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Abstract

Centrally controlled search engines will not be sufficient and reliable for index-

ing and searching the rapidly growing World Wide Web in near future. A better

solution is to enable the Web to index itself in a decentralized manner. Existing

distributed approaches for ranking search results do not provide flexible searching,

complete results and ranking with high accuracy. This thesis presents a decen-

tralized Web search mechanism, named DEWS, which enables existing webservers

to collaborate with each other to form a distributed index of the Web. DEWS

can rank the search results based on query keyword relevance and relative impor-

tance of websites in a distributed manner preserving a hyperlink overlay on top of a

structured P2P overlay. It also supports approximate matching of query keywords

using phonetic codes and n-grams along with list decoding of a linear covering code.

DEWS supports incremental retrieval of search results in a decentralized manner

which reduces network bandwidth required for query resolution. It uses an efficient

routing mechanism extending the Plexus routing protocol with a message aggre-

gation technique. DEWS maintains replica of indexes, which reduces routing hops

and makes DEWS robust to webservers failure. The standard LETOR 3.0 dataset

was used to validate the DEWS protocol. Simulation results show that the rank-

ing accuracy of DEWS is close to the centralized case, while network overhead for

collaborative search and indexing is logarithmic on network size. The results also

show that DEWS is resilient to changes in the available pool of indexing webservers

and works efficiently even in the presence of heavy query load.
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Chapter 1

Introduction

There is no doubt that one of the biggest breakthroughs in the world of science and

technology was the introduction of the Internet. With the Internet, we are able to

connect with other people in real time even to those who are a thousand miles away

from us. The Internet enables everyone to know about the latest in fashion, current

events, politics, music, etc. Not only that, we can now make transaction with other

businesses or other people in just a few clicks. Search engines (e.g., Google, Yahoo)

bring the Web to the hands of peoples and present requested information on the

fly with only few search keywords. However, it is difficult to crawl and index the

whole Web by a centralized search engine as the Internet is growing on its own pace,

which mandates a search engine for indexing and searching in distributed manners.

Few research works are performed on the direction of distributed ranking of

search results based on both DHT (Distributed Hash Table) and non-DHT based

overlay utilizing Google’s PageRank or Information retrieval techniques. These

techniques do not provide complete search results with high accuracy of ranking. For

this reason, existing approaches can not be utilized for developing a decentralized

search engine.

The focus of this thesis is to devise an efficient decentralized Web search engine.

We present DEWS (Distributed Engine for Web Search), which provides inde-

pendent indexing, flexible searching and complete results ensuring high accuracy

of ranking in a distributed manner incurring low network and storage overhead.

The concepts presented in this work have been validated through extensive simu-

lation results. We used the standard LETOR 3.0 dataset [31] to drive input of our

simulation.

The organization of the rest of this chapter is as follows. The demand for a

decentralized Web search engine and requirements are presented in Section 1.1.
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Section 1.2 explains the motivation behind this research. The contributions of this

thesis are listed in Section 1.3. Finally, the organization of the thesis is outlined in

Section 1.4.

1.1 Decentralized Web Search

Internet is the largest repository of documents that man kind has ever created.

Voluntary contributions from millions of Internet users around the globe, and de-

centralized, autonomous hosting infrastructure are the sole factors propelling the

continuous growth of the Internet. According to the Netcraft1 Web Server Survey,

around 34 million sites were added to the Internet in June 2012 making the total

to 697.08 million.

Centrally controlled, company owned search engines, like Google, Yahoo and

Bing, may not be sufficient and reliable for indexing and searching this gigantic

information base in near future, especially considering its rapid growth rate. This

explosion in the number of websites is accompanied by a proportional increase in

the number of webservers to host the new content. If these webservers participate

in indexing the Web in a collaborative manner then we should be able to scale with

the searching needs in the rapidly growing World Wide Web.

Figure 1.1 shows the essential components of a search engine. In a centralized

search engine, one or more crawlers fetch webpages from the Web and send them to

a Parser and Indexer module. Parser and Indexer module extracts representative

information from webpages and creates inverted index for each webpage. Inverted

indexes are stored in the Index. Query Processor and Ranking Module interact

with Index to process queries and rank the search results, respectively. Ranking

Module computes rank of the webpages and search results. Query Processor is

responsible for query optimization and evaluation with the help of the Index and

Ranking Module. Search Interface interacts with the users. It receives queries from

users and presents search results to the users with the help of Query Processor.

In a decentralized search engine, these components should be implemented in a

decentralized manner. A decentralized Web search engine should meet the following

requirements:

• Flexible searching: Decentralized Web search engine should provide flexible

searching. By ‘flexible searching’, we refer to a capability of a search mecha-

1Netcraft - http://news.netcraft.com/
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Figure 1.1: Components of a search engine

nism to handle misspelled and partially specified keywords in a query. Users

may not exactly know the keywords for the requested information and may

type misspelled or partially specified keywords. For this reason a search engine

should provide flexible searching with high accuracy of search results.

• High accuracy of search results: A decentralized search engine should be able

to provide requested information with most relevant results. The search engine

should discover the rare or non-popular information as well.

• High accuracy of ranking: The search engine should present the most relevant

information in the first few results. The overall performance of a search engine

depends on how efficiently it determines the relevance of results with the query

keywords and ranks them.

• Distributed indexing: In centrally controlled search engines, crawlers index the

webpages in a single server or cluster of servers. It may not be possible to index

the whole Web using this approach. In a decentralized search engine, each

webserver should index the hosted websites independently in a distributed

manner over the whole Web. This distributed indexing should require low

storage per node and network bandwidth.
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• Low network bandwidth consumption: Search engine should search queries on

the Web with low network overhead. It is possible to route the queries to

the selected webservers utilizing optimal routing paths. Efficient selection of

webservers and determination of routing paths can reduce the overall network

bandwidth and improve response time.

• Incremental retrieval: Users expect to find their queried information within

first few presented search results and do not care about the subsequent re-

sults if they found their queried information. A search engine can optimize the

searching procedure using this searching behavior. A search engine can find

the most relevant information by selecting a smaller set of more important

results. It can find and present more search results if the users are not satis-

fied with the presented results. This approach significantly reduces network

bandwidth.

• Scalability: A decentralized search engine should be scalable as the number

of websites is increasing day by day. Scalability should not affect flexible

searching, accuracy of search results, ranking, network bandwidth and search

response time.

• Robustness: The search engine should be robust to webserver failure. If few

webservers fail, the search engine should be able to route the queries to alter-

native webservers with low network overhead and provide search results with

high accuracy.

1.2 Motivation

Distributed indexing and decentralized searching of the Web are very difficult to

achieve given the bandwidth limitation and response time constraints. In addition

to indexing and searching, a distributed web search engine should be able to rank

the search results in a decentralized manner, which requires global knowledge about

the hyper-link structure of the Web and keyword-document relevance. Predicting

such global information based on local knowledge only is extremely challenging in

any large scale distributed system.

Link-structure analysis and keyword relevance are two widely used webpage

ranking techniques in both centralized and decentralized systems. Existing ap-

proaches for decentralized ranking can be classified into three categories: (a) only
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use link-structure weight, (b) only use keyword relevance, and (c) use both link-

structure and keyword relevance. Approaches that belong to category c are better

than approaches in other categories. Some approaches belong to categories a and c

compute link-structure weight without preserving hyper-link structure which leads

to an inefficient weight computation. The reason is that the webpages don’t get

their actual weight update as in centralized weight computation. Other approaches

from those two categories (a and c) preserve hyper-link structure using non-DHT

(Distributed Hash Table) P2P overlay, which increases network overhead for weight

update and computation. Non-DHT based approaches do not have global knowl-

edge on the number of webpages given a particular keyword which leads to an

approximate value of keyword relevance. Existing decentralized approaches do not

use the concept of incremental retrieval.

In this thesis, we present DEWS, a decentralized web search engine, where

webservers collaboratively index their hosted websites, route queries and rank the

search results. DEWS provides flexible searching with high accuracy of ranking and

search results with low network overhead. DEWS uses a DHT-based P2P overlay of

webservers and preserves the hyper-link structure to compute link-structure weights

and keyword relevances efficiently. DEWS retrieves information incrementally to

reduce network overhead and response time. It is also robust and scalable to meet

the challenges of the growing World Wide Web.

1.3 Contributions

The contributions of this thesis can be summarized as follows:

• We propose a novel technique for enabling the Web to index itself. In our

approach, no external entity is required to crawl and index the Web, rather

webservers can collaboratively create a distributed index of webpages and

respond to user queries.

• Unlike existing approaches for keyword search and distributed ranking, DEWS

supports approximate keyword matching and complete ranking of webpages

in a distributed manner without incurring significant network or storage over-

heads.

• We propose a new route aggregation protocol that extends the original Plexus

routing protocol by adaptively combining routing messages from different
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sources. Each node forwards incoming messages to selective next hop nodes

towards the targets of the incoming messages. This approach significantly

reduces the number of routing messages in the network.

• We also propose a distributed incremental retrieval technique that allows a

user to limit his/her search to a small number of nodes. If additional re-

sults are required a user can progressively query additional nodes. Proposed

mechanism does not incur excessive network overhead and uses structured

routing to forward query messages to well-defined sets of target nodes where

the webpages matching the query keywords are indexed.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2: Background and Related Work

This chapter is divided into three parts. First part presents a discussion on the fac-

tors considered for ranking search results and existing approaches for Web search.

Second part provides a brief discussion on existing decentralized search engines, and

compares them with DEWS. Finally, in the third part, we present some prelimi-

naries for the discussions in the subsequent chapters.

Chapter 3: Framework of DEWS

Chapter 3 presents a layered architecture of DEWS followed by the details of each

layer in a bottom-up manner. This chapter focuses on distributed indexing, query

routing and ranking methodologies in DEWS.

Chapter 4 : Evaluation

Chapter 4 presents performance evaluation of DEWS. We define some performance

metrics and present simulation results to assess efficiency of searching, ranking,

routing, indexing, and robustness.

Chapter 5 : Conclusion and Future Research

Chapter 5 presents summary of contributions and concluding remarks with fu-

ture research directions.
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Chapter 2

Background and Related Work

2.1 Introduction

This chapter introduces the web search ranking factors and presents both central-

ized and decentralized ranking mechanisms. It also briefly discusses some existing

distributed search engines and compares them with our work. Background knowl-

edge on linear binary code, list decoding, Plexus, and other necessary concepts

required in subsequent chapters are briefly presented.

This chapter is organized as follows. Section 2.2 presents the factors for ranking

Web search results. Centralized ranking approaches are discussed in Section 2.3.

Section 2.4 presents the decentralized ranking approaches. We discuss the existing

distributed search engines and compare them with DEWS in Section 2.5. Fi-

nally, preliminaries needed for understanding subsequent chapters are presented in

Section 2.6.

2.2 Web search and ranking factors

This section presents the methodology behind the Web search and the factors con-

sidered for ranking of search results. A search engine crawls and indexes the web-

pages hosted in the Internet all around the World. It maintains inverted indexes

generated from the webpages that are used during the query resolution using a few

search keywords. In general, inverted index contains the information on keywords

and their relevance to particular webpages. The Google search engine uses more

than 200 factors for ranking search results [6]. The ranking factors include weight

computed using hyperlink-structure analysis, keyword relevance to the webpages,
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age of webpages, frequency of webpage updates, amount of content change in web-

pages, popularity of websites, type of contents in the webpages, size of the websites,

and domain name extension. Among the different ranking factors, following two

factors are well-discussed in the literature:

• Hyperlink structure

Link structure analysis is very popular for ranking search results where a

particular resource (e.g., webpage, website or document) gets higher rank if

it is authorized (e.g., linked or referenced) by many other resources. The

key factors for computing link weights include authority-ship from other web-

sites, validity of internal links, intra-site links, anchor text for outgoing links,

validity of outgoing links, etc.

• Keyword relevance

Each webpage is represented by a few keywords and inverted index contains

their relevance to the particular webpages. Keyword relevance is measured

using tf (term frequency), position of a keyword in a webpage (e.g., in URL,

head, body, anchor) and idf (inverse document frequency) of the webpage. tf

is defined as the number of times a keyword appears in a particular webpage.

idf is used to measure whether the keyword is common or rare across all

webpages in the Web. idf for a keyword k is defined as follows:

idf = log
|W |

1 + |{w ∈ W : k ∈ w}|
(2.1)

In the above equation, |W | is the number of webpages in the Web and |{w ∈
W : k ∈ w}| is the number of webpages where the keyword k appears.

2.3 Centralized ranking approaches

This section presents representative centralized approaches in the literature for rank-

ing Web search results.

