊆ SDie .

This arises when there are new flows directly interfering on e in addition to the flows that are

directly interfering on e′. All the flits of the flow suffering interference and of the higher priority

flows on link e′ will continue in the same order to link e. However, on link e, the flits of the new

flows (i.e. SDie \S
D
ie′

) add to the direct interference, further preempting the flits of the flow suffering

interference. Since SDie ∩ S
D
ie′

= SDie′ , then the term we subtract will include all interferences on

the previous link e′. This is also intuitive because these common flows will be accounted for as

interferences on link e. This indicates that the latency of flow τ6 on link (v2, v5) is not affected

by the latency on link (v1, v2) because the worst-case latency occurs when more flows interfere

with τ6 which occurs on link (v2, v5). So Rie′
is equal to L6 plus the interference from flow τ5

(which we subtract) for link (v2, v5) and the interference of both τ5 and τ2 is used to calculate the

worst-case latency R6(v2,v5)
.

Scenario 4: We elaborate this case on links (v6, v9) and (v9, v8). This case occurs when

some flows interfering with τi on link e′ cease to interfere on link e, but some new flows begin

interfering on e, i.e., SDie ∩ S
D
ie′

= ∅. However, the flows that cease to interfere already affect

the stream of flits, which means that they still leave gaps in the transmission of flits. To account

for this, we assume that the flits of τi consume the entire duration from the first to the last flit

including the gaps. Therefore, Rie′
represents the latency of the flits before interference. This

is an upper bound on the amount of time during which interference can occur. We then use Rie′

as the basic latency to calculate the total worst-case latency Rie from the set of flows SDie . By

focusing on the interference that τ6 suffers, we observe that the duration of time during which

τ6 suffers interference from τ4 starts when the first flit of τ6 can be sent. This occurs at time 5.

Hence, the termRie′
is equal to the link latency of τ6 on link (v6, v9),R6(v6,v9)

= 33−4 = 29. This

time is assumed to be the basic latency of τ6 before calculating R6(v9,v8)
after direct interference

with τ4.

34

5.1.2 Worst-case Latency of a Route

Recall that Theorem 1 presents the worst-case latency at a particular link. Theorem 2, on the

other hand, computes the worst-case latency of a flow τi experiencing direct interferences along

its entire route δi by aggregating the worst-case link latencies computed using Theorem 1.

Theorem 2. The worst-case latency of flow τi for route δi denoted by Ri is

Ri = Ri(vb,vd)
+Rhop ∗ |δi|

where (vb, vdi) ∈ δi is the last edge on the route.

Proof. Recall that Ri(vb,vd)
is the worst-case latency of flow τi on its last link connected to the

destination node vdi . Notice that every flit suffers a routing delay Rhop when traversing each

node. So, for |δi| nodes, we add the routing delay of Rhop ∗ |δi| to obtain the total worst-case

latency of flow τi as shown.

Observe in Figure 3.3, the total worst-case latency for τ6 is the sum of the routing delay

Rhop ∗ |δi| = 5, and the worst-case latency on the last link R6(v9,v8)
= 44− 5 resulting in 44 time

units.

5.1.3 Worst-case Latency with Indirect Interference

Flow τi suffers indirect interference on a link from flow τk when flow τi has direct interference

with an intermediate flow τj , and τj has direct interference with flow τk; however, τi has no

direct interference with τk. In addition, the interference between τj and τk must occur before τj
interferes with τi. We formally describe this in Definition 13, and the set of indirectly interfering

flows in Definition 14. Revisiting Figure 3.2, we point out that flow τ6 has indirect interference

with flow τ1 through an intermediate flow τ2 on link (v2, v5) such that SI6(v2,v5) = {τ1}.

Definition 13. A traffic flow τi suffers indirect interference from flow τk on a link e(va, vb) if and

only if:

35

(e ∈ δi ∩ δj) ∧ ((vc, vd) ∈ δj ∩ δk) ∧ (e 6= (vc, vd)) ∧ ((vc, vd) /∈ δi) ∧ ((vc, vd) ∈ σjva),

and Pi < Pj < Pk.

Definition 14. The set of flows indirectly interfering with flow τi on link e(va, vb) is:

SIie = {τk | ∀τj, τk ∈ Γ, (e ∈ δi ∩ δj) ∧ ((vc, vd) ∈ δj ∩ δk) ∧ (e 6= (vc, vd)) ∧ ((vc, vd) /∈
δi) ∧ ((vc, vd) ∈ σjva), and Pi < Pj < Pk}.

The worst-case latency of flow τi when it experiences both direct and indirect interferences

is given by Theorem 3. J Ije represents the interference jitter on a higher priority flow due to

indirect interference as described by Shi and Burns [33, 34]. Interference jitter is the delay that

flits of flow τj suffers due to interference that is equal to the difference between its worst-case

and basic latencies. We carry this definition forward such that the interference jitter of τj for its

subroute σjva is equal to the difference between the total worst-case latency on the subroute and

the link-level latency of τj .

