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Abstract

I examine two methods for modeling the temporal dynamics of optical communication

networks that rapidly and accurately simulate the statistics of unlikely but physically sig-

nificant system configurations. First, I implement a fiber emulator based upon a random

uniform walk over the Poincaré sphere that reproduces the expected polarization temporal

autocorrelation statistics with a small number of emulator sections. While easy to imple-

ment numerically, the increased computational efficiency afforded by this approach allow

simulations of the PMD temporal dynamics to be preferentially biased towards regions

of low probability using standard multicanonical methods for the first time. Then, in a

subsequent study, I present a general transition matrix formalism that additionally applies

to other time-dependent communication systems. I compare the numerical accuracy of

several transition matrix sampling techniques and show that straightforward modifications

of the acceptance rule can significantly increase computational efficiency if the numerical

parameters are chosen to ensure a small self-transition probability within each discretized

histogram bin. The general applicability of the transition matrix method is then demon-

strated by calculating the outage dynamics associated with the hinge model of polarization

evolution and, separately, fading in wireless communication channels.

Further, I develop a Magnus expansion formalism for the rapid and accurate estima-

tion of the frequency dynamics of optical polarization that extends the work of Ref. [94] to

systems with PMD and PDL. My approach reproduces the power-series expansion and dif-

ferential equation solution techniques of previous authors while also preserving the required

symmetries of the exact solution in every expansion order. This significantly improves the

bandwidth of high estimation accuracy, making this method well-suited to the stochastic

analysis of PMD and PDL induced system penalty while also yielding physically realizable

operator expansions applicable to the joint compensation of PMD and PDL.

Finally, I employ high-speed polarimetery to demonstrate experimentally that low-

amplitude mechanical excitations of commercially available dispersion compensation mod-

ules can excite high-frequency, > 75 × 103 rotations/s, polarization transients that are
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nearly invariant between successive measurements. I extend this procedure to measure-

ments of the transient evolution of PMD.

iv



Acknowledgments

I would like to thank my supervisor, Prof. David Yevick, for the guidance and support

that made this work possible, and Dr. Maurice O’Sullivan of Ciena Inc. for many help-

ful discussions. Financial support for this thesis was provided by Ciena Inc., the Natural

Sciences and Engineering Research Council of Canada (NSERC), the Centre for Elec-

trophotonic Materials and Devices (CEMD) and the Ontario Research and Development

Challenge Fund (ORDCF).

v



Dedication

For Kerry and Hope.

vi



Contents

List of Figures xi

List of Symbols xix

Glossary xx

1 Introduction 1

1.1 PMD in optical communication systems . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Linear algebra of optical polarization . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Jones vectors in bra-ket notation . . . . . . . . . . . . . . . . . . . 7
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Chapter 1

Introduction

An overview of polarization mode dispersion (PMD) and polarization dependent loss (PDL)

in optical communication systems is presented in Section 1.1 while Section 1.2 discusses

the material contributions of this thesis. The remaining Sections 1.3-1.5 review the linear

algebra of polarization optics and present a fiber emulator model for the stochastic analysis

of PMD and PDL.

1.1 PMD in optical communication systems

Optical communication fibers are often deployed in uncontrolled environments, buried be-

side highways or rail lines, mounted to bridge crossings or strung in aerial cables. The fiber

is continuously subjected to the time-varying random mechanical forces of wind, vibrations

from passing vehicles and trains or from the periodic thermal variations of daytime heating

and central-office air conditioning. These applied external forces together with intrinsic

fiber stress tend to modulate the refractive index of the silica glass through the elasto- and

thermo-optic effects [12], resulting in slight variations in the propagation constant between
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two preferential optical axes aligned with and perpendicular to the principal direction of

the mechanical perturbation. To first order, polarized light at the input of the fiber is

resolved along each optical axis, or polarization mode, with light coupled to each mode

propagating with a different group velocity. For a fiber of length L, the delay

τ =
L

vslow
g

− L

vfast
g

(1.1)

between polarization modes [1,12,42,47] is termed the differential group delay (DGD) of the

optical fiber, with differing group velocities vg along each of the orthogonal fast and slow

optical polarization axes, respectively. This effect, termed polarization mode dispersion

(PMD), varies randomly in time with both the DGD and orientation of the fast and slow

axes driven by the stochastic nature of the fiber’s immediate physical environment.

At the low ≤ 2.5 Gb/s data rates common in the early 1990s however the transmission

impairments due to PMD were typically negligible, with the notable exception of long

undersea applications in which cable lengths often exceed 2000 km [9]. Towards the mid

1990s, PMD was recognized as a severe system impairment limiting all-optical transmission

distances to < 1000 km and increasing network deployment costs through a requirement

for a larger number of expensive electrical repeaters as optical systems operating at 10

Gb/s began widespread deployment. Recent work has even identified PMD as an impor-

tant mechanism for the decoherence of polarization-entangled photon pairs transmitted

over fiber-based quantum communication systems [17,77]. To date more than 1500 articles

have been written on PMD, its stochastic properties and strategies for its optical or elec-

tronic compensation, providing some indication of its relative importance to the optical

engineering and research community.

PMD is particularly problematic in high bit rate intensity modulated systems based

upon the direct detection of the received signal power. Here, the relative propagation

delay between principal polarization axes and associated broadening of the received op-

tical pulse can significantly increase the probability of detection error and, accordingly,
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significant research effort has been devoted to the active tracking and compensation of

PMD [49,68,71,74,120]. Compensating PMD in the optical domain however requires hard-

ware that must adaptively track high speed polarization transients occurring on millisecond

time scales. Polarization transients in aerial fiber for example can occur at frequencies rang-

ing from several hundred hertz to kilohertz [18, 113] while, as I will demonstrate in later

chapters, mechanically induced transients can exceed 105 rotations of the Poincaré sphere

per second. Optically based PMD compensators operating at these rates have proven to be

both complex and expensive to construct. Electronic compensation of the received signal

on the other hand offers the high speed response required for transient polarization control,

however, the optical phase information required for complete compensation of the DGD is

lost as a result of intensity detection, reducing the efficiency of many electronic compen-

sation schemes [85]. Currently, no commercially viable PMD compensation solutions have

found widespread adoption in direct detection systems.

Recently there has been significant renewed interest in transmission systems based upon

coherent heterodyne detection, facilitated by the introduction of electronic analog to dig-

ital converters (ADC) operating at sampling rates exceeding 20 GSamples/s. Since in a

coherent lightwave system the received signal is proportional to the optical field and not

its intensity, recent research [35, 84, 100] has focused on the implementation of complex

digital modulation formats, such as quadrature phase shift keying (QPSK), that exploit

both the phase and amplitude of the propagating electric field to increase the transmit

symbol rate, while maintaining a spectral width equivalent to a lower baud rate intensity

modulated signal. Multiplexing the transmission onto each of the fiber’s two orthogonal

polarization modes further doubles the spectral efficiency. In this approach, linear trans-

mission impairments such as chromatic dispersion and PMD are effectively compensated

electronically using parallel banks of linear tap-delay filters operating on the optical field

following coherent detection. Several authors have in fact demonstrated error free trans-

mission over several thousands of kilometers of fiber with mean DGD values exceeding 50

3



ps [83]. Though less sensitive to PMD induced pulse distortion, the receive electronics must

actively adapt to rapid changes in the polarization state to ensure correct polarization de-

multiplexing during high speed transient events, increasing overall system complexity and

cost [82].

The temporal dynamics of strongly mode coupled fiber can be subdivided into two

broad regions of polarization activity in which (1) time-dependent effects are assumed to

arise from a small number of locations in the fiber subjected to time varying physical envi-

ronment changes or (2) variations of the fiber’s physical environment act uniformly along

its length. The so-called “hinge-model” of polarization activity of case (1) is motivated

by long-term measurements of PMD in some systems [4, 5] that indicate the presence of

long, stable sections of fiber whose birefringence varies on the time scale of several hours to

days modulated by rapidly varying, localized regions of polarization activity. Conversely,

in case (2) measurements of aerial and buried fiber links [18,61] often exhibit a stochastic

variation of the output polarization and, by extension, the PMD, that is well approximated

by a diffusion of the local fiber birefringence over the Poincaré sphere [60]. While these

temporal characteristics have been previously measured in a variety of systems and de-

vices [4,61,129], the numerical modeling of polarization evolution has been mainly limited

to qualitative analyses based upon fiber emulators [57], approximate methods involving a

random walk over the DGD magnitude and its frequency derivative [129], or semi-analytic

approaches based upon the longitudinal evolution of PMD in a continuum limit [3, 80].

In communication system simulations, biased Monte-Carlo methods such as the mul-

ticanonical or importance sampling techniques have been widely employed to determine

static quantities such as the probability distribution functions (pdfs) of the DGD or of

the system penalty [8, 74, 123]. To model the temporal dynamics of an optical system,

however, the distribution of the times required to transition between two groups of states

with different physical properties must be calculated. In these cases, as I will demonstrate

in subsequent chapters, the multicanonical algorithm can be reformulated as a “transition
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matrix” method [34,110,115], to adapt such calculations efficiently towards physically un-

likely but practically important configurations. This method is applied to the evaluation

of the relative probability for transitions between any two states of an optical system over

a single time step and, from the resulting formalism, I will compute the pdf of the time

duration of outages in an optical system affected by PMD. This method can extract infor-

mation from the low-probability regions of the pdf far more efficiently than conventional

Monte-Carlo techniques.

1.2 Contributions of this thesis

For long lengths of transmission fiber, both the orientation of the fast and slow polarization

axes and the DGD vary stochastically with optical wavelength. In this case, the first-order

model of PMD as a temporal delay between two orthogonal polarization modes only holds

over a finite and limited range of optical frequencies. Consequently, several authors [36,

38,51,64] have developed models relating the frequency variation of the Jones polarization

transfer matrix to Taylor orders of the PMD about the optical carrier frequency. Here,

I will advance the Magnus expansion formalism introduced previously within Refs. [94–

98] by analyzing the frequency variation of both PMD and polarization dependent loss

(PDL) in optical networks. I will demonstrate that the Magnus formalism both improves

the frequency interval of high PMD estimation accuracy relative to previously published

works [30,36,51], and provides for the first time a direct inverse mapping between arbitrary

Taylor orders of PMD and PDL and the Jones/Mueller polarization matrix. The resulting

formalism has since been adapted by other groups [25] to the experimental determination

of higher order PMD effects in optical fiber while also finding interest in the wider research

community [11]. In addition, I will present an exact recursive formula for arbitrary orders of

the frequency dependent PMD and PDL for a finite section fiber emulator that eliminates

the need for direct, numerical differentiation of the Jones or Mueller matrix. The reduction
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in computation time afforded by this approach makes it well suited to statistical analyses

of PMD and PDL induced pulse distortion in optical networks [52].

While the temporal characteristics of the state of polarization and PMD has been pre-

viously measured in a variety of systems and devices [4,61,129] the numerical modeling of

polarization evolution has been limited to qualitative numerical analyses based upon fiber

emulators [57], approximate methods involving a random walk over the DGD magnitude

and its frequency derivative [129], or semi-analytic approaches based upon PMD in the

continuum limit [3,80]. These methods have typically been difficult to implement numeri-

cally, while the former two only approximate the expected PMD temporal autocorrelation

statistics. In this thesis, I will develop a fiber emulator model for the temporal evolution

of PMD based upon a random walk over the unit sphere that accurately simulates the

temporal dynamics of PMD in the distributed limit with only a few emulator sections,

potentially providing a significant increase in computational efficiency relative to previ-

ously published results. This model, while straightforward to implement, further allows a

complete analytic characterization of the autocorrelation properties of optical fiber emula-

tor. Finally, I will present a novel modification of the fiber emulator that allows the PMD

temporal dynamics to be biased towards low probability but physically significant regions

of polarization activity using the standard multicanonical algorithm.

Transition matrix algorithms have received significant recent attention due to their

improved statistical qualities as compared to standard Markov chain Monte-Carlo meth-

ods [34, 105, 115]. In this thesis, I adapt the basic transition matrix procedure to the

temporal dynamics of PMD by associating each transition in the Markov chain with a

simulated temporal step, leading to the accurate reproduction of the temporal dynamics

of PMD induced system outages using orders of magnitude fewer samples as compared

to traditional methods. While similar in context to the time-dependent PMD emulator

introduced previously, the transition matrix method is more generally applicable to other

physical systems whose global observable, ~E, evolves according to a Markov walk over its
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internal state space. In later sections I will demonstrate the wider applicability of the

approach by applying the transition matrix method to the estimation of the duration of

fading events in wireless communication systems [117]. I will then discuss a novel modifica-

tion of the transition matrix technique that can significantly improve the efficiency of the

sampling of low probability regions as compared to standard numerical simulations based

upon the multicanonical algorithm. This can be particularly advantageous in experimental

contexts, as in Refs. [75,76], where the data acquisition time limits the number of samples

that can be practically measured, or in system simulations where each determination of

the system output observable may require time intensive calculations [94, 112].

1.3 Linear algebra of optical polarization

This section provides an overview of the Pauli spin vector description of electric field

polarization, using the notation adopted in Refs. [22, 40, 47], relevant for the analysis of

PMD and PDL in subsequent sections. More detailed discussions can be found in Refs. [22,

47, 94] or in quantum mechanics texts dealing specifically with spin-1/2 systems.

1.3.1 Jones vectors in bra-ket notation

In weakly guiding optical fiber the state of polarization (SOP) of a propagating electric

field can be decomposed into a linear combination of two orthogonal polarization basis

vectors, typically the horizontal, |x〉 = [1, 0]T, and vertical, |y〉 = [0, 1]T, linearly polarized

states. An arbitrary linear combination of these two basis vectors results in a general

elliptical SOP described by a complex 2× 1 Jones vector denoted using the “ket” notation
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|A〉 commonly encountered in polarization literature [21, 22] where

|A〉 =





Ax

Ay





= E0 eiδ





cos(θ/2) e+iφ/2

sin(θ/2) e−iφ/2



 . (1.2)

Here, the signs of the complex phase and factors of two are chosen such that the angles θ

and φ specify the orientation of the state of the polarization on the Poincaré sphere, cf.

Section 1.3.2, while δ represents an overall phase common to both polarization modes. E0

is a real valued quantity that is often normalized such that E2
0 represents the power of the

optical field.

Associated with the Jones vector |A〉 is the 1× 2 “bra” vector |A〉† which is written in

bra-ket notation as the symbol

〈A| = |A〉†

=
[

A∗
x, A∗

y

]

= E0 e−iδ
[

cos(θ/2) e−iφ/2, sin(θ/2) e+iφ/2

]

, (1.3)

in which † represents hermitian conjugation. It follows that the magnitude squared of |A〉,
〈A|A〉 = |Ax|2 + |Ay|2 = E2

0 , is the power of the optical field. The inner-product of two

Jones vectors |A〉 and |B〉 is written as 〈A|B〉 with 〈A|B〉 = 〈B|A〉∗ while |A〉 and |B〉 are

orthogonal if 〈A|B〉 = 0.

1.3.2 Stokes vectors and the Poincaré sphere

Aside from an ambiguity in the phase common to both polarization modes, seven mea-

surements are required to determine the Jones vector |A〉, although the number can be
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reduced to four using a suitable linear combination of the results [22]. The first of these

determines the total optical intensity while the remaining six measure the optical power

following variously oriented polarizers. The goal of this section is to introduce the measure-

ments defining the state of polarization, and relate the measurement results to a convenient

three-dimensional “Stokes vector” representation. Apart from being fundamental to the

analytic treatment of PMD and PDL developed in later sections, the Stokes vector descrip-

tion of polarization is the basis of operation for most commercially available polarimeters

and proves to be extremely useful for visualizing the state of polarization.

For simplicity, the following discussion will be limited to the case of a totally polarized

electric field produced for example by the coherent output of a laser. Generalizing the

Stokes vector description to include partially polarized fields such as those produced by

incoherent broadband sources (LEDs), white light, or amplified spontaneous emission, etc.,

instead involves a four-dimensional view of polarization that will be deferred to Chapter 2.

The measurement procedure outlined in the following discussion however applies to both

totally- and partially-polarized electric fields.

The first measurement is that of the total optical power

Ptot = 〈A|A〉

= 〈A|





1 0

0 1



 |A〉

= E2
0 , (1.4)

where the identity matrix was inserted to motivate the subsequent discussion. The next

two measurements determine the optical power following linear polarizers oriented at 0 and

90 deg, i.e. horizontal and vertical polarizations, which are specified in bra-ket notation
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by the inner-products

P0 = 〈A|





1 0

0 0



 |A〉

P90 = 〈A|





0 0

0 1



 |A〉. (1.5)

The first Stokes parameter, A1, is defined as the difference,

A1 = P0 − P90

= 〈A|





1 0

0 −1



 |A〉

= E2
0 cos θ, (1.6)

between the two power measurements, where the last line of Eq. (1.6) was obtained by

inserting the explicit component form of |A〉 from Eq. (1.2). The optical power is then

measured following linear polarizers oriented at 45 and 135 deg,

P45 =
1

2
〈A|





1 1

1 1



 |A〉

P135 =
1

2
〈A|





1 −1

−1 1



 |A〉, (1.7)

with the second Stokes parameter defined as

A2 = P45 − P135

= 〈A|





0 1

1 0



 |A〉

= E2
0 sin θ cosφ. (1.8)
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The final two measurements determine the “circularity” of the polarization state by ob-

serving the power following right- and left- circular polarizers,

Pright =
1

2
〈A|





1 −i
i 1



 |A〉

Pleft =
1

2
〈A|





1 i

−i 1



 |A〉, (1.9)

with the third Stokes parameter

A3 = Pright − Pleft

= 〈A|





0 −i
i 0



 |A〉

= E2
0 sin θ sinφ. (1.10)

Consequently, combining Eqs. (1.6), (1.8), (1.10) the angles

φ = atan

(

A3

A2

)

θ = atan





√

(

A2

A1

)2

+

(

A3

A1

)2


 (1.11)

specifying the orientation of the Jones vector in Eq. (1.2) are found to be completely

determined through simple measurements involving only the optical power following left-

and right-circular polarizers and linear polarizers aligned at 0, 45, 90, and 135 deg. Notice

that this measurement procedure is invariant with regards to the overall phase, δ, common

to both polarization modes.

Collecting the individual Stokes parameters into a 3×1 Stokes vector ~A = [A1, A2, A3]
T =
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Figure 1.1: An illustration of the Poincaré sphere representation of optical polarization.

The Jones vectors corresponding to 0 deg, 45 deg and right hand circular (RHC) polar-

ization states map to the Stokes vectors s1 = [1, 0, 0]T, s2 = [0, 1, 0]T and s3 = [0, 0, 1]T,

forming an orthonormal basis of the Poincaré sphere. Linearly polarized states correspond

to points on the equator of the sphere, while points off the equator represent general states

of elliptical polarization.
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E2
0 Â results in a unit vector

Â =









cos θ

sin θ cosφ

sin θ sin φ









(1.12)

that resides on the surface of the Poincaré sphere with coordinates θ and φ, respectively.

As illustrated in Fig. 1.1, the Jones vectors corresponding to horizontal, |A〉 = [1, 0]T, 45

deg, |A〉 = [1, 1]T/
√

2, and right hand circular (RHC), |A〉 = [1, i ]T/
√

2, polarization states

map to the Stokes vectors s1 = [1, 0, 0]T, s2 = [0, 1, 0]T and s3 = [0, 0, 1]T, respectively,

and form an orthogonal basis for the Poincaré sphere. Notice the factor of two relating

polarization angles in Jones and Stokes space. This implies, for example, that orthogonal

vectors in Jones space map to antipodal Stokes space vectors, as in the vertically polarized

(90 deg) Jones vector |A〉 = [0, 1]T mapping to the negative s1 Stokes space axis [−1, 0, 0]T.

In general, the equatorial plane of the Poincaré sphere represents linearly polarized fields

while points off the equator correspond to general states of elliptical polarization.

The matrix representations of the three Stokes parameters A1 = P0 − P90, A2 = P45 −
P135 and A3 = Pright − Pleft are further simplified by introducing the Pauli-spin matrices,

σ1 =





1 0

0 −1



 σ2 =





0 1

1 0



 σ3 =





0 −i
i 0



 , (1.13)

so that A1 = 〈A|σ1|A〉, A2 = 〈A|σ2|A〉 and A3 = 〈A|σ3|A〉 (note that throughout this

thesis I will refer to “Pauli spin matrix” and “Pauli matrix” interchangeably). The three-

component Stokes vector ~A is then

~A =









〈A|σ1|A〉
〈A|σ2|A〉
〈A|σ3|A〉









= 〈A|









σ1

σ2

σ3









|A〉 = 〈A|~σ|A〉, (1.14)
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where the quantity ~σ = [σ1,σ2,σ3]
T is referred to as the Pauli-spin vector. The relation-

ship ~A = 〈A|~σ|A〉 linking the Jones and Stokes polarization vectors will be used extensively

throughout this thesis. In practical calculations, it is typically more convenient to sup-

press the explicit component form of Eq. (1.2) and instead refer to the coordinate-free

representations, |A〉 and ~A, of the Jones and Stokes polarization vectors.

A large number of useful matrix identities are summarized in Refs. [22, 47, 94], each of

which can be established directly from the definition of the Pauli matrices, σn, and the

Jones and Stokes vectors |A〉 and ~A. A subset of these identities will be used frequently

throughout this thesis and are listed here for clarity.

A 2 × 2 hermitian matrix can be formed by taking the dot product of a 3 × 1 Stokes

vector ~A with the Pauli spin vector ~σ. This matrix is denoted by the symbol ~A · ~σ and is

calculated according to

~A · ~σ = A1σ1 + A2σ2 + A3σ3

=





A1 A2 − iA3

A2 + iA3 −A1



 . (1.15)

It follows that
(

~A · ~σ
)2

= | ~A|2 I2, where I2 is the 2 × 2 identity matrix. For a unit-length

Stokes vector p̂,
(

p̂ · ~σ
)2

= I2, while the eigenvalues of p̂ · ~σ are ±1 with corresponding

eigenvectors |p〉 and |q〉 where p̂ = 〈p|~σ|p〉 and |q〉 is any Jones vector orthogonal to |p〉;
that is,

(

p̂ · ~σ
)

|p〉 = |p〉 and
(

p̂ · ~σ
)

|q〉 = −|q〉 whenever 〈p|q〉 = 0.

The matrix exponential

U = exp

(

− i

2
ψ p̂ · ~σ

)

= cos

(

ψ

2

)

I2 − i sin

(

ψ

2

)

p̂ · ~σ (1.16)

will be used extensively to describe the rotational transformation of an incident state of

polarization in Jones space [22, 47, 94]. Since U† = exp
(

+iψ p̂ · ~σ/2
)

and p̂ · ~σ necessarily
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commutes with itself, U†U = I2 and the matrix U is unitary. In particular, when applied

to an incident Jones vector |Ain〉, it can be shown that the output Stokes vector ~Aout =

〈Aout|~σ|Aout〉 with |Aout〉 = U|Ain〉 precesses about p̂ by the angle ψ on the Poincaré

sphere.

Next, I will derive an important relationship between rotation matrices acting on

Jones and Stokes polarization vectors. Suppose that the unitary Jones matrix U =

exp (−iψ p̂ · ~σ/2) is applied to an incident Jones vector |Ain〉 yielding |Aout〉 = U|Ain〉 with

corresponding input and output Stokes vectors ~Ain = 〈Ain|~σ|Ain〉 and ~Aout = 〈Aout|~σ|Aout〉 =

〈Ain|U†~σU|Ain〉. Since the matrices U†~σU in this last expression are hermitian and have

zero trace they can be decomposed as in Appendix A into a linear combination of the Pauli

matrices,

U†
σ1U = R11σ1 +R12σ2 +R13σ3

U†
σ2U = R21σ1 +R22σ2 +R23σ3

U†
σ3U = R31σ1 +R32σ2 +R33σ3, (1.17)

for real valued coefficients Rab, a, b = 1, 2, 3. This last expression, which can be rewritten

in matrix form as R~σ = U†~σU, defines a real valued 3×3 matrix R with components Rab

that acts upon the input Stokes vector ~Ain according to

~Aout = 〈Aout|~σ|Aout〉

= 〈Ain|U†~σU|Ain〉

= 〈Ain|R~σ|Ain〉

= R〈Ain|~σ|Ain〉

= R ~Ain. (1.18)

That is, if |Aout〉 = U|Ain〉 then ~Aout = R ~Ain. Since Trace {σaσb} = 2δab, where δab is the
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Kronecker delta function, each element Rab of R can be calculated from U according to

Rab =
1

2
Trace

{

U†
σaUσb

}

. (1.19)

This last equation provides a useful analytical and numerical method for the conversion

between Jones and Stokes matrices that will be generalized in the next chapter to arbitrary

optical systems. Further, for U = exp (−iψ p̂ · ~σ/2) and p̂ = [p1, p2, p3]
T, we have

R = exp (ψ p̂×)

= cosψ I3 + (1 − cosψ) p̂p̂T + sinψ p̂×, (1.20)

where R is an orthogonal 3 × 3 matrix and

p̂× =









0 −p3 p2

p3 0 −p1

−p2 p1 0









(1.21)

is defined such that
(

p̂×
)

~r = p̂ × ~r is the vector cross product for any ~r. Here, I have

derived Eq. (1.20) by expanding the matrix exponential in its power series and applying
(

p̂×
)2

= p̂p̂T−I3 together with the matrix product identities of Appendix A. Summarizing

this relationship, the Jones and Stokes matrices U and R satisfy

U = exp

(

− i

2
ψ p̂ · ~σ

)

⇐⇒ R = exp (ψ p̂×) , (1.22)

where U and R act to rotate the incident polarization vectors |Ain〉 and ~Ain by the angle

ψ about the unit vector p̂ on the Poincaré sphere [94].

The following identities involving similarity transformations of the matrix ~A · ~σ will be

used to analyze the accumulation of PMD and PDL in optical networks and can be derived

using the results of Appendix A. If U = exp
(

−iψ p̂ · ~σ/2
)

and R = exp(ψ p̂×) it follows

that

U
(

~A · ~σ
)

U† =
(

R ~A
)

· ~σ. (1.23)
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Analogously, a similarity transformation of the unitary matrix exp
(

−iθ r̂ · ~σ/2
)

,

U exp

(

− i

2
θ r̂ · ~σ

)

U† = exp

(

− i

2
θ
(

Rr̂
)

· ~σ
)

, (1.24)

rotates the axis r̂ while leaving the eigenvalues exp(±iθ/2) unaffected. As I will show later

in Chapter 2, the above identities can be modified in a straightforward manner to describe

optical systems with significant polarization dependent loss (PDL) in which case the Jones

matrix U is no longer unitary.

