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Abstract 

A Digital Terrain Model (DTM) is an important topographic product, required in many 

applications. Data needed to create a DTM was traditionally obtained via land surveying, 

however this method can be costly and time consuming depending on the size of the 

geographic area. Over time, the land surveying was partially replaced by photogrammetry. 

Today, airborne Light Detection and Ranging (LiDAR) has become another powerful 

alternative that collect 3D point clouds for digital surface models (DSM) acquisition. 

LiDAR is especially useful when dealing with heavily vegetated areas using a canopy 

penetration feature of laser pulse. Nowadays, LiDAR plays an important role in DTM 

generation.  

This thesis presents a hierarchical recovery method to generate DTMs from a cloud of 3D 

points composed of “single returns” and “multiple returns” from laser pulses using the idea 

of layering. The proposed method will begin by registering the last return points, then 

layering them. The layering is done by dividing the points into different height layers and 

assigning layer numbers to each point. The layer numbers are used as a comparison feature 

in a later identification process. Then a series of rasterized pyramid levels, which consists 

of the lowest points in each cell, are generated. After layering, outliers are removed; cells 
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in the top level are assumed as terrain points and used as references for identifying cells in 

the second level. The identification process will identify the cells of the second level into 

terrain cells and off-terrain cells, and an interpolation will then occur in the cells which 

identified as off-terrain. The interpolated level will be used as references for the next level 

and the same process is then repeated for each level that comes after. Once this process has 

been completed for the bottom level, the proposed method adjusts the results based on the 

first return feedback, followed by another interpolation. As a result, the final DTM is 

produced.  

The developed method is data driven, and does not assume a prior knowledge about the 

scene complexity. The proposed method was tested with three airborne LiDAR datasets, 

covering different terrain types and filtering difficulties. Results illustrated that the 

proposed method can perform well for areas of flat terrain or gentle slope A comparative 

study was conducted over existing filters and showed that results of the proposed method 

has similar accuracy in above mentioned area and faster speed than two comparing 

algorithms. 
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Chapter 1. Introduction 

In this chapter, the definition and generation of the Digital Terrain Model (DTM) are 

introduced in Sections 1.1, as well as the advantages of generating the DTM from 

airborne light detection and ranging (LiDAR) point clouds. Section 1.2 addresses the 

current difficulties in developing DTM from airborne LiDAR data. In Section 1.3, the 

objectives and scope of this thesis are presented, and the structure of this thesis is 

outlined in Section 1.4. 

1.1 Background 

In this section, the definition, application and significance of DTMs are discussed. Then 

DTM generation methods are introduced, including a comparison between the traditional 

way and remote sensing. Also, a comparison between the photogrammetric method and 

laser scanning method is further discussed.  

1.1.1 DTM Definition 

“A digital terrain model is a continuous function that maps from 2D planimetric position to 

terrain elevation z=f(x,y)” (Pfeifer and Mandlburger, 2008, p. 2). Essentially a DTM is a 

digital 3D representation of the terrain’s surface. In some scenarios, this term can be 

interchangeable with Digital Elevation Model (DEM). The difference is that a DTM may 
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include some other topographic features such as break lines (Pfeifer, 2008). The digital 

surface model (DSM, also known as digital canopy model, DCM) is the same as the DTM 

in open areas. In contrast to DTM, DSM includes off-terrain objects such as vegetation, 

buildings, etc. (Pfeifer, 2008).  

DTM is one of the most critical topography products. It plays an important role in fields 

such as mapping, civil engineering, hydrology, hydro-geography, natural resource 

management, and disaster management. Its widespread applications have ranged from 

traditional usage to newer and more innovative utilizations such as measurement of the 

forest depth and density, flood mapping, avalanches and landslides, route mapping, 

national defense and aerial surveying (Pike, 1988; Toutin, 2008; Korupa et al., 2010). As a 

result, it is clear that DTM has a wide range of usages in geosciences and engineering, its 

applications are now considered as the norm of geographical information systems (GIS) 

industry (Li et al., 2005). 

1.1.2 DTM Generation 

A DTM was traditionally produced by direct land surveying. It was then mainly replaced 

by analytical photogrammetry, which requires manual surface feature observation and 

interpolation methods to generate the DTM. In the last decade, high resolution and 

automatic remote sensing methods such as automated image matching, Interferometric 
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Synthetic Aperture Radar (InSAR), and Light Detection and Ranging (LiDAR), have 

become available (Briese, 2010). 

Automatic DTM generation algorithms have partially replaced human interpolation and 

become a post-processing step after the data acquisition from these remote sensing systems. 

According to Briese (2010), this phase is usually divided into two steps: classification and 

interpolation. The classification step extracts the bare earth information (such as elevation, 

intensity, multiple-returns, or some calculated features like normal vector, segments) from 

the acquired data, which automatically classifies the gathered data into terrain and 

off-terrain. This process is also known as “filtering” in the airborne laser scanning 

community. Subsequently, the DTM can be generated by some interpolation of the 

extracted terrain data (Briese, 2010). 

1.1.3 DTM Generation from LiDAR Data 

LiDAR (Light Detection and Ranging) is also known as Laser Ranging, Laser Altimetry, 

Laser Scanning, or Laser Detection and Ranging (Jiang et al., 2005). LiDAR technology 

was developed in the late 1960s (Mantis, 2010). The first commercial LiDAR mapping 

system was developed in 1993, and was used in topographic mapping (Liadsky, 2007). In 

1994, a discussion about the new method to generate the DTM by using laser scanning was 

introduced by Surveying and Mapping Agency (SMA) of the Federal States of Germany 



 

4 

(Petzold et al., 1999). After 1996, more companies began to develop commercial LiDAR 

systems, and offered many kinds of mapping services (Jiang et al., 2005). In the last decade, 

there are increasing requirements and research for this technology which enabled the rapid 

development of the LiDAR technology. 

 

Figure 1-1 Principle demonstration of LiDAR system (Guan et al., 2011) 

According to the difference of installation platforms, LiDAR systems can be divided into 

Airborne LiDAR System (ALS), Terrestrial LiDAR System (TLS) and Mobile LiDAR 

System (MLS). As shown in Figure 1-1, an airborne LiDAR system consists of a laser 
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scanner, a Global Positioning System (GPS) and an Inertial Measurement Unit (IMU). The 

laser scanner usually is installed under the bottom of the aircraft. It discharges laser pulses 

and “determines the distance between ground objects and the sensor by measuring the time 

a pulse of transmitted energy takes to return to the LiDAR sensor” (Meng et al., 2010, p. 

833). Based on the distance from the laser scanner, the platform position recorded by GPS 

and the aircraft attitude information from IMU, the coordinates of the measured objects can 

be calculated (Liu, 2008). Though a couple of coordinate transformations, the system can 

acquire high-accuracy World Geodetic System 1984 (WGS84) coordinates (Guan, 2011).  

Airborne LiDAR technology has its applications in topographic mapping, vegetation 

mapping in forest and wetlands, mapping of roads, power lines, and coast lines, 3D city 

modeling, disaster assessment, and more (Liu, 2008). For DTM generation, the airborne 

LiDAR system has many advantages compared to traditional photogrammetric surveys. 

LiDAR is an active sensor, which is not affected by the sunlight or shadows thus can be 

used during the day and night. Photogrammetry is limited in gathering and analyzing the 

target objects, such as dense urban area, forest, coast lines, wetland, desert, and ice surface. 

On the other hand, airborne LiDAR systems can efficiently handle surveys and mapping 

(Baltsavias, 1999). Since the LiDAR data is embedded with the elevation value of the 

objects being measured, it is convenient to generate DSM or even DTM from the LiDAR 

data. As previously mentioned, the laser has the ability to partially penetrate vegetation and 
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reach the ground under the canopy, therefore airborne LiDAR systems can perform very 

well in generating the DTM/DSM in forested areas. Likewise, the high resolution of the 

LiDAR data makes it a better fit for the significantly increasing demand of high quality 

DTMs from the GIS community for 3D virtual-reality environments (Liu, 2008). 

1.2 Problems Addressed 

As a preliminary task of DTM generation using airborne LiDAR point cloud data, filtering 

terrain and off-terrain points is critical and fundamental to feature extraction and 

classification (Briese, 2010). The identified terrain points are used as input for 

interpolation processes in many developed algorithms. The inappropriate identification 

will cause deviation in the interpolation process, which could potentially lead to further 

error and less precision in DTM products (Guo et al., 2010). Filtering is often very 

challenging and time consuming because of the necessary for processing large amounts of 

data. Therefore, an efficient and effective filter algorithm is important for DTM generation. 

Current filtering algorithms are facing difficulties in handling complex circumstances such 

as outliers (points lie far above or below the most points), complex objects, steep slopes, 

attached objects, uncertainty of the terrain definition (such as the ramp of a bridge), 

vegetation (such as shrubs), discontinuities of the terrain, low elevation objects like road 

curbs and railway tracks, as well as the combined complex scene (Sithole and Vosselman, 
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2004; Meng et al., 2010). Some of these problems are critical. The outliers, especially low 

outliers, can affect the selection of reference points in algorithms that adopt the lowest 

points as reference terrain points. Scenarios with different building sizes will face a 

dilemma in choosing a filtering window size. Applying a small window size will mislead 

the algorithm in identifying a point on a large building as a terrain feature whereas applying 

a large window size will overlook small terrain relief variations. Objects of low elevation 

are hard to remove because their heights are very close to that of the terrain. A lot of 

research has been dedicated to DTM generation, especially to filtering, during the last 

decade (Meng, et al., 2010). However the problems mentioned above have always acted as 

a barrier in developing a fast, robust, and reliable automatic filter, creating a major obstacle 

in DTM generation from airborne LiDAR data (Meng, et al., 2010). 

1.3 Thesis Objectives and Scope 

Developing a fast, accurate and reliable method for terrain point identification and DTM 

generation using airborne LiDAR data is challenging (Sithole and Vosselman, 2004; 

Meng et al., 2010). In this thesis, such challenges are reviewed and the main objective is 

to develop an improved comprehensive automated identification algorithm to generate 

DTMs from airborne LiDAR point cloud data. This study also attempts to tackle some of 

the aforementioned problems including those problems related to outliers, urban 

complexity and vegetation. This thesis investigates the feasibility of the proposed method 
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on DTM generation in urban areas, residential areas and forest areas. Specific objectives 

of the thesis are those according to the following: 

(1) To study and understand the three problems stated in the terrain point filtering and 

DTM generation using airborne LiDAR point cloud data. 

(2) To develop a comprehensive identification method that can separate terrain points 

from off-terrain points to solve the aforementioned problems. 

(3) To perform a quantitative accuracy assessment and qualitative visual analysis 

based on the three types of study sites to assess the performance of the developed 

method and other existing approaches, and then to determine the superiority of the 

developed method. 

1.4 Thesis Structure 

The rest of this thesis is organized as follows: 

Chapter 2 reviews previous studies on filtering techniques of separating terrain and 

off-terrain points, as well as the difficulties in developing filters, and some characteristics 

of the LiDAR data. 

Chapter 3 presents the framework and a detailed explanation of the developed method.  

Chapter 4 demonstrates experimental results obtained using different datasets from 
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different types of study areas. This chapter also includes a performance assessment and 

comparison of the proposed method and other existing method. 

Chapter 5 gives the conclusions including the summary of the proposed method and 

recommendations for future research. 
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Chapter 2. Review of Ground Filtering Algorithms 

Extraction and interpolation are vital steps in the generation of a DTM. Ground filters, 

which are used to classify the point cloud into terrain points and off-terrain points, have 

become a challenging issue for researchers throughout the years. Several types of filter 

algorithms have been developed. However, the majority of these developed algorithms 

still encounter problems when processing a complicated topography. This chapter first 

introduces by the characteristics of LiDAR data in Section 2.1, and then provides a review 

of previous studies on these filters in Section 2.2. The difficulties of developing a filter are 

discussed in Section 2.3, followed by the conclusion in Section 2.4. 

2.1 Characteristics of LiDAR Data 

Before discussing algorithms designed for processing LiDAR point clouds, features of 

LiDAR data, such as density, accuracy, data distribution and noise should be considered. 

 Density of data 

The density of the LiDAR data depends on the flight altitude, the atmospheric refraction, 

the transmit frequency of the laser pulse, and the scanning angle (Axelsson, 1999). The 

density of data varies with the type of application. For example, 3D city modeling and 

power line detection requires higher density, while density requirement of DTM 
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generation is relatively lower. Currently, airborne LiDAR systems can obtain very high 

density point clouds (1 point/m
2
 or more), which can provide very detailed information of 

the ground in addition to processing difficulties. 

 Accuracy of data 

When the flight altitude is less than 1000 m, altitudinal accuracy can be as high as 15 to 

20 cm, and planimetric accuracy can be around 30 to 100 cm (Baltsavias, 1999). The 

altitude accuracy can be affected by system error, surface slope, surface roughness, flight 

altitude, and scanning angle. The higher the flight altitude is, the lower the altitude 

accuracy will be. 

 Data distribution 

The LiDAR point cloud data is usually unevenly distributed. Data can be combined with 

several scanning strips. Adjacent strips usually overlap with each other in order to avoid 

empty spots. Therefore, in the overlap area data density will be higher, as shown in 

Figure 2-1.  
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Figure 2-1 Uneven distribution of LiDAR point clouds (Liu, 2008) 

In Figure 2-1, the scanning router for the LiDAR system is in a “Z” shape (however this 

can vary), a group of linearly distributed distance measures are scanned with a frequency 

higher than 5 kHz. Currently some systems can even reach 100 kHz (Pfeifer, 2011). As a 

result, this feature will lead to a result that the distance between points will be smaller in 

a strips overlapped area. Moreover, the sample method adopted can make the planimetric 

distribution uneven. For example, in flat terrain, flight speed can be higher or pulse 

frequency can be lower to achieve fewer ground points; while in the mountain areas or 

urban areas which are more complicated require lower flight speed or higher pulse 

frequency. 

 Disturbances 

System errors in airborne LiDAR systems mare mainly due to the limitation of the laser 

scanning devices, and modeling the system error is a way to improve the measurement 
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accuracy (Baltsavias, 1999). Beside system error, there may be empty spots and outliers. 

High outliers are generated because the pulse reflected from birds or aircraft, and these 

points are obviously higher than the points surround them. The pulse may be reflected on 

the ground multiple times and then received by the sensor, and in this case low outliers 

can be generated, these points are lower than the points surrounding them. Empty spots of 

the data may happen in some situations, such as covering, limitation of scanning route, 

and resolution limitation of the sensors.  

