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Abstract 

Optimization of time and cost in construction projects has been subject to extensive research 

since the development of the Critical Path Method (CPM). Many researchers have 

investigated various versions of the well-known Time-Cost Trade-off (TCT) problem 

including linear, convex, concave, and also the discrete (DTCT) version. Traditional methods 

in the literature for optimizing time and cost of construction projects range from mathematical 

methods to evolutionary-based ones, such as genetic algorithms, particle swarm, ant-colony, 

and leap frog optimization. However, none of the existing research studies has dealt with the 

optimization of large-scale projects in which any small saving would be significant. 

Traditional approaches have all been applied to projects of less than 100 activities which are 

far less than what exists in real-world construction projects. The objective of this study is to 

utilize recent developments in computation technology and novel optimization techniques 

such as Constraint Programming (CP) to improve the current limitations in solving large-scale 

DTCT problems. 

Throughout the first part of this research, an Excel-based TCT model has been developed to 

investigate the performance of traditional optimization methods, such as mathematical 

programming and genetic algorithms, for solving large TCT problems. The result of several 

experimentations confirms the inefficiency of traditional methods for optimizing large TCT 

problems. Subsequently, a TCT model has been developed using Optimization Programming 

Language (OPL) to implement the Constraint Programming (CP) technique. CP Optimizer of 

IBM ILOG Optimization Studio has been used to solve the model and to successfully 
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optimize several projects ranging from a small project of 18 activities to very large projects 

consisting of more than 10,000 activities. Constraint programming proved to be very efficient 

in solving large-scale TCT problems, generating substantially better results in terms of 

solution quality and processing speed. 

While traditional optimization methods have been used to optimize projects consisting of 

less than one hundred activities, constraint programming demonstrated its capability of 

solving TCT problems comprising of thousands of activities. As such, the developed model 

represents a significant improvement in optimization of time and cost of large-scale 

construction projects and can greatly enhance the level of planning and control in such 

projects. 
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Chapter 1 

Introduction 

1.1 General Introduction 

Time and cost are the most important concerns in every construction project (Ng & Zhang, 

2008). Time and cost determine the feasibility of a project in the preliminary phase of the 

project’s lifecycle; have a considerable impact on the outcome of the design and the planning 

phases; and influence the success or failure of the project throughout the subsequent phases of 

the project.  

Since the introduction of Critical Path Method (CPM) in 1950s, CPM has been the basis for 

project scheduling and calculating the total project time and cost. However, CPM calculates 

the total project’s duration as the sum of the duration of activities on the critical path and, 

therefore, does not explicitly respect the time limitation (deadline) of the project. To 

overcome this drawback of the CPM, time-cost trade-off (TCT) analysis was developed. In 

the TCT analysis, the objective is to reduce the original CPM duration of the project to meet a 

specific deadline in the least costly way. This can be achieved by the optimum selection of 

some activities to be performed using faster, and usually more expensive, construction 

methods (Hegazy & Ayed, 1999).  

In general, there is a trade-off between time and cost for completing a task (Figure  1-1); the 

less expensive the resources, the longer it takes to complete an activity (Feng, Liu, & Burns, 

1997). For a project, the total cost is the sum of direct and indirect costs and there is an 

optimum duration for the least cost (Figure  1-2).  



 2 

 

Figure  1-1   Activity Time-Cost Relation 

 

 

Figure  1-2   Project Time-Cost Curve 

Typically, activities may have different execution options (modes) that can include possible 

combinations of: 1) construction methods, which denote possible construction technologies 

and/or materials; 2) subcontractors’ quotes, which represent the proposed duration and cost of 

performing the activities by subcontractors, 3) crew formations, which symbolize feasible 

arrangements of construction labor and equipment; and 4) overtime strategies, which define 

the length and time of work shifts (Tarek Hegazy & Menesi, 2010; El-Rayes & Kandil, 2005).  

The selection of any mode of execution for each activity leads to a distinct time and cost for 

that activity and affects the overall duration and cost for the entire project. The combination 

of various possible execution modes of activities produces several project plans where each 

project plan has a unique duration and cost. For large projects, the enumeration of these 

alternative project plans is computationally hard, particularly because the number of 

alternatives grows exponentially with the increase in the number of activities of the project. 

For example, the number of possible alternative project plans for a project consisting of 180 

activities, each with only 3 modes of construction can reach 3
180

 (7.6x10
85

) (Kandil & El-
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Rayes, 2006). The number of possible alternatives increases 3.5x10
9
 times (2.7x10

95
), if the 

number of activities in the project network rises only to 200 activities. 

In the literature, many models have been proposed to solve this combinatorial optimization 

problem. The modeling techniques range from the heuristic methods and mathematical 

approaches to meta-heuristic and evolutionary-based algorithms such as genetic algorithms, 

simulated annealing, particle swarm optimization, ant colony optimization, and shuffled frog 

leaping. Some studies assumed that duration and cost of activities are deterministic and some 

other papers investigated the nondeterministic nature of the activities; some attempted to 

solve the problem with a single objective of minimizing either time or cost; and some other 

examined it as a multi-objective problem minimizing both time and cost simultaneously. 

However, due to the complexity of the problem, the applications of all these TCT 

optimization models in the literature are mainly limited to very small demonstration cases 

with a few numbers of activities that are far less than what exist in real-life construction 

projects. 

To expand the available solution methods to more practical scale problems, some research 

studies have utilized the power of supercomputers and/or parallel computing techniques to 

overcome the lengthy computing time for solving large-sized problems. In these studies, 

calculations of the optimization process are distributed over a network of several computers 

and each processor/computer processes the allocated chunks of the optimization in order to 

reduce the overall computation time. For example, in a research study in 2005 (Kandil & El-

Rayes, 2005), the optimization time of 434 hours for a network of 720 activities on a single 
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processor was reduced to 54 hours with the help of a parallel computing framework using 50 

processors. In another similar effort using parallel genetic algorithms, the computational time 

for a 720 activity project was reduced from 136.5 hours (i.e., 5.7 days) of continuous 

computations on a single processor to 6.7 hours when executed over a cluster of ten 

processors (Kandil & El-Rayes, 2006). However, using supercomputing clusters or utilizing 

the benefits of the parallel computing frameworks is not an accessible and practical solution 

for most construction firms. 

In the current highly competitive and unstable business environment, the ability of 

construction firms to optimize their projects and to monitor progress within strict cost, time, 

and performance guidelines is becoming increasingly important (Chen & Tsai, 2011). The 

purpose of this research is to utilize recent developments in computation technology and 

prominent optimization techniques, such as Constraint Programming (CP), to improve the current 

limitations in solving large-scale Discrete Time-Cost Trade-off (DTCT) problems. Constraint 

programming, a novel approach for solving problems with discrete decision variables (Integer or 

Boolean), has opened up new prospects for solving large-scale real-world optimization problems. 

1.2 Research Motivation 

This research has three main motivations: the complex nature of time-cost trade-off problems; the 

inefficiency of traditional optimization methods for solving large-scale TCT problems; and the 

potential use of advanced tools and novel techniques for circumventing the limitations of 

traditional optimization methods. These are briefly described as follows:  
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1.2.1 The Complex Nature of TCT Problems 

In the literature, discrete time-cost trade-off problem is classified as combinatorial NP-hard 

(De, Dunne, Ghosh, & Wells, 1997) which is the category of problems with no efficient 

algorithm. The solution to this type of problems exhibit worse case complexity (De et al., 

1997): when the size of the problem grows, the computation time for solving it would grow as 

an exponential function of the problem size (De, James Dunne, Ghosh, & Wells, 1995). As a 

result, solving large combinatorial problems is very time-consuming and prohibitive. 

The goal in solving such type of problems typically is to find a satisfactory near optimum 

solution within an acceptable processing time, rather than finding the global optimum solution 

that may take a substantial impractical amount of time. 

1.2.2 Inefficiency of Traditional Methods for Optimizing Large-Scale Problems 

Many optimization models have been proposed to optimize the trade-off between time and 

cost in construction projects. Mathematical optimization methods such as linear 

programming, integer programming, and dynamic programming are among the primary 

optimization methods which were used to solve relatively small TCT problems. Linear 

programming is an appropriate method for solving problems with linear time-cost 

relationships, but fails to solve problems with discrete time-cost relationships (C.-W. Feng, 

Liu, & Burns, 1997). Integer programming and dynamic programming require a lot of 

computational effort for solving more complex project networks or for solving projects with 

numerous activities. 
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Evolutionary-based optimization methods, as alternative methods of optimization, were 

introduced to address the shortcoming of mathematical optimization methods for solving large 

TCT problems. In recent decades, various evolutionary-based optimization methods including 

genetic algorithms, particle swarm, simulated annealing, ant-colony, and leap frog optimization 

have been applied for solving TCT problems. Although these alternative optimization methods 

have some advantages over the mathematical optimization methods, and have been applied with 

success for optimization of many TCT problems, they are still not efficient in optimizing large-

scale project networks. In the literature, the application of these methods for solving TCT 

problems is limited to projects comprising limited number of activities, mostly less than one 

hundred activities (Kandil & El-Rayes, 2005); for large-scale projects they require impractical 

processing times to find a near optimal solution. 

1.2.3 Potential Use of Advanced Tools and Techniques 

With recent improvements in computing technologies and optimization algorithms, more 

complicated problems can be solved today than ever before (P. Van Hentenryck & Michel, 

2009). Recent optimization techniques such as Constraint Programming has opened up new 

prospects for optimization of large-scale problems; and big software companies such as IBM, 

Microsoft, and Google (Operations Research Tools developed at Google) have either acquired 

emerging optimization companies or have started their investments in this field. 

Constraint programming is a novel approach for solving computationally hard problems 

with discrete variables. It is a hybrid technology based on various optimization techniques 

which is expected to solve large-scale combinatorial optimization problems. A key motivation 

for this research is to utilize advanced optimization tools and techniques such as constraint 
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programming to improve the existing limitations of traditional optimization methods on 

optimizing time and cost in large construction projects. 

1.3 Research Objectives 

The objective of this research is to examine the performance of traditional optimization 

techniques including mathematical and evolutionary-based methods on solving large-scale 

TCT problems. Furthermore, the goal is to improve the solutions by utilizing state-of-the-art 

optimization tools and techniques to solve real-life large-scale TCT problems. The detailed 

research objectives are as follows: 

1. Investigate the performance of mathematical optimization methods by utilizing 

advanced mathematical optimization tools for optimizing TCT problems. This 

comprises choosing the most appropriate optimization tools, developing an 

optimization model and performing several experimentations on the model with 

various numbers of activities. 

2. Examine the performance of evolutionary-based optimization methods by utilizing 

advanced evolutionary-based and genetic algorithms optimization tools. This 

includes several experimentations for solving TCT problems with various numbers 

of activities using a model similar to the previously mentioned model. 

3. Validate the potential of new emerging optimization tools and techniques such as 

constraint programming for solving large-scale TCT problems. The validation 

consists of modeling and optimizing TCT problems of several sizes and comparing 
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and discussing the CP optimization results with the mathematical and evolutionary-

based optimization results. 

4. Recommend the best available tools and techniques for optimization of large-scale 

construction projects to obtain the best near optimal results within a reasonable 

amount of time and computational effort. 

This research supports the efforts of construction firms for optimizing time and cost of their 

real-world construction projects, particularly because none of the commercial scheduling and 

project management software packages such as Microsoft Project and Primavera include this 

vital feature.  

1.4 Research Methodology 

The methodology to achieve the research objectives is demonstrated in the following steps: 

1. Extensive Literature Review: An extensive literature review of time-cost trade-off 

analysis and optimization methods. 

2. Investigation of Optimization Tools: An investigation of available optimization tools 

and techniques for solving large-scale optimization problems to decide on the most 

appropriate ones to be used for the purpose of this research. 

3. Development of Optimization Models: Developing the required TCT optimization 

models to be used for various experimentations.  

4. TCT Optimization using Mathematical Methods: Optimizing project networks with 

various sizes using mathematical optimization methods. 
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5. TCT Optimization using Evolutionary-Based Methods: Optimizing project networks 

with various sizes using evolutionary-based optimization methods. 

6. Constraint Programming Optimization: Modeling and performing experimentations for 

TCT optimization with various project sizes using constraint programming methods. 

7. Validation: validate the superiority of constraint programming methods for solving 

large-scale TCT problems by analyzing and comparing the results of mathematical, 

evolutionary-based and constraint programming optimization methods. 

8. Conclusion and Discussions: conclude on the best available tools and techniques for 

optimization of large-scale construction projects and the value of this research to other 

contemporary optimization problems in some other fields. 

1.5 Thesis Organization 

The reminder of the thesis is organized as follows: 

Chapter 2 presents the literature review in three distinct sections. The first section is 

dedicated to the time-cost trade-off (TCT) analysis. It includes the definition and history of 

TCT problem. It also discusses solution challenges, various categories, and a simple 

mathematical formulation of the TCT problem. 

The second section describes the current and proposed TCT optimization methods. It 

includes the formal definition and brief explanations about mathematical, evolutionary-based 

and constraint programming optimization methods. 
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The third section provides an overview of existing tools for solving large-scale optimization 

problems and draws attention to the differences between available tools. This chapter 

concludes on the proper tools for this research.  

Chapter 3 focuses on the comparison of traditional optimization methods for solving TCT 

problems including mathematical and evolutionary-based optimization methods. This chapter 

starts with describing the details of a TCT model for the chapter’s experimentations and 

continues with the actual experiments using mathematical and evolutionary-based 

optimization methods. The results of this chapter would be a basis for chapter 4, where the 

results of mathematical, evolutionary-based and constraint programming techniques are 

compared and discussed. 

Chapter 4 concentrates on the TCT optimization using constraint programming techniques. 

This chapter describes in more detail the constraint programming optimization method, its 

similarities and differences to mathematical optimization methods, and introduces the IBM 

ILOG Optimization Studio as the leading commercial package for using constraint 

programming techniques. An optimization model is then developed using Optimization 

Programming Language (OPL) and various experiments are performed using IBM ILOG 

Optimization Studio. 

