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Abstract

This thesis considers a variety of statistical issues related to the design and analysis of

clinical trials involving multiple lifetime events. The use of composite endpoints, multi-

variate survival methods with dependent censoring, and recurrent events with dependent

termination are considered. Much of this work is based on problems arising in oncology

research.

Composite endpoints are routinely adopted in multi-center randomized trials designed

to evaluate the effect of experimental interventions in cardiovascular disease, diabetes,

and cancer. Despite their widespread use, relatively little attention has been paid to the

statistical properties of estimators of treatment effect based on composite endpoints. In

Chapter 2 we consider this issue in the context of multivariate models for time to event

data in which copula functions link marginal distributions with a proportional hazards

structure. We then examine the asymptotic and empirical properties of the estimator of

treatment effect arising from a Cox regression model for the time to the first event. We

point out that even when the treatment effect is the same for the component events, the

limiting value of the estimator based on the composite endpoint is usually inconsistent for

this common value. The limiting value is determined by the degree of association between

the events, the stochastic ordering of events, and the censoring distribution. Within the

framework adopted, marginal methods for the analysis of multivariate failure time data

yield consistent estimators of treatment effect and are therefore preferred. We illustrate

the methods by application to a recent asthma study.

While there is considerable potential for more powerful tests of treatment effect when

marginal methods are used, it is possible that problems related to dependent censoring can

arise. This happens when the occurrence of one type of event increases the risk of with-

drawal from a study and hence alters the probability of observing events of other types.

The purpose of Chapter 3 is to formulate a model which reflects this type of mechanism, to

evaluate the effect on the asymptotic and finite sample properties of marginal estimates,
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and to examine the performance of estimators obtained using flexible inverse probabil-

ity weighted marginal estimating equations. Data from a motivating study are used for

illustration.

Clinical trials are often designed to assess the effect of therapeutic interventions on oc-

currence of recurrent events in the presence of a dependent terminal event such as death.

Statistical methods based on multistate analysis have considerable appeal in this setting

since they can incorporate changes in risk with each event occurrence, a dependence be-

tween the recurrent event and the terminal event and event-dependent censoring. To date,

however, there has been limited methodology for the design of trials involving recurrent

and terminal events, and we addresses this in Chapter 4. Based on the asymptotic distri-

bution of regression coefficients from a multiplicative intensity Markov regression model,

we derive sample size formulae to address power requirements for both the recurrent and

terminal event processes. Superiority and non-inferiority trial designs are dealt with. Sim-

ulation studies confirm that the designs satisfy the nominal power requirements in both

settings, and an application to a trial evaluating the effect of a bisphosphonate on skeletal

complications is given for illustration.
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Chapter 1

Introduction

1.1 Overview

Multivariate failure times are routinely encountered in clinical trials and observational

studies (Hougaard, 2000; Lawless, 2003). In the statistical literature, there have been

several proposed models and methods for the analysis of multivariate failure time data.

These approaches include shared frailty models, copula-based models and robust marginal

methods. In this thesis, we focus on the use of robust marginal methods for the analysis

of multivariate failure time data. With such methods the dependence structure among the

failure times is not modeled directly and inference regarding the regression coefficients is

based on robust variance estimation.

This work is motivated by design and analysis issues in clinical trials. The first stream of

research is motivated by the need to understand the implications of using Cox regression

models for analysis of composite endpoints. In this research we specify models which

are compatible with settings in which composite endpoints are currently thought to be

appropriate. We then study the limiting and finite sample behaviour of resulting estimators

and make recommendations to re-evaluate the current guidelines on the use of composite

endpoints in clinical trials.
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One recommendation from the first study is that marginal methods for multivariate

failure time data be used in settings with multiple correlated event times where it is thought

that there may be proportional hazards between a treatment and control group in the

marginal distributions. This however, motivates the study of the sensitivity of the resulting

estimators to event-dependent censoring mechanisms. This constitutes the second stream

of research.

Finally, there is a need for the development of design criteria for clinical trials involving

multiple lifetime events. The third stream of research involves the development of sample

size criteria for clinical trials aiming to study the effect of a treatment on recurrent events

in the presence of a dependent terminal event. We develop these criteria in the context of a

multistate Markov model incorporating recurrent events through specification of transient

states, and the terminal event through an absorbing state. We consider design of trials

where the objective is to show superiority or non-inferiority with respect to the processes

of interest.

1.2 Use of Composite Endpoints in Clinical Trials

Randomized controlled trials have generated the most useful information on which evidenced-

based medical practice is based. A major decision in the design of a randomized trial is

the selection of the primary endpoint, which plays a central role in the evaluation of the

efficacy of new interventions. In a clinical trial, a primary endpoint is usually a clinical

event chosen on which to base the measure of treatment effect, the test for differences be-

tween arms, and the sample size calculation. An example of a primary endpoint in cancer

clinical trials is time to death (survival). Ideally, the design of a randomized trial should

be based on a single primary endpoint that characterizes the disease in a clinically mean-

ingful way and allows efficient and unbiased assessment of treatment effects. However, in

many diseases, a single primary endpoint may not be sufficient and clinical response can be
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measured in multiple patient outcomes. Investigators have increasingly turned to multiple

endpoints in clinical trials and regulatory agencies are increasingly requiring demonstration

of efficacy for multiple endpoints (Freemantle and Calvert, 2007b; Buzney and Kimball,

2008). Co-primary endpoints have been adopted more often in recent years, and in this

setting two or more endpoints of equal importance are used to characterize the efficacy of

a treatment.

In trials with co-primary endpoints, each endpoint is typically analyzed separately. A

statistical consequence of this design is a possible increase in type I error rate. This mul-

tiplicity issue must be addressed in the study design and analysis plan. One strategy is

“splitting the α” —allocating the 5% type I error unequally across the co-primary end-

points. For example, in a cardiovascular trial with two co-primary endpoints of all-cause

mortality and hospitalization, the all-cause mortality endpoint can be tested at the 0.04

level of significance and the hospitalization endpoint tested at the 0.01 level, thus, pre-

serving the overall 5% type I error rate. A potential advantage of this approach is that

one endpoint may achieve significance whereas the others may not and conclusions can be

drawn accordingly. However, the allocation is usually done in an ad hoc way and there are

few guidelines for optimal allocation depending on importance of each endpoint.

A frequently used strategy for multiple comparisons is the well-known Bonferroni cor-

rection. In this procedure each endpoint is tested at the significance level of α/K, where

α is the overall type I error rate and K is the number of co-primary endpoints. The Bon-

ferroni correction is easy to implement, preserves the overall type error I rate of α, and is

very useful in situations when only one of the endpoints has a non-zero treatment effect.

If the treatment has different effects (i.e., in opposite directions) across the co-primary

endpoints, the interpretation of the treatment effect can be difficult, but there is a clear in-

dication of the nature of the effect. Co-primary endpoints are usually positively correlated

when all relate to efficacy outcomes in which case the Bonferroni correction is conservative.

Composite endpoints (CEP) offer another approach for dealing with multiple endpoints.
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In a composite endpoint, several clinical outcomes of interest are combined into a single

endpoint and each endpoint is considered as a component of the composite endpoint. In-

stead of separate analysis of each endpoint (as in the case of co-primary endpoints), the

event time is the time of the first occurrence of any component endpoint. In general there

are three types of composite endpoints (Chi, 2005). The first type is a total score or index

often encountered in psychotropic studies. The second type of CEP is the occurrence rate

of any events in a CEP after a certain period of follow-up. The third type of CEP is the

time-to-the-first-event. The first two types might be suitable with continuous or binary

responses, respectively, but the third type of CEP is most used in large trials, especially

phase III trials (Chi, 2005). A typical CEP in a cardiovascular disease (CVD) trial may

consist of nonfatal myocardial infarction, nonfatal stroke and cardiovascular death. In this

thesis, we focus on the time-to-the-first-event CEP.

The primary rationale for adopting CEPs in clinical trials is that CEPs may potentially

reduce the required sample size and the duration of trials. Event rates are higher when

including the occurrence of many endpoints in a CEP, which can lead to reduced sample

size for a given level of power and trial duration (Ferreira-González et al., 2007a,b). The

second advantage often credited to a CEP analysis is the ability reflect the net benefit of

treatment—different components in a CEP may represent different aspect of efficacy of the

treatment (Neaton et al., 2005). The third rationale put forward for the use of CEPs is

to avoid the problems of competing risks (Neaton et al., 2005). Patients who have died

cannot experience a non-fatal event of clinical interest. CEPs in CVD trials usually contain

all-cause mortality as a component to account for the competing risk problem. Finally, the

adoption of CEPs may avoid the need to adjust for multiple comparisons by considering

only a single (the first) event.

The use of CEPs in clinical trials is not without controversies, and there are several

disadvantages of CEPs discussed in the medical literature. The most frequently attributed

disadvantage of CEPs is that of heterogeneity. There are two types of heterogeneity in
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CEPs (Ferreira-González et al., 2008). First, the treatment effect may be different across

the components and second, the clinical importance of component endpoints may be very

different. When the component endpoints in a CEP are of different clinical importance, the

interpretation of the treatment effect from a CEP analysis can be misleading if the overall

positive result driven by a treatment effect on a less important endpoint. Moreover, if the

magnitude of the treatment effect on components are very different, the interpretation is

problematic as well. From a statistical point of view, the inclusion of a component with

little or no treatment effect can dilute the evidence of a treatment effect and hence may

lead to reduced power when testing the efficacy of treatment.

Three key recommendations have been proposed in the medical literature to provide

guidelines for proper use of CEPs in clinical trials (Montori et al., 2005). The first recom-

mendation is that each component in a CEP should be of the same clinical importance.

The second is that each component should have equal frequencies of occurrence. The third

is that the treatment effect on each component should be roughly equal. The first recom-

mendation is purely from a clinical point of view and can facilitate the interpretation of

the treatment effect on the composite endpoint. The second and third recommendations

are motivated in part by statistical considerations. These three recommendations are cur-

rently actively discussed in the medical literature. We examine them from a statistical

perspective in Chapter 2 of this thesis.

1.3 Methods for Multivariate Failure Time Data

Since co-primary endpoints are often positively correlated failure times, the analysis of co-

primary endpoints often requires models and methods for multivariate failure time data.

In this section, we review some commonly used models and methods. We consider the case

where none of these events are fatal and so we do not have to deal with a competing risk

problem. Suppose that there are K such different types of events. Let Ti1, ..., TiK denote
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the random variables of the event times for the K types of events. In general there could be

different censoring times Ci1, ..., CiK for the different events times, but usually a common

censoring time is used and we set Cik = Ci, and therefore observe Xik = min(Tik, Ci),

k = 1, ..., K. Let zik denote a pk × 1 covariate vector for a regression model for Tik. We

are typically concerned with methods for estimation and inference which addresses the

association between the failure times and hence yield valid inferences. In some contexts

we may be interested in joint probability statements and sometimes we are interested

in the association between event times. One convenient way of generating multivariate

distributions is through random effects models. These are used widely for dealing with

clustered and longitudinal data with generalized linear models. We consider this approach

in the next section.

1.3.1 Frailty Models

Consider a conditional hazard for event time k, given by

lim
∆t→0

P (t ≤ Tik < t+ ∆t|uik, zik)
∆t

= uikh0k(t;αk) exp(zikβk)

where uik is a random effect independent of zik, with mean 1 and variance φk . Here

h0k(t) is the (conditional) baseline hazard function and βk the covariate effects for the

type k events. In the context of survival data, random effects are often called “frailty

parameters” or “frailties” since they can often be interpreted as characterizing the frailty,

or risk, a particular individual has compared to the average member of the population with

the same covariate vector. In studies of aging the more frail individuals are the greater

risk of death, for example. We may think of multivariate frailties and so think of a vector

ui = (ui1, . . . , uiK)′ where cov(uik, uil) = φkl accommodates an association between failure

times within individuals. While this is appealing in its generality it can be computationally

challenging to work with such models.

A much simpler model is obtained if we consider a common frailty and set uik = ui, k =
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1, . . . , K, with E(ui) = 1 and var(ui) = φ. If α = (α1, . . . , αK)′, β = (β1, . . . , βK)′, zi =

(zi1, . . . , ziK)′, and ui and zi are independent, then since

P (Tik > tk|zi, ui) = exp(−uiH0k(tk, αk) exp(zikβk)),

we have

P (Ti1 > t1, . . . , TiK > tK |zi;α, β, φ) = Eui

[
K∏
k=1

Fik(tk|ui, zik;αk, βk)

]

= Eui

[
K∏
k=1

exp(−
∫ tk

0

uih0k(uk;αk) exp(zikβk))

]
,

where Fik(tk|ui, zik;αk, βk) = exp(−
∫ tk

0
uih0k(s;αk) exp(zikβk)ds) is the conditional sur-

vivor function for type-k events. A number of distributions for ui can be adopted but we

will consider here the gamma distribution for analytical tractability, in which case

F(t1, . . . , tK |zi, α, β, φ) =

∫ ∞
0

exp(−ui
K∑
k=1

H0k(tk;αk) exp(zikβk))
uφ
−1−1
i eui/φ

Γ(φ−1)φφ−1 dui

=

∫ ∞
0

uφ
−1−1 exp(−u

[
φ−1 +

∑K
k=1 H0k(tk;αk) exp(zikβk)

]
)

Γ(φ−1)φφ−1 du

=
1[

1 + φ
∑K

k=1Hok(tk;αk) exp(zikβk)
]φ−1 .

The joint density for (Ti1, . . . , TiK |zi) can be obtained by differentiation of the joint survival

distribution.

The frailty model accommodates an association between the survival time Ti, but it

may not lead to very appealing covariance structures. In regression models with covariates,

the covariance structures induced by the frailty model becomes more complicated and the

association depends on the covariate values for the pairs of failure times under considera-

tion. Moreover, even though frailty models can be based on a proportional hazards models

conditionally on a random effect, this will not yield a proportional hazards model after

marginalizing over the frailty parameter. To see this, consider the marginal gamma frailty
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model, where the frailty has a gamma distribution. Hence

Fk(t|zik) = P (Tik > t|zik) = E(exp(−uiHok(t) exp(zikβk))) =
1

(1 + φH0k(t))ezikβk)φ−1
,

and the marginal hazard function has the form hk(t|zik) = fk(t|zik)/Fk(t|zik) which is

hk(t|zik) =
φh0k(t)e

zik(t)βk

1 + φHok(t)ezikβ
.

This does not have the proportional hazards form.

When the covariate effects on the marginal hazard do not have a constant relative risk

form, this can cause difficulties in interpretation of the treatment effect. This arises because

the frailty induces both dependence and heterogeneity into the model (Liang et al., 1995).

1.3.2 Copula Models

The frailty approach for dealing with clustered or multivariate data is convenient but as

stated earlier there can be problematic features of the resulting dependencies and the fact

that the covariate effects are not expressed in proportional hazards forms in the marginal

distributions can be undesirable. Copula models offer an alternative approach for modeling

association between failure time, which until relatively recently, were not used extensively

in applications. They have the appealing property of linking two marginal distributions

and so marginal features may be constructed in any desirable way. Specifically, we can

model the marginal distribution of Tk through the Cox proportional hazards model where

for the ith subject

λk(t|zik) = λ0k(t) exp(zikβk).

This hazard function fully specifies the marginal survival function Sk(t|zik) for the Tik.

Note also that Sk(Tik|zik) is distributed as a uniform (0, 1) random variable. The joint dis-

tribution of Ti1, . . . , TiK and hence the dependence structure among them can be modelled
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as

S(t1, . . . , t2|zi) = P (Ti1 > t1, . . . , TiK > tK |zi)

= C(S1(t1|zi1), . . . , SK(tK |ziK),Θ),

where C(·) is a K variate distribution function indexed by the parameter φ with uniform

(0, 1) margins. The function C is known as the copula function and different choices of C

can lead to a different joint survival distribution of T1, . . . , TK while preserving the same

marginal distributions. One noticeable advantage of copula models is that the interpreta-

tion of the regression coefficient is the same regardless the choice for C. If the margins

involve Cox models the coefficients have the usual interpretation and yield constant hazard

ratios; that is the proportional hazard assumption always holds for margins in a copula

model if this framework is adopted for the margins. The parameter Θ in copula functions

usually measures the degree of correlation, and the Kendall’s tau, usually a function of Θ,

is often adopted as the measure of dependence.

A commonly used family of copula function is the Archimedean copulas,

S(t1, . . . , tK |zi) = gφ(
K∑
k=1

g−1
φ (Sk(tk|zik))),

where gφ is a function mapping from (0,∞) to (0, 1) such that gφ(0) = 1, g
′

φ(t) < 0 and

g
′′

φ(t) > 0 for all t ∈ [0,∞). In particular, if gφ is a Laplace transform of a random variable

with cumulative distribution of Gφ, the above expression is

S(t1, . . . , tK |zi) =

∫ K∏
k=1

exp(−αg−1
φ (Sk(tk|zik))dGφ(α),

where g−1 is the inverse Laplace transformation (Nelsen, 2006).

The Archimedean copulas with Laplace transformations represent a large family of

copulas often used in survival analysis. For example, the Laplace transformation of a

gamma distribution yields the well known Clayton copula. The Gumbel-Houguaard copula

and the Frank copula also belong to the Archimedean copula family.
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There are some disadvantages of copula modeling in the analysis of multivariate failure

time data. The specification of suitable copula model can be challenging and goodness-fit

tests for choosing a particular type of copula model are still an area of active research.

It seems to be a simple task to construct the likelihood for inference purposes once the

copula model is specified, however if the margins are semiparametric regression models,

the likelihood function based on copula will be complicated and estimation computation-

ally intensive. Two-stage pseudo-likelihood methods have been proposed in the literature

(Liang et al., 1995). At stage one, the estimation proceeds for the marginal parameters

under the assumption that the failure times are independent; estimates of the regression

coefficients and the baseline hazard functions are thus obtained. At the second stage, these

estimates are plugged into the likelihood function based on the joint model to make infer-

ence for φ based on a so-called the pseudo-likelihood for φ. While there is a possible slight

loss of efficiency of this two-stage pseudo-likelihood method relative to the full likelihood

approach, the computational advantages are attractive.

1.3.3 Robust Marginal Methods

One possible extension of the Cox regression model for dealing with multivariate failure

time data is the marginal approach of Wei, Lin and Weissfeld (1989), referred to as the

WLW approach. The WLW approach is similar to the two-stage approach for the copula

model in that marginal proportional hazards analyses are performed by each marginal fail-

ure times Ti1, . . . , TiK , as if they are independent. At the second stage, a robust covariance

estimator is obtained to account for possible correlation between the estimators of the re-

gression coefficients. The WLW approach is well-suited for multivariate failure time data,

where each patient is at the risk of and may experience several failure types in clinical

trials.

Since marginal analyses are planned, counting processes need to be specified for each

event type and we explore this more fully here. Subjects are considered at risk for each

10



event from the time of first contact. Let Ci be a right censoring time, then Yi(t) = I(t ≤ Ci)

indicates whether subject i is under observation at time t. We observe Xik = min(Tik, Ci)

and δik = I(Xik = Tik). Then let Y M
ik (t) = I(t ≤ Tik) be the “at risk” indicators for

the marginal analyses of type k events. Then Ȳ M
ik (t) = Yi(t)Y

M
ik (t) = 1 if the ith subject

is under observation and has not yet experienced the type k event at time t. We let

dNik(t) = 1 if the type k event for subject i occurs at time t and dNik(t) = 0 otherwise,

and we let dN̄ik(t) = Ȳ M
ik (t)dNik(t) indicate the type k event occurred and was observed at

time t. Let zi = 1 if subject i is randomized to the treatment group and zi = 0 otherwise.

Suppose one assumes a proportional hazards model of the form αMik (t) = αMk0(t) exp(ziβ)

where

αMk0(t) = lim
∆t↓0

P (Nik(t+ ∆t−)−Nik(t
−) = 1|Nik(t

−) = 0, zi = 0)

∆t

is the crude hazard function defined by omitting information on any possible earlier events

in the conditioning set. We let

ᾱMk0(t) = lim
∆t↓0

P (N̄ik(t+ ∆t−)− N̄ik(t
−) = 1|N̄ik(t

−) = 0, Ȳ M
ik (t) = 1, zi = 0)

∆t

denote the marginal hazard for the observable event process. If we assume independent

censoring and the same treatment effect for each marginal model, the “marginal” hazard

becomes

ᾱMik (t) = Ȳ M
ik (t)αMik (t) = Ȳ M

ik (t)αMk0(t) exp(ziβ).

The maximum partial likelihood estimate of the β is obtained by maximizing

L(β) =
K∏
k=1

Lk(β),

where

Lk(β) =
m∏
i=1

[
exp(ziβ)∑m

j=1 Ȳ
M
jk (Xik) exp(ziβ)

]δik
,

given a dataset of size m. The estimating equation for a common β is based on the score
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function of a stratified Cox model

U(β) =
K∑
k=1

m∑
i=1

∫ ∞
0

(
zi −

S
(1)
k (β, t)

S0
k(β, t)

)
dN̄ik(t),

where S
(r)
k (β, t) =

∑m
j=1 Ȳ

M
jk (t)zrj exp(zjβ), r = 0, 1 for the WLW estimate with a com-

mon regression coefficient. In this case the regression coefficient has the interpretation

as the common treatment effect for all event types. The above model can be changed to

incorporate different regression coefficients for each event type through separate models

ᾱMik (t) = Ȳ M
ik (t)αMk0(t) exp(ziβk), k = 1, 2, . . . , K. A stratified maximum partial likelihood

can be used to obtain the estimates of regression coefficients. Since no overall likelihood

is assumed for the joint distribution of the K type events, the WLW approach next in-

volves computing a robust variance estimator to account for the possible correlation among

the estimates of the regression coefficients and ensure control of frequency properties for

simultaneous inferences regarding β = (β1, . . . , βK)′.

If different regression coefficients are accommodated for different events, the regression

coefficients β = (β1, . . . , βK)′ are estimated by solving the pseudo-likelihood score equations

U(β) = (U1(β1), . . . , U2(βK))′ with

Uk(βk) =
m∑
i=1

∫ ∞
0

(
zi −

S
(1)
k (βk, t)

S0
k(βk, t)

)
dN̄ik(t),

and S
(r)
k (β, t) =

∑m
j=1 Ȳ

M
jk (t)zrk exp(zkβk), r = 0, 1, k = 1, . . . , K. These pseudo-score equa-

tions are similar to score equations for a ordinary univariate Cox model. Marginally, the

existence, uniqueness, and consistency of the maximum partial likelihood estimator β̂k and

−m−1∂Uk(βk)/∂βk|βk=β̂k
for E(∂U(βk)/∂βk)|βk=βok

, (where βok is the true value), follows

under similar regularity conditions to those given in Andersen and Gill (1982).

