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Abstract

The contribution of this thesis is two-fold: an on-chip interconnection architecture designed

specifically for multi-core processors and a tool framework that simplifies the process of

designing a multi-core processor. Both contributions primarily target ASIC fabrication,

though prototyping on an FPGA is also supported. SG-Multi, the on-chip interconnec-

tion architecture, distinguishes itself from other interconnection architectures by empha-

sizing universal adaptability; that is, a primary design goal is to ensure compatibility with

industry-supplied cores originally intended for other architectures. This goal is achieved

through the use of bus adapters and without introducing clock cycle latency. SG-Multi is a

multi-bus architecture that uses slave-side arbitration and supports multiple simultaneous

transactions between independent devices. All transactions are pipelined in two stages, an

address phase and a data phase, and for improved performance slave devices must signal

their status for a given clock cycle at the beginning of that cycle. SG-Multi Designer,

the tool framework which builds systems that use SG-Multi, provides a higher level of

abstraction compared to other competing system-building solutions; the set of components

with which a designer must be concerned is much more limited, and low-level details such

as hardware interface compatibility are removed from active consideration. Experimental

results demonstrate that the hardware cost of using SG-Multi is reasonable compared to

using a processor’s native bus architecture, although the current implementation of arbi-

tration is identifiable as an area for future improvement. It is also shown that SG-Multi

is scalable; the reference systems grow linearly with respect to the number of cores when

tested for ASIC fabrication and slightly sublinearly when tested for FPGA prototyping,

and the maximum achievable clock frequency remains almost constant as the number of

cores grows beyond four. Because the reference systems tested are an accurate reflection

of the types of systems SG-Multi Designer produces, it is concluded that the abstraction

model used by SG-Multi Designer does not over-simplify the design process in a way that

causes excessive performance degradation or increased hardware resource consumption.
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Chapter 1

Introduction

The trend towards increasingly parallel computer systems marks the emergence of new

research problems geared towards overcoming the performance-limiting communication

bottlenecks, challenges not faced by designers of single-core processors [1]. In the simplest

possible design, one would solve the basic logical contention issues and do nothing more,

resulting in a system that performs only marginally better than a uniprocessor system

and consequently wastes a significant amount of computing resources. Such a system

would excel when faced with a set of completely independent tasks but would otherwise

falter. On the other hand, one can envision an ideal parallel computing system, in which

each processing element operates at its own maximum speed, and no processing element

ever encounters communication delays longer than it would if it were the only processing

element in the system. If it were possible to construct this type of system in a manner

that scales to an arbitrary number of processing elements, the hardware architecture goals

of parallel processing research would be achieved. Unfortunately, no such system exists;

current research seeks to optimize parallel computing system hardware architectures to

improve scalability and limit communication overhead.

As multi-core processors become increasingly pervasive [2], greater emphasis is placed

on research towards improving multi-processor system architectures. In order to facilitate

this type of research, it is important to be able to rapidly prototype and evaluate proposed

architecture designs. Accordingly, a closely-related research area is the construction of

tools and platforms capable of assisting with the implementation and verification of parallel

computing architectures. These tools and platforms generally attempt to automate and
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abstract away many of the lower-level details of the system’s implementation so as to enable

the researchers using them to focus on the higher-level design problems.

The research presented in this thesis contributes meaningfully to both of these areas.

The primary goals and motivation are discussed in Section 1.1, and the main research

contributions are explicitly outlined in Section 1.2. Section 1.3 describes the organization

of the remainder of this thesis.

1.1 Goals and Motivation

The primary goal of this work is to create an integrated solution that facilitates the simple

and rapid development of both homogeneous and heterogeneous multi-core processors in

which cores are interconnected in a virtually arbitrary topology. While the processors built

with this solution will be useful in a research setting, a key point of emphasis is ensuring

that they are also specifically suitable for industrial applications.

This research contributes to two closely-related research areas: the design of a multi-

core processor on-chip interconnection architecture and the creation of a tool framework to

accelerate the development of complete systems. While an abundance of existing work ex-

ists in each of these research areas, none fully addresses the problems solved here; previous

work emphasizes theoretical approaches that impose constraints, rendering them unsuitable

beyond a research setting. For instance, proposed multi-core interconnection architectures

generally require customized processing elements specifically tailored to that specific ar-

chitecture, the purpose being to enable them to support the new signalling protocols or

instructions introduced. Unless a vendor such as ARM adopts the proposed architecture

or makes the required customizations, it is impossible for commercial products to be con-

structed that utilize it. In a similar fashion, existing rapid development tool sets and

platforms are designed specifically for the furtherance of research due to their tendency

to impose a particular type of underlying hardware on their users. Industry-designed tool

sets also exist for the purpose of creating products more appropriate for commercial use,

but what ultimately sets this work apart from existing solutions are the emphasis it places

on high-level design and the simplicity of the abstraction model it presents to users.

The motivation for this work is to bridge the gap between multi-core architecture re-

search and practical application. This is mainly achieved by avoiding constraints, re-
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strictions, and assumptions that require infeasible modifications to existing widely-used

hardware components and by building a solution that is separate from its final hard-

ware implementation. In particular, the solution proposed here fully supports existing

industry-produced processor cores and imposes no requirements on the underlying hard-

ware, specifically targeting ASIC (application-specific integrated circuit) implementation

but also supporting FPGAs (field-programmable gate arrays) as research and prototyping

tools.

1.2 Research Contributions

The contribution of this work is two-fold: an on-chip interconnection architecture designed

for parallel computing systems and a tool framework for rapidly constructing multi-core

processors that make use of this architecture. Sections 1.2.1 and 1.2.2 describe each of

these contributions, respectively, in more detail.

1.2.1 On-Chip Interconnection Architecture

The first contribution is SG-Multi, a scalable, general-purpose multi-core interconnection

architecture and signalling protocol. The purpose of SG-Multi is to act as the underlying

architecture within a multi-core processor for connecting processing elements to each other

and to peripheral devices in a scalable, optimized fashion. The intent is to support both

homogeneous and heterogeneous multi-core systems containing individual processor cores

of various sizes and performance levels. In keeping with the goal of being suitable for use by

industry, SG-Multi is designed specifically for use with existing industry-produced proces-

sor cores. Since not all such cores communicate according to the same signalling protocol,

the SG-Multi signalling protocol is, to the greatest extent possible, universally adaptable;

its design is governed by the notion that it must be possible to create adapter components

to convert signals between it and the protocols used by each individual processor core.

At its core, SG-Multi is a multi-bus system that makes use of slave-side arbitration

to allow multiple independent transactions to occur simultaneously. The physical wiring

of a master device to a slave device is fixed at implementation time, but no restrictions

are imposed on the designer; the set of slaves with which a particular master can com-
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municate is architecturally independent of the sets of slaves with which other masters can

communicate. SG-Multi also includes a performance-enhancing feature, known as “snoop-

ing,” which effectively allows a slave device to service multiple incoming requests at once

in some circumstances. While snooping methods are typically utilized for the purposes of

maintaining cache coherency [3], SG-Multi allows them to be used for the completion of

bus transactions.

A system that implements SG-Multi includes, in addition to the processing elements

and peripheral devices themselves, several SG-Multi-specific hardware components. These

components are listed and briefly described in Table 1.1. Chapter 3 provides a more

detailed overview of SG-Multi.

Table 1.1: List and descriptions of SG-Multi core hardware components

Component Description

Master device wrapper Implements the core SG-Multi-specific logic needed to connect
a bus master device to an SG-Multi system.

Slave device wrapper Implements the core SG-Multi-specific logic needed to connect
a slave master device to an SG-Multi system.

Bus adapter Required for bus master devices originally designed to use a
signalling protocol other than SG-Multi. This component sits
between the bus master device and the master device wrapper.

Arbiter Resolves contention between bus master devices when they at-
tempt to communicate simultaneously with a particular slave.
This component is a sub-unit that exists within the slave device
wrapper.

Devices that support SG-Multi are not required to be aware of the existence of or give

any consideration to the actions of other devices in the system. Master devices may be

designed under the assumption that they are the only masters in the system, and similarly

slave devices need not differentiate between masters. All of the logic required to route

transactions correctly and handle contention is incorporated into the master and slave

device wrapper components. Consequently, one of the distinguishing features of SG-Multi

is its ability to create multi-core processors even out of individual cores not designed or

intended for this purpose.
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1.2.2 Multi-core Rapid Development Framework

The second contribution is a tool framework, SG-Multi Designer, that, given the high-level

design of a multi-core processor, produces an SG-Multi implementation of the required

interconnection fabric. An abstraction model serves as the basis for the tool framework,

the sheer simplicity of which is the primary factor that distinguishes the tool framework

from competing solutions. Experimentation will demonstrate the feasibility of providing

an extremely simple abstraction model while neither over-simplifying the design process

nor reducing the quality of the resulting hardware. At an extremely high level, SG-Multi

Designer performs these steps in sequence when a user requests that a specified design be

implemented:

1. Analyze the input design

2. Generate customized versions of each SG-Multi hardware component required to

implement the design

3. Produce a top-level hardware module that connects all other hardware components

according to the topology specified by the input design

SG-Multi Designer is designed to be modular. It consists of one tool for each type

of SG-Multi hardware component, as listed in Table 1.1, modules representing specific

devices that are available for inclusion in designs, and a unifying tool that controls the

entire process and invokes the others. In essence, the lattermost completes steps 1 and 3,

and the individual tools and modules each complete a portion of step 2. A fully-working

processor is produced by combining the generated interconnection logic with the output

of these modules, each of which represents a unit of intellectual property possibly supplied

by a third-party. It is assumed that the user is in possession of the requisite intellectual

property.

Input and output are human-readable to the greatest extent possible. Input designs

are supplied using Extensible Markup Language (XML), and the tools each generate a

Verilog file as output. A graphical front-end application serves as the unifying tool and is

primarily used to simplify the process of creating XML files containing an input design,

and the structure of the XML files is a reflection of the design of the abstraction model.
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1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background in-

formation on heterogeneous multi-core processors and their benefits as well as a detailed

review of existing related work in the domains of research to which this thesis contributes.

In addition to solutions proposed as a result of academic research, the scope of this chap-

ter encompasses industry-produced solutions that are commercially available. Chapter 3

describes SG-Multi at a high level, illustrating how devices in a complete system connect

to one another while avoiding discussion of the lower-level details. This is immediately

followed by Chapter 4, which houses the technical discussion of SG-Multi. It should be

noted that, whether taken individually or as a pair, neither of Chapters 3 and 4 are in-

tended as protocol specifications; rather, they emphasize the architecture as a whole, the

design of the individual components, and the rationale that underlies the signalling pro-

tocol. Chapter 5 shifts the focus from the architecture to the tool suite, outlining each

component separately and demonstrating how they fit together in an integrated package.

Chapter 6 describes and shows the results of experiments that were conducted as a means

of evaluating SG-Multi and, by extension, SG-Multi Designer. Chapter 7 summarizes the

contributions of and the conclusions drawn in this thesis and explores potential future

research directions.

This thesis also includes two appendices containing supporting material. Appendix A

provides a detailed protocol specification for SG-Multi. It is useful primarily as documen-

tation for building devices that make use of SG-Multi. Appendix B defines the information

exchange standards for SG-Multi Designer modules. Its purpose is to provide specifications

on the content and format of the XML files that define the interface for communication

with an SG-Multi Designer module.

6



Chapter 2

Background

Research related to the advancement of parallel processing technology is abundant. Aca-

demic research includes projects designed to accelerate other higher-level research by ab-

stracting away the intricacies involved with building a working multi-core processor. These

works facilitate the rapid prototyping of multi-core processors by greatly simplifying the

design and implementation process, in many ways offering similar functionality to that of

SG-Multi-Designer. The SG-Multi signalling protocol itself lends itself well to compari-

son with competing industry-supplied interconnection architecture solutions, and SG-Multi

Designer can similarly be compared to commercial products that simplify processor and

system design.

This chapter begins by defining and differentiating between two types of multi-core

processors. It then examines, in sequence, related work in each of the areas outlined

previously.

2.1 Heterogeneous Multi-core Processors

A typical consumer-oriented multi-core processor, such as Intel’s Core [4] processor family,

is homogeneous. A defining characteristic of such a processor is that all of the individual

cores are identical in design and performance [5]. By contrast, a heterogeneous multi-core

processor contains individual cores that may vary in characteristics such as size, instruc-

tion set support, raw computational power, and special-purpose hardware optimizations.

Figure 2.1 illustrates the difference between them.
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Figure 2.1: Illustration of the two different types of multi-core processors

The development and advancement of heterogeneous multi-core processors is motivated

by the desire to improve efficiency and reduce power consumption. One approach towards

achieving this involves integrating highly specialized processing elements, often called ac-

celerators, into the design of the processor. Each accelerator is optimized to perform a

small set of tasks more quickly and efficiently than a general-purpose processing element

could, and accordingly the software must be designed to make use of each accelerator for

its intended purpose [6]. As a result, accelerators are dependent on the existence of a

general-purpose processor. The integration of accelerators allows heterogeneous multi-core

processors to be custom-tailored in ways that make the results unsuitable for general-

purpose computations but that greatly benefit the intended area of use. Heterogeneous

multi-core processors designed in this fashion have applications in, for example, the areas

of digital signal processing [7] and wireless communications [8].

Another approach stresses power consumption over performance, the aim being to

reduce the system’s overall power consumption while ensuring the performance penalty is

as negligible as possible. This approach combines more powerful general-purpose processor

cores with a less powerful—and less power-hungry—general-purpose processor core, where
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all the cores support the same instruction set [9]. The assignment of tasks to processor cores

happens on-the-fly. In the absence of tasks that demand high amounts of computational

power, the more powerful cores are disabled, leaving functions such as those related to

system management to be executed on the less powerful core. This type of heterogeneous

multi-core processor has mainly seen applications in the design of processors destined

for consumer mobile devices, such as NVIDIA’s Tegra [10] series of mobile application

processors.

2.2 Rapid Prototyping of Multi-core Processors

Rapid prototyping platforms greatly accelerate the process of constructing and implement-

ing a working version of a multi-core processor. Compared to pure software simulation of

a logic design, it has been shown that a rapid prototyping platform can realistically model

the design and achieve 200-times speedup [11]. From a design process standpoint, no con-

crete figures are available as to the amount of time saved, but anecdotal evidence suggests

it is possible to reduce bring-up and verification time from months to weeks [12].

Research-oriented platforms are designed to support experimentation with novel archi-

tectures and applications while also offering the performance benefits of rapid prototyping.

Instead of relying on software simulators or fabricating real hardware, researchers can

implement their designs on these reconfigurable platforms. Whereas commercial-grade

platforms emphasize design verification and can therefore be used for general-purpose de-

signs including those not related to multi-core processors, research-oriented platforms tend

to be more special-purpose in nature. The rapid prototyping platforms presented in this

section are all either designed for multi-core research or offered by industry.

A common feature of many rapid prototyping platforms is their reliance, at least in part,

on FPGAs. A particularly well-known rapid prototyping platform, known as Research

Accelerator for Multiple Processors (RAMP) [13], is entirely based on FPGAs. RAMP

is designed to emulate multiprocessor systems in a cycle-accurate manner. It offers its

own description language—RAMP Description Language (RDL)—as a way of recording a

system’s design such that it can be reconstructed in a way that provides cycle-for-cycle

performance equivalence with the original system. In keeping with its focus on emulation,

RAMP supports modeling different clock domains by allowing, on a per-component basis,
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multiple physical clock cycles to correspond to a single logical clock cycle. For instance,

a particular component may be clocked such that each physical clock cycle advances its

emulated clock by one cycle, whereas a different component may require two or three

physical clock cycles to advance its emulated clock by a single cycle. As with SG-Multi,

RAMP supports the use of existing industry-supplied processor cores.

