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Abstract

Quantum information and quantum computation are linked by a common math-
ematical and physical framework of quantum mechanics. The manipulation of the
predicted dynamics and its optimization is known as quantum control. Many tech-
niques, originating in the study of nuclear magnetic resonance, have found common
usage in methods for processing quantum information and steering physical systems
into desired states. This thesis expands on these techniques, with careful atten-
tion to the regime where competing effects in the dynamics are present, and no
semi-classical picture exists where one effect dominates over the others. That is, the
transition between the diabatic and adiabatic error regimes is examined, with the use
of such techniques as time-dependent diagonalization, interaction frames, average-
Hamiltonian expansion, and numerical optimization with multiple time-dependences.
The results are applied specifically to superconducting systems, but are general and
improve on existing methods with regard to selectivity and crosstalk problems, filter-
ing of modulation of resonance between qubits, leakage to non-compuational states,
multi-photon virtual transitions, and the strong driving limit.
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Chapter 1

Introduction

The digital age has brought us the relentless digitization of information. At its very
heart, the framework given by the Universal Turing Machine (UTM) and the von
Neumann architecture tells us that any piece of information and any algorithm that
acts on it can be stored together as a single string of zeros and ones on one memory
device [160]. This equivalence principle states that some piece of information "x"
that we have cannot be distinguished in and of itself from some algorithm or function
"f(x)" that acts on it. That the one represents the physical change in the other has
no repercussions in terms of its representation or storage.

Beyond this digital paradigm lie a plethora of characterizations and interpreta-
tions of what is possible with a digital computer, but fundamentally they are all
reducible to operation of a UTM. That is, different statistical measures of ‘efficiency’
(such as the entropy, outcome probability, information dissipation, or the algorith-
mic complexity) rely on the computation as a sequence of indivisible steps for which
both the information x and the process acting on it f(x) are completely fixed. And
yet the statistical properties are not digital but real-valued and moreover actually
changing during the atomic steps. Whether such ‘statistical properties’ of informa-
tion are physically real was perhaps first questioned by the Greek philosopher Zeno
in his arrow paradox [118], which asks whether something can be in one place and
moving at the same time. But, because physically observable quantities are effec-
tively continuous (as formalized by calculus), one being the average of the other is
not discernible (they are independent variables [99]) and such speculation remained
philosphical.

Nevertheless, classical laws of probability and logic are based on notions of dis-
continuous events and objects (divisible into smaller and smaller particles) and these
concepts made their way into our understanding of physics. Based on the motion of
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individual particles, a statistical physical theory was developed behaving similarly to
(but discovered independently from) modern statistical characterizations of digital
information, obeying a set of thermodynamic laws with similar concepts of entropy,
heat dissipation, and other probabilistic effects. Yet, evidence of the continuousness
of physical phenomena remained a thorn in these developments, and in particular a
wave theory was concurrently developed that characterized analog oscillations and
interactions as propagations of contiguous waves.

Quantum mechanics [152] unified the notions of probabilistic properties of indi-
vidual particles and continuous wave interactions between disconnected particles.
In effect, both heat dissipation and wave propagation are dictated by the same
Schrödinger equation. Whether something behaves more like a particle (with fixed
properties) or more like a (delocalised) wave is primarily a question of context, that
is, of whether it is bound to a particular location or whether it is free to propagate
in all directions. Moreover, just like a physical potential barrier keeps a particle in
a specific location, a measurement event causes the measured property to localize
to a particular value. A lack of measurement or an escape from a binding potential
on the other hand lead to dissipation and propagation of energy and information.
The properties of these objects that are measured can also be discontinous (quan-
tum) or continuous, depending on whether they describe a bound state or a free one.
In the quantum case it seems Zeno’s intuition was correct: both a given discrete
property and a complementary property describing its change cannot simultaneoulsy
be well defined. However, both properties are physically real, and context-specific
localisation dictates which of them is well-defined.

A characterization of computers that somehow physically includes both the infor-
mation (that we read off digitally) and also the change in the information, described
by the analog physical process that (infinitesimally) changes one piece of information
that we observe into another, seems like it should be qualitatively richer1, much like
quantum mechanics generalizes Newtonian dynamics. No less, such a formulation of
computations is necessarily equivalent and isomorphic to quantum mechanics [66].
While the new paradigm does not alter the fundamental power of the UTM and the
question of ‘tractability’ (the resolution of paradoxes such as the Halting Problem
or “this statement is false” cannot be found on any computer), it turns out that
measures of efficiency such as informational entropy, probability, and dissipation are
resources that are physically inherently present in the characterization, but perhaps
most interestingly, decreased algorithmic complexity is as well.

1At the very least, it should contain twice as much information. For example if the information
is encoded in terms of a position coordinate, velocity information would also be present. See also
‘superdense coding’ [84].
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For our purposes, we are interested in such complex algorithms. The most com-
plex operations for a computer are computations about computations themselves.
In the context of the first paragraph, for some information "x" and some function
acting on it "f(x)", a complex operation can roughly be understood as a function
"g(f(x))" that computes some global property of the function f(x) for all possible
x. The "brute force" approach to computing this can be described as trying every
single possible value of x, computing f(x), and from the total set of results comput-
ing g(f(x)). When x can take on many different values such an approach is all but
impossible (it is exponential in the width of x). An insight in complexity arises from
identifying the algorithm f(x) with the analog physical process underlying compu-
tation. Then, global properties of the process f(x) can be measured directly, using
as input a wave spread over all possible values of x rather than feeding in the values
individually. For example, one can measure the frequency that the physical process
repeats itself with by appending another analog process (the Fourier transform) to
the input and simply reading off the answer [158].

As it turns out, the frequency is the key piece of information to breaking en-
cryption functions used in RSA cryptosystems, used all over the planet for security
protocols. Similarly, the characteristic energy of the process (its eigenvalue) is in-
strumental to the simulation and characterization of physical systems [81], with such
potential areas of applications as biochemistry and materials design. A crowning
achievement but still an open problem would be if one could reliably obtain the
characteristic input configuration (the eigenvector) for the lowest eigenvalue of a
process (that one is trying to optimize), then this corresponds to a solution to a
given instance of the notoriously hard but ubiquitous NP-complete problems [44,77].

Of course, building such a computer is in many ways far more demanding than
a digital computer because the analog process describing operations must not only
avoid accidentally flipping a bit, but it must retain the coherence of the phase oscilla-
tion (i.e. timing of the peaks and troughs of the wave). By the same token, a classical
analog computer is limited, not only by a simple class of bit operations typically avail-
able for the chosen encoding, but because heat dissipation limits the precision of such
operations to a finite and relatively small number of bits. Using quantum mechanics
circumvents this problem with the important caveat that damping and dissipation
must be suppressed to remain quantum. The quantum framework not only provides
a mathematical model for describing (continuous) computation, but from a hardware
point of view it provides numerous prospective physical implementations.

Candidate quantum implementations typically involve some small physical system
that can be sufficiently isolated from the environment to allow its wave properties to
be manifested and retained. Additionally, the system must be sufficiently cooled to
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prevent flipping of bits via energy decay processes. However, this isolation must be
contrasted to the ability to introduce energy/phase shifts via control hardware which
must couple to the quantum system. The most developed technologies in this regard
have benefited from research for many decades such as liquid state Nuclear Magnetic
Resonance (NMR) and photonic systems. These systems have and continue to serve
well as testbeds for advances in quantum information but are challenged by difficulties
in weak coupling between elements and scaling to larger system sizes. Other more
complicated systems such as trapped atoms/ions and solid state implementations
(e.g. semiconducting, superconducting) are more promising in this regard. Some of
these implementation and design choices are discussed in Sec. 2.3.

The mathematical framework of quantum computing consists of defining a quan-
tum bit (qubit) as some (stable) degree of freedom present in the physical system
which can be measured in one of two states, but for which the wave properties allow
that energy (and information) can be spread over multiple states simultaneously.
Timed operations are controlled by the dynamics of the Schrödinger wave equation
which allows coupling of qubits to control hardware or other qubits. An overview on
quantum mechanics and operations is given in Sec, 2.1. The Schrödinger evolution
is typically controlled on a short time scale in order to define reusable high-quality
operations (gates)2, and (remarkably) these operations can be subsequently chained
together as building blocks for more complicated operations and algorithms, just
like digital gates on a conventional computer. When the timing is performed cor-
rectly, the coherence properties of the wave can spread over many qubits allowing
for operations (such as the Fourier transform) to now physically act simultaneously
on arbitrarily many bits3.

The statement of this thesis is to describe the generation of quantum operations,
acting on a small number of qubits, both in terms of the physics involved and the
mathematical features that expand on classical computation. The main reason we
focus on a small system size is that, by the very definition of the problem, engineering
many-bit operations is not efficient using classical computers, which of course is all
we have access to without a quantum computer. In fact, most known multi-qubit
operations that are required for known algorithms can be decomposed into a series

2At this point, arbitrarily high-quality operations can be obtained using measurement of par-
ticular “error syndrome” states [62]. This is another difference from classical analog computation
in which measurement is only defined in the (final) steady-state of the system. Note that in some
cases, such as typical implementations of adiabatic quantum computation, long operations are syn-
thesized directly instead and error correction is therefore not used, in particular if the evolution
can be shown to withstand the onset of decay and damping processes.

3As another example, using a single operation, one qubit can be simultaneously entangled with
a large number of other qubits. Measuring one qubit measures all the others as well.
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of smaller operations. Thus, for the purpose of well-defined operations, the error can
be made small by ensuring that the error in the short operations is proportionally
smaller. Thus, the main focus of the research is to engineer these short operations to
have low errors. Sec. 2.4 introduces some ways of quantifying the error of a quantum
operation.

The eventual goal, in most idealized terms, is to build a quantum computer. In
this respect, the quantum computer is built up of three main components. The first
is the memory of the system, which can be digitally read out, and which is physically
encoded in some quantum system. For example, this quantum information can be in
the spin (up or down) of a particle, in the energy level of an atom, or in a quantized
superconducting current. The second component is the “processor”, which is some
control hardware programmed to introduce radiation or other fields into the system
to change the configuration of the information stored in the physical device. The
device must effectively be able to perform the short operations with sufficiently low
error, and so is central to this thesis. Thirdly, the software that runs on the computer
is some algorithm, typically one that benefits in reduced complexity by running on
a quantum computer. Some of the main developments in quantum software are
described in Sec. 2.2. All three of these components are very far from being a
finished product, let alone fully understood. As much as all three components have
gained tremendously from theoretical research and a variety of analytical insights,
they are difficult to understand even for small number of bits.

In the context of a small number of qubits, all three components can often be de-
scribed using a common physical model described by the Hamiltonian of the system.
Both by experimentation and by numerical simulation and optimization, it is hoped
that new insights will be gained into the Hamiltonian dynamics that will help to
scale the components to systems with more bits. In the case of numerics, solutions
to reducing error will often have symmetries from which an analytical expression or
technique can be deduced. Finding control fields that contain identifiable features
such as specific frequency components or separation into a sequence of steps in time
can offer clues about how best to characterize problems and their solutions. Such
forms are also very useful because they can point out which physical resources are
most valuable in the physical implementation and design choices can be based on
these in the future. Finding that some imperfection is intrinsic or irreversible or
instead that it can be avoided or rendered irrelevant can avoid unnecessary dead-
ends in terms of research and allow resources to go to more promising realizations.
From a processing point of view, being able to solve simple problems involving few
bits analytically means that the solutions can be computed very efficiently and if
multiple techniques can be combined then the solutions for larger numbers of bits
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can often remain efficient. Specifically, solutions to different problems that involve
distinct controls or different basis elements for the same control, or even different
bases, can be applied effectively independently, at least to the highest order of any
approximations that may be made in the solutions. In some cases, compound errors
coming from combing two different kinds of error still belong to the set of correctable
errors and can thus be removed to arbitrary accuracy by applying the analytic tech-
niques in sequence. Moreover, the physics is all present in the interaction of very
few components and adding in more components does not qualitatively alter the
situation, only adds in more combinations. Finally, from a software point of view,
simulations and optimizations can offer insight into how an algorithm works and
even find faster ways of running the same algorithm, for example by speeding up
the individual gates with a proportional decrease in the time of the algorithm or by
combining several steps in the algorithm into a single step. Most notably, the sources
of error in certain kinds of algorithms such as adiabatic computation impact directly
(super-polynomially) on the algorithmic complexity of the solution [44, 77]. The
analytical and numerical optimizations also have a direct effect on how and which
experiments can be run. In some cases, the experiments even involve more bits than
the simulations [21]. The same advantages that come from simulation can often be
found in experimentation, as well as new benefits involved such as seeing exactly
what can or cannot be realized. Optimizations allow more complex experiments and
the effects are compounded, taking us closer to large scale quantum computation.

A more immediate purpose to the study of quantum operations is to map out
the dynamics involved on a qualitative level. In a sense, such a study goes beyond a
measure of quantitative error but rather aims to find novel (and often less complex)
ways in which particular problems (given by a particular Hamiltonian) can be solved.
In effect, quantum computation (unitary evolution) is conceptually different from the
binary switching processes that take place in digital computation and understanding
the similarities and differences is of much theoretical interest. Not only is the amount
of information present in the description of the computational system exponentially
larger, but as mentioned the change in information is as much a resource as the in-
formation itself. All this means that any path from one state to another can take on
an infinite number of different trajectories through analog space. The basic study of
quantum control, the study of which quantum variables can be used to change or in-
stead retain information in an efficient way, was pioneered in NMR systems since the
middle of last century [162]. This was the first experimental application of quantum
mechanics exploiting not simply the ensemble phenomena described by the theory
but manipulating and controlling individual pieces of quantum information as well.
This progress has been steadily forthcoming as more precision and more complexity
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has been incorporated into these operations. Initially it was found that irradiating
atomic transitions with resonant magnetic fields, one could drive oscillation between
a pair of energy states. This turned out to be useful for example in spectroscopy
for identifying the chemical structure of samples. Timing was improved so that a
particular state could reliably be obtained at a given time. This in turn allowed
complex operations in time such that multiple (matrix) transitions could be sequen-
tially traversed and multi-dimensional data could be obtained via spectroscopy such
as the strength of the couplings between atoms in molecules. The wave properties of
light-matter interaction was also fundamental to the progress. Pulse shaping beyond
square monochromatic pulses improved reliability and spectral selectivity by for ex-
ample using smoother shapes with a smaller more selective bandwidth [55]. The
technology developed further with complex sequences of control pulses being used
to manipulate information inside molecules and engineer specific chemical configu-
rations. Thus, chemical analysis is where the basic ideas about quantum algorithms
were first laid out, with interference playing a prominent role between desired and
undesired pathways for information.

The success of the pioneering efforts in quantum control was largely predicated
on a clear hierarchy of the importance of different operators in the system. Physi-
cally, the atomic spin precession frequencies were much larger than the amplitudes
of magnetic fields, which were much larger than the strengths of the inter-atomic
couplings in molecules, which were again much larger than damping and decay er-
rors. In this limit, the effects could be separated and independently characterized.
Thus, generating slow timescale evolutions could be understood as a pseudo-digital
sequence of operations which permit information to move inside or in between spins,
decomposing the dynamics into a matrix algebra. This lead, for example, to power-
ful techniques for using the faster single-spin dynamics to augment the inter-atomic
couplings, such as composite pulse sequences, which seek to obtain a new operation
from a number of smaller operations. Most generally, the effect of the extra controls
can often be understood as changing (temporarily) the encoding (and for modeling
purposes, the representation) of information from energy to phase or something in
between. On the other hand, in the limit of the fast dynamics, the representation
is better understood as a continuous phenomenon for which the classical wave prop-
erties such as bandwidth describe which information is affected. Yet such linear
measures do not tell the whole story, in part because the solution to the Schrödinger
equation (describing the spectroscopic response) is a trigonometric function rather
than linear, and in part because the matrix mechanics allow information to be moved
in a multi-dimensional manner.

In some sense, the combination of the analog and digital mechanics offers the most
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interesting and difficult to predict dynamics but also the most promise in terms of di-
rectly steering a set of arbitrary initial conditions to desired ones. One effect, known
as a Stark shift or a Bloch-Siegert shift, is to change the energies of all the levels in
the Hamiltonian matrix by essentially time-dependently rediagonalizing it. However,
even this effect is best understood from the separation of time scales between the
frequency and amplitude of the pulse. The main difference with regard to this thesis
is that we assume systems can now be built (many decades later than pioneering
NMR) that can have arbitrarily shaped (analog) and arbitrarily strong couplings
between the components, but, with no one term dominating in magnitude over oth-
ers, very high precision control can in principle still be achieved. Thus the classical
information that can be extracted from the dynamics is neither well defined in fre-
quency nor in time and the matrix mechanics must be described in continuous time.
In this sense, the regime that will be studied is neither “ultra-strong” coupling nor
highly adiabatic (low coupling), but at the cusp of where the adiabatic approximation
breaks down, which offers the interest both in terms of finding intuitive descriptions
for the complex nature of simultaneous competing effects and practically in terms of
pushing the envelope of what can be done in experiment. The techniques that will be
used are specializations and refinements of the study of quantum control. Ch. 3 lists
all the different control problems that will be analysed in later chapters in terms of
which competing effects will be mathematically present and in terms of the physical
systems considered. Analytic techniques used to describe and choose different per-
tinent representations are discussed in Ch, 4. Meanwhile, advances in being able to
simulate and optimize quantum operations in an efficient way on classical computers
have also blossomed with the field, and some relevant techniques are discussed in
Ch. 5.

The problems that are addressed in this thesis will in general be problems asso-
ciated with this difficult regime, where multiple competing (non-commuting) effects
are roughly of the same magnitude, and in systems where this regime exists in part
because fast dynamics within and between components can be largely engineered.
The rest of the chapters deal with specific kinds of errors that can arise and so are
grouped by, in a sense, which operations they affect (thus mathematical or physical
commonalities may be found across chapters). Ch. 6 analyses what happens when
the variation in some control parameter due to the classical electronics is roughly as
slow as the speed of the actual operation. In many physical applications, this is the
limiting factor that sets the gate time, but also if changes cannot occur approximately
instantaneously then the control terms can cause new errors by not commuting with
the rest of the Hamiltonian. Ch. 7 discusses the problem of having crosstalk er-
ror, namely controls which unwittingly couple to more than one quantum element.
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Sec. 7.1 discusses the case when the frequency difference between elements is roughly
on the order of the amplitude of the control while in Sec. 7.2 the amplitude of the
control varies from one element to the next (but not necessarily the frequency). Ch. 8
looks at one specific quantum element, but now the element is allowed to contain
multiple frequencies, only one of which should be resonant with the control. Once
again, the energy difference is roughly of the same order as the amplitude of the
control. Ch. 9 continues with the same kind of error, but now compound errors are
considered where multiple unwanted transitions are present in the element(s). Ch. 10
also continues along the same tack, but now multiple transitions inside a system are
used to define new transitions that do not intrinsically exist already. The cost is that
the old transitions are still present but once again at a frequency difference, which
once again can be as small or smaller than the amplitude of the control. The last
form of strong coupling that is considered is in Ch. 11, where now the amplitude of a
single control and its frequency are of the same order and shows that even in one of
the simplest quantum systems the dynamics are far from trivial. Finally, in Ch. 12,
the findings are summarized and conclusions drawn.
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Chapter 2

Universal Quantum Computation

This chapter gives an overview of the main principles and notation used in quantum
computation and applied throughout this thesis. For detailed surveys of quantum
computation and quantum information see Refs. [129] and [84].

2.1 Quantum gates

2.1.1 Superposition and measurement

Quantum computation differs from conventional computation in that it is able to
satisfy two postulates of quantum mechanics simultaneously.

The first is that conventional digital (bit) readout signals 0 and 1 (represented
as the

(
1
0

)
and

(
0
1

)
vector basis states, respectively) can be defined simultaneously

(as in the qubit
(
a
b

)
). Specifically, unlike conventional logical operations, the physical

processes that map one basis state to another should also be well defined at all
intermediate times during the operation. In order for such a decomposition to be
possible, the operations must inherently be described using complex numbers, e.g.,(

0 1
1 0

)
=

(
(1 + i)/2 (1− i)/2
(1− i)/2 (1 + i)/2

)
×
(

(1 + i)/2 (1− i)/2
(1− i)/2 (1 + i)/2

)
.

More abstractly, in the context of group theory where we take operations to be re-
versible and of unit determinant, instead of being described as permutations (digital
computation) or stochastic matrices (probabilistic computation), quantum opera-
tions are instead described by the unitary group [66]. Thus, we must have that a
and b are complex numbers, which are analogous to amplitudes of a physical wave,
and the vector

(
a
b

)
is called the wave vector.
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2.1. QUANTUM GATES

The second constraint is the basis states must be distinguishable. As entrenched
in our every day experience, where for example a car is or is not drivable or a woman
may or may not be pregnant, two physical states being distinguishable implies that
they cannot simultaneously both be true. This distinguishibility in turn ensures that
any intermediary states have no interpretation as measurable elements of reality.
This is same condition that is true for conventional digital computers (where signals
are either on or off) but differs from models of conventional analog computation
(though, in practice, limited precision renders measurement digital as well). In the
context of the reality of the basis states, this forces us to think of the complex
numbers a, b as somehow describing probabilities. The measure chosen by nature
(and the only one conserved by unitaries [1]) is the distribution given by 2-norm
(with |a|2 + |b|2 = 1). In effect, an (intended or otherwise) “instantaneous” act of
measurement of an intermediary state must impart an a posteriori reality to the
distinct computational vector states, either

(
1
0

)
with probability |a|2 or

(
0
1

)
with

probability |b|2. In between, both realities must somehow be possible.
While these two postulates of quantum mechanics may seem at odds with one

another, with objects in effect enacting both waves and particles, they are both well
established and fundamental to quantum computation.

2.1.2 Unitary evolution

The advantage of this paradigm does not come from the speed or physical size of the
system, nor solely from the parallelism of having probability amplitude distributions
over large numbers of possible states (since we can only measure one at the end),
but rather from the otherwise unattainable instruction set made possible by (arbi-
trarily precise) unitary state evolution 1. Detailing the dynamics of creating these
fundamental building blocks is central to this thesis.

For a single bit register (a qubit), the unitary operations can be thought of as
rotations, of which the most prevalent are

UX
θ ≡

(
cos θ/2 i sin θ/2

i sin θ/2 cos θ/2

)
, UY

θ ≡
(

cos θ/2 −i sin θ/2

i sin θ/2 cos θ/2

)
, UZ

θ ≡
(

exp iθ/2 0
0 exp −iθ/2

)
(2.1)

These generate the only non-trivial classical single bit operation, the negation (NOT)
gate

1The measurement operation is also useful for such techniques as error-correction and telepor-
tation which can in practice improve operational precision (see Sec. 2.4) as well as probabilistic
algorithms but strictly speaking is not fundamental to the computation.
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2.1. QUANTUM GATES

−iUX
π = X ≡

(
0 1
1 0

)
.

These rotation operations are critical to quantum computation because they cre-
ate the intermediate non-computational (non-basis) states discussed in the last sec-
tion. That is, the pure (classical) computational state |ψ〉 can be transformed to the
superposition e.g. UX

θ |ψ〉 = (cos(θ/2)1+ i sin(θ/2)X)|ψ〉. Thus, we can see that the
instruction set for quantum operations is much richer.

For multiple registers, the outcome probabilities cross multiply which we capture

using tensor notation. That is, two qubits with probability amplitudes
(
a
b

)
and

(
c
d

)
respectively give cross amplitudes

(
a
b

)
⊗
(
c
d

)
=


ac
bc
ad
bd

. Again, the two-bit

classical conditional-NOT (a.k.a. XOR) operation (x, y)→ (x, x⊕ y) which reads in
matrix notation

CNOT ≡ CX ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


generalizes to the class of controlled operations CU = 12 ⊕ U2, where U2 is any
unitary operation of dimension 2 and 12 is the identity matrix of dimension 2. In
combination with the superposition operators, these unitary operations allow the
superpositions to extend over multiple computational elements. Similarly, there is
another important class of two bit gates [60,155,189], of which the most common is

ISWAP ≡


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 .

The states containing cross-probabilities between qubits that can be obtained
from these two classes of operations (as well as others), combined with the measure-
ment postulate outlined above imply that exotic states of matter can be obtained.
The fact that the wavevector amplitues can spread out over two or more physical
elements (e.g. with cross-probabilities {(ac)2, (bc)2, (ad)2, (bd)2}) suggests that a
shared states exists between them regardless of how far apart they are. In particular,
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2.1. QUANTUM GATES

when only ac and bd are non-zero (or bc and ad), measurement correlations between
the two objects (where the random value of the first bit predicts the second) can be
seen to be stronger than if one were to assume that the randomness in the shared
state was pre-determined (regardless of spatial distance). Such entangled states have
been experimentally verified.

Higher dimensional operations can also be defined, most notably N-qubit controlled-

U operations (CNU2 = 12N−2 ⊕ U2), Hadamard operations
√

1
2N

(
1 1
1 −1

)⊗N
, and

the quantum Fourier transform transform (mapping basis elements
yk 7→ 1√

N

∑N−1
j=0 e2πijk/Nxj) which generalizes the Hadamard operation.

2.1.3 Hamiltonians

To obtain the unitary evolution needed above we need to consider how to obtain it
from the physical system in use. To this end, we should be able to gauge the different
physical components that make up the system. In this mathematical treatment,
a unitary matrix can more conveniently be defined as the exponential of an anti-
Hermitian operator, or equivalently by U = exp(−iĤt/~), where Ĥ is a Hermitian
operator known as the Hamiltonian and t parametrizes the evolution time. The
Hamiltonian gives the intrinsic energies of the system, both for the basis states and
for the interactions that allow transfer of occupancy from one state to another. In
matrix notation, the energy of the states is given along the diagonal (telling how
favourable a state is), while off-diagonal elements give the coupling energies between
states which tell how fast one state is replaced by another. As mentioned, the
physical time scale is irrelevant to any exponential speed-up, and as such we often
use dimensionless units as well as take ~ = 1. In general the unitary operation
that is performed will change over time and is described as the matrix product
of a sequence of infinitesimal unitary operators. This is written by convention as
U = T exp

(
−i
´
Ĥ(t)dt

)
, where the infinite sequence of infinitesimal operators is

equivalent to the use of the time-ordering operator T , which can be used to expand
the integrand in an analytically tractable way. Alternatively, the Hamiltonian defines
the Schrödinger equation U̇ = −iĤU whose integration gives the evolution in time.
Many different Hamiltonians will give the same evolution, a key point that will be
revisited when complications arise.

In the absence of complications (that will arise), a constant Ĥ, or an Ĥ that
satisfies the commutation relation [Ĥ(t), Ĥ(t′)] = 0, ∀t, t′, will simply give U =
exp(−i

´
Ĥ(t)dt) with which it is easy to predict and even engineer gate operations.

Such expressions (approximate or exact) are the reason it is more convenient to work
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with the Hamiltonian than the evolution operator, as the calculations involve linear,
rather than exponential functions of matrices. In particular, given the Hermiticity
of the Hamiltonian, the Hamiltonian of a qubit with unique time dependence must
necessarily be of the form

Ĥ(t) = Ω(t)(aX̂ + bŶ + cẐ) (2.2)

with Ω the Rabi frequency,
√
a2 + b2 + c2 = 1, and X̂, Ŷ , Ẑ the Pauli operators. The

unitary evolution at time T can readily be computed via

U(0, T ) = 1̂ cos

 T̂

0

Ω(t)dt

− i

Ω
Ĥ sin

 T̂

0

Ω(t)dt

 (2.3)

This is known as an area theorem. It is easy to see that picking a, b, c and the
area

´ T
0

Ω(t)dt appropriately it is possible to generate the rotation operators from
Eq. 2.1, which fully span the qubit subspace [41]. In practice it is very difficult and
even undesirable to keep the time dependence of the components of Ĥ unique and
most of this thesis assumes it is not the case. However, we will see in Ch. 4 several
analytical methods to try to reduce complex time-dependence to the tractable, unique
time-dependence case.

2.1.4 Non-unitary evolution

In practice, the computational model of a system of finite size is only unitary if all
the accessible states are only those found in the system. However in any classical or
semi-classical system (i.e. any practical one), information is inevitably removed over
time and transfered to states in the surrounding “environment” making the dynamics
of the system at best approximately unitary. The lost information can either take
the form of escaped energy (relaxation) or increased entropy (loss of coherence). To
capture the latter, we distinguish from macroscopic classical incoherence which per-
tains to subjective or instrumental uncertainty the idea that objective, microscopic
uncertainty about a particular subsystem may increase in an irreversible, unmea-
surable way (decoherence). Now recall that microscopic uncertainty in the form of
superposition was actually a wanted resource in the sense that it allowed a steady
and continuous change from one basis state to another. Decoherence, on the other
hand, is intrinsically unsteady and by virtue of this actually inhibits the resource
of superposition from manifesting itself, effectively forcing the system to remain in
one basis state or another. For all practical purposes, classical incoherence behaves
operationally in the same way, as an unwanted fluctuation, though fundamentally
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superpositions are not destroyed and information remains in the system, rather the
information we have about the system becomes degraded [137]. On the other hand,
information can also be removed from the system by an act of measurement, which
like unitary evolution is a wanted form of fluctuation that steadily and continuously
takes an arbitrary state to one of the measurement basis states. However the in-
formation that is removed is done so in an apparently non-deterministic way, and
as such again forces the system into a random measurement basis state. Whether
the non-determinism reduces ultimately to classical incoherence or is it solely caused
by objective decoherence (up until the moment of observation) is an open interpre-
tational question though is somewhat moot due to the common phenomenological
framework.

Now wanted an usable (i.e. deterministic) uncertainty had necessitated the use
of vectors to capture the exponential number of combinations of the n pieces of
information as possible measurement outcomes. To model the nondeterministic un-
certainty requires modeling only pairwise combinations of the deterministic uncer-
tainties. That is, there are

(
2n

2

)
possible superpositions of two measurable basis

states, each with a coherence associated with it telling how much certainty remains.
This construct is called the density matrix ρ and is captured for pure states via the
outer product of the wave vector ψ with its conjugate transpose

ρ = |ψ〉〈ψ|

where we now use Dirac notation for the state vector. The diagonal entries of
the density matrix give the effective probabilities of the respective basis states and
are typically susceptible to relaxation. Uncertainty in the form of decoherence comes
from considering a pure state with larger dimension and then removing environmen-
tal degrees of freedom (entangled with the computational subsystem) via a partial
trace operation to give back a non-pure (a.k.a. mixed) state. To model classical
incoherence, on the other hand, we use an ensemble of wave vectors {|ψi〉} with
probability distribution {pi}, giving

ρ =
∑
i

pi|ψi〉〈ψi|

In many cases, the degradation of the system is itself phenomenologically mo-
tivated in that it is derived macroscopically and is found to fit the measurable ex-
ponential decays of the diagonal and off-diagonal elements in our density matrix
(corresponding to averaging many measurements). Assuming a common Hamilto-
nian (and an initially unentangled, memoryless environment), it can be simulated
with a Markovian master equation
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ρ̇ = −i[H, ρ] +
M∑
j=1

[
1
Tj
D[Aj]ρ

]
, (2.4)

where M decay processes are taking place each with characteristic decay time
Tj and associated operator Aj, and D is the damping super-operator, defined as
D[A]ρ = AρA†− 1

2
A†Aρ− 1

2
ρA†A. If there are no decay processes (a perfectly isolated

system where M = 0), then the evolution is equivalent to the Schrödinger unitary
evolution.

2.2 Quantum software

2.2.1 Assembly

As we have seen, being able to create (approximately) unitary operations is of utmost
importance for running quantum computations. Since there are an uncountably large
number of unitaries even for a single qubit, a method is required to generate them
with finite resources. This construction is given by the Solovay-Kitaev theorem and
is efficient [91]. Naturally, these operations need to scale with system size in a way
that is not prohibitive to design. However, generating such operations using high-
dimensional Hamiltonians requires classical simulation and optimization, which is
contrary to our operating assumption that the quantum computer will scale better
than its classical counterpart. Nonetheless, it has been shown that arbitrary single
qubit gates and a single entangling two qubit gate form a sufficient basis from which
to generate any unitary that could be desired in 2n dimensions [172], though the
construction is not necessarily efficient. In practice, the resource allocation and
design of high-dimensional gates follows from the needs of the algorithm and is often
efficient for known algorithms.

We wish to have the gate set readily available for compilation of a quantum algo-
rithm. Thus, one can consider the kinds of low dimensional gates that are required
for most known algorithms and build an entire instruction set of such possible oper-
ations, which can be called upon to generate quantum circuits in the larger Hilbert
(state) space [156]. The most generic model for operating quantum software is known
as the circuit model and utilizes such a construction. It is built up entirely of a se-
quence of gates and one final measurement step at the end2, and thus it has the
most stringent requirements in terms of suppression of errors in gate design. For

2Incidental techniques such as error-correction and teleportation will use additional measure-
ments during the computation.
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the purposes of optimal control as discussed this thesis, it is the most relevant and
stands to gain the most from gate design.

On the other hand, high-fidelity gate operations are usually a resource that is
difficult to attain (given the chosen hardware) or not directly useful for the type of
computations required by the algorithm. In particular, decoherence and relaxation
may be prohibitive to achieving quality unitaries. In contrast to the gate model,
the adiabatic model is an equivalent construction that relies on engineering quan-
tum states rather than quantum unitary evolution. By changing the effective energy
structure of the system (and its respective eigenstates) one can move from the known
eigenstate of a Hamiltonian to that of a different Hamiltonian, allowing one to effec-
tively find the previously unknown ground or equilibrated state of the system. This
is known as an adiabatic algorithm [44,77]. Many problems can easily be mapped to
this methodology though perhaps the most natural are simulation of physical mod-
els. As before, changing the eigenstates requires manipulation of the Hamiltonian.
In practice, this manipulation will involve the suppression of a variety of unwanted
errors and the design can be optimized. In particular, remaining in the ground state
of the eigenbasis requires an adiabatic trajectory from initial state to final state,
directly related to the spectral selectivity problem (Ch. 7.1).

Another way to avoid difficult to engineer gate operations is by moving to a
measurement-based model. Here, the entanglement in the system is generated by
some means at the beginning of operation (one option would be through unitary
operations) and the remainder of the circuit is executed via measurement, single-
qubit gates, and feed-forward of classical information. The measurement process
(which typically involves single-qubit gates) can also be optimized though this falls
outside the scope of this text. However, as in the other cases, the biggest challenge
of this computing model involves designing and optimizing many-body operations
for the purposes of entanglement. This model is not studied further in this thesis.

2.2.2 Outlook on algorithms

It is difficult to say what problem-solving applications will be most relevant to quan-
tum information. At the present moment, there is no definitive proof of a substantial
technological premium because while there are numerous positive results for efficient
quantum algorithms there are no provably negative results with regard to solving
most (NP) hard problems using classical techniques. Furthermore, many of the
proven quantum algorithms may have classical workarounds or approximation tech-
niques that are often sufficient to the task. What can be said however is that there
will be some applications and these will be more significant as the hardware improves.
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At the present time, some of the most rewarding techniques include crypto-
graphically encoded communication by using the measurement properties quantum
states [9], and magnetic imaging techniques that use resonance protocols to measure
quantum signatures in chemical samples [54, 45] (see Sec. 7.1.1). Quantum pro-
tocols are also gaining importance in metrology applications and photon detection
devices [19, 130].

In the medium term, much can be accomplished with small or imperfect devices.
With a moderate number of qubits, by engineering larger but perhaps imperfect
quantum structures, it will also be fairly straightforward to run simulations and
calculations with respect to physical theories, which can easily perform the unitary
evolutions required in the systems [81], as well as computations relating to field the-
ories such as evaluating Jones polynomials [42]. These simulation type algorithms
may be well suited in particular to adiabatic computation devices [44, 77]. With an
increase to a couple of hundred logical qubits, it is possible to run algorithms that
break present state-of-the-art encryption technology, the most famous of which is
Shor’s factoring algorithm [158]. It is based on a curious counting argument in num-
ber theory: it relates prime number factoring to period finding of periodic functions,
something that can be found directly (and therefore efficiently) from measuring the
peak of the Fourier transform of the function’s input. Similar algorithms which use
unitaries corresponding to Fourier transforms over different algebraic groups have
been formulated, generally referred to as the hidden subgroup problem.

Of course, in the long term, many more inventive, sophisticated, and large scale
applications may be found. Whether this is solely for supercomputing tasks or
whether more mainstream, universal resources in quantum information can be iden-
tified remains to be seen.

2.3 Quantum hardware
There is a vast array of possibilities for implementations which is too extensive to
comprehensively analyse in detail here. Instead, we will outline some of the hardware
choices that exist and focus on some fundamental design choices that any technology
will have to make. In particular, any engineered quantum computing technology
will face some tradeoffs early on between between isolation and controllability of
the system, between separation of the qubits in frequency or in space and between
mediated vs. direct coupling of the qubits.
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2.3.1 Candidate implementations

There are many candidate systems containing quantum degrees of freedom that can
be controlled. Natural qubit systems include NMR molecules with spin degrees of
freedom [8, 61, 73] and photons’ polarization or mode [92]. One can also capture
these sorts of natural degrees of freedom using trapping potentials, in the form of
for example trapped ions [65], optical lattices [169], NV centres, quantum dots [139],
and electron spin resonance, which rely on controlling electronic energy states in
complex energy landscapes. Perhaps the most flexible from an engineering point
of view are human-made systems such as superconducting [29] and semiconducting
materials [139], for which the energy landscape can largely be controlled and for
which design choices are reflected directly in the control strategies to choose from
and their efficacy. Some of these implementations will be discussed in more detail as
specific applications to control problems that will be analysed (Ch. 6-11). Since the
most general situation is also the most flexible one, where we have control over all
the energy and coupling parameters, engineered systems will often be preferentially
chosen to illustrate the control/design choices that can be made both within these
implementations and between implementations where such parameters are fixed.

2.3.1.1 Superconducting qubits

For these purposes, a concise introduction to superconducting qubits is in order
[30, 113, 153, 184]. The quantum degree of freedom involved is the mesoscopic su-
perconducting current of Cooper pairs [79] which can be measured moving either
clockwise or counter-clockwise in an electrical circuit. Alternatively, one can mea-
sure other properties of the current, such as a relative number of Cooper pairs, a
Voltage, or a phase shift imparted on other coupled quantum elements. Since low-
frequency superconducting currents are dissipationless, the currents are resilient to
(thermal) fluctuation and offer promise of retaining coherence [6,35]. However, while
superconductivity is maintained, the measurable degrees of freedom may still suf-
fer population decay from one to another or otherwise lose coherence between each
other, an effect which is amplified by these large devices coupling very strongly to
their surrounding environment. Nonetheless, the large sizes and electrical nature are
a boon to prospective scaling in the number of qubits, thanks to industrial deposition
and lithography techniques already being very advanced for the mass production of
conventional silicon based devices.

The physical realization of quantum information processing in superconduct-
ing circuits has enjoyed remarkable progress over the last decade. While initially
decoherence limited single qubits to only a few coherent oscillations [126], high
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precision, general quantum control is now possible over single- and few-qubit sys-
tems. This is evident by the demonstration of high-fidelity nonclassical states of
two-qubit [3, 26, 39, 164] and three-qubit [40, 127] systems, harmonic oscillators [71],
and the demonstration of small quantum algorithms [39]. This success is partially
due to our current understanding of sources of noise and the development of tech-
niques and systems that are resilient to these noise sources. Examples include the
optimum working point [173] and the introduction of low-dispersion qubits like the
transmon [95,154] and the capacitively shunted flux qubit [165]. On the other hand,
a promising route to success are qubits that contains only a minimal number of
elements, such as the phase qubit [117,116,164].