Aside from generating the 3D coordinates of the ground surface, many airborne LiDAR 

systems can collect intensity, multiple return signals, and offer optical image information 

from digital cameras (Axelsson, 1999). As the reflection rate varies according to the 

surface and the target material, the intensity information of the points from vegetation, 

bare-earth, or even water surface are different. Therefore, intensity can help in the 

classification of point cloud data (Hu, 2003). As the laser impulse can penetrate 

vegetation (typically the reflection rate is 60% on deciduous trees and 30% on coniferous 

trees (Pfeifer, 2011), in summer time the reflection rate on deciduous trees falls to 25% 

(Kilian et al, 1996)), sensors can collect multiple returns in a canopy covered area. This 

feature can be used in helping to classify vegetation points and ground points, and to 

estimate the forest volume (Pfeifer, 2011). Furthermore, as the radius of the laser beam 

footprint on the ground can be larger than 1 meter, multiple returns can be collected on 
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the edge of buildings as well. Some LiDAR systems can simultaneously obtain optical 

images which offer extra reference for filtering and classification purpose (Pfeifer, 2011). 

2.2 Ground Filtering Algorithms 

Data of airborne LiDAR are point clouds distributed in 3D space. In the point clouds some 

points are terrain points and others are man-made objects, such as buildings, bridges, cars 

and natural objects, including trees or bushes. To separate or identify these terrain points 

from off-terrain points (including man-made objects and natural objects) is known as 

ground filtering. Although there are many different kinds of algorithms that process and 

interpret LiDAR data based on all kinds of applications, filtering is usually the first step of 

the process (Guan et al., 2011). 

To separate terrain and off-terrain points is always challenging because of the complexities 

of the problem. This is especially true when filtering in places with complicated 

geographic and geomorphic conditions. Many algorithms have been developed to solve 

this problem. According to Briese (2010), these existing ground filtering algorithms may 

be classified into four categories: morphological filters, progressive densification filters, 

surface-based filters and segmentation-based filters. In the following section, these four 

types of filters will be briefly introduced and discussed.  
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2.2.1 Morphological Filtering 

This group of ground filtering method is based on some morphological operators in digital 

image processing, such as dilation, erosion, and their combinations opening and closing as 

shown in Figure 2-2. A dilation operator will make the original image longer and thicker, 

while images shrink after erosion operations. An opening operator is a combination of 

erosion and dilation operations in sequence, while a closing is a combination of dilation 

and erosion (González et al., 2004). By adopting a certain structure element, also called 

window or kernel in different papers, the opening operator can be used for minimum 

determination of the points, which leads to an approximation of the DTM (Briese, 2010). In 

1993, Lindenberger first applied this method based on a robust time series analysis (Briese, 

2010; Petzold et al., 1999).  

 

Figure 2-2 The cyan parts are the results of the disk operation on the blue squares 

Based on Lindenberger’s method, the company TopScan adopted the following technique 

in 1999. First, a large size moving window is used to select the lowest points in every grid 

and generate a rough terrain model. Then the generated rough terrain model is used as a 
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reference to filter all the points. The points with height values over a given threshold are 

identified as off-terrain points. And a more accurate DEM was built by identified terrain 

points. The final DEM is consequently generated after repeating this process a few times 

with a smaller and smaller size of the window (Petzold et al., 1999). The different window 

size and the given threshold will change the result. If the window size is too large or the 

threshold is too small, some of the small relief and discontinued area will be smoothed or 

removed. As well, if the final threshold is too high, many vegetation points will be 

identified as terrain points. These parameters should clearly be differentiated according to 

the topographic environment of the study area.  

In order to overcome the limitation of window size, Kilian (1996) operated the opening 

process several times based on different window sizes. Each time different weights are 

assigned to the laser points within the band width with the weight value depending on the 

size of the window (Kilian et. al., 1996). A large weight would be assigned when a big 

window is adopted. After all the opening processes, the points with high weight are likely 

to be terrain points, and the points with low weight are likely to be off-terrain. Once this has 

been completed, the DEM can be generated by interpolating the weighted points. 

The algorithm developed by Masaharu and Ohtsubo in 2002 consist of two steps. The first 

step is similar to Kilian’s algorithm, which selects the lowest points in a window. Since the 

window size is relatively small, the whole window might be inside an off-terrain object. In 
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this case, the lowest point in a window is not a terrain point. Therefore, the second step is 

designed to eliminate these points. The algorithm creates a buffer (has a size bigger than 

the window) to each selected point, and calculated the average value of all the selected 

points inside the buffer. If the elevation difference between the point and the average value 

is over a user given threshold, the point will be removed. To repeat the removal process 

three to four times, the algorithms can reach a stable group of terrain points which is used 

to generate the DTM (Masaharu and Ohtsubo, 2002). 

A filter algorithm proposed by Vosselman in 2000 is another type of morphological filter, 

which is closely related to the erosion operator in mathematical morphology. This 

algorithm identifies a point by the height value differences between this point and all other 

points (implemented as comparing the altimetry value with its neighbor points). As shown 

in Figure 2-3, if any of these differences over the threshold, the point will be identified as 

an off-terrain point (Vosselman, 2000). The threshold of the difference Δhmax(d) is a 

function of the distance between two points, which is called the filter kernel function and 

usually is a non-decreasing function. Three methods for determining the kernel function 

were introduced by Vosselman, and these methods always try to keep topography features 

in a DEM. As a result, it may loosen the filtering restriction and lead to some commission 

errors (misidentifying off-terrain points as terrain points). As named by Vosselman (2000), 

this algorithm is also classified as a slope-based filter by some researchers (Liu, 2008). It is 
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based on an assumption that terrain slopes do not rise over a certain threshold (Sithole, 

2001). Therefore, it performs well on flat terrain but may misidentify some steep landforms 

as off-terrain objects.  

 

Figure 2-3 The cone surface is determined by the kernel function. If there is no point 

under the cone surface, the point Pi is identified as terrain point (Sithole, 2001).  

In order to improve the applicability to steep landforms, Sithole (2001) modified the kernel 

function by adding a factor m representing the gradient of the terrain slope. This factor 

varies along with the local terrain, and has different formats for concave surfaces, convex 

surfaces and flat ground. A slope map generated by the local lowest points is also priori 

required to determine the factor m. This localized kernel function reduces the type I error 

(omission error, misidentifying terrain points as off-terrain points). Similarly, Roggero 

(2001) applied local linear estimation to estimate the terrain slope. 



 

19 

Wack and Wimmer (2002) utilized a hierarchical weighting morphological filter method. 

They first interpolated a low resolution DEM from the original LiDAR point clouds, and 

filtered most of the building and thick vegetation by height difference threshold and 

Laplacian of Gaussian (log) operator, and then calculated the weight function considering 

the standard deviation of each element. Then the algorithm generates a low resolution 

DEM based on the weight of the point, and hierarchically generates high resolution DEMs 

by interpolating low resolution DEMs.  

Zhang (2003) gradually increased the window size and applied the height difference 

limitation in his algorithm in order to eliminate points from cars, vegetation and buildings, 

while keeping the terrain points. The interpolation from unregulated points to rasterized 

grids will cause the removal of some terrain points. The low outliers may lead to big errors 

for this algorithm and the consuming time will increase linearly along with increasing of 

data. Zhang’s method effectively removed most of the off-terrain points, but it is based on 

an assumption that the slope gradient is constant. The method developed by Chen and Peng 

(2007) then overcame this slope restriction. 

Silván-Cárdenas and Wang (2006) generated DEMs by using a multi-resolution approach 

based on multi-scale Hermite transform (MHT). This method eliminated the outliers first 

and then interpolated the LiDAR point clouds into multi-scale rasterized grids. Once this is 

completed, the algorithm self-adapting eliminated the off-terrain objects by an erosion 
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operator and multi-scale threshold calculated by MHT. This method can effectively extract 

the edge and keep a high positioning accuracy. Overall, the size of the structure element has 

a big influence in filters based on mathematical morphology (Guan et al., 2011).  

2.2.2 Progressive Densification 

This group of filtering algorithms uses a small number of pre-classified points in the 

beginning, and then continued by adding qualified points iteratively. The DTMs are   

typically being reconstructed together with the filtering, and no further interpolation 

(required in most morphological filters) is needed (Briese, 2010).  

Axelsson (2000) introduced a filtering algorithm based on the triangular irregular network 

(TIN). This algorithm generated a TIN subset of the data with a big cell size at first. The 

subsets condensed by iteratively adding additional identified terrain points. The TIN is 

initially under other points, and its curvature is restricted by given parameters (Axelsson, 

2000). This algorithm performs well in handling discontinuous surfaces, and can be 

applied in dense urban areas (Sithole and Vosselman, 2003b).  

Krzystek (2003) proposed a method that constructed a rough TIN convex hull at first and 

continuously adjusted the grid accuracy by applying the finite element method (FEM) to 

generate a DTM. It was successively applied in a forest area with various kinds of forest 

structure.  
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In order to identify more points into the TIN, Sohn and Dowman (2002) developed a 

further step of Axelsson’s method. This algorithm is divided into a “downward” step and 

an “upward” step. After the initial TIN built by the lowest points in the four corners of the 

data, the “downward” step keeps on adding lowest points in each triangle to the TIN until 

no more points occur under it. Afterwards, a buffer is applied in the “upward” densification 

step to identify higher points. 

Another method similar to the TIN progressive densification was introduced by Kobler 

(2007). A preprocessing of eliminating most off-terrain objects by slope threshold was 

carried out first. The points within the selecting threshold are used to generate an initial 

DTM. The TIN is then generated by the seed points choosing from that DTM. The height 

differences between the TIN and rest points are calculated. If a difference is no larger than 

the threshold, the point will be identified as a terrain point, and vice versa (Kobler et al., 

2007). 

Algorithms based on the TIN progressive densification usually have an assumption that the 

surface is continuous or flat; therefore this type of algorithms has relatively poor 

performance in keeping the topographic discontinuity and relief (Sithole and Vosselman, 

2003b). Furthermore, TIN models store data points and their topology relationship, whose 

consistency is time consuming and difficult to maintain. Therefore, the adopting of the TIN 

model also increases the required storage space and processing time of these algorithms 
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(Jiang et al., 2005).  

2.2.3 Surface-based Filtering 

Same as progressive densification filters, a surface-based filter uses a surface to represent 

the DTM and the process generates intermediate DTMs. However, instead of using a 

region growing from a group of seed points in progressive densification filters, 

surface-based filtering methods iteratively adjust the weight of points above or under the 

surface until reaching a stable situation (the result does not change significantly) (Briese, 

2010). 

 

Figure 2-4 The weight function: the horizontal axis r represents the residuals and the 

vertical axis w represents the weight assigned, g represents the ground. The weight 

assigned is getting lower when the residual getting higher, and when over the given 

threshold h, the weight will be assigned as zero. 

This type of filter was first designed by Kraus and Pfeifer (1998). In their algorithm, the 

robust interpolation method combines the processes of DEM interpolation and filtering. 

First, an average surface between the real DTM and the DSM is calculated based on that all 

the points are assigned to the same weight. Then the residuals (distance between the points 
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and generated surface) are calculated to determine the new weights. As shown in Figure 

2-4, the big negative residual points are assigned to a larger weight, because they are closer 

to the real terrain. The small negative residual points are assigned to a smaller weight for 

the same reason. For the big positive residual points, they should be eliminated because 

they probably are not terrain points. Then the algorithm can do the next round of surface 

interpolation with the new assigned weights. The interpolations and weight assignments 

are carried out iteratively until the difference between two contiguous surfaces meets the 

given threshold. This algorithm can perform very well in the situation well mixed with 

terrain and off-terrain points, e.g. wooded areas, and it has been implemented on the SCOP 

develop package (a remote sensing tool developed by Institute of Photogrammetry and 

Remote Sensing (I.P.F.), Vienna, and INPHO GmbH, Stuttgart (SCOP++, 2007)) for DEM 

and DTM generation in a sparse forest area (Guan et al., 2011). Although it can correctly 

detect steep topography in above mentioned areas, when it comes with only a cluster of 

off-terrain points, e.g. large building areas or dense forest areas, the algorithm fails to 

eliminate the commission errors (misidentifying off-terrain points as terrain points) (Briese, 

2010). 

Some improvements of this algorithm have been developed afterwards. Kraus and Rieger 

(1999) added first and last return (laser echoes) information. To overcome the limitation of 

the mixture of terrain and off-terrain points, Pfeifer (2001) further applied hierarchical 
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pyramid layers to the method of Kraus and Pfeifer (1998). The modified algorithm first 

built a rough surface model on the top level, and iteratively used the surface built in higher 

level to a lower level (with higher resolution), and finally reaches the bottom level which 

has the best resolution. This algorithm can eliminate large buildings and other off-terrain 

objects even in dense forest areas. In order to get an even higher quality of the DTM, Kraus 

and Pfeifer (2001) analyzed vertices of the landform by simulating the rain flow on the 

ground. By eliminated these vertices, a smoother terrain can be generated. 

Elmqvist (2002) adopted the active shape model (ASM) from the digital image 

processing to estimate the surface model. In his method, an ASM is a surface under the 

LiDAR dataset. The surface iteratively changes towards the points under the control of 

the stiffness of the surface (restrict the change of the surface) and the energy function (a 

connection between the surface and the points) value. The surface connected to the 

terrain points has the least energy function value. By minimizing the energy function it 

matches the ASM to the DTM. The shape of the ASM decides the shape of the bare earth. 

Any point in the buffer of the surface will be identified as terrain point.  

2.2.4 Segmentation-based Filtering  

Different from the previous three kinds of filters, segmentation-based filtering methods 

classify a segment (groups of neighboring points with similar properties) instead of a single 
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point. For example, if a segment is higher than its neighbor segments, all points from this 

segment will be classified as off-terrain points (Guan et al., 2011). Usually aggregating the 

points into segments and classifying the segments are two steps of this type of method. 

Different algorithms can be chosen for both steps. For example, region growing techniques 

(detect the segments from some “seed points”) and detecting clusters (group of points with 

the similar feature values) are two options for the data segmentation step. Geometrical 

properties such as height, normal vector, gradient, curvature and other criteria can be 

adopted in both data segmentation and segments classification steps (Briese, 2010). 

One representative sample of the segmentation-based filtering method is presented by 

Sithole (2005) and Sithole and Vosselman (2005). They partitioned the data into 

continuous profiles with different orientations. Based on certain criteria, points on a profile 

are connected as line segments. And by comparing the common points of the line segments 

from all profiles, the whole segments of the data can be generated. 

Roggero (2002) proposed the segmentation method by region growing and major elements 

analysis based on the laser scanning data. Akel (2003) interpolated the raw LiDAR data 

into rasterized grids and constituted a TIN model. Then he carried out the region growing 

based on the threshold of normal vectors of neighboring triangles in the TIN model. 