(a) PageRank and variations

(i) Original PageRank

The most popular and effective link structure analysis algorithm is PageR-
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ank [38]. Google uses PageRank to compute the authority of each crawled

webpage. PageRank of a particular webpage A is computed as follows:

PR(A) = (1− d) + d
i=n∑
i=1

PR(Bi)

Links(Bi)
(2.2)

Here, d is a damping factor, which is usually kept as 0.85, Bi is the ith

webpage that links to page A and Links(Bi) is the number of out-going

links of page Bi.

(ii) Personalized PageRank

Original PageRank algorithm [38] does not consider user preferences (book-

marks or preferred pages) during the computation of PageRank. User

preferences are considered in PageRank by introducing a preference vec-

tor (represents the probabilities of the preferred pages) in Equation 2.2.

PageRank with user preferences can be computed as follows [26]:

PR(A) = (1− d)
k=m∑
k=1

Pk + d

i=n∑
i=1

PR(Bi)

Links(Bi)
(2.3)

Here, m is the number of preferred pages and Pk is the probability of

surfing the kth preferred page from any page (defined in the preference

vector).

(iii) Topic-sensitive PageRank

PageRank [38] does not consider query contexts for ranking the query

results. Topics of the queries are classified into several types (e.g., 16

categories from the Open Directory Project (ODP) [41]) in [25] to incor-

porate the query contexts in PageRank. PageRank vectors for each of the

categories are computed off-line. During query processing, user queries

are classified into the specific categories and PageRank vectors associated

to those categories are applied. In [25], topic or category based PageRank

is computed as follows:

PR(Ac) = (1− d)
k=mc∑
k=1

P c
k + d

i=n∑
i=1

PR(Bc
i )

Links(Bi)
(2.4)

Here, PR(Ac) is the PageRank of page A as a category c, mc is the number

of predefined pages for category c, and P c
k is the probability of kth page

in category c.

9



(iv) Other variations of PageRank

Weighted PageRank [37] groups the URLs into clusters and assign weights

to the clusters, which is very similar to the topic sensistive PageRank.

Original PageRank algorithm does not consider the possibility of brows-

ing visited webpages using back button. BackRank ([14], [35]) modifies

the original PageRank algorithm by adding the possibility of return to the

earlier page by back button. Parallel PageRank approaches (such as [29],

PETSc PageRank [22], and MIKElab PageRank [34]) compute PageR-

ank in parallel to converge quickly. Approximate PageRank algorithms

(such as BlockRank [27], the U-Model [16], and HostRank/DirRank [19])

use higher-level formations such as the inter-connection/linkage between

hosts, domains, servers’ network addresses or directories to compute ap-

proximate PageRank values fast.

(b) HITS

HITS (Hypertext Induced Topic Search) [28] is another well-known ranking

algorithm based on link-structure analysis. HITS employs two scores for each

page: hub score and authority score. The computation of these scores is also

an iterative process similar to PageRank computation. An authority is a page

with many in-links and a hub is a page with many out-links. The intuition is

that a good authority is pointed by many good hubs and a good hub points to

many good authorities. Given a broad query q, HITS finds a set of pages called

‘root set’ and computes another set of pages called ‘base set’ following the in

and out links of the root pages. Pages with high authority and hub scores are

selected first as the query results. HITS performs ranking considering query

contexts. HITS requires more query resolution time than PageRank as HITS

computes the root and base sets during the query evaluation phase.

(c) Hilltop

Hilltop [12] maintains a set of expert documents, which allow to provide query

specific pages in search results. Expert documents are the subset of the crawled

pages, which are topic specific and have links to many non-affiliated (e.g., from

different domains) pages. Key phrases (title, header, anchor, etc. containing at

least one URL) are extracted from the expert documents and maintained in an

inverted index along with unique identifier, type (e.g., header, title, etc.), offset

of the query keyword within the phrase, and URLs to match the query efficiently

and compute the related pages. For a given query q, Hiltop looks up expert
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documents and finds target pages from the expert documents. Hiltop assigns

expert scores based on the number of query keywords each expert document

contains and select k number of expert documents having high expert scores.

From the selected expert documents, the Hiltop algorithm determines the target

score for each URL in the selected expert documents and provides the high

scored target pages as query result. Similar to HITS, Hilltop is slow compared

to the standard PageRank algorithm as it determines the expert documents

and target pages during the query evaluation phase. Hiltop may provide better

query specific results compared to HITS and topic-sensitive PageRank. Hilltop

may perform poorly if adequate expert documents are not available for a specific

query.

(d) SALSA

SALSA [30] computes ranks of web pages combining the approaches of HITS [28]

and PageRank [15]. For a given query, SALSA computes a set of pages using

a search engine (such as Alta-Vista) similar to HITS, which is called base set.

From the base set, another set of pages (super set) is identified following the

links of the base pages. super set can be represented as a bipartite graph G

whose two parts correspond to the hubs and the authorities, where an edge

between hub r and authority s means that there is a hyper-link from r to s.

SALSA employs two random walks for hubs and authorities, respectively where

PageRank employs one random walk. SALSA ignores the intra-domain links. It

provides query specific ranked results similar to HITS. As SALSA uses another

search engine (e.g., AltaVista) for computing base set, the quality of results

from AltaVista has a direct impact on the quality of ranking in SALSA.

2.4 Decentralized ranking approaches

This section presents existing decentralized approaches for ranking Web search re-

sults and compares them with our proposed approach DEWS.

(a) Sankaralingam et al. proposed a distributed PageRank algorithm in [43] for

ranking (HTML) documents available in P2P networks. This approach works

with both DHT and non-DHT based P2P networks. It is assumed that doc-

uments are pointed by other documents as webpages in the Web. At the

beginning of PageRank computation, each peer assigns an initial PageRank

score to the documents hosted by them and sends rank update messages to
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the peers hosting out-linked documents. Suppose peer pi hosts a set of docu-

ments Di={dk} which have out-links to other documents {doutij } hosted by the

peers {poutij }. pi computes PageRank for each document in Di and sends rank

update messages to {poutij }. When a peer receives an update message, it com-

putes PageRank for the targeted documents. If new PageRank score for that

document differs beyond a predefined threshold value from the old value, then

update messages are sent to the peers containing out-linked documents. In this

way, after hundreds of iterations, PageRank algorithm converges. When a new

document is inserted in the network, it is assigned a random score and the

hosting peer sends rank update messages to its out-linked documents. In this

way, incremental PageRank computation is performed to avoid computation for

the whole Web. In this approach, each peer caches addresses of the peers host-

ing the out-linked documents so that peers can send messages to them directly

which helps to compute PageRank efficiently in a distributed manner. Our

proposed approach, DEWS, computes PageRank similarly to this approach

but differs from it as follows: (a) we apply a structured P2P network named

‘Plexus’; (b) Plexus routing is modified and used for routing ranking and adver-

tisement messages in DEWS ; (c) DEWS provides flexible searching; (d) the

concept of incremental retrieval is different, and (e) similar to this approach,

DEWS caches other peers’ addresses as ‘soft-links’.

(b) Shi et al. proposed Open System PageRank in [44] based on structured P2P

networks where each peer can communicate and view other peers’ webpages.

In this approach, webpages are divided into pagegroups using hash code of the

websites. If the system has n peers (rankers) participating in the ranking,

the whole Web is partitioned into n pagegroups and assigned to the rankers.

Each pagegroup has internal links (IL) within the webpages belonging to that

pagegroup. All the links (say ELi) from webpages in a pagegroup (say PGi)

to the webpages in other pagegroups (PGout
i ) are known as external links of

PGi. The computation of PageRank has two phases: a) each ranker computes

PageRank for the pagegroups assigned to it, b) each peer sends update messages

to the peers responsible for the external linked pagegroups. For example, peer

Pi responsible for PGi computes PageRank for PGi using the links ILi initially

and sends update messages to the peers responsible for PGout
i using ELi. After a

number of iterations, this algorithm converges. The computation of PageRank

in this approach is similar to the computation in the original PageRank but
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performed in a decentralized manner. Similar to this approach, we assume

that webservers can communicate through server-to-server communication in a

structured P2P overlay (specifically Plexus) and rank at the granularity level of

website. However, the algorithm [44] does not mention on how the pagegroups

are assigned to peers and peers communicate with each other. In DEWS,

websites are uniformly distributed over the network based on DHT. We use

soft-links so that peers can communicate directly with other peers without

overwhelming the network. DEWS provides flexible searching and incremental

retrieval. The above approach only applies PageRank scores where DEWS uses

both PageRank scores and keyword relevance.

(c) In Juxtaposed Approximate PageRank (JXP) [39], approximate PageRank is

computed in a decentralized manner based on non-structured P2P networks.

JXP does not use any specific webpage-to-peer matching technique and may

assign a webpage to multiple peers. Each peer constructs a local graph based

on the intra-links within the webpages assigned to them. An additional node

(known as world node) is attached to the local graph of a peer to represent

the knowledge of webpages that do not belong to them. The PageRank for

the world node (say, PRwn) is computed as PRwn = 1-PRlg where PRlg is the

summation of PageRank score of all the webpages in the local graph lg. A

peer updates its world node when it meets with another peer. JXP computes

PageRank in two phases: a) each peer constructs local graph including world

node and initializes PageRank for all the webpages belonging to the graph, b)

peers meet together and update PageRank of their webpages and world node

by exchanging and merging their local graphs. JXP uses statistical synopses

(light-weight approximation technique for comparing data between two peers

with out exchanging their contents) to select promising peers to meet. After

a several hundreds of meetings, each webpage gets an approximate PageRank

score. This algorithm has a few problems: a) PageRank scores do not converge

to the centralized PageRank scores due to the lack of global knowledge, b)

correctness of the PageRank scores depend on the number of peer meetings

and choice of peers, c) if the number of peers grows, it requires a large number

of meetings and convergence time which is not a scalable solution, d) same

webpage hosted by different peers may have different PageRank scores, e) use

of non-structured overlay may lead to large network overhead for peer-to-peer

communication. In contrast, we use structured overlay and soft-links which help
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to compute PageRank score very close to the centrally computed PageRank but

in a decentralized manner and compute keyword relevance to rank the search

results. DEWS provides flexible searching and incremental retrieval which are

not offered by JXP.

(d) Wang et al. [47] proposed a distributed ranking approach where webservers

crawl and store only a portion of the Web. Links between webpages stored on

different servers are discarded, which restricts each server to a partial view of

the global link structure. A server computes PageRank (named Local PageR-

ank) only for the webpages that are stored locally based on the partial link

structure. Query results are ordered based on the pre-computed Local PageR-

ank and ServerRank. ServerRank of a webserver is computed as the maximum

or the summation of the Local PageRank in that server. Computation of Server-

Rank in this way may result in assigning higher ranks to the irrelevant pages

just because they are stored in the highly ranked servers. In contrast to this

algorithm, we compute PageRank on the whole Web and keyword relevance

in decentralized manners. We also provide flexible searching and incremental

retrieval.

(e) SiteRank [49] proposed a decentralized system architecture [48] to compute

ranks of Webpages. This approach computes PageRank in three steps: a) com-

putation of siterank, b) computation of local rankings of webpages, c) combina-

tion of the ranking scores using the algebra specified in [9]. In this approach, a

sitegraph is defined using the collection of websites and their internal links. The

assumptions regarding the computation of sitegraph are as follows: a) the size

of the whole Web is only of the magnitude of a dozen of millions, b) it is possi-

ble to compute siterank using the sitegraph even in a low-end PC, c) Web does

not change dramatically so that it is possible to exchange the siterank vector

among the webservers. These assumptions make this approach inappropriate

towards a search engine for gigantic Web because computing global SiteRank

in a centralized manner will not scale with current size of the Web. In contrast,

we compute the PageRank at the granularity level of websites in a decentralized

manner. We also use keyword relevance and rank the websites using both the

PageRank and keyword relevance.
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2.5 Web search engines

This section presents existing decentralized Web search engines and compares them

with DEWS.

(a) MINERVA

MINERVA [11] is a DHT-based (Chord [45]) decentralized Web search engine.