Theorem 3. The worst-case latency on a link of a flow τi, Rie , is when it suffers both direct and

indirect interferences on link e = (va, vb) is given by:

Rie = Rie′
+

∑
∀τj∈SD

ie

d
Rie + JRj + J Ije

Tj
e ∗ Lj −

∑
∀τj∈SD

ie
∩SD

ie′

d
Rie′

+ JRj + J Ije′
Tj

e ∗ Lj

where J Ije = Rj(vc,va)
− Lj and (vc, va) ∈ σjva is the last edge on the subroute.

Proof. The first term of the equation represents the latency of direct and indirect interferences

from higher priority flows with τi. The worst-case link latency of τi with indirect interferences is

affected by the latency of τj due to interferences that it suffers. The increase in latency of τj due

to interferences prior to link e is given by J Ije , which is equal to the difference between the total

worst-case latency on the subroute σjva and the basic link latency Lj . The worst-case scenario

occurs when flits of flow τj suffers interference from τk and then the following flits follow with

their normal periodicity [33, 34]. Since τj directly interferes with τi, J Ije increases the duration

during which τi can suffer interference. Hence, this duration is equal to Rie + JRj + J Ije . The

number of times τj preempts τi is

36

d(Rie + JRj + J Ije)/Tje,

and the latency of the preemptions by τj is

d(Rie + JRj + J Ije)/Tje ∗ Lj .

Therefore, the worst-case latency on e including indirect interferences from all higher priority

flows is given by∑
∀τj∈SD

ie1

d (Rie+J
R
j +JI

je
)

Tj
e ∗ Lj +Rie′

−
∑
∀τj∈SD

ie
∩SD

ie′
d
Rie′

+JR
j +JI

je′
Tj

e ∗ Lj .

The total worst-case latency of τi experiencing direct and indirect interferences along its route δi
is given by applying Theorem 3 in Theorem 2.

5.1.4 Tightness Analysis

We expect LLA to have tighter latency bounds compared to FLA. The reason is that FLA assumes

that the interference that a flow suffers on any link occurs on the whole path of the flow while

LLA restricts the interference only to the links on which they happen. In what follows, we

formally prove that LLA provides tighter bounds than FLA.

Lemma 1. Given a set of flows Γ and their paths, RLLA
i ≤ RFLA

i , ∀τi ∈ Γ.

Proof. According to FLA [33], the worst-case latency of τi is given by:

RFLA
i =

∑
∀τj∈SD

i

d(RFLA
i + JRj + J Ij)/Tje ∗ Cj + Ci (5.1)

The worst-case interference occurs when the higher priority flows share all links with the path

δi of τi. This means that the set of all interfering flows on δi, SDi = SDie . In that case, using

Theorems 3 and 2, Rie on all links of δi are equal and RLLA
i = Rie + Rhop ∗ hops where Rie′

equals Li. Given that Ci = Li +Rhop ∗ hops, RLLA
i can be given by:

37

∑
∀τj∈SD

i

d(RLLA
i −Rhop ∗ hops+ JRj + J Ije)/Tje ∗ Lj + Ci (5.2)

For FLA, J Ij = Rj − Cj and for LLA J Ije is given by Theorem 3. In the worst case, J Ije =

Rje − Lj = Rj − Rhop ∗ hops − Lj = Rj − Cj . Therefore, J Ije = J Ij . Taking this into account

and comparing Equations 5.1 and 5.2, the only difference between FLA and LLA are the terms

Lj and Cj , and the routing delay in the summation. Since Cj = Lj +Rhop ∗ hops, and hops ≥ 1

then Lj < Cj , and since the routing delay has a negative sign in the numerator of the summation,

therefore, RLLA
i < RFLA

i and our analysis gives a tighter bound compared to FLA. For the case

when there is no interference, RFLA
i = Ci and RLLA

i = Li + Rhop ∗ hops = RFLA
i . Since in

the presence of interference, RLLA
i < RFLA

i , and in the absence of interference, RLLA
i = RFLA

i ,

then RLLA
i ≤ RFLA

i .

5.2 An Illustrative Example

We use Figure 3.2 as an illustrative example to show the benefits of LLA versus the FLA [33, 34].

Recall that the flows in Figure 3.2 have the data in Table 3.1, and the following priorities: P1 >

P2 > P3 > P4 > P5 > P6. Table 5.1 shows the worst-case latencies from FLA and LLA

for all the flows. We observe that the results from LLA are less than or equal to the upper

bounds computed by FLA. One of the interesting cases in Table 5.1 is for τ6, which results in an

unschedulable flow when using FLA. We elaborate the computation steps for this flow in more

detail.

According to FLA, τ6 has direct interference with the flows SD6 = {τ2, τ3, τ4, τ5}, and indirect

38

interference with SI6 = {τ1}. Assuming Rhop = 1, RFLA
6 according to [33] is given by:

C1 = L1 +Rhop ∗ 1 = 3

C2 = L2 +Rhop ∗ 2 = 4

RFLA
2 =

∑
∀τj∈SD

2

d
RFLA

2 + JRj
Tj

e ∗ Cj + C2

= dR
FLA
2

8
e ∗ 3 + 4 = 7

C3 = C4 = C5 = L3 +Rhop ∗ 1 = 3

C6 = L6 +Rhop ∗ 5 = 14

RFLA
6 =

∑
∀τj∈SD

6

d
RFLA

6 + JRj + JIj
Tj

e ∗ Cj + C6

= dR
FLA
6 + 3

8
e ∗ 3 + dR

FLA
6

8
e ∗ 3 ∗ 3 + 14 (5.3)

