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Abstract 
 

With increasing demand and pressures on groundwater resources, accurate and reliable 

groundwater prediction models are essential for sustainable groundwater management. 

Groundwater models are merely approximations of reality, and we are unable to either 

fully characterize or mathematically describe the true complexity of the hydrologic 

system; therefore, inherent in all models are varying degree of uncertainty. A robust 

management policy should consider uncertainties in both the imprecise nature of 

conceptual/numerical models and their parameters. This study addresses the critical 

question of whether the use of multiple conceptual models to explicitly account for 

conceptual model uncertainty improves the ability of the models to assist in management 

decisions.   

Twelve unique conceptual models, characterized by three alternative geological 

interpretations, two recharge estimations, and two boundary condition implementations, 

were formulated to estimate sustainable extraction rates from Thailand‘s Thaphra Area, 

where increasing groundwater withdrawals may result in water level declination and 

saline water upconing. The models were developed with MODFLOW and calibrated 

using PEST with the same set of observed hydraulic head data. All of the models were 

found to reasonably produce predictions of the available heads data. To select the best 

among the alternative models, multiple criteria have been defined and applied to evaluate 

the quality of individual models. It was found that models perform differently with 

respect to different evaluation criteria, and that it is unlikely that a single inter-model 

comparison criterion will ever be sufficient for general use. The chosen alternative 

models were applied both individually and jointly to quantify uncertainty in the 

groundwater management context. Different model-averaging methods were assessed in 

terms of their ability to assist in quantifying uncertainty in sustainable yield estimation.  
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The twelve groundwater simulation models were additionally linked with optimization 

techniques to determine appropriate groundwater abstraction rates in the TPA Phu Thok 

aquifer. The management models aim to obtain maximal yields while protecting water 

level decline. Despite similar performances among the calibrated models, total 

sustainable yield estimates vary substantially depending on the conceptual model used 

and range widely, by a factor of 0.6 in total, and by as much as a factor of 4 in each 

management area. The comparison results demonstrate that simple averaging achieves a 

better performance than formal and sophisticated averaging methods such as Maximum 

Likelihood Bayesian Model Averaging, and produce a similar performance to GLUE and 

combined-multiple criteria averaging methods for both validation testing and 

management applications, but is much simpler to implement and use, and 

computationally  much less demanding. 

The joint assessment of parameter and conceptual model uncertainty was performed by 

generating the multiple realizations of random parameters from the feasible space for 

each calibrated model using a simple Monte Carlo approach.  The multi-model averaging 

methods produce a higher percentage of predictive coverage than do any individual 

models. Using model-averaging predictions, lower optimal rates were obtained to 

minimize head constraint violations, which do not ensue if a single best model is used 

with parameter uncertainty analysis.  

Although accounting for all sources of uncertainty is very important in predicting 

environmental and management problems, the available techniques used in the literature 

may be too computationally demanding and, in some cases, unnecessary complex, 

particularly in data-poor systems. The methods presented here to account for the main 

sources of uncertainty provide the required practical and comprehensive uncertainty 

analysis and can be applied to other case studies to provide reliable and accurate 

predictions for groundwater management applications. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

 

With increasing demand and pressures on groundwater resources, accurate and reliable 

model predictions of groundwater flow and contaminant transport are essential for 

sustainable groundwater management. Groundwater models function as predictive tools 

for exploring complex groundwater systems, predicting impacts of alternative 

hydrological or developmental scenarios, evaluating recharge and aquifer storage 

processes, and assessing the sustainable yield of groundwater resources. Therefore, 

groundwater management models can be effective tools to support important policy 

decisions concerning allocation policies and remediation of contamination in aquifers. 

The usefulness of these models for decision making depends upon their ability to provide 

accurate predictions. However, groundwater models are merely approximations of 

reality: we are unable to either fully characterize or mathematically describe the true 

complexity of hydrologic systems. Due to various sources of uncertainties, including 

conceptual model, parameter, and scenario uncertainty, predictions from these models are 

therefore also uncertain (US.EPA, 1997; Meyer et al., 2007).  
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The first and most important step in developing groundwater models is to build a 

conceptual model of the underlying system. A conceptual model can be defined variously 

as ―the set of assumptions that represent our simplified perception of the real system that 

is to be mathematically modeled‖ (Bear and Verruijt, 1987); ―a pictorial representation of 

the groundwater system, frequently, in the form of a block diagram or a cross section 

whose purpose is to simplify the field problem and organize the associated data so that 

the system can be analyzed more readily‖ (Anderson and Woesser, 1992); or as a 

―framework that represents the qualitatively and quantitatively component of the site and 

circumstances being analyzed to serve for mathematical evaluation of system behavior 

and performance‖ (Neuman and Wierenga, 2003). Therefore, a conceptual model is a 

representation of how the hydrogeological system or process operates or behaves and 

contains qualitative and subjective interpretations. As a consequence of this necessary 

simplification, uncertainty is inherent in any conceptual model.  

 

Conceptual models are the basis of numerical groundwater flow and transport models. It 

is still common practice to consider only a single conceptual model. In the modelling 

process, the conceptual model is implicitly assumed to be given, accurate, and unique 

(Neuman and Wierenga, 2003). In general, once a single conceptual model of flow and 

transport is successfully calibrated against observed data, the conceptual model 

uncertainties are neglected and uncertainty analyses are performed considering only 

parameter uncertainty. Existing approaches for coping with conceptual model uncertainty 

are not generic and are not widely used in practice.  

 

The analysis of conceptual model uncertainties has been receiving increasing attention in 

recent groundwater studies (e.g., Neuman, 2003; Neuman and Wierenga, 2003; 

Bredehoelft, 2003; Bredehoelft, 2005; Poeter and Anderson, 2005; Troldborg et al., 2007; 

Rojas et al., 2008a; WÖling and Vrugt, 2008). Researchers cite many forms of conceptual 

error, including incorrect hypotheses and neglected or inappropriate representation of 
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relevant processes due to a limited capability to exactly describe the complexity of a 

hydrological system.  Many researchers acknowledge that the bias and uncertainty caused 

by an inadequate conceptualization are typically much larger than those caused by a 

suboptimal set of model parameter values (Carrera and Neuman, 1986a, 1986b; Neuman, 

2003; Neuman and Wierenga, 2003; Bredehoelft, 2003; Bredehoelft, 2005; Poeter and 

Anderson, 2005). Lack of hydrological and hydrogeological data can also result in 

conceptual model uncertainty, leading to imprecise model components, including 

parameterization, boundary conditions, sources, and sinks.  These model components in 

complex aquifer systems are usually conceptualized on the basis of several hypotheses 

and assumptions. Different, but reasonable, assumptions can lead to several plausible 

candidate conceptual models. Analyses of hydrologic systems based on a single 

conceptual model are therefore prone to statistical bias and underestimation of 

uncertainty. This flaw, in turn, can lead to errors in policy or design based on these 

models. 

 

To avoid underestimation of prediction errors, analyzing predictions generated by several 

alternative models has been encouraged by many researchers (Carrera and Neuman, 

1986a, 1986b; Bredehoeft, 2003; Neuman, 2003; Neuman and Wierenga, 2003; Ye et al., 

2004; Bredehoelft, 2005; Hojberg and Refsgaard, 2005; Poeter and Anderson, 2005; 

Refsgaard et al., 2006; Meyer et al., 2007; Refsgaard et al., 2007; Seifert et al., 2008; 

Rojas et al., 2008a, 2008b). There seems to be significant advantage to using multiple 

different models for predictive analysis, and considering their individual ability to fit the 

experimental data should provide important information about key hydrogeologic 

processes affecting flow and transport through aquifer systems of interest. 

 

It is likely that successful decision making using groundwater management models 

requires more than a single ―best‖ model. In addition, the uncertainties inherent in such 

tools should ideally be characterized, aggregated, and quantified. Therefore, this research 

aims to quantify various uncertainties associated with model development and prediction 
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by aggregating the results from multiple conceptual models. In addition, it hopes to offer 

insight into the utility of applying a set of alternative models to a real-world management 

dilemma in the Thraphra aquifer, Thailand. The proper application of model-averaging 

and uncertainty assessment techniques in groundwater management could help policy 

makers and stakeholders understand and implement the best among proposed policies to 

achieve groundwater management goals.  

 

1.2 Overview of Research 

 

The study addresses the critical question of whether the use of multiple conceptual 

models improves the ability of the models to assist in management decisions.  To achieve 

this goal, a number of alternative groundwater models of the Thaphra area of the Chi 

River basin in Thailand have been constructed, calibrated, and compared using a 

proposed multi-criteria approach and published information criteria. They are assessed 

for predictive capabilities in a groundwater management optimization of sustainable 

yields. The efficacies of alternative model selection and aggregation methods are 

assessed with respect to their ability to improve model predictive capacity as compared to 

the use of individual models or aggregations of subsets of the alternative models.  

 

1.2.1 Research Objectives 
 

The research demonstrates an uncertainty assessment approach to explicitly account for 

conceptual model uncertainty in groundwater management applications. This study 

addresses the questions of whether such an approach improves the models‘ usefulness in 

management decisions, and how to use them to assist in decision making. To achieve this 

primary objective, a number of specific secondary objectives were defined: 
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 To propose and investigate effective methods to quantify conceptual model 

uncertainty in groundwater model applications. 

 To examine the impact of different conceptual models upon prediction 

uncertainty. 

 To quantify the contribution of conceptual model uncertainty and parameter 

uncertainty in groundwater management decisions using a real-world case 

study of the Chi River basin, NE Thailand. 

 

In this thesis, assorted deterministic optimization models and model-averaging techniques 

were combined to generate ensemble predictions of groundwater management scenarios. 

Sustainable yield estimates for the Thaphra Area, northeast Thailand, were generated 

using multiple conceptual models, and then evaluated in order to illustrate this 

methodology. In order to achieve these goals, the following tasks were performed: 

 

1. A set of twelve alternative conceptual/mathematical models for the real-world 

groundwater management site were developed. These plausible conceptual 

models were developed based on three different geological interpretations 

(hydraulic conductivity distributions), two different recharge estimations, and 

two different boundary conditions. Models were developed with 

MODFLOW2000 (Harbaugh et al., 2000). 

 

2. All models were calibrated to a subset of measured data. The 12 different 

groundwater flow models were individually calibrated to an objective function 

that minimizes the mismatch between observed and predicted hydraulic heads, 

using PEST (Doherty, 2004) calibration techniques. Convergence criteria and 

other variables used by MODFLOW were the same to ensure that all models 

were calibrated to the same level, meaning that the same bases were used to 

evaluate all.  
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3. All models were assessed post-calibration in terms of their evaluation 

performance. In order to evaluate how well the models describe the system in 

question, the performance of each was tested by comparing their predictions 

with independent field data using a variety of model quality criteria, including 

information criteria, which are currently popular metrics for comparing 

conceptual models.  In this step, the 12 alternative models and different model-

averaging methods were compared in terms of their ability to improve the 

prediction error of the Thaphra aquifer system in year-2008 conditions. Forty 

water level measurements were used to compare the predictive quality of the 

best model determined using different criteria and the individual models. 

 

4. The calibrated models were ranked and weighted based upon the various model 

quality criteria. A new multi-criteria approach was also proposed to evaluate the 

set of alternative models. The multi-criteria are the combination of quantitative 

and qualitative measures, which include the following performance metrics: 

travel time error; calibration absolute residual mean (ARM) for the observation 

wells located in the entire area; calibration ARM for the observation wells 

located in the critical area; evaluation ARM for the observation wells located in 

the entire area; and evaluation ARM for the observation wells located in the 

critical area. Moreover, the appropriateness and utility of different metrics were 

compared, and the relative usefulness of model-quality metrics in calibration, 

evaluation, and model selection/aggregation were judged.  

 

5. The models were used to evaluate system-wide and local sustainable yields in 

the Thaphra aquifer, and thus form a basis for management decisions, by 

combining a simulation model with an optimization model. In the management 

step, a genetic algorithm (GA) was used to obtain the optimal extraction rates. 

Different model-averaging methods were used to establish ‗best estimates‘ of 

sustainable yields from the multiple models. Information obtained from this 
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step was used to investigate whether using multiple conceptual models would 

actually aid in management. 

6. The relative contribution of conceptual model uncertainty and parameter 

uncertainty was quantified for the estimation of sustainable yield from the best 

model and model averages. 

 

1.3 Outline of the thesis 

 

This thesis is organized as follows.  

 

Chapter 2 (background) contains a brief overview of groundwater flow, sources of 

uncertainty in groundwater prediction, and methodologies for quantifying predictive 

uncertainty in groundwater modeling applications.  This literature review surveys the 

different methods used for assessment of conceptual model and parameter uncertainty. 

Emphasis is placed on the multiple model-averaging methods that can account for 

uncertainties arising from how alternative conceptual models are defined.  

 

Chapter 3 describes the development of the methodology to handle conceptual model 

uncertainty in groundwater modeling applications. The implementation of this method is 

illustrated using a three-dimensional groundwater flow model of the real-world aquifer 

system. The development and calibration of alternative conceptual models for the study 

area are presented in this chapter. Additionally, the predictive capability of these models 

is demonstrated, and model evaluation for these alternative conceptual models is 

presented. Much of this work closely follows that of Nettasana et al. (2012). 

 

Chapter 4 presents the formulation of the optimization problem, including the objective 

function definition and decision variables with constraints for the real-world application 
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of groundwater management. This chapter demonstrates and compares different model- 

averaging methods for quantifying conceptual model uncertainty.  

 

Chapter 5 presents the effects on groundwater management applications in the presence 

of parameter uncertainty. This chapter demonstrates a joint estimation of the predictive 

uncertainty, including parameter and conceptual model uncertainty. Additionally, 

uncertainties obtained from model-averaging approaches are compared with a parameter 

uncertainty analysis to quantify the contribution of conceptual model and parameter 

uncertainty parameter as applied to groundwater management models.   

 

Chapter 6 briefly summarizes the main conclusions, recommendations for future 

research, and contributions to the scientific literature.  
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Chapter 2 

Background 

2.1 Groundwater Flow Modeling 

 

Groundwater models are an important tool commonly used in the field of environmental 

science. Models have been applied to investigate a wide variety of hydrogeologic 

conditions and activities, such as assessing the water-supply potential of aquifers, and 

predicting the movement of contaminants through subsurface environments.  In general, 

models are conceptual descriptions or approximations that describe physical systems or 

processes using mathematical equations. By mathematically presenting a representation 

of a hydrogeological system, reasonable alternative scenarios can be predicted, tested, 

and compared. The applicability or usefulness of a model depends upon how closely its 

mathematical equations and parameters approximate the physical system being modeled 

and how closely the conceptual model upon which the mathematical model is based 

reflects reality. In order to evaluate the applicability or usefulness of a model, it is 

necessary to understand the physical system and the assumptions embedded in the 

derivation of the mathematical equations. The assumptions typically involve the 

geometry of the aquifer, heterogeneity or anisotropy of sediments or bedrock within the 
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aquifer, hydraulic property values, distribution recharge, boundary conditions, 

contaminant transport mechanisms and any chemical reactions.  

 

The governing equation describing the saturated three-dimensional movement of 

groundwater assuming constant density can be derived by combining Darcy‘s law with 

the mass conservation equation and can be written as 

 

t

h
Sq

z

h
K

zy

h
K

yx

h
K

x
sszyx






















































 (2-1) 

 

where h is the hydraulic head [L]; t is the time [T]; Kx, Ky, and Kz are the principal 

components of hydraulic conductivity along the x, y, and z coordinate axes [LT
-1

]; qs is the 

volumetric flow rate of fluid sinks/sources per unit volume of the aquifer [T
-1

]; and, Ss is the 

specific storage [L
-1

]. 

 

Equation (2-1) describes three-dimensional groundwater flow under non-equilibrium 

conditions in a heterogeneous and anisotropic saturated medium, provided the principal 

directions of hydraulic conductivity are aligned with the coordinate axes [McDonald and 

Harbaugh, 1988]. When combined with a particular set of boundary and initial conditions 

and known parameter values (e.g., Kx(x,y,z)), the groundwater flow equation constitutes 

a mathematical representation of a groundwater flow system. A solution to equation (2-1) 

provides the distribution of head throughout the flow system as a function of space and 

time, h (x, y, z, t).  

 

For steady-state conditions, time dependent variations in groundwater flow are neglected 

(        ), and the right hand side of equation (2-1) cancels out. 

 

Three types of boundary conditions can be specified for a given location and time along 

the boundary of the model domain: (1) specified-head boundaries (Dirichlet conditions) 
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for which head is given, (2) specified-flow boundaries (Neuman conditions) for which 

the derivative of head (flux) across the boundary is given, and (3) head-dependent flow 

boundaries (Cauchy or mixed boundary conditions) for which flux across the boundary is 

calculated given a boundary head value.  

 

The most widely used numerical groundwater flow model code is MODFLOW, which is 

a three-dimensional model, originally developed by the U.S. Geological Survey 

(McDonald and Harbaugh, 1988). Ground-water flow within the aquifer is simulated in 

MODFLOW using a block-centered finite-difference in space, with a backward 

difference in time. Layers can be simulated as confined, unconfined, or a combination of 

both. Flows from external stresses such as flow to wells, areal recharge, 

evapotranspiration, flow to drains, and flow through riverbeds can also be simulated. The 

advantages of MODFLOW include numerous Graphical User Interfaces (GUIs) for data 

preparation, easy exchange of data in standard form, extended worldwide experience, 

continuous development, and the availability of its source code. 

  

2.2 Calibration Methods 

 

Most input parameters of groundwater flow and transport models are estimated from 

incomplete data due to the difficulties and costs of direct measurements. Therefore, the 

development of groundwater and transport models requires calibration or adjustment so 

that specific systems can be represented. Calibration is an iterative method that attempts to 

determine a set of model parameters, boundary conditions, and stresses that produce 

model-computed observations that match field-measured observations within a pre-

established range of error (Anderson and Woesner, 1992; Bredehoeft, 2002; Doherty, 

2004). This model should provide sufficient justification for reasonably good predictions. 

The calibration method is also called parameter estimation or the inverse modeling 

method.   
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The inverse methods in groundwater modeling are generally used to estimate parameters 

from observations of a system‘s response, such as hydraulic heads, flows, and 

concentrations. An inverse problem can be characterized by the method it uses to 

describe spatial variability (a parameterization approach), the forward equation it uses to 

relate parameters to measurements, the performance criterion it uses to define optimal 

parameter estimates, and the solution technique it uses to find the optimum value of 

parameters (McLaughlin and Townley, 1996).  

 

An inverse problem can be solved manually or automatically. The manual trial-and-error 

calibration process is very time consuming and expensive, and it often produces a 

nonunique solution (Poeter and Hill, 1997; Anderson and Woesser, 1992; Yeh, 1986). In 

contrast, automated methods for calibration and model analysis are more effective.   

Automated methods can be classified as either deterministic or stochastic. Deterministic 

methods (often called gradient-based methods) are based on the theory of regression and 

classified into direct and indirect methods (Yeh, 1986). Parameters are treated as 

dependent variables in the deterministic direct method, but treated as independent 

variables in the indirect method. There are many advantages of the automated 

deterministic indirect method. For example, it is not labor-expensive or time consuming, 

and it provides a substantial number of statistics to qualify the calibration process. These 

statistics also help users to recognize and reduce different sources of uncertainty in 

modeling procedures (Poeter and Hill, 1997; Hill, 1998, Hill and Tiedeman, 2007). 

 

In view of the complexity of real systems and shortage of available data sets, inversion is 

often used to arrive at working results; however, inversions are often troubled by the 

problems of non-uniqueness, insensitivity, and instability, regardless of how model 

calibration is achieved (Hill and Tiedement, 2007). Non-uniqueness, also referred to as 

equifinality in the literature (Beven and Freer, 2001), occurs when different combinations 

of parameter values equally match the observations. Insensitivity is said to exist when the 
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observations do not contain enough information to support the estimation parameters. 

Instability is present when slight changes in parameter values or observations lead to 

large changes in the simulated results. Measurement errors in the data can also degrade 

calibration efforts. These problems can be alleviated by adopting calibration methods that 

recognize these difficulties and addressing the difficulties in a quantitatively meaningful 

way. 

 

Nonlinear regression is frequently applied in the calibration of groundwater models in 

order to improve model fit and to quantify the uncertainty inherent in parameter 

estimates. The optimization criterion in nonlinear regression is specifically to minimize 

the sum of squared differences between computed and observed values, typically of the 

hydraulic heads, flow rates, and concentrations (Hill, 1998, Hill and Tiedeman, 2007). 

Minimization is completed by a modified Gauss-Newton procedure that systematically 

updates parameter values in an iterative approach to locating minima on the Sum of 

Squared Error (SSE) surface. In this automated procedure, all parameters are adjusted 

simultaneously until the termination criteria are satisfied. UCODE_2005 (Poeter et al., 

2005), PEST (Doherty, 2004), and MODFLOW-2000 (Hill et al., 2000) are examples of 

groundwater calibration software packages that implement the above procedure. 

 

One of these codes, PEST (Doherty, 2004), is used in this research. The Gauss-

Lavenberg-Marquardt nonlinear scheme is implemented in PEST. The Lavenberg-

Marquardt algorithm is a gradient-based optimization strategy that combines the Gauss-

Newton algorithm and the method of gradient descent. It provides a numerical solution to 

the mathematical problem of minimizing any sum of squared deviations between 

computed and observed values. 

 

Groundwater model calibration problems are nonlinear parameter estimations 

(optimization problems).  Since these problems involve fitting the parameters of a 

nonlinear function to a set of observed data points, nonlinear regression optimization 
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algorithms and theory can be utilized to improve model fit and to quantify the uncertainty 

inherent in parameter estimates.  The optimization objective in nonlinear regression is 

specifically to minimize the sum of squared differences between computed and observed 

values, typically of the hydraulic heads, flow rates, and concentrations (Hill, 1998, Hill 

and Tiedeman, 2007).  Although this least squares estimation problem can be tackled by 

any minimization algorithm, local gradient-based search with the Levenberg-Marquardt 

algorithm (Cooley, 1977; Carrera et al., 2005) has been shown to be a very efficient and 

effective technique (Cooley, 1985).  The Levenberg-Marquardt algorithm is a gradient-

based optimization strategy that combines the Gauss-Newton algorithm and the method 

of gradient descent.  UCODE_2005 (Poeter et al., 2005), PEST (Doherty, 2004), and 

MODFLOW-2000 (Hill et al., 2000) are examples of groundwater calibration software 

packages that implement some version of the Levenberg-Marquardt algorithm. 

 

The PEST software (Doherty, 2004), is used in this research to solve all model calibration 

problems.  PEST implements a robust variant of the Gauss-Marquardt-Levenberg method 

of nonlinear parameter estimation.  The optimization systematically updates parameter 

values in an iterative approach to locating minima on the Sum of Squared Error (SSE) 

surface. In this automated procedure, all parameters are adjusted simultaneously until the 

termination criteria are satisfied.  Every time the optimization algorithm requires a new 

parameter set to be evaluated, the PEST software changes the model parameters and runs 

the simulation model.  Parameter values are updated based largely on derivative 

information for the SSE surface.   

 

PEST calculates all partial derivatives of observations with respect to parameters 

numerically using finite differences. Normally, the technique of derivative calculation is 

referred to as the method of ―forward differences‖. If the increment is either too large or 

too small the approximation will degrade the optimization performance. To battle such 

inaccuracy, PEST allows derivatives to be calculated using ―central differences‖. Using 

this method, two model runs are needed to calculate a set of observation derivatives 
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corresponding to any parameters. As it calculates derivatives, PEST records the 

sensitivity of each parameter with respect to the observation. Variables governing the 

operation of the Gauss-Marquardt-Levenberg method in determining the optimum 

upgrade vector can be adjusted prior to repeating the calculation. Hence one can interact 

with PEST, helping it in its determination of optimum parameter values in challenging 

situations. PEST has become the industry standard in calibration of various 

environmental problems (Moore and Doherty, 2006). Based on the Gauss-Marquardt-

Levenberg method, the nonlinear parameter estimation algorithm used by PEST is 

uniquely robust and powerful, having been developed specifically for use with complex 

environmental models. Therefore, PEST is selected here to assist in data interpretation 

and in model calibration. 

 

2.3 Sources of Uncertainty 

 

Model predictions are uncertain due to incomplete knowledge of the underlying system, 

natural variability of the subsurface and field conditions. This incompleteness leads to 

sources of uncertainties, including those due to conceptual model uncertainty, parameter 

uncertainty, and scenario uncertainty (US.EPA, 1997; Meyer at el, 2007).  Conceptual 

model uncertainty arises due to the necessary simplification of real world processes, the 

limitations of information needed to characterize the system, inappropriate representation 

of processes, and use of inappropriate surrogate variables. Examples of such uncertainty 

may arise from incorrect boundary conditions and zonation geometry, and inappropriate 

selection of forcing functions (Carrera and Neuman, 1986c). Parameter uncertainty arises 

from uncertainties and inadequacies in the model parameter values. The true values of 

model parameters, such as hydraulic conductivity and recharge, are never known exactly 

because of measurement errors, heterogeneity, and scaling issues (Gaganis and Smith, 

2006). Scenario (or future) uncertainty arises from descriptive errors, and incomplete 

prediction of the future behavior of a system. Scenario uncertainty affects mainly forcing 
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terms. Scenario elements that may affect the hydrogeologic characteristics of a system 

include climate events (e.g. floods, changes in rainfall), change in engineered 

components, and human activities (e.g., changes in groundwater exploitation policies, 

land use activity).  

 

Conceptual model uncertainty is considered to be the main source of uncertainty in  

groundwater model applications, and focusing solely on the optimization of model 

parameters may not  compensate for conceptual model uncertainty (Carrera and Neuman, 

1986a, 1986b; Bredehoeft, 2003; Neuman, 2003; Neuman and Wierenga, 2003; Ye et al., 

2004; Bredehoelft, 2005; Hojberg and Refsgaard, 2005; Poeter and Anderson, 2005; 

Refsgaard et al., 2006; Meyer et al., 2007; Refsgaard et al., 2007; Seifert et al., 2008; 

Rojas et al., 2008a, b).   

 

2.4 Quantification of Uncertainty 

 

It is difficult to separate and evaluate conceptual model uncertainty and parameter 

uncertainty.  The most common approach to assessing uncertainty in hydrogeologic 

modeling is to assume that the conceptual model is appropriate and address parameter 

uncertainty only (Meyer et al., 2007). Alternatively, when conceptual model uncertainty 

is assessed, the parameter values are often assumed to be known perfectly (Meyer et al., 

2007). In actual complex systems, both the true model and true parameter values are 

unknown; thus accuracy in quantifying either model error or parameter error is a function 

of the magnitude of the other.  
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2.5 Quantification of Parameter Uncertainty  

 

The primary factors that contribute to hydrogeologic uncertainty are the unknown spatial 

heterogeneity of the subsurface (Meyer et al, 2007) and the unknown spatial and temporal 

distribution of inputs such as recharge.  Values of hydraulic conductivity, K, and 

transport properties of the subsurface may vary over several orders of magnitude in the 

same small area due to a large variation in particle and fracture sizes of hydrogeologic 

units. Detailed sampling to determine the exact nature of the subsurface is impossible.  

Interpolation between measurements and other indirect methods is required to estimate 

properties at unmeasured locations.  

 

The analysis of parameter uncertainty has received much attention in the literature. It is 

common practice, when a model is defined, to quantify the errors associated with 

estimating its parameters (Carrera and Neuman, 1986 a, b; Rubin and Dagan, 1987; 

McLaughlin and Townley, 1996; Poeter and Hill, 1997; Hill and Tiedeman, 2007). 

Techniques for addressing the uncertainty in model parameters include mathematics or 

sensitivity analysis (Morgan and Henrion, 1990, Dou et al., 1995, and Meyer et al., 

2007), fuzzy set theory (Dou et al., 1995), and probabilistic or stochastic approach 

(USEPA, 1997). 

 

Sensitivity analysis provides a framework for dealing with parameter uncertainties of 

unknown structure. In this analysis, a base simulation using the best available estimates 

of model input parameters is first conducted. During each subsequent simulation, one 

model parameter is varied by a certain interval from the values used in the base case, 

while other parameters are kept constant. The result of each simulation is compared with 

that of the base case to calculate a sensitivity coefficient for the varied parameter. In 

addition to the overall uncertainties in the model outcome, there are also the uncertainties 

in given parameters whose influence increases as the sensitivity coefficient of these 



18 

 

parameter increases.  Although the sensitivity method is simple, flexible, and versatile, its 

result may not be indicative of the output range, since the model output is not a simple 

linear function of the parameters.  The use of the upper and lower limits for all parameter 

values does not guarantee that these limits of the solution will be generated, given the 

non-linear nature of the problem and correlations between uncertain parameters. 

 

Alternative approaches have modified the search method for finding the best-and-worst 

case scenarios without using interval mathematics (Brooks et al., 1994). Although the 

best-and-worst case scenarios provide valuable information, the distribution of possible 

outputs near the parameter limits can have a strong influence on the tails of output 

distributions, which play an important role in decision-making scenarios. The 

impreciseness of many inputs to groundwater flow and contaminant transport models 

have led to formulations of fuzzy groundwater flow models (Dou et al., 1995), which can 

be useful in decision-making scenarios.  

 

The most commonly used approach to uncertainty analysis in groundwater flow and 

contaminant transport modeling is probabilistic analysis, which is designed to generate 

the nature of output uncertainty. Probabilistic uncertainty analysis can take the form of 

analytic methods based on stochastic partial differential equations (Dou et al., 1995) or 

sampling-based methods such as Monte Carlo analysis (USEPA, 1997). Analytical 

methods using linear and non-linear first-order approximations of 95% confidence 

intervals that can be attained with gradient-based parameter calibration methods are 

commonly used to evaluate the optimized parameters (Vecchia and Cooley, 1987; 

Christensen and Cooley, 1999). However, the method‘s reliability is assured only with 

well-posed problems with known error distributions. In contrast, probabilistic analysis 

using sampling-based methods such as Monte Carlo analysis can provide practical output 

probability distributions with reasonable intervals even for ill-posed problems. Monte 

Carlo simulation is the most commonly applied approach used in parameter uncertainty 

assessment (USEPA, 1997; Carrera et al., 2005), and it can be used as a benchmark for 
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validating other types of uncertainty estimation methods (Christensen and Cooley, 1999; 

James and Oldenberg, 1997).  

