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Abstract

Data quality problems such as duplicate records, missing values, and violation of in-

tegrity constrains frequently appear in real world applications. Such problems cost enter-

prises billions of dollars annually, and might have unpredictable consequences in mission-

critical tasks. The process of data cleaning refers to detecting and correcting errors in data

in order to improve the data quality. Numerous efforts have been taken towards improving

the effectiveness and the efficiency of the data cleaning.

A major challenge in the data cleaning process is the inherent uncertainty about the

cleaning decisions that should be taken by the cleaning algorithms (e.g., deciding whether

two records are duplicates or not). Existing data cleaning systems deal with the uncertainty

in data cleaning decisions by selecting one alternative, based on some heuristics, while

discarding (i.e., destroying) all other alternatives, which results in a false sense of certainty.

Furthermore, because of the complex dependencies among cleaning decisions, it is difficult

to reverse the process of destroying some alternatives (e.g., when new external information

becomes available). In most cases, restarting the data cleaning from scratch is inevitable

whenever we need to incorporate new evidence.

To address the uncertainty in the data cleaning process, we propose a new approach,

called probabilistic data cleaning, that views data cleaning as a random process whose

possible outcomes are possible clean instances (i.e., repairs). Our approach generates

multiple possible clean instances to avoid the destructive aspect of current cleaning systems.

In this dissertation, we apply this approach in the context of two prominent data cleaning

problems: duplicate elimination, and repairing violations of functional dependencies (FDs).

First, we propose a probabilistic cleaning approach for the problem of duplicate elimi-

nation. We define a space of possible repairs that can be efficiently generated. To achieve

this goal, we concentrate on a family of duplicate detection approaches that are based on

parameterized hierarchical clustering algorithms. We propose a novel probabilistic data

model that compactly encodes the defined space of possible repairs. We show how to effi-

ciently answer relational queries using the set of possible repairs. We also define new types

of queries that reason about the uncertainty in the duplicate elimination process.
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Second, in the context of repairing violations of FDs, we propose a novel data cleaning

approach that allows sampling from a space of possible repairs. Initially, we contrast the

existing definitions of possible repairs, and we propose a new definition of possible repairs

that can be sampled efficiently. We present an algorithm that randomly samples from this

space, and we present multiple optimizations to improve the performance of the sampling

algorithm.

Third, we show how to apply our probabilistic data cleaning approach in scenarios where

both data and FDs are unclean (e.g., due to data evolution or inaccurate understanding of

the data semantics). We propose a framework that simultaneously modifies the data and

the FDs while satisfying multiple objectives, such as consistency of the resulting data with

respect to the resulting FDs, (approximate) minimality of changes of data and FDs, and

leveraging the trade-off between trusting the data and trusting the FDs. In presence of

uncertainty in the relative trust in data versus FDs, we show how to extend our cleaning

algorithm to efficiently generate multiple possible repairs, each of which corresponds to a

different level of relative trust.
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Chapter 1

Introduction

Data quality is a key requirement for effective data analysis and data processing. In many

situations, the quality of business and scientific data is impaired by several sources of noise

(e.g., heterogeneity in data formats, imperfection of information extractors, and imprecision

of reading devices). Such noise generates many data quality problems (e.g., missing values

[29, 64], violated integrity constraints [9, 19, 57], and duplicate records [33, 65]). Errors in

data impact the effectiveness of many data querying and analysis tasks, and cost enterprises

billions of dollars annually and might have unpredictable consequences in mission-critical

tasks [32]. Databases that experience data quality problems are usually referred to as

unclean/dirty databases. The process of data cleaning refers to detecting and correcting

errors in data. Great efforts have been made to improve the effectiveness and the efficiency

of the data cleaning.

Existing data cleaning techniques perform a number of data modifications (e.g., delet-

ing/inserting tuples and modifying tuple attributes) in order to resolve errors found in a

given database instance. Data cleaning techniques usually depend on a number of heuris-

tics to choose between multiple plausible alternatives to clean the data. For example, most

duplicate elimination systems determine whether two tuples are duplicates or not by mea-

suring the similarity between the tuples, based on some similarity metric, and comparing

the obtained similarity value to a predefined threshold. Due to the noise in real-world data

and the inaccuracy of the similarity measures, such a process is merely a heuristic that
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could result in false decisions. Another heuristic in the context of repairing violations of

integrity constraints is striving for minimality of the number of data changes that are per-

formed to bring the database in accordance with the integrity constraints [19, 57]. Again,

such criteria do not necessarily lead to correct data cleaning decisions.

The role of the heuristics is mainly overcoming uncertainty in the data cleaning process.

This uncertainty is mainly due to the presence of different possible ways to clean the data.

Using some heuristics to pick only one alternative effectively destroys the other plausible

ways to clean the data, which results in a false sense of certainty about the generated

data repairs. For example, reporting two moderately similar tuples as duplicates ignores

the possibility that the two tuples are not duplicates. Also, when repairing an integrity

constraint violation, imposing a minimality constraint over the number of data changes

effectively discards all other alternatives that suggest repairing the violation in a non-

minimal way. The cost of completely discarding other possible ways to clean the data is

twofold:

1. Using a single database repair for answering user queries results in only a subset of

all possible query answers. Also, the obtained query answers are not associated with

any correctness guarantee, which reduces the usability of the query answers.

2. The current cleaning approach is extremely rigid as the generated single repair is

tightly coupled to narrow cleaning specifications. In general, any modifications to

such specifications would require restarting the entire cleaning process from scratch.

In this dissertation, our goal is to prevent loss of potentially interesting repairs that is

found in existing single-repair data cleaning systems. We extend the data cleaning process

to produce multiple data instances that represent possible repairs of the input database.

More specifically, we view the data cleaning process as a random process whose possible

outcomes represent possible repairs of the data.

We contrast the one-shot, deterministic data cleaning approach and the probabilistic

cleaning approach in Figure 1.1. Once we generate all possible repairs, we use probabilistic

2



(a) One-Shot Cleaning

Unclean
Database

Deterministic
Database

Deterministic
Cleaning Procedures

RDBMS

Queries
Deterministic

Results

(b) Probabilistic Cleaning

Unclean
Database

Uncertain
Database

Probabilistic
Cleaning Procedures

Probabilistic RDBMS

Queries
Probabilistic

Results

Single Repair
Single Clean

Instance
Single Clean

InstanceMultiple Repairs

Figure 1.1: One-shot (deterministic) cleaning versus probabilistic cleaning

data management techniques (e.g., [5, 55, 73]) to allow efficient probabilistic query pro-

cessing. That is, queries are processed against all possible repairs in order to obtain all

possible answers based on the possible worlds sematic (refer to Section 2.3.2).

In the following, we list a number of applications that can benefit from probabilistic

data cleaning.

• Capacity planning A typical example of capacity planning is to find the mini-

mum and maximum possible numbers of distinct entities (e.g., clients) in an unclean

database for best-case and worst-case planning. Another example is aggregation

queries, where a user might require probabilistically quantified aggregate values (e.g.,

in the form of confidence intervals), rather than a single value. Such examples can

be easily addressed with the help of probabilistic query answering against the set of

all possible repairs.
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• Handling multiple cleaning requirements. In some scenarios, multiple users of

a database might have different requirements regarding the data cleaning process.

For example, one user might prefer a conservative deduplication strategy (i.e., only

merge tuples that are highly similar), while another user prefers a more aggressive

deduplication strategy (i.e., merge tuples that have moderate similarity). Because the

probabilistic data cleaning generates all possible repairs, it is possible to efficiently

extract the repair(s) satisfying a given requirement without invoking the cleaning

process from scratch.

• Interactive data cleaning. Another possible application is interactive data clean-

ing, where a human guides the data cleaning system by choosing from multiple al-

ternatives to clean the data. Our data cleaning approach can be used to materialize

(parts of) the possible clean instances, and let the user decide which one is the most

accurate.

In the following, we summarize the main challenges that arise during implementing our

probabilistic data cleaning approach.

• Identifying the sources of uncertainty. Each error type requires a specific clean-

ing procedure that depends on various cleaning decisions (e.g., deciding whether two

tuples are duplicate or not, and deciding which attribute should be modified to fix

a violation of an integrity constraint). Identifying the cleaning decisions in a given

cleaning process and their possible outcomes is necessary for modeling the generative

process that enumerates all possible clean instances.

• Identifying a set of possible clean instances. The number of all possible clean

instances is extremely large for many data quality problems. To provide a practical

approach, it is necessary to restrict the space of possible instances to a reasonable

subset by pruning off instances that are unlikely to be correct repairs of data.

• Efficiently generating possible clean instances. We have to ensure that the

computational overhead due to generating multiple clean instances is reasonable,

compared to the existing techniques that generate a single clean instance.

4



ID Name ZIP Birth Date

1 Green 51359 781310

2 Green 51358 781210

3 Peter 30128 870932

4 Peter 30128 870932

5 Gree 51359 19771210

6 Chuck 51359 19460924

Unclean Data

One-shot
Duplicate
Detection

Probabilistic
Duplicate
Detection

{1,2}
{3,4}
{5}
{6}

{1,2,5}
{3,4}
{6}

{1,2}
{3,4}
{5}
{6}

{1,5,6}
{2}
{3,4}

Single Repair Multiple Repairs

Figure 1.2: One-shot duplicate elimination versus probabilistic duplicate elimination

• Compactly storing the clean instances. To reduce the space required for storing

the generated clean instances, we identify and remove redundancy in the clean in-

stances. Because the generated instances represent possible repairs of the same data

instance, there is usually a significant amount of redundancy in the instances, which

reduces the storage requirements.

In this dissertation, we provide three case studies to show how to apply our cleaning

approach. Two prominent data quality problems that are frequently found in practice

are duplicate records, and violations of functional dependencies (FDs). In Section 1.1, we

show how to apply our approach to the problem of duplicate elimination. In Section 1.2, we

discuss probabilistic repairing of FD violations. In Section 1.3, we discuss the probabilistic

cleaning of both data and FDs.

1.1 Duplicate Records Elimination

Duplicate records are tuples in the database that refer to the same real-world entity. The

problem of having duplicate records arises in many scenarios such as data integration, Web

data extraction, and manual data entry. The first task towards cleaning duplicate records

is to determine groups of tuples that are duplicates. The output of this task represents

a clustering (i.e., a partitioning) of the database tuples. The second task of the cleaning

process is to consolidate each group of duplicate tuples into one tuple.
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For example, in Figure 1.2, we show multiple possible clusterings of the input tuples

(represented as sets of tuples IDs). Each cluster is eventually merged into one representative

tuple. In these settings, each possible clustering of tuples represents one way to repair the

data.

The number of all possible clusterings is exponential in the number of tuples. One

method to reduce the number of possible clusterings is by selecting a parameterized clus-

tering algorithm, and only generating the clusterings that are valid outcomes of the selected

algorithm for some parameter value. For a certain class of clustering algorithm, namely

hierarchical clustering algorithms, it is possible to efficiently obtain the set of possible

clusterings by executing the clustering algorithm only once.

In order to compactly store the generated clean instances, we develop a probabilistic

data model that stores distinct tuples that appear in the generated instances, and keeps

the lineage information of each tuple such as the parameter values generating this tu-

ple. Moreover, we show how to use the generated clean instances to answer user queries

probabilistically, and we introduce new query types that reason about the uncertainty in

the generated instances. We show how to implement probabilistic query processing using

a relational DBMS by rewriting user queries to take into consideration the existence of

multiple possible instances.

1.2 Repairing Functional Dependency Violations

Functional dependencies (FDs) represent a prominent class of integrity constraints that are

used for capturing data semantics. An FD X → Y , where X and Y are sets of attributes

in a given relation, indicates that any two tuples that have equal values for attributes in X

must have equal values for attributes in Y . An example FD in Figure 1.3 is ZIP→State,

City, which indicates that any tuple with the same ZIP code must have the same city and

the same state.

Violations of FDs indicate deviations from the data semantics and should be rectified

through a data cleaning algorithm. In practice, FDs tend to be violated after integrating

heterogeneous data or when extracting data from the Web. Even in a traditional DBMS,

6



SSN Name City State ZIP Functional Dependencies:

Input Instance

t1 72163 John Smith Chicago IL 90101
t2 87991 Mark Green LA CA 90065

t3 87891 Mark Green Los 
Angeles CA 90065

Functional Dependencies:
SSN → Name, City, State, ZIP
Name → SSN, City, State, ZIP
ZIP → State, City

Angeles
t4 23212 Mary Clarke LA CA 90101

Repair 1 Repair 2
SSN Name City State ZIP
72163 John Smith LA CA 90101
87991 Mark Green LA CA 90065

SSN Name City State ZIP
72163 John Smith Chicago IL ?
87891 Mark Green LA CA 90065

Repair 1 Repair 2

87991 Mark Green LA CA 90065

87891 ? Los 
Angeles CA ?

23212 Mary Clarke LA CA 90101

87891 Mark Green LA CA 90065

87891 Mark Green LA CA 90065

23212 Mary Clarke LA CA 90101

Figure 1.3: An example of an unclean database and possible repairs

unknown FDs may be hidden (i.e., not explicitly captured in schema), or the database

administrator may choose not to enforce some FDs for various reasons. For example,

Figure 1.3 shows a database instance and a set of FDs, some of which are violated (e.g.,

tuples t2 and t3 violate ZIP→City, tuples t2 and t3 violate Name→ SSN,City, and tuples

t1 and t4 violate ZIP → State,City).

There is often a very large number of ways to modify a table so that it satisfies all the

required FDs. One way is to delete a number of offending tuples such that the remaining

tuples satisfy all FDs [23, 24]. For example, we can repair the relation instance in Figure 1.3

by deleting t1 and t3. However, deleting an entire tuple may result in loss of clean infor-

mation if only a subset of its attribute is incorrect. Alternatively, we can modify selected

attribute values [19, 57]. For example, Figure 1.3 shows two possible repairs obtained by

modifying some attributes values (shown as shaded cells). Question marks indicate that a

tuple attribute (i.e., a cell) can be modified to one of several values in order to satisfy the

FDs. For example, attribute ZIP of tuple t1 in Repair 2 can be changed to any ZIP code

as long as it is not equal to 90065 or 90101.

Independently of how we choose to repair violations, two cleaning approaches have ap-

peared in previous work. One is to produce a single repair with (approximately) minimum
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number of deletions or attribute modifications (e.g., [19, 57]). For instance, we might prefer

Repair 2 in Figure 1.3 because it makes fewer modifications. Another approach, namely

consistent query answering, computes answers to selected classes of queries that are valid

in every possible “reasonable” repair [9, 23, 24, 42, 79, 80]. In Figure 1.3, a consistent

answer of the query that selects all tuples with ZIP code 90101, with respect to the two

illustrated repairs, is {t4}.

Although consistent query answering acknowledges the existence of multiple possible

clean instances, we still consider it as destructive data cleaning. The reason is that consis-

tent query answering discards alternatives that are not completely certain. That is, a tuple

that only appears in a subset of all possible repairs cannot appear in any query results;

query answers are only derived from tuples that appear in every possible repair (for some

definition of possible repairs). Also, in consistent query answering, possible repairs are

not materialized. Instead, consistent answers are directly derived from the input, unclean

database (e.g., through query rewriting). Such approach is not suitable for several appli-

cations such as interactive data cleaning, where a user might need to explore concrete data

repairs.

The space of possible FD repairs is very large. It follows that generate all repairs is not

feasible. Instead, we aim at finding a meaningful subset of repairs that can generated in

an efficient way. In this work, we introduce a space of repairs that change minimal sets of

tuple attributes (cells). That is, for each repair in the space that changes a set of cells C,
there does not exist any other repair that changes a strict subset of C.

In order to explore the space of possible repairs, we develop a randomized cleaning

algorithm that generates a sample of clean instances from the described space. Once a

sample of database instances is generated, uncertain database management systems such

as Monte Carlo Database System (MCDB) [55] can be used for storing the sampled clean

instances, and for efficiently answering user queries against the clean instances.
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1.3 Repairing Unclean Data and Unclean FDs

Most of the existing work on FD-driven data cleaning assumes that the given FDs are

completely correct and modifies the data, in a minimal and non-redundant way, to be

consistent with the FDs [15, 19, 27, 57]. However, there are many cases in which the

FDs themselves are inaccurate. One cause, for example, is domain evolution, which occurs

when the semantics of the data change over time [78]. Examples of domain evolution can

be found in the context of database integration and data federation, where the semantics

of multiple databases might clash and need readjustment in order to hold globally. Similar

problems may arise when organizations merge or split departments, eventually leading to

changes in the data semantics. Another notable example is schema evolution of Web data

such as Wikipedia (more than 240 schema versions in the last 6 years) [28].

In the following, we show an example of unclean data and unclean (i.e., inaccurate)

FD.

Example 1. Figure 1.4 depicts a relation that holds employee information within an insti-

tute. Data are collected over time from various sources (e.g., Payroll records, HR) and thus

might contain inconsistencies due to duplicate records. Suppose that we initially assert the

FD Surname, GivenName → Income. That is, whenever two tuples agree on attributes

Surname and GivenName, they must agree on Income. This FD may hold for Western

names, in which surname and given name uniquely identify a person in most cases, but

not for Chinese names (e.g., tuples t6 and t9 probably refer to different persons).

The instance in Figure 1.4 violates the given FD due to errors in data and due to

using an imprecise FD. One way to clean the data is to first change the FD to Surname,

GivenName, BirthDate → Income and then modify attribute Income of t5 (or t3) to be

equal to that of t3 (respectively, t5).

We propose a framework that simultaneously repairs the provided FDs, and obtains

clean instances of the database. More specifically, a repair represents a pair of a data

instance and a set of FDs that are satisfied by the data instance. Clearly, the space of

possible repairs in this context is much larger than the space of possible repairs of FD

violations when the FDs are fixed. In order to restrict the possible repairs to a reasonable
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GivenName Surname BirthDate Gender Phone Income

t1 Jack White 5 Jan 1980 Male 923‐234‐4532 60k

t2 Sam McCarthy 19 Jul 1945 Male 989‐321‐4232 92k

t3 Danielle Blake 9 Dec 1970 Female 817‐213‐1211 120k

t4 Matthew Webb 23 Aug 1985 Male 246‐481‐0992 87k

t5 Danielle Blake 9 Dec 1970 Female 817‐988‐9211 100k

t Hong Li 27 Oct 1972 Female 591‐977‐1244 90kt6 Hong Li 27 Oct 1972 Female 591‐977‐1244 90k

t7 Jian Zhang 14 Apr 1990 Male 912‐143‐4981 55k

t8 Ning Wu 3 Nov 1982 Male 313‐134‐9241 90k

t9 Hong Li 8 Mar 1979 Female 498‐214‐5822 84k

t10 Ning Wu 8 Nov 1982 Male 323‐456‐3452 95k

Figure 1.4: An example of an unclean database of persons

subset, we leverage the concepts of minimality of changes and the relative trust between

data and FDs, which are described as follows.

• Minimality of Changes. The amount of changes made to the data and the FDs

in order to obtain a repair should be minimum, based on some metrics that quantify

the changes in data and FDs.

• Relative Trust in Data versus FDs. We incorporate prior knowledge about

which of data and FDs is cleaner in order to concentrate on repairs that are biased

towards modifying either the data or the FDs while obtaining a repair. In Example 1,

a repair that trusts the FD more than data could change attribute Income of tuples

t5, t6 and t10 to be equal to the income of t3, t9 and t8, respectively, while keeping

the FD unchanged. A repair that focuses on repairing the FD, while trusting the

data, might only change the FD to Surname, GivenName, Birthdate, Phone →
Income. We quantify the relative trust in Data versus FDs by imposing a constraint

on the amount of allowed data changes. Allowing a relatively small number of data

changes reflects higher trust in data, and vice versa.

In order to specify the relative trust in data versus FDs, it is necessary to estimate the

amount of errors in data (i.e., the maximum number of allowed changes). Unfortunately,
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the amount of errors in data is precisely known in practice. However, it might be easier

to specify a range of possible values for the amount of data errors. Our approach enables

efficiently generating all pairs of data and FDs repairs that correspond to the given possible

values of the relative trust.

1.4 Contributions and Dissertation Outline

In this dissertation, we provide a probabilistic data cleaning approach that leverages un-

certainty in the data cleaning process. The outcome of our cleaning approach is a set of

possible repairs. We mainly study how to efficiently generate a set of possible repairs from

a space of reasonable repairs. We apply the concept of probabilistic data cleaning in the

context of two prominent data quality problems: duplicate elimination and violations of

functional dependencies. In the following, we provide more details about our contributions.

• Probabilistic duplicate detection. We introduce a probabilistic data model for

representing the possible repairs generated by any fixed parameterized clustering

algorithm. We show how to modify hierarchical clustering algorithms to efficiently

generate the possible repairs. We describe how to evaluate relational queries under

our model and we propose new query types that reason about uncertainty in the

cleaning process. Finally, we show how to integrate our approach into an RDBMS

to allow storage of possible repairs and to perform probabilistic query processing

efficiently.

• Sampling repairs of FD violations. We introduce a novel notion of possible

repairs that relaxes the minimality constraint on the number of data changes. We give

an algorithm for generating a random sample of repairs from the introduced space.

We show how to improve the efficiency of the sampling algorithm by partitioning the

input instance into blocks that can be repaired independently. Finally, we describe

how to extend our algorithm to prevent certain parts of the data from being changed

during the data cleaning (e.g., when completely trusting parts of the database).
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• Probabilistic cleaning of data and FDs. We introduce cardinality-based metrics

to measure changes of FDs. We define minimality criteria based on dominance with

respect to changes in data and FDs. We present a cleaning approach that satisfies

the objectives described in Section 1.3, given a single value for the relative trust. We

show how to extend our algorithm to allow a range of values.

The remainder of the dissertation is organized as follows. In Chapter 2, we list the

notations used throughout the dissertation, and we give an overview of the related work.

In Chapter 3, we present our approach of probabilistic duplicate elimination. In Chapter 4,

we describe our approach to sampling repairs of FD violations. In Chapter 5, we show how

to apply our uncertain cleaning approach to simultaneously repair data and FDs when

both are unclean. Finally, in Chapter 6, we conclude the dissertation with final remarks

and directions for future work.
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Chapter 2

Background and Related Work

In this chapter, we provide the necessary preliminaries, and we overview the related work.

In Section 2.1, we present definitions and notations that are used throughout the dis-

sertation. In Section 2.2, we discuss data quality problems, we overview previous data

cleaning techniques, and we highlight the underlying uncertainty in repairing each type of

data errors. In Section 2.3, we give an overview of probabilistic query answering, and the

prominent work in this area.

2.1 Preliminaries

A database schema is a set of k relations R1, . . . , Rk. The schema of a relation R consists of

a number of attributes, denoted (A1, . . . , A|R|), where |R| denotes the number of attributes

in relation R. We denote by Dom(A) the domain of an attribute A. A database instance

is a set of relation instances I1, . . . , Ik of the database relations R1, . . . , Rk. An instance

I of a relation R consisting of attributes (A1, . . . , A|R|) is a set of tuples, each of which

belongs to the domain Dom(A1)× · · · ×Dom(A|R|).

We refer to an attribute A ∈ R of a tuple t ∈ I as a cell, denoted t[A]. We denote by

I(t[A]) the value of a cell t[A] in a relation instance I. When it is clear from the context
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which instance we refer to, we omit the mention of instance I and we refer to the value of

t[A] in I as simply t[A].

An integrity constraint (IC) is a condition that is specified on a database schema, and

restricts the data that can be stored in an instance of the database [68]. We denote by Σ

a set of integrity constraints (ICs) that are defined on the database schema. We denote

by |Σ| the number of ICs in Σ. We say that instance I satisfies Σ, written I |= Σ, iff the

tuples in I do not violate any IC in Σ.

For example, one class of integrity constraints includes functional dependencies (FDs),

which are defined as follows. For two attribute sets X, Y ⊆ R, a functional dependency

X → Y holds on an instance I, denoted I |= X → Y , iff for every two tuples t1, t2 in I,

t1[X] = t2[X] implies t1[Y ] = t2[Y ].

2.2 Data Cleaning

Quality of data has a significant impact on usability of data and the credibility of the

information derived from the data. There are several causes of data quality degradation

such as integration of heterogenous data, noisy sensors, and human errors. Forms of data

quality problems include missing attribute values [29, 64], violations of integrity constraints

[9, 19, 57], existence of duplicate records [33, 65], heterogenous data formats, and syntactic

errors in attribute values [64]. The main goal of a data cleaning process is to remove data

errors and thus improve the quality of data. In the following, we discuss two prominent

data quality problems: duplicate records and violations of integrity constraints.

2.2.1 Duplicate Records

Duplicate records are database tuples that refer to the same real world entity. Duplicate

tuples do not have to be identical. However, duplicate tuples are expected to exhibit a high

degree of similarity. The process of duplicate elimination (also known as deduplication,

record linkage, entity resolution, and object identification) is defined as identifying groups

of duplicate tuples, and consolidating the tuples in each group into one tuple.
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Several duplicate elimination systems (e.g., [43, 59]) split the process of deduplication

into three main tasks:

1. Tuple matching. to obtain pairs of tuples that are similar.

2. Clustering tuples. to partition the tuples into disjoint clusters, each of which

represents a real-world entity.

3. Coalescing members of each cluster. to consolidate each cluster of tuples into

one representative tuple.

In the following, we describe each task in more details. Matching tuples refer to obtain-

ing pairs of tuples that have high similarity, based on some similarity metric. The output

of the tuple matching step can be represented by a weighted undirected graph whose set of

nodes represents the set of tuples, and each edge connects two similar tuples. The weight

of each edge reflects the degree of similarity between the edge nodes. Different similarity

measures have been employed in deduplication systems such as Euclidean distance, edit

distance, cosine similarity, Jaccard distance and Q-grams (refer to [33] for a comprehensive

survey of similarity metrics). In [17], a new similarity metric has been proposed to take into

account the relationships between entities in different database relations. For example, to

compute the similarity between two authors, it is beneficial to compute the set of common

co-authors. If the number of common co-authors is significant, and the authors’ names are

similar, most likely the two authors are duplicates.

It is expected that most of the tuple pairs are not similar. Several optimizations have

been proposed to leverage such a fact in order to avoid computing the similarity between

all pairs of tuples. For example, one optimization method introduced in [63] is to divide

data tuples into overlapping canopies, where each canopy includes all tuples that have

non-zero chance of being duplicates. Canopies are constructed by clustering tuples based

on a relatively simple similarity metrics that is cheap to compute. Other optimization

techniques were experimentally evaluated in [11].

The second task in the duplicate elimination process is clustering tuples such that each

cluster of tuples refers to a single real-world entity. Performing the clustering task is nec-

essary due to the possibility of having conflicts in tuple similarities. That is, the obtained
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tuple matchings might not represent a transitive relation (e.g., tuple t1 is deemed similar

to t2, based on some similarity metric, and tuple t2 is similar to t3, while t1 is not similar

to t3). In general, clustering algorithms aim at producing a clustering that maximizes

the similarity between all pairs of tuples belonging to the same cluster (i.e., intra-cluster

similarity), and minimizing the similarity between all pairs of tuples belonging to differ-

ent clusters (i.e., inter-cluster similarity). Current duplicate elimination systems exploit

classical clustering algorithms such as greedy agglomerative clustering, star-clustering, cut

clustering, Markov clustering and correlation clustering (refer to [50] for a comprehensive

comparison between clustering algorithms in the context of duplicate record elimination).

Some specialized clustering algorithms have been designed for the problem of duplicate

elimination (e.g., [20]). The algorithm proposed in [20] is based on two clustering criteria:

(1) compactness of duplicates (i.e., duplicate tuples should be the k-nearest neighbors of

each other), and (2) sparseness of the duplicates’ neighborhood (i.e., the space surrounding

the duplicate tuples should be relatively empty). The algorithm performs the clustering

through a series of SQL queries, which capitalize on the data management capabilities

provided by RDBMSs to speed up the clustering.

In [7], a clustering algorithm is proposed to allow specifying a set of hard constraints

(e.g., tuples t1 and t2 must be clustered together, while t3 and t4 must be in different

clusters), in addition to soft constraints each of which is associated with a cost. Hard

and soft constraints are described using a Datalog-style language, which is a subclass of

first-order logic. The authors proposed a randomized approximate algorithm, where the

approximation factor is three (in expectation). The core of the algorithm is based on

iterative hardening of soft edges (i.e., converting soft edges to hard edges), and using the

transitive closure property to deduce other hard edges.

The third step in the process of duplicate elimination is to merge each cluster of tuples

into one tuple. Merging is usually done by applying domain-specific rules. For example, in a

database of publication records, longer author names are usually used in the representative

tuples [43]. Other examples are using the attribute value that appears in the majority of

duplicates, and averaging numerical attributes across duplicates.
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Examples of Duplicate Elimination Systems

Several end-to-end duplicate elimination systems have been proposed to address different

goals. For example, AJAX [43] is an extensible framework that separates the logical and

physical aspects of the data cleaning process. The logical view specifies the design of the

data cleaning workflow, which consists of multiple cleaning operators, while the physical

view specifies the algorithms that implement the cleaning operators. Logical operations

include the typical matching, clustering and merging tasks, in addition to other data

preparing tasks expressed as SQL queries. Once the logical workflow is specified by the

user, the system selects the best algorithm to implement each logical operator in order to

reduce the overall cost.

Another open-source deduplication system is Febrl (Freely Extensible Biomedical

Record Linkage) [26]. The system mainly focuses on deduplication of electronic medi-

cal records. However, Febrl can be used in other domains as well, once the user specifies

the details of the deduplication job (e.g., which similarity metrics to use). The system is

divided into multiple stages, including standardization of names and addresses, partition-

ing the data into disjoint blocks, and computing the pairwise similarities between tuples in

each block. Unfortunately, Febrl does not cluster the tuples, or merge the duplicate tuples.

Other deduplication systems include Potter’s Wheel [69], which is an interactive data

cleaning system that integrates data transformation and error detection using spreadsheet-

like interface, and IntelliClean [59], which is a rule-based duplicate elimination system.

Uncertainty in Duplicate Elimination

Each task of the deduplication process involves a degree of uncertainty. For example,

in the tuple matching task, there exists a large number of similarity metrics (e.g., edit

distance, Q-gram distance, Jaro distance [33]) that measure the similarity of two values that

belong to the same domain. Choosing the most accurate metric for a given domain is not

straightforward. Also, it is difficult to interpret the values resulting from different similarity

metrics. This is particularly true for similarity metrics that return a non-normalized (i.e.,

absolute) values such as the edit distance metric, which computes the number of character
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insertions, deletions and updates that makes two strings identical.

The process of aggregating attribute similarities to obtain similarity between pairs of

tuples is not straightforward either. Several supervised and unsupervised machine learning

classifiers have been used in this process such as Näıve Bayes and Support Vector Machine

(refer to [33] for a survey of such methods). To overcome the uncertainty in the matching

process, several proposals define an uncertainty region, in which the matching process

cannot make a clear distinction between duplicates and non-duplicate tuples decision [33,

38, 43, 75]. Tuple pairs that belong to the uncertainty region are usually forwarded to a

human in form of exceptions.

A related work that provides a probabilistic record-linkage approach has been discussed

in [76]. The goal is to integrate two lists of items that possibly contain duplicate references

to the same real world entities. The authors presented an XML-based uncertainty model to

capture multiple possibilities concerning the output list. However, the proposed algorithm

cannot be used for deduplicating a single list that contains several duplicate references, a

situation that is frequently seen in practice.