Notice that Equation 5.3 will never reach a fixpoint; hence, it has no solution. In every iteration

of the equation, RFLA
6 will increase by more than 8, hence, never leading to a fixpoint. The

reason is that 4 flows interfere with τ6 each with a basic latency of 3 and period 8. This means

that all 4 flows consume all bandwidth, i.e. the utilization of the links exceeds a 100%, and the

flits of τ6 can never be sent. Thus, τ6 is not schedulable for any deadline. This occurs because

FLA assumes that τ6 suffers simultaneous interference from τ2, τ3, τ4 and τ5 on all links along

its route. This is certainly not the case as shown in Figure 3.3. In fact, the worst-case latency of

τ6 can be computed, but it requires performing the analysis at the links.

39

Using LLA, the worst-case latency of τ6 is given by:

R2(v3,v2)
=

∑
∀τj∈SD

2(3,2)

d
R2(v3,v2)

+ JRj

Tj
e ∗ Lj + L2

= d
R2(v3,v2)

8
e ∗ 2 + 2 = 4

R2(v2,v5)
= R2(v3,v2)

= 4

RLLA
2 = R2(v2,v5)

+Rhop ∗ 2 = 4 + 1 ∗ 2 = 6

RLLA
6 = 39 + 1 ∗ 5 = 44 (5.4)

We can see from Equation 5.4 and Figure 3.3 that τ6 indeed has a worst-case latency of 44 time

Flow τ1 τ2 τ3 τ4 τ5 τ6

FLA 3 7 3 3 12 -

LLA 3 6 3 3 6 44

Table 5.1: Analysis results.

units, and it is schedulable. This provides a simple example where LLA performs better than

FLA.

40

Chapter 6

Simulator

To evaluate the effectiveness of LLA, we implement a cycle-accurate simulator for a real-time

NoC research, which we call UWNOC. The simulator uses SystemC, and it provides the ability

to experiment with different real-time NoC designs that includes mesh size, buffer size, router

designs, priority-aware routing protocols, and so on. It also allows deploying multiple applica-

tions with different priorities on the NoC. In this chapter, we describe the implementation of the

UWNOC, and through a simple example, we illustrate how to use UWNOC.

6.1 UWNOC Features and Capabilities

UWNOC is a modular simulator implemented in SystemC. Parameters such as topology size,

buffer sizes, number of deployed applications, and also their characteristics are configurable in

the simulator. UWNOC assumes the mesh topology and the size of mesh is configurable by the

user. The routing and switching policies are based on a prioritized flow model. The simulator

outputs the latency of deployed flows on the NoC. Due to its modular design, the simulator may

be extended to include new topologies or routing policies.

41

6.2 Configuration

The user can configure the following parameters:

• Topology size: the mesh size is configurable, for example size equal to 4 defines a 4∗4 2D

mesh NoC.

• Number of applications: configurable number of applications can be mapped to the NoC.

• Type of applications: applications can be sender or receiver. The sender application acts

as a communication source and it sends a message to a receiver application which acts as

the communication destination.

• Buffer size: the size of buffers inside the routers can be modified based on the application

requirements.

6.3 Switching Policy

The simulator supports wormhole switching in which packets are divided into flits. Each packet

consists of three different types of flits:

• Head flit: this is the first flit of packet and shows the start of the packet.

• Data flit: all flits following the header flit are data flits except the last one.

• Tail flit: this is the last flit and shows the end of the packet.

6.4 Routing Policy

Minimum random shortest path algorithm is applied for mesh topology to statically choose the

flow route. Each router in the NoC has a queue per priority level. Routing starts from the

42

highest priority communication flow and lower priority flows can get blocked with higher ones.

Applying this method provides us the capability to observe and measure the effect of interference

from higher priority flows on the lower priority ones.

6.5 Communication Time Measurement

The simulator can measure the communication time of the communication tasks. This is done by

incorporating timestamps into flits. For periodic communications, the latency can be measured in

different periods and the maximum value is reported as the worst-case communication latency.

The result of the simulator measurement verifies a lower bound of latency for FLA and LLA

analyses result.

6.6 Simulator Extension

For deploying applications with different properties and communication and computation mod-

ules, the user can tune several parameters such as sender and receive modules, and the routing

policy.

6.6.1 Task

Tasks are computational modules mapped onto cores of the NoC. Tasks communicate with each

other by sending communication messages through the NoC, which are characterized by the

communication flow. Each task has two concurrent modules: the sender and the receiver. For

our simulator Task.cpp represents the task module.

43

Sender Module

Sender module is a function that can be implemented within tasks and its application is to gen-

erate flows to be sent out to a particular destination. In other words, it works as the flow source

node. Based on the specification of applications which comes from application.config, if there

is a sender module in a particular node, the sender function inside the task is activated and a

SystemC SC THREAD is instantiated for this purpose. The following code snippet shows the

way that is done.

SC_THREAD(send);

sensitive<<clock.pos();

Receiver Module

Receiver module (receiver function) works as a sink and it already exists in all NoC nodes.