 

The results produced by Monte Carlo analysis are considered to be probabilistic 

approximations, which strongly depend on input posterior parameter distributions. 

Stochastic input parameter distributions are generally selected based upon the 

characteristics of the globally optimum parameter set. According to this method, random 

values of stochastic parameters are generated following their respective probabilistic 

characteristics. Each set of the generated input parameters is employed to compute the 

equivalent model output. The probability distribution of the simulated model output are 

then determined through a statistical analysis.  

 

One of the greatest concerns when using the Monte Carlo method is in specifying a 

suitable probability density function (pdf) for each uncertain parameter. The available 

field data are rarely adequate for this purpose, and in effect, the pdf is usually postulated 

on the basis of a few scattered data points. Thus, the uncertainty expressed in this pdf 

may result in large uncertainty in the model output. A second problem in Monte Carlo 

analysis is the intensive computational demand. A typical Monte Carlo analysis may 

require several hundred or thousand runs for the output pdf to be statistically meaningful. 

Nevertheless, the computational effort required is linear to the number of the uncertain 

parameters, rather than exponential, as it is in the analytical methods. Monte Carlo 

assessment remains the most attractive approach because of its conceptual simplicity, its 

general applicability, and its ability to quantify fully the uncertainty in the model output.  

 

James and Oldenburg (1997) used the first-order second-moment (FOSM) approach to 

investigate the uncertainty of simulated trichloroethylene concentrations due to parameter 

uncertainty and variation in conceptual models. TCE concentrations at a site of potential 

human exposure occur and can be attributed to uncertainty in permeability, porosity, 

diffusivity, chemical solubility, and adsorption within a single conceptual model. For the 
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examples considered, the linear FOSM analysis generally captures the uncertainty range 

calculated by the Monte Carlo method. James and Oldenburg (1997) calibrated a number 

of conceptual mathematical models to available observations and retained only those 

calibrated models that had historically reproduced observations adequately. The authors 

produced a prediction using each calibrated model, assessed the corresponding predictive 

uncertainty due to uncertainty in the model parameters, and averaged the predictions as 

well as their ranges of uncertainty by assigning an equal weight to the results of each 

model. Significant uncertainties in simulated calculations also show that significant 

output uncertainty is introduced by conceptual model variation. 

 

Beven and Binley (1992) proposed a methodology for calibration and uncertainty 

estimation of distributed hydrologic models based on the method referred to as GLUE 

(generalized likelihood uncertainty estimation). The strategy picks up the identification of 

multiple alternative structural models and the assumption of a prior probabilistic model of 

parameter uncertainty for each. Each structural model, combined with its corresponding 

parameter uncertainty model, is used to generate Monte Carlo realizations of simulated 

hydrologic behaviors and to compare the results with observations made during the same 

period. Likelihood measures are defined to estimate the degree of correspondence 

between simulated and observed data. If a likelihood measure falls below the acceptance 

criterion, the model realizations are discarded. The combination of the model structure 

and parameter set that both pass this test is retained to make predictions of system 

responses under selected future scenarios. Each prediction is weighted by a 

corresponding normalized likelihood measure, to produce a likelihood-weighted 

cumulative distribution of all available predictions.  

 

Kunstmann et al. (2002) used conditional and unconditional first-order second-moment 

(FOSM) analysis to quantify the uncertainty in groundwater flow and solute transport 

equations. A second analysis was performed to derive the covariance matrices for heads 

and concentrations from the relevant governing equations. The analysis was conducted 
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for steady-state conditions and considered hydraulic conductivity and recharge 

uncertainty. The objective was to quantify the exploitation potential of an aquifer in terms 

of its mean annual recharge and its uncertainty bound. Kunstmann et al. (2002) reported 

that the uncertainty bounds obtained by the FOSM method correspond well with the 

results obtained by Monte Carlo analysis. However, the FOSM method is much more 

advantageous because of its greater computational efficiency. 

 

2.6 Quantification of Conceptual Model Uncertainty 

 

Conceptual models have many uncertainties due to both the scarcity of data and 

subjectivity of many modeling decisions. Modelers are forced to make simplistic 

assumptions of reality. Model errors are introduced in, for example, the parameterization, 

discretization, parameter zonation and boundary conditions selected.  Uncertainties in the 

conceptual model have been recognized as a main source of uncertainty in model 

prediction  (Usunoff et al., 1992; Neuman and Wierenga, 2003; Hojberg and Refsgaard, 

2005).  However, the existing approaches for coping with conceptual model error are not 

generic and are not widely used in practice. In general, the conceptual model uncertainties 

are neglected, and uncertainty analyses are performed considering only parameter 

uncertainty and using only a single conceptual model. 

 

A familiar approach to assessing conceptual model uncertainty includes validation or 

post-audit tests. In the post-audit, the model predictions are compared with existing data 

that have been omitted from the model calibration or new data. The post-audit tests are 

most effective when the new data represents stress conditions or aspects of the system 

that differ from those represented in the model calibration data (Hill and Tiedeman, 

2007). The disadvantage of this method is that the model structure quality can only be 

assessed against the output variables for which the field data are available.  
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Another approach in dealing with conceptual model error is to select the most plausible 

models from a set of realistic options, an approach known as Model Selection. The basic 

idea of this method is to minimize selected model error rather than quantify individual 

model errors. Different models can be compared in terms of model fit, residual distribution, 

and confidence intervals for parameters and predictions. The model selection approach is 

advocated by many researchers (Burnham and Anderson, 2002; Neuman and Wierenga, 

2003; Poeter and Anderson, 2005; Ye et al., 2004, 2005, 2008a, 2008b), but has limitations 

in that the scenarios of alternative conceptual models cannot be fully known and cannot 

ensure that the multiple models adequately sample the complete range of plausible models. 

 

Refsgaard et al. (2006) proposed a new framework for analyzing the uncertainties due to 

model structure errors when models are used for making extrapolations beyond their 

calibration period. In this framework, a suite of conceptual models is independently 

calibrated and a pedigree analysis is performed to assess the overall reliability of the 

multiple models. Pedigree conveys an evaluative account of the production process of 

information, and indicates different aspects of the underpinning and scientific status of 

the knowledge used. A pedigree is expressed by means of a set of pedigree criteria used 

to assess these different aspects. The pedigree approach integrates different types of 

knowledge, such as qualitative and quantitative uncertainty, to estimate the impact of 

model structure uncertainty on model predictions. The pedigree analysis does not give an 

indication of the relative quality of the various model structures and, consequently, it 

cannot be integrated in a quantitative uncertainty analysis in terms of model probabilities. 

Nevertheless, the statements obtained from pedigree analysis should be available as the 

best possible scientifically based characterization of uncertainties and, as such, should be 

made available to those involved in the decision making process. However, the full 

framework needs to be tested in real water resource management case studies. 

 

When the set of model alternatives is defined, the options for addressing conceptual 

model uncertainty include: 1) evaluating each alternative and selecting the best model, 
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based on specific criteria or prediction results, or 2) evaluating each alternative and 

combining the results using appropriate weighting schemes (Meyer et al., 2007). The 

model selection methods may be carried out through an informal comparison (James and 

Oldenburg, 1997; Hojberg and Refsgaard, 2005) or through evaluation of formal model 

selection criteria such as AIC (Akaike Information Criterion), AICc (second-order-bias-

corrected AIC), BIC (Bayesian Information Criterion), and KIC (Kashyap Information 

Criterion) (Burnham and Anderson, 2002; Poeter and Anderson, 2005; Neuman and 

Wirenga, 2003). Combining the results using weighting schemes may be carried out 

through the likelihood-based weighting of Beven and Freer (2001), the model likelihood 

weighting of Burnham and Anderson (2002, 2004), and the model probability weighting 

of  Draper (1995). The details of alternative model selection are described in a later 

section. 

 

Analyzing conceptual model (model structure) uncertainties has been receiving 

increasing attention in recent groundwater studies. Incorrect hypotheses, neglect of 

relevant processes and inappropriate representation of processes introduce errors into a 

conceptual model.  Many researchers acknowledge that the bias and uncertainty caused 

by an inadequate conceptualization are typically much larger than those caused by an 

inadequate suboptimal set of model parameter values,  and  focusing only on the 

optimization of model parameters does not allow compensation for conceptual model 

uncertainty (Carrera and Neuman, 1986a, 1986b; Bredehoeft, 2003; Neuman, 2003; 

Neuman and Wierenga, 2003; Ye et al., 2004; Bredehoelft, 2005; Poeter and Anderson, 

2005; Refsgaard et al., 2006; Meyer et al., 2007; Refsgaard et al., 2007; Seifert et al., 

2008; Rojas et al., 2008a).  Lack of hydrological and hydrogeological data result in 

conceptual model uncertainty because of imprecise model components, including 

parameterization, boundary conditions, sources, and sinks.  These model components in 

complex aquifer systems are usually conceptualized on the basis of a number of 

hypotheses and assumptions. Several assumptions can lead to several plausible 

candidates for conceptual models. Model predictions based on one selected model are 
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subject to significant uncertainty. Analyses of hydrologic systems based on a single 

conceptual model are therefore prone to statistical bias and underestimation of 

uncertainty. To avoid prediction errors underestimation, jointly analyzing predictions 

generated by several alternative models has been encouraged by many researchers 

(Carrera and Neuman, 1986a, 1986b; Bredehoeft, 2003; Neuman, 2003; Neuman and 

Wierenga, 2003; Ye et al., 2004; Bredehoelft, 2005; Hojberg and Refsgaard, 2005; Poeter 

and Anderson, 2005; Refsgaard et al., 2006; Meyer et al., 2007; Refsgaard et al., 2007; 

Seifert et al., 2008; Rojas et al., 2008a) and is the focus of this study.   

 

Approaches for dealing with multiple models to analyze uncertainty in prediction can be 

divided into two categories. The first approach is to evaluate each alternative and select 

the best model, based on certain criteria or prediction results. Predictions are made on the 

assumption that the best model is the true model and uncertainty exists solely in the 

estimation of parameters. This approach neglects uncertainty in the choice of models, 

uncertainty that may be important, especially if several models have similar criterion 

scores but provide significant differences in predictions. A second approach is to evaluate 

each alternative and combine predictions using model-averaging or weighting schemes 

(Draper, 1995; Hoeting, 1999). The fundamental goal of model-averaging is to arrive at a 

set of plausible models that can be weighted according to criteria, usually associated with 

their likelihood given a set of data. This weighting reflects the degree to which each 

model is trusted. Predictions are then derived as a weighting average of the predictions 

from each model in the plausible set, and prediction uncertainty is estimated as a 

weighted sum of the within- and between-model variance. 
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2.7 Model averaging Approaches 

 

Model-averaging has gradually received increased attention as an alternative to model 

selection in quantifying conceptual model uncertainty. When multiple plausible models 

are implemented, each model has its own strength and weakness in prediction. Thus, 

model averaging may provide a better predictive capability than relying on a single 

model.  

 

Model averaging can be defined as a method of combining results from several plausible 

models into a single set of predictions by a measure of model performance. In 

groundwater modeling applications, several methods have been proposed for dealing with 

model averaging, these methods including Generalized Likelihood Uncertainty 

Estimation (GLUE), Bayesian Model-averaging (BMA), Qualitative approaches, and 

Multi Criteria Decision Making (MCDM) approaches. The methodologies used to 

quantify uncertainty associated with model averaging are described as follows.  

 

2.7.1 Generalized Likelihood Uncertainty Estimation (GLUE) 
 

GLUE was developed by Beven and Binley (1992) to deal with model non-uniqueness in 

environmental modeling. GLUE is based on the concept of ―equifinality,‖ that is, many 

sets of parameters in combination with many conceptual models will produce equally 

likely modeling results when compared to limited observed system responses (Beven and 

Freer, 2001; Beven, 2006). This concept rejects the idea of a single correct representation 

of a system in favor of many acceptable system representations. In the GLUE 

methodology, the feasible parameter space within a single model structure is first 

sampled by Monte Carlo simulation to produce many equally likely parameter 

combinations (realizations). The output corresponding to each realization (or model 
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alternative) is evaluated with respect to any observed system responses using the chosen 

likelihood measure or measures to reflect the performance of individual models in 

reproducing the behavior of the system being studied. Only those realizations (or models) 

that satisfy the likelihood measure (e.g., a maximum sum-of-squared weighted residuals), 

also known as the behavioural threshold, are retained for further analysis, and the non-

behavioural realizations (models) are rejected. A posterior likelihood for each model is 

then calculated as a function of the error between the observed outputs and those 

predicted by the model. The weights (or probabilities) for each model are estimated by 

normalizing the likelihoods.  The GLUE concept can be applied to the evaluation of 

multiple model structure or alternative conceptual models. Discrete alternatives can be 

considered as well as alternative parameter sets provided that the likelihood measures are 

used in the evaluation of each model. 

 

The fundamental features of GLUE is its flexibility with respect to likelihood measure 

choice. Various likelihood measures based on goodness-of-fit metrics have been 

proposed. One likelihood measure commonly used to measure the closeness between 

model predictions and observations in the GLUE literature is given by the inverse 

weighted variance. The likelihood measure can be defined according to Singh et al. 

(2010) as 
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where Lk is the likelihood measure for model k; l is the number of state variables (data 

types); σ
2

e,k is the variance of the residuals for model k; σi
2
 is the variance of the 

observations of the data type l; and N is a shape factor chosen by the user such that values 

of N >> 1 tend to give higher weights (likelihoods) to models that better agree with the 

data, Values of N =0 tend to make every model have equal likelihood, and N=1 is most 

often used in GLUE applications. The variance of the errors σ
2

e,k   for data type l is given 

by  
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where SSR is the sum-of-squared residuals and SSWR is the sum-of-squared weighted 

residuals for the k
th

 model predictions and observations (of data type l), while n is the 

number of observations (for data type l).  

 

Another form of the likelihood measure based on the residual variance is the proportion 

of the observed variance explained by the model called the Nash-Sutcliffe efficiency 

index (Nash and Sutcliffe, 1970) given by: 
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,

2
1

N

e k

k

l l l

L




 
  

  
    (2-4) 

 

 A further likelihood function of the residual variance is the exponential likelihood 

function (Beven, 2000): 

2

,

2
exp

e k

k

l l l

L N




 
  

  
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The likelihoods are normalized so that their sum is equal to one, gives the GLUE weight 

for model j: 

1

( ) k k
k n

k k

i

Pr L
GLUE

Pr L








   (2-6) 

 

where Lk is one of the likelihood functions described above, Prk is the prior weight given 

to each model (typically based on the modellers‘ expert judgment), and n is the total 

number of models being considered. 

 

The GLUE method has been used in a wide variety of applications. However, this 

approach has been criticized for not being formally Bayesian, resulting in parameter and 
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predictive distributions that are statistically incoherent, unreliable, and should not be used 

(Montari, 2005, Mantovan and Todini, 2006; Vogel et al., 2008). The concerning aspects 

of its methodology involve (1) the lack of theory for deciding an appropriate likelihood 

function and the rejection criterion used to distinguish between behavioural and non-

behavioural models; (2) the lack of a statistical basis for the likelihood and threshold 

measures used for model selection and weighting; (3) the computational burden required 

due to the need for extensive Monte Carlo simulations; and (4) the fact that GLUE does 

not require the model structure and parameters to be optimized, which could lead to 

overestimation of predictive uncertainty.  

 

Beven (2006) has argued that the formal Bayesian model-averaging (BMA) approach is a 

special case of GLUE and is applicable under certain assumptions, and model selection 

can be used within the GLUE methodology to reduce uncertainty. Mugunthan and 

Shoemaker (2006) have shown that optimization or model selection can be used to 

generate alternative models for GLUE, leading to efficiency improvements for the GLUE 

framework by reducing the need for Monte Carlo simulations to generate model 

alternatives. Regarding the debate between the GLUE and Bayesian methods, Beven 

(2009) further argues that ―the best approach to estimating model uncertainties is a 

Bayesian statistical approach, but that will only be the case if all the assumptions 

associated with the error model can be justified‖ and that ―simple assumptions about the 

error term may be difficult to justify as more than convenient approximations to the real 

nature of the errors.‖ He ended by cautioning that ―making convenient formal Bayesian 

assumptions may certainly result in over estimating the real information content of the 

data in conditioning the model space.‖ 
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2.7.2 Bayesian Model-averaging (BMA) 
 

Bayesian Model-averaging (BMA) techniques were suggested by Draper (1995), Kass 

and Raftery (1995), and Hoeting et al. (1999) and are based on a formal Bayesian 

formulation for the posterior probabilities of different conceptual models. BMA is 

achieved by estimating posterior model probabilities (PMPs) for each model in addition 

to posterior density of the parameters. PMPs are the non-negative scalar values that sum 

to one and are the relative probability of the model being true, given the data. The ratio of 

PMP values for any two models gives the relative support of those models and is known 

as the Bayes factor. Estimation of PMPs requires specification of prior model 

probabilities. These priors encapsulate the prior belief that the model is the true model. 

The prior model probabilities for the models are typically obtained using expert 

elicitation (Ye et al. 2005, 2008b) or given equal weight based on a non-informative 

prior. Model averaged or ensemble predictions can be estimated using the PMPs to 

weight individual model predictions based on their prediction performance. Predictions 

from better-performing models receive higher weights than those of poorer-performing 

models. Therefore, BMA avoids the need to choose one model over the others; instead, 

competing models are assigned different weights based on the observed dataset 

(Wasserman, 2000). 

 

While the parameter posterior density is estimated using the model likelihood, estimation 

of PMPs requires estimation of the integrated model likelihood (also called the marginal 

model likelihood), which is the likelihood multiplied by the prior integrated over all 

possible parameter values. Model PMPs are then estimated using the individual model 

marginal likelihood divided by the sum of marginal likelihoods over the set of models 

under consideration. 
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In the Bayesian framework, if  is the quantity of interest predicted by a set of K 

alternative models, then its distribution conditioned on dataset D is calculated using 

Bayes‘ rule as follows (Hoeting et al., 1999):  

1

( ) ( , ) ( )
K

k k

k

p D p M D p M D


  

  

            (2-7) 

where p(Δ|Mk,D) is the predictive probability of  for model Mk, and p(Mk,D) is posterior 

model probability of Mk  and can be computed using Baye‘s theorem as  

1

( ) ( )
( )

( ) ( )

k k

k K

l l

l

p D M p M
p M D

p D M p M





  (2-8) 

where p(Mk) is the prior probability of model Mk (similar to Prk used in Equation (2-6) for 

GLUE), and p(D|Mk) is the likelihood of model Mk (a measure of consistency between 

model predictions and site observations D). This model likelihood is given by 

( ) ( , ) ( )k k k k k kp D M p D M p M d     (2-9) 

Here, 
k  is the parameter set associated with model k; p(θ|Mk) is the prior probability of 

the parameters, and p(D|θk,Mk) is the joint probability of model k and is a function of the 

errors with respect to the field data (D). The prior probabilities for the parameters, 

p(θ|Mk), can either be a subjective value or based on an expert‘s prior information and 

philosophical beliefs. The posterior model probabilities are consequently rather sensitive 

to the specification of the prior probabilities, or that prior probabilities should not 

dominate the likelihood function as supported by data. If there is no informative support, 

it is reasonable to assign equal prior probability as a neutral choice (Hoeting et al., 1999; 

Wasserman, 2000). In BMA, the prior model probabilities also represent a prior model 

weight equal to one. 
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In general, the first two moments of  are used to quantify the uncertainty. For model Mk, 

parameter uncertainty is quantified by the mean, E[Δ|D,Mk], and variance, Var [Δ|D,Mk],  

which can be obtained using either Monte Carlo simulation or stochastic methods. The 

posterior mean and variance quantify both the parametric and model uncertainty. The 

first term and second terms on the right hand side of Equation 2-11 are the within-and 

between- model variance, respectively. 

  
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In groundwater modeling, the most commonly used BMA concepts are the Maximum 

Likelihood Bayesian Model-averaging (MLBMA) method (Neuman 2003) and the 

Information-theory based method (Poetor and Anderson, 2005). Both methods are based 

on the use of model selection criteria, which are derived as by-products of the calibration 

of groundwater models using methods such as Maximum Likelihood (ML) or Weighted 

Least Squares (WLS). The use of model selection criteria includes ranking alternative 

conceptual models, eliminating some of them, or weighting and averaging model 

predictions through the calculation of posterior model weights using a generic formula. 

The most commonly used model selection criteria are the Akaike Information Criterion 

(AIC) (Akaike, 1974), modified Akaike Information Criterion (AICc) (Hurvich and Tsai, 

1989), Bayesian Information Criterion (BIC) (Schwartz, 1978), and Kashyap Information 

Criterion (KIC). KIC and BIC are the suggested criteria in MLBMA, while AIC, AICc 

are the preferred criteria for the information-theory based method of Poetor and Anderson 

(2005).  
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2.7.2.1 Maximum Likelihood Bayesian Model-averaging (MLBMA)   

 

Neuman (2003) proposed a variant of the BMA approach called MLBMA. MLBMA 

approximates the integral in Equation 2-9 by using likelihood measures such as the 

Kashyap Information Criterion (KIC) or the Bayesian Information Criterion (BIC), which 

are evaluated for each model calibrated to the maximum likelihood estimator for the 

parameter set. 

 

The MLBMA assemble models that have been calibrated to observed data using 

maximum likelihood estimation. The model likelihood is then estimated using 

( |  )  exp(- )
2

k
kp D M 


   (2-12) 

where k is the difference between the BIC or KIC measure for the k
th

 model and the 

minimum BIC or KIC value among all competing models. Assuming a multi-Gaussian 

error distribution with unknown mean and variance for the model likelihood in Equation 

2-12, the BIC and KIC terms can be written as: 

BICk = n ln (σk
2
) + pk ln (n)   (2-13)

 

and 

2

,
ˆˆ  ( ) ln ( ) 2ln ( ) ln(2 ) ln T

k k e k k k k kKIC n p p p X X          (2-14) 

where n is the number of observations, pk  is the number of parameters for model k, ˆ
k  is 

the maximum likelihood estimator for the parameters from model k, ˆ( )kp   is the prior 

probability (either assessed from field data or through expert elicitation) for the parameter 

estimate, and 
2

,
ˆ

e k is the maximum likelihood estimator for the variance of the error 
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residuals (e) estimated from the weighted sum-of-squares residuals for model j with the 

maximum likelihood estimator for the parameters as  

2

,

ˆ

ˆ

k k

T

j k

e k

e e

n
 






    (2-15) 

where ke  is the calibration error vector, n is the number of samples, ˆ
k is the maximum 

likelihood estimator for the parameters, and ω is a weight factor, which theoretically is 

given by the covariance between the data points. It is common to assume uncorrelated 

data leading to a diagonal matrix with the variance of the data points along the diagonal. 

In many cases, the unbiased ―least-square‖ formulation may be used, where, instead of n, 

(n-pk) is used in the denominator, with pk being the number of calibrated parameters in 

the model k. Also note that for the purpose of simplicity and without loss of generality, 

we have assumed only a single data type (unlike the GLUE formulations presented in 

Equations 2-2 to 2-6, which were for multiple data types). 

 

The MLBMA model weights can be calculated by 

 
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exp( 0.5 ) ( )
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k

p M
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 

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  (2-16) 

where ( )kp M represents  prior probabilities of the models.  

 

Singh et al. (2010) have pointed out the key aspects of the KIC- and BIC-based model 

weights;  (1) the use of the k term, which can vary from 0 (for the model with the 

minimum KIC or BIC metric) to many orders of magnitude higher (for the models with 

higher KIC and BIC metrics) and (2) the exponential weighting in Equation 2-16 that 

tends to assign most of the posterior weights to the relatively few models exhibiting 

slightly better agreement with the data. The distribution of weights becomes narrower as 

the number of observations increases, since the value of n linearly affects the minimal 
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values of BIC and KIC. This statement is reasonable because with more data there needs 

to be less uncertainty amongst competing models (Poeter and Hill, 2007). However, 

Beven (2009) has pointed out that this is only desirable if the error structure assumed by 

the averaging technique is consistent with the ―real‖ error structure. Otherwise, model-

averaging techniques such as MLBMA may overestimate the information content of the 

data while conditioning the model. 

 

Domingos (2000) has compared BMA with other model-averaging techniques and shown 

that BMA tends to underestimate the predictive uncertainty. However, others such as 

Minka (2000) have contended that these results are hardly surprising because, by 

definition, techniques like BMA, and especially MLBMA, are built on the intrinsic 

assumption that there is a unique model of reality (i.e., there is only one mode in the 

conditional distribution—representing the most likely model). This is confirmed in the 

original MLBMA paper by Neuman (2003), where he presents the fundamental 

assumption for this technique so:—―only one of the (alternative) models is correct even 

in the event that some produce similar predictions for a given set of data.‖ Thus, MLBMA 

is more a model selection technique than a model-averaging methodology. Model 

selection (or ranking) is simply based on the relative magnitude of the BMA criterion 

(either BIC or KIC), and thus is not affected by the exponential dependence on n.  

 

The formulations shown earlier require the models to be well calibrated (normally 

distributed errors, etc.) and the residual variance ( ̀   
 ) assessed using the calibrated 

parameters. In fact, the error distribution used is typically unimodal, with the mode 

approximated by the ―calibrated‖ model. In the case of highly parameterized models, 

there is bound to be non-uniqueness in the parameter domain (and thus multimodality in 

the calibration response surface). The applicability of MLBMA and BMA in such cases is 

not clear. In such cases, it is advisable that the dimensionality of the model parameters be 

reduced (thereby introducing some level of uniqueness in the calibrated parameter set) 

before applying this methodology. 
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2.7.2.2 Information- Theory-based Model-averaging 

 

Information theory assesses the relative model performances as the likelihood of a model 

and can be assumed to be related to the value of ―information‖ they provide. The familiar 

information-theory-based model averaging in use is the AIC. Although there are 

fundamental differences between the Akaike Information Criterion-based model-

averaging (AICMA) and the Bayesian approach are fundamental differences, the two 

frameworks work analogous. The AIC is used to approximate the Kullback-Leibler (K-L) 

metric, a measure of the loss of information when an imperfect model (Mk) is used to 

approximate the ―real‖ (and unknown model f). The K-L distance (I) between model Mk 

and f is defined as (Singh et al., 2010) 

   
( )

 , ( )log( )
( )

k

k k

f x
I f M f x dx

p M 
      (2-17) 

where f (x) is the real distribution and p(Mk|θk) is the distribution of model  Mk  given the 

set of calibrated parameters θk. However, for groundwater models, K-L information 

cannot be computed since the real distribution f (e.g., hydraulic conductivity values, 

boundary conditions, and fluxes) is not known. The relative K-L information can be 

approximated using the AIC (Akaike, 1973) given by 

  
2

,
ˆ   ln ( ) 2k e kAIC n p     (2-18) 

To further correct for the bias introduced from small sample sizes, a modified AIC 

equation (Hurvich and Tsai 1989; Poeter and Anderson 2005) has been proposed as 

follows: 
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where the extra term in Equation 2-19 as compared to Equation 2-18 accounts for second-

order bias that may result from a limited number of observations, for example, when n/p 

< 40. This work uses the AICc metric as defined in Equation 2-19 for likelihood 

estimation. 

 

The AICMA model weights can be written as 
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The AICMA is based on an information theory framework; it assumes that all models are 

approximations and it is impossible to perfectly capture reality. The goal for AICMA 

therefore is to select models with increasing complexity as the number of observations 

increases; however, the goal for MLBMA is to seek models with consistent complexity 

(i.e., constant k), regardless of the number of observations (since the penalty term for 

model complexity is not dependent on the number of observations). Use of the FI matrix 

in the KIC calculation yields lower probabilities for more complex models, if such 

complexity is not supported by the data, by which alleviating some of the problems with 

the consistent complexity assumption. 

 

The AICMA approach shares some of the behavior, in terms of posterior weight 

distribution, of MLBMA due to the use of the ∆ term and exponential weighting in 

Equation 2.20, use that results in larger weights being given to models that show optimal 

or near optimal error residuals. The definition of AICc (such as that of KIC and BIC) 

exhibits a linear dependence on n, which implies that the AICc weights are proportional 

to (1/
2

,
ˆ

e k )
n
; whereas the GLUE weights are proportional to (1/

2

,
ˆ

e k  ). The weights are the 

major source of difference in inferring posterior model probabilities among GLUE and 

MLBMA or AICMA. 
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2.7.3 Variance Window-Based MLBMA 
 

The previous section highlighted the issue with MLBMA and AIVMA distributing most 

of the model weights to a few models that showed marginally better calibration 

performance. Tsai and Li (2008) have proposed an approach to address this issue by 

using the concept of a ―variance window‖ to modify the MLBMA scheme. The 

motivation for their work was the realization that BMA tended to assign most of the 

weights to a few models that exhibit marginally better calibration performance (due to 

exponential weighting and the k term used in Equation 2-15). Tsai and Li (2008) 

contended that this stringency in the model-averaging criteria is a result of the underlying 

assumption of ―Occam‘s windows‖ (Madigan and Raftery, 1994) that only accepts 

models in a very narrow performance range. Occam‘s window is defined by Raftery 

(1995) as the range within which the model performance of two competing models is 

statistically indistinguishable—that is, if the difference between the calibration metrics of 

two models (with the same complexity) is less than the Occam‘s window, then both will 

be accepted.  

 

Raftery (1995) pointed out that for sample sizes between 30 and 50 data points, an 

Occam‘s window of 6 units in the BIC metric (BIC in Equation 2-11) roughly 

corresponded to a significance level of 5% (in t statistics) in conventional hypothesis 

testing terms. Over the years there has been growing realization that this Occam‘s 

window for model acceptance may be too restrictive, leading to biased results (Hoeting et 

al., 1999; Tsai and Li, 2008). To reduce this overweighting and the resulting bias, Tsai 

and Li (2008) introduce the concept of a ―variance window‖ as an alternative to an 

Occam‘s window for selection with the BMA. The variance window is determined by 

including a scaling factor α with BIC (and KIC), where α is given by  

1
  

2 D

s

s



     (2-21) 
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where 
D  is the standard deviation of the error chi-square distribution for the ―goodness-

of-fit‖ criterion used in formulating KIC or BIC (see Tsai and Li (2008) for details). The 

variance of the chi-square distribution is given by 2n (i.e., 2D n  ), where n is the 

number of observations, s1 is the size of the Occam‘s window corresponding to the given 

significance level, and s2 is the width of the variance window in the unit of
D . As the 

width of the variance window becomes larger, α becomes progressively smaller than 1. 