The fundamental electrical component used for superconducting qubits is the
Josephson junction, which has a non-linear inductance and linear capacitance. The
element ensures that the energy levels of the circuit are not harmonic which is re-
quired for distinguishability of the states (see Ch. 8). By varying the relative strength
between the inductance and the capacitance one is able to change the dominating
degrees of freedom in the Hamiltonian from the number of fluxoids (for large induc-
tance) to the number of Cooper pairs (for large capacitance). Various Hamiltonians,
design choices, and control strategies for superconducting systems will be considered
in the relevant chapters of the text.

2.3.2 Controllability

In generic terms, the controllability of a physical system refers to the ability to reach
any particular state in the system given any input state, much akin to the universality
condition for gate sets. We can consider a Hamiltonian

Ĥ = Ĥ0 +
M∑
k=1

Ĥk(t) (2.5)

where Ĥk are individual control Hamiltonians that can be tuned between on and
off, and determine whether the entire Hilbert space of the computational vectors
can be spanned. This can be straightforwardly be checked by seeing whether all the
permutations of the Hk generates the entire Lie algebra. Most commonly, the control
Hamiltonians are parametrized as Ĥk(t) = ck(t)Ĥk which is a simplified case known
as bilinear control.

In practice, quantum systems usually not completely controllable. Because of
the onset of damping and decay processes which are generally at least partially irre-
versible, only the equilibrated states can be certifiably achieved. Instead, minimizing
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Figure 2.1: Two different coupling topologies: on the left is nearest neighbour cou-
pling while on the right we see (trapped ion) qubits on a common (phonon) bus
which can all interchange energy (taken by R. Blatt’s group).

the total time for gate operations effectively minimizes the effect of structureless,
Markovian decay processes. Here, we meet the first tradeoff between minimizing the
time that operations take and maximizing the efficiency of these operations. This is
first of all a tradeoff between different physical implementations, as some systems can
be very well isolated from the environment (allowing for long operations) but this
isolation often only allows for weaker couplings to other elements or external control
which increases the amount of time needed for operations. In some cases, the isola-
tion is so good that no direct coupling exists at all between states or between qubits
and indirect methods (which are often slower and less efficient) of coupling must be
found. On the other hand, quantum elements that couple readily to (various) de-
grees of freedom in their vicinity (and environment) will often be more controllable
in terms of design and run-time parameters. This tradeoff is approximately redressed
by speaking instead of the quality factor of quantum operations, namely the number
of such operations that can be executed in the characteristic time it takes for the
decay process to occur.

Note that although this benchmark is valuable it can sometimes be a simplistic
or misleading. Most often, if the source of coupling to the environment can be
determined then parameters can be found or strategies laid out that can counteract
loss of coherence. These can often involve decreased decay processes at longer gate
times and optimal values of multi-dimensional design parameters. Specific examples
will be given in Sec. 8.8.2 and Sec. 10.3. In such cases, the decay processes must be
included in the error analysis.
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2.3.3 Coupling topologies

Choosing an implementation and computational model for the system greatly reduces
the freedom in architectural design. Nonetheless, one can try to minimize interac-
tions between elements by having tunable coupling, and moreover, one can decide
which elements can even be coupled at all. In general, there is a tradeoff between
two particular paradigms, that of trying to couple all pairs of qubits irrespective of
physical separation or that of only coupling neighbouring qubits (see Fig. 2.1) Arbi-
trary couplings typically involve long range interactions (e.g. Rydberg blockade [169]
or interactions inside a bus [15, 67]) and are in principle more efficient than nearest
neighbour. They typically suffer from imperfect on-off times (e.g. from frequency
modulation, see Sec. (6.7)) and/or imperfect decoupling (e.g. from spatial selectiv-
ity constraints). Nearest-neighbour type couplings can also be used but can suffer
from a polynomial slowdown in computational speed resulting from having to move
information around to couple separated logical qubits. However, they may be less
susceptible to errors as frequency and spatial selectivity is often not required. More-
over, near-neighbour interaction involve fewer couplings which tends to increase gate
efficiency, and also are a natural fit for certain topological qubit schemes (e.g. surface
codes [52]). In these, many physical qubits correspond to a computational qubit and
benefit from topological protection against information loss due to conservation laws
governing certain quantities (such as the number of vortices inside a lattice).

2.3.4 Coupling mechanisms

In order to perform more complicated operations, and in particular to meet the
minimum requirements for gate universality as outlined above, the different quantum
components in our system have to be able to interact so as to exchange information.
There are two architectural choices, either direct coupling of qubits (by physical
proximity) or coupling via an intermediary component which can be used to carry
information such as a bus (phonon, photon, etc) or auxiliary qubit. In general,
two frequency separated qubits will only exchange energy if they are brought on
resonance, e.g. for the Hamiltonian

Ĥ = αX̂1X̂2 + βŶ 1Ŷ 2 + ω1Π̂1 + ω2Π̂2 (2.6)

with ω1 = ω2, the superscripts indexing the qubit, and the projector Π̂i = |1〉i〈1|i.
This flip-flop interaction produces an evolution generating a gate in the class of
ISWAP operations [155,189]. This is nice because qubits can be brought on resonance
this way (allowing beyond-nearest-neighbour interactions) but again suffers from
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frequency modulation issues (Sec. 6.7) and the fact that unwanted resonances may
be activated when a qubit frequency is changed. On the other hand, one can entangle
quantum elements equally well by number-conserving interactions where the presence
of one qubit is felt by changing the energy landscape of the second and visa versa,
for example with the Hamiltonian

H = γẐ1Ẑ2 + ω1Π̂1 + ω2Π̂2

known as a ZZ-interaction [189]. Here the interaction occurs irrespective of ω1

and ω2, avoiding having to change qubit frequencies (which is hard to do with natural
qubits), but an additional mechanism is required to turn the gate on or off. The gate
generated is a C-Z which again is equivalent via single qubit operations to ISWAP,
CNOT, and other 2-qubit gates.

Natural interactions can arise in nature for two element that are coupled via some
force that bonds them together, as occurs between atoms in a molecule or elements
in a circuit. They usually give both flip-flop and ZZ interactions but with natural
qubits it is difficult to modify the effective qubit frequencies and so ZZ is often more
useful. Natural couplings are by definition always on and so a major difficulty is
effectively turning them off for single qubit or identity operations. The technique for
doing this is known as dynamical decoupling and involves repeatedly “undoing” the
interaction (most famously the CPMG pulse sequence [76, 151]). Examples of new
results involving decoupling sequences will be given in Sec. 6.7 and Sec. 7.2.

On the other hand, external driving fields can be used to couple devices that
normally would not exchange energy. For transitions that exist between the ele-
ments but are off-resonance, the field can bring in energy that takes the system from
one energy level to another, effectively enabling energy conservation and allowing
energy-exchange to take place. Since the transition is effectively higher-order (vir-
tual), this can greatly slow down the gate time but this need not be the case. The
energy brought in can also be used to activate a single-qubit transition (to a non-
computational state) which may then couple in an interesting way to other qubits,
such as for Rydberg states. The main disadvantage here is that higher excitation
states are typically prone to more decoherence and relaxation.

Finally, mediated coupling corresponds to using an additional quantum element
as a bridge between qubits that (to at least first order) removes the coupling between
the elements. When the intermediary device is turned on, activated via a field, or
otherwise brought into resonance, it can be used as a bus for information or otherwise
to directly (virtually) couple the connected qubits. Examples include using a cavity
(Sec. 10.3), another qubit, collective phonon modes, and SQUIDS (Sec. 7.2). Once
again, adding in additional elements can have adverse effects in terms of complicating
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things by adding in unwanted terms, couplings to the environment, or just generally
slowing down operations.

In general, one has an additional operational freedom about the computational
basis to work in. Effectively, for the various coupling strategies, this means that
one can choose between working in a bare basis corresponding to the “physical pic-
ture” that one would have of different elements interacting with one another, or in
the dressed basis corresponding to diagonalizing all interactions and considering the
whole system as a single device with time-independent characteristic eigen-energies
(only by turning on fields can off-diagonal transitions be activated). The bare frame
implies operationally that natural couplings always persist and must be removed
via dynamical decoupling, while in the dressed frame off-resonance effects permeate
and can either be canceled/ignored or brought into resonance to activate a tran-
sition [57]. Since non-computational transitions are typically also diagonalized in
the dressed frame, choosing one frame or the other also can have effects in terms of
changing the coherence time for components with heterogeneous decay mechanisms.

2.4 Quantum errors

2.4.1 Worst-case error

We have seen that many imperfections can plague quantum operations. An error
occurs when a gate generates an undesired output given some input state. Consider
an algorithm which consists of M sequential operations. In order for the algorithm
to succeed with non-negligible probability we need the error for each operation to
be less than 1/M where M is a large number. This ensures that the algorithm
will succeed some of the time, which we presumably can check by seeing whether
the solution output solves the given problem. We can upper bound the worst case
by calculating how often the most pessimistically chosen initial state (with perfect
preparation) will evolve to the wrong final state (given perfect measurement) given
our implemented evolution Uget.

Emax = sup
ψ

(1− 〈ψ|U †Uget|ψ〉), (2.7)

In essence, this figure of merit tells us how faithful our implemented unitary op-
eration is to the one needed in the given quantum algorithm. This error corresponds
to a theoretical prediction of what might happen in an experiment. Of course in an
actual experiment, there is no way to know that that we have actually hit the bottom
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in terms of the lowest error that we get. Theoretically though, given a particular
implementation, it is straightforward if not computationally expensive to obtain an
estimate for this error. The objective of optimal control is to lower this error as much
as possible.

2.4.2 Threshold theorem

Once this error is low enough, the error can be further improved by the techniques of
error correction [22,163]. At the cost of adding in additional auxiliary quantum bits,
the ingenuity of this technique comes from the fact that errors can be corrected while
avoiding finding out the state, using instead information redundancy. Ultimately,
several rounds of error correction can be used to further minimize errors (at the cost
of even more quantum resources) but this is only possible if the error is low enough.
The quantum threshold theorem states that for a given correction mechanism there
exists an error rate below which the error can be made arbitrarily small with the use
of more and more quantum bits [93]. Thus it is always possible to get an error much
smaller than 1/M provided we are willing to make the system large enough.

In practice what this means is that we only need to obtain single gate errors below
the error-correction threshold rather than 1/M . This tacitly assumes that increasing
the system size does not further increase the individual gate errors. This may not
always be the case but is often justified by most coupling mechanisms decreasing
exponentially with distance. Whether no error-correction, some error-correction, or
full error-correction is used is mostly dependent on which algorithm we want to run
and how many steps it takes, which in turn for now is highly dependent on the error-
rates themselves which we can implement and how many quantum bits can fit on our
set-up. Thus, any progress that can be made is highly in need of optimizing the lowest
error rates possible to benchmark proof of principles in algorithms, implementations
and topological design.

2.4.3 Average error

As mentioned, in practice, it is usually very difficult to calculate worst-case error
rates, especially for experiments. In simulations, it is possible but scales inefficiently
for most systems. In fact, in virtually all cases calculating the average error suffices.
This is defined as

EG =1−
ˆ
dψ Tr

[
Uideal|ψ〉〈ψ|U †idealE(|ψ〉〈ψ|)

]
, (2.8)
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where E(ρ) is the actual process in the full Hilbert space. While certainly a very
large worst-case error would be detrimental if every step of an algorithm were to
hit this error, this seems unlikely. The reason is that by definition of the average
error, the worst-case error is either close to the average error or else very unlikely to
happen. One could assume that for a particular input and choice of algorithm, the
worst-case error would occur for every single gate. Even in this overly pessimistic
scenario, one would still be able to run different inputs successfully, and one would
still be able to check whether the program was successful, thereby mitigating the risk
of failure. Nonetheless, one can try to minimize norms other than the 2-norm, such
as the 3-norm or 4-norm which weigh the worst case errors more strongly [103].

In fact, one can bound the worst-case error from the average error. For low
dimension the two are within an order of magnitude of each other, and a very low
average error ensures the worst-case is also very low. In fact, virtually every known
algorithm uses gates acting on few qubits, as there is no consistent way of generating
high-dimensional gates. Most importantly, error correction typically only uses single
and double qubit gates and can be used to diminish the errors further (assuming
distant qubits do not interact).

For single qubits, average errors can calculated via Ref. [17]

EG = 1−1

6

∑
j=±x,±y,±z

Tr
[
UidealρjU

†
idealE(ρj)

]
, (2.9)

where x, y, z represent the 6 axial states on the Bloch sphere. Clearly the worst-
case for qubit error is less than 6 times the average error.
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Chapter 3

Elements of Quantum Control

Having looked at quantum information from an operational level, we can look at what
is needed to physically control a quantum system. We have already stated that errors
per gate below a certain threshold are needed for applications to produce meaningful
results. The focus here is therefore to look at quantum information from a control
point of view, with an eye towards common settings and their effect on the unitary
evolution of a system. Most importantly, we want to distinguish important classes
of operators that can all be modeled in a similar way. Through careful analytical
and numerical examination, it is anticipated that efficient control strategies can be
devised to maximize faithfulness to the desired operations, and that these solutions
will scale and combine with each other with larger Hilbert space dimension.

Table 3.1 lists the main physical systems that will be studied in this thesis. The
columns identify usual, generic quantum control problems that can be associated
with these and other quantum systems. Although, in fact, most of the problems are
in fact quite ubiquitous, the models considered in this thesis will capture (only) a
few problems at a time, in the interest of both focused and clear solutions.

As shown in table 3.1, it is instructive to separate the sources of imperfection
into three broad classes: time independent, deterministically time-dependent, and
non-deterministic. As can be seen, these are respectively further subdivided into:
on-resonant or off-resonant quantum operators; selective and/or smoothing (semi-
classical) control functions; and either static or fast (irreversible) non-unitary evo-
lution. Since the static, time-varying, and non-deterministic aspects of the control
are mostly independent these can be combined rather arbitrarily. For example, ir-
reversible errors are the major cause of error in most systems; however, since many
systems cannot rectify these errors we choose to only include them when they are
relevant to the matter of control. In traditional quantum control (in NMR), where
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Ch.. Model \ Error Dim Time-indep Time-dependent Non-determ.
Res. Off-res. Select. Smooth. Static Fast

6.5 Waveform shaping 3 X X
6.6 Tuning error 4 X X X X
7.1.3 Frequency selection 2n X X
7.2.3 Freq.+Space select. 8 X X X
7.2.4 Spatial selection 8 X X
8 Leakage 3 X X X X
9.1 Fock state creation N>3 X X
9.2 Multiple leakages 4+ X X
9.3 2 qutrit coupling 9 X
10.1 Raman transition 3 X
10.2 Sideband transition 4 X X
10.3 Bare J-C ladder 9 X X X X
11 Strong coupling 3 X X X X

Table 3.1: Different physical systems and associated control problems considered. For
the different sections which analyse some generic Hamiltonian models, the control
problems associated are listed in the columns: time-independent errors (resonant and
off-resonant), time-dependent errors (either for selectivity purposes or as a result of
smoothing), and non-deterministic errors (either slow or fast).

pulses can be much faster than characteristic evolution times of the Hamiltonian,
problems such as unwanted time-independent on-resonant terms and static noise
have been redressed emphatically using sequences of short pulses (composite gates).
Here, we assume that strong coupling between elements can be engineered as desired
and therefore that time scales are all of about the same order. Thus, semi-classical
time-dependent control fields will play a central role, as will frequency separation of
quantum elements.

In the subsections that follow we give basic introductions to the main control
errors (those from the table) that will be addressed in the physical models in chapters
6-11. Chapters 4 and 5 will summarize mostly standard analytical and numerical
techniques for addressing these problems.
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3.1 Time-dependent fields
We have seen with Eq. 2.2 that the fields that control the quantum evolution to gen-
erate rotation operators can be time-dependent during the gate, and moreover that
the condition [H(t), H(t′)] = 0, if satisfied, allows a simple method to calculate the
unitary evolution. However, one might ask why introduce smooth time-dependence
to Ω(t) in the first place. There are two reasons: either the smoothness is due to
experimental imperfection or it is put in place to suppress another kind of error.

Figure 3.1: Common pulse shapes used in quantum control: a smoothed square
(tangential) pulse ΩT (t) in red and a Gaussian pulse ΩG(t) in green.

In particular, there is a the finite turn-on time to most electronics. That is, it is
not strictly possible to specify a discontinuous jump of the field Ω(t) from one value
to another, and instead it typically follows an exponential path, e.g.

ΩT (t) =
Ωmax

2

[
tanh

(
t

σ

)
− tanh

(
T − t
σ

)]
, (3.1)

where σ is the rise-time and t ∈ [0, T ]. Such smoothed square (tangential) pulse
(3.2) is plotted in Fig. 3.1 as the red line. More generally, for waveform response
functions f(t) that are memoryless (such as a filter), a control signal at input will be
replaced by a convolution at the qubit,

c(t) =

ˆ ∞
−∞

f(t− t′)Ω(t′)dt′, (3.2)

where causality is taken into account by a suitable delay time (with Ω(t′) = 0, t′ > T ).
Optimization using response functions will further be discussed in Ch. 6. Even
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without the presence of filtering, choosing an Ω(t) that isn’t a constant function
can be advantageous when the Hamiltonian is not a simple qubit. Many different
examples will be given for control functions, but, due to its small bandwidth, by far
the most common is the Gaussian [7, 166]

ΩG(t) = A exp

[
−(t− T/2)2

2σ2

]
(3.3)

where σ is the standard deviation and A is chosen such that the correct amount of
rotation is implemented (e.g. A = π/

√
2πσ2erf[T/

√
8σ] for a NOT, see Eq. 2.3). A

Gaussian pulse is plotted in Fig. 3.1 as the green line.

3.2 Selection error
The most common reason to want to smooth the control field is to improve the
frequency selectivity of the pulse. As we have seen fields are often used to activate
transitions for single and two-qubit gates. This is usually accomplished by matching
the frequency with that of the transition that is driven. Crosstalk typically arises
when the spatial (and frequency) extent of the field is larger than the separation
between qubits. For a field that is on resonance with a particular transition but with
crosstalk to a second transition, a typical Hamiltonian will be of the form

H = Ω(t)X1 + λΩ(t)X2 + ∆ωΠ2

with ∆ω = ω1 − ω2 the energy separation between the two qubits/transitions.
λ accounts for the difference in the Rabi frequency from one qubit to the next; in
particular if the spatial extent of the field is centered around the first qubit then
the coupling will be smaller with the second. This problem will be discussed in
detail in Ch. 7. Provided we are in the selective regime, namely λΩ � ∆ω, the
selectivity error can be indefinitely reduced provided we pick a large enough gate
time (resulting in a smaller Rabi frequency). On the other hand, increasing the time
introduces further decoherence and relaxation, and so there is a limit to how many
transitions can be put in a given bandwidth. Spectral crowding occurs when the
transitions are too close to be individually selected.

The selectivity can be improved by choosing the appropriate waveform for the
Rabi frequency, where in general smoother functions will have a smaller bandwidth,
and the most common is the Gaussian, Eq. 3.3. The most significant tool for esti-
mating the error is the Fourier transform which is a classical scalar function. This
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3.3. OFF-RESONANT OPERATOR ERROR

scalar can be generalized to the quantum case where it given instead by a nonlinear
function of the envelope amplitude, as will be shown in Sec. 7.1.

Some common strategies for further reducing the spectral bandwidth beyond the
Gaussian envelope are spin pinging [55], Rapid Adiabatic Passage (RAP [10]), half-
gaussians [55], and composite pulse Narrow Band schemes (NB1 and NB2 [181]).
In this thesis another method is developed: Derivative Removal by Adiabatic Gate
(DRAG).

It is noteworthy that selectivity is not limited to addressing qubits but other
quantum transitions as well for any given purpose. Examples that will be discussed
that include some selectivity criteria are crosstalk for two-qubit gates (in a 3 qubit
model, Sec. 7.2), leakage transitions outside the qubit subspace in Ch. 8 and Ch. 9,
higher-order virtual transitions (Ch. 10), and counter-rotating terms (Ch. 11).

3.3 Off-resonant operator error
The effect of unwanted transitions is more subtle than unwanted lines in the spectral
profile of a pulse. The Hilbert space structure of quantum mechanics implies that
adding in additional operators that do not commute with the Hamiltonian will modify
the dynamics of the evolution in subtle ways. In particular, the matrices represent-
ing the Hamiltonian will have modified eigenvalues (due to the extra terms). This
in turn will result in an evolution where an unwanted phase difference will build up
between the computational states (as well as other errors due to non-commutativity).
These phase (and other) errors do not show up in the semi-classical shaping argu-
ments that make certain pulse sequences more selective than others. However, the
extra phase is still correctable, usually by changing the resonance frequency of the
needed transitions and/or by using extra gates. In the case of decoupled qubits or
virtual transitions (discussed in Ch. 10), these errors will act separately or even dis-
appear altogether and can therefore easily be dealt with in isolation (e.g. with frame
transformations, Sec. 4.2). The most significant effect is if and when the operator
error cannot be separated from the selection error (they do not commute) whereby
techniques such as time-dependent diagonalization transformations (Sec. 4.3) and
operator expansions (Sec. 4.4) are required to find solutions.

This is most significant in the case where an unwanted “leakage” transition is
connected by a shared energy level to the driven transition. In fact, the concept
of a perfectly isolated two-level system is an idealization [182] and so this error is
present to some extent in all quantum systems. An extra transition gives is a 3-level
Hamiltonian
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Figure 3.2: Energy level diagram of an anharmonic oscillator. The qubit is formed
by the |0〉 and |1〉 (green) levels and we aim to have complete control in this subspace
when leakage to the |2〉 and then |3〉 etc. is possible (red arrows). The dotted black
lines indicate the positions the energy levels would be at if the system was a harmonic
oscillator of frequency ω.

H = a(t)(X0,1 + λX1,2) + b(t)(Y 0,1 + λY 1,2) + c(t)(Π1 + 2Π2) + ∆2Π2 (3.4)

whereXj,,k = |j〉〈k|+|k〉〈j|, Y j,k = i|j〉〈k|−i|k〉〈j| are generalizations of the Pauli
matrices in the j-k subspace and Πl is the projector onto the l-th energy level. A
particularly significant case of leakage is found in the anharmonic oscillator (studied
in Ch. 8and Ch. 9), where each energy separation is different from the next by an
amount ∆, the anharmonicity, which is typically quite small compared to other
leakage mechanisms.

Hqut = a(t)
∑

λlX
l−1,l + b(t)

∑
λY l−1,l + c(t)

∑
l

lΠl +
∆

2

∑
l

(l2 − l)Πl, (3.5)

Fig. 3.2 shows the first few levels of an anharmonic ladder, where the qutrit
approximation (Eq. 3.4) is most often used. More complex leakage mechanisms
involving multiple leakages will be dealt with in Ch. 9.

Note that there are also examples of situations where there is essentially no
selection error but the off-resonant operator error still remains. This can occur for
example when the Fourier transform of the rectangular (unshaped) pulse happens
to go to zero but leakage transitions (and their effect on the Hilbert space) are still
present. An example is given in Sec. 9.3.1.
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3.4. RESONANT OPERATOR ERROR

3.4 Resonant operator error
We have seen that certain kinds of unwanted terms are always present. These terms
are usually not driven, and they are generally significant in that they are either
diagonal or off-diagonal and on-resonance so that there is no natural suppression
mechanism as was the case with selectivity error, where terms average out to zero
for longer gate times. This can also appear as another form of crosstalk for unwanted
driven couplings (Sec. 7.2). In all these cases, the unwanted terms cannot be compen-
sated for using small parameter expansions as the operators can strongly influence
the state evolution. Instead the effect of these terms must somehow be undone,
traditionally with temporal sequences of composite pulses that create trajectories in
the Hilbert space that undo the unwanted evolution. The preferred mathematical
technique for this purpose is average Hamiltonian theory (Sec. 4.4). For identity
operations, the canonical strategy involves reversing the unwanted evolution midway
through the clock cycle by flipping the qubit , known as a Hahn echo and more
generally as dynamical decoupling [76, 151]. When a more complicated operation
is desired, more complicated decoupling sequences can still be applied to remove a
variety of error terms. For multiple couplings that need to be decoupled, multiple
spin flips are required to antisymmetrize every pair of qubits. Near resonant tran-
sitions that do not satisfy the selectivity criterion λΩ � ∆ω can also be dealt with
using decoupling type pulses (Sec. (6.7)). Finally, quantum noise can often be dealt
with using decoupling sequences which often do not depend on the strength of the
unwanted coupling, as will be seen next.

3.5 Static non-deterministic error
Instead of having constant or controllable terms, one can think of having an unknown
term in the Hamiltonian. The uncertainty can be constant, as in the case of collective
degrees of freedom such as NMR molecules or atoms in an optical lattice. On the
other hand, if the uncertainty is the result of noise, than we can distinguish between
slow noise, which can be treated again as approximately constant (e.g. fabrication
uncertainty), or fast noise which is essentially Markovian and irreversible (see the
next section). An interesting case occurs when the noise is roughly as fast as quantum
gates, known as telegraph noise. This particular case is addressed using optimal
control methods in Ref. [121]. When the noise is very slow or constant, the dynamical
decoupling sequences from the previous section often work as they are not dependent
on the magnitude of the error term. On the other hand, if the noise is not constant it
may be advantageous to perform multiple time reversals to undo the evolution of the
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unwanted terms on a fast time scale over which they are approximately constant. The
most renowned example of this is the CPMG sequence [76,151]. Once again, for noise
that interrupts a rotation, there are other composite sequences to correct this, such
as CORPSE [33, 168], for noise in the qubit frequency, and Broad Band composite
pulses (BB1 [181]) for correcting noise in the Rabi frequency. In a sense, these can be
thought of as the antithetic case of selectivity where narrowband behaviour is sought
after. Of course the uncertainty can more generally occur for any parameter in the
Hamiltonian, and we will be considering two cases in particular using optimal control:
Sec. 8.8.2 deals with structured energy and operator dispersion in an anharmonic
oscillator (where coherence and anharmonicity form a tradeoff), and Sec. 11 deals
with uncertain phases in the driving field. For these purposes, classical uncertainty
is usually dealt with by modeling the system as a set of Hamiltonians {Hφ} obeying
a set of evolutions {Uφ = T exp(−i

´
Hφdt)}.

3.6 Fast non-deterministic error
Noise that is faster than the dynamics of the system is in general irreversible. One
way to think of this noise is as an entanglement between the quantum system and
another Hilbert space. If the extra Hilbert space is small [150, 157], then we can
include the extra dynamics and try to optimize over the larger Hilbert space (as was
done for leakage, or can be done with auxiliary qubits, resonators , etc.). However if
the extra space is macroscopic and/or fast then it is generally not possible to model
or even undo the dynamics and the best we can do is to avoid them. This can either
be done by finding a part of the computational space that is less affected by the
noise operators (e.g. Sec. 10.3 or Refs. [102, 131, 187]), or else to try to shorten the
operations as much as possible. The latter is generally the approach taken in this
thesis, where errors are often plotted against time with the implication that error
decreases with gate time while Markovian effects increase and so for any given rate
of decay there will be an optimum point that minimizes both the error and the noise
(see Sec. 8.8.1). Nonetheless, one can still model the full dynamics of the optimized
gate (as in Eq. 2.4) or include the decay in the optimization as in Sec. 8.8.2.
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Chapter 4

Frame Transformations

In the limit of the Hamiltonian commuting with itself at different times and low
Hilbert space dimension, there is often an analytic form for the evolution given by
the matrix exponential (e.g. Eq. 2.3). However, most quantum systems contain
multiple qubit couplings and time-dependences and thus are difficult to evolve in
time. While numerical techniques can usually work for larger Hilbert space dimen-
sions, even these are limited by an exponential scaling with number of qubits. Thus,
finding alternative, tractable representations for Hamiltonian structures with com-
plicated time-dependence or in high dimension has the double advantage of allowing
a conceptual understanding of its dynamics and a practical utility of being efficient
to calculate (generally polynomial in the number of qubits). Combining analytic
error-removal strategies can also be accomplished, provided that the errors approxi-
mately commute with each other (which is always true in the limit of small errors).
For this purpose, in this chapter time-dependent transformations and expansions are
discussed that make such tractable representations possible. These will be used to
analyse specific kinds of errors as relating to various physical models. This chap-
ter lays out the detailed theoretical ground work which will be used as required in
chapters 6 through 11.

4.1 General theory
We have seen that the physical design of our quantum system will have a large
impact on its performance. There is also a mathematical freedom about what we
choose as the intrinsic energy basis (that defines our computational states) and what
the Hamiltonian operator is that describes their evolution. The two extremes where
either the basis states are completely static in time or the wavevectors (combinations
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4.1. GENERAL THEORY

of the basis states) are completely static are known as the Heisenberg and Schrödinger
pictures, respectively. A basis that does not contain implicit time-evolution of the
basis states is known as a bare basis while allowing such time-dependence gives
rise to dressed basis states. However, if all of the evolution of the wavevector is
implicit as occurs in the Schrödinger picture, then this will not be useful for (vector)
computation. Nonetheless, there is a whole range of possible descriptions in between,
and a suitable choice will have important repercussions both in terms of operability
of the implementation(see e.g. Sec. 2.3.4) and simplification of modeling of complex
quantum problems.

The various descriptions have in common that they must satisfy the Schrödinger
equation (~ = 1),

d

dt
|ψ〉 = −iHψ|ψ〉 (4.1)

4.1.1 Transformation formula

We want to transform to some new dressed basis |φ〉 = V (t)|ψ〉. Then, using the
Schrödinger equation again for the new picture we can derive a compound evolution

−iHφ|φ〉 =
d

dt
|φ〉

−iHφ|φ〉 =

(
d

dt
V

)
|ψ〉+ V

(
d

dt
|ψ〉
)

Hφ|φ〉 = (V Hψ + iV̇ )|ψ〉
Hφ|φ〉 = (V HψV

† + iV̇ V †)|φ〉

Thus we obtain the general time-dependent transformation formulaHφ = V HψV
†+

iV̇ V †, where all terms have dependence on a common time, and which tells us that
the total evolution of a system Hφ will be given by a combination of the explicit evo-
lution of the wavevectors given by Hφ and the implicit evolution of its basis states
given by V.

In practice, we can also compute the effect of the transformation on an evolution
Uφ(0, T ) from an initial wavevector state |φ(0)〉 to a final state |φ(T )〉 directly. To see
this we apply the time-ordering operator of the exponential map and then transform
the Hamiltonian as above:
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Uφ(0, T ) = lim
∆t→0

0∏
l=dT/∆te

exp (−iHφ(l∆t)∆t)

= lim
∆t→0

0∏
l=dT/∆te

exp
(
V̇ (l∆t)V †(l∆t)∆t

)
exp

(
−iV (l∆t)Hψ(l∆t)V †(l∆t)∆t

)
= lim

∆t→0

0∏
l=dT/∆te

V (∆t)V (l∆t) exp (−iHψ(l∆t)∆t)V †(l∆t)

= lim
∆t→0

0∏
l=dT/∆te

V ((l + 1)∆t)Uψ(l∆t, (l + 1)∆t)V †(l∆t)

= V (T )Uψ(0, T )V † (0)

which is the same result we expect given the direct transformation of the vector
states,

〈φ(T )|Uφ(0, T )|φ(0)〉 = 〈φ(T )|V (T )Uψ(0, T )V †(0)|φ(0)〉 = 1

4.1.2 Equivalent frames

There is an important subclass of transformations which is those that do not modify
the computational states. As mentioned, these are important for finding alternative
representations of physical models that make analysis more tractable. Our require-
ment is that the state of the quantum system be identical at the start and at the end
of gate operations in both frames, but this leaves complete freedom both in the evo-
lution and its representation of what happens in between. The constraint amounts
to

V (0) = V (T ) = 1.

Clearly this also leaves the evolution U unchanged. This class of transformations is
fundamental because it provides a way to move terms around in our Hamiltonian to
obtain more tractable and intuitive forms without changing the other gates. Most of
the explicit transformations that follow in this thesis are specializations of this class
of transformations and serve this purpose.
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4.2. PHASE TRANSFORMATIONS

4.1.3 Interaction frames

In between the Schrödinger frame and the Heisenberg frame lies the interaction frame,
where some part of but not all of the terms in the Hamiltonian have been transformed
away. For a Hamiltonian of the form H = H0 + H1 where [H1(t), H1(t′)] = 0,
then the interaction picture with respect to H1 is given by the transformation V =
exp(i

´ t
0
H1dt). Then,

Heff = V (H0 +H1)V † + iV̇ V †

Heff = V H0V
† + V H1V

† −H1V V
†

Heff = exp

(
i

ˆ t

0

H1dt

)
H0 exp

(
−i
ˆ t

0

H1dt

)
For constant time-dependence, V corresponds to undoing the Schrödinger evolu-

tion of the perturbation terms in the Hamiltonian, V = exp(iH1t). If H1 is cyclic,
in the sense that it starts and ends at the same value (integrating to zero), then the
interaction frame evolution Ueff is equivalent to that of the original frame. Otherwise,
the evolution is given by Ueff = V (T )U . In practice, one can often think of H1 as a
perturbation to an otherwise known evolution and we will see in the next sections
some expansions to gauge its impact on the effective evolution.

4.2 Phase transformations
If we expand on our definition of frame equivalency to indistinguishability by mea-
surement (we loosen the boundary condition to eiφ1V (0) = eiφ2V (T ) = 1), we include
all transformations which are diagonal. These transformations corresponds to a shift-
ing of the clock reference of the processor, and thus can implement gate operations
that shift the phase of a wavevector, essentially ’for free’ [43].

4.2.1 Phase tracking

The simplest scenario occurs when we simply want to perform a phase rotation UZ
θ

on a qubit. This can be as part of an algorithm or in order to undo an error that
has occurred of the opposite magnitude, UZ

−θ (we will see such errors occur in later
chapters, in particular for unwanted off-resonant operators, Sec. 3.3). The strategy
is essentially to commute the phase gate operation with anything to its left so that in
the end only an unmeasurable phase is left over when the algorithm is complete. For
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example, if we have the want to perform a UZ
θ followed (to the left) by the operation

U = e−iHt, then this is equivalent to demanding UUZ
θ = UZ

θ Ueff from which we see
we have to pick Ueff = UZ

θ UU
Z
−θ and giving the transformed Hamiltonian

Heff = UZ
θ HU

Z
−θ = UZ

θ (a(t)X + b(t)Y )UZ
−θ

= (cos(θ)a(t)− sin(θ)b(t))X + (cos(θ)b(t) + sin(θ)a(t))Y

which is nice because no Z operator need be physically implemented on the qubit
(as this may be difficult or cumbersome). Of course, the phase accumulates to the
left as more operations are chained and therefore must be tracked over the length
of the algorithm. In particular, if each operation U produces an error such that it
gives in fact UUZ

θ then M such operations in a row can be corrected via M basis
transformations, where theM -th basis transformation for theM -th call to U is given
by

Heff = (UZ
θ )MH(UZ

−θ)
M = UZ

Mθ(a(t)X + b(t)Y )UZ
−Mθ (4.2)

= (cos(Mθ)a(t)− sin(Mθ)b(t))X + (cos(Mθ)b(t) + sin(Mθ)a(t))Y (4.3)

4.2.2 Rotating frames

The analog equivalent to the sequential accumulation of phase UZ
Mθ is a continuous

accumulation in the form of V = exp(i
∑

h ωh|h〉〈h|t). Once again, this does not mod-
ify the probabilities of measuring a given state |ψ〉 but only adds in a time-dependent
phase |φ〉 = eiωψt|ψ〉. For unwanted phase operators that are continually present, this
continuous transformation is more suitable and corresponds to an interaction frame
with respect to the unwanted diagonal operator.

As the most common example, suppose one wants to perform a X or Y rotation
on a qubit where the energy splitting is much larger than the external control field.
It is standard to move to an interaction frame with respect to the energy splitting
and drive the rotations with sinusoidal fields1. We start off with the untransformed
lab Hamiltonian

Hlab = (2a(t) cos(ωdt+ φ) + 2b(t) sin(ωdt+ φ))Xπ + (c(t) + ωq)Π
1 (4.4)

1This is most easily accomplished in experiment by mixing the shaped waveform signal with a
carrier pulse at the frequency of the desired transition
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which differs from the conventional form Eq. 2.2. This form is not intuitive and lacks
a simple method of exponentiation (due to lack of commutativity). However, using
the transformation V = exp(iωΠ1t+ iφ) one can move to the effective Hamiltonian

Heff = eiωΠ1t{(2a(t) cos(ωdt+ φ) + 2b(t) sin(ωdt+ φ))Xπ + c(t)Π1}e−iωΠ1t

Heff = (c(t) + ∆ω)Π1 (4.5)
+(a(t) cos(δωt) + b(t) sin(δωt))X (4.6)
+(b(t) cos(δωt)− a(t) sin(δωt))Y

+(a(t) cos(ωΣt+ 2φ) + b(t) sin(ωΣt+ 2φ))X (4.7)
+(−b(t) cos(ωΣt+ 2φ) + a(t) sin(ωΣt+ 2φ))Y

where δω = ωq−ω, ∆ω = ωd−ω, ωΣ = ωd+ω. The frame in which ∆ω = 0 is known
as the interaction frame (with respect to the energy eigenbasis). It is customary to
ignore the fast-oscillating last two lines (the counter-rotating terms) which will self-
average to zero under the justification that ωΣ � a, b, c, δω, known as the rotating
wave approximation (RWA). We will see this approximation is another example of
selectivity/off-resonant operator criteria. On the other hand, picking δω = 0 will
be referred to as the rotating frame and doesn’t contain any fast oscillations within
the frame (beyond any ’slow’ time dependence in the envelopes a(t), b(t), c(t)) in the
RWA limit. At resonance, δω = 0 and ∆ω = 0, the RWA Hamiltonian is now the
same as the simple qubit, Eq. 2.2.

If we have n independently driven qubits then the transformation generalizes to
V = V1⊗V2 . . .⊗Vn with Vj = exp(iωjdΠ

jt+iφ), which is known as a multiply-rotating
frame. Once again we can go to an interaction or rotating frame for all the levels.
Note that if there are more non-zero matrix elements than there are energy levels
or if any transition is driven by more than one drive then it is not possible to find
a rotating frame that cancels all fast oscillations in the Hamiltonian. This notation
will be formalized further in Ch. 7 and strategies for quantifying and suppressing
the counter-rotating terms will be given in Ch.11.

4.2.3 Phase ramping

More generally, one will want to perform arbitrary phase operations c(t)Z on our
qubits via transformation methods. Going again to the interaction with respect to
the variable, we see we can simulate it with
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Heff = exp

(
i

ˆ t

0

c(t′)Zdt′
)

(a(t)X + b(t)Y ) exp

(
−i
ˆ t

0

c(t′)Zdt′
)

=

(
cos

(ˆ t

0

c(t′)dt′
)
a(t)− sin

(ˆ t

0

c(t′)dt′
)
b(t)

)
X

+

(
cos

(ˆ t

0

c(t′)dt′
)
b(t) + sin

(ˆ t

0

c(t′)dt′
)
a(t)

)
Y

Alternatively, one can time-dependently change the frequency in the lab Hamil-
tonian Eq. 4.4 by the same amount ωeff

d = ωd +
´
c(t)dt (under the RWA).

Once again, this similarity transformation will give the same evolution as the
untransformed Hamiltonian H when c(t) is cyclic. If c(t) is not cyclic then we must
track the phase as in Eq. 4.2. Of course, if this operation is the most common
one then it may be easier to consider the transformed frame to be the computational
frame so that no phase is tracked but which requires transforming all other operations
as well (e.g. the identity operation now introduces a constant phase error).