A more specialized rapid prototyping platform is the Flexible Architecture for Re-

search Machine (FARM) [14]. Existing prototype systems that use RAMP, such as RAMP

White [13] and RAMP Blue [15], are homogeneous multi-core processors, though RAMP

does not specifically impose this requirement. FARM, on the other hand, is designed with

heterogeneous multi-core processor applications in mind and, also unlike RAMP, does

not implement all hardware components in FPGAs. The goal of FARM is to prototype

multiprocessor systems consisting of multiple high-performance general-purpose processors

connected to an FPGA that implements a hardware accelerator, where the FPGA includes

a cache and participates in the same system-wide cache coherency protocols as do the

general-purpose processors. FARM is less flexible than RAMP in that it specifies the over-

all topology of the system and limits reconfigurability to the FPGA part of the system,

keeping the rest fixed. System performance would also be less indicative of that of real

hardware, since timing behaviour is quite different when real processors interact with an

FPGA than when real processors interact with a real accelerator.

A somewhat older rapid prototyping platform, which to a certain extent provides the

basis for FARM [14], is the Rapid Prototyping Engine for Multiprocessors (RPM) [16].

Whereas both RAMP and FARM make use of FPGAs for implementing at least some of

the processors in the system, the defining characteristic of RPM is that the processors are

real off-the-shelf hardware components while the FPGAs are used for the caches, memory

controllers, and other support elements. RPM fixes the processors and interconnection

topology while allowing FPGA-controlled components to be customized; it is not a truly

general-purpose rapid prototyping platform, but it does allow basic experimentation with,

for example, different memory hierarchy configurations.

The rapid prototyping platforms described thus far are useful because they greatly ac-

celerate the process of constructing a multiprocessor system that can be used for research

activities such as experimentation. They do not, however, produce production-ready sys-

tems suitable for chip fabrication. Cadence makes available an FPGA-based commercial
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rapid prototyping platform designed specifically for industrial use [17]. While such a system

could theoretically be used for research, it is intended to accelerate the bring-up process for

new system-on-chip designs that will ultimately be fabricated and sold commercially. Ca-

dence provides a complete and comprehensive solution that encompasses all steps occurring

after the chip’s logic has been designed: compilation, partitioning across multiple FPGAs,

insertion and configuration of debugging probes, and execution. Unlike the previously-

introduced rapid prototyping platforms, Cadence’s solution is not specifically optimized

for multi-core processor design and can therefore be used in a more general-purpose fash-

ion. However, it targets the verification portion of the design process, whereas the other

rapid prototyping platforms target the entire process, from high-level design to verification.

In the rapid prototyping platform space, SG-Multi Designer fits between the research

solutions (RAMP, FARM, and RPM) and the commercial one (Cadence), as represented

visually in Figure 2.2. It produces complete systems that, when connected to processor

cores and peripheral devices, can be downloaded to FPGAs and used either for research

or for design verification. It is also the only of the systems discussed that focuses on the

“high-level design” stage, as opposed to the “verification” stage, of the hardware design

process.

Designs that make use of RAMP, FARM, or RPM are custom-tailored to those specific

systems and require the hardware upon which those systems are built, whereas SG-Multi

Designer imposes no hardware requirements. Similarly, unlike Cadence’s platform, SG-

Multi is not tied to a specific set of hardware and software tools; rather, users are free to

select hardware and software vendors of their choice when implementing their SG-Multi

system.

2.3 Existing Related Interconnection Architectures

Several existing interconnection architectures share design features with SG-Multi. They

vary in their intended uses, particularly in terms of flexibility, scalability, and suitability

for use as the basis of a multi-core processor. SG-Multi is motivated by existing signalling

protocols but still contains features to distinguish itself; some of the most comparable

existing work, all of which comes from industry, includes Altera’s Avalon-MM, ARM’s

AHB-Lite, and IBM’s CoreConnect. After discussing networks-on-chip, a modern but
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Figure 2.2: Map of application domains of various rapid prototyping platforms

indirectly related interconnection architecture paradigm, this section examines each of

these interconnection architectures in sequence.

2.3.1 Networks-on-Chip

Unlike traditional system interconnection architectures which emphasize point-to-point

connections between devices, a network-on-chip (NoC) shifts the interconnection architec-

ture paradigm towards that of distributed, networked systems. The distinguishing char-

acteristic of an NoC is that it employs packet-switching techniques to move data between

components [18]. NoC-type architectures fall into a tangential but unrelated research

area and strive to bring the scalability and performance characteristics inherent in large

networked systems to the level of a single chip. Research progression typically involves

overcoming problems related to implementation complexity of networking protocols and

algorithms, which leads to power and performance penalties.

NoCs currently have a wide range of applications, many of which are research-oriented
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and target FPGA devices. For example, an NoC exploration study is documented in [19],

with specific emphasis on FPGAs. There are, however, also commercial NoC applications;

Altera’s latest system construction tool, Qsys, is based on a NoC-type architecture [20].

SG-Multi more closely resembles a traditional system interconnection architecture than it

does an NoC and therefore is not faced with the same research challenges that an NoC

designer must overcome.

2.3.2 Altera Avalon

Altera makes available several different variants of its Avalon interface specifications, in-

cluding Avalon-ST for streaming and Avalon-MM for typical master/slave memory-mapped

configurations [21]. Because SG-Multi is based on memory mapping, the latter is more

directly relevant to it.

Avalon-MM’s interconnection architecture has traditionally been based on a design

similar to that of SG-Multi, in which independent transactions can proceed simultaneously.

This performance-enhancing ability distinguishes Avalon-MM from single-bus architectures

with centralized arbitration schemes, which permit only a single transaction at any given

time. Support for simultaneous transactions is achieved by connecting each master directly

to each slave, using multiplexors to ensure signals are routed between the correct devices,

and performing slave-level arbitration instead of system-level arbitration [22]. Figure 2.3,

adapted from [22], provides a simple example of a two-master system based on Avalon-

MM; while the architecture supports the use of a tri-state bridge for communication with

off-chip slave devices, only the on-chip interconnection portion is shown. Further details

can be found in [21] and [22]. Because arbiters are inserted only as needed at the slave

ports, it is possible for the processor to communicate with SRAM while the DMA controller

communicates simultaneously with SDRAM.

Table 2.1 lists some of the most common Avalon-MM signals used in basic transac-

tions [21]. Basic transactions in Avalon-MM take exactly one clock cycle each, but slave

devices not capable of responding to requests in the same cycle as they are issued have the

ability to extend the transaction to multiple cycles. This can be accomplished by setting

a fixed wait time as a property of the slave or by using the waitrequest signal, which

allows for a variable wait time. Pipelined transactions are also supported, causing each

transaction to complete in at least two cycles and allowing each slave to have a variable
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Figure 2.3: Two-master example of a system that uses Avalon-MM

number of outstanding transaction requests (the actual number is a property of an indi-

vidual slave). A pipelined transaction is effectively split into two distinct phases: address

phase, the first phase during which address and control information is supplied to the slave,

and data phase, the second phase during which the slave processes the request. In pipelined

transactions, both waitrequest and readdatavalid are used to indicate whether or not

the slave has finished its processing, the former being used as in the unpipelined case to

indicate delays and the latter being used specifically for read transactions [21].

Figure 2.4 shows an example of a set of simple unpipelined Avalon-MM transactions.

The waitrequest signal is the only means by which a slave can extend a transaction

beyond a single clock cycle, and a slave wishing to assert it is required to do so prior to
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Table 2.1: List and descriptions of common Avalon-MM signals

Signal Name Description

clk Clock signal used to drive transactions
address Memory address of interest, supplied by master

byteenable Mask to specify which of the bytes within the data bus are used in
the current transaction

read Specifies that the current transaction request is for the slave to read
data and supply it to the master

write Specifies that the current transaction request is for the slave to accept
data from the master

readdata Data resulting from a read operation, supplied by slave
writedata Data to be written during a write operation, supplied by master

waitrequest Indicates whether or not the slave needs more cycles to complete the
current transaction

readdatavalid For slaves that support pipelined transactions, indicates whether or
not the slave has completed a read transaction

the end of the clock cycle in which it receives its original transaction request [21].

Pipelined Avalon-MM transactions make use of the same set of signals, with the ad-

dition of read transactions which additionally use readdatavalid. Because pipelined

Avalon-MM transactions are similar to standard transactions in the ARM AHB-Lite in-

terconnection architecture, which is introduced in Section 2.3.3, an example is not shown

here.

SG-Multi shares many design features with this version of Avalon-MM, including the

use of slave-side arbitration, the pipelining of transactions, and the requirement that all

slaves signal their wait requests immediately. Unlike Avalon-MM, however, it does not

support unpipelined transactions, nor does it allow slaves to specify a fixed number of wait

states; all transactions are separated into phases, and all slaves must make use of wait

request signalling. Whereas Avalon-MM is designed primarily to be integrated with Altera

software and used with its other intellectual property products, such as its NIOS II family

of soft-core processors [23], SG-Multi’s design emphasizes universal adaptability, allowing

it to connect without loss of performance with master devices designed for other signalling

protocols, including Altera-MM.
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Figure 2.4: Examples of unpipelined Avalon-MM read and write transactions
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2.3.3 ARM AHB-Lite

AHB-Lite is part of version 3 of ARM’s Advanced Microcontroller Bus Architecture (AMBA)

set of interconnection architecture standards [24]. Originally published in 2006, the AHB-

Lite protocol specifications continue to be implemented even in some of ARM’s more mod-

ern processors, particularly in those designed for simplicity and low power consumption,

such as the ARM Cortex-M0 [25].

AHB-Lite is a stripped-down, simplified version of ARM’s Advanced High-performance

Bus (AHB) architecture, which was part of version 2 of AMBA [26]. AHB was originally

designed to support multiple bus masters in a shared-bus structure using a central arbiter to

determine which master controls the bus at any given time. The most significant difference

between AHB and AHB-Lite is that the latter removes all of the multi-master support

from AHB and operates on the premise that there is only one bus master in the system.

A description of the most common AHB-Lite signals is provided in Table 2.2 [24].

Table 2.2: List and descriptions of common AHB-Lite signals

Signal Name Description

HCLK Clock signal used to drive transactions
HRESETn Active-low system-wide reset signal
HADDR Memory address of interest, supplied by master
HSEL Activation signal, sent from decoder to slave based on HADDR

HSIZE Specifies the size of the current transaction, such as byte, word, or
double-word

HWRITE Specifies whether the current transaction is for reading (low) or writing
(high)

HTRANS Specifies the type of the current transaction
HREADY Slave response signal used to indicate that the requested transaction is

complete
HRESP Slave response signal used to indicate that the slave encountered an

error
HRDATA Data resulting from a read operation, supplied by slave
HWDATA Data to be written during a write operation, supplied by master

In addition to master and slave components, AHB-Lite requires the use of a system-

wide address decoder and a slave response multiplexor. Figure 2.5, adapted from [24],
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shows a typical AHB-Lite system, including the decoder and the multiplexor components;

for simplicity, some of the signals in Table 2.2 are omitted. The decoder generates exactly

one HSEL signal based on HADDR, which in turn activates exactly one slave to respond to

the transaction request. This is necessary because master-to-slave signals are broadcast to

all slaves. The decoder also generates the multiplexor’s selection signal. The multiplexor’s

purpose is to route the slave response signals from the active slave to the master.

Master

HRDATA_1
HREADY_1/HRESP_1

HRDATA_2
HREADY_2/HRESP_2

HRDATA_3
HREADY_3/HRESP_3HRDATA

HREADY/HRESP
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M
u

lt
ip

le
xo

r

Slave 3

Slave 2

Slave 1
Decoder

Figure 2.5: Example of a typical AHB-Lite system

All AHB-Lite bus transactions are pipelined; they are separated into two stages, the

first being the address phase and the second being the data phase. Slaves use the HREADY

signal to extend a data phase beyond just one cycle, which has the effect of extending

the address phase of the next transaction. Figure 2.6 shows two back-to-back AHB-Lite

transactions, the first a write with no wait states and the second a read with one wait

state.
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Figure 2.6: Two simple AHB-Lite transactions, one with a wait state

AHB-Lite also allows slaves to signal errors in the event that a transaction cannot be

completed for some reason. A two-cycle error response is required, making use of both

HREADY and HRESP. Figure 2.7 illustrates the error signalling functionality of AHB-Lite.

Errors are signalled over two cycles in the data phase; in both cycles HRESP is held low,

but the slave must hold HREADY low for the first cycle, effectively inserting a wait state.

The SG-Multi signalling protocol is based loosely on that of AHB-Lite; a comparison of

transaction timing diagrams between AHB-Lite and SG-Multi would reveal a general simi-

larity in terms of how they proceed. For instance, all SG-Multi transactions are pipelined,

divided into the same address and data phases used in AHB-Lite. Because the system

architecture of SG-Multi intrinsically incorporates some of the less-used AHB-Lite signal

functionality, such as that offered by the most significant bit of HPROT [24], equivalent
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Figure 2.7: Illustration of AHB-Lite error signalling functionality

SG-Multi signals do not exist. Other SG-Multi signals, such as the equivalent of HREADY,

have been modified for performance optimization purposes.

AHB-Lite can be extended to multiple levels, allowing multiple masters to exist in a

single system. Multi-level AHB, an extension to AHB, is not a protocol specification in-and-

of itself; rather, it is a set of ideas for extending AHB to more advanced configurations that

overcome the limitations of a shared-bus system with centralized arbitration. One of the

primary goals is to allow multiple masters to access independent slaves simultaneously [27].

The result is a system, based on the AHB and AHB-Lite protocols, that uses slave-side

arbitration to handle contention at each slave but otherwise resembles an Avalon-MM

system and, as a result, is also similar in overall design to an SG-Multi system. SG-Multi

differentiates itself by its modified signalling protocol in ways that improve performance

and facilitate the creation of bus adapters to enable support for a wide range of master

devices, not just those that use AHB or AHB-Lite.

2.3.4 IBM CoreConnect

IBM makes available three architectures as part of its CoreConnect system: Processor Local

Bus (PLB), On-chip Peripheral Bus (OPB), and Device Control Register (DCR) bus. PLB

attaches directly to the processor cores and facilitates communication with slaves. OPB is
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intended for low-speed peripheral devices, which communicate with PLB devices through

bridges. DCR supports transactions involving accesses to control and status registers on

the devices in the system; its use allows trivial administrative tasks such as these to be

offloaded from PLB [28]. Of primary interest is PLB since it is the bus that ultimately

connects directly to processor cores.

CoreConnect is by no means a new architecture. It is mostly used within IBM’s own

processor offerings, typically based on the POWER architecture, and until recently has

been the architecture of choice for Xilinx’s MicroBlaze soft-core processors [29]. Figure 2.8

shows a simplified layout of a system that uses CoreConnect. Typically such a system would

include OPB bridges and DCR connections, but these have been omitted to emphasize the

PLB portion.

PLB
Arbiter

Processor Local Bus

Master 2
Slave 1

Slave 2Slave 3Slave 4

Master 1

Figure 2.8: Simple example of a system based on IBM CoreConnect PLB

The CoreConnect architecture as a whole is quite different from those of Avalon and

AHB-Lite, primarily due to its reliance on central arbitration, which effectively prohibits

multiple transactions from occurring simultaneously between independent masters and

slaves. In this regard Avalon, AHB-Lite, and SG-Multi all offer greater flexibility and, when

used in a situation that involves multiple master devices, greater potential performance.
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A key observation, however, is the fact that a CoreConnect master device may perform

uninhibited when there are no other master devices in the system. Consequently, some

of CoreConnect’s inherent limitations could be overcome through the creation of a bus

adapter device to allow a CoreConnect master to communicate with other devices on a

system such as SG-Multi. A bridge for connecting AHB-compliant slaves to a CoreConnect

system already exists [30], which demonstrates the feasibility of such an endeavour.