Note that since the minimum size of the variance window is the Occam‘s window, the 

value of   is never larger than 1. When the concept of this variance window is 

incorporated into the model-averaging process, the posterior model probabilities (also the 

model-averaging weights) are given by 
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where min  ( - )k kBIC BIC   or min  ( - )k kKIC KIC  . It can be seen that α is a 

multiplicative factor that when multiplied with BIC or KIC (as the case may be) 

reduces the impact the exponential term has on the weighting. For 1  , the weighting is 

identical to the BIC or KIC based weights, and for 0   all models are equally weighted 

irrespective of their calibration performance. Tsai and Li (2008) also provide a table for 

recommended values of α corresponding to different significance levels and variance 

window sizes, which are shown in Table 2-1.  

 

Table 2-1  Scaling Factors for Different Sizes of Variance Window and Significance 

Levels using n Observation Data (From Tsai and Li, 2008) 

 
D  2 D  4 D  

Significance level 

5%  
 

4.24 / n  2.12 / n  1.06 / n  

Significance level 

10%  
 

6.51/ n  3.26 / n  1.63 / n  
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Tsai and Li (2008) originally derived the variance window concept only for Bayesian 

model-averaging. It is not entirely clear if a similar α factor can be applied to AIC-based 

likelihoods, and if so then what significance level and variance size would such factors 

correspond to. Singh et al. (2010) used the variance window concept with the KIC-based 

cumulative distribution function (CDF) to compare the performance of different 

groundwater model-averaging techniques for quantifying the impacts of model 

uncertainty on groundwater model predictions. 

 

 

2.7.4 Qualitative Approaches 
 

Refsgaard et al. (2006) proposed a new framework to address conceptual model 

uncertainty when models are used for making predictions beyond their calibration period. 

In this framework, a suite of conceptual models is independently calibrated and a 

pedigree analysis is performed to assess the overall reliability of the multiple models. 

Pedigree is expressed by means of a set of pedigree criteria to assess these different 

aspects. The pedigree approach integrates different types of knowledge, such as 

qualitative and quantitative uncertainty, to estimate the impact of model structure 

uncertainty on model predictions. Regardless of the framework‘s flexibility, the pedigree 

analysis does not provide an indication of the relative quality of the various model 

structures in quantitative terms. As a result, it cannot be integrated in quantitative 

uncertainty analysis, a significant drawback of this method since the inclusion of 

informative and proper prior knowledge about the alternative conceptual models, in terms 

of consistent prior model probabilities, will provide useful information to further reduce 

predictive uncertainty (Ye et al., 2005; Rojas et al., 2009). Nevertheless, the statements 

obtained from pedigree analysis should be available as the best possible scientifically 

based characterization of uncertainties and, as such, be made available to those involved 

in the decision-making process. However, the full framework needs to be tested in real 

water resource management case studies. 
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2.7.5 Multi-Criteria-Decision-Making (MCDM) Approaches  
 

Multi-Criteria-Decision-Making (MCDM) approaches have been identified as a useful 

strategy to evaluate various model calibrations (Zeleny, 1982; Sziadarovszky eta al., 

1986; Swaify and Yakowitz, 1998; Kuchanur, 2006). Multi Objectives help decision-

makers to compare, rank, and organize the available choices (alternative simulation 

models) based on the identified evaluation criteria. These approaches are currently being 

widely used in public policies formulation. However, traditional multi-objective 

programming cannot quantify and incorporate the subjective preferences of stakeholders 

and decision-makers. Thus, Fuzzy Multi-Criteria-Decision-Making (FMCDM) was 

developed by Kuchaner (2006) to rank the alternative models not just based on their 

performances on goodness-of fit but also on a comprehensive set of subjective and 

objective measures. This approach can help to evaluate the models quantitatively, 

although the method for integrating the combined qualitative and subjective preferences 

is not yet clearly apparent. 

 

Although, no one disagrees that predictions need to be evaluated using alternative 

models, diverse opinions exist on what alternative models should be included. Burnham 

and Anderson (2004) and Poeter and Anderson (2005) have proposed that all models in a 

candidate set be incorporated in a predictive uncertainty analysis, whereas others have 

recommended a more selective approach. The argument for including all models is that the 

models that do not provide an acceptable match to the observations are automatically 

assigned smaller model probabilities in the analysis, and that leaving them in simply 

allows all underlying conceptual models to be represented.  The argument for a more 

selective approach is that results from clearly unreasonable models can be confusing to 

decision-makers and the public (Hill and Tiedeman, 2007).  
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2.8 Application of the Multiple Conceptual Model 

Method 

 

Neuman and Wierenga (2003) provided a comprehensive strategy for constructing 

alternative conceptual models of subsurface flow and transport, selecting the best models, 

and using them jointly to render optimum predictions under uncertainty.  

 

Harrar et al. (2003) presented an example of a multiple conceptual model method based 

on six alternative geological interpretations for a glacial-till aquifer system in western 

Denmark. Each model was calibrated against hydraulic heads and flows. Six flow models 

were used to predict the steady-state impact of a proposed well field, and to simulate 

particle tracking and solute transport. The predictive simulations show that simple models 

of heterogeneity produce capture zones similar to those of more complex models, but 

with different travel times and solute breakthroughs. 

 

Ye et al. (2004) applied the Maximum Likelihood Bayesian Model-averaging (MLBMA) 

method to seven geostatistical models of air permeability variations at the Apache Leap 

Research Site in central Arizona. They used adjoint state maximum likelihood cross 

validation to compare its predictive capabilities with those of each individual model. The 

authors found the averaged model contained more information (had a smaller log score) 

and showed better predictive performance (showed wider predictive coverage) than any 

individual model considered.  

 

Poeter and Anderson (2005) presented methods to rank the alternative models and 

discussed the use of AIC, AICc, BIC, and KIC criteria in groundwater applications. The 

prediction analysis was performed using all models and model-averaging for AICc and 

KIC. The results showed that the best fit to calibration data does not guarantee the most 
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accurate predictions at all locations in the model. They reported that model-averaging 

increases the width of model prediction confidence intervals in the best model. 

 

Hojberg and Refsgaard (2005) investigated to which extent parameter uncertainty 

analysis may encompass model structure errors in a groundwater model. They used three 

different conceptual models, based on three different hydrogeological interpretations, for 

a multi-aquifer system in Denmark. Each model was calibrated inversely against 

piezometric heads and streamflows. The three models provided equally good and very 

similar predictions of groundwater heads, including well field capture zones. A parameter 

uncertainty analysis was carried out by Monte Carlo simulations. A comparison of the 

predictive uncertainties in the conceptual models shows large differences between the 

uncertainties in the conceptual models because their importance increase when predictive 

simulations consider data types that are extrapolated from the data types used for 

calibration. 

 

Ye et al. (2006) assessed the conceptual model uncertainty of five recharge models within 

the modeling framework of the Death Valley Regional Flow System (DVRFS) model. 

Maximum Likelihood Bayesian Model-averaging (MLBMA) was used for conceptual 

model uncertainty assessment. In a Bayesian framework, the recharge model uncertainty 

is assessed, a priori, using expert judgments gathered from expert elicitation in the form 

of prior probabilities of the models. The prior probabilities indicate that no single model 

can be selected and other models cannot be discarded. The uncertainty is then evaluated 

by updating the prior probabilities to estimate posterior model probabilities. Based on 

calibration results, three information criteria (AIC, BIC, and KIC) are evaluated to rank 

the models. The posterior probabilities of the five recharge models, evaluated using KIC, 

are used as weights to average head predictions, which gives posterior mean and 

variance. The posterior quantities incorporate both parametric and conceptual model 

uncertainties. Posterior variance of MLBMA is larger than the variance of any single 

model, since conceptual model uncertainty is also addressed. 
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Kuchanur (2006) developed steady-state groundwater flow models to evaluate alternative 

models that reconcile simulation model uncertainties and applied interval optimization 

approaches to estimate groundwater availability and to prioritize management efforts in 

semiarid regions such as South Texas.  

 

Troldborg et al. (2007) investigated uncertainty related to model conceptualizations and 

evaluated the effects on predictions of groundwater age and environmental tracer 

concentrations. Four different conceptual models based on alternative geological 

interpretations of a complex Quaternary aquifer complex were constructed and auto-

calibrated to observations of head and discharge data. The four models showed major 

differences in predictions of age and concentrations, and none of the four models 

performed particularly well in the extrapolation step. The authors concluded that a single 

conceptualization may be adequate in characterizing natural behaviour of a field system 

after calibration against observations, because the calibration process is able to 

compensate for conceptual model errors through biased parameter values. However, it is 

critical to take model conceptual uncertainty into account when using the models to make 

predictions beyond the calibration period.  

 

Rojas et al. (2008a) combined Generalized Likelihood Uncertainty Estimation (GLUE) 

and Bayesian Model-averaging (BMA) to assess model predictive uncertainty that arises 

from errors in model structure, input, and parameters. The likelihood measures of 

acceptable simulators assigned to the plausible models based on their ability to reproduce 

observed system behaviour were integrated over the joint input and parameter space to 

obtain the integrated model likelihood. The model probability was used to weight the 

model predictions in the BMA ensemble predictions. A three-dimensional hypothetical 

setup was used to demonstrate the methodology. Results showed that the predicted 

groundwater budget varied considerably among competing models; and a set of 16 head 

observations used for calibration did not allow differentiating between the models. BMA 
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provided average predictions that were more conservative than individual predictions 

obtained for individual models.  

Diks and Vrugt (2010) compared model-averaging methods that weigh models using 

different techniques, without always requiring that the weights sum up to one. The 

methods were applied to two sites and compared in term of their predictive performance 

measured by out-of-sample root mean squared prediction error.  

 

Ajami and Gu (2010) use the Bayesian Model-averaging (BMA) approach of Raftery et 

al. (2005) to assess uncertainty in a suite of biogeochemical models of various levels of 

complexity to simulate the fate and transport of nitrate at a field site in California. Their 

results demonstrate that whereas single models, regardless of their complexity levels, are 

incapable of representing all active processes at the site, the 95% uncertainty bounds of 

BMA bracket 90% to 100% of the observations. 

 

Tsai used a variance-window (Tsai and Li 2008) version of Maximum Likelihood (ML) 

BMA (MLBMA; Neuman 2003; Ye et al. 2004) to quantify model uncertainty in 

managing groundwater within a thick sandy aquifer in Louisiana where saltwater 

intrusion is of concern. Alternative models are postulated to reflect uncertainty in 

conceptualizing hydraulic head boundaries and geostatistical parameterization through 

variogram models. The results show that using model-average predictions in the 

management problem requires relatively high injection and pumping rates are required to 

avoid violating constraints associated with multiple models.  

 

Morales-Casique et al. (2010) also use variance-window with MLBMA to quantify 

uncertainty associated with five variogram and gas flow models for unsaturated fractured 

tuff in Arizona. Cross-validation indicates that, whereas MLBMA is far superior to 

individual models in one validation test (as measured by predictive coverage and log 

score), it is second to last in another such test, the estimated weights depending on 

calibration data. 
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Singh et al. (2010) develop an Interactive Multi-Objective Genetic Algorithm (IMOGA) 

to assess model uncertainty at the Waste Isolation Pilot Plant (WIPP) site in New 

Mexico. IMOGA can use either MLBMA or the Generalized Likelihood Uncertainty 

Estimation method (GLUE; Beven and Binley 1992) to estimate model weights. Their 

approach incorporates subjective expert knowledge in the weight estimation process. The 

authors find GLUE to yield more uniform weights than MLBMA, which tends to favor 

one model that fits observed data best.  

 

Reeves et al. (2010) applied GLUE to assess model uncertainty in simulating 

radionuclide flux at the Climax Mine area of the Nevada Test Site. Model uncertainty 

arises from 25 possible hydrostratigraphy recharge combinations at the regional scale, as 

described by Ye et al. (2010a). The breakthrough of a conservative radionuclide is used 

to evaluate the influence of conceptual model and parameter uncertainty on radionuclide 

mass flux predictions. 

 

 

2.9 Short Comments on Contribution in Relation to 

Previous Work 

 

Formal uncertainty analyses have focused only on model parameters and input data as the 

principal sources of uncertainty in management model predictions. These analyses may 

underestimate management model uncertainties. During the past decade there has been a 

surge in the development of techniques for quantifying conceptual model uncertainty 

associated with groundwater flow and mass transport (Neuman and Wierenga (2003); 

Harrar et al. (2003); Ye et al. (2004); Poeter and Anderson (2005); Hojberg and 

Refsgaard (2005); Kuchanur (2006) ; Troldborg et al. (2007) Rojas et al. (2008a, b); 

Ajami and Gu (2010); Singh et al. (2010); Reeves et al. (2010). Despite this progress, the 
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quantification of conceptual models‘ uncertainties using multi-model ensembles as 

applied to groundwater management have not been explored.  

 

Simulation-optimization models have been widely used to estimate the optimal and 

sustainable yield of groundwater (Gharbi and Peralta, 1994; Barlow et al., 2003; 

Czaenecki et al., 2003; McPhee and Yeh, 2004; Das and Detta., 1999, 2001; Qahman et 

al., 2005).   However, no research has been found that accounts for conceptual model 

uncertainty in the estimation of sustainable groundwater yield.  

 

Quantification of prediction uncertainties is important, especially when combined 

simulation-optimization models are used for decision making in groundwater management. 

Uncertainties must be determined and quantified since they can help policy-makers to 

prioritize their efforts to reduce these uncertainties when making risk-informed policy 

decisions. The conclusions made from these models and the formulation of relevant 

policies should be conducted with the objective of providing robust management plans.  

 

The traditional approach for management modeling is a deterministic model.  This model 

is intended to achieve optimal operation policies using a single model with single 

parameter estimation without quantification of conceptual model uncertainty. In contrast, 

stochastic simulation-optimization models are often used to quantify prediction 

uncertainty arising from imprecise model parameters, such as hydraulic conductivity 

values (Tung, 1986; Wagner and Gorelick, 1987; Wagner and Gorelick, 1989; Morgan et 

al., 1993; Feyen and Gorelick, 2004; Singh and Minsker, 2008), and the type of boundary 

conditions (Feyen and Gorelick, 2004; Feyen and Gorelick, 2005). Although these 

models can account for any source of uncertainty or model complexity, their drawback is 

computational burden. Thus, these models are usually employed for relatively simple 

models, including ones for which greater complexity in hydrogeologic setting requires 

greater intensive computational effort.  
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Tsai (2010) first introduced a variance-window-based BMA method to deal with model 

structure uncertainty in groundwater optimization models. The methodology was 

implemented to manage saltwater intrusion into the Baton Rouge area, Louisiana. His 

study focuses on model structure uncertainty in the boundary condition values of the 

groundwater model and in the semivariograms of hydraulic conductivity. However, his 

study did not explore the contribution of both conceptual and model parameter 

uncertainty.  

 

Therefore; this study intends to demonstrate how multiple models for the same 

groundwater system can be used to quantify uncertainty and project its impact on 

groundwater management decisions. The efficacy of model selection and averaging 

methods are assessed with respect to their ability to improve model predictive capacity as 

compared to the use of individual models or ensembles of alternative models. Most 

importantly, uncertainties obtained using model-averaging approaches are integrated with 

a parameter uncertainty to quantify the contribution of both conceptual model and 

parameter uncertainty as applied to groundwater management models.   
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Chapter 3 
 

Multi-model Development, Calibration, 

and Assessment 
 

 

This chapter focuses on the construction and calibration of multiple groundwater flow 

models in order to explicitly account for conceptual model uncertainty in management 

decisions. Quantification of uncertainty has not been widely conducted for simulation-

optimization models; thus, it is important not only to develop the framework but also to 

demonstrate the application of this framework in a real-world management context, 

thereby illustrating the validity of this approach.  

 

The methodology presented in Chapter 3 is tested using data collected from the Thaphra 

Area, part of the Chi River Basin, located in northeastern Thailand, where groundwater is 

the main supply source. Pumping from closely spaced wells in two high volume pumping 

areas in this site has resulted in the development of deep cones of water-level depression in 

the vicinity. Therefore, efficient sharing out of the groundwater resources in this area is 

needed.  
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In this chapter, a description of the study area and its hydrogeological processes are 

presented and used to construct multiple conceptual models. Subsequently, groundwater 

flow simulation analyses using MODFLOW are described, the objective being formulation 

of flow models for the management problem.  

 

3.1  Study Area Description 

3.1.1 Background 
 

Groundwater resources in the Thaphra Area (TPA) of the Phu Thok aquifer have been 

exploited for domestic, industrial, and agricultural purposes for over three decades. Fresh 

groundwater in this aquifer is underlain by brackish and saline groundwater, which is 

attributed to underlying rock salt in the underlying Maha Sarakham Formation.  In the 

TPA, many villages and most of the local beverage industry depend entirely upon 

groundwater resources. As a result, groundwater withdrawal rates in the TPA have 

considerably increased since the late 1980s, leading to sustained water level decline. 

Records from monitoring wells by Department of Groundwater Resources (DGR) 

indicate that water levels in some wells (such as wells located at the center of TPA) have 

declined up to 8 m since monitoring commenced in 1962. Continued pumping without 

proper management of groundwater abstraction may lead to a regional groundwater 

depression and consequently result in a decline of fresh water head and the upconing of 

saline water into the aquifer.  

 

The assessment of declining groundwater resources in the TPA has received substantial 

attention since the late 1980s, prompting further studies of the regional groundwater 

system. General hydrogeologic and groundwater quality data in the Khon Kaen Province, 

where the TPA is located, were initially compiled by Wongsawat et al. (1989a) to assess 

the potential of groundwater resources. Consequently, a 1:100,000 scale groundwater 

availability map for Khon Kaen Province was constructed to support a provincial water 
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management plan. Pumping tests, as well as monthly water level and water quality 

monitoring, were performed during the period 1989-1990 (Wongsawat et al. (1989b).  

 

A numerical groundwater flow model was developed by Srisuk (1994) to analyze the 

regional groundwater flow regime and determine the groundwater balance for the entire 

Khon Kaen Drainage Basin, with a secondary focus on the local hydrogeology of the Ban 

Nong Khrai Nun Area, which is a part of the study area. The steady-state groundwater 

flow model for the year 1989 was shown capable of reproducing the general flow pattern 

of the aquifer. At that time, it was assumed that groundwater abstraction did not alter the 

overall flow pattern within the region. In the year 1998-2001, the Department of Mineral 

Resources (DMR) developed a medium-scale study (DMR et al., 2001) which included 

hydrogeological mapping, geophysical surveys, hydraulic testing, hydrochemistry, and 

water level and water quality monitoring. Moreover, a transient-state groundwater flow 

and mass transport model was developed, from the 1998 to 2000 data, to predict the 

impact of groundwater extraction (under different scenarios) for the years 2005 to 2010. 

They discovered that there were three areas potentially at high risk of saline water 

intrusion. Upon their recommendation, long term monitoring of water levels and water 

quality within the heavily exploited areas commenced.   

 

Later, a preliminary study on aquifer storage recovery and contamination vulnerability in 

this area was carried out by the Department of Groundwater Resources (DGR, 2007 and 

DGR, 2008). The transient flow and transport models were also developed in the period 

from 2007-2008 as part of these studies. However, these models were calibrated over a 

short period of time with sparse data to support any hypotheses regarding salt transport 

from the Maha Sarakham formation. Therefore, these models do not satisfactorily 

reproduce the observed total dissolved solids (TDS) within the model domain. It is likely 

that the available data and incomplete knowledge about the primary salt transport 

mechanism are not adequate for simulating the effect of saline intrusion and upconing 
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within the aquifer. However, these studies have provided useful data and improved our 

understanding about the Thaphra aquifer system.   

 

In the current study, a new model is developed as a tool for assessing the impact of 

alternative groundwater management plans and is designed to integrate the most current 

knowledge and hydrogeological information available for this area (building upon the 

successes of earlier modeling efforts). Unlike the aforementioned models, the model 

developed here is calibrated using PEST (Doherty 2004).  In addition, alternative 

conceptual models are developed to quantify predictive capability of the model in the 

context of making groundwater management decisions. 

 

3.1.2 General Description 
 

The study area covers an area of 150 km
2
 and is located in the Muang and Ban Haet 

districts of Khon Kaen Province and the Kosum Phisai district of Maha Sarakham 

Province, in the Northeastern part of Thailand (Figure 3-1). It is a part of the Chi River 

Basin, which consists of gently sloping and undulating hilly terrain. The elevation of this 

area is in the range of 150 to 220 m above mean sea level (m amsl), with the highest 

altitude located in the south (Figure 3-2). The TPA has a tropical monsoon climate, with 

an average annual rainfall and potential evaporation of 1,210 and 1,802 mm, respectively. 

 

The primary river within the study area, the Chi River, flows from southwest to north. 

The flow of the Chi River varies extensively; about 90% occurs during the wet season of 

May through October, and about 10% occurs during the dry season of November through 

April. Due to the high intensity of rainfall, flooding of large areas drained by contributing 

streams often occurs towards the end of the rainy season. At the Thaphra station, the 

average runoff is 64 m
3
/s (RID, 2009).  Wetlands, swamps, and saline soils are 

commonly found in the lower elevations along the Chi floodplain. 
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Figure 3-1 Location of the study area 
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Figure 3-2 Topography of the study area, Thaphra area, part of the Chi River Basin, 

Northeast Thailand 
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3.1.3 Geology  
 

The Thaphra area is underlain by three primary formations. From oldest to youngest, the 

strata are the MahaSarakham (KTms), Phu Thok (Tpt), and Alluvium (Qa) Formations, 

as depicted in Table 3-1. The Alluvium Formation, which is composed of 5 to 20 m of a 

combination of sand, gravel, silt, and clay, is the dominant surface formation along the 

banks of the Chi River. This alluvium is underlain by the Phu Thok Formation, which is 

composed of brick-red to reddish-brown sandstone interbedded with siltstone and 

mudstone (Suttayarak, 1985).  

 

 

Table 3-1 Stratigraphic classification and lithology of the Thaphra Aquifer 

Geologic Era, 

Period 
Formation 

Sub-

Formation 
Lithology 

Quaternary Alluvium (Qa)   
Alluvium: sand, silt, clay and laterite (5-

20 m) 

Tertiary 
Phu Thok (Tpt) 

Middle Phu 

Thok 

Sandstone, siltstone and shale: reddish 

brown to orange brown (50-250 m) 

Lower Phu 

Thok 
Claystone and siltstone (100-400 m) 

Cretaceous 

 
Maha Sarakham 

(KTms) 

Maha 

Sarakham 

Rock salt interbedded with clay or 

claystone, potash, anhydrite, and gypsum 

    

 

 

The Phu Thok formation can be divided into three members, which range in age from 

Upper Cretaceous to Lower Tertiary (DMR, 2002). The upper unit of the Phu Thok 

Formation consists of brick-red, coarse-grained, thick-bedded, and large cross-bedding 

sandstone. The middle unit consists of cross-bedded, fine-grained sandstone interbedded 

with siltstone. The lower unit is composed of reddish brown siltstone interbedded with 

gypsum-disseminated claystone. Within the study area, only the middle and the lower 

units of the Phu Thok Formation are found. According to the interpretation of seismic 
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reflection imagery, the total thickness of the Formation in the study area varies from 250 

to 600 m (DMR et al., 2001). The thinner portions of the Phu Thok Formation are located 

at the base of the Chi River in the north and north-east, whereas the thickest parts are 

found in the south of the study area.  

 

Underlying the Phu Thok Formation, the Maha Sarakham Formation is comprised of 

interbedded rock salts, clay/claystone, potash and anhydrite. According to Japakasetre 

(1985), the units making up the Maha Sarakham Formation are, from bottom to top, 

anhydrite, lower rock salt, lower clay/claystone, middle rock salts, middle clay/claystone, 

upper rock salt, and disseminated gypsum/anhydrite, respectively. This formation does 

not occur as outcrops in the study area because it is covered by the Phu Thok Formation 

and floodplain deposits.  However, its presence is critically important with regard to 

water quality in the region due to the existence of rock salt layers. From seismic 

reflection interpretation (DMR et al., 2001), the rock salt layer found in exploration well 

(well number TP1) has been interpreted to be the upper rock salts of the Maha Sarakham 

formation. 

 

3.1.4 Hydrogeology 
 

The main aquifer of the study area involves the sandstone and siltstone of the Phu Thok 

Formation. In the north, fresh groundwater in the sandstone and siltstone are directed 

underlain by brackish water caused by the rock salt of the Maha Sarakham Formation at 

depths of 100 to 350 m below the ground surface.  

 

The Phu Thok aquifer in the study area is presented in only two units: the Middle Phu 

Thok (MPT) and Lower Phu Thok (LPT) Aquifers (Table 3-1). The MPT aquifer, with a 

thickness of 50-250 m, consists of fine to medium sandstone and siltstone. The formation 

is easily fractured and is usually a productive aquifer, with well yields ranging from 15 to 

50 l/s. Highly fractured zones are commonly identified through mud loss while rotary 

drilling at the rim of syncline structure parallel to the Chi River. 
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The transmissivity, horizontal hydraulic conductivity, and storage coefficient for Phu 

Thok aquifer have been estimated through the interpretation of pumping test data 

obtained from the DGR database (DGR, 2005; DGR 2007; DGR 2008). Results from 25 

pumping tests with observation wells and 70 single well tests were used to estimate the 

transmissivity and horizontal hydraulic conductivities of the sandstone and siltstone of 

the Phu Thok Formation. The well test-derived hydraulic conductivity of the MPT 

aquifer varies from 0.0004 to 90 m/d.  Storativity values range from 1E-07 to 1.5E-03. 

The LPT aquitard consists of clay and claystone, with an average thickness of about 150 

m. The unit is underlain by one to three layers of rock salt, depending upon location. The 

hydraulic conductivity of the LPT Aquifer is two to four orders of magnitude lower than 

that of the MPT Aquifer, ranging from to 8E-5 to 1E-2 m/d.  

 

Figure 3-3 shows hydraulic head contours and flow directions generated from the average 

water level measurements in the monitoring wells over the 2007 period. Regional 

hydraulic heads in the sandstone and siltstone of the Phu Thok Formation range from 140 

to 200 m amsl. In the north and northwest region, along the Chi floodplain, flowing 

artesian wells can be found. Recharge occurs primarily in the south where the surface 

elevation is relatively high and the water table is relatively deep. In the recharge area, the 

average depth of the water table is 10-30 m below the ground surface. For the most part, 

groundwater flows towards the north and northwest discharge to the Chi River. 

 

Due to generally increased withdrawals since the start of heavier industrial development 

in the early 1990s, water levels have declined from the predevelopment highs in some 

areas such as at the soft drink company site and Nong Khrai Nun Village (depicted in 

Figure 3-3). As recently as 1990, groundwater in Nong Khrai Num village was obtained 

from flowing artesian wells. The hydraulic heads in these wells were 3 to 6 m above the 

ground surface in 1989 but declined to approximately 5 to 8 m below the ground surface 

by 1992 and flowing artesian wells are no longer presented in the Nong Khrai Num 

village. 
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Figure 3-3 Groundwater contour map for the Phu Thok aquifer, Thaphra area, in the year 

2007 

 

3.1.5 Water Quality 
 

The principal chemical constituents of concern in the Thaphra area groundwater are total 

dissolved solids (TDS) and chloride, both signatures of brackish water derived from the 

MahaSarakham rock salts. The total dissolved solids (TDS) of groundwater in the 

Thaphra area range from 100 to 8,000 mg/L, but are generally less than 1,000 mg/L. TDS 

concentrations are lowest in the recharge area located in the south and southeast of the 

study area. Approximately 40% of samples taken from 120 wells obtained from DGR 

database (located primarily in the north) from January to February 1999 contained TDS 

concentrations of less than 500 mg/L, which is the secondary Drinking Water Regulation 

limit for TDS (US.EPA, 2009).   Less than 10% of the samples exceed 1,500 mg/L. The 

highest sampled concentrations were observed in the Thaphra Nao wells, located in the 



58 

 

northern part of the study area where the rock salt of the Maha Sara Formation is less 

than 250 m in depth. Chloride concentrations range from 5 to 5,000 mg/L. During the 

same monitoring period, approximately 35% of groundwater wells exceeded the 

guideline limits of 250 mg/L, 12% of wells exceeded 500 mg/L, and 3% exceeded 1,000 

mg/L. The highest concentrations were found in the same locations, where the highest 

concentrations of TDS were observed.  

 

Maps depicting spatial distributions of TDS and chloride concentrations at well depths 

range from 30 to 150 m are shown in Figure 3-4. These maps also compare the chloride 

concentrations measured in January and February 1999 with the concentration measured 

in June through August 2007 (data obtained DGR database). As shown in Figure 3-4, the 

elevated concentrations of TDS and chloride were observed only in a small area in the 

northern part of the study area. The slight increases in average TDS and chloride 

concentrations between the year 1999 and 2007 suggest that saline water intrusion and 

upconing is not currently a widespread problem in the TPA, and is not significantly 

worsening, despite increased pumping.  

 

(a)                                      

 

(b) 

Figure 3-4 TDS concentration contour map for the Phu Thok aquifer: a) January-

February 1999, b) June-August 2007 
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3.1.6 Groundwater Withdrawals 
 

Groundwater in the Thaphra area has been extracted from the Phu Thok aquifer for 

agricultural, industrial, and domestic uses for over four decades, with most withdrawals 

drained from the Middle Phu Thok aquifer. Estimated current withdrawals are based on a 

combination of metered data (for larger industrial users such as brewery, bottled water 

and soft drink companies) and residential estimates derived from typical pump type and 

pump capacity. Groundwater withdrawals from the Upper Phu Thok aquifer have 

increased from approximately 0.5 Mm
3
/y (million cubic meters per year) in 1984 to 3.4 

Mm
3
/y in 2007 as shown in Figure 3-5. Approximately 73 % of the total withdrawal in 

the region is used for industry, 24 % for domestic use, and 3 % for agricultural purposes. 