The second task, which clusters tuples into groups of duplicates, has several sources of

uncertainty. First, choosing the right clustering algorithm is not straightforward. Hassan-

zadeh et al. have provided a comprehensive comparison of different clustering algorithm

[50]. However, deciding which algorithm should be used heavily depends on many factors

such as the performance requirements, quality requirements, and most importantly, the

characteristics of the data (e.g., the distribution of duplicates, and the amount of dupli-

cates in data). Another common challenge in the clustering task is identifying the optimal

settings of the algorithm parameters that obtain the highest accuracy. For example, greedy

agglomerative clustering algorithms use a threshold on the pairwise similarity of clusters

to determine when to stop the clustering process [17]. In this case, the user is forced to

pick a single parameter value.

The third step of the deduplication process, which is merging clusters of tuples, involves

a number of uncertain decisions, such as choosing the right criteria to resolve conflicts in

tuple attributes. In [6], Andritsos et al. have proposed an approach to address uncertainty

in the merging phase. In this approach, tuples are assumed to be already clustered into
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Figure 2.1: Taxonomy of Integrity Constraints

disjoint groups of duplicate records. The representative tuple associated with each cluster

is assumed to be one of the cluster members. Furthermore, each tuple within a cluster

is associated with the probability of being the representative tuple of the cluster. The

authors provided a method to rewrite user queries in order to return all possible answers,

along with their probabilities.

2.2.2 Violation of Integrity Constraints

Integrity constraints (ICs) are widely used for representing the semantics of data. Viola-

tions of ICs usually indicate drifting from the correct data semantics, which suggest that

data is unclean. In this context, the process of data cleaning refers to modifying the data

to bring it into accordance with the ICs. Prominent examples of ICs include key con-

straints, functional dependencies (FDs), inclusion dependencies (INDs), and multivalued

dependencies (MVDs) [3, 35]. Such constraints belong to more expressive, larger classes

of constraints such as tuple-generating-dependencies (TGDs) [67], and denial constraints

[45]. Recently, several extensions to functional dependencies have been proposed such as
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conditional functional dependencies (CFDs) [18], and matching dependencies [36]. Other

higher-order constraints that include aggregate functions are referred to as aggregate con-

straints [40, 41]. Figure 2.1 provides taxonomy of several integrity constraints that are

frequently used in the data cleaning literature. Each arrow in Figure 2.1 indicates that

the target class of constraints is a specialization (i.e., a subclass) of the source class of

constraints. For example, multivalued dependencies are a subclass of join dependencies.

In the following, we give more details about each class of constraints.

A tuple-generating-dependency (TGDs) indicates that if some tuples in the database

satisfy certain equalities, then some other tuples (possibly with some unknown attributes)

must also exist in the database instance [67]. Formally, a TGD is defined as follows.

∀x
(
ϕ(x)→ ∃y ψ(x, y)

)
where x and y are vectors of variables, and ϕ and ψ are conjunctions of relations in

database. A TGD expresses the condition that, if certain tuples satisfy ϕ, then certain

other tuples must be present as well such that ψ is also satisfied.

For example, consider a database consisting of three relations: Mother(MID,CID), which

states that MID is the mother of CID, Father(FID,CID), which states that FID is the father

of CID, and Sibling(PID1,PID2) indicating that PID1 is a sibling of PID2. An example

TGD is as follows.

∀x, y
(
Sibling(x, y)→ ∃z(Mother(z, x) ∧ Mother(z, y))

)
A subclass of TGDs in which the formula ψ does not contain any existentially quantified

variables is called full TGDs. That is, a full TGD is a formula of the form ∀x
(
ϕ(x)→ ψ(x)

)
.

One example of a full TGD is as follows.

∀x, y, z
(
Mother(x, y) ∧ Mother(x, z)→ Sibling(y, z)

)
Inclusion dependencies (INDs) is a subclass of TGDs with ϕ and ψ consisting of a sin-

gle relation each. Thus, an inclusion dependency has the form ∀x
(
R1(x) → ∃yR2(x, y)

)
.
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Another form of an inclusion dependency is R1[X] ⊆ R2[Y ], where X is a subset of at-

tributes in R1 and Y is a subset of attributes in R2. R1[X] ⊆ R2[Y ] indicates that values

of attributes X in an instance of relation R1 must be a subset of values of attributes Y in

an instance of relation R2. Clearly, the numbers of attributes in X and Y are equal. One

example of inclusion dependencies is as follows.

∀x, y
(
Sibling(x, y)→ ∃z Mother(z, x)

)
which can be also be specified in the form of Sibling(PID1) ⊆ Mother(CID).

Another subclass of TGDs is join dependencies. Given an instance I of a relation R, we

say that I satisfy the join dependency ./ (X1, . . . , Xn), where Xi ⊆ R for i ∈ {1, . . . , n},
iff I = ./ni=1 ΠXi

(I) (i.e., the instance I is equal to the result of joining the projections of I

on Xi for i ∈ {1, . . . , n}). A subclass of join dependencies is the multivalued dependencies

(MVDs), which are join dependencies with exactly two sets X1 and X2. An MVD, written

X � Y , that is defined over a relation R represents the following condition: for each pair

t1, t2 of tuples of an instance I of R such that t1[X] = t2[X], there is a tuple t in I where

t[X] = t1[X] = t2[X], t[Y ] = t1[Y ] and t[R \XY ] = t2[R \XY ]. The MVD X � Y is thus

equivalent to the join dependency ./ (XY,R \ Y ).

A large class of integrity constraints is denial constraints [45] (Figure 2.1). Denial

constraints indicates that a set of tuples that satisfies certain conditions cannot exist in

the database. Formally, a denial constraint is defined as follows.

∀x
(
ϕ(x)→ ψ(x)

)
where ϕ is a conjunction of relations, and ψ is a Boolean expression consisting of comparison

atoms (e.g., xi = xj, xi 6= xj, xi < xj, and xi ≤ xj). An example denial constraint is as

follows.

∀x, y
(
Mother(x, y)→ x 6= y

)
A subclass of denial constraints is equality-generating-dependencies (EGDs), where ψ

is restricted to equality comparison. An example of EGDs is as follows.
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∀x, y, z
(
Mother(x, y) ∧ Mother(z, y)→ x = z

)
A prominent subclass of EGDs is functional dependencies (FDs). An FD, written

X → Y , that is defined over a relation R indicates that ti[X] = tj[X] → ti[Y ] = tj[Y ].

For example, one FD is CID → MID that is defined on relation Mother. In fact this FD is

equivalent to the EGD ∀x, y, z
(
Mother(x, y) ∧ Mother(z, y)→ x = z

)
.

A recent generalization of FDs, named conditional functional dependencies (CFDs), has

been proposed in [18]. CFDs are regular FDs that are defined only on a subset of tuples

that match a certain pattern. More specifically, a CFD is defined as a pair (X → A, tc),

where X → A is an FD, and tc is a (pattern) tuple whose attributes are XA. Each

attribute of tc can be either a constant, or a wildcard ’ ’. An instance tuple t matches

tc on X, written t[X] � tc[X], iff ∀B ∈ X(tc[B] = t[B] ∨ tc[B] = ’ ’). CFDs are

divided into two variants: variable CFDs, where tc[A] = ’ ’, and constant CFDs, where

tc[A] is a constant. A variable CFD (X → A, tc) indicates that for any two tuples t1, t2,

t1[X] = t2[X] � tc[X] → t1[A] = t2[A]. A constant CFD (X → A, tc) indicates that for

each tuple t, t[X] � tc[X]→ t[A] = tc[A].

For example, consider a relation Address(StreetNumber, StreetName, City,

Country, PostalCode). A constant CFD defined over relation Address is (PostalCode→
City, (N2L3G1, Waterloo)), which indicates that all tuples with PostalCode = N2L3G1,

attribute City must be equal to Waterloo. An example of a variable CFD on relation

Address is (Country, PostalCode → StreetName, (UK, ’ ’, ’ ’)), which indicates

that for pairs of tuples with Country = UK and have equal values of PostalCode, attribute

StreetName must be equal.

CFDs represent a subclass of denial constraints. For example, the CFD (Country,

PostalCode → StreetName, (UK, ’ ’, ’ ’)) can be rewritten as follows.

∀x, y(Address(x1, x2, x3, x4, x5) ∧ Address(y1, y2, y3, y4, y5)

→ x4 6= UK ∨ y4 6= UK ∨ x5 6= y5 ∨ x2 = y2)

Another extension of functional dependencies has been proposed in [36], named match-

ing dependencies (MDs), where the equality constraints that appear at the left-hand-side
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and the right-hand-side of FDs can be replaced by similarity constraints. That is, a match-

ing dependency is defined as a pair (X → Y,< ls, rs >), where X and Y are sets of at-

tributes, and ls and rs are real values. A database instance satisfies (X → Y,< ls, rs >)

iff for all two tuples with similarity of X above ls, similarity of Y is above rs. Similarity

of attribute sets X and Y are computed based on some predefined similarity metrics. An

example of an MD defined on relation Address is (StreetName → City, <0.8,0.7>),

which indicates that whenever two tuples have similar values of attribute StreetName

(with a similarity score above 0.8), they must have similar values for attribute City (with

a similarity score above 0.7).

Note that matching dependencies can be used for expressing duplicate detection rules

(refer to Section 2.2.1). That is, a matching dependency (X → R,< ls, 1.0 >) can be

used for specifying which tuples are duplicates based on pairwise similarity of attributes

X. However, matching dependencies cannot be used for specifying how tuples should be

clustered together in presence of conflicts in similarities (cf. Section 2.2.1).

Repairing FD Violations

We focus on repairing violations of functional dependencies. Given a database instance

that violates a set of FDs, there are mainly two methods to repair the database: deleting

tuples from the database [23, 24], or altering tuple attribute values [19, 57]. Note that

inserting new tuples cannot resolve FD violations (or, more generally, any denial constraint

violations). Altering tuples is preferred over deleting tuples as it minimizes the amount of

lost information. That is, deleting tuples might result in removing attributes that are not

involved in any violation.

Several approaches aim at repairing violations of FDs by changing the minimum number

of tuple attributes (cells) [19, 57]. This problem is proved to be NP-hard, and several

heuristics have been proposed to obtain a repair efficiently. For example, in [19], an iterative

algorithm is proposed to fix violations of functional dependencies (FDs) and inclusion

dependencies (INDs). The proposed algorithm fixes FD violations by repeatedly selecting

an FD violation, and modifying the right-hand-side attribute of the violating tuples to

be equal. In order to guarantee termination, the algorithm memorizes the sets of cells
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A B C D
t1 1 1 5 9
t2 1 2 7 4
t3 2 3 5 5
t4 3 4 8 0

=
{AB,
CB,
BD}

A B C D
t1 1 1 5 9
t2 1 1 7 4
t3 2 3 5 5
t4 3 4 8 0

A B C D
t1 1 3 5 9
t2 1 3 7 4
t3 2 3 5 5
t4 3 4 8 0

A B C D
t1 1 3 5 9
t2 1 3 7 9
t3 2 3 5 9
t4 3 4 8 0

(a) (b)

(c)(d)

Fix the violation of
AB by t1 and t2

Fix the violation of
CB by t1 and t3

Fix the violation of
BD by t1, t2, and t3

Figure 2.2: An example illustrating execution of the cleaning algorithm in [19]

that have been equated, and it ensures that their values remain equal throughout the

algorithm execution. This is achieved by defining and maintaining an equivalence relation

on the database cells such that cells belonging to the same equivalence class must be

equal. Initially, each cell in the database is assigned to a separate equivalence class. When

repairing a violation of an FD X → A involving two tuples t1 and t2, the algorithm merges

the equivalences classes of t1[A] and t2[A], and changes the values of all cells in the resulting

equivalence class to be equal.

Figure 2.2 shows an example of executing the cleaning algorithm in [19]. Cells that

are changed during the algorithm execution are shaded. Equivalence classes are shown as

rectangles (we omit rectangles of singleton classes). Figure 2.2(a) shows the input instance

and the given FDs. Initially, the defined equivalence relation places every cell in a separate

(singleton) equivalence class. The algorithm selects the violation involving FD A→ B and

tuples t1 and t2. To fix this violation, the algorithm merges the equivalence classes of the
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right-hand-side cells t1[B] and t2[B], and assigns the value 1 to all cells in the resulting

equivalence class. The resulting instance is shown in Figure 2.2(b). The next violation

involving C → B and tuples t1 and t3 is resolved in Figure 2.2(c), and finally the violation

of B → D by tuples t1, t2 and t3 is resolved in Figure 2.2(d). Note that, after changing a

cell, the list of FD violations can possibly change (i.e., new violations might appear, and

existing violations might disappear). For example, the third violation involving B → D

and tuples t1, t2, t3 did not initially exist; it was created as a result of changing t1[B] and

t2[B].

In general, the number of equivalence class merges is less than the number of tuples

multiplied by the number of attributes that appear in the right-hand-sides of FDs. This

guarantees that the algorithm finds a repair in polynomial time. The resulting repair,

however, might contain a number of cell changes that is not the minimum across all possible

repairs. This is due to using a step-wise greedy algorithm. In fact, we show in Section 4.5

that, for some data instances and FD sets, cells that are changed by the algorithm can be

reverted back to their original value without causing FD violations.

The approach proposed in [27] extends the algorithm in [19] to repair violations of

conditional functional dependencies (CFDs).

In [57], an algorithm was proposed to obtain a single repair with approximately the

minimum number of cell changes, where the approximation factor depends only on the set

of FDs and the relation schema. The algorithm is based on representing FD violations as

a hyper-graph, which is a generalization of a graph, where an edge can connect any number

of vertices. Vertices of the hyper-graph are cells of the instance, and each hyper-edge is

a set of cells involved in a violation. The algorithm obtains an approximate minimum

vertex cover, and modifies the cells in the vertex cover to repair all violations. A second

step of the algorithm is to identify newly generated violations (due to changing cells), and

performs a bounded number of cell changes to repair them.

We show an example of executing the algorithm in [57] in Figure 2.3. Hyper-edges are

shown as dotted shapes in the figure. For clarity of presentation, we show two hyper-edges

in Figure 2.3(a), and one hyper-edge in Figure 2.3(b). In this example, each hyper-edge

consists of four cells. Assume that the obtained vertex cover consists of cells t2[B] and
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Clean

A B C D

t1 2 3 5 9

t2 1 1 5 9

t3 1 3 7 4

=
{AB,
CB,
BD}

(a)

A B C D

t1 2 3 5 4

t2 1 3 5 9

t3 1 3 7 4

(c)

A B C D

t1 2 3 5 9

t2 1 1 5 9

t3 1 3 7 4

A B C D

t1 2 3 5 4

t2 v1 v2 v3 9

t3 1 3 7 4

(d)

(b)

Vertex Cover =
{t2[B], t1[D]}

Figure 2.3: An example of execution of the algorithm in [57]. (a), (b) the initial conflict

hyper-graph, (c) the instance after the first step (d) the instance after the second step

t1[D]. In the first step of the algorithm, all cells in the vertex cover are changed as shown

in Figure 2.3(c). Changing t2[B] to 3 creates two new violations of B → D by t1 and t2, and

by t2 and t3. The algorithm fixes the newly generated violations by modifying attributes

that appear in the left-hand-sides of FDs until no violation can be found. To guarantee

termination of the algorithm, modified cells are assigned to variables that can only be

substituted by constants that do not appear in the data instance. Furthermore, distinct

variables cannot be assigned to equal constants (we provide more details in Section 4.2.1).

Figure 2.3(d) shows the data instance after the second step of the algorithm. The final

instance represents a number of ground instances in which v1 cannot be equal to 1 or 2, v2

cannot be equal to 3, and v3 cannot be equal to 5 or 7.

Consistent Query Answering

A related line of research is consistent query answering. Given a set of possible repairs of FD

violations, consistent query answering computes results of selected classes of queries that
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are valid in every possible repair [9, 23, 24, 42, 79, 80]. There are two main approaches

for consistent query answering. The first approach rewrites user queries based on the

defined integrity constraints, and use the unmodified input instance to answer the query

(e.g., [9, 42]). A second approach is to construct a condensed representation of all repairs

that allows obtaining consistent answers [79, 80]. A restricted class of queries can be

answered efficiently while harder classes are answered using approximate methods (e.g.,

[60]). Unfortunately, consistent query answering adopts an aggressive criteria for pruning

possible query answers (i.e., answers that are not completely trusted are not produced).

It is not trivial to modify consistent query answering to obtain query results that are

partially trusted (i.e., answers that are correct in a subset of possible repairs). Moreover,

materializing possible clean instances of the database is not the main focus of consistent

query answering, which is an important task in several applications such as interactive

data cleaning, and data exploration.

A probabilistic approach to the problem of repairing FD violations has been proposed

in [47]. The authors introduced a probabilistic data model to represent possible repairs

of inconsistent databases. Unfortunately, the proposed model imposes a strong constraint

on the set of FDs defined over the database. Specifically, any attribute that appears in

the right-hand-side of an FD cannot appear in the left-hand-side of another FD. This

simplifying assumption enables independent repairing of FD violations. In fact such an

assumption allows obtaining optimal repairs (i.e, that have the minimum number of cell

changes) in polynomial time.

Repairing Unclean Data and Unclean FDs

In data cleaning scenarios where the given FDs are not completely accurate (e.g., due to

domain evolution or data integration), we should consider changing the FDs at the same

time as changing the data. An approach to simultaneously repair data and FDs have been

proposed by Chiang and Miller in [22]. Given an input instance I and a set of FDs Σ, the

authors proposed a technique to obtain a single repair (Σ′, I ′) that is close to (Σ, I). A

unified cost model is proposed to measure the distance between any repair (Σ′, I ′) and the

inputs (Σ, I). The proposed algorithm aims at obtaining a single repair with the minimum
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cost. Because obtaining an optimal repair is intractable, the proposed algorithm depends

on several heuristics to obtain a repair that is not necessarily optimal.

In the extreme case where the data is completely trusted, the cleaning problem boils

down to tuning the given set of FDs to fit the input database instance. That is, we start

with an initial set of FDs that are not accurate, and we modify this set in a minimal,

not-trivial way to be satisfied by the database instance. Tuning a set of FDs is related to

the problem of discovering FDs, where the goal is to compute all non-trivial FDs that are

satisfied by a database instance [51, 58, 61, 81]). However, in the problem of FD discovery,

we start with an empty set of FDs, and we discover new non-trivial FDs that are satisfied

by the given database instance.

2.3 Probabilistic Data Management

In this section, we give an overview of probabilistic data management. This line of research

is focused on capturing uncertainty in data and efficiently answering queries against un-

certain data. In Section 2.3.1, we discuss various data models for capturing uncertainty in

data, and in Section 2.3.2, we present current techniques for querying uncertain databases.

2.3.1 Uncertain Data Models

In general, uncertainty in data arises due to various reasons such as imprecision in reading

devices, errors in data entry, and incorrect data integration. For example, to compensate

imprecision in temperature sensors, a single reading could be replaced by a range of possible

values, along with a probability distribution over this range [31].

Several database models that extend the relational model have been proposed to enable

representing uncertain data. In general, an uncertain data model represent a number of

possible database instances, which are denoted possible worlds. For example, assume that

some tuples in a database have uncertain existence (i.e., the database may or may not

contain such tuples). Additionally, assume that the existence of a tuple is independent of

the existence of other tuples. A simple model to capture uncertainty in tuple existence is
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Observer Bird Place Date Uncertain Membership
t1 Amy Jay Stanford 23 Dec 2010 F
t2 Amy Raven Stanford 24 Dec 2010 T
t3 Amy Crow Stanford 24 Dec 2010 T

Observer Bird Place Date
t1 Amy Jay Stanford 23 Dec 2010
t2 Amy Raven Stanford 24 Dec 2010

Observer Bird Place Date
t1 Amy Jay Stanford 23 Dec 2010
t3 Amy Crow Stanford 24 Dec 2010

Observer Bird Place Date
t1 Amy Jay Stanford 23 Dec 2010
t2 Amy Raven Stanford 24 Dec 2010
t3 Amy Crow Stanford 24 Dec 2010

I1

I2

I3

I4

Possible Worlds

Observer Bird Place Date
t1 Amy Jay Stanford 23 Dec 2010

Sightings

Figure 2.4: An example of an uncertain data model and the corresponding possible worlds

to extend each relation in the database by appending a special Boolean attribute, named

Uncertain Membership. This attribute is equal to true in tuples with uncertain existence,

and equal to false in tuples with certain existence.

Consider the example in Figure 2.4 of a relation Sightings that stores bird sightings

according to various observers. Attributes of Sightings are Observer, Date, Place, Bird,

in addition to the special attribute Uncertain Membership. Figure 2.4 depicts the corre-

sponding possible worlds I1, I2, I3 and I4, each of which represents a possible instance of

relation Sightings.

Some uncertain data models have limitations that prevent capturing specific sets of

possible worlds. For example, consider the example in Figure 2.4. Assume that tuples

t2 and t3 are mutually exclusive (i.e., Amy saw a raven or a crow, but not both). This
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(Witness, Car) Uncertain
Membership

x11
(Cathy, Honda) ||
(Cathy, Mazda) F

(Person, Car) Uncertain
Membership

x21
(Jimmy, Toyota) ||
(Jimmy, Mazda) F

x22
(Billy, Honda) ||
(Frank, Honda) F

x23 (Hank, Honda) F

Saw

Drives

(Person) Uncertain
Membership

x31 (Jimmy) T ¸(x31 , 1) =  {(X11 , 2),(x21 , 2)}

x32
(Billy) ||
(Frank) T ¸(x32,1) = {(x11,1),(x22,1)} ; ¸(x32,2) = {(x11,1),(x22,2)}

x33 (Hank) T ¸(x33 , 1) = {(x11 , 1), (x23 , 1)}

Suspects

(a)
(b)

(c)

Figure 2.5: ULDB model (a),(b) base relations Saw and Drives (c) relation Suspects

resulting from query ΠPerson(Saw ./ Drives)

constraint cannot be captured by the uncertain model in the figure due to assuming that

tuples are independent. Several models have been proposed in [71] with different degrees

of expressiveness. In general, uncertain data models that are unable to represent any set

of possible worlds are said to be incomplete. On the other hand, uncertain data models

that can represent any set of possible worlds are referred to as complete data models [71].

Despite the shortcomings of incomplete models, they are adopted in several systems as

they are more intuitive and easier to maintain and query [71]. An incomplete model can

be sufficient for a particular system if it is closed under all operations that are performed

in that system. A model is closed under a given operation if the result of applying this

operator on inputs represented by the model can also be represented by the model. For

example, the model in Figure 2.4 is closed under selection operation, while it is not closed

under join (due to the tuple independence assumption). By definition, complete models

are closed under all operations.
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More complicated models have been introduced to capture sophisticated dependencies

among the database tuples. For example, an uncertain data model, named ULDB, was

introduced in [13] that is based on capturing the lineage information of tuples (a.k.a.,

provenance information). ULDB model is proved to be complete, and hence closed under

all relational operations. In this model, a relation is defined as a set of x-tuples. Each

x-tuple is a set of mutually exclusive tuples. Also, existence of an x-tuple can either be

certain or uncertain, which is captured by a special attribute Uncertain Membership. The

lineage information is represented as a function λ that links each tuple in an x-tuple to its

base tuples.

For example, Figure 2.5 depicts two relations: Saw and Drives, and the relation

Suspects resulting from query ΠPerson(Saw ./ Drives). The x-tuple x32 in relation

Suspects consists of two tuples. The first tuple Billy results from joining the tuple

(Cathy,Honda) in x-tuple x11 with tuple (Billy,Honda) in x-tuple x22. Similarly, the

second tuple Frank is the result of joining (Cathy,Honda) and (Frank,Honda). Thus, the

lineage of the first tuple in x-tuple x32, denoted as λ(x32, 1), consists of (x11, 1) and (x22, 1),

and the lineage of the second tuple, denoted as λ(x32, 2), consists of (x11, 1) and (x22, 2).

Furthermore, the existence of x-tuple x32 is uncertain, and hence attribute Uncertain

Membership is equal to true, because x-tuple x11 could be equal to (Cathy, Mazda).

To see how lineage can capture dependencies between tuples, consider a possible world

that contains (x31, 1) and (x32, 1) (i.e., the first tuple in x-tuple x31, and the first tuple in

x-tuple x32). In absence of any linage information about these tuples, we cannot rule out

this possible world. On the other hand, if we know that their linage information contains

inconsistent tuples, i.e., (x11, 2) and (x11, 1), we can correctly conclude that this possible

world cannot exist.

One extension to the ULDB model allows quantifying the uncertainty about the exis-

tence of each tuple by associating a probability to each possible tuple within an x-tuple.

Other directions for modeling uncertainty in data are inspired by the machine learning

literature. For example, Bayesian Networks have been used in [72] to model the correlation

between tuples existence. In the proposed model, each tuple with uncertain membership is

represented as a node in the Bayesian Network graph and the dependencies between tuples
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Probabilistic 

Dp Q(Dp)
Query Processing

D Q(D )Deterministic 

Expand into 
Possible Worlds

Represent using 
Probabilistic Model

D1, 
D2, 
D3, 

Q(D1), 
Q(D2), 
Q(D3), 

…,

Query Processing

…, 
Dn

…, 
Q(Dn)

Figure 2.6: Probabilistic query processing using possible worlds semantic

are captured by the graph edges along with the conditional probability tables.

2.3.2 Probabilistic Query Processing

Most approaches for probabilistic data processing rely on the possible worlds semantic to

define query answers in the presence of uncertain data. Figure 2.6 shows how query results

are interpreted under such a semantic. A query Q that is applied against a probabilistic

database Dp can be answered by expanding Dp into all possible worlds {D1, ..., Dn}. The

query Q is then applied to the individual possible worlds using the semantics of determin-

istic query processing, resulting in Q(D1) through Q(Dn). The resulting possible worlds

are then captured by the probabilistic data model, which represents Q(Dp). Clearly, pro-

cessing queries in this way is prohibitively expensive due to the large number of possible

worlds. Thus, current approaches aim at performing the query processing directly against

the probabilistic database Dp to obtain Q(Dp).

In [30], Dalvi and Suciu defined a class of queries, called safe queries, that can be

answered in polynomial time. The uncertainty model used in [30] consists of tuples with

probabilistic memberships (i.e., each tuple is associated with a value representing its prob-

ability of being in the database). Additionally, existence of different tuples in the database

is assumed to be independent. The authors focused on a class of queries that involve

selection, projection and join operations (called SPJ queries for short). Each relational
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operator is extended to compute the membership probability of the resulting tuples. Com-

putation of tuples membership probabilities is based on the independence assumption of

tuples existence. For example, joining two tuples produces an output tuple whose mem-

bership probability is the product of membership probabilities of the joined tuples. The

projection operator (with duplicate elimination) obtains the probability of an output tuple

by computing the probability of the disjunction of all its corresponding base tuples in the

input relation. Selection does not alter the membership probability of the resulting tuples.

In general, the above model is not closed under projection and join operations as it

fails to capture dependencies between tuples. For example, if a tuple t1 joins with another

tuple t2 to form t12 and tuple t1 joins with tuple t3 to form t13, existence of tuple t12 is

not independent from existence of t13, and thus the two tuples cannot be represented using

this model.

A certain subclass of query plans, called safe plans, do not introduce dependencies

among tuples in intermediate results. Hence, we can correctly compute the probabilities of

output tuples while assuming independence among tuples. For example, consider Figure 2.7

that shows two plans to answer the query ΠPerson(Saw ./ Drives). The left-hand-side

plan performs a join operation between the relations Saw and Drives. The fact that

the resulting tuples are not independent is not captured because of the limitations of

the uncertainty model, and hence the successive projection operation results in incorrect

membership probability of the query result. On the other hand, the right-hand-side plan

first computes the relation Πcar(Saw). The results are then joined with the relation Drives

and the join results are projected on the attribute Person. The latter plan does not

produce intermediate relations with dependent tuples, and thus the computed marginal

probabilities are correct.

Safe queries are those that have at least one safe plan to obtain query results. For ex-

ample, if the attribute Witness of the relation Saw is included as a join key in Figure 2.7, no

safe plan can be found to answer the query. For unsafe queries, approximation techniques

such as Monte Carlo simulation [56] are used.

Benjelloun et al. introduced in [13] a probabilistic data processing system, called Trio,

that is based on the lineage-based probabilistic data model ULDB (Section 2.3.1). The
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Witness Car Membership

Cathy Honda 0.8

Amy Honda 0.5

Person Car Membership

Jimmy Honda 0.6

Saw Drives

Witness Car Person Membership

Cathy Honda Jimmy 0.48

Amy Honda Jimmy 0.3

Saw ⋈ Drives

Person Membership

Jimmy 0.636

 person (Saw ⋈ Drives)

Car Membership

Honda 0.9

 car Saw

Car Person Membership

Honda Jimmy 0.54

  (car Saw) ⋈ Drives

Person Membership

Jimmy 0.54

  person ((car Saw) ⋈ Drives)

Unsafe Plan Safe Plan

Figure 2.7: An example of safe and unsafe plans for query ΠPerson(Saw ./ Drives) [30]

lineage information of the stored tuples allows tracking the sources the tuples, and pro-

viding correct membership probabilities. The authors described how to update the lineage

of database tuples as query operators are applied over the database relations. For exam-

ple, in Figure 2.5, joining x-tuple x11, (Cathy, Honda)||(Cathy, Mazda), and x-tuple

x22, (Billy, Honda)||(Frank, Honda), on attribute Car results in an x-tuple (Cathy,

Honda, Billy)||(Cathy, Honda, Frank). The lineage of the first tuple in the resulting

x-tuple is conjunction (x11, 1)∧ (x22, 1), and the lineage of the second tuple is conjunction

(x11, 1) ∧ (x22, 2). Other operators such as projection with duplicate elimination result in

lineage with disjunctions of base tuples. Computation of tuples probabilities is decoupled

from obtaining the output relation in order to allow deferring probability computation

until requested by the user.

In [55], Jampani et al. have introduced a probabilistic query processing system, named

MCDB, that is based on Monte Carlo simulation. The authors rely on Monte Carlo sim-
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ulation to enable efficient answering of virtually any query types that were not possible

in other systems, such as aggregate queries and complex nested queries. In MCDB, rela-

tions are divided into normal (deterministic) relations, and random relations whose tuples

have uncertain existence in the relation, and uncertain attributes. Each random relation is

split into blocks such that tuples belonging to different blocks are independent (i.e., have

independent existence, and independent attribute values). Random relations are associ-

ated with value generating (VG) functions that are responsible for generating a number of

possible instances of each block at query time. That is, each call to a VG function gener-

ates one instance of a given block. Implementations of VG functions range from standard

probability functions (e.g., Gaussian distribution, Gamma distribution, and Multivariate

distributions), to complex functions written in C language.

A simple strategy to answer a query using Monte Carlo simulation is to materialize a

number of possible instances, say N , of each random relation, compute the query answers

for each possible world, and aggregate the generated tuples to count the number of possible

worlds in which each tuple exists. In MCDB, the authors proposed several query optimiza-

tion techniques to significantly reduce the cost of query answering compared to this simple

strategy. For example, for each uncertain tuple t, different versions of t in the possible in-

stances are bundled together and represented internally as an array of tuples t[1], . . . , t[N ].