4.3 Diagonalization
Perhaps the most important transformation that one can perform is the diagonaliza-
tion of the Hamiltonian. We have seen that diagonalizing the terms in the Hamilto-
nian can be used to define a new computational dressed basis different from the bare
undiagonalized one which may have operational advantages. Also, diagonalization
is the primary method for exponentiation of the Hamiltonian given its Hermiticity
(Appendix A). We also can use the time-dependent version of the transformation
formula to diagonalize the Hamiltonian, Heff = DHψD

† + iḊD†, where the effect of
off-diagonal terms may be clearer since the evolution is trivially a diagonal operator.
If D starts and ends with the identity the transformation is an equivalent frame to
the computational basis.

4.3.1 Adiabatic expansion

In order to facilitate the diagonalization, we often want to expand around some small
term, which in this case we call the adiabaticity parameter. Usually this is the ratio
of two energies in the system, which in foresight (to Sec. 7.1) we denote α = Ω

∆
. The

transformation operator has the role of (block) diagonalizing the Hamiltonian and

41



4.4. MAGNUS EXPANSION

takes the form D = exp(iS). As before, the effective Hamiltonian corresponds to a
Taylor expansion around the null transformation,

Hdiag = exp(iS)H exp(−iS) + ḊD†

=
∑
r

(iS)rH
∑
s

(−iS)s + Ṡ

= H + Ṡ + i[S,H]− 1

2
[S, [S,H]] +O(α3)

4.3.2 Interaction frame

In addition to being a time-dependent diagonalization, the transformation can also
be an interaction frame with respect to some parameter. Dividing the Hamiltonian
into H = Hbig +Hsmall, we can take the interaction frame with respect to Hsmall which
we assume diagonalizes the rest of the Hamiltonian Hbig. giving after application of
V = exp(i

´
Hsmall dt).

Hdiag = exp

(
i

ˆ
Hsmalldt

)
Hbig exp

(
−i
ˆ
Hsmalldt

)
= Hbig + i

[ˆ
Hsmalldt,Hbig

]
− 1

2

[ˆ
Hsmalldt,

[ˆ
Hsmalldt,Hbig

]]
+ . . .

where in the second line we have assumed the integrand is small and can be expanded
around (as in the adiabatic expansion) though this may be superfluous when the di-
agonalization can be done analytically (e.g. Sec. 7.1.3.4, Sec. 10.1). This expansion
is most useful if one can find a small (cyclic) perturbation to add to the imperfect
Hamiltonian that diagonalizes unwanted parts. The net effect is then simply a shift-
ing of the eigen-energies, which can readily be corrected for using the techniques of
Sec. 4.2. Applications of using such an auxiliary control for the purposes of diagonal-
ization will be seen: to deselect transitions (Sec. 7.1), to offset the effect of leakage
(Ch. 8), to suppress the counter-rotating terms in the qubit lab Hamiltonian (Ch.
11), or to enhance virtual transitions (Ch. 10).

4.4 Magnus expansion
In the limit of a small Hamiltonian, fast oscillation or a very small evolution time,
the Magnus expansion [64, 110] is one of the most helpful tools in quantum control
theory. The expansion of a Hamiltonian is given in orders where the first three are
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H(1) = −i
ˆ T

0

H(t)dt

H(2) =
1

2T

ˆ T

0

dt1

ˆ t1

0

dt2

[
− iH(t1),−iH(t2)

]

H(3) =
1

2T 2

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t2

0

dt3 ([−iH(t1), [−iH(t2),−iH(t3)]] + [−iH(t3), [−iH(t2),−iH(t1)]])

(4.8)

and the composite evolution is given by

U = e

(
H(1) + H(2) + H(3) + H(4) + ···

)
The convergence of the series is difficult to prove but a sufficient condition is that∣∣∣Tr
´ T

0
H(t)dt

∣∣∣ < π [23, 89]. For small enough T this can easily be satisfied. For H
that obeys an area theorem or whose evolution can be broken into smaller segments
all performing the same operation, the expansion can instead be shown to converge
for one such subsegment, which in turn is sufficient to show that the Hamiltonian is
applying the correct operation on concatenation.

4.4.1 Interaction frame

On the other hand, one often uses this expansion to gain insight into a Hamiltonian
rather than to provide its final evolution. In this case, one tends to divide the
Hamiltonian according to a small useful part and an poorly understood large part
to with respect to which will be applied the interaction frame V = exp

(
i
´
Hbigdt

)
.

H = Hsmall +Hbig

Heff = exp

(
i

ˆ t

0

Hbigdt
′
)
Hsmall exp

(
−i
ˆ t

0

Hbigdt
′
)

The Magnus expansion is then taken with respect to this interaction Hamiltonian.
As a general rule, the larger Hbig the faster the effective Hamiltonian will rotate and
the convergence properties will be better. Note also that unlike for the adiabatic
case, the interaction frame is with respect to a large parameter rather than the small
one.
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Chapter 5

Numerical Simulation and
Optimization

The standard quantum control problem is to find a way to implement a desired
unitary operation Uideal, given discrete control vectors uk each of length N . It is
standard to assume that the underlying Hamiltonian is of the form Ĥ = Ĥ0 +∑

k ck(t)Ĥk where Ĥk is the control Hamiltonian and ck(t) is a continuous field which
is parameterized by the control uk. The goal is to choose controls uk such that at
the final time t = T , the dynamics of this system approximates the target unitary
operator: Uideal. To find these controls one first needs to simulate the dynamics
of the system, given the Hamiltonian. In addition, a cost function C is needed to
describe how close a simulated operation is to Uideal. This allows us to evaluate
the performance of each uk and thus search the space of controls for an optimum.
Further refinements to this method will be discussed in Ch. 6.1.

5.1 Time-slicing
In order to numerically integrate the Schrödinger equation it is necessary to discretize
the evolution, normally into piecewise constant intervals. The approach traditionally
used (e.g. in Ref. [85]) is to also use this discretization to map between the continuous
fields and the control vector. That is

ck(t) =
N−1∑
j=0

uk,j uj (t,∆t), (5.1)
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5.2. COST FUNCTIONS

with the rectangle function

uj (t,∆t) ≡ [Θ(t− j∆t)−Θ(t− (j + 1)∆t)] , (5.2)

where Θ is the Heaviside unit step function. Evaluating the Schrödinger evolution
using these fields and the Hamiltonian in Eq. (2.5) yields

U(0, T ) =
0∏

j=N−1

Uj, (5.3)

where
Uj = exp

[
−iĤ(j∆t)∆t

]
, (5.4)

the product running backwards is to enforce time-ordering, and N∆t = T .

5.2 Cost functions
In Eq. (2.7) we saw that the maximum error given the most pessimistic input states
was the required figure of merit for using the error threshold theorem. The average
error Eq. (2.8) and for qubits Eq. (2.9) were given as appropriate alternatives
whenever certain basic conditions such as low Hilbert space dimension or variable
input states could be ascertained. Since the time-slicing equation Eq. (5.3) requires
the multiplication and exponentiation of N d-dimensional matrices, which scales as
O(Nd3), the criterion of low dimension for control theory can usually be met thereby
allowing the use of average error as a cost function.

5.2.1 Overlap fidelity

For the purposes of evaluating quantum gates, it is standard to use another form of
the average fidelity, namely the overlap fidelity

Φ4 =
1

d2
|Tr(U †U †get(T ))|2, (5.5)

where d is the dimension of the Hilbert subspace . It tells how close the two unitary
operations are to one other where the squaring effectively removes a global phase
and gives the interpretations of a probability (for further discussion of Φ4 see [85]).
This fidelity is equivalent to the average fidelity, Eq. (2.8), via [104]

Fg =
1

dQ + 1
(1 + dQΦ4),
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5.2. COST FUNCTIONS

with dQ the dimension of the computational subspace. This overlap form is preferred
because it does not make reference to the states of the quantum system and can be
computed more quickly using fast matrix multiplication.

5.2.2 Subspace fidelity

For larger dimensions where the qubits are embedded in a larger Hilbert space (e.g.,
containing leakage channels, a cavity, or a non-Markovian environment) we can use
instead [148]

Φ5 =
1

d2
Q

|Tr(U †PQUget(T )PQ)|2, (5.6)

where PQ is a projector onto the computational subspace. This formulation reduces
the search space because it ignores correctly what happens to states mapped from
outside of the computational subspace back onto outside of the computational sub-
space. This effectively increases the number of possible optimal solutions and reduces
the expected search time.

We can also decompose the desired unitary evolution U †get(T ) =
∏0

j=N−1 Uj =∏0
j=N−1 Uj

∑
ψi∈BH |ψi〉〈ψi| where BH is a basis for the entire Hilbert space into

rather a basis sum where we do not include basis elements outside those of the
qubits’ subspace BHQ ; the whole Hilbert space dimension is however still used for
the simulation.

Φ6 =
1

d2
Q

|Tr(U †PQ

0∏
j=N−1

Uj
∑
ψi∈BH

|ψi〉〈ψi|PQ)|2, (5.7)

=
1

d2
Q

|
∑

ψi∈BHQ

〈ψi|U †
0∏

j=N−1

Uj|ψi〉)|2 (5.8)

Computing the fidelity then requires multiplying into dQ vectors, where each mul-
tiplication is O(d2). The total fidelity given N time steps then takes O(NdQd

2) which
can often be smaller then O(Nd2.8) usually required for N matrix multiplications by
standard numerical software packages.

5.2.3 Ensemble fidelity

If one wants to include the incoherent dynamics (Sec. 2.1.4) by using numerical
rather than analytic techniques (Sec. (3.5)), it is necessary to optimize over an
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5.2. COST FUNCTIONS

ensemble of different descriptions of the system. To account for this, we define an
average performance index

Φ7 =

ˆ
p

f(p)Φj(p)dp, (5.9)

where Φj(p) is one of the given fidelity functions evaluated using a value of the
ensemble parameter p , which is unknown for specific instantiations of the quantum
computer but occurs according to the probability distribution f(p) (lacking specific
knowledge we in this thesis set f(p) = 1). In practice, the integral is replaced by
summation, which we sample discretely as p, p2, . . . pM .

As a consequence of sampling, the optimization may find control sequences that
result in discretely different trajectories in the Hilbert space from one value of the
ensemble parameter pi to the next (e.g. a different winding number around the Bloch
sphere). Then, values of the parameter in between may have an average trajectory
that differs significantly from either of the successful trajectories, thereby making
the overall ensemble unsuccessful. While this situation can largely be alleviated by
increased sampling, in practice it can also be mitigated by ensuring that the global
phase of the operation from one ensemble member to the next remains the same,
eliminating at least one common way in which different trajectories can happen.
Thus, we move the squaring of the unitary product outside the sum of fidelities,
which only disregards the common phase, giving

Φ8 =
1

(dM)2

∣∣∣∣∣
M∑
l=1

Tr
(
U †U

(pl)
get

)∣∣∣∣∣
2

.

This fidelity is over-constrained but often gives better results in practice (see
Sec. 8.8.2). Of course one can seek further refinements to the constrained solution
by optimizing further over Eq. (5.9) once a solution is found. As an additional
insurance, one will want to sample non-uniformly over the ensemble parameter p.

5.2.4 Penalties

There are a number of additional constraints that one may want to impose on the
controls from a practical point of view. For example one may want to limit the
energy of the pulses or avoid population of certain states during the gate. This is
often accomplished by adding additional cost elements to the cost function, where
the prefactor tells the relative importance of the terms.

Φtot = Φj +
∑
k

λkPk,
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5.3. GRADIENT ASCENT

where Φj is the chosen fidelity function and each penalty Pk has a multiplier λk
associated with it. In the ideal case, λk is a Lagrange multiplier, whose value is
optimized for the minimum point in the fidelity. However, in practice, choosing a
different value may be more fruitful in terms of the trajectory used to get to the
optimum point by an optimization algorithm. That is, a large λk will enforce the
constraint more rigourously in the end, but it will give less freedom in terms of the
search path towards an optimum, making it potentially harder to reach.

Unfortunately, any of the constraints that were tried in this thesis proved to be
too demanding for the available controls in the sense that the optimization was over-
constrained, giving a tradeoff between the cost terms. This is particularly true in the
limit of short times where the controls are often already fully constrained. Thus if one
wants to add in extra constraints it is usually necessary to increase the times of the
pulses which may be more detrimental if irreversible forms of damping are significant
in the error. In at least one case where the hard constraints are necessary to include
on our pulses, Sec. (6.1), we find that better describing the unitary evolution is a
more accurate and elegant way than by manually setting the value of the multiplier
to give a realistic pulse.

5.3 Gradient Ascent
The mathematical statement of the optimization problem is to maximize Φ with
respect to the vector uk. It is not immediately apparent how one should perform
this optimization. One of the simplest approaches is the steepest ascent (or gradient
search) algorithm [20]. If we consider the multi-dimensional surface (control land-
scape) formed by Φ(uk), steepest ascent is an iterative update procedure that locally
examines the landscape at each iteration and provides a new uk by moving in the
direction that increases Φ the greatest. We take some initial guess for the controls
and iteratively update according to the rule uk → uk+ε∇ukΦ(uk), where ε is a unit-
less step matrix. Given an arbitrary initial configuration for the control fields, the
algorithm follows a steepest ascent to a local optimum, at least in the case of small ε.
For simplicity, in this work we take ε to be a scalar which is chosen adaptively. It is
in no way clear that this procedure will produce anything other than local maxima,
but remarkably, for the types of Φ’s we examine in quantum control, the landscape
is sufficiently under-constrained that gradient searches find global maxima with high
probability (to arbitrary precision), in particular for small dimensions and large gate
times. This has implications for the topology of the control landscape [34,145].

The GRadient Ascent Pulse Engineering (GRAPE) algorithm [85] is an example
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5.3. GRADIENT ASCENT

of a gradient search technique. A principle insight of GRAPE is that the gradient of
Φ can be computed more efficiently than that of an arbitrary function. Specifically,
the derivative of Φ5 with respect to one of our control variables is

∂Φ5

∂uk,j
=

2

d 2
Q

Re
[
Tr

(
U †idealPQ

∂U(T )

∂uk,j
PQ

)
× Tr

(
UidealPQU(T )†PQ

) ]
,

(5.10)

where
∂U(T )

∂uk,j
=

(
j+1∏

n=N−1

Un

)
∂Uj
∂uk,j

(
0∏

n=j−1

Un

)
. (5.11)

The speedup over gradient searches based on a naïve approach where one queries the
fidelity function for each variation in the control values comes from the observation
that the forward evolution U(t, 0) and the backwards evolution U(T, t) need only be
calculated once for a given control configuration. This in turn allows each derivative
to be calculated with a constant number of matrix multiplications, as opposed to the
N required for the full Schrödinger evolution, leading to an overall scaling of O(N)
as opposed to O(N2).

The exact form of the derivative of the unitary time slice can be found in the
original GRAPE paper [85],

∂Uj
∂uk,j

= −i∆tH̄k,jUj,

H̄k,j =
1

∆t

ˆ ∆t

0

e−iĤ(j∆t)τĤke
iĤ(j∆t)τdτ.

(5.12)

For fine-grained control fields, i.e. ‖Ĥ∆t‖ � 1, the derivative can be approximated
as

∂Uj
∂uk,j

= −i∆tĤkUj. (5.13)

This approximation can lead to difficulties in finding optimal solutions if the time
step ∆t is not sufficiently small, but this problem can be circumvented by evaluating
the integral in Eq. (5.12) exactly [109]. Calculating this integral using the given
form of Uj is straightforward after obtaining the diagonalization of H(j∆t) (which is
the preferred method of exponentiating the Hamiltonian given its Hermiticity [120]).
Thus, the form of the derivative of the time slice Uj with respect to the k-th control
[as in Eq. (5.12)] in the diagonal basis of the full Hamiltonian is
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5.3. GRADIENT ASCENT

〈mj|
∂Uj
∂ukj
|nj〉 = 〈mj|Ĥk|nj〉

e−iλmj∆t − e−iλnj∆t

∆t(λmj − λnj)
(5.14)

for nj 6= mj, or

〈mj|
∂Uj
∂uk,j

|mj〉 = −i∆t〈mj|Ĥk|mj〉e−iλmj∆t (5.15)

if nj = mj. Here, λmj and λnj are eigenvalues of the full Hamiltonian at time slice
j, associated with eigenvectors |mj〉 and |nj〉 respectively. The actual derivative is
then calculated by reverting the matrix elements back to the original, non-diagonal
frame.

The gradient formula, Eq. (5.10), explicitly assumes that the total Hamiltonian,
control plus drift, is constant across each slice. For situations where the pulse shaping
resolution limited by the pulse generator’s sampling rate is slower than the Hamilto-
nian dynamics, it is important to consolidate the two time-scales. Several approaches
have been tried that avoid changing the existing framework. The first is to discretize
the dynamics into smaller slices and to penalize the differences between adjacent con-
trol values. This would lead to a search which has a dimension that scales with the
smallest time-scale. Another approach would be to coarse-grain in a way that com-
pletely discards the fast dynamics. For example, one can ignore the counter-rotating
terms in the rotating wave approximation (RWA). Sec. 6.1 develops a method that
redresses this tradeoff.

5.3.1 Non-unitary control

There are exceptions to the rule that shorter times lead to less decoherence for
systems with non-Markovian decoherence [150, 157] or approximately decoherence-
free subspaces [102,131,187]. In particular, rather than looking at the Hilbert space
evolution once can look at the evolution of the Liouvillian superoperator L obeying
the master equation

L̇ = −iHL,

which is equivalent to the evolution Eq. (2.4) and where the operator L gives the
evolution of a vector whose entries are the elements of the density matrix ρ, though
it is no longer unitary. The solution is given once again by the exponential

L = T exp(−iH∆t).
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This technique is not used in any of the optimizations in this thesis and rather
Eq. (2.4) is used for evaluation of the optimized unitary pulses. Note also that
penalty functions which avoid the O(d4) matrix elements in L for efficiency reasons
have been proposed [180] provided the decoherence is weak (which is usually the case
for quantum computation).

5.3.2 Robust control

For ensemble control, the fidelity is a linear combination of all the possible Φψ, and
therefore the gradient of Φ is found by

dΦ

duk,j
=

ˆ
ψ

dΦψ

duk,j
dψ. (5.16)

For discrete sampling we must provide the derivative, ∂Φ/∂ukj, which we calcu-
late by

∂Φ

∂ukj
=

2

(dM)2
Re

(
Tr

[
V †

M∑
l=0

∂U (l)

∂ukj

]
M∑
l′=0

Tr
[
V †U (l′)

]∗)
. (5.17)

Essentially, we must calculate ∂U (l)/∂uk for M different evolutions leading to a
computational-scaling for evaluating this derivative that is only M times more than
standard GRAPE on a d-dimensional system. However, this is significantly faster
than optimizing a gate for a dM -dimensional Hilbert space since exponentiating and
multiplying d× d matrices scales as O(d3).

5.4 Convergence improvements
Speed was not a central issue in this thesis as most applications were illustrative and
did not involve large Hilbert space dimension. Nonetheless, second order techniques
such as Newton’s method and LBFGS [109] allow for much faster optimization. These
approaches are standard in quantum control as they decrease the number of iterations
necessary by more accurately predicting the magnitude and direction of the step-size
parameter ε. The fact that the optimization is multi-dimensional (i.e. over many
controls) implies that this gradient/Hessian search is preferable to techniques that
optimize over a single control at a time (such as Krotov’s method [109]) since the
landscape is climbed more efficiently.

Another improvement that will be necessary for further scaling of the numerics
with dimension is to properly take into account the sparsity of most Hamiltonians.
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This would work well in conjunction with Eq. (5.7). One way to take advantage of
sparsity is by the so-called Hamiltonian-splitting method of exponentiation which is
discussed in Appendix A.

Finally, given where modern computing is going, most search algorithms can
benefit from some form of parallelism. In particular, there are good libraries for
matrix multiplications over GPUs or network clusters. This is another much needed
improvement for the optimization code developed for this thesis.
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Chapter 6

Waveform Shaping

6.1 Introduction
As the control of quantum systems becomes increasingly sophisticated, shorter and
shorter pulses which are less prone to decoherence become in principle possible.
Given the stringent requirements for quantum computation which require very low
errors and very precise timings, it is inevitable to run into the limitations of the
(classical) hardware which is used to activate these computations. This is no more
true than in engineered solid-state quantum systems, such as superconducting qubits
(Sec. 2.3.1.1), where quantum coherence is typically limited to times on the order of
microseconds [47], which necessitates very short pulses [27,106,183]. In these systems,
the control technology is in the microwave frequency range where current state-of-
the-art electronics restrict the variation in controls to a few nanoseconds [28, 107].
However, ideal gates operate exactly in the few nanosecond regime in order to allow
thousands of operations in the characteristic coherence time. Thus, the techniques
that are otherwise well-developed in other contexts need to be tailored to these
constraints. Properly quantifying the shape and controllability of fast pulses using
slow modulation is an important component of lowering effective error rates. There
has been some progress in this direction with the development of smooth analytic
optimal control methods such as DRAG [122] and some preliminary numerics in
Refs. [50, 147]. An added benefit is that faster gates linearly speed up computation
in these systems.

Most numerical control methods assume that the sampling rate of the pulse shape
that can be optimized is identical to the sampling rate of the control field; in other
words, either the control fields can be fully shaped in real time, or we shape the
envelope of a driving field represented by the Hamiltonian in an appropriate rotating
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frame where all remnants of time-dependence on the scale of the driving field disap-
pear. In both cases, the time-evolution across a step of the shaped pulse, a pixel, can
be straightforwardly approximated using a time-independent Hamiltonian in either
frame.

In this chapter, we are addressing a more general case in which the Hamiltonian
across the pixel is time-dependent. This can occur for a wealth of reasons. If the
pulse-shaping hardware has an internal filter with a bandwidth that is much smaller
than the input control sample rate, then the control fields become smooth rather
than a sequence of plateaux (see Sec. 6.2). Secondly, for many applications where
one requires a high-fidelity operation, performing a rotating wave approximation
(dropping fast rotating terms from a Hamiltonian) becomes invalid when the control
pulses are extremely short. That is, the counterrotating terms should be taken into
the integration of the Schrödinger equation even though the input controls can only
be changed on a time scale which is much slower than these terms. More generally,
if multiple Fourier components of a driving field are applied in order to, e.g., induce
AC Stark- and Zeeman-shifts, not all of these frequencies can be eliminated by a
suitable transformation.

To account for this effect, we introduced an extra level of discretization. We sep-
arate the discretization necessary for integrating the quantum evolution from that of
the discretization of the control parameters. The method is derived in Sec. 6.3. We
show with some examples that only a few extra subdivisions are needed to greatly
increase the accuracy of the optimization (in Sec. 6.5 and see also Sec. 11.2). More-
over, since the number of controls remains the same, the search space of possible
pulses does not change and the time-cost of the algorithm is only linearly affected
with the number of subdivisions. These results are published in Ref. [123].

Another important application of filtering and finite rise-times is in using fre-
quency selection to turn a transition on and off, where they are the main source of
error. This is generically discussed in Sec. 6.5 with an analytic solution found using
the Magnus expansion of the evolution. The analysis is relevant in particular to
frequency coupling of qubits (see Sec. 2.3.4) . This is explored in Sec. 6.7. and the
full Hilbert space is also optimized using the numerical procedure.

6.2 Waveform generator example
As a motivating example, we have conducted a “theorist’s experiment" to show the
typical response function given by an arbitrary waveform generator (AWG) to a set
of digital inputs. In Fig. 6.1, the dashed purple line was inputed into a Tektronix
AWG5014 (the AWG) and the response (solid green line) was measured on a LeCroy
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Figure 6.1: The purple dashed line represents the input controls uj,k for a arbitrary
chosen 5 pixel pulse with (a) 1ns and (b) 2ns pixels, the green solid line is the
output from the Tektronix AWG5014 running at 1 GSample/s (1ns pixels) and 500
MSamples/s (2 ns pixels) respectively with 14 bit vertical resolution, the red dot-
dashed line is the cubic spline interpolation, and the blue dotted line is the Gaussian
filter approximation (see text for details).

WavePro 725 Zi oscilloscope. This oscilloscope had a bandwidth of 2.5 GHz (-3dB)
which was large enough to ensure that all smoothing of the pulse was from the AWG
with a 250 MHz bandwidth (-3dB). The pixels were set to 1ns and 2ns in Fig. 6.1 (a)
and (b), respectively. Here it is abundantly clear that the piecewise constant input
control field (dashed purple line) and the waveform produced by current state-of-
the-art AWG (solid green line) are not the same, with significant smoothing taking
place. The remaining two lines (red dot-dashed and blue dotted line) represent
approximations that will be discussed in Sec. 6.4.

6.3 Numerical optimization with fast fields
Our method is to separate the control parameters from the integration steps. This,
for example, occurs when a control field arising from an arbitrary waveform gener-
ator (AWG) is mixed with a carrier field of frequency much larger than the allowed
sample rate of the AWG, when the control field are a combination of multiple Fourier
components [161], or when the control parameters are smoothed by a filter. In gen-
eral, the field ck(t) can depend on all input controls uk, though in many practical
situations it only depends on local values of uk. Furthermore, our drift and control
Hamiltonians can be time-dependent.
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To numerically integrate the Schrödinger equation, it is a necessity to discretize
the continuous fields ck(t) into sk,l, which is independent of our choice of uk. That is,
time is digitized to t = lδt, where δt is the time scale chosen such that ‖dH

dt
‖ δt
‖H‖ � 1

and Mδt = T .
The evolution takes the form of Eq. (5.3) where now

U =
0∏

l=M−1

Ul, (6.1)

with the propagator,

Ul = exp

[
−i

(
H0,l +

∑
k

sk,lHk,l

)
δt

]
. (6.2)

Here, H0,l and Hk,l are time-sliced versions of H0(t) and Hk(t). The update rule for
uk is computed the same as Eq. (5.3), but now the gradient of Φ is found through

∂Φ

∂uk,j
=

M−1∑
l=0

∂sk,l
∂uk,j

∂Φ

∂sk,l
, (6.3)

with
∂Φ

∂sk,l
=

2

d2
Q

Re
[
Tr

(
U †idealPQ

∂U(T )

∂sk,l
PQ

)
Tr (UidealPQU(T )dgPQ)

]
, (6.4)

where
∂U(T )

∂sk,l
=

(
l+1∏

n=M−1

Un

)
∂Ul
∂sk,l

(
0∏

n=l−1

Un

)
. (6.5)

Calculating the ∂Ul/∂sk,l proceeds exactly the same as in Sec. 5.3, either exactly
or through a linear approximation. While this method will only ever be a linear
approximation to the physical control fields, using the exact derivative as opposed to
the linear approximation may speed up the gradient search. The partial derivative
∂sk,l/∂uk,j is provided by the response function sk,l(uk).

6.4 Response functions
There are a wealth of response functions for taking the controls uk to the continuous
fields ck(t). These response functions do not have to be linear but in many circum-
stances a linear approximation is valid. For example, the filtering seen in Fig. 6.1
can is well approximated by a linear response function.
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A linear response function can be represented by

sk,l =
N−1∑
j=0

Tk,l,juk,j, (6.6)

where the entirety of our response function is encapsulated in a transfer matrix, Tk,l,j.
In this case, evaluating Eq. 6.3 is particularly straightforward since

∂sk,l
∂uk,j

= Tk,l,j. (6.7)

In the case where the input controls uk are indexed by time, the response func-
tion (such as an interpolating function, a filter, or a carrier function) will simply
reparametrize the weights of the individual control pixels. If the response function
provides variations on a smaller time scale than the original input pixels then ad-
ditional sub-pixels sk,l are required for the digitization of the continuous field to be
valid. This idea is illustrated in Fig. 6.2, where in particular we can think of the
gradient of the (purple-dashed) control pixels as the weighted sum of the gradients
(the black arrows) of the sub-pixels (orange bars) inside or near the control pixel but
which we cannot directly control. Note that this visualization works only when the
control pixels are indexed in time. Otherwise, the input controls and response func-
tions represent different dimensions (e.g. if the controls were Fourier components,
the response would be in the time domain) though the same formalism still applies.

6.4.1 Cubic spline interpolation

If there is no detailed description of the transfer, smoothing can be approximated
by interpolating between a discrete set of points with a piecewise cubic spline in-
terpolation. Like the piecewise approximation in Eq. 5.1, here we approximate the
continuous fields as a piecewise function

ck(t) =
N−1∑
j=−1

Sk,j(t) uj+1/2 (t,∆t) (6.8)

but now instead of remaining constant over the ∆t interval the field is described by
a cubic function,

Sk,j(t) = ãk,jt
3 + b̃k,jt

2 + c̃k,jt+ d̃k,j. (6.9)
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Figure 6.2: The purple dashed line represents the input controls pixels uj,k, the solid
blue line represents the continuous field ck(t), and the orange bars represent the sub-
pixel approximation (sk,j,l) to the continuous field. The black arrows represent the
update vector of the individual sub-pixels while the large purple arrows represent
the update (weighted average) for the control pixels.

To ensure that the field and its first derivative are continuous across boundaries and
to introduce the control parameters, we enforce

Sk,j((j + 1/2)∆t) =uk,j,

S ′k,j((j + 1/2)∆t) =
uk,j+1 − uk,j−1

2∆t
,

Sk,j((j + 3/2)∆t) =uk,j+1,

S ′k,j((j + 3/2)∆t) =
uk,j+2 − uk,j

2∆t
.

(6.10)

The box functions are offset by ∆t/2 so that the control parameters indicate the
value at the center of the step and we additionally require that the function and its
derivatives are zero at the boundaries (which can be enforced by padding the control
vector with zeros).

We can now derive the transfer matrix Tk,l,j from the above conditions, and it
is sparse. For each k, l pair there are only four non-zero transfer matrix elements.
There exists a j′ such that (j′ + 1/2)∆t ≤ lδt < (j′ + 3/2)∆t. The non-zero matrix
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elements of Tk,l,j are then

Tk,l,j′−1 = − τ

2∆t
(
τ

∆t
− 1)2

Tk,l,j′ = 1 +
3τ 3

2∆t3
− 5τ 2

2∆t2

Tk,l,j′+1 =
τ

2∆t
+

4τ 2

2∆t2
− 3τ 3

2∆t3

Tk,l,j′+2 =
τ 3

2∆t3
− τ 2

2∆t2

(6.11)

where τ = lδt − (j′ + 1/2)∆t. Spline fits of this form are shown in Fig. 6.1 as the
red dot-dashed line. In these figures, the spline is a better approximation to the
AWG for the 2ns pulse(Fig. 6.1b) than for the 1ns pulse (Fig. 6.1a); this is primarily
because for longer pixels there is less of an issue with the attenuation of the controls
(which this model of the spline does not capture).

6.4.2 Filter function

Most electronic systems undergo some amount of filtering. It is important to model
this to understand the shape the waveforms will take upon reaching our quantum
systems. To represent the effect of the filter the continuous field is

ck(t) =

ˆ ∞
−∞

fk(t− t′)uk(t′)dt′

ck(t) =F−1[Fk(ω)F [uk(t)]],

(6.12)

where fk(t), and Fk(ω) are the response function and transfer function respectively
of the filter for control k and F is the Fourier transform. As before, causality (the
upper bound of the integral) is implicitly taken into account by a suitable delay time
of the response. To ensure that the pulse is zero at the boundaries we add a finite
number of control parameters to the start and end of the pulse that are fixed at
zero. The number of parameters necessary for such a padding, nr, depends on the
bandwidth of the filter, ωB, according to nr = d2π/(ωB∆t)e.

In the frequency domain, the response function is

sk,l(t) =
1

2π

ˆ ∞
−∞

uk(t
′)

ˆ ∞
−∞

Fk(ω)eiω(lδt−t′)dωdt′ (6.13)
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Using this with the piecewise constant control fields in Eq. (5.1) and the assumption
that the filter function in the frequency domain is even, the transfer matrix becomes

Tk,l,j =

ˆ ∞
−∞

Fk(ω)
cos[ω(lδt− (j + 1

2
∆t)] sin[1

2
ω∆t]

πω
dω. (6.14)

It is easy to pre-compute Tk,l,j numerically, and for many filters it can be calculated
analytically. Note also if |l δt

∆t
−j| > nr we can assume that Tk,l,j ≈ 0. We demonstrate

a calculation of Tk,l,j using a Gaussian filter. In this case, the filter function is given
by

Fk(ω) = exp(−ω2/ω2
0k

) (6.15)

where ω0k is the reference frequency [178] for the k-th control. Performing the inte-
gration we find

Tk,l,j =
1

2

{
erf

[
ω0k

(
lδt− j∆t

2

)]
− erf

[
ω0k

(
lδt− (j + 1)∆t

2

)]}
. (6.16)

Gaussian filters are often used to approximate the actual hardware filtering typ-
ically found in experiments, which are usually parametrized by their bandwidth
ωB (frequency of 3dB attenuation). For a Gaussian the 3dB attenuation occurs at
ωB = 0.5887ω0. Thus for the AWG with a bandwidth of ωB/2π = 250 MHz we
find ω0/2π = 425.4 MHz. The Gaussian approximation to the Tektronix AWG5014
is shown in Fig. 6.1 as the blue dotted line. Here, we see that it reasonably well
approximates the experiment (much better then the spline) and for the remainder of
the chapter, we used this as our benchmark.

6.4.3 Fourier components

In previous sections, we envision the control parameters as the magnitudes of piece-
wise constant functions, i.e. square pulses, and the approximations as smoothed
versions of these fields. In principle, we could instead look at the uk,j as more ar-
bitrary parameters such as Fourier components (see e.g. Ref. [136]), where now we
write

ck(t) =
∑
j

uk,j(t) sin(ωjt+ φj), (6.17)

and the transfer matrix is simply

Tk,l,j = sin(ωjlδt+ φj). (6.18)
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Often the the Fourier components uk,j are assumed to be a constant in time. On
the other hand, perhaps the most common use of a Fourier component is to match
that of the frequency of a qubit or other transition, as is the case of the lab frame
Hamiltonian, Eq. 4.4. The repercussions of the fast time-dependence of this system
is further analysed using this methodology in Ch. 11. It is also straightforward to
combine other response functions such as filters with frequency component mixing.
Finally, one can also consider optimizing the value of the phase and frequency of the
Fourier components (e.g. Sec. 10.2.2) though this falls outside the domain of linear
control.

6.5 Filtered amplitude-modulated coupling
For the first example, we consider filtering at the Rabi frequency of a qubit system.
To avoid the trivial area theorem solution to an on-resonant 2-level system (Sec. 3.1)
which is not greatly affected by filtering, we consider the incremental complication
of a driven qutrit system. This system presents an important and widely applicable
control problem in its own right which will be studied in great detail in Ch. 8 but
here we are merely concerned with the (adverse) effect of filtering. We begin with
the following lab-frame Hamiltonian:

H = [Ex(t) cos(ω1t+ ψ) + Ey(t) sin(ω1t+ ψ)] (Γ + Γ†) +
∑
j=1,2

ωj|j〉〈j|, (6.19)

where ω1 is the 0− 1 transition frequency, ω2 is the 0− 2 transition frequency, ψ is
the unknown phase of the carrier signal at the start of the pulse, Γ is the effective
lowering operator Γ = |0〉〈1| +

√
2|1〉〈2|, and Ex(t) and Ey(t) are the controls. With

this system we want to perform a π rotation in the subspace formed by the 0 and
1 states without losing population to the third level. It is standard to define this π
pulse in the frame rotating at the frequency ω1 (Sec. 4.2.2). Moving to this frame
and making the rotating wave approximation (RWA), we can model this system by
the Hamiltonian

H = Ex(t)(Γ + Γ†)

2
+ Ey(t)(iΓ− iΓ†)

2
+ ∆|2〉〈2|, (6.20)

where ∆ = 2ω1 − ω2.
Under the RWA with two controls (with infinite bandwidth and sampling rate)

it is always possible to find a solution that gives a perfect π pulse [122]. However,
when we restrict the control parameters to 1ns pixels (a typical setting for current
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Figure 6.3: Gate error as a function of the gate time for the amplitude-modulation
example. The dotted purple line is the optimal grape solution without any filtering.
The dashed green line is the predicted error when a the optimal grape solutions are
filtered by a Gaussian filter approximating a AWG with a 250 MHz bandwidth. The
dot-dashed cyan line is the predicted gate error after filtering with the Gaussian filter
for the spline optimization with 2 sub-pixels per control pixel. The solid red line and
the dotted blue line are the predicted gate errors after filtering with the Gaussian
filter for the Gaussian filter optimization with 2 and 20 sub-pixels per control pixel,
respectively. The vertical dashed line indicates the gate time used in Fig. 6.4. Other
parameters are given in the text.

microwave AWGs), we find that we need a gate time of least 4ns (4 pixels) to reach
errors below 10−5. This is shown in Fig. 6.3 as the dotted purple line where we have
taken ∆/2π = −500MHz. Naively, one would then predict that these optimized
pulses could be perfectly implemented. However, due to the internal filtering imposed
by the AWG this is not the case (see Fig. 6.1). To demonstrate this we take the
numerically optimized pulses and filter them with a Gaussian filter approximation
to a AWG with an internal bandwidth of 250MHz (see Sec. 6.4.2), which for short
we will call the ‘AWG filter’. The predicted error is then shown in Fig 6.3 as the
dotted green line. Here we see that the effect of the filtering is drastic, and hence
the optimized pulses will not perform well for quantum operations with the AWG
due to shaping error.

Taking the filtering into account during the optimization allows for much better
pulses. We can do this either by finding smooth pulses with a cubic spline interpo-
lation or by actually taking into account the filter. To demonstrate this we plot in
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Figure 6.4: Gate error as a function of the number of subpixels for the amplitude-
modulation example. The dotted purple line is the optimal grape solution without
any filtering (limited by the numerical precision). The dashed green line is the
filtered optimal grape solutions when the filter is a Gaussian filter approximating
a AWG with a 250 MHz bandwidth. The dot-dashed cyan and solid red lines are
the predicted gate errors after filtering with the Gaussian filter for the spline and
Gaussian filter optimizations, respectively. Other parameters are given in text.

Fig. 6.3 the error as a function of gate time when optimizing under the cubic spline
interpolation (dot-dashed cyan line) and a Gaussian filter (solid red line). Here we
included 2 subpixels per control pixel, and after finding the optimized solutions, ap-
plied the AWG filter. Increasing the number of subdivisions allows our algorithm to
better approximate the AWG filter; this is illustrated by the dotted blue line where
we find for 20 sub-pixels a greatly improved performance for all gate times. To get
an indication of the performance of our algorithm with the number of subdivisions,
we set the gate time to 4ns (vertical dotted line in Fig. 6.3) and plot in Fig. 6.4 the
gate error as a function of number of sub-pixels. Here, we observed that for only
a few subdivisions the performance of our algorithm reaches very small error rates.
We also find that the spline optimization is not as good as the Gaussian filter. This
is expected as we have assumed the real situation (AWG filter) to be a Gaussian
filter, hence the spline optimization is not necessarily going to find pulses that are
consistent with the AWG filter. On the other hand, picking the correct response
function improves the situation, even for very few subdivisions.
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Figure 6.5: The strategy of frequency-modulated coupling is shown. The blue state
|1〉 is brought into resonance with |0〉, allowed to exchange energy, and brought back
to the off-resonant position.

6.6 Filtered frequency-modulated coupling
Now we consider a system where the coupling is constant and the control is achieved
by modulation of the transition frequency in and out of resonance. It turns out
this is a very simple way to tune multiple transitions on and off, and provides a
straightforward method of e.g. couplings many qubits, with the caveat that it suffers
from many imperfections (see Sec. 2.3.4). In particular, it is a common method of
performing a 2-qubit gate and this will be explored in detail in the next section, 6.7.
Here, we consider the generic case of a single such coupling with a biasing frequency
control. Fig. 6.5 shows the basic strategy, with the corresponding Hamiltonian

H(t) =
∆− δ(t)

2
Ẑ + JX̂ (6.21)

We want to determine δ(t) such that at final time T = π/2J we have U(T ) = X̂.
The δ(t) control allows to effectively switch the X̂ rotation on and off by putting
the transition into resonance. In the ideal case, we simply select a rectangle function
for δ(t) = u0(0, T )∆ which performs the rotation. In the off-state, ∆ is chosen to
be as large as possible (while avoiding coming to close to other transitions such as
qubits or imperfections). Moreover, the off-state can also be optimized by e.g. using
dynamical decoupling techniques (see Sec. 3.4).