Moreover, approximately 80% of the total withdrawal occurred only in a small area of 20 

km
2
 in the north of the study area, causing the development of deep cones of depression 

in the vicinity of two pumping centers, seen in Figure 3-3. Thus, this small area is 

considered to be the ―critical area‖. 

 

 

 

Figure 3-5 Estimated groundwater usage in the study area 
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3.2 Alternative Conceptual Model Development 

 

The development of a groundwater model involves various subjective judgments, 

simplifications, and assumptions that can be predominantly attributed to the incomplete 

knowledge and data about the system being modeled.  Model uncertainties can originate 

from errors, associated with parameterization, hydrogeologic processes (such as recharge, 

evapotranspiration), boundary conditions, and initial conditions. Identifying the full range 

of plausible conceptual models and sources of uncertainty is desirable but not feasible in 

practice. Based on the characteristics of the Thaphra study site and the available data, a 

number of possible conceptual models are developed considering the uncertainties in the 

simulation modeling process. Here, a set of unique conceptual models that potentially 

contribute significant uncertainty are generated for testing a number of hypotheses 

regarding the impact of conceptual uncertainty on groundwater management. The twelve 

plausible conceptual models, based on three different hydrogeologic unit interpretations, 

two different recharge estimations, and two different boundary conditions, are developed 

and presented in the following section. 

 

3.2.1 Hydraulic Property Distributions 
 

Three conceptual models of site hydrostratigraphy are developed that represent a degree of 

uncertainty in the hydraulic property values. The hydraulic property distributions have been 

interpreted based on lithological data from 120 boreholes, 65 pumping tests, and the 

interpreted data obtained from geophysical surveys (200 vertical electrical soundings) and 

6 lines of seismic reflection surveys. These data were obtained from DGR‘s database. 

Location of borehole data, pumping tests, and geophysical surveys are shown in Figure 3-6 

to 3-7, and 3-8, respectively. The lithological data and the pumping test locations are 

clustered in the northern part (Thaphra Sub-district) of the study area. There is relatively 

less information available in the south and south-eastern part of the study area.  
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Figure 3-6 Location of borehole with lithological data 

 

Figure 3-7 Location of wells with hydraulic conductivity measurements in the study area 
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Figure 3-8 Location of seismic reflection survey and vertical electrical resistivity 

sounding (data obtained from DGR‘s database) 

 

Most of the lithological data (94 of 120 wells) are available at depths less than 100 meters 

and only 6 wells provide information at depths greater than 200 meters. Values of hydraulic 

conductivity based on 65 pumping test analyses range from 0.001-80 m/d (Figure 3-7). No 
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measurements for vertical hydraulic conductivity are available in the study area. Based on 

the limited data to characterize the distribution of hydraulic properties, the geophysical 

survey data were used to help define and classify the hydrogeologic units. The combined 

interpretation of resistivity, seismic reflection data, lithological data, and hydraulic property 

values from pumping test analysis were used to construct geological sections containing 

thickness and boundary between different hydrogeologic units. The uncertainties in any 

hydrogeologic unit distribution arise since hydrogeologists cope with incomplete, inferred 

or interpretive data. These data must be interpolated between limited borehole data, a task 

that is subjective in nature. While it is impossible to generate a perfect sampling of 

plausible parameter distributions, the intent here was to generate hydrogeological models 

similar to those that would be built by three different hydrogeologist teams, and thus be 

independent of one another. That is, the differences in the geological interpretation of the 

three models (H1, H2, and H3) are due in part to data interpolation differences to represent 

subjective interpretation and actual knowledge of the system by the individual geologists.  

 

In Model H1, seven hydrogeological units were identified.  The Middle Phu Thok 

formation has been divided into four sub-units according to lithology and hydraulic 

properties as shown in Table 3-2. Model H2 was conceptualized by seven 

hydrogeological units. Fractures were assumed to be less frequent at the deeper levels of 

the Middle Phu Thok aquifer. Model H3 was constructed as the most detailed model. 

Eight hydrogeological units were conceptualized from interpreting vertical profiles based 

on borehole information, resistivity, and seismic reflection data. In model H3, the Lower 

Phu Thok aquifer was assumed to be a more permeable layer than it is in models H1 and 

H2. The thickness and geometry of each model are shown in Figure 3-9. 
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Table 3-2 Hydrogeologic unit classification and lithology of the Thaphra Aquifer 

Sub-

Formation 

Lithology Hydrogeologic  Hydraulic conductivity parameter 

unit Model H1 Model H2 Model H3 

  Alluvium: sand, 

silt, clay and 

laterite  

Qa Qa Qa Qa 

Middle 

Phu Thok 

Sandstone, 

siltstone and 

shale: reddish 

brown to orange 

brown  

MPT1 MPT1 MPT1 MPT1 

MPT2 MPT2 MPT2 

MPT3 MPT3 MPT3 

MPT4 MPT4 MPT4 

 MPT5 MPT5 

Lower 

Phu Thok 

Claystone, 

mudstone, 

interbedded with 

siltstone 

LPT LPT LPT LPT1 

  LPT2 

 

3.2.2 Recharge Models 
 

The recharging of aquifers is a complex process and depends upon several factors, 

including precipitation, evapotranspiration, runoff, land use, land cover characteristics, 

soil moisture holding capacity, and water level elevations. Multiple methods can be used 

to measure recharge, for example gravity lysimeters, chloride mass-balance models, or by 

interpreting the water-table fluctuation in wells. Unfortunately, such studies have not 

been carried out in the Thaphra area. Therefore, the recharge rates must be obtained 

through calibration; however, information regarding the likely spatial distribution of 

recharge may be discerned from information about land use and soil type, as described 

below..  

 

Two common recharge zone delineation approaches were chosen to represent one source 

of uncertainty associated with the conceptualization of the aquifer system. For the first 

recharge model, the net recharge was distributed spatially into three zones according to 

only soil type.  Surface soils with moderate-to-well, moderate, and poor drainage 

characteristics were mapped into the three recharge zones used in the model (Figure 3-

10).  



65 

 

 

 

Figure 3-9 The geometry and distribution of model H1 (a), Model H2 (b), and Model H3. 

The cross-sections are defined in Figure 3- 2 
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Figure 3-10 Recharge Model 1 for the TPA model domain 

 

In the second, more refined, recharge model, the land surface was discretized into nine 

zones, each zone delineated based on a combination of soil type and land use/land cover 

characteristics (Figure 3-11). The land use was delineated into five categories rice paddy, 

other agriculture (crop), grass, forest (wood), or residential. This was overlain with a map of 

low, moderate, and high potential soil drainage to generate a map of eleven different zones. 

Note that only the zone boundaries were determined using these methods. In both cases, the 

magnitude of recharge assigned to each of these zones was estimated by an inverse 

simulation procedure that produced the best fit of water level observations, with zones of 

unique property combinations assumed to have identical recharge signatures. 
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Figure 3-11 Recharge Model 2 for the TPA model domain 

 

 

3.2.3 Boundary Conditions 
 

Boundary conditions assigned in the alternative conceptual models are divided into two 

sets (Boundary-1(B-1) and Boundary-2 (B-1)), as shown in Figure 3-12. For both models, 

the underlying rock salt of the Maha Sarakham Formation forms the impervious bottom 

boundary, reaching depths of approximately 100 to 250 m below ground surface in the 

north to 550 m below ground surface in the south. The topmost layer is treated as an 

unconfined aquifer, with the others treated as confined aquifer. Head dependent flow 

conditions (MODFLOW‘s River Package) are used to characterize groundwater interaction 

between aquifers and the Chi River and Huai Toei Reservoir in the top layer. In B-1, no-

flow boundary conditions are applied in all layers at the lateral boundaries to coincide with 

presumed groundwater divides in the west and south. In B-2, general head boundary 
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conditions (GHBs) are used to characterize groundwater inflows and outflows between the 

lateral boundaries located in the west and south. The GHBs are also used for the lateral 

boundary under the Chi River in the deeper layers. The boundary conditions assigned in 

the simulation models are depicted in Figure 3-12. 

 

B1 

 

B2 

 

 

 

 

Figure 3-12 Boundary conditions of the two boundary models 

 

  

River boundary 
No Flow boundary 

River boundary 
GHB 
No Flow boundary 
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3.3 Numerical Modeling 

The twelve three-dimensional finite-difference numerical models are developed using 

MODFLOW (Harbaugh et al. 2000) and MT3D (Zheng and Wang, 1999), with the 

Groundwater Vista graphical user interface (ESI, 2007).  Steady-state simulations were 

executed using MODFLOW-2000 (Harbaugh et al., 2000). Identical discretization was 

assigned in all models to minimize biases caused by different numerical errors in each 

model. 

 

3.3.1 Discretization 
 

The modeled domain is 16 by 18 km and 520 m in depth. The domain is oriented north-

south and discretized into 110 rows, 100 columns, and 15 layers, with 89,951 active cells. 

The grid cell size is 200 m in both the x and y-directions and is refined to 100 by 100 m in 

the area of interest where the groundwater wells are dense and extraction rates are high 

(Figure 3-13). A digital elevation model is used to define the upper surface of the aquifer 

system. The thicknesses of model layers 1 to 7 vary with changes in topography, while the 

thicknesses of model layers 8 to 12 are kept constant with a vertical discretization of 40 m. 

The base model was tested at two different levels of discretization, with the finest model 

simulated using 50m x 50m grid cells; there was minimal difference in model results (i.e., 

<0.1m head difference at observation points), and the level of discretization was therefore 

deemed appropriate. Figure 3-13 shows a three-dimensional view of the model grid 

geometry and boundary conditions.  
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3.3.2 Recharge 
 

The net recharge is applied to the top of the active portion of the top model layer by zone. 

The evapotranspiration (ET) package was not used here since there was insufficient 

information to parameterize the ET model. The net recharge is identified through 

calibration by dividing the land surface into different zones as shown in Figure 3-10 and  

3-11. In model Recharge l (R1), one zone was insensitive and in Recharge 2 (R2) five 

zones were insensitive to model observations, so these zones were combined with 

recharge zones with having similar recharge values. The distributions of recharge 

specified in the numerical models are shown in Figure 3-14. The magnitudes of recharge 

assigned to each of these zones are adjusted during steady-state model calibration.  

 

 

Figure 3-13 Illustration of model geometry, grid, and boundary conditions 
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R1 

 

R2 

 

Figure 3-14 Recharge zone for the TPA Numerical model domain 

 

3.3.3 Pumping 
 

Pumping from wells is simulated using the well package. Wells in the Thaphra area are 

typically completed with perforations that extend to multiple intervals and thus to 

multiple layers in the models. Substantial volumes of groundwater discharge from the 

aquifer system through pumped wells are shown by the model layers in Figure 3-15. 

More than 70 percent of the groundwater withdrawal is completed in model layers 3 to 5 

and mostly withdraw from hydrogeologic unit MPT4 and MPT2 in all Hydrogeologic 

models.  

 

Pumping rates during 1998-1999 are used for the steady-state model since the pumping in 

this period was quite steady. In this year, the daily total withdrawal from 38 industrial 

wells and 60 public-supply and domestic wells was 6,600 m
3
/d. Return flows of pumping 

through subsequent infiltration of excess water likely occurred, mainly with domestic and 

agricultural wells, whereas those of industrial wells are scant and not accounted for in the 
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modeling.  A total of 165 wells are incorporated into the model; the locations of pumping 

wells are shown in Figure 3-16. 

 

Figure 3-15 Pumping by model layers in the Thaphra model 

 

 

Figure 3-16 Location of groundwater withdrawal wells in the Thaphra area 
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3.4 Model Calibration 

 

The alternative groundwater flow models were calibrated for steady-state conditions using 

the same set of head observations. Both manual and automatic calibrations were used to 

achieve optimum parameter sets for each of the 12 alternative models. Model calibration was 

designed to avoid overfitting to the data while simultaneously maximizing our ability to 

represent the physical system. The automatic calibration was executed using the PEST 

software program (Doherty, 2004). PEST was used to calibrate horizontal and vertical 

hydraulic conductivity, recharge rates, and boundary-flux model parameters. PEST uses 

non-linear regression to determine an optimal parameter vector, b, that minimizes an 

objective function, S(b), of the form 

 



75

1

2
')(

i

iii hhbS     (3-1)        

where hi is an observed head; h'i is the simulated head; and ωi is the weight for the 

observation i. For the head measurement data taken from wells, well elevations 

determined by surveying in the field were assigned weight =1, and weight = 0.5 was 

assigned for those from the digital elevation model.  

 

The steady-state calibration attempts to reproduce water level conditions for the year 

1998, a year when the groundwater system was assumed to be at or near quasi-steady-

state conditions because water levels, recharge, and pumping conditions that occurred 

during 1998 were similar to the long term average conditions. A review of long-term 

rainfall records from the two stations located in or near the model domain indicated small 

departures from the long- term average condition (i.e., for the years between 1987 and 

1998) of only 37 or 30 mm  for the two stations in 1998. In addition, 1998 contains the 

most reliable and numerous data for calibration. The average annual data for water levels, 

well extractions, recharge, and river stage conditions for this period are used in this 
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calibration. During steady-state calibration, several manual trials were first undertaken 

for each conceptual model. Each of the twelve models was then individually auto 

calibrated with the PEST software. 

 

3.5 Calibration Data 

 

The observations in the Thaphra area for the period of May 1998 to December 2008 were 

obtained from DGR‘s database. The available water level measurements were initially 

reviewed for use in the calibration process. It was found there is an acute lack of 

continuous records of long-term measured hydraulic heads. Most hydraulic head 

observations are manual measurements obtained from several DGR projects during 

different periods and for different purposes. For the measurements at some locations 

(e.g., the Ban Thaphra Nao School or the Livestock Development and Research Center 

Office at Ban Thaphra), abrupt decreases in ground water levels over time have been 

observed, which might be caused by incorrect measurements or clogged well screens. 

These measurements were removed from the observation data considered in the 

calibration exercise.  

 

Steady-state head observations are specified in the database as an elevation, meaning they 

implicitly possess the uncertainty in the land-surface elevation of the well cap. Although 

land-surface elevations have been surveyed at many wells, it was found that the land 

elevations for a large portion of the monitoring wells vary with the different source 

documents. Discrepancies are likely a by-product of different elevation benchmarks 

being used by different investigators. Further, some altitudes are derived from 1:50,000-

scale topographic maps with contour intervals of 10 m. As a result, many water-level 

observations have an associated error of roughly one half of the value of the contour 

interval (5 m). Since the observations are based on measurements of unknown accuracy, 

it is assumed that the accuracy level is the same for all observations. Therefore, the 
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weights assigned for these observations during calibration are only assigned considering 

the well elevation uncertainty. In this study, the higher weight of 1.0 was assigned only 

for the head measurements taken from wells for which the well elevations were 

determined by surveying with consistent elevations, whereas the lower weight of 0.5 was 

assigned for observations with inconsistent reporting and those derived from the digital 

elevation model.  

 

Average hydraulic heads of years 1998 to 1999 for 75 observation wells within the model 

domain were used as calibration targets for the steady-state simulation. These wells were 

screened at varying intervals, ranging from model layers 1 through 11, although most 

head observations (80%) are from wells completed in the top three layers. Within the 

model domain, the observed hydraulic heads range from 138.5 to 186.4 m amsl, and the 

range of observation is approximately 48 m.   

 

Compiling and analyzing information relevant to the development of groundwater 

simulation and optimization models indicates significant data gaps, in particular, on 

recharging, storage coefficients, and limited long-term time-series data on hydraulic 

heads. Therefore, one of the important aspects of this thesis is to illustrate these 

limitations and develop methodologies to overcome the challenges posed by limited data. 

 

3.6 Calibration Parameters 

 

Parameters considered for estimation included hydraulic conductivity values for all of 

hydrogeologic units defined in three hydrogeological models and all recharge zones in 

recharge models. 

 

Only the sensitive components of hydraulic conductivity are estimated. These are the 

horizontal hydraulic conductivity of the MPT units. The horizontal and vertical hydraulic 
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conductivity are subsequently linked through the anisotropy ratio, a=Kv/Kh. A value of 

a=0.1 is used for all hydrogeologic units. The anisotropy ratios were assigned based upon 

the results of trial-and error calibration. 

 

Tables 3-3 to 3-5 list initial values of the calibrated parameters and the ranges used to 

constrain parameter variation within PEST for all alternative models. The initial 

parameter values and upper and lower bounds for hydraulic conductivity were derived 

from pumping test data obtained from DGR‘s database and the initial parameter for 

recharge were based on previous calibration results (DMR et al. 2001; DGR 2008). Log-

transformed parameters were calibrated for all parameters. 

 

 

Table 3-3 Initial values and upper and lower limits for parameter estimated in the 

calibration for Hydrogeologic model H1. 

Parameter (m/d) Rock description 
Lower 

bound 

Upper 

bound 
H1R1B1 H1R1B2 H1R2B1 H1R2B2 

K_Qa  sand, gravel 0.001 20 5 5 5 5 

Kx_MPT1 shale, mudstone 1.0x10-3 10 0.05 0.05 0.05 0.05 

Kx_MPT2 sandstone, siltstone 1.0x10-3 20 2 2 2 2 

Kx_MPT3 sandstone, shale 1.0x10-4 10 0.02 0.02 0.02 0.02 

Kx_MPT4 shale, mudstone 1.0x10-3 10 1 1 1 1 

Kx_LPT 
mudstone, 

claystone 
1.0x10-5 1.0x10-1 1.0x10-3 1.0x10-3 1.0x10-3 1.0x10-3 

Rch1  4.2x10-5 7.0x10-5 5.6x10-5 5.6x10-5   

Rch2  2.1x10-4 3.5x10-5 2.8x10-4 2.8x10-4   

R1  2.8x10-4 4.6x10-4   3.7x10-4 3.7x10-4 

R2  2.2x10-4 3.6x10-4   2.9x10-5 2.9x10-5 

R3  3.4x10-4 5.8x10-4   4.6x10-4 4.6x10-4 

R5  1.8x10-4 3.0x10-4   2.4x10-4 2.4x10-4 

R11  7.5x10-6 1.2x10-5   1.0x10-5 1.0x10-5 

―K‖ represents hydraulic conductivity values, and ―Rch‖ and ―R‖ represents recharge rate values. Empty 

space indicates that the parameter was not present in a model.  
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Table 3-4 Initial values and upper and lower limits for parameter estimated in the 

calibration for Hydrogeologic model H2 

Parameter (m/d) Rock description Lower 

bound 

Upper 

bound 
H2R1B1 H2R1B2 H2R2B1 H2R2B2 

Kx_Qa  sand, gravel, and clay 1.0x10-3 10 0.1 0.1 0.1 0.1 

Kx_MPT1 shale, mudstone 1.0x10-4 10 5.0x10-3 5.0x10-3 5.0x10-3 5.0x10-3 

Kx_MPT2 sandstone, siltstone 1.0x10-2 20 2 2 2 2 

Kx_MPT3 Sandstone 1.0x10-4 1 0.1 0.1 0.1 0.1 

Kx_MPT4 Mudstone,  claystone 1.0x10-3 20 1 1 1 1 

Kx_MPT5 sandstone and shale 1.0x10-4 10 0.5 0.5 0.5 0.5 

Kx_LPT shale and mudstone 1.0x10-5 1.0x10-1 1.0x10-3 1.0x10-3 1.0x10-3 1.0x10-3 

Rch1  3.8x10-5 6.3x10-5 5.0x10-5 5.0x10-5   

Rch2  1.5x10-4 2.5x10-5 2.0x10-4 2.0x10-4   

R1  3.0x10-4 5.0x10-4   4.0x10-4 4.0x10-4 

R2  7.5x10-7 1.3x10-6   1.0x10-6 1.0x10-6 

R3  1.9x10-4 3.1x10-4   2.5x10-4 2.5x10-4 

R5  3.4x10-4 5.6x10-4   4.5x10-4 4.5x10-4 

R11  7.5x10-5 1.3x10-4   1.0x10-4 1.0x10-4 

―K‖ represents hydraulic conductivity values, and ―Rch‖ represents recharge rate values. Empty space 

indicates that the parameter was not present in a model.  

Table 3-5 Initial values and upper and lower limits for parameter estimated in the 

calibration for Hydrogeologic model H3 

Parameter 

(m/d) 
Description 

Lower 

bound 

Upper 

bound 
H2R1B1 H2R1B2 H2R2B1 H2R2B2 

Kx1_Qa  Sand, gravel, and clay 1.0x10-3 10 0.1 0.1 0.1 0.1 

Kx_MPT1 sandstone, siltstone 1.0x10-3 10 0.3 0.3 0.3 0.3 

Kx_MPT2 sandstone, siltstone 1.0x10-3 80 4.5 4.5 4.5 4.5 

Kx_MPT3 sandstone, shale 1.0x10-3 5 5x10-3 5x10-3 5x10-3 5x10-3 

Kx_MPT4 sandstone, siltstone 1.0x10-3 10 2 2 2 2 

Kx_MPT5 siltstone and mudstone 1.0x10-3 10 1 1 1 1 

Kx_LPT1 shale, mudstone 1.0x10-6 1 6.5x10-3 6.5x10-3 6.5x10-3 6.5x10-3 

Kx_LPT2 Mudstone, claystone 1.0x10-6 1 3.0x10-3 3.0x10-3 3.0x10-3 3.0x10-3 

Rch1  1.4x10-4 2.4x10-4 1.9x10-4 1.9x10-4   

Rch2  4.4x10-6 7.4x10-5 5.9x10-5 5.9x10-5   

R1  3.0x10-4 5.0x10-4   4.0x10-4 4.0x10-4 

R2  1.9x10-5 3.3x10-5   2.5x10-5 2.5x10-5 

R3  1.9x10-4 3.1x10-4   1.0x10-4 1.0x10-4 

R5  3.4x10-4 5.6x10-4   2.7x10-4 2.7x10-4 

R11  7.5x10-7 1.3x10-6   1.0x10-6 1.0x10-6 

―K‖ represents hydraulic conductivity values, and ―Rch‖  and ―R‖ represents recharge rate values. Empty 

space indicates that the parameter was not present in a model 
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3.7 Calibration Results 

 

Results of model calibration were evaluated both quantitatively and qualitatively. 

Quantitative analysis is conducted to examine the quality of the calibration in term of 

goodness-of-fit between observations and simulations. Qualitative analysis is conducted 

to help clarify how the flow system behaves for different conceptualizations. Typically, 

groundwater models are considered calibrated if they meet the following conditions: (1) 

the non-linear regression converges with minimized sum of squares weighted residuals 

(SSWR), (2) the regression-determined parameter values are within the range of pre-

defined reasonable values, (3) parameters are not excessively correlated, (4) the 

simulated hydraulic-property distribution within hydrogeologic units is reasonable for the 

model scale, and (5) positive and negative model residuals are randomly distributed (Hill, 

1998).  

 

The performance of the calibrated models were evaluated using the match between 

observed and simulated hydraulic heads in terms of goodness-of-fit to the goals as 

follows (proposed by ESI, 2007). 

 The absolute residual mean (ARM) divided by range in head for all targets 

should be less than 0.1 (10%) 

 The residual standard deviation divided by range in head for all targets (also 

called normalized root mean squared error (NRMS)) should be less than 0.1 

(10%) 

 

The residual is calculated as the observed head minus the model-computed head. In this 

study, the range in heads is approximately 50 meters. Therefore, the ARM and residual 

standard deviation should be less than 5 meters. The calibration statistics from of the 12 

models are presented in Table 3-6. The table shows the sum of squared weighted 
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residuals (SSWR), residual mean, absolute residual mean, and residual standard deviation 

(Res.Std. Dev).  

 

The statistics in term of goodness-of-fit for the 12 TPA calibrations meet and greatly 

exceed the calibration goals described previously.  The absolute residual means divided 

by the total ranges in heads are only 2.1 to 2.6%; the standard deviations divided by the 

total ranges are only 2.9 to 3.4%.  The residual means and absolute residual mean in each 

model layer for 12 TPA models are listed in Table 3-7 and 3-8, respectively. The 

residuals show a small negative bias in layer 1 for all models. Model H2R2B1 has the 

smallest bias in layer 1, 5, 6, and 11. Model H1R2B1 has the smallest absolute residual 

mean in layer 3, 4, and 6. The distribution of the smallest residual mean and absolute 

residual mean are found only in hydrogeologic models H1 and H2. It is shown that 

hydrogeological models H1 and H2 perform better in simulated hydraulic heads in each 

model layer than those of hydrogeologic models H3. 

 

Table 3-6 Calibration statistics for 12 alternative models in the TPA 

Model 
SSWR 

(m
2
) 

Residual 

Mean (m) 

Abs. Res 

Mean (m) 

Res. Std. 

Dev (m) 

Abs. Res 

Mean Divided 

by Range 

Std.Dev 

Divided 

 by Range 

H1R1B1 144.5 0.02 1.04 1.39 0.022 0.029 

H1R1B2 150.7 0 1.08 1.42 0.022 0.030 

H1R2B1 145.4 0.01 1.06 1.39 0.022 0.029 

H1R2B2 151.6 0 1.07 1.42 0.022 0.030 

H2R1B1 189.8 0.03 1.13 1.59 0.025 0.033 

H2R1B2 190.0 -0.03 1.15 1.59 0.024 0.033 

H2R2B1 142.1 0.05 1.03 1.41 0.021 0.029 

H2R2B2 178.1 0.03 1.23 1.13 0.024 0.033 

H3R1B1 198.1 0.08 1.22 1.62 0.025 0.034 

H3R1B2 196.6 -0.09 1.21 1.62 0.025 0.034 

H3R2B1 181.3 -0.34 1.23 1.52 0.026 0.032 

H3R2B2 187.0 -0.034 1.23 1.56 0.026 0.032 
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Table 3-7 Residuals mean (m) by model layer for the 12 alternative models in the TPA 

Model 
Model layer 

1 (5*) 2 (35*) 3 (18*) 4 (10*) 5 (3*) 6 (3*) 11 (1*) 

H1R1B1 -0.43 0.19 0.27 0.02 0.30 -1.29 -2.58 

H1R1B2 -0.48 0.13 0.23 0.06 0.25 -1.18 -2.37 

H1R2B1 -1.30 -0.10 0.50 0.23 -0.57 -0.38 1.87 

H1R2B2 -1.31 0.18 0.33 0.15 0.44 -1.24 -2.52 

H2R1B1 -0.30 0.08 0.23 0.43 0.83 -1.25 -2.88 

H2R1B2 -0.83 0.03 0.51 0.14 0.95 -1.69 -3.71 

H2R2B1 -0.12 -0.15 0.60 0.70 -0.22 -0.36 0.68 

H2R2B2 -1.05 -0.22 -0.17 -0.09 0.79 -1.27 -4.16 

H3R1B1 -0.91 -0.50 -0.04 0.03 0.83 -1.28 -3.35 

H3R1B2 -1.80 -0.58 0.38 0.16 0.67 -1.52 -3.16 

H3R2B1 -1.38 -0.56 0.20 0.34 0.62 -1.05 -2.48 

H3R2B2 -1.19 -0.48 0.20 0.25 0.59 -1.24 -2.28 

 * represents number of head observation in each model layer 

 

Table 3-8 Absolute residuals mean (m) by model layer for the 12 models in the TPA 

Model 
Model layer 

1 (5*) 2 (35*) 3 (18*) 4 (10*) 5 (3*) 6 (3*) 11 (1*) 

H1R1B1 1.24 1.02 0.90 1.40 1.00 1.74 2.58 

H1R1B2 1.31 1.02 0.93 1.36 0.74 1.74 2.37 

H1R2B1 1.60 1.14 0.84 1.03 1.70 0.76 1.87 

H1R2B2 1.48 0.98 0.98 1.27 1.57 1.53 2.52 

H2R1B1 2.07 0.96 1.28 1.39 2.49 1.69 2.88 

H2R1B2 1.08 0.93 1.15 1.48 3.39 2.23 3.71 

H2R2B1 1.08 1.06 1.40 1.58 1.50 1.41 0.68 

H2R2B2 1.15 0.85 1.02 1.46 3.46 2.78 4.16 

H3R1B1 2.10 1.22 1.65 1.11 2.50 1.69 3.35 

H3R1B2 2.12 1.14 1.36 1.21 2.00 1.52 3.16 

H3R2B1 1.87 1.16 1.31 1.05 2.11 1.05 2.48 

H3R2B2 1.63 1.17 1.27 1.19 1.78 1.28 2.28 

 * represents number of head observation in each model layer 
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A more detailed assessment of calibrated model error can be done by examining the spatial 

distribution of head residuals. Figures 3-17 shows contours of hydraulic heads simulated in 

the TPA, and the spatial distributions of head residuals. The simulated heads obtained from 

the twelve models are consistent with observed groundwater levels and  have a similar 

pattern of spatial distribution in the northern area where the density of observation wells are 

high.  However, there are some differences in head contours in the southeast area where 

the elevations are high and the data is too limited to replicate the actual hydraulic heads. 

The simulated hydraulic head contours from model layer 3 illustrate the general direction 

of horizontal ground-water movement in the Phu Thok aquifers, which mimic the 

topography. Figure 3-18 is a scatter plot of head residuals and contours of hydraulic 

heads in model layer 3 simulated by the four models that have smallest SSWR values 

(shown in Table 3-6). Similar scatter plots and hydraulic head contours are shown in 

Appendix A. These plots show that positive and negative residuals in all models are quite 

randomly distributed, indicating no significant model bias.  
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Figure 3-17 Scatter plots of heads residual and contours of hydraulic heads at model layer 

4 in TPA simulated by the smallest SSWR models (H2R2B1, H1R1B1, H1R2B1, and 

H1R1B2) 
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Figure 3-18 shows the calibration plots of 75 observed heads versus simulated heads 

obtained from the four models that have smallest SSWR values. For other models, the 

scatter plots are shown in Appendix B. These plots illustrate that calibrations of the TPA 

are reasonable for the model scale, although there are a few outliers. Of the 75 targets, 

only a few in err by more than 5 meters. The calibration results demonstrate that it is 

possible to obtain an almost identical calibration performance for all 12, and thus these 

models can be accepted and used for predictive simulations. 