Whenever there is a flit targeted to that particular node to which the task is mapped, the receiver

module accepts that flits and does the required processing.

6.6.2 Router

Router has connections to tasks and input/output ports. It also has a look-up table that stores the

routing information for different communication flows.

6.7 Configuration Files

Simulator accepts two command line input files, the application configuration file and the router

configuration file. In the following we explain each of these files.

44

6.7.1 Application Configuration

The following Figure 6.1 shows an example of application configuration file. This file contains

the size of mesh in its first line. The second line explains that two sender applications are mapped

to node zero. Line 3 expresses that the first application mapped to node 0. The numbers in line

3 are the priority, the period, the basic link latency, and the destination of the flow, respectively.

Line 4 shows the characteristics of the second application mapped to node 0.

1 4

2 0 2

3 1 375 250 1

4 5 750 250 2

5 1 1

6 2 375 250 2

7 2 2

8 3 375 250 3

9 6 750 250 3

10 3 2

11 4 375 250 7

12 7 750 250 7

13 7 2

14 8 750 250 8

15 12 500 200 8

Figure 6.1: Application configuration file.

45

6.7.2 Router Configuration

The router configuration file explains the contents of the routers look-up tables. Figure 6.2 shows

an example of router configuration file. In this example, each line shows the configuration for

a specific router. Here we have four routers, and five flows in the system. The first entry in the

first line is equal to 1, which means that router 1 sends the flits of flow with priority 1 to its

east output port. We assume this assignment of numbers to ports: North(0), East(1), South(2),

West(3), Core(4), and 5 means undefined.

1 1 5 5 5 1

2 4 1 5 5 1

3 5 4 1 5 4

4 5 5 4 2 5

Figure 6.2: Router configuration file.

6.8 An example with simulator

We provide a simple example describing the configuration files for a sample set of flows. Figure 6.3

τ1

τ2τ3

v0 v1

v2 v3

Figure 6.3: Simulator example.

46

shows a 2*2 NoC with three flows. As an example, τ1’s source is v1 and its destination is v3.

The corresponding Application.config for the Figure 6.3 with arbitrary flow characteristics is as

Figure 6.4.

Line 2 explains three flows are mapped to v0. The characteristics of these three flows are being

1 2

2 0 3

3 1 375 250 2

4 2 750 250 3

5 3 750 250 3

Figure 6.4: Application configuration.

provided in the lines 3-5.

Figure 6.5 shows the router configurations. The first column is the line numbering. As an

example, in line 2, which is for router v1, the first 5 means that the decision of this router for flow

τ1 is undefined. The number 2 in the line 2 means that this router sends the flits of τ2 to the south

output port.

1 2 1 2

2 5 2 5

3 4 5 1

4 5 4 4

Figure 6.5: Router configuration.

47

After setting up the simulator with the proper input files, the following results are the latency

measurements extracted from the simulator.

Flow WC-L

τ1 251

τ2 252

τ3 752

Table 6.1: Simulator result.

48

Chapter 7

Multimedia Application Case Study

7.1 Case study: Set-top Box

We experiment with a dual input channel set-top box application. This case study models com-

mon digital video recorders such as Cisco’s Explorer 8300HD DVR that allow recording of an

input video stream to the hard disk while simultaneously watching another independent input

video stream. The second video stream can be a previously recorded video or one directly from

the second input channel. For our case study, we implement the encoding of a video stream

from one input channel, and the decoding of a video stream from the hard disk on a multicore

with the real-time NoC. This allows both saving and viewing of the video streams with a higher

priority given to the viewing. To observe the effect and impact of interferences on the latencies,

we implement a cycle-accurate simulator of the NoC using SystemC.

This simulator models the cores, priority-aware routers, and the interconnect. Figure 7.1

shows the block diagram of this application. We annotate this diagram to show the encoder that

writes to the hard disk, and the decoder that outputs to the display. Note that we use the MPEG2

standard in this experiment. The encoder consists of the tasks: Source, Motion Estimation, DCT

Estimation, Transform, Quantize, VLE, iQuantize, iTransform, and Disk.

49

Source
Input Ch1

Motion
Estimation

DCT
Estimation Transform

VLE

iQuantize iTransform DiskQuantize
1 3 4 8 7

7

6 5 9

MPEG2 Encoder

VLD iQuantize iDCT
Source
Disk

1 2 3 4
Motion
Comp.

8

MPEG2 Decoder

a b c d e f g h

e

i j lk m

Figure 7.1: Set-top box block diagram.

Except for Quantize and VLE which are mapped onto the same core, only one task is mapped

per core as shown in Figure 7.2.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
NoC

Mapping

τa τb τcτf
τg
τhτiτj

τe
τd

τk τvisual

Figure 7.2: Set-top box mapping.

50

The decoder is composed of: Source, VLD, iQuantize, iDCT, and Motion Compensation. We

map each decoder task on a separate core. We parallelize the encoding and the decoding, and

map them to separate cores on the NoC. We also add source and destination tasks for a graphical

user interface visualization, represented as τvisual in Figure 7.1. We indicate the mapping on

the block as the number, and use letters to indicate the flows on the adjacent mapped NoC. For

example, the Motion Estimation block is mapped onto core 3, with a flow τe. Figure 7.2 describes

the mapping and the flows on the NoC.