However, a great difficulty with this strategy is that there will inevitably be
filtering on δ(t) which prohibits an immediate jump from 0 to ∆ but rather takes
a characteristic rise-time (the yellow line in Fig. 6.6). Instead one must apply a
new kind of dynamical decoupling pulse (Sec. 3.4) to cancel the unwanted term
with the added complication from standard techniques that it is time-dependent.
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Moreover, δ(t) acts simultaneously as the control we use to dynamically decouple
the error and as the error term itself that we want to remove given the filtering. For
demonstrative purposes of analytically optimizing the approximate functional form
of δ(t) , we impose the simplified condition that |δ̇| ≤ µ though of course in practice
actual functions that one can implement are greatly constrained by the filter.

In this example we divide δ(t) into three parts, the initial rise, 0 ≤ t ≤ t∗, a
period of time-independent evolution with δ(t) = ∆, t∗ ≤ t ≤ T − t∗, and finally the
ramp back down, T−t∗ ≤ t ≤ T . The rise and fall of the field amplitude are the most
difficult to assess because the terms in the Hamiltonian do not commute, unlike in
the case of filtered amplitude-modulation where a simple area theorem would apply
to driving the qubit. Furthermore, a small-parameter expansion is not possible given
that δ(t) varies from very large to very small relative to J.

In order to analytically derive the form of the optimal control field, we use the
average Hamiltonian theory and Magnus expansion taken to second order, defined
in Sec. 4.4. During each of the three sections of the control pulse we would like the
effective Hamiltonian to be Heff(t) = JX̂. This is exactly true for the free evolution
when δ(t) = ∆ but for the ramps we need to look at the conditions given by each
order of the Magnus expansion such that this is true.

The first order condition is simply the average Hamiltonian must be proportional
X̂, which is evaluated by integrating the Hamiltonian and gives rise to the condition´ t∗

0
(∆−δ(t))dt = n2π. Thus we have an approximate area theorem which states that

we need to set the area above and below δ(t) = ∆ to be the same. This solution is
illustrated in Fig. 6.6 as the red line. The error as a function of the energy separation
∆ is plotted in red in Fig. 6.7.

To second order the double integral of the commutator of the Hamiltonian at
different times gives the condition

ˆ t∗

0

ˆ t1

0

[H(t1), H(t2)]dt2dt1 = J

ˆ t∗

0

ˆ t1

0

(δ(t1)− δ(t2))dt2dt1 = n2π,

and can be solved by using a cubic polynomial. Similarly, the next order corrections
are given by satisfying Eq. 4.8 which give the quintic polynomial solution

δ(t) = 56∆ + 20∆
t

t*
− 100∆

(
t

t∗

)2

+ 200∆

(
t

t∗

)3

− 175∆

(
t

t∗

)4

(6.22)

This solution is illustrated in Fig. 6.6 as the blue line. The shape bears resemblance to
a Fresnel integral. The error as a function of the energy separation ∆ is plotted in blue
in Fig. 6.7. We see that both the zeroth order and second order Magnus expansion
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Figure 6.6: Control amplitude as a function of the time during the gate operation
for the filtered ISWAP example. The yellow line is the unoptimized sequence with
rise-time restriction. The red line represents the solution to the average Hamiltonian
assuming the same rise-time of 1ns. The blue line represents the cubic polynomial
solution to the second order in the Magnus expansion given by Eq. 6.22 with t*=3ns.
The short time of T=10ns is used for visual clarity.

corrections greatly reduce the rise-time error at small splittings but become worse
as the initial detuning is increased. This related directly to the observation that
at the beginning of the pulse we have the detuning δ(t) � J while near resonance
δ(t)� J . The latter case is a clear application of average Hamiltonian theory where
the expansion converges, while the former is not and requires a different treatment.
In fact, it would be preferable to split the evolution into 5 parts, where the first and
last are defined as the region where δ(t) � J , and their contribution to the error
is calculated differently. This type of error is known as off-resonant error and is an
application of selectivity theory as will be studied beginning in Sec. 7.1.1 and again
in later chapters.

6.7 Application to 2-qubit coupling
The implementation of quantum computing requires a universal set of gates [41].
With single qubit rotations, the

√
iSWAP or iSWAP [155] operations are universal

two-qubit gates and turn out to be a natural two-qubit gate for certain coupling
Hamiltonians [189]. In particular, they occur from an effective XX interaction be-
tween two resonant qubits, written as Hint = −JX where X = σ+

1 σ
−
2 + σ−1 σ

+
2 can be

understood as a Pauli matrix on the subspace spanned by {|01〉, |10〉} and J is the
coupling strength. Time evolution for a time t under this interaction leads to the
unitary U(θ) = exp(+iXθ) with θ = t/J . θ = π/4 gives the

√
iSWAP and θ = π/2
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Figure 6.7: Gate error as a function of the splitting between energy levels for the
filtered ISWAP example. The yellow line is the unoptimized sequence upon filtering.
The red line represents the solution to the average Hamiltonian. The blue line
represents the cubic polynomial solution to the second order in the Magnus expansion
given by Eq. 6.22. Parameters are taken as J=30MHz and T = π/J .

gives the iSWAP. The XX interaction does not only occur naturally by the two-
dimensional truncation of the exchange interaction. It occurs generically between
weakly transversally coupled qubits [60]. This makes it ubiquitous in the interaction
between resonantly tuned superconducting qubits [11, 30, 149, 185] as well as qubits
and resonators [15, 14, 71, 111, 116, 159]. Precisely timing the pulse to the right an-
gle can be done by either having a tunable coupling strength J [12, 70, 140, 142] or
by bringing initially far detuned in frequency qubits into resonance. The latter is
the more commonly used method. It is usually assumed that this tunneling is fully
non-adiabatic, i.e., the parameters of the Hamiltonian change without any change
of state. Realistically, it is slower than that, will exhibit a tendency to follow the
adiabatic eigenbasis, and there will be a large error arising from the Landau-Zener
tunneling. A similar situation occurs in the exchange-driven gates in the singlet-
triplet qubit realized in semiconductor quantum dots [139]. Furthermore if the qubit
is made from an anharmonic oscillator which is the case for many superconducting
qubits there will be an additional source of error. This error is leakage from the
two qubit subspace to the higher levels, controlled by the ratio between the coupling
strength between and the anharmonicity; it will be discussed in Ch. 9.

6.7.1 Physical example: capacitively coupled phase qubits

As a physical motivation for how this coupling can arise, consider two supercon-
ducting phase qubits connected in parallel by a capacitor (see Sec. 2.3.1.1). Using
Kirchoff’s laws, it is straightforward [60] to derive circuit equations and from these
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to deduce the respective Lagrangian

L = IC1 cosφ1+
C1 + C2

2

Φ0

2π
φ̇2

1+Ib1
Φ0

2π
φ1+IC2 cosφ2+

C1 + C2

2

Φ0

2π
φ̇2

2+Ib1
Φ0

2π
φ2+CG

Φ0

2π
φ̇1φ̇2

where the subscripts b and c denote bias and critical current respectively, the
numerical subscript indexes the Josephson junction, and CG is a coupling capaci-
tor. Using canonical quantization with ECiN̂i =

√
Φ0

2π
φ̇i this gives the Hamiltonian

description

H =
∑
i

[EC1N̂1 − EJi cos φ̂i − Ibi
Φ0

2π
φ̂i] + 4CGEC1EC2N̂1N̂2

with the introduction of the Josephson energy EJi. This Hamiltonian is well
approximated by a polynomial given by the Taylor expansion of the cosine around
φ̂i = 0,

H w
∑
i

[EC1N̂1 + EJiφ̂
2
i − Ibi

Φ0

2π
φ̂i] + 4CGEC1EC2N̂1N̂2

This Hamiltonian in turn is a harmonic oscillator and is exactly solvable. Intro-
ducing raising and lowering operators φ̂i =

√
ECi
2EJi

(âi + â†i ) and N̂i =
√

ECi
2EJi

i(âi− â†i )
we can rewrite

H = ω1n̂1 + ω2n̂2 − 2CG

√
E3
C1E

3
C2

EJ1EJ2

(â1 − â†1)(â2 − â†2)

with ωi =
√

4ECiEJi and n the number of excitations in the qubit eigenbasis.
Finally, we note that terms which do not conserve energy can be dropped (fast-
rotating terms) and that the situation of variable qubit frequency can be realized
by tuning EC in situ by threading a flux through the Josephson junction loop.
Truncating the Hilbert space by ignoring all states above ni = 1 gives the two-qubit
flip-flop Hamiltonian

H2Q =
ω1(t)

2
Ẑ1 +

ω2(t)

2
Ẑ2 − 2CG

√
E3
C1E

3
C2

EJ1EJ2

(σ−1 σ
+
2 + σ−2 σ

+
1 )
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6.7.2 Reduction to single qubit analytic treatment

We consider two qubit gates realized by an exchange interaction,

H =
∑
i

ωi(t)

2
Zi + J(σ−1 σ

+
2 + σ−2 σ

+
1 ) (6.23)

where ωi are the resonant frequencies of the two qubits which we assume can be varied
and J is the coupling rate which we assume is fixed. This interaction is the natural
interaction for two superconducting qubits coupled capacitively [116,133,132], induc-
tively [11, 30, 185] or by virtually photons in the circuit QED architecture [15, 111].
The variation in the frequencies can be achieved by changing the operation point
of the qubit with external flux lines. The above Hamiltonian can be dramatically
simplified by defining a representation of the Pauli algebra given by,

Î =
σz1 + σz2

2
,

X̂ =σ−1 σ
+
2 + σ−2 σ

+
1 ,

Ŷ =− iσ−1 σ+
2 + iσ−2 σ

+
1 ,

Ẑ =
σz1 − σz2

2
.

(6.24)

In this case Eq. 6.25 reduces to

H = Σ(t)Î + ∆(t)Ẑ + JX̂, (6.25)

where ∆(t) and Σ(t) are respectively the difference and sum of the two qubit frequen-
cies. Effectively we can limit our controls to a single excitation algebra if we choose´

Σ(t)dt = 2nπ, and thus the task of designing a two-qubit gate is isomorphic to that
of generating a single qubit X-rotation using a Landau-Zener-type sweep [126]. In
particular, the analysis of Sec. 6.6 is applicable. As a testament to the simplicity of
this strategy, it is widely used for coupling superconducting qubits and the first-order
control sequence forms the basis of present-day embodiments of the technology [57].

6.7.3 Numerical optimization

Once again we can apply the numerical optimization gradient ascent technique to
optimize the two-qubit gate in the presence of filtering. We optimize a single detuning
field δ(t) in the rotating frame Hamiltonian given by
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Figure 6.8: Optimized detuning δ(t) as a function of the gate time for the filtering
2-qubit example. Parameters are given in the text.

H =
∆− δ(t)

2
Z1 + J(σ−1 σ

+
2 + σ−2 σ

+
1 ) (6.26)

For typical values of J (on the order of 50 MHz) and typical filtering (about
250MHz bandwidth) it is always possible to fully remove the error. Interestingly, the
pulses found are very similar to the polynomial found using the Magnus expansion,
Eq. 6.22 and one such pulse is plotted in Fig. 6.8 for ∆ = 0.5GHz, and T=12ns, with
a 2ns buffer. Using this technique, the error can be reduced arbitrarily given the use
of the correct response function and coupling that is not faster than the smoothing.

6.8 Summary
We have derived numerical and analytical techniques for dealing with fast-oscillations
in the Hamiltonian underlying slow variation of the control parameters. For gates
that are very short to avoid the effect of decoherence, fast oscillations can be partic-
ularly detrimental.

One kind of fast dynamics that has been studied in detail in this chapter is
filtering. In the case of filtering of amplitude modulated pulses, the effect can be
fairly subtle because the Hamiltonian approximately commutes with itself at different
times and therefore the filtering manifests itself as rather straightforward shaping
error. In the limit of simple time dependence, an area law or other suitable analytic
approximation (by e.g. taking the filter as a Gaussian function) allowed relatively
little disturbance to the study of single qubit rotations.
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On the other hand, if the filtering affects an operator that does not commute
approximately with the rest of the Hamiltonian then the effect of filtering is harder
to understand. Analytically, a Magnus expansion of the evolution allowed to obtain a
pulse shape for the detuning of a coupling transition that permitted to effectively turn
the transition on and off as desired. Moreover, the shape can be easily understood as
a polynomial satisfying a certain number of integral dynamical decoupling constraints
and matched closely to the optimum pulse shape found through optimization using
the derived numerical techniques.

Other instances of fast dynamics in the presence of slow controls will be dis-
cussed throughout the text. In particular, the presence of unwanted off-resonant
transitions can be thought of in this context for fast pulses. Specific applications for
the numerical technique will be discussed in Ch. 10 and Ch. 11 to optimize over mul-
tiple driving fields at different frequencies, or one such field with multiple harmonics
present, respectively.
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Chapter 7

Crosstalk

In chapter 6, we saw that imperfections can change the intended shape of the field
that is sent to access a quantum coupling, hence causing errors if not accounted for.
Now we consider imperfections not in the magnitude of the field but in its spatial
extent. Both in real space and in frequency, it is desirable to separate qubits and
other coupled energy levels from each other so that they are individually accessible.
Crosstalk error occurs when manipulating one quantum element is not done inde-
pendently of other elements. In order to minimize this effect, engineering qubits that
are sufficiently separated in space and in frequency while retaining sufficient coupling
and scalability constraints is required (see Sec. 2.3.2). This chapter aims to examine
the techniques and tradeoffs of minimizing crosstalk terms while retaining coupling
and scalability: section 7.1 deals with crosstalk for addressing individual qubits at
different frequencies while in 7.2 spatial crosstalk for two-qubit gates is discussed. In
general, crosstalk is ubiquitous across quantum control strategies and physical imple-
mentations of quantum information, namely it will reoccur in the context of leakage
couplings (Ch. 8 and 9), virtual couplings (Ch. 10), and strong coupling (Ch. 11).
In this chapter, we elaborate on the idea that frequency crosstalk consists primarily
of semi-classical selectivity error (Sec. 3.2) and shifting of quantum eigen-energies
(Sec. 3.3) which are primarily an exercise in pulse-shaping, while spatial crosstalk
requires performing trajectories in state space that are able in composite (Sec. 3.4)
to act independently of and unwind unwanted operators.

Section 7.1 analyses the selectivity problem (Sec. 7.1.1) first from a semi-classical
perspective (Sec. 7.1.2) and with quantum corrections (Sec. 7.1.3). The writing of
this section was aided by Frank Wilhelm. Next, Sec. 7.2 introduces the problem of
spatially separating (flux) qubits while simultaneously retaining (tunable) coupling
between them (the coupling results are derived and analyzed by Peter Groszkowski;
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for the publication and the full derivation see Ref. [63]). The coupling landscape is
used to demonstrate that sufficiently low error gates can be performed under real-
istic constraints and minimal spatial separation, both with (Sec. 7.2.3) and without
(Sec. 7.2.4) the additional use of frequency separation of the qubits.

7.1 Frequency crosstalk
Spectroscopy is arguably the most commonly used experimental technique in physics
[36, 101, 162]. It relies on the concept of resonance - the object of study is exposed
to monochromatic radiation and responds if the radiation frequency matches a fre-
quency of that system. In quantum systems, that frequency is the difference of two
of the systems’ energies. Complex systems usually contain a large wealth of these
frequencies. The ability to selectively address these frequencies defines the spectral
resolution. The limitation of spectral resolution can be twofold: On the one hand,
the frequencies forming spectral lines are intrinsically broadened by decoherence and
/ or relaxation. On the other hand, the idea of an ideally monochromatic external
excitation is only a convenient fiction - in reality, the bandwidth of that external
signal is limited by a on a scale of 1/T where T is the duration of the experimental
pulse.

In continuous wave spectroscopy, T is chosen to be so long that this restriction is
not a limiting factor. There are however situations in which this is not possible. In
magnetic resonance, e.g., certain spectral lines can only be reached through complex
pulse sequences that all need to be executed within the relaxation time of the system.
Consequently, a wealth of techniques has been developed that reaches fine spectral
selectivity with pulses of limited duration, including the case of 2D-spectroscopy
[45,54,101] .

Quantum technologies such as quantum computing are often based on spectro-
scopic ideas [24,125,46,129]. In fact, the already mentioned spin resonance is a pri-
mary candidate for the implementation of quantum computing [8,61,73].This means
that the quantum mechanical transitions corresponding to certain quantum logic op-
erations are typically addressed through their transition frequency. This can occur
on the level of single qubits, when the two states representing the qubit are taken
out of a complex spectrum with low anharmonicity such as it is the case in supercon-
ducting qubits [30, 38, 112, 153, 186] (see Ch. 8). It can occur when multiple qubits
are in close spatial proximity, much closer than the spatial resolution of the external
field, as it is the case in spin resonance [54, 101, 129, 162]. It can also occur if single
elements are multifunctional, e.g., when a single qubit contains transitions pertinent
to local rotations as well as to coupling different components [14,57,71,111,141,159]
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(see Ch. 10). Note that typical scalable quantum computing implementation can-
didates typically do not rely on spectroscopic resolution alone and at least contain
some element of local addressability. Still, clearly, a crowding of the frequency spec-
trum will be detrimental to both spectroscopy and coherent quantum control. In
quantum information, it is a key requirement to perform a large number of highly
accurate operations well below the coherence time of the system. Thus, the chal-
lenge of reaching good enough spectral addressability in short times is in particular
significant.

The above discussion holds essentially for all bit-flip type operations, where tran-
sitions between energy eigenstates of a qubit system occur. On a single qubit level,
these would e.g. include the NOT gate. Between qubits, these include the controlled
NOT and the iSWAP gate [129].

Now a key difference between spectroscopy and quantum control in the pursuit
of selective excitation is the following: spectroscopy is an analytic technique to find
energy levels through transition frequencies, hence we want to guarantee that beyond
a narrow band around the desired transition, excitation profiles are suppressed. In
quantum control, the spectrum is well characterized and the positions of undesired
transitions are known, hence, it is sufficient to suppress the excitation profile at those
frequencies. This chapter aims primarily at the second approach.

7.1.1 Selectivity criteria

The controls that are used to manipulate quantum systems, typical external AC
fields, can often neither spatially nor by selection rule distinguish between the quan-
tum transition that is being controlled and other quantum transitions. This can be
mitigated if all these transitions have distinct transition frequencies ωj,k = Ej − Ek
where Ej is the energy eigenvalue of state j and here and henceforth we use natural
units with ~ = 1. If we now drive the system control indexed by l with a drive
frequency ωdl that is much closer to a specific transition frequency labelled by j(l),
k(l) than to any other, and/or if this control has an appreciable matrix element Γ̂ljk
for this transition, only it will be driven, and no other transition. We will quantify
this statement below and outline its limitations.

We start by assuming a Hamiltonian Ĥtot = Ĥ0 + Ĥcontrol and work in the ba-
sis of eigenstate of Ĥ0. We can formalize the statement about spectral selectivity
by assuming that the drive Hamiltonian has some appreciable matrix elements for
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multiple quantum elements in the system, that is the control Hamiltonian

Ĥcontrol(t) =
L−1∑
l=0

Ωl(t)e
−iφl

M−1∑
m=0

Γ̂lm + h.c. (7.1)

where there are M quantum elements in the system and L drives to control
them. This can arise for example if we consider M qubits and a collective drive
composed of L frequencies, each of which is meant to address a particular qubit but
has unintended crosstalk on the rest of the M qubits, as it e.g. occurs in NMR. In
such a case, the lab Hamiltonian will read

Ĥtot =
∑
l

Ωl(t)e
−iφl cos

(ˆ t

0

ωdl dt

)(∑
m

Xm

)
+
∑
m

ωm0,1|1〉〈1|m (7.2)

Moving this to the interaction picture (Sec. 4.2.2), we can better appreciate the
selectivity condition by introducing offsets ∆jkl = ωdl − ωj,k as

Γ̂lm =
∑

|j〉,|k〉∈Hm

λlj,ke
−i∆jklt|j〉〈k|. (7.3)

where the total Hilbert space is Hsys =
⊗M−1

m=0 Hm. In the qubits example, we have
|j〉 = |0〉m, |k〉 = |1〉m. More generally, Hilbert spaces where selectivity criteria are
used outside the scope of qubit crosstalk will be discussed in in Ch. 8, Ch. 10, and
Ch. 11.

Here, it is tacitly assumed that the envelope Ωl = ReΩl+iImΩl is complex-valued.
For the implementation of simple drive pulses, the phase is typically assumed to
be constant which with appropriate choice of reference means ImΩ = 0, however,
later we will explicitly use the ability to control both terms independently. Here,
we assume that to each index l we match a transition j, k to which it is almost
resonant, identified as j(l) and k(l). In this interaction frame representation, we can
quantitatively formulate the selectivity condition: we observe that the terms on the
right hand side of Eq. (7.3) are oscillating at frequency ∆jkl and have magnitude
λlj,kΩ. In order for the drive to be effective, it must not oscillate wildly on the time
scale of the transition |λj,kΩ| −1 hence giving us the sufficient criterion that we have
frequency selectivity for all l if

∆jkl �
∣∣λljkΩl

∣∣ ∀j, k 6= j(l), k(l) (7.4)
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On the other hand, in order to drive the desired transition efficiently, we demand
to be on or close to resonance

∆j(l),k(l),l �
∣∣λlj(l),k(l)Ωl

∣∣ (7.5)

As ωj,k are given by the quantum system under consideration, the choice of driving
frequencies l can only maximize the left hand side of Eq. (7.4) to a certain limit while
also obeying Eq. (7.5). Thus, obeying these conditions requires to keep the control
amplitudes Ωl low enough. On the other hand, this increases the duration of the
control pulse hence makes the transition vulnerable to decoherence and relaxation,
thus we practically demand that λlj(l),k(l)Ωl � γ where γ represents typical incoherent
rates of the system. This constraint on addressability is a result of spectral crowd-
ing and the loss of fidelity due to the need for long pulses degrades spectroscopic
techniques as well as the implementation of coherent gates in a quantum computer.
Thus, the spectrum sets a speed and fidelity limit on quantum control. Another way
to observe this is using the Fourier transform which we will use in the next section.

7.1.2 Semiclassical spectrum analysis

In this section, we develop a classical argument for our technique of excitation sup-
pression and relate it to ideas of signal processing. It is well established [54,72,174,
177] that for a system of qubits or spins 1/2 driven by a weak external field, i.e., for
small T/∆, an excellent measure of off-resonant excitation is the Fourier transform

S(∆) =

ˆ T

0

(Ω(t)e−iφ)e−i∆tdt (7.6)

Note that this is a limited-interval Fourier transform that can be consolidated
with the regular, infinite-time Fourier transform by assuming the pulse envelope
Ω(t) vanishes outside the integration interval.

Now as another caveat, when applying this measure to the design of gates, we
need to be aware that off-resonant levels can also induce phase errors (coming from,
e.g., AC Stark shifts) [59]. It is suitable for population transfers, though. Often,
phase errors in gates can be compensated for by inserting frame transformations
between pulsed operations (Eq. 4.2).

One established way to compensate spectral weight off -resonance while main-
taining a pulse of limited length is to use Gaussian profiles for Ω(t), Eq. 3.3, because
they are also well-confined Gaussians in frequency space. In this case, the Gauss
function describing Ω(t) must be suitably chosen to start and end at zero amplitude.
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7.1.2.1 Doublet analysis

We will follow a different strategy that, rather than reducing off-resonant excitations
for a full band of energies it eliminates excitation for one or more discrete frequencies.

Having established the role of the Fourier transform, we can now adapt an idea
from signal processing and classical calculus. We start from the excitation profile for
detuning ∆, then integrate by parts (IBP), assume that the real part of the envelope
vanishes in both the beginning and the end of the pulse and find

S(∆) = e−iφ
ˆ T

0

(ReΩ(t) + iImΩ(t))e−i∆tdt

= ie−iφ
ˆ T

0

(
ReΩ̇(t)

∆
+ ImΩ(t)

)
e−i∆tdt (7.7)

Thus, by imposing a derivative

ImΩ(t) = −ReΩ̇(t)

∆
(7.8)

we can exactly cancel the Fourier transform at the relevant frequency, S(∆) = 0. So
within the applicability of the Fourier transform elaborated above, this argument pro-
vides an intuitive motivation for the Derivative Removal by Adiabatic Gate (DRAG)
strategy for removing unwanted quantum excitations discovered in [122] and first ap-
plied experimentally to solid state qubits in [28, 105]. In fact, in the DRAG scheme
derived in Refs. [59, 122], equation (7.8)is the lowest order in (∆T )−1 = O(θ/∆)
where θ is the desired rotation angle. This, specifically Ω/∆, is the same parameter
dictated by the applicability of the Fourier transform, Eq. 7.4 [72].

This strategy is illustrated in Fig. (7.1). The zero of the frequency axis is set
to the wanted transition, the unwanted transition is placed at -1. The Gaussian
definitely has appreciable spectral weight at the unwanted transition. The derivative
also has spectral weight there, so the difference with the appropriate weight will be
zero. By construction, the derivative of the Gaussian has no spectral weight at the
working transition hence does not alter the spectral profile of the working transition.

7.1.2.2 Multiplet analysis

So far our only constraint was to bring S(∆) = 0 in Eq. 7.7. While the condition
(7.8) will certainly do that by canceling the integrand at each point, this is not always
possible or necessary. The constraint works for any function that integrates in total
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Figure 7.1: Abs Fourier transform of a Gaussian pulse(blue), its derivative(red), and
their sum (yellow)

to the same area as the driving field. In particular, the off-resonant transition can
be simultaneously driven by additional fields Ωl at a different frequency difference
∆jkl = ωdl − ωj,k which must together satisfy the condition

ˆ T

0

n∑
l

Ωle
−i∆jkltdt = 0 (7.9)

for excitation j − k to be suppressed. For multiple transitions {jk} ∈ S, the set
of unwanted transitions, this sets up a system of equations to solve. For example,
for one such unwanted transition, if we choose to put a second tone symmetrically
on the other side of the unwanted transition from the driving field (∆jk2 = −∆jk1),
the relation works out to give

Re(Ω̇1(t))

∆jk1

= Ω2(t)e−i∆jk1T (7.10)

This will not work as well as Eq. 7.8 since it is only an average effect but may be
useful in conjunction with other tones to remove multiple transitions. Choosing Ω2

to be a derivative function rather than a function with area similar to Ω1 also has the
advantage of minimally disturbing the rest of the spectrum since Ω2 will typically
require an energy smaller than Ω1 by a factor of about (∆jk2)2.

In general, the spectrum may be quite crowded with unwanted transitions on
either side of the working transition. Unfortunately, it is clear from Fig. 7.1 and from
the anti-symmetry of Eq. 7.8 around ∆ = 0 that the derivative will only decrease the
excitation on one side of the working transition while increasing it on the other. On
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Figure 7.2: Absolute Fourier transform of a Gaussian(red) and the sum of the
Gaussian with its 2nd derivative (blue)

the other hand, the second derivative of of the envelope will be symmetric and effect
both sides in the same way. Applying IBP to Eq. 7.7 a second time (ignoring now
the imaginary part) and setting now the boundary terms in the envelope function
and its first derivative to 0 gives the relation

ˆ T

0

ReΩ(t)e−i∆tdt =

ˆ T

0

− ReΩ̈(t)

∆2
e−i∆tdt

Clearly, supplementing the driving function with another tone in-phase and at
the same frequency but proportional to the second derivative of the first will again
satisfy Eq. 7.9 for

Ω2(t) =
Ω̈1(t)

∆2
. (7.11)

The effect is demonstrated in Fig. 7.2. Off resonance, unwanted transitions are
cancelled at the chosen ∆ = ±1. On resonance, setting the area to the desired
rotation angle θ via

´ T

0
(Ω(t) + Ω̈(t))dt = θ allows the working transition (at ∆ = 0)

to remain unchanged. The cost of this technique is that the function and its first
derivative both need to begin and end at 0 for IBP to be valid, and the pulse shape
may be slightly harder to implement than a simple Gaussian or its first derivative.
On the other hand, the strategy requires only one control to shape and synchronize
and it obeys an area theorem avoiding higher order effects such as phase shifts and
rotation errors on the working transition. An added benefit is that we can see the
overall bandwidth (above a given threshold – here 0.001) is decreased compared to
a traditional Gaussian where some of the energy has been moved from the selective
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region to the tails where it instead falls below threshold. By placing the spectral holes
appropriately at various frequency offsets one can engineer the bandwidth that falls
above a desired selectivity threshold. This can be useful for narrowband behaviour
where there are many transitions to be avoided such as used in resonance imaging and
spectroscopy, with a decrease in bandwidth of about 25% compared to the optimal
Gaussian with the same threshold.

For multiple unwanted transitions it is straightforward to satisfy Eq. 7.9 to null
out a set S of unwanted spectral elements using multiple derivatives all at the same
frequency (∆jkl = ∆jk). Using the IBP formulae, the system of equations simplifies
to a set linear equations

1−
|S|∑
l=1

(∆jk)
lal = 0, ∀{jk} ∈ S (7.12)

Ωl(t) = (i)lal
dl

dtl
Ω(t)

which can easily be solved and which we will see can be generalized to the quan-
tum case, at least for the first few orders of differentiation. As with simple Gaussian
pulses, the IBP strategy ignores phase shifts (in this case both on and off resonance)
but these are irrelevant for state transfer or easily compensated by frequency shifting
and/or inserting frame transformations (Sec. 4.2). In the next section we examine
how this mostly-classical argument can be generalized and derived for the quantum
case to account for these and other higher order errors.

7.1.3 Quantum operator diagonalization

7.1.3.1 Rotating frame

We now provide a quantum mechanical treatment starting from the interaction frame
Hamiltonian Eq. (7.1). In order to include the Hamiltonian dynamics it is preferable
to have time-dependence coming only from the exponentiation of the matrix, and for
this purpose remove the explicit time-dependence from the Hamiltonian by moving
to an (approximately) static frame. We choose to work in the rotating frame with
the frequency of a given drive (Sec. 4.2.2). To switch from one frame to the other and
remove any oscillations in the Hamiltonian of frequency ∆j,k,l = ωdl −ωj,k (the detun-
ing with respect to drive l) we apply a transformation Oj,k,l = exp(−i∆j,k,lt|k〉〈k|)
which removes any exponential factors exp(−i∆j,k,lt) from the off-diagonal terms
|j〉〈k|. For a set of such combinations of drive and non-zero, off-resonant matrix
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elements O = {(j, k, l)}, the aggregate transformation O =
∏

(j,k,l)∈O Ojkl has the
effect of removing all the sinusoidal oscillations in the Hamiltonian. Starting with
the interaction frame Hamiltonian now written as

Ĥint(t) =
∑
r,s,t

Hr,s,t(Ωt(t)e
−i(φt+∆r,s,tt), 0) (7.13)

Hr,s,t(Ω,∆) = Ωλrst|s〉〈t|+ h.c.+ ∆|t〉〈t| (7.14)

and applying H̃(t) = OĤ int(t)O
† + iȮO† gives

H̃(t) =
∑
r,s,t

Hr,s,t

Ωt(t)e
−i(φt+∆dif

r,s,tt),
∑

(j,k,l)∈O

δj,rδk,sδl,t∆j,k,l(t)

 (7.15)

∆dif
r,s,t = ∆r,s,t +

∑
(j,k,l)∈O

(δk,s − δk,r)∆jkl (7.16)

where δa,b is the Kronecker delta. Unfortunately, if there are more non-zero matrix
elements λj,k,l than there are levels and/or more than one drive per level, not all
oscillation in the Hamiltonian can be removed in this way; however, we will typically
only be concerned with some or few of these elements. In these cases, the rotating
wave Hamiltonian simplifies greatly to

H̃(t) =
∑
r,s,t

Hr,s,t(Ωt(t)e
−iφt ,∆r,s,t(t)) (7.17)

Note that we have chosen to make the detuning ∆r,s,t(t) time-dependent in the
last line though this was not done throughout the derivation for clarity. To see
how do derive the time-dependence in the simple qubit case see Sec. 4.2.2, which
constrains several possible implementations.

7.1.3.2 Block diagonal frame

Now we use the intuition from the Fourier transform analysis to apply a procedure
that removes these off-resonant coupling terms. We want to see the effect an off-
phase control can have and as such move to an interaction frame with respect to it
Starting with the matrix transition element
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Hjkl(e
−iφlΩl(t),∆jkl) = Hjkl(e

−iφlReΩl(t),∆jkl) +Hjkl(ie
−iφlImΩl(t), 0)

we apply the interaction transformation

Djkl = exp

(ˆ t

0

Hjkl(e
−iφlImΩl(t

′), 0)dt′
)

(7.18)

Assuming we are under the conditions such that Eq. 7.17 applies (matrix elements
are not driven simultaneously at two frequencies), the effective Hamiltonian under
the transformation reads

Heff
jkl(t) = DjklHjkl(e

−iφlΩl(t),∆jkl)D
†
jkl + iḊjklD

†
jkl

= DjklHjkl(e
−iφlReΩl(t),∆jkl)D

†
jkl +Hjkl(ie

−iφlImΩl(t), 0) + iḊjklD
†
jkl

(7.19)

= DjklHjkl(e
−iφlReΩl(t),∆jkl)D

†
jkl

The goal is to achieve a perfect on-resonant excitation and block-diagonalize
H̃eff(t) as described, i.e.,

Heff
j(l),k(l),l = Ωeff(t)e−iφλlj(l),k(l)|j(l)〉〈k(l)|+ h.c.

Heff
j 6=j(l),k 6=k(l),l = ∆eff

j,k,l|k〉〈k|ˆ T

0

Ωeff(t)dt = θ

(7.20)

The driving field Ωeff(t) can be thought of as an adiabatic drive, in the sense that
the energy input into the system via driving fields does not change the energy popu-
lations of unwanted transitions but only temporarily shifts the level structures before
reverting to the original energy splitting (the net effect being only an accumulation
of dynamical phase). In effect, we can think of these selectivity criteria as restoring
’adiabaticity’ to the system.

In the case where the transitions are disconnected (the unwanted transitions are
in separate quantum elements), the condition amounts to the removal of crosstalk.
In this case the system of equations can be solved exactly in principle, as will be
discussed next. For an infinite ladder of connected transitions it is not possible to
find an exact solution and instead an iterative approach will be needed (see Sec. 8).
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7.1.3.3 Solution basis of higher derivatives

Now a single Ωl can cancel exactly one excitation. To completely suppress two
transitions using the method for a single constraint requires an additional control
(for the additional constraint). Here, we again apply the IBP intuition and use a
second derivative component. To see the effect of the second derivative control for a
single constraint we move again to an interaction frame with respect to it

Ejkm = exp

(
−i
ˆ t

0

Hjkm(ReΩm(t′), 0)dt′
)

which gives an effective Hamiltonian according to

Heff
jkl(Ω(t),∆jkl) =Ejkm (Hjkl(ReΩl(t) + ReΩm(t),∆jkl))E

†
jkm + iĖjkmE

†
jkm

=EjkmHjkl(ReΩl(t),∆jkl)E
†
jkm

=Hjkl(ReΩl(t), 0) + ∆jklEjkm|k〉〈k|E†jkm

In this case the transformation does not directly diagonalize the unwanted cou-
pling and instead to do this we should apply another (in this case non-interaction
frame) transformation

Heff
jkl(Ω(t),∆jkl) =DjklEjkmHjkl(ReΩl(t),∆jkl)E

†
jkmD

†
jkl + iḊjklD

†
jkl (7.21)

=DjklHjkl(ReΩl(t), 0)D†jkl + ∆jklDjklEjkm|k〉〈k|E†jkmD
†
jkl + iḊjklD

†
jkl

where the first term is diagonalized by cancelation with the real part of the second
term, and the imaginary part of the second term cancels out with the third term.
To first order Djkl is the same as the transformation defined in Eq. 7.19.

To combine the effect of multiple (derivative) controls, for a set {jk} ∈ Sl of un-
wanted, off-resonant transitions connected to drive l, we have the compound formula

H̃eff
jkl(Ωl(t),∆jkl) = DjklEjklHjkl(Ωl(t),∆jkl)E

†
jklD

†
jkl (7.22)

+ iDjklĖjklHjkl(Ωl(t),∆jkl)E
†
jklD

†
jkl + iḊjklD

†
jkl

where Djkl corresponds to the exponentiation of an imaginary operator and Ejkl
to the exponential of a real operator, as defined in the equations above. For more
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than two unwanted transitions, the control(s) is (are) a function of the higher order
derivatives of the original pulse shape (e.g. a Gaussian),

Ωl(t) =

|Sl|∑
r=0

αrΩ
(r)
G + i

|Sl|∑
r=1

βrΩ
(r)
G

where the superscripts denote the order of differentiation and which together with
Eq. 7.20 for each value of j, k give conditions for the coefficients αr, βr , which will
be a function of ΩG and ∆jkl. In order for the effective frame to be equivalent to
the original bare frame we must choose a pulse shape ΩG whose |Sl| derivatives are
zero at the endpoints of the pulse (see Sec. 4.1.2). Note that although the solution
is approximately given simply by semi-classical Eq. 7.12, higher order quantum
mechanical corrections are needed to fully solve the system. Some of these will be
given in the next sections.

7.1.3.4 Doublet analysis

The simplest scenario are two disconnected transitions: two qubits. We put the drive
on resonance with the first qubit (∆A = ωd0 −ωA0,1 ≈ 0) and letting ∆B = ωd0 −ωB0,1 =
∆A + ∆ , Eq. 7.1 gives

Ĥtot = Ω(t)e−iφ(λA01(σ̂+
0,1)A ⊗ 1

B + λB011
A ⊗ (σ̂+

0,1)Be−i∆t) + h.c. (7.23)

In the frame rotating at the drive frequency (O = {(00, 01, 1), (10, 11, 1)} ), this
gives

H̃(t) = H0,1,0(e−iφΩ(t), 0)⊗ 1
B + 1

A ⊗H0,1,0(e−iφΩ(t),∆B)

Nulling the off-diagonal components for qubit B to give H̃eff
B = ∆eff

B |1〉〈1| can
easily be satisfied through the diagonalizing transformation, by plugging Eq. 7.19,
which for qubits simplifies to

D =

(
cos
(ˆ t

0

e−iφImΩl(t)λ
A
jkdt

)
1̂ + sin

(ˆ t

0

e−iφImΩl(t)λ
A
jkdt
)
σ̂+

0,1 + h.c.

)

⊗

(
cos
(ˆ t

0

e−iφImΩl(t)λ
B
jkdt

)
1̂ + sin

(ˆ t

0

e−iφImΩl(t)λ
B
jkdt
)
σ̂+

0,1 + h.c.

)
,

(7.24)
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Figure 7.3: Population selection (inversion) error for two uncoupled qubits for energy
difference 0.85 × 2π (ignoring phase error). The blue line shows the error using
standard Gaussian shaping, Eq. 3.3 while the red line uses the pulse shape given
by DRAG Eqs. 7.25-7.27 which exactly solves the problem in the adiabatic regime
(beyond 1.75). The orange line is using the first order shape given by the second
derivative and the green line is first order shape using the fourth derivative.

into Eq. 7.19. Solving Eq. 7.20 for qubit B then gives the solution

e−iφλB0,1

ˆ t

0

ImΩ(t)dt =
1

2
arctan

(
2e−iφλB01ReΩ(t)

∆

)
(7.25)

or equivalently

ImΩ(t) =
∆ReΩ̇(t)

∆2 + 4(λB01ReΩ(t))2 (7.26)

This is the quantum mechanical equivalent to the IBP formula, Eq. 7.8. In
particular the first order Taylor expansion is the same which is often easier to work
with.