Chapter 5 discusses the results of traditional optimization methods and constraint 

programming method and concludes on the best available tools and techniques for 

optimization of project networks. It also outlines proposed research studies that have the 

potential to be accomplished based on the work of this research.  
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter presents a review of the time-cost trade-off (TCT) problem, explores different 

categories of the problem in the literature, and investigates the optimization methods for 

solving the TCT problem. The investigation includes a detailed description of existing 

traditional optimization techniques such as mathematical programming and evolutionary-

based optimization methods, and also introduces constraint programming as a prominent non-

traditional optimization technique for solving TCT problems. Available optimization tools for 

solving TCT optimization problems are then summarized, the differences are discussed, and 

the most appropriate ones are chosen for the purpose of various experimentations for this 

research. 

2.2 Time-Cost Trade-off Analysis 

The Critical Path Method (CPM) is a useful scheduling technique only when the project 

deadline is not fixed (Liao, Egbelu, Sarker, & Leu, 2011). To use CPM for a project with a 

fixed deadline or for a project which is running behind schedule, the TCT analysis is 

implemented to meet the project deadline. In the TCT analysis some of the activities on the 

critical path are substituted with their shorter modes of construction to save time. In addition, 

non-critical activities are relaxed to save cost (Siemens, 1971). The results of this analysis are 

a time-cost trade-off curve (e.g., Figure  2-1) showing the relationship between project 

duration and cost under different decisions and the selection of construction methods that 

provide the optimal balance of project duration and cost (T. Hegazy, 1999). 
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Figure  2-1   Project Time-Cost Relationship (Tarek Hegazy, 2001) 

 

The TCT analysis involves optimal selection of some activities on the critical path of the 

project to use their faster and more expensive modes of construction. It is, therefore, 

unavoidable that the cost of these compressed activities will be increased as a result. The 

“normal time” for completing an activity is determined by calculating the minimum cost 

(“normal cost”) for the activity. The minimum duration for an activity is known as the “crash 

time”, and the cost associated with the crash time is called “crash cost”. Any intermediate 

point in between the normal and crash points can be computed in accordance with the activity 

time-cost relationship (Liao et al., 2011). 

The activity time-cost (direct cost) relationship can be linear or curvilinear, continuous or 

discrete. Figure  2-2 presents different relationships between activity time and direct cost. 
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Figure  2-2   Linear and Discrete Relationships of Activity Modes 

The early attempts to incorporate time-cost trade-offs in project networks assumed that the 

activity costs are a linear function of the activity durations, which are bounded from below to 

normal duration and from above to crash duration. The objective was to determine the activity 

durations and to schedule the activities in order to minimize the project costs (Vanhoucke & 

Debels, 2007). Several other forms of activity cost functions have been studied over the years 

such as concave, convex and discrete. 

Since the discrete relationship between activity time and cost is the most representative 

version for real-world projects, the discrete time-cost trade-off problem (DTCTP) is the most 

practical version. It involves the selection of a set of execution modes for each activity in 

order to optimize time or cost, or both. The focus of this research is on the discrete version of 

the time-cost trade-off problem. 

2.3 TCT Optimization Challenges  

Optimization is the process of trying to find the best solution to a problem that may have 

many possible solutions (The Genetic Algorithm Solver for Microsoft Excel, 2010). Once the 
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search space of the problem becomes too large for the calculating power of available 

computers, finding the optimal solution among all other feasible solutions to the problem may 

take a substantial and an impractical amount of time. 

With real-life projects involving hundreds or thousands of activities, finding optimal TCT 

modes of construction is difficult and time consuming considering the number of 

permutations involved (Liang, Burns, & Chung-Wei, 1995). Evaluating each alternative 

requires recalculation of the schedule using the critical path method (CPM) and reassessment 

of total project cost. Exhaustive enumeration is, therefore, not a feasible and practical solution 

even with very fast computers (T. Hegazy, 1999).  

In fact, available construction optimization models can be used to generate optimal trade-

off between construction time and cost; however, their applications in optimizing large-scale 

projects are limited due to their extensive and impractical computational time requirements 

(Kandil & El-Rayes, 2005). 

2.4 Different Categories of TCT in the Literature 

The time-cost trade-off problems have been extensively investigated during the last decades. 

Many researchers, therefore, have explored different aspects of the problem. Studied aspects 

of the problem can broadly be classified into three categories: 1) deterministic or uncertain 

characteristics of the activities; 2) single or multi-objective essence of the objective function; 

and 3) the solution methods which have been used to solve the problem. 
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1) In traditional time-cost trade-off analysis, the time and cost of activities are assumed 

to be deterministic (Chung-Wei Feng, Liu, & Burns, 2000). However, activity time 

and cost are realistically uncertain (Liao et al., 2011). A general overview of this 

category is done by (Chen & Tsai, 2011). For the deterministic case, typical articles 

include (Kelley, 1961; Siemens, 1971; Phillips & Dessouky, 1977; Talbot, 1982; 

Liang et al., 1995; T. Hegazy, 1999). On the other hand, several stochastic models 

have been developed to address time-cost trade-off problems with uncertain activity 

durations, such as (Charnes, Cooper, & Thompson, 1964; Golenko-Ginzburg & 

Gonik, 1997; Gutjahr, Strauss, & Wagner, 2000; Chung-Wei Feng et al., 2000; Ke, 

Ma, & Ni, 2009; Mon, Cheng, & Lu, 1995). Uncertain activity time and cost can be 

treated statistically when there is enough data available; otherwise, probabilistic 

models or fuzzy models are more appropriate to handle uncertainty (Liao et al., 

2011).  

2) Minimizing cost or time has been the most common objective of the time-cost trade-

off problems in the early studies of the TCT analysis. However, time-cost trade-off 

problem may be treated as a multi-objective optimization process to minimize both 

duration and cost (Liao et al., 2011). Many studies have implemented a multi-

objective approach to solve TCT problem such as C.-W. Feng et al. (1997); Chung-

Wei Feng et al. (2000); Zheng, Ng, & Kumaraswamy (2004); Azaron, Perkgoz, & 

Sakawa (2005); Zheng, Ng, & Kumaraswamy (2005); Kandil & El-Rayes (2006); 

Ng & Zhang (2008); Xiong & Kuang (2008); Afshar, Ziaraty, Kaveh, & Sharifi 

(2009); and Castro-Lacouture, Süer, Gonzalez-Joaqui, & Yates (2009). 
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3) Another very important classification of TCT problems is based on the solution 

method being used to solve them. Techniques for modeling and solving time-cost 

trade-off problems can be broadly classified into three subcategories of heuristic 

methods, mathematical approaches, and evolutionary-based optimization algorithms 

(EOAs) (Ng & Zhang, 2008). The purpose of this research is to apply proper 

solution techniques in order to solve large-scale TCT problems. Thus, the available 

solution methods are described in more detail in the next section. 

2.5 Techniques for Solving TCT Problems 

Heuristic methods, mathematical programming approaches and evolutionary-based techniques 

are considered the traditional methods of solving TCT problems.  

2.5.1 Heuristic Methods 

Heuristic algorithms are not considered to be in the category of optimization methods. They 

are algorithms based on rules of thumb to find an acceptable near optimum solution. Heuristic 

methods are usually easy to understand algorithms which can be applied to larger problems 

and typically provide acceptable solutions (T. Hegazy, 1999). However, they lack 

mathematical consistency and accuracy and are specific to certain instances of the problem. 

Fondahl, 1962; Prager, 1963; Siemens, 1971; and Moselhi, 1993 are some of the research 

studies that have utilized heuristic methods for solving TCT problems.  

2.5.1.1  A Sample TCT Heuristic Method 

The cost-slope method is a simple heuristic approach for solving TCT problems. This method 

shortens the project duration assuming that the relationship between time and cost is linear. 
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According to this assumption, the cost slope of an activity is defined as the rate at which the 

direct cost increases when its duration is shortened by a unit of time (Tarek Hegazy, 2001). 

The detailed steps of the cost-slope method are as follows: 

1. Use normal durations and costs for all activities. 

2. Calculate the CPM and identify the critical path. 

3. Eliminate all non-critical activities. 

4. Tabulate normal/crash durations and costs for all critical activities. 

5. Compute and tabulate the “cost-slope” of each critical activity: 

  s   l  e   
 ras    s      r al   s  

  r al  ura   n    ras   ura   n
 

6. Identify the critical activity with the least cost slope and possible duration 

shortening. 

7. Reduce the duration of this activity until its crash duration is reached or until the 

critical path changes. 

8. If the network has more than one critical path, we need to shorten both of them 

simultaneously. This can be done by shortening a single activity that lies on all paths 

or by shortening one activity from each path. The option to choose is determined by 
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comparing the cost slope of the single activity versus the sum of cost slopes for the 

individual activities on all critical paths. 

9. Calculate the direct cost increase due to activity shortening by multiplying the cost 

slope by the time units shortened. Add the additional cost to the total direct cost. 

10. If float times are introduced into any activity, relax them to reduce cost. 

11. Plot one point (project duration versus total direct cost) on a figure such 

Figure  2-1. 

12. Continue from Step 2 until no further shortening is possible to the project. 

13. Plot indirect project costs on the same figure. Add the direct cost + indirect cost 

and plot the total cost curve. 

14. Get the optimum TCT strategy as the one with minimum total cost. 

An example of a complete case study solved based on the cost-slope heuristic method can 

be found in (Tarek Hegazy, 2001). Since heuristic algorithms are not in the category of 

optimization methods, in this research their application for solving TCT problems is limited to 

introducing the cost-slope method. 

2.5.2 Mathematical Programming 

Mathematical programming or mathematical optimization is the category of optimization 

methods in which mathematical methods such as linear programming, integer programming, 
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dynamic programming, and nonlinear programming are implemented to solve an optimization 

problem. 

The simplex method, developed in 1947 by George B. Dantzig, demonstrated extraordinary 

computational efficiency and robustness for solving the linear programming problems. The 

exceptional power of the simplex method, together with the availability of high-speed digital 

computers, made linear programming the most fundamental method and the starting point of 

mathematical optimization. Since then, many additional techniques have been developed, 

which relax the assumptions of the linear programming and broaden the applications of the 

mathematical programming approach (Bradley, Hax, & Magnanti, 1977). 

Mathematical programming methods are the primary optimization methods implemented to 

solve time-cost trade-off problems. Some of the papers that have applied mathematical 

optimization methods for solving TCT problems include Kelley (1961); Meyer & Shaffer 

(1963); Patterson & Huber (1974); Robinson (1975); Hendrickson & Au (1989); Pagnoni 

(1990); Elmaghraby (1993); De, James Dunne, Ghosh, & Wells (1995); and Burns, Liu, & 

Feng (1996). 

2.5.2.1 Basic Time-Cost Trade-off Formulation 

The common mathematical formulation for time-cost trade-off relies on the linear relationship 

between time and cost. This relationship for an activity i is shown in Figure  2-3 in addition to 

the common terms used in the formulation. 
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The “cost slope” ratio for the activities on the critical path is then the main principle for 

selecting the activities to be crashed in order to reduce the total project duration. The cost 

slope ai of an activity i is the rate at which the direct cost increases when its duration is 

shortened by a unit of time (Tarek Hegazy, 2001). The formulation for a single objective 

time-cost trade-off is (Li & Love, 1997) 

        ∑  

  

  ∑    

  

 ( )       

Subject to 

∑ ( )    

  

 

      ( )    ( )    ( )    ( ) ⁄  
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where i is any activity on the critical path which can be crashed, Ct is the total cost and Tt is 

the required total crash time for the project. 

Figure 2-3   Linear Relationship of Time and 

Cost for Activity i 
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As discussed in Section  2.2, the linear relationship between time and cost for an activity is 

not usually a practical assumption, as activities cannot be crashed in any fraction of time. In 

fact in most construction projects, the minimum time fraction is normally either half a day or 

a day. 

2.5.3 Evolutionary-Based Optimization Algorithms 

The difficulties associated with using mathematical methods for solving large-scale 

optimization problems have contributed to the development of alternative solutions. Linear 

programming and dynamic programming techniques, for example, often fail (or reach local 

optimum) in solving NP-hard problems with large number of variables and non-linear 

objective functions. To overcome these problems, researchers have proposed evolutionary-

based algorithms for searching near optimum solutions to problems (Elbeltagi, Hegazy, & 

Grierson, 2005). 

Evolutionary-based Optimization Algorithms (EOAs) are stochastic search methods that 

mimic the natural biological evolution of species and/or their social behavior. These 

algorithms have been developed to solve large-scale optimization problems, for which 

traditional mathematical techniques may fail (Elbeltagi et al., 2005). Various research studies 

have discussed  evolutionary-based optimization methods for solving TCT problems 

including C.-W. Feng, Liu, & Burns (1997); Elbeltagi et al. (2005); Azaron, Perkgoz, & 

Sakawa (2005); Zheng, Ng, & Kumaraswamy (2004), (2005); Kandil & El-Rayes (2006); 

Xiong & Kuang (2008); Ng & Zhang (2008); and Afshar, Ziaraty, Kaveh, & Sharifi (2009). 
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Various evolutionary-based algorithms such as genetic algorithms, particle swarm, 

simulated annealing, ant-colony, and leap frog shuffling have been used for optimizing TCT 

problems as well as optimizing various problems in many other fields; however, Genetic 

Algorithms optimization methods are the most widely used EOA in the literature. 

2.5.3.1 Genetic Algorithms 

Genetic algorithms (GAs), invented by John Holland in in the 1960s and the 1970s at the 

University of Michigan, are the most widely used evolutionary-based computation approach. 

Genetic algorithms (GAs) are search methods based on genetics and evolution principles and 

are mainly useful for highly non-linear problems and models for which the computation time 

is not a primary concern. Although numerous revised algorithms are available, a GA typically 

proceeds in the following order (Schreyer, 2011): 

1) Start with an initial finite population of randomly chosen chromosomes (Parent 

population) in the design space. This population constitutes the first generation 

(iteration). 

2) Evaluate each member of the population with their fitness function value. 

3) Rank the chromosomes by their fitness. 