1.4 Introduction to PMD in optical fiber

Optical fibers or devices are often broadly characterized according to the ratio of their phys-

ical length, L, to the birefringence correlation length, Lcorr, associated with the characteris-

tic stochastic fluctuations of the underlying birefringence, with Lcorr ≈ 10 to 100 m typical

for standard single mode fiber [114]. In the “weak mode coupling” limit L/Lcorr ≪ 1, any

intrinsic and extrinsic fiber stress or geometrical imperfections responsible for the fiber

birefringence are approximately uniform along the fiber and the DGD increases linearly

with the fiber length. Conversely, in the “strong mode coupling” limit L/Lcorr ≫ 1 typical

of telecom transmission fiber the local orientation of the fiber’s fast and slow polariza-

tion modes vary rapidly and randomly along the fiber length, leading to a rapid evolution

of the state of polarization on the Poincaré sphere with increasing propagation distance.

Somewhat surprisingly, in the strong mode coupling limit it was observed [29, 37, 90] that

there exist two orthogonally polarized modes at the output of the fiber whose orientation

on the Poincaré sphere is invariant with respect to small frequency deviations, ∆ω, rela-

tive to the optical carrier, ω0. These two orthogonally polarized modes correspond to the

instantaneous fast and slow axes of the transmission fiber.

An emulator model of optical transmission fiber is often developed by subdividing the

fiber’s underlying stochastic birefringence [54, 114] into a large number, N , of randomly
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oriented linearly birefringent optical elements. As N → ∞ the emulator statistics converge

to those expected for a transmission fiber much longer than the characteristic birefringence

correlation length [114]. For finite N , the method provides a convenient numerical algo-

rithm for evaluating the frequency dependence of the SOP and the PMD vector in optical

networks. Although the statistical properties of the emulator become independent of the

particular stochastic model for each section as N → ∞, I will show that for finite N the

statistics of each emulator section can significantly affect both the probability distribution

and autocorrelation of the emulated PMD.

The time-domain view of PMD as a DGD between two orthogonal polarization modes

has an equivalent frequency-domain representation in which PMD acts to rotate an incident

SOP on the Poincaré sphere with increasing optical frequency. For example, adjusting the

wavelength of a broadband tunable laser at the input of a fiber or optical device with

PMD causes the output SOP to rotate on the Poincaré sphere by an angle proportional

to the DGD. This frequency domain representation of PMD is the basis for most PMD

system measurements [50, 119], and will be used extensively in what follows to quantify

the polarization frequency evolution in a system composed of a concatenation of many

linearly birefringent optical devices. To establish the correspondence between the time- and

frequency-domain representations, suppose that τ represents the DGD of them:th emulator

section while the fast and slow polarization axes are labeled |p〉 and |q〉, respectively, where

|q〉 is orthogonal to |p〉. The time-domain Jones matrix Um(t) implementing the DGD of

a single emulator section can be written as

Um(t) = δ
(

t− τ

2

)

|p〉〈p|+ δ
(

t+
τ

2

)

|q〉〈q|, (1.25)

where δ(t) is the Dirac delta function and the matrices |p〉〈p| and |q〉〈q| act to project an

arbitrary incident SOP onto each of the fast and slow optical axes. Transforming into the
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frequency domain,

Um(ω) = exp

(

−iτω
2

)

|p〉〈p| + exp

(

iτω

2

)

|q〉〈q|, (1.26)

and applying the identities of Appendix A according to |p〉〈p| = (I2 + p̂ · ~σ) /2 and |q〉〈q| =

(I2 − p̂ · ~σ) /2, where p̂ = 〈p|~σ|p〉 and q̂ = −p̂ since 〈p|q〉 = 0, I find

Um(ω) = cos
(τω

2

)

I2 − i sin
(τω

2

)

p̂ · ~σ

= exp

(

− i

2
τω p̂ · ~σ

)

, (1.27)

which is recognized as a unitary Jones matrix, Eq. (1.16). Finally, the PMD vector, ~τm =

τ p̂, with magnitude and direction corresponding to the DGD and fast polarization axis,

respectively, provides a convenient parametrization of the polarization frequency dynamics

Um(ω) = exp

(

− i

2
ω ~τm · ~σ

)

. (1.28)

As a result, PMD acts to rotate an incident polarized field on the Poincaré sphere by an

angle ψ = ω |~τm| about the direction of ~τm. More generally, the concatenation of N linearly

birefringent elements

TN(ω) = UN (ω)TN−1(ω), (1.29)

with T0(ω) = I2 [24,47,55], characterizes the frequency domain Jones matrix of the optical

fiber emulator. Unlike Um(ω) however, the polarization at the output of TN(ω) can exhibit

complicated stochastic variations with optical frequency due to the random orientation of

adjacent emulator sections.

The frequency evolution of Um(ω) can be recast as a differential equation involving the

PMD vector ~τm. Since ~τm is frequency independent, differentiating Um(ω) yields

∂Um

∂ω
U−1

m = − i

2
~τm · ~σ (1.30)
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and, consequently, if Um(ω) is known for example from straightforward measurements

involving a commercially available polarimeter, the magnitude and direction of the PMD

vector can be determined through numerical differentiation. A more robust variation of this

approach that instead evaluates the eigenvalues and eigenvectors of Um(ω+∆ω)Um(ω)−1,

termed Jones matrix eigenanalysis (JME), has become a standardized measurement pro-

cedure of PMD in installed fiber optic systems [50]. Analogous to Eq. (1.30), the total

PMD vector ~ΩN (ω) of the optical system is defined according to [9, 47, 91]

∂TN

∂ω
T−1

N = − i

2
~ΩN (ω) · ~σ, (1.31)

with the magnitude and direction of ~ΩN (ω) corresponding to the DGD and fast principal

state of polarization (PSP) at optical frequency ω, respectively. Note that unlike ~τm both

the magnitude and direction of ~ΩN (ω) vary stochastically with ω due to the random mode

coupling between concatenated emulator sections.

Over small frequency intervals ∆ω the frequency variation of ~ΩN(ω) is often quantified

in terms of an expansion in Taylor orders of the PMD vector about the optical carrier ω0

~ΩN (ω) ≈ ~ΩN(ω0) +
∂~ΩN

∂ω

∣

∣

∣

ω0

∆ω +
∂2~ΩN

∂ω2

∣

∣

∣

ω0

∆ω2

2!
+ . . . (1.32)

with the n:th order PMD vector

~Ω(n) =
∂n−1~Ω

∂ωn−1

∣

∣

∣

ω0

(1.33)

responsible for what is typically referred to as “higher-order” PMD pulse distortion [30,

51, 64]. An analytic formula for the exact evaluation of the n:th order PMD vector in an

N section fiber emulator will be presented in Chapter 2. The physical effects associated

with second order PMD for example are often analyzed by decomposing ~ΩN(ω) into its

magnitude and direction ~ΩN = τ p̂ and differentiating each term

∂~ΩN

∂ω
=
∂τ

∂ω
p̂+ τ

∂p̂

∂ω
, (1.34)
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where ∂p̂/∂ω is orthogonal to p̂ since p̂ has unit length. The frequency derivative of

the differential group delay, τ , is a differential chromatic dispersion between polarization

modes, while the second term acts to “depolarize” an incident optical pulse by rotating the

principal state of polarization with increasing optical frequency. Under normal operating

conditions, second order PMD depolarization results in a system impairment approximately

8 times larger than the differential chromatic dispersion [51, 63]. Although PMD vectors

of order ≥ 3 can be analyzed in a similar manner [64], the physical interpretation of the

resulting PMD induced pulse distortion becomes increasingly complicated.

Further, it becomes increasingly difficult to relate Taylor orders of the PMD vector

directly to the frequency variation of the Jones matrix TN (ω). Consequently, several au-

thors [38, 86] have proposed matrix models of PMD that are applicable for relatively low

values of the mean DGD, or attempt to solve Eq. (1.31) directly by truncating the Taylor ex-

pansion to either second or third order in the deviation ∆ω in the optical frequency [36,51].

Such solutions often do not preserve the unitarity of the Jones matrix TN(ω) reducing ac-

curacy for large ∆ω or alternatively large mean DGDs [20, 31, 50, 58, 89]. In Chapter 2, I

will present a solution of TN(ω) that for a given mean DGD approximates the frequency

evolution of the Jones matrix over a larger bandwidth than previously published results

while preserving the relevant group properties of the exact solution. The resulting for-

malism not only extends to arbitrary orders of the PMD vector, but also applies to more

general optical systems that additionally include polarization dependent loss.

To illustrate the impact of higher-order PMD, in Fig. 1.2 I show the variation of the

output SOP |Aout(ω)〉 = TN(ω)|Ain〉 with increasing optical frequency for a horizontally

polarized input |Ain〉 = [1, 0]T for (a) a single emulator section with 60 ps DGD and (b)

a concatenation of N = 200 randomly oriented emulator sections with an instantaneous

DGD of 60 ps at the central frequency, where the fast polarization axis in each case was

aligned at 45 deg to the incident SOP. Case (a) represents the worst case polarization

variation, occurring with a probability of 10−5, that might be expected for ≈ 1000 km
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Figure 1.2: The variation of |Aout(ω)〉 = TN(ω)|Ain〉 on the Poincaré sphere with increasing

optical frequency for a horizontally polarized input |Ain〉 = [1, 0]T for (a) a single emulator

section with 60 ps DGD (dashed line) and (b) a concatenation of N = 200 randomly

oriented emulator sections with an instantaneous DGD of 60 ps at the central frequency

(solid line). The fast polarization axis in each case was aligned at 45 deg to the incident

SOP.
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Figure 1.3: The received optical intensity for a 10 Gb/s horizontally polarized waveform

for cases (a) (dashed line) and (b) (thick solid line) of Fig. 1.2. The input pulse is shown

as the thin solid line.
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of fiber over a 20 year anticipated life span of an older installed network with a PMD

coefficient of 0.6 ps/
√

km. Case (b) on the other hand illustrates a long ≈ 120 m length

of polarization maintaining fiber with the incident polarization offset by 45 deg relative to

the polarization maintaining axis. Over a ±30 GHz frequency interval, the incident SOP

rotates about the direction of the fast polarization axis for case (a) (dashed line), while for

case (b) the SOP varies stochastically over the Poincaré sphere (solid line). Notice that

for small frequency offsets the local polarization activity for case (b) is reasonably well

approximated by a rotation about the s2 Stokes space axis.

The corresponding time-domain behaviour of a received optical pulse is shown in

Fig. 1.3. Here, the Jones matrices corresponding to case (a) and (b) above are applied

to a horizontally polarized 10 Gb/s incident optical pulse. In case (a), the output pulse

results from the linear superposition of the optical fields coupled to each of the orthogonal

fast and slow axes, while in (b) strong mode coupling between emulator sections leads to

a complicated, stochastic temporal distortion of the received pulse. The results of several

system studies [14,27] have indicated the importance of including these higher order PMD

distortions when assessing the impact of PMD on transmission performance.

In what follows, I will return to Eq. (1.29) to discuss a number of important properties

of the PMD vector that follow from the recursion relation for Jones matrices. First, a

powerful equation describing the accumulation of PMD in systems involving concatenations

of two or more fiber segments, or in general, birefringent optical devices can be derived by

combining Eq. (1.31) and Eq. (1.29). The PMD vector ~ΩN (ω) associated with TN(ω) is
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calculated as

− i

2
~ΩN · ~σ =

∂TN

∂ω
T−1

N

=
∂UN

∂ω
U−1

N + UN

[

∂TN−1

∂ω
T−1

N−1

]

U−1
N

= − i

2
~τN · ~σ + UN

[

− i

2
~ΩN−1 · ~σ

]

U−1
N

= − i

2
~τN · ~σ − i

2

[

RN
~ΩN−1

]

· ~σ

= − i

2

[

~τN + RN
~ΩN−1

]

· ~σ. (1.35)

Here, I have employed the identity U
(

~A · ~σ
)

U−1 =
(

R ~A
)

· ~σ where, for a unitary Jones

matrix U, R is the corresponding Stokes rotation matrix. The cumulative PMD vector for

a series of N concatenated Jones matrices is then

~ΩN (ω) = ~τN (ω) + RN(ω)~ΩN−1(ω), (1.36)

where ~Ω0(ω) = 0 and in general each segment PMD vector, ~τm(ω), can be frequency

dependent. Eq. (1.36), often referred to as the PMD concatenation rule, is the basis for

most statistical analyses of PMD [19,60, 61, 108] and has found widespread application in

studies of PMD induced pulse distortion [30, 92] and more recently in the hinge model of

PMD temporal dynamics [4].

A number of important properties of the PMD vector follow immediately from the con-

catenation rule, Eq. (1.36). If the segment PMD vectors ~τm are spherically symmetric and

are further independent and randomly distributed between segments, then by the central

limit theorem the probability density of each component of ~ΩN (ω) tends towards a zero

mean normal distribution for N ≫ 1 with the variance increasing as
√
N . Consequently,

the DGD τ = |~ΩN | of the emulator is Maxwellian distributed

fτ (x) =
32

π2

x2

τ 3
mean

exp

(

−4

π

x2

τ 2
mean

)

, (1.37)
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with mean, τmean = E
{

|~ΩN |
}

and rms, τrms =
√

E
{

|~ΩN |2
}

, increasing as the square root

of the number of emulator segments (the probability density of the DGD for finite N

is somewhat more complicated and has been considered in, for example, Refs. [4, 59]).

Numerous field measurements [61, 90] have confirmed both the Maxwellian distribution

of the DGD and the square root dependence of its mean value with increasing length in

fibers significantly longer than the correlation length scales associated with fluctuations

of the underlying birefringence. In fact, these statistical properties have led to the PMD

coefficient, Dpmd, of optical fiber being specified in units of ps/
√

km where τmean = Dpmd

√
L

is the mean PMD of a fiber of length L. As fiber manufacturing technology improves, the

PMD coefficient has steadily decreased from Dpmd > 0.5 ps/
√

km in older fiber predating

the year 2000 to the present value Dpmd ≤ 0.05 ps/
√

km.

1.4.1 Frequency autocorrelation of the PMD vector

Next, due to its relevance in the time dependent systems analyzed in Chapter 4, I will

discuss the frequency autocorrelation function of the fiber emulator that has been shown

to coincide with measurement over a broad spectral range [61]. The results of this analysis

characterize the expected stochastic evolution of the PMD vector with increasing optical

frequency and provide a characteristic frequency interval, that I will refer to as the decorre-

lation bandwidth ωd, that will be related in a simple manner to the rms DGD, τrms, of the

fiber emulator. The PMD vector evolves into a largely independent stochastic realization

for frequency offsets ∆ω > ωd, while for ∆ω ≪ ωd a simple first order PMD model is often

sufficient for describing the polarization frequency evolution.

The frequency autocorrelation function of the fiber emulator follows from the PMD

concatenation rule, Eq. (1.36), by considering

CN(ω; ∆ω) = E
{

~ΩN (ω) · ~ΩN (ω + ∆ω)
}

(1.38)
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in which the segment PMD vector ~τm is frequency independent while Rm(ω) = exp (ω~τm×).

If the ~τm are spherically symmetric and independent and identically distributed between

emulator sections then

CN(ω; ∆ω) = E
{

|~τN |2
}

+ E
{

~ΩT
N−1(ω)RT

N(ω)RN(ω + ∆ω)~ΩN−1(ω + ∆ω)
}

(1.39)

while the rotation autocorrelation

E
{

RT
N(ω)RN(ω + ∆ω)

}

= E {exp (∆ω ~τm×)} (1.40)

must by symmetry be proportional to the identity matrix. Letting τrms be the rms DGD

of the emulated PMD vector and E
{

RT
N(ω)RN(ω + ∆ω)

}

= g(ω; ∆ω) I3, I find

CN(ω; ∆ω) =
τ 2
rms

N
+ g(ω; ∆ω)CN−1(ω; ∆ω), (1.41)

where C0(ω; ∆ω) = 0 and the mean-square DGD of them:th emulator section is E {|~τm|2} =

τ 2
rms/N . Finally, solving for CN(ω,∆ω) yields

CN(ω; ∆ω) =
τ 2
rms

N

[

1 − gN(ω; ∆ω)

1 − g(ω; ∆ω)

]

(1.42)

where the rotation autocorrelation function,

g(ω; ∆ω) =
1

3
E
{

Trace
{

RT
N(ω)RN(ω + ∆ω)

}}

, (1.43)

may be evaluated in the above expression for any particular model of the local fiber bire-

fringence.

For example, in the converged N → ∞ limit, g(ω; ∆ω) ≈ 1 − τ 2
rms∆ω

2/3N while

gN(ω; ∆ω) ≈ exp(−τ 2
rms∆ω

2/3) yielding

C∞(ω; ∆ω) = τ 2
rms

[

1 − e−∆ω2/ω2

d

∆ω2/ω2
d

]

, (1.44)
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independent of the particular choice of statistical distribution chosen to model ~τm. Here,

the decorrelation bandwidth ωd =
√

3/τrms of the PMD vector represents the characteris-

tic frequency interval over which the fiber emulator transitions into a largely uncorrelated

state. The decorrelation frequency also provides an approximate, intuitive justification for

the higher order PMD expansion of Eq. (1.32) [40, 64]. For modulated signals with band-

widths ≪ ωd, the emulated PMD vector is approximately constant and a first order model

is often sufficient for assessing PMD induced system penalty. For bandwidths approaching

ωd, however, higher order PMD can be significant and, as I will show in Chapter 2, ≥ 5

Taylor orders of the PMD vector are required to quantify the frequency variation of ~ΩN (ω)

with a high degree of confidence.

For finite N , however, the autocorrelation properties of the fiber emulator can be sig-

nificantly affected by the particular stochastic model for each ~τm. To illustrate, I will first

consider a constant modulus model of the segment PMD ~τm = τ p̂m where τ = τrms/
√
N is

constant for all emulator sections and each p̂m is selected from a uniform distribution over

the unit sphere. In this case, I find

g(ω; ∆ω) =
1

3
+

2

3
cos

(

τrms√
N

∆ω

)

, (1.45)

and CN(ω; ∆ω) is periodic in ∆ω with free spectral range ωFSR = 2π
√
N/τrms. The con-

stant modulus model therefore approximates C∞(ω; ∆ω) of optical transmission fiber over

bandwidths < ωFSR/2, making it somewhat unsuitable for evaluating pulse distortion in

high PMD or WDM systems employing several optical channels with small N . An alter-

native, improved model employs a zero-mean Gaussian distribution for the components of

~τm, with variance σ2
τ = τ 2

rms/3N , so that the magnitude |~τm| is Maxwellian distributed with

first and second moments E {|~τm|} = στ

√

8/π and E {|~τm|2} = 3 σ2
τ , respectively. In this

case,

g(ω; ∆ω) =
1

3
+

2

3

[

1 − σ2
τ∆ω

2
]

exp
(

−σ2
τ∆ω

2/2
)

, (1.46)
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and the periodicities of CN(ω; ∆ω) are suppressed for finite N , significantly increasing

the free spectral range of the fiber emulator. Note that in deriving this last expression

I have applied E {cos(τ∆ω)} =
[

1 − σ2
τ∆ω

2
]

exp
(

−σ2
τ∆ω

2/2
)

whenever τ is Maxwellian

distributed with E {τ} = στ

√

8/π. For sufficiently large ∆ω, CN(ω; ∆ω) approaches a finite

background autocorrelation of 3/2N that can be minimized only by further increasing the

number of emulator sections. While previous authors have shown [10,70] that the Gaussian

distribution of ~τm accurately represents the statistics of higher order PMD with as few

as N = 5 sections, I note that a significantly larger N is often required to accurately

reproduce the frequency and temporal autocorrelation statistics of the converged result

with reasonable accuracy.

In Fig. 1.4, I illustrate the autocorrelation of the emulated PMD vector, normalized by

τ 2
rms, for (a) N = 5 and (b) N = 50 emulator sections. The constant modulus and Gaussian

models of ~τm are shown in this figure as the dashed and thick solid lines, respectively, while

the thin solid line displays the converged N → ∞ result of Eq. (1.44). Deviations from

the converged autocorrelation function are apparent with a reduced number of emulator

sections. The difference between the emulated autocorrelation and the converged result is

significantly reduced for N = 50, with the background autocorrelation in this case < 0.1.

1.4.2 Brownian bridge algorithm for PMD

A significant advantage of the Gaussian distributed model of segment PMD vectors ~τm is

the ability to precondition the fiber emulator in an arbitrary initial state at the central

frequency ω0 using the Brownian bridge algorithm [107]. This approach, while straight-

forward to implement, allows the precise numerical evaluation of conditional probability

densities associated with the PMD vector and will be used extensively in Chapter 4 to pre-

condition a temporal PMD emulator on a specified PMD vector at the initial time t = 0.

To implement the Brownian bridge algorithm, I return to the PMD concatenation rule,
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(b) N = 50

Figure 1.4: The autocorrelation of the emulated PMD vector, normalized by τ 2
rms, for (a)

N = 5 and (b) N = 50 emulator sections. The thin solid line depicts Eq. (1.44) while the

dashed and thick solid lines show the emulated autocorrelation function for the constant

modulus and Gaussian distributed models of the segment PMD, respectively.
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Eq. (1.36), and observe that at the optical carrier frequency ω0 the PMD vector ~ΩN(ω0) is

a sum of N independent Gaussian distributed vectors, ~bm, according to

~ΩN(ω0) = ~τN + RN(ω0)~ΩN−1(ω0) (1.47)

= ~τN + RN(ω0)~τN−1 + RN(ω0)RN−1(ω0)~τN−2 + . . .

= ~bN +~bN−1 +~bN−2 + . . .

in which ~bm = RN(ω0) · · ·Rm+1(ω0)~τm. The algorithm is then as follows. Suppose that

~Ωc represents an arbitrary initial PMD vector at ω0 (the constraint) while the components

of the random vectors ~rm, for m = 1, . . . , N , are selected from a zero-mean Gaussian

distribution with E {|~rm|2} = τ 2
rms/N . Next, I calculate [107]

~bm = ~rm − 1

N

N
∑

k=1

~rk +
~Ωc

N
, (1.48)

while the polarization rotation introduced by each emulator segment is compensated by

setting ~τN = ~bN , ~τN−1 = R−1
N (ω0)~bN−1, and so forth. The PMD vector ~ΩN (ω) at all other

frequencies is calculated from Eq. (1.36). In this manner, ~ΩN(ω0) = ~Ωc since the sum over

all ~bm yields the desired constraint, while the jointly Gaussian ~bm can be shown to satisfy

the correct conditional densities [107]. It follows that the ensemble of emulator states

produced by this algorithm matches that of a Monte-Carlo simulation in which only those

~ΩN (ω0) sufficiently close to ~Ωc are kept. Consequently, this algorithm significantly improves

simulation efficiency in the typical case where the probability of randomly generating ~Ωc

is otherwise extremely low.

An application of the Brownian bridge algorithm is shown in Fig. 1.5 in which an

N = 100 section fiber emulator with mean DGD τmean = 10 ps is preconditioned to

~Ωc = 3 τmean [1, 0, 0]T. The black lines of Fig. 1.5 represent 10 different random realizations

of the fiber emulator and clearly illustrate the constraint imposed at the central optical

frequency. In typical network applications a DGD of 3 τmean often defines the threshold of a
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Figure 1.5: 10 independent stochastic realizations of an N = 100 section fiber emulator,

with mean DGD τmean = 10 ps, in which the DGD at the central frequency was constrained

to 3τmean using the Brownian bridge algorithm.
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Figure 1.6: The probability density of the DGD at frequency offsets ∆ω = 0.5ωd (thin

solid line), ωd (thick solid line) and 2ωd (dashed line) relative to the optical carrier for an

N = 100 section emulator with mean DGD τmean = 10 ps. Here, the emulated DGD was

constrained to 3τmean at ∆ω = 0 using the Brownian bridge algorithm.
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PMD induced system outage event. A Maxwellian distributed DGD exceeds this threshold

with a probability of ≈ 10−5, and several million Monte-Carlo iterations would be required

on average to isolate 10 realizations of the emulator with DGD values sufficiently close

to the constraint. Similarly, the probability density of the DGD is shown in Fig. 1.6

for frequency offsets ∆ω = 0.5ωd (thin solid line), ωd (thick solid line) and 2ωd (dashed

line) relative to the optical carrier. The probability density converges to the Maxwellian

distribution only for ∆ω > 10ωd, implying that a PMD outage event occurring in one

channel of a multi-channel WDM system can degrade the performance of neighbouring

channels within several PMD correlation bandwidths [107].

1.5 Polarization dependent loss

Optical communication systems typically include components such as amplifiers, couplers

and isolators that unlike standard single mode fiber exhibit different attenuations or gains

depending upon a signal’s incident state of polarization, an effect termed polarization

dependent loss/gain (PDL/PDG). These optical components are typically separated by

long lengths of transmission fiber with significant PMD, leading to a complex interaction

between PMD and PDL in which the total accumulated PDL/PDG of the system becomes

strongly wavelength dependent [43,55,56]. In this section, I will summarize the important

properties of PDL and will present an emulator model suitable for analyzing the combined

effects of PMD and PDL in optical networks [94].

In an optical device with PDL or PDG, incident light generally experiences different

frequency independent attenuations (or gains) α1 and α2 when polarized along one of two

orthogonal principal polarization orientations [43]. The Jones matrix Hm describing the
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polarization transformation through the m:th optical device is

Hm = Vm





e−α1/2 0

0 e−α2/2



V†
m (1.49)

= exp
(

− ᾱm

2

)

Vm





e+αm/2 0

0 e−αm/2



V†
m, (1.50)

where ᾱm = (α2 + α1)/2 and αm = (α2 − α1)/2 denote the mean and differential atten-

uation between polarization modes, respectively, and Vm is a unitary matrix specifying

the arbitrary orientation of the principal axes relative to the input state of polarization.