In the quantum mechanical case, this interaction frame changes the A qubit as
well, which must also be compensated for. Luckily, since this is again a qubit this
can again be done exactly by now solving Eqs. 7.8 for qubit A:

DHA(Ω(t),∆A)D† = Ωeff(t)σxˆ T

0

Ωeff(t)dt = θ.
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These equations can readily be satisfied by setting

∆A =
1

2

(
−∆ +

√
−16(Ω(t))2 + ∆2

)
(7.27)

ˆ T

0

Ω(t)∆

∆B

√
1 + 4Ω(t)2

∆2
B

= θ

Fig. 7.3 shows how this error can be fully removed in the adiabatic regime. ∆ is
chosen to be 0.85× 2π and the selection error is plotted as a function of gate time.
The error for a simple Gaussian of correct area is plotted in blue (ignoring again
any net phase errors), while in red is the solution given by the technique we call
Derivative Removal by Adiabatic Gate (DRAG), which generalizes the procedure we
found originally in Ref. [122]. Note that selection error is already suppressed for the
Gaussian whenever the Fourier transform at the frequency offset of the second qubit´ T

0
Ω(t)e−i∆Btdt is nulled (this first happens at about T=2). This is essentially a first

order result. For DRAG, the error is always suppressed beyond about T = 2 where
both qubit A is rotated and B is left intact. The result is exact provided the adia-
baticity condition is met, 4Ω(t) < ∆B (otherwise the solution is undefined, though
we use in Fig. 7.3 the first order in 4Ω(t)

∆B
to show an improvement still exists here). In

the adiabatic regime, we see that the derivative (imaginary) control suppresses any
crosstalk to the second qubit (keeping things adiabatic) while the change of frame
essentially shifts the energy levels temporarily during the gate such that the reso-
nance condition needs to be adjusted according to Eq. 7.27. Practically speaking,
the DRAG result is clearly more robust than using the single envelope solution as it
is immune to changes in frequency or gate time. Note that both solutions contain
net phase errors on qubit B that need to be corrected subsequently.

Using the second derivative result, an approximate solution (ignoring a term small
in Ω(t)

∆B
) can similarly found from Eq. 7.21 with

ReΩ = ΩG +
d

dt

Ω̇G

∆2 + 4ΩG
2

which is plotted in orange in Fig. 7.3 clearly suppressing the Gaussian result and out-
performing the first derivative result in the diabatic regime. Note that no change of
phase is induced because the main control and auxiliary control are in phase with
each other and therefore obey an area theorem (Sec. 2.3).

Using the third derivative result with Eq. 7.22, an approximate solution can be
found as
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Figure 7.4: Selection error for three uncoupled qubits for energy differences 0.85×2π
and 1.445× 2π from the driven qubit. The blue line shows the error using standard
Gaussian shaping, Eq. 3.3 while the red line uses the pulse shape given by DRAG
Eqs. 7.25-7.27.

ImΩ =
∆
...
ΩG

(∆2 + 4ΩG
2)2

∆A = −2ΩG tan

(
2

ˆ t

0

ImΩl(t)dt

)
(7.28)

ˆ T

0

Ω(t) sec

(
2

ˆ t

0

ImΩl(t)dt

)
= θ

which is plotted in green in Fig. 7.3 still outperforming the Gaussian result in the
adiabatic (long-time) limit.

7.1.3.5 Multiplet analysis

If more than 2 qubits are in the system, with a single amplitude control it becomes
increasingly difficult (at the cost of larger T) to find a gate time where crosstalk is
avoided on all other qubits.

For instance, adding in an extra qubit C with ∆C = 1.7∆B such that the Hamil-
tonian (Eq. 7.2) gives in the rotating frame
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Figure 7.5: Selection error for three uncoupled qubits for energy differences 0.85×2π
and 1.445× 2π from the driven qubit. The blue line shows the error using standard
Gaussian shaping, Eq. 3.3 while the red line uses the pulse shape given by DRAG
semi-classical Eq. 7.12.

Ĥ = Ω(t)e−iφ
(
(σ̂+

0,1)A + (σ̂+
0,1)B + (σ̂+

0,1)C + h.c.
)

(7.29)
+∆A|1〉〈1|A + ∆B|1〉〈1|B + ∆C |1〉〈1|C (7.30)

and applying the same pulse sequence Eq. 7.25 (which nulls crosstalk at B) is also
beneficial to qubit C when it is on the same side of the spectrum from qubit A
(∆C∆B > 0). In Fig. 7.4, we see that plotting again gate selection error for all three
qubits vs. gate time, we get a distinct decrease in errors for all times when applying
the DRAG correction. The situation is somewhat reversed from 2 qubits, where
now the Gaussian error is somewhat constant but the Gaussian with DRAG has a
recurrence of perfect addressability roughly once per unit time, when the Fourier
transform of the pulse at C is approximately zero.

Eq. 7.21 is in general difficult to solve exactly but to first order the analysis is
the same as using the semi-classical method. In particular, the solution for a single
unwanted transition is given still by the second derivative control, Eq. 7.11. For two
unwanted transitions a↔ b and c↔ d it is necessary to solve the pair of conditions
given by Heff

abl(Ω(t),∆A) = ∆eff
A |b〉〈b| and Heff

cdl(Ω(t),∆C) = ∆eff
C |d〉〈d| . This simplifies

to the semiclassical scheme, Eq. 7.12, which for the two unwanted transitions gives

ReΩ = ΩG +
Ω̈G

∆B∆C

and ImΩ =

(
1

∆B

+
1

∆C

)
Ω̇G
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Figure 7.6: Selection error as a function of frequency offset when using the second
derivative.

The inversion error for this pulse sequence is plotted in Fig. 7.5 as compared
to the simple Gaussian. We see the error is completely suppressed beyond about 5
time steps which is not as early as was the case for using a single derivative. This is
because in order to enforce the first derivative starting and ending at zero a slightly
less selective basic shape must be used (with wider bandwidth) as a starting point and
because we are using the semiclassical result which removes just the first order error
which is only dominant for larger times. The result can be improved by considering
higher order quantum effects which is the direction of future research. Alternatively,
two different derivatives can be also used (e.g. 2nd and 4th) which can remove the
commutativity error. Nonetheless, we see the suppression for the semi-classical result
is complete beyond the adiabatic limit and the robustness properties are returned.
Similar results exist for four or more qubits.

Finally, we confirm the observation that using the second derivative can be used
for its even symmetry around the driving transition to decrease the bandwidth of
selective pulses. As in the classical case, we see in Fig. 7.6 that appropriate weighting
of the second derivative creates holes on either side of the working transition in the
excitation profile here (as opposed to the spectrum). Once again, we notice that the
energy has been moved from the selective region to the tails where it falls below the
chosen selectivity threshold. We see a bandwidth improvement again of about 25%.

7.2 Spatial crosstalk
Alternatively to being suppressed from energy conservation considerations, quantum
elements that are spatially separated from the target will be attenuated as a result of
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local addressing. An alternative or complementary scheme to avoid crosstalk there-
fore is to design systems for control lines addressing one section to interact minimally
with others. In fact, the spectral crowding limitations developed above imply that
some amount of spatial selectivity will be necessary to scale beyond the limitations
imposed by the coherence times of the quantum dynamics. Unfortunately, while
qubits themselves can be quite small in spatial extent and even engineered to be
arbitrarily distanced from each other, the necessity for inter-qubit exchange of infor-
mation provides a great challenge in terms of maximizing coupling between relevant
degrees of freedom while turning off unwanted coupling. In particular, this is exem-
plified for superconducting qubits, for which both long-range and nearest-neighbour
interactions between circuit elements are possible. Moreover, both frequency selective
transmission elements and spatially addressable control lines are feasible as building
blocks in architectural designs. Thus, there are numerous proposals for designs of
superconducting coupling mechanisms [25,29,38,112,117,126,134,173,179,185].

In this section, we look at the motivating example of flux qubits inductively cou-
pled using dc Superconducting QUantum Interference Devices (DC-SQUIDs) used for
tunability. The DC-SQUIDs are treated as high excitation energy quantum objects
(assumed to always stay in their ground states) where the circulating current medi-
ates inductive coupling between pairs of qubits [5,75]. Because of the spatial extent
of the couplers, there will result crosstalk to other qubits and couplers. This method
was first theoretically described in [143], and subsequently demonstrated experimen-
tally in [70]. Similar coupling approaches were presented in [18,69,132,138,170]. This
example is a case where the unwanted coupling between qubits can be very strong
(in amplitude), and so here we investigate whether it is possible to achieve low error
using dynamical decoupling control techniques, with or without the advantage of
energy separation between components.

7.2.1 Physical Model

A flux qubit can be constructed from a superconducting loop interrupted by three
Josephson junctions [134]. A current flowing in one direction can represent a com-
putational basis quantum state |0〉 and in the opposite direction, a state |1〉. The
strength of the coupling between qubits is mediated by a circulating current in a DC-
SQUID which is inductively coupled to each of the qubits. This circulating current
can be controlled by the applied flux as well as the bias current, both of which can
be tuned experimentally. Furthermore, the DC-SQUIDs may also be used for qubit
readout [108,135,171].

The performance of any inductively coupled qubit architecture will strongly de-
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Figure 7.7: Two different arrangements of flux qubits 1, 2, 3 and couplers A, B. “a”
represents the arm length of the couplers, and “w” their width. We assume that
the wires of couplers A and B overlap at most in two places around qubit 2. a)
Straight-line shape. b) Capital “L” shape.

pend on the geometry of the qubit-coupler layout. The couplers themselves are based
on the long-distance design proposed in [53]. In this section we investigate two geome-
tries, which can potentially serve as building blocks for topologically motivated ap-
proaches to quantum computation [90,146] with high error thresholds [37,52,146,176].
In these approaches the physical qubits are typically laid out in a (for example) 2D
square lattice. The geometries we study, which may be used to build such a lattice,
are both shown in Fig. 7.7. In a), the coupling DC-SQUIDs form a straight line and
in b), they enclose a 90˚ angle suggestive of a capital letter “L”. In both cases we
have two qubits at the end points (labeled “1” and “3”) and the third (labeled “2”)
in the middle. The middle qubit is therefore surrounded by both of the couplers.
We consider the qubits at the edge to be nearest-neighbours to the middle qubit.
The qubits are placed inside the couplers, hence maximizing the qubit-coupler in-
ductance. Even though the coupling DC-SQUIDs are the same in both geometries,
we expect the coupling energies to differ as even for the same length couplers, the
distance between qubit 1 and 3 will be smaller in the ’L’ shaped scenario.

For concreteness, the following physical parameters are used. The edge length
of the square qubits is taken to be 44µm, roughly the same as those used in [70].
The distance between the qubit and the surrounding wire of the coupler is between 2
and 4µm. The arm length a is varied between 25µm and 300µm and the arm width
between w = 48µm and w = 2µm (although in the latter case a 10× 10µm2 loop in
the center of the arm is used to deliver flux through the couplers).
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7.2.2 Coupling landscape

The mutual inductance between qubits is composed of the mutual inductance be-
tween the currents flowing in the qubits and the product of inductances between
each qubit and the coupler. Using Kirchhoff’s laws and flux quantization it is pos-
sible to link the interaction energy to flux and bias current applied to DC-SQUID,
as well the net inductance matrix between elements using finite element simulations
using FastHenry [82]. This derivation involves a lengthy calculation which has been
performed in Ref. [63].

Fig. 7.8 A shows the coupling strength of the L-shape geometry, where the arm
width “w” is 2µm and the arm length “a” is 100µm. The horizontal axis corresponds
to the values of coupling energies between the first and second qubit K12, the vertical
to the energy between the second and thirdK23 and finally the “out-of-page” direction
to the crosstalk term K13. The plot was obtained by varying the fluxes and biasing
currents through both couplers. Thousands of data points were calculated, which
were then used to obtain a surface that spans different combinations of the three
coupling energies. The process was then repeated for varying arm lengths and arm
widths of the coupling DC-SQUIDs. Such a map gives a full characterization of a
Hamiltonian which we write

H(ΦA,ΦB, IA, IB) =
∑
j=1,2,3

1

2
(εjσz + ∆jσx)−

∑
i 6=j

Kij(ΦA,ΦB, IA, IB)σizσ
j
z (7.31)

where εj is the energy bias which depends on the flux threaded through the qubit
and ∆j is the matrix element, which we take to be fixed at fabrication time and
usually of the order of a few GHz. The applied flux Φn and bias current In control
completely the coupling between the qubits. From the results, one can note that the
crosstalk term K13 can be treated as a single-valued function of K12 and K23. Hence
it is possible to simply work with the possible values of the energies Kij without
particular attention to the fluxes and bias currents which will not be single valued.

The first question we wish to address is whether we can keep the coupling between
two nearest-neighbour qubits (say 1 and 2) high, the other nearest-neighbour coupling
(say 2 and 3) turned off, while eliminating the crosstalk (interaction between qubits 1
and 3). We concentrate on this scenario as we envision doing gates between nearest-
neighbors (here qubits 1 and 2), and would like the qubits that are not involved in
the gate (qubit 3) to be disturbed as little as possible. In practice, we will find that
it is not possible to completely turn off the interactions with the third qubit, and
hence all the values of K will need to be varied, but during a gate between qubits 1
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Figure 7.8: (A) Interaction energies K12 (horizontal axis), K23 (vertical axis) and
K13 (out-of-page direction) for an L-shape geometry with couplers’ arm width of
w = 2µm and arm length a = 100µm. . (B) A plot consisting of values for the
crosstalk K13, while keeping K12 = K23 ≈ 0. The horizontal axis represents different
arm lengths of the coupling DC-SQUIDs.

and 2 the interaction K12 will dominate. We can get the answer to this first question
by studying plots like the one presented in Fig. 7.8 A. We first fix K23 (vertical axis)
at zero, and then traverse in the horizontal direction along the dashed line. In the
line-shaped geometry scenario with shortest considered arm length a = 25µm and
K23 tuned to approximately 0, we find the crosstalk K13 to be 47MHz. The crosstalk
only varies slightly as we increase the coupling K12. In the L-shape geometry, the
situation is less favorable, as expected, since qubits 1 and 3 are closer together and
their direct mutual inductance is larger. Furthermore, they interact with the coupler
that is further away from them more than is the case in the line-shaped geometry.
The best we can do given short couplers with a = 25µm is K13 ≈ 160MHz. However,
we can reduce the unwanted crosstalk termK13 by simply increasing the arm length of
the coupling DC-SQUIDs — for example in a case of a = 300µm, for K12 > 1.0GHz,
the magnitude of K13 is smaller than 2MHz in all the geometries. One cannot keep
increasing the arm length indefinitely, as the process also decreases the maximum
achievable energy that can be mediated between nearest-neighbours qubits resulting
in longer gate times and the onset of decoherence. As with most control problems,
how much gate error one is willing to tolerate is a function of when the marginal
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decrease in error becomes smaller than the increase in incoherent decay of the states.
In the next section, we examine how to remove this crosstalk error even when the
qubits are closest.

The next question we wish to answer is whether the interaction between all pairs
of qubits can be turned off completely. This may be useful when one wants to
perform single gate operations on any (or all) of the qubits without affecting the
others. To determine this, we once again turn to Fig. 7.8 A (and its analogues for
other geometries and values of arm lengths and widths — not explicitly shown).
We can now look at the crossing of the two dashed lines, which corresponds to
K12 = K23 = 0, and figure out the value of the crosstalk (K13). We plot the results
in Fig. 7.8 B for both geometries and two different arm widths. From the data it
is clear that there is no complete off-state. The straight-line geometry is much less
(over 3 times in a case of shortest arm length we studied) susceptible to the unwanted
crosstalk K13. However the crosstalk energy dies off quickly, and in a case of arm
length a > 200µm, its magnitude stays below 5MHz. The error can be very small
(negligible when the qubits are off resonant) and is further correctable using standard
dynamical decoupling sequences (Sec. 3.4).

7.2.3 Optimization of off-resonant coupling

We look at two gates, the first, the first is the
√
iSWAP, and the other a CNOT gate.

For demonstration purposes, we start with the simplest case, which is a
√
iSWAP

gate, which is a natural gate for the Hamiltonian. Moreover, we chose the qubit
energies to be ∆1/h = 5.0 GHz, ∆2/h = 5.4 GHz and ∆3/h = 5.8 GHz, which
provides frequency selectivity.

We start with the system Hamiltonian shown in Eq. 7.31, and we switch basis,
to the eigenbasis of σx, namely {|+〉, |−〉} and furthermore go into a rotating frame
defined by U = U1 ⊗ U2 ⊗ U3 with Uj = exp(−i∆j

2
σjzt). We then assume that the

qubits can be driven at their respective resonances (meaning ∆j = ωj) and neglect
the fast oscillating terms (perform a RWA). All this leads to an effective Hamiltonian
in the rotating frame and {|+〉, |−〉} basis

He =−K12(t)e−i(∆1−∆2)t (|100〉〈010|+ |101〉〈011|) + h.c.

−K23(t)e−i(∆2−∆3)t (|001〉〈010|+ |110〉〈101|) + h.c.

−K13(t)e−i(∆1−∆3)t (|100〉〈001|+ |110〉〈011|) + h.c..

(7.32)

We explicitly make the Kij(t) terms time dependent to stress that they will vary. We
apply the GRAPE algorithm (Ch. 5.1) which we constrain by only allowing values
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Figure 7.9: A pulse sequence for a
√
iSWAP gate between qubits 1 and 2. Since

the system coupling is “natural” for this gate, no single-qubit rotations are needed.
The pulses lead to the desired gate with 99.9% fidelity. In the calculations we take
∆1/h = 5.0 GHz, ∆2/h = 5.4 GHz and ∆3/h = 5.8 GHz.

of Kij which can be achieved using physical controls (as described in section 7.2.2).
We can think of this as staying on a surface spanned by the triplet (K12, K23, K13).
From Section 7.2.2, we note that K13 can be treated as a single-valued function of
K12 and K23. This slightly simplifies our procedure of finding the gradient, since we
are only dealing with two independent variables that account for all the interactions
in the problem. The gradient is not exact since the third variable depends implicitly
on the first two but this does not pose a problem in terms of convergence.

The resulting pulse for the
√
iSWAP is presented in Fig.. 7.9 which provides a

fidelity of 99.9% though this number can be increased with longer optimizations.
Only the non-zero controls are explicitly shown. We study the case of the L-shaped
geometry with the arm length of 25µm where the unwanted crosstalk coupling K13

is the largest (and as can be seen from the plots, never zero). From the plot, it is
clear that only coupling 1-2 has to be varied, and coupling 2-3 can be maintained
at 0. The shape found by the optimization is reminiscent of the strategy proposed
by Ref. [11] which uses a coupling field oscillating at the frequency difference of the
qubits to couple the flux qubits and overcome the energy difference between them.
However in the analytic case there are many unaccounted errors and the technique
is inexact while in the numerical case the pulse contains modulation on top of the
carrier which makes it arbitrarily precise. This is an example of a virtual coupling
control strategies, more of which will be discussed in Sec. 10.
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The unwanted crosstalk couplingK13 is significant throughout the gate. However,
since we have chosen the qubits to be off-resonance with each other, in the rotating
frame the terms K23 as well as the crosstalk K13 oscillate at frequencies (∆2 −∆3)
and (∆1−∆3) respectively. The combination of small amplitude and high frequency
(from the space and frequency separation of the qubits, respectively) effectively elim-
inates the effect of these terms and it is visible that little correction is needed in the
generated controls. Note that operating the qubits at different frequencies does not
risk running into spectral crowding limitations because there is only significant cou-
pling between nearest-neighbour and next-to-nearest-neighbour qubits. Thus we see
that the combination of space and frequency separation is a powerful way to remove
crosstalk and does not pose a problem in terms of scalability.
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Figure 7.10: A pulse sequence for a CNOT gate between qubits 1 and 2. Single-
qubit rotations are applied to all three qubits. For timely convergence of the GRAPE
algorithm, we modulate both σx and σy quadratures on the third qubit. Furthermore,
we allow all three interaction energies to vary. The pulses lead to the desired gate
with 99.9% fidelity. In the calculations we take ∆1/h = ∆2/h = ∆3/h = 5.0 GHz.

.

7.2.4 Optimization of on-resonance coupling

In the second example we introduce two additional complications. In this set-up,
we study creating the CNOT gate, which is a “non-natural” gate in that it does
not correspond to the evolution of the drift Hamiltonian. However, a CNOT gate
is often used to describe the active error correction procedures in the topologically
motivated schemes from e.g. Refs. [90, 146, 51] for which this qubit geometry is
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a natural contender. Thus, it is useful to optimize this gate as it will be used
repeatedly and overall algorithm performance can benefit from making this gate as
short as possible. As a second (though perhaps unjustified) complication, we take all
qubits to be on resonance — meaning ∆1/h = ∆2/h = ∆3/h = 5.0 GHz, removing
the convenient energy penalty on the crosstalk terms. The added complexity can
only be mitigated by the use of extra controls, in particular single-qubit controls are
needed for performing dynamical decoupling. Note that each εj is time dependent
and can be written as

εj(t) = 4εxj (t) cos(ωjt) + 4εyj (t) sin(ωjt). (7.33)

Switching basis to the eigenbasis of σx, going into the rotating frame, and performing
the RWA, we obtain

He =
∑
j

(εxj (t)σ
j
x − ε

y
j (t)σ

j
y)−K12(t) (|100〉〈010|+ |101〉〈011|+ h.c.)

−K23(t) (|001〉〈010|+ |110〉〈101|)−K13(t) (|100〉〈001|+ |110〉〈011|) + h.c..

(7.34)

Fig. 7.10 shows a particular pulse found after optimization. In contrast to the
off-resonant case, to achieve high fidelities, qubit 3 must be repeatedly flipped and
rotated (via εx3 and εy3) to counteract the crosstalk term, corresponding to a sophis-
ticated dynamical decoupling sequence (Sec. 3.4). Since qubits 1 and 2 are on
resonance, the interaction naturally couples them. In turn, the single qubit controls
on qubit 1 and 2 (εx1 and εx2) act to convert the flip-flop interaction (naturally drifting
into an ISWAP) into a CNOT transition [60, 189]. Of course, rather than applying
the single qubit gates before and after the two-qubit operation as is the standard
conversion [129], GRAPE is able to find much shorter pulses that are able to perform
these rotations simultaneously. Once again, the pulses found perform with a fidelity
of 99.9%, a number which can be improved with further optimization. The pulses
in general are not unique and can depend on the initial guesses which GRAPE then
modifies. Finally, let us note that we have shown how one has to vary the energies
in the system to obtain the desired pulses. Alternatively one could concentrate on
working with values of physical parameters (currents, fluxes) which might be more
useful when trying to devise an experimental demonstration of this system.
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Chapter 8

Leakage

8.1 Introduction
Until now we have assumed that quantum elements behave independently and errors
come from limitations of the control hardware. In reality the Hilbert space structure
of quantum systems is far more complex and the next three chapters analyse the
principle ways in which we want to / have to do away with the qubit assumption.
The next logical approximation is a three-level system, the qutrit, which we consider
in this chapter. We assume that the coupling to the third level is driven by a
field, rather than being always-on, primarily because always-on couplings can be
diagonalized to give back 2-level systems in a different eigenbasis (of course, in other
contexts always-on couplings can still be relevant, see Sec. 2.3.4). In fact, it has been
shown that no elementary particle can be a true qubit [182]. In many cases, the
coupling to a third level is weak or spectrally distinct from the qubit frequency and
contribute error only for very short gates. On the other hand, an important example
where the transitions are only slightly spectrally distinct is the weakly anharmonic
oscillator.

It is known [49,74] that the time evolution operator of a linearly driven harmonic
oscillator is a combination of a coherent displacement operator tracking the classical
trajectory of the driven oscillator and a global phase factor. This evolution encom-
passes all energy levels and cannot be reduced to a single-qubit rotation (between
two of these levels). Spectroscopically, this can be understood as follows: a single
qubit rotation is typically implemented by a pulse of radiation resonant with the
qubit energy splitting. In a harmonic oscillator, all energy splittings are the same, so
driving one transition drives all others at the same time. A system starting initially
in an energy eigenstate will quickly be driven into a superposition over many energy
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eigenstates. By this token, it is crucial that a qubit is nonlinear [30,86,113,153,173],
that is that the transition frequency of the qubit levels is different by an amount ∆
from the transition frequencies to the non-qubit levels (the anharmonicity). Spectro-
scopically, we would expect that whenever the bandwidth of the pulse comes close to
∆, i.e., when its duration becomes short on the scale of 1/∆, we expect significant
leakage to higher states. Thus, it is a challenge to implement fast single-qubit gates
in weakly anharmonic systems. The implementation of faster gates is important as
it allows more gates to be executed in a given coherence time, an important step
toward high-fidelity quantum logic.

While superconducting qubits are the most well known example of qubits made
from weakly anharmonic oscillators, there are many other examples. Examples of
leakage states include higher vibrational states in optical lattices [114], polarized spin
states in the singlet-triplet qubits [139], and auxiliary states in ion traps [65] and
Rydberg atoms [56,68,169]. Within the framework of superconducting qubits, several
relevant current realizations include low-dispersion qubits like the transmon [95,154]
and the capacitively shunted flux qubit [165]. On the other hand, a promising route to
success are qubits that contains only a minimal number of elements, such as the phase
qubit [117, 116, 164].What these systems have in common is a weakly anharmonic
energy level structure, i.e., the states that are outside of the qubit subspace spanned
by |0〉 and |1〉 are only separated from each other and the qubit subspace by energies
only slightly different than the qubit frequency.

In this chapter, we outline quantum control strategies to implement single-qubit
quantum gates in qubits singled out from the spectrum of an anharmonic oscillator.
The method of performing this approximation is summarized in Secs. 8.2 and 8.3.
We develop an adiabatic expansion technique that leads to order-by-order constraint
equations on a frame transformation and the control fields. This is done in an
interaction frame formalism in Sec. 8.5 (published in Ref. [122]) and again using a
generalized class of transformations in Sec. 8.6 (published in Ref. [59]). The latter
derivations were aided by Seth Merkel and Jay Gambetta. Numerical optimization
is performed in Sec. 8.7 to further characterize the controllability of the system.
Furthermore, we consider in Sec. 8.8 the influence of relaxation and dispersion in the
control of these systems. The model for dispersion permits a deeper analysis of the
control problem with further optimization via ensemble techniques which was carried
out by Botan Khani and published in Ref. [88,87]. Finally, the techniques developed
in this chapter have gained traction in the experimental community, most notably
we were able to devise with Jerry Chow et al. at Yale (published in Ref. [28]) ways
to benchmark the technique in their laboratory, with results reproduced in Sec. 8.9.
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8.2 Mathieu equation
Generically, we can think of anharmonic systems as modeled by a particle in a
periodic potential. The Hamiltonian for such a system reads

H0 =
p2

2m
+ U0 sin2(kLx), (8.1)

where m is the mass of the atom, kL wave number of the lattice and U0 is the lattice
potential depth. For a given value of p this is exactly solved by the special function,
known as the Mathieu function. It is available in mathematical software packages
such as Mathematica, but can also be solved using the Bloch theorem and central
matrix theorem [4,87]. For a single well in the potential, the eigenstate corresponds
instead to a Wannier state and equals the weighted sum of several of the delocalized
Bloch states [96]. For a finite lattice with fixed number of lattice sites and bound
momentum states, the eigenvalues are hybrids between the two descriptions.

This Hamiltonian precisely describes the vibrational energy of an alkali atom in
a 1D optical lattice, where the periodic potential is given by the standing wave gen-
erated by two counter-propagating laser fields, as described for instance in Refs [83,
114,115].

Another example of a system well described by the lattice potential is the super-
conducting Cooper pairs on a charge island, given by

Ĥ(ng) = 4EC(n̂− ng)2 − EJ cos φ̂ (8.2)

where n̂ is the number of Cooper pairs on the superconducting islands, φ̂ is the
phase difference to the island, EC and EJ are the charging and Josephson energy,
respectively and ng is the effective gate charge. In addition, if one adds a (constant
force) term linear in the space coordinate, giving in dimensionless units

H0 = p2 + r cos 2x+ gx, (8.3)

then one obtains what is known as a tilted washboard potential, which describes both
the influence of gravity on a particle with mass, or a current source in a supercon-
ducting circuit (a phase qubit). Note also that the physical quantities p, x, and r can
contain noise, which as we have seen can either be slow or fast, and originate from
inhomogeneity of an ensemble, fluctuations, or uncertainties. We will examine pulses
and design choices that render uncertainties in these parameters less significant.
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8.3 Qutrit approximation
We consider a qutrit subspace formed by the three lowest levels of the anharmonic
oscillator. These levels are separated in energy by ~ω, where ω is the transition
frequency. The jth higher levels are different to ~jω by ~∆j, where ∆j is known as
the anharmonicity. That is, the Hamiltonian for the nonlinear oscillator of dimension
d is (~ = 1)

Hfr =
d−1∑
j=1

(jω + ∆j)Πj, (8.4)

where Πj = |j〉〈j| is the projection operator onto the jth energy level. Without loss
of generality we set ∆1 = 0. This is illustrated in Fig. 3.2 with the qubit levels
being |0〉 and |1〉 (green). For many nonlinear oscillators the anharmonicity takes
the form ∆j = ∆2(j − 1)j/2, which we will call the standard nonlinear oscillator
(SNO), essentially a Duffing oscillator within the rotating wave approximation [86].
For the lowest few levels, superconducting qubits of the transmon [154], phase qubit
[116], and capacitively shunted flux qubit [165] types are well approximated by a
SNO. Furthermore, motional states in optical lattices [114], collective modes of ion
traps [65] and nano-mechanical oscillators [97] are also described as SNOs.

We will assume that control in this system is due to some dipole-like interaction
that only allows single photon transitions. As for harmonic oscillators, this is a good
approximation because parity forbids all other transitions. The control Hamiltonian
is

Hct(t) = E(t)
d−1∑
j=1

λj−1σ
x
j−1,j, (8.5)

where E(t) is the drive amplitude, σxj,k = |j〉〈k| + |k〉〈j| is one of the effective Pauli
spin operators for levels j and k, and λj is a dimensionless parameter that weighs
the relative strength of driving the |j〉 → |j + 1〉 transition versus the |0〉 → |1〉
transition. In our model we take λ0 = 1 and leave the λjs as input parameters. For a
harmonic oscillator controlled via a dipole interaction with an external field λj =

√
j.

For the functional form of the drive E(t) we will assume that |E(t)| � ω (weak
driving regime) and introduce envelope shaping of the driving field at carrier fre-
quency ωd. This leads to

E(t) = Ωx(t) cos(ωdt+ φ0) + Ωy(t) sin(ωdt+ φ0). (8.6)

For quantum information processing it is well suited to define operations with
respect to the frame rotating at the driving frequency ωd (Sec. 4.2.2). In this frame
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we have three independent controls: δ(t) = ω(t)−ωd (the qubit detuning), Ωx(t) and
Ωy(t), which, projected to the qubit subspace, control application of the three Pauli
spin operators σz0,1, σx0,1, and σ

y
0,1, respectively. For example, the identity operation

is achieved by setting δ(t) = Ωx(t) = Ωy(t) = 0. To move to the rotating frame we
define the unitary

R(t) =
d−1∑
j=1

exp [−ijωdt] Πj, (8.7)

which determines the transformed Hamiltonian HR(t) = R†(t)H(t)R(t) + iṘ†(t)R(t)
to be explicitly

HR(t) =
d−1∑
j=1

(jδ + ∆j)Πj +

[
Ω(t)

2
e−iωdt−iφ0 + c.c.

]
×

d−1∑
j=1

λj−1

[
|j〉〈j − 1|eiωdt + h.c.

]
,

(8.8)

where c.c. stands for complex conjugate and Ω(t) = Ωx(t)+iΩy(t). Assuming that ωd
is larger then any other rate or frequency in this frame we can perform the rotating
wave approximation (i.e. time average the fast rotating terms to zero). For the SNO
case this amounts to restricting the dimension d to be less then

√
2ω/∆, specifically

d = 7. After this approximation we can write the Hamiltonian as

HR(t) =
d−1∑
j=1

(jδ(t) + ∆j)Πj +
d−1∑
j=1

λj−1

[
Ωx(t)

2
σxj−1,j +

Ωy(t)

2
σyj−1,j

]
, (8.9)

where σyj,k = −i|j〉〈k|+i|k〉〈j| for k > j. Here we have included the φ0 into the energy
eigenstates (|j〉 → eijφ0|j〉), and we see that within the rotating wave approximation
the relative phase between the envelope and the carrier at the start of the operation
is irrelevant. We see that if we can restrict the system to the lowest two levels then all
rotations in the single qubit space can be achieved by independent controls; however,
in general, this is not true. In Sec. 8.4 we show that the higher level transitions lead
to a combination of a rotating, phase and leakage error [2, 166, 122]. This has been
experimentally measured in Refs. [27] and [106].

8.3.1 Coupling strength from dressing

To obtain explicitly the value of the couplings λj beyond the harmonic oscillator ap-
proximation we should look at the coupling mechanism. In cases where the system
is a SNO and is driven directly, λj is well approximated by the harmonic oscillator
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matrix elements, namely λj ≈
√
j. This, for example, occurs for the phase qubit

when it is driven by a time-varying bias current [117] and the charge qubit when it is
driven by time-varying gate voltage [100]. Essentially, these systems are very nearly
harmonic oscillators and the controls are almost proportional to the quadrature op-
erator. On the other hand, when the coupling is done via an intermediary quantum
element such as a cavity then one must look at the Hilbert space of the combined
system. This is the case for the cavity [68,119] or circuit [15,175] QED architecture.

In the cavity or circuit QED architecture, the anharmonic oscillator is coupled
to a resonator and is controlled by driving the resonator far off-resonance. In this
case, λj can take on essentially any value. To see this, we start by writing the full
Hamiltonian for the multi-level anharmonic oscillator and resonator as

HJC =ωra
†a+

d−1∑
j=1

(jω + ∆j)Πj +
d−1∑
j=1

gj−1,j

(
|j − 1〉〈j|a† + |j〉〈j − 1|a

)
, (8.10)

again ∆0 = ∆1 = 0. This is a generalized Jaynes-Cummings Hamiltonian [78] with
ωr being the resonator frequency, and gj,k being the vacuum Rabi coupling for the
j to k levels. Again we have assumed that the anharmonic oscillator only allows
one-photon transitions.

−2

∆2/(ω−ωr)

λ
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2
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Figure 8.1: Ratio of coupling strength of the |1〉 ↔ |2〉 transition to the |0〉 ↔ |1〉
transition as a function of anharmonicity for control through a resonator (solid blue)
and direct drive (dashed red).

If |ω′j−1,j−ωr| � |gj−1,j| for all j where ω′j−1,j = ω+∆j−∆j−1 then diagonalization
of Eq. (8.10) can be performed to lowest order in gj−1,j/(ω̃j−1,j−ωr) by the canonical
transformation HD

JC = D†HJCD where

D = exp

[
d−1∑
j=1

gj−1,j

ω′j−1,j − ωr
(a†|j − 1〉〈j| − a|j〉〈j − 1|)

]
(8.11)
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to give

HD
JC =(ωr − χ01)a†a+

d−1∑
j=1

(jω + ∆j + χj−1,j) Πj +
d−1∑
j=1

(χ0,1 + χj−1,j − χj,j+1)a†aΠj.

(8.12)

Here χj−1,j = g2
j−1,j/(ω

′
j−1,j − ωr) is the Lamb shift induced on the anharmonic

oscillator by the resonator and the last term in Eq. (8.12) is the ac-Stark shift [58].
Assuming that the dressed cavity is in vacuum then Eq. (8.12) is well approximated
by Eq. (8.4) with

ω → ω̃ = ω + χ0,1 (8.13)
∆j → ∆̃j = ∆j + χj−1,j − jχ0,1 (8.14)

and the tilde implies dressed values for the transition frequency and anharmonicity
from the resonator.

As stated above, the control is usually through the resonator and is represented
by the Hamiltonian

Hdr(t) = ε(t)(a+ a†) (8.15)

which under the transformation Eq. 8.11 becomes

HD
dr(t) = ε(t)

(
a+ a† +

d−1∑
j=1

gj−1,j

ω′j−1,j − ωr
σxj−1,j

)
. (8.16)

Assuming that ε(t) is a sinusoidal with a frequency close to the qubit then Eq. 8.16
is well approximated by Eq. (8.5) with

E(t) =
g0,1

ω′0,1 − ωr
ε(t) (8.17)

λj−1 =
gj−1,j(ω

′
0,1 − ωr)

g0,1(ω′j−1,j − ωr)
. (8.18)

To demonstrate the functional form of λ1, we will assume the anharmonic oscil-
lator is in the SNO limit: ω′j−1,j = ω + (j − 1)∆2, and gj−1,j =

√
jg0,1. In this case,

Eq. (8.18) becomes

λj−1 =

√
j

1 + (j − 1)∆2/(ω − ωr)
, (8.19)

and is plotted in In Fig. 8.1 as a function of the bare anharmonicity in units of
(ω − ωr). Here, it is clearly seen that λ1 is of not equal to

√
2 and actually changes
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sign at the point (ω − ωr = −∆2). This point invalidates the diagonalization for
the second level and can not be treated under this model. Away from this point the
values obtained from this model approximate the real situation. This was confirmed
in Ref. [28] where the experimental value for λ1 for the operation point used was
found to agree with Eq. 8.18. However, we propose that λj should be used as a
fitting parameter in any experiment as effects such as higher modes of the resonator
and higher order perturbation will result in additional corrections to this value [16].

8.4 Conventional control
Our goal is to implement gates contained within the qubit subspace. That is, we
want to shape Ωx(t), Ωy(t) and δ(t) in Eq. 8.9 so that according to the selectivity
conditions 7.20 we have

Uideal = T exp

[
−i
ˆ tg

0

HR(t)dt

]
= eiφUqb ⊕ Urest, (8.20)

where tg is the gate time, T is the time ordering operator, Uqb is a unitary that acts
only in the qubit subspace, Urest acts only outside of the qubit space, and φ describes
a relative phase. Therefore, Urest as well as the phase φ are completely irrelevant for
operations in the Hilbert space formed by the qubit.

To demonstrate the typical set of errors we choose Uqb = σx0,1, the NOT gate.
For a leakage-free qubit this would be implemented by simply setting δ(t) = 0 and
Ωy(t) = 0, with the only requirement on Ωx that that

´ tg
0

Ωx(t)dt = π. To reduce
the leakage to the third level, the standard result prior to Ref. [122] was to use
Gaussian modulation of the envelope [7, 166], Eq. 3.3. The motivation for Gaussian
shaping is that the small and strictly limited frequency bandwidth (1/σ) ensures little
excitation at the leakage transition frequency. For short pulses however, there is still
significant spectral weight at the anharmonicity ∆2. This is shown in Fig. 8.2 (a, c,
e) where the Fourier transforms of ΩG(t) are plotted for σ = {1/3, 2/3, 3/2}2π/∆2

and tg = 4σ respectively.
To demonstrate the errors arising from Gaussian shaping we consider a d = 5 SNO

and numerically calculate the average gate error, Eq. 2.9, for σ = {1/3, 2/3, 3/2}2π/∆2

and tg = 4σ. We find gate errors of 0.198, 0.0160, and 0.0030 respectively.
To understand these error values we plot the populations of the first three levels

in Fig. 8.2 (b, d, f). The ground state populations are given by the blue solid line;
the red dotted line shows the first excited state; the green dashed line is the second
excited state. We observe that for the shortest gate, σ = 2π/3∆2, the error after the
pulse is mostly residual population of the third and higher level. This is what we refer
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Figure 8.2: Fourier transforms of the control fields (a, c, e) and populations (b, d,
f) of the ground (blue solid), first (red dotted), and second excited (green dash) in a
simulation of a NOT gate with a Gaussian amplitude pulse for a d = 5 SNO. In (a,
b) σ = 2π/3∆2, (c, d) σ = 4π/3∆2, and (e, f) σ = 3π/∆2 and the gate time is taken
to be 4σ.

to as the leakage error. For longer gates, e.g. σ = 4π/3∆2, the residual population
does not account for the calculated error. This error is mostly a combination of
phase and rotation error resulting from the finite population of the third level during
the pulse. Even though the final state is restricted to the computational levels, the
admixture of the third level leads to a phase shift on the second level, resulting in
a net phase error at the end of the pulse. At the longest time when the population
of the third level is nearly negligible there is still a large gate error. From these
results we conclude that Gaussian shaping is of limited performance even if the pulse
bandwidth is somewhat smaller than ∆2.