The user query is applied only once against tuple bundles, and thus the query optimization

is performed only once instead of N times. Also, each tuple bundle is processed at the

same time by a given query operator, which can save computation cycles. For example, if

all versions in a bundle have the same value for attribute A, a selection predicate based on

A can either accept or reject the entire bundle using a single comparison. Finally, MCDB

materializes possible instances of random relations at query time only when necessary, and

thus avoids costly materialization whenever possible.
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Chapter 3

Modeling Uncertainty in Duplicate

Elimination

In this chapter, we present our approach for probabilistic duplicate elimination [16]. In

Section 3.1, we define multiple spaces of possible repairs. Our cleaning approach is given in

Section 3.2. In Section 3.3, we discuss how to support relational queries. In Section 3.4, we

discuss implementing our probabilistic data model inside relational DBMSs and we present

new query types that are supported by our system. In Section 3.5, we describe how to

model uncertainty in merging duplicate tuples. An experimental evaluation is given in

Section 3.6.

3.1 Spaces of Possible Repairs

In this section, we define the space of all possible repairs of a given database instance that

contains duplicate tuples. We also describe multiple approaches to limit the space size for

efficient processing.

In the context of duplicate detection, a repair represents a clustering of the input tuples,

where each cluster contains tuples that refer to the same real-world entity. We formally

define a possible repair as follows.
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Definition 1. Repair of Duplicate Tuples. Given a relation instance I with duplicate

tuples, a repair X is a set of disjoint tuple clusters {C1, . . . , Cm} such that
⋃m
i=1Ci = I.

That is, a repair X is a partition of tuples in I. By coalescing each cluster of tuples into

a representative tuple, we obtain a clean (duplicate-free) instance I ′. We assume in this

section that coalescing members of clusters is performed in a deterministic way, and we

discuss in Section 3.5 extending our approach to consider uncertainty in coalescing tuples.

Repairs have clear analogy to the concept of possible worlds in uncertain databases [4,

30, 53]. Possible worlds are all possible database instances originating from tuple and/or

attribute uncertainty. However, in our settings, the repairs emerge from uncertainty in

deciding whether a set of tuples are duplicates or not.

In general, there are two key problems when dealing with the space of all possible

repairs. First, the number of possible repairs is as large as the number of possible clusterings

of tuples in I, which is exponential in the number of tuples (by correspondence to the

problem of set partitioning [10]). Second, quantifying the confidence in each possible

repair by, for example, imposing a probability distribution on the space of possible repairs,

is not clear without understanding the underlying process that generates the repairs.

There are multiple ways to constrain the space of possible repairs such as imposing hard

constraints to rule out impossible repairs, or filtering the repairs that do not meet specific

requirements (e.g., pairwise distance among clustered tuples must be larger than a given

threshold). In our work, we consider the subset of all possible repairs that are valid output

of a parameterized clustering algorithm. In other words, given a parameterized clustering

algorithm, we limit the space of possible repairs to those generated by the algorithm using

different parameter settings. This approach has two effects that are described as follows.

1. Limiting the space of possible repairs improves the efficiency of generating and query-

ing the repairs, and reduces the space required to store the repairs.

2. By assuming (or learning) a probability distribution on the values of the algorithm

parameters, we can induce a probability distribution on the space of possible repairs,

which allows for a richer set of probabilistic queries (e.g., finding the most probable
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All possible repairs

Possible repairs given by any fixed parameterized
clustering algorithm

Possible repairs given by any fixed
hierarchical clustering algorithm

Linkage-
based

algorithms
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cut clustering

algorithm
…

NN-based
clustering
algorithm

Figure 3.1: Constraining the space of possible repairs

repair, finding the probability of clustering two specific tuples together, or finding

the marginal probability of a predicate).

Constraining parameterized algorithms to a specific class of algorithms can further re-

duce the time required for generating the repairs. For hierarchical clustering algorithms,

the size of the space of possible repairs is linear in the number of tuples in the unclean rela-

tion (we give more details in Section 3.2.2). Moreover, a hierarchical clustering algorithm

can be modified in a simple way to efficiently generate the possible repairs by a single run

of the algorithm.

Figure 3.1 depicts the containment relationship between the space of all possible repairs,

and the possible repairs generated by any given parameterized algorithm. Figure 3.1 also

shows examples of hierarchical clustering methods that we discuss in Section 3.2.2.

3.2 Modeling Possible Repairs

In this Section, we provide a probabilistic data model to represent a set of possible repairs.

We focus on modeling the space of possible repairs generated by any fixed parameterized

clustering algorithm.
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There are multiple approaches that can be adopted to model the possible repairs. In

the following, we present two extremes within the spectrum of possible representations.

• The first representation is the triple (I,A,P), where I denotes the unclean relation

instance, A denotes a fixed parameterized clustering algorithm, and P denotes a set

of possible parameter settings for the algorithm A. This approach is a compact rep-

resentation that does not materialize any possible repairs, and thus no construction

cost is incurred.

• The second representation is the set of all possible clean instances {I1, . . . , I|P|} that

can be generated by the algorithm A using all possible parameter settings in P .

Other representations between these two extremes involve (partial) materialization of

possible repairs and storing views that aggregate these repairs. For example, a possible

representation is to associate each pair of tuples with the relative frequency of repairs in

which both tuples belong to the same cluster (i.e., declared as duplicates). The problem of

finding a suitable view of the possible repairs is analogous to the problem of selecting which

materialized views to build in relational databases. Choosing a suitable view depends on

several factors such as the cost of materializing the view and the types of queries that can

be answered using that view as we illustrate in Example 2.

Example 2. Consider two sets of possible repairs, denoted A and B, that involve the base

tuples {t1, t2, t3} as shown in Figure 3.2. For all pairs of tuples, the relative frequency of

repairs in which the two tuples are clustered together is the same with respect to both sets

of repairs. These frequencies are shown in the symmetric matrix in Figure 3.2.

The view consisting of the pair-wise clustering frequencies depicted in Figure 3.2 can

be used to efficiently answer some queries (e.g., is there any repair in which t1 and t2

are clustered together). However, Example 2 shows that the proposed view is a lossy

representation of repairs. That is, this view cannot be used to restore the encoded set

of possible repairs. Therefore, some queries might be impossible to answer using such a

representation. For example, finding the relative frequency of repairs in which t1, t2 and

t3 are clustered together is not possible using the view in Figure 3.2.
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{{t1,t2,t3}}

{{t1},{t2},{t3}}

{{t1,t2},{t3}}

{{t1},{t2,t3}}

{{t1,t3},{t2}}

{{t1,t2,t3}}

t1 t2 t3

t1 0.5 0.5

t2 0.5 0.5

t3 0.5 0.5

Materialized view of
pair-wise clustering
frequency

Set (A) of Possible Repairs

Set (B) of Possible Repairs

Figure 3.2: Two sets of possible repairs represented by the same matrix of pair-wise clus-

tering frequencies

We summarize our proposed desiderata regarding modeling the possible repairs as fol-

lows.

• The model should be a lossless representation of the possible repairs in order to allow

answering queries that require a complete knowledge about these repairs. In other

words, we have to ensure that the possible repairs can be restored from the model.

• The model should allow efficient answering of a set of important queries types (e.g.,

selection, projection and join queries, which are frequently used in practice).

• The model should provide materialization of the results of costly operations (e.g.,

clustering procedures) that are required by most queries.

• The model should have a small space complexity to allow efficient construction,

storage and retrieval of the possible repairs, in addition to efficient query processing.

In Section 3.2.1, we describe our proposed model that addresses the aforementioned

requirements. In Section 3.2.2, we show how to efficiently obtain the possible repairs for

the class of hierarchical clustering algorithms.
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3.2.1 Algorithm-Dependent Model

In this section, we introduce a probabilistic data model to encode the space of possible

repairs generated by any fixed parameterized clustering algorithm A(I, τ) with a single

parameter τ . We denote by the range [τ l, τu] all valid values that can be assigned to τ .

We view the algorithm parameter τ as a random variable such that the probability of

a parameter value v is equal to the probability that the clustering A(I, τ) has the highest

quality (based on some quality metric) among all other clusterings of I generated by A
at τ 6= v. We denote by fτ the probability density function of τ defined over [τ l, τu].

In Section 6.2.3, we discuss possible directions for learning the probability distribution

function fτ .

The set of possible repairs X is defined as {A(I, v) : v ∈ [τ l, τu]}. The set X defines

a probability space created by drawing random values from [τ l, τu], based on the density

function fτ , and using the algorithm A to generate the possible repairs corresponding to

these values. The probability of a specific repair X ∈ X of I, denoted Pr(X), is derived

as follows.

Pr(X) =

∫ τu

τ l
fτ (v) · h(A(I, v), X) dv (3.1)

where h(A,B) is an indicator function that is equal to 1 if A = B, and 0 otherwise.

In the following, we define an uncertain clean relation (a U-clean relation for short) that

encodes the possible repairs X of an unclean instance I of relation R that are generated

by a parameterized clustering algorithm A.

Definition 2. U-Clean Relation. A U-clean relation, denoted Ic, is a set of c-tuples

where each c-tuple is a representative tuple of a cluster of tuples in I. Attributes of Ic

include all attributes of R, in addition to two special attributes: C and P . Attribute C

of a c-tuple is the set of tuples identifiers in I that are clustered together to form this c-

tuple. Attribute P represents the parameter values of the clustering algorithm A that lead

to clustering tuples in C.
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The parameter settings P is represented as one or more intervals within the range of

the algorithm parameter τ . We interpret each c-tuple t as a propositional variable, and

each repair X ∈ X as a truth assignment for all c-tuples in Ic such that t = True if tuples

in attribute C of t form a cluster in X, and t = False otherwise. Note that it is possible

to have overlapping clusters represented by different c-tuples in Ic since Ic encapsulates

more than one possible repair of I.

Figure 3.3 illustrates our model of possible repairs for two unclean relations Person and

Vehicle. U-clean relations Personc and Vehiclec are created by clustering algorithms A1

and A2 using parameters τ1 and τ2, respectively. For brevity, we omit some attributes from

Personc and Vehiclec (shown as dotted columns in Figure 3.3). Parameters τ1 and τ2 are

defined on the real interval [0, 10] with uniform distributions. We provide more details of the

construction process in Section 3.2.2. Relations Personc and Vehiclec capture all repairs of

the base relations corresponding to possible parameters values. For example, if τ1 ∈ [1, 3),

the resulting repair of Relation Person is equal to {{P1, P2}, {P3, P4}, {P5}, {P6}}, which

is obtained using c-tuples in Personc whose parameter settings contain the interval [1, 3).

Moreover, the U-clean relations allow for identifying the parameter settings of the clustering

algorithm that lead to generating a specific cluster of tuples. For example, the cluster

{P1, P2, P5} is generated by algorithm A1 if the value of parameter τ1 belongs to the range

[3, 10].

3.2.2 Constructing U-clean Relations

Hierarchical clustering algorithms cluster tuples of an input instance I in a hierarchy, which

represents a set of possible clusterings starting from a clustering containing each tuple in a

separate cluster, to a clustering containing all tuples in one cluster (e.g., Figure 3.4). The

algorithms use specific criteria, usually involves a parameter of the algorithm, to determine

which clustering to return.

Hierarchical clustering algorithms are widely used in duplicate detection. Examples

include link-based algorithms (e.g., single-linkage, average-linkage and complete-linkage)

[54], hierarchical cut clustering [39], and CURE [48]. Other algorithms can be altered

to allow producing hierarchical clustering of tuples such as the fuzzy duplicate detection
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ID Name ZIP Birth Date Income
P1 Green 51359 781310 30k

P2 Green 51358 781210 32k

P3 Peter 30128 870932 40k

P4 Peter 30128 870932 40k

P5 Gree 51359 19771210 55k

P6 Chuck 51359 19460924 30k

ID Make Model Price
V1 Honda Civic 5k

V2 Civic 7k

V3 Nissan Altima 8k

V4 Nissan Altima 4k

Person Vehicle

ID … Income C P
CP1 … 31k {P1,P2} [1,3)

CP2 … 40k {P3,P4} [0,10]

CP3 … 55k {P5} [0,3)

CP4 … 30k {P6} [0,10]

CP5 … 39k {P1,P2,P5} [3,10]

CP6 … 30k {P1} [0,1)

CP7 … 32k {P2} [0,1)

ID … Price C P
CV1 … 5k {V1} [0,4)

CV2 … 7k {V2} [0,4)

CV3 … 6k {V1,V2} [4,10]

CV4 … 8k {V3} [0,5)

CV5 … 4k {V4} [0,5)

CV6 … 6k {V3,V4} [5,10]

Personc

Vehiclec

U
nc
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an
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2 (Vehicle,¿2 : U[0,10]) 1 (Person, ¿1: U[0,10])

Figure 3.3: An example illustrating the U-clean model

framework introduced in [20], as we show later in this section. Hierarchical clustering

is also used as a basis for other duplicate detection algorithms such as collective entity

resolution [17], and deduplication under aggregate constraints [21].

Due to the nature of hierarchical clustering algorithms, only simple modifications are

necessary to allow constructing U-clean relations as we discuss in the following case studies.

Case Study 1: Link-based Hierarchical Clustering Algorithms

Given an input unclean instance I consisting of n tuples, a hierarchical linkage-based

clustering algorithm generally rely on two parameters: (1) a distance function dist(Ci, Cj),

where Ci and Cj are two disjoint clusters, and (2) a stopping condition (e.g., terminate the

clustering when the distance between all pairs of clusters is greater than a given threshold
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Figure 3.4: An example of link-based hierarchical clustering

τ). Clusters are merged iteratively starting from all singleton clusters. At each iteration,

the function dist is used to pick the closest two clusters to link. If the value of dist of such

a pair is below threshold τ , the two clusters are merged by creating a parent cluster in

the hierarchy composed of the union of the two original clusters. If the distance between

the closest clusters is greater than τ , the algorithm terminates and return the obtained

clustering.

The distance between two tuples is determined through various functions such as Eu-

clidian distance, Edit Distance, and Q-grams [33]. The distance between two clusters is an

aggregate of the pair-wise distances. For example, in single-linkage [54], dist returns the

distance between the two closest tuples in the two clusters, while in complete-linkage, dist

is the distance between the two furthest tuples in the two clusters.

Figure 3.4 gives an example of the hierarchy generated by a linkage-based algorithm for

the instance I = {t1, . . . , t5}. The parameter τ represents a threshold on inter-cluster dis-

tances which are represented by the Y -axis. Different repairs are generated when applying

the algorithm with different values of τ . For example, for τ ∈ [0, 3), the produced repair is

{{t1}, {t2}, {t3}, {t4}, {t5}}, while τ ∈ [3, 4) produces the repair {{t1}, {t2}, {t3}, {t4, t5}}.

We modify the link-based clustering algorithm to build U-clean relations as described

in Algorithm 1. The algorithm performs clustering of tuples similar to the conventional

greedy agglomerative clustering algorithm. However, we additionally create and store

all c-tuples corresponding to the clusters linked at distances within the range [τ l, τu].
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Initially, the algorithm creates a singleton cluster and its corresponding c-tuple for each

tuple in I (lines 1-5). The initial parameter settings of created c-tuples are the entire range

[τ l, τu]. The algorithm incrementally merges the closest clusters Ci and Cj, and creates a

c-tuple corresponding to the new cluster (lines 6-10). Additionally, we update the c-tuples

corresponding to Ci and Cj as shown in lines 11-15. The algorithm terminates when the

distance between the closest clusters exceeds τu or when all tuples are clustered together.

Algorithm 1 U Cluster(I, τ l, τu)

Require: I: the unclean instance

Require: τ l: Minimum threshold value

Require: τu: Maximum threshold value

1: Define a new singleton cluster Ci for each tuple ti ∈ I
2: C ← {C1, . . . , C|I|}
3: for each ti ∈ I do

4: Add the c-tuple (ti[A1], . . . , ti[Am], Ci, [τ
l, τu]) to Ic

5: end for

6: while (|C| > 1 and distance between the closest pair of clusters (Ci, Cj) in C is less

than or equal to τu) do

7: Ck ← Ci ∪ Cj
8: Replace Ci and Cj in C with Ck

9: tk ← get representative tuple(Ck) {See Section 3.2.3}
10: Add the c-tuple (tk[A1], . . . , tk[Am], Ck, [dist(Ci, Cj), τ

u]) to Ic

11: if (dist(Ci, Cj) < τ l) then

12: Remove the c-tuples corresponding to Ci and Cj from Ic

13: else

14: Set the upper bounds of the parameter settings of the c-tuples corresponding to

Ci and Cj in Ic to dist(Ci, Cj)

15: end if

16: end while

17: return Ic

Case Study 2:NN-Based Clustering
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In [20], a duplicate detection algorithm based on the nearest neighbor (NN) techniques

is introduced. The algorithm introduced in [20] declares a set of tuples as duplicates

whenever they represent a compact set that has sparse neighborhood. A set of tuples S

is compact if ∀t ∈ S, the distance between t and any other tuple in S is less than the

distance between t and any tuple not in S (i.e., tuples in S are mutual k nearest neighbors

where k = |S| − 1). The neighborhood growth of a tuple t, denoted ng(t), is defined as

the number of tuples with distance to t smaller than double the distance between t and

its nearest neighbor. A set S has a sparse neighborhood if its aggregated neighborhood

growth Fr∈S ng(r) is less than a threshold τ , where F is an aggregate function such as

max or average.

Although the NN-based clustering algorithm in [20] is not presented as a hierarchical

clustering algorithm, it can be used for producing hierarchical clusterings. Compact sets

are arranged in a hierarchy due to the fact that compact sets are nested (i.e., any two

different compact sets are either disjoint or the smaller compact set is a subset of the

larger compact set). That is, ∀Si, Sj, i 6= j(Si∩Sj = φ∨Si ⊂ Sj ∨Sj ⊂ Si). We verify this

fact by contradiction. Assume that ∃Si, Sj, i 6= j(Si ∩ Sj 6= φ ∧ Si \ Sj 6= φ ∧ Sj \ Si 6= φ)

(the operator \ denotes the set difference). Let ki and kj denote the cardinality of Si

and Sj, respectively, and assume, without loss of generality, that ki < kj. According to

the definition of compact sets, the ki − 1 nearest neighbors of a tuple t ∈ Si are equal to

Si − {t}, and similarly, the kj − 1 NNs of t ∈ Sj are equal to Sj − {t}. For t ∈ (Si ∩ Sj),
the ki− 1 NNs of t are not contained in the set of the kj − 1 NNs of t because Sj \ Si 6= φ.

This contradicts the fact that ki − 1 NNs of t must be contained in the kj − 1 NNs of t,

assuming that the k-NNs of t are uniquely defined (i.e., ties in distance are broken in a

deterministic way). Thus, the nesting property of the compact sets is correct.

If the used aggregation function F is max (or any other monotone function with respect

to the size of a compact set), increasing τ results in a monotonic decrease of the number

of clusters by merging two or more compact sets into one compact set. The reason is that

for any two compact sets Si, Sj such that Si ⊂ Sj, maxr∈Si
ng(r) ≤ maxr∈Sj

ng(r). Thus,

the NN-based clustering algorithm effectively constructs a hierarchy of compact sets where

neighborhood spareness is used as the stopping condition.

In order to allow efficient construction of U-clean relations , we modify the NN-based
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clustering algorithm similar to the link-based algorithms. We construct compact sets incre-

mentally, starting with singleton compact sets until reaching compact sets of the maximum

size allowed (using the same technique in [20]). Each compact set with aggregated neigh-

borhood growth above τ l and below τu is stored in Ic. For any two compact sets Si, Sj such

that Si ⊂ Sj and they have the same neighborhood growth, we only store Sj in Ic in order

to comply with a property of the algorithm in [20], which is to report the largest compact

sets that satisfy the sparse neighborhood criterion. Parameter settings are maintained for

each c-tuple similar to the linkage-based algorithms.

Time and Space Complexity

In general, our modified hierarchical clustering algorithms have the same asymptotic

complexity of the unmodified algorithms. The reason is that we only add a constant amount

of work to each iteration which is constructing c-tuples and updating their parameter

settings (e.g., lines 9-15 in Algorithm 1).

The space complexity of a U-clean relation Ic is O(n), where n is the number of tuples

in the input instance I. Hierarchical clustering arranges tuples in the form of an N -ary

tree. The leaf nodes in the tree are the tuples in the unclean relation instance I, while the

internal nodes are clusters of tuples that contain two or more tuples. Let n be the size of

I, and n′ be the number of clusters containing two or more tuples (the number of internal

nodes). The maximum value of n′ occurs when the tree is binary, in which n′ is equal to

n− 1. Thus, the total number of nodes in the clustering hierarchy is less than or equal to

n′ + n = 2n − 1. The size of Ic is equal to the number of the possible clusters, which is

bounded by 2n− 1. It follows that the size of Ic is linear in the number of tuples in I.

The number of repairs encoded by Ic is less than or equal to n′ + 1 = n. The reason

is that, besides the initial repair where each tuples is in a singleton cluster, each internal

node indicates merging multiple clusters together, resulting in a new repair.

3.2.3 Representative Tuples of Clusters

Tuples in the same cluster within a repair indicate duplicate references to the same real-

world entity. In order to obtain a clean instance, we need to resolve potential conflicts
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between attributes of duplicate tuples. We assume that conflicts in attribute values of

the cluster tuples are resolved deterministically using a user defined merging procedure

(line 9 in Algorithm 1), which can be decided based on the data semantics. For example,

conflicting values of attributes Income and Price in Figure 3.3 are resolved by using their

average as a representative value.

Note that deterministically resolving conflicts in attribute values of tuples that belong

to the same cluster may lead to loss of information and introduce errors in the generated

repairs. The technique proposed in [6] tackled this problem by modeling uncertainty in

merging tuples. The authors assume that a representative tuple for a cluster is a random

variable whose possible outcomes are all members of the cluster. We see uncertainty in the

merging operation as another level of uncertainty that can be combined in our framework.

For the sake of clarity, we focus on uncertainty in clustering tuples in the following sections,

and we describe how to extend our approach to handle uncertain merging in Section 3.5.

3.3 Query Processing

We define relational queries over U-clean relations using the concept of the possible worlds

semantic [14, 30, 72] (refer to Section 2.3.2). According to the possible worlds seman-

tic, queries are conceptually answered against individual clean instances of the unclean

database that are encoded in the U-clean relations, and the resulting answers are re-

encoded in a U-clean relation. Furthermore, the marginal probability of a query answer is

equal to the sum of probabilities of possible worlds (clean instances) in which such answer

is true. For example, consider a selection query that reports persons with Income greater

than 35k considering all repairs encoded by Personc in Figure 3.3. One qualified tuple is

CP3. This tuple is valid only for repairs generated at the parameter settings τ1 ∈ [0, 3).

Therefore, the probability that tuple CP3 belongs to the query result is equivalent to the

probability that τ1 is within [0, 3), which is 0.3 (assuming that τ1 is uniformly distributed

over the range [0, 10]).

In the following, we describe how to support multiple query types under our model

such as selection, projection, join and aggregation.
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3.3.1 SPJ Queries

In this section, we define the selection, projection and join (SPJ) operators over U-clean

relations.

Model closure under SPJ queries is important in order to allow query decomposition

(i.e., applying operators to the output of other operators). To make our model closed

under SPJ operations, we extend the definition of attribute C in U-clean relations to be a

composition of multiple clusters, and extend attribute P to be a composition of multiple

parameter settings of one or more clustering algorithms. Similar methods are proposed in

[30], where each tuple is associated with a complex probabilistic event.

We interpret attributes C and P of a c-tuple t as propositional variables that are true

for repairs containing t and false for all other repairs. For example, consider c-tuple CP2

in Figure 3.3. The value {P3, P4} of attribute C represents a propositional variable that

is true iff the two tuples P3 and P4 are clustered together. Similarly, the value [0, 10] of

attribute P represents a variable that is true iff the parameter τ1 belongs to the interval

[0, 10].

For U-clean relations resulting from SPJ queries, we define attributes C and P as

propositional formulae in DNF over attributes C and P of the base U-clean relations,

respectively. For example, consider joining two c-tuples CP2 and CV 3 in Figure 3.3.

Attribute C of the resulting c-tuple is {P3, P4} ∧ {V 1, V 2}, and attribute P is τ1 ∈
[0, 10] ∧ τ2 ∈ [4, 10].

Note that the propositional formulae of attributes C and P of a c-tuple t are identical

formulae defined on different variables, which are the clusters and the parameter settings

of the base c-tuples. That is, a DNF formula of attribute C of a c-tuple can be converted

to the DNF formula of attribute P of the same c-tuple by replacing every cluster in C

with the corresponding parameter settings (e.g., replacing {P3, P4} with τ1 ∈ [0, 10] and

replacing {V 1, V 2} with τ2 ∈ [4, 10] in the previous example).

SPJ operators that are applied to U-clean relations are conceptually processed against

all clean instances represented by the input U-clean relations, and the resulting instances

are re-encoded into an output U-clean relation. We add a superscript u to the operators
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symbols to emphasize awareness of the uncertainty encoded in the U-clean relations. In the

following, we show how to efficiently evaluate SPJ queries without an exhaustive processing

of individual repairs (similar to the concept of intensional query evaluation [30]).

Selection

We define the selection operator over U-clean relations, denoted σu, as follows: σup (Ic) =

{t : t ∈ Ic ∧ p(t) = True}, where p is the selection predicate defined over attributes in R.

That is, a selection query σup (Ic) results in a U-clean relation containing the c-tuples in Ic

that satisfy the predicate p. The operator σu does not change attributes C or P of the

resulting c-tuples.

For example, Figure 3.5(a) shows the result of a selection query against Personc in

Figure 3.3, where we are interested in finding persons with income greater than 35k. The

query produces three c-tuples that are identical to the input c-tuples CP2, CP3, and CP5.

Projection

We define the projection operator Πu over a U-clean relation as follows. The expression

Πu
A1,...,Ak

(Ic) returns a U-clean relation that encodes projections of all clean instances rep-

resented by Ic on attributes A1, . . . , Ak that belong to R. The schema of the resulting

U-clean relation is (A1, . . . , Ak, C, P ). Under bag semantics, duplicate c-tuples are re-

tained. Hence, attributes C and P of the projected c-tuples remain unchanged. Under set

semantics, c-tuples with identical values with respect to attributes A1, . . . , Ak are reduced

to one c-tuple with attributes C and P computed as follows. Let t′ ∈ Πu
A1,...,Ak

(Ic), where

t′ is a projected c-tuple corresponding to duplicate c-tuples {t1, . . . , tr} ⊆ Ic. Attribute C

of t′ is equal to
∨r
i=1 ti[C] and attribute P of t′ is equal to

∨r
i=1 ti[P ].

For example, Figure 3.5(b) shows the results of a projection query (under set semantics)

posed against Relation Vehiclec in Figure 3.3, where we are interested in finding the

distinct car prices. The only duplicate c-tuples with respect to attribute Price are CV3

and CV6.
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SELECT ID, Income
FROM Personc

WHERE Income>35k Price C P
4k {V4} [0,5)
5k {V1} [0,4)
6k {V1,V2}v{V3,V4} [4,10] v [5,10]
7k {V2} [0,4)
8k {V3} [0,5)

SELECT DISTINCT Price
FROM Vehiclec

ID Income C P
CP2 40k {P3,P4} [0,10]
CP3 55k {P5} [0,3)
CP5 39k {P1,P2,P5} [3,10]

(a) (b)

SELECT Income, Price
FROM Personc , Vehiclec

WHERE Income/10 >= Price

Income Price C P
40k 4k {P3,P4} ^ {V4} ¿1:[0, 10] ^ ¿2:[0,5)

55k 5k {P5} ^{V1} ¿1:[0, 3) ^ ¿2:[0,4)

55k 4k {P5} ^ {V4} ¿1:[0, 3) ^ ¿2:[0,5)

(c)

Figure 3.5: Relational queries (a) selection (b) projection (c) join

Join

We define the join operator ./u over two U-clean relations as follows. The expression

(Ici ./up Icj ) results in a U-clean relation that contains all pairs of c-tuples in Ici and

Icj that satisfy the join predicate p that is defined on attributes in Ri and Rj (the

schemas of input instances Ii and Ij, respectively). The schema of the resulting relation

is (Ai1, . . . , Aim, Aj1, . . . , Ajp, C, P} ,where Ri = (Ai1, . . . , Aim) and Rj = (Aj1, . . . , Ajp).

We compute attributes of the resulting c-tuples as follows. Let tij be the result of joining

ti ∈ Ici and tj ∈ Icj . For attribute A ∈ Ri, tij[A] = ti[A], and similarly for A ∈ Rj,

tij[A] = tj[A]. Furthermore, tij[C] = ti[C] ∧ tj[C] and tij[P ] = ti[P ] ∧ tj[P ].

For example, Figure 3.5(c) shows the results of a join query on Relations Personc and

Vehiclec in Figure 3.3. The query finds which car is likely to be purchased by each person

by joining a person with a car if 10% of the person’s income is greater than or equal to

the car’s price. Note that the parameter settings of c-tuples in the join results involve two
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Figure 3.6: Distribution of possible repairs in instance Personc

parameters: τ1 and τ2. Therefore, we precede each interval in attribute P with the referred

parameter to avoid ambiguous settings.

3.3.2 Aggregation Queries

The aggregation query Agg(Ic, expr) uses the function Agg (such as sum, count, and min)

to aggregate the value of the expression expr over all c-tuples in Ic. The expression expr

is defined on attributes in R (the schema of the unclean instance I). Examples of expr

include a single attribute in R, or a function defined on one or more attributes. The

result of an aggregation query against one clean database instance is a single scaler value.

However, in our settings, Ic encodes multiple possible clean instances. Hence, the answer

of an aggregation query over Ic is a probability distribution over possible answers, each of

which is obtained from one or more clean possible instances. To simplify the discussion, we

assume that the aggregate query involves a base U-clean relation Ic that is generated by

a clustering algorithm A using a single parameter τ . We discuss at the end of this section

how to answer aggregation queries over U-clean relations resulting from SPJ queries.

For example, consider the aggregation query average(Personc, Income), where we are

interested in finding the average of persons’ incomes, given the possible repairs repre-
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sented by Personc in Figure 3.3. Figure 3.6 shows the possible repairs of Relation Person,

which are {CP2, CP3, CP4, CP6, CP7}, {CP1, CP2, CP3, CP4} and {CP2, CP4, CP5}
whose probabilities are 0.1, 0.2 and 0.7, respectively. The aggregate value for the three

repairs are 37.4k, 39k and 36.33k, respectively. Hence, the query answer is the following

discrete probability distribution: Pr(average = 37.4k) = 0.1, Pr(average = 39k) = 0.2,

Pr(average = 36.33k) = 0.7.

A straightforward algorithm to answer aggregation queries over a U-clean relation Ic is

described as follows.

1. Identify the distinct end points e1, . . . , eq (in ascending order) that appear in attribute

P of all c-tuples in Ic. Define Vi to be the interval [ei, ei+1] for 1 ≤ i ≤ q − 1.

2. For each interval Vi :

(a) Obtain the corresponding repair Xi = {t : t ∈ Ic ∧ Vi ⊆ t[P ]}.

(b) Evaluate function Agg over Xi.

(c) Compute the probability of Xi:
∫
Vi
fτ (x)dx.

3. Compute the probability of each value of Agg by summing the probabilities of the

repairs corresponding to such a value.