The PDL of the device is measured as the ratio of the maximum to minimum received

optical power over all input polarization states and is related, in units of decibels, to the

differential attenuation through

αdB
m = |αm|

20

ln 10
. (1.51)

Finally, rewriting Hm in terms of a segment PDL vector, ~αm,

Hm = exp
(

− ᾱm

2

)

exp

(

1

2
~αm · ~σ

)

(1.52)

can often provide more physical and geometric insight into the polarization dynamics of

PDL [55, 94] and will be used in what follows to formulate a concatenation rule for the

accumulated PDL in optical networks. Here, ~αm is a vector with magnitude equal to

the differential attenuation, αm, in the direction of the minimum attenuation axis on the

Poincaré sphere. Note that in this thesis I will typically disregard the overall attenuation

common to both polarization modes and will consider only the differential PDL affecting

the polarization state of the optical field.

The Jones matrix TN (ω) of an optical system with both PMD and PDL is given by

the product of N optical elements

TN(ω) = HNUN (ω)TN−1(ω), (1.53)
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where T0(ω) = I2 and, as in Eq. (1.29), Um(ω) = exp (−iω ~τm · ~σ/2) is the PMD Jones ma-

trix of the m:th emulator section. To determine the total PDL associated with TN(ω), one

widely-used measurement technique scans the polarization state of an incident constant-

wave field |A〉 and records the ratio of the maximum and minimum received power over all

input SOPs. Since P = 〈A|T†
N(ω)TN(ω) |A〉 represents the power measured on a standard

optical power meter, the ratio of the maximum to minimum powers is precisely equal to

the ratio of the two eigenvalues λmax(ω) and λmin(ω) of T
†
N(ω)TN(ω) and the total PDL

of the emulated Jones matrix in units of decibels is given by

αdB(ω) = 10 log10

[

λmax(ω)

λmin(ω)

]

. (1.54)

Further, since T
†
N (ω)TN(ω) is hermitian the two input polarization states that yield the

maximum and minimum received power are orthogonal even if the eigenvectors of TN(ω)

are not. Notice that unlike the PDL αm of each segment, the total PDL αdB(ω) of an

optical system can exhibit strong frequency dependence due to the presence of PMD.

1.5.1 Concatenation rule for PDL in optical networks

For mean values of the PDL < 4 dB, it is possible to formulate an approximate concate-

nation rule for the total PDL vector, ~ΓN(ω), of N emulator sections in direct analogy to

the PMD concatenation rule of Eq. (1.36). Here, the total PDL vector is defined as

T
†
N(ω)TN(ω) = exp

(

~ΓN(ω) · ~σ
)

, (1.55)

with the magnitude and direction of ~ΓN(ω) corresponding to the total PDL and minimum

attenuation axis on the Poincaré sphere, respectively. While previous authors [81,131] have

described the statistics of PDL using a stochastic differential equation for the longitudinal

evolution of the PDL vector in a distributed system, here I will demonstrate that the

PDL vectors of each segment, ~αm, accumulate vectorially in a manner analogous to the
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segment PMD vectors of Eq. (1.36). The resulting PDL concatenation rule provides a

useful equation for analyzing the statistics of PDL in systems with only a finite number

of PDL elements where the probability density of the total PDL can differ substantially

from that of a distributed system [94]. Unlike Eq. (1.36), however, the PDL concatenation

rule represents an approximation to the exact result that is most accurate for values of the

mean PDL, αmean, less than 4 dB. The concatenation rule is observed to provide a high

degree of accuracy even for values of the instantaneous PDL that significantly exceed the

mean.

To proceed, I will apply Eq. (1.53) to evaluate T
†
2T2 = exp

(

~Γ2 · ~σ
)

for N = 2 emulator

sections and will subsequently generalize the result to arbitrary N . Observing that Hm =

exp (~αm · ~σ/2) is hermitian and Um = exp (−iω ~τm · ~σ/2) is unitary, I find

T
†
2T2 =

(

U
†
1H1U

†
2H2

)(

H2U2H1U1

)

= U
†
1H1

(

U
†
2H

2
2U2

)

H1U1

= U
†
1H1 exp

(

RT
2 ~α2 · ~σ

)

H1U1 (1.56)

where R2 is the 3×3 Stokes matrix associated with U2, while applying the Baker-Campbell-

Hausdorff (BCH) identity to H1 exp
(

RT
2 ~α2 · ~σ

)

H1 yields

exp

(

1

2
~α1 · ~σ

)

exp
(

RT
2 ~α2 · ~σ

)

exp

(

1

2
~α1 · ~σ

)

= exp
([

~α1 + RT
2 ~α2 +O(α3

mean)
]

· ~σ
)

. (1.57)

The higher order terms associated with the BCH expansion are random variables that

depend upon the particular stochastic configuration of the emulator. In fact, since H1

appears symmetrically in Eq. (1.57), terms of order α2
mean cancel, leaving a lowest order

contribution that scales as the cube of the mean PDL, α3
mean (numerical confirmation of
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the α3
mean scaling will be presented in what follows). Next, I observe that

T
†
2T2 = U

†
1 exp

([

~α1 + RT
2 ~α2 +O(α3

mean)
]

· ~σ
)

U1

= exp
([

RT
1 ~α1 + RT

1 RT
2 ~α2 +O(α3

mean)
]

· ~σ
)

(1.58)

and the total PDL vector is identified as

~Γ2 = RT
1 ~α1 + RT

1 RT
2 ~α2 +O(α3

mean). (1.59)

Letting R2 = R2R1, this last result can be rewritten in a more convenient form by intro-

ducing the transformed PDL vector ~Γ′
2 = R2

~Γ2. In this manner, ~Γ′
2 satisfies the concate-

nation rule

~Γ′
2 = ~α2 + R2(ω) ~α1 +O(α3

mean), (1.60)

while ~Γ2 can be recovered if necessary from ~Γ′
2 by applying the inverse transformation.

Finally, generalizing this result to arbitrary N , RN = RN · · ·R2R1 and the transformed

PDL vector ~Γ′
N = RN

~ΓN satisfies the concatenation rule

~Γ′
N(ω) = ~αN + RN(ω)~Γ′

N−1(ω) +O(α3
mean), (1.61)

where ~Γ′
0(ω) = 0 and Rm(ω) is the 3 × 3 Stokes rotation matrix associated with Um(ω).

As with Eq. (1.36), a number of important statistical properties of the PDL follow

directly from the PDL concatenation rule of Eq. (1.61). For example, if each ~αm is spheri-

cally symmetric, then for large N each component of ~ΓN tends towards a zero-mean Gaus-

sian distribution with the variance increasing as the square root of the number of PDL

elements. Consequently, the instantaneous PDL |~ΓN | is Maxwellian distributed with the

mean PDL, αmean = E{|~ΓN |}, increasing as the square root of the system length. Similarly,

the frequency autocorrelation of ~ΓN(ω) can be analyzed using the procedure introduced

previously in Section 1.4.1, with the final result possessing the same frequency dependence
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as Eq. (1.42) for systems with only PMD. Although these statistical properties of PDL

have been established previously in different contexts [55, 73], Eq. (1.61) often provides a

more intuitive approach to their derivation and has the further advantage of allowing the

emulator to be preconditioned to a particular PDL state at the optical carrier using the

Brownian bridge algorithm.

In Fig. 1.7a, I demonstrate the accuracy of the PDL concatenation rule by displaying

the magnitude of the PDL for αmean = 3 dB and a mean DGD of 20 ps over a ±400 GHz

frequency interval for Eq. (1.53) (solid lines) and Eq. (1.61) (• markers) for an N = 50

section emulator. The PDL concatenation rule clearly coincides with the actual, emulated

PDL even for instantaneous PDL values exceeding 2.5 times the average value. Similar

results for αmean = 10 dB are shown in Fig. 1.7b, illustrating a regime in which the error

terms associated with the PDL concatenation rule are no longer negligible. In Fig. 1.8, I

show the variation of the log10 of the rms error ǫrms =
√

E {(αest − αact)2} between αact

from Eq. (1.54) and αest from Eq. (1.61) with the log10 of the mean PDL. The rms error is

well approximated by ǫrms ≈ 10−2.92 α3
mean over 0 ≤ αmean ≤ 10 dB, supporting the expected

α3
mean scaling. Further, the rms error is < 0.04 dB for αmean = 3 dB with a maximum error

of 0.35 dB recorded over 106 realizations of the emulator, making Eq. (1.61) suitable for the

analysis of PDL over the range of mean PDL values typical in most telecom applications.

1.5.2 Brownian bridge algorithm for PDL

A potential significant benefit of Eq. (1.61) is the ability to apply the Brownian bridge

algorithm to simulate the conditional densities associated with PDL using the procedure

developed previously in Section 1.4.2 for systems with only PMD. Here, the PDL vector at

the optical carrier frequency, ω0, is prepared in a well defined initial state ~Γc by selecting

each component of ~αm from a Gaussian distribution with variance E {|~αm|2} = α2
mean3π/8N

using a suitably modified version of Eq. (1.48). In Fig. 1.9 I demonstrate this method by
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Figure 1.7: A comparison between the emulated PDL, Eq. (1.54) (solid line), and the PDL

concatenation rule, Eq. (1.61) (• markers), for a single realization of an N = 50 section

emulator with 20 ps mean DGD and (a) 3 dB or (b) 10 dB mean PDL.
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conditioning a N = 100 section emulator with mean DGD of 20 ps and a mean PDL of 3

dB on the initial PDL vector, ~Γc = 3αmean [1, 0, 0]T. The PDL is calculated at all other

optical frequencies using Eq. (1.54) and clearly reproduces the 9 dB PDL constraint at the

optical carrier. Without the Brownian bridge algorithm, preconditioning the emulator in

this manner would require on the order of several million Monte-Carlo emulator realizations

to generate samples sufficiently close to the desired constraint.

1.5.3 Complex principal state vector for PMD and PDL

One of the main findings in the study of systems with PMD and PDL is the existence

of two principal states of polarization at the output of the system that remain constant

to first order with respect to small changes in the optical frequency. Unlike systems with

only PMD, however, these two principal states are nonorthogonal and incident polarized

light coupled to each interferes at the receiver, leading to an additional source of pulse

broadening and fading in the received power that can be a significant penalty in direct

detection systems [55, 116].

In the presence of PMD and PDL, the Jones matrix TN(ω) satisfies the differential

equation [43, 55, 56]
∂TN

∂ω
T−1

N = − i

2
~WN · ~σ, (1.62)

where ~WN(ω) = ~Ω(ω)+ i~Λ(ω) is often referred to as the complex principal state vector [20,

55, 98]. Analogous to the PMD vector of Eq. (1.31), the complex principal state vector

characterizes the polarization frequency evolution of an optical system with PMD and

PDL. I will present an algorithm for the exact evaluation of ~WN (ω) and its frequency

derivatives in Chapter 2.

The two Jones space principal states, |p+〉 and |p−〉, are eigenvectors of the matrix

~WN · ~σ with complex eigenvalues ±χ where χ =

√

~WN · ~WN . That is, the two principal
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Figure 1.9: 10 independent stochastic realizations of an N = 100 section emulator with

mean DGD τmean = 20 ps and mean PDL αmean = 3 dB in which the PDL at the central

frequency was constrained to 3αmean using the Brownian bridge algorithm.
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states satisfy the eigenvalue equation

(

~WN · ~σ
)

|p±〉 = ±χ |p±〉, (1.63)

where the real and imaginary components τ and η of χ = τ + iη have the physical inter-

pretation of the DGD and the frequency derivative of the differential attenuation between

the two fundamental polarization modes. The angle between the two principal states can

be evaluated directly from Eq. (1.63), and I find [94]

p̂± = 〈p±|~σ|p±〉

= ± 2
τ~Ω + η~Λ ± ~Ω × ~Λ

τ 2 + η2 + |~Ω|2 + |~Λ|2
, (1.64)

while the relative angular separation is

cos θ = p̂+ · p̂−

= 4
|~Ω × ~Λ|2 − |τ~Ω + η~Λ|2
(

τ 2 + η2 + |~Ω|2 + |~Λ|2
)2 . (1.65)

Notice that τ , η, ~Ω and ~Λ are stochastic variables that may be evaluated from Eq. (1.53)

for each particular realization of the emulator. Interference between the two principal

states at the optical receiver can often lead to somewhat counter-intuitive propagation

results. For example, an optical pulse can experience anomalous dispersion in which the

temporal broadening can exceed the linear sum of all DGD elements in the system [43,56].

Several other examples illustrating the interactions between PMD and PDL, such as pulse

spreading that can occur even with zero DGD, are discussed in Ref. [55].

1.6 Summary and outline

In this chapter, I have introduced the phenomenon of PMD and PDL in optical commu-

nication systems, with a particular emphasis on the general stochastic properties of fiber
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“emulator” models that are often widely used for the theoretical and numerical evaluation

of system performance. To summarize the key points from this chapter:

1. To first order, PMD is a differential group delay (DGD) introduced between two

orthogonal polarization modes. Equivalently, in the frequency domain, PMD acts to

rotate an incident SOP with increasing frequency by an angle proportional to the

DGD about the fast polarization axis on the Poincaré sphere.

2. PDL represents a differential attenuation between two orthogonal polarization modes

that renders the two principal polarization axes non-orthogonal.

3. In long lengths of transmission fiber, both the magnitude and direction of the PMD

vector vary stochastically with optical frequency. In particular, the PMD vector

magnitude follows a Maxwellian distribution with mean and rms values τmean and

τrms = τmean

√

3π/8 respectively. The decorrelation bandwidth of the PMD vector is

related to the rms DGD through ωd =
√

3/τrms.

4. Concatenation rules for the accumulation of PMD and PDL with an arbitrary num-

ber of optical elements provide a useful analytic and numerical tool for evaluating

polarization evolution in optical systems. For finite N , the statistical properties of

the concatenation can differ substantially from the N → ∞ limit.

5. Finally, PMD and PDL emulators may be preconditioned to an arbitrary initial state

with Brownian bridge algorithm. This numerical technique can reduce simulation run

times by orders of magnitude as compared to standard Monte Carlo calculations in

which the probability of occurrence of the initial emulator state is otherwise extremely

low.

The remaining chapters of this thesis are organized as follows. In Chapter 2, I will

discuss the Magnus expansion of PMD and PDL that was introduced for the first time in
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Ref. [94] and will establish its accuracy to fifth order in frequency. I will also present for

the first time a concatenation rule for the complex principal state vector, ~W , applicable to

systems with both PMD and PDL and will develop a novel method for the exact numerical

evaluation of arbitrary derivatives of ~W .

Chapter 3 presents an experimental measurement of high-frequency polarization tran-

sients resulting from low amplitude mechanical impacts of a commercially available DCM

that are unexpectedly reproducible between successive measurements. This allows mea-

surements of the transient evolution of PMD on time scales that are not otherwise possible

on most commercially available PMD measurement systems. Mechanically induced polar-

ization transients have since been studied experimentally in Ref. [28] and using the physical

models developed in Ref. [111].

In Chapter 4, I will introduce a model of the temporal evolution of PMD based upon the

formalism of a uniform random walk over the Poincaré sphere that, while being straightfor-

ward to implement numerically, provides a simple relation between the model parameters

(angular step size and the number of emulator segments N) and the decorrelation time of

the fiber emulator. I will then demonstrate a novel modification of the PMD emulator that

allows the temporal dynamics of the PMD emulator to be biased towards low-probability

regions of polarization activity using multicanonical sampling algorithms.

Next, in Chapter 5, I will adapt the basic transition matrix procedure to the temporal

dynamics of PMD by associating each transition in the Markov chain with a simulated

temporal step, leading to the accurate reproduction of the temporal dynamics of PMD

induced system outages using far fewer samples. In Chapter 6, I examine the impact of

the acceptance rule enforced between adjacent states of the Markov chain on the accuracy

of the resulting pdf estimate and will show that for a suitable range of input parameters

simple modifications of the decision rule can significantly enhance algorithmic efficiency.

Chapter 7 illustrates the application of the transition matrix procedure to the analysis of
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the outage dynamics associated with the hinge model of polarization dynamics. Finally, I

establish the more general applicability of the transition matrix method by calculating the

pdf of the duration of fading events in a wireless communication system in Chapter 8.
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Chapter 2

The Accuracy of the Magnus

Expansion for Polarization Mode

Dispersion and Polarization

Dependent Loss

We employ the Magnus expansion to solve the differential equation for the frequency de-

pendence of the Mueller matrix in the presence of polarization mode dispersion and polar-

ization dependent loss. We then compare this solution with the results of previous authors

and establish its accuracy to fifth order in frequency.

2.1 Introduction

The input and output Stokes vectors [47] in a linear optical system such as a fiber or

waveguide are related by a rotation matrix in the absence of polarization dependent loss
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(PDL). This matrix is often described by an expansion in polarization mode dispersion

(PMD) vectors of increasing order [64]. Here, we generalize this procedure to the 4 × 4

Mueller matrix transformation for systems with both PMD and PDL. This matrix obeys a

simple differential equation involving only the real and imaginary components of the com-

plex principal state vector [25,55,96,98] that we solve with the Magnus expansion. Unlike

other procedures, truncating this solution yields approximations that preserve the group

properties of the exact expression [78,87,102,103]. In the absence of PDL, we will further

demonstrate that the Magnus expansion [98] agrees with previous power series formula-

tions [47,51,64] for the frequency variation of the Stokes vector, while a detailed numerical

analysis indicates that for a specified model order the Magnus expansion maximizes the

bandwidth of high Jones matrix estimation accuracy and therefore can efficiently invert the

transformation between the frequency dependent PMD vector and the Jones/Mueller ma-

trix. We also discuss the relationship between higher-order PMD and PDL effects, which

are described with both 4 × 4 Mueller and 2 × 2 Jones matrices.

2.2 Mueller and Jones matrix formalisms

2.2.1 The Magnus expansion

In a linear optical system characterized by two orthogonally polarized guided modes with

different group velocities and losses (PMD and PDL), the Jones vectors of the output

and the frequency-independent input electric field polarizations, |Aout(ω)〉 and |Ain〉, at

an optical frequency ω are related through a 2 × 2 complex transfer matrix |Aout(ω)〉 =

T(ω)|Ain〉 (as this chapter only considers attenuation and phase differences between the

two polarizations, we further set det(T) = 1 [55]). The matrix T(ω) satisfies [56]

∂T

∂ω
T−1 = − i

2
~W (ω) · ~σ (2.1)
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in which ~W (ω) = ~Ω(ω) + i~Λ(ω) is termed the complex principal state vector (PSV). The

corresponding input and output 4 × 1 Stokes vectors for a completely polarized incident

electric field

Ãin =





〈Ain|Ain〉
〈Ain|~σ|Ain〉





Ãout =





〈Aout|Aout〉
〈Aout|~σ|Aout〉



 (2.2)

are similarly related through

Ãout(ω) = M(ω) Ãin (2.3)

in which

Mab(ω) =
1

2
Trace

{

T†(ω) σa T(ω) σb

}

(2.4)

designate the components of the 4 × 4 Mueller matrix M(ω), a, b = 0, 1, 2, 3, and ~σ =

[σ1,σ2,σ3]
T is the vector of Pauli spin matrices while σ0 = I2 is the 2 × 2 identity

matrix [39, 47].

Equivalently, the Mueller matrix can be expressed as a Kronecker matrix product [2,6,

21, 98]

M(ω) = A [T(ω) ⊗ T∗(ω)]A† (2.5)

in which

A =
1√
2















1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0















(2.6)
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is unitary, while ∗ and † represent complex and hermitian conjugation, respectively. Defin-

ing





0 ~aT

~a ~b×



 =















0 a1 a2 a3

a1 0 −b3 b2

a2 b3 0 −b1
a3 −b2 b1 0















(2.7)

for any two vectors ~a and ~b [48], it follows

A [ (~a · ~σ) ⊗ I2 ]A† =





0 ~aT

~a i~a×



 (2.8)

while

A [ I2 ⊗ (~a · ~σ)∗ ]A† =





0 ~aT

~a −i~a×



 . (2.9)

Accordingly, in terms of ~Ω and ~Λ differentiation of Eq. (2.5) yields [25, 96, 98]

∂M

∂ω
M−1 = H(ω) (2.10)

H(ω) =





0 ~ΛT

~Λ ~Ω×



 . (2.11)

The matrix H(ω) can then be considered a generator of an infinitesimal Lorentz transfor-

mation in Stokes space [6, 48, 95].

The variation of M(ω) with frequency can now be determined iteratively in terms of

M(ω0) at the optical carrier frequency, ω0, according to [103, 126]

M(ω) = M(ω0) +

∫ ω

ω0

dω1H(ω1)M(ω1). (2.12)

This yields

M(ω) = [I4 + J1 + J2 + J3 + . . .]M(ω0) (2.13)
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where IN is the N ×N identity matrix and

Jn(ω) =

∫ ω

ω0

dω1· · ·
∫ ωn−1

ω0

dωn H(ω1) · · ·H(ωn) (2.14)

are the series solution coefficients of Eq. (2.10). On the other hand, as demonstrated in

subsequent sections, the frequency interval over which Eq. (2.13) approximates M to within

a given level of accuracy is improved if we instead truncate the Magnus expansion

M(ω) = exp [B1 + B2 + B3 + . . .]M(ω0) (2.15)

to a given number of terms, which preserves relevant group properties of the exact solu-

tion [78,87,98,103]. To fourth order in H the expansion coefficients Jn and Bn of Eq. (2.13)

and Eq. (2.15) are related by

B1 = J1

B2 = J2 −
J2

1

2
(2.16)

B3 = J3 −
1

2
(J1J2 + J2J1) +

J3
1

3

B4 = J4 −
1

2
(J1J3 + J3J1 + J2J2)

+
1

3
(J1J1J2 + J1J2J1 + J2J1J1) −

J4
1

4

with analogous formulas for higher orders [102]. Rewriting Bn in terms of the commu-

tators [H(ωi),H(ωj)] of H(ω) at two optical frequencies ωi and ωj yields an alternative,
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computationally convenient formula for the Magnus expansion coefficients [87, 102]

B1 =

∫ ω

ω0

dω1H(ω1)

B2 =
1

2

∫ ω

ω0

dω1

∫ ω1

ω0

dω2 [H(ω1),H(ω2)] (2.17)

B3 =
1

6

∫ ω

ω0

dω1

∫ ω1

ω0

dω2

∫ ω2

ω0

dω3

(

[H(ω1), [H(ω2),H(ω3)]] + [[H(ω1),H(ω2)] ,H(ω3)]
)

B4 =
1

12

∫ ω

ω0

dω1

∫ ω1

ω0

dω2

∫ ω2

ω0

dω3

∫ ω3

ω0

dω4

(

[H(ω1), [[H(ω2),H(ω3)],H(ω4)]] + [[H(ω1), [H(ω2),H(ω3)]],H(ω4)]

+ [[H(ω1),H(ω2)], [H(ω3),H(ω4)]]
)

.

If the matrix H(ω) is now expanded in a Taylor series

H(ω) =

∞
∑

n=0

H(n)∆ω
n

n!
, (2.18)

where the coefficient H(n) = [∂nH/∂ωn]|ω0
is the n:th order PMD/PDL matrix, we obtain
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to fifth order in ∆ω = ω − ω0 from the Magnus coefficients, Eq. (2.17),

M(ω) = exp [N(∆ω)] M(ω0)

N(∆ω) = H(0)∆ω + H(1) ∆ω
2

2!

+ (H(2) − 1

2
[H(0),H(1)])

∆ω3

3!

+ (H(3) − [H(0),H(2)])
∆ω4

4!
(2.19)

+
(

H(4) − [H(1),H(2)] − 3

2
[H(0),H(3)]

+
1

6
[H(0), [H(0),H(2)]] +

1

2
[H(1), [H(1),H(0)]]

+
1

6
[H(0), [H(0), [H(0),H(1)]]]

)∆ω5

5!

+ O(∆ω6).

Alternatively, Eq. (2.11) expresses the Mueller matrix directly in terms of the vectors ~Ω

and ~Λ. To fourth order,

M(ω) = exp





0 ~aT

~a ~b×



M(ω0) (2.20)

in which ~a and ~b designate

~a = ~Λ(0)∆ω + ~Λ(1) ∆ω
2

2!

+ (~Λ(2) − 1

2
~Ω(0) × ~Λ(1) − 1

2
~Λ(0) × ~Ω(1))

∆ω3

3!
(2.21)

+ (~Λ(3) − ~Ω(0) × ~Λ(2) − ~Λ(0) × ~Ω(2))
∆ω4

4!
+O(∆ω5)
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and

~b = ~Ω(0)∆ω + ~Ω(1) ∆ω
2

2!

+ (~Ω(2) − 1

2
~Ω(0) × ~Ω(1) − 1

2
~Λ(1) × ~Λ(0))

∆ω3

3!
(2.22)

+ (~Ω(3) − ~Ω(0) × ~Ω(2) − ~Λ(2) × ~Λ(0))
∆ω4

4!
+O(∆ω5).

We observe that M(ω) as given by Eqs. (2.20)-(2.22) includes previously unnoticed corre-

lations between the Taylor orders of ~Λ and ~Ω.

Additionally, since any Jones matrix of the form T(ω) = exp [K]T(ω0), for some 2× 2

complex matrix K, can be transformed according to Eq. (2.5) into the Mueller matrix [6,98]

M(ω) = exp
[

A (K ⊗ I2 + I2 ⊗K∗) A†
]

M(ω0) (2.23)

we conclude from Eq. (2.19) that

T(ω) = exp

[

− i

2
~n(∆ω) · ~σ

]

T(ω0), (2.24)

where

~n(∆ω) = ~W (0)∆ω + ~W (1) ∆ω
2

2!

+ ( ~W (2) − 1

2
~W (0) × ~W (1))

∆ω3

3!

+ ( ~W (3) − ~W (0) × ~W (2))
∆ω4

4!
(2.25)

+
(

~W (4) − ~W (1) × ~W (2) − 3

2
~W (0) × ~W (3)

+
1

6
~W (0) × ( ~W (0) × ~W (2))

+
1

2
~W (1) × ( ~W (1) × ~W (0))

+
1

6
~W (0) × ( ~W (0) × ( ~W (0) × ~W (1)))

)∆ω5

5!