4) Apply genetic operators (mating): reproduction (reproduce chromosomes with a high 

fitness), cross-over (swap parts of two chromosomes, chosen based on their fitness to 

create their offspring) and mutation (apply a random perturbation to parts of a 

chromosome). All of these operators are assigned a probability of occurrence. 
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5) Evaluate the fitness of the new generation from their chromosomes. 

6) Continue genetic mating as specified in step 4 and iterate until convergence is 

achieved or the process is stopped. 

Holland’s original genetic algorithm was quite simple, yet remarkably robust, and could find 

optimal solutions to a wide range of problems. Many recent genetic algorithm programs that 

solve very large and complex real-world problems use only slightly modified versions of the 

original genetic algorithm (The Genetic Algorithm Solver for Microsoft Excel, 2010). 

Due to the improved results, genetic algorithms have been successfully used to solve several 

engineering and construction management problems. In the literature, Genetic algorithms 

have been the dominant methods of solving TCT problems during the last decade. 

2.5.4 Constraint Programming 

Constraint programming is a novel approach for solving large-scale optimization problems 

with discrete variables. It is a hybrid method to effectively reduce the domain of decision 

variables and search for the best feasible solution in the reduced domains. This new 

optimization technique will be described in more detail in Chapter 4, Section  4.1 – An 

Introduction to Constraint Programming. 

2.5.5 Summary of Solution Techniques 

Mathematical programming methods including linear programming, integer programming, 

and dynamic programming can provide optimal solution to the problem; however, their 

formulation for discrete TCT problem is complex and usually fails to solve large problems. 
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Evolutionary-based optimization methods are search methods which mimic either the 

evolution process of species or the natural behaviors of creatures to find near optimum 

solution to problems. These methods can be applied to larger problems; however, the 

processing time to reach to an acceptable near optimum solution may be too large. Genetic 

Algorithm is one of the most common evolutionary-based algorithms for solving TCT 

problems. Table  2-1 represents a comparison of the common traditional methods for solving 

TCT problems and Figure  2-4 provides an outline of TCT analysis methods. 

Table  2-1   Traditional Techniques for Time-Cost Trade-off Analysis 

(based on T. Hegazy, 1999) 

  

Heuristic

Methods

Mathematical 

Programming

Evolutionary-Based 

Algorithms
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e
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p
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n • Simple rule of thumb

(e.g. Crashing the 

cheapest critical activities)

• Linear programming

• integer programming

• dynamic programming

• Optimization search 

procedures that mimic 

natural evolution or social 

behavior of species

A
d

v
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n
ta
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• Easy to understand

• Provide good solutions

• Used for large projects

• May provide optimal 

solution

• Robust search algorithm

• Can use discrete 

relationship between time 

and cost

• Applicable to large 

problems

D
ra

w
b

a
ck

s

• Lack mathematical rigor

• Do not guarantee 

optimal solution

• Mostly assume linear, 

rather than discrete, 

relationship between time 

and cost

• Difficult to formulate

• May terminate in a local 

optimum

• Applies to small 

problems only

• Mostly assume linear, 

rather than discrete 

relationship between time 

and cost

• Random search is time 

consuming

• Cannot dertermine when 

or if an optimal solution is 

reached
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Constraint programming is a novel approach for solving large-scale optimization problems 

with discrete variables (Integer or Boolean) which will be discussed in more detail in 

Chapter 4. 

    

Figure  2-4   Overview of TCT Analysis Methods 

Despite considerable research in the literature for solving discrete time-cost trade-off 

problem using various solution techniques, little effort has been made in extending the 

problem to more realistic settings to solve large-scale problems (Vanhoucke & Debels, 2007). 

In the next section available tools for solving large-scale optimization problems are discussed 

to conclude on the best ones for optimization purposes of this research. 

2.6 Tools for Modeling and Solving Large-Scale Optimization Problems 

The solution to any optimization problem requires two separate stages: Modeling and Solving 

as shown in Figure  2-5. Both of these stages are very important to achieve decent results. 
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Various commercial optimization tools are available to effectively model and efficiently solve 

different types of optimization problems. Some of these tools are exclusively designed for 

modeling purposes; certain tools are merely solvers (or optimization engines); and particular 

ones are optimization packages, comprising both modeling, as well as, solving capabilities. 

 

Figure  2-5   Solving an Optimization Problem 

Typically, optimization models have four main components: 1) an objective function, 

expressing the main objective of the model, to be either minimized or maximized, 2) a set of 

decision variables, which control the value of the objective function, 3) a set of constraints, 

which control the variables to take on certain values but exclude others, and 4) data sets, 

which are the known coefficient of decision variables. The entire model builds a relationship 

between the objective function, constraints, decision variables, and known data. The 

optimization problem is then to find values of the variables that minimize or maximize the 

objective function while satisfying the constraints. 

Modeling of an optimization problem is commonly performed by either of the following 

alternatives: 1) modeling languages, 2) programming languages, or 4) Microsoft Excel. Each 

of these modeling options has their own strength; however, utilized modeling tool should be 
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well-matched with the solver which is going to solve the model. In the following sections of 

this chapter, first, advantages and drawbacks of each modeling alternative are discussed; then, 

common tools for modeling and solving optimization problems are presented; and finally, the 

most appropriate optimization tools for the purpose of this research are carefully selected. 

2.6.1 Modeling Languages vs. Programming Languages 

Developing an optimization model can be accomplished using a modeling language or using a 

general-purpose programming language such as C, C++ or Java. However, implementing a 

model in a modeling language is often much more efficient, and the final model is 

significantly more compact with less lines of code. Moreover, optimization languages 

eliminate the difficulties associated with low level programming issues such as memory 

allocations and pointers. Tweaking the model to achieve the best performance is also more 

convenient using optimization languages. Optimization languages yield improvements in 

efficiency and accelerate the development of optimization models which can in turn be 

valuable for spending more time to improve the model formulation (Kalvelagen, 2009). 

Common modeling languages are listed and the advantages are explained in more detail in 

Section  2.6.3. 

2.6.2 Microsoft Excel vs. Modeling Languages 

Modeling in Microsoft Excel has many clear advantages. Excel is widely available and has 

many users who are familiar with its structure and usage. In Excel, cells and cell-references 

are used to formulate and implement optimization models. The direct implementation of a 

model in Excel has also numerous additional benefits such as availability of data manipulation 
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tools and report writing facilities including the availability of numerous built-in functions, 

dynamic graphs, and pivot tables. There are also some disadvantages: spreadsheet modeling is 

prone to errors, and the model lacks structure and dimensionality (Kalvelagen, 2009). 

Alternatively, using modeling languages to build optimization models requires a steep 

learning curve to master the modeling details and techniques. However, once mastered, they 

are quite efficient for modeling complicated problems. In addition, most of the modeling 

languages provide an interface to access a wide range of state-of-the-art solvers which can be 

used to solve the model. 

2.6.3 Modeling Languages 

Optimization modeling languages, often referred to as “Algebraic Modeling Languages”, 

are designed for describing and solving large-scale complex problems in a concise and 

readable format. These languages are high-level declarative programming languages that 

specify what is being computed rather than how it is done (Gassmann & Ireland, 1995). The 

syntax of modeling languages closely resembles the notation of optimization problems which 

is a clear advantage to simplify the modeling process. Table  2-2 represents some of the 

common optimization modeling languages. 

AMPL, GAMS, and OPL are among the most common modeling languages. A 

Mathematical Programming Language (AMPL) designed in 1985 at Bell Laboratories and is 

still one of the most popular modeling languages for large-scale linear, mixed integer and 

nonlinear optimization problems. It is a modeling language for formulating mathematical 

problems; however, many solvers can be used to solve the model implemented by AMPL.  
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The General Algebraic Modeling System (GAMS) was the first algebraic modeling 

language. It is specifically designed for modeling linear, nonlinear and mixed integer 

mathematical optimization problems. GAMS is a modeling language which contains an 

integrated development environment (IDE) and is connected to a group of third-party 

optimization solvers. 

Table  2-2   Common Algebraic Modeling Languages 

 

Optimization Programming Language (OPL) is a modeling language designed specifically 

for optimizing combinatorial problems. The design of OPL was motivated by the successful 

implementation of mathematical modeling languages like AMPL and GAMS. Like AMPL 

and GAMS, OPL provides full support for linear programming and integer programming. The 

Software Developer Description

AMPL AMPL Optimization LLC
An algebraic modeling language for LP 

and NLP optimization problems

General Algebraic 

Modeling System 

(GAMS)

GAMS Development 

Corporation 

A high-level modeling system for LP, NLP, 

and MIP

Optimization 

Programming Language 

(OPL)

IBM Corporation

An optimization modeling system for 

mathematical programming and 

constraint programming

AIMMS
Paragon Decision 

Technology Inc.
An advanced modeling system 

Optimization Modeling 

Language (OML)
Microsoft Corporation

An algebraic modeling language 

designed exclusively for modeling 

within Microsoft Solver Foundation

Xpress-Mosel FICO
A language that is both a modeling and a 

programming language
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main difference between OPL and other algebraic modeling languages is that OPL also 

provides support for constraint programming. 

2.6.4 Optimization Engines (Solvers) 

Modeling languages define the optimization problems in an appropriate format to be solved 

by optimization engines. It is the responsibility of the optimization engines to analyze the 

model, and if no error found, solve the model and provide the solutions to the problem. 

Table  2-3 presents a list of common optimization engines. 

Table  2-3   Common Optimization Engines 

 

IBM ILOG CPLEX Optimizer and Gurobi Optimizer are among the most popular 

optimization engines. CPLEX Optimizer provides flexible, high-performance mathematical 

Software Developer Description

CPLEX Optimizer IBM Corporation
A solver for linear and nonlinear 

optimization problems

CPLEX CP Optimizer IBM Corporation
A solver for optimization based on 

constraint programming technique

Gurobi Gurobi Optimization
A state-of-the-art solver for LP,  QP, MILP 

and MIQP

MOSEK MOSEK ApS
A solver for LP, QP, Conic QP, and Convex 

NLP programming

Xpress-Optimizer FICO
A solver for large-scale LP, MIP, QP, and 

MIQP problems

KINTRO  Ziena Optimization, Inc.
A solver for LP, QP, and nonlinear 

optimization
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programming for linear programming, mixed integer programming, quadratic programming, 

and quadratically constrained programming problems. The CPLEX Optimizer is accessible 

through many modeling languages including AMPL, GAMS, and OPL. 

The Gurobi Optimizer is a state-of-the-art solver for linear programming (LP), quadratic 

programming (QP) and mixed-integer programming (MILP and MIQP). The Gurobi 

Optimizer is also accessible through many modeling languages including AMPL and GAMS. 

IBM ILOG CPLEX CP Optimizer is the constraint programming counterpart of CPLEX 

Optimizer. CP Optimizer uses constraint programming technology to solve detailed 

scheduling problems and other hard combinatorial optimization problems. 

2.6.5 Optimization Packages 

Many commercial optimization packages facilitate modeling of optimization problems, as 

well as, solving the models through a set of integrated optimization engines all in a single 

package. Particular optimization packages, such as, Frontline Solvers and Evolver are Excel-

based in which the model is developed in Microsoft Excel and the solution to the optimization 

problem is also presented in Excel. Moreover, several optimization packages such as IBM 

ILOG Optimization Studio, Microsoft Solver Foundation, and Xpress Optimization Suite 

provide a proprietary optimization modeling language in addition to one or more exclusive 

optimization engines. Typically, they also offer particular interfaces in order to provide 

connection to external modeling languages and solvers. Some of the common optimization 

packages are presented in Table  2-4.  
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Frontline Solvers, including Premium Solver Platform and Risk Solver Platform, are among 

the best Excel-based optimization packages that offer the flexibility of modeling with Excel 

and the power of connecting to a variety of commercial optimization engines for solving the 

problems. Risk Solver Platform and Premium Solver Platform have a limit of 8,000 decision 

variables for linear problems, and 1000 variables for nonlinear problems (Frontline Solvers 

User Guide, 2011). 

Table  2-4   Common Optimization Packages 

 

Software Developer Description

Risk Solver Platform Frontline Systems Inc. 
Risk analysis, simulation, and 

optimization tools

Evolver Palisade Corporation 

GA-based optimization tool effective in 

optimizing complex and large-scale 

models 

IBM ILOG CPLEX 

Optimization Studio
IBM Corporation

A comprehensive platform for 

mathematical and constraint 

programming optimization

Microsoft Solver 

Foundation (MSF)
Microsoft Corporation

A set of development tools for 

mathematical simulation, optimization, 

and modeling

Excel Solver Microsoft Corporation

Easy-to-use mathematical optimization 

tool capable of handling simple LP and 

NLP problems 

What's Best! LINDO Systems
An Excel Add-In for LP, NLP, and MIP 

Modeling and Optimization

LINGO LINDO Systems Inc.
An Optimization Software for LP, NLP, 

and IP

Xpress Optimization 

Suite
FICO

A modeling and optimizatoin package for 

developing and solving large scale 

models
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Evolver is a genetic algorithm optimization add-in for Microsoft Excel. Evolver uses 

innovative genetic algorithm (GA) technology to solve optimization problems. Many types of 

problems including complex nonlinear problems can be solved by Evolver. Evolver’s genetic 

algorithms has proven to be one the most efficient GA algorithms in the market and can lead 

to the best overall global solution. 

The IBM ILOG CPLEX Optimization Studio is one of the leading mathematical and 

constraint programming optimization packages. It consists of the CPLEX Optimizer for 

mathematical programming, the IBM ILOG CPLEX CP Optimizer for constraint 

programming, the Optimization Programming Language (OPL), and a tightly integrated IDE. 

Microsoft Solver foundation is the Microsoft optimization package for solving 

mathematical and constraint programming problems. It includes Optimization Modeling 

Language (OML) for modeling, some built-in solvers and the option to be integrated to 

popular external solvers. 

Excel Solver is the easy-to-use mathematical optimization tool packed as an Add-in in 

Microsoft Excel. However, the default version of Excel Solver is only capable of solving 

optimization problems consisting of up to 200 decision variables and 500 constraints. 