In MINERVA, every peer is autonomous and maintains a local index. Each

peer acts like a crawler and posts (using DHT) a small amount of metadata

corresponding to the representative keywords of documents. The peer, indexing

a particular term, maintains a PeerList of all postings for that term from across

the network. Posts contain contact information about the peer who posted this

summary together with statistics to calculate ranking score for a term. If a

query is initiated in a peer, it retrieves the PeerList for all the query terms by

DHT lookups. It selects and contacts with top-k peers from each PeerList using

a distributed top-k algorithm [36] so that all the selected peers can be queried

in parallel. Global document frequency gdf is computed using the Hash sketch

technique [20]. In that approach, every peer includes a hash sketch representing

its index list for the respective term when publishing its (term-specific) Post,

so that a directory peer can compute an estimate of gdf for the terms it is

responsible for (as the hash sketch synopses representing the index lists of all

peers for a particular term are all sent to the same directory peer). The querying

peer collects the gdf s as piggybacked information when retrieving the PeerLists

from the directory peers and includes gdf values when sending the query to

peers selected in the query routing phase. These remote peers can use the

gdf estimates on-the-fly (as weights during index scans) to compute their local

query results, to produce globally comparable scores. The differences between

MINERVA and DEWS are as follows: a) DEWS computes and uses PageRank

and BM25 scores whereas MINERVA only employs document frequencies, b)

DEWS provides flexible searching which may not be possible in the Chord

overlay in MINERVA.

(b) ODISSEA

ODISSEA (Open DIStributed Search Engine Architecture) [46] was a proposal

for a P2P search engine for different applications including searching P2P net-

works, large intra-net environment and the Web. This system proposed two

tiers: lower layer and upper layer. lower layer maintains overlay and index. It
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also serves queries and performs ranking on the documents. upper layer man-

ages the documents (e.g., insert, delete, update) and designs optimized query

execution plan. This proposal includes PageRank, term frequencies and other

approaches for ranking documents, but there is no specific algorithm provided

for them. Authors proposed a Bloom filter based protocol for optimizing query

execution plans. In contrast with ODISSEA, we present a complete Web search

engine with specific implementation.

(c) CHORA

CHORA [24] is not a standalone search engine rather it enhances the current

centralized search engines to incorporate the users’ browsing history into search

results. The framework of CHORA consists of two search components: a) a

traditional search engine and b) a desktop search engine. When users search

queries, both the central search engine and CHORA (with the help of desktop

search engine) compute search results which are re-ranked and presented to the

users. During the user registration with CHORA, a summary including URL

of the computer, location, bandwidth, and a set of related keywords on that

computer is computed and stored using openDHT [42]. CHORA aggregates

users browsing history by computing click graphs. Click graph organizes user

webpages based on the connectivity implied by their clicks and summary statis-

tics describing their interaction with each page. Webpages are ranked using the

amount of time spent on the webpages by a particular user. The query pro-

cessing in CHORA involves two steps: a) selecting peers using DHT, b) routing

queries to the selected peers and retrieving webpages using the desktop search

engine. The motivation behind CHORA is to reflect the users browsing history

in the search results returned by the traditional search engines. In contrast,

our motivation behind DEWS is to develop a standalone decentralized Web

search engine.

(d) COOPER

The motivation behind COOPER [50] is similar to CHORA. It works with

centralized search engines and incorporates users searching experiences on the

search results in a Peer-to-Peer fashion . Instead of using PageRank, COOPER

proposes PeerRank with an assumption that human recommendations consti-

tute a better measure of relevance than link structure weight. It has four com-

ponents: a) User agent which interact with users through search interface, b)

Web-searcher agent which performs the users’ searching using traditional search
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engines and builds the repository of users’ searching experience, c) Collaborator

agent which performs the users’ real-time collaborative searching, and d) Man-

ager agent that coordinates and manages other types of agents. When a user

submits a query, Web-searcher agent fetches and gives the requested webpages

to the User agent. At the same time, Collaborator agent shares the user’s new

result to the whole network. The major disadvantage of this approach towards

a scalable Web search engine is that it floods the queries in its Gnutella [1]

network which requires a large network overhead for query processing.

(e) AlvisPeers

AlvisPeers [33] is a full-text P2P retrieval engine. It uses P-Grid [8] as the un-

derlying network. The framework of this system has three layers: a) DHT layer

which stores global index, b) HDK (Highly Discriminative Keys) layer for build-

ing the key vocabulary and corresponding posting lists, and mapping queries to

keys during retrieval, and c) Ranking layer that implements distributed docu-

ment ranking. It is assumed that each peer runs a Web service to accept queries

and documents from remote hosts. HDK is used for minimizing the number

of keywords to be indexed in DHT. During indexing, keywords are categorized

into two groups based on it document frequency (DF ): non-discriminative (if

its DF is greater than a pre-defined threshold DFmax) and discriminative (if it’s

DF is less than DFmax). A keyword is discriminative if it is a strong candidate

for representing a document. It uses tf (term frequency)*idf (inverse document

frequency) of the queried keywords to measure the rank of the documents.

There are few differences between AlvisPeers and DEWS as follows: a) we use

both PageRank and BM25 scores (as keyword relevance), but AlvisPeers only

uses tf *idf for document ranking, b) we provide searching results with high

accuracy even in presence of misspelled or partially specified queried keywords

where AlvisPeers only supports full-text search, c) we provide a mechanism for

distributed websites indexing which is not present in AlvisPeers, d) incremental

retrieval is not supported in AlvisPeers.

(f) YACY

YACY [7] is a fully decentralized open source Web search engine based on a P2P

network. Users become participating peers by installing the YACY software in

their machine. It employs thousands of crawlers to index webpages and stores in

the network in multiple peers (replica) using DHT. User requested information

is not censored or blocked as there is no central authority which is also our
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motivation behind DEWS. The ranking of search results are performed on the

users’ machines based on a set of users’ preferences. YACY does not have a

ranking algorithm like PageRank so that most relevant information may not be

presented to the users [4]. In contrast with YACY, all participating webservers

in DEWS index their hosted websites only. Another major difference is that

DEWS computes PageRank in a decentralized manner to present most relevant

information to the users which is not done in YACY.

(g) FAROO

FAROO [5] is a decentralized search engine based on a P2P network. When

a user browses a webpage, FAROO indexes the webpage instantly using DHT.

If the number of users is small and the users do not browse webpages a lot,

search results of FAROO will be poor. FAROO does not use PageRank or

other link-structure weight, which makes it difficult to present the most relevant

information to the users. In contrast to FAROO, all webservers index their

hosted websites in DEWS. DEWS also computes PageRank and keyword

relevance to present most relevant information to the users.

2.6 Preliminaries

In this section, we provide preliminaries on coding theory specially Reed-Muller

code, list decoding, Bloom filter, edit distance, BM25 and phonetic algorithm.

2.6.1 Linear binary code

A linear binary code C can be represented as < n, k, d > where n is the number

of bits (0 or 1) in C, k is the dimension of the generator matrix of C, and d is

the minimum Hamming distance between any two codewords in C [17]. All the

codewords of a particular linear binary code can be represented by a minimal set of

codewords, which is known as generator matrix. A generator matrix GC of a linear

binary code C has k rows. XORing any number of rows from GC produces another

codeword and in this way it is possible to generate all the 2k codewords of C using

GC .
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GC =


g1

g2
...

gk


2.6.2 Reed-Muller Code

Reed-Muller code is a linear binary code. The rth order Reed-Muller code is denoted

by RM(r,m), which is a vector subspace of length n = 2m over F n
2 , for some positive

integers r and m. Minimum distance d, between any pair of codewords in a RM(r,m)

code is 2m−r. Number of codewords in the code is 2k, where k =
∑r

i=0
mCi is the

dimension of the code. For example, minimum distance for RM(2,6) code is 16,

dimension of the code is 22, number of bits in each codeword is 64 and number of

codewords is 222.

The generator matrix of Reed-Muller code can be constructed in the following

way. The number of bits in each row of the matrix of RM(r,m) code is 2m. We

can consider a bit vector (X0) of length 2m containing 1 in all the bits, which is the

first row of the matrix. The second row (X1) can be defined as 1 in first 2m−1 bits

and 0 in the last 2m bits as depicted in Figure 2.1. In this way, rows X0 to Xr are

computed. Then mCr rows are computed using the rows X0 to Xr. For example,

generator matrix for RM(2,3) contains the rows X0X1, X0X2, X1X2 where ‘X1X2’

is the dot product of the rows X1 and X2.X0 = 1   1    … … … … … 1X1 = 1   1   … … …. 10 0 … … …. 0X2 = 1  1 … 1 0 0 …011… …100  … 02(m-1) 2(m-1)2m
2(m-2) 2(m-2)2(m-2)2(m-2)

Figure 2.1: Construction of generator matrix
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G(2, 3) = ss



X0 1 1 1 1 1 1 1 1

X1 1 1 1 1 0 0 0 0

X2 1 1 0 0 1 1 0 0

X0X1 1 0 1 0 1 0 1 0

X0X2 1 1 0 0 0 0 0 0

X1X2 1 0 0 0 1 0 0 0


2.6.3 List Decoding

Let C be a linear binary code < n, k, d > and x be a binary pattern of length n,

then a list decoding of C provide a set of codewords X = {X1, X2, . . . , Xm} where
Xi ∈ C and Hamming distance from x to each Xi is at most ε as follows:

X(x) = {Xi|Xi ∈ C ∧ d(Xi, x) ≤ ε}

In literature, there are few sophisticated list decoding algorithms including [18],

[23], [21], and [40]. Algorithm 1 presents a straight-forward list decoding algorithm,

which computes a list of codewords upon receiving a binary pattern where all the

codewords are within a pre-specified Hamming distance ε (line 10) and the number

of codewords in the list is bounded by a pre-specified number γ (line 13). The

complexity of Algorithm 1 is O(2k) where k is the dimension of the code. Although

its complexity is high, it offers simplicity of list decoding. For this reason, we employ

this algorithm in our simulation.

List decoding plays an important role in approximate matching. A set of code-

words computed from a binary pattern are numerically close to each other. We

determine the target nodes using the list decoded codewords during keyword ad-

vertisement and searching, which increases the chance of finding common nodes

even if the search keyword is partial or approximate to the advertisement keyword.

The concept of keyword matching using list decoding is discussed in Section 2.6.4.

Figure 4.2(b) shows the effectiveness of list decoding technique.

2.6.4 Plexus

In Plexus [10], keywords are mapped to patterns (or bit-vectors) and a Hamming

distance based routing technique derived from the theory of Linear Binary Codes

is used. The keyword to pattern mapping process retains the notion of similarity
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Algorithm 1 ListDecode(ρ, ε, γ)
1: Inputs:

ρ: Binary pattern need to be decoded

ε: List decoding radius

γ: Maximum list decoding size

2: Internals:

k: Dimension of the linear code

G: Generator matrix of the linear code

gi: i
th row of the Generator matrix G

δ(a, b): Numeric distance between a and b

ψ(Ω): Number of elements in a list Ω

Υ(ζi−1, i): Compute grey code corresponding to i

Π(gi−1, i): Compute the bit position where ζi−1 and ζi differ

Ω: List of codewords

3: ci ← null

4: Ω← null

5: ζ−1 ← 0

6: for i=0 to 2k-1 do

7: κ← Π(ζi−1, i)

8: ζi ← Υ(ζi−1, κ)

9: ci ← ci ⊕ gκ

10: if δ(ci, ρ) ≤ ε then
11: Ω← ci

12: end if

13: if ψ(Ω) ≥ γ then

14: return Ω

15: end if

16: end for
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between keywords, while Hamming distance based routing delivers deterministic

results and efficient bandwidth usage.

Advertisement, P Query, Q
advSet(P) ⊂ C qSet(Q) ⊂ CC = { ci } = set of all codewords

Hamming sphere, Bf( )PatternCode word
Figure 2.2: Core concepts in Plexus

As explained in Figure 2.2, a linear binary code C (for example, Reed-Muller

code) partitions the entire pattern space Fn
2 into Hamming spheres, represented by

hexagons in the figure. A codeword (ci ∈ C) is selected as the unique representative

for all the patterns within its Hamming sphere. An advertised pattern P is list

decoded to a set of codewords A (P ) = Bs(P ) = {ci|ci ∈ C ∧ δ(ci, P ) ≤ s)}.
Similarly, a query pattern, say Q, is list decoded to Q(Q) = Bt(Q) = {Y |Y ∈
C∧δ(Y,Q) ≤ t)}. It has been shown in [10] that there will be at least one codeword

in A (P )∩Q(Q) if the Hamming distance between P and Q, d(P,Q) ≤ s+ t− 2f ,

where f is the covering radius of C. In Plexus network, each peer is assigned for

one or more codewords. The pattern P is advertised to the peers assigned for

the codewords in A (P ) and the pattern Q is queried to the peers assigned for the

codewords Q(Q). Thus, the peers assigned for the codewords in A (P )∩Q(Q) serve
the query pattern Q.