7.2 Case Study Result

Table 7.1 shows the flow characteristics of the different tasks.

Flow P L T WC-L LLA FLA

Source-VLD 1 250 375 251 251 251

VLD-iQuant 2 250 375 251 251 251

iQuant-iDCT 3 250 375 251 251 251

iDCT-MC 4 250 375 251 251 251

Source-ME 5 250 750 1002 2252 -

ME-DCT Estim. 6 250 750 751 751 1004

DCT Estim.-Trans. 7 250 750 751 751 1004

Trans.-Quant/VLE 8 250 750 251 251 251

Quant/VLE-iQuant 9 250 750 251 251 251

iQuant-iTrans. 10 250 750 251 251 251

iTrans.-Disk 11 250 750 251 251 251

Source-Screen 12 200 500 454 1954 -

Table 7.1: Case study data.

51

According to LLA, all flows are schedulable while two are unschedulable for FLA. For flows

that do not suffer any interference, LLA and FLA have equal bounds, otherwise, LLA has tighter

bounds. LLA performs as an upper bound to the measured worst-case latency (WC-L) for all

flows.

52

Chapter 8

Experimentation Results

We present a quantitative comparison between the proposed LLA and FLA.

8.1 Experimentation

The experiment setup involves changing a number of factors as shown in Table 8.1 to assess

their effect on the analysis. According to [29], approximately 60% of NoC designs use mesh

and torus topology. Consequently, we experiment with a 4 × 4, and 8 × 8 mesh topologies.

The basic link latency of a flow is randomly chosen from a uniform distribution in the range

[16, 1024]. We define the link utilization of a flow τi as Ui = Li/Ti. We vary the link utilization

between [0.4, 0.65] in steps of 0.05. The deadline Di varies between [0.7, 1.0] in steps of 0.1 as a

ratio of the period Ti. The number of flows in the network range between [10, 60] in steps of 10.

Combining these factors, we have 336 different configurations of U , D, mesh size and number of

flows. For each configuration, we generate 1000 test cases. Each test case has a random mapping

of the source and destination nodes of the flows, and each flow is routed using a shortest path

algorithm. If there exists multiple shortest paths for a flow, one of them is randomly chosen.

Our metrics for evaluation are the following:

53

Factor Variation

Mesh size 4× 4, 8× 8

Basic link latency Li random from a uniform distribution [16, 1024]

Link utilization Ui [0.4, 0.65] in steps of 0.05

Deadline Di [0.7, 1.0] in steps of 0.1 as a ratio of Ti
Number of flows [10, 60] in steps of 10

Table 8.1: Experiment setup.

• Ratio of average worst-case latencies: For each test case, we compute the worst-case

latency of each flow for LLA and FLA. We compute the average of the worst-case latencies

for both analyses in each test case. For each configuration, we have 1000 different values.

The ratio of each pair of latencies shows the tightness of LLA’s results when compared to

FLA.

• Ratio of unschedulable flows: For each test case, we compute the number of unschedu-

lable flows for LLA and FLA. A flow is unschedulable in one of two cases: 1) total worst-

case latency of its route is larger than its deadline, or 2) no route is available that satisfies

the bandwidth requirements of the flow i.e. any available route to the flow will require a

link utilization of more than a 100%. The ratio of the number of unschedulable flows in

each test case measures the ability of LLA to improve schedulability compared to FLA.

Figure 8.1 shows the ratio of average worst-case latencies for LLA and FLA against the

number of flows for all 336 configurations. The lines in the graph show the mean value across all

test cases of the same configuration. Although, all data points are in the range [0.0,1.0], meaning

that LLA always provides a latency less than or equal to FLA, the mean lines provide insight to

the general trend for any configuration as the number of flows increase. Initially, for 10 flows,

the ratio of latencies is large in the range of 0.8 to 1.0. As the number of flows increase, the ratio

decreases (larger difference between the LLA and FLA). The reason for this is that increasing

the number of flows leads to more interferences, and as the interferences increase, the analytical

54

results from LLA becomes tighter than FLA. Ratio decreases at a lower rate (lines closer to the

top) for configurations with higher link utilization. In these configurations, the capability of the

NoC to accommodate more flows decreases as the number of flows increase, thus resulting in a

smaller difference between LLA and FLA.

Number of Flows

A
ve

ra
ge

 R
at

io
 o

f L
at

en
ci

es
 o

f L
LA

 to
 F

LA

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60

Mesh
Size

4
8

Figure 8.1: Ratio of latencies against the number of flows.

Figure 8.2 shows the ratio of average worst-case latencies of LLA to FLA against the link

utilization. Increasing the link utilization beyond 0.5 decreases the ratio of the average worst-case

latencies. This is because increasing the utilization means that the period of each flow decreases.

When the period decreases, a larger number of higher priority flits preempt lower priority flits.

This leads to increased interference, which in turn leads to a tighter analysis, and a smaller ratio.

There is an interesting observation in this figure where the ratio of latencies decreases below a

0.5 link utilization. This happens because the period in these cases is greater than twice the basic

55

link latency. Therefore, an interference between two flows of equal link latencies will only lead

to one higher priority packet preempting the lower priority one. This decreases the time available

for interference on a successor link, which minimizes the aggregated worst-case latency of LLA.