2.6.6 Optimization Tools Used in This Research 

In this research, in order to compare the results of mathematical programming versus 

evolutionary-based optimization methods, three Excel-based optimization packages are used: 

Excel Solver for mathematical optimization, Risk Solver Platform for mathematical as well as 
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evolutionary-based optimization, and Evolver for genetic algorithms optimization. To 

implement constraint programming methods, however, no Excel-based tool is available. IBM 

ILOG Optimization Studio and OPL language are used in this research to model and solve 

TCT optimization problems using constraint programming techniques. 

2.7 Conclusions 

In this chapter, the literature review was discussed in three distinct sections. The first section 

was dedicated to the time-cost trade-off (TCT) analysis. The definition and history of the 

problem, solution challenges, and various categories of the problem were discussed in this 

section.  

The second section described the current and proposed TCT optimization methods. It 

included the formal definition and brief descriptions of heuristic, mathematical, and 

evolutionary-based methods. It also included a sample heuristic method, a simple 

mathematical formulation of the TCT problem, and an overview of genetic algorithms, the 

most well-known evolutionary-based optimization method.  

The third section provided an overview of existing tools for solving large-scale optimization 

problems and discussed the differences and similarities between available tools. This section 

concludes on the optimization tools selected to be used in this research.  

In the next chapters these tools and techniques will be used in several experimentations to 

evaluate and validate their potential for solving large-scale TCT problems. 
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Chapter 3 

Comparison among Traditional TCT Optimization Methods 

3.1 Introduction 

In this chapter, a time-cost trade-off model is developed based on a project example 

consisting of several construction activities where each activity has three possible modes of 

construction. This TCT model is the framework for various experimentations in order to 

investigate the efficiency of mathematical and evolutionary-based optimization methods for 

solving large-scale TCT problems. 

The investigation starts first by applying mathematical optimization methods, and then by 

applying evolutionary-based optimization methods, to a small-size project network of 18 

activities, and continues by gradually increasing the project size to 36, 54, 180, 360 activities 

(and more if necessary). In each of these experiments, if a solution cannot be found in a 

certain predefined amount of time, the calculation is stopped and the best result is recorded. 

The optimization results of using mathematical and evolutionary-based methods are then 

compared and discussed. 

3.2 The Proposed Model 

The proposed TCT model for implementing mathematical and evolutionary-based 

optimization methods is developed in Microsoft Excel. The number of Excel-based advanced 

optimization tools has increased considerably in recent years and implementing the model in 

Excel has a significant advantage: enabling the same model to be used by different 

optimization tools. 
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The initial model consists of a project of 18 activities, each with three modes of construction, 

and each mode of construction has a defined time and cost. The model is, then, expanded to 

larger projects consisting of 36, 54, 180, 360, and more activities if necessary to facilitate 

experimentations on larger projects. Creating larger projects based on a smaller project of 18 

activities has the following advantages:  

 The optimal solution of large models can be calculated based on the optimal 

solution of the small model without any optimization. For very large models where 

the optimization process may not reach to the optimal solution, the calculated 

optimal solution can be used to verify the deviation of the result of the optimization 

process from the optimal solution. Thus, the calculated optimal solution is used as a 

measure of how far the optimization result is from the optimal solution and how 

well the optimization method performs.  

 The project network of 18 activities is the project used in several previous research 

studies. It was originally introduced by (C.-W. Feng et al., 1997) and has also been 

used in a number of other research studies including T. Hegazy (1999); T. Hegazy & 

Ayed (1999); El-Rayes & Kandil (2005); Kandil & El-Rayes (2005); Ng & Zhang 

(2008); and Afshar et al. (2009). As such, it would be an acceptable framework to 

compare the results of this research with the previous research studies. 

The activity relationships for the model project consisting of 18 activities are shown in 

Figure  3-1 and three modes of construction for each activity and their associated time and cost 

are presented in Table  3-1. 
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Figure  3-1   Activity Relationships for the Model Project of 18 Activities 

Table  3-1   Time and Cost for each Mode of Construction 

 

Duration and cost for the 18-activity project using normal modes of construction (cheapest 

but slowest modes) are shown in Figure  3-2 and duration and cost using most crashed modes 

of construction (Most expensive but fastest modes) are presented in Figure  3-3. 
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Start
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3 13 16

Activity ID Name
Time 1

(Days)

Cost 1

(Dollars)

Time 2

(Days)

Cost 2

(Dollars)

Time 3

(Days)

Cost 3

(Dollars)

1 A 24 1,200 21 1,500 14 2,400

2 B 25 1,000 23 1,500 15 3,000

3 C 33 3,200 33 3,200 15 4,500

4 D 20 30,000 20 30,000 12 45,000

5 E 30 10,000 30 10,000 22 20,000

6 F 24 18,000 24 18,000 14 40,000

7 G 18 22,000 18 22,000 9 30,000

8 H 24 120 21 208 14 220

9 I 25 100 23 150 15 300

10 J 33 320 33 320 15 450

11 K 20 300 20 300 12 450

12 L 30 1,000 30 1,000 22 2,000

13 M 24 1,800 24 1,800 14 4,000

14 N 18 2,200 18 2,200 9 3,000

15 O 16 3,500 16 3,500 12 4,500

16 P 30 1,000 28 1,500 20 3,000

17 Q 24 1,800 24 1,800 14 4,000

18 R 18 2,200 18 2,200 9 3,000

           3 Methods of Construction - Normal to CrashActivities

Cheapest but slowest

modes of construction

Most expensive but fastest

modes of construction
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Figure  3-2   Duration and Cost Using Normal Modes of Construction 

 

Figure  3-3   Duration and Cost Using Most Crashed Modes of Construction 

Any optimization method to solve large TCT problems may be more effective with a 

particular arrangement of activities within a project compared to other arrangements. In other 

words, the effectiveness of the solution method for a model of a particular size may be 
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dependent on the relationships of activities in the network. As such, to investigate if this issue 

affects the optimization results of the research, any experimentation for a particular project 

size is performed based on both parallel and serial expansion of the 18-activity network. 

For example, to optimize a project consisting of 36 activities, two separate experiments are 

performed: one experiment using the parallel expansion of the 18-activity network and 

another one using the serial expansion. The sample parallel and serial networks for the project 

consisting of 36 activities are presented in Figure  3-4 and Figure  3-5 respectively. 

 

Figure  3-4   Two Parallel Copies of the 18-Activity Network 
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Figure  3-5   Two Serial Copies of the 18-Activity Network 

 

3.3 Mathematical Optimization: Experimentations and Results 

The application of mathematical optimization methods on the TCT problem is investigated 

using two particular optimization tools. The first optimization tool is Excel Solver which can 

be used for solving small TCT problems and as a base to compare the results with the results 

of a more advanced mathematical optimization package. The more advanced modeling and 

optimization tool is ‘Risk Solver Platform’ which is capable of solving larger problems. The 

results are then compared and discussed. 
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3.3.1 TCT Optimization Using Excel Solver 

Microsoft Excel includes an optimization utility which is known as Solver Add-in. It is an 

easy to use optimization tool capable of solving two types of mathematical problems: linear 

problems and non-linear problems. It solves linear problems using Simplex method, and 

almost always finds perfect answers to small, linear problems. Microsoft Solver also includes 

the GRG Nonlinear engine for solving smooth non-linear problems. However, the non-linear 

routine does not perform as good as the linear algorithm and may stick in a local optimum 

solution (The Genetic Algorithm Solver for Microsoft Excel, 2010). In addition, Solver has 

limitations of 200 on the number of variables and 200 on the number of constraints and, 

therefore, is only suitable for solving relatively small problems.  

The Structure of the TCT model in Microsoft Excel is based on the model introduced by T. 

Hegazy & Ayed, 1999. In this model activities are represented in a column and their 

associated data in the next columns. Therefore, each activity and its corresponding data 

including its predecessors, successors, and also the duration and cost associated with different 

possible construction methods (modes) for that particular activity are all in a row. Preferred 

method of construction for each activity is calculated based on an index which is defined in a 

column, and associated duration and cost is presented in two other columns on the 

spreadsheet. A screen-shot of the model is shown in Figure  3-6.  

Indirect cost is defined at the bottom of the spreadsheet. Total project duration and cost is 

then calculated considering total indirect cost. No penalty and incentive have been defined in 

this model.  
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Figure  3-6   TCT Model Spreadsheet 

The model is a non-linear mathematical model and, therefore, Solver’s GRG Nonlinear 

engine is used to solve it. The objective function is to minimize total cost; decision variables 

are indexes to choose among different methods of construction, and constraints define the 

availability of only one method of construction for each activity at any certain time and also 

A B C D E F G H I J K AA AB AC AD AE AF AG AH AI

1 Duration = 110 days Predec- Succ-            3 Methods of Construction - Normal to Crash Decision

2 cessors essors Variables

3 ID Name

Activity 

Duration

Activity 

Cost P1 P2 P3 S1 S2 S3 Time1

Cost1 

x1000 Time2

Cost2 

x1000 Time3

Cost3 

x1000 M1 M2 M3

SU

M

4 1 A 14.0 $2.40 5 6 24 $1.20 21 $1.50 14 $2.40 1 1

5 2 B 15.0 $3.00 10 25 $1.00 23 $1.50 15 $3.00 1 1

6 3 C 15.0 $4.50 13 33 $3.20 33 $3.20 15 $4.50 1 1

7 4 D 20.0 $30.00 14 20 $30.00 20 $30.00 12 $45.00 1 1

8 5 E 22.0 $20.00 1 7 12 30 $10.00 30 $10.00 22 $20.00 1 1

9 6 F 14.0 $40.00 1 8 9 10 24 $18.00 24 $18.00 14 $40.00 1 1

10 7 G 18.0 $22.00 5 11 18 $22.00 18 $22.00 9 $30.00 1 1

11 8 H 14.0 $0.22 6 11 24 $0.12 21 $0.21 14 $0.22 1 1

12 9 I 15.0 $0.30 6 12 25 $0.10 23 $0.15 15 $0.30 1 1

13 10 J 15.0 $0.45 2 6 12 14 33 $0.32 33 $0.32 15 $0.45 1 1

14 11 K 12.0 $0.45 7 8 17 20 $0.30 20 $0.30 12 $0.45 1 1

15 12 L 22.0 $2.00 5 9 10 15 30 $1.00 30 $1.00 22 $2.00 1 1

16 13 M 14.0 $4.00 3 16 24 $1.80 24 $1.80 14 $4.00 1 1

17 14 N 9.0 $3.00 4 10 16 17 18 $2.20 18 $2.20 9 $3.00 1 1

18 15 O 12.0 $4.50 12 17 16 $3.50 16 $3.50 12 $4.50 1 1

19 16 P 20.0 $3.00 13 14 18 30 $1.00 28 $1.50 20 $3.00 1 1

20 17 Q 24.0 $1.80 11 14 15 18 24 $1.80 24 $1.80 14 $4.00 1 1

21 18 R 9.0 $3.00 16 17 18 $2.20 18 $2.20 9 $3.00 1 1

22

23 Penalty $ / d:

24 Incentive $ / d: Deadline: days

25 Indirect $ / d:

26 Duration: days

27 Total Penaltiy:

28 Total Incentive:

29 Total Indirects: Total Cost ($):

30

Selected Mode

Duration and Cost

18
 a

ct
iv

it
ie

s

Logical Relationships Activity Modes Time and Cost (user input)

-$                       

-$                       

110,000.00$        254,620.00$      

Selected 

Mode

-$                       

-$                       110

1,000.00$             

110

Deadline Set by User Besed on CPM Calculations

Objective Function: 
∑                                                      
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limiting duration to deadline. Maximum amount of calculation time is set to 30 minutes. A 

snapshot of the solver parameters is shown in Figure  3-7. 

 

Figure  3-7   Model Definition in Excel Solver 

The optimization results using Excel Solver for TCT models, ranging from the initial model 

consisting of 18 activities to models with serial and parallel combinations of the initial model 

including 36, 54, and 180 activities, are presented in Table  3-2. In addition to the minimum 

A B C D E F G H I J K AA AB AC AD AE AF AG AH AI

1 Duration = 110 days Predec- Succ-            3 Methods of Construction - Normal to Crash Decision

2 cessors essors Variables

3 ID Name

Activity 

Duration

Activity 

Cost P1 P2 P3 S1 S2 S3 Time1

Cost1 

x1000 Time2

Cost2 

x1000 Time3

Cost3 

x1000 M1 M2 M3

SU

M

4 1 A 14.0 $2.40 5 6 24 $1.20 21 $1.50 14 $2.40 1 1

5 2 B 15.0 $3.00 10 25 $1.00 23 $1.50 15 $3.00 1 1

6 3 C 15.0 $4.50 13 33 $3.20 33 $3.20 15 $4.50 1 1

7 4 D 20.0 $30.00 14 20 $30.00 20 $30.00 12 $45.00 1 1

8 5 E 22.0 $20.00 1 7 12 30 $10.00 30 $10.00 22 $20.00 1 1

9 6 F 14.0 $40.00 1 8 9 10 24 $18.00 24 $18.00 14 $40.00 1 1

10 7 G 18.0 $22.00 5 11 18 $22.00 18 $22.00 9 $30.00 1 1

11 8 H 14.0 $0.22 6 11 24 $0.12 21 $0.21 14 $0.22 1 1

12 9 I 15.0 $0.30 6 12 25 $0.10 23 $0.15 15 $0.30 1 1

13 10 J 15.0 $0.45 2 6 12 14 33 $0.32 33 $0.32 15 $0.45 1 1

14 11 K 12.0 $0.45 7 8 17 20 $0.30 20 $0.30 12 $0.45 1 1

15 12 L 22.0 $2.00 5 9 10 15 30 $1.00 30 $1.00 22 $2.00 1 1

16 13 M 14.0 $4.00 3 16 24 $1.80 24 $1.80 14 $4.00 1 1

17 14 N 9.0 $3.00 4 10 16 17 18 $2.20 18 $2.20 9 $3.00 1 1

18 15 O 12.0 $4.50 12 17 16 $3.50 16 $3.50 12 $4.50 1 1

19 16 P 20.0 $3.00 13 14 18 30 $1.00 28 $1.50 20 $3.00 1 1

20 17 Q 24.0 $1.80 11 14 15 18 24 $1.80 24 $1.80 14 $4.00 1 1

21 18 R 9.0 $3.00 16 17 18 $2.20 18 $2.20 9 $3.00 1 1

22

23 Penalty $ / d:

24 Incentive $ / d: Deadline: days

25 Indirect $ / d:

26 Duration: days

27 Total Penaltiy:

28 Total Incentive:

29 Total Indirects: Total Cost ($):

30

-$                       

-$                       

-$                       110

1,000.00$             

110

-$                       

110,000.00$        254,620.00$      

Constraints

Objective Function
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total cost, Table  3-2 presents the deadline and duration of the project, the optimal solution and 

the deviation of the result from the optimal solution, and also the calculation time. 