8.5 Adiabatic diagonalization
Having established the importance of spectral considerations in studying the qutrit
problem, we are ready to apply the DRAG methodology from Sec. 7.1 to this family
of systems. We have seen in Sec. 7.1.3 that the insight from the Fourier transform
and the solution given by the integration by parts provides a motivation for using
a second control phase shifted from the first, and that the solution will resemble a
derivative. In the case of crosstalk, the set of transitions driven by the field formed
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a disjoint set, in the sense that no transitions were connected (i.e. qubits). This
allowed a diagonalization transformation that did not introduce any new transitions
into the operator space. In effect, this means that if there were M transitions whose
evolution needed to be fixed, then a basis of M functions would be sufficient. That is
only M functions were needed satisfy Eq. 7.20. In contrast, for the set of unwanted
transitions S, if these transitions are not simple qubits but the driven transitions are
connected to other transitions, then a transformation would remove the unwanted
transitions will also introduce new transitions that were previously undriven. In other
words, a basis of M fields would not be enough. The possibility for an exact solution
is even more difficult for an infinite ladder where every time the transformation were
amended to remove the additional transition, yet a new transition would be added
in its place, the process continuing ad infinitum. In effect one would need an infinite
number of basis fields (e.g. derivatives to the Gaussian) in order to exactly null out
all the transitions.

Given the difficulty in defining such an exact transformation, it is wiser to cut
one’s losses and define an iterative transformation instead. The transformation must
be adiabatic in the sense that all values we work with are expanded in a small
parameter ε =

Ωl(t)λj,k,l
∆j,k,l

. For a SNO this is a strong limitation in the sense that
for every transition up the ladder, the energy splitting ∆k decreases and the matrix
elements λk increase. Nonetheless, an expansion will be seen to be at least somewhat
fruitful.

We define the transformation recursively via the iterator h such that

H̃D(h)(t) = D̂h(t)H̃
D(h−1)(t)D̂†h(t) + i

˙̂
Dh(t)D̂

†
h(t) (8.21)

with H̃D
0 = ĤO and H̃h

D
(t) = O(εh). The condition for selectivity, Eq. 7.20, is

weakened to

H̃
D(h)
j(l),k(l),l = Ωeff(h)(t)e−iφΓ̂j(l),k(l),l(0) + h.c.+O(εh)

H̃
D(h)
j 6=j(l),k 6=k(l),l = ∆

eff(h)
j,k,l |k〉〈k|+O(εh)ˆ T

0

Ωeff(h)dt = θ

(8.22)

where effective operators are also expanded in the small parameter: Ωeff(h) =∑h
g=0 Ωeff

g (t)εg and ∆
eff(h)
jkl =

∑h
g=0(∆jkl)g(t)ε

g (with ∆
eff(h)
j(l),k(l),l = 0). Transformations

that perform this task are not fully constrained and a general solution is explored
in Sec. 8.6 for SNOs. For the case of a generalized Hilbert space the solution
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space is even larger. Here, we look only at the transformations in the form of the
transformation operators that exactly solved Sec. 7.1.3 but now expanded in the
small parameter. That is, we constrain the transformation operator to be in the
form

Dh = exp

(
−i
∑
jk

ˆ T

0

H̃jkl(Ωhε
h, 0)dt + h.c.

)
Unlike in the case of the qubits, Sec. 7.1.3, we cannot ensure that the\is trans-

formation corresponds to an interaction frame with respect to one of our controls.
That is, if the j − k transition corresponds to a control then we can cancel the
+i

˙̂
Dh(t)D̂

†
h(t) term. However if this cancelation is not possible then the term must

be left in. Unfortunately, as made clear in Sec. 7.1.1 via the use of integration by
parts, the derivative will have the same spectral weight as the original matrix element
and not much will be gained by moving to a higher order (only commutator errors
will be decreased). Both these situation will come up when studying the SNO.

Returning to the qutrit, we have derived

HR(t) =
d−1∑
j=1

(jδ(t) + ∆j)Πj +
d−1∑
j=1

λj−1

[
Ωx(t)

2
σxj−1,j +

Ωy(t)

2
σyj−1,j

]
, (8.23)

with d set for simplicity to 3 Going to an interaction frame with respect to the
out-of-phase control (here Ωy(t) = − Ω̇x(t)

∆
) with the transformation

D1 = exp

(
− i

(
d−1∑
j=1

λj−1

ˆ t

0

Ωy(t)

2
dt

)
σyj−1,j

)
gives the interaction Hamiltonian

HD(1) =

(
Ωx(t) +

(λ2 − 2)(Ωx(t))
3

∆2

)
σx0,1 +

λΩ2
x(t)

2∆
σx0,2 +

(
∆ + 2δ(t) +

(λ2 + 2)Ω2
x(t)

∆

)
Π2

+

(
δ(t)− (λ2 − 4)Ω2

x(t)

∆

)
Π1 +O(ε3).

(8.24)

In this frame, it is easy to see there are three qubit errors associated with
the result. The selection error is corrected with the off-phase derivative control
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Figure 8.3: For a 3-level system driven by a 7ns pi-pulse, gate error is plotted vs.
leakage transition strength λ for solutions to the adiabatic expansion to different
orders HD(h) correcting for errors to order h. The top blue line is the simple Gaussian
and each line below it (at λ=2) corrects errors to the next order in ε. That is the red
line under it is correct to order ε2, the yellow under it to O(ε4), the green under that
to O(ε5), the blue under that to O(ε6), the red under that to O(ε7), and the yellow
under that to O(ε8).

Ωy(t) = − Ω̇x(t)
∆

which again is exactly the semiclassical result. The phase er-
ror can be corrected with δ(t) = (λ2−4)E2x

∆
by either shifting the eigen-energies of

the system or by a combination of phase ramping and frame compensation (Sec.
4.2). Finally the rotation error is significant and can be corrected by ensuring
the area law

(´ T
0

(Ωx(t) + (λ2−2)(Ωx(t))3

∆2

)
dt = θ. To avoid higher order commuta-

tor errors, it is even better to satisfy the condition at all times by constraining
Ωx(t) = ΩG(t)− (λ2−2)(ΩG(t))3

∆2 .
Now a control in the 0 − 2 transition is assumed not present in our system.

Therefore the next highest error λΩ2
x(t)

2∆
σx0,2 gives an error which according to our

arguments is largely uncorrectable with the present formulation. That is we have

D2 = exp

(
i
λΩ2

x(t)

2∆
σy0,2/∆

)
but the transformation leaves in the term +i

˙̂
D2(t)D̂†2(t). To validate this hypothesis

we have calculated all orders of ˜HD(h) using this iterative technique up toh = 7.
Fig. 8.3 shows the effect of correcting the phase, rotation, and leakage errors in the
qubit by order as a function of the strength of the coupling element λ1. The top
blue line is the zeroth order and corresponds to a Gaussian function. The red line
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under it corrects the phase and selection error. The yellow line under that corrects
the second order rotation error. Each subsequent line corrects errors to the next
order assuming a derivative of a function is of the same order as the function itself
(rather than one greater). We see that beyond the second or third order, most of the
error is pushed into the derivatives which causes the expansion to exhibit asymptotic
behaviour. Next we look at some other transformations and expansions.

8.5.1 Exact solution to the qutrit

Of course, if we assume instead that a control in the 0 − 2 transition is possible
then the expansion no longer behaves asymptotically. To see this, consider again our
rotating frame qutrit Hamiltonian with additional control Ωx

2(t),

HR(t) =
2∑
j=1

(jδ(t) + ∆j)Πj +
2∑
j=1

λj−1

[
Ωx(t)

2
σxj−1,j +

Ωy(t)

2
σyj−1,j

]
+

Ωx
2(t)

2
σx0,2,

(8.25)
In practical terms the extra control is readily achievable given that SNOs are not

harmonic oscillators. This can be seen for example by taking the Jaynes-Cummings
diagonalization in Sec. 8.3.1 to next highest order. Thus, non-adjacent levels will
still be coupled but the matrix element will simply be smaller. Note however that we
can just absorb the smaller λ0,2 into Ωx

2(t) by simply increasing the amplitude of the
field. Note also that Ωx

2(t) will be at a different carrier frequency than the adjacent
transitions as the energy level difference is approximately doubled.

We reuse the interaction frame transformation with respect to the off-phase con-
trol but now we do not need to perform an adiabatic expansion

D = exp

(
−i

d−1∑
j=1

λj−1

ˆ t

0

Ωy(t)

2
dt σyj−1,j

)

To simplify the resulting expression we assign A =
√

3
´ t

0

Ωy(t)

2
dt and pick the most

common case λ1 =
√

2. The transformed Hamiltonian HD = DHRD† is cumbersome
to write but contains 4 conditions to satisfy, the rotation, phase, leakage in 1−2 and
leakage in 0− 2 conditions (Eqs. 7.20), which are explicitly
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Figure 8.4: Gate error for the implementation of a NOT gate in a d = 3 SNO as
a function of gate time. The solid red line corresponds to a Gaussian pulse while
the dotted green line corresponds to the exact solution given by Eqs. 8.27 and 8.30.
Parameters chosen are λ1 =

√
2 and ∆/2π = 400MHz.

2
(

Ωx
2(t) +

√
2(2δ + ∆)

)
cos [A] +

(
4Ωx

2(t)−
√

2(δ(t) + 2∆)
)

cos [2A]

+12Ωx
2(t)− 3

√
2δ(t) + 2

√
6Ωx(t) sin [A]−

√
6Ωx(t) sin [2A] = 0,

2
(√

2Ωx
2(t) + 4δ(t) + 2∆

)
cos [A] +

(
4
√

2Ωx
2(t)− 2δ(t)− 4∆

)
cos [2A]

−6
√

2Ωx
2(t) + 3δ(t) + 4

√
3Ωx(t) sin [A]− 2

√
3Ωx(t) sin [2A] = 0,

12Ωx(t) cos [A]− 3Ωx(t) cos [2A]

−2
√

3
(√

2Ωx
2(t) + 4δ(t) + 2∆ + (2

√
2Ωx

2(t)− δ(t)− 2∆) cos [A]
)

sin [A] = 9Ωθ(t),

3
√

2Ωx(t) cos [2A] + 2
√

3(−Ωx
2(t)−

√
2(2δ + ∆)

+6
√

2Ωx(t) cos [A] +
(

4Ωx
2(t)−

√
2(δ(t) + 2∆)

)
cos [A]) sin [A] = 0,

(8.26)

where
´ T

0
ΩΘ(t)dt = Θ. The first three equations can be solved in terms of A, as
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in,

δ(t) =
4

9

(
∆ +

6
(
−3∆ + 2∆cos [A] +

√
3ΩΘ(t) (−2 sin [A] + sin [2A])

)
8− 3cos [A] + cos [3A]

)

Ωx
2(t) = −

4
√

2 sin
[
A
2

]2 (
2∆cos [A] + ∆cos [2A] + 6

(
∆ +

√
3ΩΘ(t) sin [A]

))
9 (8− 3cos [A] + cos [3A])

Ωx(t) =
2
(
9ΩΘ(t)cos [A]− 2

√
3∆ sin [A]3

)
3 (8− 3cos [A] + cos [3A])

(8.27)

The last equation is a self-consistency equation for A,

− 3
√

2ΩΘ(t) (2 + cos [3A])− 2
√

6∆ (sin [A]− 2 sin [2A]) = 0 (8.28)

This can be solved by Taylor expansion followed by iterative solution,

A(0) =

√
3ΩΘ(t)

2∆
,

A(m) =
m∑
n=1

−1n

(2n)!
(3A(m−1))2n32nΩθ(t) + 2∆A(m−1)(1− 22n+1)

6∆
.

(8.29)

The second quadrature control is then easily recovered by taking the derivative of A

Ωy(t) =
2√
3

dA

dt
(8.30)

We see in Fig. 8.4 that the error is exactly removed in the qutrit case when we are
in the adiabatic limit (here T > 1.5ns) far surpassing what is possible with only the
adjacent-level controls. Given the possibility of using a second control in experiment
this strategy is clearly preferable to the simple single frequency case. The sum is
taken to 7th order before numerical precision becomes an issue.

8.6 Generalized transformation
To find a general scheme that satisfies Eq. 7.20 we write D(t) = exp[−iS(t)] where
S(t) is an arbitrary Hermitian operator that we decompose as

S(t) =
∑
j=1

sz,j(t)Πj +
∑
j<k

sx,j,k(t)σ
x
j,k +

∑
j<k

sy,j,k(t)σ
y
j,k, (8.31)
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and by assuming a power series in the small parameter ε, we can write each element
as

sα,j,k(t) =
h∑

n−1

s
(n)
α,j,kε

n,

where α = x, y, or z. Thus we can find solutions to different orders h.

8.6.1 Zeroth order solutions

To the zeroth order we have Eq. 8.22 which simplifies to

Ωeff(0)(t) = Ωeff
0 (t)ε0, ∆eff(0)(t) = 0, (8.32)

giving control solutions

Ωeff
0 (t) = ΩG(t), δ(t) = 0. (8.33)

These are the controls used in Sec. 8.4 and here we will use them as a benchmark
for the higher order solutions. In Fig. 8.5, we plot the error, 1 − Fg with Fg given
by Eq. (5.5) (blue dashed line), between a NOT gate an a unitary from the control
field given by Eq. (3.3) with A = π and tg = 4σ for a SNO with d = 5. In this figure
it is clearly seen that the error associated with these controls is quite large; for fast
gate times this error is unacceptable for quantum information processing, and long
gate times will have additional error arising from decoherence.

8.6.2 First order solutions

To determine the first order solutions we need to determine the frame transformation
conditions for S(1)(t) to remove leakage to first order. Direct substitution leads to

s
(1)
x,1,k(t) =0, s

(1)
y,1,k(t) = −λ1tgΩG(t)δk,2/2 (8.34)

where all other parameters sα,j,k are free variables. To satisfy Eq. 8.22, the first order
corrections to the control fields are

Ω̄(1)
x (t) = 2ṡ

(1)
x,0,1(t), (8.35)

Ω̄(1)
y (t) = 2ṡ

(1)
y,0,1(t)− s(1)

z,1(t)tgΩG(t), (8.36)

δ̄(1)(t) = ṡ
(1)
z,1(t) + 2s

(1)
y,0,1(t)tgΩG(t) +

λ2
1t

2
gΩ

2
G(t)

4
. (8.37)

(8.38)
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Figure 8.5: Gate error for the implementation of a NOT gate in a d = 5 SNO as a
function of σ, with tg = 4σ, and a Gaussian shaped pulse. The blue dotted line is
the zeroth order solution. The black dash line is the first order Z-only correction.
The red dash-dot-dot line is the first order Y -only correction. The green dash-dot
line is the first order correction from the controls presented in Sec. (8.5). The purple
solid line is for the optimal first order correction.

Here we see that there is a continuous family of DRAG pulses as (8.35-8.37) is under-
constrained; however, in this section we will consider four particular solutions. In all
of these solutions we take s(1)

x,0,1(t) = 0 as it has no influence on our choice for Ω̄
(1)
y (t)

and δ̄(1)(t).
The first solution we consider is one where the control field Ωy(t) = 0. This is

achieved by setting s(1)
z,1(t) = 2ṡ

(1)
y,0,1(t)/tgΩG(t), resulting in

δ̄(1)(t) =
2s̈

(1)
y,0,1(t)

tgΩG(t)
−

2ṡ
(1)
y,0,1(t)Ω̇G(t)

tgΩ2
G(t)

+ 2s
(1)
y,0,1(t)tgΩG(t) +

λ2
1t

2
gΩ

2
G(t)

4
. (8.39)

The simplest solution that satisfies S(1)(0) = S(1)(tg) = 0 is s(1)
y,0,1(t) = 0. In this case

the controls become

Ωx(t) =ΩG, Ωy(t) = 0, δ(t) =
λ2

1Ω2
G(t)

4∆2

. (8.40)

For the SNO considered in Fig. 8.5, the error for this control set is plotted as the
black dashed line. It clearly has a much lower error than the standard Gaussian
amplitude modulation control, and we will refer to this as the Z-only correction.

The second control solution we consider is when the control field δ(t) = 0. This
is achieved by setting s(1)

y,0,1(t) = −ṡ(1)
z,1(t)/2tgΩG(t)− λ2

1tgΩG(t)/8, which results in

Ω̄(1)
y (t) =−

s̈
(1)
z,1(t)

tgΩG(t)
+
ṡ

(1)
z,1(t)Ω̇G(t)

tgΩ2
G(t)

− λ2
1tgΩ̇G(t)

4
− s(1)

z,1(t)tgΩG(t). (8.41)
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Again, the simplest solution that satisfies S(1)(0) = S(1)(tg) = 0 is s(1)
z,1(t) = 0. In

this case, the controls become

Ωx(t) =ΩG(t), Ωy(t) = −λ
2
1Ω̇G(t)

4∆2

, δ(t) = 0, (8.42)

and, for the SNO considered in the numerical demonstration, the error for this control
set is plotted in Fig. 8.5 as the red dash-dot-dot line. Its error rate is lower than
both the standard Gaussian controls and the Z-only correction. This is the control
procedure used in Ref. [28] and Ref. [107], where it was referred to as simple DRAG
and half derivative respectively. Here we will refer to this as the Y -only correction.

We also present the first order solution found in Sec. 8.5 [122]. This occurs when
we choose s(1)

x,0,1(t) = s
(1)
z,1(t) = 0 and s(1)

y,0,1(t) = −ΩG(t)/2, resulting in

Ωx(t) =ΩG(t), Ωy(t) = −Ω̇G(t)

∆2

,

δ(t) =
Ω2
G(t)

4∆2

[λ2
1 − 4].

(8.43)

This solution corresponds to fully removing the selection error by avoiding leaving in
any derivative term. In Fig. 8.5, the green dash-dot line shows how the error scales
with this control set. We see that for the first order solution, the error is larger than
the Y -only correction method. That is, the first order version of Ref. [122] is not
optimal. We will see below this can be traced to an increased rotation error.

The final solution we consider is what we refer to as the optimal first order
solution. This is achieved by minimizing the elements in the effective Hamiltonian
of O(ε2). The transformation that minimizes these is

s
(2)
y,0,2 = −1

2
tgΩGλ1(tgΩG + s

(1)
y,0,1), (8.44)

s
(2)
x,0,2 = −1

2
tgΩGλ1s

(1)
x,0,1, (8.45)

s
(2)
y,1,2 = −λ1ṡ

(1)
x,0,1, (8.46)

s
(2)
x,1,2 =

1

2
λ1(2Ω̇G + 2ṡ

(1)
y,0,1 − 2tgΩGs

(1)
z,1 + tgΩGs

(1)
z,2).

Using these expressions and requiring that the matrix elements ofH(2)
extra(t) are zero in

the qubit subspace (and elements coupling to the qubit subspace are zero) results in
s

(1)
x,0,1(t) = s

(1)
z,1(t) = 0 and s(1)

y,0,1(t) = −tgΩG(t)λ1/4. Substituting these into Eq. 8.35

115



8.6. GENERALIZED TRANSFORMATION

gives the controls fields

Ωx(t) =ΩG(t), Ωy(t) = −Ω̇G(t)λ1

2∆2

,

δ(t) =
Ω2
G(t)

4∆2

[λ2
1 − 2λ1].

(8.47)

This optimal first order solution is plotted in Fig. 8.5 as the solid purple line. Its
error is substantially lower the the other first order correction methods.

8.6.3 Second order solutions
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Figure 8.6: Gate error for the implementation of a NOT gate in a d = 5 SNO as a
function of σ, with tg = 4σ, and a Gaussian shaped pulse. The blue dotted line is
the zeroth order solution. The black dash line is the second order Z-only correction.
The red dash-dot-dot line is the second order Y -only correction. The green dash-dot
line is the second order correction from the controls presented in Sec. 8.5. The purple
solid line is for the optimal first order correction.

The higher order solutions become impractical to solve in generality because the
number of terms grows quickly with increasing order. However, we can easily find
the second and higher order corrections to the different first order solutions. We
find that the corrections to the above four cases only change the Ωx(t) field. In the
Z-only case, Ωx(t) becomes

Ωx(t) = ΩG(t) +
λ2

1Ω3
G

8∆2
2

, (8.48)

in the Y -only case, Ωx(t) becomes

Ωx(t) = ΩG(t)− λ2
1(λ2

1 − 4)Ω3
G

32∆2
2

, (8.49)
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and the control set presented in Sec. 8.5 gives

Ωx(t) = ΩG(t) +
(λ2

1 − 4)Ω3
G

8∆2
2

. (8.50)

To demonstrate these corrections we plot in Fig. 8.6 the second order solutions. The
line marking and colours are the same as in Fig. 8.5 with the exception that they
now refer to second order solutions (all except the blue dotted line, which remains
the zero order solution, and the purple solid line, which is the first order optimal
solution). We see that the second order only makes small improvements to the Y -
only (red dash-dot-dot) and Z-only (black dashed) first order solutions. Remarkably,
the original DRAG scheme from Ref. [122] (green dash-dot) is improved substantially
when corrected to second order. It is for this reason that we argue this is the best
solution for implementing a DRAG correcting pulse.

We have not proven the DRAG solution to be optimal, and it seems likely that
a better second order solution exists. Nonetheless it is clear that this is the only
second order solution that completely removes the derivative term thereby minimiz-
ing selection error. Moreover, note that although these solutions are second order,
the added complexity of implementing them in practice is minimal given that the
rotation error does not drastically change the shape of the Rabi envelope.

8.7 Numerical optimization
We have explored the solution landscape to the leakage problem using the intuition
from the semiclassical argument and with particular consideration to practicality
and duration of the pulses. However, we have found that unlike in the case of
frequency crosstalk, Sec. 7.1.1, an exact or optimal solution has been elusive, partly
for algebraic complexity reasons (given the infinite Hilbert space) and partly because
the transformations we have been able to derive appear to be asymptotic. Here we try
to answer these questions using numerical optimization techniques paying particular
attention still to practicality and time-duration of the pulses.

8.7.1 Prefactor optimization

Given the ease of implementing the first order solutions, in this section we consider
the problem of numerically optimizing a value for the control fields with the following
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Figure 8.7: Gate error for the implementation of a NOT gate in a d = 5 SNO as a
function of σ, with tg = 4σ, and a Gaussian shaped pulse. Panel (a) is for optimized
first order solutions. The blue is for optimized α with β = γ = δ0 = 0 (zeroth
order solution). The black dashed is for optimized α and γ with β = δ0 = 0 (Z-
only solution). Red dash-dot-dot is optimized α and β with γ = δ0 = 0 (Y -only
solution). Purple solid line is for optimized α, β, and γ with δ0 = 0 (optimal first
order solution). Panel (b) is the same as (a) but with δ0 being optimized.

ansatz

Ωx(t) =αΩG(t), Ωy(t) = −β Ω̇G(t)

∆2

,

δ(t) =γ
Ω2
G(t)

∆2

+ δ0,

(8.51)

where α, β, γ and δ0 are fit parameters. We consider a SNO with ∆2 = −2π,
λj−1 =

√
j, d = 5, and a control field given by Eq. 3.3 with A = π and tg =

4σ (same as before). In Fig. 8.7 we plot the gate error as a function of σ for
different optimizations. The optimization procedure was done with Mathematica
with a working precision of 10. In Fig. 8.7 (a) we consider the case when δ0 = 0,
and we find that optimizing the weighting of the control fields only improves the
first order solutions slightly. This is expected as the second order solutions require
different functional forms for the controls. However, when we allow δ0 to be non-zero,
we find some interesting results. For the numerical parameters considered, we find
that implementing a time varying δ(t) (γ 6= 0) does not lead to any improvements.
This is seen in Fig. 8.7 (b) where we show that the error arising from an optimized
Gaussian with added constant detuning (blue dotted line) is approximately equal
to the optimized Z-only correction with an added constant detuning (black dashed
line). Furthermore, the optimized Y -only correction with an added constant detuning
(red dash-dot-dot) is approximately equal to the optimal first order solution with an
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added constant detuning (solid purple). We also find that for the solutions with
the derivative for the Y -control (solid purple and red dash-dot-dot) the gate error is
much lower then in the other cases (blue dotted and black dashed). This gate error is
approximately equal to those found with the second order corrections from Fig. 8.6
(green dash-dot line). We see from these numerics that the optimal DRAG-like
solution can be obtained by applying a pulse to the x-axis (and its derivative to the
y-axis) with a frequency that is not equal to the transition frequency of qubit, Sec. 4.2.
Once again, this corresponds to removing the selection error which effectively moves
the control problem back into a qubit problem where we know the right combination
of rotation angle and detuning can always find an optimal solution.

8.7.2 Full optimization
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Figure 8.8: Pulse duration vs. pixel width for 1 control (blue solid) and 2 controls
(red dashed). Pulse duration is calculated as the minimal time to bring the error
down to 10−5. The insert shows the two control GRAPE result for tg = 1/4∆ (blue
solid is Ωx, and green dashed is Ωy ).

We apply optimal control theory to our system by employing gradient ascent nu-
merical optimization, Sec. 5.3. Restricting GRAPE to 1ns pixels (which is consistent
with current experimental limitations, Sec. 6.1) and setting the initial condition for
the Ωx quadrature to be the Gaussian pulse, Eq. (3.3), the algorithm quickly con-
verges to the optimal solution. After optimization, the shape of the Gaussian in the
Ex quadrature is largely unchanged. However the Ωy quadrature changes from 0 to
a shape that resembles the derivative of the Gaussian. GRAPE essentially takes the
idea of DRAG to infinite order and discretizes the pulse. The shapes of the pulses
are smooth with no sudden rises or falls in the control amplitudes.
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The two quadrature control GRAPE pulse outperforms its one quadrature control
version [148]. Fig. 8.8 shows the minimal pulse duration to obtain gate errors smaller
than 10−5 vs the pixel width for both one (blue solid) and two (red dashed) controls.
Here, we see that at small pixel widths (continuous limit) the one control saturates
at a time of 2π/∆ [148] (black dashed line), whereas the two controls allows for
arbitrarily small pulse times, allowing operation to go well into the diabatic regime.
This is because, in the one control case, phase cancelation of the leakage is done
through phase accumulation by the natural precession of the third level, whereas, for
two controls, it can be generated instantaneously. The insert of Fig. 8.8 shows such
a continuous two control pulse; this pulse clearly displays a combination of DRAG
and composite features. The symmetry of the real control suggests that perhaps a
second derivative is being added to the pulse to remove selection error from the 0−2
transition. At the larger pixels (more experimentally realizable), the two controls
offer a substantial improvement over one control. For example, at 1ns pixels, there
is a factor of 3.5 improvement. The results are consistent with Sec. 8.6 where we
saw a drastic improvement when going from a single control to two controls and we
note the third (detuning) control can be generated from the other two controls using
phase transformations, Sec. 4.2, offering little if any additional improvement.

8.8 Incoherent effects
Superconducting systems suffer greatly from loss of coherence. To properly bench-
mark what control of these systems is possible requires taking these effects into
account [144]. We begin by considering the effect of decay on our control pulses.
Secondly, we consider the effect of parameter uncertainty with regard to the energy
landscape on the retention of coherence in the pulses. This has application to many
physical systems, in particular optical lattices and other ensemble qubits where the
measurement of many particles lends itself vulnerable to inhomogeneity effects. Both
these effects are important and can be used to predict what kind of experimental
errors to expect.

8.8.1 Relaxation

In realistic physical systems, decoherence cannot be neglected. Here, we include this
effect by simulating the evolution by a master equation for each optimal pulse. The
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master equation we use is

ρ̇ = −i[HR, ρ] +
∑
j=1,2

[
1

T j1
D[σ−j ]ρ+ 1

T jφ
D[Πj]ρ

]
(8.52)

where ρ is the density matrix, T j1 and T jφ represent relaxation and pure dephasing
times respectively, and D is the damping super-operator, defined as

D[A]ρ = AρA† − 1

2
A†Aρ− 1

2
ρA†A. (8.53)
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Figure 8.9: A. error vs. pulse duration for T1 = 40µs and B. minimum error vs. T1

for Gaussian (σ=tg/2) (blue solid), Gaussian (σ=tg/2) with DRAG (red dot-dashed),
and GRAPE (purple dotted) with 1ns pixels.

For the simulation, we used parameters consistent with the low-dispersion Trans-
mon qubit and as such take pure dephasing to be zero. The results are shown in
Fig. 8.9. Fig. 8.9A plots the gate error (1 − Fg) as a function of gate time for
T1 = 40µs. Here, we see there is an optimal value for the gate time (when the error
due to decoherence is about the same as the error due to leakage) and for both the
DRAG (green dashed) and the GRAPE (purple dotted) pulse, this is much less then
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the standard Gaussian pulse (blue solid) with an optimal error of 5.3 × 10−5 and
3.4× 10−5 respectively. Fig. 8.9B plots this minimum as a function of T1 where we
observe that at current experimental values T1 ≈ (1−4) µs [47] DRAG and GRAPE
still outperform the simple Gaussian by about an order of magnitude.

8.8.2 Dispersion

We wish to address uncertainty with respect to the quasi-momentum in our periodic-
potential system (e.g. charge noise for a transmon/charge qubit) coming from dealing
with a statistical ensemble of systems either in time or in space (Sec. 3.5). To do
this we apply the numerical optimization theory developed in Sec. 5.3.2.

Bloch’s theorem states that a periodic Hamiltonian such as Eq. 8.3 has eigenstates
of the form, |ψ(k)

n 〉 or
〈x||ψ(k)

n 〉 = ψ(k)
n (x)eikx, (8.54)

where n indicates the energy band and k the quasi-momentum and ψ
(k)
n (mπx) =

ψ
(k)
n (x) for all integers m. These Bloch functions satisfy the Schrödinger equation

E(k)
n ψ(k)

n = H
(k)
0 ψ(k)

n (8.55)

with the now k-dependent Hamiltonian

H
(k)
0 = (p− k)2 +

r

2
(1− cos 2x), (8.56)

The resulting wavefunctions can be calculated using the central matrix method or
the Bloch method [4]. Of primary importance is that the quasi-momentum is pre-
served. The single-particle energy eigenstates of the optical lattice thus, from a
control perspective, form an inhomogeneous ensemble of discrete quantum systems
with different parameters in the Hamiltonian Eq. 8.56. We shall see later on that the
controls at hand also conserve k thus this ensemble decomposition remains consistent
even with controls.

To control this system we introduce the parameters η(t) and φ(t) which represent
the ratio of intensity with respect to r and the phase, respectively. These correspond
to the vertical amplitude and horizontal displacement of the lattice potential, re-
spectively. In particular, they correspond to the amplitude and phase of the control
laser in an optical lattice implementation [114], though a similar orthogonal set of
controls can be found in Josephson qubits. Rewriting (8.56) in terms of these new
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variables we obtain,

H(k)(t) =(p− k)2 +
r

2
[1 + η(t)] [1− cos (2x+ φ(t))]

=H
(k)
0 −

r

2
[1− cos(2x)] +

r

2
[1 + η(t)] [1− cos (2x+ φ(t))]

=H
(k)
0 +

r

2
[1− (1 + η(t)) cosφ(t)] cos(2x) +

r

2
(1 + η(t)) sinφ(t) sin(2x) +

r

2
η(t).

(8.57)

In order to express the Hamiltonian in the standard bilinear form for quantum con-
trol, Ref. [85], we reparametrize the control fields in terms of

α(t) =
r

4

[
1− [1 + η(t)] cosφ(t)

]
,

β(t) =
r

4

[
[1 + η(t)] sinφ(t)

]
.

(8.58)

so that the total control Hamiltonian (neglecting the global phase) is

H(k)(t) = H
(k)
0 + 2α(t) cos(2x) + 2β(t) sin(2x). (8.59)

The lattice will be filled with multiple atoms occupying a range of k-values. Mea-
surement of the success of a quantum operation can be performed in the manner
suggested in [124], which involves averaging single particle measurements over the
entire ensemble. Demanding that we find α(t) and β(t) that perform the desired
gate irrespective of k ensures that any gates we find will retain their fidelity after
this averaging.

States with different quasi-momenta evolve independently under the applied Hamil-
tonian and so can be viewed as an ensemble of non-interacting particles, labelled
by the quasi-momentum. The eigen-energies of this system depend on the quasi-
momentum, i.e. H(k)

0 |ψ
(k)
n 〉 = E

(k)
n |ψ(k)

n 〉, leading to dispersion of the resonance fre-
quencies across different quasi-momenta. That is the resonant frequencies of exci-
tations associated with different vertical transitions are not the same, see Fig. 8.10.
We characterize the dispersion by the dimensionless quantity

D = 1− ∆E
(1)
01

∆E
(0)
01

, (8.60)

where ∆E
(k)
01 = E

(k)
1 −E

(k)
0 . In addition to energy dispersion there is dispersion in the

strengths of the couplings between the bands with respect to the quasi-momentum.
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The main consequence of the dispersion is that a single harmonic excitation cannot
simultaneously resonantly excite all transitions. This poses a formidable challenge for
controlling an ensemble with high dispersion. For the lattice potential, the amount
of energy dispersion decreases with an increase in the strength of potential, Fig.
8.10. Unfortunately, the anharmonicity of the lattice, which is essential to resolve
different transition frequencies, also decreases with increasing potential depth. In the
case of the Transmon, the system is operated in the low dispersion regime (r>20)
and dispersion is most often neglected. Here we aim to be more precise by quan-
tifying the trade-off when choosing the depth of the lattice between dispersion and
anharmonicity and the degree to which both can be simultaneously corrected.

Note that in superconducting qubits, the CORPSE pulse sequence [33] has been
applied to mitigate fluctuations of the energy splittings [32], which has been investi-
gated further numerically [121]. Here we look not only at dispersion in the energy but
more comprehensively at changes in the strength of all operators in the Hamiltonian
as a function of quasi-momentum.

8.8.2.1 Optimization

Using the techniques outlined in Sec. 5.3.2, we optimized control parameters for
the lattice Hamiltonian in Eq. 8.3 for varying potential depths and pulse durations.
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Figure 8.10: The first four energy 1-D band structures are shown in the momentum
basis for four different potential depths r. The lower potential depth r = 2 (top left)
shows the largest amount of energy dispersion with the closest energy crossings. The
depth r = 30 (bottom right) shows a lesser amount of dispersion and larger energy
splittings.
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Figure 8.11: Optimized controls for preparing a Xπ-gate when the optimization uses
only ten points in quasi momentum space. Pulses are well-behaved in the sense that
they don’t translate the lattice by a full lattice site or possess very large excursions
from the initial value for r. (a) An optimized pulse for a potential depth r = 7 with
32.7% dispersion and fidelity 98.7% which is calculated by sampling over 100 quasi
momentum values. . The duration of the pulse was 5 free oscillations (at k=0).

Our target gate is a Xπ-gate on the first two energy bands. We considered both a
Rabi pulse assuming no dispersion and bounded random controls fields as the initial
guesses for the control fields. The evolution is simulated using only the first six
energy bands from our model and sampling over 10 values of the quasi-momentum.
While we sampled over only a small number of values for the quasi-momenta in order
to have efficiently performed the numerical search, when we calculate the final fidelity
we sampled over a finer grid in quasi-momenta space.

Here are two examples of optimized controls for performing Xπ-gates on our
lattice model. One is a control for a lattice system with potential depth r = 7
(which corresponds to a dispersion of 13.2%), as shown in Fig. 8.8.2.1. The duration
of this control was 5 free oscillations (at k=0). The gate error across the ensemble
was less than 2% with the exception of particles with quasi-momentum near the
edges of the Brillouin zone. Even with such high dispersions in the energies and
control Hamiltonians we are able to find gates with reasonable fidelities.

We observe the relationship between the maximum fidelity of the solutions and
the level of dispersion of the Hamiltonian. Ideally, our gradient search will halt
when a local maximum in the fidelity is reached but this may take a considerable
amount of computational resources. All our optimizations were halted after either
the algorithm converged to a solution or 105 updates in the control parameters were
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Figure 8.12: The maximum fidelity for an optimized pulse over a range of times,
from 1 to 10 free oscillations (at k=0), preparing a Xπ-gate as a series of different
potential depths. The potential depth ranged from r = 0.25 to r = 110, giving a
dispersion ranging from 93.8% to 0.01%, respectively. Each point is an average of
optimized pulses from 1 Rabi and 10 random initial pulse.

performed. Nevertheless, for short times (Fig. 8.12A) we find excellent control fields
(F > 0.90) for the entire range of potential depths we considered, 0.25 ≤ r ≤ 110.

In general, for long gate times, the maximum fidelity solution forXπ-gates became
lower as the dispersion was increased, Fig. 8.12B. The optimization becomes less
tractable with higher dispersion since we are asking a single set of control fields to
solve wildly different problems depending on where the system is in quasi-momentum
space. As a result, broadband pulses must be tailored to accommodate a range of
possible energies and couplings. We also find that for high dispersion the fidelity
becomes worse as the gate time becomes longer. This may seem counterintuitive,
but it is due to the fact that as the gate time increases the fidelity can vary more
quickly as a function of k. For very short gate times, the fidelity is fairly constant
across quasi-momentum space, but for long gates we find that the fidelity is only
high for the specific points we optimized, and dips to almost zero in the intermediate
regimes.

We can see the connection between gate duration and rate of change of fidelity
very easily through the simulation described in Fig. 8.13. Here we run GRAPE for
exactly one value of the quasi-momentum and and then look at the performance of
this control field across k. W find that as the duration of the gate increases the
fidelity function become more and more tightly peaked about the single value we
optimized, consistent with the spectral bandwidth of the pulse.
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Figure 8.13: Pulses for performing Xπ-gate at r = 2 for three different times were op-
timized specifically for k = 0.5 and the fidelity response over quasi-momenta shown.
Shorter pulses have larger spectral bandwidth and thus affect a larger range of quasi-
momenta.

8.9 Implementation
The DRAG result was first implemented in superconducting qubits at Yale with
transmons in [28, 39] and shortly after with phase qubits at U.C. Santa Barbara
[105]. The transmon qubit is a prime candidate for studying leakage because the
anharmonicity ∆ is only ∼ 3− 5% of ω0,1. For reasons of practicality and simplicity
the Y-only solution from Sec. 8.6 is explored in this experiment for demonstration
purposes though the full optimal solution would be achievable to implement, in
particular increased coherence times.

Although Gaussian control pulses (characterized by a width σ) are often the
paradigm due to their localized frequency bandwidths given by B = 1/2πσ, leakage
errors can occur as gate times are reduced such that B is comparable to ∆. The
correction protocol to the leakage errors as prescribed above is to apply an additional
control on the quadrature channel, Ey(t) = βĖx(t) and a dynamical detuning of the
drive frequency δ(t) = Ex(t)2(−4β∆ + λ2)/4∆, where β is a scale parameter. For a
qutrit driven without dynamical detuning, the optimal β = λ2/4∆.

