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Abstract 

 

    This project is intended to utilize an immobilized bio-active first generation fusion constructed 

cytokine inducing in receptive cell lines guided vasculogenic development. This research 

through the assembly, expression and purification of a bio-active molecule the CaM-VEGF120 

fusion construct permitted the creation of a first generation smart-gel platform. Cell culture 

bringing together HUVECs or cBOECs with soluble or immobilized CaM-VEGF120 coupled 

with a type-I collagen platform are the main components intended to induce guided vascular 

sprouting. Purification of the CaM-VEGF120 was achieved utilizing HIC coupled with size 

exclusion chromotography. Mass Spectrometry and cellular augmentation noted by survivability 

and proliferation suggests the correct CaM-VEGF120 properties were achieved. Cell culture 

interactive changes were recorded utilizing fluorescent and phase microscopy. The 66 KDa 

dimeric CaM-VEGF120 was able to phosphorylate the cytoplasmic Tyr1175 localized to the C-

terminal portion of the transmembrane VEGFR2. GNP immobilized CaM-VEGF120 induced 

VEGFR2 expressing cell lines as were imaged over a week’s period recording vascular pseudo-

tube formation. These events resulting from contact with the immobilized CaM-VEGF120 and 

VEGFR2 induced activity thus presenting in vitro guided vascular pseudo-tube development. 

This research is being pursued utilizing HUVEC and cBOECs as guided vascular pseudo-tube 

structural formation is possible. This successful model implies a first generation model for 

physiological vascular development having therapeutic applications. 
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Chapter I 

The properties of vasculogenesis, the extra-cellular matrix complemented with the ligand-

receptor requirements 

1.1 Modified Vascular Development 

     Compromised tissue due to damage or disease once considered irreversible now has a chance at 

repair, utilizing a promising new approach described as in vitro tissue engineering or scaffolding 

modification (Nerem RM, 2006). Our approach is a blend of bio-active cytokines coupled with an 

insoluble matrix suitable for an optimal choice of a putative cell line, a cocktail with intent to create 

a system suitable to tackle these challenging medical issues. As tissue engineering undergoes 

developmental modifications supported by the latest materials, it should begin to hold substantial 

medical promise (Nerem RM, 2006). To date there are still major obstacles to overcome, identified 

as limitations of diffusion or sufficient blood supply for delivery of oxygen and metabolic waste 

removal. Previously it has been shown that seeding of endothelial cells into experimental tissues 

grafts or constructs has enhanced tissue survival, perhaps due to augmented circulation supplying 

cytokines favouring the quiescent vascular state, but the ideal long-term graft remains elusive 

(Batten et al., 2007). In relation to this project, vasculogenesis, an event that describes in vitro 

vascular formation from individual cell sources, is the intended objective.  
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1.1.1 Properties of Vasculogenesis 

     Vasculogenesis describes vascular development independent of any pre-existing vascular 

network; early stage embryogenesis presents an excellent example (Francis et al., 2008). Cytokine 

response can initiate tip cell developmental profiles or angiogenic sprouting laying the foundation 

for pseudo-tube formation (Carmona et al., 2008). These events take place in receptive cell lines 

expressing the VEGFR2, activated upon interaction with its ligand VEGF-A. During 

embryogenesis vascular development derives from angioblast cell lines (Loffredo and Lee, 2008). 

Alternatively vasculogenesis can be utilized as an in vitro model on a collagen surface, 3D 

collagen slab or Matrigel. Mesodermal precursor cells (hemangioblast) or angioblasts (EPCs) 

differentiate into endothelial cells during the formation of vessels (Jakobsson et al., 2006; Loffredo 

and Lee, 2008); this can take place in vitro for direct transfer to animal models or to sites of 

induced ischemia, noting this event is neo-vascularization or vasculogenesis (Lokmic and Michell, 

2008). So far not much is known about EPC recruitment to active sites of vasculogenesis; however 

growth factors in the peripheral blood such as stromal-derived factor-1, erythropoietin, 

angiopoietin-1, estrogen and even exercise all have the affects of EPC recruitment and increased 

numbers of EPCs within the peripheral blood (Lokmic and Michell, 2008).  

     A functional in vivo micro-vascular network is one of the major challenges facing bio-

engineering if the intent is to aid the recovery of damaged tissues. Pericytes derived from MSCs are 

deemed essential to help stabilize developing vessels otherwise they fall short of full development 

with minimal vascular connection to the host, regression becomes inevitable. Pericytes themselves 

migrate towards and attach to developing vessels in direct contact with ECs creating a system of 

paracrine signaling enhancing stability, differentiation and growth arrest (Lokmic and Michell, 

2008).  
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1.1.2 Properties of angiogenesis 

     Briefly this is an event describing vasculature development dependent on preexisting vessels 

where  resident endothelial cells from the pre-existing vessels are recruited forming tube and 

luminal structures suitable for blood flow. This is essential during embryonic development and 

notably pathological demands do produce functional although unstable vascular structures 

(Nacak et al., 2007; Labrecque et al., 2003; Francis et al., 2008). This process requires a break 

from the quiescent state, an active re-modeling of the existing vasculature. These events can be 

induced by pericytes or lymphocytes that supply a cocktail of cytokines that act directly on 

receptive cells that express receptors such as bFGF or TP, or indirectly through TGFβ and TNFα 

(Gao et al., 2011; Terpos et al., 2012). Currently the most important of the angiogenic cytokines 

is VEGF-A, and from observations VEGF-A is ubiquitously present at sites of active 

angiogenesis targeting endothelial cells (Robinson and Stringer, 2001; Compagni et al., 2000; 

Bhattacharya et al., 2009).  

     The arterial vascular wall contains progenitor cells; however their exact role remains elusive 

although they do express the VEGFR2. Advancing micro-vascularization within atherosclerotic 

plaques is problematic as this leads to the advancement of atherosclerotic progression and plaque 

instability. Healthy vessels do have a microvascular network but it is restricted to the vasa 

vasorum (Zampetaki et al., 2008). Finally upon completion of development, angiogenesis is 

blocked as homeostatic ligands and their receptors come into play, such as TM, aPC, SOD, Tie-

2, Ang-1 and TGF-β (Song et al., 2009; Thomas and Augustin, 2009).  
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1.1.3 Sprouting angiogenesis  

     Angiogenic sprouting describes the earliest know stage of vascular development. This can 

occur either in vivo in preexisting vessels marking the initial point of angiogenesis, or in vitro as 

individual cells begin the cascade of vasculogenesis following receptor stimulation induced by 

specific ligand interactions (Moss et al., 2009). Changes in physical characteristics displayed 

include cellular elongation. This is best observed on type-1 collagen as this insoluble matrix 

predisposes committed cells towards pseudo-tube formation. VEGF-A stimulated events 

observed on fibronectin or gelatin coated surfaces are conditions predisposed for cell 

proliferation, perhaps a pathological developmental predisposition. Interestingly, early stage 

sprouting on collagen could in fact be simulating the earliest stages of physiological 

angiogenesis, as on fibronectin conditions seem to favor that found in wound healing and the 

properties of tumor hypoxia, a known source of massive VEGF-A production (Holderfield and 

Hughes, 2008).  

     On the other hand, sustained and excessive amounts of VEGF-A on mature vessels can lead 

to vascular leakage and remodeling, were angiogenic sprouting is absent. Therefore the amount 

of VEGF-A exposure may be an important consideration. To date the only cytokine reported to 

induce angiogenic sprouting appears to be VEGF-A, other cytokines may act to only cause 

receptive cells to augment VEGF-A (Mellberg et al., 2009).  

     Cells reported to have excessive amounts of VEGFR2 are favored to form the tip cells, these 

undergo elongation and migration towards VEGF-A gradients. Tip cells cells rarely divide and 

are not the lumen forming cells but align in the direction towards the VEGF-A gradient. Lumen 
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forming cells are those that follow tip cell signaling and do proliferate; these cells are referred to 

as trunk cells and reportedly form the vascular lumen (Holderfield and Hughes, 2008). 

 

1.2 The family of angiogenic growth factors  

1.2.1 Bio-Active VEGF cytokine family and properties 

     Classified as cytokines with bio-active properties the VEGF family possesses mitogenic and 

chemotactic properties with extended effects on vasodilation, survival and permeability (Hu et 

al., 2009). Vascular permeability fluctuations were the events leading to the discovery of VEGF-

A or VPF (Prahst et al., 2008). The VEGF family of cytokines specifically target endothelial 

cells and at present the current classification consists of six genes VEGF-A, VEGF-B, VEGF-C, 

VEGF-D, VEGF-E (encoded by virus), VEGF-F (snake venom) and PiGF (Prahst et al., 2008; 

Roy et al., 2006; Gabhann and Popel, 2008; Bahram and Claesson-Welsh, 2010). 

     Inclusion into this family requires recognition and activation of the RTK receptors VEGFR1, 

VEGFR2 and VEGFR3 (Roy et al., 2006; Mellberg et al., 2009; Bahram and Claesson-Welsh, 

2010). This family of cytokines contains the VEGF Homology domain (VHD), a unique feature 

whose amino acid identity is in the range of 29-64%. There are eight conserved Cysteine 

residues in the VHD in a structural form described as the Cysteine Knot Motif (Muller et al., 

1997). 
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Figure 1.1 - Image depicting vasculogenic sprouting induced by VEGF120.  A) A visual 
presentation to highlight the basic events leading to angiogenic sprouting as the tip cell is acted on by a soluble 
cytokine, including an illustration for protease production that is augmented, for example MMP production and 
activity.  B) An illustration to present in simple terms GNPs with immobilized CaM-VEGF120 intended to be visible 
to the VEGFR2 expressing cells, the result is guided angiogenesis. Noting the GNP pattern is flexible as trunk cells 
follow the tip cell intended for pseudo-tube formation intended for a functional lumen. 

 

These Cysteines are naturally involved with inter- and intramolecular disulfide bridge formation 

residing in a conserved central four-stranded β-sheet per monomer, and all display the 

characteristic anti-parallel dimmer (Robinson and Stringer, 2001; Gabhann and Popel, 2008; 

Muller et al., 1997). 

     Excessive amounts of VEGF-A and other similar ligands can result in a dilated vasculature 

with an inflated size and excessive permeability to fluids.  Briefly, hVEGF-A consists of the 

A 

B 
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following isoforms each representative of the number of amino acids, such as VEGF121, 

VEGF145, VEGF165, VEGF183, VEGF189 and VEGF206 (rare); VEGF121, VEGF145 and 

VEGF165 are secreted while the rest remain matrix bound (Zygalaki et al., 2008). The 

VEGF165 is believed to be the most active and the VEGF145 is absent within the vasculature 

(Roy H et al., 2006). Since only three isoforms are relevant and the most characterized reference 

will be made only to VEGF121, VEGF165 and the VEGF189, or the VEGF120, 164 and 188 

being designations mouse and rat.  

            

Figure 1.2 – Basic outline depicting the CaM-VEGF120 fusion construct. The full size 
576 amino acids, 66 kDa, displayed as an anti-parallel homo-dimer connected by 3 disulfide bridges, the 
bio-active form. Solid blocks represent the CaM portion; open blocks the VEGF120 connected by a solid 
horizontal line the protease linker. 

 

 

1.2.2 VEGF-A an endothelial specific bio-active cytokine  

     VEGF-A induces proliferation and migration of endothelial cells in conjunction with nitric 

oxide, and may contribute to vascular remodeling following hypoxic conditions, which augments 

VEGF-A expression. Interestingly what is currently known about VEGFR2 transcriptional 

expression and signaling remain relatively elusive (Gabhann and Popel, 2008; Kim BS et al., 

2002; Tam et al., 2009; Linares and Gisbert, 2011). VEGF-A is en-coded from 8 exons (exon 8a) 

that gives rise to a number of splice variants. The human VEGF-A isoforms are slightly different 
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having an extra residue (Tozer et al., 2008; Houck et al., 1992; Kim et al., 2007). The active 

form comprises of single peptides bound by two disulfide bridges Cys-51 and Cys-60 in an anti-

parallel fashion. The VEGF120 is slightly acidic and readily diffusible, and represents secreted 

soluble isoform of VEGF-A (Roy et al., 2006). 

     VEGF165 forms an active homodimeric heparin binding glycoprotein about 45 KD in size 

and is diffusible having a weak capacity to interact with the glycoproteins of the ECM (Roy H, 

2006; Kim et al., 2002). The C-terminal of the VEGF165, which includes the family of VEGF-A 

isoforms, has a six residue alternative form that upon conversion becomes antagonistic 

preventing VEGFR2 signaling, VEGF165b (Gabhann and Popel, 2008). The other two isoforms 

of interest, VEGF121 and the VEGF189, have different signaling properties evident if present in 

only their individual forms. Interestingly, the vasculature is seemingly more fragile if only the 

VEGF 121 is available to induce angiogenic development. Observations of tumor models 

stimulated with the VEGF189 isoform reveal enhanced vascular stability with extensive 

development (Tozer et al., 2008). VEGF189, being one of the largest and most basic form is only 

found immobilized to the cell surface ECM bound to the heparin proteoglycans. Characterization 

of the VEGF189 suggests this isoform is highly angiogenic, inducing the formation of large 

vessels with extensive branching. Investigations with each isoform demonstrates a unique 

characteristic morphological difference in the resulting vasculature however full characterization 

has yet to be completed (Tozer et al., 2008; Houck et al., 1992; Kim et al., 2002). VEGF121 

cannot bind heparin or the ECM as it is lacking the heparin binding domain. This is not the case 

for VEGF165 since this cytokine has an extra 44 residues and a single HSPG binding site 

making possible interaction with heparin and the ECM. VEGF189 is increasingly basic, having 
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an additional 29 residues and an additional HSPG binding site binding heparin and the ECM 

essentially irreversibly (Houck et al., 1992). 

     Finally VEGF-A has a very high affinity for VEGFR-1, a Kd of 15–100 pM and VEGFR-2 a 

Kd of 400–800 pM, still robust but 10 times less than that of VEGFR1. However VEGFR1 has 

yet to demonstrate anything but minimal bio-activity in endothelial cells, but might incur some 

form of negative regulation such as the removal of excess VEGF-A. Therefore the transcriptional 

regulation of VEGFR1 would be of interest (Roy et al., 2006; Gabhann and Popel, 2008). The 

mature endothelium should not respond to VEGF-A as only minimal levels of the receptors are 

present under homeostatic states, noting the activated endothelium may have a robust level of 

VEGFR2 predisposing the vasculature to re-modeling. 

 

1.2.3 VEGF-A biology and regulation  

     An important feature identifying the regulatory region of VEGF-A is the presence of a 

hypoxic response element that can augment transcription in response to hypoxia or glycemia. 

HIF-1α is up-regulated and protected against proteolytic degradation during O2 depletion and is 

the transcription factor acting on the VEGF-A HRE. The expression cascade takes place in the 

vascular wall localized to the smooth muscle cells hence acting in a paracrine manner on the 

endothelial monolayer. Other transcription factors regulating VEGF-A include Sp-1, Ap-1 and 

NF–кβ (Zahlten et al., 2010). VEGF-A is found actively expressed in areas such as the 

parenchyma tissue and stromal cells, and can also include an autocrine expression pattern from 

endothelial cells themselves however it is unclear if this occurs during development. The reason 

may be to sustain cell survival if the vessels are lacking a muscular wall characteristic of 

capillaries. Other known factors affecting VEGF-A expression are growth factors; these include 
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bFGF, TGF-β and IL-1. As mentioned above, hypoxia is directly linked to the regulation of 

VEGF-A, and is also up-regulated by inflammatory signals. It seems pathological angiogenesis 

relating to carcinomas, diabetic retinopathy or arthritis demonstrate augmented expression 

favoring the shift towards the expression of VEGF165, as VEGF165b is attenuated, implying a 

potent angoigenic environments (Gabhann and Popel, 2008; Kim et al., 2002). 