In Plexus, each peer maintains k + 1 routing entries in its routing table, where

k is the dimension of C. These k + 1 routing entries contain links to the peers

responsible for the codewords X1, X2, . . . , Xk+1 computed as follows (⊕ refers to

the bitwise XOR operation):

Xi =

X ⊕ gi 1 ≤ i ≤ k

X ⊕ g1 ⊕ g2 ⊕ . . .⊕ gk i = k + 1
(2.5)

Using these routing links, Plexus route a message from any source peer to any

target peer in less than or equal to k/2 routing hops. The routing mechanism in

Plexus is based on the linear code and generator matrix. Suppose peer X (i.e., ,
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532 gggXY ⊕⊕⊕=X YX2g2 X3X5g3g5 X23g3 g5X25 g3g5 X35 g2g3g5g2g2
X1=X⊕g1X2=X⊕g2…Xk=X⊕gk

X21=X2⊕g1…X23=X2⊕g3…X2k=X2⊕gk X231=X23⊕g1…X235=X23⊕g5…X23k=X23⊕gk
Figure 2.3: Plexus routing

the peer responsible for codeword X) wants to route a message to peer Y which

is shown in Figure 2.3. According to the properties of linear codes, any codeword

(say Y ) can be obtained by XORing some combination of generator matrix rows

(gi) with any given codeword (say X). For example, codeword Y can be expressed

as Y = X ⊕ g2 ⊕ g3 ⊕ g5. Since peer X has routing links to peers X2 = X ⊕ g2,
X3 = X⊕g3 and X5 = X⊕g5, peer X can forward the message to any of these three

peers in one hop. Suppose, peer X forwards the message to peer X2. Similarly,

peer X2 can route the message to any of the peers X23 = X2⊕ g3 or X35 = X2⊕ g5
in one hop. Suppose, peer X2 forwards the message to peer X23. Finally, peer

X23 can route the message to peer Y since peer X23 will have a routing link for

Y = X235 = X23 ⊕ g5.

2.6.5 Bloom Filter

A Bloom filter [13] is a space-efficient probabilistic data structure used to represent

a set. Bloom filters support set membership test operations with a small probability

of false (erroneous) positives. An empty Bloom filter is a bit array of m bits, all

set to 0. There must also be k different hash functions defined, each of which maps

or hashes some set element to one of the m array positions with a uniform random

distribution.

Figure 2.4 presents a Bloom filter which represent a set {a, b, c} where m=16
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S={a,b,c} h1 h2 h3m=16      k=3
0 0 0 0 0 0 0 00 0 0 0 0 0 0 0b1 1a1 1 1c1 1 1

Figure 2.4: Bloom Filter

and k=3. To add an element, all the k hash functions are used to hash on it to get

k array positions which are set to 1. To test membership of an element, all the k

hash functions are used on it. If any of the bits on the resultant positions of the

array are 0, the element is not in the set. If all are 1, then either the element is in

the set, or the bits have been set to 1 during the insertion of other elements, which

gives a false positive result.

2.6.6 Double Metaphone Encoding

The Double Metaphone encoding algorithm attempts to detect phonetic (‘sounds-

alike’) relationships between English words. Double Metaphone works by producing

one or possibly two phonetic keys from a given word. For example, the string ‘Jhon

Abraham’ produces two phonetic words-JNPR and ANPR. The primary Double

Metaphone key represents the American pronunciation of the source word. All

words have a primary Double Metaphone key. The secondary Double Metaphone

key represents an alternate, national pronunciation. For example, many Polish sur-

names are ‘Americanized’, yielding two possible pronunciations, the original Polish,

and the American. For this reason, Double Metaphone computes secondary keys for

some words. The vast majority (roughly, 90%) of words will not yield a secondary

key, but when a secondary key is computed, it can be pivotal in matching the word.

To compare two words for phonetic similarity, one computes their respective Double

Metaphone keys, and then compares each of the following combination:
Primary key (word 1), Primary key (word 2);

Primary key (word 1), Secondary key (word 2);

Secondary key (word 1), Primary key (word 2);

Secondary key (word 1), Secondary key (word 2).
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Depending upon which of the above comparisons match, matching strength is

computed. If the first comparison matches, the two words have a strong phonetic

similarity. If the second or third comparison matches, the two words have a medium

phonetic similarity. If the fourth comparison matches, the two words have a minimal

phonetic similarity. Depending upon the particular application requirements, one

or more matching levels may be excluded from the matching results.

2.6.7 Edit Distance

Edit distance is a metric for measuring the level of differences between two strings.

The edit distance (also known as Levenshtein distance) between two strings is given

by the minimum number of operations needed to transform one string into the

other, where an operation may be an insertion, deletion, or substitution of a single

character [2]. For example, edit distance between ‘kitten’ and ‘sitting’ is 3, since

the following three edits change one into the other, and there is no way to do it

with fewer than three edits:
kitten− sitten (substitution of ‘s’ for ‘k’);

sitten− sittin (substitution of ‘i’ for ‘e’);

sittin− sitting (insert ‘g’ at the end).

2.6.8 BM25 weighting scheme

BM25 [3] is a probabilistic weighting scheme to measure weight of a particular doc-

ument using some statistics of the documents including frequency of the document

in the collection, frequency of the keywords/terms in that document, number of

relevant documents. Search engines use BM25 to rank a set of documents based on

the search keywords appearing in each document.

Given a query Q containing keywords q1, . . . , q n, the BM25 score of a document

D is:

BM25(D,Q) =
∑n

i=1 IDF (qi).
f(qi,D).(k1+1)

f(qi,D)+k1.(1−b+b.
‖D‖
avgdl

)
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IDF (qi) = Inverse Document Frequency computed as logN−n(qi)+0.5
n(qi)+0.5

N = total number of documents in the collection

n(qi) = number of documents containing qi

f(qi, D) = qi’s term frequency in the document D

‖D‖ = length of the document D in words

avgdl = average document length in the collection

k1 = constant ∈ [1.2,2.0]

b = constant 0.75
We compute BM25 scores for the search keywords with the resultant websites

to measure keyword relevance and rank the websites to present the most relevant

websites in the first few results in DEWS.

2.6.9 n-gram

n-gram is a subsequence of n items from a given sequence. The items in question can

be phonemes, syllables, letters, words or base pairs according to the application. An

n-gram of size 1 is referred to as a ‘unigram’; size 2 is a ‘bigram’ (or, less commonly,

a ‘digram’); size 3 is a ‘trigram’; and size 4 or more is simply called an ‘n-gram’.

For example, the sentence ‘the quick red fox jumps over the lazy brown dog’ has

the following character level tri-grams: ‘the’, ‘qui’, ‘uic’, ‘ick’, ‘red’, ‘fox’, ‘jum’,

‘ump’, ‘mps’, ‘ove’, ‘ver’, ‘the’, ‘laz’, ‘azy’, ‘bro’, ‘row’, ‘own’, ‘dog’. We use 1-gram

to match partially specified search keywords with the advertised keywords.

2.7 Summary

This chapter presented an overview of Web ranking mechanisms and background

knowledge towards the context of subsequent chapters. PageRank, a link-structure

analysis technique, is the most used technique in existing centralized and decen-

tralized ranking algorithms. On the other hand, keyword relevance is popular for

information retrieval purposes. We found that some of the existing decentralized

techniques use both PageRank and keyword relevance together to rank their Web

search results. We also found that existing decentralized approaches either com-

pute the approximate values of PageRank due to the lack of global knowledge on

hyper-link structure or utilize non-structured overlay which requires large volume of

ranking messages for the algorithm to converge. We also found that decentralized

techniques using non-DHT based overlay compute keyword relevance with a partial
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knowledge of the Web. Few distributed Web search engines were briefly discussed

and compared with our proposed search engine, DEWS. We have also presented

some background on linear binary codes, Reed-Muller code, list decoding, Bloom

filter, phonetic encoding, n-grams, BM25 to provide a context for the chapters to

follow. We used Plexus, a structured P2P overlay, in DEWS. The core concept of

Plexus and its routing mechanism were briefly presented in this chapter, as well.
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Chapter 3

Framework of DEWS

3.1 Introduction

In this chapter we introduce DEWS as a solution to the problem of searching the

Web in a distributed manner. The novelty of the proposed approach lies in the im-

plementation of Google’s PageRank in a distributed manner on a structured P2P

overlay. It also computes BM25 scores in a distributed manner and allows approx-

imate search with incremental retrieval. A structured overlay allows computation

of PageRank similar to the centralized computation of PageRank, preserving the

hyper-links structure of the websites. DEWS uses phonetic encoding and n-grams

for approximate search and retrieves search results incrementally using the list de-

coding feature of the underlying linear binary code. DEWS ranks the Web search

results efficiently using PageRank and BM25 scores.

The rest of this chapter is organized as follows. Architecture of DEWS is pre-

sented in Section 3.2 in a bottom-up manner. We present the Plexus overlay and

modified Plexus routing algorithm in Section 3.3. Section 3.4 presents the mapping

of hyperlink structure to the Plexus overlay and advertisement of distributed in-

verted index. Website advertisement, distributed ranking and retrieval are discussed

in Section 3.5. We present the technique for incremental retrieval in Section 3.6.2.

Finally, we summarize the concepts and findings of this chapter in Section 3.7.

28



�����������	�
�����
����	�������������������	����
����	�
����
����	��������	
�����������������������
� ��������
	���������������
��
���������	

������
���
��� Overlay

�	���	����������������
Figure 3.1: Architecture of DEWS
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3.2 System architecture

The architecture of DEWS is composed of five different conceptual layers as shown

in Figure 3.1. The higher layers are dependent on the functionalities provided by

the lower layers. The five conceptual layers are as follows:

• Web servers (Layer L1)

We assume that web servers distributed all over the world connected by In-

ternet collaborate on distributed indexing and searching the Web. Instead of

crawling and indexing by a single server or a cluster of servers, webservers

index their hosted websites collaboratively using server-to-server communica-

tion. In this approach, it is possible to index the whole Web. These webservers

collaboratively resolve the user queries and rank the search results to present

most relevant websites to the users.

• Plexus overlay and routing (Layer L2)

We assume that web servers are organized into a structured overlay network.

Distributed Hash Table (DHT) based solutions have been proven to be efficient

in information lookup (e.g., inO(log n) hops) in very large networks. Hence we

opt to use a DHT mechanism for indexing and search. In addition to efficient

lookup, we need to perform approximate matching between query keywords

and webpage keywords. In general DHT mechanisms offer exact matching

and do not support approximate matching. We have chosen Plexus [10] to

organize the webservers for the following reasons:

– Plexus provides a DHT-based structured overlay which can preserve the

hyperlink structure on top of it to compute the PageRank and keyword

relevance efficiently.

– Plexus has an efficient multicast routing protocol which requires reduced

network bandwidth for routing to multiple peers. The maximum number

of hops required to route a message from a source to a destination is

bounded by k/2 where k is the dimension of the used linear binary code

(for example, k is 22 for RM(2,6) code).

– In Plexus, patterns having less Hamming distances are mapped to the

nearby (or same) peers which allows efficient approximate matching be-

tween the advertised and query keywords.
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– List decoding of the linear binary code used in Plexus provides an efficient

incremental search mechanism.

– Plexus is robust to the peer failures.

– Plexus has a scalable architecture which can meet the challenge of expo-

nential growth rate of websites.

• Hyper-link overlay (Layer L3)

We preserve the hyper-links among the websites on the Plexus overlay in

a structured manner, which forms an overlay of hyper-links. Suppose two

websites ui and uj have links between them. In the hyperlink overlay, there

should be a link between the two nodes representing ui and uj. We index

websites in such a way that hyperlink overlay is preserved on the Plexus

overlay. In PageRank algorithm, one node hosting ui has to send its weights

periodically to the node hosting uj if there is a link from ui to uj. For this

reason we preserve hyperlink overlay to compute PageRank efficiently. This

layer is also responsible for creating distributed inverted indexes. Techniques

for hyperlink overlay preservation and distributed inverted index construction

are presented in Section 3.4.

• Distributed indexing, searching and ranking (Layer L4)

This layer provides all the functionalities related to website indexing, com-

putation of weights and searching in distributed manner. Websites are in-

dexed using their representative keywords on the Plexus overlay preserving

the hyperlink structure. We have used two types of metrics for ranking search

results- PageRank weight of each website and keyword relevance to websites.

This layer computes PageRank in a distributed manner utilizing the hyper-

link overlay preserved on Plexus overlay. A distributed searching technique

is also provided by this layer. During searching, websites are retrieved based

on their relevance to the query keywords. Query keyword relevance to the

websites are computed in a distributed manner. Mechanisms for indexing,

ranking and searching in this layer are explained in Section 3.5.