Subsequently the algorithm calculates the normal vectors, edges and height differences of 

segments and extracts roads from the data. At last, the method iteratively constituted DTM 
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based on the seed points from the extracted roads (Akel and Zilberstein, 2003; Akel and 

Zilberstein, 2004; Akel and Kremeike, 2005). 

Tóvári and Pfeifer (2005) developed another representative approach based on the region 

growing. The approach selects a random seed point, and chooses several points from its 

neighborhood. Then it calculates three parameters: the normal vector of the plane constituted 

by these points, the distance between the points and the plane, and the distance between the 

seed point and its neighbor points. Based on these parameters, the method continues the region 

growing process until no more points can be added in. After the segmentation, iteratively 

weighted interpolation and grouping are carried out to produce a DTM. 

Forlani and Nardinocchi (2007) rasterized the raw data and set the lowest height value as the 

cell value. Then the raster is separated into segments by a self-adapting region growing method. 

Subsequently the raster is classified into outliers, vegetation, building and terrain based on the 

geometrical properties and topological relation of segments. Then the approximate terrain 

surface is calculated by these classified terrain cells, and the algorithm calculates the distance 

between original point clouds to this surface. If a distance is under the user defined threshold, 

the according point will be classified as a terrain point. 

Many segmentation-based filtering methods are implemented in a raster data format which 

is easy to borrow image processing algorithms. These methods are usually not based on 
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geometrical hypothesis (such as “terrain is continuous.”) to describe topographic 

information. They are using geometry, optics, mathematical statistics and other features to 

identify point cloud data as larger entities rather than single points. Therefore, they are not 

influenced significantly by noise and can overcome the problem that wrongly classifies an 

individual point into a different class than its neighbors from the same segment.  

Including the above mentioned methods, there are many methods developed (Briese, 2010; 

Sithole and Vosselman, 2004; Pfeifer and Mandlburger, 2008; Meng et al., 2010; Liu, 

2008). Meng et al. (2009) concluded that these filtering algorithms developed in the last 

decade could also be classified into more subsets including directional scanning, 

contour-based filters, TIN-based filters, and interpolation-based filters.  

2.3 Difficulties in Ground Filtering Algorithms 

The filtering of airborne LiDAR data is usually based on the height, gradient, regional 

similarity of the point clouds or breaklines of the landform. For example, points with a 

large height value on the local scale have only a small possibility of being terrain points, 

and vice versa. The points with big height differences from their neighbors could probably 

be off-terrain objects. However the diversity and complexity of the terrain and the 

off-terrain objects will cause difficulty in filtering. These problems include steep slope, 

sharp ridges, super large or irregular buildings, gross error, vegetation, and characters of 
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laser scanning data. 

According to the report by Sithole and Vosselman (2004), the filtering difficulty can be 

cataloged as outlier, object complexity, attached objects, vegetation, and discontinuity as 

shown in Figure 2-5. 

 

(a) Influence of outlier (b) Object complexity (c) Steep Slope (d) Bridge 

 
(e) Discontinuities

    

(f) Vegetation on slopes (g) Railway: low 

bare-earth count 

(h) Object 

complexity 

 Figure 2-5 Data sample of the filtering difficulty (Sithole and Vosselman, 2004)  

(1) Outlier 

Many algorithms initially adapted the lowest points in an area as the terrain point (Sithole 

and Vosselman, 2004). This makes the algorithms easily affected by low outlier and 

multi-storage buildings, and makes unreliable identification of terrain points, such as 
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shown in Figure 2-5 (a). 

(2) Object complexity 

In some complex scenarios, there are very large objects, very small objects, very low 

objects, etc. If very large objects, such as conjoined buildings as show in Figure 2-5 (b) 

and (h), have a larger size than the given window, it cannot be removed automatically, 

and the low objects, such as cars, low vegetation, is difficult to be separated from the bare 

earth as shown in Figure 2-5 (g). Platforms with stairs connected to the terrain are also 

easily classified as terrain. Objects with complex shape, such as multistoried building, 

buildings with court yard, are also hard to remove as shown in Figure 2-5 (b). 

(3) Attached objects 

Attached objects such as buildings on the slope, bridges, and ramps at least have one end 

of the structure seamlessly connected to the bare earth. Therefore it is hard to find the 

border between the objects and the terrain consequently leads to the problem of 

separating them as shown in Figure 2-5 (d).  

(4) Vegetation 

Vegetation usually can be eliminated by the height difference when comparing to the 

terrain points. However, if the vegetation is on a slope, or very close to the bare earth or 

buildings, they are hard to eliminate as shown in Figure 2-5 (f). 

(5) Discontinuity 

The off-terrain objects in LiDAR point clouds are usually discontinuous to the terrain 
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which is an important feature to filtering them. However, this rule will also apply to some 

natural piecewise continuous bare-earth (e.g. steep slopes and sharp ridges as shown in 

Figure 2-5 (c) and (e)); consequently this process will cause the deficiency of 

discontinuity feature in DTM. 

According to the review by Ment et al. (2010), specific objects or features are 

summarized as a barrier of ground filtering algorithms: shrubs, short walls along 

walkways, bridges, complex buildings, hill cliff, mixed land cover, low and high relief 

terrain, and not reliable assessment. The list has some common objects with category of 

Sithole and Vosselman (2004), but is more specific.  

2.4 Chapter Summary 

Although more criteria are utilized to separate off-terrain points from terrain points, such as 

breaklines (Dragos, 2004), intensities and full-waveform ALS data (Doneus and Briese, 

2006), most methods are based on the position information of the LiDAR point clouds data. 

These point clouds filtering algorithms are developed by different concepts and 

understanding of terrain points and off-terrain points. Some of the algorithms can be 

directly applied in an irregular distributed point cloud dataset, while some others need to 

rasterize the data first and use well developed digital image processing technologies. 

Some of the algorithms compare one point to another point, while others compare one 
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point to a group of points, or even datasets to datasets. These filtering algorithms measure 

various discontinuous parameters such as height difference, gradient, or the minimum 

distance from a point to a surface etc. They are under different hypotheses such as slope, 

surface, morphology, segments etc. Furthermore, some algorithms finish their processing 

in one step; others may iteratively carry out the process. (Sithole and Vosselman, 2004) 

Sithole and Vosselman (2004) compared and analyzed the results, mechanism and 

features of eight different filtering algorithms in various scenarios based on the urban and 

forest datasets from International Society for Photogrammetry and Remote Sensing 

(ISPRS). They listed major problems to these algorithms: the reliable filtering in 

complicated environment, processing buildings on a hillside, handling unconnected 

landforms, and keeping the discontinuities of the ground surface etc. The research result 

concluded that the tested algorithms generally have a good result in processing not too 

complicated scenarios, which have gentle gradient, include only small buildings, have 

sparse vegetation, and include large amounts of terrain points. However in other cases 

such as large building, steep gradient, and discontinuous landform, the reliability 

becomes lower. 

Therefore, manual work is still required in pre-mentioned areas even though the algorithms 

are very well automated now. Work flows of combining different algorithms have been 

researched as well, but so far, no method can perfectly handle all scenarios automatically. 
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One reason could be that previous research has focused only on the point position 

information and the relationship with its local neighborhoods (Briese, 2010). Therefore, a 

globalized view of the data could be a direction to explore and is the motivation of this 

thesis.  
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Chapter 3. DTM Generation by Iterative Recovery 

In this chapter, an overview of the proposed method will be introduced in Section 3.1. The 

framework and development of the proposed method are detailed in three sections. The 

pre-processing is discussed in Section 3.2, followed by detailed information about the 

iteration terrain recovery method in Section 3.3. The refinement of DTM is addressed in 

Section 3.4. A qualitative and quantitative evaluation method is presented in Section 4.2. 

At last, the conclusion is in Section 3.5. 

3.1 Overview of Iterative Recovery Method 

This chapter presents a Multi-scale Terrain Filtering method for automated generation of 

DTMs from single- and multi-return LiDAR point clouds. The proposed multi-scale terrain 

filtering (MTF) method identifies terrain points by iteratively recovering terrain models 

from rasterized pyramid levels (coarse-to-fine multi-scale pseudo-grid images). As shown 

in Figure 3-1, the method consists of three steps: point cloud pre-processing, multi-scale 

terrain filtering, and DTM refinement. 

In the point cloud pre-processing step, all laser scanning points must be pre-processed to 

retain last-return points of multiple returns (laser echoes), and then are layered with 

regard to the statistical height histogram of the whole dataset. Two objectives of height 
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histogram-based layering are to assign the layer numbers to each point for the following 

MTF implementation, and to remove lower outliers and noises. 

 

Figure 3-1 Flowchart of Multi-scale Terrain Filtering Method 

The second step is the Multi-scale Terrain Filtering, which includes the rasterized pyramid 

level generation, iterative point identification and interpolation. Several rasterized pyramid 

levels are generated at first, and lowest points in every grid at every level are marked as 

representative points. The highest level is referred to an initial digital terrain model, from 

which the proposed MTF is employed as a reference. Then the identification and 

interpolation is iteratively processed in every level from the second highest level to the 

lowest level in the pyramid. The identification is based on comparing two features: one is 

the layer numbers generated in layering; another one is the slope gradient between the 

reference point and identifying point. This is followed by the interpolation of identified 
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off-terrain points. The points from a processed level then become reference points in the 

identification of next level. Iteratively, digital terrain models are recovered and densified 

from coarse scales to fine scales. 

 

Figure 3-2 Pseudo-code of the proposed method in a C# language format 

Then the method adjusts the terrain results based on the normalized Digital Surface Model 

(nDSM). After that, all original laser scanning points are selected based on the refined 

Input Lidar_Image; 

//Pre-processing 

points.SelectLastReturns(); 

points.HistogramGeneration(); 

points.Layering(); 

points.NoiseElimination(); 

//Point identification and interpolation 

level[n] = points.PyramidLevelsGeneration(); 

for(level j = n-1 to 0){ 

 if(j==n){points in level j = reference} 

 for(points[i] in level j){ 

  if(points[i].layernum==reference){ 

   points[i]=terrain point;} 

  else{ 

   points[i]=off_terrain point;}}  

 for(points[i] in level j){ 

  if(points[i]==off_terrain point){ 

   points[i].z=points[i].interpolation(); 

   points[i].layernumRenew();}}} 

//DTM Refinement 

Rough_DTM = RasterGeneration(points[i]); 

Refined_DTM = nDSM_Adjustment(LidarImage.First_Returns, Rough_DTM); 

Terrain_Points = Fitering(Refined_DTM, Lidar_Image.Last_Return); 

FinalDTM = TerrainPoints.IDW_Interpolation(); 

Output DTM; 
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digital terrain model. As a result, this produces the final and complete DTM. The 

pseudo-code of the proposed method is shown in Figure 3-2. 

3.2 Pre-Processing 

The first step in handling the LiDAR data is pre-processing. In this proposed method, three 

parts are involved: the removal of non-last returns, the layering of data, and the elimination 

of outliers and noises. In this section, the motivation and the detail of these processes will 

be discussed. 

3.2.1 Non-last Return Points Removal 

Many airborne LiDAR systems can record multiple returns while scanning the ground 

surface. Some features of multiple returns are applied in the proposed method. As 

aforementioned, a LiDAR device “determines the distance between ground objects and 

sensor by measuring the time a pulse of transmitted energy takes to return to the LiDAR 

sensor” (Meng et al., 2010, p. 833). Since the airplane is flying in a high elevation, the 

laser beam becomes a larger spot when shooting on the ground surface. Therefore, the 

laser beam may be partially reflected during the traveling. For this reason, LiDAR 

systems can record a discrete number of echoes in the return signal as shown in Figure 

3-3. When two or more echoes are detected by LiDAR systems; the first and last echo are 

referred to the first- and last- return in literature (Pfeifer, 2011). Some LiDAR systems 



 

37 

like the Leica ALS50-II are able to record up to five returns.  

 

Figure 3-3 Multiple Returns Principle (Schuckman and King, 2011) 

Due to the fact that the laser pulse can penetrate the canopy of trees, the laser pulse 

shooting on the trees can be sporadically reflected by leaves or branches in different 

elevation. And if the laser pulse shooting on the edge of the buildings, the laser pulse can 

be partially reflected by the building roof and partially reflected by the connected ground. 

Furthermore, in most cases the availability of multiple returns can lead to a conclusion 

that there is vegetation or pinpoint the edge of building (Beraldin et al., 2010). 



 

38 

Since the last returns are always the final one received by the sensor, it can represent the 

lowest elevation a laser pulse reached among the multiple returns of the pulse. Thus, the 

non-last return points are the points reflected by vegetation and the edge of buildings. The 

removal of these non-last return LiDAR points help to eliminate these vegetation or 

building edge points which are not used in DTM generation, it also can help to partially 

decrease the processing time. Therefore, the proposed algorithm will only use last returns 

to extract DTMs. It should be noted that a laser pulse with only one return will be treated 

as a last return in the proposed method. 

3.2.2 Height Histogram Based Layering 

The second part of the pre-processing is height histogram based layering. The purpose of 

layering is to assign a layer number to each point for MTF implementation. In the context 

of digital image processing, a histogram (a graph of pixel intensity values) is a significant 

tool for image enhancement, segmentation, matching, etc. The histogram can be viewed as 

a discrete probability distribution since the relative height of a particularly non-intersecting 

bar is normalized by the total number of pixels. In the most cases of threshold-based 

segmentation, constructing histogram is an easy way to individually select each specific 

histogram mode, and then select the corresponding area by proper thresholds. Since 

histogram-related methods were first introduced in the field of laser scanning data 

processing in 1994, they have been widely used in navigation, localization, recognition and 
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mapping. Histograms give a fast and applicable solution for position estimation. Other than 

extracting geometric primitives from the laser scanning data, the histogram combines the 

geometric position information into the discrete probability distribution based graph (Qiu 

and Han, 2008). Similarly, by finding proper thresholds based on height histogram, range 

images of laser scanning points can be segmented into several areas of interest.   

 

Figure 3-4 Height histogram of Site A  

(More information of this study site can be found in Section 4.1.2) 

As shown in Figure 3-4 and accordingly on Figure 3-5, it can be observed that buildings 

and terrain within a small area can be well separated, which can be reflected from a height 

histogram, where terrain points are aggregated in the lower height sections, and buildings 

and other high-rise object points are placed in the higher height sections. For example, the 

two waves A and B on Figure 3-4, whose values are from 330 to 335 and from 335 to 

338, represent the terrain with a slope. The three bars C, D and E which look like pulses 

are the roofs of the buildings, which can be seen on Figure 3-5. 
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(a) Height:330-338m (b) Height: 339-340m 

 

(c) Height:342-343m (d) Height: 343-344m (e) Height: 348-349m 

   

Figure 3-5 Points in the different height ranges in Site A 

According to the height histogram, the height value range of the terrain points is relatively 

larger than of building roof points. This is because the buildings are built in a regular shape, 

and the terrain slope is random. Compared to the vegetation, the point density of terrain is 

higher. This can be interpreted as a higher number of points in the height histogram. In 

other words, the different regions in the height histogram correspond to distinct terrain and 
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object features. As a result, if proper separation values can be found in the height histogram, 

terrain points can be separated from other object points. Therefore, an automatic way of 

calculating a separation value for layering the histogram will be discussed.  