 

 

Figure 3-18 Observed vs. simulated heads for the smallest SSWR models (H1R1B1, 

H1R2B1, H2R2B1, and H1R1B2) 
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The simulated mass balances for the steady-state conditions for all models are presented 

in Table 3-9. The percentage discrepancy in mass balance is very small (less than 0.01 % 

for all models), indicating that the simulation results are accurate in term of mass balance. 

Most of the inflow to the model (72-99 %) comes from precipitation recharge. The 

remaining inflow is from the Chi River and Huai Toei reservoir losses. About three 

quarters of the total discharge in the model is baseflow to the Chi River. About 15-30 % 

of the discharge is pumping from wells. Overall, the withdrawal rate is still much lower 

than the rate of replenishment. The recharges in hydrogeologic model H2, especially for 

model H2R2B1 and H2R2B2, are higher than those in hydrogeologic model H1 and H3. 

However, there is no clear evidence which is the most impacted by uncertainties among 

these hydrostratigraphic, recharge, and boundary condition models. 

 

Table 3-9 Simulated mass balance for the steady-state condition 

Model 

Rate into the model (m
3
/d) Rate out of the model (m

3
/d) 

Recharge 
River 

Leakage 
GHB Total In Well 

River 

Leakage 
GHB Total Out 

H1R1B1 24,809 98 
 

24,907 6,625 18,281 
 

24,906 

H1R1B2 25,813 167 3,021 29,001 6,604 15,224 7,218 29,046 

H1R2B1 24,893 188 
 

25,081 6,604 18,452 
 

25,056 

H1R2B2 27,762 102 5,402 33,266 6,572 22,870 3,823 33,265 

H2R1B1 26,058 44 
 

26,102 6,625 19,474 
 

26,099 

H2R1B2 27,036 37 8,248 35,321 6,625 19,546 9,150 35,321 

H2R2B1 39,193 159 
 

39,352 6,625 32,727 
 

39,352 

H2R2B2 35,754 47 13,450 49,251 6,617 24,484 18,151 49,252 

H3R1B1 22,220 15 
 

22,235 6,582 15,653 
 

22,235 

H3R1B2 20,696 33 17,496 38,225 6,625 28,278 4,158 39,061 

H3R2B1 21,930 34 
 

21,964 6,625 16,140 
 

22,765 

H3R2B2 22,914 67 18,253 41,234 6,604 31,479 3,163 41,246 

 

The optimized parameters estimates for the 12 models are listed in Tables 3-10 to 3-12. 

The final values of hydraulic conductivity parameters generally are within the range of 
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available field measurements in all models. The estimated parameter values and their 

95% confidence intervals are presented graphically in Figures 3-19 to 3-21.   

 

Table 3-10 Calibrated parameter values for hydrogeologic model H1 (unit: m/d) 

Parameter Field Estimate H1R1B1 H1R1B2 H1R2B1 H1R2B2 

Kx_Qa 0.01-5.5 0.69 

 

1.46 0.3 1.41 

Kx_MPT1 0.001-5 0.04 0.04 0.04 0.04 

Kx_MPT2 0.1-80 1.67 1.54 1.32 2.7 

Kx_MPT3 0.01-3.5 0.051 0.03 0.13 0.06 

Kx_MPT4 0.35-13.5 1.26 1.73 8.2 1.97 

Kx_LPT 4.0x10
-5

-0.04 1.0x10
-3

 1.0x10
-3

 1.0x10
-3

 1.0x10
-3

 

Rch1  3.6x10
-6

 6.12x10
-5

   

Rch2  1.81x10
-4

 1.70x10
-4

   

R2  
  

6.11x10
-6

 1.66x10
-5

 

R11  
  

2.25x10
-5

 1.94x10
-5

 

R3  
  

1.00x10
-4

 4.50x10
-4

 

R5    3.23x10
-4

 4.93x10
-4

 

R1    5.0x10
-4

 5.00x10
-4

 

 

Table 3-11 Calibrated parameter values for hydrogeologic model H2 (unit: m/d) 

Parameter  Field Estimate  H2R1B1 H2R1B2 H2R2B1 H2R2B2 

Kx_Qa 0.01-5.5 0.044 0.38 0.05 1.02 

Kx_MPT1 0.001-5 0.74 0.006 1.00x10
-2

 2.22x10
-2

 

Kx_MPT2 0.1-80 1.755 1.836 1.833 1.946 

Kx_MPT3 0.01-5 0.022 0.027 0.012 0.013 

Kx_MPT4 0.001-3.5 0.008 8.25x10
-3

 0.008 0.01 

Kx_MPT5 0.35-13.5 3.531 3.83 8.02 8.95 

Kx_LPT 4.0x10
-5

-0.04 1.00x10
-4

 1.00x10
-4

 1.0x10
-4

 1.00x10
-4

 

Rch1  4.34x10
-5

 1.21x10
-5

   

Rch2  2.09x10
-4

 2.30x10
-4

   

R1    6.00x10
-4

 3.95x10
-4

 

R2  
  

2.17x10
-5

 1.50x10
-6

 

R3  
  

2.01x10
-4

 1.92x10
-4

 

R5    5.00x10
-4

 4.75x10
-4

 

R11    1.00x10
-4

 1.40x10
-4
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Table 3-12 Calibrated parameter for hydrogeologic model H3 (unit: m/d) 

Parameter  Field Estimate H3R1B1 H3R1B2 H3R2B1 H3R2B2 

K_Qa 0.01-5.5 0.10 0.12 0.11 0.13 

K_MPT1 0.001-5 0.41 0.27 0.09 0.04 

K_MPT2 0.1-80 5.66 3.04 5.09 5.00 

K_MPT3 0.001-0.5 2.94x10
-3

 6.13x10
-3

 3.91x10
-3

 3.14x10
-3

 

K_MPT4 0.5-10 3.56 4.43 3.84 3.79 

K_MPT5 0.35-13.5 1.79 0.67 1.74 1.93 

K_LPT1 4.0x10
-5

-0.4 6.47x10
-3

 1.10x10
-3

 0.15 2.97x10
-3

 

K_LPT2  3.28x10
-3

 4.0x10
-3

 6.04x10
-4

 6.53x10
-6

 

Rch1  5.90x10
-5

 7.70x10
-5

   

Rch2  1.97x10
-4

 1.23x10
-4

   

R1    5.00x10
-4

 4.97x10
-4

 

R2  
  

2.52x10
-5

 2.52x10
-4

 

R3  
  

8.44x10
-5

 7.68x10
-5

 

R5    2.83x10
-4

 2.92x10
-4

 

R11    1.00x10
-6

 1.00x10
-6

 

 

 

 

Figure 3-19 Calibrated parameter values and 95% upper and lower linear confidence 

limits for hydrogeologic models H1 
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Figure 3.20 Calibrated parameter values and 95% upper and lower linear confidence 

limits for hydrogeologic models H2 

 

 

Figure 3-21 Calibrated parameter values and 95% upper and lower linear confidence 

limits for hydrogeologic models H3 

 

The hydraulic conductivity values of Qa and MPT1 have the widest confidence limits 

(models H1 and H2 for Qa, and models H2 and H3 for MPT1). . The hydraulic 

conductivity of MPT2, MPT4, and MPT5 are well determined and slightly different for 

all model and their 95 % confidence intervals are relatively small. The estimated 

parameters for hydraulic conductivity values are in good agreement of field 

measurements. The calibrated recharge rates are all physically plausible and the recharge 

rates in each zone are vary from 0.5 mm/yr. to 182.5 mm/yr. 
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3.8 Sensitivity Analysis 

 

The sensitivity of model-simulated heads and flows to parameters was used to assist 

model calibration. Composite-scaled sensitivities (CSS) can be used to assess the 

importance of each parameter to the calculation of model-simulated heads and flows (Hill 

and Tiedeman, 2007). Parameters with larger CSS have greater importance and greater 

influence on the model simulation than parameters with smaller CSS. Generally, model 

observations provide enough information to estimate parameters that have CSS greater 

than 1 (Hill and Tiedeman, 2007). The CSS values can be obtained as part of the 

automatic calibration process in PEST and are shown in Figure 3-22.  

 

The highest CSS values were observed for the recharge parameters (Rech2, R3, and R5) 

and thus indicate that simulated heads at observation locations are more sensitive to 

recharge than to hydraulic conductivity parameters (Figure 3-19). Only parameters 

Kx_Qa, Kx_MPT3, and Kx_MPT5 for Hydrogeologic model H3 have CSS values 

greater than 1. The small CSS values for many hydraulic conductivity parameters may be 

due to the distribution of head observations located mainly in the top three model layers 

and thus provide insufficient information to estimate more than half of the parameters 

used. In addition, head observations alone are not enough information for the estimation 

of each parameter (commonly the only calibration data available in data-poor aquifer 

systems).    
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   (a) 

  (b) 

  (c) 

Figure 3-22 Composite-scaled sensitivity of model parameters to head observations for 

the steady state of the TPA for (a) hydrogeologic models H1 (b) hydrogeologic models 

H2, and (c) hydrogeologic models H3 
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Parameter correlation coefficients (PCC) can be used with composite scaled sensitivities 

to yield a useful sensitivity analysis.  The PCC values are calculated for each pair of 

model parameters to indicate whether parameter values can be estimated uniquely, given 

the constructed model and the observation provided. The PCC values can varies from -

1.00 to 1.00. If the PCC for a pair of parameters is equal to or very close to -1.00 or 1.00, 

the two parameters cannot be determined uniquely. If the absolute values of PCC are less 

than approximately 0.95, then it is likely that all parameters can be estimated uniquely 

(Hill, 1998; Hill and Tiedeman, 2007). Maximum (PCC calculated by PEST using the 

final parameter values for all models are shown in Table 3-13. Based on the above 0.95 

guideline, PCC values are all less than this indicating that all model parameters can be 

uniquely identified.  

 

 

Table 3-13 Maximum absolute parameter correlation coefficient for final parameter 

values calculated by PEST 

 

 

 

 

Parameter H1R1B1 H1R1B2 H1R2B1 H1R2B2 H2R1B1 H2R1B2 H2R2B1 H2R2B2 H3R1B1 H3R1B2 H3R2B1 H3R2B2

Kx_Qa 0.68 0.55 0.72 0.76 0.74 0.69 0.61 0.82 0.38 0.89 0.69 0.77

Kx_MPT1 0.30 0.23 0.33 0.47 0.53 0.73 0.73 0.39 0.70 0.51 0.57 0.32

Kx_MPT2 0.37 0.32 0.64 0.64 0.84 0.85 0.83 0.76 0.33 0.24 0.45 0.29

Kx_MPT3 0.47 0.76 0.49 0.47 0.58 0.57 0.34 0.47 0.89 0.94 0.87 0.64

Kx_MPT4 0.59 0.65 0.78 0.83 0.30 0.41 0.46 0.55 0.70 0.40 0.46 0.42

Kx_MPT5 0.74 0.23 0.34 0.27 0.83 0.42 0.69 0.80

Kx_LPT 0.84 0.16 0.30 0.33 0.89 0.94 0.87 0.54

Kx_LP2

Rch1 0.89 0.84 0.74 0.69 0.70 0.54

Rch2 0.89 0.84 0.84 0.85 0.83 0.89

R1 0.72 0.76 0.73 0.47 0.43 0.64

R2 0.72 0.77 0.83 0.82 0.84 0.46

R3 0.62 0.58 0.83 0.71 0.48 0.71

R5 0.78 0.83 0.83 0.76 0.57 0.80

R11 0.64 0.77 0.63 0.71 0.54 0.64
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3.9 Model Averaging 

Several methods for assigning model weights have been developed in the hydrologic and 

statistics literature. The fundamental goal of model-averaging is to get, by weighing 

predictions from a set of plausible models based on their relative performance, an 

averaged prediction that is ―most representative‖ of actual system response. These 

weighting approaches typically require model calibration results and prior model 

probabilities for computing posterior model probabilities or model weights. In this study, 

two approaches are implemented based on 1) the GLUE framework (Beven and Binley, 

1992) and 2) information criteria approaches (Neuman, 2003; Poetor and Anderson, 

2005). In addition to the formal criteria approaches, a combined multi-criteria approach is 

proposed in Section 3.9 to evaluate the set of alternative models and thus use the 

available information efficiently.  

 

Following the GLUE method (Beven and Binley, 1992), the likelihood function of GLUE 

does not consider the principle of parsimony; only model fit is used to evaluate model 

probability. In this study, the likelihood metric is based on the variance of the residual 

between the measured and computed hydraulic head (SSWR) and can be calculated as the 

inverse of SSWR. Model weights are normalized so that their sum is equal to one; 

therefore, the GLUE weight for model k can be calculated as  

   

1

( )
( )

( )

N

k k
k K

N

k k

k

p M SSWR
GLUE

p M SSWR











   (3-1) 

where p(Mk) is the prior probability for model k; SSWRk is the sum of squared weighted 

residuals for model k with k = (1,…,K), K is the total number of models being considered, 

and  N is a shape factor. N=1 is normally used in GLUE applications and is used here. 
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For the information criteria, posterior model probabilities or model weights of the twelve 

models can be calculated as (in Neuman et al., 2003) 

   
exp( 0.5 ) ( )

  
exp( 0.5 ) ( )

k k
k

k k

k

IC p M
w

IC p M

 


 
  (3-2) 

where ΔICk= ICk - ICmin with ICk being any of the information criteria described in 

section 2.7 for a given model Mk; ICmin is the minimum value obtained from model  Mk 

with k = (1,…,K); and p(Mk) is the prior probability for model k. IC-based criteria are 

calculated using Equations 2-13, 2-14, 2-18, and 2-19, respectively.  

 

Both the GLUE and information criteria approaches contain the prior model probability 

term (p(Mk)). Various methods for assigning prior model probability can be found in the 

Bayesian model literature. Prior model probability distribution can be calculated based on 

the modelers‘ expert judgment, which reflects their beliefs regarding the relative 

plausibility of each model and considers their consistency with available data and their 

understanding of the aquifer system.  Alternatively, a uniform prior model probability 

distribution can also be assigned, reflecting no prior preference on the plausibility of the 

multiple conceptual models (Meyer et al, 2007: Rojas et al., 2008a).  

 

In this study, uniform prior model probability was employed. For the 12 alternative 

models, an equal prior probability of 1/12 or 8.3% was assigned to each model. Table 3-

14 shows model weights calculated from different criteria for the 12 alternative models. 

The model weights for SSWR using the GLUE approach are more uniformly distributed 

than with other approaches and receiving weights within a range of 0.07-0.1. When using 

GLUE or the SSWR metric, very little preference is shown for one model over another. 

The information criteria, on the other hand, show strong preference for a single model. In 

the case of AIC, AICc, and BIC, most of the model weight is assigned to model H1R1B1 

with the weights of 0.87, 0.94, and 0.85, respectively, indicating that other models will 

make only insignificant contributions in the ensemble model-averaging.  In the case of 
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KIC, the model weight is assigned only to model H1R1B2 (0.99), indicating that only 

model H1R1B2 will contribute to the predictive distribution estimation.  

 

 

Table 3-14  Model weights and ranks for different model criteria 

Model H1R1B1 H1R1B2 H1R2B1 H1R2B2 H2R1B1 H2R1B2 H2R2B1 H2R2B2 H3R1B1 H3R1B2 H3R2B1 H3R2B2 

p(Mk)
a 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 

SSWRb 144.5 150.7 145.4 151.6 189.8 190.0 142.1 178.1 198.1 196.6 181.3 187.0 

Nkc 11 12 14 15 12 13 15 16 12 13 15 16 

AIC 75.4 81.4 84.7 90.9 98.7 101.7 86.1 106.2 101.9 104.2 104.3 109.9 

AICc 71.2 76.3 77.7 82.8 93.6 95.7 77.9 96.9 96.8 98.3 96.2 100.5 

BIC 69.8 74.8 75.9 80.9 92.1 94.1 76.1 94.9 95.3 96.7 94.3 98.5 

KIC 68.7 59.3 104.1 118.3 79.4 79.9 123.2 152.6 60.6 87.7 86.2 95.4 

GLUE wts 0.097 0.093 0.097 0.093 0.074 0.074 0.099 0.079 0.071 0.071 0.078 0.075 

AIC wts 0.867 0.066 0.034 0.003 0.000 0.000 0.030 0.000 0.000 0.000 0.000 0.000 

AICcwts 0.939 0.047 0.009 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 

BIC wts 0.850 0.069 0.040 0.003 0.000 0.000 0.038 0.000 0.000 0.000 0.000 0.000 

KIC wts 0.009 0.991 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SSWR Rank 2 4 3 5 9 10 1 6 12 11 7 8 

AIC Rank 1 2 3 5 6 7 4 10 9 11 8 12 

AICc Rank 1 2 3 5 6 7 4 10 9 11 8 12 

BIC Rank 1 2 3 5 6 7 4 9 10 11 8 12 

KIC Rank 2 1 9 10 3 4 11 12 7 6 5 8 

a) p(Mk) = prior model probability  b) SSWR=sum of squared weighted residual 

c) Nk= number of parameters) 

 

 

3.10 Model validation 

 

Model performance during calibration is normally used as a measure of the predictive 

capability of each model. However, calibration is not capable of testing the performance 

of the model in predictive mode. Incorrect simulation models can still be adequately 

calibrated. It is clear that multiple models can yield comparable results. The capability of 

these models to make predictions should additionally be evaluated with independent data 
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not used for calibration. The performance of each of our calibrated models and different 

model-averaging methods were compared using model predictions against a validation 

data set to determine their ability to accurately predict system response.  

 

In this study, two years (1998-1999) of data were used for model calibration, and two 

other years (2007–2008) were subsequently used to evaluate the prediction performance. 

The groundwater pumping, recharge rates and river stage conditions for 2007-2008 were 

averaged to represent the steady state conditions. Based on available data for the 2007-

2008 period, average head measurements from 40 observation wells were used to 

compare the predictive performance of these models. The root mean squared errors 

(RMSE) and absolute residual mean (ARM), commonly used for evaluating the accuracy 

of deterministic predictions (Duan et al., 2007; Diks and Vrugt, 2010), were used to 

evaluate the accuracy of head predictions and associated prediction uncertainty bounds 

using the individual models and different model-averaging methods 

 

Generally, it is desirable to achieve calibrated models that are consistent and perform 

well in validation. Figure 3-23 shows the RMSE and ARM for each model and model 

averaging predictions obtained from the calibration and validation periods. There is some 

degradation between the validation and calibration period for this case study in terms of 

performance measures of RMSE and ARM statistics. The correlation between calibration 

and validation periods show no consistent relationship between calibration and validation 

prediction; the best model in the calibration period in terms of RMSE and ARM 

(H2R2B1) does not produce the most accurate prediction in the validation period; in turn, 

it produces the second worst result in validation period. Model H1R2B2 produces the 

fifth rank in calibration, but it is the first during validation testing. Considering model 

performance in both periods, the H1 hydrogeologic models are likely the most reliable 

predictors and the H3 hydrogeologic models are the worst.  
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(a) 

 
(b) 

 
 

Figure 3-23  Comparisons of predictive performance between calibration and validation 

periods for alternative models and model-averaging methods using (a) root mean squared 

error and (b) absolute residual mean measure 

 

Most model averaging methods produce closer predictions to the calibration data than do 

the individual models. None of the model averaging methods produce predictions that are 

closer to the validation head data than model H1R2B2; however, their prediction quality 

is significantly increased as compared to the majority of the individual models. GLUE, 

KIC, and equally weighted model-averaging produce results close to that of the most 

accurate individual model and produce predictions that are better than the other model-

averaging methods.  
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The calibration and validation results show that the different models have different 

strengths, so it is difficult to select a single best model that matches all observations well. 

Using model-averaging methods, the contribution of each model differs from one set of 

observations to another depending on their performance in term of the measure 

employed. Ensemble models contribute to model predictions in each part of a domain 

based on their weights; therefore, their jointly made predictions do not underestimate the 

predictive uncertainty as the single best model does.  They are likely to make better 

predictions than most single models, or at least obtain prediction performance levels that 

are close to the best performing model. An interesting observation that may be made is 

that simple model averaging methods, such as equal weight or GLUE averaging methods, 

perform just as well as a sophisticated MLBMA method such as KIC.   

 

Apart from measures that indicate the predictive capabilities of a model such as RMSE 

and ARM,  an alternative performance metric is its predictive coverage, that is, the 

percentage of observed data that fall within a given prediction interval around predicted 

values (Wintle et al., 2003; Vrugt et al., 2009, Morales-Casique et. al., 2010). Prediction 

intervals for the predictions of any single model and model averaging methods are 

computed with the point-wise standard deviation obtained from PEST software on the 

assumption that the head residual is normally distributed and set for a confidence level of 

90%. Ninety percent prediction intervals for each model and model-averaging method 

can be calculated in the following way:  

The 90% prediction intervals on X X z    (3-3) 

where X is the calculated head for each calibrated model; σ is the standard deviation of 

the model prediction; and z  is the standard normal random variable associated with the 

prediction interval selected (for a 90% prediction interval z=1.645).  

 

Figure 3-24 shows the predictive coverage (percentage of head observations contained in 

the 90% prediction intervals) and the width of the prediction intervals for the alternative 
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models and different model-averaging methods in the validation period. Typically, the 

wider the prediction interval, the greater the uncertainty, and the less we can infer about 

the true value. Therefore, the desirable approach for predictions is to capture most 

observations with the narrowest prediction intervals. In the validation period, head 

predictions at most locations are fairly accurate and were captured by the 90% prediction 

intervals. As seen in Figure 3-24, the average 90% predictive width for individual models 

range from 5 to 7.1 m and for different model-averaging methods it ranges between 5.5 

and 6.0 m. The percentage of observations contained in 90% prediction intervals for 

individual models vary from 87.5 to 90 and for model-averaging methods vary from 87.5 

to 90. Lower or higher percent coverage is an indication of too narrow or too wide 

uncertainty intervals.  

 

 

Figure 3-24 Percentages of head predictions captured by 90% prediction intervals and 

average 90% prediction intervals for alternative models and different model averaged 

during validation period. 
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However, due to the small number of data points in this study, every point that falls 

outside the prediction intervals has a significant impact on the percent coverage (±2.5%). 

Among individual models, model H1R2R2 has the best predictive coverage contains in 

90% prediction bounds (a desirable characteristic for head forecasting) and the narrowest 

predictive coverage width and Model H3R1B1 has the worst. When averaged, all model 

averaging methods yielded slightly more appropriate predictions than the individual 

models, and the AIC and AICc models yielded the highest predictive coverage of all the 

model averaging techniques, with coverage of 91%. Among model averaging methods, 

KIC and equal weight are the best because they produce the narrowest predictive interval 

and the highest percent coverage.  

 

Model H1R2R2 clearly outperforms the model averaging methods in the validation as the 

prediction interval width is smaller and achieves the same predictive coverage; however, 

it does not predict better than the model-averaging methods do in the calibration period. 

Even if model H1R2B2 achieves results closest to the head observations in both 

calibration and validation, it does not guarantee that it can perform well in other 

predictions; it is neither a correct nor true model since the specification of a correct 

model is an unachievable task (George, 1999). Although, model results can achieve 

consistency with observations both in the present and past, it does not guarantee that the 

model will perform at the same level when used to predict the future (Oreskes et al., 

1994).  Therefore, using a single best model is likely not adequate to quantify conceptual 

model uncertainty.  

 

Comparing the predictive capabilities of a model such as RMSE and ARM values (seen 

in Figure 3-20), it makes clear that all model-averaging methods except KIC perform 

better than any individual model in the calibration period. Although no model-averaging 

method performs better than the best individual predictors in validation period, they all 

perform better than most individual models. These results likely indicate the strength of 
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implementing model-averaging in prediction, as this method produces results that are 

better or at least close to the predictions made using the best model.   

 

Due to the limited data available predictions obtained from both periods are inevitably 

uncertain. Therefore, while it does not appear to have been done in the literature, it is 

reasonable and likely warranted to combine the weights from both prediction periods. 

Moreover, different model performance metrics rank all models differently. It is 

suggested that multiple model performance metrics, including those generated during 

validation, should be used in model ranking.   

 

Typically, model averaging approaches have the prior model probability term (p(Mk)) 

shown in Equation (3-1) and (3-2), allowing for the subjective preference likelihood of 

experts to be included with quantifiable probability measures when computing posterior 

model probabilities or model weights. Prior model probabilities can be assigned using the 

subjectivity in the expert‘s knowledge of the site or expert elucidation (Pohlmann, et al., 

2007; Ye, 2010; Singh et al., 2010). In this study, validation results were used instead of 

expert judgment to evaluate the alternative model uncertainty. The inclusion of validation 

results can give informative prior probabilities of the models. It is expected that using 

informative probabilities can obtain more accurate prediction results. 

 

 

The validation results are aggregated into prior model probabilities using the GLUE 

method as follows:   
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    (3-4) 

where p(Mk) is the prior model probability;  SSWR
*
 is the sum of squared weighted 

residuals in the validation period, and K is the number of alternative models.  
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Aggregated prior model probabilities are plotted in Figure 3-25. Model H1R2B2 has the 

highest prior weight, and model H3R1B1 has the lowest weight, indicating that they 

receive the highest and lowest confidence, respectively.  

 

 

Figure 3-25 Prior model probabilities using validation results of the 12 alternative models 

 

Table 3-15 lists posterior model probabilities for two sets of prior model probabilities. In 

the first set, all models are treated as equally likely, and each model has a prior 

probability of 8.3 percent. In this case, posterior probability is solely determined by the 

quality of model fit measured by the SSWR. In the second set, the prior model 

probabilities obtained from validation results are combined with the calibration results to 

calculate the posterior model probabilities using Equation (3-1) and (3-2). It is shown that 

KIC gives a weight of 0.99 (shown in bold in the table) and gives near zero weights to the 

others. Thus, there is no effect from incorporating the validation results between different 

alternative models because only one model includes after the model-averaged weighting 

(the validation weights are in effect multiplied by zero for all except one of the models). 

For AIC, AICc and BIC, there is also very slight impact from including validation results 
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between different models. The influence of     including subjective probabilities is shown 

when using GLUE weighting. Model H1R2B2 with received fifth rank weight (0.93) in 

calibration results is now received the highest weight (1.43) when including subjective 

probability. The weights shown in Table 3-15 are then used to evaluate the uncertainty in 

the sustainable yield estimates in the next chapter. 

 

Table 3-15 Weighting for 12 alternative models 

Model H1R1B1 H1R1B2 H1R2B1 H1R2B2 H2R1B1 H2R1B2 H2R2B1 H2R2B2 H3R1B1 H3R1B2 H3R2B1 H3R2B2 

GLUE
1
 0.097 0.093 0.097 0.093 0.074 0.074 0.099 0.079 0.071 0.071 0.077 0.075 

GLUE
2
 0.101 0.105 0.082 0.146 0.070 0.068 0.095 0.083 0.053 0.063 0.063 0.070 

AIC
1
 0.867 0.066 0.034 0.003 0.000 0.000 0.030 0.000 0.000 0.000 0.000 0.000 

AIC
2
 0.868 0.072 0.028 0.004 0.000 0.000 0.028 0.000 0.000 0.000 0.000 0.000 

AICc
1
 0.939 0.047 0.009 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 

AICc
2
 0.937 0.051 0.007 0.001 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 

BIC
1
 0.850 0.069 0.040 0.003 0.000 0.000 0.037 0.000 0.000 0.000 0.000 0.000 

BIC
2
 0.852 0.075 0.033 0.005 0.000 0.000 0.035 0.000 0.000 0.000 0.000 0.000 

KIC
1
 0.009 0.991 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KIC
2
 0.008 0.992 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1) weights with equal priors 

2) weights with unequal priors obtained from validation test 

 

 

3.11 Multiple Criteria Decision Making Approach 

for Model-averaging 

 

Traditionally MCDM approaches are used to find the best alternative in a set of 

decisions. Here, the basic approach of MCDM is instead used to generate a model quality 

metric that can be used either for selection or for model weighting. The primary objective 

of this thesis is to determine how best to use multiple conceptual models to quantify 
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model prediction uncertainty. We are forced to either select the best model or somehow 

aggregate models to inform policy. Even using the information criteria and GLUE (using 

SSWR likelihood), it is still unclear which are the best model and/or metric to use and 

how to screen for the best model. One approach we can use is MCDM. MCDM 

approaches have been used to help select the best strategy from a number of potential 

alternatives in water resources planning and management (Shafike et al., 1992; Bose and 

Bose, 1995; Tkach and Simonovic, 1997). An MCDM approach can help decision-

makers to compare, rank, and organize the available choices (in this case, alternative 

simulation models) based on identified evaluation criteria. This methodology can 

evaluate and rank alternative models based on either their model fit performances or a 

comprehensive set of subjective and objective measures.   

 

As shown in previous sections, evaluating multiple models using different measures such 

as SSWR, and ARM can yield different ranking and weights. Given incomplete 

knowledge of a system and limited available data for the modeler, the reasonable 

conclusion is that the debates about conceptual models exist in response to the judgments 

and conceptualizations made as part of a simulation model‘s development.   Therefore, it 

is reasonable to develop a set of performance measures, instead of relying on a single 

criterion. Ultimately, having a set of evaluation criteria will help user select and weigh 

multiple models. 

 

The set of performance metrics for comparing and ranking multiple models are based two 

groups of data: those generated through calibration and validation. The measures used 

here are as follows 

Calibration 

1. SSWR for the entire area 

2. SSWR for the critical area 

3. ARM for the entire area 

4. ARM for the critical area 
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Validation 

5. SSWR for the entire area 

6. SSWR for the critical area 

7. ARM for the entire area 

8. ARM for the critical area 

 

Two weighting methods are used to calculated model weights: GLUE and the fuzzy set 

method. The concepts from fuzzy set theory (Zedeh, 1965) were used to assess 

qualitatively each one of the performance measures, based on the level of satisfaction 

gained from different criteria. A fuzzy MCDM methodology has been used by Kuchenur 

(2006) to assist the selecting the best among identified alternative models and weighing 

model performances. 