• Web indexing and searching (Layer L5)

This layer has two components: search interface and website indexer. Web-

servers implementing this layer index their hosted websites. Webservers first

extract the representative keywords from websites and index them using the

functionalities offered by the lower layers. The search interface allows users
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to search using keywords and discovers the most relevant websites. If users

are not satisfied with the presented results, search interface has the option

to retrieve more relevant websites. This approach is known as incremental

retrieval. Details on indexing and searching techniques used in this layer are

discussed in Section 3.6.

3.3 Plexus overlay and routing

In this section, we describe how the webservers are organized into Plexus overlay

and present the modified Plexus routing mechanism.

3.3.1 Plexus overlay

We assume that webservers are organized into Plexus overlay based on the second

order Reed-Muller code RM(r,m) (explained in Section 2.6.2). The maximum num-

ber of webservers that can be allowed in the Plexus network is 21+(
m
1 )+(

m
2 ) using

RM(2,m) codes. For example, we have used RM(2, 6) for simulation which can

support about four million (222) nodes in the overlay. We can extend the network

size by incorporating higher order Reed-Muller codes. In a network with maxi-

mum allowed webservers, each webserver is assigned and responsible for an unique

codeword of RM(r,m) code. If the number of codewords is much higher than the

number of connected webservers in the overlay, multiple codewords are mapped to

each webserver as follows:

RM(r,m) code has exactly 2k codewords, where k is the dimension of the code

and the generator matrix G of the code has k rows. Now, we define a k-bit ID to

identify the 2k codewords in RM(r, m). The ith bit of the ID for a codeword will be

1 if the ith row of G (i.e., gi) is required to construct that codeword. We use this

ID to partition the codewords into a logical binary tree of height at most k. At the

ith level of the tree, partitioning is based on whether the ith row of G (i.e., gi) is

used for constructing the codeword.

Figure 3.2 shows an example of the above mentioned partitioning process along

with the routing table entries for webserver X. Each webserver is assigned a leaf

node in this tree and is responsible for all the codewords having that particular

combination of gis. For example, webserver X is responsible for all the codewords

including g1, g3 and excluding g2, g4 from their construction. This concept is implied

by the prefix g1ḡ2g3ḡ4, where ḡi indicates the absence of gi in the construction of a

32



LogicalPhysical 1g 1gBAAC 21gg 21gg321 ggg 321 ggg 321 ggg 321 ggg 321 ggg 321 ggg4321 gggg 4321 gggg
Xk+1X1 X3 X X4 X21g 2g3g 4gkgg −5ii g⊕

21gg 21gg

Figure 3.2: Mapping codewords to peers

codeword. The ith entry in the routing table of webserver X points to the webserver

responsible for the codeword X ⊕ gi according to the partition tree as presented in

Figure 3.2. A new webserver is organized in the Plexus overlay as the peer joining

process in Plexus [10]. Although the rate of webserver failure is far less than that

of peer failure in a P2P network, DEWS adopts the mechanism for handling peer

failure as specified in Plexus.

3.3.2 Modified Plexus routing

We extend the Plexus multicast routing protocol by message aggregation. Our

extension can be explained by the analogy of an airport. Each airport works as a

hub. Transit passengers from different sources gather at an airport and depart on

different outgoing flights matching their destinations. Similarly, we use each Plexus

node as routing hubs. Default routing mechanism in Plexus is muticasting, since

a few nodes have to be checked to allow approximate matching. As a result, each

message arriving a node contains a number of target codewords.

Algorithm 2 presents the aggregate routing mechanism in DEWS. We expect

each node to continuously receive messages, since Web queries from around the globe

will be submitted and processed by the system. Instead of instantly forwarding the

incoming messages, each node accumulates incoming messages in a message queue

(msgQ) for very small period of time, around one second. Target codeword lists
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Algorithm 2 AggregateRouting
1: Inputs:

msgQ: {< pl,Y >}, where pl is message payload

and Y is target list for pl.

2: Internals:

k: Dimension of the linear code RM(2,m)

X1, . . . , Xk+1: (k + 1) neighbors of X {Eqn. (2.5)}
3: Ym ←

⋃
m∈msgQm.Y

{find suitability of each neighbor as next hop}
4: R ← {T1, . . . , Tk+1| Ti ⊆ Y∧

Y ∈ Ti =⇒ Xi is on pathX  Y }
5: while Ym not empty do

6: O ← φ

7: find s such that ∀Ti ∈ R, |Ts| ≥ |Ti|
8: for all m ∈ msgQ do

9: if m.Y ∩ Ts 6= φ then

10: out← O ∪ {< m.pl,m.Y ∩ Ts >}
11: m.Y ← m.Y/Ts
12: end if

13: end for

14: R ← R − {Ts}
15: Y ← Y − Ts
16: send O to node Xs

17: end while
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(m.Y) in the incoming messages are combined to a master target list Ym. Then

Plexus routing is applied to select the next hop neighbors and the targets in Ym

are distributed over the selected neighbors. Since, index advertisement and query

messages have small size, many of these messages can be packed in a single message

and sent to appropriate neighbors. This approach significantly reduces the number

of messages in the network.

3.4 Hyper-link overlay and distributed index

This section presents construction of Hyper-link overlay and mapping to Plexus

overlay. Mechanism of creating and storing inverted index in the Plexus overlay is

also discussed in this section.

3.4.1 Hyper-link overlay

About 90% hyperlinks in the Web are intra-domain [49]. Topics and ideas in the

webpages of a particular website are almost similar or correlated and it is not

reasonable to utilize the authority-ship of web documents at the level of single

pages; besides a website is usually reorganized and managed periodically without

significant changes in semantics and outgoing hyper-links to the rest of the Web [49].

The number of websites in the Web about one hundredth of the number of webpages.

Considering these facts we perform link structure analysis at the granularity level

of websites. For the rest of this thesis, we use “URL” to refer to the root URL of a

website. The links between two websites are the aggregation of the links between

the web pages in the websites.

Algorithms for computing URL weights based on the hyperlink structure are it-

erative and require many iterations to converge. In each iteration URL weights are

updated and the new weights are propagated to the adjacent URLs for computa-

tion in next iteration. To implement such ranking mechanisms on URLs distributed

across an overlay network, we need to preserve the adjacency relationships in hy-

perlink graph while mapping URLs to nodes. If hyper-linked URLs are mapped to

same node or adjacent nodes then network overhead for computing URL weights will

be significantly reduced. Unfortunately, there exists no straight forward, hyperlink

structure preserving mapping of the Web to an overlay network.

In DEWS, we retain the hyperlink structure as a virtual overlay on top of Plexus

overlay. We use a standard shift-add hash function (~(·)) to map a URL, say ui, to a
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Figure 3.3: Hyperlinks to Plexus overlay mapping

codeword, say ck = ~(ui). Then we use Plexus routing to lookup β(ui), which is the

node responsible for indexing codeword ck. For each outgoing hyperlink, say uit, of

ui we find the responsible node β(uit) in a similar manner. During distributed link-

structure analysis β(ui) has to frequently send weight update messages to β(uit).

The index stored in β(ui) for URL ui has the form < ui, wi, {< uit, β(uit)} >,
where wi is the link structure weight of ui and β(uit) is the soft-link, i.e., cached

network address, of node β(uit) placed in node β(ui). Figure 3.3 illustrates the

mechanism of mapping the hyper-link overlay to the Plexus overlay. This figure

shows that URLs ui, ui1, and ui2 are mapped to the nodes β(ui), β(ui1), β(ui2),

respectively in the Plexus overlay and the index in β(ui) for ui contains links to the

β(ui1) and β(ui2) to preserve the hyper-link structure form the hyper-link overlay.

3.4.2 Distributed inverted index

We use Plexus to build an inverted index on the important keywords extracted from

each website. This allows us to lookup a query keyword and find all the websites

containing that keyword by forwarding the query message to a small number of

nodes in the network. Figure 3.4 illustrates the mechanism of creating inverted

index for a particular website and advertising it to the Plexus overlay.

• Suppose, Krep
i = {krepij } is the set of representative keywords for website ui.

• For each keyword krepij in Krep
i , we generate its phonetic code kdmp

ij obtained by
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Figure 3.4: Construction of inverted index

applying Double Metaphone encoding (explained in Section 2.6.6) on krepij . We

use phonetic encoding to reduce the hamming distance between the advertised

pattern and search pattern which eventually increases the efficiency of search

results. Misspelled search keywords don’t have impact on the quality of search

results. We compute a list of n-grams (explained in Section 2.6.9) {kngijz} for
each keyword krepij in Krep

i . We use n-grams of keywords which allows partial

matching and increases the search accuracy in approximate matching.

• We encode the original keyword krepij along with the generated keywords kdmp
ij

and {kngijz} into an n-bit Bloom filter (explained in Section 2.6.5) Pij.
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• We use Pij as a pattern in Fn
2 and list decode it to a set of codewords, ζρ(Pij) =

{ck|ck ∈ C ∧ δ(Pij, ck) < ρ}, where ζρ(·) is list decoding function and ρ is list

decoding radius.

• Finally, we use Plexus routing to lookup and store the index for krepij at the

nodes responsible for codewords in ζρ(Pij).

The index for krepij is a quadruple < krepij , relij, ui, β(ui) >, where relij is a mea-

sure of semantic relevance of krepij to ui. We use γ(krepij ) to represent the set of nodes

responsible for krepij . Evidently, γ(krepij ) ≡ lookup(ζρ(BF (k
rep
ij ∪ k

dmp
ij ∪ {kngijz}))),

BF (·) represents Bloom filter encoding function.

Phonetic codes and n-grams along with list decoding technique provides flexible

searching with high accuracy in DEWS, which is justified with simulation results

in Section b.

3.5 Distributed indexing, searching and ranking

This layer is responsible for indexing websites, searching and computing ranks in

a distributed manner. Metrics used for ranking web search results can be broadly

classified into two categories: a) keyword to document relevance and b) hyperlink

structure of the webpages. Techniques from Information Retrieval (IR) literature

are used for measuring relevance ranks. While link structure analysis algorithms like

PageRank [38], HITS [28] etc., are used for computing weights or relative significance

of each URL. In DEWS, we use both of these measures for ranking search results.

3.5.1 Website Indexing

The pseudo code for indexing a website is presented in Algorithm 3. As discussed

in Section 3.4, we maintain two sets of indexes for a website: a) using site URL

ui and b) using representative keywords {Krep
i }. In lines 3 to 8 of Algorithm 3,

we compute the index on ui, which involves computing the soft-links (β(uit)) for

each outgoing hyper-links from ui and storing in node β(ui). In lines 9 to 19, we

compute the indexes on Krep
i and advertise the indexes to the responsible nodes.

The computation of relij in line 14 is discussed in Section 3.6.1.
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Algorithm 3 IndexWebsite
1: Inputs:

ui: URL of the website to be indexed

2: Functions:

~(ui): hash map ui to a codeword

γr(P ): {ck|ck ∈ C ∧ δ(P, ck) ≤ r}
lookup(ck): finds the node that stores ck

3: β(ui)← lookup(~(ui))
4: for all out-link uit of {ui} do
5: β(uit)← lookup(~(uit)))
6: end for

7: wi ← initial PageRank of ui

8: store < ui, wi, {uit, β(uit)} > to node β(ui)

9: Krep
i ← set of representative keywords of ui

10: for all krepij in Krep
i do

11: {kdmp
ij } ← DoubleMetaphoneEncode(krepij )

12: {kngij } ← nGramEncode(krepij )

13: Pij ← BloomFilterEncode({krepij } ∪ {k
dmp
ij } ∪ {k

ng
ij })

14: relij ← relevance of krepij to ui

15: for all ck in ζρ(Pij) do

16: v ← lookup(ck)

17: store < krepij , relij , ui, β(ui) > to node v

18: end for

19: end for
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3.5.2 Distributed PageRank

For ranking search results, we have adapted the original PageRank [38] algorithm

to the decentralized environment in DEWS. In centralized PageRank algorithm,

global weights for each webpage are computed based on the incoming and outgoing

links of a particular web page. In DEWS, we compute PageRank for each website ui

and index them using Plexus indexing mechanism at node β(ui) (see Algorithm 3).

The PageRank computation equation for each website is as follows:

wi = (1− η) + η

g∑
t=1

wit

L(uit)
(3.1)

Here, wi is PageRank for website ui and η is the damping factor for PageRank

algorithm. η is usually assigned a value of 0.85. {uit} is the set of websites linked

to ui and L(uit) is the number of outgoing links from website uit.