For example, for the aggregation query average(Personc, Income), we extract the end

points in attribute P of Personc, which are {0, 1, 3, 10} as shown in Figure 3.6. The corre-

sponding intervals [0, 1], [1, 3], and [3, 10] represent the repairs X1, X2 and X3, respectively.

We compute the aggregate value corresponding to each repair by evaluating function Agg

over the c-tuples in this repair. Finally, we report each aggregate value along with the sum

of probabilities of its corresponding repairs. The complexity of the described algorithm is

O(n2) due to evaluating the function Agg over individual repairs (recall that the number of

repairs is O(n) and the size of a repair is O(n) as shown in Section 3.2.2). In the remainder

of this section, we show how to reduce the complexity to O(n log n).

We employ a method to incrementally evaluate the aggregate function Agg, which is

based on the concept of partial aggregate states [1, 62]. This method is based on defining
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a state for a given subset of the items that summarizes the data of the items. States of

disjoint subsets are aggregated to obtain the state of their union. Finally, the state of the

set of all items is used for computing the value of the aggregate function.

More specifically, for each aggregate function Agg, three functions have to be defined

[62]: init state that initializes the states of singleton and empty sets, merge states

that merges states of disjoint sets to obtain the state of their union, and finalize state

that obtains the aggregate value corresponding to a state. For example, for aggregate

function average, a state represents a pair (sum, count). The initialization of the empty

set returns the state (0, 0), while initialization of a set with a single item v returns the

state (v, 1). The merging of two states (sum1, count1) and (sum2, count2) returns the state

(sum1+sum2, count1+count2). The finalization function returns the value of sum/count.

To compute the aggregate value of a repair X, we can compute the state of the c-tuples

that belong to X, and then we invoke function finalize state to obtain the aggregate

value.

We define a B-tree index, denoted IND, over the parameter space [τ l, τu] such that

each interval Vi is represented as a leaf node in IND (denoted as Vi as well). Each leaf

node Vi represents a distinct possible repair Xi = {t : t ∈ Ic ∧ Vi ⊆ t[P ]}. We associate

each node l in IND with a local state, denoted l.state. We construct IND such that the

state of tuples in Xi corresponding to Vi results from merging the local state of Vi and the

local states of all ancestor nodes of Vi in IND.

Algorithms 2 and 3 outline our procedure to obtain the probability distribution of the

aggregate value. Initially, the entire parameter space [τ l, τu] is covered by one node in the

index, named root. The local state of root is initialized to the state of the empty set (e.g.,

(0, 0) in case of the function average). For each c-tuple in Ic, the procedure Update Index

is invoked. Update Index recursively traverses the index IND starting from the root

node. For each node l, if the associated parameter range is completely covered by the

interval P , we update the local state of l, otherwise, if l is an internal node, we recursively

process its children nodes. If l is a leaf node, we split it into multiple nodes such that

one of the new nodes is contained in the interval P (and thus we update its local state

accordingly), and the other node(s) are disjoint from P (and thus their local states are not

changed). Whenever a node is split (as it becomes full, or due to the condition at line 7
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Algorithm 2 Aggregate(Ic, expr, init state, merge states, finalize state)

Require: Ic: An input U-clean relation

Require: expr: An expression over attributes of R

Require: init state, merge states, finalize state: Functions for manipulating

states of nodes

1: Define an index IND over the space of the clustering algorithm parameter [τ l, τu]

2: Initialize IND to have one node root covering the entire parameter space

3: root.state← init state(φ)

4: Define a set D (initially empty)

5: Define a state tuple state

6: for each t ∈ Ic do

7: tuple state← init state({expr(t)})
8: Update Index(root, t[P ], tuple state, merge states)

9: end for

10: for each node l ∈ IND, using pre-order traversal do

11: if l 6= root then

12: l.state← merge states(l.state, l.parent.state)

13: end if

14: if l is a leaf node then

15: Agg value← finalize state(l.state)

16: Prob←
∫
l
fτ (x)dx.

17: Add (Agg value, Prob) to D

18: end if

19: end for

20: Merge pairs in D with the same Agg value and sum up their Prob

21: return D
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Algorithm 3 Update Index(l, P, tuple state, merge states)

Require: l: a node in an index

Require: P : parameter interval to be updated

Require: tuple state: a new state to be merged within the interval P

Require: merge states: A function to merge multiple states

1: if the range of node l is entirely contained in P then

2: l.state← merge states(l.state, tuple state)

3: else if l is an internal node and l intersects with P then

4: for each child node l′ of l do

5: Update Index(l′, P, tuple state, merge states)

6: end for

7: else if l is an leaf node and the range of l intersects with P then

8: Split l into multiple nodes such that only one new leaf node l′ is contained in P and

the other node(s) are disjoint from P (note: this might trigger splitting ancestor

nodes and/or creating a new root)

9: Set the states of all new leaf nodes to the state of the old leaf node l

10: l′.state← merge states(l′.state, tuple state)

11: end if

in Algorithm 3), the local states of the new nodes are the same as the original node. If a

new root is introduced, its local state is set to init state(φ).

Once all c-tuples are consumed (after line 9 in Algorithm 2), we traverse the index

IND in pre-order, and we repeatedly merge the local state of each node with the state

of its parent to compute the global state of the node. For each leaf node, we use the

computed global state to compute the aggregate value of the corresponding repair. We

group the obtained aggregate values and we sum up the probabilities of the corresponding

repairs to obtain the probability distribution of the possible aggregate values. We prove in

this section that our algorithm has a complexity of O(n log n) , where n is the number of

c-tuples in Ic.

Figure 3.7 shows an example to illustrate this procedure for the aggregation query

average(Personc, Income). We start with a node covering the parameter range [0, 10],
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Figure 3.7: An example of an aggregation query (a) index IND after line 9 in Alg. 2 (b)

index IND after line 19 in Alg. 2 (c) the probability distribution of the aggregate values

which is initialized to state (0, 0). After reading the first c-tuple CP1, we split the node

[0, 10] into three leaf nodes [0, 1], [1, 3], and [3, 10] associated with the states (0,0), (31k,1)

and (0,0), respectively. At the same time, a new root is introduced with the state (0, 0).

When reading the next c-tuple CP2, we update the state of the root node to (40k,1). We

repeat the same process when reading the remaining c-tuples. The final B-tree is shown

in Figure 3.7(a). Then, we merge the state of each node with the states of its ancestors

(Figure 3.7(b)). The final probability distribution is derived from the states of leaf nodes

(Figure 3.7(c)).

Complexity Analysis

In the following, we prove that our algorithm has a complexity in O(n log n) , where n

is the number of c-tuples in Ic.

We divide the procedure of constructing the probability distribution into two steps: (1)

constructing IND and updating the nodes states, and (2) obtaining the aggregate values of

intervals represented by the leaf nodes of IND and computing the probability distribution.

The first step builds a B-tree by repeatedly inserting parameter ranges of c-tuples in

Ic according to Algorithm Update Index. The n intervals of the parameter settings of all

c-tuples consist of at most 2n distinct end point (ei’s). Thus, the B-tree that contains

all distinct intervals Vi’s will contain at most 2n − 1 leaf nodes. As a result, the space

complexity of the B-tree is O(n). We prove that insertion of each interval costs O(log n) as
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follows. Let f denote the B-tree fan-out degree, and height denote the number of levels in

the B-tree, where the root level is 1, and the leaf level is equal to height. Assume that we

need to insert an interval that spans s contiguous leaf nodes. Out of the s leaf nodes, at

most two nodes (i.e., the left-most and right-most nodes) can be split into multiple nodes.

For the remaining s−2 nodes, we only need to update their states. If s ≥ 2f+2, then there

exists a parent node lp such that all children of lp are among the s leaf nodes, and thus we

only need to update the local state of lp instead of the states of the f children nodes. In

general, the number of updated nodes is reduced to at most b(s − f − 2)/fc + f + 2 by

updating nodes at level height−1 instead of their children at level height. This observation

guarantees that the number of updated or split nodes at level height is less than or equal

to f +2. By continuously applying the same observation at higher levels, we conclude that

the maximum number of updated nodes at each level is f + 2. Therefore, the total number

of scanned nodes is less than or equal to height · (f + 2) nodes, which is in O(log n).

The second step involves traversal of the B-tree, which has linear complexity in n. Sort-

ing and grouping pairs of aggregate values and their probabilities are done in O(n log n).

Hence, we conclude that the complexity of finding the probability distribution of the ag-

gregate values is O(n log n).

Aggregate Queries Over SPJ Results

U-clean relations resulting from SPJ queries involve a number of parameters equal to

the number of joined base U-clean relations, denoted by d. The attribute P of each c-tuple

is represented as a DNF over single parameter settings where each clause is a conjunction of

d parameter settings each of which referring to one of the d parameters. Therefore, we view

each clause in attribute P as a hyper-rectangle in a d dimensional space. Consequently,

attribute P is viewed as a union of multiple d-dimensional hyper-rectangles.

We extend our technique to answer aggregate queries by replacing the B-tree index

with a multidimensional index, namely UB-tree [12]. Also, Algorithm Update Index is

modified such that its argument P is a union of multiple hyper-rectangles. The conditions

at line 1,3 and 7 are changed to be tested against any hyper-rectangle in P . Splitting of

a leaf node in line 8 must be performed such that each intersecting hyper-rectangle in P

has a new leaf node with the exact range of P .
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The complexity of our technique in this case is polynomial in the number of distinct

hyper-rectangles appearing in parameter settings of c-tuples (denoted g), and exponential

in the number of parameters d. The reason is that the number of leaf nodes in IND (the

number of possible repairs) is at most (2g − 1)d, as we show next.

In general, parameter settings of a c-tuple involve d parameters and are represented

as a union of multiple hyper-rectangles, each of which is d dimensional. We divide the

parameter space into a number of disjoint hyper-rectangles as follows. For each parameter

τi, 1 ≤ i ≤ d, we extract the end points of all hyper-rectangles in Ic with respect to τi. The

resulting points divide the space of τi into at most 2g−1 intervals, and thus the space of all

parameters is partitioned into at most (2g − 1)d disjoint hyper-rectangles, corresponding

to at most (2g − 1)d possible repairs. Consequently, the number of leaf nodes of the index

IND cannot exceed (2g − 1)d, and thus the complexity of our algorithm is polynomial in

g and exponential in d.

3.4 Implementation in RDBMS

In this section, we show how to implement U-clean relations and query processing inside

relational database systems. We also propose new queries that reason about the uncertainty

of repairing.

3.4.1 Implementing U-clean Relations

We implement attributes C and P in a relational database as abstract data types (ADTs).

Attribute C is encoded as a set of (ORed) clauses, each of which is a set of (ANDed)

clusters. Attribute P of a U-clean relation Ic is encoded as an array of hyper-rectangles

in the d-dimensional space, where d is the number of parameters of the used clustering

algorithms. Each hyper-rectangle is represented as d one-dimensional intervals.

Executing SPJ queries requires manipulation of attributes C and P according to the

discussion in Section 3.3.1. The selection and projection (under bag semantics) operators

do not alter the values of C and P , and hence no modifications are necessary to these
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operators in relational DBMSs. On the other hand, the join operator modifies attributes

C and P to be the conjunctions of the joined c-tuples attributes. C and P of the results

are computed through functions ConjC(C1, C2) and ConjP (P1, P2), where C1 and C2

are tuple clusters, and P1 and P2 are parameter settings of clustering algorithm(s). We

implement the functions ConjC and ConjP such that they return the conjunction of their

inputs in DNF.

In our implementation, we do not provide native support to projection with duplicate

elimination (i.e., using the Distinct keyword). However, we realize projection with duplicate

elimination through group-by queries. We implement two functions DisjC(C1, . . . , Cn) and

DisjP (P1, . . . , Pn) to obtain the disjunction of clusters C1, . . . , Cn and parameter settings

P1, . . . , Pn, respectively. Performing projection with duplicate elimination of a U-clean

relation UR on a set of attributes A1,...,Ak is equivalent to the following SQL query:

SELECT A1,...,Ak, DisjC(C), DisjP (P )

FROM UR

GROUP BY A1,...,Ak

This query effectively projects UR on attributes A1,...,Ak and computes the disjunc-

tions of attributes C and P of the duplicate c-tuples.

In the following, we give a list of operations that reason about the possible repairs

encoded by a U-clean relation to allow new probabilistic query types that are described in

Section 3.4.2.

• Contains(P, x) returns True iff the parameter settings P contains a given parameter

setting x.

• ContainsBaseTuples(C, S) returns True iff a set of base tuples identifiers S is con-

tained in a cluster C.

• Prob(P, fτ1 , . . . , fτd) computes the probability that a c-tuple with parameter settings

P belongs to a random repair. fτ1 , . . . , fτd are the probability distribution functions

of the clustering algorithms parameters τ1, . . . , τd that appear in P .
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• MostProbParam(UR, fτ1 , . . . , fτd) computes the parameter setting of the most prob-

able repair of a U-clean relation UR, given the probability distribution functions of

parameters fτ1 , . . . , fτd .

We describe how to efficiently implement the functions Prob and MostProbParam as

follows.

Implementing Function Prob

Prob determines the membership probability of a c-tuple, given its parameter settings P ,

denoted as Pr(P ). For a base U-clean relation that involve a single clustering algorithm pa-

rameter τ with probability distribution function fτ , this probability is equal to
∫
P
fτ (x)dx.

For U-clean relations resulting from SPJ queries, attribute P involves d parameters and is

represented as a union of several hyper-rectangles, each of which is d dimensional. Let g

denotes the number of distinct hyper-rectangles that appear in attribute P for all c-tuples.

We first divide the parameters space into a number of disjoint hyper-rectangles, denoted

{L1, L2, . . . }, as follows. For each parameter τi, 1 ≤ i ≤ d, we extract the distinct end

points with respect to τi of the hyper-rectangles that appear in Ic. The resulting points

divide the space of τi into at most 2g− 1 intervals, and thus the space of all parameters is

partitioned into at most (2g − 1)d disjoint hyper-rectangles {L1, L2, . . . }. The probability

of Lj is defined as follows.

Pr(Lj) =
d∏
i=1

∫ Lj .τ
u
i

Lj .τ li

fτi(x)dx (3.2)

where Lj.τ
l
i and Lj.τ

u
i indicate the lower and upper values of parameter τi in cell Lj,

respectively. Clearly, for each hyper-rectangle H that appear in attribute P of a c-tuple, a

hyper-rectangle Lj can only be either contained in H or disjoint from H. Additionally, H

is completely covered by one or more hyper-rectangles in {L1, L2, . . . }. Thus, we compute

Pr(P ) as follows.

Pr(P ) =
∑
j

con(Lj, P ) Pr(Lj) (3.3)
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where con(Lj, P ) is an indicator function that returns 1 if Lj is contained in any hyper-

rectangle in P , and 0 otherwise.

Implementing Function MostProbParam

For base U-clean relations, determining the most probable repair can be done efficiently by

scanning c-tuples in Ic, and extracting all end points of their parameter settings. Distinct

end points split the parameter space [τ l, τu] into multiple intervals V1, . . . , Vm correspond-

ing to the possible repairs. For example, in Figure 3.6, the possible repairs are X1, X2,

and X3 corresponding to the intervals [0, 1], [1, 3], and [3, 10], respectively. The proba-

bility of each repair is computed based on its corresponding parameter settings. Func-

tion MostProbParam returns the interval of the repair with the highest probability (e.g.,

[3, 10] in Figure 3.6). The overall complexity of the function MostProbParam is O(n log n)

(mainly, due to sorting the end points of parameter settings).

For U-clean relations resulting from SPJ queries, we use the following technique to

compute MostProbParam. We denote by g the number of distinct hyper-rectangles in

parameter setting of all c-tuples. We partition the parameters space into at most (2g− 1)d

disjoint hyper-rectangle using the end points of all hyper-rectangles appearing in c-tuples

(in the same way described for implementing Prob). We construct a set of parameter

settings, denoted Z such that each item in Z is a subset of hyper-rectangles in {L1, L2, . . . }
corresponding to a unique repair. Initially, Z contains one set Z0, which is the set of all

hyper-rectangles {L1, L2, . . . }. For each c-tuple t in Ic, we split each set Zi in Z into two

sets Zi1, Zi2 such that Zi1 (respectively, Zi2) corresponds to repairs containing (respectively,

not containing) t. That is, Zi1 = {Lj : Lj ∈ Zi∧Lj ⊆ t[P ]} and Zi2 = {Lj : Lj ∈ Zi∧Lj *
t[P ]}. After scanning all c-tuples, we compute the probability of each set (i.e., repair)

Zi, which is equal to the sum of probabilities of hyper-rectangles in Zi. Once the highest

probability is identified, we return the corresponding set Zi.

For example, Figure 3.8(a) shows a U-clean relation resulting from a join query. The

set Z initially contains one set Z0 containing the four cells depicted in Figure 3.8(b).

Scanning the first c-tuples does not cause splitting of Z0 as all cells are contained in the

parameter settings τ1 : [0, 10], τ2 : [0, 5]. Scanning the seconds c-tuple results in splitting
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Figure 3.8: (a) Results of a join query (b) the corresponding possible clean instances

Z0 into two sets such that the first set contains the shaded cell, and the second set contains

the unshaded cells. After scanning the third c-tuple, the set Z contains three sets. The

probability of each set is then computed and the most probable one (which covers τ1 :

[3, 10], τ2 : [0, 5]) is returned.

3.4.2 Other Query Types

In this section, we describe multiple meta-queries that are defined over our uncertainty

model. Specifically, the queries we describe in this section explicitly use attributes P and

C to reason about the possible repairs modeled by U-clean relations.

Extracting Possible Clean Instances

Any clean instance encoded in a U-clean relation can be constructed efficiently given the

required parameters values of the clustering algorithm(s). For a base U-clean instance Ic,

the clean instance at parameter value x is equal to {t[A1, . . . , Am] : t ∈ Ic ∧ x ∈ t[P ]}.

Extracting the clean instance corresponding to a given parameter value x can be per-

formed through a selection query with the predicate Contains(P, x). For example, assume

that we need to extract the clean instance of the U-clean relation Pricesc in Figure 3.5(b)

corresponding to the parameter setting τ2 = 4.1. This clean instance is computed using

the following SQL query:
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SELECT Price

FROM Pricesc

WHERE Contains(P, 4.1)

which results in the tuples 4k, 6k, and 8k.

It is possible to speed up extraction of clean instances by indexing the c-tuples based

on their parameter settings using an R-Tree index [49]. More specifically, we create a d-

dimensional R-tree index over the space of possible settings of parameters τ1, . . . , τd. The

parameter settings of a c-tuple t is generally a union of d-dimensional hyper-rectangles.

For each c-tuple t ∈ Ic, we insert its hyper-rectangles into the R-tree, and label them with

the identifier of t. To extract the repair at τ1 = x1, . . . , τd = xd, we search the R-tree for

hyper-rectangles that contain the point (x1, . . . , xd) and report the associated c-tuples.

Obtaining the Most Probable Clean Instance

An intuitive query is to extract the clean instance with the highest probability. It is

possible to answer this query with the help of two functions, namely Contains and

MostProbParam, through a selection SQL query. For example, assume that a user re-

quests the most probable repair from Relation Personc which is shown in Figure 3.3. This

query can be answered using the following SQL query:

SELECT ID, Name, ZIP, Income, BirthDate

FROM Personc

WHERE Contains(P,MostProbParam(Personc, U(0, 10)))

Note that MostProbParam is evaluated only once during the entire query and thus

the cost incurred by this function is only paid once.

Finding α-certain c-tuples

We consider a query that finds c-tuples that exhibit a degree of membership certainty above

a given threshold α. We call this type of queries an α-certain query. This query type can
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be answered by issuing a selection query with the predicate Prob(P, fτ1 , . . . , fτd) ≥ α. For

example, consider a 0.5-certain query over the relation in Figure 3.5(c). This query is

answered using the following SQL query:

SELECT Income, Price, ConjC(PC.C,VC.C) AS C, ConjP (PC.P,VC.P) AS P

FROM Personc PC , Vehiclec VC

WHERE Income/10 >= Price

AND Prob(P,U(0, 10), U(0, 10)) >= 0.5

This SQL query reports only the first c-tuple in Figure 3.5(c), which has a membership

probability of 0.5.

Note that α-certain queries can be considered a generalization of consistent query an-

swers [9]. That is, setting α to 1 retrieves the c-tuples that appear in every possible clean

instance.

Probability of Clustering Tuples Together

We show how to compute the probability that multiple tuples in an unclean instance I

belong to the same cluster (i.e., declared as duplicates). For example, consider a query

requesting the probability that two tuples P1 and P2 from the instance Person are clustered

together according to the repairs encoded in U-clean relation Personc (Figure 3.3). The

probability of clustering a set of tuples is equal to the sum of probabilities of repairs in

which this set of tuples is clustered together. To compute this probability, we first select

all c-tuples whose attribute C contains all tuples in question (e.g., P1 an P2). Values of

attribute C of the selected c-tuples are overlapping since they all contain the query tuples.

Consequently, the selected c-tuples are exclusive (i.e., cannot appear in the same repair)

and the clustering probability can be obtained by summing probabilities of the selected

c-tuples:

Pr(clustering t1, . . . , tk) =
∑

t∈Ic:{t1,...,tk}⊆t[C]

Pr(t[P ]) (3.4)
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For example, the probability of clustering tuples P1 and P2 is obtained using the fol-

lowing query:

SELECT Sum(Prob(P,U(0, 10)))

FROM Personc

WHERE ContainsBaseTuples(C, ’P1,P2’)

which returns the probability 0.9.

It is worth mentioning that the way we obtain clustering probabilities is substantially

different from other approaches that computes the matching probabilities of tuples pairs.

For example, in [38], Fellegi and Sunter derive the probability that two tuples are dupli-

cates (i.e., match each other) based on the similarity between their attributes. Unlike our

approach, in [38], probabilities of matching (i.e., clustering) tuple pairs are computed in

isolation of other pairs, which may lead to inconsistencies. For example, the pair (t1, t2)

may have a matching probability of 0.9, and the pair (t2, t3) has a matching probability

of 0.8, while the matching probability of the pair (t1, t3) is equal to 0. Our approach

avoids such inconsistencies by deriving pair-wise clustering probabilities based on the un-

certain output of a clustering algorithm, which by definition resolves such inconsistencies.

Moreover, our approach can obtain the matching probability of more than two tuples.

3.5 Probabilistic Merging of Clusters

In this section, we show how to extend our model to allow capturing uncertainty in merging

the clustered tuples.

In [6], possible outcomes of merging a cluster are assumed to be its member tuples. It

is also possible to define multiple aggregate functions over the cluster members, each of

which provide one possible merging output. For example, to merge numerical attributes,

we might include the median and the mean values as possible outcomes.

For example, Figure 3.9 shows a set of repairs for an unclean relation. The correspond-

ing parameter settings of the used clustering algorithm are shown above each repair. The
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Repair 1: τ1∈[0,1] 
Cluster Name ZIP Income

{P1} G 51359 30k

ID N ZIP I U t i

Person

{P1} Green 51359 30k
{P2} Green 51358 32k

{P3,P4} Peter 30128 40k
{P5} Gree 51359 55k

ID Name ZIP Income

P1 Geen 51359 30k

P2 Green 51358 32k

P3 Peter 30128 40k

Uncertain
Clustering 

and Merging Repair 2: τ1∈[1,3] 
Cluster Name ZIP Income

{P6} Chuck 51359 30k

P3 Peter 30128 40k

P4 Peter 30128 40k

P5 Gree 51359 55k

P6 Chuck 51359 30k

{P1,P2}
Green 51359 31k
Green 51359 32k

{P3,P4} Peter 30128 40k
{P5} Gree 51359 55k

Cl t N ZIP I

Repair 3: τ1∈[3,10] 

{P5} Gree 51359 55k
{P6} Chuck 51359 30k

Cluster Name ZIP Income

{P1,P2,P5}
Green 51359 39k

Green 51359 32k

{P3 P4} Peter 30128 40k{P3,P4} Peter 30128 40k

{P6} Chuck 51359 30k

Figure 3.9: An example of possible repairs when both clustering and merging steps are

uncertain

uncertain merging procedures are defined to report the longest name, the ZIP code of the

majority (with arbitrary tie breaking), and both the mean and the median incomes.

We assume that the probability distribution of the outcomes of a merging procedure is

given (e.g., using the method introduced in [6], or using user-specified confidence values

associated with aggregation functions). Moreover, we assume that the merging outcome

is independent from the parameters of the clustering algorithms, and that the merging

outcomes of different clusters are independent. The outcome of merging each cluster Ci

can be viewed as a random variable Mi. We call Mi the merging random variable of Ci.

The possible outcomes of Mi are identifiers of the possible tuples resulting from the merging

process.

We extend our model to allow encoding of possible merging outcomes as follows. We
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ID Name ZIP Income C P
CP11 Green 51359 31k {P1,P2} ¿1:[1,3] ^M1:1
CP12 Green 51359 32k {P1,P2} ¿1:[1,3] ^M1:2
CP2 Peter 30128 40k {P3,P4} ¿1:[0,10]
CP3 Gree 51359 55k {P5} ¿1:[0,3]
CP4 Chuck 51359 30k {P6} ¿1:[0,10]
CP51 Green 51359 39k {P1,P2,P5} ¿1:[3,10] ^M2:1
CP52 Green 51359 32k {P1,P2,P5} ¿1:[3,10] ^M2:2
CP6 Green 51359 30k {P1} ¿1:[0,1]
CP7 Green 51358 32k {P2} ¿1:[0,1]

Personc

¿1 U[0,10]

Pr(M1=1) = Pr(M1=2) = 0.5

Pr(M2=1) = Pr(M2=2) = 0.5

(a) (b)

Figure 3.10: (a) An example U-Clean relation in the presence of uncertain clustering and

merging. (b) the probability distributions of the used random variables

represent each possible merging outcome as a separate c-tuple, whose attribute C is equal

to the set of merged tuples. The attribute P of each c-tuple is a conjunction of: (1)

the parameter settings of the clustering algorithm leading to generating C, and (2) the

outcome of the merging random variable associated with the cluster C that corresponds

to this c-tuple. Note that in case of having a single outcome from merging a cluster, we

do not need to introduce a new merging random variable, and thus, the attribute P of the

corresponding c-tuple consists only of the parameter settings of the clustering algorithm.

In Figure 3.10(a), we show a U-clean relation Personc that encodes repairs of the

unclean relation Person that are shown in Figure 3.9. The used clustering algorithm

has one parameter τ1 that follows a uniform distribution over the interval [0, 10]. Two

random variables M1 and M2 are introduced to encode different merging outcomes for the

clusters {P1, P2} and {P1, P2, P5}, respectively. Outcomes of M1 and M2 are assumed to

be equiprobable. Note that the attribute C does not uniquely identifies a c-tuple in the

presence of multiple merging outcomes. For example, the c-tuples CP11 and CP12 represent

the same cluster {P1, P2}.

Membership probabilities of c-tuples can be derived using the attribute P and the
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Income C P

31k {P1,P2} τ1:[1,3] ^ M1:1

32k
{P1,P2} v 

{P1,P2,P5} v 
{P2}

(τ1:[1,3] ^ M1:2 ) v 
(τ1:[3,10] ^ M2:2) v 

(τ1:[0,1])
40k {P3,P4} τ1:[0,10]

55k {P5} τ1:[0,3]

30k {P6} v {P1} τ1:[0,10] v τ1:[0,1]

39k {P1,P2,P5} τ1:[3,10]  ^ M2:1

SELECT Income, DisjC(C), DisjP(P)
FROM Personc

Group By Income

Figure 3.11: An example of a query over Personc

probability distributions of the used random variables (e.g., τ1, M1, and M2 as shown in

Figure 3.10(b)). For example, the membership probability of CP51 is equal to Pr(τ1 ∈
[3, 10] ∧M2 = 1) = 0.7× 0.5 = 0.35.

SPJ queries, α-certain query, repair extraction query, and querying probability of clus-

tering tuples are performed in the same way as defined in Section 3.4. For example,

Figure 3.11 depicts a query over Personc (Figure 3.10) that performs projection on the

attribute Income under set semantics.

Note that in repair extraction queries, if only the parameters of clustering algorithms

are specified in query, all merging outcomes for the extracted repair will be reported.

For example extracting the repair corresponding to the parameter setting τ1 = 2.5 from

Personc (Figure 3.10(a)) returns the c-tuples CP11, CP12, CP2, CP3, and CP4.

Unfortunately, the proposed algorithms for aggregation queries and for obtaining the

most probable repair cannot efficiently be executed due to the possibility of having a large

number of variables in attribute P corresponding to the merging random variables (recall

that such algorithms have exponential complexity in the number of variables). Approxi-

mate query answering is to be investigated in our future work to handle such queries more

efficiently.
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3.6 Experimental Evaluation

In our experiments, we show that our probabilistic cleaning approach has negligible time

and space overheads compared to the existing data cleaning approaches, which warrants

adopting our approach in realistic settings. We also show that queries over U-clean relations

can be answered efficiently using our algorithms.

3.6.1 Setup

All experiments were conducted on a SunFire X4100 server with Dual Core 2.2GHz pro-

cessor, and 8GB of RAM. We implemented all functions in Section 3.4.1 as user defined

functions (UDFs) in PostgreSQL DBMS [1]. We used the synthetic data generator that

is provided in the Febrl project [26], which produces one relation, named Person, that

contains persons data (e.g., given name,surname, address, phone, age). Data sets gen-

erated using Febrl exhibit the content and statistical properties of real-world data sets

[25], including distributions of the attributes values, error types, and error positions within

attribute values. The parameters of the experiments are as follows.

• The number of tuples in the input unclean relation (the default is 100,000).

• The percentage of duplicate tuples in the input relation (the default is 10%).

• The width of the parameter range used in the duplicate detection algorithms (the

default is 2, which is 10% of width of the broadest possible range according to the

distribution of the pair-wise distance values). We assume that the parameters have

uniform distributions. For deterministic duplicate detection, we use the mean value.

Our implementation of duplicate elimination algorithms is based on the single-linkage

clustering (S.L.) [54], and the NN-based clustering algorithm using the function max for

aggregating neighborhood growths [20]. Deduplication algorithms are executed in memory.

All queries, except aggregate queries, are executed through SQL statements submitted to

PostgreSQL. Aggregate queries are processed by an external procedure that implements
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the algorithms described in Section 3.3.2. All queries are performed over a single U-clean

relation, named Personc, which is generated by uncertain deduplication of Person. Each

query is executed five times and the average running time is recorded. We report the

following metrics in our experiments:

• The running time of deterministic and uncertain clustering algorithms. The reported

times do not include building the similarity graph, which is performed by Febrl [26].

• The sizes of the produced relations.

• The response times of an aggregate query using the count function, and the prob-

abilistic queries in Section 3.4.2 against Relation Personc constructed by the S.L.

algorithm. The threshold α is set to 0.5 in α-certain queries. In clustering proba-

bility queries, we use two random tuples as query arguments. We omit queries for

extracting clean instances as they have almost identical response times to obtaining

the most probable clean instance.

• The relative overhead of maintaining attributes C and P in U-clean relations during

selection, projection, and join queries as defined in Section 3.3.1 (we refer to such

queries as uncertain queries). We compare the uncertain queries to regular SPJ

queries that do not use, compute, or return attributes C and P (we call them base

queries). The base selection query returns attribute Age of all tuples, while the

uncertain selection query returns attributes Age, C and P . The base join query

performs a self-join over Personc to join c-tuples with the same Surname and different

ID. The uncertain join query additionally computes attributes C and P of the results.