As CoreConnect is a mature architecture by comparison to SG-Multi, it supports nu-

merous advanced features not currently supported by SG-Multi, such as the masking of

bytes to allow unaligned or odd-sized transfers and parity protection to ensure transfer in-

tegrity. These features are discussed in [28] and are beyond the scope of this thesis. While

not of particular interest in the context of a comparison to SG-Multi, the DCR bus also

forms an important part of a CoreConnect system; the AHB bridge includes appropriate

DCR functionality [30], and any SG-Multi bus adapter for CoreConnect would similarly

need to do so.

2.4 Existing Related System Construction Tools

SG-Multi Designer provides the functionality required to construct a complete SG-Multi

system while presenting its user with a high level of abstraction to simplify the process of

doing so. Competing system construction tools of various forms also exist to assist a de-

signer wishing to construct other types of systems. Common functionality shared by many

system construction tools includes the ability to generate an interconnection architecture,

instantiate it, and connect all system modules to it, though many tools provide additional

functionality such as the customization of individual devices in the system. While academic

solutions exist to provide some of this functionality, such as [31], the most complete—and

therefore directly comparable—solutions all come from industry, examples of which in-

clude Altera Qsys (formerly SoPC Builder), Xilinx Platform Studio, and Tensilica Xtensa

Processor Developer’s Toolkit. Each of these will be examined in sequence.
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2.4.1 Altera Qsys and SoPC Builder

Altera provides a system integration tool along with its hardware design software suite,

Quartus II [32]. Both Qsys and SoPC Builder provide similar functionality, and both

support Altera’s intellectual property modules, known as “Megafunctions.” Qsys was

introduced in recent versions of Quartus II as the successor of SoPC Builder. Both tools rely

on the same Avalon signalling interfaces described in Section 2.3.2, but SoPC Builder relies

on an underlying architecture as described in that section, whereas the Qsys interconnect

represents a shift to an FPGA-optimized network-on-chip [20].

The interfaces presented to the user are similar in both Qsys and SoPC Builder. As is

the case with SG-Multi Designer, users are able to add devices to and remove devices from

a design, specify connections between devices, and edit an individual device’s properties.

Compared to SG-Multi Designer, the level of abstraction is lower in Altera’s tools; details

of the underlying Avalon interfaces are exposed to the user, such as through timing dia-

grams [32], and Altera’s abstraction model only supports devices that make use of these

Avalon interfaces. While it is possible to add non-Avalon devices to the system, a user

must add the requisite bridge components manually.

Altera’s NIOS II family of soft core processors is a particularly common example of a

device that supports the Avalon interface [23]. A designer who wishes to build a system

containing NIOS II processors typically uses Qsys or SoPC Builder to do so [33]. While

these tools support Megafunctions beyond those supplied by Altera and can work with

other types of processors, the emphasis of these tools is building systems that use NIOS II

processors. Furthermore, during the design process a user is asked to pick a target Altera

device, and the system compilation process may optimize the output for that particular

device. Hence, Qsys and SoPC Builder primarily target Altera devices for implementing

the output hardware. This is unlike SG-Multi Designer, which is technology-independent

and vendor-agnostic. The underlying architecture is designed specifically to support in-

tellectual property modules from different vendors, and SG-Multi Designer provides the

same interface and level of abstraction for all of them. Users are also not asked to select a

target device or technology, and the output is pure HDL code which can be compiled by

virtually any set of tools.

23



2.4.2 Xilinx Platform Studio

Xilinx offers a system construction tool similar to those offered by Altera, known as Xil-

inx Platform Studio [34]. The supported underlying architectures are IBM CoreConnect

PLB [28] and ARM Advanced Extensible Interface (AXI) [35], allowing designers to create

systems with not only Xilinx MicroBlaze soft core processors [29] but also numerous other

industry-supplied intellectual property cores. Many higher-end processors, including the

most recent revisions of MicroBlaze and the latest ARM processors, support AXI, greatly

extending the scope of applicability for designs created in Platform Studio compared to

designs created in Altera Qsys or SoPC Builder.

Platform Studio offers a similar level of abstraction to that of Altera Qsys and SoPC

Builder. Users are able to add, remove, connect, disconnect, and otherwise customize

devices in their system designs. Unlike SG-Multi Designer, however, the underlying inter-

faces remain a concern; users must manually add any bridges to the system should they

wish to add a device that does not support AXI or CoreConnect PLB, and users are also

required to differentiate between systems and components based on one architecture versus

the other.

Xilinx markets Platform Studio for use specifically with its FPGA devices [34]. Al-

though output is available in HDL form, the intention is for users to compile this HDL

using Xilinx’s tools and download the output to a Xilinx FPGA. As with Altera, Xilinx

provides this tool to support its own products, whereas SG-Multi Designer separates hard-

ware design from target implementation and offers a more flexible approach not tied to a

specific vendor.

2.4.3 Tensilica Xtensa Processor Developer’s Toolkit

Tensilica’s system construction tool, known as Xtensa Processor Developer’s Toolkit [36],

emphasizes the creation of complete system solutions, including both hardware and soft-

ware, based on its family of Xtensa processors. Unlike both Altera and Xilinx, whose tools

primarily target their own respective FPGA devices, Tensilica’s solution provides output

appropriate for fabrication as an ASIC.

Xtensa processors are highly-customizable cores intended for a wide variety of applica-

tions, the goal being to enable hardware designers to produce application-specific Xtensa-
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based systems [37]. The primary function of the Xtensa Processor Developer’s Toolkit

is to facilitate the customization of these Xtensa processors; configuration options range

from the inclusion or exclusion of particular function units to using Tensilica’s Instruc-

tion Extension (TIE) language to define new instructions [38]. To accommodate the large

hardware variability between individual designs, including potential instruction set differ-

ences, Xtensa Processor Developer’s Toolkit includes a customized software development

toolchain in its output.

Xtensa Processor Developer’s Toolkit targets Data Processing Units (DPU) in systems

that consist of processors and executable code [36]. As a result, the abstraction model

it employs is geared towards microarchitecture design and software development; there

is no need to consider the interconnections between masters and slaves. Thus, instead of

focussing on the interconnection details, a hardware designer customizes individual proces-

sor cores, specifies the memory map layout for each core included in the system, programs

extensions to the instruction set, and develops the software to be executed. The focus of

Xtensa Processor Developer’s Toolkit is very different from that of SG-Multi Designer; in

the case of the latter, while DPUs for use in processor-only systems are supported, the

application domain is wider due to the inclusion of slaves as peripherals and the primary

emphasis being on specifying the interconnections between devices. Additionally, Xtensa

Processor Developer’s Toolkit is only capable of producing systems based on the Xtensa

architecture, whereas SG-Multi Designer is less restrictive in that it supports hardware

from a wide variety of vendors.
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Chapter 3

System Overview

The SG-Multi architecture is specifically geared towards accelerating communication be-

tween devices in a multi-core processor. Simultaneous inter-device communication is made

possible through the use of direct master-slave connections and slave-side arbitration. How-

ever, there is no requirement that all masters be connected to all slaves in a fully-connected

fashion; the set of slaves with which a particular master can communicate directly is ar-

chitecturally independent of the sets of slaves to which other masters are connected.

The purpose of this chapter is to present a high-level overview of an SG-Multi system;

lower-level signalling protocol details are left for Chapter 4. This chapter begins by illus-

trating the composition of an entire SG-Multi system, subsequently examining each part

individually.

3.1 High-Level Description

An SG-Multi system is built from a combination of the components listed in Table 1.1 and

actual devices. A master device initiates transactions and issues commands, whereas a

slave device provides service. Master and slave device wrappers, respectively, provide the

SG-Multi-specific functionality needed to connect them to the SG-Multi interconnection

fabric. In keeping with SG-Multi’s design goal of universal adaptability, bus adapters

facilitate communication with master devices originally not designed to comply with the

SG-Multi protocol specification. Arbiters are required at each slave to which multiple

master devices connect. These devices resolve any contention issues that arise between
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masters competing for simultaneous access to the same slave.

Individual devices in an SG-Multi are themselves designed with no knowledge of or

consideration for the configuration of the system or even the fact that other devices exist

within it. For instance, a processor core that communicates with an SG-Multi system

is expected to assume itself to be the only master in the system and therefore make no

attempt to synchronize accesses with other master devices. Similarly, a memory controller

slave device need not identify the master device making a particular request. The hard-

ware logic that enables devices configured in this manner to cooperate with one another

is encapsulated separately in the master and slave device wrappers. A device wrapper

provides all of the logic required to route transaction requests and responses as well as

resolve contention. Figure 3.1 illustrates the separation between SG-Multi device and SG-

Multi device wrapper. Separate wrappers exist for master devices and slave devices, each

offering functionality specific to the type of device. Arbiters are enclosed within the slave

wrapper component, thus achieving contention resolution without requiring slave devices

to be aware of this process. For ease of illustration, shapes and colours are assigned to

each component of the system, and these general notation conventions will be adopted for

the remainder of this thesis.

Master 
Device

Slave
Device

SG-Multi

Fabric

Master

Wrapper

Slave Wrapper

Arbiters

...

Figure 3.1: Overview of an SG-Multi system, illustrating the role of device wrappers
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In addition to the components shown, a bus adapter might be present if it is a functional

dependency for a particular master device. A bus adapter itself merely translates signals

from one protocol to another; when considering a master device that requires a bus adapter,

the bus adapter and master device are considered inseparably coupled together. Therefore,

a master device that requires a bus adapter also requires a wrapper. Figure 3.2 provides a

visual representation of an example SG-Multi system, in the same style as Figure 3.1, but

this time showing the role of the bus adapter.

SG-Multi

Fabric

Master

Wrapper

Bus
Adapter

Master
Device

Figure 3.2: Overview of an SG-Multi system, illustrating the role of bus adapters

3.2 SG-Multi Device Wrappers

Two types of device wrappers exist in an SG-Multi system: one for master devices and one

for slave devices. Both wrappers ensure signal timing complies with the SG-Multi protocol

specifications, but each wrapper additionally performs functions appropriate for the type

of device.

At a very high-level, a master device wrapper performs two tasks: transaction routing

and snooping. Based on the input supplied by the master device, the wrapper identifies the

slave with which to communicate and ensures both that the transaction request reaches
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that slave and that the master device receives the slave’s response. SG-Multi snooping

emulates a successful transaction when another master completes a sufficiently similar

transaction with the same slave. This is a performance-enhancing technique that can only

be completed in very specific circumstances but, when possible, allows multiple masters to

complete transactions with the same slave simultaneously. Figure 3.3 shows the high-level

functionality of a master device wrapper for a master device connected to three slaves.

Slave device wrappers have a narrower scope of responsibilities. The primary purpose

of a slave device wrapper is contention resolution through arbitration, though as a result

transaction routing also becomes important. For slaves connected to multiple master de-

vices, arbitration is the first step towards initiating a transaction; slave wrappers use the

arbitration result to determine the master device from which transaction input should be

accepted. Figure 3.4 illustrates the high-level functionality of a slave device wrapper for a

slave connected to three masters.

Device wrappers form the core elements of the SG-Multi interconnection architecture,

implementing all of the specific SG-Multi functionality that allows complete systems to be

designed and built. They offer no functionality beyond what has been described, and the

connections between device wrappers are simple wires, but in essence they comprise the

SG-Multi interconnection fabric itself.

3.3 SG-Multi Arbiters

Arbiters are contained within slave device wrappers, the number per wrapper being deter-

mined by the number of master devices that connect to that particular slave. Each arbiter

is a purely combinational circuit that connects both to a series of arbitration-specific com-

mon wires supplied by the slave wrapper and to “request” and “grant” lines specific to

the particular master associated with that arbiter. While SG-Multi does not inherently

restrict the arbitration scheme, all arbiter units within the slave wrapper must implement

the same scheme. A reference arbiter, integrated into SG-Multi Designer and used to

capture experimental results, employs a combination of static and dynamic priority. Each

master is assigned a static priority level at design time. Dynamic priority is adjusted based

on the number of times a particular master has lost arbitration, reset when that master

wins and incremented otherwise up to a configurable but pre-determined maximum. The

29



Master Request
Signals

Slave Response
Signals Address

Encoded

0

1

0

1

0

1

Slave
Select

0

0

0

B
u

s R
eq

u
est

O
n

e-h
o

t

Slave 1

Master

Slave 2

Slave 3

Figure 3.3: Hardware components that encapsulate a master device in SG-Multi
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Figure 3.4: Hardware components that encapsulate a slave device in SG-Multi

31



winner is the master with the greatest level of dynamic priority; static priority level is used

to resolve cases in which multiple competing masters are tied.

The number of static priority levels depends on the number of masters connected to a

particular slave, but the number of dynamic priority levels is a design-time configurable

parameter. If all connected masters wish to communicate with the slave all the time, then

the arbitration scheme essentially becomes round-robin. The opposite can theoretically

be achieved by setting the number of dynamic priority levels to 0, which implements an

arbitration scheme that selects winners according to static priority levels.
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Chapter 4

Architecture Design

This chapter describes SG-Multi’s design in detail, including aspects of the signalling pro-

tocol and the hardware that implements the SG-Multi interconnection architecture. This

includes the design of the signalling protocol itself, master device wrappers, slave device

wrappers, and arbiters. Particular emphasis is placed on showing how the design decisions

made contribute to the achievement of SG-Multi’s design goals and the implementation

SG-Multi-specific features.

Appendix A contains a complete protocol specification for SG-Multi. A basic familiarity

with it is recommended, as this chapter does not provide the same level of protocol-related

detail.

4.1 Basic Signal Definitions

Devices in an SG-Multi system communicate according to SG-Multi’s signalling protocol.

The interfaces of interest to an SG-Multi hardware device designer sit between the master

and slave devices and their respective wrappers. Other signals are contained entirely within

the interconnection fabric and are not exposed to any devices. SG-Multi also defines a

small number of global signals, connected to each component in the system, including both

wrappers and their associated devices. The subsections that follow list and briefly explain

the purpose of each SG-Multi signal. Since reference system design and implementation

made extensive use of the ARM Cortex-M0 processor [25], as detailed in Chapter 6, signal

names and purposes are somewhat similar to those used in AHB-Lite [24].
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4.1.1 Global Signals

There are two global signals in SG-Multi, as listed in Table 4.1.

Table 4.1: List and descriptions of global SG-Multi signals

Signal Name Description

SGCLK Clock signal used to drive transactions
SGRESETn Active-low reset signal

All devices in an SG-Multi system share a common clock signal; thus, SG-Multi systems

are completely synchronous by design. Reset signalling is active-low and asynchronous,

designed to facilitate system-wide reset functionality which would typically happen on

initial power-up and in limited circumstances thereafter, perhaps in response to a user

request.

4.1.2 Master Interface Signals

Communication between a master device and its associated device wrapper is governed by

the master interface specification. From a master device’s perspective, incoming signals

are responses from slaves, whereas outgoing signals form part of commands issued. The

master interface signals are listed in Table 4.2.

Because master devices have no knowledge of or concern for the other devices in the

system, all transactions must begin with the assertion of SGREQ and cannot proceed until

the wrapper asserts SGGRANT in response. This process of arbitration must occur even if

the selected slave device is connected exclusively to a particular master device, although

in this case SGGRANT would be asserted almost immediately in response to SGREQ.

4.1.3 Slave Interface Signals

Table 4.3 lists the SG-Multi signals that exist at the slave interface. Many of the master

interface signals are also present at the slave interface, though with opposite directionality.