Each node periodically executes Algorithm 4 to compute the PageRank weights

in a distributed manner. To communicate PageRank information between the

nodes, we use a PageRank message containing the triplet < us, ui,
ws

L(us)
>, where

node β(us) sends the message to node β(ui) and ws

L(us)
is the contribution of us

towards PageRank weight of ui. Each node maintains a separate message queue for

each URL it has indexed. In a message queue, incoming PageRank messages are

stored for a pre-specified period of time or the queue length exceeds the expected

in-degree of that URL. The messages gathered in a message queue are used to com-

pute the PageRank for each URL according to Equation 3.1. If the change in newly

computed PageRank value is greater than a pre-defined threshold θ then PageRank

update messages are sent to the nodes responsible for each out linked URL.

PageRank algorithm requires many cycles to converge. In each cycle, node β(ui)

responsible for URL ui has to lookup and send PageRank update message to node

β(uit) for each out-linked URL uit. To reduce network overhead due to repeated

lookup of node β(uit), we cache the network address (soft-link) of node β(uit) at

node β(ui). Node β(ui) looks up node β(uit) for the first time using Plexus. For

sending subsequent update messages node β(ui) uses the soft-link to directly send

update messages to node β(uit).

PageRank for URL ui is computed and maintained in node β(ui), while the com-

puted PageRank value wi is used in nodes γ(krepij ), where a representative keyword

krepij for website ui is indexed. The Web is continuously evolving and PageRank for

the websites are likely to change over time. As a result, storing PageRank wi to
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Algorithm 4 Update PageRank
1: Internals:

Qui : PageRank message queue for ui

L(ui): Number of outlinks for ui

wi: PageRank weight of ui

η: Damping factor for PageRank algorithm

θ: Update propagation threshold

2: for all URL ui indexed in this node β(ui) do

3: temp← 0

4: for all < usi, ui,
wsi

L(usi)
>∈ Qui do

5: temp← temp+ wsi

L(usi)

6: end for

7: wnew
i ← (1− η) + η ∗ temp

8: if |wnew
i − wi| > θ then

9: wi ← wnew
i

10: for all out link uit from ui do

11: send PageRank message < ui, uit,
wi

L(ui)
> to β(uit)

12: end for

13: end if

14: end for

node γ(krepij ) will not be sufficient; we have to refresh it periodically. To reduce net-

work overhead, softlink to β(ui) are stored in nodes γ(krepij ). The softlink structure

between nodes β(ui), β(uit) and γ(k
rep
ij ) is presented in Figure 3.5.

3.5.3 Search queries and rank results

DEWS breaks down the query into sub-queries each consisting of a single query

keyword, say ql. Similar to the keyword advertisement process explained in Sec-

tion 3.4.2, we compute the Double Metaphone (i.e., qdmp
l ) and n-gram (i.e., qngl ) of

ql and encode them in a Bloom filter Pl. Then we use Plexus framework to find the

nodes responsible for storing the keywords similar to ql and retrieve a list of triplets

like {< ui, wi, relil >}, which gives us the URLs (ui) containing query keyword ql

along with the link structure weight (wi) of ui, and semantic relevance of ql to ui,

i.e., relil. Now, the querying node computes the ranks of the extracted URLs using

the following equation:

rank(ui) =
∑
ql

∑
ui

ϑil(µ · wi + (1− µ) · relil) (3.2)

41



β(ui)
β(ui1) β(ui2) β(uit)

γ(k   )repi1

�

�γ(k   )repi2 γ(k   )repig
Figure 3.5: Softlink structure in DEWS

In Equation 3.2, µ is a weight adjustment factor governing the relative importance

of link structure weight (wi) and semantic relevance (relil) in the rank computation

process. While ϑil is a binary variable that assumes a value of one when website ui

contains keyword ql and zero otherwise.

The query process in DEWS is explained in Algorithm 5. In this algorithm,

we have used separate lookup(ck) for each of the target codeword ck. In practice

separate lookup of each target is very expensive in terms of network usage. Instead,

we have used the extended multicast routing mechanism with route aggregation as

explained in Section 3.3.2.

We compute the relevance of a query in a website computed in line 10 in Al-

gorithm 5 by the Algorithm 6. rij in line 6 of Algorithm 6 is the relevance of the

keyword krepij in the website ui, which is stored during indexing of ui (line 14 in Al-

gorithm 3). If we use BM25 as the measurement of relevance, rij should be simply

term frequency (tf) of krepij instead of computing relevance considering structure of

website and webpage (see Section 3.6.1).

In line 6 of Algorithm 6, inverse document frequency idf(krepij ) is computed as

follows:

idf(krepij ) = log
U

ψ(krepij )
(3.3)

Here, U is the total number of websites and ψ(krepij ) is the number of websites

having keyword krepij . tf(krepij ) is a measure of the relevance of krepij to ui, while

idf(krepij ) is a measure of relative importance of krepij w.r.t. other keywords. idf is
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Algorithm 5 Search(Q, ρ, T )
1: Input:

Q: set of query keywords {ql}
T : Most relevant T websites requested

ρ: list decoding radius

2: Internals:

µ: Weight adjustment on link-structure vs relevance

3: ξ ← empty associative array

4: for all ql ∈ Q do

5: {qdmp
l } ← DoubleMetaphoneEncode(ql)

6: {qngl } ← nGramEncode(ql)

7: Pl ← BloomFilterEncode(ql ∪ {qdmp
l } ∪ {qngl })

8: for all ck ∈ listDecodeρ(Pl) do

9: n← lookup(ck)

10: for all {< ui, wi, reli >} ∈ n.retrive(Q) do

11: ξ[ui].value← ξ[ui].value+ µ · wi + (1− µ) · reli
12: end for

13: end for

14: end for

15: sort ξ based on value

16: return top T ui from ξ

Algorithm 6 Relevance(Q, krepi )
1: Input:

Q: set of query keywords {ql}
krepi : set of representative keywords

2: reli ← empty

3: for all ql ∈ Q do

4: for all krepij ∈ k
rep
i do

5: if ql matches with krepij then

6: reli ← reli + rij ∗ idf(krepij )

7: end if

8: end for

9: end for

10: return reli
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used to prevent a common term from gaining higher weight and a rare term from

having lower weight in a collection.

Computing tf(krepij ) for each keyword krepij ∈ K
rep
i from website ui is straight

forward and can be done by analyzing the pages in ui. For computing idf(krepij ) we

need to know two entities, namely U and ψ(krepij ). Now, all documents containing

keyword, say krepij , are indexed at the same node. Hence, ψ(krepij ) can be computed

by searching the local repository of that node. However, it is not trivial to compute

U in a purely decentralized setup. We use the total number of indexed URLs in a

node in place of U as advocated in [32].

3.6 Web indexing and searching

We assume that machines running one or more webservers provide search function-

alities and index their hosted websites.

3.6.1 Website indexing

We assume that an AI (Artificial Intelligence) based keyword extractor is available

to extract representative keywords from a website. We compute the relevance of

each keyword in the following way and utilize the function IndexWebsite (explained

in algorithm 3) provided by ‘Distributed indexing, search and ranking layer’ to

index the website.

We utilize structure of a website and a webpage in the computation of keyword

relevance to a particular website. We compute PageRank [38] among hyperlink

structure of a website to determine weight of each page. We assume each webpage

has title, plain texts and anchor texts. We assign different weights to a keyword

based on its location, e.g., keyword in a title gets more weight than that in a plain

text. We also take into account the frequency of the keyword in that page. We

compute keywords relevance rij of a keyword krepij in a website ui is as follows:

rij = ε ∗
∑n

l=1$l ∗ (γt ∗ tftl(krepij ) + γp ∗ tfpl(krepij ) + γa ∗ tfal(krepij ))

In the above equation, ε is a factor which measures how the keyword is common

in a collection and determined by the component responsible for extracting krepij

from ui. The value of ε can be varied from 0.5 to 1.0. If the keyword is common

in the collection, it gets lower value. $l is the PageRank value of the lth webpage
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in ui, which is computed in the local machine utilizing the hyperlink structure of

ui. tftl(k
rep
ij ), tfpl(k

rep
ij ), and tfal(k

rep
ij ) are the number of occurrences of krepij in title,

plain text and anchor text of the lth webpage, respectively. γt, γp, and γa are the

positional value of a keyword in title, plain text and anchor text, respectively where

γt > γp > γa.

3.6.2 Search and incremental retrieval

Users can search the Web through a searching interface provided by DEWS. DEWS

is able to search with exact keywords, partial keywords and misspelled keywords. It

returns the top-k search results corresponding to a query Q utilizing Algorithm 5.

DEWS allows incremental retrieval. Incremental retrieval refers to gradually re-

trieving search results in parts from a repository or server, as offered by almost

all Web search engines. Though it is a challenging problem to achieve incremental

retrieval in a distributed setup, an appropriate solution to the problem can save us

valuable network bandwidth.���������	�
� ����

Figure 3.6: Incremental retrieval

We have exploited the Hamming distance based lookup capability of Plexus to

enable distributed incremental retrieval in DEWS. In Algorithm 5, list decoding

radius ρ can be varied to control the Hamming distance of a query pattern from
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the advertised patterns in search result. As explained in Figure 3.6, we start with

a small list decoding radius ρ close to half of the minimum distance (d) between

any pair of codewords of the Reed-Muller code used for routing. For any query, the

closest matching advertised keywords can be found within this radius. By increasing

the list decoding radius we can find additional codewords, further away from the

query pattern. We repeat the search with these additional codewords if the user

requires additional results or not enough result is found in the first round. For most

of the cases, desired number of results can be found in the first round, which saves

a lot of network bandwidth.

3.7 Summary

In this chapter, we presented a decentralized search engine named DEWS, which

indexes and searches the Web in a distributed manner. Webservers are organized

using the Plexus P2P overlay. We extended the Plexus routing protocol for aggre-

gating route messages in each node towards the destinations and forwarding them in

such a way that average number of logical hops per message is reduced. In DEWS,

each webserver indexes its hosted websites in the Plexus overlay collaborating with

other webservers. We preserve the hyper-link structure on the Plexus overlay by

caching the addresses of the webservers which index the out-linked URLs. We de-

fined these caches as soft-links which allow DEWS to compute PageRank similar

to the central computation of PageRank with low network overhead. DEWS com-

putes tf and idf efficiently similar to other DHT-based approaches. We have used

phonetic encoding and n-grams during keyword advertisement and query resolu-

tion process which enable accurate searching in presence of misspelled and partially

specified keywords. DEWS also employs incremental retrieval, which allows to

search with a smaller decoding radius and network bandwidth. DEWS maintains

replica for better routing and fault resilience.
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Chapter 4

Evaluation

4.1 Introduction

We have presented the framework of DEWS in Chapter 3. In this chapter, we eval-

uate its performance using simulations. Performance metrics used in this evaluation

include routing efficiency, indexing overhead, convergence time, network overhead,

and accuracy of link-structure analysis. In the experiments, we have varied the

number of URLs, number of queries, and network size to measure the scalability

and robustness of DEWS.

The organization of the rest of this chapter is as follows. In Section 4.2, we de-

scribe the performance metrics for evaluating DEWS. Overview of simulation setup

is presented in Section 4.3. Section 4.4 discusses the performance of DEWS based

on experimental results. Finally, Section 4.5 further discusses our findings.

4.2 Performance Metrics

We identify the following performance metrics to evaluate DEWS :

• Accuracy of ranking

Ranking accuracy of search results has a significant impact on users’ satis-

faction and gaining popularity as a good search engine. A good search en-

gine should have an efficient ranking mechanism to present the most relevant

queried information in the first few search results. We measure accuracy of

ranking by Spearman’s footrule distance (SFD). SFD is used to compute

positional differences of items (topics, URLs) in two lists. For two ordered

lists σ1 and σ2 of size k each, SFD is defined as F (σ1, σ2) =
∑k

i=1|σ1(ui)−σ2(ui)|
k∗k ,
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where σ1(ui) and σ2(ui) are the positions of URL ui in σ1 and σ2, respectively.

If a URL is present in one list and absent in the other, its position in the latter

list is considered as k+1. We use PageRank and BM25 for link weight and

keyword relevance, respectively for ranking search results in DEWS. We have

computed SFD for PageRank and BM25 separately to measure the accuracy

of ranking in DEWS.