Link Utilization

A
ve

ra
ge

 R
at

io
 o

f L
at

en
ci

es
 o

f L
LA

 to
 F

LA

0.0

0.2

0.4

0.6

0.8

1.0

0.40 0.45 0.50 0.55 0.60 0.65

Mesh
Size

4
8

Figure 8.2: Ratio of latencies against the link utilization.

Figure 8.3 shows the ratio of unschedulable flows for LLA to FLA against the number of

flows. Starting from 10 flows, increasing the number of flows up to 30 decreases the ratio of

unschedulable flows because LLA accommodates more flows to meet their timing requirements.

In general, beyond 30 flows, the difference between LLA and FLA is maintained, however, both

increase leading to a slightly smaller ratio. 4 × 4 meshes with high link utilization, and lower

deadlines because the number of unschedulable flows increases for both LLA and FLA leading

to higher ratios.

56

Number of Flows

R
at

io
 o

f U
ns

ch
ed

ul
ab

le
 F

lo
w

s
of

 L
LA

 to
 F

LA

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60

Mesh
Size

4
8

Figure 8.3: Ratio of unschedulable flows against the number of flows.

Figure 8.4 shows the ratio of unschedulable flows of LLA compared to FLA against link

utilization. Increasing the link utilization beyond 0.5, maintains the ratio of unschedulable flows

at nearly a constant ratio. This ratio is even less, below a 0.5 link utilization. The reason is the

same as the one for the behavior in Figure 8.2. When the period is more than double the basic

latency, interference between flows with equal link latencies leads to decreasing the probability

of a lower priority packet suffering interference on a successor link.

57

This leads to the minimization of the overall worst-case latency of a flow and, hence, the

schedulability of more flows. Configurations with a mesh size 8 × 8 have generally smaller

ratios. In these configurations, the larger size of the NoC means longer paths for flows, which

leads to a more prominent effect of the tightness of LLA compared to FLA.

Link Utilization

R
at

io
 o

f U
ns

ch
ed

ul
ab

le
 F

lo
w

s
of

 L
LA

 to
 F

LA

0.0

0.2

0.4

0.6

0.8

1.0

0.40 0.45 0.50 0.55 0.60 0.65

Mesh
Size

4
8

Figure 8.4: Ratio of unschedulable flows against the link utilization.

Figure 8.5 shows the average analysis time for each configuration against the number of flows

for both LLA and FLA. The trend of the analysis is the same for both LLA and FLA. This means

that when the interference is high for a certain configuration, the analysis time increases for LLA

and FLA. The graph shows that the analysis time for LLA is approximately double that of FLA.

We find this to be reasonable for the quality of results delivered by LLA. The average analysis

time over all test cases for LLA is 66.2 mS and 38.2 mS for FLA. The maximum analysis time

recorded for FLA is 429 mS while it is 619 mS for LLA.

58

Number of Flows

A
na

ly
si

s
T

im
e

[m
S

]

0

50

100

150

200

10 20 30 40 50 60

LLA
FLA

Figure 8.5: Analysis time against the number of flows.

In summary, for all 336, 000 test cases, the average worst-case latency is reduced by 31.7%,

and the number of unschedulable flows is reduced by 13.7%. The ratio of unschedulable flow

and ratio of worst case latencies never go beyond 1.0 for all test cases. This means that LLA

is at worst the same as FLA, which verifies our tightness analysis. The analysis time of LLA is

on average double that of FLA but still below one second. We use the Wilcoxon matched pairs

test to reason about the significance of our results. The p-value for both the analysis, and the

schedulability is less than 2.2× 10−16.

59

Chapter 9

Conclusion

This thesis presents an analysis that determines the worst-case latencies of communication across

a PAR NoC. By performing this analysis at the link-level, we provide tighter upper-bounds than

an existing technique that performs its analysis at the flow-level (FLA). Similar to FLA, LLA

accounts for direct and indirect interferences from other communication flows; however, it also

incorporates the effect of pipelined transmission across the NoC that FLA does not incorporate.

9.1 Contributions

We show that LLA provides results that are either tighter or equivalent to that of FLA. We

illustrate this with an example that for a fixed topology, task mapping, and their respective paths,

the number of schedulable flows when using LLA is higher than FLA. We experiment with

synthetic benchmarks to show the strengths of LLA. Our results show an average improvement

over FLA by approximately 31% for the worst-case latency estimate, and 13% in schedulability

of flows. Another advantage of LLA is that it can be used for selecting paths that flows take

in the NoC to improve schedulability. To further illustrate the application of LLA, we apply

our analysis to a set-top box case study. In this case study, according to LLA, all flows are

60

schedulable while two are unschedulable for FLA. For flows that do not suffer any interference,

LLA and FLA give the same estimates, otherwise, LLA has tighter bounds.

9.2 Future Work

LLA assumes the communication flows are already mapped onto the NoC, and the flow priori-

ties are known. We understand that a proper choice of the mapping and priority assignment has

a considerable impact on the schedulability of the flows. In other words, improper mapping or

priority assignment may result in low schedulability. Hence, our future work entails investigat-

ing mapping and priority assignment techniques that focus on maximizing schedulability of the

flows.