 

1.3 ECM 

1.3.1 Biology of the ECM 

     Collagens, including elastin, are some of the major structural features of the vascular wall 

forming the ECM providing tensile strength and elasticity. Collagen, an insoluble component of 

the ECM, predisposes endothelial cells towards sustained angiogenic differentiation 

(Heydarkhan-Hagvall et al., 2006; Francis et al., 2008).  Thus, for engineering vascular 

development this represents a suitable platform for cytokine immobilization, providing an ideal 

simplistic first generation matrix (Rusnati et al., 2006). Matrigel is another possible matrix, 

however due to the amount of various bio-active cytokines present, Matrigel has been ruled out 

as this will mask the effects of the experimental immobilized VEGF120 (Hughes et al., 2010). At 

present, there are 20 known different types of collagen in the human body and the most abundant 

are types I and III. The major sources of collagen are derived from fibroblast and connective cell 

lines. Upon secretion, they form three poly-peptide strands bundled into what is described as a 

triple helix, thus forming the collagen fibrils and fibers. Collagen does undergo extra-cellular 

modification, including the process of cross-linking mediated by lysyl oxidase generating bond 

formation between lysine and hydrolysine which enhances strength and insolubility to the 
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collagen ECM (Henriksen et al., 2011). Type-I collagen and to a lesser extent type-III collagen 

are generally found in abundance in the skin, ligaments, fascias and fibrous tissues. Type-III 

collagen levels however are augmented during the wound healing process due to serum 

activation of the regional fibroblast cells. Both type I and type III do coexist in the same fibrils 

but special organization places type-III collagen towards or on the surface. With an increasing 

ratio of type-III collagen relative to type-I, the fibril diameter decreases (Henriksen et al., 2011; 

Haas et al., 1998). Collagen is the first generation material for generating scaffolding complexes 

that will be used this project. However the optimal scaffolding complex for cell growth and 

development as suggested would be a blend of type-1 collagen and fibronectin (Francis et al., 

2008). Integrins like αvß3 are examples of some receptors that respond through signaling when 

interacting with the ECM and their structural features. A good example is RGD thus influencing 

cellular properties that can involve differentiation and survivability (Mihardja et al, 2010; 

Smadja et al., 2008).  Collagen is itself also subject to modification such as cross-linking, and 

thus can act as an adhesive surface for the collection and binding of bio-active cytokines. Cross-

linking creates a resistant barrier to proteolytic degradation (MMPs), however collagen gels in 

vitro are not cross-linked and are easily degraded by MMPs due to cellular activity induced by 

immobilized cytokines such as bFGF and VEGF188/189 (Fernandes et al, 2009; Heydarkhan-

Hagvall et al., 2006). In vitro collagen can be augmented by cyclic strain, growth factors 

(probably VEGF-A) and ascorbic acid through SMCs. Tendons are a good example of an in vivo 

collagen based ECM linking muscle to bone, as when compromised tendons result in an 

augmentation of VEGF-A to attract VEGFR2 expressing cells. Since VEGF-A is abundantly 

expressed in the compromised tendon, ECM implicates angiogenesis as a source for recovery. 

However invading cells responding to VEGF-A, augmentation of proteolytic activity has to be 
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taken into account, noting endothelial cells do not excrete much ECM (Petersen et al., 2003).  

VEGF-A signaling has been linked with MMP activity. This is important as it suggests not only 

angiogenic activity but tendon ECM remodeling, and presents an excellent model system for 

comparing to in vitro models utilizing VEGF-A  and collagen scaffolding. (Petersen et al., 2003; 

Chachques et al., 2008). 

 

1.4 VEGFR2 

1.4.1 Properties of the VEGF receptors, the receptor tyrosine kinase family 

     These receptors are trans-membrane and therefore possess a ligand binding domain extending 

into the luminal region. This also includes an intra-cellular cytoplasmic domain shown to have 

kinase activity. The VEGF receptors appear to be found in clusters or within lipid rafts on the 

cell surface as opposed to even distribution throughout the cell surface (Gabhann and Popel, 

2008). Co-factors or HSPGs are the main cell surface structures binding and immobilizing 

cytokines, having complimentary binding sites capable of contact with the extra-cellular domains 

of relevant RTKs to induce signaling. Briefly, there are four main regions or domains that 

describe the physical structure of the VEGF receptors, of which there are three isoforms 

belonging to this RTK receptor family, the VEGFR1, VEGFR2 and the VEGFR3 (Bahram and 

Claesson-Welsh, 2010). Each receptor possesses multiple tyrosine residues located within the 

cytoplasmic-cellular domain and are predisposed to auto and trans-phospholylation. It becomes 

much more complex considering the variations in the types of ligands that can bind these 

receptors, affecting different sub-sets of tyrosine residues, and differing cellular responses 

(Gabhann and Popel, 2008).  
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     The basic map of the VEGF receptor and individual domains includes an N-terminus extra-

cellular ligand binding domain as the site of interaction with specific ligands. Following this is 

the trans-membrane, including the juxta-membrane domain and the complex region recognized 

for intracellular signaling segmented into RTK domains, then terminates with the C-terminal tail.  

The RTK and C-terminal tail are predisposed to undergo phosphorylation at their residing 

tyrosine residues. Phosphorylation can be either auto or a trans induced event. Auto-

phosporylation is a result of ligand interaction that induces dimerization between two VEGFR 

monomers within the extra-cellular domains, this results in the phosphorylation of the tyrosine 

residues in the cytoplasmic domains (Bahram and Claesson-Welsh, 2010).  

 

1.4.2 VEGFR2 receptor tyrosine kinase 

     VEGFR2 in the mature state is a glycosolated 230 KDa protein, a semi-glycosolated 

intermediate of 200 KDa, and the immature non-glycosolated form at150 KDa having 1356 

amino acids and a pI  5.6 (Genbank, Accession number NP 002244).  The VEGFR2 extracellular 

domain possesses seven immunoglobulin (Ig) like sub-domains, similar to VEGFR1 and 

VEGFR3. The ligand binding domain interacts with available cytokines, the most relevant for 

angiogenesis is the VEGF-A.  Binding takes place at the 2nd and 3rd Ig-like sub-domains, as is 

found for VEGFR1, however specific at the 2nd Ig-like domain. The fourth to the seventh Ig-like 

domains are the contact points of dimerization that follows upon the binding of VEGF-A 

(Wiesmann et al., 1997). Dimerization at the 4th Ig domain is required for auto-phosphorylation 

within the VEGFR2 cytoplasmic domain (Koch et al., 2011). The trans-membrane domain acts 
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as an anchor for support in the membrane and provides a scaffold for proper receptor orientation 

in the extra-cellular domain for binding to the target ligand (Shibuya M, 2006).  

     The region responsible for signaling within the cytoplasm, the Cytoplasmic Domain, or the 

Tyrosine Kinase Domain, is divided into two sub-domains consisting of roughly a 70 residue 

stretch referred to as Kinase Insert Sequence. The C-terminal domain is referred to as the 

Carboxyl Terminal Tail, whose role has to be specific in the intracellular region. Perhaps 

structural, although recent evidence has shown this domain to be involved in tyrosine 

phosphorylation and subsequent signaling inducing migration, proliferation and tube formation 

(Shibuya M, 2006).  

 

1.4.3 Biology of VEGFR2 phosphorylation and signaling pathways 

     VEGFR2 ligand stimulation results in Tyrosine auto-phosphorylation affecting the residues 

identified as Tyr951, Tyr1054, Tyr1059, Try1175 and Tyr1214. The phosphorylation of Tyr1175 seems to 

have the most dramatic biological outcome.  When Tyr1175 is activated, γ-phospholipase (PLCγ) 

in turn is activated and this induces cellular migration, proliferation and angiogenesis. 

Phosphorylation of Tyr951 seems to have only a single role, that of migration. The downstream 

activated sequence of events involves protein kinase C (PKCβ) and in turn affecting c-Raf-MEK 

and MAPK pathways, thus augmenting survivability. Not much is known about VEGFR2 

regulation but its expression is augmented by inflammatory signals, shear stress and this includes 

enhanced transcriptional expression by its own ligand VEGF-A. Other areas deemed to 

demonstrate augmented VEGFR2 expression occur during branching angiogenesis and 

angiogenic sprouting (Mellberg et al., 2009). Physical factors affecting VEGFR2 levels were 
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shown are linked to exercise, but attenuation of VEGFR2 can occur through VEGF-A when 

linked to DII4-Notch signaling, a link to vascular regulation (Gabhann and Popel, 2008). 

Transcriptional factor regulation of the VEGFR2 has yet to be published, so information in this 

area is limited (Gabhann and Popel, 2008). Finally, Tyrosine phosphorylation is cleared by the 

internalization of the VEGFR2, and from what is known, the clathrin-pathways are involved 

(Hoeben et al., 2004; Holderfield and Hughes, 2008). 

 

 

1.4.4 Modification of VEGFR2 signaling 

     VEGFR2 is important for physiological vascular development, but is also a requirement for 

pathological angiogenesis. Since VEGFR2 is essential for pathological angiogenesis, it is a target 

for therapeutic attempts at disrupting dependent pathways (Kim et al., 2007). Section 1.4.3 

presented some of the known pathways, thus small molecule inhibitors have been developed 

targeting the VEGFR2 signaling pathways, as examples are BAY43-9006, PTK 787/ZK222584, 

AZD6474, SU11248 and KRN951 (Shibuya M, 2006). BAY43-9006 has been given FDA 

approval targeting renal cancer by blocking VEGFR2 signaling (Shibuya M, 2006). 

Pharmacological inhibitors have other uses, one being a means to unravel and map the VEGFR2 

signaling pathways. For example M475271 blocks p38 through the kinase insert domain of 

VEGFR2. Small molecule inhibitors such as PD98059 have shown not to block migration 

however it specifically interferes with proliferation.  M475271 disrupts both VEGF-A induced 

migration and proliferation (Ali et al., 2005). In vivo M475271 specifically disrupts the Scr 

kinase activity and tumor development, hence disrupting pathological angiogenesis. In HUVECs 

pathways affected are Scr-ERK1/2 and p38, however Akt is unaffected and hence the affects 

seem to be specific for pathological angiogenesis (Ali et al., 2005; Gabhann and Popel, 2008). 
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1.4.5 The biological effects of VEGFR2  

     Late-outgrowth EPCs stimulated with VEGF-A can be affected differently depending on the 

level of expression of the VEGFR2 (Smadja et al., 2007; Smadja et al., 2008; Smadja et al., 

2009). Colony expansion at three weeks from point of seeding responds to VEGF-A with 

extensive proliferation. Interestingly, levels of expression of the VEGFR2 on the cell surface is 

quite low compared to the levels observed after 5 weeks of expansion, and demonstrate reduced 

proliferative activity (Smadja et al., 2007).  Integrins have been found to be essential such as the 

α6 integrin. VEGFR2 is influenced by the α6 integrin, pseudo-tube formation without α6 integrin 

is prevented and proliferation becomes predominant. Therefore integrins play a role in 

angiogenesis, worthy of further investigation (Smadja et al., 2007).  Obesity and related issues 

show that VEGFR2 undergoes an increase in expression as adipose cells accumulate lipid. 

Obesity augmentation is dependent on and correlates with angiogenesis perhaps hypoxia is 

playing a role similar to expanding tumor tissue (Tam et al., 2009; Rophael et al., 2007; Lee et 

al., 2009).  

 

1.5 Research objectives  

     This project is designed to develop technologies that might support development of 

sustainable vascular grafts to provide a therapeutic platform, and supplement potential bio-

artificial organs or compromised tissue with needed cytokines and signalling context. 

Comparative models could come from analysis of transplant organs and the ensuing vascular 

developments. To date, there has been limited success with regards to long-term stability of in 
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vivo induced vascular networks including in vitro sources for transplants (Mertsching et al., 

2009). This project will address a component of these short comings on the assumption that 

guided angiogenesis, utilizing a platform presenting immobilized cytokine patterns, can set the 

stage for long-term engraftment or at least lead to a better understanding. Example applications 

might include de-cellularized matrix as outlined by Ott et al., 2008, which utilized an entire rat 

heart, generating a potential natural platform for cellular re-seeding; however long-term viability 

still remains controversial (Ott et al., 2008; Mertsching et al., 2009).  

          Briefly, a first generation bio-active cytokine demonstrating angiogenic properties coupled 

with a means of immobilization will be constructed and isolated.  Since VEGF120 has been 

modified in the past in the form of fusion constructs it is logical to proceed with a fusion 

construct of our own only utilizing CaM as the fusion partner. This protein is ideal for 

purification noting its hydrophobic properties and an irreversible binding capacity to certain 

short peptide segments. Upon obtaining the putative CaM-VEGF120 and knowing it can bind 

peptides in an irreversible fashion, it is logical then to proceed with the binding of the selected 

peptides to a solid substrate surface. For this function GNPs come to mind as they bind sulfur 

moieties in a covalent fashion. Therefore the decision to generate CBP capped GNPs predisposed 

for binding scaffolding complexes and the CaM-VEGF120 has been undertaken.  

     It is hypothesized that; an experimental immobilized bio-active cytokine can be produced, 

and with a suitable scaffold these immobilized cytokines can be organized into set patterns, and 

through guided cellular development produce pseudo-tube complex structures. To date, stem cell 

therapy has not met with the intended success. For example, treating myocardial infarcts with 

attempts at long-term exogenous vascular maintenance remain elusive, although suppression of 

inflammatory symptoms has been observed (Smadja et al., 2009). BOECs, and HUVECs 
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assuming they are the optimal choice for vasculature development, (still controversial) are going 

to be the cell lines utilized for this project. It is in the design of this model that allows for 

flexibility influenced from literature or experimental protocol to make changes as required, as 

our approach is to strategically incorporate with design angiogenic growth factors coupled with 

optimal cell types into a therapeutic cocktail. Upon optimization a therapeutic platform can begin 

to be considered for the large scale manufacture of solid-tissue grafts. Presentation of bio-active 

molecules via immobilization to type-1 collagen utilizing GNPs as an intermediary should 

demonstrate physiological developmental properties.  
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Chapter II 

The production, purification and biochemical characterization of the putative 

CaM-VEGF120 fusion construct 

2.1 Summary 

     The CaM-VEGF120 was chosen as the first generation collagen-binding bio-active cytokine 

fusion protein for this project. VEGF-A and its splice variants are the predominant cytokines 

inducing vasculogenic sprouting. CaM for the purposes of this project has a limited but essential 

role. CaM will fulfill two roles in this project, first as an anchor utilized for the immobilization 

of the construct discussed in the next section. The other features unique to CaM are its 

hydrophobic properties were HIC can be utilized for CaM-fusion purification. Phenyl sepharose 

is a form of hydrophobic chromatography. Separation is achieved exploiting the hydrophobic 

properties of CaM which is regulated by Ca2+ concentrations, making purification from bacterial 

lysate straight forward. The CaM-VEGF120 fusion construct is linked together via a protease 

recognition site consisting of 20 amino acids found in the inactive precursor of TNFα, an 

inflammatory cytokine that is activated upon proteolytic cleavage. MMP-9 is one of the 

proteases capable of cleavage within the linker peptide. In this section the correct CaM-

VEGF120 sequence of the clone was verified and protease cleavage was confirmed. 

Conformational characterization of the CaM-VEGF120 was performed utilizing SDS-PAGE, 

Mass Spectrometry and size exclusion chromatography. 
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2.2 Introduction 

2.2.1 Characteristic description of the VEGF120 

     VEGF-A knockout is embryonic lethal in murine models even with the removal of one allele 

(Claesson-Welch L, 2008). However mice do grow to term if only one of the splice variants is 

expressed. As noted in the first chapter, different VEGF isoforms reportedly exhibit different 

biochemical properties. Compared to the other isoforms VEGF120 is smaller, slightly acidic and 

has no heparin binding properties therefore is freely diffusible (Yaun et al., 2011). The inability 

of VEGF120 to bind HSPGs impacts its properties with respect to the auto-phosphorylation of 

the VEGFR2, especially with comparison to the VEGF165 (Zachary and Gliki, 2001; Rusnati et 

al., 2006). Therefore mice exclusively expressing only the VEGF (120/120) do survive to term 

however display a lagging vascularization problematic for developing tissues (Zelzer et al., 

2002; Holderfield and Hughes, 2008). Given the type of applications motivating this project, it is 

still unclear as to the type of vascular development that can result from an immobilized 

VEGF120, and weather this form will have the properties of the VEGF164. However several 

studies show that the expression of the VEGF188 at least relating to tumor activity is implicated 

with a high tumor micro-vascular density and metastasis, and implies poor prognoses. VEGF164 

and the VEGF120 also induce vascular development, responding to tumor activity but are 

characteristically a micro-vascular network predisposed to eruption and hemorrhage and lack 

stability (Yaun et al., 2011). As mentioned earlier except for VEGF120, bio-active VEGF-A 

isoforms have two disulfide bridges. VEGF-C possesses an additional cysteine in close 

proximity of the VHD and has an additional third disulfide bridge, so that three sulfur bonds are 

involved in stabilizing this homo-dimmer (Keck et al. 1997). VEGF120 is the main soluble 

isoform setting the foundation for proof of principle imparting bio-active structural features that 
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can be referred to as the first generation fusion construct. The other isoforms to consider would 

be the VEGF164 and the VEGF188. As mentioned, the angiogenic profile generated from the 

individual VEGF120 produces long thin vessels that have a propensity to vascular wall leakiness, 

that lack branching (Zygalaki et al., 2008). However  immobilization of VEGF120 may alter the 

biological effects, as noted there can be an effect on affinity up or down with regards to the 

modified properties towards the interaction with the VEGFR2 (Nillesen et al., 2007; Zachary and 

Gliki, 2001).  