• Flexible search and accuracy of search results

Search flexibility is an essential feature of a good search engine as the users

may not have the exact knowledge of their requested information. Search key-

words in presence of spelling mistakes or partial specification are common in

the queries. A good search engine should allow flexible search, i.e., searching

with partially specified and misspelled keywords. We have varied edit dis-

tances between the queried and advertised keywords to measure the search

flexibility and accuracy of search results. We have used precision and recall to

measure the accuracy of search results. High precision indicates that search

results containing more relevant topics to the queries. Precision is defined as

follows:

Precision =
|retrieved documents ∩ relevant documents|

|retrieved documents|
(4.1)

Recall indicates the percentage of relevant information retrieved. Recall is

defined as follows:

Recall =
|retrieved documents ∩ relevant documents|

|relevant documents|
(4.2)

• Incremental retrieval

Incremental retrieval allows a search engine to present the most relevant re-

sults in the first set of results and more results later on users’ requests, if

required. Usually users are satisfied with the first set of results (most rele-

vant) of a good search engine. Hence incremental retrieval may reduce the

network bandwidth and query resolution time by searching a smaller and most

relevant information. We have measured recall and precision of the search re-

sults and network bandwidth varying the list decoding radius during query

resolution.

• PageRank convergence

PageRank computation is an iterative process. An efficient distributed PageR-
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ank algorithm should converge quickly in a large network with low network

overhead (number of messages). We have measured time (i.e., number of cy-

cles to reach the situation when there is no more ranking messages in the

network) to converge PageRank algorithm in DEWS.

• Routing efficiency

Routing is the core feature of a distributed search engine. Efficient routing

mechanism allows a search engine indexing and searching the websites with

lower network overhead and query resolution time. We have modified the

Plexus routing mechanism (Section 3.3.2), which allows DEWS routing a set

of messages to the destination nodes with a limited number of logical hops.

We have measured the efficiency of DEWS routing as the percentage of hop

reduction from the pair-wise Plexus routing.

• Network bandwidth

A distributed search engine should index, search, and compute weight of web-

sites with low network bandwidth. We have measured the network bandwidth

as the average number of logical hops required during these processes.

• Index overhead

A distributed search engine should index the websites with a uniform distri-

bution over all the participating webservers. We have measured the indexing

overhead in DEWS as the average number of URLs, keywords and softlinks

indexed in each node.

• Fault resilient

We have used P2P overlay to organize the webservers. In Peer-to-Peer net-

work, peers go down and up dynamically. We assume that webservers are

more stable compared to the peers in any P2P network. A good search engine

should provide the search results with high efficiency in presence of a few web-

servers failures. For this reason, we have measured the impact of webserver

failures on searching and routing performance of DEWS.

• Scalability

In any distributed system, scalability is an essential feature which requires

that new resources can be attached to the system without degrading its per-

formance. For this reason, we measure the efficiency of website indexing (i.e.,
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URL and keyword advertisements) and searching while varying the number

of websites.

4.3 Simulation setup

4.3.1 Overview of simulation

We have measured various performance metrics under diverse network conditions

to evaluate DEWS. Measurements have been taken under varied network sizes,

number of websites, number of queries, query keywords with varied edit distances,

incremental retrieval and node failures. All experiments are done using a queuing

model based cycle-driven simulator, where each peer is explicitly modeled using a

message queue. In each cycle all nodes get their fair chance to process own message

queue in parallel with other nodes. A message queue of a node may contain URL

lookup, URL advertisement, keywords advertisement, keyword search, and rank

update messages. During the processing of message queue, each message from the

queue is retrieved and processed based on the type of the message.

4.3.2 Data Set

We have used LETOR 3.0 dataset [31] for our experiments which is a package of

benchmark data sets designed for research on ranking. The dataset is composed of

the TREC 2003 and 2004 datasets, which contain a crawl of the .gov domain done

on January, 2002. There are a total of 1,053,110 html documents and 11,164,829

hyperlinks in the collection. The collection contains three search tasks: topic distil-

lation, homepage finding, and named page finding. TREC 2003 track contains 50,

100, and 150 queries in the above categories respectively and TREC 2004 contains

75 queries per category.

In our experiments, we have refined the dataset available under “Gov\Feature”
where NULL or missing values are replaced with feature wise minimum values. For

computing the pagerank of the HTML documents in the dataset we have used the

“Sitemap” of the .gov collection available from LETOR 3.0 archive.
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4.4 Results and evaluation

In this section, we present the experimental results obtained by simulating the

DEWS framework. We have presented and evaluated the performance of searching,

ranking, routing, and indexing including the ability of fault resilience in DEWS us-

ing the performance metrics discussed in Section 4.2.

4.4.1 Searching performance

We present the searching performance of DEWS according to three points of view:

(a) search flexibility and accuracy, (b) impact of phonetic encoding and n-grams on

search flexibility and accuracy, and (c) incremental retrieval.

(a) Search flexibility and accuracy

DEWS provides flexible searching, i.e., searching with partially specified or

misspelled keywords. We indexed 10,000 URLs and associated representative

keywords in networks of varied number of nodes. We generated 10,000 query

keywords from the randomly selected indexed keywords by varying edit dis-

tances from one to three.

Figure 4.1(a) presents average recall of the search results with varied network

sizes. This graph shows that recall rate remain constant at 100%, 98%, and

87% for edit distances one, two, and three, respectively. Recall rate is lower for

query keywords of higher edit distances because hamming distances between the

advertisement pattern and search pattern increase which decrease the number

of matched codewords in the advertised and searched codewords.

Figure 4.1(b) presents precision of search results for varied number of queries

from 1000 to 10,000. From this graph, it is observed that precision remains con-

stant at 92%, 88%, and 76% for edit distances one, two, and three, respectively.

Precision becomes lower when the edit distance increases because irrelevant

websites are included in the search results during approximate matching with

the query keywords.

(b) Impact of phonetic encoding and n-grams

We use Double Metaphone encoding to create advertisement patterns and search

patterns during advertisement of inverted index and searching query keywords,

respectively. Two facts about phonetic encoding are as follows: i) any two pho-

netically equivalent keywords have no edit distance between them, ii) phoneti-
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cally in-equal keywords have less edit distance than the edit distance between

the original keywords. In both cases, hamming distance between advertisement

and search patterns is less than the hamming distance between the patterns

using original keywords. This low hamming distance increases the percent-

age of common codewords computed during advertisement and search, which

eventually increases the possibility of finding relevant websites.

We use n-grams of keywords during pattern creation for both advertisement

and search keywords, which enhances flexible search. We randomly selected

10K keywords and generated query keywords from them. We computed the

percentage of matched n-grams between a keyword and its corresponding query

keywords varying the value of n, which is presented in Figure 4.2(a). It can

be observed that percentage of matched ‘n-grams’ reduces for larger value of

n. For this reason, we use 1-gram to increase the possibility of matching in

presence of partially specified query keywords.

Figure 4.2(b) shows the average recall of the search results for 10,000 queries

in a network of 100K nodes where the query keywords have edit distance two

with the advertised keywords. We used three different options to create the

advertisement and search patterns. In this figure, we use notations ‘dmp’, and

‘n-grams’ to refer to Double Metaphone encoding and n-grams, respectively.

From this figure, it can be observed that the use of Double Metaphone encoding,

n-grams and list decoding all together during pattern creation provides the best

recall rate.

(c) Incremental retrieval

We varied the search keywords having edit distances one to three from the ad-

vertised keywords and measured the recall and precision of the search results.

We measured these two metrics varying the list decoding radius. Figure 4.3(a)

presents the recall of the search results for the four steps (with larger list decod-

ing radius in subsequent steps) with search keywords having one to three edit

distances from original keywords. This graph shows that recall for keywords

having edit distances one and two are around 100% while recall for keywords

having edit distance three is about 87% in first step and gradually increases in

subsequent steps. Figure 4.3(b) shows precision for the results found in the four

subsequent steps. In the first step, the precisions are 92%, 88% and 76% for

edit distances one, two and three. This figure represents two facts: i) precision

decreases with the increase of edit distance between advertised and searched
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keywords, ii) precision decreases slightly in the subsequent steps. The reason

is the set of common nodes between the indexing set and search set of nodes

decreases when edit distance and decoding radius increases. As we apply ap-

proximate matching between the search and indexed keywords, DEWS picks

some irrelevant websites during approximate search. Figure 4.3(c) shows the

network bandwidth consumption (number of logical hops) in different steps for

1000 simultaneous queries in a network of 100K nodes. DEWS requires five

hops on average in each step to resolve the queries. Thus, the total number of

hops increases in the subsequent steps. As DEWS provides search results with

high accuracy in the first step, subsequent steps can only be performed when

users are not satisfied with the presented results to reduce the network band-

width consumption. The reason is if we search with greater decoding radius in

first attempt, it requires to visit greater number of nodes.
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4.4.2 Ranking performance

This section presents the ranking performance of DEWS in three points of view:

(a) time and network overhead for convergence of PageRank algorithm, (b) accuracy

of PageRank computation, and (c) accuracy of BM25 computation.

(a) PageRank convergence

PageRank computation is an iterative process as discussed in Chapter 3. We

assume that it converges when there is no rank update messages in the network.

We measured the number of cycles required to converge the algorithm. We

indexed varied number of URLs from 1000 to 10,000 in a network of 50,000

nodes. We used different interval times for sending weight update messages.

Figure 4.4(a) presents the results of this experiment. It shows that PageRank

converges within 60 cycles using one cycle interval. From this figure, it is

observed that convergence time increases when the number of URLs increases.

The underlying fact can be explained by Figure 4.4(b).

Figure 4.4(b) shows the average number of out-going links from each URL when

different numbers of URLs are selected from the LETOR3.0 dataset. This is

because when n number of URLs were selected, out-linked URLs within the n

URLs were chosen and the rest discarded. It is observed from Figure 4.4(b)

that the average number of out-linked URLs increases linearly with the number

of URLs.

As the number of out-linked URLs increases linearly, the number of weight

update messages increases which eventually increases the number of cycles to

converge PageRank in DEWS. We claim that if the number of out-links does not

increase, then number of URLs has no significant impact on convergence time.

Another observation found from Figure 4.4(a) is that convergence time increases

when the interval time for sending PageRank update messages increases.

We have measured the average number of messages generated during the con-

vergence of PageRank algorithm by varying the number of URLs from 1000 to

10,000 and interval period one to three cycles, which is shown in Figure 4.4(c).

This figure indicates that average number of messages decreases when the num-

ber of URLs increases. The reason is with the increase in number of URLs,

PageRank value in each URL converge quickly as they receive many PageRank

values from their in-linked URLs. Another point is that average number of mes-

sages for interval two and three are almost the same and are greater than that
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of having an interval of one cycle. The reason is each node gets the opportunity

to accumulate the incoming weights and send update messages if required with

larger interval.

(b) Accuracy of PageRank computation

We have measured SFD between search results using the PageRank values

computed centrally and by DEWS. Figure 4.4 shows the SFD for top-20,

top-100, and top-1000 search results. We indexed 10,000 URLs on a network

of 50,000 nodes and initiated PageRank with an update interval of 2 cycles.

It is evident from Figure 4.4 that SFD drops significantly in the first 60 cy-

cles due to rapid convergence of our distributed PageRank algorithm, while

PageRank values become almost constant after 120 cycles. It is observed that

SFDs become around 0.11, 0.098, and 0.059 after 120 cycles for top-20, top-100,

and top-1000 results, respectively. It indicates that the distributed PageRank

weights become very close to the centrally computed PageRank weights. An-

other observation from the figure is that SFD for top-1000 is lower than top-20

and top-100. In general, SFD is lower for top-k results with higher value of k.

(c) Accuracy of BM25 computation

We have used term frequency tf as the relevance of a keyword krepij in com-

putation of relevance during website indexing discussed in Chapter 3. idf is

computed during the query resolution. Thus, the resultant relevance during

query resolution becomes BM25 score of a query keyword to a particular web-

site.

We have compared the search results sorted by BM25 scores within our pro-

posed system with the results sorted using centrally computed BM25 scores.

Figure 4.5 presents SFD between the two search results for top-20, top-100,

and top-1000 results. We indexed 10,000 to 100,000 URLs and their associ-

ated keywords on a network of 100,000 nodes. The only difference between

the two approaches for computing BM25 scores is that DEWS uses an ap-

proximate value of N (number of collections) during query resolution instead

of exact value. Figure 4.5 shows that SFDs remain constant around 0.075,

0.043, and 0.026 for top-20, top-100, and top-1000, respectively. It indicates

that DEWS computes the BM25 scores efficiently in the proposed distributed

manner.
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4.4.3 Routing performance

In this section, we discuss the performance of modified Plexus routing, effectiveness

of using soft-links and network bandwidth for URL and keyword advertisement.

(a) Performance of aggregate routing

We use Plexus routing which is an efficient multicast routing protocol. Plexus

routes a message to multiple targets simultaneously which saves a portion of

the routing hops that might have occurred if we had used pair-wise routing.