Let

wk(β
0
k) =

m∑
i=1

∫ ∞
0

[
zi −

s1
k(β

o, t)

s0
k(β

o, t)

]
(dN̄ik(t)− Ȳ M

ik (t)αMk0(t) exp(ziβ
o)),

where srk(βk; t) = E(S
(r)
k (βk; t)).
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Since m−1/2Uk(β
o
k) is asymptotically equivalent to m−1/2

∑m
i=1 wk(β

o
k), then asymptot-

ically m−1/2Uk(β
o
k) ∼ N(0, Bk(β

o
k)), where Bk(β

o
k) = E(wk(β

o
k)

2). It follows from the

multivariate central limit theorem that, asymptotically, m1/2(β̂−βo) ∼MVN(0,D(βo)),

where D(βo) = I(βo)−1B(βo)I(βo)−1. The (k, l)th element of B(β̂) is E(wk(β
o
k)wl(β

o
l )).

I(·) is a diagonal matrix with the kth element in the diagonal is E(∂U(βk)/∂βk)|βk=βok
.

Both B(·) and I(·) can be consistently estimated from the data (Wei et al., 1989) and the

existing software such SAS and R can be used to obtain those estimates to calculate the

variance of estimators of regression coefficients for a broad range of models.

Suppose that we want to test the hypothesis H0 : β = 0. It is possible to carry out

omnibus K degree of freedom tests but more narrowly focused tests optimized to detect

treatment effects which are in the same direction for all events are typically more powerful

for detecting departures from the null hypothesis of interest. To this end, let J = (1, . . . , 1)

denote a K × 1 vector of ones. Let H = (J ′B̂
−1

(0)J)−1 × J ′B̂
−1

(0), then under H0

V (0) =
[H ′U (0)]2

HB̂(0)H ′
∼ χ2

K ,

and therefore large realized values of V (0) reflect the evidence against H0. If estimation

of a common treatment effect βoc is of interest, a pooled estimate of the treatment effects

can be obtained by computing β̂c = (J ′D̂
−1

(β̂)J)−1J ′D̂
−1

(β̂)β̂ for which m1/2(β̂c − βoc )

is asymptotically normal with mean zero and variance (J ′D̂
−1

(β̂)J)−1 . The weights in

this pooled estimator provide minimum variance within the class of estimators obtained

through linear combination.

1.4 Recurrent Events with Terminal Events

Recurrent events, such as repeated tumour occurrences, infections, hospital admissions,

and multiple rejection episodes after organ transplant, are routinely encountered in clinical

and observational studies (Cook and Lawless, 2007). The observation of recurrent events
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could be disrupted by loss to follow-up, administrative censoring, or a terminal event such

as death. Analysis is usually focused either on the failure time using standard survival

analysis, or, the recurrent event process using semiparametric methods based on rate or

mean functions. In many settings, the terminal events may be of interest in conjunction

with recurrent events. For example, the recurrence of serious events such as tumours is

associated with an increased risk of death. Analyzing the data based on recurrent events

or terminal event alone may lead to an incomplete picture. Therefore, it is important to

take into account both terminal events and recurrent events.

There have been relatively extensive discussions in the literature on statistical analysis

of recurrent event data. Andersen and Gill (1982) and Prentice et al. (1981) developed

intensity-based methods for univariate recurrent event data. Lawless and Nadeau (1995),

Lin et al. (2000, 2001) proposed methods based on marginal mean function and rate

function approaches. Cai and Schaubel (2004), for example, investigated methods for the

analysis of multivariate recurrent event data.

Some efforts have been made in recent years on modeling the recurrent events and the

terminal events. Li and Lagakos (1997) proposed a marginal approach of based on Wei,

Lin and Weissfeld (1989). Ghosh and Lin (2003) proposed a joint marginal formulation for

the distributions of the recurrent event process and dependent censoring time. Chen and

Cook (2004) proposed methods for multivariate recurrent event data with some common

dependent terminal event. Joint assessment of the treatment effect on the recurrent events

and death has been discussed previously using log-rank type of statistics, for example, see

Cook and Lawless (1997) and Ghosh and Lin (2000). Other methods for joint analysis of

recurrent events and terminal events include shared frailty models, partially conditional

methods, and so forth. Cook and Lawless (2007) contains a comprehensive review of

methods and models for recurrent events with terminal event.

Sample size calculations are very important in the design of clinical trials. In the

recurrent event setting, Cook (1995) proposed a sample size calculation using a nonho-
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Figure 1.1: State space diagram for recurrent and terminal events representing the model

formation based on counting processes; λ0k(t)e
zβk , k = 0, 1, 2, . . ., are transitional

intensities for the recurrent events from state k to state k + 1, where state D represents

the terminal event of death. γ0k(t)e
zαk , k = 0, 1, . . ., are the mortality rates dependant on

the event history.

mogeneous Poisson process. Bernardo and Harrington (2001) discussed power and sample

size calculations using a multiplicative intensity model. Hughes (1997) considered a sample

size calculation for the marginal approach of WLW. Few studies, however, have considered

power and sample size calculations for recurrent events with a terminal event. One objec-

tive of this thesis is to derive a score statistic for such a purpose, along with sample size

guidelines.

We focus on intensity-based approaches and review some notation and likelihood con-

struction for recurrent events with terminal events based on Cook and Lawless (2007). This

review will be helpful in the calculation of the sample size. Let ∆Ni(t) denote the number

of recurrent events over the small interval [t, t + ∆t) and dNi(t) = lim
∆t↓0

∆Ni(t). Let Ci be

the censoring time corresponding to the end of follow-up and let Yi(t) = I(t ≤ Ci). If Ti is

the terminal event time for subject i, let Y D
i (t) = I(t ≤ Ti). Then Ȳi(t) = Yi(t)Y

D
i (t) is the

overall at-risk function for subject i. Let dN̄i(t) = Ȳi(t)dNi(t) and N̄i(t) =
∫ t

0
dN̄i(u). Let
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H̄i(t) = {(N̄i(s), Ȳi(s)) : 0 ≤ s < t} be the process history up to time t and a full model for

the process can be formulated in terms of the intensity functions for the recurrent event

process λi(t|H̄i(t)) and the terminal event process γi(t|H̄i(t)) defined as,

λ(t|H̄i(t)) = lim
∆t↓0

P (∆N̄i(t) = 1|H̄i(t)

∆t

γ(t|H̄i(t)) = lim
∆t↓0

P (Ti < t+ ∆t|H̄i(t), Di(t) = 1)

∆t
,

respectively. The history H̄i(t) in intensity functions can also incorporate covariate pro-

cesses. Figure 1.1 presents a general Markov model for recurrent events and a terminal

event. Here we assume a multiplicative model on transition intensity and allow differ-

ent baseline hazard functions and treatment effect to be incorporated into the intensity

function.

We now discuss the likelihood construction. Let ni be the number of recurrent events

of subject i observed at times ti1, . . . , tini over [0, Xi] where Xi = min(Ti, Ci), then under

independent censoring the likelihood function is proportional to

ni∏
j=1

λ(tij|H̄i(tij))[γ(Xi|H̄i(Xi))]
δiexp{−

∫ Xi

0

[λ(u|H̄i(u)) + γ(u|H̄i(u)]du},

and δi = I(Ti = Xi). This likelihood provides the basis for our derivation of power

and sample size calculations for recurrent events with terminal event, for any particular

specification of the intensities. We explore them in Chapter 4.

1.5 Outline of Research

Despite the routine use of composite endpoint in large clinical trials, there has been rela-

tively little attention paid to the statistical properties of associated estimation of treatment

effect. In Chapter 2, we focus on the implications of using Cox regression model in anal-

ysis of composite endpoints with failure time components. We formulate multivariate
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survival models by linking two marginal failure time distributions with proportional haz-

ards through a copula function. We showed that the proportional hazard assumption of

Cox regression model for the time-to-first-event is generally violated by the design of CEP,

even when the same assumption holds for each components. We also use simulations to

further study the treatment effect estimation in CEP analysis and its implications in sam-

ple size requirement and power. We proposed a global design using the WLW approach

and compare its performance with that of a CEP analysis. We illustrate the methods by

application to a recent asthma study.

In Chapter 3 we continue to study marginal approaches for multivariate failure times.

We consider methods based on marginal rate and mean functions for event times. In

particular, we developed an inverse probability of censoring weighted (IPCW) versions

of WLW to provide a global treatment effect estimate in presence of event-dependent

censoring. Event-dependent censoring can occur in multivariate failure time analysis. The

occurrence of sever type event may lead to early exclusion of the patient from the study.

Failure to account for the event-dependent censoring can lead to bias in estimation in

marginal approach and IPCW-based methods provide consistent estimates (Kang and Cai,

2009).

Sample size calculations are extremely important in designs of clinical trials. There

have been some discussions on sample size and power calculations for multivariate failure

times, but there has been few studies on sample size calculations for recurrent events with

terminal event. In Chapter 4, we derive ways to calculate sample size for clinical trials

involving recurrent and terminal events. The key idea is to derive the expectation of a

partial score function for a treatment effect on the recurrent and terminal event processes

and the respective asymptotic variances. One may then design trials to satisfy power

objectives for both types of events. This is particularly useful when there may be an

interest in demonstrating superiority for a recurrent event process and non-inferiority for

survival, for example.
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Chapter 2

Cox Regression With Composite

Endpoints

2.1 Composite Endpoints in Clinical Trials

Many diseases put individuals at elevated risk for a multitude of adverse clinical events and

randomized clinical trials are routinely designed to evaluate the effectiveness of experimen-

tal interventions for the prevention of these events. Trials in cardiology, for example, record

times of events such as non-fatal myocardial infarction, non-fatal cardiac arrest, and car-

diovascular death (POISE Study Group, 2008). In cerebrovascular disease, patients with

carotid stenosis may can be treated with medical therapy or surgery and trials evaluating

their relative effectiveness may record endpoints such as strokes ipsilateral to the surgical

site, contralateral strokes, and death (Bartnett et al., 1998). In oncology, trials are often

designed to study treatment effects on disease progression and death (Carlson, 2007), but

palliative trials of patients with skeletal metastases may be directed at preventing skele-

tal complications including vertebral and non-vertebral fractures, bone pain, and need for

surgery to repair bone (Hortobagyi et al., 1996). In these and many other settings, while

interest lies in preventing each of the respective events, it is generally infeasible to conduct
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studies to answer questions about each component.

When one type of event is of greater clinical important than others, it can be chosen

as the basis of the primary treatment comparison, and effects on other types of events can

then be assessed through secondary analyses. When two or more events are of comparable

importance, co-primary endpoints can be specified but tests of hypotheses must typically

control the experimental type I error rate through multiple comparison procedures (Be-

jamini and Hochberg, 1995; Sankoh et al., 2003; Proschan and Waclawiw, 2000), but these

make decision analyses more complex. A seemingly simple alternative strategy is to adopt

a so-called composite event (Ferreira-González et al., 2007c; Cannon, 1997) which is said

to have occurred if any one of a set of component events occurs. The time of the composite

event is therefore the minimum of the times of all component events.

There are several additional reasons investigators may consider the use of composite

endpoints in clinical trials. In studies involving a time-to-event analysis, the use of a

composite endpoint will mean that more events will be observed than would be for any

particular component. If the same clinically important effect is specified for the composite

endpoint and one of its components, this increased event rate will translate into greater

power for tests of treatment effects; at the design stage a reduction in the required number

of subjects or duration of follow-up (Cannon, 1997; Freemantle et al., 2003; Montori et al.,

2005). This rationale presumes that the same minimal clinically important effect applies

for the composite endpoint and the component endpoint of interest. Composite endpoints

are routinely adopted through the introduction of one or more less serious events, which

presumably warrants changing the clinically important effect of interest. Moreover we show

later that with models featuring a high degree of structure, model assumptions may not

even be compatible for the composite endpoint and one of its components.

In time-to-event analyses, interest may lie in the effect of an experimental treatment

versus standard care on the risk of a non-fatal event. This is a common framework in

trials of patients with advanced diseases where interest lies in improving quality of life
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through the prevention of complications. In such settings individuals are at considerable

risk of death, and a competing risks problem arises. Investigators often deal with this by

adopting a composite endpoint based on the time to the minimum of the non-fatal event of

interest and death (Chi, 2005; Ferreira-González et al., 2007b). This strategy leads to an

“event-free survival” analysis which is particularly common in cancer where progression-

free survival is routinely adopted as a primary endpoint (Soria et al., 2010). In palliative

trials, a treatment may not be expected to have an effect of survival, and if a non-negligible

proportion of individuals die before experiencing the clinical event of interest, this analysis

can lead to a serious underestimation of the effect of the treatment (Freemantle et al.,

2003; DeMets and Califf, 2002).

Recommendations are available in the literature on how to design trials, analyse re-

sultant data, and report findings when composite endpoints are to be used (Freemantle

et al., 2003; Montori et al., 2005; Chi, 2005; Neaton et al., 2005). The main recommenda-

tions include that i) individual components should have similar frequency of occurrence,

ii) the treatment should have a similar effect on all components, iii) individual components

should have similar importance to patients, iv) data from all components should be col-

lected until the end of trial, and v) individual components should be analyzed and reported

separately as secondary endpoints. The first three recommendations have face validity and

seem geared towards helping ensure that conclusions regarding treatment effects on the

composite endpoint have some relation to treatment effects on the component endpoints,

thus helping in the interpretation of results. The collection of data on the occurrence of the

component endpoints until the end of the trial facilitates separate assessment of treatment

effects on each of the component endpoints. This means the consistency of findings across

components can be empirically assessed.

The aforementioned challenges have being actively debated in the medical literature

(Montori et al., 2005; Neaton et al., 2005; Lim et al., 2008; Ferreira-González et al., 2007a;

Bethel et al., 2008), but there has been relatively little formal statistical investigation of
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these issues. In this Chapter we consider statistical issues related to composite endpoint

analyses and use the recommendations to guide the investigation. Since the Cox regression

model is routinely adopted for the analysis of composite endpoints in clinical trials (Chi,

2005), we consider it here and point out important issues regarding model specification and

interpretation. We formulate multivariate failure time models with proportional hazards

for the marginal distributions which may be used to reflect the settings where composite

endpoints are most reasonable according to the current guidelines. We study the asymp-

totic and empirical properties of estimators arising from a composite endpoint analysis. We

also explore the utility of marginal methods based on multivariate failure time data (Wei

et al., 1989). We will argue in what follows that the viewpoint that composite endpoints

provide an overall measure of the effect of treatment is overly simplistic, and a thoughtful

interpretation of intervention effects based on composite endpoints alone is difficult.

2.2 Multivariate Failure Time Distributions via Cop-

ula Functions

2.2.1 Construction of Joint Distributions based on Copula Func-

tions

If (U1, U2)′ is a bivariate random variable with standard uniform margins on [0, 1], a two-

dimensional copula function can be defined as

C(u1, u2) = P (U1 ≥ u1, U2 ≥ u2) , (2.1)

(Genest and Mackay, 1986). If there exists a convex decreasing function H(u; θ) such that

H : (0, 1]→ [0,∞) and H(1; θ) = 0, and if the copula function can be written as

C(u1, u2; θ) = H−1(H(u1; θ) +H(u2; θ); θ) ,
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then copula belongs to the Archimedean family of copulas; the univariate function H(u; θ)

is called the generator for the copula Nelsen (2006). A variety of measures of association

can be defined for U1 and U2 which are determined as the functions θ. For example, suppose

(Ui1, Ui2)′ and (Uj1, Uj2)′ are two random variables drawn from the joint distribution (2.1).

A common measure of the association between U1 and U2 is Kendall’s τ , defined as

τθ = P{((Ui1 − Uj1)(Ui2 − Uj2); θ) > 0} − P{((Ui1 − Uj1)(Ui2 − Uj2); θ) < 0} .

For Archimedean copulas this can be written as

τθ = 1 + 4

∫ 1

0

H(u; θ)

H′(u; θ)
du

where we write τθ to make the relation between θ and τ explicit.

Copula functions have received considerable attention in the statistical literature in the

past few years since they offer a convenient and attractive way of linking two marginal

distributions to create a joint survival function (Joe, 1997). Suppose T1 and T2 are a

pair of non-negative random variables with respective survivor functions F1(t1|z;α1) and

F2(t2|z;α2) given a covariate z. If we let U1 = F1(T1|z;α1) and U2 = F2(T2|z;α2) where αk

indexes the marginal distribution for Tk|z, then Uk ∼ UNIF(0, 1), k = 1, 2. We can define

the bivariate “survival” distribution function of (U1, U2) through a copula as in (2.1) and

obtain a joint survivor function for (T1, T2)′ given Z as

F12(t1, t2|z; Ω) = P (T1 ≥ t1, T2 ≥ t2|z; Ω) = Cθ(F1(t1|z;α1),F2(t2|z;α2); θ) , (2.2)

where Ω = (α′, θ)′ with α = (α′1, α
′
2)′. Because Kendall’s τ is invariant to monotonic

increasing or decreasing transformations (Genest and Mackay, 1986), it can be interpreted

as a measure of association of the transformed variables (T1, T2)′ given Z. The use of a

copula function to define the joint distribution of (T1, T2)|z is particularly appealing since

one can specify the marginal distributions to have a proportional hazards form; this is

not typically possible for joint distributions induced by random effects or intensity-based

analyses.
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If a composite endpoint analysis is planned it would be based on modeling the random

variable T = min(T1, T2), which has survival, density and hazard function conditional on

Z, give by

P (T ≥ t|z) = F(t|z; Ω) = F12(t, t|z; Ω) , (2.3)

f(t|z) = −dF(t|z; Ω)/dt and λ(t|z; Ω) = −d logF(t|x; Ω)/dt respectively. Suppose Z is a

binary indicator where Z = 1 for individuals in a treatment group and Z = 0 otherwise. A

key point is that the hazard ratio λ(t|z = 1; Ω)/λ(t|z = 0; Ω) is not, in general, independent

of time. As a result, even if the marginal distributions feature the proportional hazards

assumption, the model for the composite endpoint will typically not. We study this point

further in the next four settings for three different Archimedean copulas and the case of

independent components.

Composite Endpoint Analysis based on a Clayton Copula:

The Clayton copula (Clayton, 1978) is a member of the Archimedean family with generator

H(u; θ) = u−θ − 1, H−1(v; θ) = (v + 1)−1/θ and copula function

C(u1, u2; θ) =
(
u−θ1 + u−θ2 − 1

)−1/θ
. (2.4)

with θ ≥ −1. Kendall’s τ is then given by τθ = θ/(θ + 2), which can be seen to vary over

[−1, 1].

Consider the joint distribution of (T1, T2)|Z in which the marginal distributions for

Tk|Z, k = 1, 2, feature proportional hazards; so λk(t|z) = λk0(t) exp(βkz) with Λk(t|z) =

Λk0(t) exp(βkz) where Λk0(t) =
∫ t

0
λk0(s)ds, k = 1, 2. If the joint survivor function

F12(t1, t2|z; Ω) is determined by the Clayton copula through (2.2), by (2.3) the survivor

function of the failure time T = min(T1, T2) given z is

F(t|z; Ω) = [exp(θΛ10(t)eβ1z) + exp(θΛ20(t)eβ2z)− 1]−1/θ . (2.5)

Hence the hazard ratio for the treatment versus control groups for the composite endpoint
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is

λ(t|z = 1; Ω)

λ(t|z = 0; Ω)
=

[
∑2

k=1 λk0(t) exp(βk + θΛk0(t)eβk)]/[
∑2

k=1 exp(θΛk0(t)eβk)− 1]

[
∑2

k=1 λk0(t) exp(θΛk0(t))]/[
∑2

k=1 exp(θΛk0(t))− 1]
, (2.6)

which is not invariant with respect to time in general. Note that this ratio is 1 when

β1 = β2.

To gain some insight into this function, suppose the marginal distributions are ex-

ponential with common baseline hazards of λ10(t) = λ20(t) = λ = log 10 so that the

probability of a type k event occurring before t = 1 is 0.90 for a control subject (i.e.

P (Tk < 1|Z = 0) = 0.90). Further suppose a common hazard ratio of 0.50 holds for the two

margins (i.e. exp(β1) = exp(β2) = 0.50). This setting is consistent with the recommenda-

tions that the component events occur with comparable frequency since P (T1 < T2|Z) = 0.5

and have comparable treatment effects (β1 = β2). Figure 2.1 (a) contains a plot of the

hazard ratio (2.6) over the time interval [0, 1] for models with mild (τθ = 0.2), moderate

(τθ = 0.40), and strong (τθ = 0.60) association. As can be seen, even when the treatment

effects are the same for the two component endpoints, there can be non-negligible variation

in the hazard ratio over time, and within this family of models the nature of this variation

depends on the strength of the association between the two failure times.

Composite Endpoint Analysis based on a Frank Copula

The generator for the Frank copula (Genest, 1987) isH(u; θ) = − log((exp(−θt)−1)/(exp(θ)−

1)) and the resulting copula function is

C(u1, u2; θ) = −θ−1 log

[
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

]
,

where θ ∈ <; Kendall’s τ is then τθ = 1− 4θ−1 + 4θ−2
∫ θ

0
t/(exp(t)− 1)dt. If we adopt the

same marginal distributions as before, the survivor function for the composite endpoint is

F(t|z) = −1

θ
log

[
1 +

(exp(−θe−Λ1(t)eβ1z)− 1) (exp(−θe−Λ2(t)eβ2z)− 1)

e−θ − 1

]
,

24



0.0 0.2 0.4 0.6 0.8 1.0

0.
50

0.
52

0.
54

0.
56

0.
58

0.
60

 (a) CLAYTON COPULA

TIME

HA
ZA

RD
 R

AT
IO

MILD ASSOCIATION
MODERATE ASSOCIATION
STRONG ASSOCIATION

0.0 0.2 0.4 0.6 0.8 1.0

0.
45

0.
50

0.
55

(b) FRANK COPULA

TIME

HA
ZA

RD
 R

AT
IO

MILD ASSOCIATION
MODERATE ASSOCIATION
STRONG ASSOCIATION

Figure 2.1: Plots of the hazard ratio (treatment vs. control) over the time interval [0, 1]

for the composite endpoint analysis implied by the Clayton copula (Panel (a)) and Frank

copula (Panel (b)) with marginal exponential distributions with λ1 = λ2 = log 10 and

exp(β1) = exp(β2) = exp(β) = 0.50, and mild (τθ = 0.20), moderate (τθ = 0.40), and

strong (τθ = 0.60) association.
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but since λ(t|z; Ω) = −d logF(t)/dt, the hazard ratio λ(t|z = 1; Ω)/λ(t|z = 0; Ω) has a

complicated form. Figure 2.1 (b) contains a plot of this hazard ratio over [0, 1], and as in

the case of the Clayton copula there is considerable variation in this ratio over time.