+ O(∆ω6)
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in which ~Wn = [∂n ~W/∂ωn]|ω0
, or, in terms of ~Ω and ~Λ, cf. Eqs. (2.21)-(2.22),

T(ω) = exp

[

− i

2
(~b+ i~a) · ~σ

]

T(ω0). (2.26)

Finally, we observe that the matrix exponential of Eq. (2.20) can be computed efficiently

for known values of ~a and ~b by defining the 2 × 2 matrix

Q =
(

~b+ i~a
)

· ~σ (2.27)

and complex variable

λ =

√

(~b+ i~a ) · (~b+ i~a ). (2.28)

The Jones matrix of Eq. (2.26) can then be expanded as

F = exp

[

− i

2
(~b+ i~a) · ~σ

]

= cos

(

λ

2

)

I2 −
i

λ
sin

(

λ

2

)

Q (2.29)

with the final result

exp





0 ~aT

~a ~b×



 = A (F ⊗ F∗)A†, (2.30)

providing a useful formula for the numerical evaluation of the 4 × 4 exponential Mueller

matrix. In particular, applying Eq. (2.30) with ~a = 0 and ~b = ψ p̂ yields

exp





0 0

0 ψ p̂×



 =





1 0

0 cosψ I3 + (1 − cosψ) p̂p̂T + sinψ p̂×



 (2.31)

which clearly reproduces the known result for the 3× 3 Stokes rotation matrix exp
(

ψ p̂×
)

.

Similarly, for ~a = α r̂ and ~b = 0,

exp





0 α r̂T

α r̂ 0



 =





coshα sinhα r̂T

sinhα r̂ I3 + (coshα− 1) r̂r̂T



 (2.32)

is the 4 × 4 Mueller matrix representation of the PDL Jones matrix exp
(

α r̂ · ~σ/2
)

.
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2.2.2 Exponential series

In Ref. [51], the Jones matrix associated with PMD was evaluated to fourth-order in the

frequency offset ∆ω. While, as we will show below, this procedure is equivalent to the

series expansion of Eq. (2.26) the series when truncated to finite order is non-unitary in

the absence of PDL and therefore is accurate within a somewhat reduced frequency interval.

Specializing to the case of zero PDL, and setting ~b = ψ r̂ with ~Λ = 0, Eq. (2.26) can be

written in terms of the unitary Jones matrix

U(∆ω) = T(ω)T(ω0)
−1 (2.33)

= cos

(

ψ

2

)

I2 − i sin

(

ψ

2

)

(r̂ · ~σ)

= u0 I2 − i~u · ~σ,

in which we have introduced the vector ~u and scalar u0, components of the Stokes vector

formed from the elements of the Jones matrix U according to u0 = Trace {U} /2 and

~u = iTrace {U ~σ} /2.

In terms of the unit vector p̂ = ~Ω(0)/|~Ω(0)|, we find after expanding the quantities u0

and ~u in a power series, cf. Eq. (2.22), and identifying terms of equal orders in ∆ω,

u0 = 1 − |~Ω(0)|2∆ω2

8
− ~Ω(0) · ~Ω(1) ∆ω

3

8

+

(

1

16
|~Ω(0)|4 − 3

4
|~Ω(1)|2 − ~Ω(0) · ~Ω(2)

)

∆ω4

24
+ . . .

p̂ · ~u = |~Ω(0)|∆ω
2

+ p̂ · ~Ω(1) ∆ω
2

4
(2.34)

+

(

p̂ · ~Ω(2) − 1

4
|~Ω(0)|3

)

∆ω3

12

+

(

p̂ · ~Ω(3) − 3

2
|~Ω(0)| ~Ω(0) · ~Ω(1)

)

∆ω4

48
+ . . .
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~u⊥ = ~u−
[

p̂ · ~u
]

p̂

= ~Ω(1⊥) ∆ω2

4
+

(

~Ω(2⊥) − 1

2
~Ω(0) × ~Ω(1⊥)

)

∆ω3

12

+

(

~Ω(3⊥) − ~Ω(0) × ~Ω(2) − 1

2
|~Ω(0)|2 ~Ω(1⊥)

)

∆ω4

48
+ . . .

with ~Ω(n⊥) = ~Ω(n) −
[

p̂ · ~Ω(n)
]

p̂. The results of Ref. [51] are reproduced by substituting

~τ = ~Ω/2 indicating that the Magnus formula, Eq. (2.24), accurately represents the higher-

order frequency variation of the Jones (Mueller) matrix.

2.2.3 Operator symmetrization

To recast the Magnus solution of Eq. (2.19) into a product of exponential operators each of

which corresponds to a pure n:th-order PMD/PDL component, the various non-commuting

operators must be correctly symmetrized to preserve the commutation relations between

the different matrix orders of H(n) in Eq. (2.19) [98,124,126]. The expansions that contain

a minimum number of operators up to and including fourth order in ∆ω can be derived

from the recursive form of the Magnus coefficients, Eq. (2.16), through repeated application
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of the Baker-Campbell-Hausdorff (BCH) identity [44, 98] and are given by [23, 45, 46, 118]

M(ω)M(ω0)
−1 = exp

[

H(0)∆ω
]

+O(∆ω2) (2.35)

= exp

[

1

2
H(0)∆ω

]

exp

[

1

2
H(1)∆ω2

]

×

exp

[

1

2
H(0)∆ω

]

+O(∆ω3) (2.36)

= exp

[

1

3
H(0)∆ω

]

exp

[

1

2
H(1)∆ω2

]

×

exp

[

2

3
H(0)∆ω

]

exp

[

1

6
H(2)∆ω3

]

+ O(∆ω4) (2.37)

= exp

[

1

6
H(1)∆ω2

]

exp

[

1

4
H(0)∆ω

]

×

exp

[

1

6
H(2)∆ω3

]

exp

[

1

4
H(0)∆ω

]

×

exp

[

1

3
H(1)∆ω2

]

exp

[

1

2
H(0)∆ω

]

×

exp

[

1

24
H(3)∆ω4

]

+O(∆ω5). (2.38)

2.2.4 Non-symmetric model

In Section 2.4 we compare numerically the accuracy of the symmetrized to the non-

symmetrized Jones matrix operator expansion [30, 64, 130]

T(ω)T(ω0)
−1 ≈ UnUn−1 · · ·U2U1 (2.39)

in which each matrix

Un(∆ω) = exp

[

− i

2

∆ωn

n!
~p (n) · ~σ

]

(2.40)
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is associated as in Section 2.2.3 with a pure n:th order PMD component with corresponding

PMD vector [64]
∂Un

∂ω
U−1

n = − i

2

[

∆ωn−1

(n− 1)!
~p (n)

]

· ~σ. (2.41)

To ensure ~Ω(ω) · ~σ = 2i
(

∂T/∂ω
)

T−1 to order ∆ω4 therefore requires [64]

~p (1) = ~Ω(0)

~p (2) = ~Ω(1)

~p (3) = ~Ω(2) + ~p (1) × ~p (2) (2.42)

~p (4) = ~Ω(3) + ~p (1) × ~p (3)

~p (5) = ~Ω(4) + ~p (1) × ~p (4) − 3 ~p (2) ×
(

~p (2) × ~p (1)
)

+ 4 ~p (2) × ~p (3).

2.3 Emulator model for PMD and PDL

The frequency variation of the polarization vector of an optical system with PMD and

PDL can be modeled by dividing the system into a large number of constant birefringent

and lossy segments. In each segment, the light polarization precesses around the axis of

the section’s polarization dispersion vector at a rate determined by the magnitude of the

birefringence while the attenuation is a maximum and minimum in two generally different

orthogonal directions.

We consider an optical system with mean PDL 0 ≤ αmean ≤ 10 dB and differential

group delay (DGD) τmean = 20 ps (as calculated for 0 dB mean PDL). To represent this by

an N = 100 section emulator, we set the frequency-independent PMD vector magnitude

of the m:th section and the differential attenuation between the most and least attenuated

polarization states to |~τm| = τmean

√

3π/8N = 2.17 ps and 0 ≤ |~αm| ≤ 1 dB, respectively.

The orientation of the birefringent and attenuation axes of the m:th section, specified by
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the unit vectors ~τm/|~τm| and ~αm/|~αm|, respectively, are selected from a uniform statistical

distribution over the Poincaré sphere.

Denoting the 2 × 2 Jones and a complex 3 × 3 Stokes matrices of the m:th emulator

section, m = 1, 2, . . . , N , by

Vm(ω) = exp

[

1

2
~αm · ~σ

]

exp

[

− i

2
ω ~τm · ~σ

]

Rm(ω) = exp [i ~αm×] exp [ω ~τm×] (2.43)

the corresponding complex PSV,

∂Vm

∂ω
V−1

m = − i

2
~vm · ~σ (2.44)

of the m:th section can be written as

~vm = exp [i ~αm×] ~τm. (2.45)

Here, for any real valued α and unit vector r̂

exp [i α r̂×] = coshα I3 + (1 − coshα) r̂r̂T + i sinhα r̂ × . (2.46)

Finally, the Jones matrix, TN(ω), after N emulator sections is calculated recursively ac-

cording to

TN (ω) = VN(ω)TN−1(ω) (2.47)

with T0(ω) = I2, while a concatenation rule for the total complex PSV, ~WN(ω), after N
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emulator segments can be derived by considering

− i

2
~WN (ω) · ~σ =

∂TN

∂ω
T−1

N (2.48)

=
∂VN

∂ω
V−1

N + VN

(

∂TN−1

∂ω
T−1

N−1

)

V−1
N

= − i

2
~vN · ~σ + VN

(

− i

2
~WN−1 · ~σ

)

V−1
N

= − i

2
~vN · ~σ − i

2

(

RN
~WN−1

)

· ~σ

= − i

2

[

~vN + RN
~WN−1

]

· ~σ.

In analogy with Eq. (1.36),

~WN(ω) = ~vN(ω) + RN(ω) ~WN−1(ω) (2.49)

with ~W0(ω) = 0, provides a general rule for the accumulation of the complex principal state

vector in optical systems containing both PMD and PDL that is applicable to the analysis

of the distribution and frequency autocorrelation statistics of ~WN(ω). Notice that unlike

systems with PMD, the quantities ~vm and Rm(ω) appearing in Eq. (2.49) are complex

valued.

By induction we find that the n:th derivative, n ≥ 1, of the total complex PSV after

m emulator sections, ~Wm = ~vm + Rm
~Wm−1, is given by

∂n ~Wm

∂ωn
= Rm

∂n ~Wm−1

∂ωn
(2.50)

−
n
∑

k=1





n

k



 [−~vm×]k
∂n−k ~Wm

∂ωn−k

with ~W0 = 0. Notice that this last expression provides an exact recursive formula for
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evaluating ∂n ~Wm/∂ω
n. Analogously, setting T0 = I2,

∂nTm

∂ωn
= Vm

∂nTm−1

∂ωn
(2.51)

−
n
∑

k=1





n

k





[

i

2
~vm · ~σ

]k
∂n−kTm

∂ωn−k

yields an exact recursive formula for the n:th derivative of the Jones matrix Tm(ω) =

Vm(ω)Tm−1(ω) after m segments [99]. While seemingly complex, both Eqs. (2.50)-(2.51)

can be easily implemented numerically [94]. The algorithm is as follows: with m = 1,

~W1 = ~v1, and ∂n ~W1/∂ω
n = 0 for all n ≥ 1. For m = 2, we calculate sequentially each ~W2,

∂ ~W2/∂ω, ∂2 ~W2/∂ω
2, . . . , ∂n ~W2/∂ω

n from repeated application of Eq. (2.50). Once all the

∂n ~W2/∂ω
n are determined, we calculate in order ~W3, ∂ ~W3/∂ω, ∂2 ~W3/∂ω

2, . . . , ∂n ~W3/∂ω
n.

These steps are then performed N times. Pseudocode implementing this algorithm is

presented in Listing 2.1.

In view of the Taylor expansion of the Jones matrix in orders of ~Ω(ω) presented

in Sec. 2.2.2, Eq. (2.51) will be subsequently employed in the numerical evaluation of

Eqs. (2.34).
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Listing 2.1: Pseudocode for the exact evaluation of ~W (n) = ∂n ~WN/∂ω
n for all derivative

orders n = 0, . . . , Nd following an N section PMD/PDL emulator.

~W (n) = 0 ; % I n i t i a l i z e f o r a l l n = 0, . . . , Nd

for m = 1 to N % Loop over emulator segments

Um = exp (ω ~τm×) ;

Hm = exp (i ~αm×) ;

~vm = Hm ~τm ;

~W (0) = ~vm + Hm Um
~W (0) ; % Fir s t order complex PSV

for n = 1 to Nd % Loop over order o f d e r i v a t i v e
~S = 0 ;

for k = 1 to n

~S = ~S −
(

n

k

)

[−~vm × ]
k ~W (n−k) ;

end

~W (n) = ~S + Hm Um
~W (n) ; % Complex PSV of order n + 1

end

end

2.4 Numerical results

2.4.1 PMD model comparison

We now compare the procedures of Section 2.2 for zero PDL through an analysis of the

maximum error, ǫκ(∆ω), between the estimated Test(ω) and the emulated Jones matrices

T(ω) over the frequency interval |ω − ω0| ≤ ∆ω. This error is given for each realization

κ = 1, 2, . . . , (Nκ = 106) of the emulator by

ǫκ(∆ω) = max
|ω−ω0|≤∆ω

[‖Test(ω) −T(ω)‖
‖T(ω)‖

]

· 100% (2.52)
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where ‖T‖2 = Trace
{

T†T
}

is the Frobenius matrix norm. For each emulator realization

κ the bandwidth ∆ωκ is found with a bisection method applied to the condition that

ǫκ(∆ωκ) = ǫmax for a maximum specified error ǫmax. The probability density function

(pdf) of ∆ωκ is then estimated for each of the numerical techniques of Section 2.2 from

the Nκ emulator realizations. Note that Eq. (2.52), unlike the Q value or bit-error rate, is

independent of a specific system implementation and therefore provides an unambiguous

measure of the algorithmic precision [99].

The pdf of ∆ωκ for ǫmax = 2% as a function of the normalized frequency ∆ν =

τmean∆ωκ/2π is displayed in Fig. 2.1, in which Test(ω) is approximated by the fourth-

order versions of the Magnus expansion Eq. (2.24) (◦), Eqs. (2.34) (•), the symmetric

expansion of Eq. (2.38) (×) and the non-symmetric model, Eq. (2.39) (+). Here we have

displayed every third data point to improve legibility. Clearly, the frequency range over

which the Jones matrix can be accurately estimated is greatest for the Magnus expan-

sion. However, Eq. (2.38) yields more precise results than Eq. (2.39) though within a more

restricted frequency range than that of Eq. (2.24).

To determine the variation of the frequency range over which each model accurately

represents the Jones matrix with the expansion order M , we determine as in Ref. [99] the

normalized frequency ∆νmin such that the probability P (∆ν ≥ ∆νmin) of ∆ν exceeding

the minimum frequency, ∆νmin, is 99.99% for values of M between 1 and 5. Fig. 2.2

then displays ∆νmin as a function of M in which the ◦, ×, + and • markers indicate

the Magnus expansion of Eq. (2.24), the symmetric model of Eqs. (2.35)-(2.38), the non-

symmetric model Eq. (2.39) and Eqs. (2.34), respectively. Of course, as a result of statistical

fluctuations, the modeling error exceeds ǫmax with a probability 1 − P (∆ν ≥ ∆νmin).

However, we have previously established that the variation of ∆νmin with expansion order

M is qualitatively independent of P (∆ν ≥ ∆νmin) and ǫmax [99]. Therefore, while a ∆νmin

cannot be specified such that ∆ν ≥ ∆νmin for all possible emulator realizations, for values

of ∆ν less than ≈ 0.1 the pdf decreases rapidly in Fig. 2.1 indicating that slightly lowering
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Figure 2.1: The pdf of the normalized bandwidth, ∆ν = τmean∆ωκ/2π, for ǫκ(∆ωκ) =

ǫmax = 2% evaluated from Nκ = 106 realizations of a N = 100 section fiber emulator

with 0 dB PDL as determined by the fourth order Magnus expansion Eq. (2.24) (◦),
Eqs. (2.34) (•), the symmetric product of Eq. (2.38) (×) and the non-symmetric expansion

of Eq. (2.39) (+).
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∆νmin substantially reduces the probability that the estimation error exceeds ǫmax.

In Fig. 2.3 we display as a function of τmean the number of expansion orders required

for each of the models of Section 2.2 to reproduce the frequency evolution of the Jones

matrix to within ǫmax = 2% for P (∆ν ≥ ∆νmin) = 99.99% over a |ω − ω0|/2π ≤ 10 GHz

frequency interval. While the range of τmean for the desired level of accuracy is greatest for

the Magnus expansion, Eq. (2.24), even for relatively low values of τmean many terms in

the Taylor expansion of the PMD vector are required to ensure sufficient precision over the

entire 20 GHz frequency interval although reducing the confidence level P (∆ν ≥ ∆νmin)

or increasing the acceptable modeling error ǫmax decreases the expansion order required to

attain a given value of τmean.

2.4.2 Magnus expansion with PMD and PDL

Next, in Fig. 2.4 we examine the relative accuracy of the Magnus expansion in the presence

of PDL by displaying the variation of ∆νmin with the mean PDL, αmean, for a fiber emulator

model after truncating Eq. (2.24) to first (◦), second (×), third (+), fourth (•) and fifth (△)

order in ∆ω. Here we have employed a constant segment DGD of |~τ(m)| = 2.17 ps for m =

1, . . . , N . The normalized bandwidth ∆ν = τmean∆ωκ/2π in Fig. 2.4 accounts for the slight

dependence of τmean on αmean, arising from the relationship τmean = E
{

Re
{

√

~W · ~W
}}

for

non-zero PDL, where E {· · ·} represents an ensemble average over emulator realizations [55].

Although the bandwidth reduction at large αmean is most evident at high expansion orders,

for αmean ≤ 4 dB the worst case reduction is ≈ 7×10−3 in ∆νmin up to fifth order, implying

that a nominal 7.6 GHz bandwidth would be reduced by 0.35 GHz for τmean = 20 ps and

by ≈ 0.042 or 2.1 GHz for an αmean of 10 dB.

Finally, in Fig. 2.5 we display as in Fig. 2.3 the variation of the number of Magnus

expansion orders required to reproduce the frequency evolution of the Jones matrix to

within ǫmax = 2% for P (∆ν ≥ ∆νmin) = 99.99% over a |ω − ω0|/2π ≤ 10 GHz frequency
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Figure 2.2: The smallest normalized bandwidth, ∆νmin, for which the maximum observed

error of Eq. (2.52) is < 2% for 99.99% of the randomly generated emulator realizations

versus the expansion order, M , for the Magnus expansion of Eq. (2.24) (◦), the symmetric

operator expansion of Eqs. (2.35)-(2.38) (×), the non-symmetric expansion of Eq. (2.39)

(+), and Eqs. (2.34) (•).
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Figure 2.3: Same as Fig. 2.2, but for the number of expansion orders required to determine

the frequency evolution of the Jones matrix with a maximum error of ǫmax = 2% with

99.99% confidence over a |ω− ω0|/2π ≤ 10 GHz frequency interval for mean DGD, τmean,

and 0 dB mean PDL.
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interval with τmean, for values of mean PDL in the range 0 ≤ αdB ≤ 10 dB. Evidently,

relative to αmean = 0 dB, the mean DGD must be reduced by approximately 4.2 ps to limit

sufficiently the modeling error for ∆ω/(2π) = 10 GHz for the worst case of 9.9 dB mean

PDL and M = 5 expansion orders, while for αmean ≤ 4 dB τmean should be reduced by

≈ 0.7 ps.

2.4.3 Taylor expansion estimation bandwidth

We next examine the width of the frequency region over which the truncated Taylor ex-

pansion

~West(ω) =
N
∑

n=0

~W (n)∆ω
n

n!
(2.53)

accurately reproduces the frequency evolution of ~W (ω). Here we first construct the 3 ×
3 correlation matrix ρab = E

{

WaW
∗
est,b

}

/(σa σest,b), for a, b = 1, 2, 3, formed from the

components Wa(ω) andWest,b(ω) of the ~W (ω) and ~West(ω) vectors where E
{

· · ·
}

represents

an ensemble average over 105 emulator realizations. Since E
{

Wa

}

=
{

West,b

}

= 0 and Wa

is statistically uncorrelated with West,b for a 6= b, σ2
a = E

{

|Wa|2
}

and σ2
est,b = E

{

|West,b|2
}

while ρab is proportional to the identity matrix. Accordingly, we consider only the frequency

variation of ρ11 = E
{

W1W
∗
est,1

}

/(σ1 σest,1) of the first component of each vector. In Fig. 2.6

we plot the correlation |ρ11| as a function of normalized frequency ∆ν = τmean∆ω/2π for

expansion orders M = 0, 2, 4, . . .20 where ~Wn is calculated from Eq. (2.50) with 0 dB

mean PDL. We then employ |ρ11| = 0.97, which results from a M = 0 Taylor expansion

calculation performed according to Section 2.4.1 at the half-bandwidth, ∆νpsp/2 = 1/16, of

the principal state, to display as + markers in Fig. 2.7 the frequency interval ∆ν for which

|ρ11| ≥ 0.97 as a function of the expansion order. The inclusion of PDL only moderately

reduces the bandwidth for which |ρ11| ≥ 0.97 as indicated by the • markers in Fig. 2.7

which instead use αmean = 9.9 dB.
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Figure 2.4: The variation of ∆νmin with the mean PDL, αmean, of a N = 100 section

emulator for the Magnus expansion of Eq. (2.24) truncated to first (◦), second (×), third

(+), fourth (•) and fifth (△) order in ∆ω.
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Figure 2.5: Same as Fig. 2.3, but for the number of Magnus expansion orders required

to limit the error in the computed frequency evolution of the Jones matrix to ǫmax = 2%

with 99.99% confidence over a |ω−ω0|/2π ≤ 10 GHz frequency interval for a mean DGD

τmean and values of the mean PDL in the range 0 ≤ αmean ≤ 10 dB.
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Figure 2.6: The variation with normalized frequency, ∆ν = τmean∆ω/2π, of the correlation

|ρ11| between the x-components of ~W and ~West for Taylor orders N = 0, 2, 4, . . .20 and 0

dB mean PDL. A vertical dotted line indicates the half bandwidth of the principal state,

∆νpsp/2, with ∆νpsp = 1/8.
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Figure 2.7: The variation of the frequency interval ∆ν for which |ρ11| ≥ 0.97 (+ markers)

and |ρ11| ≥ 0.9999 (◦ markers) with the Taylor expansion order, N and 0 dB mean

PDL. Analogous results for |ρ11| ≥ 0.97 and 9.9 dB mean PDL are indicated by the •
markers. Also shown is ∆νmin, as calculated with the numerical methods of Section 2.4.1

for ǫmax = 2% and P (∆ν ≥ ∆νmin) = 99.99%, with 0 dB (× markers) and 9.9 dB (∗
markers) mean PDL. The solid lines are optimal fits to square-root functions.
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In a second calculation, shown as × markers in Fig. 2.7, we instead apply the numerical

techniques of Section 2.4.1 to the maximum error

ǫW (∆ω) = max
|ω−ω0|≤∆ω

[

‖ ~West(ω) − ~W (ω)‖
‖ ~W (ω)‖

]

· 100% (2.54)

to identify the frequency interval ∆νmin, with 0 dB mean PDL, for which ǫmax = 2% and

P (∆ν ≥ ∆νmin) = 99.99% (the solid lines of Fig. 2.7 are least-square fits of the results

of both calculations to square-root functions [19]). Analogous results for αmean = 9.9 dB,

marked ∗ in Fig. 2.7, are only weakly dependent on the mean emulator PDL. Evidently,

limiting the maximum modeling error significantly reduces the bandwidth compared to

enforcing a minimum statistical correlation between the estimated and exact complex prin-

cipal state vectors. This is clearly evident from the |ρ11| = 0.9999 results for αmean = 0 dB

in Fig. 2.7 (◦ markers), which more accurately reproduce the ǫmax = 2% curve.

2.5 Conclusions

While the Magnus expansion model of the frequency dependence of the Mueller matrix

in linear optical systems affected by both PMD and PDL reproduces previous power-

series expansion and differential equation solution techniques, it additionally preserves the

symmetry of the Mueller matrix in every expansion order. This yields physically realizable

operator expansions that facilitate the design of joint PMD and PDL compensators [98,

124, 126]. Other practically relevant models of PMD frequency variation [30, 126] can

be obtained by applying the BCH identity [44, 98] to the novel low order expansions of

Eq. (2.19) while improved accuracy within a broader frequency range could potentially be

achieved by extending the formalism according to Refs. [62,103].

Although the frequency behaviour of the Jones or Mueller matrix is generally character-

ized through Taylor expansion coefficients, a fifth order Magnus expansion is, for example,
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required to represent the Jones matrix with 99.99% accuracy for a mean DGD of 15 ps.

Thus other parameterizations may be preferable for the numerical simulation of large mean

DGD fibers. Numerical models such as the Jones matrix expansions and the interpolation

procedures of Ref. [99] that describe a large span of frequencies can as well lead to enhanced

numerical accuracy and programming simplicity for high bit-rate single or multiple channel

optical system simulations. Of course, in this case the physical connection between specific

Taylor orders of the complex principal state vector and the resulting PMD/PDL induced

pulse distortion is lost.

Finally, although PMD model performance is quantified in this chapter by the maximum

error incurred within a given frequency range, the system penalty due to PMD and PDL

in an optical network may be a highly-nonlinear function of this error, dependent upon

implementation details [121, 129], or may possibly be sensitive only to the coefficients of

the low Magnus expansion orders.
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Chapter 3

Transient Evolution of Polarization

in Dispersion Compensation Modules

In this chapter, we employ a falling weight to generate high-frequency fluctuations in the

polarization and PMD of commercial dispersion compensation modules and observe that for

low impact forces the polarization variation is nearly identical for successive measurements.

3.1 Introduction

High frequency SOP variations can significantly affect the design and performance of both

PMD compensation devices and advanced coherent lightwave systems based on polarization

sensitive detection. In aerial fiber for example the SOP has been observed to rotate on the

Poincaré sphere at frequencies up to several kilohertz [18,113], while the results of several

field trials [16,67] have demonstrated high speed polarization transient events occurring on

timescales < 1 ms even in buried fiber links. As well, the mechanical vibrations generated

by the impact of metal tools on dispersion compensation modules (DCMs) containing long
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Figure 3.1: The Avanex 20 km dispersion compensation module. Impacts were targeted 1

cm radially outward from the inner cylindrical core of the DCM housing.

lengths of dispersion compensating fiber have been associated with random trajectories of

the SOP on the Poincaré sphere varying at instantaneous rates equivalent to > 45 × 103

complete rotations of the sphere per second (Rot/s) [66].