 

The specific quantification of model performance criteria is not always possible, nor is it 

always necessary. When the values of variables cannot be precisely specified and are 

better qualified as high or low, sufficient or insufficient, or good or fair, such variables 

are assumed to be uncertain or fuzzy. If the values are uncertain, probability distributions 

using fuzzy membership functions can be used to quantify them. Both probability 

distributions and fuzzy membership functions of these uncertain or qualitative variables 

can be included in quantitative evaluation. The form or shape of a membership function 

depends upon individual subjective judgments; in this study a linear membership is 

assumed. 

As done in Kuchenur (2006), the fuzzy membership function for each performance 

metric is here calculated using the formula below. 

Fuzzified PMi = 
( )

( ) ( ) ( ) ( )

iPMMax PM

Max PM Min PM Max PM Min PM


 
 (3-5) 

where  Max(PM) is the maximum value of the performance metric in all models 

 Min(PM)  is the minimum value of the performance metric in all models 
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 PMi is the value of the performance metric i   

 

Table 3-16 summarizes all 12 models‘ preference with respect to the eight identified 

metrics. The smallest number represents the greatest likelihood model. As shown in 

Table 3-16, no one model performs best for all evaluation criteria. For example, model 

H2R2B1 has the best calibration statistics but not the best validation statistics. The best 

model identified during the calibration process is not the best in the model validation. 

Moreover, the best model identified for the entire area may not produce the best 

prediction in the area of interest.  

 

Table 3-16 Summarizes all 12 models‘ preference with respect to the identified metrics 

Model 
Performance metric 

1 (m
2
) 2 (m

2
) 3 (m) 4 (m) 5 (m

2
) 6 (m

2
) 7 (m) 8 (m) 

H1R1B1 144.5 1.04 78.2 1.21 82.3 1.77 134.7 1.59 

H1R1B2 150.7 1.08 80.8 1.24 76.8 1.66 124.0 1.49 

H1R2B1 145.4 1.06 79.3 1.18 93.2 1.91 164.3 1.75 

H1R2B2 151.6 1.07 80.6 1.21 57.2 1.28 89.2 1.12 

H2R1B1 189.8 1.19 89.4 1.08 82.7 1.82 148.9 1.65 

H2R1B2 190.0 1.17 86.5 1.09 75.7 1.68 152.7 1.60 

H2R2B1 142.1 1.01 75.9 1.06 73.2 1.68 145.7 1.63 

H2R2B2 178.1 1.13 84.4 1.23 74.9 1.50 132.9 1.47 

H3R1B1 198.1 1.28 91.4 1.22 95.0 1.89 188.6 1.85 

H3R1B2 196.6 1.21 94.4 1.19 77.8 1.73 158.6 1.70 

H3R2B1 181.3 1.22 91.9 1.22 94.3 1.84 171.6 1.74 

H3R2B2 187.0 1.22 91.6 1.20 78.8 1.69 149.5 1.62 

Max 198.1 1.28 94.4 1.24 95.0 1.91 188.6 1.85 

Min 142.1 1.01 75.9 1.06 57.2 1.28 89.2 1.12 

Remarks:  1=SSWR for the entire area; 2= SSWR for the critical area; 3= ARM for the entire area; 

  4=ARM for the critical area; 5=SSWR for the entire area; 6= SSWR for the critical area; 

    7= ARM for the entire area; 8 =ARM for the critical area 

  1-4 metrics for calibration period; and 5-8 for validation period   
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A significant advantage of this methodology over the formal criteria is that it can 

combine both quantitative and qualitative criteria to evaluate and rank a model. 

Moreover, it is flexible and can incorporate stakeholder preference into the analysis. Each 

metric can be ranked in different scales. A high score can be assigned to a high 

preference metric and a low score can be assigned to a low preference. In this study, an 

equal score is assigned for all metrics. The models were ranked based on calculations 

conducted using Equation 3-5; the results are shown in Table 3-17. 

 

Table 3-17 Summary of all 12 model weights with respect to the identified metrics 

Model 
Performance metrics Total 

1 2 3 4 5 6 7 8 weight 

H1R1B1 0.17 0.14 0.15 0.04 0.07 0.06 0.11 0.09 0.103 

H1R1B2 0.15 0.12 0.13 0.00 0.10 0.10 0.13 0.12 0.106 

H1R2B1 0.16 0.13 0.14 0.08 0.01 0.00 0.05 0.03 0.076 

H1R2B2 0.14 0.12 0.13 0.04 0.21 0.25 0.20 0.25 0.167 

H2R1B1 0.03 0.05 0.05 0.21 0.07 0.04 0.08 0.07 0.074 

H2R1B2 0.03 0.07 0.07 0.20 0.11 0.09 0.07 0.08 0.090 

H2R2B1 0.17 0.16 0.17 0.24 0.12 0.09 0.09 0.07 0.140 

H2R2B2 0.06 0.09 0.09 0.02 0.11 0.16 0.11 0.13 0.098 

H3R1B1 0.00 0.00 0.03 0.03 0.00 0.01 0.00 0.00 0.009 

H3R1B2 0.00 0.04 0.00 0.06 0.10 0.07 0.06 0.05 0.048 

H3R2B1 0.05 0.03 0.02 0.02 0.00 0.03 0.03 0.04 0.030 

H3R2B2 0.03 0.04 0.03 0.06 0.09 0.09 0.08 0.08 0.061 

Sum 1 1 1 1 1 1 1 1 1 

 

Using fuzzy MCDM methodology, model H1R2B2 performed best with respect to the 

identified performance criteria (but only nominally) and received a weight of 0.16. 

Overall, H1 hydrogeologic models always perform the best, whereas the H3 ones always 

perform worse than the others. MCDM model weights calculated using fuzzy set and 

GLUE methods are compared in Table 3-18. They are some differences in model weights 

between the two methods. Model H1R2B2 receives weight of 0.167 and 0.103 when 
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calculated using Fuzzy Set and GLUE weights, respectively. And H3 hydrogeologic 

models get much smaller weights of Fuzzy than those of GLUE weights.  

 

Table 3-18 MCDM model weights using fuzzy set and GLUE methods 

Model Fuzzy weights GLUE weights 

H1R1B1 0.103 0.086 

H1R1B2 0.106 0.088 

H1R2B1 0.076 0.081 

H1R2B2 0.167 0.103 

H2R1B1 0.074 0.080 

H2R1B2 0.090 0.082 

H2R2B1 0.140 0.089 

H2R2B2 0.098 0.086 

H3R1B1 0.009 0.072 

H3R1B2 0.048 0.078 

H3R2B1 0.030 0.075 

H3R2B2 0.061 0.080 

Sum 1 1 

 

 

3.12 Impact of Ensemble Size on Performance of 

Model Averaging 

 

In this section, SSWR performance or SSWR weights were used to test the impact of 

ensemble size on performance of model averaging prediction. The two, four, and six 

models which received the smallest SSWR weights have sequentially been removed from 

the twelve model ensemble (ensemble A).  Therefore, there are 10, 8, and 6 models 

remaining in the ensembles A1 to A3, respectively.  The members of these ensembles are 

shown in Table 3-19.   
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In contrast, the three ensembles B1 to B3 were created by sequentially removing two 

models which received the largest and second largest SSWR weights from the ensemble 

model A. Consequently, ensemble B1, B2, and B3 consist of 10, 8, and 6 models, 

respectively. Table 3-19 lists new model weights of the different ensemble sizes. These 

model weights for different ensemble were used to predict the hydraulic heads in 

calibration and validation periods as described previously in section 3.4 and section 3.9, 

respectively.  

 

Table 3-19 Summary model weights for different ensemble size 

 

Model weights 

GLUE A1 A2 A3 B1 B2 B3 

H1R1B1 0.097 0.113 0.137 0.174    

H1R1B2 0.093 0.109 0.131 0.167 0.116   

H1R2B1 0.097 0.113 0.136 0.173 0.120   

H1R2B2 0.093 0.108 0.131 0.166 0.115 0.151  

H2R1B1 0.074 0.086   0.092 0.120 0.167 

H2R1B2 0.074 0.086   0.092 0.120 0.167 

H2R2B1 0.099 0.115 0.139 0.177    

H2R2B2 0.079 0.092 0.111 0.141 0.098 0.128  

H3R1B1 0.071    0.088 0.115 0.160 

H3R1B2 0.071    0.089 0.116 0.161 

H3R2B1 0.077 0.090 0.109  0.096 0.126 0.175 

H3R2B2 0.075 0.088 0.106  0.093 0.122 0.170 

 

 

Table 3-20 summarizes statistics of the ensemble prediction performance generated using 

information contained in ensembles A1 to A3 and B1 to B3.  The quality of the fit 

between observed heads and ensemble predicted weighted average heads generally 

decrease with decreasing size of the ensemble when the best model with respect to the 
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SSWR were excluded from the ensemble (see model ARM, RMSE and Coverage in 

validation all degrade moving from ensemble B1 to B3). In contrast, the performance 

measures for ensembles A1 to A3 are more stable regardless of whether the lowest 

weighted 2, 4 or 6 models were not included in the ensemble.  For example, the least 

stable performance metric considering ensembles A1 to A3 is the coverage in validation 

(decreasing from 87.5% to 82.5%).   

 

Table 3-20 Summary statistics for predictive performance in different ensemble models.  

Model Performance Metric 

Ensemble number 

A A1 A2 A3 B1 B2 B3 

ARM, calibration (m) 1.08 1.06 1.05 1.08 1.08 1.12 1.17 

ARM, validation (m) 1.47 1.43 1.44 1.4 1.46 1.43 1.57 

RMSE, calibration (m) 2.23 2.19 2.15 2.23 2.23 2.44 2.64 

RMSE, validation (m) 3.03 2.95 2.95 2.83 3.00 2.94 3.46 

Coverage, calibration (%) 97.3 96.0 96.0 96.0 96.0 93.3 93.3 

Coverage, validation (%) 90.0 87.5 85.0 82.5 77.5 67.5 65.0 

Average width, calibration (m) 4.87 4.83 4.91 4.91 5.14 5.34 4.87 

Average width, validation (m) 5.72 5.65 5.65 5.54 5.70 5.64 6.12 

Remark: coverage and average width are given for the 90% prediction bounds. 

 

 

In comparison to ensemble A (all twelve models in the ensemble), the results above 

demonstrate that model performance metrics for this case study are insensitive to small 

reductions (removing two models) in ensemble size – even if the models not considered 

were the two most highly weighted models.  In addition, comparing ensemble A3 to 

ensemble A shows that as long as the highest weighted models are included in the 

ensemble, not including low weighted models (six in this case) in the ensemble has little 

impact on model performance metrics.  Unfortunately it is not clear how this result can be 

generalized to other case studies. 
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3.13 Summary 

 

This chapter has evaluated three sources of model uncertainty for groundwater flow 

modeling in the TPA. Uncertainty in the hydrogeological model, boundary conditions 

and recharge components results from different interpretations of geological and 

geophysical data, different postulation of boundary conditions, and different techniques 

for recharge estimation, respectively. These models were calibrated against the head 

observations. The calibration results demonstrate that these 12 models can attain an 

almost identical calibration performance, perhaps implying that head observations cannot 

clearly discriminate among different competing models.  

 

Different model weighting approaches were used to rank the multiple conceptual models. 

Model weights obtained from information-based model averaging methods (AIC, AICc, 

BIC, and KIC) dominated in only one or two models, meaning that only one or two 

models are needed for making predictions.   The GLUE or SSWR weights were more 

evenly distributed than those of IC-based model selection criteria; all models received 

weights within a range of 7 to 10%.  The performance of each of the calibrated models 

and different model-averaging methods were compared using model predictions against 

different data sets to determine their performances in describing the system. Using 

model-averaging methods significantly increased the prediction performance, which were 

much better than those of the individual models. This finding indicates the strength of 

using model-averaging methods, which are able to make better predictions than is a 

single model, or at least to make predictions that are close to those of the best models.  

Importantly, the model averaging procedure in this case study is not sensitive to small 

changes in the ensemble size and the procedure is also not sensitive to larger changes in 
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the ensemble size (removing six of twelve models) so long as these larger changes 

involved ignoring the poorest quality models.  

 

Based on the calibration and validation results, evaluating multiple models using different 

measures such as SSWR, and ARM can yield different ranking and weights. Specifically, 

IC-based metrics tend towards model selection rather than averaging, which may be 

misleading in the context of management. Given incomplete knowledge of a system and 

data-poor aquifer systems, there are bound to be discussions about the conceptual models 

that exist in response to the judgments and conceptualizations made as part of a 

simulation model‘s development.   Thus, it is reasonable to develop a set of performance 

measures, instead of relying on a single criterion.   Here, the fuzzy MCDM approach was 

used to rank and weigh the multiple conceptual models. This approach combined eight 

performance measures from both the calibration and validation processes. The model 

weights from various criteria are used in the next chapter in a model averaging method to 

quantify model prediction in groundwater management. In addition, the impact of 

ensemble size was evaluated with the SSWR weights. The results show that removal of 

the worst two models has a minimal effect but  removal of the best two models result in 

model performance degradations, but it is unclear how much of this degrades is a 

function of the specific original size. It is demonstrated that there is little sensitivity of 

validation results to ensemble size. These imply that the impact of ensemble size on 

decision making would be the same as validation results. 
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Chapter 4 

Conceptual Model Uncertainty in a 

Groundwater Management Context 
 

4.1 Introduction 

 

This study addresses the question of whether the use of multiple conceptual models 

improves the ability of numerical models to assist in management decisions. The models 

developed in Chapter 3 are used here in a management context, with the goal of using the 

collection of models to identify a sustainable pumping strategy for the TPA. The efficacy 

of model selection and averaging methods are assessed for whether they improve model 

predictive capacity over the use of either individual models or ensembles of alternative 

models.  

 

The aim of this chapter is to assess various means by which multiple models can be used 

to quantify uncertainty and provide utility for groundwater management decisions.  

Different model-averaging methods (GLUE, MLBMA (BIC and KIC), AICMA (AIC, 

AICc), and the Multi-Criteria Decision Making approach (MCDM)) are assessed in terms 

of their ability to assist in quantifying uncertainty in groundwater management problems. 
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In this study, groundwater simulation models are linked with optimization techniques to 

estimate sustainable yields from the aquifer and identify the best management strategy, 

which in this case is appropriate allocation of pumping rights in areas at high risk from 

water resource over-exploitation. 

 

In Chapter 3, a number of conceptual numerical models of the Phu Thok aquifer were 

developed and assessed purely in terms of calibration/validation performance. Here, these 

calibrated models are applied in a management context in an attempt to maximize total 

groundwater extraction rates while adhering to water level constraints, i.e., to determine 

the ―sustainable yield‖ of the aquifer. Substantial uncertainty in the ―best‖ management 

option exists because drawdowns depend on the unknown spatial distribution of 

hydrogeologic properties, recharge rates, and boundary conditions.  Different conceptual 

models will therefore lead to different optimal pumping strategies. 

 

Optimization models are implemented to determine appropriate groundwater abstraction 

rates in the TPA Phu Thok aquifer. The management models aim to obtain maximal 

yields while protecting against water level decline and prevent subsequent saline water 

upconing. The optimization models were solved using the MGO (Modular Groundwater 

Optimizer) developed by Zheng and Wang (2003).  Here, a genetic algorithm (GA) is 

used to obtain the optimal extraction rates.  

 

In section 4.2, the groundwater management model used for evaluating sustainable yield 

is introduced. In section 4.3, the sustainable yield results from the individual conceptual 

models are reported and contrasted. An attempt is made to holistically assess the range of 

results and determine how individual model quality metrics correlate to sustainable yield 

estimates. Various schemes for averaging and reporting management model results are 

evaluated, with particular attention paid to the utility of various model averaging 

approaches in the context of management.  
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4.2 Groundwater Management Problem 

 

4.2.1 Formulation of the Groundwater Management Model 
 

Groundwater sustainability can be defined as the development and use of groundwater to 

meet current and future proposes at rates that can be maintained indefinitely without 

causing unacceptable environmental, economic or social consequences (Alley et al ., 

1999). The definition of "unacceptable" is essentially subjective, depending upon the 

specific situations and most decision-makers tend to work within a finite period or project 

lifetime, as opposed to an indefinite timeframe, for which they wish to avoid 

unacceptable consequences.  In this study, groundwater quality is not considered in the 

assessment of sustainability due to lack of data and little evidence of increasing brine 

upconing in the study area. Rather, ―sustainable‖ groundwater development is here 

defined as a withdrawal rate from the aquifer that can be maintained indefinitely without 

causing depletion of groundwater levels below an acceptable level.  

 

The Modular Groundwater Optimizer (MGO) code developed by Zhang and Wang 

(2003) and embedded in the Groundwater Vistas software was used to address the 

optimization problem.  The MGO code was selected for its ability to solve a variety of 

optimization problems with highly non-linear and complex objective functions and to 

optimize continuous decision variables (pumping/injection rates). It is compatible with 

MODFLOW, as is required for this study. The MGO code uses a genetic algorithm (GA) 

in order to find the optimal or near-optimal pumping rates for selected wells in a 

MODFLOW model subjected to user-specified constraints. A number of researchers have 

demonstrated that the GA can yield satisfactory results when used to seek optimal 

solutions to complex problems (McKinney and Lin, 1994; Huang and Mayer, 1997; Aly 

and Peralta, 1999; Zheng and Wang, 1999; McPhee, 2004; Qahman et al., 2005).  
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The optimization models were formulated with the objective of maximizing water 

pumping from wells subject to (1) ensuring that the drawdowns at control locations do 

not exceed specified values and (2) limiting groundwater withdrawals to lower and upper 

bounds (well capacity constraints). Steady-state conditions were used in the analysis 

(rather than transient-conditions) since the maximized pumping rates are intended to 

represent the sustainable yield of the system, which is the rate that can be maintained 

indefinitely. Furthermore, groundwater in TPA is mainly exploited to meet industrial and 

municipal demands; therefore, future groundwater withdrawals are likely to be non-

seasonal in nature. The sustainable yields are optimized based on the assumption that the 

future number and distribution of wells will be the same as in 2008, and that no new 

wells will be added to the system.   

 

In these models, the decision variables are the withdrawal rates at 155 model cells 

corresponding to existing well locations. Figure 4-1 shows the location of pumping 

decision variables and constraints. There are a total of 155 wells and a total of 55 head 

control locations. These head control locations are selected based on current monitoring 

locations for future verification, and some clusters of wells were removed to minimize 

computation. The drawdown constraint is controlled via the lower bounds on hydraulic 

heads at these control locations. The regulations (or constraints) are that heads at control 

locations cannot decline more than 10 meters in pumping cells within model layers 2-4. 

In addition to the head constraints, the models were subjected to the upper and lower 

bounds for pumping wells. Here, the minimum pumping rates (Qmin) are set to 20 m
3
/d to 

ensure that the pumping is occurring at each well for the entire period, and the values 

representing the upper bounds (Qmax) are set to 5 to 10 times the pumping rates from the 

year 2008. 
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The objective function of the optimization can be expressed as:  

 

maximize Z =  
1

N

i

i

Q


   (4-1)  

subject to: well constraints 

  Qmin ≤ Qi ≤ Qmax i=1,.., N  (4-2)
  

head constraints 

  
*

,j k jd D   j=1,.., 55  (4-3) 

where N  is the total number of pumping wells (N=155) 

 i  the pumping well index number  

 j  is the constraint location index number  

 k  is the model index number  

 dj,k  is the drawdown at the control location j for model k, in meters; 

 D
*

j   is the maximum drawdown level at the control location j   in 

meters; 

 Qi  is the pumping rate from zone i (155 wells), in cubic meters per day; 

 Qmin,Qmax are the lower and upper pumping rate bounds at the pumping 

location i, respectively, in cubic meters per day. 

 

In the GA, these pumping rates can be satisfied by restricting the population space of the 

decision variable (pumping rates) to be within the above limits. The GA does not directly 

deal with head constraints; a penalty function is used here to handle these constraints. In 

the penalty method, a constrained problem is converted to an unconstrained one by 

attaching a penalty to constraint violations (Goldberg, 1989).  The number of 

discretization intervals for each pumping rate and the number of simulations per 

optimization per optimization iteration or population size are set to the default values of 

32 and 100, respectively. The uniform crossover method is used with a crossover 

probability set at 0.5, and the jump mutation probability is set to equal 0.01. 
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Figure 4-1 Location of optimized pumping wells and management areas 

 

 

4.2.2 Optimization Model Results 
 

The sustainable yields calculated by MGO from 12 alternative models are summarized by 

management area, as shown in Table 4-1 and Figure 4-2. Detailed sustainable yields for all 

pumping wells are shown in Appendix C. No constraint violations occur at the constrained 

wells for any of these models. For most conceptual models, the lower bound constraints on 

hydraulic heads are binding at some control locations. The small drawdowns at many head 

control locations may imply that additional pumping wells can likely be placed in those 

locations without violating the specified constraints.   
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Table 4-1 Sustainable groundwater yield (m
3
/d) in the 9 management areas for 12 

alternative optimization models 

   Area   H2R2B2   H1R2B1   H1R2B2    H2R1B1   H1R1B2   H1R1B1   H3R1B1   H2R2B1   H3R1B2   H3R2B2   H2R1B2   H3R2B1  

1 3,588 4,197 3,949 6,316 5,858 3,345 3,865 3,804 3,358 4,203 4,995 3,245 

2 3,661 3,419 3,561 2,554 3,419 2,868 2,265 2,432 3,422 2,048 2,633 2,413 

3 3,669 3,197 2,310 3,916 2,923 4,151 3,273 2,817 3,132 3,088 2,297 2,733 

4 3,278 3,484 3,086 2,064 3,584 2,503 1,491 2,000 1,542 2,126 1,587 2,123 

5 2,419 3,164 2,864 2,587 1,880 1,309 1,768 1,774 1,384 1,736 1,593 2,313 

6 4,545 2,694 3,084 2,910 1,235 3,320 2,338 2,587 1,477 1,626 1,272 974 

7 3,548 2,758 3,080 1,555 3,230 3,358 3,665 1,652 2,590 2,207 2,394 1,871 

8 3,626 3,828 3,690 3,503 3,058 3,219 3,642 2,742 2,519 2,990 2,142 2,539 

9 3,211 1,626 2,659 1,845 1,907 1,732 1,139 2,259 2,558 1,771 1,084 1,087 

Total  31,545 28,366 28,283 27,251 27,093 25,807 23,445 22,068 21,983 21,795 19,997 19,297 

 

 

 

 

Figure 4-2 Sustainable yields by groundwater management area obtained from 12 

alternative models 
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Despite similar performance among the models in calibration, total sustainable yield 

estimates vary substantially depending on the conceptual model used, and range from 

19,300 to 31,500 m
3
/d, i.e., by a factor of 60 %. Generally, the sustainable yield estimates 

from all hydrogeologic models H3 are less than those of hydrogeologic models H1 and 

H2. The estimated sustainable yields in each management area in Table 4-1 vary more 

widely than the total sustainable yields among different alternative conceptual models, in 

one case by as much as 350 % between models. 

 

The more variability in the sustainable yield estimation, the wider the resultant prediction 

interval is likely to be for the ensemble and the more uncertainty is reflected. Assessing 

the reliability of an estimate depends not only on the size of its estimated prediction 

interval, but also on how large the prediction interval is relative to the estimate (mean 

value) itself. The relative prediction interval is the width of the prediction interval divided 

by the mean (Equation 4-4): 

 
95 5

Relative 90% prediction interval
th thPercentile Percentile

Mean

 
  
 

 (4-4) 

where 95
th

 and 5
th

 percentile  represent the upper and lower limits for the 95 % prediction 

interval, respectively.  

 

Moreover, the coefficient of variation (CV), the ratio of the standard deviation to the 

mean, can be used to compare the variability of prediction intervals. Table 4-2 shows 

various statistics relates to sustainable yields.  
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Table 4-2 Statistics of sustainable yield estimates (m
3
/d) from 12 optimization models in 

each management area 

Area Mean 
Standard 

Deviation 

Coefficient 

of variation 

(%) 

Quartile1 Quartile3 
5th 

Percentile 

95th 

Percentile 

Relative 

90 % PI  

1 4227 996 23.6 3530 4401 3300 6064 0.65 

2 2891 572 19.8 2427 3420 2167 3606 0.50 

3 3125 576 18.4 2796 3372 2304 4022 0.55 

4 2406 767 31.9 1897 3134 1519 3529 0.84 

5 2066 594 28.8 1700 2461 1350 2999 0.80 

6 2338 1060 45.3 1426 2953 1118 3871 1.18 

7 2659 735 27.6 2123 3262 1608 3600 0.75 

8 3125 550 17.6 2691 3630 2349 3752 0.45 

9 1930 640 33.2 1504 2334 1116 2907 0.93 

Total 24,744 3840 15.5 21936 27509 19835 29797 0.40 

 

 

As shown in Figure 4-2 and Table 4-2, the sustainable yields results estimated by 

alternative models vary in each groundwater management area, especially in the critical 

areas (management areas 2-4) where the relative prediction ranges from 50 to 84%, 

indicating relatively high uncertainty. The results from Table 4-2 show high degrees of 

uncertainty in the sustainable yield estimates, indicating that the contribution of 

conceptual models is relatively important.  However, the variation of sustainable yields 

does not clearly show which uncertainties have the greatest impact on the results among 

different hydrogeologic, recharge, and boundary condition interpretations.  

 

The wide range of sustainable yield estimates from the 12 alternative models strongly 

supports the need to address conceptual model uncertainty in the practice of groundwater 

management modeling, Further supporting evidence is supplied by (Neuman, 2003; 

Refgaard et al., 2006; Rojas, 2008a, b; Ye et al., 2010b). Despite similar 

calibration/validation performance, individual models provide total sustainable yields that 

differ by a factor of two and regional yields differing by as much as a factor of six. 
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4.3 Assessing Uncertainty in Sustainable Yield 

Estimates 

 

In general, the difference in estimated sustainable yields seen in the 12 conceptual models 

indicates an important contribution of conceptual model uncertainty to predictive 

uncertainty in a management context. The estimated sustainable yields depend on each 

groundwater model‘s accuracy in simulating hydraulic head changes in response to 

pumping and on the suitability of the objectives and constraints assigned in the 

optimization exercise. The impacts of the form of objective or constraints in the 

optimization model are not investigated here. Rather, the focus is on how best to 

encapsulate the knowledge gained from multiple-model simulation/optimization in a 

single management decision. 

 

There are now 12 models with 12 different performances in calibration/validation and 12 

different sustainable yields.  Ideally, one would like to be able to use this information to 

help us more rigorously determine both the most likely range of sustainable yields and to 

give the ‗best‘ information to policymakers. Various researchers have proposed the use of 

information criteria and/or various model weighting schemes, and one would like to 

determine whether or not these are useful or warranted, and clarify what the strengths and 

weaknesses of some of these methods may be. The following sections describe a number 

of experiments used to test hypotheses regarding which averaging methods are most 

appropriate for assessing conceptual model uncertainty in management problems. 
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4.3.1 Model Weights for Alternative Models 
 

The ranges of estimated yields from the 12 conceptual models are a useful, but imperfect, 

measure of conceptual model uncertainty in decision-making models. Because some of 

these models are bound to be better surrogates for the real world system, they should not 

be treated as equally valid. In many cases (including this case study), no single model is 

clearly superior to other competing models.  Thus, some researchers have suggested that 

model-averaging may provide a better predictive capability than relying on a single 

model (e.g., Rojas et al; 2008a; Singh, 2010; Tsai, 2010). The fundamental goal of 

model-averaging is to average predictions by weighting predictions from a set of 

plausible models based on their relative performance. 

 

In this study, a set of different model-averaging approaches including AICMA, MLBMA, 

GLUE, equal weight averaging, and a combined-Multi-Criteria approach developed in 

section 3.9 were compared in terms of their prediction coverage in sustainable yield 

estimates.  Because GLUE and MLBMA approaches have prior probability term, as seen 

in Equations 4-5 and 4-6, that allow expert preferences to be integrated into the weighted 

scheme, these approaches allow for subjective likelihood or probabilities to be included 

as prior probabilities when computing posterior probabilities or model weights.  In this 

work, validation results are used instead of expert judgment to obtain prior probabilities, 

and the use of uniform prior probabilities is compared to the use of subjective prior 

probabilities.  

 

 

The model-averaged predictions for a given quantity are calculated as: 

1

K

i i

i

Z w Z


    4-5) 



122 

 

where 
iZ is the predicted output value for model i, Z is the model-averaged prediction, K 

is the number of plausible models, and iw  is the weighted or posterior model probability 

of kM where ∑wi =1. The GLUE weight for model k can be calculated as  

1

( )
( )

( )

N

k k
k K

N

k k

k

p M SSWR
GLUE

p M SSWR











   (4-6) 

where p(Mk) is the prior probability for model k; SSWRk is the sum of squared weighted 

residuals for model k with k = (1,…,K), K is the total number of models being considered, 

and  N is a shape factor. N=1 is normally used in GLUE applications and is used here. 

 

For the information criteria, the posterior model probabilities or model weights of the 

twelve models can be calculated as (Neuman et al., 2003) 

   
exp( 0.5 ) ( )

  
exp( 0.5 ) ( )

k k
k

k k

k

IC p M
w

IC p M

 


 
  (4.7) 

where ΔICi= ICk - ICmin with ICk corresponds to any of the information criteria described 

in section 2.7 for a given model  Mk; ICmin is the minimum value obtained from model  

Mk with k = (1,…,K); and p(Mk) is the prior probability for model k. IC-based criteria are 

calculated using Equations 2-13, 2-14, 2-18, and 2-19, respectively.  

 

In both weight calculation approaches, models deemed to be better based on a certain 

metric receive higher weights than do worse performing models.  

 

Table 4-3 presents model weights generated by the different model averaging methods. 

These model weights are then used to average predictions of the maximum yield that can 

be safely pumped from the aquifer while preventing water level decline lower than its 

corresponding limit. This table shows that the AICMA and MLBMA methods give a 

weight of almost one to just one or two models and essentially reject all of the others. 

Subsequently, including the subjective probabilities from different models, make no 
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difference because only one model remains after the AICMA and MLBMA weighting 

(the subjective probabilities are multiplied by zero for all but one of the models).  In this 

study, GLUE weight derived from SWWR likelihood and MCDM methods are favored 

over the others.  Considering model performances in calibration and validation processes 

based only on head residuals, all twelve models have quite similar predictive capability, 

with no model being clearly better than the others. In addition, the knowledge about the 

system being modeled and hydrogeologic data is too limited to justify the exclusion of 

the other 10 models. Eliminating these models will likely lead to the underestimation of 

conceptual model uncertainty, suggesting that AICMA and MLBMA weighting may be 

overly subjective. Therefore, all models should be applied in evaluating the uncertainty in 

the sustainable yield estimates to better demonstrate the application of conceptual model 

uncertainties.  