Composite Endpoint Analysis based on a Gumbel-Hougaard Copula:

The generator for the Gumbel-Hougaard (Gumbel, 1960) copula is H(u; θ) = (− log t)θ

giving

C(u1, u2; θ) = exp(−((− log u1)θ + (− log u2)θ)θ
−1

) ,

for θ ≥ 1; Kendall’s τ is given by τθ = (θ − 1)/θ. The corresponding survivor function for

the composite endpoint is

F(t|z) = exp

(
−
[(

Λ1(t)eβ1z
)θ

+
(
Λ2(t)eβ2z

)θ]θ−1)
,

and if β1 = β2 = β, the hazard is

λ(t|z) = exp(βz)

[
(Λ1(t)θ + Λ2(t)θ)θ

−1−1

λ1(t)Λ1(t)θ−1 + λ2(t)Λ2(t)θ−1

]
.

Interestingly, the hazard ratio in this case is exp(β), which means that the proportional

hazards model for the composite endpoint is compatible with a proportional hazards model

for the margins. If the hazard ratio is in fact common for the component endpoints then

a consistent estimator will be obtained for this common effect based on a Cox model for

the composite endpoint.

Composite Endpoint Analysis with Independent Components:

Here we consider the setting where the component failure times are independent; a special

case of τθ = 0 for the joint models in Section 2.2.1. In this case the hazard ratio for the

composite endpoint analysis reduces to

λ(t|z = 1;α)

λ(t|z = 0;α)
=
λ10(t) exp(β1) + λ20(t) exp(β2)

λ10(t) + λ20(t)
.
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It is apparent that the composite endpoint analysis is only compatible with a proportional

hazards assumption if either

A.1) β1 = β2 = β, (2.7)

or

A.2) λ10(t) = λ20(t). (2.8)

If β1 = β2 = β, then a consistent estimate of this common effect is obtained in a

composite endpoint analysis. If β1 6= β2 but the hazard functions are identical, the multi-

plicative effect is (exp(β1)+exp(β2))/2. If assumptions A.1 (2.7) and A.2 (2.8) do not hold

then the ratio is a complicated time varying function of the baseline hazards and respective

treatment effects.

2.2.2 Misspecification of the Cox Model with Composite End-

points

The previous section demonstrated that the composite endpoint analysis is typically based

on a misspecified Cox regression model if the marginal distributions satisfy the proportional

hazards assumption. In this section we investigate the frequency properties of estimators

from a composite endpoint analysis when the component endpoints are associated through

a copula function.

Let Ti = min(Ti1, Ti2) denote the time of the composite endpoint for individual i in

a sample of size m. Let {Ni(s), s < 0} denote the counting process for subject i which

indicates the occurrence of the composite endpoint, so that dNi(s) = 1 if Ti = s and is zero

otherwise. Suppose it is planned to follow all subjects over the interval (0, C†], but that

subjects may be lost to follow-up or withdraw from the study prematurely. LetWi represent

the withdrawal time for subject i and Ci = min(Wi, C
†) denote their right censoring time.

Let Yi(s) = I(s ≤ Ti) indicate whether subject i is at risk of the composite endpoint at time
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s, Y †i (s) = I(s ≤ Ci) indicate whether they are under observation at time s, and Ȳi(s) =

Y †i (s)Yi(s) indicate whether they are event-free and under observation. The observable

counting process for the response is then based on dN̄i(s) = Ȳi(s)dNi(s) for subject i. The

data for a sample of size m then consist of {Ȳi(s), dN̄i(s), Zi, i = 1, . . . ,m} which, if we

let Ȳ (s) = (Ȳ1(s), . . . , Ȳm(s))′, dN̄(s) = (dN̄1(s), . . . , dN̄m(s))′ and Z = (Z1, . . . , Zm)′, we

may write more compactly as {Ȳ (s), dN̄(s), Z}.

The Cox model is widely used in the analysis of composite endpoints Cox (1972) to

estimate the relative hazard for events. In this case the hazard function for Ti|zi is assumed

to have the form

ψ(t|zi) = ψ0(t) exp(αzi) (2.9)

where ψ0(t) is a non-negative baseline hazard function corresponding to the control group,

and zi is the treatment covariate for individual i, i = 1, . . . ,m. The treatment effect α can

be estimated using the maximum partial likelihood Cox (1975) by solving:

U(α) =
m∑
i=1

∫ ∞
0

Ȳi(t)

(
zi −

S(1)(α, t)

S(0)(α, t)

)
dNi(t) (2.10)

where S(k)(α, t) =
∑m

i=1 Ȳi(t)z
k
i exp{αzi}, k = 0, 1.

If {Yi(s), 0 < s} is independent of {Ni(s), 0 < s} given Zi and if (2.9) is correctly

specified, then (2.10) has expectation zero and the solution α̂ is consistent for the true

value, α. In the independence case, this true value is β if the treatment effect is common

(i.e. β = β1 = β2), or α = log(exp(β1) + exp(β2))/2 if the baseline hazard functions are

the same. More generally, however, α̂ is consistent for α∗, the solution to expected score

function U(α) = E(U(α)) given by

U(α) =

∫ ∞
0

{
E

(
m∑
i=1

ZiȲi(t)dNi(t)

)
− E(S(1)(α, t))

E(S(0)(α, t))
E

(
m∑
i=1

Ȳi(t)dNi(t)

)}
, (2.11)

where the expectation E is with respect to the true model for {N(t), Y (t), Z} (White,

1982; Struthers and Kalbfleish, 1986). By using the true model for {N(t), Y (t), Z} based
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on (2.5) and assuming independent censoring for the withdrawal time Wi with survival

distribution G(w|z) = G(w), these expectations can be obtained as follows:

E(S(1)(α, t)) = m [G(t)F(t|Z; Ω)] exp(α)P (Z = 1)

E(S(0)(α, t)) = m [G(t)F(t|Z = 1; Ω)] exp(α)P (Z = 1) +m [G(t)F(t|Z = 0; Ω)]P (Z = 0) .

Likewise,

E(
∑m

i=1 Ȳi(t)dNi(t)) = mG(t)
∑1

r=0F(t|Z = r; Ω)λ(t|Z = r)P (Z = r) ,

E(
∑m

i=1 ZiȲi(t)dNi(t)) = mG(t) [F(t|Z = 1; Ω)λ(t|Z = 1)P (Z = 1)] .

To illustrate the bias resulting from a composite endpoint analysis, consider a ran-

domized clinical trial in which subjects are to be followed over the interval (0, C†] where

C† = 1. Let Z = 1 for treated subjects and Z = 0 for control subjects and suppose

P (Z = 1) = 1 − P (Z = 0) = 0.5. We set β1 = β2 = β = log 0.80 to consider the case

compatible with the current recommendations on the use of composite endpoints. We set

λ1 and λ2 so that i) P (T1 < T2|Z = 0) = p1 equals a desired probability that the type

1 event occurs before the type 2 event among control subjects, and ii) P (C† < T ) = πA

satisfies the administrative censoring rate for the composite endpoint among all subjects,

where πA = 0.20. Finally, suppose subjects may withdraw from the study early, and

let W have an exponential distribution with rate ρ such that P (C < T ) = π, where

P (C < T ) = EZ [P (W < T < C†|Z) + P (C† < T |Z)] and π is the overall censoring rate

set to π = 0.20, 0.40, 0.60 and 0.80.

Figure 2.2 shows the limiting percent relative bias (100(α∗ − β)/β) of the treatment

coefficient from a composite endpoint analysis when the data are generated by a Clayton

copula with mild (τ = 0.20) and moderate (τ = 0.40) association. The bias is plotted

against P (T1 < T2|Z = 0) = p1 and interestingly the bias is greatest when p1 = 0.50

but decreases as this probability approaches zero or one. In either of the extreme cases

(p1 = 0 or p1 = 1), the composite endpoint coincides with the occurrence of a single
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endpoint and a consistent estimate of the common treatment effect is obtained. Note that

the bias is negative in these plots, so α∗ < β, and hence the limiting value of the treatment

effect is more conservative than the true common value for each of the components. This

means that the estimated value would, on average, under-represent the magnitude of the

treatment effect on either component, a conclusion in line with the findings of Freemantle

et al. (2003) and DeMets and Califf (2002). Moreover, we note that the common event

rate and common treatment effect is precisely the setting where composite endpoints are

recommended for use (Freemantle et al., 2003; Montori et al., 2005; Chi, 2005; Neaton

et al., 2005). The plots also reveal the sensitivity of the limiting value to the degree of

random censoring; the higher the censoring rate, the smaller the asymptotic bias. This

highlights an important point that the limiting value of an estimator from a misspecified

failure time model is highly sensitive to the censoring distribution even under independent

censoring. By comparing the left and right panels in Figure 2.2 it is also apparent that the

asymptotic bias is dependent on the degree of association between T1 and T2; the greater

the association the greater the asymptotic bias. This makes sense since when the event

times are independent, consistent estimates should be obtained since assumptions A.1 (2.7)

and A.2 (2.8) are satisfied. Therefore, the treatment estimates from composite analysis

are lack of interpretability in the usual sense as the difference in relative risk between the

treatment group and the control group.

While of secondary interest, one can also show that ψ̂0(t), 0 < t < C†, is consistent for

ψ∗0(t) =

∑1
r=0 G(t|Z = r)F(t|Z = r)λ(t|Z = r)P (Z = r)∑1

r=0 G(t|Z = r)F(t|Z = r) exp(α∗I(r = 1))P (Z = r)

which when P (Z = 1) = 0.5 and the censoring distribution is the same in the two groups

reduces to

ψ∗0(t) = [F(t|Z = 1)λ(t|Z = 1)+F(t|Z = 0)λ(t|Z = 0)]/[F(t|Z = 1) exp(α∗)+F(t|Z = 0)]
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Figure 2.2: Asymptotic percent relative bias (100(α∗ − β)/β) of Cox regression coefficient

estimator for treatment effect from composite endpoint analysis when bivariate failure

times are generated by a Clayton copula; exponential margins, 20% administrative

censoring (πA = 0.20), 50:50 randomization, exp(β1) = exp(β2) = 0.80, and four different

degrees of additional random censoring (none, 20%, 40% and 60%).
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2.2.3 Simulation Studies Involving Composite Endpoints

Simulation Design:

Here we simulate data from (2.3) to examine the empirical performance of estimators for

finite samples. We assume that given Z, Tk has an exponential distribution with hazard

λk exp(βkZ), k = 1, 2, and model the association between T1 and T2 through a Clayton

copula. We let T = min(T1, T2) denote the time of the composite endpoint as before.

We suppose interest lies in following subjects over (0, 1]. As in the previous section, the

parameters λ1 and λ2 are determined to satisfy the constraints P (T1 < T2|Z = 0) = p1

where here p1 = 0.25, and P (C† < T ) = πA where we set the administrative censoring

rate to πA = 0.20. Random loss to follow-up is also incorporated with an exponential

withdrawal time giving a net censoring rate of π = 0.20, 0.40, 0.60 and 0.80 subject to the

constraint πA ≤ π.

For each parameter configuration the sample size for the composite endpoint analysis

was derived to achieve a prespecified power under the assumption that the Cox model

holds. Therneau and Grambsch (2000) show the required number of events is D = 4(z1−γ1+

z1−γ2)
2/(α∗)2, where zq is the qth quantile of the standard Normal distribution, γ1 is the

type I error for a one-sided test, 1−γ2 is the power, and α∗ is the limiting value of treatment

effect estimate obtained from (2.9). We focus on two-sided tests at the 5% significance level

(γ1 = 0.05) and sample sizes to achieve 80% power (γ2 = 0.20). The required number of

subjects is calculated as m = D/P (T < C). In all simulation studies, we considered both

equal treatment effects (β1 = β2 = β = −.223) and unequal treatment effects (β1 = −.223

and β2 = 0). For each parameter configuration, we generated 2,000 replicates. We report

the mean of the α̂ estimates, the empirical standard error (ESE), the average model-based

standard error (ASE1) and the average robust standard error (ASE2). The empirical

coverage probability (ECP∗%) of nominal 95% confidence intervals for α∗ based on robust

standard errors and the empirical coverage probability of these intervals for β1 (ECP%)
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are also reported. The last column contains the empirical power (EP%) of a Wald test of

the null hypothesis of no treatment effect.

Composite Endpoints with Dependent Component:

Table 2.1 contains the simulation results with dependent component times given by τ =

0.40. The results for equal treatment effects are given in the top half of the table which we

comment on first. The fourth column contains α∗, the limiting value of the estimator from

the misspecified Cox model in (2.5). The fact that these values are all smaller in absolute

value than the true common effects reveals the conservative nature of this parameter, as

already discussed in relation to Figure 2.2; the dependence of the limiting value on the

degree of censoring is also apparent. This limiting value was used to derive the sample size

(m) in the third column. The average estimator from the fitted Cox models reported in the

fifth column closely approximates the limiting value. There is also close agreement between

the empirical, average model-based, and average robust standard errors. The empirical

coverage probabilities of the robust 95% confidence intervals are very close to the nominal

levels, and the empirical power is in good agreement with the nominal power of 80%. It

is worth noting that the empirical coverage probability is computed for the parameter α∗,

not the common β; for this latter parameter the coverage rates are considerably lower.

In the bottom half of Table 2.1, the results are reported for the case β1 6= β2, where α∗

is considerably smaller than β1. This smaller limiting values leads to considerably larger

sample sizes to achieve the desired power. Again, however, we see close agreement between

the average estimate and the limiting value, and very close agreement between the average

model-based and average robust standard errors. The empirical coverage probability (for

α∗) is also consistent with the nominal level, as is the empirical power.
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Table 2.1: Frequency properties of estimators of treatment effect based on a composite

endpoint with dependent components arising from a Clayton copula:

p1 = P (T1 < T2|z = 0) = 0.25, β1 = −.223 and τ = 0.4.

πA π m α∗ AVE(α̂) ESE ASE1 ASE2 ECP∗% ECP% EP%

Common Treatment Effect: β2 = −0.223

0.2 0.2 816 -0.195 -0.195 0.077 0.079 0.078 95.1 94.1 81.5
0.4 1071 -0.196 -0.197 0.078 0.079 0.079 95.4 94.3 80.0
0.6 1557 -0.199 -0.201 0.080 0.081 0.080 94.8 93.8 80.5
0.8 2908 -0.206 -0.207 0.085 0.083 0.083 94.4 94.5 79.4

0.4 0.4 1076 -0.196 -0.197 0.079 0.079 0.079 95.1 93.1 80.4
0.6 1557 -0.199 -0.201 0.081 0.080 0.080 94.7 93.6 79.8
0.8 2907 -0.206 -0.208 0.084 0.083 0.083 95.5 95.0 78.8

0.6 0.6 1522 -0.202 -0.201 0.082 0.081 0.081 94.9 94.3 79.0
0.8 2886 -0.207 -0.208 0.083 0.084 0.084 95.9 95.2 80.0

0.8 0.8 2779 -0.211 -0.208 0.087 0.085 0.085 94.8 94.1 78.5

Different Treatment Effects β2 = 0

0.2 0.2 21743 -0.038 -0.038 0.015 0.015 0.015 94.9 0.0 78.4
0.4 23103 -0.042 -0.042 0.017 0.017 0.017 94.9 0.0 79.4
0.6 26037 -0.049 -0.049 0.019 0.020 0.020 95.5 0.0 79.5
0.8 36581 -0.058 -0.058 0.024 0.023 0.023 94.2 0.0 79.3

0.4 0.4 19221 -0.046 -0.046 0.019 0.019 0.019 94.0 0.0 79.9
0.6 24084 -0.051 -0.051 0.020 0.020 0.020 95.1 0.0 80.1
0.8 36376 -0.058 -0.059 0.023 0.023 0.023 94.9 0.0 80.4

0.6 0.6 20656 -0.055 -0.055 0.022 0.022 0.022 94.9 0.0 81.8
0.8 34960 -0.059 -0.060 0.024 0.024 0.024 95.0 0.0 80.5

0.8 0.8 30990 -0.063 -0.064 0.025 0.025 0.025 95.4 0.0 81.4

πA = P (C† < T ) is the administrative censoring rate, π = P (C† < T ) is the net censoring rate, ESE

is the empirical standard error, ASE1 is the average model based standard error, ASE2 is the average

robust standard error, ECP∗% is the empirical coverage probability for α∗ of a nominal 95% confidence

intervals using the robust standard error, ECP% is the empirical coverage probability for β1 of a nominal

95% confidence interval using the robust standard error, and EP% is the empirical power of a Wald test

of H0 : α = 0 based on the robust standard error.
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Composite Endpoints with Independent Components

Table 2.2 presents the simulation results with independent components (i.e. τ = 0). The

results in the top half of Table 2.2 reveal that the limiting value α∗ is the same as the

common value β = β1 = β2 as expected since assumption A.1 (2.7) is satisfied. Again

the average point estimate is is close agreement with this common value and the three

standard errors are in close agreement. When the treatment has an effect on T1 and

not T2, α∗ is again considerably smaller than β1. Note, however, even though this is a

misspecified model, the limiting value does not depend on the censoring distribution. This

much smaller values leads to larger sample size requirements than in the top half of the

table. Because the first component T1 happens less frequently than the second component

T2, (i.e. P (T1 < T2|Z = 0) = 0.25), the limiting value from the misspecified Cox model

is heavily attenuated. However, neither administrative nor random censoring appear to

affect the limiting value of the estimator of treatment effect.

2.3 A Multivariate Semiparametric Analysis

2.3.1 Limiting Values for a Wei-Lin-Weissfeld Analysis

In this section, we investigate the utility of the marginal approach of Wei, Lin, and Weissfeld

(1989) for handling multivariate failure time data. This approach is based on formulating

ordinary Cox models for each component to obtain component-specific estimates of treat-

ment effect. Estimation proceeds under a working independence assumption like that often

adopted for generalized estimating equations. A robust estimate of the covariance matrix

is obtained and a global estimate of treatment effect is then obtained by taking a weighted

average of all component-specific estimates with weights chosen to minimize the variance

of the global estimator. A key distinction between global approach of Wei et al. (1989)

and the composite endpoint approach is that the former makes use of all observed events
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Table 2.2: Frequency properties of estimators of treatment effect based on a composite

endpoint with independent components : p1 = P (T1 < T2|z = 0) = 0.25, β1 = −.223.

πA π m α∗ AVE(α̂) ESE ASE1 ASE2 ECP∗% ECP% EP%

Common Treatment Effect: β2 = −0.223

0.2 0.2 644 -0.223 -0.224 0.090 0.090 0.090 95.6 95.6 79.5
0.4 865 -0.223 -0.225 0.090 0.090 0.090 95.0 95.0 80.6
0.6 1310 -0.223 -0.227 0.090 0.090 0.090 95.3 95.3 80.7
0.8 2654 -0.223 -0.223 0.088 0.090 0.090 95.6 95.6 80.4

0.4 0.4 872 -0.223 -0.226 0.089 0.090 0.090 95.6 95.6 81.5
0.6 1315 -0.223 -0.226 0.090 0.090 0.090 95.8 95.8 80.3
0.8 2655 -0.223 -0.223 0.088 0.090 0.090 95.2 95.2 80.6

0.6 0.6 1323 -0.223 -0.223 0.091 0.090 0.090 95.1 95.1 79.9
0.8 2660 -0.223 -0.223 0.088 0.090 0.090 95.3 95.3 80.4

0.8 0.8 2670 -0.223 -0.221 0.091 0.090 0.090 94.8 94.8 78.5

Different Treatment Effects β2 = 0

0.2 0.2 11750 -0.051 -0.052 0.021 0.021 0.021 94.4 0.0 80.6
0.4 15666 -0.051 -0.052 0.021 0.021 0.021 94.9 0.0 81.0
0.6 23499 -0.051 -0.052 0.021 0.021 0.021 94.7 0.0 80.3
0.8 46998 -0.051 -0.052 0.020 0.021 0.021 95.6 0.0 81.2

0.4 0.4 15666 -0.051 -0.052 0.021 0.021 0.021 95.2 0.0 81.1
0.6 23499 -0.051 -0.052 0.021 0.021 0.021 95.3 0.0 80.1
0.8 46998 -0.051 -0.052 0.020 0.021 0.021 95.3 0.0 81.3

0.6 0.6 23500 -0.051 -0.052 0.021 0.021 0.021 94.1 0.0 81.5
0.8 46998 -0.051 -0.052 0.020 0.021 0.021 95.6 0.0 81.4

0.8 0.8 46999 -0.051 -0.051 0.021 0.021 0.021 94.7 0.0 80.6

πA = P (C† < T ) is the administrative censoring rate, π = P (C† < T ) is the net censoring rate, ESE

is the empirical standard error, ASE1 is the average model based standard error, ASE2 is the average

robust standard error, ECP∗% is the empirical coverage probability for α∗ of a nominal 95% confidence

interval using the robust standard error, ECP% is the empirical coverage probability for β1 of a nominal

95% confidence interval using the robust standard error, and EP% is the empirical power of a Wald test

of H0 : α = 0 based on the robust standard error.
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whereas the composite endpoint uses only the first event. The robust variance estimate is

used to account for possible correlation in the data.

We proceed in the derivations in the case where the composite endpoint is comprised of

K components but subsequently will focus on the case K = 2. We let dNik(s) = I(Tik =

s), and let {Nik(s), 0 < s} denote the counting process for type k events and {Ni(s) =

(Ni1(s), Ni2(s), 0 < s} denote the bivariate counting process for subject i, i = 1, . . . ,m.

Let Yik(s) = I(s ≤ Tik), Y
†
i (s) = I(s ≤ Ci) and Ȳik(s) = Y †i (s)Yik(s), k = 1, . . . , K,

i = 1, . . . ,m. A Cox model is assumed for type k events meaning

λk(t|zi) = λk0(t) exp(βkzi) ,

where λk0(t) is the baseline hazard function for type k events and βk is the treatment effect

on the kth component. The kth component-specific score function for βk is

Uk(βk) =
m∑
i=1

∫ ∞
0

Ȳik(t)

(
Zi −

S
(1)
k (βk, t)

S
(0)
k (βk, t)

)
dNik(t), (2.12)

where S
(1)
k (β, u) =

∑m
i=1 Ȳik(t)Z

r
i exp{βkZi}, r = 0, 1.