Another area of future work observes that LLA only focuses on worst-case latencies for com-

munications. However, applications consist of computation tasks that generate communication

across the NoC. The communication is modelled as these flows, but LLA at the moment does not

incorporate the latency of the computation tasks. Therefore, we plan to develop a thorough anal-

ysis that considers both communications and computations tasks, and provides the worst-case

latency analysis for the entire application.

61

References

[1] Neil Audsley, Alan Burns, Thomas Richardson, Ken Tindell, and Andy Wellings. Applying

new scheduling theory to static priority pre-emptive scheduling. Software Engineering

Journal, 8(5):284 –292, sep 1993.

[2] Luca Benini and Micheli De Micheli. Networks on Chips: Technology And Tools. The

Morgan Kaufmann Series in Systems on Silicon. Elsevier Morgan Kaufmann Publishers,

2006.

[3] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of network-

on-chip. ACM Comput. Surv., 38, June 2006.

[4] Tobias Bjerregaard and Jens Sparso. A Scheduling Discipline for Latency and Bandwidth

Guarantees in Asynchronous Network-on-Chip. In Proceedings of the 11th IEEE Interna-

tional Symposium on Asynchronous Circuits and Systems, pages 34–43, Washington, DC,

USA, 2005. IEEE Computer Society.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-

tion to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[6] Bui D. Bach, Rodolfo Pellizzoni, and Marco Caccamo. A slot-based real-time scheduling

algorithm for concurrent transactions in noc. In Embedded and Real-Time Computing Sys-

tems and Applications (RTCSA), 2011 IEEE 17th International Conference on, volume 1,

pages 329 –338, aug. 2011.

62

[7] William J. Dally and Brian Towles. Route packets, not wires: On-chip interconnection

networks, 2001.

[8] William J. Dally and Brian Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann, 2004.

[9] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Networks: An Engi-

neering Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[10] Edwin Rijpkema et. al. Trade-offs in the Design of a Router with Both Guaranteed and

Best-Effort Services for Networks on Chip. Computers and Digital Techniques, IEEE Pro-

ceedings -, 150(5):294–302, sept. 2003.

[11] Gustavo B. Figueiredo, Nelson L. S. da Fonseca, and José A. S. Monteiro. A Minimum

Interference Routing Algorithm with Reduced Computational Complexity. Computer Net-

works, 50:1710–1732, August 2006.

[12] Crispı́n Gómez, Marı́a E. Gómez, Pedro López, and José Duato. Reducing packet dropping

in a bufferless noc. In Proceedings of the 14th international Euro-Par conference on Par-

allel Processing, Euro-Par ’08, pages 899–909, Berlin, Heidelberg, 2008. Springer-Verlag.

[13] Roch A. Guerin, Ariel Orda, and Douglas Williams. QoS Routing Mechanisms and OSPF

Extensions. In Proceedings of IEEE GLOBECOM, pages 1903–1908, 1996.

[14] Jingcao Hu and Radu Marculescu. Dyad - smart routing for networks-on-chip. In

ACM/IEEE Design Automation Conference, pages 260–263, 2004.

[15] Dilip D. Kandlur, Kang G. Shin, and Domenico Ferrari. Real-Time Communication in

Multihop Networks. IEEE Trans. Parallel Distrib. Syst., pages 1044–1056, 1994.

[16] Koushik Kar, Murali Kodialam, and T. V. Lakshman. Minimum Interference Routing of

Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering Application. IEEE Journal

on Selected Areas in Communications, page 2579, 2000.

63

[17] Hany Kashif, Hiren D. Patel, and Sebastian Fischmeister. Using Link-level Latency Anal-

ysis for Path Selection for Real-time Communication on NoCs. pages 499–504, January

2012.

[18] Nikolay Kavaldjiev, Gerard J. M. Smit, Pierre G. Jansen, and Pascal T. Wolkotte. A Virtual

Channel Network-on-Chip for GT and BE Traffic. In Proceedings of the IEEE Computer

Society Annual Symposium on Emerging VLSI Technologies and Architectures, pages 211–

221, Washington, DC, USA, 2006. IEEE Computer Society.

[19] Andrei Radulescu Kees Goossens, John Dielissen. Æthereal Network on Chip: Concepts,

Architectures, and Implementations. IEEE Design and Test, 22(5):414 – 421, 2005.

[20] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-

cations. Kluwer Academic Publishers, 1997.

[21] Insup Lee, Joseph Y-T. Leung, and Sang H. Son. Handbook of Real-Time and Embedded

Systems. Chapman & Hall/CRC, 1st edition, 2007.

[22] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. J. ACM, 20(1):46–61, January 1973.

[23] Jane W. S. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st

edition, 2000.

[24] Zhonghai Lu and Axel Jantsch. TDM Virtual-Circuit Configuration for Network-on-Chip.

IEEE Transactions on Very Large Scale Integrated Systems, 16:1021–1034, August 2008.