We extend the Plexus routing protocol using message aggregation technique in

the Section 3.3.2. We have measured the percentage of hop reduction in both

Plexus and modified Plexus routing ( DEWS routing) when the number of

destinations increases. Figure 4.6(a) shows the reduction in routing hops (rrh)

for Plexus routing and DEWS routing calculated as Equation 4.3 and 4.4,

respectively.

rrh = (1− No of hops with P lexus multicast routing

No of hops for pairwise routing
)× 100 (4.3)

rrh = (1− No of hops with DEWS aggregate routing

No of hops for pairwise routing
)× 100 (4.4)

Figure 4.6(a) reveals two facts: i) rrh increases in both Plexus and DEWS rout-

ing when the number of destinations increases, ii) rrh is always more in DEWS

than in Plexus because the experiment was run with 10,000 simultaneous queries

and DEWS utilized the opportunity of aggregate routing. We computed rrh

in DEWS for 10K, 20K and 30K simultaneous queries having the same num-

ber of destinations. Figure 4.6(b) shows that rrh increases when i) number of

simultaneous queries in the network increases and ii) number of destinations

increases.

(b) Effectiveness of using soft-links

We run an experiment in a network of 50,000 nodes and measure average rout-

ing hops with different numbers of simultaneous queries varied from 10,000 to

100,000, which is presented in Figure 4.7. We measured the impact of softlinks

on query resolution. The average number of hops required is below 4 without

softlinks and below 1 with softlinks. The average number of hops for resolving

a query decreases when the number of queries increases because of message ag-

gregation in each hop. It can also be noticed that the number of average hops
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is significantly smaller in presence of softlinks. For repeated lookup of target

nodes we use softlinks, hence the lower average number of hops per query.

(c) Network bandwidth

Figure 4.8(a) presents network bandwidth required for URL advertisement by

Plexus routing and DEWS ’s modified Plexus routing for varied number of

URLs from 10,000 to 60,000 in a network of 50,000 nodes. It is observed from

the figure that Plexus routing requires around 30 hops where DEWS routing

requires below 10 hops. Another important observation is the number of hops

using DEWS routing decreases slightly when the number of URLs increases.

The reason is when the number of URLs increases, the average number of out-

going links increases which gives the opportunity of aggregate routing of URL

lookup messages and reduces the average number of hops.

We have measured the network bandwidth required during keyword indexing

by varying the number of keywords from 10,000 to 60,000 in a network of

50,000 nodes, which is presented in Figure 4.8(b). From the figure, it can be

observed that number of average hops in Plexus routing remains constant at

15 while number of keywords increases from 10,000 to 60,000. On the other

hand, number of average hops in DEWS routing decreases gradually from 12

to 5 when the number of simultaneous keyword advertisements increases. The

reason is when the number of simultaneous keyword advertisements increases,

DEWS routing gets the opportunity of aggregation which reduces the average

number of hops. We have also measured the scalability of URL and keyword

advertisements. We can infer a couple of things from Figure 4.8(c). Firstly,

average hops for advertisement do not increase significantly with increased net-

work size. Second, with message aggregation, average hops for both keyword

and URL advertisement becomes almost half. And third, URL advertisement

requires more hops than keyword advertisement regardless of message aggrega-

tion. The reason behind this behavior can be well-explained from Figure 3.5:

for advertising a URL, say ui, we have to lookup β(uit) for each out link of ui,

while advertising the keywords in Krep
i we lookup β(ui) once and use it for every

keyword krepij ∈ K
rep
i . The average number of routing hops for query resolution

does not increase significantly when the network size increases as depicted in

Figure 4.8(c).
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4.4.4 Indexing performance

We present average number of indexed URLs, softlinks and keywords per node in

Figures 4.9(a), 4.9(b), and 4.9(c), respectively in varied network sizes from 10,000

to 50,000 nodes. It is evident from these figures that the average number of indexed

URLs, indexed softlinks and keywords decreases linearly when the network size

increases. It should be noted that the number of indexed URLs, softlinks and

keywords becomes almost double in presence of replication. The reason behind this

behavior can be explained from the replication policy in Plexus, where the node

responsible for codeword ck maintains a replica of its indexes to the node responsible

for codeword ck, where ck is the bit-wise complement codeword of ck.
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4.4.5 Fault resilience

DEWS has to work on a continuously changing overlay topology as new webservers

can join DEWS network and existing webservers may fail. We used the built-in

abilities of Plexus routing for alternate route selection and replication in DEWS to

achieve increased failure resilience. We investigated the impact of failure on query

routing performance (Figure 4.10(a)) and PageRank accuracy (Figure 4.10(b)) in a

DEWS network of 50,000 nodes.

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50

A
ve

ra
ge

 h
op

s 
pe

r 
qu

er
y

Percentage failed nodes

with out replica
with replica

(a) Query resolution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50

S
pe

ar
m

an
’s

 fo
ot

ru
le

 d
is

ta
nc

e

% node failures

with replica, top-20
with replica, top-100

with replica, top-1000
with out replica, top-20

with out replica, top-100
with out replica, top-1000

(b) Accuracy of PageRank

Figure 4.10: Fault resilient

We can get a number of insights from these two significant graphs. Firstly, rout-
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ing performance and ranking accuracy in DEWS do not degrade when the failure

rate is below 30%. Second, average number of hops for query resolution increases

as the percentage of failed nodes increases (see Figure 4.10(a)). In presence of

node failures, Plexus routes queries through alternate routing paths and possibility

of message aggregation decreases, hence the increase in number of routing hops.

Third, the average number of hops per query is greater in the no-replication case

than the replication case. When we use Plexus replication scheme, we can resolve a

query either at a target node or its replica. This feature allows us to route a query

to a target node or its replica, whichever is closer in terms of network hops, hence

the reduction in query resolution hops. Finally, the Spearman’s footrule distance

is lower in presence of replication. Without replication, the URLs indexed at the

failed nodes remain missing from search result and Spearman’s footrule distance

increases accordingly.

4.5 Summary

This chapter presented simulation results and evaluation of DEWS. We defined few

performance metrics including search flexibility and accuracy, accuracy of ranking,

routing efficiency, network bandwidth, scalability and fault tolerance. We used a

cycle driven simulator written in Java. LETOR 3.0 dataset was used to drive our

simulation. We found that DEWS provides flexible searching with high accu-

racy. For example, 87% recall and 76% precision rates were attained in presence

of query keywords having edit distance three from the advertised keywords. This

high search performance is attained by combining phonetic encoding and n-gram

segregation with the list decoding mechanism. We also varied the list decoding

radius and found that search accuracy increases slightly and network bandwidth

increases linearly when the radius increases. For this reason, DEWS searches

with a smaller radius first and larger radius later if users are not satisfied with the

first set of results. This incremental retrieval technique saves network bandwidth.

DEWS computes PageRank and BM25 in a distributed manner. We found that the

accuracy of PageRank and BM25 are very close to the centrally computed values.

We also found that PageRank algorithm converged within 60 cycles. It required less

than 20 average messages per node. We measured the performance of the modified

Plexus routing protocol, which required less network bandwidth for simultaneous

advertisements and query resolution than the unmodified Plexus routing mecha-
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nism. From the experimental results, we found that indexing overhead for URL,

keywords and soft-links were small and indexes were uniformly distributed over all

the webservers. We varied the percentage of failed nodes and found that routing

performance and PageRank accuracy did not degrade considerably upto 30% failure

level.
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Chapter 5

Conclusion and Future Research

Exponential growth rate of number of websites stresses the demand for a decentral-

ized Web search engine. Existing distributed approaches do not provide all the de-

sirable properties of such an engine. In this thesis, we have presented DEWS which

meets all the desirable properties of a decentralized Web search engine.

We summarize the contributions of this thesis in Section 5.1 and give concluding

remarks in Section 5.2. Finally, Section 5.3 presents some future research directions.

5.1 Summary of Contributions

The contributions of this thesis can be summarized as follows:

• We presented a novel technique for enabling the Web to index itself where

webservers collaboratively create distributed index of webpages and respond

to user queries.

• Our presented framework supports approximate keyword matching and com-

plete ranking of webpages in a distributed manner without incurring signifi-

cant network or storage overheads.

• We presented a new route aggregation protocol that extends the original

Plexus routing protocol, which significantly reduces the number of routing

messages in the network.

• We also presented a distributed incremental retrieval technique that allows a

user to limit his/her search to a small number of nodes.
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5.2 Thesis Summary and Concluding Remarks

In this thesis, we have presented DEWS - a self-indexing architecture for the Web.

DEWS enables the webservers to collaboratively index the Web and respond to

Web queries in a completely decentralized manner. It uses a structured overlay

based on the second order Reed-Muller code. We adopted the concept of Double

Metaphone encoding for minimizing Hamming distance between the advertisement

and query patterns, which eventually decreases the effect of edit distance between

the advertised and queried keywords. DEWS utilizes Double Metaphone and n-

grams with list decoding of Reed-Muller code to allow flexible search with partially

specified misspelled keywords. We also proposed an incremental retrieval technique

varying the list decoding radius to reduce network bandwidth consumption. We

preserved a hyperlink overlay on top of a structured overlay to compute PageRank

in a distributed manner having accuracy closer to the centralized computation. We

computed keyword relevance considering the structure of website, webpage, posi-

tion of keywords in the webpages in a distributed manner with high accuracy unlike

existing approaches. The route aggregation technique proposed in this work out-

performs the original Plexus routing protocol in terms of network usage efficiency.

Using the extended routing protocol, DEWS indexes websites and search queries

with low network overhead. DEWS maintains replica of indexes which makes it

robust to webserver failures.

We evaluated the concepts presented in this thesis through simulations results.

We used LETOR dataset to validate our ranking algorithms. As demonstrated by

the simulation results, for a network of about 50,000 nodes and 10,000 URLs, PageR-

ank in DEWS converged within 120 cycles where Spearman’s footrule distance be-

came 0.11 to the centrally computed PageRank for top-20 results. DEWS required

low network bandwidth for URL and keyword indexing as well as query lookup

which was around five logical hops on average. Experimental results showed that in

DEWS, each node indexed 5 URLs on average in a network of 10,000 nodes when

50,000 URLs were indexed. We also found that around 400 keywords on average

were indexed by each node in a network of 10,000 nodes when 30,000 URLs were

advertised. In experimental results, Spearman’s footrule distance was around 0.075

for top-20 results between BM25 scores computed in DEWS and centrally from

the dataset. Beyond computation of efficient ranking of websites, another major

contribution of DEWS is to provide flexible searching with high accuracy. Exper-

imental results showed that DEWS achieved around 100%, 98%, and 87% recalls
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for query keywords with one, two and three edit distances, respectively. Precisions

for query keywords with one, two and three edit distances were 92%, 88%, and

76%, respectively. Simulations results also showed that DEWS is highly resilient to

node failures due to the existence of alternate routing paths and smart replication

policy. Neither routing efficiency nor ranking accuracy degrades significantly even

in presence of 30% failures.

Based on the simulation results, we can conclude that DEWS is a complete

decentralized Web search engine which provides flexible search with high accuracy

of search results and ranking.

5.3 Future Directions

In the following, we outline few directions for future research:

• We used hyper-link overlay on top of a structured P2P overlay named Plexus

to rank web search results using PageRank and keyword relevance (e.g.,

BM25) computed in a distributed manner. It would be interesting to use

multi-level Plexus overlay by combining 1st and 2nd order Reed-Muller codes

representing super peers and regular peers, respectively. A set of search top-

ics can be predefined and assigned to the super peers which will facilitate the

searching and ranking mechanism.

• Introducing a semantic overlay on top of Plexus overlay would be interesting

to allow semantic search. In this case, the challenge is to identify ontological

mapping of keywords. Recent developments of ontological mappings in various

areas such as health informatics show promise toward efficient semantic search.

• We used a hyper-link overlay on top of Plexus overlay to compute PageRank

in a distributed manner. We hashed an URL and found a node to index it.

We used softlink to preserve link between two nodes (say, n1 and n2) indexing

linked URLs (say, ui and uj). It would be interesting to index two linked

URLs ui and uj in two nodes nx and ny which are neighbors to each other.

If it is possible to preserve the proximity of URLs in the hyperlink overlay

on Plexus overlay, it would require less network bandwidth and convergence

time during PageRank computation.

• We used centrally computed PageRank to compare PageRank computed in

DEWS and LETOR3.0 dataset to compare BM25 as keyword relevance. We
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did not compare DEWS combining both PageRank and keyword relevance

(incorporating many factors including structure of website and webpages)

with any established search engine. It would be interesting to establish a

dataset by crawling the Web to validate web search results in DEWS and

compare DEWS with other established search engines.
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