Table  3-2   Optimization Results Using Excel Solver 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

A significant advantage of developing larger models based on serial and parallel 

arrangements of the 18 activities model is that, since the optimum solution of the base model 

is known, the optimum solution for larger models can simply be calculated independently of 

the optimization process. Thus, the performance of any optimization can be measured by 

comparing the deviation of the solutions from the calculated optimum solution. 

The number of decision variables for a project consisting of 54 activities each with 3 modes 

of construction is 54*3=162 and for a project of 180 activities is 540 variables. Therefore, 

No. of Activities 18 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 110 220 110 330 110 1100

Optimum 

Solution
216,270 322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 110 220 110 330

 Total Cost

(×1000) 
254,620 409,840 433,094 607,435 769,460

Deviation* 18% 27% 0% 42% 19%

Calculation

Time (min)
2 5 30 30 13

N/A

Too Many 

Variable 

Cells

N/A

Too Many 

Variable 

Cells
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Excel Solver limitation of 200 decision variables prevents it to optimize TCT models 

consisting of 180 activities. Excel Solver is only useful for solving small models. In the next 

section a more advances mathematical optimization tool will be used to solve the same TCT 

models. 

3.3.2 TCT Optimization Using Risk Solver Platform (RSP) 

Risk Solver Platform is one of the most powerful tools for risk analysis, simulation, and 

optimization in Microsoft Excel, developed by Frontline Systems Inc. Risk Solver Platform 

has five bundled Solver Engines and can also be connected to many optional plug-in 

optimization engines such as Gurobi Solver Engine, MOSEK Solver, and KNITRO Solver 

(Frontline Solvers User Guide, 2010). For the purpose of this research, the nonlinear LSGRG 

Solver and Large-scale GRG Solver are used to solve TCT problems as a smooth nonlinear 

(NLP) mathematical problem. 

The nonlinear LSGRG Solver in RSP handles problems of up to 1,000 decision variables 

and 1,000 constraints which is much less restricted than the limitation of 200 decision 

variables and 200 constraints in Excel Solver. Large-Scale GRG Solver Engine extends the 

power of Solver Platform to handle smooth nonlinear optimization problems of up to 4,000 

variables and 4,000 constraints which enables it to solve larger problems compared to the 

LSGRG engine. 

Since Risk Solver Platform is an Excel-based optimization package, the same TCT model 

which was discussed in the previous section can be used by Risk Solver Platform. The 

possibility of using identical model with different optimization tools is a clear advantage to 
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compare the efficiency and accuracy of different optimization tools in solving identical 

optimization problems. 

 

Figure  3-8   Model Definition in Risk Solver Platform 

The main components of the Excel model in Risk Solver Platform are as follows: 1) The 

Objective Function is defined in the RSP objective section to minimize the total cost. 2) 

Decision Variables are defined in the variable section of RSP. They are in the form of 

changing cells and are related to data and objective function in the spreadsheet. 3) 

A B C D E F G H I J K AA AB AC AD AE AF AG AH AI

1 Duration = 110 days Predec- Succ-            3 Methods of Construction - Normal to Crash Decision

2 cessors essors Variables

3 ID Name

Activity 

Duration

Activity 

Cost P1 P2 P3 S1 S2 S3 Time1

Cost1 

x1000 Time2

Cost2 

x1000 Time3

Cost3 

x1000 M1 M2 M3

SU

M

4 1 A 14.0 $2.40 5 6 24 $1.20 21 $1.50 14 $2.40 1 1

5 2 B 15.0 $3.00 10 25 $1.00 23 $1.50 15 $3.00 1 1

6 3 C 15.0 $4.50 13 33 $3.20 33 $3.20 15 $4.50 1 1

7 4 D 20.0 $30.00 14 20 $30.00 20 $30.00 12 $45.00 1 1

8 5 E 22.0 $20.00 1 7 12 30 $10.00 30 $10.00 22 $20.00 1 1

9 6 F 14.0 $40.00 1 8 9 10 24 $18.00 24 $18.00 14 $40.00 1 1

10 7 G 18.0 $22.00 5 11 18 $22.00 18 $22.00 9 $30.00 1 1

11 8 H 14.0 $0.22 6 11 24 $0.12 21 $0.21 14 $0.22 1 1

12 9 I 15.0 $0.30 6 12 25 $0.10 23 $0.15 15 $0.30 1 1

13 10 J 15.0 $0.45 2 6 12 14 33 $0.32 33 $0.32 15 $0.45 1 1

14 11 K 12.0 $0.45 7 8 17 20 $0.30 20 $0.30 12 $0.45 1 1

15 12 L 22.0 $2.00 5 9 10 15 30 $1.00 30 $1.00 22 $2.00 1 1

16 13 M 14.0 $4.00 3 16 24 $1.80 24 $1.80 14 $4.00 1 1

17 14 N 9.0 $3.00 4 10 16 17 18 $2.20 18 $2.20 9 $3.00 1 1

18 15 O 12.0 $4.50 12 17 16 $3.50 16 $3.50 12 $4.50 1 1

19 16 P 20.0 $3.00 13 14 18 30 $1.00 28 $1.50 20 $3.00 1 1

20 17 Q 24.0 $1.80 11 14 15 18 24 $1.80 24 $1.80 14 $4.00 1 1

21 18 R 9.0 $3.00 16 17 18 $2.20 18 $2.20 9 $3.00 1 1

22

23 Penalty $ / d:

24 Incentive $ / d: Deadline: days

25 Indirect $ / d:

26 Duration: days

27 Total Penaltiy:

28 Total Incentive:

29 Total Indirects: Total Cost ($):

30

-$                       

-$                       

110,000.00$        254,620.00$      

110

-$                       

-$                       110

1,000.00$             
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Constraints are defined in the RSP constraints section. They limit the duration to the deadline 

and enforce selecting of only one mode of execution for any activity. 4) All of the data 

including activities and their corresponding time and cost for three different modes of 

construction, as well as, daily direct costs are defined in the main spreadsheet. Maximum 

computation time is set to 30 minutes. A snapshot of the RSP model definition and its 

parameters is shown in Figure  3-8.  

The optimization results of Risk Solver Platform SLGRG engine for TCT models ranging 

from the project of 18 activities to models with serial and parallel combinations of the initial 

model which include 36, 54, and 180 activities, are presented in Table  3-3. 

Table  3-3   Optimization Results Using SLGRG Nonlinear Solver of RSP 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

No. of Activities 18 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 110 220 110 330 110 1100

Optimum 

Solution
216,270 322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 110 220 110 330 110 1100

 Total Cost

(×1000) 
216,270 385,890 478,540 454,198 698,851 1,336,900 2,315,071

Deviation* 0% 20% 11% 6% 8% 14% 7%

Calculation

Time (min)
1.5 14 30 26 30 30 30
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The optimization result for the project consisting of 18 activities is equal to the optimal 

solution and, therefore, its deviation from the optimal solution is equal to zero. For larger 

projects, the deviation of the result from the optimal solution is not equal to zero; however, 

the deviation does not have an increasing trend when the size of the project increases. Risk 

Solver Platform is not capable of solving projects consisting of 360 activities with 4GB of 

RAM and initiates an insufficient memory error. 

Table  3-4   Optimization Results Using Large-scale GRG Solver of RSP 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

The optimization results of the same models using Large-scale GRG engine of Risk Solver 

Platform are presented in Table  3-4. Comparing the results of SLGRG engine and Large-scale 

GRG engine reveals that Large-scale GRG engine does not perform better than SLGRG 

No. of Activities 18 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 110 220 110 330 110 1100

Optimum 

Solution
216,270 322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 110 220 110 330 110 1100

 Total Cost

(×1000) 
216,270 379,990 513,369 454,198 714,551 1,583,095  2,764,677  

Deviation* 0% 18% 19% 6% 10% 35% 28%

Calculation

Time (min)
1.5 18 30 26 30 30 30
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engine especially when the size of the project increases. In addition, similar to the SLGRG 

engine, the Large-scale GRG engine is not capable of optimizing larger project consisting of 

360 activities. 

Comparing the results of mathematical optimization using Excel Solver, SLGRG engine, 

and Large-scale GRG engine of Risk Solver Platform demonstrates that the deviations of the 

solutions from the optimum solutions for RSP are less than Excel Solver. This is an indication 

of better performance of RSP comparing to Excel Solver. In addition, SLGRG engine of Risk 

Solver Platform performs better than the Large-scale GRG engine especially when the size of 

the project increases. Furthermore, the Excel Solver is not able to solve projects consisting 

180 activities and RSP is not able to solve projects consisting of 360 activities and, therefore, 

none of them are capable of optimizing larger projects such as projects consisting of 360 

activities. 

3.4 Evolutionary-Based Optimization: Experimentations and Results 

Due to the complexity of TCT problems and inefficiency of mathematical optimization 

methods in solving large TCT optimization problems, evolutionary-based optimization 

methods have been an alternate method for solving time-cost trade-offs. 

In this section the performance of two evolutionary-based optimization software packages 

on solving large TCT problems is examined. First, the evolutionary-based optimization engine 

in Risk Solver Platform optimization package is examined and then the genetic algorithm 

modeling and optimization tool, “Evolver”, is used to solve large-scale TCT problems. 
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3.4.1 TCT Optimization Using Risk Solver Platform 

Risk Solver Platform includes an Evolutionary Engine implementing evolutionary-based 

optimization methods for solving problems. Evolutionary Solver is a hybrid engine which 

contains genetic and evolutionary algorithms and classical optimization methods. It handles 

non-smooth (NSP) problems of up to 1,000 decision variables and 1,000 constraints. It was 

greatly enhanced with parallel algorithms and in V11.5 was enhanced with new state-of-the-

art methods to help solving hard non-smooth models with better answers in less time 

(Frontline Solvers User Guide, V11.5). 

Table  3-5   Optimization Results Using RSP Evolutionary Engine 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

Using Evolutionary Solver of RSP, the model structure and details, remain the same as the 

model structure and details discussed in Section  3.3.2 using nonlinear LSGRG Solver. The 

No. of Activities 18 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 110 220 110 330 110 1100

Optimum 

Solution
216,270 322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 110 219 110 310 110 1010

 Total Cost

(×1000) 
275,320 438,440 566,640 618,260 1,018,260 1,807,000 3,607,000

Deviation* 27% 36% 31% 44% 57% 54% 67%

Calculation

Time (min)
18 15 1 1 1 21 30
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model definition is also the same as model definition presented in Figure  3-8. The maximum 

calculation time limit is set to 30 minutes. The optimization results of using evolutionary 

solver of Risk Solver Platform are displayed in Table  3-5. 

The results obtained from this evolutionary engine are not promising. In particular the 

results for larger problems are far from optimum. In the next section an advanced genetic 

algorithm optimization tool is used to solve the same sets of TCT problems. 

3.4.2 TCT Optimization Using Evolver 

Evolver is a genetic algorithm optimization add-in for Microsoft Excel developed by Palisade 

Corporation. Evolver uses innovative genetic algorithm (GA) technology to effectively 

optimize complex and large-scale optimization problems and has been used to solve many 

complicated problems in a variety of disciplines. The genetic algorithms used in Evolver use 

the general concepts of genetic algorithms but have been adapted for Evolver (The Genetic 

Algorithm Solver for Microsoft Excel, 2010). A summary of how evolver works based on the 

Evolver’s Users Guide is represented below: 

 Selection: When a new organism is to be created, two parents are chosen from the 

current population. Organisms that have high fitness scores are more likely to be chosen 

as parents. 

 Crossover: Since each solving method adjusts the variables in different ways, Evolver 

employs a different crossover routine optimized for that type of problem. 
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 Mutation: Like crossover, mutation methods are customized for each of the different 

solving methods. The basic recipe solving method performs mutation by looking at each 

variable individually. A random number between 0 and 1 is generated for each of the 

variables in the organism, and if a variable gets a number that is less than or equal to the 

mutation rate (for example, 0.06), then that variable is mutated. 

 Replacement: Since Evolver uses a rank-ordered rather than generational replacement 

method, the worst-performing organisms are always replaced with the new organism 

that is created by selection, crossover, and mutation, regardless of its fitness “score”. 

 Constraints: Hard constraints are implemented with Palisade’s proprietary 

“backtracking” technology. If a new offspring violates some externally imposed 

constraints, Evolver backtracks towards one of the parents of the child, changing the 

child until it falls within the valid solution space. 

Since Evolver is an add-on for Microsoft Excel, the same TCT Model which was discussed 

in Section  3.3.1 is also used for experimentations using Evolver. The main components of the 

model including objective function, decision variables and, constraints are defined in the 

model definition window of Evolver. 

Table  3-6 depicts the optimization results of using Evolver for TCT models ranging from 

the network of 18 activities to models consisting of 36, 54, and 180 activities. 
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Table  3-6   Optimization Results Using Evolver 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

In solving TCT problems using Evolver, the initial values of variables are extremely 

important. When the optimization starts with a combination of activity modes that conclude to 

project duration of more than defined deadline (infeasible solution), the optimization 

procedure spends a lot of time to find a feasible solution and then starts improving it. To 

eliminate this initial processing time the models have been defined such that the optimization 

starts with the most crashed activity modes as the initial values. This definition proved to be 

very helpful in reducing optimization time and is used for all of the experiments with evolver 

and Risk Solver Platform. 