The experiments are performed in a circuit QED sample consisting of two trans-
mons coupled to a coplanar waveguide resonator. The sample fabrication and ex-
perimental setup are described in Ref. [39]. The two transmons (designated L and
R) are detuned from one another with ground to excited state (0 ↔ 1) transition
frequencies of ωL,R

0,1 /2π = 8.210, 9.645GHz and the ground state cavity frequency
isωC/2π = 6.902 GHz. The anharmonicities of the transmons are found using two-
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tone spectroscopy measurements [154] to be ∆L,R = 330, 300 MHz and coherence
times are measured to be T L,R

1 = 1.2, 0.9µs and T ∗L,R
2 = 1.5, 1.1µs.
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Figure 8.14: (a) Gaussian and derivative pulse shapes applied to the in-phase and
quadrature control channels, respectively, for implementing DRAG to first order. (b)
Measured 〈σz〉 on qubit L (shaded red bars) with Gaussians with σ = 1ns for a test
sequence consisting of pairs of π and π/2 rotations. The slash filled bars correspond
to a master-equation simulation of a three-level system with parameters of the sample
tested. The grey filled bars reflect ideal values. (c) Similarly measured 〈σz〉 on qubit
L but using derivative pulses on the quadrature with a scale factor βL = 0.4 (shaded
red bars), also overlaid on the ideal values (shaded dark grey bars).

To implement DRAG to first order and perform single-qubit gates on the trans-
mons, we use an arbitrary-waveform generator to shape microwave-frequency pulses
with quadrature control, permitting rotations about either the x- or y-axis of each
qubit. We fix the drive frequency to ω0,1, and the pulse amplitudes and phases de-
fine the rotation angle and axis orientation, respectively. When performing an x
rotation, Ex(t) is a Gaussian pulse shape, Fig. (8.14)(a), while the derivative of the
Gaussian is applied simultaneously on the other quadrature, Ey(t) = βĖx(t). All of
the pulses are truncated to 2σ from the center with an added buffer time of 5ns to
ensure complete separation between concatenated pulses.
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A simple test sequence is used to tune up the scale parameter β as well as to
demonstrate the effect of using first-order DRAG pulses versus standard single-
quadrature Gaussians. The sequence consists of pairs of π and π/2 pulses around
both the x- andy-axes. An important feature of this sequence is that the final av-
erage z-projection of the single qubit, 〈σz〉, will ideally take on values from the set
S = {+1, 0,−1}, making any deviations easily visible.

Using Gaussian pulse shaping with σ = 1 ns and implementing the test sequence
for qubit L, we find significant deviations from S, as shown in the solid red bars of
Fig. 8.14 B. The theoretical results for each pair of rotations are shown with solid
grey bars in the background. We observe that the largest errors occur when the two
rotations are around different axes, which indicates the presence of significant phase
error, or a residual z rotation after the first gate.

We repeat the same test sequence, but applying the derivative of the Gaussian
to the quadrature channel. By varying β, it is possible to find an optimal value such
that the measurements of 〈σz〉 agree very well with the theoretical predictions. The
shaded red bars of Fig. 8.14 C show measured 〈σz〉 for qubit L using β = 0.4. Here,
deviations from the ideal grey bars decrease to < 2%. We have also applied the
DRAG protocol for qubit R, finding the optimal value β = 0.25 (data not shown).
From the experimental determination of β and α1, we can infer the second excited
state coupling strengths λL,R = 1.82, 1.41. Using λL and the three-level model of Eq.
(8.4), a master equation simulation for the Gaussian shaping gives the red hash-filled
bars in Fig.8.14, which demonstrates good agreement with the experiment.

We find excellent agreement for λ with the calculation for the anticipated λ in a
cavity-transmon coupled system (Sec. 8.3.1). The cavity modifies the drive strengths
Ω0,1 and Ω1,2 due to its filtering effect. Specifically, for a transmon in a cavity, we
have

λ =
gj−1,j(ω

′
0,1 − ωC)

g0,1(ω′j−1,j − ωC)
. (8.61)

where j = 1, 2 for the transmon excitation level, γ = {1,−1} depending on
whether the qubit is located at the input or output side of the cavity, and gi,j is the
matrix element coupling the i ↔ j transmon transition to the cavity [94]. Using
the relevant parameters of the two transmons in the experiment and including only
the fundamental mode of the cavity, we find λL,R) = 1.85, 1.57, within 12% of those
determined from the test sequence. There are corrections to the drive due to the
higher modes of the cavity, but it is difficult to use Eq. 8.61 to estimate as a result
of cutoff dependence.

We characterize the degree of improvement to single-qubit gates by using the
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Figure 8.15: Randomized benchmarking for qubit L with σ = 1 ns using (a) Gaussian
pulses, and (b) additional Gaussian derivative pulses on the quadrature channel.
The scattered grey points are extracted fidelities for 32 RB sequences, truncated at
different numbers of gates. A remarkable reduction in the extracted average error
per gate (black squares) of the benchmarking results is observed going from (a) to
(b). The error bars indicate the variance of all the RB sequences and are smaller
than the squares in (b).

technique of randomized benchmarking (RB) [?]. RB allows us to determine the
average error per gate through the application of long sequences of alternating Clif-
ford gates (Rπ/2

x,y ) and Pauli gates, chosen from {1, Rπ
x , R

π
y , R

π
z } [62]. We use the RB

pulse sequences originally given in Ref. [?] and adapted to superconducting qubits
in Ref. [27] for both the Gaussian and the derivative pulse shaping for transmon L.
We truncate the randomized sequences at various lengths and compare the resulting
measurement of 〈σz〉 to the ideal final state to obtain the fidelityF . There is an
exponential decrease inF with an increasing number of gates in the randomized se-
quences. This RB protocol is then repeated for various pulse widths, corresponding
to different Gaussian standard deviations, σ ∈ {1, 2, 3, 4, 6} ns.

Using the Gaussian shaping, we find a large reduction in fidelity with the shortest
pulses, σ = 1 ns, Fig. 8.15A. The scattered grey points give F for 32 different
randomized sequences applied as a function of the number of gates in the sequences.
When averaged together, we observe a simple decay of F̄ as a function of the number
of gates (solid black squares). Fitting the data with an exponential decay (solid black
line), we extract an average error per gate, EPG = 1 − F̄ of 0.13 ± 0.02. However,
when employing the first-order DRAG, we find a dramatic improvement in the gate
performance at σ = 1 nsns, Fig. 8.15B. There is a significant reduction in the spread
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of the grey points corresponding to all the different randomized sequences, and a fit
(solid black line) to the exponential decay of the average fidelity (solid black squares)
gives EPG = 0.007± 0.005.
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Figure 8.16: Comparison of single-qubit gate errors with and without DRAG. Error
per gate for the left qubit extracted from randomized benchmarking for different gate
lengths using both Gaussian pulses (red squares) and first-order DRAG pulses (blue
squares). Excellent overlap with theory for gate error including qubit decoherence
(black curve) suggests that the DRAG pulses successfully eliminate the errors due
to the presence of higher levels. Gate errors down to 0.007, which are otherwise
unattainable with Gaussian pulses, are reached using DRAG.

Figure 8.16 summarizes the improvement to EPG for different σ by using DRAG.
The solid squares are the EPG found using Gaussians, revealing a minimum of0.02±
0.007 at σ = 3 ns, before considerably increasing for shorter pulse lengths. Excellent
agreement is found with a master equation simulation (dashed line) of the gate error
for a qutrit system incorporating only decoherence times and coupling strengths
measured in independent experiments. Using first-order DRAG, we find the solid
circles in Fig. 8.16, which follow a monotonic decrease in EPG with decreasing
σ. Here again we have included a master equation prediction (solid line) of just
a single qubit with the same parameters, also giving excellent agreement with the
experimentally determined values and demonstrating that DRAG has reduced the
response of the system to be like that of a single qubit.

Finally, implementing DRAG on both qubits simultaneously, we can also gen-
erate and detect higher quality two-qubit states. Performing state tomography to
obtain the two-qubit density matrix ρ via joint readout [26, 48] requires 15 linearly
independent measurements, corresponding to the application of all combinations of
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Figure 8.17: Measured two-qubit Pauli sets for preparing the state |1, 1〉 with (a)
Gaussian pulses and (b) DRAG pulses (βL = 0.4, βR = 0.25) applied to the quadra-
ture channels of both transmon L and qubit R. The ideal Pauli set is shown in grey.

I, Rπ
x , R

π/2
x , and Rπ/2

y on the two qubits prior to measurement. Thus, errors in these
analysis rotations in addition to the state preparation pulses can result in incorrect
determination of ρ. The two-qubit Pauli set ~P [26] can be used to visualize ρ for
the state |1〉L ⊗ |1〉R having used Gaussian (Fig. 8.17A) and DRAG (Fig. 8.17B)
pulse shaping. ~P consists of ensemble averages of the 15 non-trivial combinations
of Pauli operators on both qubits. The ideal ~P of the state is characterized by unit
magnitude in〈ZI〉, 〈IZ〉, and 〈ZZ〉 and zero for all other elements. We can see that
with the standard Gaussian pulse shaping, there are substantial (∼ 50 − 100% of
unity) deviations on ideally zero elements, whereas with the DRAG pulses, the Pauli
set bars are very close to their ideal values.

By implementing a simple approximation to the optimal control pulses for a
multi-transmon coupled-cavity system, we have reduced gate errors below the 10−2

level, limited by decoherence. The agreement of the various experiments with and
without DRAG pulse shaping with a qutrit model reflects that gate errors due to
the coupling to a higher excited state can be minimized while continuing to shorten
gate time. Moving forward with optimal control, a tenfold decrease in gate time
to approach ∼ 1 ns through improved electronics or a tenfold increase in coherence
times to∼ 10µs would place us right at the quoted 10−3 fault-tolerant threshold [122].
Furthermore, DRAG is extendable to systems of more than two multi-level atoms for
quantum information processing, and has already been employed to enhance single-
qubit gates in a circuit QED device with four superconducting qubits [40].
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Chapter 9

Multi-Channel Leakage

Complications in the Hilbert space nature of physical systems can be found beyond
even the qutrit approximation as a quantum system is scaled to include more elements
or when very low error rates are desired. Not only do simultaneous leakages have to
be taken into account, but introducing an external driving field may couple different
elements together (e.g. crosstalk in Sec. 7.2). In this section we consider three generic
multi-channel leakage problems. The first is encountered in Sec. 9.1 when trying to
transition between higher energy levels in an anharmonic ladder such as a Duffing
oscillator, where now leakages exist both below and above the driven transition (see
Fig. 9.1A). This is first done numerically in Sec. 9.1.2 with our results published
in Ref. [86] (pulses found by Botan Khani). Next the same problem is studied
analytically in Sec. 9.1.3. Secondly, in Sec. 9.2, we find analytic forms for suppressing
multiple leakage channels coupled to the same energy level (see Fig. 9.1B). The
analytic results of Secs. 9.1.3 and 9.2 are published in Ref. [59] with Seth Merkel
and Jay Gambetta contributing to the derivations. Last, in Sec. 9.3, we consider two
qutrits and look at the simultaneous removal of both leakages when coupling them
(see Fig. 9.1C). This is solved both numerically in Sec. 9.3.2 (solutions found by
Amira Eltony) and analytically in Sec. 9.3.3.

9.1 Duffing oscillator
We have seen that anharmonic systems such as those built from Josephson junctions
can be well described by the Duffing oscillator (Sec. 6.7.1), with Hamiltonian

H =
p2

2m
+
mω2

0

2
x2 + δ

m2ω2
0

3~
x4 δ > 0 (9.1)
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Figure 9.1: In (a) we consider the case when the qubit has leakage from both its |0〉
and |1〉 level. In (b) we consider the case when the qubit has leakage from its |1〉
level to more then one higher level. In (c) two anharmonic oscillators are coupled
with |11〉 leaking to both |02〉 and |20〉.

where x and p are coordinate and momentum, respectively, and ω0 is the resonance
frequency, in the limit δ → 0. Even though we focus on the hard case, δ > 0,
we expect similar conclusions to hold for the soft case. This Hamiltonian can be
made dimensionless with raising and lowering operators analogous to the harmonic
oscillator [31]. It then reads

H = ~ω0

(
a†a+

1

2

)
+

~δ
12

(a+ a†)4. (9.2)

9.1.1 SNO approximation

By expanding the nonlinearity and ordering its terms, we can split the Hamiltonian
as H = H0(n̂) + V̂ into a term H0 that contains only the number operator n̂ = a†a
that will dominate perturbation theory for small δ/ω � 1 and corresponds to the
rotating wave approximation, and a term V̂ that goes beyond that approximation as
it contains different powers of a and a†. We find

H0(n̂) = ~ω0

(
n̂+

1

2

)
+

~δ
4

(2n̂2 + 2n̂+ 1). (9.3)

V =
δ

12
(a†4 + 6a†2 + 4a†(a2 + a†2)a+ 6a2 + a4). (9.4)

H0 can be re-parameterized to a simpler form using ω = ω0 + δ, while dropping
a constant energy shift

H0 = ~
[
ωn̂+ 1

2
δn̂(n̂− 1)

]
. (9.5)
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Figure 9.2: Ratio of the eigen-energies of the RWA Hamiltonian, Eq. 9.5 and exact
eigenergies of the anharmonic oscillator for the first nine energy levels, assuming
nonlinearities δ = 0.01 and δ = 0.1.

where ω is the frequency of the |0〉 ↔ |1〉 transition. H can be diagonalized straight-
forwardly and its eigenstates |n〉, n = 0, 1, 2, . . . are close to the harmonic oscillator
eigenstates, see fig. 9.2, at small δ and the eigen-energies are given by the polyno-
mial deriving from Eq. (9.5), En ' H0(n). We can note that for small δ, which is
the most challenging control problem, the energy splittings between adjacent levels
are only slightly different from each other. Denoting the transition frequencies as
ωij = (Ei − Ej)/~, this means that ωn+1,n = ω + δn only has a weak n dependence
by δ � ω.

In the most common physical situation, external driving is given by

Hc(t) = F (t)x = ~f(t)(a+ a†) (9.6)

corresponding to current drive in the Josephson case, a laser field in the ion trap
case and an external force in the nano-mechanical case. Here, f(t) is proportional
to F [31]. Given that the eigenstates are almost harmonic oscillator eigenstates, this
drive predominantly, in the sense of an approximate selection rule, couples adjacent
levels, n and n+ 1.

This setting outlines two difficulties in the task of preparing Fock states starting
from the ground state using a straightforward application of Hc. Firstly, there is no
direct transition from the ground state to any state higher than |1〉 unless δ is large
enough to make the eigenstate corrections due to V̂ , Eq. (9.4), significant. Secondly,
even for preparing the first excited state, the approximate Liouvillian degeneracy
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9.1. DUFFING OSCILLATOR

Figure 9.3: The amplitudes of three pulse sequences optimized by GRAPE for
preparation of |1〉 (top), |2〉 (middle), and |3〉 (bottom) are shown. Each system had
a Hilbert space consisting of 10 eigenstates, with δ = 0.12. Each optimized pulse
leads to a fidelity of 0.9999.

(i.e., the weak n-dependence of ωn+1,n, prohibits short pulses: A short resonant
π-pulse of length Tr has, by the energy-time uncertainty principle of the Fourier
transform, a bandwidth of ωB ' π/Tr. If ωB becomes comparable to the small
parameter |ωn+1,n − ωn,n−1| = δ, a pulse applied to ωn,n−1 will have a significant
Fourier component at ωn+1,n. Hence, driving the transition from n − 1 to n will
inevitably also drive n to n+ 1 inducing leakage to the next higher state n+ 1. This
could be overcome by a very long π-pulse that keeps ωB small, however, in a realistic
setting, this will compete with energy relaxation back to the ground state at a rate
T1, effectively limiting ωB � 1/T1.

9.1.2 Numerical solutions

We have analyzed this setting numerically in a number of cases using the methodology
of Ch. 5.1. In all cases, the initial state was chosen to be the ground state, |ψi〉 = |0〉
and the first, second, and third excited state where chosen as final states, |ψf〉 =
|n = 1, 2, 3〉. We have truncated the energy spectrum at n = 10 levels and verified,
that changing the number of levels did not lead to a discernible change in the pulse.
In Fig. 9.3 we show optimized pulses that display clear beating behavior.

This beating becomes more complex as we go to higher states. More clearly, this
structure can be analyzed by its Fourier transform, as shown in fig. 9.4 A.
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9.1. DUFFING OSCILLATOR

Figure 9.4: A)Fourier spectrum for preparing |2〉. To the left and right of the zero
frequency is the imaginary and real coefficients, respectively, of the decomposition.
The main peaks in each pulse spectrum is labeled. The transition frequencies be-
tween |0〉 and |1〉 (ω = 1.12) are apparent in each pulse. The transition frequency
ω21 = 1.24 and ω32 = 1.36 is apparent in the pulse preparing the |2〉 and |3〉 states.
B )Populations of the different states during the pulse taking |0〉 into |2〉. It is rec-
ognized, that |0〉 is first excited into |1〉 and that this one then goes into |2〉 whereas
higher states are somewhat occupied during the pulse and then go to zero. Additional
fast modulation is due to counter-rotating terms.

We observe a cluster of close discrete lines, confirming the observation that the
pulses are beatings. The predominant frequencies in the |0〉 → |2〉 transition are
ω10 = 1.12, the slightly higher ω21 = 1.24 and ω32 = 1.36, with additional sidebands.
Analyzing more transitions, we see the same picture, where a transition from |0〉 to
|n〉 contains frequencies ωm+1,m for 0 ≤ m ≤ n. The state populations during the
pulse can be seen in Fig. 9.4B.

This structure can be understood as follows: Due to the oscillator selection rule,
the ladder of states needs to be climbed sequentially, it is not possible to go from
|n〉 to |n + k〉 for any k > 1, explaining the frequencies ω10 through ωn,n−1 for a
transition 0→ n that correspond to driving π-pulses on those respective transitions.
This is clearly visible by the population of |1〉 in Fig. 9.4B. Due to the bandwidth
issue discussed in section 9.1.1, this also drives the transition to level n+ 1, it is also
necessary to drive the leakage transition leading out of |n〉, i.e., at ωn,n+1.

This analysis confirms the picture of sequential occupation of Fock states, climb-
ing an energy ladder, with some intermediate leakage to higher state that corrects
itself in the end. Next to these long-scale Rabi dynamics, there is a fast modula-
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Figure 9.5: (A) Error for a pulse aiming at creating the first excited state for
δ = 0.12 along with an exponential fit (solid) and 95% confidence lines (dashed).
(B) Scaling of the minimal gate time with the nonlinearity parameter with power-
law fits. Exponents are −0.73 for |0〉 → |1〉 and −0.90 for |1〉 → |2〉.

tion on the scale of the average driving frequency typical for strong driving where the
counter-rotating component of the drive that is not part of standard Rabi physics [31]
becomes important. In the end of the pulse, populations of |1〉 and |3〉 are brought
back to |2〉.

As mentioned in Sec. 8.1, nonlinearity is a resource for the creation of Fock
states. At very short pulse durations tg state transfer pulses must scale with a
constant area, i.e., their amplitudes will scale as 1/tg. Thus, if the pulse is too
short the driving amplitude will be so high that the δ-term in the Hamiltonian can
be neglected and Fock state preparation will not be possible. We have numerically
investigated the gate fidelity as a function of pulse duration and found the error to
be roughly exponentially growing at short times, see Fig. 9.5A.

Next we investigate the minimal time to reach a fidelity of 0.99999% for pulses
|0〉 → |1〉 and |1〉 → |2〉, Fig. 9.5B. We see that this minimal time is a power law of the
nonlinearity parameter δ; tmin ∝ δα with α01 = −0.73±0.029 and α12 = −0.90±0.031

As a reference, we can construct the corresponding power law for non-optimized,
single frequency Rabi pulses, starting from the |0〉 → |1〉 transfer. Transforming to
the frame rotating with the driving frequency, the effect of the pulse on the unwanted
|1〉 → |2〉 transition is to switch a transition matrix element on and off. This matrix
element has to be compared to the detuning between the transition |ω21−ω10| ' δ. In
order to create a Rabi pulse of fixed area π, the maximal amplitude of the transition
matrix elements scales as 1/tg, and its rate of change thus scales as 1/t2g. In order
to not occupy the |2〉-state in the end of the pulse, the dynamics of the |1〉 ↔ |2〉-
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9.1. DUFFING OSCILLATOR

transition must be fully adiabatic [122], i.e., following a standard result from Landau-
Zener theory [98, 167, 188], we demand 1/t2g � δ2 leading to a minimal gate time of
tg ∝ 1/δ. We would not expect this scaling law to change for the 0 → 2 transition,
which is ultimately a sequence of two transitions of length 1/tg, only a different
prefactor.

Thus, we can conclude that our optimal pulses qualitatively extend the limits of
Fock state preparation by changing the minimal time to a softer power law, from
1/δ to 1/δ0.73±0.029. One can conclude that this is due to quantum interference in
the higher levels. The difference is made possible by temporarily occupying higher
states and unpopulating them in the course of the pulse. It needs to be remarked,
that our pulses qualitatively differ from quantum gate pulses, i.e., rotations of the
full basis instead of changing state [122, 148], where a 1/δ scaling of the minimal
time is found. This suggests that state preparation, which is less constrained, can
use quantum interference more efficiently. A related paper has been posted [80] that
looks at preparation of |1〉 exclusively and finds different envelopes, probably due to
additional constraints.

9.1.3 Analytical solutions

We consider a qubit defined in the intermediate states of an anharmonic oscillator
[Fig. 9.1 (a)]. This situation is important if the anharmonic oscillator is going to be
used for qudit logic, as done in Ref. [128], or for state tomography of the qudit, as
done in Ref. [13]. The situation is also more constrained than Sec. 9.1.2 since we
consider logical gates rather than state preparation (though the logical gates can be
used for state preparation). We rewrite the free Hamiltonian Eq. 9.5 and control
Hamiltonian Eq. 9.6 as

Hfr =
N∑

j=−N

(jω + ∆j)Πj, (9.7)

Hct(t) = E(t)
N∑

j=−N+1

λj−1σ
x
js−1,j, (9.8)

where N = (d−1)/2 and again we take ∆0 = ∆1 = 0. Moving to a interaction frame
similar to Eq. (8.7) (the sum range is changed to be consistent with the above) we
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find a dimensionless rotating frame Hamiltonian

H0 =
N∑

j=−N, 6=0,1

∆j

∆2

Πj, (9.9)

Hz =
N∑

j=−N

jΠj, (9.10)

Hx =
N∑

j=−N+1

λj−1σ
x
j−1,j, (9.11)

Hy =
N∑

j=−N+1

λj−1σ
y
j−1,j. (9.12)

To find the first order corrections, we follow a similar procedure to Sec. 8.6. The
frame constraints for Eq. 8.31 to remove leakage become

s
(1)
x,0,k(t) =0, s

(1)
y,0,k(t) = −λ−1∆2tgΩG(t)δk,−1

2∆−1

,

s
(1)
x,1,k(t) =0, s

(1)
y,1,k(t) = −λ1tgΩG(t)δk,2

2
,

(9.13)

and the dimensionless first order control fields are

Ω̄(1)
x (t) = 2ṡ

(1)
x,0,1(t), (9.14)

Ω̄(1)
y (t) = 2ṡ

(1)
y,0,1(t)− s(1)

z,1(t)tgΩG(t), (9.15)

δ̄(1)(t) = ṡ
(1)
z,1(t) + 2s

(1)
y,0,1(t)tgΩG(t) (9.16)

+
t2gΩ

2
G(t)

4

(
λ2

1 − ∆2

∆−1
λ2
−1

)
. (9.17)

From this we find the control fields for Z-only correction are

Ωx(t) =ΩG(t), Ωy(t) = 0,

δ(t) =
Ω2
G(t)

4

[
λ2
1

∆2
− λ2

−1

∆−1

]
,

(9.18)

the Y -only are

Ωx(t) =ΩG(t), Ωy(t) = −Ω̇G(t)

4

[
λ2
1

∆2
− λ2

−1

∆−1

]
,

δ(t) =0,

(9.19)
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Figure 9.6: Gate error for the implementation of a NOT gate when there is leakage
above and below the qubit subspace. The system considered is explained in the text.
The blue dotted line is the zeroth order solution. The black dash line is the first order
Z-only correction. The red dash-dot-dot line is the first order Y -only correction. The
purple solid line is for the optimal first order correction.

and the optimal first order control field corrections (after minimizing second order
terms) are

Ωx(t) = ΩG(t), (9.20)

Ωy(t) = −Ω̇G(t)

2∆2

√
λ2

1 +
∆2

2

∆2
−1
λ2
−1, (9.21)

δ(t) =
Ω2
G(t)

4∆2

[
λ2

1 −
∆2

2

∆2
−1
λ−1

]
. (9.22)

To demonstrate an improvement over the zeroth order solution we consider a SNO
(of d = 6) where we want to control the 2 → 3 transition. In this case, we relabel
j = 2 to 0 and so on, rescaling the coupling so that the new 0→ 1 transition is unity.
This results in setting ∆3 = 3∆2, ∆−1 = ∆2, ∆−2 = 3∆2, and λ0 = 1, λ1 =

√
4/3,

λ2 =
√

5/3 λ−1 =
√

2/3, λ−2 =
√

1/3. In Fig. 9.6, the gate error for implementing
a NOT gate is shown as a function of σ for the same Gaussian shaped pulse as
considered in Sec. 8.4. Here we observe that the DRAG technique improves the gate
fidelities substantially when compared to the zeroth order solution.

Finally, note that because of the Liouvillian degeneracy, ∆−1 = ∆2, this system
is a prime candidate for using a second derivative pulse (Sec. 7.1.3.5) which is
symmetric around the driven transition. This may be addressed in future research.
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9.2 Multiple leakages from one level
In the second case shown in Fig. 9.1 B, we consider a qubit made from the lowest 2
levels of a system which is coupled to many other transitions, all transitions having
only a small energy cost (approximately ∆2). This is an interesting example as it
shows how this theory can be easily generalized. In this case we write the free and
coupling Hamiltonians as

Hfr = ωΠ1 +
d−1∑
j=2

(2ω + ∆j)Πj, (9.23)

Hct(t) = E(t)

(
λ0σ

x
0,1 +

d−1∑
j=2

λj−1σ
x
1,j

)
. (9.24)
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Figure 9.7: Gate error for the implementation of a NOT gate when there are many
leakage transitions for the excited state. The system considered is explained in the
text. The blue dotted line is the zeroth order solution. The black dash line is the
first order Z-only correction. The red dash-dot-dot line is the first order Y -only
correction. The purple solid line is for the optimal first order correction.

To eliminate the fast degrees of freedom we move to a rotating frame and make
the standard rotating wave approximation. The procedure is similar to Sec. 8.6 with
the replacement of Eq. (8.7) by

R(t) = exp (−iωdt) Π1 +
d−1∑
j=2

exp (−i2ωdt) Πj. (9.25)
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This results in a dimensionless rotating frame Hamiltonian equivalent to Eq. (9.24)
with

H0 =
d−1∑
j=2

∆j

∆2

Πj, Hz = Π1 +
d∑
j=2

2Πj,

Hx = λ0σ
x
0,1 +

d−1∑
j=2

λj−1σ
x
1,j, Hy = λ0σ

x
0,1 +

d−1∑
j=2

λj−1σ
y
1,j.

Again, we find the zeroth order controls given by Eq. (3.3). To find the first order
corrections, we find the first order frame transition to be

s
(1)
x,0,k(t) =0, s

(1)
y,0,k(t) = 0,

s
(1)
x,1,k(t) =0, s

(1)
y,1,k(t) = −λk−1tgΩG(t)∆2

2∆k

.
(9.26)

This gives the dimensionless first order control fields

Ω̄(1)
x (t) =2ṡ

(1)
x,0,1(t),

Ω̄(1)
y (t) =2ṡ

(1)
y,0,1(t)− s(1)

z,1(t)tgΩG(t),

δ̄(1)(t) =ṡ
(1)
z,1(t) + 2s

(1)
y,0,1(t)tgΩG(t)

+
t2gΩ

2
G(t)∆2

4

(∑d−1
k=2

λ2
k−1

∆k

)
.

(9.27)

From this, we find the control fields for the Z-only correction are

Ωx(t) =ΩG(t), Ωy(t) = 0,

δ(t) =
Ω2
G(t)

4

∑d−1
k=2

λ2
k−1

∆k
,

(9.28)

for the Y -only correction are

Ωx(t) =ΩG(t), Ωy(t) = −Ω̇G(t)

4

∑d−1
k=2

λ2
k−1

∆k
,

δ(t) =0,

(9.29)

and the optimal first order control field corrections (after minimizing H(2)
extra(t)) are

Ωx(t) =ΩG(t), Ωy(t) = −Ω̇G(t)

2∆2

√∑d−1
k=2

∆2
2λ

2
k−1

∆2
k
,

δ(t) =
Ω2
G(t)

4∆2

[∑d−1
k=2

∆2
2λ

2
k−1

∆2
k
− 2

√∑d−1
k=2

∆2
2λ

2
k−1

∆2
k

]
.

(9.30)
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We note that these solutions are identical to the previous solutions with a single
leakage channel where λ1 = λ̃,

λ̃ ≡
√∑d−1

k=2

∆2
2λ

2
k−1

∆2
k
. (9.31)

To numerically demonstrate an improvement over the zeroth order solution, we
consider the implementation of a NOT gate for a d = 6 system with λj = 1 for all j
and ∆3 = 2∆2, ∆4 = 3∆2, ∆5 = 4∆2 (note these are different parameters from the
anharmonic oscillator considered in Sec. 9.1.1). The results are plotted in Fig. 9.7,
where again, it is clearly seen that the DRAG technique improves the zeroth order
solution.

9.3 2-Qubit leakage

9.3.1 General Model

The system that we consider consists of two coupled qubits. Each qubit is made up
of the ground and first excited states of a slightly anharmonic oscillator (see Sec. 6.7).
We examine the lowest three levels of the spectrum; the third level represents leakage.
This results in a single qubit Hamiltonian given by

Hqubit = ~
∑
i=1,2

(ω1
i Π

(1)
i + ω2

i Π
(2)
i ) (9.32)

where we have projectors Π
(i)
j = |j〉〈j|i and transition energies ~ωj. The coupling

takes the form of voltage coupling, so that the qubit interaction term can be written
as

Hint = J(t)
(
σx,10,1 + λ1σ

x,1
1,2

)(
σx,20,1 + λ2σ

x,2
1,2

)
(9.33)

where σx,ki,j = |i〉〈j|k+|j〉〈i|k and λk measures the relative strength of the 1-2 transition
to the 0-1 transition for the kth qubit. The parameter J(t) is the coupling strength
between the qubits. Control of the system is represented by this variable coupling
term. So, in the lab frame our Hamiltonian is

H = ~
∑
i=1,2

(ω1
i Π

(1)
i + ω2

i Π
(2)
i ) + J(t)

(
σx,10,1 + λ1σ

x,1
1,2

)(
σx,20,1 + λ2σ

x,2
1,2

)
(9.34)

By making the rotating wave approximation (RWA), we can write the effective Hamil-
tonian as

Heff = Hdrift + V (t) (9.35)
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where V (t) is the effective coupling term and Hdrift is the effective single qubit Hamil-
tonian. V (t) and Hdrift are given by

V (t) = J(t)
[
a1a

†
2 + h.c.

]
for ai = |0〉〈1|i + λ|1〉〈2|i (9.36)

Hdrift = ∆Π
(1)
2 + ∆Π

(2)
2 (9.37)

where ∆ = ωi2 − 2ωi1 is the anharmonicity of the qubits, assumed to be the same for
both qubits i = 1, 2 which are brought on resonance, and we have set ~ = 1. We
have also assumed that λ1 = λ2 = λ. The subspaces in H are coupled by V (t) in the
following way:

|01〉 to |10〉
|12〉 to |21〉
|11〉 to |02〉, |20〉 (coupling across subspaces)

So, we can write V(t) in terms of a degenerate subspace and another subspace that
represents leakage: V (t) = Vleak + Vdeg

where Vleak = J(t)
[
λ|02〉〈11|+ λ|11〉〈20|+ h.c.

]
(9.38)

Vdeg = J(t)
[
|01〉〈10|+ λ2|12〉〈21|+ h.c.

]
(9.39)

In the absence of the third (leakage) level, the coupling terms between the qubits
generate an ideal ISWAP gate. Namely, if

H = Vdeg = J
[
|01〉〈10|+ λ2|12〉〈21|+ h.c.

]
with J =

π

2T
(9.40)

a perfect ISWAP unitary propagator is formed U = T e−i
´ T
0 Hdt = e−iHT (where T

is the gate time). So, if ∆ is large, in which case the effect of the third level is
essentially averaged out over the gate, very high fidelity can be obtained using a
constant coupling strength of π

2T
. For example, for ∆ = 10 GRad/s (= 1.59 GHz)

and a gate time of 10 ns the fidelity of the ISWAP gate produced with this constant
coupling is F = 0.99814. For more practical anharmonicities in the vicinity of 300
MHz, the fidelity drops significantly due to leakage. For example, for ∆ = 2.2
GRad/s (= 350 MHz) and a gate time of 10 ns the fidelity is F = 0.947449; doubling
the gate time to 20 ns only increases the fidelity to F = 0.990626.
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9.3.2 Numerical solution

As a starting point for the GRAPE algorithm, we use a constant coupling J(t) = π
2T

and choose a pixel width of 0.01 ns. A sample result can be seen in Fig. (9.8),
which illustrate the characteristics of solutions for this system found by GRAPE.
The solutions exhibit an oscillatory term superimposed onto the constant coupling
component π

2T
. In most cases the sinusoidal term has frequency larger than ∆ by a

small offset and is also slightly amplitude modulated.
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Figure 9.8: (a) Control amplitude (inter-qubit coupling strength) J(t) as a function of
time for two coupled qubits both having an anharmonicity of ∆ = 1 GRad/s (= 159
MHz). The pulse is obtained numerically using GRAPE with a pixel width of 0.01
ns; the ISWAP gate is produced with fidelity F = 0.99997. This is a significant
improvement over the fidelity for a constant coupling strength: F0 = 0.97. (b)
Fourier spectrum (magnitude) of the pulse in (a) showing a peak at frequency ω =
1.228 GRad/s (= 195 MHz) corresponding to the oscillation frequency of the coupling
strength.

Neglecting the small amplitude modulation seen in the GRAPE pulses, we look
for solutions of the form:

J(t) =
π

2T
+ A cos

(
(∆ + ε)t

)
(9.41)

By finding optimal solutions, we see that the relative scaling factor does not seem
to be present, so A = π

2T
. We also find that increasing the frequency offset ε reduces

the gate time T necessary for a high fidelity ISWAP gate. However, for each ∆ there
is a unique ε = 0.2398∆ yielding a global maximum of the fidelity. These relationship
is plotted in Fig. (9.9) which give a clear prescription for removing the leakage error.
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Figure 9.9: For each of the different ∆ in these two plots, the frequency offset ε
and the gate time T are found numerically to produce maximum fidelity (within
a reasonable gate time). The fidelities of these points range from F = 0.999948
to 0.999961 which is a large improvement over the range for a constant coupling
strength: F0 = 0.9709 to 0.9713. The resolution is 0.003 GRad/s (= 0.5) MHz for
each optimal ε and is 0.05 ns for each optimal gate time. (a) Optimal gate time T
versus the intrinsic anharmonicity ∆ of the qubits (assumed equal) for a number of
different ∆s (blue point markers). The red line is a fit line of the form: T (∆) = 25.49

∆
;

the root mean squared error (RMSE) of the fit is 0.01719. (b) Optimal frequency
offset ε versus anharmonicity ∆ for a number of different ∆’s (blue point markers).
The red line is a fit line of the form: ε(∆) = 0.2398∆ (RMSE is 0.006953).

9.3.3 Analytical solution

We wish to motivate the form of solutions found numerically. First of all, one notices
that the optimal T (∆) ≈ 8π

∆
so that the leakage transition has minimal spectral

weight,
´ T

0
Je−i∆tdt ≈ 0. Adding in the second tone at frequency ∆ + ε also does

not change the spectral weights of the two transitions as we can see from the two
graphs that ε = 6.11/T ≈ 2π/T and ∆ + ε ≈ 10π/T , giving

´ T
0
J cos(ε)dt ≈ 0 and´ T

0
J cos(∆ + ε)e−i∆tdt ≈ 0. Moreover, since the solutions are constant amplitude

solutions, we can neglect the derivative of the envelope function as we did in e.g.
Sec. (7.1.1). In fact, if we did have solutions that were not constant in amplitude we
would run into a Liouvillian degeneracy as in Sec. (9.1.1) which would deteriorate
the quality of the pulses. Thus, with the absence of selectivity or shaping error we
expect the main errors and corrections to come from phase accumulation.

To see this we look at the leakage term Vleak when J(t) = J . Applying a trans-
formation A = exp(−iVleakt) to the Hamiltonian gives to first order in the inverse
anharmonicity
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9.3. 2-QUBIT LEAKAGE

HA = Hdrift + Vdeg(t) +
λ2J2

∆
(2|11〉〈11|+ |02〉〈02|+ |20〉〈20|) +O(

1

∆2
) (9.42)

We want to cancel the phase error (i.e. ac-Stark shift) in the qubit’s subspace

2λ2J2

∆
|11〉〈11|

Note that the effect is entangling and cannot be canceled with single qubit gates.
Instead we expect that adding the second tone J(t) = J cos(∆ + ε) has exactly this
needed effect. To see this we can move to the frame rotating at frequency ∆ + ε via
the rotating frame R = exp(−i(∆ + ε)(Π

(1)
1 + Π

(2)
1 + 2Π

(1)
2 + 2Π

(2)
2 )t) which gives

HR = J(1 + cos[(∆ + ε)t])e−i(∆+ε)t(|01〉〈10|+ λ|02〉〈11|+ λ|11〉〈20|+ λ2|12〉〈21|) + h.c.

−(∆ + ε)Π
(1)
1 − (∆ + ε)Π

(2)
1 − εΠ

(1)
2 + εΠ

(2)
2

Expanding the cosine into a sum of exponentials and dropping terms with fre-
quency 2(∆ + ε) we can simplify this somewhat to

HR ∼= J(e−i(∆+ε)t +
1

2
)(|01〉〈10|+ λ|02〉〈11|+ λ|11〉〈20|+ λ2|12〉〈21|) + h.c.

−(∆ + ε)Π
(1)
1 − (∆ + ε)Π

(2)
1 − εΠ

(1)
2 + εΠ

(2)
2

From this frame it is possible to deduce the effect of the extra term on the qubit’s
subspace, which can be seen via the transformation B = exp(i(− iJ

∆+ε
|01〉〈10| −

iλJ
ε
|02〉〈11| − iλJ

ε
|11〉〈20|+ h.c.)t) to give

HB = J(e−i(∆+ε)t)(|01〉〈10|+ λ|02〉〈11|+ λ|11〉〈20|+ λ2|12〉〈21|) + h.c.(9.43)

−(∆ + ε)Π
(1)
1 − (∆ + ε)Π

(2)
1 − εΠ

(1)
2 + εΠ

(2)
2

−λ
2J2

4ε
(2|11〉〈11|+ |02〉〈02|+ |20〉〈20|)

− J2

4(∆ + ε)
(|01〉〈01| − |10〉〈10|) +O(

1

∆2
)

Comparing this equation with Eq. (9.42)we see that the necessary condition for
canceling the phase error on |11〉〈11| is
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9.3. 2-QUBIT LEAKAGE

4ε = ∆.