The base projection query (with duplicate elimination) projects relation Personc on

attribute surname while ignoring attributes C and P . The uncertain projection

computes attributes C and P of the results as described in Section 3.4.1.

3.6.2 Results

We first summarize the results of our experiments as follows. We observe that the overhead

in execution time of the uncertain deduplication, compared to the deterministic dedupli-
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Figure 3.12: The effect of the data set size on (a) clustering running time (b) output size

(c) uncertain queries running times (d) the running time overhead for SPJ queries

cation, is less than 30% in case of the S.L. algorithm, and less than 5% in case of the

NN-based clustering algorithm for input data size of 300000 tuples. The average overhead

in space requirements is equal to 8.35%, while the maximum overhead is equal to 33%.

We also note that extracting a clean instance takes less than 1.5 seconds in all cases which

indicates that our approach is more efficient than restarting the deduplication algorithm

whenever a new parameter setting is requested.

In the following, we show more details about the effect of changing the experiments

parameters.

The Effect of Data set Size (Figure 3.12): The average computational overhead of

the uncertain S.L. algorithm is 20% compared to the deterministic version. The running

times of both versions of the NN-based algorithm are almost identical. Output sizes (Fig-
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Figure 3.13: The effect of duplicate percentage on (a) clustering running time (b) output

size (c) uncertain queries running times (d) the running time overhead for SPJ queries

ure 3.12(b)) are almost identical for uncertain and deterministic deduplication algorithms.

The responses times of queries (Figure 3.12(c)) exhibit linear (or near-linear) increase with

respect to the data set size.

The overhead in running time of SPJ queries varies among query types (Figure 3.12(d)).

Selection queries have the lowest overhead (almost zero) because the only extra operation is

converting data types of attributes C and P into string format in output. Join queries have

almost fixed relative overhead (about 5% in all cases) due to the constant time consumed

in computing attributes C and P per tuple in the join results. The projection query

suffers from an overhead that increases linearly with the relation size due to evaluating the

aggregate functions DisjC and DisjP .
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Figure 3.14: The effect of the parameter range on (a) clustering running time (b) output

size (c) uncertain queries running times (d) the running time overhead for SPJ queries

The Effect of Percentage of Duplicates (Figure 3.13): The overhead of executing

uncertain S.L. algorithm remains low (30% at most) as the percentage of duplicates rises

(Figure 3.13(a)). The uncertain NN-based algorithm has almost no overhead regardless

of the amount of duplicates. The output size slightly declines at higher percentages of

duplicates due to the increasing number of merged tuples (Figure 3.13(b)). Produced

clusters mainly consist of singletons. Hence, query response times are hardly affected by

the increased percentage of duplicates (Figures 3.13(c) and 3.13(d)).

The Effect of the Width of Parameter Range (Figure 3.14): The clustering running

times and the output sizes of the deterministic clustering algorithms do not change because

the parameter value remains fixed at the mean parameter value. In contrast, the running

times of the uncertain S.L. algorithm increase due to having greater upper bounds of
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parameters, which results in testing and clustering additional tuples. We observe that the

running time of the uncertain NN-based clustering algorithm does not increase significantly.

This is due to the highly selective clustering criteria imposed by NN-based algorithm (i.e.,

compactness of the cluster).

The output size for the uncertain S.L. algorithm also grows as more candidate clusters

are emitted to the output U-clean relation (Figure 3.14(b)). Consequently, queries imposed

against the output of the S.L. clustering algorithm suffer from increased response times

(Figures 3.14(c) and 3.14(d)).
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Chapter 4

Sampling Repairs of FD Violations

In this chapter, we present our approach for probabilistic repairing of functional dependency

violations [15]. In Section 4.1, we present previous definitions of possible repairs as well

as a new definition. In Section 4.2, we introduce our approach to sample from the new

space of possible repairs. We show how to improve the efficiency of the sampling algorithm

through partitioning data into separately-repairable blocks in Section 4.3. In Section 4.4,

we present an experimental study of our sampling approach. In Section 4.5, we provide a

discussion about the difficulties in randomizing previous data cleaning algorithms.

4.1 Spaces of Possible Repairs

We first give a few notations that are used in this chapter. We denote by R a relation

schema consisting of m attributes, denoted (A1, . . . , Am). We denote by I an instance of

R consisting of n tuples, each of which has a unique identifier. We denote by TIDs(I) the

identifiers of tuples in I. We refer to an attribute A ∈ R of a tuple t ∈ I as a cell, denoted

t[A]. We denote by CIDs(I) = {t[A] : t ∈ TIDs(I), A ∈ R} the set of all cell identifiers

in I. We denote by I(t[A]) the value of a cell t[A] in an instance I. For an FD X → A,

where X ⊆ R and A ∈ R, we refer to X as the left-hand-side (LHS) attributes, and we

refer to A as the right-hard-side (RHS) attribute.
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A repair of an inconsistent instance I with respect to a set of FDs Σ is another instance

I ′ that satisfies Σ. As explained in Section 2.2.2, we only consider repairs obtained by

modifying tuple attributes (i.e., cells) of I. An FD repair is formally defined as follows.

Definition 3. FD Repair. Given a set of FDs Σ defined over a relation R, and an

instance I of R that does not necessarily satisfy Σ, a repair of I is another instance I ′ of

R such that I ′ |= Σ and TIDs(I) = TIDs(I ′).

That is, a repair I ′ of an inconsistent instance I is an instance that satisfies Σ and has

the same set of tuple identifiers in I. The attribute values of tuples in I and I ′ can be

different. The sets of cell identifiers in both I ′ and I are equal (i.e., CIDs(I) = CIDs(I ′)).

We denote by Repairs(I) the set of all possible repairs of an instance I. We denote by

∆(I, I ′) identifiers of the cells that have different values in I and I ′, that is, ∆(I, I ′) =

{C ∈ CIDs(I) : I(C) 6= I ′(C)}. For example, in Figure 4.1, ∆(I, I2) = {t2[B], t3[B]}.
Also, we denote by λ(I, I ′) the set of changes made in I in order to obtain I ′, where each

change is represented as a pair of a cell and the new value assigned to this cell in I ′.

Formally, λ(I, I ′) = {(C, v) : I(C) 6= I ′(C) ∧ v = I ′(C)}. For example, in Figure 4.1,

λ(I, I4) = {(t1[A], 7), (t1[B], 3)}.

It is useful to filter out repairs that are less likely to represent the actual clean database.

A widely used criterion is the minimality of changes (e.g., [19, 23, 24, 47, 57]). The main

hypothesis is that the largest part of the data is clean and thus we need only to change a

small number of the database cells in order to bring the database instance into accordance

with Σ. In the following, we describe two repair definitions that have different degrees of

trust is such a hypothesis.

Definition 4. Cardinality-Minimal Repair [19, 57]: A repair I ′ of I is cardinality-

minimal iff there is no repair I ′′ of I such that |∆(I, I ′′)| < |∆(I, I ′)|.

That is, a repair I ′ of I is cardinality-minimal iff the number of changed cells in I ′ is

the minimum across all repairs of I. This definition has the strongest confidence in the

described hypothesis.

Definition 5. Set-Minimal Repair [9, 60]: A repair I ′ of I is set-minimal iff there is

no repair I ′′ of I such that λ(I, I ′′) ⊂ λ(I, I ′).
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That is, a repair I ′ of I is set-minimal iff no strict subset of the changed cells in I ′ can

be reverted to their original values in I without violating Σ. This definition has the least

confidence in the described hypothesis. Note that we use the symbol ⊂ to indicate strict

(proper) subset (also written as ( in other publications).

Previous approaches that generate a single repair of an unclean relation instance typi-

cally find a nearly-optimal cardinality-minimal repair (finding a cardinality-minimal repair

is NP-hard [19, 23, 57]). In contrast, prior work on consistent query answering considers

set-minimal repairs [24, 47]. Repairs that are not set-minimal are believed to be unaccept-

able repairs since they involve unnecessary changes [9, 24, 60].

We introduce a novel space of repairs, called cardinality-set-minimal repairs. The goal

of such a space is striking a balance between the “fewest changes” metric of cardinality-

minimality and the “necessary changes” criterion of set-minimality.

Definition 6. Cardinality-Set-Minimal Repair A repair I ′ of I is cardinality-set-

minimal iff there is no repair I ′′ of I such that ∆(I, I ′′) ⊂ ∆(I, I ′).

That is, a repair I ′ of I is cardinality-set-minimal iff no subset C of the changed cells

in I ′ can be reverted to their original values in I without violating Σ, even if we allow

modifying the cells in ∆(I, I ′) \ C to other values.

In Figure 4.1, we show the various types of repairs of an instance I, with the changed

cells greyed out. Repairs I1 is cardinality-minimal because no other repair has fewer

changed cells. Repair I1 is also cardinality-set-minimal and set-minimal. Repairs I2 and

I3 are set-minimal because reverting any subset of the changed cells to the values in I

will violate A → B. On the other hand, I3 is not cardinality-set-minimal (or cardinality-

minimal) because reverting t2[B] and t3[B] back to 3 and changing t1[B] to 3 instead of 5

gives a repair of I, which is the same as I1. Repair I4 is not set-minimal because I4 still

satisfies A → B after reverting t1[A] to 1. The relationship among the various definitions

of minimal repairs is depicted in Figure 4.2 and described in the following lemma.

Lemma 1. The set of cardinality-minimal repairs is a subset of cardinality-set-minimal

repairs. Moreover, the set of cardinality-set-minimal repairs is a subset of set-minimal

repairs.
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Not Cardinality-Minimal
Cardinality-Set-Minimal
Set-Minimal

= {A B}

A B
t1 1 2

t2 1 3
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t1 1 2
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t3 1 3
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Set-Minimal
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Possible Repairs

I

I1
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I3

Cardinality-Minimal
Cardinality-Set-Minimal
Set-Minimal

A B
t1 7 3
t2 1 3
t3 1 3

I4
Not Cardinality-Minimal
Not Cardinality-Set-Minimal
Not Set-Minimal

Figure 4.1: Examples of various types of repairs

Proof. For any two repairs I ′ and I ′′ of I,

∆(I, I ′′) ⊂ ∆(I, I ′)→ |∆(I, I ′′)| < |∆(I, I ′)|

This implies that for any repair I ′ of I,

@I ′′ ∈ Repairs(I) (|∆(I, I ′′)| < |∆(I, I ′)|)
→ @I ′′ ∈ Repairs(I) (∆(I, I ′′) ⊂ ∆(I, I ′))

Therefore, if I ′ is a cardinality-minimal repair, I ′ is cardinality-set-minimal. Similarly,

for any two repairs I ′ and I ′′ of I,

λ(I, I ′′) ⊂ λ(I, I ′)↔ ∆(I, I ′′) ⊂ ∆(I, I ′) ∧ ∀C ∈ ∆(I, I ′′) (I ′′(C) = I ′(C))
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Universe of Repairs

Set-Minimal Repairs

Cardinality-Set-Minimal
Repairs

Cardinality-
Minimal Repairs

Figure 4.2: The relationship between spaces of possible repairs

and thus

λ(I, I ′′) ⊂ λ(I, I ′)→ ∆(I, I ′′) ⊂ ∆(I, I ′)

@I ′′ ∈ Repairs(I) (∆(I, I ′′) ⊂ ∆(I, I ′))

→ @I ′′ ∈ Repairs(I) (λ(I, I ′′) ⊂ λ(I, I ′))

It follows that if I ′ is a cardinality-set-minimal repair, I ′ is set-minimal as well.

4.2 Sampling Possible Repairs

The main goal of our approach is to sample from a reasonable space of possible repairs.

The sampling space should be neither too restrictive (and thus missing too many repairs),

nor too large (and thus sampling repairs with very low probability of being correct). We

argue that the cardinality-set-minimal space provides such balance, and we thus target

sampling from this space.

Note that although existing heuristics for finding a single nearly-optimal repair may

be modified to generate multiple random repairs, they do not give any guarantees on the

space of generated repairs. For example, the algorithm in [19] can produce repairs that are

not even set-minimal, while the algorithm from [57] may miss some cardinality-minimal

repairs. We discuss these two cases in more details in Section 4.5.
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The organization of this section is as follows. First, we introduce the concept of clean

cells in Section 4.2.1 and we establish the link between this concept and the definition of

cardinality-set-minimality. Then, we introduce a sampling algorithm in Section 4.2.2 that

samples from the space of cardinality-set-minimal repairs. In Section 4.2.3, we describe

how to enforce user-defined hard constraints that disallow modifying a given set of cells.

4.2.1 Sets of Clean Cells

Whenever attributes in R have unbounded domains (e.g., integers, and strings), there is

an infinite number of FD repairs. For example, in Figure 4.1, assigning any value from the

domain of A other than 1 to t1[A] results in a repair of I. If the domain of A is unbounded,

then the number of such repairs is infinite. We use the notion of V-instances, which was

introduced in [57], to concisely represent data instances. In V-instances, cells can be either

set to constants, or to variables that can be instantiated in a specific way.

Definition 7. V-instance. Given a set of variables {vA1 , vA2 , . . . } for each attribute A ∈
R, a V-instance of R is an instance of R where each cell t[A] in the instance can be assigned

to either a constant in Dom(A), or a variable from the set {vA1 , vA2 , . . . }.

A V-instance I represents multiple ground (i.e., variable-free) instances of R that can

be obtained by assigning each variable vAi in attribute A in I to any value from Dom(A)

that is not among the constants already occurring in attribute A in I, and such that no two

distinct variables vAi and vAj have equal values. The main use of variables in the context

of repairing FD violations is representing unknown values that emerge from modifying the

left-hand-side attributes of a violated FD. In the remainder of the dissertation, we refer to

a V-instance as simply an instance.

In the following, we define the concept of clean cells, and we establish the link between

this concept and the cardinality-set-minimality.

We define a clean set of cells C ⊆ CIDs(I) with respect to a set of FDs Σ as follows.

Definition 8. Clean Cells. A set of cells C in an instance I is clean iff there is at least

one repair I ′ ∈ Repairs(I) such that ∀C ∈ C, I ′(C) = I(C).
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That is, a set of cells in an instance I is clean if their values in I can remain unchanged

while obtaining a repair of I. For example, in Figure 4.1, the sets {t1[A], t1[B], t2[A]} and

{t1[B], t2[A], t2[B]} are clean, while the set {t1[A], t1[B], t2[A], t2[B]} is not clean.

We say that a set of cells C is a maximal clean set iff C is clean and no strict superset of C
is clean. For example, the sets {t1[A], t1[B], t2[A], t3[B]} and {t1[A], t2[A], t2[B], t3[A], t3[B]}
in Figure 4.1 are maximal clean sets. In the following theorem, we establish the link between

the concept of clean cells and the cardinality-set-minimal repairs.

Theorem 1. Given an input instance I and a set of FDs Σ, a repair I ′ of I with respect to

Σ is cardinality-set-minimal iff the set of unchanged cells in I ′ (i.e., CIDs(I ′) \∆(I, I ′))

is a maximal clean set of cells.

Proof. First, we prove the “if” condition as follows. Let C = CIDs(I ′) \ ∆(I, I ′) be a

maximal clean set of cells. It follows that we cannot add any cell to C without making

C unclean. Based on the definition of clean cells (Definition 8), there does not exist any

other repair of I that have a set of unchanged cells C ′ that is a strict superset of C (i.e.,

@I ′′ ∈ repairs(I)(∆(I, I ′′) ⊂ ∆(I, I ′)). Thus, I ′ is a cardinality-set-minimal repair.

Second, we prove the “only if” condition as follows. Let I ′ be a cardinality-set-minimal

repair of I. The set C = CIDs(I ′) \ ∆(I, I ′) is a clean set of cells because I ′ is a repair.

Because I is cardinality-set-minimal, no cells in ∆(I, I ′) can be reverted back to their

original values without violating Σ, even if we allow remodifying other changed cells (i.e.,

@I ′′ ∈ repairs(I)(∆(I, I ′′) ⊂ ∆(I, I ′))). It follows that we cannot extend C by adding one

or more cells without violating the cleanness property. It follows that C is a maximal clean

set of cells.

Our sampling algorithm is based on Theorem 1. We randomly pick a maximal clean

set of cells C, and then we randomly change cells outside C in order to satisfy Σ.

In the following, we show how to determine whether a set of cells is clean or not. We

observe that it is not enough to verify that the cells in C do not violate any FDs to determine

cleanness of C. For example, consider Figure 4.3, which shows a set of non-empty cells in
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an instance. Assume that we need to determine if the shown cells are clean. Although the

shown cells do not directly violate any FD in Σ (i.e., we cannot find a pair of tuples that

violates Σ), no repair may contain the current values of those cells regardless of the values

of the other cells. This is because t1[A] = t2[A] implies t1[C] = t2[C] (by A → C) and

t2[B] = t3[B] implies that t2[C] = t3[C] (by B → C). Thus, t1[C],t2[C] and t3[C] have to

be equal in any repair. However, t1[C] 6= t3[C] in the shown instance.

To determine whether a set of cells C is clean or not, we capture all equality constraints

over cells in I that are induced by values of cells in C, and FDs in Σ. Then, we check

for contradictions between the constraints and values of cells in C to determine whether C
is clean or not. We model equality constraints as an equivalence relation over cells in I,

denoted E . We denote by ec(E , Ci) the equivalence class E ∈ E to which a cell Ci belongs.

We denote by merging two equivalence classes in E replacing them by a new equivalence

class that is equal to their union. Algorithm 4 builds the equivalence relation E given a

set of cells C in an instance I.

Algorithm 4 BuildEquivRel(C,I,Σ)

1: let TIDs(C) be the set of tuple identifiers involved in C : {t : t[A] ∈ C}
2: let Attrs(C) be the set of attributes involved in C : {A : t[A] ∈ C}
3: let E be an initial equivalence relation on the set {t[A] : t ∈ TIDs(C), A ∈ Attrs(C)}

such that cells in C that belong to the same attribute and have equal values in I are in

the same equivalence class, and all other cells outside C belong to separate (singleton)

classes

4: while ∃t1, t2 ∈ TIDs(C), A ∈ Attrs(C), X ⊂ Attrs(C) such that X → A ∈ Σ,

∀B ∈ X (ec(E , t1[B]) = ec(E , t2[B])), and ec(E , t1[A]) 6= ec(E , t2[A]) do

5: merge the equivalence classes ec(E , t1[A]) and ec(E , t2[A])

6: end while

7: return E

Algorithm 4 is similar in spirit to the chase algorithm that is frequently used in the

context of data exchange and consistent query answering for dependency enforcement (e.g.,

[46, 34]).

Figure 4.3 shows an example of the initial and the final equivalence relations that are
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= {AC , BC}

A B C
t1 1 2
t2 1 1
t3 1 3

A B C
t1 1 2
t2 1 1
t3 1 3

A B C
t1 1 2
t2 1 1
t3 1 3

Initial Equivalence Relation Final Equivalence Relation

Figure 4.3: An example of checking whether the set of non-empty cells is clean or not

built by Algorithm 4. The equivalence class {t1[C], t2[C], t3[C]} in the final equivalence

relation indicates that the three cells must be equal in any repair in which the non-empty

cells are unchanged. This is clearly infeasible since t1[C] and t3[C] have different values in

the shown example, which means that the non-empty cells in the figure are unclean.

In general, a set of cells C in I is clean with respect to Σ, denoted isClean(C, I,Σ), iff

every two cells in C that belong to the same equivalence class in E have the same value in

I. This result is formally described by the following theorem.

Theorem 2. isClean(C, I,Σ) is True iff ∀Ci, Cj ∈ C such that ec(E , Ci) = ec(E , Cj),

I(Ci) = I(Cj), where E is the outcome of the procedure BuildEquivRel(C,I,Σ).

Proof. We prove the “only if” direction as follows. Let C be a clean set of cells in I, and

let I be the non-empty subset of repairs of I that have the cells in C unchanged (i.e.,

∀I ′ ∈ I (∆(I, I ′) ∩ C = φ)). First, we prove that for all two cells that belong to the same

equivalence class in E , they must have equal values in every I ′ ∈ I. Based on Algorithm 4,

for every two cells t1[A] and t2[A] that belong to the same equivalence class, and for all

I ′ ∈ I, we have two possibilities:

• t1[A] and t2[A] belong to C and I(t1[A]) = I(t2[A]), and thus I ′(t1[A]) = I ′(t2[A]), or

• there exists an FD X → A ∈ Σ such that for all B ∈ X, t1[B] and t2[B] belong to

the same equivalence class. Recursively, we can prove that for all B ∈ X, I ′(t1[B]) =

I ′(t2[B]). The fact I ′ |= X → A implies that I ′(t1[A]) = I ′(t2[A]).

Because cells in C have identical values in I and I ′, we reach a similar conclusion for

cells in C with respect to I: ∀Ci, Cj ∈ C (ec(E , Ci) = ec(E , Cj)→ I(Ci) = I(Cj)).
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We prove the “if” direction as follows. Consider the case where ∀Ci, Cj ∈ C (ec(E , Ci) =

ec(E , Cj) → I(Ci) = I(Cj)). We need to prove that the set I (i.e., the set of repairs of I

that do not change cells in C) is not empty. We construct one instance I ′ ∈ I as follows.

We assign each cell in C in I ′ to the same value in I (i.e., ∀C ∈ C, I ′(C) = I(C)). We

iterate over all other cells outside C in any random order. Each cell that belongs to a

singleton equivalence class in E or belongs to a tuple that is not mentioned in C is set to

a unique variable. For each cell C that belongs to a non-singleton equivalence class E ∈ E
that includes at least one cell with an assigned value (call it x), we set I ′(C) to x. Finally,

for each cell C that belongs to a non-singleton equivalence class E ∈ E whose cells are not

assigned to any values yet, we assign C to a unique variable. This construction method

ensures that cells that have equal values in I ′ are in the same equivalence class in E , and

vice versa.

Now, we show that the constructed instance I ′ is indeed a repair. For every two tuples

t1, t2 ∈ I ′ and for every FD X → A ∈ Σ, t1[X] = t2[X] implies that for all B ∈ X,

t1[B] and t2[B] belong to the same equivalence class (based on our construction method).

Therefore, t1[A] and t2[A] must belong to the same equivalence class as well (based on

Algorithm 4), and thus I ′(t1[A]) = I ′(t2[A]). This proves that I ′ |= Σ and thus I is not

empty (i.e., cells in C are clean).

Next, we show how to randomly pick a maximal clean set of cells, given I and Σ. We

describe our procedure in Algorithm 5.

Algorithm 5 MaxCleanSet(I,Σ)

1: Define a set CleanSet and initialize it to φ

2: for each cell C ∈ CIDs(I) (based on a random iteration order) do

3: E ← BuildEquivRel(CleanSet ∪ {C}, I,Σ)

4: if isClean(CleanSet ∪ {C}, I,Σ) = True, based on E then

5: CleanSet← CleanSet ∪ {C}
6: end if

7: end for

8: return CleanSet
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Algorithm 5 initially have an empty set of clean cells, and it randomly iterates over cells

in I and attempts adding each cell to the clean set of cells, without violating the cleanness

property. The algorithm terminates when all cells have been processed and returns the

constructed clean set. In the following, we prove the correctness of the algorithm.

Lemma 2. Sets of cells returned by Algorithm 5 are maximal clean sets.

Proof. Given a set of clean cells returned by Algorithm 5, denoted C, we need to prove

that for any subset of CIDs(I) \ C (call it S), C ∪ S is unclean.

First, we prove that if a set C is unclean, then any superset of C is unclean as well.

Let C1 and C2 be two sets of cells in an instance I such that C1 ⊂ C2. Let E1 (respectively,

E2) be the outcome of BuildEquivRel(C1,I,Σ) (respectively, BuildEquivRel(C2,I,Σ).

By analyzing Algorithm 4, we reach that each equivalence class in E1 must be contained

in another equivalence class in E2. Therefore, if there exist two cells in C1 that belong to

the same equivalence class in E1 and have different values in I (i.e., C1 is unclean), the two

cells must belong to the same equivalence class in E2, which means that C2 is unclean as

well.

Assume, to the contrary, that ∃S ⊂ CIDs(I) \ C such that C ∪ S is clean. Clearly,

every cell C in S has been rejected at line 4 in Algorithm 5, which means that Cs ∪ {C}
is unclean, where Cs is the subset of C that is constructed up till the point of rejecting C.

The set C ∪ S is a superset of Cs ∪ {C}. Therefore, C ∪ S is unclean, a contradiction.

Complexity Analysis

Let n be the number of tuples in the input instance I, and m be the number of attributes

in I. In Algorithm 4, the maximum number of merges of equivalence classes is less than

the number of tuples that appear in C multiplied by the number of attributes that appear

in C. Each merge operation can be done in a constant time (for all practical database

sizes) using the find-union algorithm [74]. Therefore, the complexity of Algorithm 4 is

in O(n · m). Evaluating isClean can be done in O(n · m) using a hash table structure.

That is, all cells belonging to the same equivalence class are hashed to a unique bucket,
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and we associate each bucket with the values of the inserted cells so far. Upon insertion

of each cell, we only need to compare the cell value to the bucket value to determine the

cleanness of the cells. A straightforward implementation of Algorithm 5 has a complexity

of O(n2 ·m2).

4.2.2 Sampling Cardinality-Set-Minimal Repairs

In this section, we present a randomized algorithm for generating cardinality-set-minimal

repairs (Algorithm 6). This algorithm is a generalized version of the procedure we described

in the proof of Theorem 2 to build a repair I ′. The first step in the algorithm is constructing

a maximal clean set of cells, denoted MaxCleanCells (line 2). The algorithm iteratively

cleans the cells outside MaxCleanCells and adds them to a set called Cleaned. Initially,

Cleaned is equal to MaxCleanCells. In each iteration, the algorithm assigns a value to

the current cell t[A] such that Cleaned∪{t[A]} becomes clean. Specifically, if t[A] belongs

to a non-singleton equivalence class in E that contains other cells previously inserted in

Cleaned, the only choice is to set I ′(t[A]) to the same value as the other cells in the

equivalence class (lines 5,6). Otherwise, we randomly choose one of the following three

alternative values for t[A]: (1) a constant that is randomly selected from Dom(A), (2) a

variable that is randomly selected from the set of variables previously used in attribute

A in I ′, or (3) a new variable vAj (line 8). For the first and second alternatives, we need

to make sure that the selected constant or variable makes the set Cleaned ∪ {t[A]} clean.

One simple approach is to keep picking a constant (similarly, a variable) at random until

this condition is met. In the worst case, we can select up to n constants (similarly, n

variables), where n is the number of tuples in the input instance. The third alternative,

which is setting I ′(t[A]) to a new variable, guarantees that the set Cleaned∪{t[A]} becomes

clean. In fact, enforcing the third alternative at every iteration reduces Algorithm 6 to the

repairing algorithm described in the proof of Theorem 2. The algorithm terminates when

all cells have been added to Cleaned, and returns the resulting instance I ′.

We show an example of executing Algorithm 6 in Figure 4.4. The algorithms obtains a

maximal clean set, which is shown as the middle relation, and changes the two unclean cells

t2[B] and t3[A]. Because t2[B] exists in the same equivalence class as t1[B], the algorithm
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Algorithm 6 Gen-Repair(I,Σ)

1: I ′ ← I

2: MaxCleanCells← MaxCleanSet(I,Σ)

3: Cleaned←MaxCleanCells

4: E ← BuildEquivRel(Cleaned, I,Σ)

5: for each t[A] ∈ CIDs(I) \MaxCleanCells (based on a random iteration order) do

6: if t[A] belongs to a non-singleton equivalence class in E that contains other cells in

Cleaned then

7: assign I ′(t[A]) to the value (either a constant or a variable) of the other cells in

ec(E , t[A]) ∩ Cleaned
8: else

9: randomly set I ′(t[A]) to one of three alternatives: a randomly selected constant

from Dom(A), a randomly selected variable vAi that was previously used in I ′, or

a fresh variable vAj such that Cleaned ∪ {t[A]} becomes clean

10: end if

11: Cleaned← Cleaned ∪ {t[A]}
12: E ← BuildEquivRel(Cleaned, I ′,Σ)

13: end for

14: return I ′

A B
t1 1 2
t2 1 3
t3 1 5
t4 6 7

I I I’

A maximal clean set Change unclean cells

A B
t1 1 2
t2 1
t3 5
t4 6 7

A B
t1 1 2
t2 1 2
t3 v1 5
t4 6 7

= {AB}

Figure 4.4: An example of executing Algorithm 6
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assigns the value of t1[B] to t2[B]. For the cell t3[A], the algorithm chooses to assign a

fresh variable, v1, to it.

In the following theorem, we prove the correctness on Algorithm 6.

Theorem 3. Every instance that is generated by Algorithm 6 is a cardinality-set-minimal

repair. Additionally, all cardinality-set-minimal repairs can be generated by Algorithm 6.

Proof. First, we prove that every instance I ′ generated by Algorithm 6 is a repair of I

with respect to Σ. In other words, we need to show that all cells in a generated repair I ′

represent a clean set. Initially, the set Cleaned = MaxCleanCells is clean with respect to

Σ (based on Theorems 1 and 2). In each iteration, the algorithm adds a cell to Cleaned

and changes this cell to ensure that the resulting version of Cleaned is clean as well. Upon

termination, all cells in I ′ are in Cleaned, which indicates that the resulting instance I ′

satisfies Σ.

Second, we prove that each generated repair is cardinality-set-minimal. The initial

maximal clean set of cells, denoted MaxCleanCells, is not modified throughout the algo-

rithm. Thus, the set of unchanged cells in any generated repair represents a maximal clean

set of cells, which indicates that the generated repair is cardinality-set-minimal based on

Theorem 1.

Third, we prove that every cardinality-set-minimal repair can be generated by Algo-

rithm 6. Every cardinality-set-minimal repair I ′ corresponds to a maximal clean set of

cells, denoted C (Theorem 1). Algorithm 5 produces set C when all cells in C are processed

first.

Regardless of the iteration order in which Algorithm 6 processes the set CIDs(I ′) \ C
(line 5), each cell C processed in lines 6-10 can be assigned to the value in I ′ to make

Cleaned ∪ {C} clean. Assuming otherwise implies that there exists a subset of cells in

I ′ that is not clean, which contradicts the fact that I ′ is a repair. It follows that any

cardinality-set-minimal repair I ′ can be generated by Algorithm 6.

Complexity Analysis
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Obtaining a maximal clean set of cells costs O(n2 ·m2), where n denotes the number

of tuples in I and m denoted the number of attributes. In Algorithm 6, the number of

cleaning iterations is at most equal to the number of cells in I ′ (i.e., n·m). In each iteration,

Algorithm 4 is invoked to build the equivalence classes of cells in Cleaned. Additionally, the

condition isClean can be evaluated for all possible constants and variables that appear

in the attribute A in I ′ (in the worst case). Hence, the complexity of each iteration is

O(m · n2) and the overall complexity of Algorithm 6 is O(m2 · n3). Note that if we restrict

changing cells in line 9 to the third alternative only (i.e., assigning new variables to the

cells), the complexity is reduced to O(n2 · m2). Additionally, we reduce the runtime of

the algorithm by implementing several optimizations to avoid recomputing the equivalence

relation from scratch in every iteration.

4.2.3 User-defined Hard Constraints

In this section, we describe a simple modification to our approach to generate random

repairs that satisfy user-defined hard constraints. We consider constraints that specify a

set of immutable cells T . Such cells are considered trustworthy (i.e., already clean cells),

and thus the cleaning algorithm is required to keep their values unchanged.