While most of the master interface signals are also present at the slave interface, there

are some important differences. First and most importantly, the slave interface lacks SGREQ

and SGGRANT. This is because the slave does perform any arbitration on its own. All of
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Table 4.2: List and descriptions of SG-Multi master interface signals

Signal Name Direction Description

SGADDR Outgoing Memory address of interest
SGSIZE Outgoing Specifies the size of the current transaction
SGWnR Outgoing Specifies whether the current transaction is for reading

(low) or writing (high)
SGRDATA Incoming Data resulting from a read operation
SGWDATA Outgoing Data to be written during a write operation
SGWAIT Incoming Indicates that more time is required to complete the cur-

rent transaction
SGERROR Incoming Indicates that the slave encountered an error while pro-

cessing the current transaction
SGREQ Outgoing Indicates that a master device wishes to start a transac-

tion
SGGRANT Incoming Indicates that the master device has been granted permis-

sion to start a transaction

Table 4.3: List and descriptions of SG-Multi slave interface signals

Signal Name Direction Description

SGACTIVATE Incoming Activation signal, asserted when a transaction request in-
volves a particular slave

SGADDR Incoming Memory address of interest
SGSIZE Incoming Specifies the size of the current transaction
SGWnR Incoming Specifies whether the current transaction is for reading

(low) or writing (high)
SGRDATA Outgoing Data resulting from a read operation
SGWDATA Incoming Data to be written during a write operation
SGSNOOP Outgoing Indicates that the transaction currently underway sup-

ports bus snooping
SGWAIT Outgoing Indicates that more time is required to complete the cur-

rent transaction
SGERROR Outgoing Indicates that the slave encountered an error while pro-

cessing the current transaction
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the arbitration logic is encapsulated within the slave device wrapper, which simplifies the

design of a slave device by allowing the hardware to be structured as though the slave will

only accept commands from a single master. Second, SGACTIVATE and SGSNOOP are both

present at the slave interface but not at the master interface. The former is produced by

the slave device wrapper and the latter is consumed by master device wrappers, so the

functionality associated with them is of no concern to individual master devices.

4.1.4 Internal Signals

Communication between master and slave device wrappers primarily occurs using the

same signals defined at the interfaces, with the device wrappers merely forwarding signals

received from the attached device to the other wrapper. However, SG-Multi’s performance-

enhancing bus snooping feature makes use of two additional signals. Since the device

wrappers implement snooping and do not expose the details of this functionality to the

devices at either end of a transaction, these signals do not form part of the SG-Multi

signalling protocol specification and are considered internal to the interconnection fabric.

They are listed in Table 4.4.

Table 4.4: List and descriptions of signals internal to SG-Multi’s interconnection fabric

Signal Name Description

SGSADDR Address of the current transaction available for bus snooping
SGSSIZE Size of the current transaction available for bus snooping

Both of these signals are broadcast by the slave device wrapper to all connected master

device wrappers, which use them to determine whether it is appropriate to capture the

result of the current transaction.

4.2 Signal Size Multiplexing

Through SGSIZE, a master specifies the size of a particular SG-Multi transaction. The sizes

of the data busses SGRDATA and SGWDATA are fixed, so SG-Multi defines a particular manner

in which bits of transaction data are transmitted across the data busses for transaction sizes

less than the full size of the data bus. Transactions are aligned at addresses corresponding
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to the size of the transaction; for instance, a 16-bit transaction is aligned on a 2-byte address

boundary. The data bus itself is considered to be aligned at an address corresponding to its

own size irrespective of the size of any given transaction. As an example, a 4-byte-aligned

16-bit transfer on a 32-bit (4-byte) data bus would use the lower 16 bit positions on the

bus, and the same transfer aligned at a 2-byte (but not a 4-byte) boundary would use the

upper 16 bit positions. The bit positions used by a transfer are considered the active bit

positions. Figure 4.1 provides a visual illustration of signal size multiplexing.

SG?DATA[31:24]

SG?DATA[23:16]

SG?DATA[15:8]

SG?DATA[7:0]

0x11

(a) 8-bit transfer of 0x11 to a memory address
ending in 0x1

SG?DATA[31:24]

SG?DATA[23:16]

SG?DATA[15:8]

SG?DATA[7:0]

0x33

0x22

(b) 16-bit transfer of 0x3322 to a memory address
ending in 0x2

Figure 4.1: Signal size multiplexing illustration on a 32-bit data bus

Signal size multiplexing exists in AHB-Lite [24]. It is particularly beneficial in SG-

Multi because it simplifies the logic required to implement the bus snooping feature, which

is discussed in more detail in Section 4.4.1.

4.3 Transaction Details

All SG-Multi transactions are pipelined in two stages: an address phase and a data phase.

The address phase is characterized by the exchange of control information, such as the

memory address of interest and transaction parameters. Arbitration also occurs at the

beginning of the address phase; there is no separate stage reserved for arbitration. During

the data phase, the slave processes the transaction and produces a response if it is required
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to do so. Figure 4.2 illustrates a simple read transaction, both at the master interface and

at the slave interface. Some of the less-important signals have been omitted for simplicity.

SGCLK

SGADDR

SGWnR

SGRDATA

SGREQ

SGGRANT

Address 
phase

Data 
phase

addr

rdata

(a) Master interface

SGCLK

SGADDR

SGWnR

SGRDATA

SGACTIVATE

SGWAIT

Address 
phase

Data 
phase

rdata

addr

(b) Slave interface

Figure 4.2: Simple SG-Multi read transaction at master and slave interfaces

Slaves signal their response to a transaction request using SGWAIT and SGERROR, the

former for extending the length of a transaction’s data phase and the latter for causing the

transaction to be aborted due to an error of some kind. The SG-Multi signalling protocol

requires all slaves to signal their response one cycle in advance, such that the value seen

by masters at the rising edge is an indicator of what is to happen in the upcoming cycle

as opposed to being status information resulting from the most recent one. A slave that

asserts SGWAIT in time for a rising edge is indicating that the rising edge is the start of a

wait cycle, and similarly if SGWAIT is deasserted at a rising edge then that rising edge is
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the beginning of the final cycle required for a particular transaction. A new transaction

may begin its arbitration in any cycle that begins with SGWAIT deasserted. This includes

cases in which the slave uses SGERROR to signal an error, as the protocol requires SGWAIT

to be asserted when SGERROR is asserted.

Other architectures, such as AHB-Lite [24], have different semantic behaviour for the

signals equivalent to SGWAIT and SGERROR. In these architectures, slaves provide status

information at the end of a clock cycle, such that a slave causes a cycle to begin with

the SGWAIT-equivalent signal deasserted to signal the end of a transaction and the slave’s

immediate ability to begin a new data phase. For architectures that require no arbitration,

such as those designed under the assumption that only one master will exist in the system,

this is not a problem because any master is unconditionally able to begin a transaction

with any slave at any time. In arbitration-based architectures, however, these alternative

semantics dictate that a master device cannot start arbitration until after a transaction

is fully completed. Systems such as AHB [26], the superset of AHB-Lite, address this

problem by adding a separate cycle for arbitration before the address phase. SG-Multi

avoids this performance loss by requiring slaves to signal their status in advance. This

difference in behaviour, applied to SGWAIT, is illustrated visually in Figure 4.3. Each of

the two signalling semantics are colour-coded: the green version for SG-Multi’s signalling

semantics and the red version for the alternate semantics. The circled points indicate the

time at which a master device becomes aware of the second cycle being a wait cycle.

Earlier slave response signalling also contributes to the achievement of SG-Multi’s de-

sign goal of universal adaptability. While of no consequence to master devices natively

designed to communicate using the SG-Multi signalling protocol, bus adapters may benefit

greatly from slaves providing information as soon as possible. It is not possible to consider

every existing interconnection architecture individually when designing SG-Multi, and each

such architecture will prescribe different signal timing behaviour. Signalling early allows

a bus adapter to delay the transmission of information to the attached master device, but

signalling late requires a bus adapter to provide information not in its possession.
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Figure 4.3: Illustration of different slave response signalling semantics

4.4 Device Wrapper Details

As discussed in Chapter 3, SG-Multi systems make use of device wrappers to encapsulate

all of the functionality required to accommodate multiple master and slave devices in the

same system. The subsections that follow describe the design of each of the device wrappers

in detail.

4.4.1 Master Wrappers

A master device wrapper primarily provides two functions: signal routing and bus snoop-

ing. Signal routing determines, based on the input supplied by the attached master device,

which slave to involve in a particular transaction. Due to SG-Multi’s pipelined nature, a

master device wrapper must properly time all signals routed to slaves to support simulta-

neous address and data phases with different slave devices. Bus snooping, a performance-

enhancing feature of SG-Multi, is mostly implemented in the master wrapper component.

Signals are routed based on the memory address supplied by the bus master device.

SG-Multi master wrappers use the upper four bits of SGADDR to determine the correct
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slave. Each master wrapper has 16 slave “slots” and can connect to a total of 16 slaves;

the use of the upper bits of the memory address effectively partitions the address space into

16 equal-sized blocks, one for each slave. The signal router is implemented as a decoder

for master-to-slave signals and as a multiplexor for slave-to-master signals, as shown in

Figure 4.4.

Slave Response
Signals

SGADDR (upper 4 bits)

SGREQ

Decoder

Figure 4.4: Master device wrapper signal routing implementation

Because slave device wrappers multiplex inputs from all master devices and only accept

input from the master device that wins at arbitration, it is not necessary to route all

master-to-slave SG-Multi signals. In fact, most signals such as SGADDR and SGWDATA can

be broadcast to all slaves as a way of simplifying the logic of the master device wrapper

implementation. SGREQ is the only signal that indicates a master’s interest in a slave, so it

is the only signal whose propagation to slaves must be controlled and is therefore the only

signal that needs to be routed, as shown in Figure 4.4; all other signals are broadcasted.

The second major function that a master device wrapper provides is bus transaction
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snooping. This performance-enhancing feature is activated whenever a master device at-

tempting to perform a read transaction loses a round of arbitration, the slave asserts

SGSNOOP, and the slave asserts SGWAIT for at least one cycle. During that first wait cycle,

the master device wrapper compares SGADDR with SGSADDR and SGSIZE with SGSSIZE to

determine if the requested transaction is sufficiently similar to the current transaction to

allow snooping to be successful. This additional cycle is necessary due to the extra prop-

agation delays and the use of comparators that, when instead added to the end of the

address phase cycle, introduces a substantial delay into a cycle that already contains arbi-

tration, slave selection, and slave response signalling. Informal experiments conducted at

design time resulted in a maximum clock frequency reduction of approximately 20% when

performing the transaction comparisons during the address phase cycle. Furthermore,

snooping is more beneficial for longer transactions than for shorter ones, since a master

device’s average wait time is directly proportional to the time a slave takes to complete a

single transaction.

Transaction comparison is the process of a master device wrapper verifying that the

current transaction matches the transaction requested by the attached master device to a

close enough extent. For snooping to provide the correct data, the master wrapper must be

able to guarantee that the data provided by the slave in response to the current transaction

will be sufficient to complete the requested transaction. The master device wrapper verifies

that both the addresses and the transaction sizes are a match before proceeding to forward

the results of the current transaction to the attached master device.

Address comparison ignores the upper four bits of the memory address because these

are reserved for slave selection; all remaining bits may be used in the comparison. A

naive address size comparison is simply to check for equality of SGADDR and SGSADDR.

While this guarantees correctness, it is over-restrictive because it fails to take advantage

of memory address alignment for larger transactions. If the current transaction is larger

than the requested transaction and the memory addresses of interest in the request fall

within the range of addresses encompassed by the current transaction, snooping remains

a possibility, but the address equality check may fail. In the event of a size difference

between the current and requested transactions, it is appropriate to drop the lower bits

from the address comparisons. Where n is the size of the current transaction in bytes,

the number of bits to drop from the address comparison is given by log2 n. It follows that
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the size comparison also need not be one of equality; rather, it is sufficient for the master

wrapper to ensure that the requested transaction is smaller than or the same size as the

current transaction; in other words, the master wrapper checks that SGSIZE ≤ SGSSIZE.

Address and size comparisons are shown in Figure 4.5, where the data bus and current

transaction sizes are both 32 bits in size; outlined squares indicate the presence of the

requested data, and dark shaded squares indicate what the master wrapper can make

available to the master device. As demonstrated in Figure 4.5(b), if the master device

wrapper snoops a transaction successfully, it forwards the entire result to the attached

master, not just the portion of the result that the master actually requested. The signal

size multiplexing described in Section 4.2 ensures that the master device will be able to

extract the requested data, eliminating the need to include this logic in the master device

wrapper.

d 4 c 3 b 2 a 1

031

SG?DATA

Current:

Requested: 0x00000003

0x00000000

...11 ≠ ...00

(a) 8-bit request with no address bits dropped

d 4 c 3 b 2 a 1

031

SG?DATA

Current:

Requested: 0x00000002

0x00000000

...0XX = ...000

(b) 16-bit request with lowest two address bits
dropped

Figure 4.5: Address and size matching performed for bus snooping

The portion of bus snooping functionality implemented in the master device wrapper

takes the form of a state machine. It contains four states, each of which is described

in Table 4.5. If at any time the slave device signals SGERROR, the snooping operation is

abandoned and the state machine returns to its initial state; this error-handling mechanism

is present but has been omitted from descriptions presented here for the sake of simplicity.

The transitions between states are shown in Figure 4.6. References to preconditions

or to transaction matching refer to the snooping preconditions and transaction matching

criteria described previously in Table 4.5. A direct transition exists from s3 to s1 to

accommodate cases where the last cycle of a snooped transaction’s data phase coincides

with the first cycle of another transaction’s address phase and the latter transaction meets
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Table 4.5: State description for master device wrapper bus snooping state machine

State Description

s0 Initial state. Waits for SGWAIT, SGSNOOP, and a read transaction request for
which the attached master device loses arbitration.

s1 Analysis state. Compares the requested transaction to that described by
SGSADDR and SGSSIZE.

s2 Waiting state. Snooping can proceed, but the slave is still asserting SGWAIT.
s3 Snooping state. This is the last cycle of the transaction, so the results are

captured and forwarded to the master device.

the preconditions for snooping. An unconditional transition from s3 to s0, the alternative,

would miss these back-to-back snooping opportunities.
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Figure 4.6: Bus snooping state machine in the master device wrapper

A master device is not able to distinguish transaction completion due to winning ar-

bitration from transaction completion due to snooping. The master device continues to

assert SGREQ until it receives SGGRANT from the master device wrapper. While typically

a master device wrapper signals SGGRANT when it wins a round of arbitration, it will also

generate SGGRANT during a transition to s3 in the bus snooping state machine, marking the

conclusion of a successful snoop operation.
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4.4.2 Slave Wrappers and Arbiters

Some of the core functionality of a slave device wrapper is similar to that of a master device

wrapper in that a slave device wrapper must similarly route certain outgoing signals and

multiplex incoming signals. A slave device wrapper also contains arbiters and provides the

supporting framework for them. Accordingly, much of the routing functionality of a slave

device wrapper is controlled by the results of a round of arbitration. In a similar style to

Figure 4.4, Figure 4.7 illustrates the general connections of components within a slave; for

the sake of simplicity the connections of SGGRANT to each master have been omitted.

Master Request
Signals

Slave Response
Signals

SGREQ

SGGRANT

Common Arbiter Interconnect

Figure 4.7: Slave device wrapper signal routing implementation

Like master device wrappers, slave device wrappers use the notion of a “slot” to describe

a connection between it and another device in the system. However, slave device wrappers

do not route signals based on memory addresses and thus can theoretically support an

unlimited number of connections to other devices (although the slave device wrapper ref-
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erence implementation limits this number to 16 to avoid over-complicating the hardware

and to be consistent with the master device wrappers). The slot to which a particular mas-

ter device is connected is important for arbitration, but beyond that there is no semantic

significance to the order of the slots.

As introduced in Chapter 3, arbitration in SG-Multi is on the basis of a combination

of static and dynamic priority levels, both of which are represented in one-hot form. Each

slot in a slave device wrapper is assigned a static priority level that is unique within the

scope of that slave device wrapper; as a result, the number of bits in a static priority level

is equal to the total number of devices connected to the slave device in question. A master

device’s dynamic priority level begins at 0, increases each time it loses arbitration, and is

reset to 0 when it finally wins arbitration. The number of dynamic priority levels, a design-

time configurable parameter, determines the bit width of a slave device wrapper’s dynamic

priority level. Dynamic priority takes precedence when performing a round of arbitration;

the static priority levels are used to resolve situations in which multiple master devices

have the same level of dynamic priority.

Arbiters are purely combinational circuits. They are effectively divided into two stages

based on priority level types being compared: dynamic arbitration and static arbitration.