A peak on the height histogram may correspond to a group of terrain points or building roof 

points. The separation values should be the values of wave troughs. Based on a given 

width of a height unit, the height axis is divided into several units. By counting the 

number of points in each unit, the height histogram can be obtained. 

 

Figure 3-6 Height histogram (modified from histogram of site A) to demonstrate the 

proposed layering algorithm  

To detect peaks from a histogram, there are some algorithms available. Gonzalez and 

Woods (2002) described an iterative algorithm to automatically detect the separation 

values. It assumes that there are two peaks in the histogram. A single-threshold selection 

method is applied to find the best separation value. The algorithm is described as follows: 
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1) Select an initial estimate threshold ( 0T ) regarding the height histogram; 

2) Calculate the mean grey values 
1 and

2  of the two separations of ground and object 

points (G and O ) and partition them accordingly; 

3) Calculate a new threshold ( 2/)( 21  iT ) to partition the range image; 

4) Repeat the step 1-3 until 1 ii TT  

In reality, there are many objects over the ground. In other words, more than two peaks 

exist in the histogram generated from laser scanning points. Therefore, this algorithm 

which can only separate the histogram into two peaks is not very helpful in this study.  

Other algorithms like Kernal desnity estimation which using Gaussian kernel smoothing 

the histogram to detect peaks (Wand and Jones, 1995). However it will smooth the pulse 

bar like rectangle C in Figure 3-6, and those bar usually represents a big flat surface such 

as the roof of a building which should be assigned into separate layer. Therefore, the 

proposed method applied the following algorithm. 

offset = | Ni+1 - Ni | < 𝑑𝑒𝑙𝑡𝑎% ∗ 𝑁𝑖 (3-1) 

Where Ni represents the number of points in a histogram bin i. As shown in Figure 3-6, 

Offset is the difference between two adjacent bins. Delta% is a user assigned parameter, 

which defines the acceptable ratio between Offset and Ni. If offset is smaller than delta% 

of Ni (e.g. inside the green bar in Figure 3-6), the two bins will be assigned to the same 

layer. If the relation between Ni and Ni+1 does not meet the requirement as shown in 
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Equation (3-1), histogram bin i+1 will be assigned to a different layer than histogram 

bin i. The border between histogram bin i+1 and histogram bin i will then become a 

separation value of the layers. Layers are then generated by dividing the data using these 

separation height values. The number of layers is determined by the width of height 

histogram bin and parameter delta%, which will be discussed in Section 4.4.1. 

3.2.3 Outlier and Noise Removal 

In Sithole (2004), outliers are categorized into two types: low and high outliers. High 

outliers originate from the hits off objects like birds, low flying aircrafts or errors in the 

laser scanner, which generally have not much influence to the algorithm. Low outliers 

originate from multi-path errors or the hits in the wall. They have great impact on the 

generation of DTM because the proposed algorithm assumes that the lowest point in a local 

neighborhood is a ground point. If low outliers cannot be removed from point clouds 

before applying MTF, they will cause the erosion of the terrain.  

To remove those outliers, which is also known as de-spiking, can be finished in different 

ways. Examination of the frequency distribution of the elevation values is a common 

method to detect those outliers, which is applied in the proposed method. Using Delaunay 

Triangulation to comparing each point to a local elevation reference and then identified the 

outlier is another way (Meng et al., 2010). Since the proposed method is applying raster to 
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maintain the data, this method is not applicable. Other than these two, manual examination 

is another approach to detect and remove the outliers.  

In the proposed method, the height histogram, an estimation of the probability density 

distribution of LiDAR points’ heights, is used. As a fact that low outliers are generally a 

very small amount of points or single points in a local area, they can be discarded if a bin of 

the height histogram is lower than a specified threshold (parameter: Minimum Layer). 

Meanwhile, some “noises” also can be removed based on the specified threshold. 

Theoretically, a terrain surface is a continuous and intensive distributed area. Sparsely 

scattered points in layers have a high possibility of representing other objects that can be 

eliminated as noises. Those noises might not be real noises, but they are little relevant to in 

the case of separating terrain from object points.  

After removing lower outliers and noises, layer numbers are assigned to each point which 

belongs to. Those assigned points will used as a rule of MTF for DTM generation. 

3.3 Multi-scale Terrain Filtering 

Based on the pre-processed points with the assigned layer numbers, the multi-scale terrain 

filtering method is going to produce a rough DTM (an intermediate result). As shown in 

Figure 3-7, this part includes three steps: generation of rasterized pyramid levels, 

identification of topographic cells and interpolation of the off-terrain cells. 
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The rasterized pyramid levels are the framework for the following process, and the levels 

are divided into regular cells (grids) with a representative height value. The method 

identifies the cells in a level as either terrain or off-terrain using the reference points from 

the previous level. Then the cells which are identified as off-terrain will be interpolated. 

The identification and interpolation will be processed from the second highest level (Level 

N-1) to the lowest level (Level 0). This method will generate a rough terrain model for the 

further processing in the end. 
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Figure 3-7 Flowchart of Multi-scale Terrain Filtering (MTF) 

 



 

47 

3.3.1 Multi-scale Rasterized Pyramid Level Generation 

Considering that objects are presented in various ways depending on the scale of 

observation, a theory for multi-scale representation called scale-space theory had been 

originally developed by computer vision community for automatically analyzing and 

deriving information from signals that are the results of real-world measurements. 

Specifically, the scale-space theory is a framework for representing signal and imagery 

data at different scales through the re-sampling of the original data model (Ali, 2010). 

Besides machine vision (object recognition and manipulation, visual guided navigation), it 

has been widely used in typically visual-related tasks, including image processing 

(enhancement, visualization), signal processing, industrial inspection, remote sensing, 

automated cartography, data compression. An original model at coarse scale should have 

details fewer and simpler than that at fine scale in the multi-scale representation. In the 

fields of image processing and remote sensing, the most common used multi-scale 

representation is pyramid, which describes grey-level data in combination with the 

sub-sampling operation with a smoothing step (Keller and Averbuch, 2006; Bunting et al., 

2010). Since the structure of raster digital surface models (DSMs) or digital terrain models 

(DTMs) directly generated from airborne LiDAR data is similar to that of imagery, it is 

applicable to LiDAR range images. A range image normally is a single-band image 

composed by a grid of cells, whose values represent those cells’ elevations. Converting 
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three-dimensional (3D) point data to 2D grid format is a major topic in the laser scanning 

data processing world, and there are a plethora of approaches are based on the format of 

range image for final LiDAR-driven products, in terms of processing speed, memory, 

accuracy for particular purposes. As a continuous model, DSM or DTM can be represented 

by a continuous function ),( yxfz  , where z  is the elevation in terms of the location

),( yx . The Gaussian (linear) scale-space representation of 
)(),( kfyxf   is a family of 

derived continuous representations. In the proposed method, a modified version of this 

model is applied, and a serious pyramid levels (resampled images) for the presentation of 

digital surface terrain is employed to avoid a loss in data accuracy. 

 

Figure 3-8 Illustration of the data pyramid (images are resampled from Site A) 
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First, the bottom level f 
(0)

 is a raster resampled from the original LiDAR point clouds. The 

size of the cell (grid) is a user assigned parameter K (unit cell size), which should larger 

than the point density of the LiDAR data. Since there may be more than one point in a cell, 

the lowest point in the cell represents the cell, which means that the value of each cell is the 

elevation value (z) of the lowest point in the cell. 

Then, any level f 
(k)

 from the second level to the top level are resampled from the bottom 

level f 
(0)

, the cell size g
 (k)

 and the value of the cell ),()1( yxf k

 are defined in Equations 

(3.2) and (3.3).    

g (𝑘) = 𝐾𝑡𝑘 (3.2) 

Where, K is the aforementioned unit cell size; t  is the variance of the Gaussian function, 

which indicates the scale level being defined. The more the t value increases, the further the 

resolution of the original continuous terrain model is decreased. In other words, a 

coarser-resolution model
)1( kf  is basically a re-sampled representation created at a lower 

resolution than the finer-resolution model
)(kf . In this study, it assumes that the scale t is 2; 

which means that the cell size of 
)1( kf  is half of that of

)(kf , as can be seen in Figure 3-8. 

)0()1( ),();,(),( fyxGtyxDyxf t

k 
 (3.3) 

Where, D represents one cell in 
)1( kf and is defined by the convolution of ),( 00

)0( yxf

and the bivariate Gaussian probability density function ),( yxGt (Ali, 2010). Although the 
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definition of D  works for scales 0t , only a finite number of levels in the scale-space 

representation would be considered. There are two considerations in the determination of 

the number of images in the data pyramid: the point density ( d ) and the maximum 

estimation of building sizes ( sB ).  To guarantee the lowest point in a grid cell as terrain 

point, the top level of pyramid should have the cell size ( maxg ) equal to or larger than sB . 

Meanwhile, to minimize the loss of accuracy, the bottom level should keep the cell size 

( ming ) close to the point density d . Like it, a series of multi-scale images (level) are 

generated. In this way, most of small unwanted objects are gradually excluded from bottom 

to top levels in the pyramid. 

3.3.2 Identification of Terrain and Off-terrain Points 

According to the given maximum building size ( sB ) and the point density ( d ), N levels of 

a data pyramid are generated from bottom to top (from finer to coarser in scale, 0, 1, 2… N). 

The top level (
Nf ), also called as the coarsest scale level, is considered an initial DTM 

reference by reason that the condition of maxg > sB  theoretically guarantees that its cells 

have higher possibility of being a terrain point than cells in finer scale levels. Starting from 

the initial DTM reference, it iteratively search terrain points and recover DTM from 

coarse-to-fine scalar levels.  
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Figure 3-9 Cells in two levels 

Assuming that Level N is a terrain reference, the identification of terrain points starts from 

Level N-1, as shown in Figure 3-9. Due to the scale of 2, one cell in Level N corresponds to 

four cells of Level N-1. According to the identified terrain point P’ in Level N, 

un-identified points p0-p3 in Level N-1 will be labeled using two criterion: layering 

information and slope calculation between the known terrain point P’ and unknown points 

p0-p3.  The identification of terrain points is stated in the following two steps: 

1) Compare layer number between P’ and pi (i=0-3): 

Label pi as terrain point if they have the same layer number; 

Otherwise, go to the next step; 

2) Calculate the slope between P’ and pi: by (3.4) 

   Label pi as terrain point If the slope is smaller than a given slope threshold Tanθ ; 
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   Else, label pi as off-terrain point, and remove it; 

𝑇𝑎𝑛𝜃 =  
|𝑍′ − 𝑍𝑖|

√(𝑋′ − 𝑋𝑖)
2 + (𝑌′ − 𝑌𝑖)

2
 (3.4) 

Where, (X’, Y’, Z’) and (𝑋𝑖, 𝑌𝑖, 𝑍𝑖) are the coordinates of P’ and pi respectively. 

The algorithm repeats Step 1- 2 for each point in the terrain reference to find terrain points 

in the processed image until no point is left. After that, an interpolation is used to fill holes 

where off-terrain points exist.  

The previous identification works well in a flat area, but this is not the case with 

topographic areas. Since the value of each cell is always from the lowest point in that cell, 

the four layer numbers in the lower level are the same as the reference level, or higher 

than reference level. If there is a relief in the area, the higher layer number may still 

represent the terrain points, but the cell will be wrongly identified into off-terrain points. 

Therefore, a tolerance threshold is needed in identification, especially at high levels. 

T = INT ( layer Number / Identification Tolerance ) (3-5) 

  

Where, T represents the biggest tolerable difference threshold between the layer numbers 

of the identifying cell and the reference cell. And Identification Tolerance is a user 

assigned parameter (see Section 4.4.5). 
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3.3.3 Interpolation at Off-terrain Points 

As discussed above, the terrain identification in Level N-1 is based on the terrain reference 

of Level N. For Level N-1, there are holes due to the removal of off-terrain points, and there 

are some cells with no representative point as well. To be a terrain reference for the next 

scalar level, those holes must be interpolated. Commonly used interpolations include 

Inverse Distance Weighted (IDW), spline, Kriging, etc. (Liu, 2008). Among them, the IDW 

interpolation is intuitive and efficient (Anderson, 2010); it works best with evenly 

distributed points which can be supplied by the multi-scale levels. Thus it was applied in 

this thesis study. IDW assumes that each point has an influence to the prediction point 

which diminishes with distance. In other words, the closer the point to the estimated 

location, the more weight it will hold, as shown in Equations (3-6) and (3-7). 

𝐹(𝑥, 𝑦) = ∑ 𝑤𝑖𝑓𝑖

𝑛

𝑖=1

 (3-6) 

𝑤𝑖 =
ℎ𝑖

−2

∑ ℎ𝑗
−2𝑛

𝑗=1

 (3-7) 

where, F(x,y) is the interpolated value of the target point,  fi is the height value of a 

neighbor near to the target, wi is the neighbor’s weight, and n is the number of neighbors. 

Equations (3-6) and (3-7)  gives the way of calculating weight wi, and h is the distance 

from each neighbor to the target point. This process is effective for dense and evenly 
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distributed sample points. However, the uneven distribution or low density of the points 

will lead to a not continuous interpolated surface. Therefore it is difficult to predict these 

areas. It is not possible for the weighted average method to estimate outside the data range 

(Liu et al., 2007). However, if there are a lot of data points and complex terrain this is a 

very effective method. Considering LiDAR points being denser and relatively even 

distributed pattern this IDW method is effective. 

Figure 3-10 shows the terrain filtering result is from coarse level to fine level. After the 

interpolation in Level 0, the generated image is a rough DTM.  

 

Figure 3-10 A level with interpolation can be used as a reference in the next level. 

3.4 DTM Refining 

All terrain filtering from Image N-1 to Image 0 is carried out to finally obtain the terrain 

reference. As a result of that those pseudo-gridded levels are generated from the lowest 
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points, there are non-lowest points that belong to terrain points are missed. Meanwhile, 

many terrain points in the final terrain reference are interpolated, which generate 

differences or errors between real laser points. Therefore, in order to improve the accuracy 

and generate a high resolution result, a refinement of the rough DTM is required. 