No. of Activities 18 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 110 220 110 330 110 1100

Optimum 

Solution
216,270 322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 109 220 110 330 109 1063

 Total Cost

(×1000) 
238,070 373,790 484,640 500,610 700,410 1,801,700  3,087,390  

Deviation* 10% 16% 12% 17% 8% 54% 43%

Calculation

Time (min)
30 30 30 30 30 30 30
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As Table  3-6 reveals, the optimization results of using Evolver are also far from optimal. 

Since evolutionary-based optimization methods may require considerable amount of time to 

converge to a near optimal solution, the experiments for project networks of 180 activities has 

been repeated for extended periods of calculation time to investigate whether they reach to a 

better solution.  

Table  3-7   Evolver Results for Extended Calculation Times of 12h and 24h 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

The experiments for 12 hours and 24 hours processing times are shown in Table  3-7. These 

experiments represent 30%-35% improvements in 12 hours processing times comparing to 30 

minutes, and almost no improvement for 24 hours processing time comparing to 12 hours 

calculation times. 

No. of Activities 180 P (1) 180 S (1) No. of Activities 180 Act P 180 Act S

Project Deadline 110 1100 Project Deadline 110 1100

Optimum 

Solution
1,172,700 2,162,700

Optimum 

Solution
1,172,700 2,162,700

Duration

(days)
110 1100

Duration

(days)
110 1100

 Total Cost

(×1000) 
1,396,688 2,441,088

 Total Cost

(*1000) 
1,389,500 2,436,300

Deviation* 19% 13% Deviation* 18% 13%

Calculation

Time (min)
720 720

Calculation

Time (min)
1440 1440
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3.5 Summary and Conclusions 

In this chapter mathematical and evolutionary-based optimization methods which are called 

the traditional optimization methods for solving time-cost trade-off problems were examined 

for solving TCT problems. Mathematical methods were implemented by Excel Solver and 

Risk Solver Platform. Evolutionary-based algorithms were implemented using Risk Solver 

Platform and Evolver. The summary of optimization results are shown is Table  3-8.  

Finding an initial feasible solution for a TCT problem is an important step for solving it 

while using mathematical or evolutionary-based optimization methods. In some cases it takes 

a considerable amount of time for the optimization process to find a feasible solution, and 

then start to improve it. To eliminate this lengthy part of the processing time, the values of the 

decision variables for mathematical and evolutionary-based optimization methods were 

initialized to start the optimization process with a feasible solution. 

Table  3-8 clearly shows that utilizing traditional optimization methods for solving large 

TCT problems, leads to solutions far from the optimal solution. Experiments using genetic 

algorithm method with larger processing times such as 12 and 24 hours also revealed that, 

large processing times improve the solution to some extent but after extended periods of 

processing time, the optimization process sticks to a local optimum which is still far from the 

optimal solution. 
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Table  3-8   Comparison of Mathematical and Evolutionary-Based Optimization Results 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

No. of Activities 18 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 110 220 110 330 110 1100

Optimum 

Solution
216,270 322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 110 220 110 330

 Total Cost

(×1000) 
254,620 409,840 433,094 607,435 769,460

Deviation* 18% 27% 0% 42% 19%

Calculation

Time (min)
2 5 30 30 13

Duration

(days)
110 110 220 110 330 110 1100

 Total Cost

(×1000) 
216,270 385,890 478,540 454,198 698,851 1,336,900 2,315,071

Deviation* 0% 20% 11% 6% 8% 14% 7%

Calculation

Time (min)
1.5 14 30 26 30 30 30

Duration

(days)
110 110 220 110 330 110 1100

 Total Cost

(×1000) 
216,270 379,990 513,369 454,198 714,551 1,583,095  2,764,677  

Deviation* 0% 18% 19% 6% 10% 35% 28%

Calculation

Time (min)
1.5 18 30 26 30 30 30

N/A
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Cells
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Too Many 
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Table  3-8 Continued. 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

In the next chapter a new promising optimization method is investigated. This new method 

may have the potential to provide better results in less time, worth to be applied to larger 

time-cost trade-off problems.   

No. of Activities 18 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 110 220 110 330 110 1100

Optimum 

Solution
216,270 322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 110 219 110 310 110 1010

 Total Cost

(×1000) 
275,320 438,440 566,640 618,260 1,018,260 1,807,000 3,607,000

Deviation* 27% 36% 31% 44% 57% 54% 67%

Calculation

Time (min)
18 15 1 1 1 21 30

Duration

(days)
110 109 220 110 330 109 1063

 Total Cost

(×1000) 
238,070 373,790 484,640 500,610 700,410 1,801,700  3,087,390  

Deviation* 10% 16% 12% 17% 8% 54% 43%

Calculation

Time (min)
30 30 30 30 30 30 30
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Chapter 4 

TCT Optimization Using Constraint Programming 

4.1 An Introduction to Constraint Programming 

Constraint programming is a powerful technology for solving large-scale combinatorial 

problems. It is based on a broad range of techniques from artificial intelligence, operations 

research, applied mathematics, and programming languages, to computer science 

fundamentals such as logic programming and graph theory (Dechter, 2003). Recent 

advancements in the development of tunable and robust constraint programming search 

engines has turned this technology into a powerful and efficient optimization technology 

(IBM ILOG Optimization Studio V12.2 - Language User’s Manual). Constraint programming 

is currently applied successfully to many fields, such as scheduling, planning, vehicle routing, 

networks, and bioinformatics (Rossi, Beek, & Walsh, 2006). 

The Constraint Satisfaction Problem (CSP) is the main concept in the heart of constraint 

programming. A constraint satisfaction problem consists of a set of variables with well-

defined domains of possible values and a set of constraints. In addition, some CSPs have an 

objective function to be minimized or maximized. Any feasible solution to the CSP is an 

assignment of acceptable values to all of the variables in such a way that satisfies all the 

constraints. CSPs with an objective function turn the feasibility problem to an optimization 

problem (Pinedo, 2009), in which the optimal solution, is the feasible solution minimizing (or 

maximizing) the objective function. 
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The principle technique for solving constraint satisfaction problems is search. A search 

method for solving CSP problems may be a complete or an incomplete search.  A complete or 

systematic search method guarantees finding a solution, if one exists, and can also be used to 

show that there is no solution to the problem. In addition, a complete search method provides 

the proof of optimality for the solution. Incomplete or non-systematic search methods, on the 

other hand, cannot provide the proof of optimality and cannot be used to show that there is no 

solution to the problem. Incomplete search methods, however, are usually efficient in finding 

a near optimal solution if one exists (Rossi et al., 2006). 

Many real world combinatorial problems can be modeled and solved with constraint 

programming techniques. Constraint programming is a promising method for solving TCT 

problems. In this chapter we use IBM ILOG Optimization Studio to implement constraint 

programming techniques for solving TCT problems.  

4.2 Mathematical Programming vs. Constraint Programming 

Regardless of the size, if a problem can be modeled as a Linear Problem (LP), the best 

method for solving it would be the mathematical LP techniques. However, when it comes to 

nonlinear, non-smooth problems particularly with discrete variables, the mathematical 

methods are not so efficient. Furthermore, when it comes to combinatorial problems in which 

the size grows exponentially, constraint programming models may be much more efficient 

than mathematical models. The main modeling differences and optimization engine 

differences for mathematical programming and constraint programming techniques are as 

follows (IBM ILOG Optimization Studio V12.4 - Language User’s Manual): 
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 Mathematical programming models support both continuous and discrete decision 

variables whereas constraint programming models support only discrete variables 

(Boolean or Integer). 

 A mathematical model should fall in a particular category of problems with certain 

type of formulation such as linear, convex, integer, quadratic, or nonlinear problem 

to be solved by mathematical optimization methods; however, a constraint 

programming model has no limitation on the relation of variables within the 

constraints and objective function. 

 A constraint programming model supports logical constraints and some specialized 

constraints, such as the "all-different" constraint, that can improve the search speed 

for finding the solution. 

 The solution methods of mathematical programming and constraint programming 

are fundamentally different. A mathematical programming engine uses 

mathematical techniques such as simplex method, branch and bound, cutting planes 

in addition to applying some relaxations to solve the problem. The constraint 

programming engine; however, assigns values to some variables and based on some 

logical inferences reduces the domains of the other variables, and then based on 

some search algorithms finds the solution. 

 A mathematical programming engine reduces the feasible region and uses the gap 

between the lower and upper bound for the feasible region to prove the optimality of 
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the solution. A constraint programming engine, however, provides the optimality 

proof by showing that no better solution than the current one can be found. 

Table  4-1 presents a summary of differences between mathematical programming and 

constraint programming. 

Table  4-1   Comparison of Mathematical Programming vs. Constraint Programming 

(IBM ILOG Optimization Studio V12.2 - Language User’s Manual) 

   

Feature Mathematical Ptogramming Constraint Programming

Relaxation Yes No

Optimality GAP measure Yes No

Optimality proof Yes Yes

Modeling limitations 
Model should be in a predefined 

mathematical category
Discrete problems

Specialized constraints No Yes

Logical constraints Yes Yes

Theoretical grounds Algebra Graph theory and algorithmic

Modeler support Yes Yes

Model and run Yes Yes
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4.3 IBM ILOG CPLEX Optimization Studio 

IBM ILOG CPLEX Optimization Studio is one of the leading optimization software packages 

for mathematical programming as well as constraint programming. The term CPLEX is an 

acronym of Simplex method, the well-known linear programming technique, in C 

programming language. CPLEX was first offered commercially in 1988 by CPLEX 

Optimization Inc. which was acquired later by ILOG Company in 1997. In 2009, ILOG was 

acquired by IBM and CPLEX is now part of IBM ILOG Optimization Studio. 

IBM ILOG Optimization Studio is a consolidation of some previously stand-alone packages 

in a single product. It consists of 1) IBM ILOG CPLEX Optimizer for mathematical 

optimization, 2) IBM ILOG CP Optimizer for constraint programming optimization, 3) the 

optimization programming language (OPL) for modeling, and 4) an Integrated Development 

Environment (IDE). CPLEX Optimization Studio provides an excellent way to build efficient 

optimization models and applications for mathematical and constraint programming 

problems. 

CPLEX Optimizer supports the mathematical algorithms for solving linear problems, 

mixed-integer problems, quadratic and quadratically constrained problems. CP Optimizer 

supports all the required constructs for scheduling and time-tabling problems, including tasks, 

activities and resources. The CPLEX Optimizer has a number of modeling interfaces to C++, 

C#, .net, Java, and Python languages and includes connectors to Microsoft Excel and 

MATLAB. It is also accessible with full compatibility through most of the other popular 
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optimization modeling tools, such as AIMMS, AMPL, GAMS, MPL and Microsoft Solver 

Foundation. 

4.3.1 Integrated Development Environment (IDE) 

The integrated development environment is the place to create a project, develop and edit the 

model using OPL language and IBM ILOG Script for OPL, utilize external data, browse and 

explore different parts of the model, run and debug and tune the model, and finally generate 

the results and inspect the solution. A snapshot of the IBM ILOG Optimization Studio IDE is 

shown in Figure  4-1. 

 

Figure  4-1   IBM ILOG Optimization Studio IDE 
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4.3.2 Optimization Programming Language (OPL) 

The Optimization Programming Language is a modeling language for mathematical and 

constraint programming optimization problems which in particular simplifies the formulation 

and solution of combinatorial optimization problems. As a modeling language, OPL provides 

high-level specifications, set notations and data modeling facilities to decrease the modeling 

time of optimization problems (P. Hentenryck & Michel, 2000). The most significant aspect 

of the OPL, however, is the support for constraint programming, which includes sophisticated 

search specifications, logical and higher order constraints, and support for scheduling and 

resource allocation applications (P. V. Hentenryck, 1999).  

Mathematical modeling languages such as AMPL and GAMS provide high-level algebraic 

and set notations to model mathematical problems very efficiently which can then be solved 

using state-of-the-art solvers (P. Hentenryck, Michel, Laborie, Nuijten, & Rogerie, 1999). The 

optimization programming language (OPL), however, is the first modeling language that 

combined the strengths of mathematical modeling languages with the rich constraint language 

and the ability to specify search procedures and strategies that is the essence of constraint 

programming (P. Hentenryck, Michel, Perron, & Régin, 1999) both at the language and at the 

solver levels.  

Within the IBM® ILOG® OPL product, OPL has been redesigned to better accommodates its 

associated Script language. IBM ILOG Script for OPL is a script language for non-modeling 

aspects such as flow control, pre-processing, and post-processing (IBM ILOG OPL Language 

Reference Manual). 



 

 65 

4.3.3 OPL Projects in IBM ILOG Optimization Studio 

A project in the IBM ILOG Optimization Studio has the following file components: 

1. Model files: Model (.mod) files contain all the OPL statements 

2. Data files: Data (.dat) files are used for separating the model from the instance data 

3. Settings files: Settings files (.ops) are used to change the default values of options and 

parameters 

4. Run configurations: Are used to support multiple execution configurations. 

A project is the method used to associate a model (.mod) file with, usually, one or more 

data (.dat) files and one or more settings (.ops) files. A project may include only a single 

model file or may contain several sets of model, data and settings files.  

 

Figure  4-2   OPL Project Navigator Tab for TCT Model  

Run configurations files define the relationships between model, data and settings files. The 

model file declares data elements but does not necessarily initialize them. The data files 

contain the initialization of data elements declared in the model. The .project file in the root 

Run Configuration File

Model File

Settings File

Data File

Input from Spreadsheet
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folder for the OPL project organizes all the related model, data and settings files. Run 

configurations, which are maintained in an .opl project file, also provide a convenient way to 

maintain the relationship between related files and runtime options for the environment (IBM 

ILOG Optimization Studio V12.2 - Language User’s Manual).  

The OPL Project Navigator is the tab for managing projects and for creating, adding and 

removing their associated files such as model, data and settings files. A snapshot of the 

Project Navigator Tab is shown in Figure  4-2. 

4.4 Modeling TCT Problems Using IBM ILOG Optimization Studio 

The CPLEX Optimizer, the mathematical engine of IBM ILOG Optimization Studio is 

accessible through independent modeling systems, such as AIMMS, AMPL, GAMS, MPL, 

and also through a connector to Microsoft Excel. However, the CPLEX CP Optimizer which 

is the constraint programming engine of IBM ILOG Optimization Studio utilizes specialized 

data structures and syntax for formulating detailed scheduling models which are only 

available in OPL language. Therefore, for using constraint programming techniques, the 

modeling should be implemented in OPL language. 