 

2.2.2 Calmodulin and its properties involving the CaM-VEGF120 fusion construct 

     Calmodulin the portion of the fusion construct used for one of the purification steps utilizing 

HIC to isolate the fusion construct from the bacterial cell lysate.  CaM binding to its target 

peptide is specific with very high affinity due to interaction utilizing hydrophobicity and 

electrotstatic interations (Gifford et al., 2007). The hydrophobic properties of the CaM fusion 

construct can be used to interact with a phenyl sepharose column (O’Neil and DeGrado, 1990).  

     CaM is involved with intra-cellular signaling that in many cases is calcium dependent. CaM 

has 148 residues and can bind specifically 4 calcium ions. Upon binding calcium CaM undergoes 

conformational changes and has strong interactive properties with a very wide range of proteins, 

some examples are kinases, NAD kinases, phosphor-diesterase, calcium pumps and motility 

proteins (O’Neil and DeGrado, 1990; Andruss et al., 2004). CaM binds with very high affinity to 

its target substrate usually a 20 amino acid peptide or parts of the protein as is true for the 

peptide in this project; MRPRRREIRF RVLVRVVFFA SMLMRNNLAC derived from the 

iNOS protein. Other examples of peptide binding are calcium dependent events having a basic 
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amphiphilic α-helical feature independent of a precise amino acid sequence. The dissociation 

constant for this interaction is in the range of high picomolar to low nanomolar values (O’Neil 

and DeGrado, 1990).  

A) TTTTGTTTAACTTTAAGAAGGAGANATACN  ATG GCT GAC CNA CTG ACT GAA GAG CAG ATC GCA 

GAA TTC AAA GAA GCT TTC TCC CTA TTT GAC AAG GAC GGG GAT GGG ACA ATA ACA ACC AAG 
GAG CTG GGG ACG GTG ATG CGG TCT CTG GGG  CAG AAC CCC ACA GAA GCA GAG CTG CAG GAC 
ATG ATC AAT GAA GTA GAT GCC GAC GGT AAT GGC ACA ATC GAC TTC CCT GAA TTC CTG ACA 
ATG ATG GCA AGA AAA ATG AAA GAC ACA GAC AGT GAA GAA GAA ATT AGA  GAA GCG TTC 
CGT GTG TTT GAT AAG GAT GGC AAT GGC TAC ATC AGT GCA GCA GAG CTT CGC CAC GTG ATG 
ACA AAC CTT  GGA GAG AAG TTA ACA GAT GAA GAG GTT GAT GAA ATG ATC AGG GAA GCA 
GAC ATC GAT GGG GAT GGT CAG GTA AAC TAC GAA GAG TTT GTA CAA ATG ATG ACA GCG AAG 
GAC GTC AGG CCT AGC CCG CTA GCG CAG GCG GTG  CGT AGC AGC AGC CGT AGG CCT  
CAA  TTG GCA CCC ACG ACA GAA GGA GAG CAG AAG TCC CAT GAA GTG ATC AAG TTC ATG GAT  
GTC TAC CAG CGA AGC TAC TGC CGT CCG ATT GAG ACC CTG GTG GAC ATC TTC CAG GAG TAC 
CCC GAC GAG ATA GAG TAC ATC TTC AAG CCG TCC TGT GTG CCG CTG ATG CGC TGT GCA GGC 
TGC TGT AAC GAT GAA GCC CTG GAG TGC GTG CCC ACG TCA GAG AGC AAC ATC ACC ATG CAG 
ATC ATG CGG ATC AAA CCT CAC CAA AGC CAG CAC ATA GGA GAG ATG AGC TTC CTA CAG CAC 
AGC AGA TGT GAA TGC AGA CCA AAG AAA GAG AGA ACA AAG CCA GAA AAA TGT GAC AAG 
CCA AGG CGG TGA GGA TCC GGC TGC TAA CAA AGC CCG AAA GGA AGC  

B)  MADQLTEEQ IAEFKEAFS LFDKDGDGT ITTKELGTV MRSLGQNPT EAELQDMIN EVDADGNGT 

IDFPEFLTM MARKMKDTD SEEEIREAF RVFDKDGNG YISAAELRH VMTNLGEKL TDEEVDEMI 
READIDGDG QVNYEEFVQ MMTAK-DVRP SPLA..QAVRS SSRRPQL-APTTEGEQK SHEVIKFMD 
VYQRSYCRP  IETLVDIFQ EYPDEIEYI  FKPSCVPLM RCAGCCNDE ALECVPTSE SNITMQIMR 
IKPHQSQHI GEMSFLQHS RCECRPKKD RTKPEKCDK PRR 

Figure 2.1 - Nucleic acid and amino acid sequence describing the CaM-VEGF120. A) The 

cDNA sequence for the putative CaM-VEGF120 in relation to this project, outlining the various regions, in bold is 
the ATG the methionine N-terminus. The C-terminus in italicized bold is the stop codon TGA and in-between is the 
putative CaM-VEGF120 cDNA sequence matching published data with regards to the CaM and mVEGF120. B) 
The N-terminus is the CaM peptide, protease linker is in bold and downstream of the linker is the VEGF120. An IP 
of 4.68 implies a highly soluble acidic protein, with an estimated extinction coefficient of 9440 for the monomer, 
calculated by the software ExPASy a ProtParam tool. Noting no Tryptophans are present in the sequence thus 
implies a 10% error at best associated with the calculated deduction of є. The Cystiene residues in underlined bold 
form the disulfide bridges. Within the linker region the italicized A..Q is the potential putative MMP-9 cleavage site. 
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2.2.3 Properties of the CaM-VEGF120 fusion construct feed-back system 

     Upon translation of CaM the N-terminal methionine is cleaved as expected, this is what is 

assumed to happen to the CaM-VEGF120 producing a putative total of 288 amino acids or 

double this amount for the formation of the active anti-parallel dimmer shown in figure 1.2.  

     A unique feature included into the design of the CaM-VEGF120 is a linker region joining the 

fusion construct being a peptide sequence copied from the TACE cleavage recognition site 

belonging to the 26 kDa precursor TNFα. Upon cleavage a 17 kDa active soluble form is 

produced. The TACE cleavage site is also recognized by the MMPs however with reduced 

efficiency (Mohan et al., 2002). It is well known that cellular stimulation of the VEGFR2 results 

in an augmented production of the MMPs. This separates the bound CaM from the bio-active 

cytokine separating the VEGF120-VEGFR2 ligand-complex during internalization. A form of 

feedback intended to minimize up-take of any of the solid surface components used to 

immobilize the fusion construct (Gabhann and Popel, 2008).  

 

2.2.4 Potential properties of the CaM-VEGF fusion construct 

     CaM binds many peptides sequences and this implies alterations in how this fusion construct 

may behave. For example, in its soluble form CaM could bind unknown cell surface structures if 

placed in vitro, perhaps determined by utilizing a fluorescent label. Unknowns to be considered 

by the reader, the immobilized fusion construct may affect receptor activation differently than 

the soluble VEGF120 (Helm et al., 2005). This may lead to an enhanced and prolonged level of 

activation of the VEGFR2 as internalization may face resistance. This is the first generation 

construct that upon expression and purification possesses putative bio-active properties intended 
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to induce auto-phosphorylation of the VEGFR2 Tyr1175; keeping in mind this is a new molecule 

that will require characterization. Since VEGFR2 interaction with the VEGF120 ligands takes 

place within the central region of the VEGF120 molecule, steric interferance from the CaM 

portion should not be an issue. The N-terminus of the VEGF120 is a rigid α-helix that points 

away from the molecule therefore one would assume the CaM portion should also be pointed 

away from the receptor binding region (Muller et al., 1997).  

 

2.2.5 Chapter II objective 

     The objective for this phase of the project is an introduction to the CaM-VEGF120 and the 

individual components. Included is an outline describing the subcloning into a suitable vector 

and modification of the CaM-VEGF120 DNA fragment for optimal bio-activity. This is followed 

by purification of a fully functional bio-active CaM-VEGF120 fusion construct. The main 

techniques to be presented are SDS-PAGE, Mass Spectrometry, HIC and size exclusion 

chromatography intended for characterization and purification. Verification at the genetic and 

biochemical level will be used prior to initiation of cell culture studies. 
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2.3 Methodology  

2.3.1 Preparation and characterization of the pET-15b CaM-VEGF120 expression vector 

2.3.1.1 Excision of the fusion construct fragment CaM-VEGF120 from pET-9b, 315 

residues or 945 bases 

     The expression vector pET-15b (EMD chemicals, Gibbstown NJ) has been obtained to 

incorporate the complete bio-active cassette CaM-VEGF120 of 867bp. The full length inactive 

CaM-VEGF120 clone was extracted by RT digest from pET-9d utilizing the RT enzymes 

BamHI and NcoI. The insert DNA fragment from pET-9d (kanr) originally constructed by Val 

Taiakina from Dr. G Guillemettes lab required transfer to pET-15b as bacterial strain Origami 2 

(DE3) is a kanr strain, but amps, as pET-15b offers the ampr properties.  

 

2.3.1.2 pET-15b CaM-VEGF120 subcloning, amplification and purification 

     Upon double digest and gel extraction of the vector pET-15b and the CaM-VEGF120 DNA 

fragment, ligation was carried out with a mix of 1:3 vector template to insert (50 ng of pET-15b 

and CaM-VEGF120), ligase buffer (10 X stock) with 0.5 µl T4 DNA ligase (M0202T, NEB 

Ipswich, MA) for a final reaction volume of 20 µl with incubation at room temperature for 1 

hour, followed by bacterial transfection. On the following day, 10 colonies were selected and 

screened by RT digest analysis (EcoR I, Bam HI and Mun I) selecting suitable clones by 

identifying the putative fragment CaM-VEGF120. Further modification was required to prepare 

bio-active sequence, by removing a DNA fragment representing the 26 residue leader sequence 

of VEGF120; MNFLLSWVHW TLALLLYLHH AKWSQA. The VEGF120 with leader 

sequence using MunI and BamHI was separated from the rest of the pET-15b CaM-VEGF120. 
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VEGF120 minus the leader sequence was cloned back into the linearized pET-15b CaM, thus 

completing the pET-15b CaM-VEGF120 bio-active subclone outlined in 2.3.1.2. PCR primer 

design; Forward, VEGF120F; TGTACCAAACAA TTGGCACCC ACGACAGAA 

GGAGAGCAG, and Reverse, VEGF120R; ACAAAA GTTGGATCC TCACCGCCT 

TGGCTTGTC, obtained from Sigma Genosystems, the six bases in bold are restriction sites, 

MunI and BamHI intended for proper subcloning orientation. Bacterial transfections, and growth 

selective conditions were performed as previously mentioned with confirmation by RT analysis 

and DNA sequencing (McMaster, Hamilton ON). Vector isolation and purification were carried 

out with the Qiagen DNA miniprep kit following the manufacturer’s protocol. Vector 

concentration was derived at OD260, pET-15b (CaM-VEGF120). 

 

 2.3.1.3 PCR parameters for amplification and subcloning the VEGF120 

     To ensure sequence accuracy of the amplified product, a good starting point is amount of 

template per 25 µl PCR reaction and initial PCR contents. VentR polymerase (M0254S) from 

NEB is a suitable choice because it includes proof reading capacity. Starting template of 0.5 ng 

was used to obtain desired quantities with a minimum number of cycles. PCR conditions were as 

follows; 2 minutes at 94˚C denaturing step, followed by 16 cycles to obtain suitable product with 

cyclic condition set at 30 sec 95°C, 30 sec 65°C primer annealing step and a 20 sec 72°C 

extension. Completion of the PCR required incubation at 72°C for two minutes for DNA end 

polishing, with cooling to 4°C until sample recovery. VEGF120 fragment minus the leader 

sequence was removed from a 1.5% agarose gel followed with a second round of PCR using the 
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same conditions to obtain sufficient DNA. A purified fragment 372 bp subject to restriction end 

digest was cloned back into pET-15b complete with the CaM and protease linker portion. 

 

2.3.2 CaM-VEGF120 protein translation utilizing pET-15b  

2.3.2.1 CaM-VEGF120 production and purification 

     The next procedure was to manufacture and purify a soluble bio-active CaM-VEGF120, a 66 

kDa protein. The initial bacterial cell line used was the BL21 (DE3) E. coli, but was not suitable 

as the product demonstrated no evidence of dimer formation.  

     From the literature, an option appeared to be a bacterial E. coli Origami 2 strain AD494 

(DE3) (Novagen Madison WI), which possesses a deficiency in the Thioredoxin system, creating 

an environment favoring disulfide bond formation. The AD494 E. coli bacterial cell line was 

chosen and following manufacturers recommendations utilizing 50 µg/ml ampicillin selective 

conditions, concluding with the preparation of cryopreservation stocks.  SDS-PAGE was used to 

confirm appropriately sized product is abundantly expressed. 

 

2.3.2.2 Protein production and purification; CaM-VEGF120 translation and amplification 

     A seed culture was prepared for overnight growth from a previously prepared frozen stock of 

the transfected CaM-VEGF120 E. coli AD494 strain inoculating 50 ml LB medium 

supplemented with ampicillin. 10 ml of the seed culture was used to inoculate a batch culture of 

1 liter of LB medium per 4 liter Erlenmeyer flask; four flasks were grown. The four flasks were 

incubated at 37°C with a rotational motion at 200 rpm, until turbidity reached 0.9 at OD600nm.  
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The culture temperature was reduced to 23°C thus slowing bacterial proliferation to enhance 

accumulation of CaM-VEGF120 per bacterial cell induced with the addition of 0.1 mM IPTG. 

Rotational incubation was continued for an additional six hours following collection of bacterial 

paste and storage at -80°C until required for processing.  

 

2.3.2.3 Bacterial cell lysis and construct separation 

The bacterial paste was resuspended on ice in lysis buffer (50 mM HEPES pH 7.5, 100 mM KCl 

and 1 mM EDTA) and brought to a final volume of 50 ml supplemented with protease inhibitors; 

one complex tablet per 50ml (04693132001, Roche Diagnostics, Indianapolis IN). Cell lysis was 

carried out by sonication utilizing 5 pulses for 10 seconds each aided by the addition of lysozme 

to release the cellular contents. Insoluble cell lysate was removed by centrifugation at 20,000 

rpm at 4°C, retaining the insoluble fraction for SDS-page analysis.  

 

2.3.2.4 Phenyl Sepharose CaM-VEGF120 separation from cell lysate 

     PS is used to separate CaM-VEGF120 from soluble cellular contents by means of 

hydrophobic interactions mediated by the CaM portion of the fusion construct. The required 

solutions are prepared with 50 mM HEPES buffer pH 7.5 holding the temperature at 4°C 

throughout the entire procedure. The storage solution 20% EtOH has to be flushed from the 

column, draining the column to just above the meniscus, washed with 50 ml of ddH2O followed 

by the addition of 100 ml of equilibration buffer (50 mM HEPES, 1 mM CaCl2 and 1 mM DTT). 

Noting all fractions including wash buffers were retained for analysis to determine the fraction of 
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the product. Following equilibration the 50 ml solution of bacterial lysate was added to the 

column collecting the supernatants followed by two washes each of 100 mls utilizing high salt 

buffers (50 mM HEPES pH 7.5, 1 mM CaCl2 and 0.5 M NaCl2). The final phase of the procedure 

was the application of the elution buffer C low salt (10 mM HEPES pH 7.5, 10 mM EDTA) with 

collection of 2 ml fractions, all collected solutions were imaged using coomassie blue stained 

12% SDS-PAGE gels. From gel analysis the size of the product anticipated would be expected in 

the elution fractions, ideally the most abundant of the bands visible. Fractions containing at least 

3 mg/ml were collected; pooled and concentrated 10 fold in preparation for size exclusion 

chromatography. 