While the remainder of this thesis examines the temporal evolution of polarization

characterized by a stochastic evolution of the PMD vector over the Poincaré sphere, in this

chapter we will briefly consider the polarization transients generated during mechanical

impacts of a commercially available DCM (a typical dispersion compensation module is

illustrated in Fig. 3.1). Here, we will demonstrate transient events with instantaneous

rotation rates exceeding > 75 kRot/s by releasing a 2.6 g steel ball from heights of several

centimeters onto a DCM and, more significantly, will show that after a suitable restoring

time the observed SOP trajectory is approximately retraversed in a subsequent impact.
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These “elastic” polarization transient events were studied in greater experimental detail

in Ref. [28] and modeled numerically in Ref. [111]. More recently, elastic transients were

reported in large-scale field trials involving 1800 km terrestrial fiber links [82]. As a result,

an optical network can experience transient degradations of the bit error rate in which the

instantaneous rate of polarization rotation or the PMD and PDL briefly exceed acceptable

performance thresholds.

3.2 Experimental setup

We characterize high-speed polarization transients by inserting polarized light from a Pho-

tonetics Tunics-PRI tunable laser into a Nortel DCM60 or an Avanex 20 km dispersion

compensation module. The SOP at the input of the DCM was controlled with an HP

11896A while the outgoing polarization state was sampled at a 2.5 × 106 Hz rate with a

Tektronix digitizing oscilloscope attached to the detectors of a custom built, high speed

polarimeter based upon an integrated Lightwaves2020 device. The polarimeter’s analog

electrical bandwidth was approximately 40 MHz.

The polarimeter was itself calibrated against an HP 8509B polarization analyzer. Suc-

cessive measurements of the SOP Stokes vector on the Poincaré sphere, Â = [A1, A2, A3]
T,

coincided to within a mean angular error of 0.07 deg with the HP 8509B. The magnitude

of the error further remained < 0.25 deg over 200 independent measurements.

In Fig. 3.2, we display the results of 10 measurements of the time variation of the A1

Stokes component of the SOP at the output of the DCM. Similar results for the temporal

variation of Â on the Poincaré sphere are displayed in Fig. 3.2 for the Avanex DCM. Here,

we dropped a 2.6 g and 1.3 cm diameter steel ball 9 cm above a location 1 cm from the inner

cylindrical core of a Nortel DCM. Although the polarization response of the Nortel and

Avanex DCMs in Figs. 3.2a and 3.2b are qualitatively similar, we have observed that the
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Figure 3.2: The time variation of the Stokes component, A1, at the output of (a) a Nortel

DCM60 and (b) an Avanex 20 km DCM during the first 1 ms after ten collisions separated

by ≈ 20 sec intervals with a 2.6 g steel ball released from 9 cm above a point 1 cm from

the DCM inner core.
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Figure 3.3: The time variation of Â on the Poincaré sphere at the output of the Avanex

20 km DCM during the first 0.75 ms after five collisions separated by ≈ 20 sec intervals

with a 2.6 g steel ball released from 9 cm above a point 1 cm from the DCM inner core.
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minimum required relaxation time can vary between 1 sec and > 40 sec between different

DCM models. In particular, a ∼ 20 sec time between measurements is typically required

to restore the initial state of the Nortel DCM60.

Fig. 3.2 indicates that for times < 0.2 ms after the collision the output SOP rotates

at approximate rates > 75 kRot/s and > 10 kRot/s for the Nortel and Avanex DCM,

respectively, comparable to the previously reported value of 45 kRot/s [66]. Low frequency

oscillations then persist for an additional ∼ 20 ms. However, Fig. 3.2 further demonstrates

that for an identical impact location and release height, the individual components of the

output Stokes vectors coincide to within 4% when averaged over the time series, although

sufficiently large impact forces alter the internal state of the DCM and therefore reduce

the measurement reproducibility. The increased polarization activity of the Nortel DCM60

in Fig. 3.2 was related in Ref. [111] to the increased fiber length and reduced modal size

relative to the Avanex unit.

Since the temporal variation of the SOP is nearly invariant for successive collisions,

the time-variation of the PMD of the DCM can be determined by repeating the impact

experiment with different input polarization states and optical frequencies. To first order

in the PMD, the output SOP of the DCM Âout(ω1; t) and Âout(ω0; t) at time t and optical

frequencies ω0 and ω1 = ω0 + ∆ω are related through

Âout(ω0 + ∆ω; t) = U(∆ω; t) Âout(ω0; t), (3.1)

where the 3 × 3 rotation matrix U(∆ω; t) is specified in terms of a time-dependent PMD

vector ~τ(t) according to

U(∆ω; t) = exp [∆ω ~τ (t)×] . (3.2)

We have employed the least-square method of Refs. [97, 104] to extract U(∆ω; t) from

measurements of Âout(ω0 +∆ω; t) and Âout(ω0; t) for 6 input polarization states maximally
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DCM during the first 5 ms after collision with a 2.6 g steel ball, again for a 11 cm release

height and a 1.0 cm radial displacement from the inner core.
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Figure 3.5: The time variation of the DCMs hinge (a) rotation angle and (b) rotation axis

after the mechanical excitation of Fig. 3.4.
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separated on the Poincaré sphere and a frequency offset ∆ω corresponding to a 5 nm

wavelength interval. To reduce experimental error, we further averaged each Âout(ω; t)

over 5 successive impacts. Fig. 3.4 displays the DGD, τ(t) = |~τ(t)|, and principal state,

p̂(t) = ~τ(t)/|~τ(t)|, as a function of time over a 5 ms interval after a collision with the ball

released from 11 cm above a point 1 cm from the cylindrical core of the Avanex DCM.

Here the DGD fluctuates between ≈ 0.06 ps and 0.19 ps at frequencies exceeding 10 kHz,

while the PSP covers approximately one quarter of the Poincaré sphere.

As the measured DGD of the DCM is low (< 0.2 ps for the Avanex model), the

mechanical excitations can be modeled as purely rotational hinge sites in the context of

the hinge-model of PMD in optical networks [65]. That is, the relation between the output

SOPs at an initial t0 and a later time t1 = t0 + ∆t at a constant optical frequency ω is

approximately described by

Âout(ω; t0 + ∆t) = R(∆t) Âout(ω; t0), (3.3)

with

R(∆t) = exp [ψ(∆t) r̂(∆t)×] (3.4)

and a time-dependent rotation angle ψ(∆t) and rotation axis r̂(∆t). As in the preceding

paragraph, we determined R(∆t) from measurements of Âout(ω; t), averaged over 5 suc-

cessive collision events and 6 random input polarizations. With the identical mechanical

excitation as in Fig. 3.4, we then obtain Fig. 3.5 for the variation of ψ(∆t) and r̂(∆t)

during the first 5 ms after collision. Evidently, even relatively small mechanical excitations

generate large variations in both the rotation angle ψ(∆t) and the rotation axis r̂(∆t),

with the rotation axis traversing a large region of the Poincaré sphere.
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3.3 Conclusions

We have demonstrated that low-amplitude mechanical excitations of standard DCMs can

yield high frequency, > 75 kRot/s, polarization transients that are nearly invariant between

successive measurements. This reproducibility enables the exhaustive characterization of

the PMD of such components as well as their precise hinge model parametrization. Further,

by placing the DCM in series with one or more sections of PMD fiber, inexpensive, high-

frequency and highly reproducible PMD scramblers can be constructed for system testing

purposes. These hinge model results could further be incorporated into system simulators,

which would, for example, enable the performance of polarization sensitive detectors to be

analyzed with increased accuracy.
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Chapter 4

A Time-Dependent Polarization

Mode Dispersion Emulator

We implement a fiber emulator based on a random walk over the unit sphere that accurately

simulates the temporal evolution of polarization-mode dispersion (PMD) in fiber optic

communication systems with relatively few emulator sections. We then derive a simple

expression relating the characteristic decorrelation time of the emulated PMD vector to the

properties of the underlying random walk. Finally, the model is adapted in a multicanonical

calculation of low-probability PMD induced system outage events.

4.1 Introduction

Fiber emulators predict the frequency variation of the state of polarization (SOP) and

the PMD vector at the output of standard, single mode optical fiber [10, 24, 59, 64, 70, 79].

Consequently, they have been successfully employed to simulate the effects of polarization

mode dispersion (PMD) on system performance at transmission rates exceeding 10 Gb/s.
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In an emulator, N randomly oriented, linearly birefringent sections are concatenated in

such a manner that the emulator yields the correct fiber statistics for distances sufficiently

large compared to the characteristic birefringence correlation length [114].

The temporal variations of the fiber birefringence have previously been incorporated

into the emulator model by, for example, either varying the differential group delay (DGD)

with time while preserving the birefringence orientation [33, 61], or considering temporal

variations as a small perturbation on an otherwise constant background birefringence [3,

80]. Both of these procedures approximate buried or aerial optical fiber links in which

the thermal and mechanical fluctuations responsible for the PMD temporal dynamics are

distributed along the fiber length in such a manner that the polarization evolution can be

represented as a diffusion process. As N → ∞, however, each method predicts equivalent

temporal autocorrelation statistics [80].

In this chapter, we extend this prior work by changing the birefringence orientation of

each emulator section by a constant but randomly oriented angle on the Poincaré sphere

for each simulated time step. This procedure, while simple to implement, correctly models

the temporal statistics expected in the diffusion limit for a relatively small value of N , as

verified here by ensuring that the resulting probability of a PMD induced system outage

as a function of time coincides with the predictions of a previous stochastic differential

equation analysis [3]. Additionally, by adapting the emulator into standard multicanonical

procedures [7,53,122,123,125], we accurately model the temporal dynamics of low proba-

bility regions with orders of magnitude less computation time than required by standard

Monte-Carlo techniques [127, 128].

In standard emulator models [60, 70, 79, 80, 108] if ~τm,k denotes the PMD vector of the

m:th element of a series of birefringent segments at the k:th simulated temporal step, the

total PMD vector ~ΩN (ω, k) at optical angular frequency ω after the final, N :th element is
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given by [24, 47, 59]

~ΩN (ω, k) = ~τN,k + RN(ω, k) ~ΩN−1(ω, k) (4.1)

with ~Ω0(ω, k) = 0. Each rotation matrix

Rm(ω, k) = exp (ω ~τm,k ×) (4.2)

in Eq. (4.1) precesses the direction of the incident polarization vector around the linear

birefringence of the m:th optical element according to Rodrigues’ formula for rotating a

vector by an angle ψ about a second unit vector r̂ [47]

exp (ψ r̂×) = cosψ I3 + (1 − cosψ) r̂r̂T + sinψ r̂ × . (4.3)

Here I3 is the 3 × 3 identity matrix and

r̂× =









0 −r3 r2

r3 0 −r1
−r2 r1 0









(4.4)

where r̂ = [r1, r2, r3]
T and T indicates the transpose.

In this chapter, we describe a technique that varies ~τm,k at the k:th simulation step by

a constant angle α [101] on the Poincaré sphere such that if ~τm,k = τm p̂m,k, where τm is

time-independent, then p̂m,(k+1) · p̂m,k = cosα for k ≥ 0, although other implementations

have employed e.g. randomly distributed values of α [101]. The resulting random walk

approaches a diffusion process on the unit sphere for α≪ 1. The components of ~τm,0 at the

initial k = 0 time index are typically independent, zero mean Gaussian distributed random

variables with variance σ2
τ [70], although in later sections ~τm,0 will be selected using the

Brownian bridge algorithm [107]. The initial unit vector p̂m,0 = ~τm,0/|~τm,0| in the former

case is uniformly distributed over the sphere, while the DGD of each emulator section,

τm = |~τm,k|, possesses a Maxwellian probability density function (pdf)

fτ (x) =

√

2

π

x2

σ3
τ

exp

(

− x2

2σ2
τ

)

(4.5)
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with first and second moments E {τm} = στ

√

8/π and E {τ 2
m} = 3 σ2

τ , respectively, yielding

an rms DGD, τ 2
rms = E

{

|~ΩN(ω, k)|2
}

, of τrms = στ

√
3N for the emulated PMD vector. Un-

like models involving a constant DGD for each section, this approach typically reproduces

higher order PMD statistics [64] with fewer emulator sections while suppressing periodici-

ties in the frequency autocorrelation function for small N [79], increasing the free spectral

range of the emulator.

To model the temporal properties of ~ΩN(ω, k) for an arbitrary number of emulator

sections N , we consider the PMD autocorrelation function [60, 79]

CN(ω, k; ∆ω, n) = E
{

~ΩN (ω, k) · ~ΩN(ω + ∆ω, k + n)
}

(4.6)

in which E {· · ·} denotes an expectation over realizations of the stochastic process. If

the ~τm,k average to zero and are further independent and identically distributed between

emulator sections [59, 70],

CN(ω, k; ∆ω, n) = Cτ (k;n)

+ E
{

~ΩN−1(ω, k)
T

× RN(ω, k)TRN(ω + ∆ω, k + n)

× ~ΩN−1(ω + ∆ω, k + n)
}

.

(4.7)

Here, we have defined Cτ (k;n) = E {~τm,k · ~τm,k+n} as the temporal autocorrelation function

of the m:th emulator section. Further, if the distribution of the orientation of ~τm,k is

spherically symmetric, by symmetry the autocorrelation of Rm(ω, k) is proportional to the

identity matrix so that E
{

Rm(ω, k)TRm(ω + ∆ω, k + n)
}

= g(ω, k; ∆ω, n) I3 and

CN(ω, k; ∆ω, n) = Cτ (k;n)

+ g(ω, k; ∆ω, n)CN−1(ω, k; ∆ω, n).
(4.8)

Repeatedly applying Eq. (4.8) yields the autocorrelation of the output PMD vector [61,79],

CN(ω, k; ∆ω, n) = Cτ (k;n)

[

1 − gN(ω, k; ∆ω, n)

1 − g(ω, k; ∆ω, n)

]

, (4.9)
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where the autocorrelations associated with each emulator section,

Cτ (k;n) = E {~τm,k · ~τm,k+n} (4.10)

and

g(ω, k; ∆ω, n) =
1

3
E
{

Trace
{

Rm(ω, k)TRm(ω + ∆ω, k + n)
}}

, (4.11)

can be evaluated for any time dependent local birefringence model. We demonstrate below

that the autocorrelation functions Cτ (k;n) and g(ω, k; ∆ω, n) of the random walk method

accurately represent the temporal dynamics of optical fiber links even for a small, N ≈ 20,

number of emulator sections.

4.2 Uniform random walk on a sphere

Omitting the segment index m, to ensure that for each time index k the unit vector p̂k is

rotated by a constant angle α in a random direction we calculate

p̂k+1 = cosα p̂k + sinα q̂k. (4.12)

The random unit vector q̂k is selected from a uniform distribution over the great circle in

the plane orthogonal to p̂k, ensuring that p̂k+1 · p̂k = cosα. To generate q̂k we observe that,

by spherical symmetry, projecting ~rk onto the plane orthogonal to p̂k yields a vector ~qk =

~rk−(~rk · p̂k) p̂k, and an associated unit vector q̂k = ~qk/|~qk| that are uniformly distributed in

angle within this plane if the components of ~rk are obtained from a zero mean unit variance

Gaussian random number generator. The random walk can however be preferentially

directed along any desired spatial directions by appropriately biasing the selection of q̂k.

Denoting the probability density of the initial unit vector p̂0 over the unit sphere by

f0(θ, φ), with polar and azimuthal coordinates θ and φ, so that
∫ 2π

φ=0

∫ π

θ=0

f0(θ, φ) sin θ dθ dφ = 1, (4.13)
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Figure 4.1: The pdf, fz(cos θ), of the z-component of p̂k after k random steps for a vertically

directed initial vector p̂0 as estimated from a 106 sample Monte-Carlo simulation after k = 3

(• markers) and 4 steps (◦ markers) of a random walk with an angular step size of α = π/10,

respectively. The solid lines display the analytic result of Eq. (4.17).
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and expanding in spherical harmonics Y m
l (θ, φ) according to

f0(θ, φ) =

∞
∑

l=0

l
∑

m=−l

FlmY
m
l (θ, φ), (4.14)

after k steps of the unbiased random walk the probability density of p̂k is given by [101]

fk(θ, φ) =

∞
∑

l=0

l
∑

m=−l

[Pl (cosα)]k FlmY
m
l (θ, φ), (4.15)

where Pl (cosα) represents the ordinary Legendre polynomial of degree l and the Y m
l (θ, φ)

are orthonormalized with respect to integration over all solid angles. In the two cases of

interest here, the initial vector p̂0 is (1) either oriented along the z-axis with arbitrary

azimuthal angle φ so that

f0(θ, φ) =
1

2π sin θ
δ(θ)

=

∞
∑

l=0

√

2l + 1

4π
Y 0

l (θ, φ) ,
(4.16)

or (2) uniformly distributed over the sphere with f0(θ, φ) = Y 0
0 (θ, φ)/

√
4π. Applying

Eq. (4.15) for k random steps yields

fk(θ, φ) =

∞
∑

l=0

[Pl (cosα)]k
√

2l + 1

4π
Y 0

l (θ, φ) (4.17)

and fk(θ, φ) = Y 0
0 (θ, φ)/

√
4π for case (1) and (2) respectively.

In Fig. 4.1 the solid (•) and open (◦) circles display the pdf, fz(cos θ), obtained from

a 106 sample Monte-Carlo simulation of the z-component, cos θ, of p̂k after k = 3 and 4

random steps for case (1) and an angular step size of α = π/10 while the solid lines in

the figure correspond to the analytic result of Eq. (4.17) with fz(cos θ) = 2πfk(θ, 0). Note

the agreement between the simulated and analytic results which yield a minimum value of

cos θ after k steps of cos(kα) for kα < π and −1 otherwise.
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Expectation values of the polarization vector or its components can be obtained either

from the recursion of Eq. (4.12), or by expanding each component of p̂k in orders of the

spherical harmonics and averaging with respect to fk(θ, φ) according to

E {G} =

∫ 2π

φ=0

∫ π

θ=0

G(θ, φ) fk(θ, φ) sin θ dθ dφ, (4.18)

where G(θ, φ) represents an arbitrary function defined over the unit sphere. Since integrals

involving fk(θ, φ) often reduce to simple algebraic expressions as a result of the orthog-

onality of the spherical harmonics we follow the latter approach, which further does not

require correlation functions of the random vector q̂k.

Eq. (4.18) for E {p̂k} is evaluated in case (1) by expanding the components px,k =

cosφ sin θ, py,k = sin φ sin θ and pz,k = cos θ of p̂k in orders of Y m
l (θ, φ) according to

cosφ sin θ =

√

2π

3

[

Y −1∗
1 (θ, φ) − Y 1∗

1 (θ, φ)
]

sinφ sin θ = − i

√

2π

3

[

Y −1∗
1 (θ, φ) + Y 1∗

1 (θ, φ)
]

cos θ =

√

4π

3
Y 0

1 (θ, φ).

(4.19)

This yields

E {cos φ sin θ} = E {sin φ sin θ} = 0

E {cos θ} = [P1(cosα)]k ,
(4.20)

and consequently

E {p̂k} = [P1(cosα)]k









0

0

1









. (4.21)

Therefore, for small angular step sizes α ≪ 1, [P1(cosα)]k ≈ exp (−α2k/2) and the asym-

metry induced by the initial condition p̂0 = [0, 0, 1]T becomes negligible after approximately

2/α2 steps.
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Considering next the expectation of the outer product E
{

p̂kp̂
T
k

}

, the average of the off-

diagonal matrix elements vanishes by symmetry in either case (1) or (2) while the diagonal

elements satisfy E
{

p2
x,k

}

= E
{

p2
y,k

}

in case (1). Further, p2
x,k, p

2
y,k and p2

z,k are given in

terms of the spherical harmonics by

cos2 φ sin2 θ =
1

3

√
4π Y 0

0 (θ, φ) − 1

3

√

4π

5
Y 0

2 (θ, φ)

+

√

2π

15

[

Y −2∗
2 (θ, φ) + Y 2∗

2 (θ, φ)
]

sin2 φ sin2 θ =
1

3

√
4π Y 0

0 (θ, φ) − 1

3

√

4π

5
Y 0

2 (θ, φ)

−
√

2π

15

[

Y −2∗
2 (θ, φ) + Y 2∗

2 (θ, φ)
]

cos2 θ =
1

3

√
4π Y 0

0 (θ, φ) +
2

3

√

4π

5
Y 0

2 (θ, φ).

(4.22)

Accordingly, from Eq. (4.18)

E
{

cos2 φ sin2 θ
}

= E
{

sin2 φ sin2 θ
}

=
1

3
− 1

3
[P2(cosα)]k

E
{

cos2 θ
}

=
1

3
+

2

3
[P2(cosα)]k

(4.23)

and

E
{

p̂kp̂
T
k

}

=
1

3
I3 +

1

3









−1 0 0

0 −1 0

0 0 2









[P2(cosα)]k . (4.24)

If α ≪ 1, [P2(cosα)]k ≈ exp (−3α2k/2), and E
{

p̂kp̂
T
k

}

tends towards I3/3 after approx-

imately 2/3α2 iterations of the random walk. Since this is a factor of 3 less than the

analogous time scale associated with E {p̂k}, the random walk approaches a uniform dis-

tribution over the sphere with a characteristic time constant of 2/α2.
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In the case that the initial vector p̂0 instead possesses a uniform density, f0(θ, φ) =

Y 0
0 (θ, φ)/

√
4π, Eq. (4.19) and Eq. (4.22) imply E {p̂k} = 0, and E

{

p2
x,k

}

= E
{

p2
y,k

}

=

E
{

p2
z,k

}

= 1/3 for all steps k. Further, by symmetry the off-diagonal elements of E
{

p̂kp̂
T
k

}

average to zero, resulting in E
{

p̂kp̂
T
k

}

= I3/3, consistent with the initial uniform distribu-

tion.

4.2.1 Expectation of the emulator rotation matrix

We will next demonstrate that the autocorrelation matrix

CR(ω, k; ∆ω, n) = E
{

R(ω, k)TR(ω + ∆ω, k + n)
}

associated with the emulator rotation

R(ω, k) = exp (ωτ p̂k×) is proportional to the identity matrix,

CR(ω, k; ∆ω, n) = g(ω, k; ∆ω, n) I3 and that CR(ω, k; ∆ω, n) ≈ CR(∆ω, n) implying that

R(ω, k) is approximately wide sense stationary with respect to both frequency and time.

Specializing for simplicity to case (2), all terms in the expansion of CR(ω, k; ∆ω, n)

involving an odd number of occurrences of either p̂k or p̂k+n vanish after averaging, while

from the preceding analysis E
{

p̂kp̂
T
k

}

= I3/3 for all k. Therefore only the two-time cor-

relation functions E {(p̂k×)(p̂k+n×)} and E
{

(p̂kp̂
T
k )(p̂k+np̂

T
k+n)

}

require evaluation. From

the spherical symmetry of the distribution of p̂0, E
{

p̂k+np̂
T
k

}

= E {p̂k+n · p̂k} I3/3 which

can be demonstrated by aligning p̂k with the polar axis, ẑ = [0, 0, 1]T. By symmetry all

elements of E
{

p̂k+nẑ
T
}

then average to zero at step k + n except for the lower right di-

agonal pz,k+n = p̂k+n · ẑ corresponding to the angle subtended by p̂k+n and p̂k = ẑ. The

factor 1/3 arises from the uniform density f0(θ, φ) so that

E {(p̂k×)(p̂k+n×)} = E
{[

p̂k+np̂
T
k − p̂k+n · p̂kI3

]}

= −2

3
E {p̂k+n · p̂k} I3.

(4.25)

Since E {p̂k+n · p̂k} only depends on the relative orientations of p̂k+n and p̂k, from Eq. (4.20)

E {p̂k+n · p̂k} = [P1(cosα)]n. (4.26)
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Figure 4.2: The exact (solid line) autocorrelation of the rotation matrix, Eq. (4.28), and

the result of 5×104 repeated random walk simulations with an angular step size α = π/10,

a Maxwellian distributed DGD with mean E {τ} = στ

√

8/π = 5 ps and a uniform initial

distribution of polarizations p̂0 for frequency offsets ∆ω = 0 (• markers), 1/στ (◦ markers)

and
√

3/στ (× markers).
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Similarly, after orienting the ẑ axis to coincide with the direction of p̂k at the k:th temporal

step,

E
{(

ẑẑT
) (

p̂k+np̂
T
k+n

)}

= E























0 0 0

0 0 0

px,k+n pz,k+n py,k+n pz,k+n p2
z,k+n























,

where by symmetry only E
{

p2
z,k+n

}

= E {cos2 θ} is nonzero after averaging. Including an

additional factor of 1/3 to incorporate the random initial orientation of p̂k we find from

Eq. (4.23)

E
{

(p̂kp̂
T
k )(p̂k+np̂

T
k+n)

}

=

(

1

9
+

2

9
[P2(cosα)]n

)

I3. (4.27)

Finally, combining the above results with Rodrigues’ formula, Eq. (4.3), for R(ω, k)

yields the autocorrelation of the emulator rotation matrix E
{

R(ω, k)TR(ω + ∆ω, k + n)
}

=

g(ω, k; ∆ω, n) I3 in which

g(ω, k; ∆ω, n) =
1

9

(

1 + 2 [P2(cosα)]n
)

+
1

9

(

2 + 3 [P1(cosα)]n + [P2(cosα)]n
)

×
[

1 − σ2
τ∆ω

2
]

exp(−σ2
τ∆ω

2/2),

(4.28)

τ is a Maxwellian distributed random variable with E {τ} = στ

√

8/π,

E {cos(τ∆ω)} =
[

1 − σ2
τ∆ω

2
]

exp(−σ2
τ∆ω

2/2), (4.29)

and E {cos(τω)} ≈ 0 for στω ≫ 1. Similarly, E {R(ω, k)} = I3/3, while from Eq. (4.28)

g(ω, k; ∆ω, n) = g(∆ω, n). Accordingly, both the rotation matrix R(ω, k) and the emulated

PMD vector ~ΩN (ω, k) are wide sense stationary with respect to both optical frequency and

time if στω ≫ 1 and f0(θ, φ) is uniform. Otherwise, the evolution of the random walk is
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Figure 4.3: The temporal autocorrelation function of PMD emulators with N = 5 (◦) and

N = 25 (• markers) sections normalized by τ 2
rms, as evaluated from the results of 5 × 104

td = 15 step random walks. The analytic result is displayed as the solid line.
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influenced by the starting condition so that the correlation function g(ω, k; ∆ω, n) becomes

independent of k only after a number of the order of ∼ 2/α2 steps.