The TCT model of this research in IBM ILOG Optimization Studio is defined as a project 

consisting of the following components: 

 One model (.mod) file containing all the OPL statements for the model definition; 

 One data (.dat) file providing the connection to a spreadsheet to access the external 

data; 
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 One settings (.ops) file to specify the CP engine parameters and settings; 

 One run configuration file referencing and maintaining the relationship between the 

model, the data and the settings files; 

 And a spreadsheet where all the external data are stored. 

 

Figure  4-2 is a snapshot of the OPL Project Navigator tab for the TCT model presenting the 

file components of the projects in this research. 

The model file contains declaration of data, declaration of decision variables, the objective 

function, and constraints written in OPL language. In addition, it includes some pre- and post-

processing statements in OPL scripting language. Details of the TCT model definition 

sections in OPL language are as follows: 

 Declarations of Data in the model file are references to data (.dat) file in order to 

separate data from the model. In large problems separation of the data from the model 

is a significant advantage for better organization of the model. These references 

include the number of activities in the project, predecessors and successors of each 

activity, deadline of the project, penalty and incentive values for late and early 

completion, indirect cost per day, as well as duration and cost for different modes of 

each activity. Deadline and Indirect-Cost are defined as integer values, while 

Activities and Modes are defined as sets of tuples, a combination of different data 

structures. 
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 Decision Variables are the modes of construction for each activity so that one mode 

per activity will be selected in the optimization process in order to satisfy the objective 

function and constraints. In the model decision variables are defined by the “dvar” 

keyword of the OPL language.  

 Objective function is to minimize the total cost for the project based on the selection 

of modes of construction for each activity. It is the sum of direct cost, penalty and 

incentive for the duration of the project. The objective function in the model is defined 

by the OPL keyword “Minimize”. 

 Constraints in the model file define all the relationships (predecessors and 

successors) between activities and limit the total project duration to the deadline. 

Constraints are defined with “subject to {}” keyword comprising a block of OPL 

statements. 

The pre-processing and post-processing OPL scripting language statements are defined with 

the keyword “execute {}”. The pre-processing block limits the maximum allowable 

processing time to 30 minutes and the maximum allowable number of failed branches to 1E+6 

branches. The post-processing block presents the details of the final solution including the 

information regarding the selected mode for each activity and the total project cost. Figure  4-3 

displays part of the model file which includes the data declarations for modes of construction, 

declaration of decision variables and also the pre-processing script statements. A complete 

source code of the model file is included in Appendix B. 
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Figure  4-3   Part of Model (Mod.) File of TCT Model 

The data file is where all the external data are defined. One possibility is to define all the 

external data explicitly in the data file. The other option is to define a connection within the 

data file to a database or a spreadsheet where actual data can be retrieved. Since data 

preparation for various projects and their corresponding activities and modes of construction 

within each activity is much more convenient in a spreadsheet or a database comparing to data 

preparation within a data file, the second option is more appropriate for this research. 

Consequently, the data file provides the references to spreadsheets in which the actual 

external data can be accessed. Each spreadsheet contains all the information for one project to 

optimize one instance of the TCT problem. The actual data includes the number of activities 

in the project, predecessors and successors of each activity, project deadline, indirect cost per 

day, and also duration and cost for different modes of each activity.  

tuple  Mode  {

  key  int  ActivitiyId ;

  key  int  id ;

  int  duration ;

  float  cost ;

}

{ Mode }  Modes  = ...;

dvar  interval  activity [ T  in  Activities ];

dvar  interval  mode [ M  in  Modes ]  optional  size  M . duration ;

execute  {

  cp . param . FailLimit  =  1000000 ;

  cp . param . timeLimit = 600 ;

Declaring Mode

Data Structure

Declaring

Decision Variables

Pre-Processing 

Scripts
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 Figure  4-4 displays the data file and the references to a spreadsheet where the actual data 

will be retrieved. 

 

 Figure  4-4   Data (.dat) File of TCT Model 

Figure  4-5 is a snapshot of the contents of settings file (.ops) where the default values of 

options and parameters can be changed. These changes are stored in the settings (.ops) file 

and control various parameters for the solution process. 

 

Figure  4-5   Settings (.ops) File of TCT Model 

SheetConnection  sheet ( "TCT-8-Data.xlsx" );

Deadline  from  SheetRead ( sheet , "Deadline" );

Penalty  from  SheetRead ( sheet , "Penalty" );

Incentive  from  SheetRead ( sheet , "Incentive" );

IndirectCost  from  SheetRead ( sheet , "IndirectCost" );

Activities  from  SheetRead ( sheet , "Activities" );

Modes  from  SheetRead ( sheet , "Modes" );

Establishing 

Connections

to an 

external

Spreadsheet
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4.5 Constraint Programming Optimization: Experimentations and Results 

Once a TCT project in the CPLEX Studio environment is executed, the solution steps are 

presented in the “Engine log” and the “Statistics” tabs. At the beginning of the optimization, 

the engine log displays the initial process time and the memory usage. Throughout the 

optimization process it shows the number of branches, the branch decisions, and the current 

best solution. At the end of the optimization, it presents the total processing time, the final 

solution, and the total memory usage. Figure  4-6 shows part of the report of the engine log at 

the beginning of the optimization. 

 

Figure  4-6   Part of the Engine Log Report for the 18-Activity Project 

 ! ----------------------------------------------------------------------------

 ! Minimization problem - 72 variables, 100 constraints

 ! FailLimit            = 100,000

 ! TimeLimit            = 300

 ! Initial process time : 0.00s (0.00s extraction + 0.00s propagation)

 !  . Log search space  : 178.6 (before), 153.1 (after)

 !  . Memory usage      : 786.9 Kb (before), 883.0 Kb (after)

 !  . Variables fixed   : 2

 ! ----------------------------------------------------------------------------

 !   Branches  Non-fixed                Branch decision                   Best

 *         29      0.03s                         -              247,070.000000

 *         85      0.05s                         -              243,370.000000

 *        127      0.05s                         -              240,820.000000

 *        548      0.11s                         -              235,520.000000

 *        960      0.16s                         -              218,270.000000

        1,000         32                 on mode({3,3})         218,270.000000

 *      1,370      0.20s                         -              216,270.000000

        2,000         18                on mode({14,2})         216,270.000000

        3,000         18                 on mode({2,1})         216,270.000000

        4,000         11                on mode({14,2})  F      216,270.000000

        5,000         11                 on mode({7,1})  F      216,270.000000

        6,000         11                on mode({14,1})  F      216,270.000000

        7,000         11                 on mode({8,1})         216,270.000000

        8,000         22                on mode({13,1})  F      216,270.000000

        9,000         19                 on mode({3,2})  F      216,270.000000

       10,000         19                 on mode({9,2})  F      216,270.000000

       11,000          2                on mode({11,1})  F      216,270.000000

       12,000          2                on mode({13,1})         216,270.000000

       13,000          2                on mode({11,2})  F      216,270.000000

       14,000          2                on mode({11,2})  F      216,270.000000

 ! Time = 1.83s, Average fail depth = 12, Memory usage = 1.1 Mb

 !   Branches  Non-fixed                Branch decision                   Best

       15,000          2                 on mode({7,1})         216,270.000000
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In addition, during the optimization, the statistics tab visualizes the optimization process by 

drawing a graph representing the improvements of the solution according to a time-scale in 

seconds. Figure  4-7 shoes a snapshot of statistics tab for solving a project consisting of 3600 

activities using CP Optimizer. 

 

Figure  4-7   Sample Statistics for Solving a Project of 3600 Activities 

Using CP Optimizer 

The experimentations for solving TCT problems using CP Optimizer are performed for the 

base model of 18 activities, as well as, serial and parallel arrangements of the base model 

consisting of 36, 54, and 180, 1800, 3600, 5400, and 10800 activities.  

The optimization results are presented in Table  4-2. In addition to the final solution (total 

cost) for each experiment, Table  4-2 presents the calculation time, the duration of the project 

after optimization, and the deviation of the final solution from the optimum solution. In these 

experiments no penalty and incentive has defined to be compared with the optimization 

results of previous chapters. 
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Table  4-2   Optimization Results using CPLEX CP Optimizer 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

No. of Activities 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 220 110 330 110 1100

Optimum 

Solution
322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 220 110 330 110 1100

 Total Cost

(×1000) 
322,540 432,540 428,810 648,810 1,172,700 2,183,700

Deviation* 0% 0% 0% 0% 0% 1%

Calculation

Time (min)
10 10 10 10 13 14

No. of Activities 1800 P 1800 S 3600 P 3600 S 5400 P 5400 S 10800 P 10800 S

Project 

Deadline
110 11000 110 22000 110 33000 110 66000

Optimum 

Solution
10,737,000 21,627,000 21,364,000 43,254,000 31,991,000 64,881,000 63,872,000 129,762,000

Duration

(days)
110 11000 110 22000 110 33000 110 66000

 Total Cost

(×1000) 
10,737,000 23,592,960 22,031,750 47,121,800 33,593,600 73,272,560 82,352,000 146,615,840

Deviation* 0% 9% 3% 9% 5% 13% 29% 13%

Calculation

Time (min)
30 30 30 30 30 30 30 30

9

110

216,270

0%

18

110

216,270
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4.6 Model Validation 

To verify the results of optimizations using IBM ILOG Optimization Studio, the following 

procedure was implemented for projects containing up to 180 activities: 

 After a TCT optimization using IBM ILOG Optimization Studio, the mode selection 

results were extracted from Optimization Studio and were manually entered into the 

corresponding Excel model for that specific project. For instance the mode selection 

results of optimization of the project consisting of 36 activities with parallel 

arrangement of 18-activity network (36 P), were entered manually into the 

corresponding spreadsheet model (36 P). 

 The results of choosing those specific modes of construction for a project generate 

values for duration and total cost in the spreadsheet model. These values should be 

identical to the duration and total cost obtained by optimization process using IBM 

ILOG Optimization Studio. 

Using the same procedure for projects containing up to 180 activities, the identical results 

proved that the TCT model in OPL language is valid and the results are reliable. The same 

model, then, were used for projects consisting larger number of activities. 

4.7 Further Experimentation 

The objective function for the experimentations utilizing traditional optimization methods was 

to reduce the total cost while meeting the deadline of the project. In the experimentations of 

this chapter up to this point, the same objective function was used. The single-objective 
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function is useful for comparing the result with the optimal solution and provides the 

deviation of the result from the optimal solution as a measure of efficiency of the optimization 

method. However, the objective function can be modified to a multi-objective function to 

consider minimizing both time and cost simultaneously. In such a case, penalty, incentive, and 

indirect cost amounts would define the relationship between the competing objectives of time 

and cost. 

Table  4-3   Optimization Results of the 18-Activity Project 

for Various Incentive and Penalty Values 

 

 Deadline = 110 days, Indirect Cost = 1000 /day 

 

In the previous experimentations daily indirect cost was $1000, and penalty and incentive 

were set to zero in order to force the duration to converge to the user-defined deadline. 

Experiment 

Number
Incentive Penalty Duration Total Cost

1 0 0 110 216,270

2 1,000 2,000 110 216,270

3 2,000 4,000 110 216,270

4 3,000 6,000 101 202,420

5 4,000 8,000 101 193,420

6 5,000 10,000 101 184,420

7 6,000 12,000 101 175,420

8 7,000 14,000 101 166,420

9 8,000 16,000 101 157,420

10 9,000 18,000 100 148,270

11 10,000 20,000 100 138,270
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Defining positive values for penalty and incentive and eliminating the constraint 

“Duration<=Deadline” in the model file facilitates the optimization of time and cost 

simultaneously. 

To examine the results of the multi-objective function using constraint programming 

method, some experimentation are performed. Table  4-3 shows the experimentations results 

of the 18-activity project for various values of incentive and penalty. Table  4-4 and Table  4-5 

present the optimization results for the 36-activity project with parallel arrangement of 

activities and 36-activity project with serial arrangement of activities respectively. 

Table  4-4   Optimization Results of the 36-Activity Project  

(Parallel Arrangement) for Various Incentive and Penalty Values 

 

 Deadline = 110 days, Indirect Cost = 1000 /day 

 

Experiment 

Number
Incentive Penalty Duration Total Cost

1 0 0 110 322,540

2 5,000 10,000 110 322,540

3 7,000 14,000 110 322,540

4 8,000 16,000 105 320,540

5 9,000 18,000 105 314,540

6 10,000 20,000 110 322,540

7 12,000 24,000 101 249,840

8 15,000 30,000 101 222,840

9 17,000 34,000 101 204,840

10 19,000 38,000 101 186,840

11 20,000 40,000 101 177,840
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Table  4-5   Optimization Results of the 36-Activity Project  

(Serial Arrangement) for Various Incentive and Penalty Values 

 

 Deadline = 220 days, Indirect Cost = 1000 /day 

4.8 Discussion of the Results 

The results of using constraint programming techniques are substantially better than the 

results of using mathematical and evolutionary-based methods which were investigated in the 

previous chapter, both in terms of solution quality and processing speed. While mathematical 

and genetic algorithms methods are satisfactory methods of solving TCT problems for small 

size project networks, they are not efficient anymore once the size of the problem increases. 

In fact, for solving very large TCT problems, constraint programming proved to be much 

more efficient than the traditional optimization methods. 

Experiment 

Number
Incentive Penalty Duration Total Cost

1 0 0 220 432,540

2 1,000 2,000 220 432,540

3 2,000 4,000 211 428,490

4 3,000 6,000 220 432,540

5 4,000 8,000 202 387,640

6 5,000 10,000 211 400,690

7 6,000 12,000 202 351,640

8 8,000 16,000 202 315,640

9 10,000 20,000 200 277,840

10 12,000 24,000 201 240,490

11 15,000 30,000 201 183,490
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Assuming the acceptable deviation of the results from the optimal solution to be %15, the 

results of traditional optimization methods for the projects consisting of only 54 activities are 

similar to the results of constraint programming method for the projects consisting of 5400 

activities. Considering the exponential growth of the solution space (3
54

 = 5.8x10
25

 versus 

3
5400

 = 2.8x10
2576

) which is 4.9x10
2550

 time more for the 5400 activity project comparing to 

the 54 activity project, reveals that the constraint programming method tremendously 

performs better than traditional optimization methods for solving TCT problems. 