 

Table 4-3 Model weights for different model-averaging methods 

Model GLUE GLUE* AIC AIC* AICc AICc* BIC BIC* KIC KIC* MC_F MC_G 

H1R1B1 0.097 0.101 0.867 0.868 0.939 0.937 0.850 0.852 0.009 0.008 0.103 0.086 

H1R1B2 0.093 0.105 0.066 0.072 0.047 0.051 0.069 0.075 0.991 0.992 0.106 0.088 

H1R2B1 0.097 0.082 0.034 0.028 0.009 0.007 0.040 0.033 0.000 0.000 0.076 0.081 

H1R2B2 0.093 0.146 0.003 0.004 0.000 0.001 0.003 0.005 0.000 0.000 0.167 0.103 

H2R1B1 0.074 0.070 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.074 0.080 

H2R1B2 0.074 0.068 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.082 

H2R2B1 0.099 0.095 0.030 0.028 0.004 0.004 0.037 0.035 0.000 0.000 0.140 0.089 

H2R2B2 0.079 0.083 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.098 0.086 

H3R1B1 0.071 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.072 

H3R1B2 0.071 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.048 0.078 

H3R2B1 0.077 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.075 

H3R2B2 0.075 0.070 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.061 0.080 

* with subjective probability obtained from validation test 
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4.3.2 Assessment of Sustainable Yield Model Averaging 

Techniques 
 

Different model-averaging methods, including AICMA, MLBMA, GLUE, equal weight 

averaging, and a combined-Multi-Criteria approach developed in section 3.9, were used 

to assess the predictive uncertainty in sustainable yield estimates.   

 

Using GLUE and MCDM model-averaged methods, the total sustainable yields were 

effectively identical at 24,900 m
3
/d, while using AIC and KIC, the total optimal yields 

were 25,900 and 27,100 m
3
/d, respectively (Figure 4-3). Comparisons of estimated 

sustainable yields at management zones using different model-averaging methods are 

shown in Figures 4-4 and 4-5. It is shown that the total sustainable yield estimates from  

IC-based criteria seem coincidentally higher than those from MC and GLUE criteria but 

also are only valid for the total sustainable yields. Moreover, GLUE, MCDM criteria, and 

the equal weights method estimate similar sustainable yields at every management zone, 

whereas AIC and KIC criteria estimate differently, especially in the critical area 

(management areas 2 to 4). It is noted here that one of these classes of averaging methods 

may be less useful for practical application; it remains to be seen whether these observed 

differences can be compared in a meaningful way.  

 

 

Figure 4-3 Total sustainable yield (m
3
/d) for different model-averaging methods 
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Figure 4-4 Optimized groundwater yield (m
3
/d) in the nine management areas 

 

 

Here, two methods are used to heuristically assess the utility of model-averaged 

sustainable yields generated using various weighting schemes. First, the performances of 

different multi-model ensemble methods were examined in terms of predictive intervals, 

using 90% prediction bounds and quartile 1-3 bounds, estimated from the weighted 

model-specific prediction intervals. Note the weighting changes in this comparison. 

Figure 4-6 shows the percentage of predictions or estimations which are bracketed by 

90% uncertainty bounds. One hundred percent of pumping rates (155 pumping wells) 

estimated using GLUE, MCDM, or equal weights fall within the 90% prediction limits, 

and nine of the ten are covered by inter-quartile ranges of the ensemble estimations. 

Approximately nine-tenths and seven-tenths of the sustainable yield values from the IC-

based model averaging method (AIC, AICc, BIC, and KIC) are contained by the 90% 

prediction bounds and inter-quartile ranges of the ensemble estimation, respectively.  
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Figure 4-5  Comparison of cumulative probability for sustainable yields among different 

model-averaging methods 
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Figure 4-6 Percentage of pumping rates in 90% prediction intervals and inter-quartile of 

different model averaging methods 

 

 

Figure 4-7 shows the ranges of sustainable yield estimates from 12 alternative models 

and the values obtained from different model-averaged methods for each management 

area. Sustainable yield values from both GLUE and MCDM are captured by the inter-

quartile ranges of the ensemble estimations in all management areas. The sustainable 

yield values from AIC and KIC, however, are not contained by the inter-quartile ranges 

of the ensemble estimation in multiple management areas.  For example, the estimate 

values are not captured by AIC in management areas 3 and 6, and management areas 1 

and 4 for KIC methods.  

 

The results illustrated in Figures 4-6 and 4-7 confirm that relying on a best single model, 

as is done implicitly with AIC, AICC, BIC, and KIC, is prone to produce an over-

confident estimation of prediction uncertainty. On the other hand, GLUE and MCDM 

model-averaged methods produce more generalized estimations of the predictive 

uncertainty compared to the estimations of AIC and KIC, which are effectively the same 

as a single model selection approach. 
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In addition to the test above, the sum of head violations caused by model-averaged 

pumping rates were compared to address the question of which model-averaging method 

is the most appropriate for assessing conceptual model uncertainty for sustainable yield 

estimation. The risk of using the optimal pumping rates from the best model can be tested 

against model averaging by re-evaluating the sum of head violations caused by those 

model averaged rates when input into the original 12 models. Figure 4-8 shows the 

number of head constraint violations when sustainable yield rates obtained using the 

single best models (model H1R1B1 and model H1R2B2) and different model-averaging 

methods (such as the AIC, KIC, GLUE, GLUE*, MCDM, and equal weighted) are 

substituted into the 12 alternative models. The highest number of head constraint 

violations can be found when using KIC averaged rates, and the lowest number is found 

in equal weights and GLUE weights, respectively.  

 

Figure 4-9 shows the total count of head constraint violations using the same models and 

the same model averaging pumping rates as in Figure 4-8.  
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Figure 4-7 The statistics of the sustainable yield estimates from different model averaging 

methods in each management area. Q1 and Q3 represent the first and third quartiles, 

respectively 

 

 

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9

S
u

st
a

in
a

b
le

 y
ie

ld
 (

m
3
/d

) 

Management zone 

GLUE*

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9

S
u

st
a

in
a

b
le

 y
ie

ld
 (

m
3
/d

) 

Management zone 

KIC



130 

 

 

Figure 4-8 Number of head constraints violation in all 12 models using different model 

averaging pumping rates 

 

 

 

 

 

Figure 4-9 Total count of head constraints violations in all 12 models using the single 

best model and different model averaging pumping rates 
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Figure 4-10 shows the head constraint violations that occurred in each model when 

sustainable yield rates obtained from different weighted averaging were substituted into 

the individual alternative models. It can be seen that all H3 hydrogeologic models which 

are the less plausible models as determined from model fit from the SSWR and ARM of 

hydraulic head residuals, always produce a large number of head constraint violations. 

 

For the management problem of this case study, if all twelve models are equally likely, 

the equal weight method appears to be the most appropriate approach since it produces 

the smallest sum of constraint violations in both the entire area and the critical area; the 

GLUE weight method is the second most appropriate approach; the MCDM method is 

the third, and the KIC method seems to be the least useful method because it produces the 

largest sum of constraint violations. This last finding indicates that basing pumping 

strategies on KIC is very likely to lead to overpumping. The decision-making could be 

carried out with a high degree of confidence if the maximum rates obtained from any 

model-averaging method caused no violation or fewer violations. 

 

 

Figure 4-10 Sum of head constraints violations (m) in all 12 models using different model 

averaging pumping rates 
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4.4 Summary 

 

The 12 calibrated models were applied in a management context to maximize total 

groundwater extraction rates for the Phu Thok aquifer in areas at high risk of water 

resource over-exploitation. Groundwater simulation models were linked with 

optimization techniques to determine optimal sustainable yields while ensuring that the 

drawdowns at control locations were less than specified limits. The uncertainty associated 

with the (typically fixed) spatial distributions of hydrogeologic properties, recharge rates, 

and boundary conditions was assessed to determine its significance in the decision 

making. Results for the individual models show that sustainable yield estimates vary 

substantially across models, and in this test case, there is clear utility in investigating the 

range of plausible conceptual models. Because of this variation, the recognition of 

conceptual model uncertainty in a management context is strongly recommended to help 

decision makers select and implement robust sustainable management strategies for the 

Phu Thok aquifer system. 

 

Different model-averaging methods (GLUE, AICMA, MLBMA, Multi-Criteria, and 

equal weight) were assessed in terms of their ability to assist model uncertainty analysis 

in sustainable yield estimation. Two methods were used to examine these averaging 

approaches. First, the 90 percent prediction interval and inter-quartile ranges were used to 

compare the individual predictive distributions of the model averaging methods with the 

assumption that an appropriate model averaging techniques will provide a total 

sustainable yield that falls within 90% prediction limits. Sustainable yield values from 

both GLUE and MCDM are captured by the 90 percent confidence interval and the inter-

quartile ranges of the ensemble estimations more than other methods. These results 

confirm that relying on a best single model, as typically results from use of AIC, AICc, 

BIC, or KIC is prone to produce an over-confident estimation of prediction uncertainty. It 

also implies that using information criterion-based model averaging for this case study 
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should likely be avoided, since these methods are effectively choosing one model above 

all others; this approach is shown to be unjustified for the models used here. 

 

The second method used to assess model averaging approaches involved comparison of 

the sum of head violations caused by substitution of model-averaging pumping rates. For 

the management problem of this case study, MCDM, GLUE, or equal weight averaging 

are the most appropriate approaches since they produce the smallest sum of constraint 

violations, while the IC-based methods are less appropriate, for similar reasons to above: 

that the IC-based averaging schemes are under-conservative in their estimates of 

predictive uncertainty. Using SSWR with GLUE weight and equal weight can achieve a 

performance comparable to using MCDM and better performance than any information 

criteria. Therefore, these two methods are recommended based on these result since they 

are much simpler to implement and much less computationally demanding than more 

sophisticated approaches.   

 

In this study, GLUE and combined-MCDM methods were favored over information-

criterion-based approaches (AIC, AICc, BIC, and KIC) for model-averaging, since the 

latter were found to select only one or a few models.  The selected models do not lead to 

better results in either calibration or evaluation than those of the discarded models. 

Moreover, the hydrogeologic and hydraulic data in this study area is too limited to justify 

the elimination of the other 10 models. 
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Chapter 5 

Joint Assessment of Conceptual and 

Parameter Uncertainty  
 

Chapter 4 proposed and assessed multi-model approaches to explicitly account for the 

predictive uncertainty in sustainable yield-estimation arising from conceptualizing 

hydrostratigraphy, recharge, and boundary conditions. In this chapter, these approaches 

are extended to include uncertainties arising from unknown model parameters. A joint 

estimation of predictive uncertainty, including parameter and conceptual model 

uncertainty, is presented. Most importantly, uncertainties obtained using model-averaging 

approaches are compared with results from parameter uncertainty to quantify the 

contribution of conceptual model and parameter uncertainty as applied to groundwater 

management models.   
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5.1 Estimating Sustainable Yields under the Impact 

of Parameter Uncertainty  

 

The earlier calibration of the twelve models demonstrates that it is possible to obtain an 

effectively equivalent calibration performance for all 12, and thus these models can be 

accepted and used for predictive simulations. The purpose of parameter uncertainty 

analysis is to quantify the uncertainty in sustainable yields predicted by the 12 calibrated 

models when this results from uncertainty in the models‘ parameters. The calibrated 

models were used to produce multiple realizations of random parameters from feasible 

space using a simple Monte Carlo approach. The Monte Carlo sampling strategy assumes 

independence between parameter sets and randomly samples parameter values from their 

feasible space or posterior parameter distributions (USEPA, 1997). The stochastic 

MODFLOW of Groundwater Vista was used to generate parameter realizations for each 

model following a normal distribution and covariance variables. By comparing simulated 

and measured hydraulic heads, each set of parameter values is assigned likelihood values. 

The total of realizations is then split into behavioral and non-behavioral parameter 

combinations based on a cutoff threshold.  For each model, the 12 behavioral parameter 

sets that have the smallest SSWR realizations are then selected and combined with 

optimization models to assess uncertainty in sustainable yield estimation.  

 

Parameter uncertainty incorporated in the optimization models is conveyed to the 

sustainable yield estimates by sampling model parameters that preserve calibration. This 

study assumes that the structural parameterizations, e.g., the geometry of recharge 

distribution zones and hydraulic conductivity zones, used in the inverse calibrations for 

all models are known. Only parameters such as hydraulic conductivity and recharge rate 

values for each conceptual model are uncertain. The range of uncertainty for these 

parameters initially is the 95% confidence interval, as estimated from PEST during the 

calibration process. Both the magnitude of hydraulic conductivities and recharge rates 
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were sampled randomly from a normal distribution based upon these confident limits. 

Unfortunately, some of the 95% confidence interval limits correspond to unrealistic 

parameter values and are outside of the desired parameter ranges, sometimes by several 

orders of magnitude. These results point towards possible violations of underlying 

assumptions in PEST regarding the input data, which is assumed to have normally 

distributed errors and no biases, and the model, which is assumed to be approximately 

linear in the vicinity of the calibrated solution. Furthermore, the high dimensionality of 

the problem can impede PEST‘s ability to compute valid confidence limits. Thus, these 

confidence limits cannot be used to indicate lognormal standard deviations of parameters. 

Instead, prior knowledge regarding parameter values obtained from other studies is used 

to estimate lognormal standard deviations. Therefore, the upper and lower limits for 

hydraulic conductivity parameters were set to 2 orders of magnitude above and below the 

optimized values. For recharge rate, the confidence limit was set to ±40 mm/year, based 

on experience from previous findings.  

 

Stochastic MODFLOW, within the Groundwater Vistas software, was used to generate 

1,000 Monte Carlo samples of the calibrated hydraulic conductivity and recharge 

parameters for each model.  One thousand samples were assumed to be sufficient for 

convergence, based on preliminary results and typically available computational 

resources.  The plausibility of each realization was assessed to determine whether a 

sample was used in the uncertainty analysis, by evaluating calibration criteria. The best 

realizations were selected, ―best‖ meaning those model samples that acceptably matched 

the observed and simulated head residuals. In this case, head residual values and 

acceptable ranges for calibration statistics are defined as 1) an absolute residual mean 

(ARM) lower than 3 meters, 2) a residual standard deviation (also called a root mean squared 

(RMS)) lower than 3 meters, and 3) a residual standard deviation divided by the range in 

heads for all targets (the normalized root mean square error (NRMS)) lower than 0.1 (10%). 
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All realizations were assigned weights. In a standard Monte Carlo simulation, all of these 

realizations, regardless of SSWR values, would have equal weight. However, it is 

reasonable to assume that realizations that more closely match the hydraulic head values 

should receive higher weight than flow realizations that only poorly match the given 

target head. Thus, the GLUE approach is implemented here in Monte Carlo simulations 

for weighting each realization based on its likelihood measure. This approach also 

provides consistency between the assessment of predictive and conceptual uncertainty. 

The model weight for each realization can be calculated (with a shape factor of N=1) 

from the inverse of the SSWR. The weights are then normalized to obtain the cumulative 

distribution function sum up to one. 

 

Model weights for all realizations representing parameter uncertainty are listed in 

Appendix D. Typically, each realization receives model weights in the ranges of 0.075-

0.09, indicating that all realizations match the hydraulic head targets at approximately the 

same level.   

 

The formulations of groundwater optimization models are described in Chapter 4. 

Sustainable yield estimations were made for the 12 realizations (which meet our calibration 

criteria) to obtain estimated prediction intervals for each ensemble of alternative models. 

When the GLUE approach is used in Monte Carlo simulations and optimizations, the 

weighted mean and standard deviation of the sustainable yield can be obtained.  

 

Summary statistics of total sustainable yield obtained from each alternative model that 

performed parameter uncertainty analysis are shown in Table 5-1, and the details of these 

statistics for each management area is presented Appendix E.  
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Table 5-1  Statistics of the total sustainable yield (m
3
/d) obtained from a set of 

realizations for each alternative model within parameter uncertainty analysis 

  Max Min Average Standard deviation (σ) Varaince (σ2
) 

H1R1B1 30605 21839 27013 2720 7.40E+06 

H1R1B2 35561 26620 31023 2215 4.91E+06 

H1R2B1 36157 27711 31501 2482 6.16E+06 

H1R2B2 43628 31331 35571 3646 1.33E+07 

H2R1B1 30573 17308 25111 4074 1.66E+07 

H2R1B2 19197 15655 17662 960 9.22E+05 

H2R2B1 30393 18089 26573 3829 1.47E+07 

H2R2B2 36295 29545 33149 2043 4.17E+06 

H3R1B1 29267 16984 24688 3658 1.34E+07 

H3R1B2 35124 20763 29762 5029 2.53E+07 

H3R2B1 26184 19457 22730 2253 5.08E+06 

H3R2B2 29379 15892 24035 3547 1.26E+07 

 

 

The adequacy of using a single model and an associated parameter uncertainty analysis to 

describe the model‘s total uncertainty was assessed by comparing the predictive 

uncertainties as computed from the 12 optimization models for each alternative model. 

Figures 5-1 and 5-2 compare cumulative probability distributions of the sustainable yield 

obtained from using each model with parameter uncertainty assessment in the entire area 

and in each management area, respectively. The GLUE model-averaging method is also 

included in these figures to compare the range of prediction uncertainty. These figures 

show that significant differences in the estimations, even when accounting for parameter 

uncertainty. The most likely estimated values (50
th

 percentile) and the prediction intervals 

drastically differ among models. When considering only a single model, the prediction 

ranges are relatively narrow compared to the prediction range obtained from the GLUE 

model averaging method.   
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Figure 5-1 Cumulative distribution function for total sustainable yield estimation derived 

from ensemble of 12 realizations 

 

 

In addition to the variation in total yield, Figure 5-2 shows the variation of sustainable 

yields in each management area. The relative 95% prediction intervals for sustainable 

yield estimates derived from the alternative optimization models vary considerably in 

each management area. Management area 6 has the highest variation in the sustainable 

yield estimated, and areas 7 and 9 have the second and third highest, respectively. It is 

noticeable that the relative prediction ranges from individual models are sometimes wider 

and sometimes narrower in each management area. The wide variation may indicate the 

12 alternative models have very different conceptualizations of these areas. Moreover, 

the prediction range of the averaged-model is considerably larger than that of any 

individual model, attesting to the formers‘ superior performance. It may be interpreted 

that the influence of conceptual model uncertainty is higher than that of parameter 

uncertainty, but the meaning of this difference is difficult to gauge. These results suggest 
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that for a complex, data-poor system such as the one studied here, a single model cannot 

adequately assess predictive uncertainty. 

 

Table 5-2 shows the calculated 95% prediction intervals and relative 95% prediction 

interval for the total sustainable yields computed by the ensemble of 12 models with 

parameter uncertainty assessment and the GLUE model-averaging uncertainty 

assessment. The lower limit of the 95% prediction interval corresponds to the prediction 

at the 2.5% level of cumulative probability, and the upper limit corresponds to the 

prediction at the 97.5% level of cumulative probability.  The relative 95 % prediction 

interval of the total sustainable yields estimates for individual models vary from 0.12 to 

0.37. These finding can be compared to the relative uncertainty of the total sustainable 

yields derived from conceptual model uncertainty (0.47). The prediction intervals 

obtained from models H1R2B2 and H2R2B2 are much higher than the average 

predictions of total sustainable yield, whereas model H2R1B2‘s range is much lower than 

the averaged one. These results likely suggest that using a single best model 

underestimates the predictive uncertainty and may produce misleading results.  
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Figure 5-2  Cumulative distribution function for sustainable yield estimation derived 

from ensemble of 12 realizations in each groundwater management area 
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Table 5-2  The 95% prediction intervals and relative 95% intervals of the total 

sustainable yield computed by parameter uncertainty and conceptual model uncertainty 

assessment 

Model 
Parameter uncertainty assessment 

Lower limit Upper limit Average Width of interval Relative 95%  interval 

H1R1B1 21195 30068 26585 8874 0.33 

H1R1B2 27757 35323 31377 7566 0.24 

H1R2B1 27913 34762 30726 6849 0.22 

H1R2B2 31881 42265 35143 10384 0.30 

H2R1B1 20104 29477 25085 9373 0.37 

H2R1B2 16766 18963 17908 2197 0.12 

H1R2B1 22173 29621 26308 7448 0.28 

H2R2B2 29016 35240 32502 6224 0.19 

H3R1B1 20401 28033 23611 7631 0.32 

H3R1B2 25734 33791 30406 8057 0.26 

H3R2B1 25734 33794 30406 8061 0.27 

H3R2B2 20097 27714 23218 7616 0.33 

Model 
Conceptual model uncertainty assessment 

Lower limit Upper limit Average Width of interval Relative 95%  interval 

   GLUE* averaged 19297 31015 24744 11718 0.47 

 

Figure 5-3 shows that the contributions of predictive uncertainty in each management 

area are more apparent than that in the entire area. Again, the impact of a conceptual 

model in each management area is higher than that of parameter uncertainty. The relative 

95% prediction interval obtained from conceptual model uncertainty varies between 0.5 

and 1.4, whereas parameter uncertainty varies between 0.2 and 1.1 
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Figure 5-3  Relative 95% prediction intervals for 12 models with parameter assessment 

and GLUE model-averaging method in each management area 

 

 

5.2 Influence of Conceptual and Parameter 

Uncertainty 

 

The previous section demonstrates that focusing on parameter uncertainty analysis based 

on a single selected simulation/optimization model is likely to underestimate the total 

uncertainty, which should also include the conceptual deficiencies of the specific model. 

It also indicates that neither parameter nor conceptual uncertainty can be treated as 

negligible, as neither dominates. Improving the uncertainty bounds in model prediction 

requires the integration both conceptual model and parameter uncertainty. Typical, to do 

so, the final weights are calculated and normalized to one. Then predictive statistics (the 

mean, standard deviation, variance, and predictive interval) are evaluated to improve the 

robustness of model prediction.  
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Final weights for each model include both conceptual model-averaged weights and 

Monte Carlo realization weights assigned to the 144 optimization models.  A model-

averaged prediction can be derived as a weighted average of the predictions from each 

model in the ensemble set. The model-averaged (averaged over conceptual models) 

predictions can be calculated as  

12 12

,

1 1

ij i r j j

j i

Z w Z w
 

     (5-1) 

where the final weights  w ij are the product of the probability assigned to the alternative 

models i and the GLUE flow weights assigned to each MCDM subset. The final weights 

are applied to the values of the ensemble sustainable yield for each realization, and an 

empirical cumulative distribution function (CDF) is computed from the final weights.  

 

Because it was found in Chapter 4 that AICMA and MLBMA weightings are likely 

inappropriate, only GLUE with uniform prior and subjective prior probabilities, MCDM 

methods, and equal weights were used to determine the contribution of both conceptual 

model and parameter uncertainty in sustainable yield estimation.  

 

The weights (Zr,j) are then used to combine the CDFs in Figures 5-1 and 5-2 to get one 

combined CDF for the estimated sustainable yields.  The averaged sustainable yield 

predictions were calculated using Equation (5-1) and are given in Figure 5-4. Predictive 

intervals (90%) and mean predicted values based on cumulative predictive distribution 

obtained from GLUE methodology for sustainable yield estimated obtained from 12 

realization models parameters in each management area are shown in Appendix F. 
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Figure 5-4  Final cumulative probability distributions for sustainable yield estimates that 

account for parameter and conceptual model uncertainty in each management area 
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When combining the impact of both conceptual model and parameter uncertainty, these 

CDFs show the larger range of optimal yield. Comparing the CDFs for different model-

averaging weights shows very similar ranges in the sustainable yields using these criteria. 

The differences in CDF can be seen in areas 6 and area 9, and indicate the high variation 

in conceptual models. In these areas the uncertainty across the different models is 

reflected in CDF. For this study, the four criteria can yield approximately the same results 

and cannot distinguish among these criteria. Therefore, the MCDM CDF is used for 

further analysis.  

 

The generated set of 12 ensemble members in the model averaging approach was used to 

address the question of whether the application of multiple conceptual model approaches 

can help to improve the prediction of sustainable yields by accounting for model 

uncertainty. Typically, the discrepancy in the ensemble set for each output variable 

comparing with observed data demonstrates the incompetence of the individual models in 

capturing the observations. In this comparison, the mean values (50
th

 percentile) of the 

integrated model weights and realization weights can be the representative of the optimal 

rates. Considering total uncertainty is expected to capture some of these deficiencies.  

 

Figure 5-5 shows the contribution of parameter uncertainty associated with the best 

models (models H1R1B1 and H2R2B2), GLUE with subjective prior probability, MCDM 

model-averaging methods, and equal weights to the joint assessment of parameter and 

conceptual model uncertainties. As can be seen in this figure, the prediction ranges of 

between 25
th

 and 75
th

 percentile obtained from models H1R1B1 and H1R2B2 fall 

considerably outside the prediction ranges of the total model uncertainty. Unlike with 

parameter uncertainty analysis, the large degree of concurrence of the predictive 

uncertainty interval is observed from model-averaging methods. For GLUE and MCDM 

methods, the predictive intervals from a fractional overlap interval in 60% of the all 

pumping rates compared to a fractional overlap of 20%, and 30% of all pumping wells 

for individual parameter uncertainty analysis. The parameter uncertainty analysis is thus 
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not adequate to account for predictive uncertainty due to both parameter and conceptual 

model uncertainty.  

 

Figure 5-5  Comparison of predictive intervals (25
th

 to 75
th

 percentile) and most likely 

estimated values (50
th

 percentile) obtained from the best single model, GLUE, MCDM 

model-averaging methods, and combined parameter and conceptual model uncertainty  

 

Considering parameter and conceptual model uncertainty, the optimal pumping strategy 
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in every part of all ensemble models. From optimization results, there are 156 sets of 

pumping rates obtained from predictive uncertainty assessments. However, we need to 
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well (in total 155 pumping wells) were selected and substituted into 156  simulation 

models.  

Ideally, one would want to pump sufficient water to satisfy increased demand; however, 

for both conceptual and parameter uncertainty analysis, less water must be pumped so 

that head constraints violations are avoided in all models. Therefore, the optimal yields of 

14,400 m
3
/d are obtained to meet all constraints (Figure 5-6). This artificial reduction in 

pumping rates would result in a conservative management policies in terms of the total 

amount of pumping rates needed to satisfy all models. The extensive management model 

will consider constraints that include head predictions from individual models; in turn, 

this method would exaggerate the influence from less significant models. One can avoid 

this problem while still considering the model uncertainty. From a practical perspective, 

very small violations may be ignored in some areas. In such circumstances, one needs to 

find the best compromise between the increased pumping and the level of violation. For 

example, to find the solutions with a 90% reliability of no violation occurring, the 

decision maker can select an optimal yield of 16,210 m
3
/d derived from the 40

th
 

percentile solutions.   

 

Figure 5-6 Comparison of optimal yields and percentage of constraints violations models 
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To find a solution with 95% reliability, one can select the optimal yield of 15,800 m
3
/d 

for the TPA. These results can provide information to the decision makers as well as the 

degree of uncertainty to be expected when specific rates are used as well as where a 

specific head violation occurs, and where head constraints can be relaxed. This 

methodology can be applied with minimal computational expense. 

  

If considering only conceptual model uncertainty, the optimal rates of 25,480 and 25,730 

m
3
/d obtained from GLUE and MCDM-averaged will result in 62 and 64% of models 

containing head violations, respectively. If considering the two best models (H1R1B1 

and H1R2B2), the pumping rate of 28,000 m
3
/d obtained from this model will result in 

90% of models having head violations.  The results in this section demonstrate the value 

of combining the impacts of conceptual and parameter uncertainty for groundwater 

management problems. Because assessing conceptual model uncertainty and parameter 

uncertainties individually results overestimation of yields, they should be considered 

together.  

 

5.3 Summary 

 

This chapter has evaluated multi-model ensemble approaches to assessing the impact of 

conceptual models and parametric uncertainty on reliable optimal groundwater resource 

allocation. All calibrated models were used to produce multiple realizations of random 

parameters from feasible space using a simple Monte Carlo approach. For each model, 

the 12 behavioral parameter sets that have the smallest SSWR realizations were then 

selected and combined with optimization models to assess uncertainty in sustainable 

yield estimation. The multi-model approaches of GLUE, equal weights, and MCDM 

criteria were integrated with GLUE weights for each realization to evaluate the total 

prediction uncertainty associated with both parameter uncertainty and model error.  
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The contribution of conceptual model uncertainties varied between 50 %and 135 % of the 

relative 95% predictive uncertainty in each management area, whereas the contribution of 

parameter uncertainty varied between 23 % and 103 % of the relative 95% predictive 

uncertainty in each management area. The multi-model averaging methods produce a 

higher percentage of predictive coverage than do any individual models.  

Although accounting for all sources of uncertainty is very important in predicting 

environmental and management problems, the available techniques used in the literature 

may be too computationally demanding and, in some cases, unnecessarily complex, 

particularly for data-poor systems. The methods presented here to account for the main 

sources of uncertainty provide the required practical and comprehensive uncertainty 

analysis and can be applied to other case studies to provide reliable and accurate 

predictions for groundwater management applications, without computational expense. 

The results demonstrate the significance of combining conceptual and parameter 

uncertainty in groundwater management problems. Incorporation of conceptual model 

uncertainty and parameter uncertainty results in 28 % and 54 % decreases in optimal 

yields if only conceptual model and parameter uncertainty were assessed, respectively.  

 

The results of this chapter strongly support including both conceptual model uncertainty 

and parameter uncertainty in groundwater management practice. The uncertainty analysis 

can be used not only to reduce the uncertainty in allocation strategies, but also to make 

more informed and reliable decisions. In this case study, simple model-averaging 

techniques such as equal weights are shown to perform quite similar to GLUE and Multi-

Criteria-Decision Making approaches and that these criteria are preferable to model 

selection criteria such AIC, AICc, BIC and KIC.  
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Chapter 6 

Conclusions and Recommendations 

6.1 Summary of Conclusions 

 

This thesis presents an uncertainty assessment approach to explicitly account for 

conceptual model uncertainty inherent in groundwater management decisions. The 

difficulty of fully characterizing the subsurface environment makes uncertainty an 

integral component of groundwater flow models, however, reliable prediction of 

groundwater management models is vital for managing groundwater resources. Thus, to 

achieve an acceptable level of confidence in model predictions, the main sources of 

uncertainties need to be quantified.  This thesis has described the development of the 

three-dimensional physically based groundwater flow models with various sources of 

conceptual model uncertainty, focusing on the Thaphra area (TPA), Northeast Thailand.  