[25] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. Guaranteed Bandwidth

Using Looped Containers in Temporally Disjoint Networks within the Nostrum Network on

Chip. In Proceedings of the conference on Design, automation and test in Europe - Volume

2, DATE’04, pages 20890–, Washington, DC, USA, 2004. IEEE Computer Society.

[26] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in direct

networks. Computer, 26(2):62–76, February 1993.

64

[27] Abhay K. Parekh and Robert G. Gallager. A Generalized Processor Sharing Approach to

Flow Control in Integrated Services Networks: The Single Node Case. IEEE/ACM Trans.

Netw., pages 344–357, 1993.

[28] Abhay K. Parekh and Robert G. Gallager. A Generalized Processor Sharing Approach to

Flow Control in Integrated Services Networks: The Multiple Node Case. IEEE/ACM Trans.

Netw., pages 137–150, 1994.

[29] Erno Salminen, Ari Kulmala, and Timo D. Hamalainen. Survey of Network-on-chip Pro-

posals. White Paper, OCP-IP, 2008.

[30] Sumant Sathe, Daniel Wiklund, and Dake Liu. Design of a switching node (router) for

on-chip networks. In ASIC, 2003. Proceedings. 5th International Conference on, volume 1,

pages 75 – 78 Vol.1, oct. 2003.

[31] Julien Schmaltz and Dominique Borrione. A generic network on chip model. In Theorem

Proving in Higher Order Logics, volume 3603 of Lecture Notes in Computer Science, pages

310–325. Springer Berlin, 2005.

[32] Zheng Shi. Real-Time Communication Services for Networks on Chip. PhD thesis, The

University of York, UK, 2009.

[33] Zheng Shi and Alan Burns. Real-Time Communication Analysis for On-Chip Networks

with Wormhole Switching. In Proceedings of the Second ACM/IEEE International Sym-

posium on Networks-on-Chip, NOCS ’08, pages 161–170, Washington, DC, USA, 2008.

IEEE Computer Society.

[34] Zheng Shi and Alan Burns. Schedulability Analysis and Task Mapping for Real-Time on-

Chip Communication. Real-Time Syst., 46:360–385, December 2010.

[35] Ganapati Srinivasa. Evolution of the server processor/platform architecture and the critical

role of interconnect and future challenges. In Proceedings of the Third International Work-

shop on Network on Chip Architectures, NoCArc ’10, pages 1–1, New York, NY, USA,

2010. ACM.

65

[36] Subhash Suri, Marcel Waldvogel, and Priyank Ramesh Warkhede. Profile-Based Rout-

ing: A New Framework for MPLS Traffic Engineering. In Proceedings of International

Workshop on Quality of Future Internet Services, COST 263, pages 138–157, London, UK,

2001. Springer-Verlag.

[37] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben

Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert Ma, Arvind

Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amaras-

inghe, and Anant Agarwal. The Raw Microprocessor: A Computational Fabric for Software

Circuits and General-Purpose Programs. Micro, IEEE, 22(2):25 – 35, mar/apr 2002.

[38] Jens Spars Tobias Bjerregaard. Implementation of Guaranteed Services in the MANGO

Clockless Network-on-Chip. IEEE Proceedings of Computing and Digital Techniques,

153:217–229, 2006.

[39] Daniel Wiklund and Dake Liu. SoCBUS: Switched Network on Chip for Hard Real Time

Embedded Systems. In Proceedings of the 17th International Symposium on Parallel and

Distributed Processing, IPDPS ’03, pages 78.1–, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[40] Pascal T. Wolkotte, Gerard J. M. Smit, Gerard K. Rauwerda, and Lodewijk T. Smit. An

energyefficient reconfigurable circuit switched network-on-chip. In Proceedings of the 19th

IEEE International Parallel and Distributed Processing Symposium (IPDPS05) - 12th Re-

configurable Architecture Workshop (RAW 2005), p. 155a, ISBN, pages 0–7695, 2005.

66

	List of Tables
	List of Figures
	Introduction
	Main Contribution
	Thesis Structure

	Background and Related Work
	Networks on Chip
	NoC Basics
	Classifications

	Real-Time Service Implementation Related Work
	Resource reservation
	Real-Time Service

	Real-Time Communication Categories
	Non Real-Time Communication
	Soft Real-Time NoCs
	Hard Real-Time NoCs

	Real-Time Communication Related Work
	Resource Reservation
	Runtime Arbitration
	Summary

	Description of System model
	Network Model and Architecture
	System Model
	Inter-Relationships between Traffic-Flows

	Illustrative Example

	Flow Level Analysis (FLA)
	Definitions
	Worst-case Latency
	An Illustrative Example

	Link Level Analysis (LLA)
	Link-level Analysis (LLA)
	Worst-case Latency with Direct Interference
	Worst-case Latency of a Route
	Worst-case Latency with Indirect Interference
	Tightness Analysis

	An Illustrative Example

	Simulator
	UWNOC Features and Capabilities
	Configuration
	Switching Policy
	Routing Policy
	Communication Time Measurement
	Simulator Extension
	Task
	Router

	Configuration Files
	Application Configuration
	Router Configuration

	An example with simulator

	Multimedia Application Case Study
	Case study: Set-top Box
	Case Study Result

	Experimentation Results
	Experimentation

	Conclusion
	Contributions
	Future Work

	References