Under the copula model of Section 2.2.1, the proportional hazards assumption holds for

each component and the solution to the score equation (2.12), β̂k, is a consistent estimate

of true treatment effect βk. If we let β = (β1, ..., βK)′ and its estimate β̂ = (β̂1, ..., β̂K)T ,

Wei et al. (1989) show that
√
m(β̂− β) converges in distribution to a multivariate Normal

distribution with zero-mean vector and variance-covariance matrix Σ(β) and provided a

consistent sandwich-type estimate for Σ(β).

The global estimate of treatment effect proposed by Wei et al. (1989) is simply a linear

combination of all component-specific treatment effect estimates β̂1, . . . , β̂K and can be

obtained as ̂̄β = c(β̂)′β̂ , (2.13)

where the weight c(β̂) = Σ̂(β̂)−1Ĵ[Ĵ′Σ̂(β̂)−1J]−1 is chosen to estimate the weight matrix

to minimize the variance in the class of all linear estimators; Σ̂(β̂) is the estimate for the

variance-covariance matrix of β̂ and J = (1, ..., 1)′.

37



Table 2.3: Frequency properties of estimator of treatment effect based on global analysis

using the Wei-Lin-Weissfeld approach: Clayton copula with τ = 0.4, β1 = −.223.

πA π m β̄ AVE(α̂) ESE ASE1 ASE2 ECP∗% ECP% EP%

Common Treatment Effect: β2 = −0.223

0.2 0.2 621 -0.223 -0.223 0.084 0.072 0.086 95.9 95.9 83.6
0.4 828 -0.223 -0.223 0.086 0.074 0.087 95.1 95.1 82.0
0.6 1242 -0.223 -0.221 0.088 0.077 0.088 95.0 95.0 80.8
0.8 2484 -0.223 -0.223 0.089 0.083 0.090 95.6 95.6 80.3

0.4 0.4 828 -0.223 -0.223 0.087 0.076 0.087 95.4 95.4 82.7
0.6 1242 -0.223 -0.221 0.089 0.078 0.088 95.0 95.0 79.9
0.8 2484 -0.223 -0.223 0.089 0.083 0.090 95.6 95.6 80.6

0.6 0.6 1242 -0.223 -0.223 0.090 0.081 0.089 95.1 95.1 79.7
0.8 2484 -0.223 -0.222 0.089 0.083 0.090 95.2 95.2 80.5

0.8 0.8 2484 -0.223 -0.225 0.088 0.086 0.090 95.2 95.2 80.5

Different Treatment Effects β2 = 0

0.2 0.2 7090 -0.066 -0.067 0.025 0.021 0.025 95.9 0.0 84.2
0.4 9664 -0.065 -0.066 0.025 0.022 0.025 94.5 0.0 83.3
0.6 14623 -0.065 -0.066 0.026 0.023 0.026 94.8 0.0 82.8
0.8 28219 -0.066 -0.066 0.026 0.024 0.027 95.3 0.0 81.7

0.4 0.4 10203 -0.064 -0.065 0.025 0.022 0.025 95.1 0.0 83.6
0.6 14897 -0.064 -0.066 0.025 0.023 0.025 94.6 0.0 83.2
0.8 28316 -0.066 -0.066 0.026 0.024 0.027 95.2 0.0 80.6

0.6 0.6 14733 -0.065 -0.066 0.026 0.024 0.026 94.1 0.0 83.4
0.8 28202 -0.066 -0.067 0.026 0.025 0.027 95.2 0.0 81.7

0.8 0.8 27355 -0.067 -0.069 0.026 0.026 0.027 95.4 0.0 82.2

πA = P (C† < T ) is the administrative censoring rate, π = P (C† < T ) is the net censoring rate, ESE

is the empirical standard error, ASE1 is the average model based standard error, ASE2 is the average

robust standard error, ECP∗% is the empirical coverage probability for β̄ of a nominal 95% confidence

interval using the robust standard error, ECP% is the empirical coverage probability for β1 of a nominal

95% confidence interval using the robust standard error, EP% is the empirical power of a Wald test of

H0 : β = 0 based on the robust standard error.
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In order to compare the performances of the global approach and the composite end-

points analysis, we obtain the limiting value of ̂̄β as

β̄ = c(β)′β , (2.14)

where c(β) = Σ−1(β)J[J′Σ−1(β)J]−1. We therefore require the limiting value of the robust

variance Σ(β) to obtain the limiting value β̄. The detailed derivations are deferred to the

Appendix.

2.3.2 Comparison of the Global Approach and Composite End-

points

Table 2.3 reports the results from a global analysis of treatment effect based on the marginal

analysis proposed by Wei et al. (1989). In this table the sample sizes were computed

based on the formula for the composite endpoint analysis using the limiting value of the

regression coefficient. As one would expect from (2.12), when the treatment effects are

equal then the marginal analysis yields consistent estimators for this common effect and

the mean estimate across all simulated trials is very close to the limiting value. Moreover,

the empirical standard error and the average robust standard error were in very close

agreement; the average model-based standard error is conservative since it is based on

the working independence assumption being correct. The empirical coverage probabilities

(based on the robust standard errors) were compatible with the nominal 95% level for β̄

when β1 = β2. When β1 6= β2 the empirical coverage for β1 was zero, a reflection of the

difference between β̄ and β1. When β2 = 0, the limiting value β̄ was quite small and hence

the sample sizes of the trial were much larger. Since the sample size was computed based

on the composite endpoint analysis with β̄, it is not surprising that there is a slight gain in

empirical power from the global analysis since each individual may contribute more than

one event.

When β1 6= β2, the composite endpoint and global analyses yield estimators which do
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not coincide with β1, β2, or each other. We next compare the two limiting value: one is α∗

from the composite endpoint analysis and the other one is β̄ from the global analysis. We

consider the case in which two failure times are generated by a Clayton copula with ex-

ponential margins and a single treatment covariate modeled through proportional hazards

with β1 = log(0.80) and β2 = 0. We consider mild and moderate association between the

failure times with τ = 0.20 and τ = 0.40 respectively. Administrative censoring was set

to 40% and additional random censoring from an exponential withdrawal time gave cases

with 60% and 80% as well. The limiting value of the composite endpoint and global anal-

yses were plotted against P (T1 < T2|Z = 0) = p1 in Figure 2.3. It is apparent that when

p1 approaches zero, the limiting value for both methods approaches 0. For the composite

endpoint this makes sense since the first event is most likely to be a type 2 event for which

there is no treatment benefit. As p1 approaches 1, the limiting value for the composite

endpoint analysis approaches β1 for analogous reasons. The limiting value from the global

analyses track these limiting values quite well, but tend to correspond to larger estimates

of treatment effect since the limiting value is larger in absolute value. Thus even when the

two components have equal frequencies and the proportional hazards assumption holds for

each component, the global analysis, in the limit, will yield an estimate of treatment effect

which is greater than that of the composite endpoint analysis. These relationships hold

across both levels of association and over different degrees of censoring.

2.4 Application To An Asthma Management Study

We now apply both the composite endpoints analysis and the global approach to an asthma

management study (Jayaram et al., 2006). This is a two-phase, multicenter, randomized,

parallel group-effectiveness study for two treatment strategies in asthma management over

a 2-yr period. The first one is a clinical strategy (CS) , in which the treatment was based

on symptoms and spirometry. The second one is a sputum strategy (SS), where the sputum
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Figure 2.3: Plot of limiting values of regression estimator of treatment effect based on a

composite endpoint analysis and a global Wei-Lin-Weissfeld (1989) analysis with

bivariate data generated via a Clayton copula; β1 = log(0.8) and β2 = 0; administrative

censoring only.

41



cell counts were used to guide contricosteriod therapy to keep eosinophils less than 2%. In

phase I a total of 107 patients were identified through the minimum treatment to maintain

control. The aim of this asthma study was to investigate whether SS is more effective than

CS on reducing the number and severity of exacerbations in phase II.

Table 2.4: Results of the data from asthma management study.

RR 95% CI p-value p*

Moderate-to-Severe 0.53 (0.285, 0.977) 0.042 0.22

Very Mild-to-Mild 2.14 (0.624, 7.310) 0.227 0.11

Composite Endpoint 0.665 (0.388, 1.138) 0.137 0.063

Global (WLW) 0.702 (0.405, 1.219) 0.209

In our analysis we focus on two types of exacerbations: very mild-to-mild exacerbation

(minimum daily maintenance fluticasone equivalent dose < 250µg) and moderate-to-severe

exacerbation (minimum daily maintenance fluticasone equivalent dose ≥ 250µg). The

composite endpoint is defined as the time to the first of the two type of exacerbations.

The Figure 2.4 display the probability plots of the two types of exacerbations and the

composite endpoint. Clearly, the moderate-to-severe exacerbation happens much more

frequent than the very mild-to-mild type. The plot of composite endpoint resembles that

of the moderate-to-severer type, that is, majority of the composite endpoint is moderate-

to-severe type. We also estimate the association between the two types of exacerbations by

estimating Kendall’s τ nonparametrically using the function cenken()in the package NADA

in R. The data were modified to change the right censoring into left truncation to fit the

requirement of the function cenken(). For each individual, new censoring times or event

times were created by subtracting the corresponding censoring times or event times of the

two types of exacerbations from the total follow-up time. The censoring status was kept

the same. In this way, a right-censored observation in the original data was changed into a
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Figure 2.4: Estimated cumulative probability of server and mild of exacerbations and the

composite endpoint.

left-truncated observation in the modified data. Since the follow-up duration of this study

was fixed at two years, this modification will preserve the association between two types

of exacerbations. The estimated Kendall’s τ is approximately 0 with a p-value close to 1

for a test of H0 : τ = 0. This indicates that there is no statistically significant association

between the two types of exacerbations and the composite endpoint analysis is applied to

independent components.

Table 2.4 presents the analysis results. The SS has significant effect on reducing the

number of moderate-to-severe type of asthma but has no significant effect on the very

mild-to-mild type. Neither the composite endpoint analysis nor the the global approach

is not statistically significant. The last column of Table 2.4 gives the p-values for testing

the proportional hazards assumption, obtained by using the cox.zph() in the survival
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package in R. This assumption holds for each component but is only not rejected for the

composite endpoint. We have demonstrated that, in principle, the proportional hazards

assumption generally does not hold for the composite endpoint. In the asthma study

the proportional hazards assumption was not rejected, because there were only about one

hundred of patients and we may not have enough power to reject the null hypothesis of

proportional hazards.

2.5 Discussion

Composite endpoints are widely adopted in clinical trials and fitting a Cox proportional

hazards model is the standard approach to estimating the treatment effect on the basis of

these endpoints. We have demonstrated that even when the treatment effects are the same

for component endpoints under marginal Cox models, the Cox model for the composite

endpoint is misspecified and yields a conservative point estimate of treatment effect. Using

asymptomatic theory, we investigated the limiting behaviour of the treatment effect esti-

mator from based on this misspecified Cox model and found that there are many factors

that jointly affect the estimator of treatment effect. These factors include the strength of

the association between the individual component events, stochastic ordering of the indi-

vidual components, and the degree and nature of the censoring process. While we have

not explored this here, it is clear from the material in Section 2.2.1 that the type of copula

function would also have an important effect.

The above concerns apply when the treatment effect is common across the components,

but more generally variation in the treatment effect across the individual components can

make it even more difficult to assess estimators of treatment effect. Another reason for

the use composite endpoints is the measure of “overall effect” of a treatment (Cannon,

1997). When the treatment has some adverse effect on one particular component and

the composite endpoint supposes to capture this. However, if this component has low
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frequency and masked by the component with positive treatment effect, the composite

endpoint analysis may fail to capture the adverse effect. The global approach, however,

can detect the adverse effect in the componentwise analysis and then account for this in

the combined estimates through its weight (a function of its frequency).

One rationale put forward for adopting composite endpoints is to fit models for the

event-free survival probability. For example, Sheehe (2010) proposed that the event-free

survival curve can be computed based on Cox model estimates of hazard ratios from the

composite endpoint containing mortality as a component. As we demonstrated in this

study, effect estimation from Cox model analysis of composite endpoints can be biased

or attenuated, therefore, using the treatment estimates from the composite endpoint to

estimate the event-free survival probability may not accurate.

As a remedy for problems caused by unequal treatment effect and unequal frequencies

among components, two guidelines had been proposed as in medical literature: individual

component in composite endpoint should be of equal frequency and the treatment effect

should be equal across the all components. Our analytical and empirical investigation shows

that these are not be valid recommendations in the sense that when these conditions are

satisfied, the association between the two events can lead to substantial bias in resulting

estimators. On the other hand, we support the following recommendations in the medical

literature that i) data from all components should be followed until the end of the trial and

ii) individual components should be analyzed separately and results reported separately.

This alternative design and analysis allow our proposed global approach to combine the

effect estimates from individual components to form an average estimate of the treatment.

Through both analytical comparisons and simulation studies we demonstrated that this

global approach, in general, outperforms the composite endpoint analysis in terms of the

properties of the resulting estimators and sample size requirements.

We have assumed independent censoring in this paper. We have formulated a model

with proportional hazards for each component through the use of a copula function. We
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have done this to, in some sense, reflect an idealized situation in line with the recommen-

dations above. Alternative models could naturally be specified for correlated failure time

data. One might, for example, consider the risk of one type of event to change with the

occurrence of another type of event and manifest this effect through a multiplicative effect

on the respective hazard through a time-dependent covariate. This could arise because of

a biological mechanism in which the medical risk actually increases, or if treating physi-

cians alter the therapy being given. This formulation, while natural for characterizing the

response process, is not compatible with proportional hazards for the marginal models.

One might also consider frailty models for addressing the association between event times,

but again, the marginal models will not have a proportional hazards form.

Another way in which patients may be treated differently following the occurrence of a

clinically important event, is to be withdrawn from a study. The occurrence of one event

may increase the risk an investigator may withdraw the patient from the study and result in

response-dependent censoring. If the events are independent conditional on the treatment

covariate, this will not pose a problem, but otherwise will lead to biased estimates of the

baseline hazard functions and treatment effects. Use of inverse probability of censoring

weights will help reduce this bias and this is currently under investigation.

Finally, we have focussed on the frequency properties of estimators under a Cox regres-

sion models. There is increasing interest in using alternative regression models for survival

data including accelerated failure time models and additive models. Exploration of the

behaviour of estimators from such models would also be of interest.

2.6 Future Work

We intend to develop methods for sample size calculation based on the Wei et al. (1989)

analysis where the asymptotic variance is obtained under the assumption that the joint

distribution is governed by a Copula; this model is chosen so it is compatible with the

46



assumptions of the marginal semiparametric method of Wei et al. (1989), namely the

treatment effect acts multiplicatively as the individual endpoints.

In this section we briefly outline the strategy for sample calculation for the approach

of Wei et al. (1989) with copula models. Let ̂̄β be the combined estimate from the WLW

approach. The null hypothesis is

H0 : ̂̄β = 0

and the alternative hypothesis is

HA : ̂̄β = β̄

From Wei et al. (1989), we know that

n1/2(̂̄β − β̄) ∼ N(0, (J′DJ)−1)

where β̄ is the limiting value of the combined estimate ̂̄β and D is the limiting value of

D̂(β̂), the variance of β̂. Using the Clayton copula model (2.5) with prespecified parameters

and a prespecified censoring distribution, we can obtain D using the method outlined in

the Appendix. For a one-sided test with significance level γ1 and a given power 1 − γ2,

where γ2 the type 2 error rate, for the hypothesis testing problem above, we use a Wald

statistic to calculate the required sample size. Let V = (J′DJ)−1, and the test statistic is

̂̄β − 0√
n−1V

.

Under H0, it has the standard normal distribution, and let zγ1 be the 100γ1%th quantile

of standard normal distribution.

Then, under HA, we have

P

( ̂̄β − 0√
n−1V

< zγ1

)
= 1− γ2

That is

P

( ̂̄β − β̄√
n−1V

< zγ1 −
β̄√
n−1V

)
= 1− γ2,
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hence we have Φ(zγ1 − β̄/
√
n−1V ) = 1− γ2 and the required sample size is

n =
V (z1−γ1 + z1−γ2)

2

β̄2

2.7 Appendix

2.7.1 Derivation of the Limiting Value β̄

Under the copula model, the proportional hazards assumption holds for each component,

and the limiting value for β̂k is βk. Let S
(r)
k (t) = m−1

∑m
i=1 Yik(t)λk0(t)eβkZiZ⊗ri s

(r)
k (t) =

E(S
(r)
k (t)) Srk(βk, t) = m−1

∑m
i=1 Yik(t) exp{βkZi}Z⊗ri , and s

(r)
k (βk, t) = E(S

(r)
k (βk, t)), r =

0, 1, 2, where for a column vector a, a⊗r refers to matrix multiplication aar and E(·)

denote the expectation with respect to the true distribution. Let A(β) = diag{Ak(βk), k =

1, ..., K} where the kth diagonal element of A(β) is

Ak(βk) =

∫ ∞
0

{
s

(2)
k (βk, t)

s
(0)
k (βk, t)

− s
(1)
k (βk, t)

⊗2

s
(0)
k (βk, t)

}
s

(0)
k (t)dt,

by the Theorem 4.2 of Andersen and Gill (1982). In the present setting, the true model is

known and the required expectations can be obtained in closed form and the integral can

be evaluated using numerical integration.

If

Mik(t) = Nik(t)−
∫
Yik(t)λ0ke

βkZi(t)dt,

is the martingale for events of type k, let

wik(βk) =

∫ ∞
0

{
Zi −

s
(1)
k (βk, t)

s
(0)
k (βk, t)

}
dMik(t),

and wi(β) = (wi1(β1), ..., wiK(βK))′ (Wei, Lin, Weissfeld, 1989). Then if we define B(β) =

E(wi(β)wi(β)′), the asymptotic robust covariance matrix Σ(β) takes the formA(β)−1B(β)A(β)−1

(Wei et al., 1989). This can be used to obtain the limiting value through (10).
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The entries of B(β) are obtained as follows. The (j, j) element of B(β) is

E(w2
ij(βj, t)) = E〈wij(βj), wij(βj)〉

= E(

∫ ∞
0

{Zi −
s

(1)
j (βj, t)

s
(0)
j (βj, t)

}2s
(0)
j (t)dt)

=

∫ ∞
0

E

(
{Zi −

s
(1)
j (βj, t)

s
(0)
j (βj, t)

}2s
(0)
j (t)

)
dt

where 〈·, ·〉 is the predictable covariation process and the last equality holds due to Fubini’s

theorem (Fleming and Harrington, 1991). The (j, k) element of B(β) is then

E(wij(βj)wik(βk)) = E〈wij(βj), wik(βk)〉

= E

∫∫ ∞
0

(
Zi −

s
(1)
j (βj, t)

s
(0)
j (βj, t)

)(
Zi −

s
(1)
j (βj, t)

s
(0)
k (βk, t)

)
〈dMj(tj), dMk(tk)〉.

Using the covariance function for correlated martingales of Prentice and Cai (1992), the

term 〈dMj(tj), dMk(tk)〉 can be obtained. In the case of bivariate data, 〈dM1(t1), dM2(t2)〉

is obtained simply as

〈dM1(t1), dM2(t2)〉 = F(dt1, dt2|zi; Ω)dt1dt2 + F(t1, dt2|Zi; Ω)Λ1(dt1|zi; Ω)dt1dt2

+F(dt1, t2|zi; Ω)Λ2(dt2|zi; Ω)dt1dt2

+F(dt1, dt2|zi; Ω)Λ1(dt1)Λ2(dt2|zi; Ω)dt1dt2,

where Λk(dtk|zi; Ω) = dΛk(tk|zi; Ω)/dtk; F(dt1, dt2|zi; Ω) = ∂2F(t1, t2|zi; Ω)/∂t1∂t2,

F(dt1, t2|zi; Ω) = ∂F(t1, t2|zi; Ω).∂t1, F(t1, dt2|zi; Ω) = ∂F(t1, t2|Zi; Ω)/∂t2. More specifi-

cally, if the joint survivor function F(t1, t2|zi; Ω) is specified by the Clayton copula with

margins of two exponential distributions, then 〈dMj(tj), dMk(tk)〉 can be obtained in closed

form and E(wij(βj)wik(βk)) can be obtained through numerical integration. Thus, we ob-

tain the limiting value of robust variance, then the limiting weights can be calculated using

c(β) = Σ−1(β)/J′Σ−1J and the limiting value β̄ using equation (2.14).
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Chapter 3

Dependent Censoring in Marginal

Analysis of Multivariate Failure Time

Data

3.1 Introduction

Many chronic disease processes make individuals at risk for multiple type of events and

it is often of interest to examine the effect of treatment on the risk of occurrence for

each type of event (Hougaard, 2000; Dabrowska, 2006). In settings involving life history

profiles, multiple events can occur during a particular period of observation and composite

endpoints are also routinely used as a basis for treatment assessment (Freemantle et al.,

2003). In time to event data, a composite endpoint simply uses the time of the first event

as the response, regardless of the type, and is appealing since it permits the use of standard

methods for survival analysis (Lawless, 2003; Kalbfleisch and Prentice, 2002).

While use of a composite endpoint simplifies the data, it does not lead to a treat-

ment comparison based on a full characterization of the disease process. For this reason,

in clinical trials investigators have increasingly turned to use of multiple endpoints and
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regulatory agencies are increasingly requiring demonstration of efficacy new interventions

based on such analyses (Freemantle and Calvert, 2007a; Buzney and Kimball, 2008; Wei

and Glidden, 1997; Fleming and Lin, 2000).

There are three common frameworks for the analysis of multivariate failure time data in-

cluding frailty-based models (Therneau and Grambsch, 2000), copula models (Liang et al.,

1995; Nelsen, 2006), and marginal methods (Wei et al., 1989). While frailty models and

copula models yield multivariate distributions, they require distributional assumptions re-

garding the frailty distribution and the copula function respectively. These fully specified

models can be useful if interest lies in estimating the degree of association between two

or more event times or prediction. When assessing treatment effects in clinical trials it is

generally desirable to make minimal assumptions and maintain robustness. The marginal

approach of Wei et al. (1989) has the appeal of being based on specification of one Cox

regression model for each type of event but no specific of a dependence structure among

the distinct failure times. Simultaneous inference regarding the estimates of the marginal

regression coefficients is carried out through use of a robust sandwich type variance es-

timator. This method is easily implemented in most major statistical software packages

such as R/S-PLUS and SAS (Therneau and Grambsch, 2000) and is widely used in clinical

trials (Lin, 1994).