Since the cleaning algorithm cannot change an immutable cell when generating a repair,

we must first ensure that T itself is clean. To check the cleanness of T , we build the

equivalence relationship ET over T using Algorithm 4 and invoke Theorem 2. If T is found

to be unclean, we return an empty answer. In the remainder of this section, we assume

that T is clean.

In the following, we describe our modifications to the cleaning algorithm. When creating

a maximal clean set of cells using Algorithm 5, we insert the cells in T first into the set

CleanSet (i.e., we initialize CleanSet to T at line 1 in the algorithm). The remainder of

the algorithm remains unchanged. Finding a maximal clean set that is a super set of T
is possible as long as T is clean. This modification produces repairs in which none of the

cells in T are changed since Algorithms 6 does not change the cells in the maximal clean

set generated by Algorithm 5.
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4.3 Block-wise Repairing

In this section, we improve the efficiency of generating repairs by partitioning the input in-

stance I into disjoint blocks, each of which represents a subset of cells in I, such that blocks

can be repaired independently. Such partitioning effectively splits a problem instance into

a number of smaller instances, which results in a significant increase in performance. Also,

partitioning I into disjoint blocks allows parallelization of the cleaning process (i.e., all

blocks can be repaired in parallel). Furthermore, because sub-repairs of individual blocks

are independent, we effectively generate an exponentially larger number of repairs, which

represents all possible combinations of sub-repairs. That is, if instance I is partitioned into

r blocks, and we generated k repairs for each partition, the sample size is effectively equal

to kr.

A simple strategy for partitioning I is to partition the attributes in R into multiple

disjoint groups such that no FD in Σ spans more than one group of attributes (a.k.a.,

vertical partitioning). However, this strategy has a limited impact on the performance as

it fails to reduce the number of tuples in each partition, which is the main complexity

factor.

In order to allow more aggressive partitioning of the input instance, where each block

represents a set of cells, we have to restrict the values that can be assigned to cells at line 9

in Algorithm 6 to new variables (i.e., the third alternative). Such restriction ensures that

the modified cell t[A] can never be equal to any other cell t′[A] in other blocks. Thus, t[A]

cannot be a part of a violation of an FD that contains A in the left-hand-side attributes.

We refer to the modified versions of Algorithm 6 as Algorithm Block-Gen-Repair. Note

that the modified version might miss some cardinality-set-minimal repairs as a result of

restricting the new values of the changed cells.

Modifying line 9 in Algorithm 6 allows deleting line 12 from the algorithm, which

reconstructs the equivalence relation E after modifying each cell. The reason is that data

changes performed in line 7 and the modified version of line 9 do not alter the equivalence

relation E . The only possible change to E in the original version of Algorithm 6 is caused

by merging two equivalence classes due to changing a cell in line 7 to a constant or a

variable that already exist in I ′ (splitting an equivalence class is not possible under any

92



Algorithm 7 Partition(I,Σ)

1: E0 = BuildEquivRel(CIDs(I), I,Σ)

2: Initialize the set of blocks P such that each cell in I belongs to a separate block

3: for each X → A ∈ Σ do

4: for each pair of tuples ti, tj ∈ I such that ∀B ∈ X, ec(E0, ti[B]) = ec(E0, tj[B]) do

5: merge the blocks of the cells ti[X] ∪ ti[A] ∪ tj[X] ∪ tj[A]

6: end for

7: end for

8: return P

circumstances). This case is not possible after modifying line 9 as described.

In the following, we describe our partitioning algorithm. Let E0 be the equivalence

relation that is constructed over all cells in I (i.e., BuildEquivRel(CIDs(I), I,Σ)). E0

clusters cells into equivalence classes such that all pairs of cells that might have equal values

throughout the execution of Block-Gen-Repair(I,Σ) belong to the same equivalence class

(refer to the proof of Theorem 4). It follows that cells that belong to different equivalence

classes can never have equal values. For example, Figure 4.5 shows an instance I and

the corresponding equivalence relation E0. Cells t1[C], t2[C] and t3[C] belong to the same

equivalence class, which means that they may have equal values in some generated repairs.

On the other hand, t1[B] and t2[B] belong to different equivalence classes, meaning that

they can never have equal values.

We use the equivalence relation E0 to partition the input instance I such that any two

tuples that belong to different blocks can never have equal values for the left-hand-side

attributes X, for all X → A ∈ Σ (details are in Algorithm 7). Thus, any violation of FDs

throughout the course of repairing I cannot span more than one block. In other words,

repairing every block separately results in a repair for the entire instance I.

In Figure 4.5, we show an example of partitioning an instance. Initially,

an equivalence relation E0 is constructed on the input instance by invoking

BuildEquivRel(CIDs(I), I,Σ). Each equivalence class is represented as a rectangle that

surrounds the class members. We initially assign each cell to a separate block (i.e., cell

t1[A] belongs to P1, cell t2[A] belongs to P2, and so on). For each FD X → A, we locate
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P2= { t1[B] }

P3= { t3[A] }

Build
Equivalence
Relation Partition

Figure 4.5: An example of partitioning an instance

tuples whose attributes X belong to the same equivalence classes and we merge the blocks

of attributes XA of those tuples. For example, since the cells t1[A] and t2[A] belong to the

same equivalence class and the FD A→ C ∈ Σ, we merge the blocks of t1[A], t2[A], t1[C],

and t2[C]. We continue the partitioning algorithm and we return the final partitioning

that is shown in the figure.

We prove in Theorem 4 that the blocks generated by Algorithm 7 can be repaired

separately using Algorithm Block-Gen-Repair.

Theorem 4. Blocks of an instance I that are constructed by Algorithm Partition can be

repaired separately using Algorithm Block-Gen-Repair.

Proof. We first prove that, for any two cells t1[A] and t2[A], if there exists any possible

repair I ′ generated by Algorithm Block-Gen-Repair in which t1[A] and t2[A] have the

same value, t1[A] and t2[A] must be in the same equivalence class in E0. If t1[A] and t2[A]

have equal values in I, they belong to the same equivalence class due to the initial step in

creating E0 (line 3 in Algorithm BuildEquivRel). Otherwise, t1[A] and t2[A] have different

values in I, and at least one of them has been modified by Algorithm Block-Gen-Repair to

have equal values in I ′. After modifying line 9 in Algorithm 6, we only assign new variables

to cells in line 9 (i.e., they cannot be equal to any other cell). Therefore, the changed cells

(i.e., t1[A], t2[A], or both) must have been changed in line 7 in (modified) Algorithm 6.

Thus, both cells have to belong to the same equivalence class E in the equivalence relation

E created by the repairing algorithm at line 4. Because the original values of t1[A] and

t2[A] in I are different, E must have been created based on an FD X → A ∈ Σ (refer to

Algorithm 4). That is, there exists X → A ∈ Σ such that for all B ∈ X, t1[B] and t2[B]

94



belong to the same equivalence class in E that is maintained by the repairing algorithm.

Because any repair must satisfy the constraints imposed by the relation E , we deduce that

for all B ∈ X, I ′(t1[B]) = I ′(t2[B]). We recursively prove that for all B ∈ X, t1[B] and

t2[B] belong to the same equivalence class in E0. Based on Algorithm BuildEquivRel and

FD X → A, t1[A] and t2[A] must be in the same equivalence class in E0 as well.

A direct result is that the possible constant values of a cell t[A], denoted PVI(t[A]),

in any repair I ′ of I that is randomly generated by the modified algorithm are values

of the cells in the same equivalence class of t[A] in E0 in I. That is, PVI(t[A]) =

{I(t′[A]) : ec(E0, t[A]) = ec(E0, t
′[A])}. Therefore, for two cells t1[A] and t2[A] that

belong to different equivalence classes in E0, PVI(t1[A]) ∩ PVI(t2[A]) = φ. Let

PVP (t[A]) be the possible constant values of t[A] in a randomly generated repair P ′

of a block P that contains t[A]. PVP (t[A]) ⊆ PVI(t[A]) because each equivalence

class in E ′0 = BuildEquivRel(CIDs(P ), I,Σ) is contained in an equivalence class in

E0 = BuildEquivRel(CIDs(I), I,Σ) based on Algorithm 4. It follows that for two cells

t1[A] and t2[A] that belong to different equivalence classes in E0 and to different blocks (P1

and P2, respectively), PVP1(t1[A]) ∩ PVP2(t2[A]) = φ.

Let P1, . . . , Pr be the blocks of I generated by Algorithm 7, and let P ′i be a repair

of Pi generated by Algorithm Block-Gen-Repair. Now, we prove that the instance I ′

that represents the union of all blocks P ′1, . . . , P
′
r satisfies Σ. We approach the proof by

contradiction. Assume that there exists a violation of X → A by two tuples t1 and t2 in I ′.

For all B ∈ X, I ′(t1[B]) = I ′(t2[B]). Because blocks have been repaired independently, the

variables created in each block are disjoint. Thus, values of ti[B], for i ∈ {1, 2}, B ∈ X,

must be constants (i.e., I ′(ti[B]) ∈ PVP (ti[B]), where P is the block containing ti[B]).

Cells of the violation have to span multiple blocks because sub-repairs of individual blocks

cannot violate Σ. Hence, based on the partitioning algorithm (Algorithm 7), there must

exist an attribute B ∈ X such that t1[B] and t2[B] belong to different equivalence classes

in E0. Based on our previous finding, PVP1(t1[B]) ∩ PVP2(t2[B]) = φ, where P1 contains

t1[B] and P2 contains t2[B], which contradicts the assumption that I ′(t1[B]) = I ′(t2[B]).

Complexity Analysis
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Algorithm 7 runs in O(n ·m), where n is the number of tuples in I and m is the number

of attributes. Building the equivalence relation E0 is performed in O(n ·m). Furthermore,

there is at most O(n ·m) merges done in lines 3-7 in Algorithm 7, each of which can be

done in a constant time (for all practical database sizes) [74]. It follows that the overall

complexity is O(n ·m).

4.4 Experimental Study

In this section, we preset an experimental evaluation of our approach. The goal of our

experiments is twofold. First, we show that the proposed algorithms can efficiently generate

random repairs. Second, we use our repair generator to study the correlation between the

number of changes in a repair and the quality of the repair. To provide a reference point,

we implemented two previous approaches that deterministically repair FD violations.

4.4.1 Setup

All experiments were conducted on a SunFire X4100 server with a Dual Core 2.2GHz pro-

cessor, and 8GB of RAM. All computations are executed in memory. We use synthetic

data that is generated by a modified version of the UIS Database generator [2]. This pro-

gram produces a mailing list that has the following schema: RecordID, SSN, FirstName,

MiddleInit, LastName, StNumber, StAddr, Apt, City, State, ZIP. The following

FDs are defined:

• SSN → FirstName, MiddleInit, LastName, StNumber, StAddr, Apt, City,

State, ZIP

• FirstName, MiddleInit, LastName → SSN, StNumber, StAddr, Apt, City,

State, ZIP

• ZIP → City, State
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The UIS data generator was originally created to construct mailing lists that have

duplicate records. We modified it to generate two instances: a clean instance Ic and

another instance Id that is obtained by marking random perturbations to cells in Ic. These

perturbations include modifying characters in attributes, swapping the first and last names,

and replacing SSNs with all-zeros to indicate missing values. To control the amount of

perturbation, we use a parameter Ppert that represents the probability of modifying one or

more attributes of each tuple t ∈ Ic. We use four approaches to clean the instance Id that

are described as follows.

• Holistic: This approach implements Algorithm 6. To modify a cell in line 9, we

randomly pick an alternative, and for the first two alternatives, we keep picking a

constant or variable at random until set Cleaned is clean.

• Block-wise: This approach partitions the input instance using Algorithm 7 into

disjoint blocks, and then uses Algorithm Block-Gen-Repair to separately repair

each block (refer to Section 4.3).

• Vertex-Cover [57]: This approach is based on modeling FD violations as hyper-edges

and using an approximate minimum vertex cover of the resulting hyper-graph to find

a repair with a small number of changes.

• Greedy-RHS [19]: This approach repeatedly picks the violation with the minimum

cost to repair and fixes it by changing one or more cells. Modifications are only

performed to the right-hand-side attributes of the violated FDs.

4.4.2 Performance Analysis

In Figure 4.6(a), we show the running time for generating one repair for various data sizes.

We report the average runtime for generating five repairs. For Algorithm Block-wise,

the cost of the initial partitioning of the input instance is amortized across the generated

repairs.

Algorithm Greedy-RHS provides the best scalability, however, at the cost of providing

poor output quality as we describe in Section 4.4.3. Algorithms Block-wise is ranked
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Figure 4.6: The running time for generating a repair

second and it outperforms the holistic version of the algorithm by orders of magnitude.

For example, repairing 10000 tuples by Algorithm Block-wise took 11 seconds, while

Algorithm Holistic took 1050 seconds. Algorithm Vertex-Cover is ranked third. We

noticed that memory requirements of Algorithm Vertex-Cover grow quickly as the number

of violations increases due to the large number of the hyper-edges in the initial hyper-graph

(e.g., 2.2 million hyper-edges when the input instance contains 15000 tuple).

The running time of our sampling approached is almost linear in the number of gener-

ated repairs (i.e., the sample size) because the running time for generating a random repair

has very low discrepancy.

Figure 4.6(b) depicts the running time of the four algorithms for various levels of errors

in the input instance, which is captured by parameter Ppert. Note that Algorithm Holistic

incurs a large overhead even when the input database is clean. This is because Algorithms 5

and 6 process all database cells one-by-one and check for the cleanness of the processed cells

with respect to the previously inserted cells. On the other hand, Algorithm Block-wise

eliminates such overhead by splitting the input instance into a large number of blocks that

can be repaired more efficiently.
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4.4.3 The Relation between the Number of Changes and Repair

Quality

In this section, we use our repair sampling algorithm to study the correlation between the

number of changes in a repair and the quality of the repair, given that the ground truth is

available. This study allows for verifying the concept of minimality of changes. For com-

pleteness, we also show the characteristics of the repairs generated by other deterministic

approaches.

We use the precision (i.e., the percentage of correct data changes) of the performed

changes with respect to the given ground truth as a quality metric. Note that we do not

report the recall (i.e., the percentage of errors that have been corrected), because several

errors in the data set do not lead to violations of FDs (e.g., typos in the first name).

We use the clean instance Ic as the ground truth to assess the quality of a given repair

Ir. First, we show how to count the number of correct changes in Ir. We denote by CC(Ir)

the set of cells that has been correctly fixed in Ir.

CC(Ir) = {C ∈ ∆(Id, Ir) : Ir(C) = Ic(C) ∧ Id(C) 6= Ic(C)}

Replacing an incorrect value of a cell in Id (with respect to Ic) with a variable can be

considered as a partially correct change. We denote by CV C(Ir) the set of cells that are

partially corrected.

CV C(Ir) = {C ∈ ∆(Id, Ir) : Ir(C) is a variable ∧ Id(C) 6= Ic(C)}

We define the number of correct changes as the sum of the cardinality of CC(Ir), and a

fraction (0.5 in our experiments) of the cardinality of CV C(Ir). We compute the precision

of a repair Ir as the ratio between the number of correct changes in Ir to the total number

of changes in Ir.

We measured the precision of the repairs generated by all approaches: Holistic,

Block-wise, Vertex-Cover, and Greedy-RHS. However, for clarity of presentation, we

omitted the results of Algorithm Holistic. Figure 4.7 shows the quality results of the
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Figure 4.7: The precision of the generated repairs of a data set consisting of 5000 tuples

with perturbation probability of 5%

other algorithms. The input instance consists of 5000 tuples and the parameter Ppert is

set to 5%. Algorithms Holistic and Block-wise were executed 500 times (due to the

randomness of the generating process) , while Algorithms Vertex-Cover and Greedy-RHS

were executed once.

We found that the precision of the repairs generated by Algorithm Holistic is much

lower than the repairs generated by Algorithm Block-wise (less than 0.1 in average). The

reason is that the former algorithm can assign constant values to modified cells in line 9,

which are very unlikely to be equal to the correct values. Algorithm Block-wise avoids

such pitfall by always assigning a variable to represent a range of possible values.

Figures 4.7 shows the relationship between the number of changes and the precision of

the resulting repair. The precision has a strong correlation with the number of changes

(-0.95), which suggests that repairs with fewer changes have superior quality. This result

also suggests the possibility of associating each generated repair with a confidence that

is inversely proportional to the number of data changes. The exact formulation of the

confidence of repairs will be targeted in our future work.

In Figure 4.7(c), we observe that Algorithm Greedy-RHS provides very low precision,

compared to the other algorithms. The main reason is that this algorithm performs changes

only to the right-hand-side attributes of FDs. Thus, errors in left-hand-side attributes of

100



FDs are always fixed in the wrong way. For example, missing SSNs are usually replaced

by all-zeros. Algorithm Greedy-RHS changes all attributes of tuples with missing SSNs to

the same value instead of replacing missing SSNs with variables.

Algorithm Vertex-Cover provides a relatively high precision compared to other ap-

proaches (Figure 4.7). However, a large number of repairs (around 50% of the repairs)

generated by Algorithm Block-wise have better quality than those generated by Algo-

rithm Vertex-Cover. The reason is that Algorithm Vertex-Cover uses an approximate

minimum vertex cover to decide which cells should be changed (finding an exact minimum

vertex cover is NP-hard). We also emphasize that even obtaining a single repair that has

the fewest number of changes is not enough because there are several possible repairs that

have the same number of changes.

Note that the precision is relatively low in all algorithms due to the high uncertainty

about the right cells to modify. For example, given an FD A→ B, and two violating tuples

t1 and t2, we have four cells that can be changed in order to repair the violation: t1[A],

t1[B], t2[A], and t2[B]. This uncertainty can be greatly reduced by considering additional

information such as the user trust in various attributes and tuples (e.g., [19, 22, 57].

However, using this kind of information to improve data quality is beyond the scope of the

paper.

4.5 Randomization of Previous Approaches

In this section, we give counterexamples to illustrate why previous approaches that produce

a single repair (e.g., [19, 57]) are not suitable for generating a random sample of repairs.

First, we show that the algorithm introduced in [19] may generate repairs that are not

set-minimal (i.e., contain unnecessary changes). The algorithm repairs an input instance

by repeatedly searching for tuples that violate an FD X → A ∈ Σ and modifying attribute

A of the violating tuples to have the same value. For example, in Figure 4.8, we show a

possible repair I ′ of the input instance I that can be generated by the algorithm in [19].

Modified cells are shaded in the figure. The first step repairs a violation of B → C by

associating the cells t2[C] and t3[C] to the same equivalence class and changing the cell
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Figure 4.8: An example of a repair generated by the algorithm in [19] that is not set-

minimal

t3[C] to 2. In the second step, a violation of A → B is fixed by changing t2[B] to 4. The

resulting repair I ′ is not set-minimal because the cell t3[C] can be reverted to its value in

I without violating any FD.

Repairs that are not set-minimal can be generated by the algorithm in [19] due to

the fact that the generated repairs can involve contradicting assumptions. For example,

the cell t2[B] is used in the first step for changing t3[C] to 2 (i.e., t2[B] is assumed to

be a correct cell). In the second step, t2[B] is modified to 4, which implies that t2[B] is

incorrect (i.e., unclean). We avoid such contradictions in our algorithm that is presented

in Section 4.2. That is, once a cell Ci is used for modifying another cell Cj, Ci cannot be

modified any further. We enforce this constraint by avoiding changing cells that are already

in set Cleaned and only changing the cell currently being inserted (refer to Algorithm 6).

We show that some cardinality-minimal repairs cannot be generated by the approach

presented in [57]. We illustrate this fact using the example in Figure 4.9. In Figure 4.9(a),

we show the hyper-edges (also called double and triple conflicts) that exist in the initial

conflict graph. The algorithm in [57] can only change a cell t[B] if it appears in the initial

conflict graph, or there exists an FD X → A ∈ Σ such that B ∈ X and t[A] appears in the

initial conflict graph. It follows that the cell t2[E] in Figure 4.9 can never be changed by

the algorithm. Therefore, the cardinality-minimal repair I ′ that is shown in Figure 4.9(b)

cannot be generated by the algorithm in [57].

Some cardinality-minimal repairs cannot be generated by the algorithm in [57] because

the algorithm is biased towards replacing the cells that belong to the left-hand-side at-

102



I
A B C D E

I
Σ= 
{A B,
B C, 

A B C D E

t1 1 1 2 3 6

t 1 1 1 4 7

A B C D E

t1 1 1 2 3 6

t 1 1 1 4 7 C D,
D E}

t2 1 1 1 4 7

t3 2 2 1 5 8

t2 1 1 1 4 7

t3 2 2 1 5 8
Initial double conflicts Initial triple conflicts

I’

a doub e co c s a p e co c s
(a)

A B C D E

t1 1 1 2 3 6

t2 1 1 2 3 6

t3 2 2 1 5 8

A Cardinality-minimal Repair 
(b)

Figure 4.9: An Example of a cardinality-minimal repair that cannot be generated by the

algorithm in [57]

tributes of FDs with new variables (step 2 of the algorithm presented in [57]). In our

algorithms, we consider all possible values when changing a given cell that is involved in a

violation as we describe in Section 4.2.
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Chapter 5

Repairing Unclean Data and Unclean

FDs

In this chapter, we discuss our approach for probabilistic data cleaning for the situation

where both data and FDs are unclean. In Section 5.1, we introduce the notion of minimal

repairs and we discuss the relative trust between data and FDs. We overview our cleaning

approach in Section 5.2. In Section 5.3, we present our algorithm that obtains a repair

of FDs, given a specific relative trust in data and FDs. In Section 5.4, we describe how

to repair the data given a set of clean FDs. In Section 5.5, we show how to efficiently

handle uncertainty in the relative trust. Finally, in section 5.6, we provide an experimental

evaluation.

5.1 Spaces of Possible Repairs

In this section, we formally describe the problem of repairing data and FDs simultaneously,

and we overview our approach. First, we define a space of minimal repairs of both data

and FDs in Section 5.1.1. Then, we discuss the impact of having different trust in data

and FDs in Section 5.1.2.

105



5.1.1 Minimal Repairs of Data and FDs

In Section 1.3, we advocated for two criteria to restrict the space of possible repairs of an

unclean data instance I and a set of inaccurate FDs Σ. The criterion is to obtain repairs

that involve the minimum amount of changes to data and FDs. The second criterion is to

take into consideration the (relative) amount of errors in data and FDs, which reflects our

relative trust in data versus FDs.

We focus on data repairs that change cells in I, rather than repairs that delete tuples

from I. We denote by S(I) all possible repairs of I. All instances in S(I) have the same

number of tuples as I. Because we aim at modifying a given set of FDs, rather than

discovering a new set of FDs from scratch, we restrict the allowed FD modifications to

those that relax, or weaken, the supplied FDs. We do not consider adding new constraints.

That is, Σ′ is a possible repair of Σ iff I |= Σ implies I |= Σ′, for any data instance I.

Given a set of FDs Σ, we denote by S(Σ) the set of all possible repairs of Σ resulting from

relaxing the FDs in Σ in all possible ways. We define the universe of possible repairs as

follows.

Definition 9. Universe of Data and FDs Repairs. Given a data instance I and a

set of FDs Σ, the universe of repairs of data and FDs, denoted U, is the set of all possible

pairs (Σ′, I ′) such that Σ′ ∈ S(Σ), I ′ ∈ S(I), and I ′ |= Σ′.

In order to provide a practical solution, we focus on a subset of U that is large enough

to cover a reasonable set of possible repairs, and can be generated efficiently. We achieve

such a goal by focusing on repairs that are Pareto-optimal with respect to two distance

functions: distc(Σ,Σ
′) that measures the distance between two sets of FDs, and distd(I, I

′)

that measures the distance between two database instances. We refer to such repairs as

minimal repairs.

For two vectors V = (v1, . . . , vk) and W = (w1, . . . , wk), we say that V dominates W ,

written V ≺ W , iff vi ≤ wi, for i ∈ {1, . . . , k}, and at least one element vj in V is strictly

less than the corresponding element wj in W . We define minimal repairs as follows.

Definition 10. Minimal Repair. Given an instance I and a set of FDs Σ, a re-

pair (Σ′, I ′) ∈ U is minimal iff @(Σ′′, I ′′) ∈ U such that (distc(Σ,Σ
′′), distd(I, I

′′)) ≺
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(distc(Σ,Σ
′), distd(I, I

′)).

We deliberately avoid aggregating changes to data and changes to FDs into one metric

in order to enable using various metrics for measuring both types of changes, which might

be incomparable. For example, one metric for measuring changes in Σ is the number of

modified FDs in Σ, while changes in I could be measured by the number of changed cells.

Also, this approach provides a wide spectrum of Pareto-optimal repairs that ranges from

completely trusting I (and only changing Σ) to completely trusting Σ (and only changing

I).

For an instance repair I ′ of I, we denote by ∆d(I, I
′) the cells that have different

values in I and I ′. We use the cardinality of ∆d(I, I
′) to measure the distance between

two instances, which has been widely used in previous data cleaning techniques (e.g.,

[19, 27, 57]). That is, distd(I, I
′) = |∆d(I, I

′)|.

Recall that we restrict the modifications to Σ to those that relax the constraints in Σ.

Thus, an FD F ′ is a possible repair of an FD F iff I |= F ⇒ I |= F ′, for any instance I. We

use a simple relaxation mechanism that satisfies this property: we only allow appending

zero or more attributes to the left-hand-side (LHS) of an FD. Formally, an FD X → A ∈ Σ

can be repaired by appending a set of attributes Y ⊆ (R \ XA) to the LHS, resulting in

an FD XY → A. We disallow adding A to the LHS to prevent producing trivial FDs.

Note that different FDs in Σ might be modified to the same FD. For example, both

A → B and C → B can be modified to AC → B. Therefore, the number of FDs in

any Σ′ ∈ S(Σ) is less than or equal to the number of FDs in Σ. We maintain a mapping

between each FD in Σ, and its corresponding repair in Σ′. Without loss of generality, we

assume hereafter that |Σ′| = |Σ| by allowing duplicate FDs in Σ′.

We define the distance between two sets of FDs as follows. For Σ = {X1 →
A1, . . . , Xz → Az} and Σ′ = {Y1X1 → A1, . . . , YzXz → Az}, the term ∆c(Σ,Σ

′) denotes

vector (Y1, . . . , Yz), which consists of LHS extensions to FDs in Σ according to a repair

Σ′. To measure the distance between Σ and Σ′, we use the function
∑

Y ∈∆c(Σ,Σ′′) w(Y ),

where w(Y ) is a weighting function that determines the relative penalty of adding a set of

attributes Y . The weighting function w(.) is intuitively non-negative and monotone (i.e.,
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for any two attribute sets X and Y , X ⊆ Y implies that w(X) ≤ w(Y )). A simple exam-

ple of w(Y ) is the number of attributes in Y . However, this does not distinguish between

attributes that have different characteristics. Other features of appended attributes can be

used for obtaining other definitions of w(.). For example, consider two attributes A and

B that could be appended to the LHS of an FD, where A is a key (i.e., A→ R), while B

is not. Intuitively, appending A should be more expensive that appending B because the

FD resulting in the former case is trivially satisfied. In general, the more informative a set

of attributes is, the more expensive it is when being appended to the LHS of an FD. The

information captured by a set of attributes can be measured using various metrics, such

as the number of distinct values of Y in I, and the entropy of Y . Another definition of

w(Y ) could rely on the increase in the description length for modeling I using FDs due to

appending Y [22, 58].

In general, w(Y ) depends on a given data instance to evaluate the weight of Y . There-

fore, changing the cells in I during data cleaning might affect the weights of attributes.

We make a simplifying assumption that w(Y ) depends only on the initial instance I. This

assumption is based on an observation that the number of violations in I with respect to Σ

is typically much smaller than the size of I, and thus repairing data does not significantly

change the characteristics of attributes such as the entropy and the number of distinct

values.

5.1.2 The Relative Trust in Data vs. FDs

We have defined a space of minimal repairs that covers a wide spectrum, ranging from

repairs that only alter the data, while keeping the FDs unchanged, to repairs that only

alter the FDs, while keeping the data unchanged. We propose a notion of relative trust

between data and FDs to narrow down the space of desirable repairs and to steer the

cleaning process towards a specific repair (or a range of repairs) in the described spectrum.

The idea is to limit the maximum number of cell changes that can be performed while

obtaining I ′ to a threshold τ , and to obtain a set of FDs Σ′ that is the closest to Σ and

is satisfied by I ′. The obtained repair (Σ′, I ′) is called a τ -constrained repair, formally

defined as follows.
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Definition 11. τ-constrained Repair Given an instance I, a set of FDs Σ, and a

threshold τ , a τ -constrained repair (Σ′, I ′) is a repair in U such that distd(I, I
′) ≤ τ , and

no other repair (Σ′′, I ′′) ∈ U has (distc(Σ,Σ
′′), distd(I, I

′′)) ≺ (distc(Σ,Σ
′), τ).

In other words, a τ -constrained repair is a repair in U whose distance to I is less than

or equal to τ , and which has the minimum distance to Σ across all repairs in U that also

have distance to I less than or equal to τ . We break ties using the distance to I (i.e., if

two repairs have an equal distance to Σ and have distances to I less than or equal to τ ,

we choose the one closer to I).

Possible values of τ range from 0 to the minimum number of cells changes that must

be applied to I in order to satisfy Σ, denoted δopt(Σ, I). We can also specify the threshold

on the number of allowed cell changes as a percentage of δopt(Σ, I), denoted τr (i.e., τr =

τ/δopt(Σ, I)).

The parameter τ represents the relative trust in the data and the FDs. Setting τ to

small values assumes that I is more trustworthy than Σ, and vice versa. Small values

of τ enforce the cleaning algorithm to find a set of FDs Σ′ that is almost satisfied by I.

Thus, only a small number of changes suffice to find a data repair I ′ that satisfies Σ′. The

opposite is true for large values of τ .

The mapping between minimal repairs and τ -constrained repairs is as follows. (1) Each

τ -constrained repair is a minimal repair; (2) All minimal repairs can be found by vary-

ing threshold τ in the range [0, δopt(Σ, I)], and obtaining the corresponding τ -constrained

repair. Specifically, each minimal repair (Σ′, I ′) is equal to a τ -constrained repair, where

τ is in the range defined as follows. Let (Σ′′, I ′′) be the minimal repair with the smallest

distd(I, I
′′) that is strictly greater than distd(I, I

′). If such a repair does not exist, let

(Σ′′, I ′′) be (φ, φ). The range of τ is defined as follows.

τ ∈


[distd(I, I

′), distd(I, I
′′)) if (Σ′′, I ′′) 6= (φ, φ)

[distd(I, I
′),∞) if (Σ′′, I ′′) = (φ, φ)

(5.1)

If (Σ′′, I ′′) = (φ, φ), the range [distd(I, I
′),∞) corresponds to a unique minimal repair

where distd(I, I
′) is equal to δopt(Σ, I). We prove these two points in the following theorem.
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Theorem 5. Each τ -constrained repair is a minimal repair. Each minimal repair (Σ′, I ′)

corresponds to a τ -constrained repair, where τ belongs to the range defined in Equation 5.1.