 

2.3.3 SDS-PAGE reducing gel protein analysis 

      Analytical runs of SDS-PAGE gels of 12% acrylamide, optimal for proteins in the size range 

of 20 to 60 KDa, were used. Sample preparation were carried out with 4 X sample loading buffer 

(0.3 g Tris pH 6.8, 0.4 g SDS, 1.0 mg bromophenol blue, 4.0 ml glycerol, 0.2 ml 2-ß-

mercaptoethanol to 10 ml with ddH2O). A low molecular weight protein marker was included for 

every run ranging in size of 14-97 KDa (GE Healthcare). Upon completion gels were stained 

with coomassie blue to visualize the protein bands. Silver staining was used if increased 

sensitivity was required to reveal trace amounts of protein (10-100 ng), far below the sensitivity 

of the coomassie blue. This procedure was carried out as recommended by the manufacturer 

(Bio-Rad, 161-0443, Hercules CA) following coomasie blue staining. Upon completion of 

staining the gels were rinsed with ddH20 and placed in saran wrap for imaging. 

 



30 

 

2.3.4 CaM-VEGF120 preparation for bio-activity 

2.3.4.1 Sample preparation for utilization of gel column purification 

     Samples from PS purification followed by a concentration step to obtain 10 to 35 mg/ml were 

ideal for further purification with the Superdex 75 gel column (10 x 30 cm). The Äkta 

purification system (Pharmacia, Uppsala Sweden) was used to maintain a flow rate of 0.5 to 0.8 

ml/min and pressure below 1.8 kPa to prevent column damage. 

     Bio-Rad protein assay (Bradford Assay) was used for determination of protein concentration 

carried out following manufacturer’s protocol (Bio-Rad, Richmond CA). Alternatively the 

extinction coefficient might be used, however there are no tryptophan’s in the CaM-VEGF120, 

therefore the computational values provide only an estimate, as the best approximation would be 

a minimum error of 10% (Gill and von Hippel, 1989). Bradford Assay is reproducible and is 

more accurate when utilizing BSA standards. Absorbance was determined by Spectra Max 

Plus384 (Molecular Devices, Sunnyvale CA).  

 

2.3.4.2 Superdex 75 gel column purification 

     Gel column purification was designed to optimize the purity of the sample preparation to 

remove remaining bacterial toxins. Volume size upon injection was 0.25 ml of the concentrated 

sample preparation and injected into 1ml sample loop passing the sample through a pre-packed 

Superdex 75 column (GE healthcare, Baie d’Urfe Quebec) maintaining a flow rate of 0.7 ml/min 

in equilibrated degassed buffer (25 mM HEPES pH 7.4, 150 mM NaCl and 1 mM EDTA pH 8), 

and collected in a series of 0.5 ml fractions. Sample recovery determined by UV detection was 
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displayed with peaks correlating with size and fraction number confirmed by SDS-PAGE, before 

proceeding to other methodologies for characterization. System calibration was carried out by 

the LMW protein standard 6500-75000 Da from GE-Healthcare.   

 

2.3.5 Characterization 

2.3.5.1 Mass spectrometry 

     Mass spectrometry is one means to verify the mass of the proteins presented in kDa allowing 

comparisons to theoretical values. Sample preparation requires a 100 mM sample in ddH2O as a 

desalting preparatory step is required (buffer and salt replaced with ddH2O) using the YM-30 

Microcon mini-columns from Millipore.  

 

2.3.5.2 Membrane separation of CaM-VEGF120 utilizing 50 kDa size exclusion spun 

column 

     Spun columns utilized for protein concentration and buffer exchange can also be utilized in 

this case for product characterization. A column with a size exclusion limit of 50 kDa can be 

employed to demonstrate if a product over 60 kDa is prevented from passage (Amicon Ultra-.05, 

Millipore). A multi-subunit protein complex when intact should not pass through if it is larger 

than 50 kDa, however upon separation of into individual components passage should be possible. 

Therefore cleavage of the sulfur bonds disrupting the putative dimeric form of the CaM-

VEGF120 should allow passage where as dimeric form should not. DTT sample loading buffer 
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and boiling of sample diluted to 400 µl in ddH2O disrupts dimers. Staining the effluent with the 

Bradford Assay is a practical means to determine location of sample. 

 

2.3.5.3 CaM-VEGF120 MMP-9 Digest 

     Using 0.1 µg of activated MMP-9 (activated MMP-9 prepared with Þ-amino-phenylmercuric 

acetate 1 mM, incubation at 37°C for 24 hr) was added to 100 µl of substrate the CaM-VEGF120 

fusion construct at 5 µg/ml in MMP-9 digest buffer (50 mM Tris-HCl pH 7.5, 10 mM CaCl2, 150 

mM NaCl and 0.05% nonionic surfactant Brij 35) with incubation at 37˚C for a maximum of two 

to four days sufficient for near completion of digest.  MMP-9 digest of the CaM-VEGF120 

fusion construct in theory should generate a double band separated within the linker region. 

Following the digest reaction SDS-page gel analysis was preformed and confirmed by mass 

spectrometry. 

 

2.3.6 Modification of CaM-VEGF120 

2.3.6.1 FITC labeling of CaM-VEGF120 required for isotherm and tissue culture 

     CaM-VEGF120 was covalently linked to fluorescent tags according to manufactures 

protocols noting a few modifications (Molecular Probes, Eugene OR).  Purity of protein sample 

is important as determined by SDS-page analysis collected from Superdex 75 gel column 

purification. The preparation to be labeled can assumed to be quite pure if the experimental band 

of reasonable amounts is visible compared to only trace amounts of any unidentified bands 
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present. Protein concentration is required as to adjust the ratio of the labeling reagent, the FITC 

reactive dye, to the target protein. 

     Upon completion, the unreacted FITC is separated from protein bound FITC using spin 

columns with the protocol supplied by manufacturer. The final part of the protocol requires the 

determination of the ratio of FITC label per protein; this requires a final sample concentration 

determination. Briefly the CaM-VEGF120 has a very high percent of lysine residues therefore 

highly reactive, to prevent over-labeling the reaction was reduced from one hour as 

recommended to 45 minutes and perhaps can be reduced further as the ideal label target is 2 

fluorescent tags per molecule, Mass Spectrometry data determined the degree of FITC tag 

incorporation. 

 

Table 2.1 – FITC protein labeling. 

µl dye stock solution=mg/ml substrate X .2ml X 389 X 100 X MR                           
MWprotein 

M = (A260-(A494 x .30)) x dilution factor/ Є 

                    FITC per molecule= A494 x dilution factor / 68,000 x protein concentration(M)           

                                             

Protein solution or substrate vol., 0.20ml,                                                                                            
Reactive dye MW 389,                                                                                                                  
conversation factor 100                                                                                                                  
MR is the molar ratio dependent on the substrate concentration, an MR of 30 implies a substrate 
range of 4-10mg/ml 

M= equation two determination of FITC labeled protein 

 

 



34 

 

2.4 Results  

2.4.1 Characterization of the DNA clone for CaM-VEGF120 

     The construction of the putative clone for protein expression requires a suitable vector. The 

high copy expression vector pET-15b appeared to be optimal as it offers ampicillin selective 

capabilities to the transfected host AD494 (DE3) E. coli Amps. Noting AD494 is Kanr ruling out 

the use of pET-9d the original vector as it only offers kanamycin resistance. The choice of vector 

also has to take into account the MCS dictating the type of RT enzymes suitable for the specific 

DNA fragment intended for cloning, as fragment orientation is one area of concern. Suitable RT 

enzymes for the putative CaM-VEGF120 are BamHI and NcoI, ideal for the full length fusion 

construct. Briefly a double digest was carried out with BamHI and NcoI to prevent vector self-

ligation so that only colonies of bacteria able to grow in selective conditions are cultured. DNA 

sequence determination is the recommended protocol for absolute confirmation of the clone. 

Cloning of the CaM-VEGF120 into the pET-15b was confirmed by RT digest, producing the 

anticipated correct results of size and fragmentation data (image not shown) and sequencing data 

is absolute presented in Figure 2.1a. 

 

2.4.2 CaM-VEGF120 translation, purification and analysis 

     Prior to large scale purification of the putative CaM-VEGF120, a small aliquot was lysed with 

sample buffer; the insoluble was separated from the soluble fraction, and analyzed with SDS-

PAGE. The CaM-VEGF120 was confirmed to be over whelming in the soluble bacterial fraction, 

results are presented in figure 2.2a. 
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Figure 2.2 - SDS-PAGE demonstrating presence of putative CaM-VEGF120 in crude 
bacterial lysate. Image of 12% SDS-PAGE gels, initial phase of the project intended to highlight the putative 
CaM-VEGF120 translated in AD494 (DE3) E. coli. A) Lane 1, LMW; Lane 2, control sample vector only; lane 3 
vector with fusion construct indicated by arrow corresponds to 33KDa product. B) Insoluble fraction of bacterial 
paste; lane 1, LMW marker; Lane 2 control vector only and Lane 3 putative CaM-VEGF120 clone, no detectable 
product. 

 

     4 grams of bacterial paste induced by IPTG produced approximately 100 mg of target protein. 

Using phenyl sepharose as seen in figure 2.3, large quantities of CaM-VEGF120 of right size 

was eluted and pooled for concentration (figure 2.4a).  Following elution and isolation optimal 

samples were pooled  and the resulting mass spectrometry data produced a monomer of exact 

size, with two concentrated sample fractions, A (35 mg/ml) and  B (25 mg/ml) totaling 3-5 mls 

of CaM-VEGF120, presented in figure 2.4a. 
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 A                                                             B 

                                      

Figure 2.3 - SDS-PAGE of CaM-VEGF120 fractions collected from Phenyl Sepharose 
chromatography. CaM-VEGF120 indicated by arrow indicates putative monomer at 33 KDa. A) Lanes 1 LMW 
marker, 2 to 5 are controls; 2 elute from lysis buffer, lanes 3 and 4 wash steps and lane 5 is first faction collected 
after addition of elution buffer; Fraction 1-5 (lanes 7-10) collected and pooled into group A. B) Lane 1 LMW, 6-12 
fractions lanes 12-17, these fractions were pooled into group B. Sample fractions A and B are intended for 
purification utilizing size exclusion chromatography, see figure 2.5. 

 

A final purification step was recommended with the results presented in figure 2.4b. SDS-PAGE 

shown in figure 2.4a demonstrates abundant impurities from the original bacterial lysate, for 

example LPS.  Purification using the Äkta pump system and Superdex 75 gel column yielded 

sufficiently pure CaM-VEGF120 for various analytical and experimental purposes such as mass 

spectrometry, MMP-9 digest analysis, and (FITC) CaM-VEGF120 labeling. Sufficient amounts 

of labeled construct (70 mgs) for tissue culture experimentations and were collected from size 

exclusion chromatography, presented in figure 2.4b.  
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Figure 2.4 - Superdex 75 purification profile analyzed by SDS-PAGE, image depicting the 
putative CaM-VEGF120 on SDS-PAGE. A) CaM-VEGF120 concentrated following phenyl sepharose 
pooled fractions A and B, see figure 2.4a. Lanes 2 and 3 represent an approximate concentration, fraction A at 35 
mg/ml and faction B lanes 4 and 5 at 25 mg/ml. B) Superdex 75 gel column purification of samples from 2.4a. 
Lanes; 1, LMW marker; 2 and 3 samples prior to injection as in 2.4a; lanes 4 to 9 are collected fractions,  lanes 5 
and 6 were pooled obtaining a final concentration of 6.14 mg/ml.  

 

     The results for this section are straight forward. Evidence to confirm the proper protein 

sequence was acquired through mass spectrometry to confirm monomer size. The demands of 

bio-activity require this molecule to be in an anti-parallel homo-dimeric form. Sample collection 

from size exclusion chromatography separates based on size and places the CaM-VEGF120 

within the expected dimer range of 60-70 kDa, the anticipated result (data not shown). Further 

confirmation was established using a spin column that prevents the passage of protein over 50 

kDa. The intact construct should not pass through in native conditions, however when treated 

with DTT sample buffer, the dimeric CaM-VEGF120 upon boiling is 33KDa. Passage was 

confirmed by Bradford assay, therefore suggestive of disulfide bridge formation.  
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Table 2.2 - Mass Spectrometry Data depicting the native CVFC and FITC labeled version 
in monomer form. Utilizing Mass Spectrometry with comparison to theretical ExPasy calculation. A) Full 
length monomer forms of CVFC, B) size determination of the monomer form of CaM-VEGF120 following MMP-9 

digestion and C) FTIC labeled CVFC size variations.  

 

A) Full length CaM-VEGF120 

32955 kDa (Mass Spectrometry)                 

32962 kDa  (ExPasy software data)    

B) CaM-VEGF120 following MMP-9 digest  

17542 Da, deduced by Mass Spectrometry 

17542 Da, calculated by the ExPasy software data 

C) FITC (MW 389 per FITC) labeled CaM-VEGF120 

35289 Da, deduced by Mass Spectrometry, a value with 6 added FITC tags 

34122 Da, deduced by Mass Spectrometry, averaging 3 added tags 

 

2.4.3 Final conformational experiments confirming CaM-VEGF120 properties 

     The fractions collected following size exclusion chromatography suggest at the very least the 

monomer was recovered as noted by SDS-page and Mass Spectrometry, data presented in table 

2.2 and figure 2.5. MMP-9 digestion using 1-2 µg of protein did in fact produce a cleaved 

fragment targeting the putative protease linker site separating the CaM from the VEGF120. 

Although there were some unexpected results, mass spectrometry demonstrates the CaM portion 

was recovered and produced an exact size of 17 kDa at the anticipated cleavage site, figure 2.1b. 

As it appears the VEGF portion must have been further degraded as no obvious identifiable 

fragment was obtained. 
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     However, data suggests the protease site is functional as MMP-9 cleaves the putative CaM-

VEGF120 presented in figure 2.5, and mass spectrometry confirms that the correct protein 

sequence has been obtained as the full length size is exactly as predicted (table 2.2), as is the 

putative remaining CaM fraction. Finally, FITC labeling of the CaM-VEGF120 confirmed by 

mass spectrometry shows the initial preparation having an average 6-7 labels, probably in excess 

as is very bright even to naked eye, other batches were prepared with much less intensity 

obtaining between 2-4 labels per molecule as anticipated, a shorter incubation time was run 

producing 1 ml of 6 mg/ml, sufficient for foreseeable experiments. 

 

                                          

Figure 2.5 - MMP-9 digest of CaM-VEGF120. SDS-page image of the cleaved band seen at 17kDa 
indicated by the arrow compared to lane one control. Lane 3 shows two bands one at 33 kDa, remaining intact and a 
smaller at 17 kDa the MMP-9 cleaved product. 
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     This chapter describes the creation of a suitable clone with the correct sequence to translate 

the product into a proper bio-active anti-parallel homodimeric molecule. The very first phase of 

this project was to construct an adequate sub-clone for protein expression within a suitable 

vector. The proper choice of bacteria host for protein expression and purification had to be 

determined. E. coli strain AD494 (DE3) was a suitable choice as this host favors disulfide bond 

formation due to lack of Thioredoxin. Double digestion for both the vector and fragment were 

recommended as self-ligation is prevented. Following transfection, bacterial colonies were 

screened for the putative CaM-VEGF120 insert. DNA sequencing confirmed the correct clone as 

presented in figure 2.1a, noting full-length translated intact CaM-VEGF120, the intended peptide 

at the very least in monomer form can be obtained. Thus, CaM-VEGF120 fusion construct clone 

was confirmed at the DNA level by sequencing supported by RT digest. 

 

2.5.2 Supporting evidence for the CaM-VEGF120 properties  

     Bacteria growth in batch culture with an optimized protocol for expression was determined 

for a small aliquot shown in figure 2.2a, and then scaled up to 4 L for CaM-VEGF120 

purification. SDS-PAGE analysis suggested the product of interest was well expressed and 

yielded a protein product of 33 kDa as expected. The system has worked for the production and 

isolation of the monomer and possibly the dimer, fully intact as confirmed by Mass Spectrometry 

presented in Table 2.2. Large amounts of bacterial paste expressing the construct CaM-

VEGF120 can easily be obtained and suitable quantities can be recovered in bio-active form. For 

example the percentage of dimeric CaM-VEGF120 produced per bacteria is not known; but it 

seems to be near 100% as determined by size exclusion chromatography. If only 25-50% was in 
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dimeric form perhaps the amount bacteria could easily be expanded, as sample collection is by 

size fractionation (Kim et al., 2007). This implies optimized conditions for a functional bio-

active protein that can first be purified using HIC and second utilizing the N-terminal CaM 

portion of CaM-VEGF120 to bind the intended target peptide. The main focus of this section is 

on preparation of conditions to generate the CaM-VEGF120 to be recovered as an anti-parallel 

intact homodimer in its full pure form. Quantity is also important, requiring enough for analysis, 

FITC modification and extended experimental purposes outlined in the next couple of chapters. 