The marginal approach of Wei et al. (1989) is based on a working independence as-

sumption and the robust covariance matrix and hence has similarities with the approach

of generalized estimating equation of Liang and Zeger (1986) for dealing with clustered

categorical data. A number of methodological advances have been made in the field of

multivariate failure time data analysis which are based on a similar framework (Lee et al.,

1992; Liang et al., 1993; Cai and Prentice, 1995, 1997; Spiekerman and Lin, 1998; Clegg

et al., 1999, 2000; Greene and Cai, 2004; Cai and Schaubel, 2004; Yin and Cai, 2004, 2005;

Cai et al., 2005, 2007; Kang and Cai, 2009). Since the marginal approach of Wei et al.

(1989) is based on a partially specified model, however, it is only valid if censoring is com-
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pletely independent of the failure time process. In studies of life history processes, when

individuals are to be followed after the occurrence of events, it is common for censoring

to be associated with occurrence of one or more particular types of events, yielding event-

dependent censoring. For example, if the occurrence of the first event alerts a physician

to the fact that the current treatment is “not working” for a patient, it may increase the

risk that they will be withdrawn from the study. In general, when marginal regression

models are applied to multivariate failure times under such a dependent censoring scheme,

biased (martingale) estimating equations are specified and the resulting estimators are

inconsistent (?). We advocate the use of inverse probability of censoring estimating equa-

tions for marginal analysis of multivariate failure times data when there is concern about

event-dependent censoring.

3.2 Notation and Model Specification

3.2.1 Model Formulation for Multivariate Failure Times

Let Tk denote the time of the type k event and {Nk(s), 0 < s} denote the corresponding

right-continuous counting process, where Nk(t) = I(Tk ≤ t) indicates that the type k

event has occurred at or before time t, dNk(t) = 1 if a type k event occurs at time t,

and dNk(t) = 0 otherwise. We further let N(t) = (N1(t), . . . , NK(t))′ and remark that the

multivariate counting process {N(s), 0 < s} is often useful to specify when interest lies

in jointly modeling the occurrence of all event types. Suppose Z(t) is a vector of fixed,

exogenous or endogenous covariates and let {Z(s), 0 < s} denote the covariate process.

The full history at t contains information on the number and times of events over [0, t)

and covariate data over [0, t] and is denoted H(t) = {N(s), 0 ≤ s < t, Z(s), 0 ≤ s ≤ t}.

The intensity function for type k events is

λk(t|H(t)) = lim
∆t→0

P (∆Nk(t) = 1|H(t))

∆t
,
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where ∆Nk(t) = Nk(t+∆t−)−Nk(t
−) is the number of the events occurring over the interval

[t, t+ ∆t). The association between processes is accommodated through the inclusion of a

dependence on the history for process ` in the intensity for type k events. For continuous

time processes where at most one event can occur at any time, these intensity functions

fully define the multivariate counting processes (Andersen et al., 1993).

While this formulation completely specifies a multivariate model, in the context of clin-

ical trials it is undesirable to assess treatment effects conditional on endogenous variables

(Kalbfleisch and Prentice, 2002) and hence intensity functions do not offer an appealing

framework for analyses. Instead treatment effects are more naturally expressed in terms

of marginal proportional hazards regression models of the form

λk(t|Z) = λ0k(t) exp(βkZ) (3.1)

where λ0k(t) is an unspecified positive function, βk is a regression parameter and Z is a

fixed covariate which equals 1 for individuals receiving the experimental treatment and

zero for those receiving a control therapy. The marginal hazard ratio reflecting the effect

of treatment on type k events is then simply exp(βk). The cumulative baseline hazard func-

tion is Λ0k(t) =
∫ t

0
λ0k(u)du and the marginal survivor function is Fk(t|Z; θk) = P (Tk ≥

t|Z; θk) = exp(−Λ0k(t)e
βkZ), where θk contains the regression coefficient βk and the pa-

rameters indexing λ0k(·). When marginal models of this type are specified it is necessary

to address the association in the failure times differently than is done for intensity-based

analyses. This is conveniently achieved using copula functions (Nelsen, 2006).

A copula function Cφ(u1, . . . , uK) in K dimensions defines a multivariate distribution on

the unit hypercube [0, 1]K with uniform margins. Parametric copula functions are indexed

by a parameter denoted by φ, which characterizes the association between the components

of the marginal quantities. Such functions offer a convenient way of constructing multivari-

ate distributions with marginal distributions of a specified form. Specifically, the marginal

probability integral transformation of each random variable can be applied to create a K

dimensional vector of uniform random variables. These in turn are then viewed as the com-

53



ponents of a multivariate uniform random variable with their joint distribution governed

by a given copula. Thus the joint survival function F12(t1, t2|z) = P (T1 ≥ t1, T2 ≥ t2|z)

can be specified by linking the two marginal survival functions via a copula function

F12(t1, t2|z; Ω) = Cφ(F1(t1|z; θ1),F2(t2|z; θ2)) ,

where Ω = (θ′, φ)′ with θ = (θ′1, θ
′
2)′. The Clayton copula is widely used in survival analysis

and yields a joint survival distribution of the form

Cφ(F1(t1|z; θ1),F2(t2|z; θ2)) =
(
[F1(t1|z; θ1)]−φ + [F2(t2|z; θ2)]−φ − 1

)−1/φ
.

The degree of association between two failure times is often expressed in terms of Kendall’s

τ which is given by τ = φ/(φ + 2) (0 ≤ τ ≤ 1) for the Clayton copula where τ = 0 and

τ = 1 correspond to the cases of independence and perfect association respectively.

3.2.2 A Model for Event-Dependent Censoring

When multiple clinical events arise investigators often withdraw patients from trials if there

is a perception that the randomized treatment is no longer appropriate. If subjects are

censored at the time of study withdrawal, this creates a type of event-dependent censoring

which leads to inconsistent parameter estimates under partially specified models. Consider

a setting in which the intention is to follow individuals over the interval [0, C†) where C† is

a time of administrative censoring. Let C denote a random time of withdrawal where 0 <

C ≤ C†. Let NC(t) = I(C ≤ t) and {NC(s), 0 < s} be the counting process for the random

censoring time where dNC(t) = 1 if random withdrawal occurs at time t and dNC(t) = 0

otherwise. Let Y †(s) = I(s ≤ C†), Y (s) = I(s ≤ C), Ȳ (s) = Y (s)Y †(s) and Ȳk(s) =

Ȳ (s)I(s ≤ Tk) indicate whether an individual is under observation and at risk of a type

k event. Let dN̄k(t) = Ȳk(t)dNk(t), N̄k(t) =
∫ t

0
dN̄k(s), and N̄(t) = (N̄1(t), . . . , N̄K(t))′.

We observe {(N̄(s), NC(s)), 0 < s ≤ C†, Z} and let H̄(t) = {(N̄(s), NC(s)), 0 < s < t, Z}

denote the observed history for the event and censoring processes.
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The intensity for the random censoring time C is

λc(t|H̄(t)) = lim
∆t→0

P (∆NC(t) = 1|H̄(t))

∆t
, (3.2)

which accommodates dependence between the censoring, event times, and possibly the

treatment assignment. It is the dependence on the event times that is particularly problem-

atic when the analysis of the failure times is based on a working independence assumption,

often adopted for multivariate failure time data (Wei et al., 1989).

The dependence on the event history can take many forms, but in what follows we

consider a particular model with the censoring intensity

λc(t|H̄(t)) = λc0(t) exp(α1N1(t) + α2N2(t)) , (3.3)

where λc0(t) is a baseline intensity for censoring and (α1, α2)′ are regression coefficients

which reflect how the risk of withdrawal changes upon the occurrence of type 1 and type

2 events; we write dΛc
0(t) = λc0(t)dt. Thus exp(αk) is the multiplicative factor by which

the intensity of censoring increases upon the occurrence of a type k event, k = 1, 2, and if

α1 = α2 = 0, min(C,C†) is an independent right-censoring time.

3.3 Asymptotic Biases of Marginal Estimators

In this section, we investigate the asymptotic bias caused by event-dependent censoring

when marginal estimating equations are specified based on a working independence assump-

tion, as is done for the multivariate approach of Wei et al. (1989). We first present the

general framework and then study the one-sample estimates in detail. The data for a sample

of n independent individuals are denoted by {(N̄i(s), N
C
i (s)), 0 < s ≤ C†, Zi, i = 1, . . . , n}

where we introduce the subscript i to index individuals. We assume that the marginal

distribution of Tik|zi is exponential with λk(t|zi) = λik(t) = λk exp(βkzi) and the joint
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distribution of (Ti1, Ti2)|Zi is defined through a Clayton copula. The naive marginal esti-

mating equations are

Uk1(t) =
n∑
i=1

Ȳik(t) (dNik(t)− dΛik(t)) (3.4)

Uk2(β) =
n∑
i=1

∫ ∞
0

Ȳik(u) (dNik(u)− dΛik(u))zi) (3.5)

where dΛik(t) = exp(βkzi)λ0k(t)dt, k = 1, 2. The profile estimate of the cumulative baseline

hazard for type k events is then

Λ̃0k(t; βk) =

∫ t

0

dΛ̂0k(u; β̂k) =

∫ t

0

∑n
i=1 Ȳik(u)dNik(u)∑n
i=1 Ȳik(u) exp(βkzi)

. (3.6)

The estimate β̂k is obtained as the solution to

n∑
i=1

∫ ∞
0

Ȳik(u)(dNik(u)− dΛ̃0k(u; βk) exp(βkzi))zi = 0 (3.7)

and upon substitution of β̂k into (3.6) the Breslow estimate Λ̂0k(t) = Λ̃0k(t; β̂k) is obtained.

With completely independent censoring the above estimating equations yield consistent

estimators of the cumulative baseline hazard function Λ0k(t) =
∫ t

0
λ0k(u)du, as well as the

regression coefficient βk, k = 1, 2. If censoring is governed by an intensity featuring a

dependence on the event history, (3.4) and (3.5) may yield inconsistent estimators. The

limiting value of the estimator of the cumulative baseline hazard function under a general

censoring scheme is ∫ t

0

dΛ∗0k(u; β∗k) =

∫ t

0

E(Ȳik(u)dNik(u))

E(Ȳik(u) exp(β∗kzi))
, (3.8)

where β∗k is the limiting value of β̂k obtained as the implicit solution to∫ ∞
0

E
[
Ȳik(t)zidNik(t)

]
−
E
[
Ȳik(t) exp(βkzi)zi

]
E
[
Ȳik(t) exp(βkzi)

] E [Ȳik(t)dNik(t)
]
. (3.9)

The expectation E(·) in (3.8) and (3.9) is taken with respect to the true process defined

here in terms of the marginal distributions, the Clayton copula, and the event-dependent
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censoring intensity (3.3). Details on these calculations are given in the Appendix at the

end of this Chapter.

To illustrate the bias of the naive marginal approach in estimation of the cumulative

hazard function, we consider a separate analysis of two treatment groups; in this case we

restrict attention to (3.4) with zi = 1 for the treatment group and zi = 0 for the control

group. The Nelsen-Aalen estimator of Λ0k(t) is

Λ̂0k(t|Z = z) =

∫ t

0

∑n
i=1 Ȳik(t)I(Zi = z)dNik(t)∑n

i=1 Ȳik(t)I(Zi = z)
. (3.10)

The bias of this estimator is investigated by calculating the limiting value of 3.10 with

respect to the true process. The two types of events have an equal risk with λk = 2,

k = 1, 2 and C† chosen to give 10% administrative censoring. A Clayton copula model was

used to induce an association between the failure times with τ = 0.2 and τ = 0.6. The

censoring intensity was based on (3.3) with α1 = log 1.3 and α2 = log 3.5, and λc0(t) = λc0

was chosen to give about 35% random censoring on the first type of event by the end of

study. Figure 3.1 displays the true cumulative hazard function and naive estimates based

on the Nelson-Aalen estimator when τ = 0.2 and τ = 0.6; the left panel contains the

results for type 1 events and the right panel for type 2 events. The plots demonstrate that

the naive method yields a conservative estimate of the cumulative hazard function with

the magnitude of this bias increasing with time. The stronger the association between the

failure times, the greater the empirical bias. It is interesting to note that the bias is greater

for the estimated cumulative hazard for type 1 events since the strength of the dependence

between type 2 event times and censoring is greatest.

57



Figure 3.1: Plots of the true cumulative hazard functions for type 1 (left panel) and type

2 (right panel) events along with limiting values of the corresponding naive (unweighted)

Nelson-Aalen estimates when τ = 0.2 and τ = 0.6; bivariate failure time model defined by

a Clayton copula with exponential margins (λ1 = λ2 = 2); C† chosen to give 10%

administrative censoring; dependent censoring intensity with α1 = log 1.3 and

α2 = log 3.5 with λc0 chosen to given about 35% random censoring rate.
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3.4 IPCW Weighted Marginal Regression

3.4.1 IPCW Weighted Estimating Equations

The estimating equations (3.4) and (3.5) can be modified to yield consistent estimators

by introducing inverse probability of censoring weights (Robins, 1993). If, as in (3.3),

the censoring intensity for individual i at time t depends on the history H̄i(t), then let

Gi(t) = P (Ci ≥ t|H̄i(t)) which by the product integration (Andersen et al., 1993) can be

written Gi(t) =
∏

u<t

[
1− dΛc(u|H̄i(u))

]
. Furthermore let G(t) be survival function of

the random right censoring time under the scenario of independent random censoring, in

which case the censoring intensity is a hazard function with λc(t)dt = dΛc(t); note we drop

the subscript 0 here since it is no longer a baseline censoring intensity. Then again by

product integration we obtain G(t) =
∏

u<t [1− dΛc(u)] .

The marginal estimating functions corresponding to (3.4) and (3.5) are then defined as

Uk1(t) =
n∑
i=1

G(t)Ȳi(t)

Gi(t)
[dNik(t)− dΛik(t)] (3.11)

Uk2(βk) =
n∑
i=1

∫ ∞
0

G(u)Ȳi(u)

Gi(u)
(dNik(u)− dΛik(u)) zi , (3.12)

respectively. The weights are introduced to ensure that the resulting marginal estimating

equations are unbiased and hence that consistent estimators are obtained. As an example,

we demonstrate E(Uk1(t)) = 0. Since G(t) does not depend on the process history, it

suffices to show that

E(
Ȳi(u)

Gi(t)
[dNik(t)− dΛik(t)]) = 0.

Given the process history, we have

E

(
G(t)Ȳi(u)

Gi(t)
[dNik(t)− dΛik(t)] |Hi(t)

)
= Yi(t)E(dNik(t)|Hi(t))− Yi(t)dΛik(t).

Furthermore, by taking expectation of the right hand size in the above expression with

respect to the process history, it is easy to see that

EHi(t)[Yi(t)E(dNik(t)|Hi(t))]− EHi(t)(Yi(t)dΛik(t))
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becomes

EHi(t)(Yi(t)dΛik(t))− EHi(t)(Yi(t)dΛik(t)) = 0.

Hence, we have demonstrated that this is an unbiased estimating equation for the estima-

tion of Λik(t). By similar arguments it can be shown that the expectation of (3.12) is also

zero.

From the derivations above it is clear that G(t) is not necessary to guarantee unbiased-

ness of the estimating equations. In fact it will have no role in estimation of the baseline

hazard function since it cancels in the numerator and denominator of Breslow’s estimator

given in (3.11). Robins (1993) showed, however, that inclusion of G(t) yields estimators of

βk which are more efficient (3.12) than those obtained when G(t) = 1.

In practise, of course, to use (3.11) and (3.12) the functions G(t) and Gi(t) must be

consistently estimated. Let Λc(t) =
∫ t

0
dΛc(u)du where dΛc(u) = λc(u)du is the crude

censoring hazard under the working independence assumption between the censoring and

event processes. In this case Λc(u) is estimated simply as

Λ̂c(t) =

∫ t

0

∑n
i=1 Ȳi(u)dNC

i (u)∑n
i=1 Ȳi(u)

which gives

Ĝ(t) =
∏
u<t

[
1− dΛ̂c(u)

]
,

the usual Kaplan-Meier estimate of the survival function for the censoring distribution.

Correct specification of the model for Gi(t) is more crucial since it is what renders

the inverse weighted estimating functions unbiased. If one believes the censoring intensity

function (3.3) is correct, one can adopt it in the following. Alternatively, we prefer to relax

the proportionality assumptions in (3.3) and consider a more robust stratified model for

the censoring intensity with dΛc(t|Hi(t)) = dΛc(t|Ni1(t) = l, Ni2(t) = m) = dΛc
lm(t), where

l,m = 0, 1. The corresponding nonparametric estimate is then

dΛ̂c(t|H̄i(t)) =

∑n
i=1 I(Ci = t, Ni1(t−) = l, Ni2(t−) = m)∑n
i=1 I(Ci ≥ t, Ni1(t−) = l, Ni2(t−) = m)

, (3.13)
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if Ni(t
−) = (l,m)′. Then again by product integration we have

Ĝi(t) =
∏
u<t

[
1− dΛ̂c(u|H̄i(u))

]
.

Upon substituting these estimates into (3.4), we obtain the weighted Breslow estimator of

the cumulative baseline hazard function for type k events∫ t

0

dΛ̂w
0k(u) =

∫ t

0

∑n
i=1 Ȳik(u)dNik(u)/Ĝi(u)∑n
i=1 Ȳik(u) exp(β̂kzi)/Ĝi(t)

,

where β̂k is the estimate obtained from the weighted score function for the kth type of

event :

Uk(βk) =
n∑
i=1

∫ ∞
0

Ĝ(t)Ȳik(t)

Ĝi(t)

[
zi −

∑n
i=1 Ȳik(t) exp(βkzi)zi/Ĝi(t)∑n
i=1 Ȳik(t) exp(βkzi)/Ĝi(t)

]
dNik(t) . (3.14)

The limiting distribution of estimated regression coefficients are given by the following

theorem.

Theorem 3.4.1. Under regularity conditions, suppose Ĝ(t)/Ĝi(t) is a consistent nonpa-

rameteric estimate of G(t)/Gi(t), then
√
n(β̂k − βk) converges in distribution a zero-mean

normal random vector with a variance that can be consistently estimated by Î−1
k Σ̂kÎ

−1
k ,

where Îk = −n−1∂Uk(β̂k)/∂βk and Σ̂k = n−1
∑n

i=1 U
2
ik(β̂k).

Remark 3.4.1. By the multivariate central limit theorem, (
√
n(β̂1−β1),

√
n(β̂2−β2), . . . ,

√
n(β̂K−βK)) converges in distribution to a zero-mean multivariate normal random vector

with a covariance matrix that can be consistently estimated by Σ̂ where the (l,m) element

is

n−1
∑n

i=1 Î
−1
l Uil(β̂l)Uim(β̂m)Î−1

m , l,m = 1, . . . , K.

Remark 3.4.2. The weight function G(t)/Gi(t) is estimated nonparametrically and there

is no specific model assumption for the censoring process; therefore, the proposed approach

is relatively robust with respect to the censoring process.
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Remark 3.4.3. The global estimate of treatment β̂c is simply a linear combination of all

component-specific estimates of treatment effect, i.e., β̂c = c(β̂)′β̂, where β̂ = (β̂1, . . . , β̂K).

The weight c(β̂) = Σ̂(β̂)−1Ĵ[Ĵ′Σ̂(β̂)−1J]−1 is chosen to estimate the weight matrix to mini-

mize the variance in the class of all linear estimators; Σ̂(β̂) is the estimate for the variance-

covariance matrix of β̂ given in Remark 3.4.1, and J = (1, ..., 1)′. An asymptotically equiv-

alent combined estimate can be obtained by fitting a single Cox model by stratifying on event

type and constraining the coefficients to be the same for the type types of events (Therneau

and Grambsch, 2000).

Remark 3.4.4. The variance estimator is the usual robust sandwich estimator that can

be directly obtained from R/S-PLUS or SAS using a suitably constructed dataframe in the

counting process format that properly takes into account of the weights.

3.5 Empirical Investigation

Simulation studies were conducted to assess the finite-sample performance of the estimators

obtained through the IPCW marginal estimating equations. The failure times T1 and

T2 were generated using a Clayton copula with exponential margins given the treatment

assignment. Without loss of generality we set C† = 1. For a given value of the association

parameter φ, λ1 and λ2 were determined to give a a particular stochastic ordering q =

P (T1 < T2|z = 0) and rate of administrative censoring p for T = min(T1, T2) (i.e. P (T <

C†) = p).

We define the intensity for the random censoring time according to (3.3) with λc0(t) = λc0.

For given (α1, α2)′, λc0 is specified to ensure a prescribed probability of observing the first

event in the control arm P (T1 < C|z = 0) = π is satisfied. We set β1 = β2 = log 0.80,

τ = 0.4 and varied q = P (T1 < T2|z = 0) over 0.25, 0.50 and 0.75. We set α1 = log 1.3 and

α2 = log 3.5 and set λc0 so that P (T1 < C|z = 0) = 0.4. The regression coefficients were

obtained by solving (3.4) and (3.5) to obtain unweighted estimates and (3.14) to obtain
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weighted estimates with G(t) = 1 or more generally. The global estimate β̂c is a pooled

estimate of β̂1 and β̂2

Table 3.1: Empirical results from simulation studies examining the frequency properties

of estimators of the marginal regression coefficients and global estimators under

dependent censoring with β1 = β2 = log(0.8).