In each case, the first step is to generate a mask using the one-hot priority level as input.

The desired output of this transformation is one in which the bits of greater significance

than the position of the ‘1’ in the priority level are ‘1’ and the rest are ‘0’; for example, an

input priority level of (00100000)2 should produce a mask of (11000000)2. This is achieved

by:

1. Shifting the input bit pattern left by one position.

2. Adding the result to a string of ‘1’ bits and discarding the output carry (for example,

in the case of an 8-bit priority level, the addition is to the value (11111111)2).

3. Inverting all the bits in the result of the addition.

An example of this mask transformation, using the sample input of (00100000)2, is

shown in Table 4.6.

Arbitration functionality is split between the slave device wrapper and the arbiter

units themselves. Individual signal comparisons and SGGRANT generation happens within
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Table 4.6: Mask transformation example for arbitration

Step Result

0 (00100000)2
1 (01000000)2
2 (00111111)2
3 (11000000)2

the arbiter, but the slave device wrapper performs several important functions as part of

the arbitration process:

• Combining the priority levels supplied by each individual arbiter and feeding the

results back into the arbiters.

• Providing each arbiter with its static priority level as an input.

• Filtering bus requests and only allowing SGREQ at an arbiter’s input to be asserted in

clock cycles beginning with SGWAIT deasserted. This prevents bus arbitration from

occurring in the middle of an ongoing transaction.

The complete logical circuit showing how an arbiter generates SGGRANT shown in Fig-

ure 4.8; thicker lines represent multi-bit signals and thinner ones represent single bits.

Both the functionality of updating the dynamic priority level and the filtering of SGREQ are

omitted for simplicity. Dynamic priority is stored in a register and incremented through

a left shift operation each rising edge when SGREQ is asserted but SGGRANT is not. The

“Common Arbiter Interconnect” referenced in Figure 4.7 consists of the green-shaded logic

gates and their outputs.
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Figure 4.8: Combinational logic circuit implementation of an SG-Multi arbiter
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Chapter 5

Tools Design

The SG-Multi Designer framework is composed of a unifying application—SG Multi Designer—

that presents users with a graphical interface, a set of core tools for constructing the fun-

damental SG-Multi hardware components, and a set of modules, potentially provided by

third-parties. Users provide the framework with input in the form of a design modelled us-

ing SG-Multi Designer’s underlying abstraction model, which emphasizes simplicity while

avoiding the problem of over-simplification.

This chapter begins by explaining the SG-Multi Designer abstraction model. It sub-

sequently provides an overview of the composition of the framework as a whole and fin-

ishes with a brief presentation of the graphical interface by which the unifying application

presents the abstraction model to the user.

5.1 Abstraction Model

SG-Multi Designer’s underlying abstraction model emphasizes simplicity, the goal being

to minimize the burden placed on the hardware designer. Many of the low-level details

are abstracted to the point that a user simply adds devices to the system and specifies the

set of interconnections between devices, without worrying about issues such as interface

compatibility or individual bus signal connections. This is the essence of the simplicity

of this model; instead of manipulating low-level signals, interface bridges, and other such

components, SG-Multi Designer presents the hardware designer with a total of only six

components with which to interact, as listed in Table 5.1.
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Table 5.1: List and descriptions of components in the SG-Multi Designer abstraction model

Component name Description

Master A device that issues commands and initiates inter-device trans-
fers.

Slave A device that responds to commands and services inter-device
transfers.

Property A design-time configurable parameter that governs the function-
ality of a particular instance of a device. The list of available
properties varies by device type, and each property value is user-
specified.

Device Connection A connection between two devices, typically between a master
and a slave. One of SG-Multi Designer’s key distinguishing fac-
tors compared to competing solutions is that device connections
have no configurable parameters associated with them; either
they exist or they do not.

Connection Point A named node that is accessible throughout the design. Con-
nection points can represent external pins—inputs, outputs, or
bidirectional signals—or internal wires. Connection points are
user-defined, and SG-Multi Designer does not limit the number
of connection points that can exist in any given design.

Extra Signal A signal, outside of the standard SG-Multi interface signals, at-
tached to a device, providing additional input or output. The
list of available extra signals varies by device type. By default,
extra signals are disconnected; explicit user action is required to
connect them to connection points. Some extra signals provide
crucial functionality and therefore must be connected, but typi-
cally their connection is optional.
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As an example, consider a small SG-Multi system consisting of just a single processor

as the master, a read-only memory (ROM) unit as one slave whose purpose is to supply

executable code, and a serial port controller as a second slave whose purpose is to interact

with a user through a terminal application. The processor supports interrupts, which is

modelled by defining the “interrupt request” (IRQ) inputs as extra signals. The ROM has

no extra signals, but the serial port controller has three: a serial “transmit” line as output,

a serial “receive” line as input, and an IRQ line as output. This example system, modelled

using the abstraction model, is depicted in Figure 5.1. Large light rectangles are devices,

smaller shaded rectangles are connection points, solid arrows represent device connections,

and dashed arrows represent the connections of extra signals.

SG-Multi

Fabric

Processor

Transmit

Serial IRQ

Serial Port 
Controller

Receive

ROM

Figure 5.1: Example of a system design modelled using SG-Multi Designer’s abstraction
model

The degree of the abstraction model’s simplicity becomes readily apparent when con-

sidering the precise list of steps a hardware designer would need to perform to create the

system shown in Figure 5.1. The hardware designer must:

1. Add an instance of the processor core to the design.
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2. Add an instance of the ROM unit to the design.

3. Add an instance of the serial port controller to the design.

4. Create two connection points representing external pins, one each for the serial port’s

“transmit” (output) and “receive” (input) lines.

5. Optionally create a connection point for the serial port IRQ line.

6. Specify the existence of a device connection between the processor and the ROM

unit.

7. Specify the existence of a device connection between the processor and the serial port

controller.

8. Connect the serial port controller’s extra signals to the “transmit” and “receive” line

connection points.

9. Optionally connect both the serial port’s and the processor’s extra signals to the

serial port IRQ line.

The order of performance of these steps need not be exactly as shown; a hardware

designer may complete them in any order so long as the devices and connection points

exist before connections between them are inserted.

It is particularly noteworthy that the interface with which the processor was designed to

be compatible is not specified. Because SG-Multi and, as a result, SG-Multi Designer sup-

port bus adapter devices that allow devices designed for different architectures to function

as part of an SG-Multi system, the abstraction model encapsulates all the functionality

required to connect these types of devices. For example, if a designer wishes to add a pro-

cessor for which an appropriate bus adapter is available, SG-Multi Designer automatically

generates the required components to allow the addition without placing that burden on

the hardware designer. To the user, the processor core appears just as any other master

device, complete with properties, extra signals, and device connections.

Device properties and extra signals help avoid the problem of over-simplification. A

device that supports configurable properties offers the user the opportunity to fine-tune a

device’s functionality on a per-instance basis. Extra signals allow a device to be connected
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to custom parts of the system not captured by the underlying interconnection architecture.

Both properties and extra signals are pre-defined by the device being instantiated. SG-

Multi Designer imposes no restrictions on the number of properties and extra signals a

device can offer.

5.2 Framework Overview

The SG-Multi Designer framework consists of a unifying graphical application, a set of core

tools for generating the fundamental SG-Multi components, and modules for generating any

other devices that may be included in a system design. The framework’s heart lies in the

graphical application, itself called SG-Multi Designer; in addition interacting with users for

the purpose of facilitating the construction of an SG-Multi system, it communicates with

the other framework elements as required to implement the input design and generates the

logic that instantiates and integrates the individual devices. SG-Multi Designer controls

the flow of the framework’s design process; its interface is guided entirely by the underlying

abstraction model.

Each module provides the functionality needed to describe and generate a particular

device that is available for users to add to system designs. For instance, one module might

provide a particular type of processor core, and another might provide a memory controller.

Modules act as “plug-ins” to SG-Multi Designer, each one extending the library of avail-

able devices that may be added to the system design. In this way, modules encapsulate

intellectual property units and thus will often be supplied by a third-party. There are a

total of four different types of modules the framework supports, as listed in Table 5.2.

Table 5.2: List and descriptions of the types of SG-Multi Designer modules

Module type Description

Master Modules that generate SG-Multi master devices.
Slave Modules that generate SG-Multi slave devices.

Bus adapter Modules that generate bus adapter components required to attach
non-SG-Multi master devices to the system.

Adapted master Modules that generate non-SG-Multi master devices, which depend
on the existence of a suitable bus adapter.
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A module consists of two parts:

• A module description, which is simply a file in XML format containing the infor-

mation SG-Multi Designer needs to determine how to interact with the module and

what options to present to the user.

• An executable program, which accepts parameters in the form of command-line

arguments and, when executed, generates the Verilog code that implements device

logic custom-tailored according to the parameters specified.

Based on the information each module supplies in its XML description and the design

specified by the user, SG-Multi Designer determines the appropriate set of command-line

arguments with which to invoke each module’s executable program.

The abstraction model removes much of the low-level burden from the hardware de-

signer using the framework, shifting it onto the module provider. A module is required

to supply sufficient information in the XML file to uphold the abstraction model; Ap-

pendix B provides a complete set of XML file specifications. At a high level, the XML file

for a master or slave device module must supply:

• A name for the module.

• A list of properties, their names, descriptions, data types, and optionally minimum

and maximum values.

• A list of extra signals supported by the device.

• The name of the executable file that must be invoked to create a new variant of

the device.

• An ordered list of command-line arguments for the executable file.

Core tools, which generate common SG-Multi logic, are similar to modules in that they

are executable programs. However, unlike a standard module, the information needed to

communicate with them is integrated into SG-Multi Designer due to their more fundamen-

tal role in the construction of an SG-Multi system. One core tool exists for each of the

device types listed in Table 1.1, with the exception of bus adapters as these are treated

as modules. Figure 5.2 shows a visual representation of the entire framework, including

SG-Multi Designer, the core tools, and the device modules.
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Figure 5.2: Overview of the SG-Multi Designer framework
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5.3 User Interaction

Figure 5.3 shows a representation of the main window of SG-Multi Designer. This window

on its own implements the majority of the abstraction model. Devices and connection

points are listed in a tree view on the left pane, and when a device is selected its connec-

tions are shown on the right pane. Connecting and disconnecting a device is as simple

as selecting it from a drop-down menu, no other action required. Extra signals and de-

vice properties may be modified on a separate window by selecting a device and clicking

the “edit” button (represented as a gear); as with device connections, extra signals are

connected and disconnected from connection points using a drop-down list.

SG-Multi Designer

Design

Masters

Master 2

Master 3

Slaves

Slave 1

Slave 2

Slave 3

Connection Points

IRQ

UART_TX

UART_RX

Master 1

M Master 1

Connections:

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slave 1

(disconnected)

(disconnected)

Slave 2

(disconnected)

Figure 5.3: Representation of SG-Multi Designer’s main window
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Chapter 6

Experimental Results

Experiments used to evaluate SG-Multi and SG-Multi focus on many different character-

istics of the systems under test. Since FPGAs are supported as prototyping tools, some

of the initial experiments capture trends with respect to the FPGA resource demands of

these systems, metrics which concern scalability of SG-Multi, particularly as the number of

processor cores in the system increases. These scalability experiments also target potential

ASIC fabrication, emphasizing trends in the area required to implement them with respect

to the number of processor cores. The reference systems tested all require bus adapters, so

other tests evaluate the ability of SG-Multi to achieve its goal of latency-free adaptability

by comparing the number of clock cycles required to complete a benchmark application in

an SG-Multi system versus a processor’s native architecture. Finally, correct operation of

SG-Multi-specific features such as transaction snooping is verified by comparing the num-

ber of cycles required to complete a benchmark with snooping enabled, with it disabled,

and with only one processor core present. The subsections that follow provide details on

each experiment conducted and present the results.

All experiments are based on a set of reference SG-Multi systems implemented in Ver-

ilog. FPGA-based tests involve prototyping these designs on an Altera Cyclone II DE2

board, developed by Terasic [39], after having been compiled using version 11.1 of Altera

Quartus II software with the fitter’s router timing optimization level set to “maximum”

but all other settings left at their defaults. Since SG-Multi ultimately targets ASIC imple-

mentation, experiments also involve compilation with version E-2010.12-SP2 of Synopsys

Design Compiler, using a 0.18 µm technology library supplied by Taiwan Semiconductor
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Manufacturing Company (TSMC), to facilitate the extraction of performance and area

measurements. Although fairly old, this library was readily available at the time of test-

ing and, since only relative measurements are of interest, the choice of technology library

is largely immaterial. The only constraint specified was a clock rate constraint, and all

settings were left at defaults. In each system, the slave devices include an LED controller,

a serial port controller, an SRAM controller, and one or more ROM devices containing

executable code. The master devices are one or more ARM Cortex-M0 processors [25].

Examples of typical single-core and dual-core reference systems are shown in Figure 6.1;

the gray lines and gray-bordered components are only present in a dual-core configuration

of this system, and variations containing higher numbers of cores simply add additional

Cortex-M0 instances, ROM device instances, and a subset of the other device connections.

Cortex-M0

Cortex-M0
LED 

Controller

SRAM 
Controller

Serial Port 
Controller

LEDs

SRAM

Serial 
Transceiver

ROM

ROM

Figure 6.1: Single-core and dual-core reference system configurations for experiments
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6.1 AHB-Lite Comparison

The Cortex-M0 processor communicates natively according to the AHB-Lite procotol [25],

so an important test of basic correctness is ensuring that the combination of an AHB-

Lite bus adapter and the SG-Multi interconnection fabric compares favourably in terms of

performance and area to an identically-configured system based on AHB-Lite’s interconnec-

tion architecture. While AHB-Lite systems can be constructed with multiple processors,

AHB-Lite is designed primarily for single-master systems [24]; as a result, it is compared

with the single-core variant of the SG-Multi reference system. The experiments shown in

this section demonstrate how SG-Multi compares to AHB-Lite in terms of the number of

clock cycles required to execute a benchmark application and the resources required to

implement each system.

6.1.1 Benchmark Performance Comparison

A successful performance test would indicate no difference in the number of clock cycles

required by each of the two systems to complete execution of a sequence of instructions.

Accordingly, the performance test utilizes a synthetic benchmark application constructed

specifically for this purpose. The application simply executes a busy-wait loop, checking

and updating the value of a counter variable stored in SRAM each iteration. The single-core

SG-Multi and AHB-Lite systems are binary-compatible; the same compilation tools were

used for both, and the binaries supplied to each processor were identical. Both systems

were augmented with cycle-counting circuitry that begins running on system power-up and

stops counting once the processor indicates it has completed its execution of the benchmark

application. The test was executed a total of 5 times for each system, with each test ranging

from 1,000,000 to 15,000,000 iterations of the loop. The results are shown in Table 6.1.

The benchmark application has demonstrated that it is possible to achieve zero added

latency in an SG-Multi system compared to using the individual processors’ native archi-

tecture. The core interconnection components, combined with the AHB-Lite bus adapter

used in these tests, do not introduce latency; the AHB-Lite bus adapter used in these tests

has been designed to avoid the introduction of latency, though different bus adapters might

not produce similar results. Ultimately the quality of the results and the elimination of

additional latency depend upon the quality of the bus adapter.
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Table 6.1: Latency comparison of AHB-Lite and SG-Multi systems

Iterations AHB-Lite Cycles SG-Multi Cycles

1,000,000 22,000,055 22,000,055
1,666,666 36,666,707 36,666,707
2,333,333 51,333,381 51,333,381
3,000,000 66,000,055 66,000,055
15,000,000 330,000,055 330,000,055

6.1.2 FPGA Hardware Comparison

FPGA resource requirements and maximum frequency values provide insight into the gen-

eral added cost of using SG-Multi versus using a processor’s native architecture. SG-Multi

is more complicated than AHB-Lite and, as a result, is expected to have a lower maximum

frequency and consume a larger amount of device resources; however, in order to be useful

as an architecture, these added costs must reasonable. For example, AHB-Lite features no

arbitration logic and no bus adaptation logic, most of which is combinational circuitry in

SG-Multi, thus creating the expectation of higher usage of combinational functions. The

values reported by Quartus II are shown in Table 6.2.