Proof. In the following, we prove the first part of the theorem. Let (Σ′, I ′) be a τ -

constrained repair. It follows that no repair (Σ′′, I ′′) has (distc(Σ,Σ
′′), distd(I, I

′′)) ≺
(distc(Σ,Σ

′), τ). Because distd(I, I
′) ≤ τ , there is no repair (Σ′′, I ′′) satisfies

(distc(Σ,Σ
′′), distd(I, I

′′)) ≺ (distc(Σ,Σ
′), distd(I, I

′)). In other words, (Σ′, I ′) is a minimal

repair.

We prove the second part by contradiction. Assume that (Σ′, I ′) is a minimal repair

but it is not a τ -constrained repair for the values of τ described in Equation 5.1. Because

τ ≥ distd(I, I
′), and based on Definition 11, there must exist a repair (Σx, Ix) such that

(distc(Σ,Σx), distd(I, Ix)) ≺ (distc(Σ,Σ
′), τ) (if multiple repairs satisfy this criteria, we

select the repair with the minimum distance to I, and we break ties using the smaller

distance to Σ). Repair (Σx, Ix) is a minimal repair because no other repair can dominate

(Σx, Ix) with respect to distances to I and Σ. Because (Σ′, I ′) is a minimal repair, then

distd(I, Ix) ≥ distd(I, I
′) (otherwise, (Σ′, I ′) would be dominated by (Σx, Ix)). However,

existence of (Σx, Ix) contradicts the fact that no minimal repair exists with distance to I

in the range (distd(I, I
′), τ) (based on the value of τ obtained by Equation 5.1).

5.2 Holistic Cleaning of Data and FDs

There is a strong interplay between repairing data and repairing FDs. Obtaining a data

instance that is closest to I, while satisfying a set of FDs Σ′ highly depends on Σ′. Also,

obtaining a set of FDs Σ′ that is closest to Σ, such that Σ′ holds in a given data instance I ′

highly depends on the instance I ′. This interplay represents the main challenge for simulta-

neously repairing data and FDs in a way that achieves our three objectives: consistency of

repair, minimality of changes, and adhering to the relative trust represented by threshold

τ on the number of cell changes.
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For example, consider a simple approach that alternates between editing the data and

modifying the FDs until we reach consistency. This may not give a minimal repair (e.g.,

we might make a data change in one step that turns out to be redundant after we change

one of the FDs in a subsequent step). Furthermore, such approach may have to make more

than τ cell changes because it is difficult to predict the amount of necessary data changes

while modifying the FDs.

We achieve the required objectives by dividing the cleaning process into two steps. In

the first step, we holistically repair the entire set of FDs to obtain a modified FD set Σ′ that

is as close as possible to Σ, while guaranteeing that there exists a data repair I ′ satisfying

Σ′ with a distance to I less than or equal to τ . In the second step, we materialize the data

instance I ′ by repairing I with respect to Σ′ in a minimal way. We describe this approach

in Algorithm 8.

Finding Σ′ in the first step requires computing the minimum number of cell changes in I

to satisfy Σ′ (i.e., δopt(Σ
′, I)) before the actual cleaning takes place. Note that computing

δopt(Σ
′, I) does not require materialization of an optimum repair. Instead, we perform

speculative data cleaning by collecting enough statistics about the violations in data to

compute δopt(Σ
′, I). More details are provided in Section 5.4.

Algorithm 8 Repair Data FDs(Σ,I,τ)

1: obtain Σ′ from S(Σ) such that δopt(Σ
′, I) ≤ τ , and no other Σ′′ ∈ S(Σ) with

δopt(Σ
′′, I) ≤ τ has distc(Σ,Σ

′′) < distc(Σ,Σ
′). (ties are broken using δopt(Σ

′, I))

2: if Σ′ 6= φ then

3: obtain I ′ that satisfies Σ′ while performing at most δopt(Σ
′, I) cell changes, and return

(Σ′, I ′).

4: else

5: Return (φ, φ)

6: end if

The following theorem establishes the link between the repairs generated by Algorithm 8

and Definition 11.

Theorem 6. Repairs generated by Algorithm 8 are τ -constrained repairs.
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Proof. For a generated repair (Σ′, I ′), the condition distd(I, I
′) ≤ τ holds due to the

constraint δopt(Σ
′, I) ≤ τ in line 1. For any Σ′′ ∈ S(Σ), δopt(Σ

′′, I) ≤ distd(I, I
′′) for all

I ′′ |= Σ′′, and thus the condition distd(I, I
′′) ≤ τ implies that δopt(Σ

′′, I) ≤ τ . Therefore

the condition @Σ′′ ∈ S(Σ)(δopt(Σ
′′, I) ≤ τ ∧ distc(Σ,Σ′′) < distc(Σ,Σ

′)) in line 1, along

with the tie breaking mechanism, imply that @(Σ′′, I ′′) ∈ U (distc(Σ,Σ
′′), distd(I, I

′′)) ≺
(distc(Σ,Σ

′), τ). Thus, (Σ′, I ′) is a τ -constrained repair.

A key step in Algorithm 8 is computing δopt(Σ
′, I) (i.e., the minimum number of cells

in I that have to be changed in order to satisfy Σ′). Unfortunately, computing the exact

minimum number of cell changes when Σ′ contains at least two FDs is NP-hard [57].

We will propose an approximate solution based on upper-bounding the minimum number

of necessary cell changes. Assume that there exists a P -approximate upper bound on

δopt(Σ
′, I), denoted δP (Σ′, I) (details are in Section 5.4). That is, δopt(Σ

′, I) ≤ δP (Σ′, I) ≤
P ·δopt(Σ′, I), for some constant P . By using δP (Σ′, I) in place of δopt(Σ

′, I) in Algorithm 8,

we can satisfy the criteria in Definition 11 in a P -approximate way. Specifically, the repair

generated by Algorithm 8 becomes a P -approximate τ -constrained repair, which is defined

as follows (the proof is similar to Theorem 6).

Definition 12. P -approximate τ-constrained Repair Given an instance I, a set of

FDs Σ, and a threshold τ , a P -approximate τ -constrained repair (Σ′, I ′) is a repair in

U such that distd(I, I
′) ≤ τ , and no other repair (Σ′′, I ′′) ∈ U has (distc(Σ,Σ

′′), P ·
distd(I, I

′′)) ≺ (distc(Σ,Σ
′), τ).

In the remainder of this paper, we present an implementation of line 1 (Section 5.3)

and line 3 (Section 5.4) of Algorithm 8. Our implementation is P -approximate, as defined

above, with P = 2·min{|R|−1, |Σ|}, where |R| denotes the number of attributes in relation

R, and |Σ| denotes the number of FDs in Σ.

5.3 Holistic Repairing of FDs

In this section, we show how to obtain a modified set of FDs Σ′ that is part of a P -

approximate τ -constrained repair (line 1 of Algorithm 8). That is, we need to obtain
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A B C D
t1 t2A→B, C→D 

t1 1 1 1 1
t2 1 2 1 3
t3 2 2 1 1

C→
D

t3 2 2 1 1
t4 2 3 4 3

Σ= { A→B, C→D } t3t4 A→B

Σ’ distC(Σ, Σ’) Conflict Graph Edges C2opt(Σ’,I)  δP(Σ’,I)

A→B, C→D  0 (t1,t2), (t2,t3), (t3,t4) t2, t3 4

CA→B, C→D  1 (t1,t2), (t2,t3) t2 2

DA→B, C→D 1 (t1,t2), (t2,t3) t2 2DA→B, C→D  (t1,t2), (t2,t3) t2
A→B, AC→D  1 (t1,t2), (t3,t4) t1, t3 4

A→B, BC→D  1 (t1,t2), (t2,t3), (t3,t4) t2, t3 4

CA B AC D 2 ( ) 2CA→B, AC→D  2 (t1,t2) t1 2

… ... … …

Figure 5.1: An example of a conflict graph

Σ′ ∈ S(Σ) such that δP (Σ′, I) ≤ τ , and no other FD set Σ′′ ∈ S(Σ) with δP (Σ′′, I) ≤ τ has

distc(Σ,Σ
′′) < distc(Σ,Σ

′).

First, we need to introduce the notion of a conflict graph of I with respect to a set of

FDs Σ, which has previously been used in [8]:

Definition 13. Conflict Graph. A conflict graph of an instance I and a set of FDs Σ

is an undirected graph whose set of vertices is the set of tuples in I, and whose set of edges

consists of all edges (ti, tj) such that ti and tj violate at least one FD in Σ.

Figure 5.1 shows an instance I, a set of FDs Σ, and the corresponding conflict graph.

The label of each edge represents the FDs that are violated by the edge vertices.

In Section 5.4, we present an algorithm to obtain an instance repair I ′ that satisfies

a set of FDs Σ′ ∈ S(Σ). The number of cell changes performed by our algorithm is

linked to the conflict graph of Σ′ and I as follows. Let C2opt(Σ
′, I) be a 2-approximate

minimum vertex cover of the conflict graph of Σ′ and I, which we can obtain in PTIME

using a greedy algorithm [44]. The number of cell changes performed by our algorithm

is at most α · |C2opt(Σ
′, I)|, where α = min{|R| − 1, |Σ|}. Moreover, we prove that the

number of changed cells is 2α-approximately minimal. Therefore, we define δP (Σ′, I) as

α · |C2opt(Σ
′, I)|, which represents a 2α-approximate upper bound of δopt(Σ

′, I) that can be

computed in PTIME. Based on the definition of δP (Σ′, I), our goal in this section can be

rewritten as follows: obtain Σ′ ∈ S(Σ) such that C2opt(Σ
′, I) ≤ τ

α
, and no other FD set

Σ′′ ∈ S(Σ) with C2opt(Σ
′′, I) ≤ τ

α
has distc(Σ,Σ

′′) < distc(Σ,Σ
′).

Figure 5.2 depicts several possible repairs of Σ from Figure 5.1, along with distc(Σ,Σ
′)
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A B C D

t1 1 1 1 1
t2 1 2 1 3
t3 2 2 1 1
t4 2 3 4 3

= { AB, CD }

t1 t2

t3t4

AB, CD

AB

C
D

’ distC(, ’) Conflict Graph Edges C2opt(’,I) ±P(’,I)

AB, CD 0 (t1,t2), (t2,t3), (t3,t4) t2, t3 4
CAB, CD 1 (t1,t2), (t2,t3) t2 2
DAB, CD 1 (t1,t2), (t2,t3) t2 2
AB, ACD 1 (t1,t2), (t3,t4) t1, t3 4
AB, BCD 1 (t1,t2), (t2,t3), (t3,t4) t2, t3 4

CAB, ACD 2 (t1,t2) t1 2
… ... … …

Figure 5.2: An example of multiple FD repairs

(assuming that the weighting function w(Y ) is equal to |Y |), the corresponding conflict

graph, C2opt(Σ
′, I), and δP (Σ′, I). For τ = 2, repairs of Σ that are part of P -approximate

τ -constrained repairs are {CA→ B,C → D} and {DA→ B,C → D}.

5.3.1 Searching the Space of FD Repairs

We model the possible FD repairs S(Σ) as a state space, where for each Σ′ ∈ S(Σ), there

exists a state representing ∆c(Σ,Σ
′) (i.e., the vector of attribute sets appended to LHSs

of FDs to obtain Σ′). Additionally, we call ∆c(Σ,Σ
′) a goal state iff δP (Σ′, I) ≤ τ , for a

given threshold value τ (or equivalently, C2opt(Σ
′, I) ≤ τ

α
). The cost of a state ∆c(Σ,Σ

′)

is equal to distc(Σ,Σ
′). We assume that the weighting function w(.) is monotone and

non-negative. Our goal is to locate the cheapest goal state for a given value of τ , which

amounts to finding an FD set Σ′ that is part of a P -approximate τ -constrained repair.

The monotonicity of the weighting function w (and hence the monotonicity of the

overall cost function) allows for pruning a large part of the state space. We say that a

state (Y1, . . . , Yz) extends another state (Y ′1 , . . . , Y
′
z ), where z = |Σ|, iff for all i ∈ {1, . . . , z},

Y ′i ⊆ Yi. Clearly, if (Y1, . . . , Yz) is a goal state, we can prune all the FD sets that extend

it because w(.) is monotone.

In Figure 5.3(a), we show all the states for R = {A,B,C,D,E, F} and Σ = {A→ F}.
Each arrow in Figure 5.3(a) indicates that the destination state extends the source state
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D
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BDE

(a) (b)

Figure 5.3: The state search space for R = {A,B,C,D,E, F} and Σ = {A → F} (a) a

graph search space (b) a tree search space

by adding exactly one attribute. We can find the cheapest goal state by traversing the

graph in Figure 5.3(a). For example, we can use a level-wise breadth-first search strategy

[66], which iterates over states with the same number of attributes, and, for each such set

of states, we determine whether any state is a goal state. If one or more goal states are

found at the current level, we return the cheapest goal state and terminate the search.

We can optimize the search by adopting best-first traversal of the states graph [66].

That is, we maintain a list of states to be visited next, called the open list, which initially

contains the state (φ, . . . , φ), and a list of states that have been visited, called the closed

list. In each iteration, we pick the cheapest state S from the open list, and test whether

S is a goal state. If S is a goal state, we return it and terminate the search. Otherwise,

we add S to the closed list, and we insert into the open list all the states that extend S by

exactly one attribute and are not in the closed list.

We can avoid using a closed list that keeps track of visited states, and hence reduce

the running time, by ensuring that each state can only be reached from the initial state

(φ, . . . , φ) using a unique path. In other words, we need to reduce the graph in Figure 5.3(a)

to a tree (e.g., Figure 5.3(b)). To achieve this goal, we assign each state, except (φ, . . . , φ),

to a single parent. Assume that attributes in R are totally ordered (e.g., lexicographically).
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φ, φ

C, φ D, φ φ,Bφ,A

CD, φ C,A D,A φ,AB C,B D,B

CD,A C,AB D,AB CD,B

CD ABCD,AB

A  B, C  D
Figure 5.4: A tree search space for R = {A,B,C,D} and Σ = {A→ B,C → D}

For Σ with a single FD, the parent of a state Y is another state Y \ {A} where A is the

greatest attribute in Y . Figure 5.3(b) shows the search tree that is equivalent to the search

graph in Figure 5.3(a). In general, when Σ contains multiple FDs, the parent of a state

(Y1, . . . , Yz) is determined as follows. Let A be the greatest attribute in
⋃z
i=1 Yi, and j be

the index of the last element in the vector (Y1, . . . , Yz) that contains A. The parent of the

state (Y1, . . . , Yz) is another state (Y1, . . . , Yj−1, Yj \ {A}, Yj+1, . . . , Yz). Figure 5.4 depicts

an example search space for the two FDs shown in Figure 5.1.

5.3.2 A*-based Search Algorithm

One problem with best-first tree traversal is that it might visit cheap states that only lead

to expensive goal states or no goal states at all. A* search [66] avoids such pitfall by

estimating the cost of the cheapest goal state reachable (i.e., descending) from each state

S in the open list, denoted gc(S), and visiting the state with the smallest gc(S) first. In

order to maintain soundness of the algorithm (i.e., returning the cheapest goal state), we

must not overestimate the cost of the cheapest goal state reachable from a state S [66].

Algorithm 9 describes the search procedure. The goal of lines 1 and 12-16, along with

the sub-procedure getDescGoalStates, is computing gc(S). The reminder of Algorithm 9

follows the A* search algorithm: it initializes an open list, which is implemented as a

priority queue called PQ, by inserting the root state (φ, . . . , φ). In each iteration, the
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Algorithm 9 Repair FDs(Σ, I, τ)

1: construct the conflict graph G of Σ and I, and obtain the set of all difference sets in

G, denoted D
2: PQ← {(φ, . . . , φ)}
3: while PQ is not empty do

4: pick the state Sh with the smallest value of gc(.) from PQ

5: let Σh be the FD set corresponding to Sh

6: Compute C2opt(Σh, I)

7: if |C2opt(Σh, I)| ·min{|R| − 1, |Σ|} ≤ τ then

8: return Σh

9: end if

10: remove Sh from PQ

11: for each state Si that is a child of Sh do

12: let Σi be the FD set corresponding to Si

13: let Ds be the subset of difference sets in D that violate Σi

14: let G0 be an empty graph

15: minStates← getDescGoalStates(Si, Si, G0,Ds, τ)

16: set gc(Si) to the minimum cost across all states in minStates, or ∞ if minStates

is empty

17: if gc(Si) is not ∞ then

18: insert Si into PQ

19: end if

20: end for

21: end while

22: return φ
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algorithm removes the state with the smallest value of gc(S) from PQ and checks whether

it is a goal state. If so, the algorithm returns the corresponding FD set. Otherwise, the

algorithm inserts the children of the removed state into PQ, after computing gc(.) for each

inserted state.

The two technical challenges of computing gc(S) are the tightness of the bound gc(S)

(i.e., being close to the actual cost of the cheapest goal state descending from S), and

having a small computational cost. In the following, we describe how we address these

challenges.

Given a conflict graph G of I and Σ, each edge represents two tuples in I that violate

Σ. For any edge (ti, tj) in G, we refer to the attributes that have different values in ti

and tj as the difference set of (ti, tj). Difference sets have been introduced in the context

of FD discovery (e.g., [61, 81]). For example, the difference sets for (t1, t2), (t2, t3), and

(t3, t4) in Figure 5.1 are BD, AD, and BCD, respectively. We denote by D the set of all

difference sets for edges in G (line 1 in Algorithm 9). The key insight that allows efficient

computation of gc(S) is that all edges (i.e., violations) in G with the same difference set

can be completely resolved by adding one attribute from the difference set to the LHS

of each violated FD in Σ. For example, edges corresponding to difference set BD in

Figure 5.1 violate both A→ B and C → D, and to fix such violations, we need to add D

to the LHS of the first FD, and B to the LHS of the second FD. Similarly, fixing violations

corresponding to difference set BCD can be done by adding C or D to the first FD (second

FD is not violated). Therefore, we partition the edges of the conflict graph G based on

their difference sets. In order to compute gc(S), each group of edges corresponding to one

difference set is considered atomically, rather than individually.

Let Ds be a subset of difference sets that are still violated at the current

state Si (line 13). Given a set of difference sets Ds, the recursive procedure

getDescGoalStates(S, Sc, Gc,Dc, τ) (Algorithm 10) finds all minimal goal states descend-

ing from S that resolve Dc, taking into consideration the maximum number of allowed

cell changes τ . Therefore, gc(S) can be assigned to the cheapest state returned by the

procedure getDescGoalStates. Note that we use a subset of difference sets that are still

violated (Ds), instead of using all violated difference sets, in order to efficiently compute

gc(S). The computed value of gc(S) is clearly a lower bound on the cost of actual cheap-
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est goal state descending from the current state S. To provide tight lower bounds, Ds
is selected such that difference sets corresponding to large numbers of edges are favored.

Additionally, we heuristically ensure that the difference sets in Ds have a small overlap.

We now describe Algorithm 10. It recursively selects a difference set d from the set of

non-resolved difference sets Dc. For each difference set d, we consider two alternatives: (1)

excluding d from being resolved, if threshold τ permits, and (2) resolving d by extending

the current state Sc. In the latter case, we consider all possible children of Sc to resolve d.

Once Sc is extended to S ′c, we remove from Dc all the sets that are now resolved, resulting

in D′c. Due to the monotonicity of the cost function, we can prune all the non-minimal

states from the found set of states. That is, if state S1 extends another state S2 and both

are goal states, we remove S1.

In the following lemma, we prove that the computed value of gc(S) is a lower bound

on the cost of the cheapest goal descending from state S.

Lemma 3. For any state S, the computed value of gc(S) is less than or equal to the cost

of the cheapest goal state that is a descendant of state S.

Proof. Let Σ be the set of FDs corresponding to S. Assume that we are using the entire

set of difference sets, denoted Dall, that violate Σ rather than using a subset of difference

sets (line 13 in Algorithm 9).

The cheapest goal state Sg that are a descendent of S will be among the states returned

by the procedure getDescGoalStates because the procedure getDescGoalStates returns

all minimal goal states (if any), and Sg is minimal (i.e., there exist no other state S ′ such

that Sg extends S ′ and S ′ is a goal state).

Because we are using a subset of all difference sets Dall, the cost of the reported cheapest

goal state is less than or equal to the actual cost of the cheapest goal state.

Based on Lemma 3, and the correctness of the A* search algorithm [66], we conclude

that the FD set generated by Algorithm 9 is part of a P -approximate τ -constrained repair.
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Algorithm 10 getDescGoalStates(S, Sc, Gc,Dc, τ)

Require: S : the state for which we compute gc(.)

Require: Sc : the current state to be extended (equals S at the first entry)

Require: Gc : the current conflict graph for non-resolved difference sets (is empty at the

first entry)

Require: Dc : the remaining difference sets to be resolved

1: if Dc is empty then

2: return {Sc}
3: end if

4: States← φ

5: select a difference set d from Dc
6: let G′c be the graph whose edges are the union of edges corresponding to d and edges

of Gc

7: compute a 2-approximate minimum vertex cover of G′c, denoted C2opt

8: if |C2opt| ·min{|R| − 1, |Σ|} < τ then

9: D′c ← Dc \ {d}
10: States← States ∪ getDescGoalStates(S, Sc, G

′
c,D′c, τ)

11: end if

12: for each possible state S ′c that extends Sc, is descendant of S, and resolves violations

corresponding to d do

13: let D′c be all difference sets in Dc that are still violating Σ′c that is corresponding to

S ′c
14: States← States ∪ getDescGoalStates(S, S ′c, Gc,D′c, τ)

15: end for

16: remove any non-minimal states from States

17: return States
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In the following, we investigate the complexity of Algorithms 9 and 10. Finding all

difference sets in line 1 in Algorithms 9 is performed in O(|Σ| · n + |Σ| · |E| + |R| · |E|),
where n denotes the number of tuples in I, and E denotes the number of edges in the

conflict graph of I and Σ. Difference sets are obtained by building the conflict graph of I

and Σ, which costs O(|Σ|·n+|Σ|·|E|) (more details are in Section 5.4), and then computing

the difference set for all edges, which costs O(|R| · |E|). In worst case, Algorithm 9, which

is based on A* search, will visit a number of states that is exponential in the depth of the

cheapest goal state [66], which is less than |Σ| · (|R| − 2). However, the number of states

visited by an A* search algorithm is the minimum across all algorithms that traverse the

same search tree and use the same heuristic for computing gc(S). Also, we show in our

experiments that the actual number of visited states is much smaller than the best-first

search algorithm (Section 5.6).

The worst-case complexity of Algorithm 10 that finds gc(S) is O(|E| · |R||Σ|·|Dc|), where

|Dc| is the number of difference sets passed to the algorithm. This is due to recursively

inspecting each difference set in Dc and, if not already resolved by the current state Sc,

appending one more attribute from the difference set to the LHS of each FD. At each step,

approximate vertex graph cover might need to be computed, which can be performed in

O(|E|).

5.3.3 Improving the Efficiency of the State Search

We can reduce the computational cost of searching for an FD repair by modifying Algo-

rithm 9 to obtain a near-optimal goal state, based on weighted A* algorithm [66],

Recall that each state Si is associated with a non-overestimating cost of the cheapest

goal state descending from Si, denoted gc(Si). The value of gc(Si) can be decomposed into

two components: the cost of the state Si, denoted c(Si), and a non-overestimating cost

to reach the cheapest goal state descending from Si starting from Si, denoted h(Si). The

value of gc(Si) is equal c(Si) + h(Si), and thus we can obtain h(Si) by computing gc(Si)

and c(Si).

To speed up the search algorithm, we need to provide tighter cost bounds, represented

by gc(Si), which in turn reduces the number of visited states. This can be achieved by
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multiplying the component h(Si) by a constant factor Q > 1. Note that we do not multiply

c(Si) by Q because c(Si) represents the exact cost of Si, which cannot be underestimated.

Formally, we use the following estimate to determine which state to visit next: ĝc(Si) =

c(Si) + Q(gc(Si) − c(Si)). Because we can only overestimate the minimum cost to reach

a goal state by at most a factor equal to Q, the resulting FD set Σ′ is guaranteed to be

Q-approximate minimal with respect to the distance to Σ. That is, @Σ′′ ∈ S(Σ) such

that P · δ(Σ′′, I) ≤ τ and Q · distc(Σ,Σ′′) < distc(Σ,Σ
′). We call the resulting repair P -Q

approximate τ -constrained repair, which is defined as follows.

Definition 14. P -Q-approximate τ-constrained Repair Given an instance I, a set

of FDs Σ, and a threshold τ , a P -Q-approximate τ -constrained repair (Σ′, I ′) is a repair

in U such that distd(I, I
′) ≤ τ , and no other repair (Σ′′, I ′′) ∈ U has (Q · distc(Σ,Σ′′), P ·

distd(I, I
′′)) ≺ (distc(Σ,Σ

′), τ).

5.4 Near-Optimal Data Cleaning

In this section, we derive a P -approximation of δopt(Σ
′, I), denoted δP (Σ′, I), in terms of

the conflict graph of I and Σ′, where P is equal to 2 ·min{|R| − 1, |Σ|}. Also, we provide

a data cleaning algorithm that makes at most δP (Σ′, I) cell changes.

There are several data cleaning algorithms that obtain a data repair, given that the

set of FDs is fixed (i.e., completely trusted), such as [19, 27, 57]. Most approaches do not

provide any bounds on the number of cells that are changed during the repairing process.

In [57], the proposed algorithm provides an upper bound on the number of cell changes

and it is proved to be near-minimum. The approximation factor depends on the set of FDs

Σ, which is assumed to be fixed. Unfortunately, we need to deal with multiple FD sets,

and the approximation factor described in [57] can grow arbitrarily while modifying the

initial FD set. That is, the approximation factors for two possible repairs Σ′,Σ′′ in S(Σ)

can be different. In this section, we provide a method to compute δP (Σ′, I) such that the

approximation factor is equal to 2 ·min{|R| − 1, |Σ|}, which depends only on the number

of attributes in R and the number of FDs in Σ .
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The output of our data cleaning algorithm is a V-instance, which have been first intro-

duced in [57] to concisely represent multiple data instances (refer to Section 4.2.1 for more

details). In the remainder of this chapter, we refer to a V-instance as simply an instance.

The algorithm we propose in this section is considered a variant of the data cleaning

algorithms we proposed in Chapter 4. The main difference is that, in this section, we

clean the data tuple-by-tuple instead of the cell-by-cell cleaning approach. That is, we

first identify a set of clean tuples that satisfy Σ′ such that the cardinality of the set is

approximately maximum. We convert this problem to the problem of finding the minimum

vertex cover, and we use a greedy algorithm with an approximation factor of 2. Then, we

iteratively modify the unclean tuples as follows. For each unclean tuple t, we iterate over

attributes of t in a random order, and we modify each attribute, if necessary, to ensure

that the attributes processed so far are clean. in the remainder of this section, we provide

a detailed discussion of the cleaning procedure.

Given a set of FDs Σ′, the procedure Repair Data in Algorithm 11 generates an instance

I ′ that satisfies Σ′. Initially, the algorithm constructs the conflict graph of I and Σ′. Then,

the algorithm obtains a 2-approximate minimum vertex cover of the obtained conflict

graph, denoted C2opt(Σ
′, I), using a greedy approach described in [44] (for brevity, we

refer to C2opt(Σ
′, I) as C2opt in this section). The clean instance I ′ is initially set to I.

The algorithm repeatedly removes a tuple t from C2opt, and it changes attributes of t to

ensure that, for every tuple t′ ∈ I ′ \ C2opt, t and t′ do not violate Σ′ (lines 5-15). This is

achieved by repeatedly picking an attribute of t at random, and adding it to a set denoted

Fixed Attrs (line 9). After inserting an attribute A, we determine whether we can find

an assignment to the attributes outside Fixed Attrs such (t, t′) are not violating Σ′, for

all t′ ∈ I ′ \ C2opt. We use Algorithm 12 to find a valid assignment, if any, or to indicate

that no valid assignment exists. Note that when Fixed Attrs contains only one attribute

(line 6), it is guaranteed that a valid assignment exists (line 7). If a valid assignment is

found, we keep t[A] unchanged. Otherwise, we change t[A] to the value of attribute A

of the valid assignment found in the previous iteration (line 11). The algorithm proceeds

until all tuples have been removed from C2opt. We return I ′ upon termination.

Algorithm 12 searches for an assignment to attributes of a tuple t that are not in

Fixed Attrs such that every pair (t, t′) satisfies Σ′ for all t′ ∈ I ′ \ C2opt. An initial assign-
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Algorithm 11 Repair Data(Σ′,I)

1: let G be the conflict graph of I and Σ′

2: obtain a 2-approximate minimum vertex cover of G, denoted C2opt

3: I ′ ← I

4: while C2opt is not empty do

5: randomly pick a tuple t from C2opt

6: Fixed Attrs← {A}, where A is a randomly picked attribute from R

7: tc ← Find Assignment(t, F ixed Attrs, I ′,Σ′, C2opt)

8: while |Fixed Attrs| < |R| do

9: randomly pick an attribute A from R \Fixed Atts and insert it into Fixed Attrs

10: if Find Assignment(t, F ixed Attrs, I ′,Σ′, C2opt) = φ then

11: t[A]← tc[A]

12: else

13: tc ← Find Assignment(t, F ixed Attrs, I ′,Σ′, C2opt)

14: end if

15: end while

16: remove t from C2opt

17: end while

18: return I ′

A B C D t2 2 tc= (v1A,2,v1C,v1D)

t1 1 1 1 1
t2 1 2 1 3
t3 2 2 1 1

t2 2 1 tc= (v1A,2,1,1)

t2 v1A 2 1 tc= (v1A,2,1,1)

t4 2 3 4 3

Σ’= {CA→B, C→D}
C2opt = {t2}

tc= (v1A,2,1,1)t2 v1A 2 1 1

( ) (b)(a) (b)

Figure 5.5: An example of repairing data: (a) initial value of I ′, Σ′ and C2opt (b) steps of

fixing the tuple t2
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Algorithm 12 Find Assignment(t, F ixed Attrs, I ′,Σ′, C2opt)

1: construct a tuple tc such that tc[A] = t[A] if A ∈ Fixed Attrs, and tc[A] = vAi if

A 6∈ Fixed Attrs, where vAi is a new variable

2: while ∃t′ ∈ I ′ \C2opt such that for some FD X → A ∈ Σ′, tc[X] = t′[X]∧ tc[A] 6= t′[A]

do

3: if A ∈ Fixed Attrs then

4: return φ

5: else

6: tc[A]← t′[A]

7: add A to Fixed Attrs

8: end if

9: end while

10: return tc

ment tc is created by setting attributes that are in Fixed Attrs to be equal to t, and setting

attributes that are not in Fixed Attrs to new variables. The algorithm repeatedly selects

a tuple t′ ∈ I ′ \ C2opt such that (t, t′) violates an FD X → A ∈ Σ′. If attribute A belongs

to Fixed Attrs, the algorithm returns φ, indicating that no valid assignment is available.

Otherwise, the algorithm sets t[A] to be equal to t′[A], and adds A to Fixed Attrs. When

no other violations could be found, the algorithm returns the assignment tc.

In Figure 5.5, we show an example of generating a data repair for Σ′ = {CA→ B,C →
D}, given the instance I shown in Figure 5.5(a). After adding the first attribute B to

Fixed Attrs, the current valid assignment, denoted tc, is equal to (vA1 , 2, v
C
1 , v

D
1 ). When

inserting C to Fixed Attrs, there is no need to change the value of C because we can find

a valid assignment to the remaining attributes, which is (vA1 , 2, 1, 1). After inserting A to

Fixed Attrs, no valid assignment is found, and thus we set t[A] to the value of attribute

A of the previous valid assignment tc. Similarly, we set t[D] to tc[D] after inserting D into

Fixed Attrs. The resulting instance satisfies Σ′.