In Fig. 4.2 the exact autocorrelation of the rotation matrix, Eq. (4.28) (solid line),

is compared to the results of 5 × 104 random walk simulations for an angular step size

α = π/10, a Maxwellian distributed DGD with mean E {τ} = 5 ps and a frequency ω

corresponding to a λ = 1550 nm optical wavelength. Results are shown for frequency

offsets ∆ω = 0 (• markers), 1/στ (◦ markers), and
√

3/στ (× markers) the latter two of

which correspond to the zero and minimum values of E {cos(τ∆ω)}, respectively. Note that

as n increases, g(∆ω, n) approaches a limiting value 1/9+2/9
[

1 − σ2
τ∆ω

2
]

exp(−σ2
τ∆ω

2/2)

that varies with frequency from 1/9−4/9 exp(−3/2) ≈ 0.012 at ∆ω =
√

3/στ to 1/3. Again

the Monte-Carlo and analytic results nearly coincide.

4.2.2 PMD emulation

The temporal statistics of the PMD vector ~ΩN (ω, k) are now obtained by allowing each

p̂m,k in Eq. (4.1) to execute an independent random walk on the unit sphere as discussed

in Section 4.2; that is, in terms of the PMD vector of the m:th emulator section at time

index k, ~τm,k = τm p̂m,k, and Cτ (k;n) = E {~τm,k · ~τm,k+n} = 3σ2
τ [P1(cosα)]n. The PMD

vector autocorrelation after N sections is therefore given by

CN(∆ω, n) =
τ 2
rms

N
[P1(cosα)]n

[

1 − gN(∆ω, n)

1 − g(∆ω, n)

]

, (4.30)

where g(∆ω, n) is defined according to Eq. (4.28). Since the rms DGD of the N section

emulator, τrms, exceeds that of each section by
√
N , E {τ 2

m} = 3σ2
τ = τ 2

rms/N .

To relate the characteristic decorrelation time, td, of the PMD vector to the number

of emulator sections N and the angular step size α, consider gN(∆ω, n) in the n ≪ 1/α2

and ∆ω ≪ 1/στ limit. Approximating [P1(cosα)]n ≈ 1−α2n/2, [P2(cosα)]n ≈ 1−3α2n/2
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Figure 4.4: The maximum difference, ǫmax, between the temporal autocorrelation of an N

section PMD emulator, Eq. (4.30), and the N → ∞ result normalized by τ 2
rms.
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gives g(∆ω, n) ≈ 1 − 2α2n/3 − σ2
τ∆ω

2 and

gN(∆ω, n) ≈ e−2Nα2n/3e−Nσ2
τ∆ω2

, (4.31)

yielding the PMD decorrelation frequency ωd = 1/
√

Nσ2
τ =

√
3/τrms [61, 108], and the

decorrelation time

td =
3

2

1

Nα2
(4.32)

over which the PMD vector ~ΩN(ω, k) evolves into a statistically independent state. Spe-

cializing Eq. (4.30) further to ∆ω = 0 and n≪ Ntd, leads to P1(cosα) ≈ 1 and

CN(0, n) ≈ τ 2
rms

(

1 − e−n/td
)

n/td
(4.33)

which reproduces the known temporal autocorrelation function of the PMD vector, C∞(n),

in the N → ∞ limit [61,80]. Consequently, selecting an angular step size α =
√

3/(2Ntd)

reproduces the known asymptotic result for the temporal autocorrelation statistics with

decorrelation time td.

Next, in Fig. 4.3 we display the PMD temporal autocorrelation function normalized

by τ 2
rms for PMD emulators with N = 5 (◦ markers) and N = 25 (• markers) sections as

evaluated from 5×104 random walks, while the solid line corresponds to the analytic result

of Eq. (4.30). In this calculation, the rms DGD of the emulator and the decorrelation time

were set to τrms = 21.7 ps and 15 steps, respectively. Here CN(0, n) varies perceptibly

with N only for N < 25, while the convergence of Eq. (4.30) to the infinite-section limit

is further illustrated in Fig. 4.4 in which the circles indicate the variation of the maximum

difference ǫmax = maxn |CN(0, n) − C∞(n)|/τ 2
rms with the number of emulator sections N .

From the figure, ǫmax ≈ 0.175/N implying that for N > 18 sections the maximum error in

the emulated PMD temporal autocorrelation is < 1%.
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Figure 4.5: The emulated PMD-induced system outage probability after Nt temporal steps

of an N = 50 section emulator with an rms DGD of τrms = 21.7 ps and a decorrelation time

of td = 20 steps calculated with 106 realizations of Eq. (4.1) and an initial PMD vector

~ΩN (ω, 0) parallel (solid line) and perpendicular (dashed line) to the signal SOP.
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4.3 System applications

4.3.1 Outage probability evaluation

We now employ the above formalism to determine the evolution of the PMD-induced outage

probability of a system with time. An outage is assumed to occur if the magnitude of the

component of the PMD vector

τ⊥(k) = |~ΩN (ω, k) × ŝ| (4.34)

orthogonal to a signal’s incident state of polarization (SOP), ŝ, exceeds a specified thresh-

old, here τoutage = 2.77 τrms [80, 93]. We first apply the Brownian bridge technique [107]

to generate an initial set of Gaussian distributed PMD vectors ~τm,0 for each of the m =

1, . . . , N emulator sections such that the total PMD vector ~ΩN (ω, 0) of the initial state

is either parallel or perpendicular to ŝ with magnitude |~ΩN(ω, 0)| = 3τrms. In the first

case τ⊥(0) = 0 so that an outage only occurs at a later time while in the second case

only initial vectors with τ⊥(0) > τoutage are selected. Subsequently, we set τm = |~τm,0|
and p̂m,0 = ~τm,0/|~τm,0|, since for Gaussian distributed ~τm,0, τm is Maxwellian while p̂m,0 is

uniformly distributed over solid angle. The unit vector p̂m,k of each segment then performs

a random walk according to Eq. (4.12).

Fig. 4.5 illustrates the result of this calculation after Nt temporal steps of an N = 50

section emulator with an rms DGD of τrms = 21.7 ps and a decorrelation time of td = 20

steps involving 106 realizations of Eq. (4.1) for an initial PMD vector ~ΩN(ω, 0) parallel

(solid line) and perpendicular (dashed line) to the signal SOP. Evidently, for Nt < 3td

the outage probability increases rapidly when the PMD vector is initially parallel to the

signal SOP, while for Nt > 10 td the PMD vector becomes effectively uncorrelated from its

initial state and the outage probabilities for either initial condition coincide, as previously

predicted through a stochastic differential equation approach [3].
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4.3.2 Multicanonical evaluation of PMD temporal dynamics

The multicanonical procedure was first introduced in the context of statistical mechan-

ics [7] and later adapted to communication systems in [122,123,125]. Subsequently it was

realized that multicanonical Markov chain Monte Carlo methods could be applied to the

time evolution of a system and in particular to adapt such calculations towards physi-

cally unlikely but practically important configurations [127–129]. This section accordingly

discusses the manner in which the multicanonical framework can be employed to bias a

random walk toward configurations with large orthogonal PMD vector components after a

given number of temporal steps.

In particular, consider a system described by NE observables, here written as a vector

~E(~a), that depend on Na stochastic parameters ~a (in this paper NE = 1 and E is iden-

tified with the magnitude of the orthogonal component of the PMD vector E = τ⊥(Nt)

of Eq. (4.34) after Nt time steps). To compute a stochastic function f( ~E), here the pdf,

an appropriate region of ~E is partitioned into Nb histogram bins centered at ~El with

l = 1, 2, . . . , Nb. Two histograms are allocated and initialized to unity to store the current

estimate of the unnormalized function (pdf), f 0( ~El), and the intermediate result of each

iteration while the system variables are assigned values ~acur selected from a stochastic distri-

bution. Subsequently, small variations ~acur → ~anew are applied to these variables described

by an effectively arbitrary distribution function [125], which transforms the observables

from ~Ecur to ~Enew.

This transition is then accepted with a probability min
[

1, f 0( ~Ecur)/f 0( ~Enew)
]

, in which

case ~acur and ~Ecur are equated to ~anew and ~Enew. Otherwise the subsequent time step in-

stead again employs ~acur and ~Ecur. In both cases, however, the histogram entry H( ~El)

corresponding to the new ~Ecur is increased by one. After M transitions, the bias intro-

duced through the acceptance rule is removed and an improved estimate, f 1( ~E), of f( ~E)

is generated according to f 1( ~E) = cf 0( ~E)H( ~E), where c appropriately normalizes f 1( ~E).
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The elements of H( ~E) are then reinitialized to unity and the process repeated with f 1( ~E)

replacing f 0( ~E). The transition rule in this and subsequent iterations increases the sam-

pling probability of states with small f( ~E) in such a manner that the likelihood of visiting

configurations within a region ~E0 − δ ~E < ~E < ~E0 + δ ~E becomes independent of ~E0 with

an increasing number of samples and iterations [122].

A difficulty associated with applying the multicanonical method to outage calculations

is that small changes in the DGD τm are multiplied in Eq. (4.1) by the optical frequency ω,

decorrelating the two successive Markov chain states and reducing algorithmic efficiency.

Accordingly, we employ a modified emulator for which the unit vectors r̂m,k evolve indepen-

dently according to Eq. (4.12) for a spherically uniform initial distribution of r̂m,0, while

each ~τm represents a time-independent Gaussian distributed random vector with variance

σ2
τ . The PMD vector is then obtained from

~Ωm(k) = ~τm + Um(k) ~Ωm−1(k), (4.35)

where Um(k) = exp (ψ r̂m,k×) and ψ equals the m-independent constant specified be-

low. The final, emulated PMD vector is obtained by applying an overall random rotation

~Ω′
N (k) = U0(k) ~ΩN(k) after the final emulator section that suppresses the background

PMD autocorrelation and therefore improves the emulated temporal correlations for small

N .

Applying the results of Section 4.2.1 yields E
{

Um(k)TUm(k + n)
}

= h(n)I3 in which

h(n) =
1

9
(2 cosψ + 1)2 +

2

3
sin2 ψ [P1(cosα)]n

+
2

9
(1 − cosψ)2 [P2(cosα)]n

(4.36)

and the corresponding PMD autocorrelation function

C ′
N(n) = E

{

~Ω′
N (k) · ~Ω′

N (k + n)
}

=
τ 2
rms

N
h(n)

[

1 − hN(n)

1 − h(n)

]

.
(4.37)
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The variable ψ is computed from Eq. (4.37) by minimizing C ′
N(n) in the limit n → ∞

yielding ψ = 2π/3. The decorrelation time td of the modified emulator is then ob-

tained as in preceding sections from hN (n) in the n ≪ 1/α2 limit. Since with ψ = 2π/3

h(n) ≈ exp (−α2n) cosh (α2n/2) and hN(n) ≈ exp (−Nα2n), we find td = 1/ (Nα2) and

the decorrelation time of the modified emulator is smaller by a factor of 2/3 than Eq. (4.32)

for identical angular step sizes α.

The initial state of the Markov chain, ~acur, is generated by selecting r̂cur
m,0 from a uni-

form distribution together with a series of Gaussian distributed random vectors ~wcur
m with

variance σ2
τ for each emulator section m. The unit vectors r̂cur

m,k for all intermediate times

k = 0, . . . , Nt are determined from Eq. (4.12). The state ~acur is therefore parametrized by

a total of Na = (Nt + 1)(N + 1) + N stochastic vectors containing Nt + 1 elements for

each emulator section, as well as U0(k) and ~wcur
m . The initial, k = 0, PMD vector ~Ω′

N (0) is

limited to the desired region of output variables by applying the Brownian bridge method

to ~wcur
m to calculate the current ~τm, while the output system observable Ecur = τ⊥(Nt)

is obtained from Eq. (4.35). The updated ~wnew
m are then obtained by adding the Gaus-

sian distributed random vectors ∆~wm to the current state vector ~wnew
m = ~wcur

m + ǫ∆~wm

with ǫ = 0.2 and each component wnew
m,a with a = x, y, z of ~wnew

m is accepted with proba-

bility min
[

1, fw(wcur
m,a)/fw(wnew

m,a)
]

, where fw(x) = exp (−x2/2σ2
τ ) /
√

2πσ2
τ is the Gaussian

pdf associated with each wm,a. The distribution of the elements of ~wnew
m then approaches

fw(x) [53] after a sufficiently large number of transitions.

Biasing the PMD temporal dynamics after Nt time steps given a specified initial PMD

vector requires that the emulator state be altered at all intermediate times k = 0, . . . , Nt

while preserving the constant angular step size between temporal increments. After initial-

izing r̂new
m,k we subsequently rotate the sequence of unit vectors r̂new

m,n for steps with n > k by

a random angle about the unit vector r̂new
m,k obtained at time index k. Since these random

rotations operate equally on all members of the time series, the relative angle between

r̂new
m,k and r̂new

m,k+1 is preserved. That is, after generating a series θm,k of zero-mean Gaus-
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sian distributed angles with standard deviation σθ = π/60 for each emulator section m

and temporal index k = 0, . . . , Nt, in the first step of the algorithm a random rotation

Pm(0) = exp (θm,0 ûm×) is applied to the unit vectors for all k = 0, . . . , Nt to form a

new sequence r̂new
m,k = Pm(0) r̂cur

m,k in which each ûm is selected from a spherically uniform

distribution. In the subsequent k = 1 step the random rotation Pm(1) = exp
(

θm,1 r̂
new
m,0×

)

is applied only to n ≥ 1 replacing r̂new
m,n with Pm(1) r̂new

m,n. Similarly, to implement k:th

step of the recursion Pm(k) = exp
(

θm,k r̂
new
m,k−1×

)

is evaluated and r̂new
m,n is then replaced

by Pm(k) r̂new
m,n for all k ≤ n ≤ Nt. The resulting r̂new

m,k together with the ~wnew
m form the

transformed state ~anew of the emulator. The updated ~τm are finally obtained by applying

the Brownian bridge method to ~wnew
m and Enew = τ⊥(Nt) is computed from Eq. (4.35).

Fig. 4.6 displays the pdf of τ⊥ after Nt = td/5 and Nt = td temporal steps of an N = 50

section PMD emulator with τrms = 21.7 ps and td = 15 steps such that the the initial PMD

vector at k = 0 is oriented in the ŝ = [1, 0, 0]T direction with a magnitude 3τrms. The

dashed lines in Fig. 4.6 are obtained from the modified PMD emulator model Eq. (4.35)

with three 3.33× 105 sample multicanonical iterations, while the solid lines are associated

with 106 random realizations of Eq. (4.1). Similarly, the contour plot of Fig. 4.7 depicts

log10 of the cumulative distribution function (cdf) of τ⊥(Nt). This calculation employs

three 3.33× 105 sample multicanonical iterations with Nt ≤ 8td random walk steps and an

outage threshold τoutage = 2.77τrms. The outage probability as expected increases rapidly

for Nt < 3td and subsequently converges to the anticipated Rayleigh distribution [92, 93].

For an identical number of samples, the modified emulator method evaluates regions of

the pdf that are 7 orders of magnitude smaller than those obtained from the standard

Monte-Carlo procedure while accurately preserving the temporal correlations of Eq. (4.1).
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Figure 4.6: The pdf of τ⊥ after Nt = td/5 and Nt = td time steps of an N = 50 sec-

tion PMD emulator with τrms = 21.7 ps and td = 15 steps for a simulation with three

multicanonical iterations of 3.33× 105 random walks (dashed line) and 106 realizations of

Eq (4.1) (solid line).

109



Nt/td

τ ⊥
/
τ o

u
ta

g
e

 

 

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1
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sample multicanonical iterations for τ⊥(Nt), normalized by τoutage = 2.77 τrms, with 0 <

Nt < 8 td random walk steps and the emulator configuration of Fig. 4.6.
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4.4 Conclusions

We have presented a model for the temporal evolution of PMD in optical fibers derived

from a random walk on the unit sphere that accurately emulates the temporal autocorre-

lation statistics of PMD with relatively few fiber segments. The increased computational

efficiency afforded by this method allows simulations of the PMD temporal dynamics to be

preferentially biased towards regions of low probability using the multicanonical method,

providing a potential significant improvement to estimates of for example the probability

of a network outage and its duration. Finally, extensions of our approach to more general

optical systems including PDL or a finite number of active polarization hinge sites is an-

ticipated to provide more insight into the polarization temporal statistics and dynamics

for improved network equalization and control.
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Chapter 5

Transition Matrix Analysis of System

Outages

We adapt the transition matrix method to time-dependent communication systems. We

then calculate the distribution of the outage times of an optical fiber system impaired by

stochastically varying polarization-mode dispersion.

5.1 Introduction

In communication system simulations, biased Monte-Carlo methods, such as the multi-

canonical or importance sampling techniques, have been employed to determine static

quantities such as the probability distribution functions (pdfs) of the differential group de-

lay (DGD) or of the eye-opening penalty [8,74,123]. Often, however, the dynamic behaviour

of a system, for example the distribution of the times required to transition between two

groups of states with different physical properties must be calculated. Here we show that

the multicanonical algorithm, reformulated as a “transition matrix” method [34,110,115],
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can be applied to such dynamic system calculations (note, however, that the error of static

multicanonical polarization-mode dispersion (PMD) calculations was examined with this

procedure in [72]).

This chapter is organized as follows. In Section 5.2, we will review multicanonical

procedures for sampling physically unlikely system configurations. We then apply the

technique to evaluate the relative probability for transitions between any two states of a

system over a single time step. From the resulting formalism, we compute the pdf of the

time duration of outages in an optical system affected by first-order PMD. This method

extracts information from the low-probability regions of the pdf far more efficiently than

conventional Monte-Carlo techniques.

5.2 The Multicanonical procedure

As in Chapter 4, we consider a general physical system described by a vector formed from

NE system observables ~E(~a) that in turn depend on the values of Na stochastically varying

parameters ~a. The multicanonical method rapidly estimates stochastic functions f( ~E) in

regions of sample space with a small probability of occurrence where a standard Monte

Carlo calculation would require long computation times. This is accomplished through an

iterative statistical procedure for biasing the sample space. In the standard case that f( ~E)

represents the pdf of ~E, the physically relevant region of the system observables (solution

space) ~E is first divided into NB histogram bins labeled with index m = 1, 2, . . . , NB. All

elements of two histograms, one for an estimate of the unnormalized pdf, f
(i)
m , with i = 0

initially, and a second for storing the intermediate results of each iterationHm are initialized

to unity. A random set of system variables ~a cur is generated and the observables ~E(~a cur)

with bin index mcur computed. Next, these variables are randomly perturbed according to

~anew = ~a cur+δ~a, where δ~a represents a small random perturbation that can be chosen from
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an effectively arbitrary probability distribution, cf. Ref. [125], resulting in new observables

~E(~anew) and mnew (in the calculations of this chapter, the distribution is associated with

the system evolution over a small time step). This transition is accepted with probability

min
{

1, f
(0)
mcur

/f
(0)
mnew

}

, in which case ~a cur is set to ~anew; otherwise, ~a cur is reemployed in

the following iteration. In either case, the histogram element Hmcur
containing the new

value of ~Ecur is incremented by unity. After M transitions, a new estimate f
(1)
m of f( ~E)

is obtained by correcting for the bias in the system variables according to f
(1)
m = c f

(0)
m Hm

(the normalization factor c is chosen such that f
(1)
m describes a probability distribution).

In the following iteration, f
(1)
m is substituted for f

(0)
m , the elements of Hm are reset to unity,

and the above steps repeated. The likelihood of generating states with small f( ~E) then

increases such that the sampling probability becomes independent of ~E after a sufficiently

large number of samples and iterations [123].

5.3 Transition matrix method

The multicanonical method can be employed to determine the relative probability for tran-

sitions from one state of the system variables to a second. In particular, after each mul-

ticanonical system realization, the (l, k):th element, Tlk, of an unbiased and unnormalized

transition matrix T is incremented by unity for every accepted or rejected transition from

a state in the k:th to a state in the l:th histogram bin. The columns of T are subsequently

normalized to unity since the sum of the probabilities of all transitions out of the initial

state k is one, yielding the unbiased, normalized transition matrix T. After the last, L:th

iteration, a second biased multicanonical transition matrix B is constructed by multiplying

each element Tlk of T with the multicanonical acceptance probability min
{

1, f
(L)
l /f

(L)
k

}

and normalizing each column of this matrix separately to unity, so that Blk corresponds to

the likelihood of a transition from the k:th to the l:th state in the multicanonical procedure.
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While the above procedure is based on the standard multicanonical formalism, the

acceptance rule can be formulated instead in terms of a dynamically updated estimate of

T , such that regions of low transition probability are preferentially sampled [115]. In this

case, T is initialized such that all elements Tlk = 1. A transition between two states ~Ek

and ~El generated in the Markov chain ~anew = ~a cur + δ~a is then accepted with probability

min {1, Tkl/Tlk}, for which Tlk = Tlk/
∑

l Tlk; in either case, Tlk or Tkl is incremented by

unity. This has also been modified by fixing the estimate of T during a given iteration as

in the multicanonical procedure and then updating this estimate before the next iteration.

Since the acceptance criterion is then unchanged within each multicanonical iteration,

such a procedure more accurately implements the detailed balance condition. That is, if

fk denotes the stationary probability of finding the system in the k:th histogram bin, then

Tlk fk = Tkl fl for each k and l, which follows from the properties of the state distribution in

an equilibrium condition [8]. A far simpler procedure, to be discussed in the next chapter,

is to accept the transition from k to l only if the state k as been previously visited at least

as many times as the state l. In all cases, however, detailed balance should be imposed at

the end of the calculation to avoid unphysical complex eigenvalues of the transition matrix.

We have accordingly developed an iterative procedure, based on the observation that since

T is normalized according to
∑

l Tlk = 1, detailed balance requires that
∑

l Tkl fl = fk, i.e.,

fk is an eigenvector of the transition matrix T with unit eigenvalue. Hence, if we compute

f
(0)
k from the transition matrix T(0) = T, a recursive series of approximations for T follow

from the associated symmetry condition T
(i+1)
lk = [T

(i)
kl f

(i)
l + T

(i)
lk f

(i)
k ] /

(

2 f
(i)
k

)

.

To extend the above procedure to time-dependent problems, the magnitude of the

random perturbation δ~a that yields an average change in | ~E new− ~E cur| equal to the observed

change over a time interval ∆t is first determined. This can be accomplished, for example,

by evaluating the average number of random perturbations required for the emulator to

reach a state ~E that is significantly decorrelated from the initial state ~E0 and assigning

to this value the experimentally determined drift time of the installed fiber [61]. In this
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analysis, we assume that the underlying random process is Markovian, since memory effects

would otherwise have to be incorporated into the transition matrix formalism. Retaining

knowledge of the system evolution through previous states would then considerably expand

the effective transition matrix dimensionality.

In one set of procedures for modeling time evolution, multiple series of biased transi-

tions (paths) are generated by randomly selecting values of the system observables either

according to the probabilities stored in the biased transition matrix or by applying e.g., the

multicanonical acceptance rule together with the unbiased transition matrix probabilities.

The resulting random walk avoids numerous direct calculations of the observables from

the system variables, significantly reducing the simulation time. A path corresponding to

a transition over a time n∆t from the state k to the state l over the intermediate states

1, 2, . . . , n is then assigned the weight w = R1kR21 · · ·Rln, where Rlk = Tlk/Blk designates

the ratio of the unbiased to biased transition probabilities, and added to an appropriate

histogram element.

While the transition matrix corresponds to a certain time step ∆t, an approximate

transition matrix for any time step τ is obtained by writing the time evolution of the pdf

as f( ~E; t + ∆t) = Tf( ~E; t), so that df( ~E; t)/dt ≈ [(T − I)/∆t] f( ~E; t) = Kf( ~E; t), and

f( ~E; t+ τ) ≈ eτKf( ~E; t) (a more exact procedure would require the logarithm of T). For

integer multiples of the time step n∆t, however, f( ~E; t+ n∆t) = Tnf( ~E; t), which can be

determined in as few as log2(n) matrix multiplications. Of course, as n→ ∞, f( ~E; t+n∆t)

tends towards the limiting stationary distribution, f( ~E), with transient corrections that

decay with time constants proportional to the eigenvalues of the transition matrix, cf.

Fig 5.2.
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5.4 Outage times

To illustrate the computation of global system properties with the above procedures, we

examine the pdf of outage time durations induced by PMD in a single-mode optical fiber.

A single-mode fiber supports two nearly degenerate orthogonally polarized modes that

exit after slightly different propagation times ∆τ as a result of birefringence induced by

asymmetric perturbations such as core ellipticity or internal or external stress. The relative

orientation of the birefringence axes of adjacent segments changes, however, along the

fiber length and with time. Therefore, over a long propagation distance, the pulse width

and shape fluctuate randomly. To lowest order, however, the pulse can be modeled as a

superposition of two orthogonally polarized pulses with a group delay difference that is

termed the DGD. When the ratio of the DGD to the average DGD of the fiber is three or

greater, the bit-error-rate of the overall optical system typically exceeds 10−9, which is the

value required for acceptable line behaviour. The time intervals during which the DGD

exceeds a certain value are termed outage times. Although in this chapter we consider first

order effects, pulse distortion due to chromatic dispersion and higher-order PMD [106]

can be incorporated into our models by instead constructing the matrix composed of the

relative probabilities of transitions between states with differing system penalties [74].

Our fiber model consists of a series of N = 100 birefringent fiber segments, with an

overall mean DGD of τmean = 20 ps, separated by polarization rotators that can generate

arbitrary rotations of the incoming polarization vector ~Ωi on the Poincaré sphere. The

vector of system variables ~a is, therefore, composed of the 2N -dimensional relative angles

between the birefringence vectors of successive sections, while the system observables ~E

are described by a single scalar DGD value. The outage time is normally determined by

performing many time steps ~anew = ~a cur + δ~a, and recording the number of steps for which

the system remains in the outage region.