Table 6.2: FPGA-based comparison of AHB-Lite and SG-Multi systems

Metric AHB-Lite SG-Multi Difference

Logic Elements 4,473 4,916 +9.9%
Combinational Functions 4,254 4,689 +10.2%

Registers 1,028 1,208 +17.5%
Maximum Frequency 58.29 MHz 56.63 MHz –2.8%

Clock frequency is reduced by less than 3%, which may well be considered a negligi-

ble performance loss, depending on the specific application. Combinational functions and

total logic elements increase in number by approximately 10%, but more significantly is

the increase in the number of registers; at first glance, the 18% relative increase appears

extremely high. However, the Cortex-M0 is designed for simplicity and small size [25];

naturally, the use of a larger, more powerful core would produce the same absolute change

but a lower relative difference. Furthermore, the actual resource differences—443 logic

elements, 435 combinational functions, and 180 registers—each account for less than 1.5%
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of the FPGA device’s available resources, with the 180 extra registers occupying approx-

imately 0.5%. In the case of a single-core system prototyped on an FPGA, it is clear

that the extra hardware resource requirements imposed by using SG-Multi are well within

reason.

6.1.3 ASIC Hardware Comparison

SG-Multi primarily targets ASIC implementation, so arguably more important than FPGA-

based results are those obtained for potential ASIC fabrication. In this experiment, each

system was compiled twice, once with the clock specified at an achievable 50 MHz and

again with the clock specified at an unachievable value of 500 MHz. The maximum clock

frequency can be derived from the worst-case negative slack reported in the latter case by

simply adding it to the clock period specified in the constraint to obtain the minimum

clock period for proper operation. The 50 MHz variation was used to capture area-related

results, and the 500 MHz variation was used only for the maximum frequency test. Sen-

sitivity to process variation is particularly important in ASIC design and fabrication, so

the experiment was repeated three times, once for each of the technology library’s process

variation models: best-case, typical, and worst-case.

The addition of arbitration logic is one of the key differences between SG-Multi and

AHB-Lite. Since SG-Multi arbitration circuitry consists of combinational logic that must

be evaluated during the address phase, the cost of arbitration was also evaluated by per-

forming each SG-Multi test both with and without arbiters. The former case is identical

to the configuration of SG-Multi described in Chapters 3 and 4, and the latter case re-

flects an optimization SG-Multi Designer would perform for slaves only connected to a

single master, in which the slave still filters incoming SGREQ signals for timing purposes

but the actual arbitration circuitry is bypassed and SGGRANT is simply connected to the

output of the slave device wrapper’s usual filtering circuitry. This difference is illustrated

in Figure 6.2.

Combinational area test results are shown in Figure 6.3. As expected, SG-Multi con-

figurations require more area than the AHB-Lite system due to the added bus adapter and

device wrapper circuitry. When the circuits were optimized for both the best-case and

worst-case conditions, SG-Multi with arbiters requires approximately 25% more combina-

tional area than AHB-Lite, and SG-Multi without arbiters requires approximately 20%. It
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Figure 6.2: Experiment configuration of slaves, with and without arbiters

can therefore be concluded that the arbiters in SG-Multi, of which there are 16 in total in

the single-core reference system, collectively consume approximately 6000 µm2. Interest-

ingly, the area results for SG-Multi configurations are more stable across process variations

than those of AHB-Lite.

Noncombinational area test results are shown in Figure 6.4. The results essentially

mirror those of the combinational area, with AHB-Lite unsurprisingly requiring less area

and the difference being relatively quite similar. The same observation with respect to

process variation sensitivity can also be observed here.

Total area test results, which simply combine the figures obtained in the previous two

tests, are shown in Figure 6.5. The difference between the area consumed with and without

arbiters is approximately 5.5%, which is not particularly significant, leading to a total area

of approximately 15000 µm2 consumed by arbiters.

Maximum frequency results are shown in Figure 6.6, with linear trend lines added to

better illustrate sensitivity to process variation. It is here that the cost of arbitration is
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especially clear; on average, AHB-Lite is able to achieve a clock frequency approximately

40% higher than SG-Multi with arbiters, but only 14% higher on average when arbiters

are removed. The differences, however, are the least pronounced in the worst-case process

variation condition. Sensitivity to process variation is represented in the slopes of the

trend lines, with a shallower slope being more reflective of the desirable property of process

variation insensitivity. In all tests, including the maximum frequency test, SG-Multi has

been shown to be less sensitive to process variation than AHB-Lite, having a best-case fmax

142 MHz greater than its worst-case fmax, compared to AHB-Lite’s difference of 188 MHz.

These comparison results as a whole are reflective of the classic trade-off between area,

performance, and functionality; it is generally not possible, without changing the underly-

ing technology, to optimize a design for all three of these metrics. SG-Multi adds additional

functionality largely in the form of combinational logic and therefore is expected to require

a larger area and have a lower maximum clock frequency compared to AHB-Lite. Whereas

the added area of SG-Multi is relatively minor—even when arbiters are present—the loss

of performance is more pronounced. In the trade-off between area and performance, it is

clear that SG-Multi favours smaller area over high clock frequency.

6.2 Hardware Scalability

SG-Multi is designed for multi-core processors, so it is imperative that the architecture be

scalable in terms of both the hardware resources required and the maximum achievable

clock frequency as the number of cores increases. Scalability tests involve compiling six

variations of the reference SG-Multi system, ranging from the single-core case to an eight-

core case, and recording the hardware resources consumed as well as the maximum clock

frequency achievable. These tests evaluate the scalability of SG-Multi both for prototyping

it on an FPGA and for fabricating it as an ASIC; the subsections that follow present the

results.

In a system containing only processor cores and no interconnection logic, the introduc-

tion of additional cores causes a purely linear increase in the hardware resources consumed

by the design; if a single core requires x resources, then n cores should require nx resources

since hardware is simply being duplicated. Adding slave devices shared among all the pro-

cessor cores in the system requires a constant amount s of extra resources irrespective of
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the number of processor cores actually in the system. The expression then becomes nx+ s

for the expected hardware resource growth rate in a scalable multi-core system. While this

analysis does not consider overheads such as those related to interconnect and routing, it

indicates that the scalability of an interconnection architecture can be judged preliminarily

based on the system’s overall hardware resource consumption growth rate as compared to

linearity.

6.2.1 FPGA Scalability Results

The FPGA scalability test measures the growth rate of the number of combinational func-

tions, registers, and total logic elements consumed by, as well as the change in the maximum

achievable clock frequency in, an SG-Multi system as the number of cores grows. These

results are shown in Figures 6.7, 6.8, 6.9, and 6.10, respectively. Each graph has been

augmented with a dashed line showing a linear trend based on the first two data points

captured.

Combinational functions and total logic elements appear to grow sublinearly as the

number of cores increases to 6 and then to 8 ,which is encouraging from a scalability

standpoint. Register growth is linear with a slight deviation when the number of cores

is 6, likely resulting from an optimization fluke and inconsequential for interpreting the

results. Maximum clock frequency results show an initial decline that stabilizes as the

number of cores passes 3. From these results, it is concluded that SG-Multi scales well

when prototyped on an FPGA.

6.2.2 ASIC Scalability Results

The ASIC scalability test measures the reference SG-Multi system’s growth rate with

respect to the number of cores in terms of its combinational area, noncombinational area,

and total area, as well as performance changes measured based on the maximum achievable

clock frequency. These results are shown in Figures 6.11, 6.12, 6.13, and 6.14, respectively.

As with the FPGA results, each graph has been augmented with a dashed line showing

linear growth.

Area-related test results show that all data points captured lie along the linear growth

dashed line; SG-Multi scales linearly in terms of the area it consumes. Clock frequency
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Figure 6.9: FPGA total logic elements vs. number of cores in an SG-Multi system
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Figure 6.10: FPGA maximum clock frequency vs. number of cores in an SG-Multi system
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Figure 6.11: ASIC combinational area vs. number of cores in an SG-Multi system
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Figure 6.12: ASIC noncombinational area vs. number of cores in an SG-Multi system

69



0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6 7 8

A
re

a 
(µ

m
2
)

Number of cores

Figure 6.13: ASIC total area vs. number of cores in an SG-Multi system
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results behave similarly to those of the FPGA tests, stabilizing around 140 MHz for higher

numbers of cores. These results lead to the conclusion that SG-Multi is scalable when

implemented as an ASIC.

6.3 Simultaneous Transaction Performance

The purpose of these tests is to demonstrate the functional correctness of the SG-Multi

architecture and its performance-enhancing features. By design, SG-Multi is intended

to support multiple simultaneous transactions with no slowdown, where each transaction

occurs with a different slave device. Accordingly, the non-interfering transaction tests

show the number of clock cycles required by a synthetic benchmark application when

executed with a varying number of cores all interacting with different slaves. SG-Multi

also includes a snooping feature that, under certain circumstances described in Chapter 4,

permits multiple master devices to complete simultaneous transactions with the same slave.

Thus, the interfering transaction tests are intended to demonstrate that the snooping

functionality, when its prerequisite conditions are met, is able to remove all contention-

related slowdown that would typically be present when multiple masters attempt to access

the same slave.

These tests are based on the same SG-Multi reference systems used in other tests. The

benchmarking circuitry is identical to that described in Section 6.1.1, and the benchmark

application simply performs 100 32-bit read operations from SRAM. The SRAM controller

requires 4 clock cycles per 32-bit transaction, so the actual loading time in a single-core

system is expected to be 400 cycles. For non-interfering transaction tests, only one core

executes this benchmark application while the others interact with the other slave devices

in various ways. For interfering transaction tests, all cores involved in the test are con-

nected to a private instance of the ROM component containing the same executable code

implementing the test; as a result, all interference happens on attempts to access SRAM

as opposed to instruction fetch operations.
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6.3.1 Non-interfering Transactions

One of SG-Multi’s most crucial features is its ability to support multiple simultaneous

transactions between different slaves. The intention of this test is to verify that behaviour

by showing that the benchmark application completes in the same number of clock cycles

irrespective of the number of cores in the system and their interaction with slaves other than

the SRAM controller. This experiment was conducted on SG-Multi systems containing a

range of 1 to 4 processor cores, results shown in Table 6.3. As reflected in the results, the

number of cycles remains constant across all tests, indicating that SG-Multi can correctly

support multiple simultaneous non-interfering transactions.

Table 6.3: Non-interfering transaction benchmark results

Cores Cycles

1 510
2 510
3 510
4 510

6.3.2 Interfering Transactions

Bus snooping is designed to remove the unnecessary waiting associated with losing arbi-

tration when the other masters in the system are requesting the same transaction and

thus the requested results are already being made available. This experiment quantifies

the performance gain that can be realized from this technique, assuming its prerequisite

conditions have been met. In theory, if all processors in the system continually request the

same transaction, the amount of time spent should grow linearly with snooping disabled

whereas the amount of time spent should remain constant with it enabled.

This experiment was conducted with SG-Multi systems containing a range of 1 to 4

processor cores. Each core is provided with an identical binary stored on a ROM device

only accessible by that specific core, and the number of clock cycles taken to complete the

benchmark is recorded. The test results are validated by performing the test both with

snooping enabled and with it disabled. Cycle count measurements are shown in Table 6.4.
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Table 6.4: Interfering transaction benchmark results

Cores Cycles (snooping) Cycles (no snooping) Difference

1 510 510 –
2 510 811 +301
3 510 1211 +701
4 510 1611 +1101

There is a consistent increment of 400 cycles as the number of cores increases to 3 and

then again to 4. Since a single core spends 400 cycles performing memory load operations,

the addition of another core whose execution is precisely timed to compete directly with

the existing cores should in theory add an additional 400 cycles to the total latency of

the benchmark, which matches with the results shown. The difference is less pronounced

between the single-core and the dual-core cases because the measurement of 510 cycles

includes the test set-up and tear-down code, the effect of which is removed when examining

differences between results for higher numbers of cores.

With snooping enabled, the number of cycles is independent of the number of cores.

Each core is able to complete its memory transaction at the same time as the others, so

bus snooping demonstrably avoids all latency associated with waiting to win a round of

arbitration.
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Chapter 7

Conclusions

The primary goal of the work described in this thesis was to create an integrated solution

that greatly simplifies and expedites the process of creating a multi-core processor whose

internal components are interconnected in a virtually arbitrary arrangement. It was moti-

vated by a desire to bridge the gap between research and practice, which led to the avoid-

ance of constraints, restrictions, and assumptions that require infeasible modifications to

existing widely-used hardware components and to the separation of high-level logic design

from final hardware implementation. In particular, existing industry-supplied processor

cores are supported, and all output is in pure HDL form containing only vendor-agnostic

constructs. Experiments have demonstrated the feasibility, correctness, and scalability of

the solution proposed in this thesis.

This chapter begins by summarizing the primary contributions of this work, SG-Multi

and SG-Multi Designer. The former is an interconnection architecture optimized for multi-

core processors and the latter is a tool framework to facilitate the creating of systems built

on that architecture. It then briefly states the scope of this work’s application domain,

presents the major experimental conclusions, and discusses potential future work.

7.1 Contributions Summary

SG-Multi is a multi-bus system that employs slave-side arbitration to enable it to sup-

port multiple unrelated simultaneous transactions. In certain cases, its bus snooping

performance-enhancing feature allows multiple masters to complete transactions at the
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same time with the same slave device. Its design goal of universal adaptability is sup-

ported by its use of bus adapters, which experimentation has shown can be designed to

introduce no clock cycle latency. All transactions in SG-Multi are pipelined in two stages–

the address phase and the data phase–with arbitration taking place in the former instead

of being separated into its own pipeline stage. To improve performance, the SG-Multi

signaling protocol requires slave devices to signal their status information for a given clock

cycle at the beginning of that clock cycle rather than at the end.

SG-Multi Designer is a tool framework that facilitates the rapid construction of multi-

core processors based on SG-Multi. The abstraction model presented to the end-user

simplifies the design process considerably, even to an extent greater than existing com-

petitive solutions. Each hardware device available to be included in an SG-Multi system

design is encapsulated in a module, which consists of an executable file and an XML file,

the former producing HDL code implementing the device when executed and the latter

describing how SG-Multi Designer’s user interface should interact with the executable file.

This research project is intended to be applicable both for experimenting with multi-

core systems in a research setting and for creating multi-core processors in an industrial

setting; SG-Multi Designer targets hardware chip designers in both of these contexts. While

the primary intention is to target systems that can be fabricated as an ASIC, implementing

systems onto an FPGA for prototyping and testing purposes is also supported.

7.2 Experiment Conclusions

Initial tests sought to verify the potential for creating bus adapters that add no clock

cycles of latency and to quantify the hardware cost of using SG-Multi versus using a

processor’s native interconnection architecture. Compared to AHB-Lite, the native bus

architecture of the ARM Cortex-M0 processor featured in all SG-Multi reference systems,

SG-Multi has been shown not to require any additional clock cycles when completing the

same benchmark application. Thus, the AHB-Lite comparison tests affirm the possibility

of creating high-quality bus adapters that introduce no clock-cycle latency. Furthermore,

when both systems were prototyped on an FPGA, the difference in fmax was less than 3%,

and the extra logic elements, combinational functions, and registers consumed by SG-Multi

each accounted for less than 1.5% of the total device resources, well within reason given the
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added functionality SG-Multi offers over AHB-Lite. When compiled for ASIC fabrication

the differences were more pronounced; AHB-Lite consumes approximately 20% to 25% less

total area, and the maximum clock frequency is between 35% and 50% higher with AHB-

Lite. However, SG-Multi shows substantially less process variation than AHB-Lite in terms

of maximum frequency, having a maximum frequency range 46 MHz smaller than that of

AHB-Lite. Furthermore, the removal of arbiters reduces the clock frequency difference

to between 10% and 20%, suggesting that the current implementation of arbitration is a

prime candidate for future improvement.