As shown in Figure 3-11, in the developed method the refinement of the rough DTM is 

done by three steps: adjusting the result from nDSM, filtering the original LiDAR point 

cloud data based on the refined DTM, and applying the separated terrain points to 

generate the final DTM through another IDW interpolation. 



 

56 

First 

Return 

Points

Last 

Return 

Points

Raw Point 

Cloud data

Reclassify 

RAW Data

Terrain 

Points

Off-

Terrain 

Points

DNTM 

Adjustment

Refined 

DTM
Reference

IDW 

Interpolation

Final DTM

Rough DTM: 

Level 0 

Reference

MTF Filtering

 

Figure 3-11 Flowchart of DTM Refining 

During the interpolation, features like pits, curb and hill peaks may be wrongly removed 

and interpolated. This will make some cells in the generated rough DTM have higher 
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elevation values than the real terrain, and the number can be even higher than DSM in the 

according location. A normalized Digital Surface Model (nDSM) is introduced here for 

this problem (Hu and Tao, 2005). The nDSM is generated by subtracting the DSM from 

the DTM, and represents the net height of the off-terrain objects, such as buildings, 

vegetation, as shown in Figure 3-12. 

 

Figure 3-12 nDSM = DSM - DTM 

In this method, DSM is represented by the original LiDAR first return points data, and 

the DTM is the product generated by the Multi-scale Terrain Filtering. As the 

representation of off-terrain objects, the nDSM usually has a positive value. Therefore the 

negative values of nDSM show where the errors are. And the method will replace these 

errors by the according value of the original data to generate the refined DTM. 

Finally, the refined DTM generated from nDSM feedback adjustment is used as reference 

to separate the original last return points into ground points and non-ground points based 

on their layer numbers. Then a final IDW interpolation of these separated ground points 
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will generate the final DTM. 

3.5 Chapter Summary 

In this chapter, a new DTM generation method from airborne LiDAR point clouds has been 

proposed. This method has three steps: data pre-processing, Multi-scale Terrain Filtering 

(MTF), and refinement of the rough DTM. In pre-processing step, the layering part was 

used to generate layer numbers which are used as a criterion in the identification of the 

MTF, and also used to remove noise and outliers. In the MTF step, identification and 

interpolation were carried out in a group of rasterized pyramid levels, and coarse to fine 

DTMs are generated. In the refining step, the generated rough DTM is refined by nDSM 

adjustment and used to filter the data into terrain points. An IDW interpolation carries out 

by these points and produces the final DTM. 
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Chapter 4. Experiments and Results 

In this chapter, the datasets featured in this thesis are listed in Section 4.1. The accuracy 

evaluation methods are introduced in Section 4.2. The result evaluation and comparison of 

the proposed method and other existed methods are discussed in Section 4.3. And Section 

4.4 describes the parameters applied in the experiments and a sensitivity analysis of these 

parameters, followed by the conclusion in Section 4.5.  

4.1 Data Sources 

Three datasets are included in the experiments to verify the proposed filtering algorithm. 

The first dataset obtained from Stuttgart, Germany was released by ISPRS working group 

WG III/3, have been made available through the society's web site (www. 

commission3.isprs.org/wg3/). The second set, required from Toposys GmbH, Germany, is 

located in Mannheim, Germany. The last dataset generated by Optech covers Waterloo area, 

southern Ontario in Canada. The first 15 sites from ISPRS are selected to test the 

performance of the MTF algorithm and compare the results with other methods evaluated 

by ISPRS (Sithole and Vosselman, 2004). To extend the tests for further verification, two 

extensive experiments are added to further verify the robustness and stability of the MTF 

algorithm. Error computation for DTM generation is made, for the accuracy assessment, 

using several complex terrain samples with dense vegetation. 
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4.1.1 ISPRS Data 

The ISPRS working group WG III/3 has tested a number of algorithms developed in the 

past (Sithole and Vosselman, 2004). ISPRS collected the data captured by an Optech 

ALTM scanner. The reference data was manually generated from the data with the 

reference of the aerial image and landscape. These data are located along seven study sites 

over the Vaihingen test field and Stuttgart city center. The study cites have varied terrain 

characteristics and diverse feature content (e.g., open fields, vegetation, buildings, road, 

railroads, rivers, bridges, power lines, water surface, among others). Table 4-1 contains a 

list of the study sites. An aerial image of Forest Site 5 is shown in Figure 4-1. 

 

Figure 4-1 Aerial image of ISPRS data Site 5 
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This dataset is widely adopted by the laser scanning researchers (e.g. Meng et al., 2009; 

Shao and Chen, 2008). It covers many different land features and filtering difficulties. 

However, it does not contain small woods and residence in urban area. And the reference 

data is only available for the 15 samples; the reference data for entire site is not available, 

Table 4-1 Features of the ISPRS dataset (Sithole and Vosselman, 2003) 

Test Site Reference 

Sample 

Number 

of Points 

Terrain 

Points 

Off-te

rrain 

Points 

Width 

(m) 

Length 

(m) 

Density 

(points/m
2
) 

City Site 

1 

Samp11 38010 21786 16224 133.89 302.73 0.94 

Sampl2 52119 26691 25428 204.38 264.22 0.97 

Features: A mixture of vegetation and buildings on steep hillside, data gap. 

City Site 

2 

Samp21 12960 10085 2875 123.79 115.19 0.91 

Samp22 32706 22504 10202 187.87 181.23 0.96 

Samp23 25095 13223 11872 146.18 205.9 0.83 

Samp24 7492 5434 2058 121.86 72.44 0.85 

Features: Large buildings, irregularly shaped buildings, road with bridge 

and small tunnel, data gap 

City 

Site3 

Samp31 28862 15556 13306 174.17 161.94 1.02 

Features: Densely packed buildings with vegetation, data gaps. 

City 

Site4 

Samp41 11231 5602 5629 167.19 104.71 0.64 

Samp42 42470 12443 30027 227.12 202.98 0.92 

 Features: Railway station with trains (low density of terrain points), data 

gaps. 

Forest 

Site5 

Samp51 17845 13950 3895 232.41 429.87 0.18 

Samp52 22474 20112 2362 450.01 301.12 0.17 

Samp53 34378 32989 1389 430.42 472.93 0.17 

Samp54 8608 3983 4625 185.84 267.49 0.17 

Features: Steep slopes with vegetation, quarry, vegetation on river bank, 

data gaps 

Forest 

Site6 

Samp61 35060 33854 1206 504.23 443.97 0.16 

Features: Large buildings, roads with embankments, data gaps. 

Forest 

Site7 

Samp71 15645 13875 1770 394.83 221.12 0.18 

Features: Bridge, underpass, roads with embankments, data gaps. 
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which means will limit the algorithm testing for large site. In order to complement these 

defects, two other datasets are tested.  

4.1.2 LAS LiDAR Data in the City of Waterloo 

In this thesis, the city of Waterloo is chosen to be a study area. In the city of Waterloo, 

especially the area close to UW campus, multiple features of the land use can be found. 

This gives the convenience to test the algorithms in different scenario, such as big 

buildings in UW campus, residence close to UW campus, as well as some small forest 

nearby. These three different scenarios will be discussed in this thesis. 

In this data, the algorithm and analysis are applied to the LiDAR data in a LAS format 

which is described before. The raw LiDAR dataset covers the main campus of University 

of Waterloo (UW), Waterloo, Ontario which was acquired by Optech’s Airborne Laser 

Terrain Mapper (ALTM) on March 11, 2006. The average flying height was 1,200 m 

above ground level and the flying speed was 66.9 m per second. The scan angle was 20º. 

The desired resolution was 0.908 m. The formation of raw data was the point cloud 

which contains more than seven million points. The dataset is demonstrated in Figure 

4-2.  
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Figure 4-2 Original LiDAR data of the UW campus 

The geo-reference of LiDAR point clouds is demonstrated in Table 4-2: 

Table 4-2 Waterloo Data Specifications 

Type QTC Point Cloud 

Comp Uncompressed 

Points 7,997,153 

Width 1,587m 

Height 7,139m 

Scale 0.8403 

Density 1.4164 point/m
2
 

Based on the same LAS LiDAR dataset of Waterloo a manual classification in UW 

campus is done by a qualified person with the proper knowledge and experience. The 

ground points are applied in an IDW interpolation for DTM generation. The interpolation 

is “using the default 12 points for the “Search Radius Settings” and “Power” of 2… The 
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cell size was set to 1” (Lackner, 2010). To somehow avoid the unrealistic interpolation 

under some buildings “a 2-meter buffer around the building footprints and calculate the 

mean elevation from the ground LiDAR points that fall between the 2-meter buffer line 

and the building footprint” is created.  

This city of Waterloo dataset contains many different topographic features, such as the 

university campuses, rivers, forest, parks, farmland, suburban area, residence area, etc. 

These areas are ready to be experimented and can be shown in a visible format. However 

its reference data is an interpolated raster TIF data whose resolution is lower than the 

original point clouds data. A higher error rate of the quantitative evaluation results in the 

experiments is expected. 

4.1.3 TopoSys Demo City Data 

Another LiDAR dataset is required from TopoSys GmbH, Germany. This dataset covers 

the area of Mannheim, Germany. Raw data, CIR-3layer, RGB-3layer, intensity, DSM first 

return, DSM last return, TIN, Contour lines are all available in this dataset, and the DTM 

reference data is included as well. The average spacing between points is available in 

50cm, 100cm, and 200cm. Table 4-3 shows the geo-reference of the data used in this 

research, and Figure 4-3 shows two images of this dataset. 
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Table 4-3 Demo City Data Specifications 

  DSM-First Echo DSM-Last Echo DTM-Interpolated Last Echo 

Format ASCII 

Comp Uncompressed 

Width 799.50m 

Height 859.50m 

Points 2,748,790 2,738,623 1,399,214 

Density 4.0002 point/m
2
 3.9854 point/m

2
 2.0362 point/m

2
 

    

 

(a) Optic image (b) LiDAR first return points 

Figure 4-3 TopoSys Demo City data 

This dataset is in an ASCII format. The majority of the data is in urban areas, which 

includes some areas of big buildings and some joined town-house residence areas. 

Buildings and roads are evenly distributed, and a big square is in the center of the data. 

Since the reference terrain points for the entire data is available, this data will be used in 

testing the performance of the proposed method in large site. 
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4.1.4 Complement Experiment Sites 

As the original raw LiDAR data is very large, and the data covers a big area, which 

contains many different types of land-use. To process and analyze such big and complex 

data is very difficult and time consuming. Therefore, six experiment sites (additional to 

the 15 ISPRS samples) are selected from the Waterloo data and the Demo City data. In 

order to test the performance in sites with different features (complex building area, 

residence area, forest area and urban city area), the location and size of the test sites are 

sampled by visually selecting from optic images. 

Figure 4-4 (a), (b) and (c) are Sites A, B and C respectively, these three sites are selected 

from the City of Waterloo data. Figure 4-4 (d), (e) are Sites D and E, which are from the 

TopoSys Demo City data. Figure 4-4 (f) shows the entire Demo City data. The dimension 

and the some information of experimental sites are listed in Table 4-4. 

 

(a) (b) (c) 
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(d) (e) (f) 

 

Figure 4-4 Testing sites: a) a corner of UW campus with big buildings; b) a sample of 

residence area; c) a sample of forest area; d) and e) parts of the Demo City data; f) entire 

Demo City data. The color represents elevations as the bar shows. 

Table 4-4 Experiment Site Specification 

Site Area 
Number 

of Points 

Width 

(m) 

Length 

(m) 

Area 

(m
2
) 

Density 

(points/m
2
) 

A Campus 87,640 218 285 62,130 1.4106 

B Residence 132,697 248 282 69,936 1.8974 

C forest 84,732 182 255 46,410 1.8257 

D Urban 89411 150 149 22,350 4.0005 

E Urban 135016 169 199 33,631 4.0146 

F Urban 2738623 799 859 686,341 3.9902 

Site A is a corner of UW campus, which includes buildings and part of Ring Road, a 

water body and some trees and other vegetation. The buildings in this site are big and 

many of them are connected to each other. The big court yards are surrounded by 

buildings. The vegetation and parking lots are located around the buildings as well. Site B 

is in a residence area north of UW campus. There are around 50 houses in that site. Some 

of the houses are close to trees with large canopies which cover some part of the houses. 
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The landform is that west south is lower than north east. Site C is in the Waterloo Park, 

which has part of a forest, a little section of road, and lawn in the public park. And there 

are no buildings in that area. Site D is in urban area which is part of the TopoSys Demo 

City dataset. Big buildings, court yard surrounded by the buildings, roads, cars on the 

road, trees along the roads and buildings, and small areas of vegetation are included in 

this site. Site E is also in urban area in Demo City data. Big buildings, court yard and 

parking space surrounded by the buildings, roads, cars on the road are included in this 

site. Consequently six samples with different features are selected to complement the 

ISPRS data. Since the formats of the reference data in three datasets are different, the 

following discussion will be around the method evaluating the performance of the 

proposed method on samples from different datasets. 

4.2 Accuracy Evaluation Method 

In accuracy assessment methods, visual inspection, random sampling of filtered data, and 

cross tabulation are three main categories (Meng et al., 2010). Visual inspections are 

usually utilized when the reference data is not available, and can be used to manually 

detect obvious errors. However, it is hard to find out the low objects such as bushes, road 

curb. In this paper, the visual inspection is to analysis type I, type II errors based on 

visualized cross-matrix. Random sampling of the data works based on an assumption that 

the errors or bias are evenly distributed. However, the filtering errors usually founded 
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where the features hard to recognize, which are usually not evenly distributed in data. But 

in order to assess the generated DTM, a sampling estimation is adopted. The cross 

tabulation are also adopted to analyze and compare the identified terrain points. 

4.2.1 Cross-matrix Analysis 

Sithole and Vosselman (2003b) reviewed and compared eight filtering algorithms, and 

their comparing method and data are frequently cited and applied in many researches of 

the laser scanning data filtering (Briese, 2010; Pfeifer and Mandlburger, 2008; Meng et al., 

2010; Liu, 2008). There are multiple quantitative assessment criteria available, such as 

Circular Error of 90% (CE90), Linear Error of 90% (LE90), Root Mean Squared Error 

(RMSE) and 1-Sigma (GeoVAR, 2012). However, in order to compare the results with 

other algorithms, this paper adopts confusion matrix approach and kappa indices to 

quantitatively test the performance of the MTF method due to the result availability of 

other algorithms. 