The Markov chain can also be obtained by sampling values of the system observables
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according to the transition probabilities stored in the unbiased or biased transition matrices

and then incrementing the histogram element for the time duration of each system path in

the outage region by either 1 or w of Section 5.3, respectively. More efficiently, an initial

state distribution given by f̃k for k in the non-outage region and zero elsewhere can be

repeatedly multiplied by the transition matrix. After the n:th multiplication, the sum of the

values of f̃k for all ~Ek that fall outside the outage region corresponds to the likelihood that

the system returns to a non-outage state after an approximate time n∆t. These elements

of f̃k are then equated to zero before the subsequent time step. Alternatively, since the

paths between the initial and final state are repeatedly multiplied by the submatrix formed

from the transition matrix entries for states in the outage region, the eigenvalues of this

submatrix yield directly the decay rate of the probability density of the system outage

duration. Further, the outage time histogram can be obtained by projecting f̃ onto the

eigenvectors of the submatrix and summing the resulting distributions.

5.5 Numerical results

In Fig. 5.1, we show the probability that the system experiences an outage of a given

duration, where the outage condition is defined as a fiber DGD greater than 2τmean or

3τmean (in the second case fewer than 104 unbiased samples were recorded in the outage

region for 109 realizations). The circles in the figure indicate the results of an unbiased

Markov chain calculation that recorded the outage times observed during 109 time steps

while the solid line was generated by first constructing the unbiased transition matrix from

both the accepted and rejected transitions during three 5 × 106 sample multicanonical

iterations and then applying the multicanonical acceptance rule to this transition matrix.

We have found that employing the acceptance rule based on the ratio of transition matrix

elements yields similar accuracy in regions of adequate statistics but does not sample as

far into the tail of the pdf for a fixed number of realizations. Repeatedly multiplying the
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initial state vector by the unbiased transition matrix obtained after two 2 × 105 sample

multicanonical iterations instead yielded the dashed line of Fig. 5.1. Fig. 5.2. contains the

three eigenvectors with largest eigenvalues of the transition matrix obtained from three

5 × 106 sample multicanonical iterations together with the magnitude of the highest 50

eigenvalues (inset). The first eigenvector (solid line) with unit eigenvalue corresponds to

the asymptotically converged pdf of the DGD while the other eigenvectors have eigenvalues

less than one and therefore influence the evolution of the pdf of the DGD at moderate time

intervals.

5.6 Conclusions

We have established that the time-dependence of communication systems as well as of

general physical systems can be rapidly and accurately modeled, even for very unlikely

configurations by transition matrix methods. Of course some accuracy, which is model-

dependent, is inevitably sacrificed since in the standard method the system variables vary

continuously from one realization to the next, preserving higher-order correlations between

the system observables and the underlying system variables.
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Chapter 6

A Comparison of Transition Matrix

Sampling Procedures

In this chapter we compare the accuracy of the multicanonical procedure with that of

transition-matrix models of static and dynamic communication system properties incor-

porating different acceptance rules. For appropriate ranges of the underlying numerical

parameters, we find that algorithmically simple yet highly accurate procedures can be

employed in place of the standard multicanonical sampling algorithm.

6.1 Introduction

Multicanonical methods [8] have found numerous applications to optical systems since

they were first adapted to communications theory in [76, 122, 123]. Although only static

quantities, such as the probability distribution function (pdf), f( ~E), that a system is in

a configuration characterized by values, ~E, of its observables can be calculated with mul-

ticanonical techniques, this restriction was removed by a suitable implementation of the
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transition matrix method [34, 115]. The analysis employed different techniques for gen-

erating statistical samples. The first of these is based upon a modified multicanonical

acceptance rule that retains the accuracy of the standard multicanonical method but con-

verges faster and is simpler to program. A second procedure uniformly samples different

regions of the pdf but is generally less accurate. Finally, this procedure was modified to in-

crease the algorithmic precision without affecting the sampling probabilities. This chapter

examines in greater detail the relative advantages of these three procedure with emphasis

on discretization errors associated with the histogram bin widths.

6.2 Transition matrix methods

We have demonstrated in the preceding chapter that the multicanonical procedure can be

adapted to dynamic system evolution if the frequency of all accepted and rejected transitions

is retained [115]. In particular, specializing to a single observable so that ~E is replaced

by E, the elements, Tlk, of an unnormalized transition matrix, T (and additionally in

certain methods a histogram, V , of visited states) are initialized to zero while the initial

~a cur are randomly generated. For each accepted or rejected transition from an initial k:th

histogram bin to a final, l:th, bin corresponding to the observables E(~a cur) and E(~anew),

respectively, Tlk, and where relevant, Vk, are incremented by unity. Following an accepted

transition, the state ~anew in bin l replaces ~a cur as the initial state for the subsequent time

step. The normalized transition matrix T is generated by scaling each column of T such

that
∑

l Tlk = 1 since the probabilities of all transitions from a state k must sum to unity.

From the above discussion, we observe that transition matrix methods are distinguished

by the choice of acceptance rule. Although since all unbiased transitions out of a state

are recorded any transition rule is permissible, as demonstrated below if the change in E

over a Markov step is comparable to the histogram bin widths, the discretization error is
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dependent on the rule selected. In the previous chapter, two procedures were considered.

Method (1) employed the standard multicanonical acceptance rule to populate the transi-

tion matrix while method (2) accepted a transition only if the final state was previously

visited fewer times than the initial state, i.e. Vl < Vk. In this chapter, we further refine

method 1 by updating the estimate of f(E) after every small number, Nu, of steps. Here

the detailed balance condition between each pair of adjacent histogram bins is rewritten

in the form of a recursion relation for the pdf, [41, 105]

fm+1 = fm
Tm+1,m

Tm,m+1
. (6.1)

Thus, starting from an arbitrary initial value for the probability of the first histogram bin

and assuming e.g. that fm is independent of m if either Tm+1,m = 0 or Tm,m+1 = 0, we

obtain an estimate of f(E) that can be employed in the multicanonical acceptance rule.

Since this calculation requires negligible computation time, fm can be regenerated after any

desired number of Markov steps (although preferably the procedure should be initialized

with a Monte Carlo calculation). Dynamic system evolution can be modeled by repeat-

edly multiplying an initial state distribution by the transition matrix [127]. Additionally,

multiplication by the matrix T is analogous to evolving the system through a simulated

time interval, ∆t, so that the eigenvector of T with unit eigenvalue corresponds to the

probability distribution function, fm [128].

In general, if the width of the m:th histogram bin is comparable to or greater than the

average change in E over a single Markov step into or within this bin, the accuracy of fm is

affected by the Markov chain dynamics within the bin (in fact the calculations below sug-

gest that this is the dominant source of error under the given conditions). That is, ideally,

the probability of visiting states within a bin should follow the physical distribution that

is obtained in a Markov chain calculation in the absence of an acceptance rule. Otherwise

states are spuriously depleted toward one side of the histogram bin, which significantly

alters the population of the states within the bin for large bin sizes.
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However, if the acceptance rule is formulated to preserve detailed balance, as in the

case of the multicanonical method, the depletion of states out of one side of a histogram

bin is compensated by an equal number of incoming transitions from the neighbouring bin.

This prevents states in the Markov chain from on average entering bins preferentially from

e.g. lower values of E and exiting towards higher values, which affects the relationship,

Eq. (6.1), between the pdf and the transition matrix elements. Therefore, for procedures

that preserve detailed balance, the discretization error associated with the finite bin size

is considerably reduced, as verified numerically below. The magnitude of the reduction,

however, depends on a potentially large number of computational parameters.

Considering next method 2, which accepts transitions only to less visited states, suppose

that at a certain stage of the calculation the acceptance rule only permits transitions from

the current bin to bins with a smaller pdf. Then within a bin, a larger than average

fraction of states with high pdf will result from incoming transitions (note that for a large

bin width with high probability one or more Markov steps are required for the state to

transfer from the larger to the smaller probability region of the bin). Therefore, the ratio

between the frequency of transitions out of the bin to large pdf states and the transition

frequency to small pdf states is smaller than in the standard Monte-Carlo procedure.

However approximately half of the time, the acceptance rule will instead only permit

transitions from the current bin to higher instead of lower pdf states. In this case, however,

the above bias is not fully compensated since most Monte-Carlo transitions occur in any

case to higher pdf states. Thus averaging over both possibilities for the acceptance rule,

we conclude that the effective transition probability will on average be enhanced in the

direction of large pdf values.

We have indeed observed in a number of different computational contexts involving a

single observable E that the states in the Markov chain on average evolve preferentially

at a constant velocity from one region of low f(E) to the opposing region after which

the simulation sometimes enters into a previously unsampled state with low f(E) (in
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the unusual case of several isolated large f(E) regions, this behaviour will still occur

modified by infrequent transitions between different high f(E) regions). The Markov

chain then remains in the new bin until the number of samples in the bin equals that

of the adjacent histogram bin within the higher f(E) region. The Markov chain then

re-traverses the problem domain toward the original starting point. This ensures that

on average the acceptance rule excludes transitions to higher pdf states as many times

as transitions to lower pdf states. Consequently, method 2 yields a spurious bias that

augments the computed slope of f(E). To restore the correct transition probabilities, in

method 3, following a transition into a given bin we discard all Markov steps associated

with transitions out of a histogram bin until a certain number of confined steps, Nc, have

been executed. The steady-state statistical distribution of states is then restored within

the bin. The value of Nc required to ensure a given level of accuracy, however, can in

general only be determined empirically since the average number of steps that the Markov

chain spends in a histogram bin before exiting depends in a complicated fashion on the

bin number and the computational and physical details of the problem.

6.3 Numerical results

We now quantify the accuracy of the three procedures by evaluating the pdf of the differ-

ential group delay (DGD), τ , in a polarization mode dispersion (PMD) emulator composed

of N = 10 polarization maintaining (PM) fiber sections with τs = 1.0 ps, separated by ran-

domizing polarization controllers. This yields an average DGD of τmean = τs
√

8N/3π =

2.91 ps for the emulator. The histogram is then formed by dividing the interval [0, 3.5] of

normalized DGD values, τ/τmean, into 100 equal width segments. Thus the system variable

E is identified with the DGD τ , while the bin designated by the index m corresponds to

the range 3.5(m− 1)/100 < E < 3.5m/100.
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The main graph (left axis) of Fig. 6.1 displays the ratio f numerical
m /f analytic

m for a standard

multicanonical calculation after three 1.67×106 step iterations (△ markers), the transition

matrix technique with a multicanonical acceptance rule (method 1, ◦ markers), a transition

method procedure that rejects transitions to more sampled histogram bins (method 2,

dashed-dotted line), and method 3 with Nc, the number of steps in which the Markov

chain is confined to a bin before transitions out of the bin are permitted, equal to 40 (+

markers). By repeating our calculation with different values of Nc our method 3 curves are

found to be nearly indistinguishable for Nc > 20; in general, the minimal value for a given

computation and desired accuracy can only be determined empirically in this fashion. The

right axis of the figure displays the analytic pdf of the DGD of the fiber emulator [59].

Here we have employed 5 × 107 emulator realizations in which the relative angle between

each pair of emulator segments is randomly varied by an average of π/80 degrees between

successive realizations. Further, in method 1 the pdf is updated after every step according

to the current estimate from Eq. (6.1) of the transition matrix. As discussed in Section 6.2,

method 2 predicts a reduced slope and therefore a ratio > 1 near the pdf maximum and

< 1 for DGD values occurring with low probability. Further, although method 1 yields

an accuracy comparable to the standard multicanonical method, we have found that it

exhibits improved convergence with fewer samples and reduced programming complexity.

Considering next in Fig. 6.2, the total number of times, Vk, that a state in bin k is visited

for the standard multicanonical procedure (△ markers), method 1 (◦ markers) and method

2 (dashed-dotted line) we observe that while the numerical error of method 2 is large, this

procedure samples the pdf most evenly. Method 3 samples the pdf almost identically to

method 2 and is therefore omitted in order to increase the legibility of the graph. Further,

the sum over many iterations of the number of samples in each bin for the standard

multicanonical procedure is not uniform as a result of variations in the sampling frequency

in small pdf regions during each iteration. However, the multicanonical procedure and

its variants concentrate samples in regions of very low pdf and therefore estimate the pdf
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Figure 6.1: The ratio between the numerical and analytic pdfs for the standard multi-

canonical procedure (△), the modified transition matrix procedure with a multicanonical

acceptance rule (method 1, ◦), an acceptance rule that rejects transitions to more visited

histogram bins (method 2, dashed-dotted line) and a procedure that restricts transitions

out of a recently visited bin (method 3, +) as functions of the normalized DGD for a

Nsec = 10 segment fiber emulator. The analytic result for the pdf is displayed against the

right axis.
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rapidly in these regions. Method 1 further improves on this feature since the intermediate

pdf estimates are frequently revised.

Finally, in Fig. 6.3, we display the error averaged over all histogram bins according

to [125]

E

{

NB
∑

m=1

∣

∣

∣

∣

log10

(

f numerical
m

f analytic
m

)∣

∣

∣

∣

f analytic
m

}

, (6.2)

in which E {. . .} denotes an ensemble average over 100, 2 × 106-sample calculations as a

function of the width of the uniform distribution of the change, δ~a, in the relative angles of

two adjacent emulator segments. The results of the multicanonical procedure and methods

1-3 are denoted by △, ◦, a dashed-dotted line and +, respectively. The accuracy of all

methods greatly increases when the mean variation of the system observable over a single

step in the Markov chain is large compared to the size of a histogram bin. Further,

the improvement afforded by method 3 over method 2 is clearly visible in the figure,

where for the smallest step sizes shown, the precision of method 3 approaches that of the

multicanonical procedure.

6.4 Conclusions

Transition matrix procedures, which extend multicanonical techniques to dynamic prob-

lems, possess numerous implementations that differ considerably in accuracy and sensitivity

to variations in numerical parameters. Here, we achieved a high degree of efficiency and

accuracy by employing the multicanonical acceptance rule while continually updating the

pdf estimates. We then interpreted the apparent violation of detailed balance and hence of

numerical accuracy at large histogram bin sizes in terms of the change in probabilities of

transitions to the two neighbouring bins compared to the values expected for an unbiased

calculation. Acceptance rules that increase the probability of asymmetric transitions out

of a bin generally enhance this source of error. Procedures of this nature can however be
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simple to program and computationally efficient if the numerical parameters ensure a small

self-transition probability within each histogram bin. Further pursuing this line of reason-

ing could yield even more efficient transition matrix methods with possible experimental

relevance [75, 76].
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Chapter 7

Transition Matrix Analysis of the

Hinge Model

In this chapter we analyze within the hinge model the time-dependence of polarization

mode dispersion (PMD) induced by stochastic birefringence fluctuations. This procedure

employs a modified transition matrix method approach that increases modeling accuracy

for unlikely system configurations.

7.1 Introduction

The hinge model of PMD temporal evolution [13,15] provides a framework for calculations

of the outage probability of fiber optic communication systems [4, 65]. Often, however,

time-dependent quantities such as outage duration statistics must be calculated. In the

preceding chapters, we analyzed the outages of optical channels characterized by a highly

mode-coupled emulator model with a transition matrix procedure [127]. Here we present a

simplified version of this method to classify the average probability of exceeding the outage

133



threshold within a specified time interval in the hinge model for stochastic, memoryless

birefringence fluctuations.

7.2 Hinge model

The hinge model represents a fiber system as a series ofNS fiber spans joined by polarization

scrambling regions with negligible differential group delay (DGD). Static and dynamic

statistical quantities such as the pdf of the DGD or the average time spent in outage states

can then be determined by averages over the polarization rotation angles. A “hinge model

realization” is generated by associating the span DGDs with the absolute value of each of

a set of NS Gaussian distributed random values with zero norm and a standard deviation

of σG (the results are effectively independent of the particular form of this distribution

function). Each scrambler is modeled by three successive rotations drawn from a uniform

random distribution on [0, 2π] about the x, y and z axes and the DGD is determined with

a standard recursive procedure [47]. Since the time variation of the local birefringence

along a fiber link has not been adequately characterized experimentally and is in any case

presumably specific to a fiber link, in analogy to statistical mechanics, here we consider

the most random time variation. In particular, to approximate system evolution through a

“time step”, a random value in the interval [−δ, δ] is added to each rotation angle. While

these results are effectively independent of the form of this random distribution, they

are of course affected if the birefringence values at successive time steps are significantly

correlated.

Since in the hinge model, the span DGD values are assumed nearly constant over the

observation interval, transitions between two hinge model realizations are precluded. The

relative probability of transitions between any two states of the system separated by a

single time step must accordingly be independently evaluated for each hinge realization.
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Since such an approach precludes a statistical analysis, we instead introduce a “hinge

metric” which we subsequently associate with the sum, here called the “link DGD”, τm, of

the magnitudes of the NS span DGD values. A hinge model realization is then assigned

to the m:th of NM histogram bins if (m − 1)ΓM/NM < τm < mΓM/NM where m is

referred to as the link index and ΓM is the largest link DGD considered in the calculation.

Although the statistics of the different instances of the hinge model in each such interval

may vary significantly from the averages (presented below) over all systems in the interval,

our methodology will clearly illustrate the expected hinge-model behaviour.

To extend the above procedure to more general time-dependent problems, the mag-

nitude of the random perturbation, δ, is first determined by, for example, evaluating the

average number of random perturbations required for the emulator to reach a DGD state

that is significantly decorrelated from the initial state and assigning to this value the ex-

perimentally determined drift time of the installed fiber [61]. This analysis assumes that

the underlying random process is Markovian, since memory effects would otherwise gener-

ally have to be incorporated into the transition matrix formalism. Retaining knowledge of

the system evolution through previous states would then considerably expand the effective

transition matrix dimensionality. Further, good agreement has been observed elsewhere

between the measured outage statistics on a buried, installed fiber link and numerical sim-

ulation [129], suggesting a Markovian mode-coupling model is valid for buried fiber and,

should be even more applicable to the rapid time evolution of aerial fiber.

7.3 Modified transition matrix method

The transition matrix procedure requires a description of the physical system by a

Markov chain formed by the instantaneous DGD, Ω(~a), of a hinge model realization with
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link index m that in turn depends on a vector formed by the values of Na stochastically

varying rotation angles, or “system variables”, ~a. An initial random set of system vari-

ables ~a cur is generated and the DGD Ω(~a cur) computed. Next, the system variables are

randomly perturbed according to ~anew = ~a cur + δ~a, where δ~a represents Na small random

perturbations drawn uniformly from the interval [−δ, δ] yielding the updated DGD Ωnew.

The resulting range of allowed DGD values, ΓK , is subdivided into NK histogram bins.

Since standard Monte-Carlo and multicanonical methods [122] do not retain the relative

frequency of transitions between each pair of states Ω cur and Ωnew in the Markov chain

previous chapters have considered an alternative technique, adapted from Refs. [105,115],

that accumulates in an array of matrices [Tm]lk the frequency of all accepted and rejected

transitions from an initial DGD value, Ω cur, within the k:th histogram bin, (k−1)ΓK/NK <

Ω cur < kΓK/NK , to a final value in the l:th bin, (l − 1)ΓK/NK < Ωnew < lΓK/NK, in one

time step. This transition is accepted (the “modified transition rule”) if [Vm]l ≤ [Vm]k

where Vm is a histogram whose k:th element is incremented after each transition. In this

case, the l:th state is employed as the starting point for the next time step. If k = l, the

new state should be chosen as the updated starting point to improve accuracy for small

time steps. The resulting modified transition rule ensures uniform statistical sampling

across all columns k of the matrix Tm. For small mean time steps, typically NK must be

large to avoid an artificial enhancement of transitions that join states near the boundaries

of adjacent histogram bins. Our procedure can then be implemented as follows:

1. Obtain the first of N hinge model realizations by assigning the absolute value of

Gaussian distributed random values to the DGD of each of the fiber spans and

compute the link DGD, τ . If τ falls in the m:th histogram bin, (m − 1)ΓM/NM <

τ < mΓM/NM , the subsequent steps populate the m:th matrix of an array of Nm

transition matrices, Tm.

2. Select the random coupling angles ~a cur between each pair of spans, compute the DGD
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Ω cur of the initial emulator state and determine the associated DGD histogram bin

(here k).

3. For each hinge model realization, perform the first of NT time steps by setting ~anew =

~a cur + δ~a such that if the time step generates a transition from k:th to l:th DGD

histogram bin the transition matrix element [Tm]lk is incremented by unity.

4. This transition is accepted if [Vm]l ≤ [Vm]k in which case [Vm]l is incremented by

one and the l:th state is employed as the starting point for the next time step, with

[Vm]k incremented otherwise. If k = l, the new state should be chosen as the updated

starting point to improve accuracy for small time steps.

5. After NT repetitions of Steps (3)-(4), the subsequent hinge model realization is gen-

erated and steps (1)-(4) are repeated N times.

To transform each Tm into the normalized transition matrix Tm each column of Tm is

individually normalized to ensure
∑

l [Tm]lk = 1 since the probabilities of all transitions

from a state k must sum to unity. Accordingly, if a system with hinge metric index m

initially possesses a DGD Ω within the p:th histogram bin, i.e. (p − 1)ΓK/NK < Ω <

pΓK/NK , it can be represented as the unit “system” column vector of size NK × 1 whose

p:th element is identically one, i.e. ~s (0) = [0, . . . , (sp = 1), 0 . . . , 0]T. Multiplication by the

transition matrix Tm then yields the system vector ~s (1) = Tm~s
(0) quantifying the state

occupation probability after a single time step. Further, if [fm]k = fm(Ωk) denotes the

stationary probability of finding the hinge model realization with link index m in the kth

DGD histogram bin, then [Tm]lk [fm]k = [Tm]kl [fm]l for each k and l, which follows from

the properties of the state distribution in an equilibrium condition [8]. Therefore, since
∑

l [Tm]lk = 1, we have [fm]k =
∑

l [Tm]kl [fm]l implying that fm(Ω) is an eigenvector of

the transition matrix, Tm, with unit eigenvalue [127].
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It is now straightforward to determine the outage statistics under the simplified but

illustrative assumption that a system outage occurs when Ω exceeds a certain threshold

value (employing instead, for example, the power penalty [27] would yield more precise

results but with the same general features). If the outage boundary is located between the

j and j − 1:st DGD histogram bins, the probability of a system outage after a single time

step for an initial state within bin p is then given by P (1) =
∑

k>j s
(1)
k where s

(1)
k is the

k:th element of ~s (1). Subsequently, we set s
(1)
k = 0 for all k > j and employ this as the

initial system vector, ~s (2), for the subsequent iteration. Iterating this procedure yields the

probability P (i) of the system remaining in an outage after i time steps.

7.4 Results

We now consider 4×103 hinge model realizations with NS = 10 fiber spans generated from

a Gaussian distribution with a standard deviation σG = 2.0 ps and evolve each realization

NT = 104, δ = π/5 time steps. All DGD values are normalized to the same value, namely

the mean DGD of a 10 section standard fiber emulator with 2.0 ps DGD in each section,

namely σE ≡ σG

√

8NS/3π, in order to remove the dependence on σG while facilitating

comparisons between different curves. This calculation further employs ΓM = ΓK = 7,

NM = 30 and NK = 50.

To illustrate the modified transition matrix formalism, Fig. 7.1 displays the pdf of the

DGD for τm = 3σE , computed as the eigenvector of Tm with unity eigenvalue in the

modified transition matrix formalism (solid line) and with a Monte-Carlo calculation (+

markers). Clearly the transition matrix procedure greatly increases the accuracy of the pdf

in the low probability, large DGD regions, as it distributes the number of samples nearly

uniformly among the DGD bins. In Fig. 7.2, we depict the structure of the transition

matrix, again for τm ≈ 3. The horizontal and vertical axes display the normalized DGD of
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Figure 7.1: The eigenvector of the transition matrix with unity eigenvalue, i.e. the pdf

of the DGD, for our new transition method procedure (solid line) and the corresponding

Monte-Carlo calculation (+ markers) for a 10 section hinge-model emulator and τm = 3.0.
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the contours indicate the base 10 logarithm of the transition probability.
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the initial state and final state while the contours indicate the logarithm of the probability

of transition to a state. Since the largest DGD value attainable by the fiber link for a

given hinge model realization is τm, the transition matrix elements only extend to this

value. Although system configurations with small Ω evolve preferentially to higher DGD

states, the DGD of the large DGD states changes less over a time step, presumably because

of the lack of states with still greater DGD values. As noted in Ref. [129], however, the

transition probability between two states is a function of the DGD difference and exhibits

only a weak dependence on the DGD of the initial state.

We now employ the transition rule to compute the base 10 logarithm of the pdf averaged

over all hinge models realizations with the same hinge metric, τm. These distributions are

displayed as the vertical cross sections of the contour plot in Fig. 7.3. Evidently, the

functional form of the pdf does not vary significantly with τm, although the width of the

pdf does scale approximately with τm. These results also imply that the improvement

afforded by fast mid-link polarization scrambling coupled with forward error correction

coding is limited in systems with large hinge metric values resulting from a high transition

probability between outage states. In contrast, systems with small hinge metric cannot

evolve into the outage region, even if scrambling is absent.

Finally, we display the average probability that a system configuration with a given

link and fiber DGD value will enter the outage region after 20 time steps, where an outage

state is defined by Ω > 3.5σE . A contour plot of the base 10 logarithm of this probability

is presented in Fig. 7.4. As expected, if the hinge metric value (link DGD) is less than

the outage value, the link is error-free with respect to DGD. Fig. 7.5 instead displays the

base 10 logarithm of the number of steps after which a given state has developed a 50%

probability of having evolved into the outage region. The number of required steps grows

nearly logarithmically as the hinge metric decreases towards the outage value.

This analysis suggests that if the instantaneous DGD, Ω, can be continuously moni-
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142



−12
−12

−12

−1
2

−12 −12 −12
−10

−10

−10
−10

−10 −10 −10
−8

−8

−8
−8

−8 −8 −8
−6

−6

−6

−6

−6 −6 −6
−4

−4

−4

−4

−4 −4 −4 −2
−2

−2

−2

−2

−2 −2 −2
−1

−1

−1

−1 −1 −1

Initial Normalized Link DGD

In
it

ia
l
N

o
rm

a
li
ze

d
D

G
D

 

 

3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

Figure 7.4: log10(pdf) from the modified transition matrix procedure that a system con-

figuration with the indicated link and fiber (x and y axis) DGD values evolves after 20

time steps into an outage state for which the average DGD is 3.5 times the mean DGD

of a standard emulator.