SDS-PAGE suggest the fragment is correct as presented in Figure 2.4, and further supporting 

evidence suggesting the CaM-VEGF120 was in dimeric form noting an inability to pass through 

a 50 KDa cut off spin column confirmed using a Bradford assay. Most importantly, is the data 

from the purification profile collected from the Äkta gel column purification system, the 

collected fraction was in the size range of 60-70 KDa, further evidence disulfide bond formation 

took place and the CaM-VEGF120 must have bio-active properties. If one was to look closely at 

the gels in figure 2.4b there is slight contamination remaining at the 66 kDa size marker, keeping 

in mind this is a reducing gel and any contamination would be the same size as the product 

eluting from the Superdex 75 gel column. Purification is size dependent therefore if the size of 

the dimer is 66 kDa the contaminating product at 66 kDa cannot be separated by size exclusion. 

 

 

 

2.5.2.1 Construct description with conformation 
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     The CaM-VEGF120 now complete, the N-terminus is the CaM portion and the C-terminus is 

comprised of the VEGF120 with the putative characteristic bio-active anti-parallel homo-dimmer 

of 66 kDa or 566 amino acids. It is not likely the CaM portion folds back onto the VEGF120 as 

an α-helix at the N-terminus of the VEGF are known for their rigidity, suggesting the CaM is 

pointed away from the VEGFR2 interactive domain of the VEGF-A, thus the CaM-VEGF120 is 

probably not any different in its activation of the VEGFR2 as the native VEGF120, of course 

excluding potential added properties of the CaM.  Alternatively how would the VEGF120 

influence the properties of CaM interactive behavior, noting purification and separation from the 

bacterial lysate was successful, protein separation is CaM dependent therefore the influence of 

the VEGF120 perhaps is minimal. 

 

2.5.2.2 CaM-VEGF120 modification 

     The final protocols before continuing to the next sections require completion, fluorescent tag 

modification that is intended to covalently link FITC tags to the CaM-VEGF120 assuming two 

tags per fusion construct would be ideal and still result in a relatively intense signal leaving intact 

bio-activity minimizing interference. FITC was the label of choice as there seems to be cellular 

uptake issues with TRITC, an observation made by others, noting the TRITC-CaM label was 

internalized by the same cell, it is speculation but a potential source for error. Since isotherms 

and cellular imaging are required for various experimentation, an amount of 5mg/ml of (FITC) 

CaM-VEGF120 labeled product was produced and probably sufficient for all required 

procedures. 
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Chapter III 

Properties of the gold nanoparticles, CaM binding peptide and the numerical 

quantification of the CaM-VEGF120 per gold nanopaticle 

3.1 Summary 

     Gold nanoparticles (GNPs) are the intermediary to immobilize the CaM-VEGF120 to a solid 

or insoluble matrix allowing presentation of immobilized bio-active cytokines to cellular 

membrane receptors. The CaM-VEGF120 can specifically bind short peptide sequences 

comprised of a mixture of basic and hydrophobic residues. The CaM binding peptide chosen for 

this project is a 30 amino acid CBP that derives from a region in the iNOS protein recognized by 

CaM. GNPs can covalently bind sulfur moieties hence the importance of including a Cys residue 

within the peptides intended for GNP binding. To complete this section a collagen adhesive 

peptide has been obtained for the immobilization of the GNPs to the platform of choice, 

solidified type-1 collagen.  
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3.2 Introduction 

3.2.1 The GNP complex and immobilization   

     GNPs due to their ease of preparation, stability and optical properties have been under intense 

investigation especially with regards to their biological compatibility (Krpetić et al., 2009). The 

stability of GNPs is established through capping reagents that can bind gold (Lévy, 2006). 

Peptides are one such capping agent, a sulfur possessing moiety is the only requirement, as this 

permits covalent binding to the GNP providing a protective coat to produce a capped GNP. Other 

examples of compounds that offer a capping protective coat are mercaptodextranes, thiolated 

PEG derivatives and thiol-based ligands (Krpetić et al., 2009; Majzik et al., 2009).  

     The most common means of producing GNPs are the protocols for citrate reactive GNPs, 

although not fully stable until the citrate coating is exchanged with cysteine capped peptides. Tri-

sodium citrate GNPs generally can form in the 10-100 nm range and are highly reactive to sulfur 

groups, one being thiolated ligands or the Cys residue, as this implies biological applications 

(Gong and Ito, 2008; Lévy, 2006). The Cys side chain can bind citrate reactive GNPs due to the 

negative surface charge creating a very favorable chemistry to react with functional groups like 

thiols, amines, cyanide or diphenlyphosphine (Krpetić et al., 2009; Majzik et al., 2009). Binding 

of thiols is optimal at neutral pH as in this project; however reactivity of GNPs for α-amino 

groups is optimal at a lower pH (Majzik et al., 2009). The binding reaction can be described as 

cleavage of the S-H bond that makes it possible for chemisorbed covalent bond formation on the 

gold surface, forming the S-Au covalent bond (Gong and Ito, 2008).  Initially during the early 

developmental phase of GNPs, concentration and size were determined utilizing TEM and DLS. 

From these techniques comparative charts were constructed for UV and Visible spectra, having 
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specific absorbance properties to estimate particle size and concentration, as citrate coated GNPs 

have a unique size dependent extinction coefficient (Zhou et al., 1994; Haiss et al., 2007).  

     For cell culture the optimal size appears to be in the size range of 50-60 nm as it seems if they 

are too large, stability and solubility may become an issue. If they are too small difficulties might 

occur with regards to recovery when bound to soluble molecules. Noting reproducibility in GNP 

production is determined by the ratio of gold ions to sodium citrate, as the protocol for their 

manufacture is quite simple once established (Lévy, 2006). Tri-sodium citrate is the most 

common reducing agent however others are available such as ascorbic acid, 3-thiophene-malonic 

acid and PDDA, as PDDA is used to produce stable gold nanoparticles in the size range of 12 nm 

(Majzik et al., 2009). 

     Metal nanoparticles, gold being the obvious, however silver is also an option as its optical 

properties invites interest from the biological sciences, this is due to their surface plasmon 

oscillations well within the visible spectrum. GNPs upon formation are colored which correlates 

with their size and reflects on the plasmon band (collective oscillation of electrons in the 

nanoparticle), as the surface area is sensitive to the refractive index (Lévy, 2006).  
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Figure 3.1 - Simplistic image of the CaM-VEGF120 complex. This image is presented in 
the monomer form, consisting of 288 amino acids; it is much more complex as an anti-parallel dimer, its 
true form. Au indicates the GNP, showing a representative of the two peptide types the CBP and the CAP 
bound from the Cysteine capped terminus.  
  
 
 

3.2.4 Chapter III objective 

     The properties of the GNPs allow binding to sulfur moieties; to enable the covalent binding of 

Cyteine capped peptides. Therefore CBP capped GNPs once established are recognized by the 

CaM-VEGF120 as a substrate. Having obtained the CaM-VEGF120, amounts of the CaM-

VEGF120 per capped GNPs can be established, by means of an isotherm plot. 

     The final objective to be addressed in this chapter is how to immobilize this CaM-VEGF120 

complex to a suitable structure intended for modified cytokines in any variable desired pattern 

presented to receptive cell types. The choice of scaffolding utilized is type-1 collagen that can 

bind collagen adhesion peptides complemented with a Cys amino acid. 

 

 

 

CaM-VEGF120; CaM outline n-terminus, protease site middle section 
and VEGF120 solid structure  

GNP  

CBP 

CAP 
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3.3 Methods 

3.3.1 Preparation of GNPs using the tri-sodium citrate reduction method 

     GNPs were prepared by the Frens method modified for GNP production in preliminary 

experiments (Turkevich, 1985). A 125 ml Erlenmeyer flask with addition of 50 ml of 0.25 mM 

gold ions (precursor) is prepared. While stirring, the sample is boiled for 3 minutes and then 0.4 

ml of 34 mM tri-sodium citrate (reducing and stabilizing agent) is added, continuing with boiling 

for 5 minutes, followed by removal of the heat source with continued stirring for ten minutes. 

This protocol is intended to produce 40-50 nm diameter GNPs, size confirmation was determined 

by UV/vis spectrophotometry (Majzik et al., 2009). Each size variation has a characteristic peak 

in the visible spectrum. 50 nm particles have maximum absorbance at 534 nm. This procedure 

generates a product that should be stable for one month at 4˚C, freezing is never recommended. 

 

3.3.2 Properties of the iNOS CBP and CAP  

     The CBP peptide was chosen as it is recognized by CaM with a demonstrated high binding 

affinity independent of calcium having a Kd between 1-10 nM, forming a virtually irreversible 

reaction that can only be separated by strong detergents. This is a 30 residue peptide that 

includes a cysteine cap, in this case at the C-terminus. With a high percentage of hydrophobic 

residues this molecule is semi-soluble in water at or near neutral pH.  To enhance solubility extra 

hydrophilic residues could be included at either terminus as these regions will not involve CaM 

binding. Concentration of CBP at 5 mg/ml was prepared re-suspending 8 mg’s of the lyophilized 

peptide in 1.6 ml ddH2O having a MW of 3739 Da. At 5 mg/ml the CBP is only semi-soluble, 

but is the required condition to optimize binding to GNPs, acidic conditions would increase 

solubility noting a theoretical pI of 12.22; however acidic conditions are not favorable for sulfur 
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and gold binding as GNPs are optimally stable at pH 7.0 and sensitive to pH fluctuations. 

Obtaining optimized solubility the CBP solution was dispensed in 50 µl aliquots for -80°C 

storage. The CBP concentration converting from grams using avocado’s constant represents 268 

pmol per 1 µg. The Sequence of the CBP is MRPRRREIRF RVLVRVVFFA SMLMRNNLAC, 

noting the 5’ cysteine is in bold (GenScript Corporation, Piscataway NJ).   

 

3.3.3 CBP Nanopartz GNP capping procedure 

     Nanopartz GNPs (Nanopartz, Loveland CO) are 50 nm in diameter at a concentration of 4.48 

E+10 particles per ml with a surface area of 7.85 µm2. This implies a theoretical capacity to bind 

approximately 4.0 E+5 sulfur atoms which can translate for the same number of CBPs. The CBP 

peptide has a single cysteine cap at the C-terminus. The combination of 9.0 E+5 CBPs per GNP 

are sufficient to ensure successful and complete saturation of the gold nanoparticles surface, CBP 

capped GNPs are very stable. Long-term storage can be insured by lyophilization, naked GNPs 

are soluble in salt solutions including PBS. Prior to capping maximum stability is at 4°C in 

ddH2O, pH 7.0 for a period of one year. 

     Following the manufacturers methodology CBP capped GNPs are acquired by mixing 25 µg 

(5 µl ddH2O) or 4.03 E+15 CBP peptides per 4.48 E+9 50 nm GNPs in a volume of 100 µl in 

ddH2O. This cocktail then requires over night gentle agitation at room temperature followed by 

washing twice (5000 rpm, 3 minutes) in 1 X PBS for the removal of possible excess CBPs, with 

re-suspension in 1 X PBS to a volume of 100 µls. 

     The protocol is easily modified if scaffolding immobilizations are required. For collagen 

binding the CBP is mixed with a 10:1 ration with CAP, choice of linker is dependent on type of 

substrate intended for immobilization. 
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3.3.4 CaM-VEGF120 interaction and binding to the CBP capped GNPs 

     Adhesion or binding of the CaM-VEGF120 to the CBP capped GNPs has been worked out 

and can present a standard protocol (obtaining 8,000 CaM-VEGF120 molecules per CBP capped 

GNPs), noting this procedure has to take into account sterile protocol procedure. To 100 µl of 

CBP capped GNPs (4.48E+9) was added 5 µl or 25 µg’s of CaM-VEGF120 (379 pmoles) and 

incubated at room temperature for 1 to 4 hours sufficient for completion of reaction (addition of 

1 µl of 1 M CaCl2 is optional). Following adhesion of the CaM-VEGF120 complex the unbound 

CaM-VEGF120 was removed with two washes in 1 X PBS at 8,000 rpm, with re-suspension to 

100 µl. This is optional, a brief sonication for 10 seconds to disrupt any aggregation however 

gold particles in their individual form are not visible with phase contrast microscopy.  

 
3.3.5 GNP immobilization 
 
    There are two methods available for the immobilization of GNPs to collagen based scaffolds, 

one being the SANH-SFB kit (Solulink, San Diego CA)  that requires collagen modification 

coupled with a modified GNP bound peptide both having chemical structures that specifically 

recognize each other creating the link. Another and possible superior means is the utilization of a 

collagen adhesive peptide, CAP (GenScript, Piscataway, NJ). CAP was chosen because it can 

readily bind to collagen in the liquid state or during collagen solidification as these are the 

required conditions upon addition of the CaM-VEGF120 complex. This minimizes any 

destructive side affects especially for the CaM-VEGF120 complex. Noting the SANH-SFB 

conjugation process is overnight utilizing a buffer system that is harsh and as collagen gel 

formation was compromised, this procedure was discontinued. However a decellularized ECM is 

only found in the solid form and easily purified therefore modification using SANH might be an 

advantage in surfaces that are currently insoluble. 
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3.3.6 Collagen adhesion utilizing the CAP 

     This employs a specific peptide shown to bind collagen derived from the collagenase 

digestive enzyme. This preparation requires centrifugation of the CaM-VEGF120 complex 

removing the supernatant and adding 10 X PBS to the CaM-VEGF120 pellet with addition of 

solubized collagen. Thus diluting the 10 X PBS to 1 X PBS gently mixing by pipetting up and 

down with placement onto the desired surface, with solidification at 37˚C for one hour, thus 

suitable for cell culture experimentation. 

 

 

 

 
 
Table 3.1 - (FITC) CaM-VEGF120 concentrations for standard curve. For use in figure 
3.2a and 3.3b, fluorescent reading representative of molar amount. 

 
 
   µg/ml         µM    
  200.00        3.03 
  100.00        1.52 
   50.00         0.76 
   25.00         0.38 
   12.50         0.20 
    6.25          0.10   
    3.13          0.05 
    1.56         0.024 
    0 .78        0.012 
    0.39         0.006 
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3.3.7 Isotherm construction, CaM-VEGF120 binding affinity and quantity per single CBP 
capped GNP 
 

3.3.7.1 Standard curve construction to determine fluorescent values to established CaM-

VEGF120 concentration 

      Standard curve intended for 10 data points each at a twofold dilution was constructed for 

soluble (FITC) CaM-VEGF120 prepared in chapter II, with an initial concentration of 200 

µg/ml, displayed in table 3.1. The graph was plotted for fluorescence vs. known µM CaM-

VEGF120, figure 3.2a and 3.3a. The required equipment to establish these measurements utilized 

the Nanodrop technology 3300 fluorospectrometer (serial no. 0860), once established 

construction of the actual isotherm can proceed. 

 

3.3.7.2 Isotherm plot construction 

     The amount of adherence and binding of CaM-VEGF120 fusion construct in relation to the 

CBP capped GNPs was measured. Determination of the linear region of the curve is the first 

requirement as this implies a measured decrease in soluble CaM-VEGF120. The FITC labeled 

fusion construct prepared in chapter II having a known concentration and utilizing 10 µl at 1 

mg/ml for 10 data points, a series of two fold dilutions was each added to a constant amount of 

CBP capped GNPs at 2.24 E+8 GNPs, a total volume of 50 µl per tube. This is with a twofold 

decreasing concentration of fluorescent construct as noted for the standard curve. Obtaining the 

region below saturation or better described as a rapid attenuation of fluorescent signal as the 

CBP capped GNPs absorb the soluble CaM-VEGF120 from solution. Establishing this linear 

portion of the curve, the actual isotherm can be constructed in the protocol just described (Jervis 

et al., 2004; Doheny et al., 1999). 
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     To ten eppendorf tubes was added 40 µls of  2.24 E+8 CBP capped GNPs in 1 X PBS, adding 

to the first tube was 10 µl of 1 mg/ml of (FITC) CaM-VEGF120 providing a 200 µg/ml starting 

concentration followed by 9 more samples at two fold dilution for the remaining tubes. This 

cocktail was incubated at room temperature for 4 hours with gentle rotation followed by 

centrifugation at 14,000 rpm with reading on the Nanodrop 3300 fluorospectrometer. The 

experiments were performed in triplicate. Following the plotting of the isotherm curve, isotherm 

analysis yielded the number of molecules absorbed per solid surface area and apparent 

dissociation constant. 
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3.4 Results  
 
3.4.1 In house production of the GNPs  
 
     The protocol for the production of the GNPs is easily prepared in house, consistently 

producing a bright ruby red product, and is reproducible. Noting size determination as measured 

with visible spectroscopy the absorbance peak when maximum at 530 nm implies a 40 µm GNP 

in diameter. Broad peaks in absorbance are indications of a wide size distribution. The protocol 

for the production of GNPs was simple and reproducible but difficulties were with capping 

efficiency, putative peptide capped GNPs frequently dissolved in PBS solution and therefore not 

efficient, especially if one wants to expand for tissue culture applications, thus commercially 

available GNPs were obtained.  