Table 4-5 Cross-matrix 

Reference 

Filtered 

Terrain Off-terrain 

Terrain a b (type I error) 

Off-terrain c (type II error) d 

  

Accuracy = ( a + d ) / ( a + b + c + d ) (4-1)  

type I error = b / ( a + b ) (4-2) 
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type II error = c / ( c + d ) (4-3) 

  

According to Sithole and Vosselman’s (2003b) assessment method, the cross-matrices are 

applied in this research to quantitatively analysis the type I, type II error and their 

relationship. type I errors are the errors which wrongly identified terrain points as 

off-terrain points, and type II errors are the errors which wrongly identified off-terrain 

points as terrain points as shown in Table 4-5. The formulas of their calculation are listed 

on Equations (4-1), (4-2) and (4-3) and a, b, c and d refers to Table 4-5.  

Visualized cross-matrices are also provided to determine the locations where it happens 

to be type I and type II errors in order to qualitatively analysis the nature of the errors. A 

typical visualized cross-matrix is shown in Figure 4-5. 

 

Figure 4-5 An example of visualized cross-matrix (sample 71) 

Except type I errors, type II errors and overall accuracies which are mentioned by Sithole 

and Vosselman (2003b), the kappa Index of Agreement, which takes agreement occurring 
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by chance into account and is generally considered as a more robust measure than percent 

agreement (Strijbos et al., 2006) is also adopted in this thesis. And the formulae are listed 

on Equations (4-4), (4-5) and (4-6). And a, b, c and d refers to Table 4-5. 

 

(4-4) 

Pr(𝑎) =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

(4-5) 

Pr(𝑒) =
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑
×

𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
+

𝑐 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
×

𝑏 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

(4-6) 

Where, Pr(a) is the relative observed agreement among raters. Pr(e) is chance agreement 

for the hypothetical probability. It is adopting the observed data to calculate the 

probabilities of each observer randomly saying (Strijbos et al., 2006); a, b, c and d refers 

to Table 4-5. Kappa measures and considers the agreement between two raters, which can 

more reflect the performance of the method on both type I, type II errors. 

The reference data of the ISPRS data and the Demo City data are in a point cloud format. 

This format gives the access to compare each point to a reference point, which offers an 

easier way to check the type I and type II errors and make the cross-matrices. This 

evaluation method is good to evaluate the performance of filtering method. 

4.2.2 Sampling Estimation 

The final products of this thesis are DTMs; the accuracy rate of the filtered points cannot 



 

72 

directly reflect the accuracy of the generated DTM. And the reference data of the City of 

Waterloo data is in a raster format stored in TIFF files, which requires some adjustment 

to make the cross-matrices. However the choosing of the buffer parameters for the 

adjustment is not very intuitive. Therefore, in order to directly evaluate the generated 

DTM and to apply the raster reference, an accuracy evaluation based on the sampling and 

comparing the interpolated DTMs is adopted as a compliment to the cross-matrix 

evaluations. 

 

Figure 4-6 A demonstration of sampling point (10x10 points) 

The sampling evaluation compares the samples from the result image and the samples 

with same x, y coordinators from the reference image to assess the accuracy of the result. 

The selected sampling points are evenly distributed on the study sites, an example is 

shown in Figure 4-6. The number of the samples is determined based on the size and 

point density of the study site. The sample values of the result are extracted from the 

DTM interpolated from the identified terrain points, and the sample values of the 
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reference are extracted from the raster reference data (the raster reference data of the 

Demo City data is interpolated from its reference terrain points). The offset (difference) 

between the result value and the reference value extracted on sampling points are 

calculated for every point. The evaluation results such as average error, standard 

deviation, and the worst error are calculated based on these offset values. The flowchart 

is shown on Figure 4-7. 

 

Figure 4-7 Flowchart of the sampling estimation 

4.3 Result Evaluation and Analysis 

In this section, the proposed MTF algorithm is applied on the samples from three datasets.  

15 sample sites from ISPRS are evaluated by the cross-matrix approach; the results are 

compared to results of eight methods provided by ISPRS. Six sites from the City of 

Waterloo data and the Demo City data are assessed by the sampling estimation; their 

results are compared with two methods included in software ALDPAT. In order to clearly 

demonstrate the process of the experiments, the parameters used in this experiment are 

listed in Table 4-6. And Figure 4-8 shows the result of the sample sites. 
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Table 4-6 Descriptions of Parameters 

Parameter Description Applied Stage 

Width histogram width 
Pre-processing 

Layering 

Del 
tolerated percentage in histogram 

layer generation 

Pre-processing 

Layering 

Min Layer minimum number of points in a layer 
Pre-Processing 

Noise Elimination 

Min Cell minimum number of points in a cell 
Pre-Processing 

Noise Elimination 

K 
basic cell size in rasterized pyramid 

level generation 

ITR 

Levels Generation 

Level num number of rasterized pyramid levels 
ITR 

Levels Generation 

Tanθ angle threshold 
ITR 

Identification 

Identification 

tolerance 

tolerated number of levels in iterative 

identification 

ITR 

Identification 

Classification 

tolerance 

tolerated number of levels in 

classification 

DTM Refining 

Classification 

 

4.3.1 Quantitative Analysis 

The 15 sample sites acquired from ISPRS are selected on city and forest areas, the ground 

features such as slope gradient, vegetation density are various. Therefore, Meng et. al. 

(2010) divided the fifteen ISPRS study sites into three groups. The sites in the first group 

(Sample 11, 24, 41, 54) have rough slope and dense vegetation; the sites in the second 

group (Sample 12, 21, 22, 23, 31, 42) are relatively flat urban area; and the sites in the 

third group (Sample 51, 52, 53, 61, 71) contain rough terrain and discontinuous (e.g. river 

banks and mining fields). The following discussion will refer to these three groups. 
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Figure 4-8 Result: identified terrain points in 15 ISPRS sample sites 

Figure 4-9 shows the quantitative assessment results of the fifteen sites, while Table 4-7 

lists the parameters used to generate these results. The overall accuracy and kappa 

coefficient for one site may be required from tests with different combination of 

parameters, e.g. “samp11k” in Table 4-7 refers to the parameter combination for the kappa 
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coefficient value of Sample 11 shown in Figure 4-9, the numbers of type I, type II errors 

and Accuracy for Sample 11 are generated by the parameters listed as “samp11”. 

Table 4-7 Parameters of Multi-scale Terrain Filtering method 

Sites 
Width (m) Delta K (m) 

Number 

of Levels 
Tanθ 

Identification 

tolerance 

samp11  2.1 0.6 1.6 7 0.4 0.5 

samp11k  2.6 0.6 4.0 6 0.7 0.5 

samp12  0.9 0.6 2.0 7 0.7 0.5 

samp21  0.9 0.6 2.0 7 0.7 0.5 

samp22  0.9 0.6 2.0 7 0.7 0.5 

samp22k  1.5 0.6 1.6 7 1.2 0.5 

samp23  0.9 0.6 2.0 7 1.2 0.5 

samp24  0.9 0.6 2.0 7 1.2 0.5 

samp31  0.9 0.6 2.0 7 0.7 0.5 

samp41  0.9 0.6 2.0 7 1.8 0.5 

samp42  0.9 0.6 2.0 7 0.7 0.5 

samp51  0.9 0.6 2.0 7 0.7 0.5 

samp51k 2.0 0.6 2.4 7 0.7 0.1 

samp52  0.9 0.6 2.0 7 0.7 0.5 

samp52k 4.0 0.5 3.0 6 0.7 0.8 

samp53  0.9 0.6 2.0 7 0.7 0.5 

samp53k 3.2 1.5 2.4 7 3.0 0.5 

samp54  2.7 0.2 2.4 7 0.4 0.5 

samp61  0.9 0.6 2.0 7 0.7 0.5 

samp71  0.9 0.6 2.0 7 0.7 0.5 

 



 

78 

 

Figure 4-9 Type I errors, type II errors, Accuracy Rates and Kappa coefficients of the 15 

sample sites from ISPRS tested by the proposed MTF method 

As shown in Figure 4-9, the average, best, worst values of the accuracy rate are 85%, 96% 

and 70% respectively. The standard deviation of the accuracy rate and kappa coefficient in 

fifteen sites are 8% and 25%, which means the overall accuracy is relatively stable while 

the kappa coefficient varies depending on the study sites. However, the parameters in the 

proposed MTF method have to be tweaked to obtain the best results during the finite 

number of experiments, and the optimal result is not guaranteed in these experiments. In 

order to analysis the performance of the proposed MTF method on different situations, a 

series of comparisons are carried out as follows.  
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Figure 4-10 Average values of type I, type II errors, Accuracy and Kappa sorted by three 

groups 

Since the fifteen sample sites are divided into three groups, a comparison is shown in 

Figure 4-10. Group 2 sites shows the lowest errors and highest accuracy rate and kappa 

coefficient, which means that the MTF method can handle Group 2 sites better than the 

other two groups, this number is also good enough to compare with filters compared by 

ISPRS (Sithole and Vosselman, 2003b). The performance of the MTF method on Group 1 

is average. However, the performance on Group 3 shows a very low kappa coefficient 

because of the high type II errors. Group 3 sites contain features like steep slope and high 

percentage of terrain points. Therefore, the MTF method probably has flaw on process 

this type of areas.  
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Figure 4-11 Average values of type I, type II errors, Accuracy and Kappa sorted by City 

Sites and Forest Sites 

The ISPRS data is originally sorted as city sites and forest sites, the performance of the 

MTF method on city sites and forest site are shown in Figure 4-11. It is obvious that the 

performance on city site is better since it has lower type I, II errors and higher accuracy and 

kappa. The steep slope and the dense vegetation coverage might be the reason why the 

MTF method has an unsatisfactory result on forest sites. The forest sites are basically 

overlapping with the Group 3 sites. The high type II error is probably from the buildings on 

the slope which is a difficulty mentioned by (Sithole and Vosselman, 2003b). It is also the 

key to improve the value of the kappa coefficient. 
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Figure 4-12 Average values of type I, type II errors, Accuracy and Kappa sorted by 

percentage of terrain point 

The MTF is based on layering, which is a global analysis of the data height value. 

Therefore, the terrain points’ portion of all points can affect the result. Figure 4-12 shows 

the MTF performance based on different terrain point percentage. It seems along with the 

growth of the percentage, the errors especially type II error become higher, while the 

accuracy and kappa become lower. But it needs to be noticed that there is only one sample 

for the terrain point percentage smaller than 40%, and the sample which have higher than 

80% terrain points are all in Group 3. Therefore, the uncertainty of this feature still requires 

further discussion.  
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Figure 4-13 Average values of Standard Deviations of type I, type II errors, Accuracy 

and Kappa in three types of sortation 

In order to know which feature of the data has more influence to the result, the average 

standard deviations of the previous three types of sortation are calculated as shown in 

Figure 4-13. The chart shows that they are all in the same range of each characteristic; 

however, the group sortation has the lowest average standard deviation among the three 

type of sortation.  

 Figure 4-14 Total Error rate of MTF method and three method tested by ISPRS (Shao and 

Chen, 2010) 

To compare with the algorithms analyzed by ISPRS, the error rate and average of kappa 
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coefficients are shown in Figure 4-14 and Figure 4-15 respectively. Unfortunately, the 

error rates are the worst of the four comparing method in nine of fifteen sites. However, it 

has better results than Roggero’s method in the rest six sites. Similarly, the average of 

kappa coefficients chart shows a 61.2% of the proposed MTF method, which is the 6
th

 of 

all 9 methods, only higher than Elmqvist, Brovelli and Sithole’s methods (Meng et. al., 

2009). Therefore, a further improvement of the MTF method is required.  

 

Figure 4-15 Average of Kappa Coefficients in 15 sites of MTF method and eight method 

tested by ISPRS (Meng et. al., 2009)  
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4.3.2 Qualitative Analysis 

The misidentified terrain points can be interpolated by its neighbors, while an off-terrain 

point that is misidentified as terrain point will lead to an inaccuracy of the interpolated 

DTM. Furthermore, the changing of most parameters in the proposed method will lead to 

a trade-off between type I error and type II error ((Sithole and Vosselman, 2003b), and 

will be further analyzed in Section 4.4). Therefore, the proposed method focuses on 

minimizing the type II error. However, in some sites with very high terrain points’ 

percentage, the minimizing of the type II error will lead to a big drop of the total accuracy 

because of the decrease of the type I error. Therefore, the total accuracy is the first 

consideration in these sites. The type I, type II error rates and the total accuracy rate of 

each site can be seen in Figure 4-9. 

The most errors happens where difficulties exists (six type of filtering difficulties listed in 

Section 2.3 (Sithole and Vosselman, 2003b)). These six difficulties will be separately 

discussed based on the visualized cross-matric image in the following paragraphs. The 

visualized images for the fifteen samples are displayed in Figure 4-16.  
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Figure 4-16 Visualized cross-matrices of study sites, each image is displayed at a unique 

scale. 

(1) Steep Slopes 

Samples 11, 51, 52 contain steep slopes. Many type II errors can be seen on these images, 

especially on Sample 11. This is because the steep slope will make the terrain points 
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distributed all across the horizontal axis in the height histogram of the sites as shown in 

Figure 4-17. The layers generated from this type of histogram can hardly be used to 

divide terrain and off-terrain points. Since the entire sample 11 is on a steep slope, the 

errors are all over the place. The steep slope on sample 51 is just a strip in the center, thus 

the errors are mainly located on that strip as shown in Figure 4-18. 

  

 

Figure 4-17 Height Histogram of Sample 11 
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(a) All points on Sample 11 (b) All points on Sample 51 

 

Figure 4-18 Steep slopes on Samples 11 and 51 

 

(2) Discontinuities 

Discontinuities happen in samples 22, 23 and 53. The total accuracy of the samples 22 

and 23 is around 90% while the kappa coefficients are around 80%, which are good 

results. The type I error is around 15% on sample 23, and it becomes more significant 49% 

when comes to sample 53. These errors are from the sharp ridges or valleys as shown in 

Figure 4-19. This is probably because the same reason as the steep slopes. Actually a 

steep slope can be viewed as a big discontinuity, and it is classified as a type of 
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discontinuities by Sithole and Vosselman (2003b). However the type I error looks more 

significant is probably because the number of off-terrain points is relatively small (there 

are 32989 terrain points and 1389 off-terrain points in sample 53). 

  

  

Figure 4-19 Type I errors happens where the ridges or valleys are. 

 

(3) Bridges 

As shown in Figure 4-20, most points on the bridges are identified as off-terrain objects. 

However, there are some type II errors at the beginning or end of the bridges, which is 

similar as some method tested by Sithole and Vosselman (2003b). The reason of this is 

that the bridges usually smoothly start from the bare earth, while begins and ends of the 



 

90 

bridges are very close to the terrain. 