143



0
0

0 0

0.5

0.
5

0.5 0.5

1
1

1

1
1

1
1.

5

1.5

1.
5

1.5

1.5
1.5

2

2
2

2

2

2

2.5
2.5

2.
5

2.
5

2.
5

Initial Normalized Link DGD

In
it

ia
l
N

or
m

al
iz

ed
D

G
D

 

 

4 4.2 4.4 4.6 4.8 5 5.2
0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

Figure 7.5: As in the previous figure, but for the base 10 logarithm of the average number

of steps required until the probability of an outage exceeds 50%.

144



tored, a comparison of the experimentally measured pdf with graphs such as Fig. 7.3, or

an analysis of the behaviour of the pdf for large Ω, could yield the likelihood that the

system possesses an overall link DGD of τm, after which time-dependent statistical quan-

tities such as those of Figs. 7.4-7.5 may then be simulated directly using the transition

matrix procedure of Section 7.3. Conversely, a comparison of the measured outage statis-

tics of an installed link in which the span DGD values have been measured with the results

of Figs. 7.4-7.5 should indicate the degree of long-term correlations of the birefringence,

especially in regions of system space with relatively few measurement events. Such a mea-

surement, which could have significant system implications, would also either verify the

Markovian approximation for the hinge angles for a given system or would provide alter-

native transition probability models with time-dependent behaviour that would reflect the

underlying physical forces acting on the system.

7.5 Conclusions

This chapter has summarized a calculation of outage probabilities in the hinge model that,

together with measurements of model parameters along the general lines of Ref. [129],

could assist in reconfiguring certain fiber systems when the outage event probability is

large. Conversely, if the overall DGD but not the individual hinge metric values can be

continuously monitored, a comparison of the experimentally measured probability density

function with graphs such as those in this paper might assist in determining the spatial

and time-correlation properties of the birefringence fluctuations.

While the transition matrix formalism is both efficient and easily implemented, more

complex formulations could, for example, confine sample generation to limited regions of

system space or to histogram bins that have been sampled fewer than a specified number of

times, as in the biased multicanonical method. The advantages afforded by such techniques,
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however, are highly problem-dependent

This formalism can be immediately extended to quantities such as the average number

of steps until an outage state is exited or the percentage of hinge/axis rotations that

produce an increase in the DGD for states with a given DGD value. We have also analyzed

other hinge model metrics such as the magnitude of the longest PMD vector, but these

results appear to have limited practical interest.
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Chapter 8

Modified Transition Matrix

Simulations of Communication

Systems

We apply appropriately enhanced transition matrix and multicanonical methods to com-

munication systems. This procedure not only predicts time-independent quantities such as

the bit-error-probability but can also be applied to dynamic effects such as the distribution

of fading times.

8.1 Introduction

While importance sampling [132] is often employed to calculate communication system

quantities such as the bit-error probability (BEP), the bias function can be difficult to

determine. In contrast, the multicanonical method, which was first adapted to commu-

nication systems in [122, 123], automates this process while a closely related transition
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matrix technique that additionally could be extended to dynamic system quantities yields

improved computational efficiency with reduced algorithmic complexity [105, 115]. In this

chapter we extend the results of Refs. [26, 69] by examining fading channels in wireless

communication systems with both of the above procedures.

8.1.1 Modified transition matrix method

We recall from previous chapters that the multicanonical procedure requires a description

of a physical system by a vector of NE observables, ~E(~a), that in turn depend on Na

stochastic parameters ~a. To estimate a stochastic function f( ~E) such as the probability

density function (pdf) for statistically unlikely values of ~E, the relevant region of ~E is first

partitioned into NB histogram bins centered at ~Em with m = 1, 2, . . . , NB. All elements of

two histograms, one for an estimate of the unnormalized pdf, f
(0)
m and a second for storing

the intermediate results of each iteration Hm are initialized to unity.

In the first iteration of the procedure, a random set of system variables ~a cur is se-

lected. A small random perturbation selected from an effectively arbitrary distribution

function [125] is then added, so that ~anew = ~a cur + δ~a and the associated observables

~E(~anew) and ~E(~a cur) with bin indices mnew and mcur are computed. This perturbation

or “transition” is accepted with a probability min
{

1, f
(0)
mcur

/f
(0)
mnew

}

, in which case ~a cur is

equated to ~anew. Otherwise the subsequent step again employs ~a cur. In both cases, how-

ever, the histogram entry Hmcur
corresponding to the new ~E cur is increased by one. After

M steps, the bias introduced through the acceptance rule is removed and an improved

estimate, f
(1)
m , of f( ~E) is generated according to f

(1)
m = c f

(0)
m Hm, where c is an appro-

priate normalization constant. The next iteration then proceeds similarly with Hm reset

to unity, and f
(1)
m replacing f

(0)
m . The transition rule in this and subsequent iterations

increases the sampling probability of states with small f( ~E) such that the likelihood of

visiting configurations within a region
∣

∣

∣

~E − ~E0

∣

∣

∣
≤ δ ~E becomes independent of ~E0 as the
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number of samples and iterations increases.

Since the multicanonical method does not retain the relative frequency of transitions

between each pair of states in the Markov chain we have previously considered an alter-

native technique, adapted from [105], that accumulates in a matrix T with elements Tlk

the frequency of all accepted and rejected transitions between the initial, k:th, histogram

bin and the final, l:th, bin. The columns of T are subsequently normalized according

to
∑

l Tlk = 1 since the probabilities of all transitions from a state k must sum to unity,

yielding the transition matrix T with elements Tlk.

Since

fn+1 = fn
Tn+1,n

Tn,n+1

(8.1)

as a consequence of the detailed balance condition [41, 105], by setting f1 = 1 as well

as fm = fm−1 for bins in which Tj+1,j = 0 or Tj,j+1 = 0, and subsequently normalizing
∑

m fm = 1, we can rapidly construct an estimate of f( ~E) that can be employed in the

Markov acceptance rule. This intermediate pdf estimate can be regenerated after any

desired number of Markov steps while the final improved result for f( ~E), obtained after

M Markov steps follows from fk =
∑

l Tkl fl implying that f( ~E) is an eigenvector of the

transition matrix, T, with unit eigenvalue [127].

8.1.2 Wireless fading channels

The above procedures can be applied to the method of exact Doppler spread (MEDS)

model [88] for the time dynamics of the complex gain, µ(t), of a Rayleigh fading channel

for which µ(t) ≈ µ̂1(t)+ iµ̂2(t) and, for the maximum Doppler frequency, fmax, the number
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of scatterers, Na, and a = 1, 2,

µ̂a(t) =

√

2

Na

Na
∑

b=1

cos (2πfabt+ θab) (8.2)

fab = fmax sin

[

π

2Na

(

b− 1

2

)]

. (8.3)

The initial state ~a cur = [θ11, . . . , θ1N1
, θ21, . . . , θ2N2

] of the Markov chain incorporates a set

of phases, θab, that are uniformly distributed in [0, 2π]. The dynamic (time-dependent)

channel quantities for the state ~a cur are subsequently evaluated according to Eq. (8.2).

The phases are then changed slightly and the Markov acceptance rule is applied after the

channel properties are recalculated.

We first determine the pdf, f(E), with E identified with the number of fading events

NF occurring within a time interval 0 ≤ t ≤ TF , and, in a subsequent calculation, estimate

the fade duration distribution of a mobile channel, which is typically incorrectly sampled

by Markov procedures because of correlations between consecutive short fading events. In

this case, for each ~a cur the system variables ~E cur = [τ1, τ2] are selected with τ1 and τ2

the calculated durations of two consecutive fading events. This yields a large, N2 × N2,

but sparse transition matrix. The conditional probability f(τ2|τ1) is then determined from

the calculated joint pdf f(τ2, τ1) according to f(τ2|τ1) = f(τ2, τ1)/
∑

τ2
f(τ2, τ1). The fade

duration distribution, f(τ), then corresponds to the eigenvector with unit eigenvalue of

the f(τ2|τ1) matrix since f(τ2|τ1)f(τ1) = p(τ1|τ2)f(τ2) and f(τ2) =
∑

τ1
f(τ2|τ1)f(τ1). For

sufficiently low threshold levels, however, correlations between consecutive short fading

events can be neglected, and we instead apply the one-dimensional multicanonical and

transition matrix procedures.

Next, we consider a standard model of fading channels [69] in which the signals broad-

cast by L+ 1 users are detected by NR independent reception branches. The desired user

transmits a signal at a power level PS while the L interfering transmitters transmit at the

same power level PI . Additionally, additive white Gaussian noise, ~n, with time-averaged

150



intensity σ2 is present at each receiver so that if s and sl represent the modulated symbol

of the desired user and the l:th interferer, ~r =
[

r1, r2, . . . , rN

]T
is a column vector repre-

senting the received signal vector, and ~c, ~cl are the complex channel gains for the desired

user and the l:th user respectively, [69]

~r =
√

Ps~c s+
√

PI

L
∑

l=1

~cl sl + ~n. (8.4)

The channel gains are modeled by independent-identically-distributed (i.i.d.) symmet-

ric complex Gaussian variables with variance 1/2 in the real and imaginary components

separately, yielding Rayleigh fading. The optimum weighting of the NR signals rl that

maximizes the signal-to-interference ratio is then [69]

~w =

[

PI

L
∑

l=1

~cl ~c
†
l + σ2 IN

]−1

~c, (8.5)

where IN signifies the N × N identity matrix, † is the Hermitian transpose, and identify

D = Re
{

~w †~r
}

with the decision variable to be consistent with Ref. [26], although other

authors include an additional factor of 2 into D [69].

Next, we examine BPSK modulation for a source with equal 1 and −1 bit probabilities.

In this case, since the BPSK constellation is symmetric s = sl = 1, implying that a

decision error occurs if D < 0. Then to implement the multicanonical or transition matrix

formalism all stochastic quantities are varied in such a manner as to preserve the Gaussian

distribution of the system variables (although other distributions are possible, cf. [125]).

Thus we can vary v and u in the Box-Muller transformation for the real and imaginary

parts of a Gaussian complex random variable according to

z =
√

−2 ln(u+ ǫu) exp [i2π(v + ǫv)] , (8.6)

in which ǫu and ǫv are selected from a uniform distribution on [−δ/2, δ/2]. While this

transformation is periodic in v, u+ ǫu must remain in the interval [0, 1]. To minimize the
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impact of the boundary discontinuities, if u + ǫu takes the form −λ or 1 + λ with λ > 0

after the perturbation, we respectively substitute λ or 1 − λ.

Finally, we observe that the numerical technique of Section 8.1.1 may be applied to

a filter based Rayleigh channel simulator [88] in which ~a cur is associated with a NT di-

mensional Gaussian noise vector. A fading channel realization is obtained by filtering the

elements of ~a cur as in Ref. [88]. The variables ~a cur are then varied according to Eq. (8.6)

to generate the succeeding Markov chain state. Although calculations of, for example, the

distribution of the number of fading events per unit time systematically over-sample the

tail region of the pdf as a result of rapid transitions across the outage threshold induced

by statistical noise, such a procedure can accurately predict the statistics of small channel

gains and long fade durations.

8.2 Numerical results

In Fig. 8.1 we display the pdf of the number of fading events during a TF = 1 sec interval

for a N1 = 25, N2 = 26 MEDS channel simulator with fmax = 10 Hz. This calculation

employs two 105-sample iterations of the multicanonical procedure for outage levels, R,

of 5 dB (dashed-dotted line), 10 dB (dashed-line) and 15 dB (solid line) below the mean

channel gain, respectively, together with the modified transition matrix method (+ mark-

ers), and from a single realization of Eq. (8.2) (◦ markers). While both the multicanonical

and transition matrix methods concentrate samples in regions of low probability, the mod-

ified transition matrix procedure continuously revises the intermediate pdf estimate and is

therefore more numerically efficient.

Next, Fig. 8.2 illustrates the distribution of fade durations obtained from three 2 ×
106-sample iterations of the multicanonical method (solid lines) for outage levels of R =

5 dB and 15 dB below the mean channel gain, together with the modified transition
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Figure 8.1: The base 10 logarithm of the pdf of the number of fading events for fmax = 10

Hz within TF = 1 sec for outage threshold levels of R = 5 dB (dashed-dotted line), 10 dB

(dashed line) and 15 dB (solid line) below the mean channel gain as evaluated with two

105-sample iterations of the multicanonical method as well as for the modified transition

matrix procedure (+) with a 2 × 105 samples and a direct evaluation of Eq. (8.2) (◦).
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Figure 8.2: The fade duration distribution for three 2 × 106-sample iterations of the mul-

ticanonical method (solid lines) with N = 100 bins for outage levels of R = 5 dB and 15

dB below the mean channel gain, respectively, and for 6 × 106 samples of the modified

transition matrix procedure (+) and Eq. (8.2) (◦). The dashed line indicates the sampling

bias introduced by the one-dimensional multicanonical calculation for R = 5 dB.
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matrix (+ markers). Here 100 bins were employed to discretize the system observables

over the x-axis interval. The dashed line in the figure is calculated with the standard

one-dimensional multicanonical procedure for a threshold 5 dB below the mean channel

gain. This clearly oversamples long fade durations since considerable correlation exists

between consecutive short fading events. On the other hand, the two dimensional procedure

far more accurately reproduces the correct fade duration distribution evaluated directly

from Eq. (8.2) (◦ markers) for thresholds R > 5 dB. For R = 15 dB, we employed one-

dimensional procedures as mentioned in the preceding section.

The final calculation considers the BEP and the pdf of the decision variable D for

L = 2, N = 4, an interference power level PI = 1 (the power unit is arbitrary), a signal-

to-interference (SIR) ratio, defined as PR/PI of 50 and a SNR, σ2/PI , of 12 dB. This

simulation further employs 32×106 time steps of size δ = π/20 and 2000 bins covering the

interval [−5, 20] in the decision variable D. Note here that for the accurate determination

of the BEP, the right endpoint of one histogram interval must be located at the origin.

With these values, the BEP calculated is 7.05×10−6, which compares to the analytic value

of 7.14 × 10−6 (the computed value varies by an amount on the order of 0.1 × 10−6 with

differing random number sequences). The probability that a random realization possesses

a decision variable value D (the pdf of D) is given by the solid line of Fig. 8.3, where

all realizations with D > 20 are grouped into the last histogram bin. The dashed line of

Fig. 8.3 displays the corresponding multicanonical result for 4 iterations of 5×106 samples.

Both the resulting BEP of 6.9 × 10−6 and the numerical pdf are comparable to the

transition method result, although a larger number of multicanonical iterations with fewer

samples will generally accurately predict the pdf over a wider range of values at the cost

of a somewhat diminished overall level of numerical accuracy. The multicanonical and

transition matrix methods can be combined as in [127] to extend this feature to the transi-

tion matrix procedure; however, the round-off error of the numerical subroutines must be

sufficiently low to accommodate the large differences in the output magnitudes.
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Figure 8.3: The pdf of the decision variable D associated with an optimum combining

receiver and the system described in the text as computed with the modified transition

matrix procedure (solid line) and the multicanonical procedure (dashed line).
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8.3 Conclusions

This chapter has advanced new calculational procedures for time-independent and time-

dependent wireless fading channels that can be extended to numerous problems throughout

communications theory [127]. However, non-stochastic systems with memory or systems

that are described by two or more observables require large transition matrix dimensions

and presumably computation times.

Additionally, transition matrix compiles a history of changes in certain quantities that

themselves must adequately encapsulate the relevant system behaviour. For example, if a

particular region of system configuration space contributes significantly to the final result,

these observables must vary significantly over this region. However, such limitations are

shared by most other biasing techniques and therefore should not restrict the applicability

of these methods.
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Chapter 9

Conclusions

In this thesis, I have developed a general formalism for the rapid and accurate estimation

of the frequency and temporal dynamics of optical polarization in the presence of PMD

and PDL. While this formalism reproduces power-series expansion and differential equa-

tion solution techniques of previous authors, it also preserves the required Lorentz group

symmetry of the Mueller matrix in every expansion order. This significantly improves the

bandwidth of high PMD estimation accuracy, making the approach suited to the stochastic

analysis of PMD and PDL induced system penalty, while also yielding physically realizable

operator expansions that could with future research facilitate the design of joint PMD and

PDL compensators [98,124,126]. Further, an analysis of data obtained from linear channel

equalization filters in coherent optical communication systems in terms of Magnus orders

of the Jones matrix could provide accurate real time monitoring of higher order PMD and

its temporal statistics for the forecasting of PMD induced outage events and improved

network control.

Next, I have demonstrated experimentally that low-amplitude mechanical excitations

of commercially available dispersion compensation modules can excite high-frequency,

> 75 × 103 rotations/s, polarization transients that are nearly invariant between succes-
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sive impacts. As a result, these mechanical excitations can induce transient degradations

of the system performance in which an error-free system briefly exceeds acceptable per-

formance thresholds before relaxing to its initial error-free state. Tracking the state of

polarization throughout these transient events is expected to place challenging require-

ments on the speed and complexity of electronic compensation filters in modern coherent

optical systems. Conversely, this work demonstrates the possibility of constructing high-

frequency, reproducible PMD (and PDL) scramblers for network testing applications by

placing a DCM or similar coils of optical fiber in series with one or more sections of PMD

or polarization maintaining fiber. While simple to construct, this apparatus could pro-

vide a straightforward means of testing and verifying network survivability during rapid

polarization transient events.

In the remainder of this thesis, I have examined two models of the temporal evolution

of polarization characterized by a stochastic evolution of the PMD vector over the Poincaré

sphere involving (1) a fiber emulator model that reproduces the expected temporal PMD

autocorrelation statistics with a small number of emulator sections and (2) a general tran-

sition matrix formalism that additionally applies to other time-dependent communication

systems [128].

While previous numerical simulations of the PMD temporal dynamics have been lim-

ited to qualitative models or complex implementations involving the evolution of PMD

in the distributed limit, the random walk of method (1) accurately reproduces the PMD

temporal autocorrelation function with model parameters that relate in a simple manner

to the expected autocorrelation time of the PMD vector. The increased computational ef-

ficiency afforded by this approach allows simulations of the PMD temporal dynamics to be

preferentially biased towards regions of low probability using the multicanonical method,

permitting for example the calculation of PMD induced outage probabilities for thresholds

that are otherwise intractable for standard Monte-Carlo simulations. Extensions of this

approach to more general optical systems, including a finite number of active polarization
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hinge sites, should allow the accurate simulation of PMD and PDL temporal dynamics for

improved network equalization and control.

Finally, I have demonstrated that transition matrix methods can rapidly and accurately

model the temporal dynamics of statistically unlikely but physically significant configura-

tions in both optical and general communication systems. Transition matrix procedures,

which extend multicanonical techniques to dynamic problems, possess numerous imple-

mentations that differ considerably in accuracy and sensitivity to variations in numerical

parameters. In particular, in this thesis I have achieved a high degree of efficiency and ac-

curacy by employing the multicanonical acceptance rule while continually updating the pdf

estimate from the transition matrix. However, acceptance rules that increase the probabil-

ity of asymmetric transitions out of a bin can be simple to program and computationally

efficient if the numerical parameters ensure a small self-transition probability within each

histogram bin. Further pursuing this line of reasoning could yield even more efficient tran-

sition matrix methods with possible experimental relevance, as in Refs. [75, 76]. Finally,

I have demonstrated the applicability of transition matrix sampling procedures by calcu-

lating the outage dynamics associated with the hinge model of polarization evolution and

separately wireless fading channels. Calculations such as these could assist in the active

reconfiguration of communication systems in the event of a large outage probability or,

conversely, for accurately determining the distribution of the outage duration.
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Appendix A

Matrix Identities

A.1 Pauli matrix identities

The following identities, established through direct calculation, are valid for an arbitrary

polarization Jones vector, |A〉 = [Ax, Ay]
T, and 3 × 1 Stokes vector ~A = 〈A|~σ|A〉, respec-

tively [6, 39, 47, 55, 64, 98].

I2 =





1 0

0 1



 σ1 =





1 0

0 −1





σ2 =





0 1

1 0



 σ3 =





0 −i
i 0



 , (A.1)

The matrices σa, a = 1, 2, 3, satisfy the orthogonality relation

1

2
Trace {σaσb} = δab (A.2)

where δab is the Kronecker delta function. Consequently, σa together with the identity

matrix I2 form a basis for the space of 2× 2 matrices in that an arbitrary Jones matrix T
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can be written as the linear combination

T = t0I2 + t1σ1 + t2σ2 + t3σ3 (A.3)

involving the complex numbers, t0 and tn, n = 1, 2, 3, where t0 = Trace {T} /2 and tn =

Trace {σnT} /2 [47]. The coefficients of this expansion are real valued if T is hermitian,

while for unitary T, t0 is real and tn is purely imaginary.

The following identities can be established by applying

σaσb = δab I2 + iǫabc σc (A.4)

in which ǫabc is the Levi-Civita tensor and a, b, c = 1, 2, 3.

|A〉〈A| =
1

2
| ~A| I2 +

1

2
~A · ~σ (A.5)

〈A|( ~B · ~σ)|A〉 = ~B · ~A (A.6)

〈A|( ~B × ~σ)|A〉 = ~B × ~A (A.7)

( ~A · ~σ)2 = | ~A|2 I2 (A.8)

( ~A · ~σ)( ~B · ~σ) = ( ~A · ~B) I2 + i( ~A× ~B) · ~σ (A.9)

( ~A · ~σ)~σ( ~A · ~σ) = 2 ~A( ~A · ~σ) − | ~A|2~σ (A.10)

( ~A · ~σ)~σ( ~B · ~σ) = ~A( ~B · ~σ) + ~B( ~A · ~σ) − ( ~A · ~B)~σ − i( ~A× ~B)I2 (A.11)

In the following, ~W = ~A + i ~B is a complex three-dimensional vector, ~W ∗ = ~A − i ~B and
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| ~W |2 ≡ ~W † ~W .

( ~W · ~σ)† = ~W ∗ · ~σ (A.12)

~σ( ~W · ~σ) = ~W I2 + i ~W × ~σ (A.13)

( ~W · ~σ)†~σ = ~W ∗I2 − i ~W ∗ × ~σ (A.14)

( ~W · ~σ)†~σ( ~W · ~σ) = ~W ( ~W ∗ · ~σ) + ~W ∗( ~W · ~σ) − | ~W |2~σ − i( ~W ∗ × ~W )I2 (A.15)

A.2 Random Jones rotation matrices

Random polarization rotations are often required in numerical simulation for example when

randomizing the input polarization states of channels in a WDM system, scrambling the

polarization at each step of a “coarse-step” split-step Fourier (SSF) calculation [109] or

simulating strong mode coupling between segments of a fiber emulator. Quite often, both

in software and in the literature, rotations of the form

U =





cos θ sin θ eiφ

− sin θ e−iφ cos θ



 (A.16)

are employed where the angles θ and φ are typically selected from a uniform distribution

over [0, 2π]. However, Eq. (A.16) when applied to an input Jones vector |Ain〉 according

to |Aout〉 = U|Ain〉 with a uniform distribution of angles produces an output Stokes vector

~Aout = 〈Aout|~σ|Aout〉 that tends to “cluster” in regions of higher probability density on

the Poincaré sphere. For example, in Fig. A.1a regions of higher probability density are

apparent near the s2 axis when the output Stokes vector is calculated for 104 random

realizations of Eq. (A.16) for a 45 deg polarized input SOP. In what follows, I will present

a simple algorithm for generating uniformly distributed 2 × 2 unitary matrices that yield

a uniform distribution of output Stokes vectors over the Poincaré sphere.

163



To proceed, I observe that

U = eiδ





cos θ eiχ sin θ eiφ

− sin θ e−iφ cos θ e−iχ



 (A.17)

for rotation angles, δ, θ, φ and χ, is the most general form of a 2 × 2 unitary matrix

and consequently covers the U(2) group. Next, I select the probability densities of the

various angles in Eq. (A.17) to ensure that the rotation matrix is uniformly distributed

with respect to the Haar measure [32], that is, the invariant measure of volume for an

algebraic group, for U(2). The final result is remarkably straightforward:

1. The angles δ, φ and χ in Eq. (A.17) must be uniformly distributed over [0, 2π]

2. θ has probability density fθ(x) = sin(2x) with 0 ≤ x ≤ π/2, and, consequently,

cos(2θ) is uniformly distributed over [−1, 1].

Finally, to generate random values of cos θ and sin θ with the correct distribution I set

cos θ =
√
u and sin θ =

√
1 − u for a uniform random variable u over [0, 1]. Fig. A.1b

illustrates the output Stokes vector on the Poincaré sphere resulting from this algorithm

and clearly shows the uniform distribution of the output vector on the Poincaré sphere.

This algorithm is easily implemented in, e.g. Matlab, and generates 106 random rotation

matrices in < 0.5 sec on a standard Pentium Core-2 processor.
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(a) Standard method

(b) Uniformly distributed rotation matrix

Figure A.1: A Monte-Carlo simulation of the output Stokes vector ~Aout = 〈Aout|~σ|Aout〉
with |Aout〉 = U|Ain〉 and a 45 deg polarized input field, |Ain〉 = [1, 1]T/

√
2, for 104 random

rotation matrices U generated according to (a) Eq. (A.16) and (b) Eq. (A.17).
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for polarization mode dispersion compensation. J. Lightwave Technol., 21(5):1198–

1210, 2003.

[105] M. Shell, P. Debenedetti, and A. Panagiotopoulos. An improved Monte Carlo method

for direct calculation of the density of states. J. Chem. Phys., 119(18):9406–9411,

2003.

[106] W. Shieh. On the second-order approximation of PMD. IEEE Photon. Technol.

Lett., 12(3):290–292, 2000.

[107] M. Shtaif. The Brownian-bridge method for simulating polarization mode dispersion

in optical communications systems. IEEE Photon. Technol. Lett., 15(1):51–53, 2003.

[108] M. Shtaif and A. Mecozzi. Study of the frequency autocorrelation of the differential

group delay in fibers with polarization mode dispersion. Opt. Lett., 25(10):707–709,

2000.
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