This corresponds very closely to the relationship found in Fig. (9.9)B, with the
slight deviation explainable by higher order corrections. Note that there is also a
shift of the |01〉〈01| and |10〉〈10| levels but these are suppressed by a factor of ∆

8λ2(∆+ε)

which for typical values is about 20 times smaller than the original phase shift, with
a similar decrease in the error. In fact, if we include this term in the |11〉〈11| shift,
and choose 4.05ε = ∆ this comes even closer to the optimal value. This method
can also easily be expanded to the case where the anharmonicities of the qubits are
different.
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Chapter 10

Virtual Transitions

We have seen that errors in performing gate operations can arise from non-idealities
in the driving fields and from complications in the Hilbert space of the qubits that
go beyond a 2-level approximation. It turns out that complications in the Hilbert
space can also be beneficial. Frame transformations can be used to couple energy
levels that do not ordinarily contain a matrix element in the physical lab frame (see
e.g. Fig. 10). The advantage of such a situation is that if no matrix element is con-
tained between the qubit levels then relaxation can in principle be greatly suppressed.
In other cases, the virtual transition can be used where selectivity conditions would
make driving the individual transitions of which it is composed impossible. For vir-
tual transitions, multiple photons are used, with the condition that their energies add
up to the energy splitting of the driven transition for energy conservation to hold. It
is conventional wisdom to perform an adiabatic approximation for these transitions
that any transition that does not conserve energy will be greatly suppressed. This
approximation will be quantified in an order expansion as it was in Ch. 8 and Ch. 9.
On the other hand, it will be shown in this chapter that two photon (Raman) transi-
tions can be obtained using an exact interaction frame representation where leakage
is exactly suppressed and no adiabatic expansion is necessary. When the transitions
are driven with equal amplitude, it will be shown that these transitions can be driven
in arbitrarily small times. Finally, numerical optimization with response functions
(Ch. 5.1) can be used when multiple tones at different frequencies are used to drive
the system. In particular, the numerical methodology is useful when not all of the
oscillation can be removed from the Hamiltonian description.

The physical examples that will be considered are as follows. In Sec. 10.1, qutrits
where the qubit is formed from the first and last levels with driving via an interme-
diary level will be considered. In Sec. 10.2, quantum elements are coupled using a
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10.1. RAMAN TRANSITIONS

virtual sideband transition that couples |00〉 and |11〉 for an effective entangling gate.
Finally, in Sec. 10.3, the situation where a qubit is isolated from the environment via
a cavity and all control is done through the cavity is considered, including virtually
driving the qubit.

ωE
ne
rg
y

(a) (b)

|0〉

|1〉

|2〉

|0〉
|1〉

|2〉ω

1

2

ω1
ω2

Figure 10.1: A stimulated Raman transition is shown where |0〉 and |1〉 qubit states
are not directly connected but indirectly via |2〉. In (a) the transition frequency is
given by the sum of the single photon transitions while in (b) it is their difference.
Driven transitions between levels exist where there are black arrows while the red
arrows indicate the desired transitions.

10.1 Raman transitions
An alternate strategy to assigning two adjacent levels of an energy spectrum to a
qubit is to use two levels that are not connected by a matrix element in the Hamil-
tonian, in order to avoid relaxation error between them. In this case, a temporary
level with transitions to both qubit levels can be used to connect them. In practice
the auxiliary level will usually have greater decay so it is preferable to minimize in-
termittent population to the level. To this end virtual multi-photon transitions can
be used that to a certain degree of approximation do not populate the intermediary
levels. The full dynamics can once again be obtained via a frame transformation.

Most simply, we have an interaction Hamiltonian with two independent drives of
the form

Ĥ =(Ω1(t)e−iφ1Γ̂1
0,1(−δ) + Ω2(t)e−iφ2Γ̂2

1,2(δ)) + h.c. (10.1)

with Γ̂la,b(δ) = λla,be
−iδt|a〉〈b| as in Eq. 7.3. Without loss of optimality, we pick

Ω(t) = ReΩ1(t)λ1
0,1 = ReΩ2(t)λ2

1,2 and moving to frame rotating at the driving
frequency we get

151



10.1. RAMAN TRANSITIONS

H̃(Ωe−iφ, δ) = (Ω(t)e−iφ(σ̂+
0,2 + σ̂+

1,2) + h.c.) + δ|1〉〈1| (10.2)

Applying the interaction frame transformation for the off-phase control

D = exp(

ˆ t

0

H̃(ImΩ(t)dt, 0)dt)

we obtain a matrix equation for DH̃(ReΩ(t), 0)D† = Ωeff(t)σx0,1 which can easily
be solved for the imaginary control to be

ˆ t

0

ImΩ(t)dt =
1

2
√

2
arctan

2
√

2ReΩ(t)

δ
(10.3)

This transformation leaves the Hamiltonian in the form

H̃D ≈

(
1

4
+

3

4

√
1 +

8ReΩ2(t)

δ2

)
δ|2〉〈2|

− 1

4

(
−1 +

√
1 +

8ReΩ2(t)

δ2

)
δΓ̂0,1(0) + h.c.

(10.4)

Thus we have the simple condition for rotation that

ˆ T

0

1

4

(
−1 +

√
1 +

8ReΩ2(t)

δ2

)
δdt =θ (10.5)

for an exact rotation, noting that there is no phase error because of the chosen
symmetry of the solution between the two drives.

This is an exact solution and completely removes both leakage and rotation error
in the pulses. For all gate times and in the limit T → 0, the gate error is identically 0.
The solution also tolerates small sampling/shaping error despite the large amplitudes
required to drive a rotation at small times. In Fig. 10.2, we have chosen to leave in
the small sampling error to illustrate the dramatic decrease in error and gate times
from conventional to DRAG pulses. What is most striking about the solution is that
it works even for very large energies in the domain that is definitely not adiabatic.
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10.1. RAMAN TRANSITIONS
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Figure 10.2: Rotation error for Raman transition with two independent drives. The
blue line is the error from Gaussian shaping with the red line is the DRAG solution
under finite sampling. For infinitesimal sampling this error is identically 0.

This is in contrast to conventional pulses (the blue line) which need to be slow in
order to minimize higher order terms in an adiabatic expansion.

For drives not of the same amplitude Ω1(t) 6= Ω2(t), such as is used in conventional
STIRAP pulses [10], it is still exactly solvable but it is unclear whether there exists
a closed expression. In this case there may be a similar expansion to Sec. 8.5.1 but
given that the more constrained case already solves the problem exactly this has not
been explored. Since STIRAP is also adiabatic, a dramatic improvement in unitary
transfer is also expected by using instead DRAG.

Note that if one uses a single drive (chosen at the halfway frequency of the two
driven transitions) one still gets the same Hamiltonian Eq. 10.2. However one cannot
enforce both derivative conditions, Eq. 10.3 with a single first-derivative drive. In
effect one runs into the same Liouvillian degeneracy issue as was the case in Sec.
9.1.1and Sec. 9.3.1. As in the other two cases, this would be a good candidate to use
the second derivative as prescribed in Sec. 7.1.3.5 to simultaneously deselect both
transitions.

In practice, it is better to drive the transitions separately. If there is no sepa-
rate addressability to the transitions (as in Ch. 7) then we have the more general
Hamiltonian

Ĥ =Ω1(t)e−iφ1(Γ̂1
0,1(∆ + δ) + Γ̂1

1,2(δ)) + h.c.

+ Ω2(t)e−iφ2(Γ̂2
0,1(−δ) + Γ̂2

1,2(∆− δ)) + h.c.
(10.6)

Provided ∆ is large this does not significantly impact the solution presented,
especially when the detunings are on the same side of each of the drive frequencies
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10.2. 2-QUBIT COUPLING

(as would occur in Fig. 10A). For ∆ comparable to δ it may be possible to improve
the result by driving the virtual transition using all four transitions while suppressing
all the single photon transitions, and this is a possible direction of future research.

10.2 2-Qubit coupling

Figure 10.3: We consider the case when the |00〉 to |11〉 transition contains no ex-
plicit matrix element but by driving the single photon transitions at the correct sum
frequency this transition can be activated. Driven transitions between levels exist
where there are black arrows while the red arrows indicate the desired transitions.

10.2.1 Ansatz solution

We study the generalized Jaynes-Cummings system [78](also studied in Sec. (8.3.1))
with the purposes of moving an excitation between the qubit and the cavity. As a
further complication, we allow the qubit to have leakage to a third level in keeping
with superconducting systems as our standard example (see Fig. 10.3). Then,

HJC =ωra
†a+

d−1∑
j=1

(jω + ∆j)Πj +
d−1∑
j=1

gj−1,j

(
|j − 1〉〈j|a† + |j〉〈j − 1|a

)
, (10.7)

where all terms are defined in Sec. (8.3.1). The selected strategy is to drive
a sideband transition between the |00〉 and |11〉 levels which is a virtual transi-
tion [100]. Note that driving the transitions consecutively would not provide a re-
versible/entangling gate because it involves only single qubit gates. However, it
cannot even be used for state preparation (of e.g. a Bell state) because in practice
one cannot excite the cavity Fock states directly because it is a (infinite dimen-
sional) harmonic system with no distinct transition energies. That is, photons that
are injected into the cavity are driven by a Hamiltonian of the form
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10.2. 2-QUBIT COUPLING

Hdr(t) = ε(t)(a+ a†) (10.8)

Using this drive, three transitions can be combined into one virtual one via |00〉 ↔
|01〉 ↔ |10〉 ↔ |11〉 where the first and last transition are driven and the middle
transition is the natural coupling between the qubit and cavity at strength g0,1. The
sideband frequency that is used is exactly the halfway energy, ω+ωr

2
. Rather than

calculating the matrix elements which are quite cumbersome and involve calculations
very similar to Sec. (10.1) we use the ansatz that the primary errors will involve
a derivative selection error on the off-resonant single photon transitions and an ac.
Stark shift of the qubit transition. As in Sec. (8.7.1) we simply optimize the prefactors
A,B,C,D in front of these terms:

εx(t) = AΩT (t)

εy(t) = BΩ̇T (t)

δω(t) = C
Ω2
T (t)

ω − ωr
+D

with ΩT (t) defined in Eq. (3.1).
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Figure 10.4: Gate error vs. gate time for sideband transition in J-C ladder with
ac-Stark shift and derivative corrections.
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10.2. 2-QUBIT COUPLING

In Fig. (10.4) we compare gate error vs. gate time for 3 solutions. The red line
represents the standard solution of constant driving with 1ns rise time (consistent
with electronics) and constant frequency whereby we optimize only A and D. Next
we compute the “Z-only” solution (shown in dashed purple) which involves optimiz-
ing A,C, and D and where for additional selectivity we use a larger rise-time of 5ns.
Finally, the “optimal 1st order” solution is consider in which all prefactors are opti-
mized and a rise-time of 5ns is used once again. We see an improvement of 2 orders
of magnitude compared to what is conventionally used.

10.2.2 Optimization with two tones

We now apply full numerical optimization to the problem of coupling two frequency
separated qubits using a sideband transition. This example illustrates the need
for numerical optimization on a finer grain than the sampling of the controls (as
introduced in Sec. 6.1) in the common case that multiple frequency components
are used in the control. This is an important problem as including more tones is
straightforward way to increase the fidelity of gate operations. We consider two
off-resonant qubits coupled by a XX + Y Y interaction and drive with two different
frequencies, one resonant with one of the qubit’s transition frequency and the second
tuned to exactly the average of the qubits’ transition frequencies, in order to generate
an
√

ISWAP operation. Thus, we see the system has three frequencies, and there is
no frame in which all fast dynamics can disappear. Specifically, we start with the
Hamiltonian of the form,

H =E (1)
x (t)σ(1)

x cos
(
ω

(1)
d t
)

+ E (1)
y (t)σ(1)

x sin
(
ω

(1)
d t
)

+ E (2)
x (t)σ(2)

x cos
(
ω

(2)
d t
)

+ E (2)
y (t)σ(2)

x sin
(
ω

(2)
d t
)

+ J
(
σ

(1)
+ σ

(2)
− + σ

(1)
− σ

(2)
+

)
+ ω1σ

(1)
z + ω2σ

(1)
z ,

(10.9)

where the superscripts index the qubit, σ± are the raising and lowering operators,
J is the strength of the coupling, ω1 and ω2 are the qubit frequencies, and ω(1)

d and
ω

(2)
d are the drive frequencies.
Choosing the frame rotating at the energies of the two qubits (which is conven-

tional, but not the only available frame) and setting the first drive to ω(1)
d = ω1+ω2

2
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Figure 10.5: Gate error as a function of the number of subpixels for the multi-tone
example. The solid red line is for ∆/2π = 1.0 GHz and the green dashed line is for
∆/2π = 0.5 GHz. Other parameters are given in the text.

and the second drive to ω(2)
d = ω2, we find

HR =
E (1)
x (t)

2
(σ

(1)
+ e−i∆t/2 + σ

(1)
− ei∆t/2) +

E (2)
x (t)

2
σ(2)
x

+
E (1)
y (t)

2
(iσ

(1)
+ e−i∆t/2 − iσ(1)

− ei∆t/2) +
E (2)
y (t)

2
σ(2)
y

+ J(σ
(1)
+ σ

(2)
− ei∆t + σ

(1)
− σ

(2)
+ e−i∆t),

(10.10)

where ∆ = ω1 − ω2 is the energy difference between the qubits.
We illustrate the scaling with number of subpixels for this example we choose a

gate time of tg = 20ns, J/2π = 94 MHz, and ∆/2π = 0.5 or 1.0, and in Fig. 10.5
we plot the predicted error as a function of the number of sub-pixels for 1ns pixels.
This error is calculated by integrating the Schrödinger equation for the optimized
controls on a much finer grid. As expected, we see that for the larger detuning much
more subpixels are required to achieve the same low error control. Nonetheless, this
method provides a valuable tool for quantum control when multiple fields are used,
as is the case for but not limited to virtual transitions.

10.3 Driving through a cavity
As the final example of virtual coupling, one can consider a qubit inside a cavity where
the two quantum elements are left distinct and the dispersive mode diagonalization
is not performed.
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10.3. DRIVING THROUGH A CAVITY

Figure 10.6: We consider the case where a qubit is placed inside a cavity so the |00〉
to |01〉 transition forms the qubit. No direct coupling exists between the qubit levels
and must be driven by the cavity. Driven transitions between levels exist where there
are black arrows while the red arrows indicate the desired transitions.

HJC =ωra
†a+

d−1∑
j=1

(jω + ∆j)Πj +
d−1∑
j=1

gj−1,j

(
|j − 1〉〈j|a† + |j〉〈j − 1|a

)
+ εx(t)(a+ a†) + iεy(t)(a− a†),

(10.11)

as above. As a design strategy there is no direct drive on the qubit (in order
to isolate it from sources of noise) and only the cavity is used to read and write
information to the qubit (with the expectation that will decouple most of the noise
near the qubit frequency). Here, we operate in the bare basis which means that
qubit rotations cannot be driven directly but virtually through the combination of
the coupling and the cavity drive.

Optimization is performed using the response function methodology developed
in Ch. 6, using pulses with 1ns pixels and a 250MHz filter, consistent limitations in
current electronics (Sec. 6.2). An example of a pulse which generates a pi pulse for
a 20ns pulse is given in Fig. 10.7 A with arbitrarily small error. Both the X and
Y quadratures are needed as was the case for the simple qutrit, with, as before for
an X rotation, the εx being symmetric and εy being asymmetric. In Fig. 10.7 B, a
memory operation is shown. Here the εy is more clearly approximately the derivative
of εx, with two rotations being indicative of a spin-echo sequence.

This setup has certain advantages compared to the dressed frame, namely that
leakage out of the cavity is smaller and can even be further suppressed using optimal
control techniques. Thus a major source of incoherent error can be avoided. This
is again a selectivity problem where leakage does not come during gate operation
but instead during memory operations. Here we expect the main effect to be an
a.c. Stark shift since the coupling is constant. Operating in this frame allows for
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Figure 10.7: Pulse amplitude as a function of the time during gate for a qubit driven
through a cavity. The solid red line is the X quadrature control and the green dashed
line is the Y . Parameters are given in the text. (A) is a NOT pulse, UX

π ; (B) is a
memory operation, 1.

drastically better selectivity in this regard, enabling many qubits to be placed inside
the cavity. An additional benefit is that the cavity frequency is not shifted by the
presence of energy in the qubits, which means radiation coming into the cavity at a
certain frequency will not be attenuated given the state of the qubits, resulting in
rotation angle errors.

10.4 Summary
In this chapter, we have seen that off-resonant terms and fast dynamics form an im-
portant source of error in multi-photon transitions. We have explored three different
cases where virtual transitions form an integral part of the computation scheme with
a clear benefit from a decrease in these forms of error. Methods such as STIRAP
can be used to exchange energy between two levels that do not normally share a
transition. This can be extremely useful since relaxation cannot occur where there
is no transition and can be greatly suppressed where there are multi-photon tran-
sitions. However, the conventional analysis is that these pulses must be adiabatic
which can greatly slow down gate times making it prone to decoherence. In contrast,
the two-photon DRAG solution derived is exact and works in the diabatic regime as
well, allowing for arbitrarily short pulses. Similarly, virtual transitions can be used to
entangle a qubit (or anharmonic ladder) to a (harmonic) cavity where single photon
transitions in the cavity could not be used for the same effect. Once again, in such a
situation there is evidence that using a derivative shaped imaginary control greatly
reduces selection error. Finally, working with a non-linear oscillator and a cavity in
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10.4. SUMMARY

the bare frame, it is shown numerically that all gate operations can be achieved using
virtual transitions, where once again relaxation can be greatly decreased by avoiding
putting population in the cavity where it can spontaneously decay. Such a scheme
can have advantages also in terms of how many qubits can fit in the coupling cavity,
since placing them at frequencies close to that of the cavity is less of a concern as
memory operations can be engineered to undo the effect of the Stark shift from the
cavity.
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Chapter 11

Strong Coupling

We have seen in Sec. 4.2.2 that transitions are typically driven with monochro-
matic sinusoidal fields rather than constant or near-constant driving fields. We have
seen that in a rotating frame (Sec. 4.2.2) at the frequency of the monochromatic
oscillation, a more intuitive representation is given by

Hrot = eiωΠ1t((2a(t) cos(ωdt+ φ) + 2b(t) sin(ωdt+ φ))Xπ + c(t)Π1)e−iωΠ1t

Hrot = (c(t) + ∆ω)Π1 (11.1)

+
1

2
(a(t) cos(δωt) + b(t) sin(δωt))X (11.2)

+
1

2
(b(t) cos(δωt)− a(t) sin(δωt))Y

+
1

2
(a(t) cos(ωΣt+ 2φ) + b(t) sin(ωΣt+ 2φ))X (11.3)

+
1

2
(−b(t) cos(ωΣt+ 2φ) + a(t) sin(ωΣt+ 2φ))Y

with the same notation as before and where we stress again that the last two
lines (the counter-rotating terms) are usually dropped via energy considerations (the
RWA). The statement can be made precise in the formulation of Sec. 7.1.1 with
the limiting condition that ωΣ � a, b in order that selectivity hold true. Here, we
will retain the terms under the assumption of strong driving that the terms are all
of roughly the same order ωΣ ' a, b. Following the prescription of Sec. 8.5, the
selectivity in the presence of these counter-rotating terms can be improved by the
adiabatic expansion technique, as will be done in Sec. 11.1. Next, in Sec. 11.2
the adverse effect of the counter-rotating terms is suppressed using robust numerical
optimization techniques with the use of fine-graining.
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11.1. ANALYTIC SOLUTION

11.1 Analytic solution
We move to the rotating frame with respect to the off-resonant element with Rj,k,l =
exp(i

∑
j,l ωΣt|j〉〈j|)

H̃ =
1

2
Ĥ0,1(Ω(t)eiφ,−ωΣ) +

1

2
H̃0,1,0(Ω(t)eiφ, ωΣ) (11.4)

where we take Ω(t)eiφ = a(t)+ib(t) and as before H̃
0,1,0

(Ω(t)φ,Σω) = Ω(t)e−iφσ++

h.c.+ Σω|1〉〈1| and Ĥ0,1(Ω(t)eiφ,−Σω) = Ω(t)e−iφ−iΣωtσ+ + h.c.+ ∆ω|1〉〈1|.
Moving to the interaction frame with respect to the imaginary control ImΩ(t) =

ΣhΩh(t)ε
h and choosing for the counter-rotating terms the selectivity parameter ε =

Ω(t)
2ωd

defines the transformation

D1 = exp(−i
∑
jk

ˆ t

0

H̃jkl(iΩ1ε, 0)dt+ h.c.)

which gives upon expansion in the small parameter

D(1)H̃0,1,0(ReΩ(t)φ, 2ωd)D†(1) = −(ReΩ(t))2/16ωdσz + 2ωd|1〉〈1|B +O(ε3)

D(1)Ĥ0,1(ReΩ(t), φ,−2ωd)D†(1) =Ĥ0,1(ReΩ(t), φ,−2ωd)− (ReΩ(t))2/16ωσz

− (ReΩ(t))3/16ω2σ+ + h.c.+O(ε3)

This gives the second order solution to the selectivity criteria (Eqs. 7.20)

∆0,1(t) = (ReΩ(t))2/4ωd

Im(Ω(t)) = Re(Ω̇(t))/2ωdˆ T

0

(ReΩ(t))eff − (ReΩ(t))3/16ω2
ddt = θ

(11.5)

Fig. 11.1 demonstrates the validity of this strategy. The red line shows gate error
vs. gate time when using a Gaussian pulse. The blue line shows the improvement
when optimizing using only the derivative control. The yellow line shows the gate
error when both the derivative and detuning are applied, Eq. (11.5). In both cases
we see the RWA errors are completely suppressed.
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11.2. NUMERICAL OPTIMIZATION
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Figure 11.1: Error from counter-rotating terms in qubit frame. Gate error for Gaus-
sian (red), Gaussian with derivative (blue), Gaussian with derivative and detuning
(orange) are shown.

11.2 Numerical optimization
Finally, we numerically investigate the errors from making the RWA. We take the
same system as in Sec. 6.5, Eq. 6.20, but we optimize without making the RWA. We
are concerned with seeing the full extent that the errors arising from the counter-
rotating terms can be suppressed. Moreover, the errors arising from the rotating
terms demonstrate a different use for carrier modulation optimization (Sec. 6.1). In
this case, the Hamiltonian can be written as

H = + ∆|2〉〈2|+ Ex(t) [Γ(1 + e−2iω1t−2iψ) + h.c]

2
+ Ey(t) [iΓ(1 + e−2iω1t−2iψ) + h.c]

2
,

(11.6)

with terms defined as in Eq. 6.20. To demonstrate the error from using the over-
simplified Hamiltonian, we first find optimal solutions for the π pulses assuming the
RWA (optimization with Eq. 6.20) for ∆/2π = −500 MHz, ω1/2π = 2.0 GHz, and
control pixels of 0.125 ns. This optimal solution is shown in Fig. 11.2 as the solid
purple line as a function of the gate time. For each gate time the controls are then
used to evaluate what the fidelity of the operation would be if we did not make the
RWA for various phases ψ (evolution under Eq. 11.6). These results are shown in
Fig. 11.2 as the dotted blue lines, where each line represents a randomly chosen
phase. This figure clearly indicates that for short gate times, neglecting the rotating
terms leads to a large error.

To perform the optimization with the rotating terms we simply include them
as a carrier function (Sec. 6.4.3). Since we would also like to find pulses which
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Figure 11.2: Gate error as a function of gate time for the carrier example. The
horizontal solid purple line is the (target and achieved) gate error for the optimal
solution when we make the RWA. The dotted blue lines are the predicted error when
we do not make the RWA but find the optimal solution with the RWA. The lower
dashed green lines are the gate errors when we optimize without making the RWA.
Each line represents one of the nine different values of the relative phase between
the envelope and the carrier: 2.46245, 2.13875, 1.57081, 0.304685, 0.043838, 1.65238,
0.914728, 2.02047, 0.518253.

don’t depend on ψ, we also use the robust technique outlined in Sec. 5.3.2. This
is essentially an optimization of average fidelity over all possible ψ. In Fig. 11.2
we plot the gate error as a function of gate time (dashed green lines), seeing that it
is possible to find pulses that robustly remove the rotation errors. Here we set the
number of sub-pixels per control pixel to 100.

Together with the results from the previous subsection, this chapter demonstrates
that working in the rotating frame where dynamics are simplified there is a limit
to how short pulses can be used. The adiabatic expansion and response function
formalism allow to push this limit to very short pulses. In comparison to conventional
textbook techniques where many oscillations are assumed, pulses on the order of
one or two precessions of the qubit can still achieve the low errors required for
computation. Moreover, it was shown numerically that errors from counter-rotating
terms and from leakage can both be removed simultaneously. While ideally a perfect
system characterization is preferred, this chapter also shows that averaging effects
over the order of one or two precessions of the qubit are sufficient to make possible
robustness against the effects of the unknown relative phase between the envelope
and carrier of shaped pulses.
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Chapter 12

Summary and Conclusions

Quantum information promises to deepen our understanding of computation. Fun-
damentally, existing and future progress in the endeavour relies on the wave-like
(near-unitary) nature of the continuous time-evolution of quantum systems. Much
of the progress to be made rests in being able to manipulate the complicated in-
teractions between many energy levels in a predictable way. Whether it is possible
to perform this task in the presence of non-commuting time-dependent operators
and/or large Hilbert space dimension is an important question. Part of the answer
lies in being able to effectuate specific transitions where a different transition is also
possible and the spectral gap between them is relatively small. Whether a funda-
mental time limit exists in such (generic) situations or whether quantum control
near and into the the diabatic regime is possible may have important consequences
in quantum computation. Moreover, methods are desired for properly characteriz-
ing and optimizing evolutions of such systems that involve many frequencies and/or
simultaneous drives across multiple matrix elements. Most of the research done for
this thesis involves control problems of this nature in various physical circumstances,
with non-commuting effects competing on approximately the same time scales.

The first question that is addressed in Ch. 6 is whether it is possible to characterize
precisely the control hardware of a quantum system. In particular, in the microwave
range that is used for solid state systems, technology is not readily available to
arbitrarily shape control pulses, with filtering and other transfer functions playing
an important limiting role in the electronics. Being able to accurately predict and
optimize the control shapes and their quantum effect is crucial across all technologies
for the purposes of lowering error rates towards fault-tolerant thresholds. In this
chapter, a new method is developed for optimization that separates the time-scales
between the digital shaping of the control field and the continuous dynamics that take
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place at the quantum level. The method is versatile and usable with many different
kinds of controls and linear transfer functions, which includes splines, filters, and
Fourier components. The latter is used in later chapters when there are more than one
frequency per matrix element and standard numerics cannot be used. Quantifying
the effect of filtering, on the other hand, has a drastic effect in terms of fidelity,
and pulses that are as short as 3 or 4 digital control pixels become feasible in the
presence of non-commuting error (e.g. for qutrits). Rise-times are also studied, in
particular in the context of bringing off-resonant qubits into resonance in order to
exchange energy. The non-commuting terms in the avoided crossing can be optimized
analytically using a Magnus expansion, with a simple pulse with overshoot(s) being
found that can straightforwardly be used in experiment, allowing high quality two-
qubit gates. Quantifying the full effect of the filtering is also done numerically and
confirms the analytic result.

When multiple elements are controlled by a common global drive, being able
to control them individually is known as a spectral selectivity problem. The prob-
lem is ubiquitous across implementations because while quantum elements can be
microscopic, the control fields are often spread out and couple to multiple quantum
elements. This is a severe impediment to the ability to scale the technologies as every
additional qubit or control line adds crosstalk to the elements around it. An ana-
lytic technique called DRAG is derived in Sec. 7.1 which addresses selecting qubits
at different operating frequencies. The technique improves greatly on semi-classical
approaches based on bandwidth considerations by taking the full time-dependent
quantum dynamics into account. For two qubits, the result involves using an aux-
iliary control π/2 out of phase with the first and proportional to its derivative, and
it is exact in the adiabatic limit. A full basis is produced using higher-order deriva-
tives which allows suppressing multiple qubits, and a general result is derived to first
order in the adiabaticity parameter. Even-order derivatives have the property of sup-
pressing transitions both greater and smaller in frequency from the driven transition.
This symmetry is useful in several contexts; in particular it can be used to reduce the
quantum bandwidth of the pulse, with potential application in magnetic imaging.
The more general case where there may not be frequency separation between the
qubits is also considered in Sec. 7.2, in the context of crosstalk between inductive
couplers for flux qubits in a lattice topology. It is found that separation in the Rabi
frequency can be successfully used instead, though in practice the separation in qubit
frequency is a valuable resource.

From an engineering point of view, it is desirable to find quantum implementation
technologies that can be scaled to very large numbers of qubits. Superconducting
technologies benefit from advanced lithographic techniques used in industry but are
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impeded by electromagnetic circuit elements functioning as harmonic oscillators.
Josephson junctions partially redress this problem but the regime in which they are
useful is typically weakly anharmonic. Whether these devices can be accurately con-
trolled has remained an open question due to the absence of strong anharmonicity.
However, the DRAG framework has shown conclusively both theoretically and ex-
perimentally that fast pulses can be found, many orders shorter than the coherence
times of these systems. In Ch. 8, these pulses are derived now using an iterative
technique, due to the infinite number of states in the energy ladder. Using a second
frequency at twice the frequency of the main driving field, which drives the two-
photon transition, an exact analytical solution is found to the qutrit problem which
is strictly valid in the adiabatic regime, and still offers a significant improvement in
the infinite ladder situation. It is found that, contrary to the conventional belief that
an (a.c. Stark) phase shift is the primary effect of off-resonant coupling, at short
times the derivative (i.e. selection) error can dominate and removing it is crucial to
operation. This is also different from bandwidth arguments that rely on removing
selection error on average by the end of the pulse. Since the derivative control com-
mutes with the principle control to generate a phase shift, the derivative control can
in fact be used both to remove selection error and phase error. A family of solutions
thus exists in the first order of the inverse anharmonicity which is able to partially
remove both of these errors; it is useful in practice due to the fact that simpler func-
tional form can be found that make it easier to calibrate. The full optimal solution
is also investigated numerically and it is found that the error decreases dramatically
with pulse sampling rate, consistent with the result of adding in more higher deriva-
tives. In particular, in the diabatic regime the decrease is exponential and arbitrarily
short pulses can be engineered given high enough resolution. The problem of leakage
to higher levels is also examined in the context of relaxation and decoherence. While
little can be done about direct relaxation other than making the pulses faster, there
is a tradeoff between increasing the periodic potential which decreases energy disper-
sion and decreasing it which increases the anharmonicity. Previous work motivating
the transmon qubit has shown that dispersion can be decreased exponentially while
still maintaining anharmonicity. The result in this chapter contends that dispersion
can also be increased somewhat because the energy dispersion is accompanied by
operator dispersion as well. The resultant uncertainty can thereafter be suppressed
using robust optimal control techniques while taking advantage of increased anhar-
monicity such that shorter pulses are found in aggregate. To finish the chapter,
the experimental realization is reviewed which verifies the two quadrature analytical
result.

Operations involving multiple leakage channels have been even more difficult
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to accurately control due to the larger number of constraints involved and as a
result two-qubit gates for superconducting qubits have lagged significantly behind
single qubit gates. The DRAG framework is generalizable to situations with multiple
transitions, as was the case with crosstalk to multiple qubits. In these situations, the
derived analytic formulae can once again decrease the errors by orders of magnitude
and decrease gate times to the limits set by current pulse-shaping technology. There
are essentially two ways in which the extra leakage can manifest itself and these
are explored in Ch. 9. The first is when there is a leakage channel connected to
either level of the driven transition, typically arising in higher level transitions in an
anharmonic ladder. Driving population to higher levels has many potential useful
applications including being used for qudit logic (encoding multiple qubits in one
non-linear oscillator), using higher level states for coupling qubits, and metrology
where there can be a

√
N factor in the signal strength. Driving these levels was

also investigated numerically with low error well into the diabatic regime (for fixed
input sampling rate of the control). On the other hand, multiple leakages can be
connected to the same level. This is typically the case when multiple ladder elements
are combined, such as an anharmonic qubit dressed by a cavity, or when coupling
two anharmonic qubits. In the case where the leakage energies are both above and
below the computational level (e.g. a Liouvillian degeneracy), an alternate scheme is
found that is particularly effective at low coupling strength, namely to use a second
tone to create a.c. Stark shifts near the leaking level to counteract the a.c. Stark
shifts caused by the leakage transitions. Due to the larger coupling constant at higher
levels in (an)harmonic oscillators, and by placing the added tone very close to the
phase-shifted level, the leaking level can be corrected with suppressed disturbance
to other computational states.

One of the most widely used techniques in quantum control is the use of vir-
tual transitions. In particular, methods such as STIRAP can be used to exchange
energy between two levels that do not normally share a transition. This can be ex-
tremely useful since relaxation cannot occur where there is no transition and can be
greatly suppressed where there are multi-photon transitions. However, the conven-
tional analysis is that these pulses must be adiabatic which can greatly slow down
gate times making it prone to decoherence. In contrast, in Ch. 10, the two-photon
DRAG solution derived is exact and works in the diabatic regime as well, allowing
for arbitrarily short pulses. Other multi-photon schemes are also explored in the
context of adding a derivative with decreases in the selectivity error as expected.
Finally, working with a non-linear oscillator and a cavity in the bare frame, it is
shown numerically that all gate operations can be achieved using virtual transitions,
where once again relaxation can be greatly decreased by avoiding putting population
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in the cavity where it can spontaneously decay. Such a scheme can have advantages
also in terms of how many qubits can fit in the coupling cavity, since placing them
at frequencies close to that of the cavity is less of a concern.

The last theme that is explored is the strong driving regime in the rotating
frame. The rotating wave approximation is ubiquitous in quantum control because it
allows for very high quality control using the weak fields/couplings that are typically
available or desired in complex quantum systems. The rotating frame is also very
intuitive and avoids the messy non-commutative algebra that is present at shorter
times. The DRAG formalism is also applicable to the error from this approximation,
as is shown in Ch. 11, with simple and intuitive pulses that are ultra-short, less than
two qubit precessions. The error is also examined numerically and can be removed
in a way that is robust against the unknown phase between the envelope and carrier
of the pulse.

Future research directions will consider control of larger Hilbert spaces and com-
binations of a larger number of error terms and qubits. Numerically this may be
achieved with a speed-up of the simulations and optimizations, with potential im-
provements including parallelism, Hessian techniques, and sparse matrix algebra.
From an analytical point of view, it should be possible to combine analytical solu-
tions when multiple errors are present (such as shaping, off-resonant errors, robust-
ness, etc.). In particular, situations with multiple linked transitions have not yet
been investigated using a basis of orders of derivatives of Gaussians as was done
for crosstalk to several qubits. A particularly elegant solution may also exist where
there is Liouvillian degeneracy, such as climbing up the anharmonic ladder or cou-
pling qutrits, in which case the symmetry of the second derivative solution would
make it a prime candidate. Trying different pulse shapes other than Gaussians may
also be beneficial, in particular finding shapes where the higher derivatives are zero
at the start and end of the pulse. Alternatively, finding different frames where it
is not necessary to start and end at zero may be preferable since the bandwidth
properties of the base envelope shape would be persevered. Finally, there is strong
numerical evidence that higher pulse resolution / more frequency components can
greatly improve controllability into the diabatic regime. Investigating the use of ex-
tra tones may be fruitful, using techniques derived earlier or new ideas such as using
an a.c. Stark shift in the middle of a transition to increase the gap size.

Other potential avenues of future research would include application of optimal
control ideas to areas other than optimizing gates. For example, measurement and
error correction both involve transfer of information between quantum elements and
can be optimized. Moreover, while most of the techniques applied are analog, many
circuits or measurement-based approaches involve digital sequences of gates which
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could also be optimized together with or independently from the analog optimiza-
tion of gates. That is, small algorithms that are digital or analog typically are not
optimized for specific physical dynamics but doing so would push the envelope of
what is presently possible and offer insight into the algorithms.
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Appendix A

Matrix Exponentiation

Solving Schrödinger’s equation for larger Hilbert spaces can be difficult even when
time-dependence is trivial. We examine here some of the known methods of expo-
nentiation.

The first step for any numerical techniques is to subdivide the time into time
steps of duration δt. We distinguish this time duration form the pixel size∆t (e.g.
the inverse of the sampling rate in Ch. 5.1) given in other cases because it is not an
intrinsic time scale in the system. Rather, it is an arbitrarily small enough time so
that the evolution looks approximately smooth on the coarse-grain. The condition
is roughly speaking |H|δt� 1, though this is perhaps a bit strong. In practice, one
can see what time step will give convergence for the precision required. In any case,
the evolution for a general Hamiltonian with multiple time-dependences of the form
can be approximated as

H(t) =
M∑
k=0

ck(t)Ĥk,

where c(t) are continuous time signals such as the convolutions, Eq. 3.2. The
evolution can then be calculated via

U =
0∏

j=N−1

Uj =
0∏

j=N−1

e−iH(jδt)δt

which bears resemblance to Eq. 5.1, with the important distinction that it is an
approximation.
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A.1. TAYLOR EXPANSION

A.1 Taylor Expansion
In the case where H is small, the simplest expansion is

U = exp(−iH∆t) = 1− iH∆t− H2∆t2

2
+ . . .

This can be the case for a waveform generator with a large sampling rate (∆t� 1,
see Sec. 5.1) or when H is a perturbation such as an auxiliary control (see Sec. 7.1).
It is also clearly valid in numerics with small time-slicing (Sec. 6.1, ∆t = δt).

If H is not small, it is still possible to use this expansion if desired using the so-
called “scaling and squaring technique”. Using the special properties of exponential
functions, the above exponential can be written as

U = (U1/N)N = (exp(−iH∆t/N))N = (1− iH∆t

N
− H2∆t2

2N2
+ . . .)N .

In practice, the Nth power at the end can be accomplished by the repeated
squaring technique where the matrix inside the parentheses is recursively multiplied
with itself lg2N times.

In general, this technique is most useful when H is sparse and matrix multiplica-
tion is cost-effective.

A.2 Diagonalization
Another useful analytic and numeric technique is eigenvector decomposition.

H = DHdiagD
† (A.1)

which exponentiates trivially to

U = exp(−iH∆t) = D exp(−iHdiag∆t)D†.

The diagonal elements of Hdiag exponentiate like scalars. This spectral decompo-
sition is justified by the Hermiticity of the Hamiltonian. The most time-consuming
aspect is obtaining the diagonalization D as well as the matrix multiplication. In
what concerns the diagonalization, it can often be advantageous to pre-compute the
decomposition D when the form of the matrix to be exponentiated is known ahead
of time. For H = a(t)H0 and H0 = DHdiagD

†,
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A.3. HAMILTONIAN SPLITTING

U = exp(−iH∆t) = D exp(−ia(t)Hdiag}∆t)D
†, (A.2)

which again only involves scalar exponentiation and matrix multiplication.

A.3 Hamiltonian splitting
In the same vein, we have seen the Hamiltonian will most often be composed of a
time-independent drift and several time-dependent controlled operators, as in Eq. 5.1.
For short times the different components can be exponentiated separately with

Uj = exp(−iHjδt) ∼=
N∏
k=0

exp(−iuj,k(t)Ĥkδt).

To ensure this approximation is valid the scaling and squaring technique can be
used here too. Less scaling can be required by using as many permutations of the the
products as possible to ensure as many commutators in a BCH type expansion tend
to 0. Calculating the individual exponentials can be done any number of ways though
the diagonalization is attractive since the eigen-decomposition need only be found
once for each Ĥk if Eq. A.2 is then used. Once again, if matrix multiplication can be
done cheaply due to sparsity then this method may be preferable to diagonalization.

A.4 Other methods
There are numerous other methods [120] which can be used to calculate the evolution
including the Padé expansion (used by Matlab for general matrices) and differential
equation solvers which may be useful for highly oscillatory functions.
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