Experiments with SG-Multi reference systems containing between 1 and 8 cores have

shown that SG-Multi is scalable, both when prototyped on an FPGA and when compiled

for fabrication as an ASIC. A scalable architecture grows linearly in terms of its hardware

resource requirements when additional cores are added to the system, and the ASIC-

oriented scalability test results precisely match this evaluation criterion for all three metrics:

combinational area, noncombinational area, and total area. Better results were obtained

with the FPGA-oriented scalability tests, with slightly sublinear growth observed as the

number of cores increased past 3 or 4. In both cases, maximum achievable clock frequency

dropped with the addition of the first few cores but stabilized and remained relatively

constant with 4 or more cores in the system. It is therefore concluded that SG-Multi is

scalable both when implemented on an FPGA and when compiled for fabrication as an

ASIC.

The final set of tests targeted the functional correctness of SG-Multi’s design features.

SG-Multi’s ability to support multiple simultaneous transactions was evaluated using a

simple benchmark application executed on a single core while the variable number of

other cores communicated with other slaves in the system. Irrespective of the number

of cores present, the benchmark application took exactly 510 cycles to complete, success-

fully demonstrating SG-Multi’s proper behaviour. The same benchmark was executed on

multiple cores to test SG-Multi’s bus snooping feature; while linear growth in terms of the

cycles to completion was observed with snooping disabled, each core consistently required

exactly 510 cycles to complete the benchmark with snooping enabled, clearly demonstrat-

ing both the potential benefits realizable by and the proper functionality of bus snooping.

Considering all of the experiments conducted to evaluate SG-Multi, it is concluded that

this research project was successful. Although it is just a starting point for future growth
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and development, SG-Multi is demonstrably capable of achieving its design goals. As it is

the underlying architecture upon which SG-Multi Designer is built, and as the reference

systems are an accurate representation of what SG-Multi Designer is capable of producing,

it is further concluded that the abstraction model provided by SG-Multi Designer does not

over-simplify the design process in a way that excessively degrades system performance or

introduces unreasonable additional hardware resource requirements.

7.3 Future Research Directions

SG-Multi and SG-Multi Designer represent a starting point, demonstrating the feasibility

of creating multi-core processors that consist of cores natively supporting a wide variety of

interconnection architectures, including those originally designed with single-core operation

in mind. In terms of hardware design, a highly simplified abstraction model is possible to

achieve without over-simplifying the design process or causing scalability issues. There are,

however, several ways to build upon this work in order to increase its utility in practice.

The first and most direct area for future work is performing additional optimization

on the SG-Multi signalling protocol itself; experimental results, while positive, reveal arbi-

tration as a specific area where such optimization is likely to be beneficial. Second, since

the goal of universal adaptability depends on the existence of appropriate bus adapters, it

follows that more bus adapters must be created for SG-Multi to reach its full potential.

Third, SG-Multi currently makes no attempts to accommodate components operating at

different clock frequencies. It is extremely likely that a system containing components of

different performance levels will be required to accommodate this, so the addition of sup-

port for multiple clock domains is important. Fourth, SG-Multi could be made to support

dynamically reconfigurable connections between master devices, for instance, two cores

that communicate directly. Reconfigurability would allow a system to adjust itself based

on the particular application to be executed, in essence becoming a dynamically reconfig-

urable application-specific accelerator. This section explores each of these areas for future

work.
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7.3.1 Basic Arbitration Improvements

Chapter 6 shows that the current implementation of arbitration is costly in terms of per-

formance. It should be noted that the design of the arbiter component was not one of the

main focal points in designing SG-Multi; however, as it is desirable to maximize the speed

of an SG-Multi system, a re-examination of its arbitration portion likely to be beneficial.

The current version of the arbiter component is a combinational circuit through which sig-

nals must propagate during the address phase cycle. This gives rise to two possible areas

of emphasis: the combinational circuitry itself and its placement directly in the address

phase.

Improving the combinational circuitry of the arbiter component would either involve

selecting a new logical implementation of the hybrid priority scheme currently used, switch-

ing to a different arbitration scheme entirely, or some combination thereof. A combined

approach to improvement is certainly viable; works such as [40], and more recently [41],

demonstrate the feasibility of creating an extremely scalable arbiter that implements a

variety of different arbitration schemes. For example, based on the SG-Multi reference sys-

tems, which have a maximum of 4 requestors per slave device, the type of arbiter described

in [41] would introduce a delay of less than 1 ns and consume fewer than 100 2-input NAND

gates.

The other alternative involves a re-evaluation of arbitration taking place in the address

phase. It could be moved to its own cycle, similar AHB [26], but this would introduce

latency into all transactions. Either a slave would have to signal SGWAIT one cycle earlier

than it currently does–meaning that all transactions must take at least two cycles in the

data phase–or certain bus adapters, such as the AHB-Lite bus adapter, would be forced to

add a cycle of latency to all requested transactions. The suitability of this modification to

SG-Multi depends on whether or not the clock frequency gain is high enough to offset the

time cost of adding latency cycles to the majority of transactions.

7.3.2 Other Bus Adapters

The utility of SG-Multi depends largely on its ability to satisfy its design goals in a practical

manner. To this end, an AHB-Lite bus adapter on its own is insufficient; while AHB-Lite

is able to demonstrate that it is feasible to construct high-quality bus adapters for SG-
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Multi, taking advantage of SG-Multi’s adaptability depends upon the existence of other

bus adapters. Creating these bus adapters is therefore a key step towards improving the

SG-Multi system as a whole.

A logical first step towards achieving this is to begin with bus architectures that are sim-

ilar by design to AHB-Lite; the existence of a bus adapter for AHB-Lite is a strong indicator

that a bus adapter could be created for these architectures without adding latency. Chap-

ter 2 describes some examples of such architectures, including Altera’s Avalon-MM [21]

and IBM’s CoreConnect PLB [28]. While this may require either modifying SG-Multi to

support some architecture-specific features or omitting these features entirely, the basic

signalling protocols are generally similar in terms of completing transactions. In the lat-

termost case, it is clearly feasible to create a bus adapter, as evidenced by the availability

of a bridge between CoreConnect PLB and ARM AHB [30].

Bus adapters for these similar architectures provide a solid groundwork upon which to

build, but their creation does not mark an endpoint. A much greater applicability for SG-

Multi can be realized by creating adapters for ARM AXI [35], a very popular architecture

used in high-performance systems. The existence of a bridge between AXI and AHB-

Lite [42] is a strong indication that such a bus adapter can be created and made to work.

However, to maximize the performance of the adapter, it may be necessary to evolve SG-

Multi to a form that can better accommodate AXI while also remaining fully compatible

with AHB-Lite and others.

7.3.3 Multiple Clock Domains

A heterogeneous multi-core processor is characterized by its composition of non-identical

cores. While some applications may suffice with this definition strictly referring to a

distinction between general-purpose cores and specialized accelerators, it is not generally

applicable. In particular, it is often a requirement that the system support components

operating at different clock frequencies, such as having multiple cores all offering different

amounts of computational power. As discussed in Chapter 2, this is the approach taken

in NVIDIA’s Tegra family of mobile processors [10]. The fact that the current form of

SG-Multi makes no attempt to overcome clock frequency boundaries therefore places a

limitation on its usefulness in certain applications.

This problem can be solved using either a synchronous or an asynchronous approach,
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and solutions based on both approaches are readily available in the literature. In [43], for

instance, a synchronous approach is suggested for bridging between 100 MHz AHB and

10 MHz Industry Standard Architecture (ISA), an older bus architecture for communicat-

ing with peripherals. The approach described involves a finite state machine coupled with

a cycle counter used together not only to provide the clock domain boundary-crossing func-

tionality but also to bridge the two architectures together. An SG-Multi approach based

on this general framework would involve this clock domain-crossing logic being integrated

into the bus adapters; while the framework uses an adapter to bridge signals from a faster

controlling bus to a slower peripheral bus, it is conceivable that this directionality could

be reversed if needed.

The alternative to a synchronous approach is an asynchronous approach, an example of

which is presented in [44]. This solution places a high-performance asynchronous crossbar

at the centre of the system, with each system component being clocked individually with-

out any phase-locked loops or other components needed to synchronize the clocking. By

design, the problem of crossing clock domains is essentially avoided altogether. One pos-

sibility for integrating this approach into SG-Multi is to change the architecture such that

a large asynchronous crossbar switch becomes its basis. SG-Multi’s emphasis on multi-

core processors may lead to an excessively-sized crossbar switch being necessary in system

designs featuring an abundance of cores, so the scalability of this solution would need to

be studied. While intuition might suggest that a crossbar-based approach cannot scale to

large multi-core systems, recent work, such as [45], suggests otherwise.

7.3.4 Reconfigurable Inter-core Communication

A reconfigurable processor in-and-of itself is not a completely new idea; existing literature

already suggests how one might construct such a device. Building SG-Multi into a reconfig-

urable processor, however, approaches the problem from an entirely different perspective.

SG-Multi was created with the idea that one should be able to integrate existing industry-

supplied cores in the same system, even those not designed for such integration. It follows,

then, that the reconfigurable extension should support the same thing. Reconfigurable

processors in their current form are generally restricted for research use. A reconfigurable

SG-Multi processor, however, would have a wide range of potential applications and, since

it makes use of existing industry-supplied cores, can successfully bridge the gap between
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research and practice.

Existing research on this subject can generally be divided into two categories. The

first category involves integrating a physically reconfigurable hardware element with the

rest of the system. In this sense, the reconfigurable element of the processor stems from

the fact that an application can use the reconfigurable element in an application-specific

manner; an example of such an approach is described in [46]. FPGAs are also a prime

target of research related to reconfigurable computing. A system whose final form is imple-

mented on an FPGA may be made reconfigurable if the FPGA supports partial dynamic

reconfiguration. Xilinx is exploring this area for its own FPGA products and a specific

approach is presented in [47], although research towards efficient and effective methods

for implementing partial dynamic reconfiguration is ongoing. Modelling SG-Multi on this

area of research would involve placing the interconnection architecture onto a dynamically

reconfigurable hardware element and potentially including physically reconfigurable hard-

ware in the place of master and slave devices. While potentially beneficial, this research

direction is unlikely to positively impact SG-Multi at an architectural level.

The second category for reconfigurable processor research proposes architectures that

require supporting functionality to be provided from the individual processing elements.

In [48], for example, the proposed architecture depends on the existence of architecture-

specific instructions that each processor core can execute. The limitation of solutions in this

class is that, in order to be applicable in the real world, industry is required to implement

the system in the design of its own processors; for instance, ARM must add support

for these instructions and provide the logic necessary to implement that functionality.

SG-Multi, on the other hand, requires no such changes, and the proposed vision for a

reconfigurable version of it will similarly not require any modifications.

A reconfigurable version of SG-Multi would be one in which the interconnection between

processor cores can be dynamically changed, a much coarser granularity for reconfiguration

than has traditionally been studied. The primary benefit of making processors reconfig-

urable in this fashion is that they can be adapted on a per-application basis to suit virtually

any possible type of algorithm model. For instance, an application designed to be pipelined

can be greatly accelerated by executing it on a processor in which cores are interconnected

in this arrangement. However, as existing industry multi-core processors are not generally

reconfigurable in this manner, a processor would either be fixed with a particular model
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in mind or contain hard-wired support for every model that the designers predict would

be needed. Thus, a reconfigurable version of SG-Multi promises to enable industry-facing

processors to take advantage of the benefits of reconfigurability without being held back

by these limitations.
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Appendix A

SG-Multi Protocol Specification

This Appendix contains a complete specification for SG-Multi’s signalling protocol. It

assumes familiarity with Chapter 3, which provides a high-level overview of the entire

SG-Multi architecture. The intended audience is the designer of a hardware device that

supports communication with an SG-Multi system.

Signal descriptions are presented first, followed by the general rules for sending data

along wide data paths. Transaction details are then provided, first for the master device

interface and second for the slave device interface.

A.1 Signal Descriptions

SG-Multi defines global signals shared by all devices and device-specific signals used for

data exchange. Several of these signals are common to both the master device interface and

the slave device interface, but some exist only at one of these interfaces. The subsections

that follow list and describe all of these signals.

SG-Multi supports various widths for address and data busses, where each can be sized

independently of the other. Supported sizes, measured in bits, are powers of 2 ranging

from 32 to 256. When signal widths are provided, the symbol A denotes the width of the

address bus, and the symbol D denotes the width of the data busses. When signal widths

are omitted, the width is a single bit.
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A.1.1 Global Signals

Two global signals are used in SG-Multi, one as a clock source and one as an asynchronous

reset. Names, types, and descriptions are listed in Table A.1.

Table A.1: List, types, and descriptions of global SG-Multi signals

Signal Name Type Description

SGCLK Input Clock signal used to drive transactions
SGRESETn Input Asynchronous active-low reset signal

A.1.2 Common Signals

Several interface signals exist at both the master device interface and the slave device

interface. Signals flow from master devices to slave devices or vice versa; thus, if a signal

is an input for one type of device, it is the output for the other type. Interface signals

common to both master and slave device interfaces are listed and described in Table A.2.

Table A.2: List, directionalities, and descriptions of common SG-Multi interface signals

Signal Name Direction Description

SGADDR[A− 1:0] Master to slave Memory address of interest
SGSIZE[2:0] Master to slave Specifies the size of the current transaction

SGWnR Master to slave Specifies whether the current transaction is for
reading (low) or writing (high)

SGRDATA[D − 1:0] Slave to master Data resulting from a read operation
SGWDATA[D − 1:0] Master to slave Data to be written during a write operation

SGWAIT Slave to master Indicates that more time is required to complete
the current transaction

SGERROR Slave to master Indicates that the slave encountered an error
while processing the current transaction

The transaction sizes supported range from 8 bits (1 byte) to the width of the data

busses, with the actual size specified by SGSIZE. Possible values are listed in Table A.3.
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Table A.3: Values for specifying the size of an SG-Multi transaction

Size (bits) Binary Value

8 3’b000
16 3’b001
32 3’b010
64 3’b011
128 3’b100
256 3’b101

A.1.3 Master Interface Signals

SG-Multi master-specific functionality is captured in additional interface signals only present

at the master device interface. These signals are listed and described in Table A.4.

Table A.4: List, types, and descriptions of SG-Multi master-specific signals

Signal Name Type Description

SGREQ Output Indicates that a master device wishes to start a transaction
SGGRANT Input Indicates that the master device has been granted permission

to start a transaction

Master devices are not expected to be concerned with the existence and status of other

devices in the system when requesting transactions; SGREQ can be asserted whenever a

master device is ready to begin a transaction. However, they are required to request

permission using SGREQ and wait for SGGRANT to be asserted before proceeding with a

transaction.

A.1.4 Slave Interface Signals

SG-Multi slave-specific functionality is captured in additional interface signals only present

at the slave device interface. These signals are listed and described in Table A.5.

The SGACTIVATE signal is used to inform a slave device that an incoming transaction

request is available for processing. A slave is not to respond to transaction requests unless

SGACTIVATE is asserted. If a slave determines that a particular transaction is safe to be

snooped, it asserts SGSNOOP to signal this information. If a transaction has no side-effects,
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Table A.5: List, types, and descriptions of SG-Multi slave-specific signals

Signal Name Type Description

SGACTIVATE Input Activation signal, asserted when a transaction is being re-
quested

SGSNOOP Output Indicates that the requested transaction is safe to snoop

and the value of the address of interest does not change between consecutive read transac-

tions, then in general it may be safe to snoop that transaction; for instance, if the slave is

a memory storage device, then transactions might be safe to snoop. However, transactions

with a hardware controller may only be safe to snoop in more limited circumstances, such

as reading from or writing to the contents of a data register. In general, transactions that

are data-destructive or that have slave-specific side-effects are not safe to be snooped and

should have this functionality disabled.