P (T1 < T2|z = 0)

0.25 0.50 0.75

Event Weight BIAS ESE ASE BIAS ESE ASE BIAS ESE ASE

Type 1 None 0.015 0.145 0.146 0.006 0.141 0.140 0.000 0.136 0.134

IPCW 0.001 0.172 0.172 -0.003 0.184 0.173 -0.004 0.168 0.159

IPCW† 0.003 0.152 0.153 0.000 0.151 0.147 -0.000 0.142 0.138

Type 2 None 0.008 0.114 0.113 0.004 0.130 0.129 0.000 0.151 0.154

IPCW 0.009 0.116 0.117 0.005 0.144 0.143 0.001 0.180 0.179

IPCW† 0.009 0.113 0.113 0.004 0.130 0.129 -0.000 0.151 0.153

Global None 0.011 0.109 0.110 0.005 0.116 0.117 0.001 0.122 0.122

IPCW 0.006 0.120 0.121 0.002 0.140 0.143 -0.001 0.146 0.141

IPCW† 0.007 0.112 0.113 0.003 0.122 0.120 -0.000 0.126 0.125

† estimate obtained by inverse probability weighted estimating equations with stabilized

weights

The summary statistics of the estimated regression coefficients are reported in Table

3.1 including the empirical bias (Bias), the empirical standard error (ESE), and the aver-

age robust standard error (ASE) based on the large sample results. The simulations were

conducted with 2000 samples each of n = 500 individuals. There is generally very good

agreement between the empirical and average asymptotic standard errors in all settings.
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While the biases are generally quite small in the unweighted analyses, it is apparent that

the impact of dependent censoring is different for the two marginal parameters and the

magnitude of bias is influenced by both the stochastic ordering of the events as well as the

(α1, α2)′ parameters. That is, the bias is greater for type 1 events since the dependence

between the time of the type 2 event and censoring is greatest (this is what induces the

dependent censoring from marginal analyses of type 1 events). The empirical biases of

the weighted estimators are generally smaller indicating the advantages of inverse weight-

ing. The estimates obtained using the weight 1/Gi(t) have considerably larger standard

errors than the estimates obtain using the stabilized weight G(t)/Gi(t), which are in turn

much closer to the standard errors of the unweighted analyses. Thus the weight function

G(t)/Gi(t) leads to estimator with the best performance in that it provides protection

against dependent censoring at the price of a relatively small increase in the standard

error.

3.6 Application

Here we consider data from a trial of 244 breast cancer patients with skeletal metastases.

The experimental treatment is a bisphosphonate which is studied for its palliative effect of

reducing the incidence of fractures and the need for radiotherapy for the treatment of bone

pain. Following randomization patients were followed for up to 24 months. To address

the issue of the competing risks of death we adapt the marginal analyses to be based on

fracture-free survival and radiation-free survival. An alternative approach is to consider the

competing risks of death by including it as the third endpoint. In this case, the marginal

approach of WLW is still applicable (Wei and Glidden, 1997), where it is based on a model

for the cause-specific hazard for non-fatal events and model the ordinary hazard for death.

We did not explore this alternative in this study.

Figure 3.2 gives plots of the cumulative intensity for censoring by fracture status (left
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Figure 3.2: Plot of cumulative intensity function for censoring by fracture status (left) and

radiotherapy status (right) for patients in the placebo arm.

panel) and radiotherapy status (right panel). The slope of the cumulative intensity for

censoring following the occurrence of the first fracture is considerably steeper than it is for

fracture-free individuals, revealing a dependence between fracture status and censoring.

The same pattern is seen in the right panel in that the rate of censoring for patients who

have had one round of radiotherapy is higher (reflected by the steeper slope) than those

who have not required radiotherapy. These plots are suggestive of a need to deal with

dependent censoring for marginal analyses.
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The estimates of the cumulative baseline hazard for the analysis based on fracture-free

survival and radiotherapy-free survival are given in Figure 3.3. There is empirical evidence

of a greater effect of dependent censoring in the fracture-free survival analysis in that

there is a bigger difference between the unweighted and weighted estimates than is seen for

the radiotherapy-free survival analysis. This is compatible with the simulation results in

that the larger difference between the cumulative intensities for censoring by radiotherapy

status in Figure 3.2 (in comparison to the estimators of the censoring intensity by fracture

status), suggests the dependence between censoring and radiotherapy is greater. This in

turn will have a greater effect on the estimates related to the fracture-free survival endpoint.

While the effects are not large, there is a suggestion that the unweighted analysis yields a

conservative estimate of the event rates since the naive estimate is lower than either of the

weighted estimates.

Table 3.2 contains the results of the marginal and global regression analyses. Here we

see the estimates of the treatment effect from the use of stabilized weights are slightly larger

than those obtained from an unweighted analysis. The relative risk reduction for fracture-

free survival was 22.6% for the unweighted analysis compared to a 24.9% relative risk

reduction from analysis using stabilized weights. Moreover, in contrast to the unweighted

analysis, the results based on the stabilized give statistically significant evidence of a treat-

ment benefit for fracture-free survival (p= 0.0465). Very similar estimates are seen for the

radiotherapy-free survival endpoint for unweighted and weighted analyses using stabilized

weights. Finally, use of the stabilized weights incurs a relatively small penalty in terms of

efficiency as the standard errors are very close to those of the unweighted analyses. For

the global analysis, there is a 32.3% relative risk reduction from the unweighted analysis

and a 33.2% reduction from the weighted analysis using stabilized weights.
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Figure 3.3: Plot of estimated cumulative baseline hazard functions
∫∞

0 dΛ̂w0k(u; β̂k).
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Table 3.2: Estimates obtained by fitting separate marginal Cox models and using the

global Wei-Lin-Weissfeld analysis in the analysis of data from the trial of breast cancer

patients with skeletal metastases; unweighted and weighted analyses.

Endpoint Weight EST SE HR 95% CI p−value

Fracture None -0.256 0.142 0.774 (0.586,1.023) 0.0714

IPCW -0.483 0.188 0.617 (0.427,0.891) 0.0100

IPCW† -0.286 0.144 0.751 (0.567,0.996) 0.0465

Radiation None -0.547 0.152 0.579 (0.430,0.780) 0.0003

IPCW -0.505 0.158 0.604 (0.442,0.823) 0.0014

IPCW† -0.550 0.154 0.577 (0.426,0.781) 0.0004

Global None -0.393 0.104 0.675 (0.551,0.827) 0.0002

IPCW -0.493 0.144 0.611 (0.461,0.810) 0.0006

IPCW† -0.404 0.125 0.668 (0.523,0.853) 0.0012

† estimate obtained by inverse probability weighted estimating equations with stabilized

weights

3.7 Discussion

Multivariate failure time data are frequently encountered in clinical trials and observational

studies. Frailty models are popular choice for the analysis of multivariate failure time data,

but they do not yield estimates of treatment effect which have a simple marginal inter-

pretation. Such models can be formulated using copula functions, but it is undesirable to

base inferences on a particular parametric model and for this reason the marginal methods

proposed by Wei et al. (1989) are preferred. Inference regarding regression coefficients in

this framework are carried out by use of a robust sandwich-type variance estimate easily
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computed in SAS or R/S-PLUS (Therneau and Grambsch, 2000).

With multivariate failure time data, studies are usually designed to follow individuals

for the occurrence of all types of events up until some administrative censoring time. In this

setting however, event occurrence may cause investigators to withdraw patients from a trial

if it is thought that following the protocol is no longer in the patients’ best interests. This

can occur, for example, when one or more clinical endpoints are observed. The simplicity of

the marginal analysis of Wei et al. (1989) arises from the working independence assumption.

This enables the use of standard software for point estimation, but the validity of this hinges

on the censoring being independent of the event processes. When this is not satisfied

inconsistent estimates are obtained for all marginal parameters including the cumulative

baseline hazard functions and the regression coefficients from the marginal Cox models.

Use of inverse probability of censoring weights are known to address this problem (Robins,

1993) and we have shown that this strategy can be put to good use in the context of

multivariate failure time data. In this study, we proposed a marginal IPCW approach to

analyze multivariate failure times with event-dependent censoring and demonstrated the

effectiveness of the proposed approach using simulation studies and in a breast cancer trial

for patients with skeletal metastases.

3.8 Appendix

3.8.1 The Limiting Value of Unweighted Estimators

The numerator of (3.8), E(Ȳik(t)dNik(t)), is calculated by noting

E(Ȳik(t)dNik(t)) = EZi{[EȲik(t)|ZiE(dNik(t)|Ȳik(t), Zi)]}

= EZi{P (Ȳik(t)) = 1|Zi)Pr(dNik(t) = 1|Ȳik(t) = 1, Zi)}
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This gives
1∑
z=0

P (Zi = z)P (dNik(t) = 1, Ȳik(t) = 1|Zi = z)

In the same way, the denominator E(Ȳik(t) exp{βzi}) can be obtained as

1∑
z=0

exp(βkz)P (Zi = z)P (dNik(t) = 1, Ȳik(t) = 1|Zi = z) .

The probabilities P (Ȳik(t) = 1|zi = z) can be obtained analytically under the marginal

models, Clayton copula and event-dependent censoring mechanism (3.3). Hence the lim-

iting value of the estimator of the baseline cumulative hazard function dΛ∗0k(t) can be

obtained. The limiting value of estimators of the regression coefficients are obtained fol-

lowing these calculations from (3.9).

3.8.2 Proof of Theorem 3.4.1

The following derivations are provided in the context of a more general marginal Cox

model with a vector of time-varying covariates, and we suppress the dependence on the

type of event, k. For a random sample of n subjects, the observed data consist of

{Ni(·), Yi(·), Zi(·), i = 1, . . . , n). We let S(k)(β, t) = n−1
∑n

i=1 Yi(t)Zi(t)
⊗k exp{βTZi(t)}/Gi(t)

and s(k)(β, t) = E(S(k)(β, t)), where k = 0, 1, 2 and a⊗0 = 1, a⊗1 = a, and a⊗2 = aa′. We

also let Z̄(β, t) = S(1)(β, t)/S(0)(β, t), z̄(β, t) = s(1)(β, t)/s(0)(β, t) and

In =
1

n

n∑
i=1

∫ C†

0

{Zi(t)− Z̄(β0, t)}⊗2Yi(t)wi(t)/(nS
(0)(β, t))dNi(t) .

Here we assume administrative censoring at C† and impose the following regularity condi-

tions:

1. P (Ci ≥ C†) > 0, i = 1, . . . , n;

2. Ni(C
†), i = 1, . . . , n are bounded by a constant;
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3. |Zji(0)|+
∫ C†

0
|dZji(t)| ≤ K for all j = 1, . . . , p and i = 1, . . . , n, where Zji is the jth

component of Zi and K is a constant.

4. I = E
[∫ C†

0
{Zi(t)− z̄(β0, t)}⊗2Yi(t)wi(t) exp{Z ′i(t)β0}dΛ0(t)

]
is positive definite.

5. In = I + op(1).

Proof. We first establish the asymptotic normality of
√
n(β̂ − β0) using the true weight

function wi(t) = G(t)/Gi(t), and then prove that the effect of using a nonparametric

estimation of wi(t) can be ignored in the variance estimation. Consider the weighted Cox

log partial likelihood that leads to the partial score function (3.14),

L(β, C†) =
∑
i≤n

∫ C†

0

wi(u)Yi(u){Z ′i(u)β − logR(β, u)}dNi(u), (3.15)

where R(β, u) = nS(0)(β, u). By Lemma A2 of Hjort and Pollard (Hjort and Pollard,

1993), we can expand logR(β, u) around the true value β0

logR(u, β0 + x)− logR(u, β0) = Z̄ ′(u)x+
1

2
x′V (u)x+ ν(x, u), (3.16)

where V (u) =
∑n

i=1wi(u)Yi(u) exp{Z ′i(u)β0}{Zi(u) − Z̄i(u)}⊗2/R(β0, u). The reminder

term ν(u, x) is bounded by 4
3

maxi≤n |(Zi(u)− Z̄(u))′x|.

Using (3.16), we expand L(β, C†) around round the true value β0 to approximate

L(β0 + t/
√
n)− L(β0) (3.17)

by

∑
i≤n

∫ C†

0

[
n−

1
2 (Zi(u)− Z̄(u))′t− 1

2
n−1t′V (u)t− ν(

t√
n
, u)

]
wi(t)Yi(u)dNi(u),

which can be further written as

U ′nt−
1

2
t′Int− rn(t), (3.18)
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where

Un = n−
1
2

n∑
i=1

∫ C†

0

(Zi(u)− Z̄(u))wi(u)Yi(u)dNi(u)

and

rn(t) =
∑
i≤n

∫ C†

0

νn(t/
√
n, u)dNi(u),

which is bounded by
∑

i≤n
∫ C†

0
4
3
(2K)3|t|3n− 3

2dNi(u) where K is the absolute bound on

the covariates. The latter term is O(n−
1
2 ) and goes to zero as n → ∞. Hence, (3.17) can

be approximated by U ′nt − 1
2
t′Int, which can be maximized at t = I−1

n Un. Note that its

concavity in t follows from the convexity of logR(β, u) in β. Suppose β̂ is solution to the

estimating equation (3.14) that maximizes the log partial likelihood (3.15), then
√
n(β̂−β0)

maximizes (3.17). By the assumption 5 and the extension of the Basic Corollary of Hjort

and Pollard (1993), we can show that

√
n(β̂ − β0) = I−1Un + op(1), (3.19)

and the asymptomatic normality of β̂ can be established if the asymptomatic normality of

Un is established.

We now follow the arguments in Lin et al. (2000) to establish the asymptotic normality

of Un. Let

Mi(t) =

∫ t

0

wi(u)Yi(u)dNi(u)−
∫ t

0

wi(u)Yi(u) exp{βT0 Zi(u)}dΛ0(u),

then write the partial score function as

Un(β0, t) =n−
1
2M̄Z(t)− n−

1
2

∫ t

0

Z̄n(u)dM̄(u), (3.20)

where M̄(t) =
∑

i≤nMi(t) and M̄Z(t) =
∑

i≤n
∫ t

0
Zi(u)dMi(u). For fixed time t, M̄(t)

and M̄Z(t) are sum of iid zero-mean random variables. By the multivariate central limit

theorem, (n−
1
2M̄(t), n−

1
2M̄Z(t)) converges in finite dimensional distribution to a zero-mean

Gaussian processes (WM,WMZ ). Note that Mi(t) is the difference of two monotone func-

tions. The bounded variation assumption 3 implies that Zi(·) is bounded and we may
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assume without loss of generality that Zi(·) ≥ 0; otherwise Zi(·) can be written as dif-

ference of two nonnegative, non-decreasing functions by the Jordan decomposition. Thus

each component of
∫ t

0
Zi(u)dMi(u) is also a difference of two monotone functions in t.

Therefore, by the weak convergence of the monotone class as in the example of 2.11.16

in van der Vaart and Wellner (1996), (n−
1
2M̄(t), n−

1
2M̄Z(t)) is tight and converges weakly

to (WM,WMZ ) and it can be verified that both satisfy Kolmogorov-Chentsov criterion

(e.g. Corollary 16.9 in Kallenberg (2010)) so that they have continuous sample path with

respect to the Euclidean distance.

By the Skorokhord strong embedding theorem (Shorack and Wellner (1986), pages 47-

48), there exists a probability space in which (n−
1
2M̄(t), n−

1
2M̄Z(t),

S(1)(β0, t), S
(0)(β0, t)) converges almost surely to (WM ,WMZ

, s(1)(β0, t), s
(0)(β0, t)). Note

that Zi(·) ≥ 0 (i = 1, . . . , n) is a monotone function by assumption and 1/Gi(t) is nonneg-

ative and nondecreasing function in t; therefore, S(0)(β0, t) and S(1)(β0, t) are nonnenegative

monotone functions in t. Then, we can apply the Lemma 1 in Lin et al. (2000) twice to

show that

n−
1
2

∫ t

0

S(1)(β0, u)

S(0)(β0, u)
dM̄(u)→

∫ t

0

s(1)(β0, u)

s(0)(β0, u)
dWM(u) (3.21)

uniformly in t almost surely. Combining this result with the convergence of n−
1
2M̄Z to

WM yields the uniform convergence of Un(β0, t) to WMZ
(t) −

∫ t
0
z̄(β0, u)dWM(u) almost

surely in the new probability space and thus weakly in the original probability space. This

limiting Gaussian process has covariance function

Σ(s, t) = E

[∫ s

0

{Zi(u)− z̄(β0, u)}dMi(u)

∫ t

0

{Zi(u)− z̄(β0, u)}TdMi(u)

]
,

0 ≤ s, t ≤ C†, between times s and t. Then by the Basic Corollary of Hjort and Pol-

lard (1993),
√
n(β̂ − β0) converges in distribution to a multivariate normal distribution

MVN(0, I−1ΣI−1).

We now prove that the nonparametric estimation of the weight function wi(t) can be

ignored in the variance estimation. Note that the weight wi(t) is a generic weight function
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W (·) evaluated at time t based on the history Hi(t) of subject i, where H(t) is defined

in Section 3.2.1. Therefore, we can write wi(t) = W (t,Hi(t)). We then suppress the

arguments of the function W for notational convenience. Let U(Ni(t), Yi(t), β,W ) be the

partial score functions corresponding to (3.14). Then EH(t)(U(Ni(t), Yi(t), β0,W0) = 0 for

true value β0 and the true weight function W0 as showed in Section 3.4.1. The estimating

function (3.14) is to solve

1

n

∑
i≤n

U(Ni(t), Yi(t), β, Ŵ ) = 0 (3.22)

for β, by plugging in a nonparameteric estimate Ŵ . Here the Ŵ is obtained by a strat-

ified Kaplan-Mierer estimator. Note that the partial score function U(Ni(t), Yi(t), β,W )

is obtained by ∂L(Ni(t), Yi(t), β,W )/∂β, where L(·) is the log partial likelihood function

in (3.15). By using the accumulated Kullback-Leiber information for partial likelihood

functions as in Wong (1986), we can show that the true weight function W0 maximizes

EH(t)(L(Ni(t), Yi(t), β,W )) over the set of weight functions W , where EH(t)(·) is the ex-

pectation taken with respect to the history H(t). This indicates that the criterion of 3.11

in Newey (1994) is satisfied. Therefore, by the Proposition 2 of Newey (1994), the nonpara-

metric estimation of the weight function Ŵ can be ignored in calculating the asymptotic

variance of β̂; that is, the variance estimate will be the same as if Ŵ = W0.
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Chapter 4

Trial Design for Recurrent and

Terminal Events

4.1 Introduction

4.1.1 Background

Clinical trials must be designed with appropriate power to address scientific needs, ethical

demands, and financial restrictions. In parallel group randomized trials involving failure

time outcomes, power objectives are typically met for a given model (e.g., Cox model) by

specifying the event rate in the reference arm, the clinically important effect, the censoring

rate and the size of the test, and then by deriving a suitable sample size based on large

sample theory (Andersen et al., 1993). Under this general framework, a number of authors

have developed methods for planning trials based on analyses of the time to the first event

(George and Desu, 1974; Freedman, 1982; Schoenfeld, 1983; Lachin and Foulkes, 1986).

Sample size formulae have been developed (Cook, 1995) for recurrent event outcomes

based on mixed Poisson models with multiplicative rate functions (Lawless and Nadeau,

1995; Cook et al., 1996). Power and sample size considerations were subsequently developed
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for more general multiplicative models (Bernardo and Harrington, 2001) using counting

process theory e.g., Fleming and Harrington (1991). Another approach to the analysis

of recurrent event data in clinical trials is to use the robust methods for the analysis of

multivariate survival data (Wei et al., 1989) under a working independence assumption

and sample size formula for this approach are available (Hughes, 1997). More recently

there has been interest in trial design based on covariate-adjusted log-rank statistics for

recurrent event analyses and associated sample size formula have been developed (Song

et al., 2008).

To date no methods have been developed for the design of clinical trials in which the

aim was to test treatment effects on recurrent and terminal event processes. We address

this problem under the framework of a Markov model with transient states corresponding

to the recurrent events and a single absorbing state for death. The treatment effect on

the recurrent events is formulated by specifying multiplicative intensity models with time-

dependent strata based on the cumulative event history and a common treatment effect;

this formulation is in the spirit of the Prentice et al. (1981) approach to the analysis of

recurrent events. Multiplicative intensity-based models are also incorporated for mortality

with the same stratification criteria. Under this formulation we derive the limiting value of

partial score statistic for the treatment effect on the recurrent and terminal event processes,

along with the asymptotic variances under the null and alternative hypotheses. Sample

size criteria are then obtained to satisfy power objectives for both types of events.

We consider design issues when it is of interest to demonstrate either superiority or

non-inferiority of an experimental treatment when compared to an existing treatment for

both the recurrent event process and the survival process. Non-inferiority designs are

being adopted with increasing frequency in cancer and cardiovascular research (Rothmann

et al., 2003; Kaul et al., 2006) since many treatments with proven efficacy are available and

hence placebo-controlled trials are not ethical. In such settings new interventions would

need to have some advantages such as reduced cost, a better adverse event profile, or less
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invasive administration (D’Agostino et al., 2003). Rothmann et al. (2003) provides an

excellent discussion about the various approaches to hypothesis testing in the context of

non-inferiority oncology trials and extensions have recently been made for recurrent event

analyses based on mixed Poisson models or robust marginal methods (Cook et al., 2007).

4.1.2 Trial Design for Patients with Skeletal Metastases

Cancer patients with skeletal metastases are at increased risk of a variety of clinical

events including pathological and nonpathological fractures, bouts of acute bone pain,

and episodes of hypercalcemia. These events are typically grouped together to form a

composite recurrent “skeletal related event” which is used as a basis for the evaluation of

treatments designed to reduce the occurrence of skeletal complications in cancer patients to

help maintain functional ability and quality of life and minimize health service utilization

(Hortobagyi et al., 1998). Because the patient population has metastatic cancer, they are

also at considerable risk of death. In breast cancer, twelve month survival in recent studies

has been approximately 78.9% in treated patients; in lung, prostate and other solid tumors

the 12 month survival rates were 28.0%, 66.0% and 33.6% respectively.

While bisphosphonate therapy is palliative and not expected to impact survival, an

assessment of the effect on survival times is warranted for a complete evaluation of the con-

sequences of treatment. Simultaneous consideration of treatment effects on the recurrent

skeletal related events and survival is therefore essential and analyses must accommodate

a possible association between the recurrent event and terminal death process.

4.2 Likelihood for Recurrent and Terminal Events

We adopt the framework of a continuous time multistate Markov process to jointly model

the recurrent events and terminal event. Let {Zi(s), 0 < s} denote this process for indi-

vidual i with a countable number of states in the state space S = {0, 1, . . . , D} and a right
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continuous sample path. The integers 0, 1, 2, . . . represent the number of recurrent events

experienced over time and D represents an absorbing death state. Figure 4.1 displays a

multi-state diagram for the recurrent events and terminal event process. If individual i

is alive at time t and has experienced precisely j events over (0, t], then Zi(t) = j and if

individual i dies at time s, Zi(t) = D for t ≥ s. We assume that all subjects are at state

0 at time t = 0, the time of randomization. Let vi be a binary treatment indicator for

individual i such that vi = 1 if individual i was randomized to the experimental treatment

and vi = 0 otherwise.