 

3.4.2 Nanopartz GNP peptide capping 

     Upon CBP capping one observed densely packed pellets as indicating of good stability in 

PBS. Stability and can only be the result of proper CBP cap formation, as mentioned GNPs 

uncapped are not stable in salt solutions. The problems of CBP binding to GNPs vanished with 

the purchase of GNPs obtained commercially from Nanopartz and proved to be extremely 

effective and reproducible following company’s protocol. The Nanopartz GNPs permitted the 

production and analysis of quantifiable isotherm affinity. Final note, the amount of GNPs 

obtained during the reaction generally appeared constant as indicated by pellet size in PBS.  

 

3.4.3 Characterization and properties of the CBP capped GNPs 

     CBP capping protocols appeared successful as noted by stability in PBS. The percent of CBP 

capped GNPs cannot directly be determined, however considering the amount recovered after 
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peptide capping, most of the reaction went to completion. Obtaining the OD at 534 nm 

comparing CBP capped in 1 X PBS to the CBP capped in ddH2O, an incomplete capping 

protocol should result in a drop in absorbance when comparing CBP capped GNPs suspended in 

PBS. This was not the case however, but if a complete reaction was required perhaps an 

increased reaction time or increased addition of CBP would be recommended. Noting any 

uncapped GNPs in a salt solution will dissolve therefore this is a measure of percent CBP capped 

GNPs. Other, more accurate techniques would require HPLC or TEM. As estimated from 

determining the spherical surface (4πr2) a maximum of 4.0E+5 CBPs can bind per GNP. 

Therefore, to ensure capped completion the capping protocol was adjusted so that double that 

amount was added per GNP, more than enough to be confident in going to completion; result 

was a product that is stable and reactive.  

 

3.4.4 Determination of CaM-VEGF120 per GNP 

     Utilizing nanodrop technology is one means of data collection for the numerical 

determination obtaining a value for the number of (FITC) CaM-VEGF120 fusion constructs that 

covalently adhere to the saturated CBP gold surface. At saturation the CBP capped gold 

nanoparticles can bind 2.8 E+4 CAM-VEGF120 constructs derived from the isotherm analysis, 

noting the anti-parellel nature of the CaM-VEGF120 implies both ends consist of a CaM N-

terminus, therefore one molecule should be able to bind two CBPs though not necessarily on the 

same particle. It is unclear at this point if steric hindrance is the limiting factor but is a 

reasonable assumption. Stability is reasonable as VEGF fusion construct adherence to the CBP 

capped GNPs remained intact even when exposed to many high stringency washes, very little 
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(FITC) CaM-VEGF120 fluorescent signal even after two days incubation at 37°C was 

detectable. 
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Figure 3.2 - CaM-VEGF120 Isotherm and complementary standard curve. A) A linear 
curve of known values of fluorescence vs. increasing amounts of FITC labeled CVFC as presented in table 
3.1. B) CaM-VEGF120 binding to CBP capped GNPs, a measure of affinity and quantity per GNP, 
isotherm data derived from FITC labeled CaM-VEGF120. 
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3.4.5 Isotherm 

     In isotherm plots the affinity is proportional to increasing slope and the plateau this includes 

the total amount of material that can bind. In the case of this project, the CaM-VEGF120 has a 

very high capacity for the CBP with a value of 28,000 CaM-VEGF120 molecules binding per 

GNP, however for experimental purposes 8,000 CaM-VEGF120 molecules were used per GNP. 

     To achieve this sensitivity CaM-VEGF120 required fluorescent labels. Another label with 

enhanced signal could be more suitable for these types of measurements. This implies a reduced 

amount of tags per molecule, noting from figure 3.3a the more tags per CaM-VEGF120 affinity 

is lost. Affinity from figure 3.2b is estimated at about 200 nM deduced from half way between 

the plateau and base of the curve on the y-axis and a value recovered from the x-axis, actual Kd 

for CaM CBP binding is between 1-10 nM. 

     With comparison to isotherm graphs increasing the number of FITC labels enhances the 

sensitivity of any labeled protein but in the case of the CaM-VEGF120 there appears to be a 

dramatic reduction in the affinity for binding of the fusion construct. Lysines are the target of 

FITC labeling reactions and as noted they occupy the active site required for CaM binding to the 

substrate region of the iNOS protein. Numerous FITC labels per CaM-VEGF120 may not 

interfere with total binding per capped GNP unless the FITC interferes in a steric fashion, that is 

binding may have compromised or a reduced adherence, some experiments to consider. 

 

 

 

 

 



57 
 

A 

 (FITC) CaM-VEGF120 Standard Curve

y = 44365x - 1368.2

-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

0 0.5 1 1.5 2 2.5 3 3.5

uM CaM-VEGF120

F
IT

C
 F

lu
or

es
ce

nc
e

B                  

Affinity Isotherm for CaAM-VEGF120

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500

Soluble  CVFC nM

C
B

P
 c

ap
pe

d 
G

N
P

 A
dh

er
an

ce
 o

f 
C

aM
-

V
E

G
F

12
0 

pM

          
Figure 3.3 - The original isotherm with 6 to 7 FITC labels per CaM-VEGF120. A) 
Utilizing a 200 µg/ml amount in a 2 fold series of dilutions demonstrates a robust standard curve. B) 
Isotherm results with enhanced FITC tagged CaM-VEGF120 noting the dramatic drop in affinity, a week 
slope remaining in the linear phase. 
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3.5 Discussion 

3.5.1 In house GNP production and applicability  

     The protocol and difficulties for the in house production of GNPs was very unpredictable, 

functionality was hard to reproduce to affectively bind sulfur moieties. For example as upon 

placement of the putative sample in PBS no pellet during the wash phase was recoverable. 

Briefly CBP capping experiments were problematic with very little product recovered, as they 

must have solubilized in the salt solution. In the literature it has been reported that the quality of 

the precursor gold ions are important as this will affect the quality of product. On average one in 

five batches of manually prepared GNPs was suitable.  

3.5.2 CBP capped GNPs 

     Successful peptide capping observed for the in house prepared GNPs collected following 

centrifugation had a characteristic pellet with expansion in size and a distinct pattern formation, 

notably more dense and concentrated when compared to the naked uncapped GNPs. Upon 

acquiring the GNPs from Nanopartz utilizing the same peptide capping protocol proved to be 

extremely effective and reproducible and was a huge advantage particularly for tissue culture 

experiments. Nanopartz GNPs permitted the production and charting of quantifiable isotherm 

affinity graphs. The commercially available GNPs are produced with a reducing agent that is 

proprietary but has the advantage of a much longer shelf life that readily exchanges with sulfur 

moieties, hence capping procedures were always successful as noted by the characteristic 

swelling of the pellet and binding of the CaM-VEGF120. Stability of the CaM-VEGF120 GNP 

complex was demonstrated by extensive wash protocols in PBS, consistently reproducible. 
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3.5.3 Potential properties enhancing the CBP capped GNPs 

     Next it is logical to determine the percent of CBP capped GNPs, and from basic observation 

appeared to be complete. Given the current protocol mentioned in 3.5.3 generally ensures 

completion of capping of the GNPs producing a stable CBP capped GNP product, and if dried 

can be stable for an extended period of time. GNPs have the advantage acting as an intermediary 

for immobilization to scaffolding structures. Could the changes in types and lengths of peptide 

used to cap GNPs have alternative affects on the overall properties? Binding different substrate-

types are flexible. This can include protease inhibitor like sequences intended to capture 

proteases within micro-environments. The design of peptides binding to the GNPs can have an 

intended affect on their cellular interactive properties, for example directed towards the 

prevention of cellular up-take as this can be an advantage when one is interested in receptor 

internalization studies. Alternatively the opposite can be employed if accelerated up-take is the 

intent, or they might be used as a sink to trap excess cytokines? Interestingly, they are very 

visible in vivo due to the characteristic plasmin resonance, therefore can be traced throughout a 

living system and do to the peptide cap are stable therefore secretion or trafficking can be 

studied. 

 

3.5.4 Optimization of CaM-VEGF120 per GNP 

     Achieving increased stability in relation to CaM-VEGF120 or CaM covalent absorbance to 

the CBP capped GNPs; a second sulfur group per capping peptide can be included, however this 

will reduce by half the number of CBPs per GNP. However if steric hindrance is playing a role 

the number of bound CaM-VEGF120 numbers would probably remain unchanged, but this has 

yet to be tested. To increase the binding capacity of the CaM portion perhaps this can be 
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accomplished by including a second CBP site within the target peptide, thus improving CaM 

access to the binding target sequence. If this proves to enhance stability with the inclusion of one 

or two extra cysteine caps perhaps much longer peptides can be considered with  multiple CaM 

recognition sites, hence increased quantity of fusion construct binding offsetting any loss in total 

number of CBPs per gold nanoparticle. It should also be mentioned that gold can take on any 

shape, spherical tri-citrate GNPs are just one example, rod shapes are also available. At present 

there seems to be no limit to the possible combination of fusion constructs one wishes to obtain, 

maybe solubility issues can come into play utilizing bacterial preparations. 

 

3.5.5 Isotherm constructs 

     The quantification and affinity of molecules absorbed onto a surface, in this case the number 

of CaM-VEGF120s that can bind per GNP, or converting to a flat surface for example millimeter 

squared. CBP capped GNPs can bind a total of 28,000 CaM-VEGF120 molecules per 50 nm 

GNP as deduced by FITC tags, can FITC labels have a dampening affect on the numbers, seems 

to affect affinity as slope is much reduced, less tags demonstrate an augmented affinity as seen 

when comparing figures 3.2b and 3.3b. However it does work and can be used for other types of 

fusion constructs, nice system and with acquiring enhanced equipment a more refined value can 

be obtainable. 

 

3.5.6 CaM-VEGF120 complex immobilization  

     To briefly summarize, the CaM-VEGF120 fusion construct is optimal and able to bind 

irreversibly the CaM binding peptides, and through FITC labeling the numerical values for the 

CV fusion construct per gold particle has been established. A term best suitable to describe the 
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gold bound CaM-VEGF120 is the CaM-VEGF120 complex. The concepts this section is 

intended to address are one, how to immobilize the CaM-VEGF120 complex and the type of 

surface or material that can to be considered as there are many suitable options. An obvious 

material type to consider seems to be type-I collagen as it can come in liquid form and when 

solidified is quite robust, and ideal concentrations of collagen are known for cell culture 

applications. This project has explored two means of CaM-VEGF120 complex immobilization, 

the SANH-SFB kit from SoluLink and a collagen binding peptide (Sistiabudi and Ivanisevic, 

2008). 

     The first attempt was with the SANH-SFB kit that requires modification of the intended 

scaffold, as in the case of this project type-I rat tail collagen (BD Biosciences, Bedford MA). In 

theory a nice concept but is too harsh for solubilized collagen. The difficulties encountered after 

preparation of the modified collagen ranged in issues preventing solidification limiting suitability 

for tissue culture applications, noting cell culture surface adherence was compromised. Collagen 

gel solidification was only possible when blended with normal untreated collagen and always 

resulted in exaggerated gel concentrations, thus outside the limits for optimal cell culture 

interactions and discontinued, replaced with the CAP.  Since type-1 collagen is suitable for tissue 

culture, and for practical purposes it must come in a soluble form, i.e. a low pH. Upon 

neutralizing the pH one can obtain solidification allowing variable shapes and concentrations, for 

example sandwich constructions or a standard slug trail.  

     CAP was discovered resulting from a literature search and noting the collagen adhesive 

properties, a 10 residue peptide, CAP; CQDSETRTFY. (Sistiabudi and Ivanisevic, 2008). This 

type of peptide construct can be expanded to include double or triple binding sequences with 

spacers. Other sequences that bind collagen can be considered or binding properties to other 
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materials, as fibronectin is another example, a very versatile and useful concept. CAP was 

chosen as it was readily available and is in possession of a cysteine cap, but quite short and 

probably compromised beneath all the CaM-VEGF120 molecules, however suitable for a first 

generation prototype. From what has been observed to this point is speed, a blend of 10:1 ratio of 

CBP to CAP prior to GNP capping seems to work. This probably will not affect numbers of 

fusion construct per GNP. The experimental numbers are not near saturation, noting 8000 CaM-

VEGF120 per GNP are utilized in tissue culture. GNPs capped even with small percent of CAP 

have demonstrate increased adhesion to collagen coated surfaces, observed in collagen treated 

imaging chambers on a shaker, enhanced adhesion. 
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Chapter IV 

CaM-VEGF120 bio-active response of VEGFR2 expressing cell lines 

4.1 Summary 

     Cell culture experiments to demonstrate CaM-VEGF120 bio-activity through the auto-

phosphorylation of the VEGFR2; in particular the residue Tyr1175 located within the tyrosine 

kinase domain. Tyr1175 phosphorylation initiates several cellular activities such as migration and 

vasculogenesis. Other experiments to demonstrate bio-activity are included imaging of scratch 

assays which demonstrated a clear robust response to the sCaM-VEGF120. Cell free areas are 

quickly reclaimed by HUVECs or cBOECs exposed to sCaM-VEGF120 with notable cellular 

morphological differences compared to the controls. 

     When VEGFR2 expressing cell lines come into contact with the immobilized CaM-VEGF120 

cellular differentiation is anticipated, and demonstrated when in contact with the CaM-VEGF 

complex (CaM-VEGF120 GNP bound) noting distinct pseudo-tube formation. Finally 3D 

collagen spot experiments demonstrate the effectiveness of the CAP important for the 

immobilization of the CaM-VEGF120 complex. The collagen blended CaM-VEGF120 complex 

lacking the CAP allows HUVECs to migrate towards the CaM-VEGF120 gradient whereas 

immobilized CaM-VEGF120 did not induce directed migration suggesting very low release of 

VEGF from the collagen matrix. 
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4.2 Introduction 

4.2.1 HUVEC properties 

     HUVECs are one of the most important model systems of which endothelial in vitro research 

is based, as mature adult EC lines are not easily cultured (Labitzke and Friedl, 2001). HUVECs 

on the other hand are very abundant and inexpensive, however they cannot be assumed to 

represent all metabolic, physio-pathological and toxic response mechanisms when comparing to 

other ECs throughout the vascular network; therefore rigorous characterization would be helpful 

but appears to be lacking (Baudin et al., 2007; Park et al., 2006).  HUVECs do have 

disadvantages, they display accelerated senescence and apoptosis with every passage and as a 

result attenuate the expression of proteins that define the endothelial phenotype, such as 

prostacyclin synthase, angiotensin I-converting enzyme, and includes the VEGFR2 (Baudin et 

al., 2007; Mellberg et al., 2009). HUVECs have served as effective model systems to 

demonstrate in vitro VEGF and bFGF angiogenesis including vascular sprouting and pathway 

signaling studies. Other authors have utilized HUVECs involving inhibition studies blocking 

receptor signaling, as an example the unique molecule EET and production noting VEGF-A 

angiogenic activity is blocked, but interestingly bFGF still works (Webler et al., 2008). One final 

point are studies involving co-culture with Matrigel platforms, HUVECs can form pseudo-tube 

structures (Song et al., 2009).  

 
4.2.2 MSCs properties 
 
     Briefly classified as a non-hematopoietic BM derived cell lines they are noted for their 

characteristic multipotent potential. Upon stimulation with G-CSF these cells can be mobilized 

from the BM. MSCs have the capacity to develop into a variety of lineages, includes SMCs, 

adipocytes, ligament cells and cardiomyocytes, and thus have therapeutic potential including the 
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enhancement of vasculogenesis and cardiac function (Jang et al., 2011; Batten et al., 2007). 

Attention is currently been given to MSCs as during transplantation they have been deemed safer 

than traditional embryonic stem cell therapies (Batten et al., 2007). Recipient T-cell activity is 

not detected at the levels compared with traditional stem cell applications therefore inflammation 

is not as severe (Wang et al., 2008). As an example, MSC pluripotencey can be influenced by 

substrate stiffness, a physical stress, effecting cultured MSCs and predisposing these cell lines to 

differentiate into committed progenitors such as neuronal, muscular or osteo-related cells 

independent of growth factors (Jang et al., 2011; Werbowetski-Ogilvie et al., 2009). 