The following lemma proves the soundness and completeness of Algorithm 12.

Lemma 4. Algorithm 12 is both sound (i.e., the obtained assignments are valid) and
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complete (it will return an assignment if a valid assignment exists).

Proof. We first prove the soundness of the algorithm. That is, we need to prove that if a

tuple tc is returned, tc[A] = t[A], for A ∈ Fixed Attrs, and for all t′ ∈ I ′ \ C2opt, (tc, t
′) do

not violate Σ.

From the algorithm description, it is clear that the condition tc[A] = t[A] holds, for

A ∈ Fixed Attrs. Also, the condition in line 2 ensures that whenever a tuple tc is returned,

there does not exist t′ ∈ I ′ \ C2opt such that (tc, t
′) violate any FD in Σ.

We prove the completeness of the algorithm by contradiction. Assume that Algo-

rithm 12 returns φ, while there exist a tuple tg that satisfies the conditions tg[A] = t[A],

for A ∈ Fixed Attrs, and (tg, t
′) satisfy Σ, for all t′ ∈ I ′ \ C2opt.

We first show that, just before returning φ at line 4, all attributes in Fixed Attrs have

equal values in tuples tc and tg. This is clearly true for the initial value of Fixed Attrs.

Let A be the attribute that is first inserted in Fixed Attrs in line 7. Before setting tc[A] to

t′[A] in line 6, there exist a tuple t′ ∈ I ′ \C2opt such that (t′, tc) violate an FD X → A ∈ Σ.

Attributes in X belong to Fixed Attrs because attributes outside Fixed Attrs are assigned

to new variables (line 1) and cannot be equal to attributes of any other tuples. It follows

that attribute A in any valid solution must be equal to t′[A] in order to satisfy Σ. Thus,

tc[A] = tg[A] = t′[A]. The same argument is valid for attributes that are successively

inserted into Fixed Attrs before returning φ. When the algorithm returns φ (line 4), there

exists a tuple t′ ∈ I ′ \ C2opt such that (t′, tc) violate an FD X → A ∈ Σ and attribute A

belongs to Fixed Attrs. Because AX ⊂ Fixed Attrs, and attributes in Fixed Attrs have

equal values in tc and tg, it follows that (t′, tg) violate X → A as well (i.e., tg is not a valid

answer), which contradicts our initial assumption.

The following theorem proves the P -optimality of Algorithm 11.

Theorem 7. For a given instance I and a set of FDs Σ′ ∈ S(Σ), Algorithm

Repair Data(Σ′, I) obtains an instance I ′ |= Σ′ such that the number of changed cells

in I ′ is at most |C2opt(Σ
′, I)| ·min{|R| − 1, |Σ|}, and it is 2 ·min{|R| − 1, |Σ|}-approximate

minimum.
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Proof. We first prove that the returned I ′ satisfies Σ′. Let G be the conflict graph of

I with respect to Σ′ and let C2opt be a 2-approximate minimum vertex cover of G that

is obtained at line 2 in Algorithm 11. The tuple set I \ C2opt satisfies Σ′, and thus the

corresponding tuples in I ′ satisfy Σ′ as well. For each tuple t that is randomly picked

from C2opt in line 5 in Algorithm 11, modifying t as described in lines 6-15 makes the set

I ′ \C2opt ∪{t} satisfies Σ′, as we show in the following. We observe that for a Fixed Attrs

containing a single attribute A, there exists an assignment to the attributes R \ {A} in

t such that I ′ \ C2opt ∪ {t} satisfies Σ′ (i.e., tc cannot be φ at line 7). We describe one

possible assignment as follows. If the value of t[A] does not appear in attribute A of any

tuple in I ′ \ C2opt, then setting attributes R \ {A} to new variables is a valid assignment.

Otherwise, let tr be a tuple in I ′ \C2opt such that t[A] = tr[A]. Setting attributes R \ {A}
in t to the values of corresponding attributes in tr is a valid assignment. Thus, tc cannot

be φ in line 7 due to completeness of Algorithm 12, which is proved in Lemma 4.

After each iteration of the while loop in line 8, Algorithm 11 maintains a tuple tc such

that current attributes in Fixed Attrs have equal values in tc and the current version

of t, and other attributes outside Fixed Attrs in tc are assigned to values that make

I ′ \ C2opt ∪ {tc} satisfies Σ′ (due to soundness of Algorithm 12 as proved in Lemma 4).

After inserting all attributes in Fixed Attrs, t is equal to tc and thus I ′ \ C2opt ∪ {t}
satisfies Σ′. After processing, and removing, all tuples from C2opt, the resulting instance I ′

satisfies Σ′.

We prove the approximate optimality of the algorithm as follows. Let Copt be a mini-

mum vertex cover of G. The minimum number of cell changes δopt(Σ
′, I) must be greater

than or equal to |Copt|. This can be proved by contradiction as follows. Assume that there

exists an instance I ′ |= Σ′ such that the number of changed cells in I ′ is less than |Copt|.
Let T be the set of changed tuples in I ′. T represents a vertex cover of G and |T | < |Copt|,
which contradicts minimality of Copt.

In the following, we prove that the number of changed cells is |C2opt| ·min{|R|−1, |Σ|},
which is 2 ·min{|R| − 1, |Σ|}-approximate minimum, based on the fact that δopt(Σ

′, I) ≥
|Copt|. The algorithm changes only attributes of tuples in C2opt. Furthermore, we prove

that the number of changed cells in each tuple in C2opt is at most min{|R| − 1, |Σ|}. It is

clear that the maximum number of changed cells in each tuple is |R| − 1 because the first
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attribute inserted into Fixed Attrs cannot be changed (line 6 in Algorithm 11).

We show that after changing |Σ′| attributes in t, the set I ′ \C2opt ∪ {t} satisfies Σ′ and

thus no other attributes in t need to be changed. In general, we prove that after the k-th

change to t, I ′ \ C2opt ∪ {t} can violate at most |Σ′| − k FDs in Σ′. Let B be a changed

attribute in t. If B was changed to a variable, there must exist an FD X → A ∈ Σ′ such

that B ∈ X. The reason is that if B does not appear in any FD, it cannot be changed by

Algorithm 11, and if B only appears as a right-hand-side attribute in FDs in Σ′, it can only

remain unchanged or be changed to a constant. It follows that (t, t′) cannot violate X → A,

for all t′ ∈ I ′ \ C2opt after changing t[B] to a variable and adding B to Fixed Attrs. If B

was changed to a constant, there must exist an FD X → B ∈ Σ′ and another FD Y → X

implied by Σ′ such that Y ⊂ Fixed Attrs and values of attributes in Y are constants (refer

to lines 2-9 in Algorithm 12). In successive iterations, attributes in X cannot be assigned

to values other than the current constants in tc, otherwise Y → X would be violated.

It follows that (t, t′) cannot violate X → B, for t′ ∈ I ′ \ C2opt in successive iterations.

After changing |Σ′| attributes in t, we do not need to perform further changes. Because

|Σ′| ≤ |Σ|, it follows that the maximum number of attributes changed for each tuple in

C2opt is |Σ|, which completes the proof.

In the following, we describe the worst-case complexity of Algorithms 11 and 12. Algo-

rithm 12 has a complexity of O(|R| + |Σ′|) because constructing tc in line 1 costs O(|R|),
and the loop in lines 2-9 iterates at most |Σ′| times. The reason is that, for each FD

X → A ∈ Σ′, there is at most one tuple in I ′ \ C2opt satisfying the condition in line 2

(otherwise, tuples in I ′ \ C2opt would be violating X → A).

Constructing the conflict graph in line 1 in Algorithm 11 is performed in O(|Σ′| · n +

|Σ′| · |E|), where |Σ′| is the number of FDs in Σ′, n is the number of tuples in I and E is the

set of edges in the resulting conflict graph. This step is performed by partitioning tuples

in I based on LHS attributes of each FD in Σ′ using a hashing function, and constructing

sub-partitions within each partition based on right-hand-side attributes of each FD. Edges

of the conflict graph are generated by emitting pairs of tuples that belong to the same

partition and different sub-partitions. The approximate vertex cover is computed in O(|E|)
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[44]. The loop in lines 4-17 iterates a number of times equal to the size of the vertex cover,

which is O(n). Each iteration costs O(|R| · (|R| + |Σ′|)). To sum up, the complexity of

finding a clean instance I ′ is O(|Σ′| · |E|+ |R|2 · n+ |R| · |Σ′| · n). Assuming that |R| and

|Σ′| are much smaller than n, the complexity can be reduced to O(|E|+ n).

5.5 Uncertainty in the Relative Trust in Data vs. FDs

In practice, we may not be able to estimate the number of errors in the data. Thus, it can

be difficult to determine a single value for threshold τ and it might be easier to provide a

range of possible values of τ , corresponding to multiple repairs of Σ and I.

One way to obtain a small sample of possible repairs is to execute Algorithm 8 multiple

times while randomly varying the value of τ within the specified range. This approach

can be easily parallelized. However, this approach is inefficient when used for obtaining all

possible repairs for two reasons. First, multiple values of τ could result in the same repair,

and some executions of the algorithm would be redundant. Second, different invocations

of Algorithm 9 are expected to visit the same states, which represents a waste of compu-

tational resources. To overcome these drawbacks, we develop an algorithm (Algorithm 13)

that generates all repairs corresponding to a range of τ . We can use Algorithm 11 to find

the corresponding clean data instance for each obtained FD set.

Algorithm 13 generates all repairs corresponding to the threshold range τ ∈ [τl, τu].

Initially, threshold τ is set to τu. The search algorithm proceeds by visiting states in

order of gc(.), and expanding PQ by inserting new states. Once a goal state is found, the

corresponding FD repair Σh is added to the set of possible repairs. The set Σh corresponds

to the parameter range [δP (Σh, I), τ ]. Therefore, we set the new value of τ to δP (Σh, I)− 1

in order to discover a new repair. Because the value of gc(.) depends on the value of τ ,

we enforce recomputation of gc(.) for all states in PQ. Note that states that have been

previously removed from PQ because they were not goal states (line 13) cannot be goal

states with respect to the new value of τ . The reason is that if a state is not a goal state

for τ = x, it cannot be a goal state for τ < x (refer to line 8). The algorithm terminates

when PQ is empty, or when τ < τl.
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Algorithm 13 Range Repair FDs(Σ, I, τl, τu)

1: PQ← {(φ, . . . , φ)}
2: τ ← τu

3: FD Repairs← φ

4: while PQ is not empty and τ ≥ τl do

5: Pick the state Sh with the smallest value of gc(.) from PQ

6: Let Σh be the FD set corresponding to Sh

7: Compute C2opt(Σh, I)

8: if |C2opt(Σh, I)| ·min{|R| − 1, |Σ|} ≤ τ then

9: Add Σh to FD Repairs

10: τ ← |C2opt(Σh, I)| ·min{|R| − 1, |Σ|} − 1

11: For each state Si ∈ PQ, recompute gc(Si) using the new value of τ

12: end if

13: Remove Sh from PQ

14: for each state Si that is a child of Sh do

15: Compute gc(Si) (similar to Algorithm 9)

16: Insert Si into PQ

17: end for

18: end while

19: return FD Repairs

5.6 Experimental Evaluation

In this section, we study the relationship between the quality of repairs and the relative

trust determined by τ . Also, we show the efficiency of our cleaning algorithms.

5.6.1 Setup

All experiments were conducted on a SunFire X4100 server with a Quad-Core 2.2GHz pro-

cessor, and 8GB of RAM. All computations are executed in memory. Repairing algorithms

are executed as single-threaded processes, and we limit memory usage to 1.5GB. We use a
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real data set, namely the Census-Income data set1, which is part of the UC Irvine Machine

Learning Repository. Census-Income consists of 300k tuples and 40 attributes (we only

use 34 attributes in our experiments). To perform experiments on smaller data sizes, we

randomly pick a sample of tuples.

We test two variants of Algorithm Repair Data FDs. The first version, called

A∗-Repair, uses the A*-based search algorithm described in Section 5.3.2. The second

variant, called Best-First-Repair uses best-first search to obtain FD repairs, as we de-

scribed in Section 5.3. Both variants use Algorithm 11 to obtain the corresponding data

repair. We use the number of distinct values to measure the weights of sets of attributes

appended to LHS’s of FDs (i.e., w(Y )). In our experiments, we adjust the relative threshold

τr, rather than the absolute threshold τ (recall Section 5.1.2).

In order to assess the quality of the generated repairs, we first use an FD discovery

algorithm to find all the minimal FDs with a relatively small number of attributes in the

LHS (less than 6). In each experiment, we randomly select a number of FDs from the

discovered list of FDs. We denote by Ic and Σc the clean database instance and the FDs,

respectively. The data instance Ic is perturbed by changing the value of some cells such

that each cell change results in a violation of an FD. Specifically, we inject two types of

violations as follows.

• Right-hand-side violation: We first search for two tuples ti, tj that agree on XA for

some FD X → A ∈ Σ. Then, we modify ti[A] to be different from tj[A].

• Left-hand-side violation: We search for two tuples ti, tj such that for some FD X →
A, ti[X \ {B}] = tj[X \ {B}], ti[B] 6= tj[B] and ti[A] 6= tj[A], where B ∈ X. We

introduce a violation by modifying ti[B] to be equal to tj[B].

We refer to the resulting instance as Id. In our approach, we concentrate on one method

of fixing FDs, which is appending one or more attributes to LHS’s of FDs. Therefore, we

perform FDs perturbation by randomly removing a number of attributes from their LHS’s.

The perturbed set of FDs is denoted Σd. The cleaning algorithm is applied to (Σd, Id), and

1http://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
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the resulting repair is denoted (Σr, Ir). The parameters that control the perturbation of

data and FDs are (1) Data Error Rate, which is the fraction of cells that are modified, and

(2) FD Error Rate, which is the fraction of LHS attributes that were removed. We use the

following metrics to measure the quality of the modified data and FDs.

• Data precision: the ratio of the number of correctly modified cells to the total number

of cells modified by the cleaning algorithm. A modification of a cell t[A] is considered

correct if the values of t[A] in Ic and Id are different, and either t[A] in Ir is equal to

t[A] in Ic, or t[A] is a variable in Ir.

• Data recall: the ratio of the number of correctly modified cells to the total number

of erroneous cells (i.e., cells with different values in Id and Ic).

• FD precision: the ratio of the number of attributes correctly appended to LHS’s of

FDs in Σd to the total number of appended attributes.

• FD recall: the ratio of the number of attributes correctly appended to LHS’s of FDs

in Σd to the total number of attributes removed from Σc while constructing Σd.

In order to measure the overall quality of a repair (Σr, Ir), we compute the harmonic

averages of precision and recall for both data and FDs (also called F-scores). Then, we

compute the average F-score for data and FDs, which we refer to as the combined F-score.

5.6.2 The Impact of Relative Trust on the Quality

In this experiment, we measure the combined F-score at various error rates. We use 5000

tuples from the Census-Income data set to represent the clean instance Ic, and we use

an FD with 6 LHS attributes to represent Σc. Figure 5.6 shows the combined F-score of

repairs at various error rates, for multiple values of τr. When only FDs perturbation is

performed, we notice that the peak quality occurs at τr = 0% (i.e., when no changes to

data are allowed). At 5% data error rate and 30% FD error rate, the peak quality occurs

at τr = 20%. At a higher FD error rate of 50%, we notice that the peak quality occurs at

higher value (29%). Finally, when only data perturbation is performed, the peak quality
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Figure 5.6: Repair quality at multiple error rates

occurs at τ = 100% (i.e., the algorithm can freely change the data, while obtaining the

cheapest FD repair, which is the original FD).

Note that the precision and recall for data repairs is relatively low due to the high

uncertainty about the right cells to modify. For example, given an FD A → B, and two

violating tuples t1 and t2, we have four cells that can be changed in order to repair the

violation: t1[A], t1[B], t2[A], and t2[B]. Such uncertainty can be reduced by considering

additional information such as the user trust in various attributes and tuples (e.g., [19, 22,

57]. Using such information to improve the data quality is not considered in our work.

5.6.3 Performance Results

In this section, we study the efficiency of our approach.

Scalability with the Number of Tuples

In this experiment, we show the scalability of our algorithms with respect to the number

of tuples. We use two FDs, and we set τr to 1%. Figures 5.7(a) and 5.7(b) show the

running time, and the number of visited states, respectively, against the number of tuples.
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Figure 5.7: Performance at various instance sizes

When increasing the number of tuples in the range [0, 20000], we notice that the number

of unique difference sets increases, while the average frequency of difference sets remains

relatively small, compared to τ . It follows that the computed lower bounds gc(S) are very

loose because most difference sets considered by Algorithm 10 can be left unresolved (i.e.,

the condition in line 8 is true). It follows that the search algorithm needs to visit more

states, as we show in Figure 5.7(b), which affects the overall running time.

When the number of tuples increases beyond 20000, we notice in Figure 5.7 that the

running time, as well as the number of visited states, decreases. The reason is that the

largest percentage of the running time is consumed by the state searching algorithm (Al-

gorithm 9), which becomes more efficient after reaching a large number of tuples. The

reason is that after reaching a certain number of tuples, the number of distinct difference

sets stabilizes, and the frequencies of individual difference sets start increasing. It follows

that most difference sets can no longer remain unresolved, and tighter lower bounds gc(S)

are reported, which leads to decreasing the number of visited states (Figure 5.7(b)).

Algorithm Best-First-Repair does not depend on cost estimation, and thus, the

execution time rapidly grows with the number of tuples in the entire range [0, 60000].
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Scalability with the Number of Attributes

Figure 5.8 depicts the scalability of our approach with respect to the number of attributes.

In this experiment, we used two FDs and 24000 tuples, and we set τr to 1%. We changed

the number of attributes by excluding some number of attributes from the input relation.

The running time increases with the number of attributes mainly because the size of state

space increases exponentially with the number of attributes. Therefore, the state search

algorithm has to visit more states before reaching a goal state.

Scalability with the Number of FDs

Figure 5.9 depicts the scalability of our approach with respect to the number of FDs.

In this experiment, we used 10000 tuples, and we set τr to 1%. We use a single FD,

and we replicate this FD multiple times to simulate larger sizes of Σ. The size of state

space grows exponentially with the number of FDs. Thus, the searching algorithm visits

more states, which increases the overall running time for both approaches: A∗-Repair and

Best-First-Repair. Note that the algorithm Best-First-Repair did not terminate in

24 hours when the number of FDs is greater than 2.
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Figure 5.10: Effect of τ on (a) running time (b) visited states

Effect of Parameter τ

Figures 5.10(a) and 5.10(b) show the running time and the number of visited states, re-

spectively, for various values of τr. In this experiment, we fix the number of tuples to be

5000, and we use Σd with one FD. The number of appended attributes ranges from 9 at

τr = 10% to 1 at τr = 99%. No repair could be found for τr less than 10%. We notice that

at small values of τ , Algorithm A∗-Repair is orders of magnitude faster than Algorithm

Best-First-Repair. This is due to the effectiveness (i.e., tightness) of the cost estima-

tion implemented in Algorithm A∗-Repair. The lack of such estimation causes Algorithm

Best-First-Repair to visit many more states.

As the value of τr increases up to 55%, we observe that Algorithm A∗-Repair becomes

slower. The reason is that larger values of τr decreases the tightness of computed bounds

gc(S). As τr increases beyond 55%, we notice an improvement in the running time as we

only need to add very small number of attributes to reach a goal state.

Approximation Factors P and Q

Our approach provides approximate minimal repairs with approximation factors P and Q

(refer to Definition 14 in Section 5.3.3). The upper bound on the actual approximation
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Figure 5.11: The effect of approximation factor Q

factor P that is achieved in our experiments is equal to 2 · distd(Id, Ir)/C2opt(Σr, Id), which

is found to be less than 1.1 in all experiments we performed.

In Figures 5.11(a) and 5.11(b), we show the effect of the approximation factor Q on the

running time of the state search algorithm, and the actual approximation factor that has

been achieved, respectively. These figures suggest that using large values of Q can reduce

the execution time, without having a significant effect on the optimality of the algorithm.

For example, setting Q to 4 reduces the running time by 35%, while returning a goal state

that is 1.1-approximate.

Uncertainty in Relative Trust

In this experiment, we assess the efficiency of two approaches that generate possible re-

pairs for a given range of τr. In the first approach, denoted Range-Repair, we execute

Algorithm 13, and we invoke the data cleaning algorithm (Algorithm 11) for each obtained

FD repair. In the second approach, denoted Sampling-Repair, we invoke the algorithm

A∗-Repair at a sample of possible values of τr. In this experiment, we used 5000 tuples,

and one FD. We set the minimum value of τr to 0, and we varied the upper bound of τ in

the range [10%, 30%], which is represented by the X-axis in Figure 5.12. For the sampling

approach, we started by τr = 0%, and we increased τr in steps of 1.7% (which is equal

137



10000

15000

20000

25000

30000

35000

nn
in
g 
Ti
m
e 
(S
ec
) Range‐Repair

Sampling‐Repair

0

5000

10000

0% 20% 40%

Ru
n

Maximum τr

Figure 5.12: Performance under uncertain relative trust

to 13 in this experiment) until we reach the maximum value of τr. Figure 5.12 shows

the running time for both approaches. We observe that Range-Repair outperforms the

sampling approach, especially at wide ranges of τr. For example, for the range [0, 30%],

Range-Repair is 3.8 times faster than Sampling-Repair.
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Chapter 6

Conclusion and Future Work

In this chapter, we conclude the dissertation, and we provide directions for future work.

6.1 Conclusion

In this dissertation, we proposed a data cleaning approach that leverages the uncertainty in

the data cleaning process in order to provide probabilistic data cleaning. We applied this

approach to multiple data cleaning problems, namely duplicate elimination and repairing

functional dependency violations. We also addressed the problem of repairing violations

of functional dependencies (FDs) when the FDs are not trusted as well.

In the context of duplicate elimination, we defined a space of possible repairs that is

generated by varying the parameter of any given parameterized deduplication algorithm.

For a broad class of deduplication algorithm that are based on hierarchical clustering,

we developed a technique that enables efficient generation of all possible repairs using a

single execution of the cleaning algorithm. Also, we described how to compactly store the

generated possible repairs, and use all stored repairs for probabilistic answering of user

queries. Additionally, we proposed new types of queries that are uncertainty-aware, such

as obtaining the most probable repair, and obtaining the probability that two given tuples

are duplicates. Our experiments show that the overhead of our data cleaning approach is
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negligible, compared to deterministic data cleaning, and that user queries can be answered

efficiently using our data model.

To enable probabilistic repairing of FD violations, we developed a randomized algorithm

that samples from a space of possible repairs. The sampling space contains all repairs that

have minimal set of changed cells. We significantly improved the performance of the

sampling algorithm by partitioning the input instance into multiple disjoin blocks that can

be repaired independently. Furthermore, we showed how to modify our sampling algorithm

to satisfy a set of hard constraints that prevent changing specific cells that are trusted to

be clean. We performed a number of experiments to show the efficiency of our approach.

Finally, we studied the problem of repairing of FD violations when both the data and

the given FDs are not clean. We leveraged the user relative trust in data and FDs in

order to steer the cleaning process into performing the right changes. We proposed an

algorithm that obtains a repair of data and FDs such that the amount of data changes is

below a certain threshold, and the amount of FD changes is approximately minimum. The

approximation factor only depends on the number of FDs, and the number of attributes.

Also, we described how to extend our algorithm when the threshold on data changes is

uncertain (i.e., defined as an interval). We performed several experiments to show the

efficiency of our algorithm, and to show the effect of the relative trust in data versus FDs

on the quality of the repairs.

6.2 Future Work

The main direction of our future work is enriching the data cleaning systems to be aware of

the underlying uncertainty, and thus avoid destroying valuable information that could affect

the reliability of query answering. Along this line of research, we envision the following

points that we plan to pursue in our future work.

140



6.2.1 Simultaneously Repairing Multiple Types of Errors

In practice, multiple types of errors coexist in the same data instance. Different types

of errors are expected to be dependent. For example, existence of near-duplicate tuples

increases the chance of violating functional dependencies. In our dissertation, as well as

most data cleaning systems, we focused on solving individual types of errors separately.

Unfortunately, serial execution of data cleaning algorithm to solve different error types

might lead to sub-optimal data quality due to their dependencies. Having a system that

is aware of all existing error types and their interplay is expected to increase the overall

quality of generated clean instances. Similar observations have been highlighted by Wenfei

Fan et al. in [37]. The approach proposed in [37] aims at simultaneously solving two data

quality problem: record matching, and violations of conditional functional dependencies.

Also, in [21], Chaudhuri et al. proposed an approach that use aggregate constraints to

improve the quality of duplicate elimination.

Our objective is to understand and formulate the dependencies among a large class

of error types such as FD violations, missing values, duplicate records, and heterogenous

formats. We believe that probabilistic data cleaning perfectly fits our goal. For example,

consider the possible repairs obtained by a probabilistic duplicate elimination process. If a

set of FDs are defined over data, we can compute a posterior probability distribution over

the possible repairs that is conditioned on satisfying the FDs.

6.2.2 Modeling Patterns of Errors in Data

Errors in data are induced by different causes (e.g., noisy data sensors, data integration,

and human errors). It follows that patterns of errors in different data instances are expected

to be different as well. This fact is also visible in synthetic data generators that mimic the

error patterns frequently seen in practice (e.g.,frequent spelling mistakes, swapping first

and last names, and using default values) [25].

Unfortunately, existing data cleaning systems focus on the actual cleaning of data

without first analyzing and investigating the patterns of errors in data and the underlying

generative process. Jumping directly to rectifying errors in data before completely under-
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standing the causes of errors leads to a number of problems. For example, current systems

that repair FD violations use only a fixed type of data modifications to repair the input

instance (e.g., either deleting tuples or modifying tuple attributes), regardless of the causes

of violations. Knowing, for instance, that each tuple could be either completely correct or

completely erroneous would favor using tuple deletion as a cleaning method. In general, we

argue that collecting information about error patterns is crucial to successful, high-quality

data cleaning systems.

Our objective is to capture common error patterns in data, and to construct a prob-

abilistic generative process to replicate such errors. This process is considered a reverse

engineering of data perturbations that led to the errors. Supervised or semi-supervised

learning approaches could be useful tools for modeling error patterns in data. A second

goal is to allow using the obtained error model in steering the data cleaning process.

6.2.3 Learning Probabilities of Parameter Values

In our work, we provided a method to induce a probability distribution on the possible

repairs by assuming a probability distribution over the parameter values of the cleaning

algorithms (refer to Chapter 3). A open question is how to obtain (or estimate) the

probability distribution of the possible parameter values, denoted fτ . We envision two

possible directions that could be used for obtaining fτ . The first direction is relying on

an expert user to manually obtain an estimate of fτ based on analyzing the quality of the

repairs generated by the clustering algorithm for various data sets that are close to the

actual data.

The second direction is using supervised machine learning techniques to learn the dis-

tribution fτ . In the following, we briefly outline a possible implementation of this direction.

Assume that we have multiple training data sets S1, . . . , Sk that are representative of the

input database instance. Each data set Si is associated with its correct clustering Xi. For

each data set Si, we obtain the parameter value that results in the closest clustering to

Xi (based on some distance function such as Rand Index [54]). Finally, we use a non-

parametric probability estimation method such as histograms or kernel density estimation
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to obtain a probability distribution of τ given the parameter values of the training data

sets.

For example, given five data sets S1, . . . , S5, with corresponding correct clustering

X1, . . . , X5, respectively, assume that the parameter values leading to the highest qual-

ity clusterings are 0.1, 0.6, 0.7, 0.2, 0.1, respectively. Constructing a histogram over the

parameter range [0, 1] with a fixed bin-width of 0.5 results in the following histogram:

[0, 0.5) : 3/5; [0.5, 1] : 2/5.

In our future work, we will concentrate on the supervised learning approach, and exam-

ine multiple implementations for obtaining training data sets S1, . . . , Sk, and using various

probability distribution estimation methods. Also, we are planning to test the effect of

the obtained probability distribution of the algorithm parameter on the quality of the user

queries.

6.2.4 Uncertainty-aware Accuracy Evaluation of Query Answers

Evaluating the accuracy of query answers is an important task for assessing the end-to-end

reliability of the data cleaning process with respect to multiple query types. A key issue

is quantifying the similarity between the obtained query answers and the correct query

answers. Multiple metrics have been proposed to compare deterministic query answers to

the correct answers. Some of the widely used metrics are summarized as follows.

• For queries that return unordered sets of tuples, the accuracy is measured using the

precision, which is the number of the correct tuples returned over the total number

of returned tuples, and the recall, which is equal to the number of correct tuples

returned over the total number of correct answers [77]. The harmonic average of the

precision and the recall, called the F-measure, is commonly used for combining the

two metrics.

• For top-k queries, the accuracy metric should consider not only having the correct

answers in the query results, but also having the correct rank for each answer. Pos-

sible metrics that measure the correlation between two rankings of a given set of
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objects include Kendall tau coefficient and Spearman’s rank correlation coefficient

[52]. In the information retrieval literature, two commonly used metrics to measure

the accuracy of the returned top-k are the precision evaluated at a given cut-off rank

(written P@n), and the average precision [77].

• For aggregate queries, the accuracy metric should measure the distance between the

expected (correct) aggregate value and the returned value for each group of tuples

returned. The overall accuracy could be computed as the average accuracy across all

groups.

In presence of uncertainty in the database generated by our probabilistic cleaning ap-

proach, it is necessary to develop new metrics to measure the accuracy of query results

while taking into consideration uncertainty in query results. Ideally, the probabilities of the

possible repairs should be strongly correlated to their quality, based on some deterministic

quality metric. Thus, it is possible to use the following two metrics to evaluate the quality

of the probabilistic cleaning.

• The correlation between the probabilities of possible repairs and their quality (e.g.,

the precision and recall). One correlation measure is the Pearson correlation coeffi-

cient which measures the linear dependence between two variables [70].

• The range of qualities that is spanned by the possible repairs.

Query answering is based on the possible worlds semantic (Section 2.3.2). That is, the

possible query answers are semantically equivalent to the union of the deterministic query

answers corresponding to each possible repair. Therefore, it is possible to adopt the same

evaluation scheme as follows. For each possible repair, we obtain the corresponding result

set, the quality of this result set, and probability of the result set (which is equal to the

probability of the repair). Then, we compute the two described measures: the correlation

between the probabilities of the result sets and their qualities, and the range of quality

covered by all result sets. The exact quality metric that should be used depends on the

query type. For example, for top-k queries, we could use the Kendall tau coefficient to

measure the quality of each possible result set.
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One challenge in using the described evaluation method is the need for extracting the

individual result sets corresponding to the possible repairs, and computing their probabili-

ties. In case that the number of the possible repairs is very large, we need to provide more

efficient techniques to obtain the described measures without extracting individual result

sets. An alternative solution is extracting the k most probable result sets, for a reasonable

value of k. Then, we perform the quality evaluation based on these k repairs only.

In our future work, we plan to define other possible metrics to evaluate the quality of

query results in presence of uncertainty, and develop efficient algorithms to compute such

metrics.
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