 

Sample 21 

 

 
 

Sample 71 

Figure 4-20 Bridges on samples 21 and 71 

 

(4) Complex Scenes 

Samples 11, 22, and 23 are tagged as complex scenes by Sithole and Vosselman (2003b). 

Especially sample 23, a plaza contain structures like three sides of buildings in different 

shapes, pathway between buildings to the road, stairs from plaza to the road, and even a 

sunken arcade in the center. The definition of the bare earth here is under the requirement 

of the availability to walk with no obstruction (Sithole and Vosselman, 2003b). All 

samples here have been analyzed in previous filtering difficulties. The results of sample 

11 need to be improved, while the results of Samples 22 and 23 are good. Therefore, the 

proposed method can handle the complex scenes on flat terrain surface well, but cannot 
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provide a high accuracy result on steep slope areas. 

(5) Outliers 

Samples 31 and 41 contain outliers. If it is a low outlier on the terrain, a few type I errors 

will be generated around it. Usually only small number of outliers can be seen on the data, 

thus the accuracy rate will not decrease significantly because of the outliers. However, 

they can be removed by the small group of point removal function of the proposed 

method. 

(6) Vegetation on slopes 

Samples 51 and 52 are two examples with vegetation on steep slopes. In sample 51, the 

steep slope and vegetation are mixed together. As can be seen in Figure 4-21, the type II 

errors on the steep slope are generated from the vegetation. These type II errors can be 

removed by tweaking the parameters. However, this will sacrifice the type I errors rate 

instead. This problem happens in some of the filters compared by Sithole and Vosselman 

(2003b) as well. 
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(a) More type II errors 

 

(b) More type I errors 

 

(c) all vegetation removed 

Figure 4-21 Tradeoff between type I errors and type II 

errors on sample 51 

 

To conclude, in all the six difficulties listed above, steep slope (discontinuities) is the 

hardest one to get a high accuracy rate for the proposed MTF method. Relatively small 

problems happen in the detection of the bridge, bare earth in complex scenes with flat 

terrain and vegetation, and around 90% total accuracy can be generated in the samples 

with these difficulties. Outliers can be removed by applying the small group of point 

removal function. 
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4.3.3 Results of Other Sites  

As previous mentioned (Section 4.1.1), in order to complement some defects of the ISPRS 

data, two other data (City of Waterloo data from Optech and Demo City data from TopoSys) 

sets are tested. These two datasets are evaluated by the sampling estimation introduced in 

Section 4.2.2. The identified terrain points results and the accuracy results are compared 

between the developed Multi-scale Terrain Filtering method and two comparing methods 

(Morphological filter and Adaptive TIN filter named by software ALDPAT Version 1.0).  

The experiments parameters of the proposed Multi-scale Terrain Filtering method in each 

site are listed in Table 4-8. These parameters combination can produce the lowest average 

offsets (error) between reference DTM and the DTM generated by the proposed method on 

sampling points during all experiments. The parameters tested in the two comparing 

method are listed in Table 4-9 and Table 4-10. 

Table 4-8 Parameters of Multi-scale Terrain Filtering method 

 

Parameter Site A Site B Site C Site D Site E Demo City 

Width 1m 1m 1m 1m 1m 1m 

Del 0.6 0.4 0.4 0.6 0.6 0.6 

Min Layer 50 50 50 50 50 50 

Min Cell - 100 100 100 100 1000 

K 2m 2m 2m 2m 2m 2m 

Level num 5 5 4 5 6 6 

Tanθ - 1 1 1 1 1 

Identification tolerance - 0.3 0.5 0.3 0.5 0.5 

Classification tolerance 1 1 1 1 1 1 
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Table 4-9 Parameters of Morphological filter 

 

Parameter Value 

Cell Size 2.00 m 

Slope 0.08 

Init Threshold 0.60 m 

Max Threshold 9999.00 m 

Window Base 2.00 m 

Power Increment 1.00 m 

Window Series Length 8 m 

Init Radius 1.00 m 

Window Series 1,2,4,8,16,32,64,128 

Threshold Series 0.60,1.60,2.60,4.60,8.60… 

Result Mode Terrain 

Data Mode Real 

Min WndSize 1 m 

Direction X and Y 

  

Table 4-10 Parameters of Adaptive TIN filter 

 

Parameter Value 

Cell Size 2.00 m 

Z Difference 0.20 m 

Angle Threshold 0.00 

Init TriGrid Size 100.00 m 

Tile X Width 200.00 m 

Tile Y Height 200.00 m 

Tile Buffer 20.00 m 

 

The identified terrain points results obtained by two comparison methods (Morphological 

filter and Adaptive TIN filter) and the developed Multi-scale Terrain Filtering method on 

two LiDAR datasets are shown in Figure 4-22.  
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Multi-scale Terrain Filtering Morphological Filter Adaptive TIN filter 

 

Site A: 87640 points 

 

Site B: 132697 points 
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Site C: 84732 points 

 
Site D: 89411 points 

 

Site E: 135016 points 

 

Site F (entire Demo City data): 2738623 points 

 

Figure 4-22 Comparison of terrain points result Images generated by MTF method, 

Morphological filter, and Adaptive TIN filter 
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The identification results obtained by the three methods show the advantage of each one. 

However all three methods have some defects. The result using the morphological filter is 

missing the whole section of the terrain points in some area probably due to the setting of 

the threshold. Adaptive TIN filter performed better than the other two in most cases, 

while the terrain points in some large rectangular area are missing in Site B and the Site F. 

The proposed method generating some unexpected small empty rectangle is caused by 

some low outliers in the wrongly identified area. The performance of layering becomes 

lower when handling a large area as shown in Figure 4-22 Site F (entire Demo City data). 

This is because in a large area with many types of objects mixed, the points of the objects 

and the terrain cannot be divided clearly on the height histogram. 

Figure 4-22 shows the identified terrain points, which are intermediate results of the 

whole process. The final interpolation will make the DTMs covered the whole area. 

Table 4-11 shows the evaluation results (average errors, standard deviations, and the 

worst errors) of the DTMs generated by the proposed method and two comparing method. 

The best results among the three methods for each criterion are highlighted. Except the 

processing time, the proposed method has six best results in all 18 results, while the 

morphological filter has seven and adaptive TIN has five. However, the result numbers of 

the three methods are similar. Furthermore, the evaluation results by proposed method in 

Site D, E are obviously better than the two comparing filters. But it fails in processing the 
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entire TopoSys Demo City data which the reason has been discussed previously. 

Table 4-11 Evaluation Results on six sites generated by three methods 

Number of 

Points 
Criteria 

Developed 

Method 

Morphological 

filter 

Adaptive TIN 

filter 

Site A processing time 0.9s 5s 15s 

87640 

Average offset (m) -0.237 0.148 0.105 

STDEV of offset (m) 0.819 0.639 0.689 

Worst error (m) -4.273 3.247 3.360 

Site B processing time 1.3s 11s 27s 

132697 

Average offset (m) 0.445 0.569 0.656 

STDEV of offset (m) 1.096 0.907 0.916 

Worst error (m) -3.810 2.742 2.813 

Site C processing time 0.7s 4s 21s 

84732 

Average offset (m) -0.593 -0.506 -0.495 

STDEV of offset (m) 1.008 0.987 0.959 

Worst error (m) -3.168 -2.991 -2.667 

Site D processing time 1s 3s 3s 

89411 

Average offset (m) 0.005 0.018 0.034 

STDEV of offset (m) 0.080 0.105 0.335 

Worst error (m) -0.579 -0.643 -0.915 

Site E processing time 1.4s 6s 5s 

135016 

Average offset (m) -0.092 -0.336 0.061 

STDEV of offset (m) 0.170 0.630 0.210 

Worst error (m) -0.969 -2.936 -1.514 

Site F processing time 26.8s 100s 240s 

2738623 

Average offset (m) -0.159 0.032 0.355 

STDEV of offset (m) 0.502 0.390 0.826 

Worst error (m) -3.709 -3.704 4.314 

As can be seen, Table 4-11 also presents the processing time of each method. A great 

amount of data is used in the field of geological information processing. The processing 

time is an important role in the transfer of the lab work to the real world commercial 
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applications. In this aspect, thanks to the terrain point’s identification of the proposed 

method is based on the comparison between the layers numbers, the Multi-scale Terrain 

Filtering method will consume less processing time than the other two methods. For 

example for the experiment of Site C, the consumed time for the proposed method is 0.7 

seconds while the morphological filter and adaptive TIN filter took 4 seconds and 21 

seconds, respectively to complete the same identification task. The proposed Multi-scale 

Terrain Filtering method generally cost less than one third of the time compared with the 

morphological filters cost and even less than the adaptive TIN filter, while the 

identification results and the evaluation results were similar as the other two methods.  

In conclusion, the proposed Multi-scale Terrain Filtering (MTF) method can identify 

terrain points in flat terrain areas with around 90% total accuracy. This accuracy rate drops 

when handling steep slope (discontinuities) areas. The average of kappa coefficients of the 

proposed methods tested on fifteen ISPRS sample sites is 61.2%, which is higher than three 

methods tested by ISPRS, but lower than the other five. The proposed method can solve or 

partially solve the difficulties like bridge, complex scenes, outliers and vegetation. 

However, whenever the test sites contain steep slopes, the result and performance becomes 

lower. The compliment tests show that the proposed method has difficulties in processing 

very large data as well. The good thing is the processing time is promising comparing to the 

other two methods. 
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The proposed method is developed on C# by Visual Studio 2008. The morphological 

filter and adaptive TIN filter compared in this research are included in the ALDPAT 

Version 1.0, which was developed by the International Hurricane Research Center, 

Florida International University in 2007. The final IDW interpolation and accuracy 

evaluation are process on ArcGIS 10. The processor of the computer is equipped with 

Intel Core2 Duo CPU T5800 @ 2.00 GHz and 4 GB RAM.  

4.4 Sensitivity Analysis of the Parameters 

As previous experiments demonstrated, the test results are based on the repeated 

experiments and the adjusting of the parameters. Therefore, choosing the parameters is 

critical to achieve a result with higher accuracy. And the sensitivity of the parameters, i.e. 

how the changing of the parameters influences the method output, will be a serious topic to 

discuss in the following section. 

There are nine parameters involved the proposed method, they are Width, Delta , Min Layer, 

Min Cell, K, Number of Levels, Tanθ, Identification tolerance and Classification tolerance. 

Parameters Width and Delta are two very “close” parameters which decide how the layers 

will be generated together; therefore they will be discussed in a group. Other parameter 

will be discussed separately. Based on the previous introduced analysis method and the 

experiment results, the sensitivity of the proposed MTF method is analyzed by 
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parameters as follows.  

The following discussion is tweaking one parameter each time. During a discussion of 

one parameter, the other parameters will keep the same. The setting of the other 

parameters can be found in Table 4-7.  

4.4.1 Width and Delta 

Width and Delta (percentage) are two parameters which are used in the generation of 

layers. Width is used to define the unit height difference in the generation of the height 

histogram. When Width becomes larger and larger, usually there will be fewer layers 

generated.  

  

 

(a) Width: 0.5 ~ 1.5 m (b) Width: 0.1 ~ 100 m 

  Figure 4-23 Width changes in different ranges (Sample 21) 

Theoretically, the range of parameter Width can be any number between vertical precision 
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of the system and the elevation value range of the data. However, usually type II error 

will increase along with Width as shown in Figure 4-23 (b). This is because when the 

width of the histogram bin becomes larger, the possibility for a histogram bin to include 

both terrain and off-terrain points becomes higher. The extreme situation is that one 

histogram bin includes every point in the data, and all points will be identified as terrain 

point, which means 100% type II error and 0% type I error, as shown in Figure 4-24. But 

as shown in Figure 4-23 (a), this parameter is stable when set to a relatively small range. 

Therefore, the parameter Width should be chosen from vertical precision of the system to 

a low object height (e.g. one storey of a building). 

 
Width = 1 

 
Width = 5 
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Width = 10 

 
 

Figure 4-24 Visualized cross-matrix with different Width value 

Delta defines the percentage threshold to separate the histogram into different layers. The 

layer generation is based on comparing the number of points between adjacent height units. 

If difference of the numbers of points between two neighbor units of the histogram is over 

the given Delta, the border of the two units will become the border of two layers. If the 

difference is under the Delta percentage, the two units will be grouped into same layer. 

This parameter will affect the number of layers as well. When it getting larger, the required 

difference is larger and harder to reach, therefore fewer layers will be generated. The 

extreme situation is same as Width, the requirement is too hard to generate two layers, and 

all points will be identified as terrain point.  

However in the certain range of the testing, the stability is related to the number of terrain 

points and off-terrain points. As shown in Figure 4-25 (a), in the situation that the number 

of terrain points is similar to the off-terrain points, the sensitivity of Delta is high, while it 
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becomes more stable when the difference between the numbers are big as shown in Figure 

4-25 (b). Because then the Delta is relatively small to make the two groups of points into 

the same layer, which can lead to the correct layer separation of two types of points.  

  

 

 
 

(a) Terrain points = 26691, Off-terrain 

points = 25428 (Sample 12) 

(b) Terrain points = 10085, Off-terrain 

points = 2875 (Sample 21) 

Figure 4-25 Sensitivity of Delta varies in different data structure 

Therefore, the proposed layering method works more stable in the situation like sample 
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21. The trade-off of the type I error and type II error is also noticeable and happens in 

most of the experimental sites, which means the changing of the parameters will affect 

both type I and type II errors.  

4.4.2 Unit Cell Size: K 

K is the unit cell size, as well as the side length of a cell of the first level, and cell sizes of 

every pyramid level are calculated by K and its Number of Levels. The influence of a low 

point is decided by K and Number of Levels.  

As shown in Figure 4-26, type I errors decline sharply from almost 100% to less than 10% 

when K reaches the points resolution (average distance between points). Because if the unit 

cell size is K smaller than the resolution, there will be many empty cells in the bottom level 

which are going to be interpolated by the low point, this will lead to a high type I error rate.  

But normally, when K increases, there will be more points in a cell of the bottom pyramid 

level. Since the last turn of identification and interpolation is performed in the bottom level, 

no further identification will be processed inside its cells. Therefore, the increase of K 

(when K is higher than the resolution) will lead to the growing of type I error, which means 

more terrain points will be wrongly identified as off-terrain points. The fast increase in 

Figure 4-26 (a) happens when the unit cell is larger than the short edge of the building. 

However this will also reduce the type II error.  
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(a) resolution: 0.99m (Sample 31) (b) resolution: 2.43m (Sample 53) 

Figure 4-26 Type I errors are relatively highly effected by K 

As can be seen from Figure 4-26, type II error is almost not affected by the changing of K. 