 

4.2.3 SMCs and pericytes 

     The vascular wall is comprised of mature SMCs forming the muscular support as capillaries 

demonstrate very few or are completely free of all cell types except the lumen forming 

endothelial cells. When describing uncompromised vessels the SMCs are in the quiescent state, 

with minimal proliferative activity and are therefore resistant to vascular re-modeling 

(Hyedarkhan-Hagvall et al., 2006).  α-Actin, caldermon, and the ECM comprised of type-I 

collagen and elastin are some of the specific markers defining the vascular SMCs. These 

components coupled with the correct 3D placement of the vascular ECM are a product of SMC 

activity (Heydarkhan-Hagvall S et al., 2006). Work of Sessa et al., 2006 shows how vascular 

smooth muscle cells when not expressing inflammatory cytokines are not proliferative, as NO 

generated by the EC monolayer acts on SMCs enhancing the quiescent phenotype. Finally SMCs 

are responsible for the production of the Ang-1 cytokine a Tie-2 specific ligand inducing the 

quiescent vascular state. 
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4.2.4 Linage committed stem cells  

4.2.4.1 EPC characterization 

     The beginning of EPC characterization emerged with Asahara et al. (1997) and through 

enhanced neo-vascularization was shown to suppress symptoms of compromised regions such as 

myocardial ischaemia (Smadja et al., 2008). In some instances Atherosclerotic lesions did 

experience reduced neointima formation including the suppression of SMC proliferation and 

accumulation (Zampetaki et al., 2008).   

     Haemangioblasts can be committed to angioblast development of which EPCs derive or could 

be considered hematopoitic precursors, important to note no conclusive EPC phenotype has been 

agreed upon and is proving to be controversial. (Khoo et al., 2008; Zampetaki et al., 2008). EPCs 

are a population of mixed cells but remain the optimal cell for inducing vascular phenotypes. 

Why is EPC phenotypic characterization a challenge, one reason could be the multiple precursor 

cells, some being the non-haematopoietic MSCs. Currently the standard protocol selecting for 

the putative EPC population utilizes flow cytometry selecting for the markers CD34, CD133 and 

VEGFR2, however CD14 appears not to be a requirement at least for late out-growth EPCs. 

Smadja et al., 2008 reports that VEGFR2 expression on peripheral blood cells defines a 

functionally competent cell population that has a demonstrated ability to contribute to re-

endothelialization (Smadja et al., 2007).   

 

4.2.4.2 Early out-growth EPCs 

     Early out-growth EPCs are initially noted for a spindle-like appearance following 4-7 days in 

culture, and are further characterized by a minimal level of proliferative activity that expire after 

60 days even in the presence of high concentrations of growth factors (Smadja et al., 2007; 
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Smadja et al., 2008; Matsul H, 2007; Zampetaki et al., 2008). Characteristically these cells 

actively express large amounts of angiogenic growth factors leading one to infer these cytokines 

act in a paracrine manner affecting neighboring tissues. Selecting for the CD14 marker lacking in 

the expression of VEGFR2 seems to be the criteria for the selection and isolation of this cell line 

(Mieno et al., 2008).  The current model suggests early out-growth EPCs seem to influence 

angiogenesis by means of integrating into sites of endothelial inflammation coupled with the 

production of large amounts of angiogenic growth factors, aiding anti-inflammatory properties 

and influencing development.  

 

4.2.4.3 Late out-growth EPCs 

     Late out-growth EPCs are best characterized as endothelial lineage committed stem cells 

having the capacity to be expanded ex vivo (Smadja et al., 2007; He et al., 2004). Late out-

growth EPCs lack the leukocyte markers CD14 and CD45 and are capable of expansion in 

culture for up to 12 weeks sustaining the EPC phenotype. The haematopoietic stem cell antigen 

CD133 is lost as EPCs are committed towards the late-EPC phenotype coupled with a reduced 

cytokine expression array in comparison to the early-outgrowth EPCs (Smadja et al., 2007).  

     From experimental observations after 5 weeks in culture EPCs (BOECs) demonstrate an 

enhanced property for VEGF-A with induced angiogenesis (Smadja et al., 2007). BOECs or late 

out-growth EPCs have shown excellent angiogenic potency in vivo when comparing to mature 

endothelial cells, but have a cobblestone pattern at confluency like mature ECs. They also have 

specialized features unique to BOECs such as urokinase activity and express a thrombin receptor 

that upon stimulation can induce pseudo-tube formation (Treichel et al., 1998; Smadja et al., 



68 
 

2009). These properties have been demonstrated in vitro and comparing to HUVECs stimulated 

responses are greatly enhanced (Smadja et al., 2007; Serrati et al., 2009).  

 

4.2.5 Objective  

     This chapter will demonstrate bio-activity of HUVEC and cBOEC cell lines exposed to the 

putative CaM-VEGF120 in soluble and immobilized form. These experiments can be described 

as “scratch assays”, a means to demonstrate cellular migration and proliferation responding to 

bio-active cytokines to reclaim a cell free zone. However the more advanced experiments will 

consist of CaM-VEGF120 bound to GNPs capable of inducing pseudo-tube formation in 

comparison to control GNPs. Finally the most important of all the experiments is to demonstrate 

in 3D scaffold immobilization of the CaM-VEGF120. This project does touch on successful 3D 

collagen scaffolding models utilizing immobilized CaM-VEGF120 complex structures. 

Demonstrating the feasibility to create a platform were bio-active cytokines can be immobilized 

and accessible for a chosen cell type, a platform for future experimentation. 
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4.3 Methods 

4.3.1 Tissue culture 

     Cell culture preparation, plastic surfaces require a form of insoluble protein coating including 

fibronectin (optimal), however alternatives can be used (Hughes et al., 2010). Collagen coating 

in the form of gelatin, a .1% solution solubilized by autoclaving was used for routine culture 

growth and expansion. Type-I collagen favors differentiation intended for VEGF induced 

pseudo-tube formation as this has applications for imaging chambers when stimulated with bio-

active cytokines. Initial seeding to obtain working cell numbers required 1-2 E+6 cells per T-75 

flask, incubated o/n at 37˚C with medium changed the following day to remove cryopreservation 

reagents. Upon progression towards confluence cells are passaged for expansion. Briefly, cells 

are washed once with 1 X PBS negative for Ca2+ and Mg2+ and inoculated with 1ml of trypsin 

per T-75 flask and left at room temperature for 1-5 minutes depending on cell type. The reaction 

is terminated with the addition of growth medium containing serum. Cells can continue to be 

passaged for experimental preparation and/or cryo-preservation.  

 

4.3.2 Scratch assay preparation 

     Scratch assays are measured by imaging of HUVECs or cBOECs when in contact with the 

sCaM-VEGF120 inducing migration into the cell free areas. 10 rectangular imaging chambers (3 

X 1.5 cm) were treated with rat tail type-1 collagen prepared by over-night evaporation. 

Approximately 1.0 E+5 cells per chamber are seeded in rich medium and grown until confluent, 

as this is required for an optimal images. At confluency the rich medium is replaced by reduced 

medium containing 0.5% serum and further incubation for 12-24 hrs. A p200 pipette tip is 

“scratched” across the culture surface to clear a uniform path the length of the chamber. Cells 
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were then incubated with 100 ng/ml sCaM-VEGF120 or 50 ng/ml of the positive control 

VEGF165 (Invitrogen, Camarill CA).  Images utilizing the Ziess Microscope Axiovert 200 

(Model no. 37081, Göttingen Germany) were collected at 8 to 12 hour intervals for 30 to 48 

hours. 

 

4.3.3 Random pseudo-tube formation 

     The imaging chambers are set up in a similar fashion as the scratch assay with type-1 collagen 

as recommended by the manufacturer. The collagen treated chambers were seeded with 1.0 E+5 

cells per chamber in rich culture medium and allowed to reach 60-80% confluency, upon which 

reduced medium containing 0.1% serum was added with further incubation for 12-24 hrs before 

treatment. Control chambers were of two types; cells maintained in reduce medium only and the 

other included CBP capped GNPs. Experimental chambers for two types of conditions were 

evaluated; one with (FITC) sCaM-VEGF120 and the other set the (FITC) CaM-VEGF120 

complex. Images were collected 12 hours upon addition of bio-active ingredients representative 

of time zero as this would continue for 1-2 weeks depending on cell quality, with collection of 

images every 8 to 12 hours and replacing the medium every 2 days. 

 

4.3.4 Advanced tissue culture 

     Type-1 collagen coated imaging chambers were prepared as these experiments are set up 

intended to compare collagen gels blended with diffusible CaM-VEGF120 complex and its 

immobilized counter-part, however both are blended with type-1 collagen for the purposes of 3D 

suspension in collagen gel scaffolds. 
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     Four imaging chamber preparations; control chamber having type-1 collagen coating only, 

second experimental control is included with 2 µl collagen spots no additional ingredients. The 

experimental chambers consisted of 2 µl collagen spots blended with diffusible CaM-VEGF120 

complex and finally collagen spots blended with CaM-VEGF120 complex utilizing the CAP 

predisposing theses GNPs or the CaM-VEGF120 complex structures to collagen immobilization. 

     Cell seeding was identical to the other chamber conditions however seeding with low serum 

conditions only to prevent collagen spot contamination, following 12 hrs for cell attachment, the 

initial medium was replaced with identical medium to remove unattached cells and imaging was 

started immediately, collecting images every 6 to 8 hrs for 8-10 days. 

 

4.3.5 IP and Western analysis of VEGFR2 

4.3.5.1 Immunoprecipitation of the VEGFR2 

     HUVECs cultured in 6-8 0.1% gelatin coated T-75 flasks grown to 90% confluency for 

enough cells to seed 6 large T-150 (0.1% gelatin) flasks to provide enough cells having low 

levels of the target antigen. Of the six T-150s flasks two T-150 flasks per treatment group were 

prepared. HUVECs were expanded to near confluency supplemented with rich medium, and 

media replaced with reduced medium (0.1% serum) with a further incubation for an additional 

12-24 hrs. Preparation for five minute induction with growth factors utilizing standard 

concentrations (100 ng/ml sCaM-VEGF120). Following the 5 minute induction cells were placed 

on ice and washed twice with ice cold 1 X PBS supplemented with phosphatase inhibitors. 

Following with the addition of 1 ml lysis buffer (1 X PBS; 1% triton X-100, protease inhibitors 

(Roche Diagnostics, Indianapolis IL) and anti-phosphatase 1:100 (cocktail II, Sigma-Aldrich)) 

the cell layer was thinly coated while scrapping at 4°C, for 15 minutes per experimental group. 
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Cell lysate collected in eppendorf tubes followed by brief sonication of 10-15 second burst 

completed with gentle agitation for 20-30 minutes maximizing antigen solubility. The insoluble 

lysate was removed by centrifugation at high speed for 10 minutes and the supernatant 

recovered. Concentration measurement diluting the lysate to 100 mg/ml was precleared and 

doubled in volume averaging 600 µl to which was added 0.5 to 1 µg of capture antibody (poly 

clonal Goat anti-VEGFR2, Santa Cruz CA). Followed by o/n rotating incubation at 4˚C followed 

by addition of  protein G beads, 10 µl per sample with further agitation utilizing the same 

conditions for 4 hours to o/n, washed 2 to 4 times in lysis buffer and resuspended in 40 µl lysis 

buffer including 10 µl sample buffer (-20˚C storage possible if required). Prior to loading the 

running gel samples were heated at 95˚C for five minutes, allowed with cooling to room 

temperature and centrifugation. Completed by loading 10-20 µl of sample per well. A gradient 

running gel was run set at 100 volts for 4-6 hours followed by preparation for transfer to a 

nitrocellulose membrane.  

 
4.3.5.2 Western blotting 

     Upon completion of the gel run, the gel was soaked for 20 minutes in ice cold transfer buffer 

(glycine 29 g, 121 MW tris 5.8 g, SDS 1 g and 20% methanol; 1 liter) and during this procedure 

and cutting the nitrocellulose membrane to size was briefly placed in transfer buffer, including 

two sheets of 3MM watman paper followed by construction of the transfer sandwich. The 

sandwich was placed into the apparatus maintained at 4˚C for a 1 hr transfer at 100volts, 

followed by membrane removal, a brief wash in 1 X TBS, in preparation for antibody 

hybridization (Bhattacharya et al., 2009). Pre-Hybridization, blocking Buffer (5% BSA, 0.1% 

tween 20 in 1 X TBS pH 7.4)  utilizing 5 ml was added to the nitrocellulose membranes for 

agitated incubation at 4˚C o/n followed by one wash (1XTBS, .05% tween 20). 
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     Primary hybridization, minimal amounts of primary anti-bodies were required for this 

technique, 1 µl per 4 ml of hybridization buffer (see blocking buffer) for both the rabbit 

polyclonal anti-VEGFR2 (Santa Cruz, CA) and the rabbit anit-VEGFR2 pTyr1175  (Cell 

Signaling, Danvers MA) with rotational o/n 4°C incubation followed by 3 washes (1 X TBS, 

0.05% tween 20) in preparation for the secondary hybridization. 

     Secondary hybridization, after three 10 minute washes (1 X TBS pH 7.4, 0.05% Tween 20) 

the blot is prepared for the secondary hybridization. The secondary antibody was a poly-HRP 

goat anti rabbit IgG (Thermo-Scientific, Rockford IL) used at 2 ng/ml in reduced hybridization 

buffer (4% BSA, 0.075% tween 20 in 1XTBS pH 7.4). A one hour agitated incubation at room 

temperature followed by 3 to 4 washes in wash buffer, with addition of Femto West 

chemiluminesent buffer (Thermo-Scientific, Rockford IL) for five extra minutes followed by 

removing the blot and excess liquid and placement into saran wrap in preparation for X-ray film 

exposure. 
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4.4 Results 
 
4.4.1 Scratch assay 

     The scratch assay observes how a confluent lawn of endothelial cells or cBOECs proliferates 

or migrates onto a uniform path of cleared cells. A control chamber with serum reduced medium 

is compared to other chambers exposed to sCaM-VEGF120 at 100 ng/ml, as cell-free areas are 

reclaimed images are recorded as presented in figure 4.1 and 4.2. cBOECs do appear to be able 

to present an enhanced angiogenic sprouting profile, Figure 4.1f, as opposed to the HUVECs 

being predisposed to proliferation as expected, Figure 4.2f. Vasculogenic sprouting implies 

cBOECs are possibly expressing higher levels of VEGFR2 (Smadja et al., 2008). 

 

4.4.2 CaM-VEGF120 bio-active properties 

     The first set of images demonstrate bio-activity of the CaM-VEGF120 complex compared to 

the control chambers, noting cell elongation and survivability as this pattern is apparent 

following figures 4.3 to 4.7. The more important images being the gold bound CaM-VEGF120 

complex. The imaging chambers are coated with EtOH o/n dried type-I collagen (40 µg/cm2) 

providing the 2D surface allowing one to observe the CaM-VEGF120 complex cellular binding 

and up-take, aided by fluorescent imaging. These images demonstrate cell survivability in 

reduced medium (0.1% serum) imparted by the CaM-VEGF120 complex were the control 

samples in reduced medium display more cell debris and a thinning of the cell population. 

Interestingly from previous publications GNPs are anti-angiogenic, possibly by binding 

membrane proteins and perhaps interfering with the VEGFR2 directly (Kalishwaralal et al., 

2010).  

 



75 
 

 

 

 
Figure 4.1 - cBOEC scratch assay. A-C are control chambers having no added growth factors. D to F are the 
experimental images exposed to 100 ng/ml sCaM-VEGF120. A and D are time zero, B and E 12 hours exposure as C and 
F represent 24 hours from the beginning of experiment the exposure to the sCaM-VEGF120, 10x objective imagery and 
100 µm scale. 
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Figure 4.2 - HUVEC scratch assay demonstrating sCaM-VEGF120 induced cell 
confluency. A-C control images negative for bio-active cytokines, D-F experimental images with the addition 
of 100 ng/ml sCaM-VEGF120. A and D are time zero images, B and E images taken after 12 hours, noting in B 
indicated by arrows remaining cell free areas,  much less in E. Finally C and F following the 24 hour induction 
as indicated by the arrows in C excess amounts of cell free areas remain, 5x objective imagery, 200 µm scale. 
 