Let Tij be the time individual i enters state j, j = 1, . . . , and T di their time of death,

i = 1, . . . ,m. Let dNij(t) = I(Zi(t
−) = j − 1, Zi(t) = j), indicate that a (j − 1) → j

transition was made at time t for individual i, so dNij(t) = 1 at tij but is zero otherwise,

j = 1, . . . . Let dNd
ij(t) = I(Zi(t

−) = j − 1, Zi(t) = D) indicate that a (j − 1) → D

transition is made at time t (i.e. that the jth event was death). Let Ni(t) = (Nij(t), j =

1, . . .) and Nd
i (t) = (Nd

ij(t), j = 1, . . .) jointly be the multivariate counting process for

individual i. The history of the process is the information observed up to t− and we let

Hi(t) = {Ni(s), N
d
i (s), 0 ≤ s < t, vi} denote the history for individual i, i = 1, . . . ,m.

A stochastic model for this multistate process must be assumed for to derive sample size

calculations. We formulate this model by specifying the respective intensity functions

(Cook and Lawless, 2007). The intensities for event occurrence or death are defined as

λj(t|Hi(t)) = lim
∆t↓0

P (∆Nij(t) = 1|Zi(t−) = j − 1, Hi(t))

∆t

and

γj(t|Hi(t)) = lim
∆t↓0

P (∆Nd
ij(t)) = 1|Zi(t−) = j − 1, Hi(t))

∆t
,

respectively, where ∆Nij(t) = Nij((t + ∆t)−) − Nij(t
−) and ∆Nd

ij(t) = Nd
ij((t + ∆t)−) −

Nd
ij(t
−) count the number of the (j − 1)→ j and (j − 1)→ D transitions over (t, t+ ∆t)

respectively.
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Consider a study with planned follow-up over the interval (0, τ ], where τ is called

the administrative censoring time. Individuals may withdraw prematurely from a study

and so we let τ †i be the random right censoring time and let τi = min(τ †i , τ) be the net

censoring time for individual i; we let Xi = min(T di , τi) denote the total time on study and

δi = I(Xi = T di ) indicate whether the terminal event was observed. Let Yi(t) = I(t ≤ τi)

indicate whether individual i is under observation at t and Yij(t) = I(Zi(t
−) = j − 1), j =

1, . . . indicate that individual i is at risk of a transition out of state j−1 at time t (i.e. they

are at risk for the jth event of either type), so Ȳij(t) = Yi(t)Yij(t) indicates they are both

at risk and under observation. Then dN̄ij(t) = Ȳij(t)dNij(t) and dN̄d
ij(t) = Ȳij(t)dN

d
ij(t)

are so-called the observable counting processes for the recurrent event and terminal events

respectively. The observed data can then be written {dN̄i(s), dN̄
d
i (s), Yi(s), 0 < s, vi},

i = 1, . . . ,m. The history of the observable process is the information observed up to t−

and denote H̄i(t) = {N̄i(s), N̄
d
i (s), Ȳi(s), 0 ≤ s < t, vi}, i = 1, . . . ,m.

Under conditionally independent censoring, the intensities for event occurrence and

death of the observable processes are given by λ̄j(t|H̄i(t)) = Ȳij(t)λj(t|Hi(t)) and γ̄j(t|H̄i(t)) =

Ȳij(t)γj(t|Hi(t)), respectively. Thus if individual i experienced Ji > 0 recurrent events at

times ti1, . . . , ti,Ji over [0, Xi], their likelihood contribution is proportional to

Ji∏
j=1

λ̄j(tij|H̄i(tij))[γ̄Ji(Xi|H̄i(Xi))]
δi exp

(
−

Ji+1∑
j=1

∫ tij

ti,j−1

(λ̄j(u|H̄i(u)) + γ̄j(u|H̄i(u)))du

)
,

(4.1)

where ti0 = 0 and for notational convenience we let ti,Ji+1 = Xi.

A specification is required for the intensity functions and here we adopt a multiplicative

intensity Markov model (Andersen et al., 1993) and we set the two intensities to

λ̄j(t|H̄i(t)) = Ȳij(t)λj(t) = Ȳij(t)λ0j(t) exp(βvi) , (4.2)
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λ01(t)eβνi λ02(t)eβνi λ03(t)eβνi

γ01(t)eθνi γ02(t)eθνi γ03(t)eθνi

Figure 4.1: State space diagram for recurrent and terminal events representing the model

formation based on counting processes; λ0j(t)e
βνi , j = 1, 2, . . . , are transition intensities

for the recurrent events from state (j − 1) to state j and γ0j(t)e
θνi , j = 1, 2, . . . , are the

event-dependent transition intensities from (j − 1) state to death; state Dj represents

death after the jth event.

and

γ̄j(t|H̄i(t)) = Ȳij(t)γij(t) = Ȳij(t)γ0j(t) exp(θvi) , (4.3)

where λ0j(t) and γ0j(t) are non-negative baseline intensity functions for the recurrent event

and terminal event for state j, respectively. Through the time-dependent stratification on

the cumulative number of events, this model accommodates an association between the

recurrent and terminal events. The multiplicative effect of vi is assumed to be constant

(i.e. not event dependent) for the two processes to give a parsimonious parameterization of

the treatment effect. This model was discussed by Prentice et al. (1981) and is sometimes

referred to as the stratified Andersen-Gill model (Andersen and Gill, 1982).

The likelihood (4.1) can be factored into two parts, one part involving β and the other

part involving θ. Under (4.2), the likelihood contribution for the recurrent event process
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involves β as is given by

Ji∏
j=1

λij(tij) exp

(
−

Ji+1∑
j=1

∫ tij

ti,j−1

Ȳij(u)dΛij(u)

)
, (4.4)

where Λij(t) =
∫ t

0
λij(u)du is the cumulative intensity function for individual i in stratum

j. The partial likelihood for a sample of size m is then the product of m such terms.

The partial score estimating function for β is then

m∑
i=1

Ji∑
j=1

∫ τ

0

Ȳij(u)
(
dNij(u)− dΛ0j(u)eviβ

)
vi . (4.5)

The Breslow profile estimate of dΛ0j(u) is

dΛ̂0j(u) =

∑m
i=1 Ȳij(u)dNij(u)∑m
i=1 Ȳij(u) exp(βvi)

, (4.6)

and substituting (4.6) into (4.5) gives the “profile” partial score function

U(β) =
m∑
i=1

Ji∑
j=1

∫ τ

0

Ȳij(u)

(
vi −

R
(1)
j (β, u)

R
(0)
j (β, u)

)
dNij(u) , (4.7)

where R
(a)
j (β, u) = m−1

∑m
i=1 Ȳij(u)vai exp(βvi) and a = 0, 1. Similarly, we obtain the

corresponding score functions for the terminal event intensities (4.3) as,

Ud(θ) =
m∑
i=1

Ji+1∑
j=1

∫ τ

0

Ȳij(u)

(
vi −

S
(1)
j (θ, u)

S
(0)
j (θ, u)

)
dNd

ij(u), (4.8)

where S
(a)
j (θ, u) = m−1

∑m
i=1 Ȳij(u)vai exp(θvi) and a = 0, 1. The score functions (4.7) and

(4.8) are those of a stratified Cox regression model with one binary covariate. These two

score functions form the basis of partial score statistics we used to calculate sample size.

4.3 Asymptotic Properties of Partial Score Statistics

In this section, we investigate the asymptotic properties of the partial score statistic (4.7)

and (4.8) under the null and the alternative hypotheses. We suppose here that analyses are
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to be based on at most J events, but note that J can be chosen to be large enough to capture

all events in any given setting with probability approaching one. Suppose the treatment

effect is β0 in (4.2) under the null hypothesis and βA under the alternative hypothesis.

Under regularity conditions A to D of Andersen and Gill (1982) and the assumption that

mP (Zi(t) = j|Zi(0) = 0) → ∞, for every j and t, as m → ∞, U(β0) is asymptotically

equivalent to

∑m
i=1

∑J
j=1

∫ τ
0

(
vi −

E0(R
(1)
j (β0,u))

E0(R
(0)
j (β0,u))

)
dM r

ij(u) , (4.9)

where E0(·) is the expectation taken under the null hypothesis and

dM r
ij(u) = dN̄ij(u)− Ȳij(u) exp(β0vi)dΛ0j(u) (4.10)

is the associated martingale under the null. Note that (4.9) is a sum of m independent

and identically distributed random variables with expectation zero, so it follows from the

central limit theorem that m−
1
2 times (4.9) converges in distribution to a zero-mean normal

random variable with asymptotic variance

J∑
j=1

∫ τ

0

r(2)
j (β0, u)

r
(0)
j (β0, u)

−

(
r

(1)
j (β0, u)

r
(0)
j (β0, u)

)2
E0[Ȳij(u)eβ0vidΛ0j(u)] , (4.11)

where r
(a)
j (β0, u) = E0[R

(a)
j (β0, u)], a = 0, 1, 2. This asymptotic variance is similar to the

expected information from a stratified Cox regression where the strata are defined by the

state of the Markov process.

Under the same set of regularity conditions as under the null hypothesis, the partial

score statistic (4.7) evaluated at β0 is asymptotically equivalent to

∑m
i=1

∑J
j=1

∫ τ
0

(
vi −

EA(R
(1)
j (β0,u))

EA(R
(0)
j (β0,u))

)
dN̄ij(u) , (4.12)

under the alternative hypothesis, where the expectation is taken under the alternative

hypothesis. Note that (4.12) is also a sum of m independent and identically distributed
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random variables and it follows from the central limit theorem that m−
1
2 times (4.12)

converges in distribution to a normal random variable with mean

m∑
i=1

J∑
j=1

∫ τ

0

{
EA(Ȳij(u)vie

βAvidΛ0j(u))−
EA(R

(1)
j (β0, u))

EA(R
(0)
j (β0, u))

EA(Ȳij(u)eβAvidΛ0j(u))

}
. (4.13)

If we let

Hij(u) = vi −
EA(R

(1)
j (β0, u))

EA(R
(0)
j (β0, u))

,

the asymptotic variance of m−
1
2 times (4.12) is

J∑
j=1

∫ τ

0

EA
(
Ȳij(u)[Hij(u)]2eβAvidΛ0j(u)

)
, (4.14)

under the alternative.

Thus we have expressions for EA(m−
1
2U(β0)) by (4.12), the asymptotic variance V0 =

Var0(m−
1
2 U(β0)) of the score statistic under the null by (4.11), and the asymptotic variance

of VA = VarA(m−
1
2 U(β0)) under the alternative by (4.14). These results will be used for

the sample size calculations in the next section. Details on how the requisite expectations

can be carried out are given in the appendix.

For the terminal event under the null hypothesis, m−
1
2 times the partial score statistics

can be shown to asymptotically equivalent to

m−
1
2

∑m
i=1

∑J
j=1

∫ τ
0

(
vi −

E0(S
(1)
j (θ0,u))

E0(S
(0)
j (θ0,u))

)
dMd

ij(u), (4.15)

where

dMd
ij(u) = dN̄d

ij(u)− Ȳij(u)eθ0vidΓ0j(u)

is the associated martingale process for the terminal event of subject i at the state j and

Γ0j(t) =
∫ t

0
γ0j(u)du is the baseline cumulative intensity function for the terminal event in
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stratum j. The asymptotic variance of (4.15) is

J∑
j=1

∫ τ

0

s(2)
j (θ0, u)

s
(0)
j (θ0, u)

−

(
s

(1)
j (θ0, u)

s
(0)
j (θ0, u)

)2
E0[Ȳij(u)eθ0vidΓ0j(u)] , (4.16)

under the null, where s
(a)
j (θ0, u) = E0[S

(a)
j (θ0, u)], a = 0, 1, 2, and under the alternative

hypothesis, m−
1
2 times the partial score statistic (4.8) is asymptotically equivalent to

m−
1
2

∑m
i=1

∑J
j=1

∫ τ
0

(
vi −

EA(S
(1)
j (θ0,u))

EA(S
(0)
j (θ0,u))

)
dN̄d

ij(u). (4.17)

The asymptotic variance of (4.17) is

J∑
j=1

∫ τ

0

EA
(
Ȳij(u)[Hd

ij(u)]2eθAvidΓ0j(u)
)

(4.18)

under the alternative, where

Hd
ij(u) = vi −

EA(S
(1)
j (θ0, u))

EA(S
(0)
j (θ0, u))

.

4.4 Sample Size Derivation Based on Partial Score

Statistics

4.4.1 Sample Size for the Design of Superiority Trials

In this section, we adopt a score test based on the partial score statistics described above to

calculate sample size requirements for a clinical trial involving recurrent events and terminal

event. We illustrate this procedure by testing a treatment effect on the recurrent events.

In superiority trials interest is in demonstrating a new therapy for both the recurrent event

process and the terminal event. In particular, we consider the case where H0 : β = β0 and

HA : β 6= β0, where β0 is the null value, and βA < β0 is the value under the alternative

that represents the minimal clinically important treatment effect we wish to detect for
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the recurrent event process. If we assume a follow-up period (0, τ ], then under the null

hypothesis, the partial score statistics based on (4.7) is

Z =
m−1/2U(β0)√

V0(β0)
(4.19)

which converges in distribution to a standard normal random variable.

The approximate one-sided 100α1% level partial score test involves rejecting the null if

Z < zα1 , where zα is the 100α% percentile of the standard normal distribution. Under the

alternative hypothesis, if we set the power to 100(1− α2)%, we require P (Z < zα1|HA) =

1− α2. Straightforward calculations show that the required sample size m to detect the

effect of a reduction in the intensity of events under the new treatment at the significance

level of 100α1% with power 100(1− α2)% is

m =

(
z1−α1

√
V0(β0) + z1−α2

√
VA(β0)

)2

EA(Ui(β0))2
, (4.20)

where Ui(·) is the contribution of a single individual i to the partial score statistic (4.7).

Similarly, the required sample size for detecting superiority of the treatment on the

terminal event with power 100(1− α2)% at size 100α1% is

md =
(z1−α1

√
V d

0 (θ0) + z1−α2

√
V d
A(θ0))2

EA(Ud
i (θ0))2

. (4.21)

Then the minimum required sample size to detect the superiority of the new treatment on

both the recurrent events and terminal event is max(m,md).

4.4.2 Sample Size for the Design of Non-Inferiority Trials

In this section we address design issues when testing for non-inferiority of a new treatment

for both recurrent events and terminal event when compared to a existing active-control.

We adopt common notation to formulate the non-inferiority hypotheses (Cook et al., 2007).

Let LRR(C1/P1) denote the log-relative risk reflecting the effect of the active-control (C)
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to a placebo (P ) treatment on the risk of events. The subscript ‘1’ on C1 and P1 to denote

that this estimate must be known or estimated from historical studies. Similarly, we let

LRR(C2/P2) denote the effect of the active-control to a placebo in the context of planned

study. We also let LRR(E2/P2) denote the log-relative risk for the planned new treatment

versus a placebo. Though no placebo will be used in the planned study, it is helpful to

make indirect comparisons with the effect of the active-control to placebo. In particular,

the non-inferiority trial is intended to show that the experimental trial retains a prestated

percentage of the active-control effect against placebo with a specified power and type I

error rate. We formulate the non-inferiority hypotheses for the recurrent events as follows.

Let δ0 be the percentage of the active-control effect to placebo necessary to retain for

non-inferiority claims for the new treatment. The null hypothesis can be formulated as

H0 : LRR(E2/C2) ≥ (1− δ0)LRR(P1/C1) (4.22)

which is to be tested against the alternative hypothesis

HA : LRR(E2/C2) < (1− δ0)LRR(P1/C1). (4.23)

For the purpose of sample size calculation, it is sometime desirable to consider a par-

ticular value of LRR(E2/C2) in the alternative hypothesis, which may be expressed as a

percentage of the effect of active-control to the placebo. We let 1−δA denote the percentage

of the active-control effect that the experiment treatment retains once the null hypothesis

is rejected so that LRR(E2/C2)=(1-δA)LRR(P1/C1)< (1− δ0)LRR(P1/C1). In this study,

we examine different values of δA in sample size calculations.

For testing non-inferiority of the treatment based on the recurrent event, we let β =

LRR(E2/C2) and β0=LRR(P1/C1) and evaluate the partial score statistic (4.7) at the

boundary of the null hypothesis of (4.22). If we further suppose that the follow-up duration

is (0, τ ]. The partial score statistic

m−1/2U((1− δ0)β0)√
V0((1− δ0)β0)

(4.24)
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then converges in distribution to a standard normal random variable Z, where V0(·) is the

asymptotic variance of the partial score statistics under the null hypothesis according to

(4.11). Based on a one-sided α1 level partial score test, to reject the null hypothesis with

the power 1−α2, one can obtain the required sample size m for a partial score test to test

non-inferiority of the new treatment on the recurrent events as

(z1−α1

√
V0((1− δ0)β0) + z1−α2

√
VA((1− δ0)β0))2

EA(Ui((1− δ0)β0))2
, (4.25)

where VA(·) is the asymptotic variance of the partial score statistic under the alternative

hypothesis (4.14) and Ui(·) is the contribution of individual i to the partial score statistic

(4.7). The expectation EA(·) is taken with respect to the true model under the alternative

as in (4.9) with βA = (1 − δA)β0. The required sample size md for testing non-inferiority

of new treatment on the terminal event may be obtained by replacing the corresponding

quantities in (4.25) by the ones from the partial score statistic for the terminal event (4.8)

as follows

(z1−α1

√
V d

0 ((1− δ0)θ0) + z1−α2

√
V d
A((1− δ0)θ0))2

EA(Ud
i ((1− δ0)θ0)2

, (4.26)

where V d
0 (·) and V d

A(·) are the asymptotic variances for the partial score statistics for the

terminal event under the null and the alternative hypotheses, respectively; the expectation

EA is taken with respect to the true model for the terminal event under the alternative

with θA = (1− δA)θ0.

The minimum requirement for testing the non-inferiority of the new treatment on both

recurrent events and terminal event is max(m,md) for one-sided test with the level of α1

and the power of 1− α2.

4.5 An Empirical Study of Frequency Properties

We simulate the Markov process with the multiplicative model of (4.2) for recurrent events

and (4.3) for the terminal event. For planning purposes we set an upper limit to the number
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of states and set the maximum number of events to J = 10; only approximately 2% patients

had eight or more skeletal complications in Hortobagyi et al. (1996). For computational

convenience, we further specify the intensity function for recurrent event (4.2) and for

the terminal event (4.3) as λ0j(t) = λ0 exp(ψβ · (j − 1)) and γ0j(t) = γ0 exp(ψθ · (j − 1))

j = 1, . . . , 10, respectively. The constants ψβ and ψθ represent the relative increase in the

event and death intensity with the occurrence of each additional event. In the simulation

study, we consider ψβ = 1.0 for constant baseline intensity (rate) which is independent of

the number of previous events and ψθ = 1.0 to correspond to the setting where mortality

is independent of event occurrence. We set ψβ = 1.1 to reflect the setting where the event

intensity increases with each event and ψθ = 1.1 to correspond to the case where the

mortality rate increases with event occurrence. The coefficients β and θ are the effects of

the experiment treatment on recurrent events and death, respectively, and are chosen to

represent modest improvements.

The Markov model has twelve states (0, 1, . . . , 10) corresponding to the cumulative

number of recurrent events and one absorbing state for death; we number these states

1 to 12 and consider a 12 × 12 transition intensity matrix denoted Qv for an individual

with vi = v having (k, `) entry qvkl given by λ0k exp(βv) for k = 1, . . . , 10 and ` = k + 1,

γ0k exp(θv) for k = 1, . . . , 10 and ` = 12, −(λ0k exp(βv)+γ0k exp(θv)) for k = ` = 1, . . . , 10,

and zero otherwise. The transition probability matrix has elements P`k(t|v) = P (Z(t) =

`|Z(t−) = k, v) and can be obtained as described in the appendix. We further specify the

baseline intensities λ0 and γ0 by setting the probabilities that for a control subject the first

event is a recurrent event to q = λ0/(γ0 + λ0) and setting the probability that a control

subject has died by t = 1 to q for some pre-specified values of p and q.

4.5.1 Empirical Study of Superiority Designs

For simulation studies involving superiority designs, under the null hypothesis of no treat-

ment effect we set β0 = θ0 = 0. Under the alternative we set βA = log 0.8 and θA = log 0.9.
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The duration of the study is set to τ = 1. A random censoring time is simulated for each

individual using an exponential random variable with a probability of P (τi < 1) = 0.2.

We investigate the performance of the proposed methods for sample size calculations for

different scenarios. For each setting the sample sizes are determined according to formu-

lae in (4.20) and (4.21). All simulations were implemented in R, and the coxph function

in the survival package was used to obtain the partial score statistics. By setting the

iter.max and init options to zero, the partial score statistics are obtained using the func-

tion coxph.detail. Under the null hypothesis, the variance of partial score statistic was

obtained by summing up the observed information at each event time. Under the alterna-

tive, this variance was calculated using the sample variance of the partial score statistics

at each event time. For each setting, we conducted 2000 replicates and reported the per-

centage of those replicates leading to rejection of the null hypothesis as the empirical type

I error rate under the null hypothesis, and as the power under the alternative. Table 4.1

displays the empirical type I error rate and the power for different superiority settings. The

empirical type I error rates are consistent with the nominal level of 0.025. For testing for

superiority of a new treatment with respect to both the recurrent event and the terminal

event, max(m,md) was the sample size for the terminal event. The empirical powers are

consistent with the nominal level of 0.8.

4.5.2 Empirical Study of Non-Inferiority Designs

In this section we present simulation studies conducted to validate the proposed methods

for sample size calculations for testing non-inferiority of the experiment treatment on both

recurrent events and terminal event. We demonstrate that the empirical rejection rates are

consistent with the nominal levels. In particular, we set LRR(C1/P1)=log 0.6 (β0) for the

effect of active-control against a placebo for the recurrent events and LRR(C1/P1)=log 0.8

(θ0) for the terminal event. We also assume the constancy assumption so that LRR(P2/C2)=

LRR(P1/C1).
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We consider the designs where the aim is to demonstrate that the experimental treat-

ment retains at least 50 per cent of the effect of the active-control, so that δ0 = 0.5. In this

simulation study, we consider one-sized test with nominal level of type I error rate α1=0.025

and the power is set to 80 per cent (1− α2=0.8). The effect of the experiment treatment

under the alternative hypothesis is represented by LRRA(E2/C2)=(1 − δA)LRR(P1/C1)

and we let δA = 0.90 and 1.00 to correspond to a retention of 90 and 100 per cent of

the active-control effect, respectively. The duration of the follow-up τ is set to be 1. A

random censoring process is simulated for each subject using an exponential distribution

with parameter ρ, which is specified so that each subject may withdraw from the study

with a probability of 0.20 (ρ = log 5/4).