(The initial sharp increase of type II error in Figure 4-26(b) is because almost every point 

is identified as off-terrain points when K is close to zero. And the high type II error rate in 

Figure 4-26(b) is a problem when the proposed MTF method handling steep slope data.) It 
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slowly declines along with the increase of K.  

To conclude, the change of K will influence type I error more than type II error, and the 

sensitivity is low when K is higher than the data resolution and smaller than the size of the 

building.  

4.4.3 Number of Levels 

Number of Levels defines the number of rasterized pyramid levels to be generated in the 

multi-scale terrain filtering process. Since the developed method is basically processing the 

data in each divided cells separately, this parameter determine the range of the biggest 

processing area which sharing a same lowest reference point. The increasing of the 

Number of Levels will lead to a decline of the number of cells in the top level, and bigger 

influence areas of the lowest points in these cells.  

According to the experiments results, the parameter Number of Levels is very stable in 14 

of all 15 samples. No matter what is the number of the type I or type II error rate, they 

almost stay the same (the difference between highest and lowest rate is usually less than 

1 %.) when the Number of Levels is bigger than 4 or 5. As shown in Figure 4-27 (a), type II 

error rate declines a little along with the increasing of the Number of Levels if it is smaller 

than 4. Because if there are only a few levels, the off-terrain points have more chance to be 

included as the lowest points of the top level. 
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(a) Number of Levels is very stable in most 

samples (14 of 15) (Sample 42) 

 

 

(b) Special case (Sample 11) 

 

 

 (c) Visualized Cross-Matric of Sample 11 

Figure 4-27 Sensitivity of Number of Levels is low 

A special case for the stability of the Number of Levels happens in Sample 11. An 

explanation is that this sample is on a steep slope, the points are evenly distributed in 

every height histogram, and it is hard to correctly layer the data. It also has similar 

number of terrain and off-terrain points, which make the identification even harder by the 

proposed method.  
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4.4.4 Slope Gradient: Tanθ 

This parameter is used as an additional verification of the on-terrain verdict after the 

comparison of the layer numbers. As shown in Figure 4-28, the Tanθ represents a 

threshold to determine the acceptability of an identifying point.  

 

Figure 4-28 Tanθ 

It is obvious that when the Tanθ becomes larger, there will be more points (restricted to the 

points meet the layer number requirement) identified as terrain points. The range of this 

parameter is determined by the slope gradient. Usually the slope gradient of the test sites is 

from 0 degree to 45 degree, therefore, the range of Tanθ can be chosen from 0 to 1. But for 

the testing purpose, the experiment range of Tanθ is from 0 to 2 since the slope gradient is 

usually less than 60 degree.  

As shown in Figure 4-29, the sensitivity of Tanθ varies in different scenarios. Flat terrain 

and gentle slope as shown in Figure 4-29 (a) and (d) have a similar situation, which is type 

I error drops along with the increase of Tanθ. This is because when Tanθ is too small, the 

requirement is to restrict to accept even real terrain points. However, type II error rate is 
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stable. The difference between flat terrain and gentle slope is that after Tanθ reaches a 

certain value, type I error rate stops dropping in flat terrain as Tanθ is high enough to cover 

most terrain points. This value varies in different sites, and it can be very small to be 

neglected. 

  

(a) flat terrain (Sample 31) (b) Steep Slope (Sample 52) 

  

(c) Flat terrain with low objects 

(Sample 71) 

(d) Gentle Slope (Sample 23) 

Figure 4-29 Sensitivity of Tanθ in different situation 

When it comes to steep slope as shown in Figure 4-29 (b), type I error drops the same as on 

gentle slope, while type II error rate increases considerably with Tanθ, which means the 

off-terrain object on the slope is sensitive to this parameter. Another situation is flat terrain 
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with low objects as shown in Figure 4-29 (c). Since low objects have a relatively small 

difference to the terrain, they are easy to be wrongly identified as terrain when Tanθ 

increases, which leads to an unstable status of type II error. To conclude, Tanθ is stable on 

flat terrain, and it is sensitive to the steep slope and low objects.  

4.4.5 Identification Tolerance 

Identification tolerance is defined as the highest acceptable layer difference in terrain 

points’ identification during the multi-scale terrain filtering. In the high levels (levels close 

to the top level), the identifying points and reference point may have a long horizontal 

distance. Thus, the terrain points may have higher layer numbers than the reference points 

have. If the identification is always based on the same layer number, many terrain points 

may be identified as off-terrain points, and these wrongly identified points will influence 

their neighboring points in the following identifications as well. Parameter Identification 

Tolerance is set to fix this problem. This parameter is applied as Equation (4-7). The 

identification tolerance varies according to the Number of Levels. 

Acceptable Layer Number = INT (level number * Identification Tolerance) (4-7) 

  

The range selecting of this parameter is based on the number of levels and number of layers 

generated. For example, if 7 levels and 20 layers generated, the Identification Tolerance 

should definitely smaller than 20/7. And in the top level, there should at least have two 
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layers accepted, which means the Identification Tolerance should bigger than 2/7.  

 

Figure 4-30 Standard Deviations of overall accuracy, type I and type II error rates by 

testing different Identification Tolerance in 15 Samples Sites 

Same as Tanθ, the increase of this parameter will allow more points identified as terrain 

points, which leads to a drop of type I error and an increase of type II error. However as 

shown in Figure 4-30, the sensitivities of Identification Tolerance in different sample sites 

varies. For example, type I error is quite stable in sample 21, 51 and 54, but in sample 11, 

22, and 24 the standard deviation of type I error rate is very high. type II error also has 

stable samples like sample 12, 21, 41 etc. and unstable sites such as sample 11, 61 and 71. 

Therefore, overall the performance of parameter Identification Tolerance is unfortunately 

not reliable. However the change of the results becomes a more visible when tweaking this 

parameter. 

4.4.6 Other Parameters 

There are three more parameters which are Minimum Layer, Minimum Cell and 
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Classification Tolerance. Minimum Layer and Minimum Cell are used in pre-processing 

to eliminate outliers and single points. These two parameters are not applied in every 

experimental site; they are only applied and tweaked in those sites where the outliers and 

single points affect the performance of the proposed method. This means the function of 

this parameter is very specific to the certain sites, therefore the sensitivities analysis are 

not applied to them. The parameter Classification Tolerance does not apply in any of the 

experimental site, which is only a debug tool in the developing period. Therefore, no 

sensitivity analysis applied as well. 

For these parameters, some of them perform very stable in every sample site such as 

Number of Levels. More parameters like unit cell size K, slope gradient Tanθ are stable in 

certain range of value and certain sample sites. There is only one parameter Identification 

Tolerance which is hard to predict the performance. 

4.5 Chapter Summary 

This chapter gives the results and the analysis of the results of the proposed Multi-scale 

Terrain Filtering (MTF) method. A Dataset with fifteen samples from ISPRS and two 

complement datasets are used in the experiments. A cross-matrices analysis method is used 

to estimate the identified terrain points on the ISPRS data, while a sampling estimation 

method is adopted in analyzing the generated DTMs. The results show that the proposed 
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method perform as well as other comparing methods when handling flat terrain or terrain 

with gentle slopes. Steep slopes and very large data are two major difficulties of the 

proposed method. However, the processing time is very fast compared to the method 

provided by the software ALDPAT Version 1.0. To evaluate the stability of the results, a 

sensitivity analysis is carried out as well, which come to a conclusion that the sensitivity 

of the result to the parameters are usually stable in certain ranges, but the results are 

sensitive to some parameters like Width, Delta , cell size K, and Identification Tolerance 

even when these parameters are in rational ranges.  
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Chapter 5. Conclusions and Recommendations 

This chapter gives the conclusions including the summary of the proposed method in 

Section 5.1 and recommendations for the future work in Section 5.2. 

5.1 Conclusions 

In this thesis, an automatic method has been developed to generate DTM from last return 

points of high resolution airborne LiDAR point clouds data. This method is based on an 

algorithm called Multi-scale Terrain Filtering. It achieved good results in flat terrain areas 

in terms of evaluation accuracy and promising computational efficiency. 

Usually filtering and interpolation are the two steps of DTM generation. The difficulties 

and research frequently lie on the filtering of terrain points, especially on the filtering in 

complex situation of the study area, such as outliers, complex objects, vegetation, etc. To 

overcome these difficulties, several methods were applied in the proposed approach. 

Since most multiple returns occur in the vegetation area and the edge of the buildings, the 

method utilizes last return to eliminate some vegetation points. In order to eliminate 

outlier and noises, applying minimum point number in cells and layers was motivated by 

the facts that the outlier and noises usually appear by themselves. Another fact is that the 

fixed filter window size cannot satisfy both large building situations and big slope 
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situations. Therefore, the proposed method applied Multi-scale Terrain Filtering to handle 

complex objects.  

The developed method consists of three main steps. In the first step pre-processing, 

outliers and noise points are eliminated. The method separates the point clouds into 

several layers based on the distribution of the elevation value of the points, and layer 

numbers are assigned to the points. The second step is the Multi-scale Terrain Filtering. 

Rasterized pyramid levels are generated from the lowest points in each cell. Then a series 

of iterative identifications and interpolations are processed to generate a rough DTM. The 

identification is comparing the layer numbers of the points with the reference points. The 

interpolation replaces the layer number and height value of off-terrain cells by the 

average value of their neighbors. The last step is to refine the DTM. The terrain points are 

adjusted by comparing with the nDSM and then separated from the original data by the 

generated rough DTM. By using these identified terrain points, an IDW interpolation is 

processed to produce a final DTM. 

To verify the effectiveness of the developed method, two groups of experiments are 

carried out. The first group of tests is using ISPRS datasets with eight study sites and 

fifteen samples. ISPRS also provided the results of eight existing algorithms for this 

dataset. The result of the proposed MTF method indicates that it works as well as other 

filters in the flat terrain or terrain with gentle slopes. The proposed method can also 
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overcome the difficulties like bridges, complex scenes, outliers and vegetation. However, 

the performance of the proposed method drops very much when handling the steep slope 

or discontinuities of the terrain. The total accuracy of the proposed method can be higher 

than 90% in some samples; however, it can be as low as around 65% in one study site. 

And the average kappa coefficient in all fifteen study site is 61.2%, which is low than 

average performance of all tested algorithms. 

A UW Campus LiDAR dataset and the TopoSys Demo City data were applied in the 

second group of experiments. The data cover many different scenarios, for the 

convenience of the research, the data were cut into smaller pieces and typical sites such 

as campus areas, forest areas, residential areas, and urban areas were selected. A 

comparison between the proposed method and two existing filters, morphological filter 

and adaptive TIN filter, indicates that identified terrain point images of all the methods 

have some missing areas, especially in the entire Demo City data. The missing areas of 

the developed method are usually around the off-terrain points in a rectangular shape, 

which had limited effect on the result.  

The evaluation results of the developed method were in the same level as the other two 

filters in processing UW campus LiDAR data, and better results were generated from the 

Demo City experimental sites. A good result is achieved in an urban site, and the average 

error, standard deviation, and worst error are 0.5 cm, 8 cm, and 57.87 cm respectively. 
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Since the comparison of the layer numbers the identification is very fast, the calculating 

speed of the developed method is three times more than the other two filters. This is a very 

important factor in transferring the algorithm into commercial applications. 

The sensitivity analysis of the parameter of the proposed method is carried out as well. The 

result shows that the variation of most parameters will change the result in a certain range. 

Some parameters like Number of Levels, slope gradient Tanθ are pretty stable in most study 

sites. However, parameters like width, Delta, Identification Tolerance have more influence 

to the result. And sensitivity to the type I and type II error also varies according to each 

parameter and feature of the study sites. 

Overall, this study has developed a method of generating DTM from airborne LiDAR point 

clouds. However, the proposed method has difficulties in processing steep slope area, very 

large data. Noticeably, the developed method has a faster speed with a similar level of 

errors than the two existing algorithms. But the result of the proposed method is not very 

stable. Although this study did not retrieve higher accuracy result than some of the existing 

algorithms, a global pre-analysis of the data (layering) is tested and applied in the proposed 

method and generate similar accuracy result as other algorithms in flat terrain. It proves the 

utility value of layer feature and the feasibility of statistical classification the LiDAR data.  
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5.2 Recommendations for Future Research 

The proposed method produces good results in some flat terrain areas. However, it does 

not work perfectly in many other cases, e.g. steep slope, very large data, unimodal height 

histogram. Therefore, improvements are still need to be work on to develop a good 

algorithm.   

First, the parameters of each site are different, which means the DTM generation still 

requires manual interaction. The adjustment of the parameters is required to get better 

results. However, the uncertainty of the parameter combinations reduces the algorithm 

robustness, and the sensitivity analysis shows the results are sensitive to some parameters. 

Therefore, an automatic generation of the parameters will be a great feature to be 

developed in the future. Some of the parameters can be further analyzed to find the 

relation between optimal value and the dataset. For example, the unit cell size K is 

relevant to the point density and the size of the biggest off-terrain objects. To change a 

layering method might stabilize the result sensitivity to the parameter Width and Delta. 

Second, in the experiments handling the entire Demo City data, the evaluation result is 

not as good as it is in other subsections of dataset. This is because in the large image, the 

height histogram will represent a large area, and more points will be counted, which will 

decrease the representativeness of the histogram by mixing too many points. This will 
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eliminate the representativeness of the features in the image. This means the robustness 

of the developed method is challenged by dealing with large data and complicated 

scenarios. Adjusting the parameters by a pre-analysis of the trend of the data and dividing 

the image into small pieces to process are two potential approaches to overcome this 

problem.  

Third, the steep slope problem makes the result of many ISPRS samples hardly acceptable. 

The reason of that is the proposed method is based on an assumption that terrain and 

off-terrain objects are well separated in the space. The layering method is also designed 

based on that. Therefore, in order to overcome this filtering difficulty, some progressive 

densification filter and slope based filtering method can be good reference.  

Fourth, besides the reference points generated from lowest points in cells, other reference 

points can be generated by using the intensity data. It should be noted that pulses reflected 

from asphalt surfaces, which are most commonly roads, will have a different intensity than 

other data. This will allow easy determination of road points. Since roads are considered 

ground points it would consequently determine additional reference ground points based 

on the certainty of the road points.  

In addition, using the reference layer number to replace the identified off-terrain points in 

interpolations will cause a problem. The visual rectangular missing area of the terrain 
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point images is a display of this problem. Recalculating the layers of the data and fitting 

these interpolated points into a new layer might be a solution to this problem. 

In conclusion, based on the Multi-scale Terrain Filtering algorithm, the developed method 

has proven to be efficient. The accuracy is depending on the study sites and the parameter 

setting. The modifications listed above, could be a trial to improve the result of the 

developed method.  
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