 

The three potential sources of conceptual model uncertainty considered here are different 

interpretations of hydrostratigraphic parameterization, different postulations of boundary 

conditions, and different techniques for recharge estimation. Although the 12 conceptual 

models cannot cover all potential sources of errors, they do cover a useful if limited 
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range, given that the overall uncertainty of model prediction cannot be absolutely 

assessed. The 12 alternative models were calibrated against head observations. Results 

demonstrate that these 12 models can attain an almost identical calibration performance, 

perhaps implying that head observations cannot clearly discriminate among different 

competing models.  

 

Different model weighting approaches were used to rank the multiple conceptual models. 

Model weights obtained from AICMA (AIC, AICc) and MLBMA (BIC, and KIC) 

methods dominated in only one or two models, meaning that only one or two models are 

needed for making predictions.   The GLUE or SSWR weights are more evenly 

distributed than those of IC-based model selection criteria.   

 

All the calibrated models and the different model-averaging methods were individually 

validated against an independent data set obtained from two years of observation data in 

which  pumping rates and recharge rates were different from those used for calibration. 

The validation data were used to evaluate the predictive ability of the individual models 

and model ensembles. The best results as evaluated by SSWR and ARM were obtained 

with a model ranked fifth by AIC, AICc, BIC, and GLUE but ranked second last by KIC.  

Overall, most of the model- averaging methods produce predictions closer to the 

calibration data than do the individual models. In the validation period, none of the model 

averaging methods produce predictions that are closer to the validation head data than 

individual model H1R2B2; however, their prediction quality is significantly better than 

that of the majority of the individual models. This finding indicates the strength of using 

model-averaging methods, which are able to make better predictions than a single model 

can, or at least to obtain predictions that are close to the best model. 

 

Evaluating multiple models using different measures such as SSWR, and ARM in both 

calibration and validation periods can yield different ranking and weights. The results of 

the validation period are not consistent with those of the calibration period; thus, there is 
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no reason not to use the information obtained from validation period to evaluate model 

performance. Validation results can provide valuable information relevant to model 

performance, and can be included in the posterior probability as a subjective prior model 

probability instead of expert elucidation, which is not easily obtained in regular practice. 

Given incomplete knowledge of a system and data-poor aquifer systems, there are 

inevitably doubts about conceptual models that exist, arising from the judgments and 

conceptualizations made as part of a simulation model‘s development.   Thus, it is 

reasonable to develop a set of performance measures, instead of relying on a single 

criterion.   

 

To quantify the uncertainty associated with the (typically fixed) spatial distributions of 

hydrogeologic properties, recharge rates, and boundary conditions in management 

models, the 12 calibrated models were linked with optimization techniques to determine 

optimal sustainable yields while ensuring that the drawdowns at control locations were 

less than specified limits. Results for the individual models show that sustainable yield 

estimates vary substantially across models, and in this test case, there is clear utility in 

investigating the range of plausible conceptual models. Despite similar performances 

among the models calibrated, the total sustainable yield estimates vary substantially 

depending on the conceptual model used and range widely, by a factor of 0.6 in total, and 

even more extremely, in each management area by a factor of 4.  

 

The comparison results convincingly demonstrate that simple model averaging achieves 

better performance than formal and sophisticated averaging methods such as AICMA and 

MLBMA, and produce a similar performance to GLUE and combined-multiple criteria 

averaging methods for both validation testing and management applications,. 

 

Lastly, multi-model ensemble approaches were used to assess the impact of conceptual 

model and parametric uncertainty on management decisions. The GLUE and proposed 

Combined Multi-criteria multi-model approaches were used to compare the sustainable 
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yields estimations in the TPA. The contributions of conceptual model uncertainty to 

predictive uncertainty were rather significant, indicating the relevance of addressing this 

source of uncertainty in groundwater management. For the Thaphra test case, the 

sustainable yield uncertainty arising from conceptual model uncertainty varies between 

47 and 110 % of the predictive uncertainty. The multi-model averaging methods produce 

a higher percentage of predictive coverage than do any individual models. The relative 

contribution of conceptual model uncertainty to different management zones provides 

useful information for decision-makers to use when implementing groundwater 

extraction policies for sustainable management of the TPA. 

 

Model-averaging predictions have been shown to be capable of integrating multiple 

models for prediction in management models. Optimized operations based on the average 

predictions show more reliable management outcomes than those from one simulation 

model. However, the optimized operation is more conservative in order to avoid 

constraint violations elevated by considering many models. Incorporation of conceptual 

model uncertainty and parameter uncertainty results in a 28% and 54% decrease in 

optimal yields if only conceptual model and parameter uncertainty are assessed, 

respectively.  

 

Groundwater models are imperfect representations of real world systems. Different 

models have specific strengths in capturing different aspects of real world processes. 

Multi-model averaging methods can take advantage of the diverse abilities in different 

competing predictions (Duan et al., 2007; Ajami et al., 2006). The use of multiple sets of 

model weights to generate model predictions is a method that emphasizes the strengths of 

individual models in capturing different observation periods. This is achieved by 

combining the calibration and validation data. Although we cannot prove here that the 

likelihood of this model being the most appropriate, we can use current knowledge and 

the reliable data we have to make robust decisions. Doing so will help to reduce the 

inherent uncertainty and improve decisions. This study has illustrated how the model 
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averaging method can be used to generate probabilistic optimization predictions from 

several competing individual predictions.  

 

Although accounting for all sources of uncertainty is very important in predicting 

environmental and management problems, the techniques described/offered in the 

literature are too computationally demanding. The methods used to account for the main 

sources of uncertainty presented here provide the required practical and comprehensive 

uncertainty analysis and can be applied to other groundwater management applications, 

but with a reduced computational expense. 

 

6.2 Recommendations for future research 

 

Application of the proposed method to a real aquifer system has demonstrated the 

importance of conceptual model uncertainty analysis. In this case study, the alternative 

conceptual models provided fair approximations of the underlying groundwater system. 

In this data-poor system, model weights were calculated based on hydraulic heads and 

used for multi-model aggregation of variable different from heads.  When model weights 

obtained solely from head targets were also used for optimal yield estimation in a 

management context, the information content of the heads was relatively low to 

discriminate between alternative conceptual models. This situation may regularly be 

found in real applications since an incomplete set of groundwater heads may be the only 

data available for the modeling task. If other sources of data, such as river discharge 

measurement, groundwater flow observations, or groundwater age data were considered, 

model weights and the relative importance of the data may vary. 

 

The main conclusion of this study is that multi-model averaging should be considered as 

an important tool for quantifying predictive uncertainty in groundwater management 

practices. However, the only uncertainties considered in this study involve the conceptual 
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model and model parameter errors. Not covered are the quantifying uncertainty 

associated with scenario uncertainty for example, the effect of climate change, changes in 

groundwater development plans, and the application of the proposed methodology to a 

transient case. In addition, the uncertainty associated with optimization models, such as 

the layout of decision variables and constraints and the formulation of any optimization 

model should be conducted in the future.  
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Appendix A  
 

Scatter plots of heads residual and 
contours of hydraulic heads at model 
layer 4 in TPA  
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A-1 Scatter plots of heads residual and contours of hydraulic heads at 

model layer 4 in TPA simulated by model H1R1B1, H1R1B2, H1R2B1, and 

H1R2B2 
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A-2  Scatter plots of heads residual and contours of hydraulic heads at 

model layer 4 in TPA simulated by model H2R1B1, H2R1B2, H2R2B1, and 

H2R2B2 
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A-3  Scatter plots of heads residual and contours of hydraulic heads at 

model layer 4 in TPA simulated by model H3R1B1, H3R1B2, H3R2B1, and 

H3R2B2 
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Appendix B  
Observed vs. simulated heads for the 
groundwater model of the TPA 
 

 

B-1 Observed vs. simulated heads for model H1R1B1, H1R1B2, H1R2B2, 

and H1R2B2 
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B-2 Observed vs. simulated heads for model H2R1B1, H2R1B2, H2R2B1, 

and H2R2B2 

 

B-3 Observed vs. simulated heads for model H3R1B1, H3R1B2, H3R2B2, 

and H3R2B2 
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Appendix C 
 

Optimized yields in each well for 
twelve alternative models (unit: m3/d) 
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Name Zone H1R1B1H1R1B2H1R2B1H1R2B2 H2R1B1H2R1B2H2R2B1H2R2B2

DGR2 1 245 58 87 168 310 45 110 155

F0635 1 336 36 561 600 323 581 219 20

F0636 1 367 87 561 400 65 523 387 180

GE118 1 200 361 155 310 323 323 371 71

PWDF 1 20 387 142 168 52 90 374 76

S0894 1 48 142 87 90 155 200 20 26

S0915 1 90 97 65 194 800 284 271 31

S1925 1 45 148 32 232 245 26 39 310

T04 1 310 323 90 181 103 619 187 206

T05 1 142 181 181 142 490 671 323 45

T06 1 361 103 94 123 774 490 26 181

T07 1 136 348 348 149 723 90 323 206

T09 1 129 871 600 400 20 26 297 284

T10 1 58 503 142 181 727 20 129 232

T11 1 20 65 129 45 20 52 71 65

T12 1 39 400 84 129 26 20 65 710

T13 1 335 258 348 136 465 20 168 194

T14 1 297 523 129 116 361 233 181 97

U833 1 168 968 361 187 323 675 245 500

B82 2 271 523 936 187 20 297 542 161

C30 2 416 26 26 284 77 39 123 483

DOH1 2 20 58 232 407 297 748 65 20

DOH2 2 474 168 348 387 271 284 52 161

DP251 2 174 52 52 39 361 136 77 77

DP321 2 129 61 103 200 26 194 103 129

F0234 2 155 20 387 374 322 58 141 581

MP1 2 387 542 367 71 26 90 20 329

P14 2 123 148 20 77 116 168 271 581

S0913 2 32 123 361 361 135 90 116 64

S1927 2 58 39 39 187 142 129 26 348

S1928 2 110 387 94 187 52 263 168 383

THK3 2 58 23 52 39 20 20 187 32

TP06 2 232 200 116 187 20 20 200 20

Y1984 2 65 903 232 374 639 39 323 270

Y1985 2 155 48 55 200 32 58 20 20

BR13 3 323 20 200 20 20 142 77 69

BR15 3 103 77 32 39 38 65 20 109

BR17 3 65 20 39 52 26 58 84 20

C28 3 484 87 194 264 116 20 310 232
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Name Zone H3R1B1 H3R1B2 H3R2B1 H3R2B2

DGR2 1 335 20 68 97

F0635 1 58 323 123 194

F0636 1 503 323 310 400

GE118 1 284 561 32 97

PWDF 1 431 270 181 97

S0894 1 40 20 20 45

S0915 1 626 20 200 200

S1925 1 58 136 77 61

T04 1 194 297 94 45

T05 1 81 110 20 374

T06 1 168 81 180 161

T07 1 194 20 52 23

T09 1 23 475 336 81

T10 1 77 161 361 968

T11 1 161 45 245 374

T12 1 77 77 77 200

T13 1 32 187 148 116

T14 1 155 212 374 71

U833 1 348 20 348 600

B82 2 20 284 71 232

C30 2 445 271 23 74

DOH1 2 71 219 116 58

DOH2 2 110 271 65 68

DP251 2 71 161 55 20

DP321 2 42 77 65 90

F0234 2 374 387 310 194

MP1 2 100 323 97 55

P14 2 229 400 134 587

S0913 2 278 286 20 84

S1927 2 142 20 20 39

S1928 2 161 71 200 54

THK3 2 65 52 39 20

TP06 2 20 90 800 68

Y1984 2 76 400 380 361

Y1985 2 81 103 20 45

BR13 3 123 20 142 200

BR15 3 142 20 45 20

BR17 3 94 20 45 82

C28 3 58 320 84 20
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Name Zone H1R1B1H1R1B2H1R2B1H1R2B2 H2R1B1H2R1B2H2R2B1H2R2B2

DGR3 3 252 58 90 81 323 26 39 174

DP329 3 61 542 194 58 103 290 90 368

DP495 3 323 523 297 383 97 380 161 84

F0598 3 90 71 129 161 367 20 123 252

GF99 3 110 84 68 71 20 20 181 52

KTV 3 81 45 87 20 407 39 39 81

P25 3 542 80 207 168 65 83 26 245

PW95 3 97 20 174 174 77 20 374 142

PWA1 3 39 20 90 58 26 26 128 77

PWA2 3 65 20 29 32 103 58 20 371

RTB169 3 148 372 65 91 368 39 238 242

RTB177 3 20 20 465 20 110 90 26 402

S0472 3 48 26 387 20 65 20 26 20

S0702 3 258 187 32 20 310 78 20 65

S0895 3 374 77 97 154 336 323 26 174

S1960 3 445 400 36 84 155 258 294 39

TP01 3 142 26 90 155 258 52 39 177

TP08 3 26 128 161 39 323 116 168 32

Z91 3 58 20 36 138 206 77 310 242

BR01 4 52 116 161 52 174 122 26 32

BR02 4 26 168 20 271 20 45 77 135

BR03 4 90 245 400 28 20 185 116 63

BR04 4 97 97 97 110 20 20 39 20

BR05 4 181 61 136 142 70 20 136 39

BR06 4 90 336 61 258 65 20 194 142

BR07 4 77 232 20 20 26 26 148 374

BR08 4 354 155 51 174 161 20 103 307

BR09 4 52 29 20 181 20 20 26 115

BR11 4 103 20 65 168 122 20 39 128

BR12 4 96 86 187 167 58 50 71 128

BR14 4 20 71 110 20 20 20 45 168

BR16 4 26 39 87 161 45 20 122 77

BR18 4 20 136 97 20 103 20 20 123

BR19 4 65 77 83 174 252 38 20 245

BR21 4 39 180 20 32 26 38 20 97

BR22 4 200 20 52 20 70 51 26 26

BR23 4 65 174 20 103 20 20 45 52

BR24 4 20 65 119 96 103 38 20 103

BR25 4 116 71 200 20 20 20 20 32
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Name Zone H3R1B1 H3R1B2 H3R2B1 H3R2B2

DGR3 3 74 20 55 96

DP329 3 115 323 61 110

DP495 3 45 374 61 321

F0598 3 20 297 593 336

GF99 3 20 77 20 20

KTV 3 215 97 71 20

P25 3 598 187 181 116

PW95 3 54 74 264 361

PWA1 3 46 52 26 71

PWA2 3 107 39 20 39

RTB169 3 20 123 284 65

RTB177 3 207 48 33 71

S0472 3 150 142 90 77

S0702 3 46 271 194 94

S0895 3 913 168 87 29

S1960 3 45 97 29 65

TP01 3 94 161 200 600

TP08 3 61 20 90 129

Z91 3 26 190 58 148

BR01 4 28 87 194 161

BR02 4 20 81 87 26

BR03 4 23 26 57 97

BR04 4 71 26 20 135

BR05 4 32 65 116 20

BR06 4 13 116 32 183

BR07 4 20 65 97 20

BR08 4 23 77 245 71

BR09 4 103 23 100 180

BR11 4 45 65 65 20

BR12 4 64 199 155 29

BR14 4 20 52 20 20

BR16 4 45 20 20 20

BR18 4 51 52 26 20

BR19 4 20 39 65 179

BR21 4 32 39 161 26

BR22 4 20 58 20 58

BR23 4 57 32 23 100

BR24 4 20 71 97 65

BR25 4 87 77 26 30
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Name Zone H1R1B1H1R1B2H1R2B1H1R2B2 H2R1B1H2R1B2H2R2B1H2R2B2

BR26 4 136 90 168 20 20 20 58 39

BR27 4 39 58 174 20 20 38 97 58

DP327 4 245 581 407 116 212 245 39 600

P23 4 97 245 100 310 129 84 141 77

P26 4 39 77 523 97 245 284 187 39

TP02 4 161 155 103 310 26 103 167 58

D1724 5 26 48 581 574 20 65 142 600

DGR1 5 55 103 97 20 161 65 58 561

F0233 5 297 58 361 419 310 161 52 187

F0943 5 36 39 23 20 142 65 129 84

F0999 5 81 65 129 194 20 156 207 103

P15 5 252 123 400 174 212 20 361 484

P16 5 129 110 387 374 323 155 142 109

P27 5 64 194 148 65 154 26 97 116

P34 5 20 155 20 168 20 116 135 70

P53 5 29 103 65 20 45 181 20 20

P71 5 39 284 387 251 361 315 45 25

RTB091 5 84 194 484 284 400 20 52 20

S0292 5 180 58 32 123 232 103 136 20

S1568 5 20 348 52 181 187 187 200 20

C59 6 20 103 581 200 20 20 20 271

DQ225 6 96 222 258 20 264 20 374 32

GF100 6 58 81 387 277 155 20 136 226

PW91 6 161 39 81 142 361 20 271 194

PW92 6 323 20 87 168 142 173 97 468

PWD1 6 355 39 20 310 187 97 148 81

S0309 6 20 20 61 387 129 161 116 97

S0499 6 348 20 297 136 129 150 129 371

S0875 6 90 61 174 284 310 200 310 387

S0969 6 232 194 45 200 187 116 187 452

S1618 6 245 155 65 103 400 91 142 129

S1947 6 1000 39 387 374 206 20 336 387

S1949 6 26 90 97 361 20 134 45 348

SC 6 323 77 77 20 180 26 194 748

TX9 6 23 77 77 103 219 20 84 355

GF98 7 123 194 116 148 194 52 323 310

KP 7 71 77 600 561 52 142 71 83

P17 7 581 20 561 336 142 387 136 361



188 

 

 
  

Name Zone H3R1B1 H3R1B2 H3R2B1 H3R2B2

BR26 4 174 26 36 20

BR27 4 74 32 77 366

DP327 4 232 70 87 42

P23 4 177 106 168 39

P26 4 20 20 84 174

TP02 4 20 20 48 32

D1724 5 76 161 20 87

DGR1 5 271 83 590 52

F0233 5 129 20 168 81

F0943 5 90 39 168 387

F0999 5 20 20 194 187

P15 5 99 58 129 160

P16 5 94 561 181 65

P27 5 89 90 181 26

P34 5 152 20 103 20

P53 5 20 45 115 77

P71 5 75 74 39 20

RTB091 5 20 39 20 94

S0292 5 464 97 187 65

S1568 5 166 77 219 20

C59 6 20 81 29 74

DQ225 6 20 26 20 57

GF100 6 97 84 51 20

PW91 6 20 116 20 45

PW92 6 105 26 57 71

PWD1 6 106 58 20 23

S0309 6 864 84 93 29

S0499 6 331 155 71 581

S0875 6 88 400 71 187

S0969 6 360 97 39 161

S1618 6 78 87 200 116

S1947 6 190 181 77 65

S1949 6 20 23 58 20

SC 6 20 26 84 90

TX9 6 20 36 74 87

GF98 7 87 39 90 42

KP 7 1548 374 20 61

P17 7 216 161 241 903
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Name Zone H1R1B1H1R1B2H1R2B1H1R2B2 H2R1B1H2R1B2H2R2B1H2R2B2

PWLR 7 155 52 61 387 90 39 97 194

S0649 7 800 219 387 155 245 323 103 210

S0971 7 348 374 103 155 123 348 100 187

S1377 7 181 297 97 26 20 174 142 480

S1378 7 142 387 181 42 154 310 174 20

S1649 7 48 367 87 348 161 284 52 129

S1932 7 148 20 55 32 45 90 48 219

TO2 7 336 384 161 465 232 20 387 355

TO3 7 426 839 348 426 97 225 20 1000

ARD2 8 271 336 310 20 516 238 387 148

BHP 8 219 194 168 334 232 20 258 371

F0162 8 36 181 345 20 200 90 136 155

F0279 8 74 23 20 110 77 109 129 309

GF97 8 45 20 97 180 206 20 123 20

S0297 8 129 187 161 103 52 52 71 403

S0311 8 523 77 35 484 52 251 155 123

S0916 8 426 100 600 310 271 20 194 77

S0938 8 77 613 561 581 310 523 523 452

S1159 8 387 181 400 400 336 194 123 403

S1367 8 542 20 400 77 297 26 20 168

S1599 8 173 387 84 110 400 323 71 181

S1600 8 20 374 129 348 65 194 161 339

S1701 8 52 20 55 52 361 45 232 129

S1931 8 245 348 465 561 129 39 161 348

CTC 9 90 22 97 155 387 168 375 374

D1723 9 84 20 87 84 58 52 136 936

DQ224 9 110 348 400 116 136 45 71 258

F0941 9 219 77 58 271 136 20 110 103

F0942 9 207 200 400 374 207 135 361 110

F0997 9 374 374 42 542 52 71 232 258

F0998 9 168 323 181 562 336 232 374 123

F1303 9 58 123 129 97 142 271 251 84

S0248 9 87 161 32 194 32 20 129 330

S1926 9 103 58 20 65 39 52 20 168

TP10 9 232 200 180 200 323 20 200 468

Sum 28136 27771 29134 29296 28257 20713 22926 32880
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Name Zone H3R1B1 H3R1B2 H3R2B1 H3R2B2

PWLR 7 354 387 65 39

S0649 7 746 387 581 297

S0971 7 21 58 58 400

S1377 7 61 87 42 84

S1378 7 70 374 68 187

S1649 7 78 57 20 94

S1932 7 20 20 58 23

TO2 7 174 200 541 32

TO3 7 290 445 87 45

ARD2 8 103 245 361 168

BHP 8 503 284 297 148

F0162 8 36 174 103 123

F0279 8 284 142 77 400

GF97 8 68 503 161 194

S0297 8 62 36 61 81

S0311 8 216 39 39 42

S0916 8 45 52 110 387

S0938 8 405 155 387 400

S1159 8 737 181 142 103

S1367 8 79 77 26 194

S1599 8 677 52 254 84

S1600 8 158 116 20 284

S1701 8 100 97 74 23

S1931 8 168 368 426 361

CTC 9 97 348 97 29

D1723 9 77 110 71 68

DQ224 9 65 387 94 123

F0941 9 71 136 52 94

F0942 9 407 400 25 94

F0997 9 39 116 20 90

F0998 9 71 600 374 1000

F1303 9 97 110 65 71

S0248 9 42 77 97 29

S1926 9 90 74 103 77

TP10 9 84 200 90 97

Sum 23859 22912 19897 22579
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Appendix D 
Model weights of 12 realizations based 
on GLUE weight (with a shape factor 
of N=1) 
 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

H1R1B1 0.075 0.075 0.076 0.077 0.084 0.086 0.087 0.087 0.088 0.088 0.088 0.090 

H1R1B2 0.077 0.078 0.079 0.079 0.081 0.082 0.082 0.086 0.088 0.089 0.089 0.089 

H1R2B1 0.077 0.079 0.080 0.080 0.081 0.082 0.086 0.086 0.087 0.088 0.088 0.088 

H1R2B2 0.087 0.086 0.079 0.085 0.082 0.085 0.087 0.078 0.077 0.083 0.085 0.087 

H2R1B1 0.055 0.085 0.089 0.088 0.085 0.087 0.084 0.086 0.078 0.085 0.089 0.089 

H2R1B2 0.082 0.077 0.083 0.084 0.085 0.081 0.083 0.086 0.086 0.085 0.080 0.088 

H2R2B1 0.084 0.086 0.080 0.087 0.082 0.077 0.085 0.086 0.082 0.083 0.084 0.085 

H2R2B2 0.081 0.081 0.082 0.082 0.082 0.082 0.082 0.083 0.085 0.086 0.086 0.087 

H3R1B1 0.081 0.085 0.088 0.087 0.084 0.087 0.086 0.085 0.068 0.076 0.085 0.088 

H3R1B2 0.084 0.084 0.080 0.085 0.085 0.083 0.081 0.086 0.086 0.078 0.082 0.086 

H3R2B1 0.077 0.088 0.087 0.089 0.086 0.075 0.074 0.088 0.089 0.082 0.078 0.087 

H3R2B2 0.084 0.086 0.087 0.089 0.078 0.076 0.079 0.088 0.081 0.085 0.080 0.087 
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Appendix E 
Statistics for sustainable yield estimated 
obtained from 12 realization models 
 

  H1R1B1 H1R1B2 H1R2B1 H1R2B1 

Zone Mean StDev Mean StDev Mean StDev Mean StDev 

1 3428 503 6426 504 4258 423 5617 484 

2 3227 565 3715 313 3721 416 3088 926 

3 4100 834 3808 468 3447 377 3773 395 

4 3246 679 4552 587 3684 700 2864 729 

5 1820 185 2313 270 3281 389 3996 718 

6 3037 400 2194 284 3077 334 4155 754 

7 2864 253 3283 375 3814 624 4498 575 

8 3456 501 3508 360 3867 498 4793 572 

9 1746 371 2039 188 2698 378 3557 511 

Total 26923 2875 31838 2210 31847 1838 36342 3300 

 

 

  H2R1B1 H2R1B2 H2R2B1 H2R2B1 

Zone Mean StDev Mean StDev Mean StDev Mean StDev 

1 5368 729 3728 319 4679 933 4773 807 

2 3028 892 1919 270 3543 396 3246 467 

3 3700 620 2192 555 3043 428 3937 886 

4 2681 958 1777 291 2686 589 2904 403 

5 1339 201 1238 309 1949 383 2780 527 

6 2252 593 1517 330 3080 497 3928 1031 

7 1869 397 2075 338 2758 351 3701 740 

8 3616 826 2514 455 3292 556 3398 741 

9 1474 440 1199 206 3106 650 3403 418 

Total 25327 2646 18160 825 28136 3067 32069 3995 
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  H3R1B1 H3R1B2 H3R2B1 H3R2B1 

Zone Mean StDev Mean StDev Mean StDev Mean StDev 

1 3562 420 5233 562 4335 307 3888 434 

2 3593 1013 4585 878 3169 351 2940 355 

3 3016 631 3431 654 3443 610 3686 819 

4 2247 465 2860 653 2410 282 2776 514 

5 2290 631 2397 463 2155 377 2099 453 

6 1881 425 2204 679 1404 397 1770 419 

7 3009 672 2900 568 2066 537 2011 331 

8 2698 503 4515 306 2894 495 2745 349 

9 856 289 2599 606 1356 308 1943 479 

Total 23151 3112 30724 3209 23231 2082 23858 3007 
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Appendix F  
 

Predictive intervals (90%) and mean 
predicted values based on cumulative 
predictive distribution obtained from 
GLUE methodology 
 

 

Area 

H1R1B1 H1R1B2 H1R2B1 H1R2B2 

P5 P50 P95 P5 P50 P95 P5 P50 P95 P5 P50 P95 

1 2603 3468 4002 5573 6426 7138 3570 4258 4846 4896 5617 6261 

2 2232 3240 3983 3188 3715 4066 3132 3721 4195 2109 3088 4789 

3 2800 4187 5068 3246 3808 4660 2891 3447 4057 3335 3773 4402 

4 2058 3284 3963 3782 4552 5463 2784 3684 4807 1997 2864 4217 

5 1428 1775 2074 1882 2313 2699 2796 3281 3880 3098 3996 5173 

6 2335 3000 3486 1862 2194 2719 2639 3077 3632 2941 4155 5057 

7 2390 2871 3141 2680 3283 3718 3331 3814 4899 3832 4498 5398 

8 1343 2053 2530 1674 2016 2361 1724 2253 2543 2547 2808 3250 

9 892 1315 1641 1360 1578 1921 1630 1815 2017 1623 2309 3035 

Total 20026 25192 28082 27157 29885 32860 26973 29350 32453 30218 33109 39261 
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Area 

H2R1B1 H2R1B2 H2R2B1 H2R2B2 

P5 P50 P95 P5 P50 P95 P5 P50 P95 P5 P50 P95 

1 3948 5119 6162 3335 3728 4245 2910 4275 5317 3600 4550 5425 

2 1936 3217 4804 1616 1919 2352 2962 3617 4267 2739 3351 3974 

3 2622 3516 4156 1594 2192 3256 2047 2934 3674 3164 4133 4963 

4 2007 2807 4546 1484 1777 2317 2064 2505 2916 2413 2987 3736 

5 1656 2219 2939 721 1238 1620 1241 1749 2281 2171 2694 3305 

6 1418 2264 3144 1139 1517 2057 2545 3258 3896 3433 4172 4959 

7 1228 1933 2633 1619 2075 2633 2043 2613 3183 2650 3665 4313 

8 772 1477 2102 1006 1244 1612 875 1461 1834 1271 1666 2150 

9 720 1150 1678 678 896 1058 1616 2209 2660 2551 3098 3406 

Total 19848 23701 26835 15130 16586 18149 21163 24620 27643 27246 30316 32653 

             

Area 

H3R1B1 H3R1B2 H3R2B1 H3R2B2 

P5 P50 P95 P5 P50 P95 P5 P50 P95 P5 P50 P95 

1 3128 3637 4180 4460 5289 6090 3895 4318 4856 2747 3397 4135 

2 2735 3666 5160 3241 4688 5506 2659 3178 3708 2685 3405 4065 

3 2199 3059 3844 2641 3545 4201 2345 3423 4187 2521 3479 4575 

4 1565 2287 2891 1926 2936 3877 1956 2424 2824 2436 3194 3797 

5 1616 2330 3355 1832 2410 3119 1663 2121 2750 1296 2061 3011 

6 1436 1908 2476 1629 2250 3318 842 1471 2226 1226 1777 2292 

7 1822 3077 3784 2285 2941 3797 1365 2041 2820 1341 1915 2464 

8 1065 1342 1734 1901 2488 2816 713 1531 1997 829 1188 1714 

9 653 906 1291 1252 1812 2417 548 933 1297 788 1016 1272 

Total 19492 22213 25856 23836 28359 31716 18379 21440 23881 18725 21432 25490 

 

 