For each simulation setting, the sample size is determined according to the formula

(4.25) and (4.26). The simulation was implemented in R and the partial score statistics are

obtained using coxph function in the survival package by setting the iter.max option

equal to zero. The partial score statistics was obtained by setting the init option as

(1−δ0)β0. Under the null hypothesis, the corresponding variance was obtained by summing

up the observed information of each event time. Under the alternative hypothesis, this

variance was calculated by the sample variance of the partial score statistics at all event

times.

We conducted 2000 replicates and the percentage of those replicates leading to rejection

of the null hypothesis is the empirical type I error rate under the null and the power under

the alternative. Table 4.2 presents the empirical type I error rate and the power for different

non-inferiority configurations. The empirical type I error rates are all consistent with the

nominal level of 0.025. The empirical powers are all close to the nominal levels for modest

and large sample sizes. For simultaneous detecting the superiority of a new treatment

on both recurrent events and the terminal event, max(m,md) equal to the sample size

calculated for the terminal event. The empirical powers for simultaneous testing for the

superiority are consistent with the nominal level of 80%.
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Table 4.1: Sample sizes and empirical rejection rates for tests of superiority for recurrent

and terminal events; β0 = θ0 = 0, βA = log(0.80) and θA = log(0.9); %REJ0 and %REJA

are the empirical type I error rate (2.5%) and empirical power (80%) respectively.

ψθ = 1.0 ψθ = 1.1

ψβ Endpoint† Setting‡ m %REJ0 %REJA m %REJ0 %REJA

1.0 Recurrent θ = θ0 728 2.45 84.45 771 2.00 83.10

Recurrent θ = θA 710 2.65 84.20 753 2.40 82.90

Death β = β0 6636 2.40 80.35 6673 2.30 80.85

Death β = βA 6740 2.50 80.50 6816 2.75 80.50

1.1 Recurrent θ = θ0 691 2.85 84.70 737 2.40 84.25

Recurrent θ = θA 674 2.70 84.15 719 2.10 84.25

Death β = β0 6674 2.60 79.45 6691 2.25 81.15

Death β = βA 6759 2.45 80.50 6836 2.40 83.00

† Endpoint is the outcome used for the sample size calculation

‡ Setting is the value of the parameter for the complementary outcome when testing the

corresponding endpoint

91



Table 4.2: Sample sizes and empirical rejection rates for tests of non-inferiority for

recurrent and terminal events; β0 = θ0 = 0, βA = log(0.60), θA = log(0.8) and δ0 = 0.50;

%REJ0 and %REJA are the empirical type I error rate (2.5%) and empirical power (80%)

respectively.

1-δA=0.9 1-δA=1.0

Endpoint† Setting‡ m %REJ0 %REJA m %REJ0 %REJA

ψθ = 1.0 ψβ = 1.0 1− δA = 0.9

Recurrent θ = θ0 986 2.20 83.05

Recurrent θ = θA 967 2.20 83.50 962 2.40 83.60

Death β = β0 9665 2.65 81.20 6296 2.65 80.65

Death β = βA 9850 2.65 81.40 6405 2.55 81.40

ψθ = 1.0 ψβ = 1.0 1− δA = 1.0

Recurrent θ = θ0 664 2.55 83.70

Recurrent θ = θA 657 2.65 83.35 655 2.75 82.60

Death β = βA 9904 2.75 82.10 6429 2.85 81.85

ψθ = 1.0 ψβ = 1.1 1− δA = 0.9

Recurrent θ = θ0 945 2.65 84.30

Recurrent θ = θA 934 2.85 84.85 931 2.10 84.90

Death β = β0 9669 2.30 80.15 6276 2.30 79.10

Death β = βA 9860 2.25 82.35 6401 2.40 81.60

ψθ = 1.0 ψβ = 1.1 1− δA = 1.0

Recurrent θ = θ0 639 2.60 83.75

Recurrent θ = θA 631 2.90 84.40 629 2.30 84.70

Death β = βA 9918 2.20 82.20 6438 2.75 81.55

ψθ = 1.1 ψβ = 1.0 1− δA = 0.9

Recurrent θ = θ0 1042 2.15 82.50

Recurrent θ = θA 1030 2.25 83.05 1027 2.05 82.10

Death β = β0 9761 2.05 81.75 6322 2.65 80.05

Death β = βA 9964 2.05 80.50 6475 2.75 79.35

ψθ = 1.1 ψβ = 1.0 1− δA = 1.0

Recurrent θ = θ0 701 2.05 83.75

Recurrent θ = θA 693 2.65 83.65 691 2.65 82.70

Death β = βA 10029 2.75 79.55 6507 2.35 81.05

ψθ = 1.1 ψβ = 1.1 1− δA = 0.9

Recurrent θ = θ0 1004 2.85 84.25

Recurrent θ = θA 992 2.75 83.20 990 2.95 83.9

Death β = β0 9752 2.05 80.52 6329 2.50 80.70

Death β = βA 9986 2.25 80.30 6482 2.50 80.15

ψθ = 1.1 ψβ = 1.1 1− δA = 1.0

Recurrent θ = θ0 678 2.60 83.70

Recurrent θ = θA 670 2.35 84.70 665 2.75 83.65

Death β = βA 10053 2.35 79.75 6526 2.25 80.80

† Endpoint is the outcome used for the sample size calculation

‡ Parameter setting for the complementary outcome when testing the corresponding endpoint
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4.6 Trial Design in Cancer Metastatic to Bone

Hortobagyi et al. (1996) report on the effectiveness of the bisphosphonate pamidronate for

the prevention of skeletal related events in breast cancer patients with skeletal metastases.

Here we report on analyses of this data to furnish information helpful for the design of a

future study planned to have one year duration.

Figure 4.2 displays the estimates of the cumulative transition intensities for the placebo

group for both event occurrence and death. Separate transition intensities were specified

for the first to third events (i.e., λ̄(t|H̄i(t)) = Ȳij(t)λ0j(t) where Ni(t
−) = j, j = 0, 1, 2),

but the baseline intensity was assumed to be the same for fourth and subsequent events

due to sparse data (i.e., λ̄(t|H̄i(t)) = Ȳij(t)λ
∗
03(t) if Ni(t

−) = j ≥ 3. The risk of the

first event appears roughly constant over two years and could be represented with a time

homogeneous rate of λ0 = 1 with time measured in years. The slope of the Nelson-

Aalen estimates for the event intensities (left panel) are increasing with event occurrence

indicating increased risk of future events with each event occurrence. For design purposes

a parsimonious representation is required, and the results of fitting a regression model

λ̄j(t|H̄i(t)) = Ȳij(t)λ0(t) exp(ψβNi(t
−)) gives ψ̂β = 1.41. A similar model was specified

for the death intensities and the Nelson-Aalen estimates plotted in the right panel of

Figure 4.2 reveal increasing risk of death with the occurrence of each event. When the

regression model γ̄j(t|H̄i(t)) = Ȳij(t)γ0(t) exp(ψθNi(t
−)) was fit the estimate obtained is

ψ̂θ = 1.36; based on the mortality rate over one year we set γ0 = 0.1. The censoring rate

over the course of a planned study is assumed to be 10% over the 24 months suggesting

ρ = 0.5−1 log(10/9).

Scenario I: Consider the planning of future study aiming to demonstrate that a new

treatment is superior with respect to the occurrence of skeletal complication and superior

with respect to mortality. We suppose that the overall type I error rate is 5% and a

Bonferroni adjustment yields a 2.5% type I error rate for each hypothesis. Suppose two
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two-sided tests are to be conducted, with each at the 2.5% level to control the overall type I

error rate at 5%. Suppose 90% power is required to detect a 20% reduction (βA = log 0.80)

in the risk of recurrent events and a 10% reduction in mortality (θ = log 0.90). We find

minimum sample sizes of 700 and 707 individuals, respectively.

Scenario II: Suppose a non-inferiority design is of interest and we have margins of 50%

for both the recurrent events and death. Suppose the type I error rate for each test is

controlled at 2.5% and 80% power is desired for each test. Suppose the true effect of

treatment corresponds to a 20% loss of the effect of the active control on survival and a

10% loss of effect on the recurrent event outcome. To ensure 80% power to claim non-

inferiority for the survival endpoint, 9052 individuals will be required, and 8506 individuals

will be required for the recurrent event outcome.

4.7 Discussion

This article has provided design criteria for randomized trials with the objective of compar-

ing two treatment groups with respect to the incidence of recurrent events and a terminal

event. The motivating setting involves the palliative treatment of cancer patients with

skeletal metastases who are at risk of both skeletal related events and death. Recurrent

and terminal events arise in many other settings in medical research including transplant

studies in which recipients may experience transient graft rejection episodes and total

graph rejection (Cole et al., 1994). In trials designed to investigate the effect of treat-

ment for advanced chronic obstructive pulmonary disease patients are at risk of recurrent

exacerbations and death (Calverley et al., 2007).

The multistate framework adopted is appealing for modelling such processes because

it structurally incorporates the terminal events as an absorbing state. This is in contrast

to many joint models which incorporate an association between recurrent and terminal

events through shared or correlated random effects arising from parametric models. The
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Figure 4.2: Nelson-Aalen estimates of the cumulative transition intensities for the

placebo group in Hortobagyi et al. (1996).
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proposed analysis represents a compromise between use of intensity-based models reliant

on full model specification and marginal models. The proposed recurrent event model is in

line with the Prentice et al. (1981) approach in which the baseline intensity is stratified on

the cumulative number of events but has the added implicit condition that subjects must be

alive to contribute to the risk set; they are sometimes called “partially” conditional models.

The terminal event state therefore enters in the asymptotic calculations by reducing the

expected size of the risk sets.

The Nelson-Aalen estimates of the cumulative transition intensities and Aalen-Johansen

estimates of the transition probability functions which are estimated under a Markov as-

sumption, are robust in the sense that they remain consistent estimates for non-Markov

processes under independent censoring (Aalen et al., 2001; Datta and Satten, 2001). This

is not true for the estimates of treatment effect in multiplicative intensity-based models

where there is greater reliance on the model assumptions for valid interpretation of co-

variate effects. It would be of interest to study the performance of the separate and joint

tests of treatment effect in this setting, which involve no conditioning on the event history

(Ghosh and Lin, 2000).

Between subject variation in risk of events routinely arises in recurrent event datasets

and mixed Poisson models are often adopted since they account for this heterogeneity. The

marginal intensity of mixed Poisson processes features a sudden change in risk following

event occurrence (Cook and Lawless, 2007). This feature is present in the proposed mul-

tistate framework but the change in risk is not transient. Boher and Cook (2006) showed

empirically that the multistate analysis based on the Prentice et al. (1981) formulation

retains good control of the type I error rate even with naive (i.e., non-robust) variance

estimation, so the multistate partially conditional analysis offers some protection against

heterogeneity.

Mixed models have also been proposed by several authors for modeling the association

between the recurrent and terminal events through correlated or shared random effects
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(Huang and Wang, 2004; Liu et al., 2004; Rondeau et al., 2007). Likelihood and semi-

parametric methods based on estimating functions can be used for analysis of a dataset,

but parametric assumptions could be made to derive required sample sizes. We prefer

the multistate framework however, since the terminal nature of death is reflected in its

designation as an absorbing state. Moreover, with the multistate analysis in which we

adopt time-dependent stratification on the cumulative number of events, our sample size

formula is directly relevant for analyses based on the so-called Prentice-Williams-Peterson

approach (Prentice et al., 1981) to analyze recurrent events in the absence of mortality.

While the multistate framework requires that more parameters be specified, the multiplica-

tive increase in risk with event occurrence is seen in a diverse range of datasets and offers

some degree of parsimony.

We have restricted attention to settings where the event times are at most right cen-

sored. Frequently recurrent events are not observed directly but are only detectable under

careful examination in a clinic. Studies aiming to prevent the occurrence of skeletal metas-

tases involve quarterly examinations of patients at which bone scans are conducted to

assess whether new metastases have developed. The same multistate model can be used

to characterize the incidence of skeletal metastases and death, but the onset times of the

metastases become interval-censored. If the Markov framework remains appropriate, the

methods of Kalbfleisch and Lawless (1985) may be employed with the multistate model

package msm in R/Splus. Sample size calculations must be suitably modified and this is a

topic of ongoing research.
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4.8 Appendix

4.8.1 Asymptotic Equivalence of the Partial Score Statistics

Under the null hypothesis, m−
1
2 times the partial score statistic (4.7) can be written as

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
vi −

E0(R
(1)
j (β0, u))

E0(R
(0)
j (β0, u))

)
dM r

ij(u)−

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
R

(1)
j (β0, u)

R
(0)
j (β0, u)

−
E0(R

(1)
j (β0, u))

E0(R
(0)
j (β0, u))

)
dM r

ij(u).

Using similar arguments in the proofs of Theorem 4.2.1 and 4.3.1 of Gill Gill (1980), one

can show that the second term of the above expression converges in probability to zero as

m→∞ for every β0.

Similarly, let

dMij(u) = dN̄ij(u)− Ȳij(u)eβAvidΛ0j(u)

be the associated martingale process for the recurrent event under the alternative hypoth-

esis. One can write the partial score statistic (4.7) under the alternative hypothesis as

follows,

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
vi −

EA(R
(1)
j (β0, u))

EA(R
(0)
j (β0, u))

)
dN̄ij(u)−

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

(
R

(1)
j (β0, u)

R
(0)
j (β0, u)

−
EA(R

(1)
j (β0, u))

EA(R
(0)
j (β0, u))

)
dMij(u)−

m−
1
2

m∑
i=1

J∑
j=1

∫ τ

0

Ȳij(u)

(
R

(1)
j (β0, u)

R
(0)
j (β0, u)

−
EA(R

(1)
j (β0, u))

EA(R
(0)
j (β0, u))

)
eβAvidΛ0j(u). (4.27)

Using similar arguments as for the null hypothesis, one can show the second term converges

in probability to zero as m → ∞ for every β0. We now show the last term of the above

expression converges in probability to zero as m → ∞. From the regularity conditions of

Andersen and Gill (1982), the integrand is locally bounded for every u ∈ (0, τ ]. Note that
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the last term can be written as

J∑
j=1

∫ τ

0

(
R

(1)
j (β0, u)

R
(0)
j (β0, u)

−
EA(R

(1)
j (β0, u))

EA(R
(0)
j (β0, u))

)
m−

1
2

m∑
i=1

Ȳij(u)eβAvidΛ0j(u), (4.28)

where R
(a)
j (β0, u) converges almost surely to EA(R

(a)
j (β0, u)) at each time point u, a = 0, 1.

It follows from the Slutsky’s theorem that the first term of the integrand in (4.28) converges

almost surely to zero as m→∞ at every u. By the central limit theorem,

m−
1
2

m∑
i=1

Ȳij(u)eβAvidΛ0j(u) (4.29)

converges in distribution to a normal random variable at every u with mean µ as dΛ0j(u)P (τi >

u) times

1∑
v=0

P (Zi(u) = j|Zi(0) = 0, vi = v)P (vi = k)eβAv

and the variance

dΛ2
0j(u)P (τi > u)

1∑
v=0

P (Zi(u) = j|Zi(0) = 0, vi = v)P (vi = i)e2βAv − µ2

Then, for every u the integrand in (4.28) converges in probability to zero. Therefore,

it follows from the Lebesgue’s dominated convergence theorem that (4.28) converges in

probability to zero as m→∞.

A similar approached can be used to prove the asymptotic equivalence of the partial

score statistics (4.8) is (4.15) under the null hypothesis and (4.17) under the alternative

hypothesis.

4.8.2 Evaluation of Expectations Under the True Model

The necessary expectations require the evaluation of the probability being in state j at

time t, P (Zi(t) = j|Zi(0) = 0), for the proposed Markov process in Figure 4.1. As an
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example, the calculation of E0(Ȳij(u)eβ0vidΛ0j(u)) in (4.11), is carried out as follows,

E0[E0(Ȳij(u)eβ0vidΛ0j(u)|vi)] = E0[eβ0viP (τi > u)P (Zi(u) = j|Zi(u) = 0, vi)]

= P (τi > u)
1∑
v=0

eβ0vP (Zi(t) = j|Zi(0) = 0, vi = v)P (vi = v) .

The transition probabilities are computed as described in the following section.

4.8.3 Evaluation of the Transition Probability Matrix

The evaluation of expectations under particular models requires the calculation of the

Markov transition probability matrix; for notational convenience we suppress the depen-

dence on i. We consider a finite state space with J + 1 states corresponding to the cumu-

lative number of recurrent events from 0 to J and one absorbing state D for the terminal

event. For 0 ≤ s ≤ t, let P (s, t|v) be the (J + 2) × (J + 2) transition probability matrix

with (k, `) entry

Pk,`(s, t|v) = P (Z(t) = `|Z(s) = k, v) , (4.30)

for ` = k + 1 or D, k = 0, 1, . . . , J . Let Qv(t) denote the transition intensity matrix

for individuals in treatment group v, the elements of which are based on the intensities

λk(t|H(t)) and γk(t|H(t)) defined in Section 4.2.

For a time-homogeneous process adopted at the design stage, let λk(t|H(t)) = λk and

γk(t|H(t)) = γk be the intensities for k − 1 → k and k − 1 → D transitions, respectively.

The transition intensity matrix can then be written simply as Qv. and has (k, `) entry

given by λk for k = 1, . . . , J and ` = k + 1, γk for k = 1, . . . , J and ` = J + 2, −(λk + γk)

for k = ` = 1, . . . , J , and zero otherwise. Under such a time-homogeneous Markov model,

P (s, s+ t) = P (0, t) = P (t) and P (t) = exp(Qvt).

There are several approaches available to compute P (t) for a given transition intensity

matrix Qv. If Qv has J + 2 linearly independent eigenvectors, let A be a matrix of eigen-

vectors, and note that AQvA−1 is a diagonal matrix with the eigenvalues d1, d2, . . . , dJ+2 of
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Qv along its diagonal. Then by the spectral value decomposition (Kalbfleisch and Lawless,

1985),

exp(Qvt) = A diag(ed1t, . . . , edJ+2t)A−1 .

If Qv does not have J + 2 linearly independent eigenvectors, the Jordan canonical form

can be used instead (Cox and Miller, 1965). For some nonsingular matrix B, the Jordan

canonical form of Qv is BQvB−1 = J = diag(J1(d1),J2(d2), . . . ,Jp(dp)) and

Jk(dk) =


dk 1

dk
. . .

. . . 1

dk

 (4.31)

is a nk × nk matrix and n1 + n2 + . . .+ np = J + 2. The matrix exponential exp(Qvt) can

be computed (Horn and Johnson, 1994) as

exp(Qvt) = Bf(J )B−1 = Bf(Jk(dk))B−1,

and in this case f(Jk(dk)) takes the form
edkt dke

dkt . . .
d
nk−1

k edkt

(nk−1)!

edkt
. . .

...
. . . dke

dkt

edkt

 .

Numerically, the Jordan decomposition can be obtained through the MATLAB function

jordan for a given Qv and the construction of (4.31) and hence the transition probability

matrix P (t) can be easily computed in MATLAB. Other methods for computing matrix

exponentials are reviewed in Moler and Van Loan (2003). Another numerically stable

approach is the method of scaling and squaring (Moler and Van Loan, 1978), which has

been employed by MATLAB function expm based on an optimal approach (Higham, 2005).

We used this function in sample size calculations for the trial design in cancer metastatic

to bone in Section 4.6.
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Chapter 5

Future Work

This thesis has been concerned with statistical methods for the design and analysis of clin-

ical trials involving multiple lifetime events. Specific themes include the use of composite

endpoints (Wu and Cook, 2012a), the issue of event dependent censoring in the analysis

of multivariate failure time data using marginal semiparametric methods (Wu and Cook,

2012b), and sample size calculation for trials involving recurrent and terminal events (Wu

and Cook, 2012c).

A number of additional topics for research have been identified in the process of this

research.

5.1 Asymptotic Properties of Estimates of the Cumu-

lative Hazard Function

In Chapter 3 the asymptotic properties and inference procedures for the regression coef-

ficients in the inverse probability of censoring weighted WLW approach were established.

We proved that the usual sandwich-type robust variance estimator can be adopted when

the weight function is estimated consistently and nonparametrically. It will be interesting

to investigate the asymptotic properties of weighted Nelson-Aalen and weighted Breslow
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estimators for the cumulative hazard function, when the weight function is nonparametri-

cally estimated. Since the Cox partial likelihood is not directed at the inference for these

estimators directly, the method in the proof for the regression coefficients cannot be applied

directly. When the weight function is estimated using semi-parametric regression, Robins

(1993) and Robins and Finkelstein (2000) had established the asymptotic properties of

estimators of cumulative hazard function. In the future, we will investigate the asymptotic

properties and inference procedure for the estimation of cumulative hazard function when

the weight function is nonparametrically estimated to see if there are possible simplifica-

tions.

5.2 Accelerated Failure Time Methods

It is of interest to investigate the use of alternative frameworks for modeling treatment

effects in the context of multivariate failure time data. While the Cox model formulation

is the most commonly adopted when assessing intervention effects in clinical trials, semi-

parametric location-scale models can also be used. It would be interesting to extend the

idea of Wei et al. (1989) to deal with marginal accelerated failure time models with in-

verse probability of censoring weights. More flexible models for the censoring times would

also be of interesting, including additive models of the sort developed by Aalen, or hybrid

Cox-Aalen models (Martinussen and Scheike, 2006).

5.3 Event-Dependent Censoring with Missing Covari-

ates in Multivariate Failure Time Data

The WLW approach is well suited to multivariate failure time data, where each patient is at

the risk of several failure types and may experience each of these failure type once. When

there is event-dependent censoring among multivariate failure times, the naive WLW can
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lead to biased estimations. In Chapter 4 we developed an inverse probability of censoring

weighted WLW to account for the event-dependent censoring. This method is developed

for completed observed covariates information. However, missingness in covariates is a

common problem in survival data analysis for epidemiologic studies. It is well known that

using only completed data in analysis may lead to loss of efficiency and generate biased

estimators. There have been several methods proposed in the literature in univariate

survival data analysis (e.g., Qi, Wang and Prentice (2005)). Although, extending these

existing methods to WLW type of multivariate analysis maybe straightforward, it could

be of interest to investigate new methods when there is event-dependent censoring among

the multivariate failure times with missing covariate.
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