 
    The images presented in figures 4.3 to 4.7 one can observe that the CaM-VEGF120 complex 

is angiogenic, at least for the first 48hrs after induction. VEGF-A stimulation of the VEGFR2 

augments its own regulation therefore cells expressing more of the VEGFR2 are expected to bind 
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more of the CaM-VEGF120 complex thus inducing enhanced survivability and augment tube 

forming structures noted in Figure 4.3 and 4.6c. It would then be assumed that the cells expected 

to scavenge the remaining CaM-VEGF120 complex are expressing the VEGFR2, cells not 

responding could be assumed to have little to no VEGFR2. 

     Comparing to the control images, HUVECs that do respond to the sCaM-VEGF120 or the 

CaM-VEGF120 complex present a definite elongated morphology up to 3 days, Figure 4.7e and 

f, and control HUVECs appear apoptotic and ultimately this must be what is happening. Another 

area to consider is protease production augmented by VEGFR2 activity and probably accelerates 

the reduction in the half-life of the CaM-VEGF120 complex, given the unprotected environment; 

this can be minimized through replacement of the culture medium or a flow chamber extending 

the life of the CaM-VEGF120 complex. This would favour conditions for physiological 

development. MMP activity such as MMP-2, 3, 7 and 9 can modify the surrounding ECM 

including the CaM-VEGF120 complex (Haas et al., 1998).  

 

4.4.3 GNP internalization 

     Examination of figure 4.3a, 4.4c and 4.5c representative of day one, robust angiogenic 

sprouting is evident, however it is random in nature as the gold particles have not been 

immobilized just permitted to settle onto cellular surfaces when added with the medium. At a 

later time point it becomes clear that the control samples are beginning to undergo apoptosis 

shown in Figure 4.6b and 4.7a and b, resulting from starvation conditions, as in the experimental 

groups this is not the case. Day two image Figure 4.6c comparing to time zero images in Figure 

4.4a the sprouting is obvious noting Figure 4.6b is in the roughest shape, as staining for 
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apoptosis at this point would be advantageous to enhance  the viable phenotype of these cells, 

but lacking in time and supplies.  

 

 

 

 

 

 
 
Figure 4.3 – Day 1 to Day 4 HUVEC CaM-VEGF120 complex stimulation and 
response. A) Day 1 comparing the phase contrast to the mirror fluorescent image on the right, 
representative of the interactive uptake and trafficking of the CaM-VEGF120 complex. B) Day 3 and C) 
Day 4 exposure times noting fluorescent signal visible in phase contrast, 40X objective imagery, scale 
25um. 
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Figure 4.4 – Image at time zero of HUVEC and CaM-VEGF120 stimulation and 
exposure. A) CaM-VEGF120 complex, B) CBP capped GNPs (4.48 E+8 GNPs per chamber) for time 
zero. C)  CaM-VEGF120 complex structures at 14 hours exposure or 8,000 CaM-VEGF120 per GNP, a 
total  of 4.48 E+8 GNPs per chamber . These images collected following 12hr reduced medium exposure 
and 12 hrs after addition of bio-active cytokines time zero, scale 200um, 5X imagery. 
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Figure 4.5 - 14 hour HUVEC exposure to CaM-VEGF120 complex, with emphasis 
on tube formation. A) Control no supplementation and B) CBP capped GNPs. C) CaM-VEGF120 
complex with tube formation, noting column on the right is the fluorescent mirror image, scale 100um, 10x 
objective. 
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Figure 4.6 - Day 2 imagery following CaM-VEGF120 complex exposure. A) Control 
chamber no supplementation and B) CBP capped GNP noting lack of angiogenic sprouting and 
compromised survival. C) Extensive tube formation of HUVEC cells exposed to the CaM-VEGF120 
complex and complimentary fluorescent image, 10x objective, scale 100um. 
 

4.4.4   3D Collagen gel structures 
 
     One of the last experiments for this project involving tissue culture was an in vitro 

demonstration of collagen gel spots blended with the CaM-VEGF120 complex with or without 

the collagen adhesion peptide. The procedure for immobilizing the GNPs to collagen required 

the binding or utilizing the CAP. Given the time frame collagen spots were possible consisting of 

2 µl spots at about 7-10 per imaging chamber. This produces sufficient evidence to demonstrate 

the bio-active capacity of the CaM-VEGF120 complex. Endothelial cells do not consider 

collagen suitable environments so are never seen migrating into this particular type of insoluble 

matrix unless a bio-active cytokine gradient is detected, optimally affective in reduced conditions 
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(Li and Claesson-Welsh, 2009; Serena et al., 2008). To each imaging chamber was added 6-10 

collagens spots consisting of 2 µl each except for one control having no supplementation or 

collagen spots. Collagen spots were blended with ether (FITC) CaM-VEGF120 complex or 

(FITC) CaM-VEGF120 adhesion complex noting the (FITC) CaM-VEGF120 complex is 

diffusible and should leach out of the collagen scaffold, and has demonstrated substantial cellular 

invasion. Collagen spots probably offer a form of protection and thus extending the shelf-life of 

the CaM-VEGF120 as compared to exposed 2D surfaces. Theses collagen spots were the first 

successful attempt at creating a suitable 3D scaffold with CAP immobilization. This is 

interesting as the collagen can solidify with any desired concentration but the concentration of 

collagen used here was optimal according to the manufacturer’s protocol for cell culture. The 

same kind of experiment was performed earlier with SANH-SFB kit but the collagen spots were 

substantially denser as had to add normal collagen to the CaM-VEG120 adhesive collagen 

complex to obtain some form of gel formation. This did work but the collagen was overly 

concentrated and not optimal for cell culture and discontinued.  

 

 

 

 

 

 

 

 
 
 
 



83 
 

  

    

Figure 4.7 – Final images at day three, emphasizing the robust pseudo-tube 
formation and fluorescent CaM-VEGF120.  A) Control comparing to B) CBP capped GNPs 
noting the probable apoptotic nature of the image and finally C), pseudo-tube formation is very robust 
when comparing to the controls but beginning to regress, 5X objective and scale 200 µm. D and E) the 
complimentary image at 20x objective noting the fluorescent detail, scale 50um. 
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Figure 4.8 - Collagen spot interaction with HUVECs, time zero. A) A control collagen gel 
spot with no bio-active ingredients, B) collagen blended with (FITC) CaM-VEGF120 complex, and bottom 
C) are CaM-VEGF120 complexes with collagen adhesive properties, supplemented with a fluorescent 
images on the right, scale 200um, 5X objective. 
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Figure 4.9 - Day 3.5 cellular invasion into the collagen CaM-VEGF120 diffusible spot. A) Control 
no cellular invasion but typically cells line the base of the collagen spot. B) Noting cellular invasion as the bio-active 
CaM-VEGF120 complex is not secure and arrow is pointing to the collagen edge. C) Bottom two images representative 
of the immobilized CaM-VEGF120 complex , cells cannot detect and the VEGF growth factor and therefore no or very 
little invasion detected, scale 100 μm, 10X  objective. 
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4.4.5 VEGFR2 Tyrosine 1175 auto-phosporylation 

     This part pertains to figure 4.11 demonstrating the phosphorylation of the Tyr1175 do to sCaM-

VEGF120 and VEGF165 VEGFR2 interaction. Clearly compared to the control lane 1 in Figure 

4.10b there is no noticeable phosphorylation activity, cytokine exposure is five minutes and has 

been shown to be reproducible however it is evident that the level of VEGFR2 expression in this 

HUVEC cell line is rather week hence the difficulty in obtaining a sizable signal.  

 

    A 
                                                      

    B     

                               
Figure 4.10 - Western images of VEGFR2 IP demonstrating Tyr1175 
phosphorylation. A) Representative image of total VEGFR2 signal, and B) were phosphorylation is 
detected in lane 2 CaM-VEGF120 100 ng/ml stimulation, lane 1 control no stimulation is rather week in 
pTyr1175 signaling. Lane 3 is VEGF165 stimulation at 50 ng/ml. 
 

 

1                      2                      3 

1                      2                    3 



87 
 

4.5 Discussion 

4.5.1 Cell culture, demonstration of CaM-VEGF120 bio-activity 

     This chapter was concerned with the demonstration of CaM-VEGF120 bio-activity. The 

initial phases involved testing the first generation construct with tissue culture and possible 

applications for further follow-up experiments, a platform leading to animal model testing. 

Scratch assays confirmed the bio-activity of the CaM-VEGF120 fusion construct, as can be seen 

with HUVECs the cell free zone was completely re-claimed within 24 hours including 

angiogenic sprouting or elongation of the cellular phenotype. It has been reported that with 

increasing expression of the VEGFR2, cell VEGF-A stimulation attenuate in proliferative 

capacity but enhance pseudo-tube formation. This appears to be the case for the cBOECs as 

sprouting and migration are clearly evident in Figure 4.1. However the controls did not fare as 

well as is quite obvious. Finally these experiments probably can be improved with a reduction in 

serum from 0.5% to 0.1% as cellular proliferation especially with the HUVECs had a bit too 

much remaining momentum and the intent was to create a more dramatic contrast between the 

control and experimental groups.   

 

4.5.2 CaM-VEGF120 Vasculogenesis 

     Cells exposed to the CBP capped GNPs  in reduced medium actually appear worse than 

unstimulated control chambers, however more work needs to be done to verify if the CBP 

capped GNPs are inducing any form of cell death programming. Restoring the chambers to rich 

medium might allow recovery of the stressed cells back to their original phenotype, but it would 

be interesting to include apoptotic analysis utilizing annexin V or Tunnel staining. However 

there may be no difference in the degree of programmed cell death comparing CBP capped GNP 
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cell exposure to the control preparation as GNPs are only anti-angiogenic, and non-toxic towards 

exposed cells (Kalishwaralal et al., 2010). Finally the GNPs are CBP capped, cell apoptosis may 

be induced by removing the cellular CaM, and upon extracting these GNPs may prove to be 

CaM bound. 

 

4.5.3 CaM-VEGF120 complex interaction with putative VEGFR2 

     Briefly it is interesting to speculate as to the stability of the (FITC) CaM-VEGF120 complex 

even during cellular internalization, perhaps the VEGFR2 receptor upon internalization was 

unable to quench the signaling cascade as the phosporylated Tyrosine’s might have more time to 

linger. The CaM-VEGF120 complexes appear to remain intact therefore what is the affect on the 

internalized receptor. Presented in figures 4.3 To 4.7 the CaM-VEGF120 complex molecules 

were left in the aggregated state perhaps slowing internalization, this must have an effect on the 

signaling cascade generated by the VEGFR2.  

     After one day the (FITC) CaM-VEGF120 complex structures were visible in the cell from 

internalization, noting this spans the length of the pseudo-tube during formation evident in figure 

4.3. An alternative perspective can be provided using an FITC labeled construct not recognized 

by the cell or blocking the VEGFR family of receptors to determine if internalization is 

prevented, however time constraints meant it is beyond the boundaries of this project. As gold 

particles have been reported to be taken up by cells as found in literature, and noted for the CBP 

capped GNPs in this chapter, but appears to lack a defined pattern. This leads one to speculate as 

to the different types of peptides or proteins that can be bound to these gold particles. Describing 

CBP capped GNPs they are not associated with tube formation therefore one cannot see or detect 

CPB capped GNPs along the length of vasculogenic sprout, and only appear in the cytoplasm 
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around the nucleus, hence no evidence for intercellular trafficking. The most prudent experiment 

to perform would be the use of the FITC labeled CaM preparations and perform similar 

experiments and record the process of cellular uptake and compare to the CaM-VEGF120 

complex. 

 

4.5.4 Enhancing GNP immobilization to survive rigorous conditions 

     Animal models are where this project would come to life, as inosculation would be the next 

logical step. Were vasculogenic development in vitro becomes a means for inducing 

angiogenesis, connecting to the host vascular network. Given the plasmon resonance of gold, in 

vivo tracking and therefore a detectable difference between the immobilized GNPs to diffusible 

GNPs would make for an interesting comparison.  

      Adhesion enhancement if required as the strength of CAP binding and has yet to be tested. 

So how do we know for sure this peptide is providing collagen adhesive properties? From what 

has been mentioned and presented the system is proving successful. Without changing the 

peptide perhaps a collagen gel can be constructed and subject to an electric current comparing 

the CBP capped GNPs to the CAP peptide capped GNP noting differences in migration rates. 

However an interesting experiment would be cellular uptake, immobilized CaM-VEGF120 

complexes attached to a collagen surface, how this compares to the diffusible CaM-VEGF120 

complex with regards to uptake and trafficking. As mentioned in chapter III ECM adhesive 

peptides can be extended in length with repeats or a blend of different adhesive properties to 

enhance binding to choice of scaffold so lots of room for improvement.  

     Finally from figure 4.9b the HUVECs are abundant under the collagen gel spots probably due 

to detecting the diffusible CaM-VEGF120 complex, as it is speculated a gradient pattern has 
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developed. The IP analyzed by western blot with regards to the phosphorylation of the Tyr1175 is 

in fact induced by the CaM-VEGF120. However if time was permitting a robust VEGFR2 

expressing cell line would enhance this protocol substantially, thus permitting quantitative 

experimental analysis of immobilized CaM-VEGF120. This implies a possible sustained 

phosphorylated state as mentioned the cells may not easily internalize the CaM-VEGF120 

complex bound to the scaffolding material, possibly interfering with phosphatase activity. 
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Chapter V 

Conclusion 

5.1 Alternatives to the CaM-VEGF120  

     As we have seen CaM can be the foundation for construct considerations, but if attempting to 

replace the VEGF120 with other potential protein molecules what are some of the potential 

difficulties or advantages? The difficulties that might be encountered is the isolation from a 

bacterial source. The CaM-VEGF120 was possible as this construct is fairly acidic and very 

soluble. What about something like the bFGF cytokine, much less soluble thus might present 

some challenges.  As far as angiogenesis is concerned VEGF-A splice variants like the 

VEGF165 would probably generate an enhanced angiogenic response at least when compared to 

the soluble VEGF120. Making clones at the DNA level should not be a problem, but with the 

protocol utilized in chapter II, the isolation of intact bio-active proteins solubility issues can 

affect the final outcome, but has yet to be attempted. 

     Constructing a myriad of potential fusion constructs, a functional library can be considered 

and modeled were these constructs could be available depending on the possible demands.  One 

could consider the replacement of CaM, but it is a very versatile molecule. A fusion construct 

could be made with collagen binding peptides incorporated. However the GNPs have the 

advantage of in vivo tracking, and are measurable in terms of the isotherm constructs pertaining 

to the number of molecules binding per GNP, outlined in chapter III. Noting GNPs can come in 

many shapes and can be packed with constructs of varying types. Other fusion constructs 

considered relative to vasculogenesis would be the VEGF188 and Ang-1. If successful all three 

VEGF-A isoforms can be blended or perhaps creative patterns can be considered, thus observe 
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and compare in vitro angiogenesis for morphological differences. This could prove very 

interesting; however this would imply a much enhanced experimental platform. Final note, is the 

immobilized VEGF120 similar to the VEGF165 in regards to the induction of the VEGFR2? 

 

5.2 Modifications to tissue culture 

     We have seen the possibilities of different cytokines, how about tissue culture. If time was 

permitting it would be prudent to get data from a co-culture system. The initial cell choice for a 

co-culture system logically would be MSCs or pericytes to be included when the primary cell 

line expressing the VEGFR2 receptor is phosphorylated. If development is following a 

physiologically induced migratory path pericyte activity will be measurable. This would be 

especially true compared to the control CBP capped GNP, a very important comparison. 

However to date enhanced stability results from the addition of SMC/pericyte, and is required for 

any developing vasculature or at least provides an extended period of stability to the in vitro 

vasculature.  HUVECs provide a good model system for this study however mixing pericyte and 

HUVEC cell lines prior to seeding has shown to have no effect, therefore timing appears to be 

important when blending the different cell types.  

     Since time has been a factor the experiments have to come to a conclusion, but these 3D 

collagen gel structures can be placed in many shapes including the collagen sandwich model. A 

collagen-fibronectin blend has been recommended, at the very least it would be interesting to 

compare to the scaffolds constructed of pure type-1 collagen.  

     Therefore to bring this project to fruition it would be ideal to have a blend of immobilized 

cytokines and co-culture cell types, but this is when it begins to get complex. The ensuing events 
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however can be monitored by cellular responses comparing gene expression to endogenous 

systems, comparing to ideal model organ transplant recipients. It would be interesting to see if 

functional lumens do form from these 3D structures allowing flow through. A form of laminar 

flow is essential for enhancing the physiological phenotype. For example capillary dispensed 

tube trails blended with cells or direct seeding onto the micro-slug trails to observe a 

vasculogenic sprouting pattern and properties with applications of laminar flow, a platform for 

physiological vascular development. 
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