Further experimentations (Section  4.7) show that constraint programming method can also 

be used for simultaneous optimization of time and cost. However, the values of indirect cost, 

incentive and penalty play an important role in the results of the multi-objective model. While 

minimizing total cost, small amounts of indirect cost and insignificant penalty induce the 

optimization process to select normal modes of construction and, therefore, to prolong the 

duration of the project, but large amount of indirect cost and significant penalty reduce the 

duration of the project. 

Large incentive value leads the optimization engine to select crashed modes of activities 

while minimizing cost and, therefore, reduce the total duration of the project. Minor incentive 

value enables the total duration to be close to the deadline. In optimization of time and cost 

simultaneously, the assignment of appropriate values to indirect cost, incentive and penalty 

are very important and changes in any of these values affect the total project duration and 

cost. 
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4.9 Summary and Conclusions 

In this chapter constraint programming was introduced as a novel approach to solve TCT 

problems, its differences and similarities to mathematical optimization methods were 

discussed, and the IBM ILOG Optimization Studio was introduced as a leading commercial 

optimization package for implementing constraint programming techniques. An optimization 

model was then developed using the Optimization Programming Language (OPL) for the 

TCT problem and various experiments were performed. The results of applying constraint 

programming methods using CP Optimizer of IBM ILOG Optimization Studio were then 

discussed and compared to the results of applying traditional optimization methods which 

were performed in the previous chapter. 

While in optimization of projects with traditional optimization methods the number of 

activities was limited to a few hundred activities, utilizing constraint programming facilitated 

the optimization of vary large projects consisting of thousands of activities. As such, 

constraint programming offers a significant improvement on the optimization of time and cost 

for large-scale construction projects. Summary of all the experimentations and the results of 

using mathematical and evolutionary-based methods on TCT problems are presented in 

Appendix A; the summary for utilizing constraint programming methods are presented in 

Appendix C. 
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Chapter 5 

Conclusions and Future Research 

5.1 Conclusions 

Combinatorial optimization problems are ubiquitous in several different disciplines and have 

many practical applications (P. Hentenryck et al., 1999). Considering the current fierce and 

competitive economy, companies continuously try to improve solutions to their 

computationally difficult problems, such as scheduling, sequencing, corporate planning, 

resource allocations, etc., in order to optimize their overall performance. Improved solutions 

to these problems provide them with a competitive advantage in achieving market leadership; 

likewise, inefficiency in this technological development may contribute to their failure in the 

long run. 

In large construction projects, optimization of time and cost is a vital competitive advantage 

for construction firms. Time and cost optimization of large-scale construction projects is a 

combinatorial problem, and computationally difficult to solve. In recent decades, considerable 

research has been devoted to solve this optimization problem as efficiently as possible. 

Innovative optimization methods such as genetic algorithms, in addition to improved 

calculation power of computers due to faster processing speeds and parallel computing, have 

improved solutions to optimization problems. However, with mega-projects comprising 

thousands of activities, the size and complexity of the problems have also increased 

tremendously. 
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Small combinatorial problems can be solved even optimally using various heuristic or 

optimization methods. However, in large-scale combinatorial problems, finding the optimal 

solution may be extremely difficult and time-consuming, if at all possible. Therefore, from a 

pragmatic point of view, the quality of the solution for large-scale problems can be 

determined by the amount by which it is close to the optimal solution, if the optimal solution 

can be determined. 

In this research, the complex nature of time and cost optimization in construction projects 

were investigated, traditional optimization methods for solving TCT problems, such as 

mathematical programming and evolutionary-based methods were examined and their 

inefficiency in solving large TCT problems was verified. Constraint programming techniques 

were, then, employed for solving large TCT problems. Constraint programming proved to be 

the best available method for solving large scale TCT problems. Some of the findings and 

conclusions of the research are as follows: 

 The initial experimentations using mathematical and evolutionary-based optimization 

methods demonstrated that a considerable amount of time is required for these methods 

to find a feasible solution, after which they start to improve the solution. Thus, by 

initializing the decision variables with the most crashed mode of construction for all the 

activities, the experimentations initialized with a feasible solution to eliminate the 

required time of finding the initial feasible solution. 

 The OPL model using constraint programming method, on the other hand, demonstrated 

to be significantly fast in finding the initial feasible solution comparing to traditional 
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optimization methods. The decision variables, therefore, are not initialized in the OPL 

model. Finding a feasible solution and improving it was part of the optimization process 

in the constraint programming experimentations. 

 Modeling with OPL language requires spending considerable amount of time to learn 

and master essential skills of coding in Optimization Programming Language; however, 

the effort well worth the efficiency, speed and robustness of the model. 

 The OPL model is quite flexible in terms of any required modification within the model 

file, as well as, within the external spreadsheet or database. Since actual data is 

separated from the model and is stored in and retrieved from a separate spreadsheet, any 

change in the relationships of activities and modes of construction can straightforwardly 

be implemented. 

 Due to availability of specific keywords in OPL language for modeling of scheduling 

problems, the model is very compact and requires minimum external data. For example, 

instead of defining all the relationships (successors and predecessors) of activities for 

defining a project network, stating only the successors of each activity, is all it requires 

to construct the network of the project.  

 The model can be implemented as an add-on to project management software extracting 

the required data such as the relationships between activities, in addition to, obtaining 

user input such as deadline, penalty, incentive, direct cost and indirect cost in order to 

optimize the project within the project management software. 
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5.2 Contributions 

This research contributes considerably to improve the limitations of solving large-scale 

discrete time-cost trade-off (DTCT) problems. While the solution methods for solving DTCT 

problems in the literature are limited to a few hundred activities (Kandil & El-Rayes, 2005), 

using constraint programming techniques, the number of activities increases to thousands of 

activities without compromising the quality of solution, within an acceptable range of less 

than 15% deviation from the optimal solution. 

The following are a summary of contributions of the research: 

 Developed a flexible time-cost trade-off (TCT) model in Microsoft Excel to be used 

for applying traditional optimization methods such as mathematical and evolutionary-

based methods to solve TCT problems. 

 Investigated various optimization tools for solving large-scale TCT optimization 

problems. Suitable tools for modeling and solving TCT problems were chosen and 

their efficiency in solving large size problems was examined. 

 Verified the inefficiency of traditional optimization methods for solving large-scale 

TCT problems by several experimentations using mathematical and evolutionary-

based optimization methods. 

 Developed a TCT model using Optimization Programming Language (OPL) within 

IBM ILOG Optimization Studio to implement constraint programming techniques for 

solving large-scale TCT optimization problems. 
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 The developed constraint programming TCT model proved its ability to solve very 

large-scale TCT problems. The solutions are satisfactory near optimum (mostly with 

less than 15% deviation from the optimal solution) with an acceptable processing time 

(less than 30 minutes). 

 Compared the results of using constraint programming method with the results of 

traditional optimization methods and verified the superiority of constraint 

programming method in terms of the quality of the solution and the optimization speed 

compared to the traditional optimization method such as mathematical and 

evolutionary-based methods. 

 Concluded on the superiority of the constraint programming technique comparing to 

the traditional optimization methods which was utilized within IBM ILOG 

Optimization Studio. 

5.3 Future Research 

In spite of the significant improvements on the time and cost optimization of large-scale 

construction projects presented in this research, various other enhancements are offered for the 

future extensions of the current research, including: 

 Investigating the performance of other state-of-the-art optimization packages for 

optimization of time and cost in construction projects which have the constraint 

programming capabilities such as Microsoft Solver Foundation.  
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 Extending the number of modes of construction for each activity to more than three 

modes on construction. Consequently, the model would turn into a more complicated 

combinatorial optimization problem which would be harder and more time consuming 

to solve. 

 In this research an Excel-based model was used for implementing mathematical 

programming methods, as well as, evolutionary-based optimization methods for 

solving TCT problems. Mathematical programming methods can also be applied to 

models developed by modeling languages such as OPL and GAMS. Although 

mathematical formulation of DTCT problems in a modeling language is complicated, 

it can be a worthy attempt to compare the results of non-Excel-based mathematical 

model with the results of constraint programming model. 

 Expanding the optimization model to include resource allocation and resource leveling 

constraints, in order to perform resource utilization while optimizing time and cost. 

This would provide a more complete optimization strategy for construction projects. 

 Providing an interface to project management software such as Microsoft Project in 

order to import and export model data to/from project management software directly. 
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Appendix A 

Summary of the Results for Mathematical and Evolutionary-Based Methods 

 

No. of Activities 18 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 110 220 110 330 110 1100

Optimum 

Solution
216,270 322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 110 220 110 330

 Total Cost

(×1000) 
254,620 409,840 433,094 607,435 769,460

Deviation* 18% 27% 0% 42% 19%

Calculation

Time (min)
2 5 30 30 13

Duration

(days)
110 110 220 110 330 110 1100

 Total Cost

(×1000) 
216,270 385,890 478,540 454,198 698,851 1,336,900 2,315,071

Deviation* 0% 20% 11% 6% 8% 14% 7%

Calculation

Time (min)
1.5 14 30 26 30 30 30

Duration

(days)
110 110 220 110 330 110 1100

 Total Cost

(×1000) 
216,270 379,990 513,369 454,198 714,551 1,583,095  2,764,677  

Deviation* 0% 18% 19% 6% 10% 35% 28%

Calculation

Time (min)
1.5 18 30 26 30 30 30
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Appendix A Continued: 

 

1- P: Parallel arrangement of activities; S: Serial arrangement of activities 

* Percentage of deviation of the result from optimal solution 

 

  

No. of Activities 18 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 110 220 110 330 110 1100

Optimum 

Solution
216,270 322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 110 219 110 310 110 1010

 Total Cost

(×1000) 
275,320 438,440 566,640 618,260 1,018,260 1,807,000 3,607,000

Deviation* 27% 36% 31% 44% 57% 54% 67%

Calculation

Time (min)
18 15 1 1 1 21 30

Duration

(days)
110 109 220 110 330 109 1063

 Total Cost

(×1000) 
238,070 373,790 484,640 500,610 700,410 1,801,700  3,087,390  

Deviation* 10% 16% 12% 17% 8% 54% 43%

Calculation

Time (min)
30 30 30 30 30 30 30
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Appendix B 

OPL Model of TCT Problem for IBM ILOG Optimization Studio 

/********************************************* 
 * OPL 12.2 Model 
 * Author: Behrooz 
 * Creation Date: 2011-08-10 at 7:49:08 PM 
 *********************************************/ 
 
using CP; 
 
int Deadline = ...; 
int Penalty = ...; 
int Incentive = ...; 
int IndirectCost = ...; 
 
tuple Activity { 
  key int id; 
  int suc1; 
  int suc2; 
  int suc3; 
} 
{Activity} Activities = ...; 
 
tuple Mode { 
  key int ActivitiyId; 
  key int id; 
  int duration; 
  float cost; 
} 
{Mode} Modes = ...; 
 
dvar interval activity[T in Activities]; 
dvar interval mode[M in Modes] optional size M.duration; 
 
execute { 
  cp.param.FailLimit = 1000000; 
  cp.param.timeLimit= 1800; 
} 
 
minimize (sum (M in Modes) M.cost * presenceOf(mode[M]))* 1000 + 
  (max(t in Activities) endOf(activity[t])) * IndirectCost + 
 (((max(t in Activities) endOf(activity[t])) - Deadline) >= 0 ? 
  ((max(t in Activities) endOf(activity[t])) - Deadline) * Penalty : 
  ((max(t in Activities) endOf(activity[t])) - Deadline) * Incentive) ; 
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subject to { 
  cModes: 
  forall (T in Activities)  
    alternative(activity[T], all(M in Modes: M.ActivitiyId==T.id) mode[M]); 
  cSum: 
    max(t in Activities) endOf(activity[t]) <= Deadline; 
  cSuccessors: 
  forall (Act in Activities){ 
    if (Act.suc1 != 0)  
    endBeforeStart(activity[Act], activity[<Act.suc1>]); 
    if (Act.suc2 != 0)  
    endBeforeStart(activity[Act], activity[<Act.suc2>]); 
    if (Act.suc3 != 0)  
    endBeforeStart(activity[Act], activity[<Act.suc3>]); 
  }   
} 
 
execute { 
  for (var M in Modes) { 
    if (mode[M].present) 
      writeln("Activity " + M.ActivitiyId + " with mode " + M.id + 
              " starting at " + mode[M].start + " ending at " + mode[M].end); 
  } 
  writeln ("Objective value: ", cp.getObjValue()); 

} 
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Appendix C 

 Summary of the Results for Constraint Programming Method 

Using IBM ILOG Optimization Studio 

 

No. of Activities 36 P (1) 36 S (1) 54 P 54 S 180 P 180 S

Project 

Deadline
110 220 110 330 110 1100

Optimum 

Solution
322,540 432,540 428,810 648,810 1,172,700 2,162,700

Duration

(days)
110 220 110 330 110 1100

 Total Cost

(×1000) 
322,540 432,540 428,810 648,810 1,172,700 2,183,700

Deviation* 0% 0% 0% 0% 0% 1%

Calculation

Time (min)
10 10 10 10 13 14

No. of Activities 1800 P 1800 S 3600 P 3600 S 5400 P 5400 S 10800 P 10800 S

Project 

Deadline
110 11000 110 22000 110 33000 110 66000

Optimum 

Solution
10,737,000 21,627,000 21,364,000 43,254,000 31,991,000 64,881,000 63,872,000 129,762,000

Duration

(days)
110 11000 110 22000 110 33000 110 66000

 Total Cost

(×1000) 
10,737,000 23,592,960 22,031,750 47,121,800 33,593,600 73,272,560 82,352,000 146,615,840

Deviation* 0% 9% 3% 9% 5% 13% 29% 13%

Calculation

Time (min)
30 30 30 30 30 30 30 30

9

110

216,270

0%

18

110

216,270
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