A.1.5 Data Bus Alignment

All transactions in SG-Multi are memory address-aligned according to the size of the trans-

action; for instance, a 16-bit (2-byte) transaction is aligned on a 2-byte address boundary,

and a 32-bit (4-byte) transaction is aligned on a 4-byte address boundary. The data busses

SGRDATA and SGWDATA are similarly considered to be aligned based on their width, and

transactions smaller than the width of these data busses make use of specific bit positions

within them based on how their alignment compares to that of the data busses. Table A.6

explains this mechanism in more detail for a 32-bit data bus width, though the principles

contained therein extend to wider busses in a similar fashion. The address offset value is

the offset, in bytes, from a memory address aligned to the size of the data bus width; in

this example, it ranges from 0 to 3. It is recommended that the unused bit positions be

driven to whatever values simplify the logic design of the device. This could mean, for

instance, driving them to all ‘0’ or replicating whatever is being driven to the bit positions

in use.
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Table A.6: Bit positions used for smaller transactions on wide data busses

Transaction Size Address Offset Positions Used

8 bits

0 [7:0]
1 [15:8]
2 [23:16]
3 [31:24]

16 bits
0 [15:0]
2 [31:16]

32 bits 0 [31:0]

A.2 Transaction Details

All transactions in SG-Multi are pipelined and consist of two stages: an address phase

and a data phase. The address phase, the first part of a transaction, is when control

information is exchanged between a master device and a slave device, and the data phase,

which comes immediately after the address phase, is when the data transfer occurs. While

the majority of a transaction involves common signals, there are some interface-specific

differences between masters and slaves. The following subsections explain the procession

of a transaction at each of the two interfaces.

A.2.1 Master Interface Signalling

A master device request a transaction by initiating an address phase, which involves driv-

ing SGADDR, SGWnR, SGSIZE, and SGREQ. It must wait for SGGRANT in response before the

transaction can proceed, which may occur in the same cycle as SGREQ is asserted or some

cycle thereafter. A rising clock edge with SGGRANT asserted signifies that the slave has

accepted the transaction, ending the address phase and beginning the data phase. During

the data phase, the master must respond to status information the slave sends via SGWAIT

and SGERROR; it must drive SGWDATA at this time if it requested a write transaction. It may

also prepare for the next transaction, but it must not drive SGREQ until the final cycle of the

current transaction’s data phase. Figure A.1 shows a timing diagram for two consecutive

transactions that complete in the shortest possible time, the first a read and the second a

write. For the sake of simplicity the slave response signals SGERROR and SGWAIT are not
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shown; these are deasserted throughout this example.

A master may not see SGGRANT immediately as shown in Figure A.1. In the event that

SGGRANT is not asserted, the current address phase is extended; the master device must not

deassert SGREQ and it cannot advance to the address phase for the following transaction.

This delayed behaviour is shown in Figure A.2; for simplicity, only the directly relevant

signals are shown.

SGCLK

SGADDR

SGSIZE

SGWnR

SGRDATA

addr1 addr2

size1 size2

data1

SGWDATA

SGREQ

SGGRANT

data2

Figure A.1: Example read and write SG-Multi transactions at the master interface with
no waiting

A master device may also be delayed at the request of a slave, through the SGWAIT

signal. If this signal is asserted at the beginning of the clock cycle, then that cycle is a
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SGCLK

SGADDR

SGREQ

SGGRANT

addr1 addr2

Figure A.2: Example of an SG-Multi master interface transaction with a delayed grant
signal

wait cycle and the current transaction’s data phase is extended. Conversely, if this signal is

deasserted at the beginning of a clock cycle, then that cycle is the final cycle of the current

transaction’s data phase. In the case of a read transaction, the master must only sample

SGRDATA at the end of a cycle that began with SGWAIT deasserted; an example of such a

transaction is shown in Figure A.3. In the case of a write transaction, it must keep SGWDATA

for the entire duration of the data phase, until the end of a cycle that began with SGWAIT

deasserted; this is demonstrated in Figure A.4. A master must not begin arbitration for

its next transaction in a clock cycle that begins with SGWAIT asserted, a fact demonstrated

in Figures A.3 and A.4.

A slave may use SGERROR to signal to the master that an error has occurred during

the current transaction. The SGWAIT and SGERROR signals are mutually exclusive; a slave

will not signal both at the rising edge of a clock cycle. The signalling protocol is the same

with and without SGERROR, and a master can begin a new transaction in a clock cycle that

begins with SGERROR asserted, though the master should take note of the transaction error

and perform any appropriate action in response to it.
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SGCLK

SGADDR

SGRDATA

SGWnR

addr1 addr2

data1

SGREQ

SGGRANT

SGWAIT

Figure A.3: Example of an SG-Multi master interface read transaction with a wait cycle
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SGCLK

SGADDR

SGWDATA

addr1 addr2

data1

SGWnR

SGREQ

SGGRANT

SGWAIT

Figure A.4: Example of an SG-Multi master interface write transaction with a wait cycle
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A.2.2 Slave Interface Signalling

Transactions on the slave interface are controlled with SGACTIVATE. A cycle in which

SGACTIVATE is asserted is a valid address phase for a transaction directed at that par-

ticular slave; if SGACTIVATE is not asserted, the slave must not accept or process a new

transaction request. During this address phase cycle, the slave must determine if the

transaction type is supported, if it will require any wait cycles, and whether or not it is

safe for snooping. It must provide this information—via SGERROR, SGWAIT, and SGSNOOP,

respectively—before the end of the address phase cycle. The next rising edge begins the

data phase, and the slave must sample all relevant master control signals (such as SGADDR)

at that edge.

Slave signalling protocol rules are illustrated in Figure A.5. Three points are circled to

draw attention to the proper way for a slave to signal information to a master. The blue

circle shows how a slave signals a wait cycle: by asserting SGWAIT at the beginning of the

cycle, which in this example leads to the second cycle in the diagram being a wait cycle.

The red circle shows how a slave signals an error: by deasserting SGWAIT and asserting

SGERROR. A new transaction is supplied in the cycle immediately following the error, and

the slave must be ready to accept a new transaction when it signals an error. The green

circle shows how a slave permits a transaction to be snooped: by asserting SGSNOOP and

SGWAIT, the latter being required because bus snooping only occurs with transactions that

take at least two cycles to complete.

Error signalling may only happen immediately following a wait cycle. A slave is not

permitted to signal an error once it has already signalled its ability to complete a trans-

action by beginning a cycle with SGWAIT deasserted. Figure A.6 differentiates between

incorrect and correct slave error signalling. The exception to this rule is that a slave may

signal an error before the start of a transaction; in Figure A.5, this case would involve

the blue circle being replaced by SGWAIT deasserted and SGERROR asserted, a method of

signalling a slave might use to reject an unsupported transaction.
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SGCLK

SGACTIVATE

data1SGADDR

SGSNOOP

addr1 addr2

SGWAIT

SGERROR

Figure A.5: Illustration of SG-Multi slave response signalling rules

SGCLK

SGWAIT

SGERROR

(a) Incorrect error signalling

SGCLK

SGWAIT

SGERROR

(b) Correct error signalling

Figure A.6: Differentiation between incorrect and correct SG-Multi slave error signalling
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Appendix B

SG-Multi Designer XML

Specifications

This Appendix contains the information exchange specifications for XML files that describe

SG-Multi Designer modules. The intended audience is the designer of a hardware device

that is to be provided to users of SG-Multi Designer for use in designs.

Descriptions of the supported types of XML files are presented first, followed by XML

file support for variables and macros. Details on the information to be contained in each

type of XML file are presented last.

B.1 Supported XML File Types

SG-Multi Designer supports three primary types of modules: master device modules, slave

device modules, and bus adapter modules. It differentiates between these three types based

on the name given to the root node of the XML file. Supported root node names are listed

in Table B.1. Each XML file may only describe a single module.

B.2 Variables and Macros

SG-Multi Designer supports variable and macro references in place of constant values in

its XML files. This allows hardware module designers to designate place-holders for values
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Table B.1: XML file types supported by SG-Multi Designer

Root Node Name Device Type

sgmulti-master Master device
sgmulti-slave Slave device

sgmulti-adapter Bus adapter

that will only be known when it is time to invoke the hardware module’s executable file.

Variables are references to system-wide configurable parameters or device properties, and

macros—also known as “instance parameters”—are references to values that SG-Multi

Designer generates immediately before instantiating a device.

References to variables and macros are formatted as a special character followed im-

mediately by the name of the variable or macro. Table B.2 lists the special characters and

their meanings.

Table B.2: Special characters for variable or macro references in an XML file

Character Reference Type

$ Global variable
% Device property
# Instance parameter

The current version of SG-Multi Designer supports two global variables whose values

can be referenced from an XML file. These are named and described in Table B.3.

Table B.3: List and descriptions of global variables supported by SG-Multi Designer

Name Description

ADDRESS WIDTH Width, in bits, of the SG-Multi address bus SGADDR

DATA WIDTH Width, in bits, of the SG-Multi data busses SGRDATA and SGWDATA

Instance parameters are assigned values immediately before SG-Multi invokes a tool

to instantiate a device. The current version of SG-Multi Designer defines two instance

parameters for all types of device modules. These are listed and described in Table B.4.
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Table B.4: List and descriptions of instance parameters supported by SG-Multi Designer

Name Description

OUTPUT FILE File name of the desired output Verilog file
MODULE NAME Desired name of the Verilog module to be created

B.3 XML File Format Details

Every XML file supported by SG-Multi shares some common nodes, but beyond that most

are specific to the type of device being represented. The subsections that follow provide

details on the nodes that SG-Multi Designer requires to be present in a device module

XML file.

B.3.1 Common Nodes

SG-Multi Designer refers to devices, both internally and through its user interface, by

name. Every hardware module must supply a valid name. Devices may also optionally

specify a “friendly name” to be shown to the user instead of the internal name. If a device

does not specify a friendly name, the internal name is shown instead. A device specifies

its name and friendly name as shown in Figure B.1.

<name>internalname </name>

<friendlyname >Friendly Name</friendlyname >

Figure B.1: XML file format for specifying a device’s name and friendly name

B.3.2 Master and Slave Device Nodes

Master and slave device XML files share many common nodes since they both represent

devices to be used in an SG-Multi system. These types of XML files must describe the

device’s configurable properties, its extra signals, and its executable tool interface.

Properties are defined in a settings block within the device’s XML file. This block

is optional; if a device has no configurable properties, this block does not need to be
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present. Each property has its own property node, which defines the property’s internal

name, user-facing description, data type, and optionally minimum and maximum values.

Property definitions are formatted as shown in Figure B.2.

<settings >

<property name="p1" description="d1" type="boolean" />

<property name="p2" description="d1" type="uint2" min="32"

max="256" />

</settings >

Figure B.2: XML file format for specifying a device’s configurable properties

Several different data types are supported for configurable properties. These are listed

in Table B.5.

Table B.5: List and descriptions of data types for device properties in an XML file

Type String Description

int Signed integer
uint Unsigned integer
uint2 Unsigned integer, power of 2
string Character string
verilog Character string, valid Verilog identifier
boolean Boolean value
file File name

Extra signals are defined in an extrasignals block, which contains individual signal

nodes, one per extra signal. This block is also optional; a device without any extra signals

may omit it from its XML file description. Each extra signal must specify an internal

name and may optionally specify a width, measured in bits, as well as a disconnected

state. The disconnected state specifies the logic that drives an extra signal if a user does

not explicitly connect it to a connection point; supported values are shown in Table B.6.

If a width is omitted, SG-Multi Designer uses a default value of 1, and if a disconnected

state is omitted, it is presumed to be high impedance. Figure B.3 illustrates how extra

signals are formatted in an XML file.
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Table B.6: Supported extra signal disconnected state specifiers

Character Description

1 Extra signal should be connected to constant logic ‘1’
0 Extra signal should be connected to constant logic ‘0’
Z Extra signal should not be connected to anything (high impedance)

<extrasignals >

<signal name="sig1" width="16" />

<signal name="sig2" disconnect="0" />

<signal name="sig3" width="4" disconnect="1" />

</extrasignals >

Figure B.3: XML file format for specifying a device’s extra signals

All devices must define the interface to the executable tool used to construct it. This

information is captured in a command block. At the block level, the tool attribute specifies

the path of the executable file that should be executed. Within the block, param nodes

specify an ordered list of command-line arguments that should be appended to the exe-

cutable file invocation to customize the device instance. Each parameter includes a val

attribute, which specifies the source of the command-line argument’s value, and an optional

prefix attribute, which specifies a string constant to be inserted immediately before the

value. For instance, a prefix of “-N” for a value of 6 would produce “-N6” as the final

command-line argument passed to the tool. A command-line argument value specifier will

likely be a variable or macro, as this facilitates device customization, though this is not a

requirement. Figure B.4 shows the proper formatting of a command block in an XML file.

<command tool="exefile">

<param val="value1" prefix="-v1" />

<param val="value2" />

<param val="value3" prefix="-v3" />

</command >

Figure B.4: XML file format for specifying a device’s executable tool interface
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Master devices—but not slave devices—may also specify dependence on a bus adapter.

This is done through an adapter block, which must specify the internal name of the re-

quired adapter and provide values (variables or macros are also supported) for any instance

parameters that the specific bus adapter requires. Instance parameters vary from adapter

to adapter, so the designer of a master device module that depends on a bus adapter

should consult the documentation supplied with that adapter module for a list of instance

parameters. The proper format for indicating dependence on a bus adapter is shown in

Figure B.5.

<adapter name="adaptername">

<param name="param1" value="val1" />

<param name="param2" value="val2" />

</adapter >

Figure B.5: XML file format for specifying a master’s dependence on a bus adapter

B.3.3 Bus Adapter Nodes

Bus adapter modules, like master and slave device modules, must define an interface to

an executable tool using a command block. They do not, however, support extra signals or

configurable properties; a master device that depends on a bus adapter supplies parameter

values, which the bus adapter module can access through references to instance parameters.

XML files representing bus adapter modules must define the names of the native signals

for the specific architecture being adapted. An architecture block serves this purpose,

with each native signal being represented as a nativesignal node within it. Widths may

be optionally specified using constant values or references to variables or macros; any signal

without a specified width is presumed to have a width of a single bit. Figure B.6 shows

the proper format for this block.
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<architecture >

<nativesignal name="sig1" width="11" />

<nativesignal name="sig2" width="#REF" />

<nativesignal name="sig3" />

</architecture >

Figure B.6: XML file format for specifying a bus adapter’s native signal names

B.4 Example XML Files

To better illustrate the format of XML files, two complete examples are provided: one

for an AHB-Lite bus adapter and one for an ARM Cortex-M0 processor. Figure B.7

shows the AHB-Lite XML file, which defines all of the native AHB-Lite signals. The tool

requires information from the standard SG-Multi Designer global variables and instance

parameters but additionally refers to two additional instance parameters, “AWIDTH” and

“DWIDTH,” values for which must be supplied by any module that makes use of the

AHB-Lite bus adapter. In the context of AHB-Lite, these instance parameters refer to the

widths of the AHB-Lite address and data busses respectively, which may be different from

the SG-Multi address and data bus sizes.

Figure B.8 shows the ARM Cortex-M0 XML file, with a dummy property added to

illustrate how properties are used and accessed. Typically property values would be

passed as input to the executable file, behaviour reflected in the third listed parameter

for the command-line tool. The Cortex-M0 module also defines device-specific extra sig-

nals and provides values for the “AWIDTH” and “DWIDTH” instance parameters on the

bus adapter.
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<sgmulti -adapter >

<name>ahblite </name>

<friendlyname >AHB -Lite</friendlyname >

<architecture >

<nativesignal name="HCLK" />

<nativesignal name="HRESETn" />

<nativesignal name="HADDR" width="#AWIDTH" />

<nativesignal name="HWRITE" />

<nativesignal name="HSIZE" width="3" />

<nativesignal name="HBURST" width="3" />

<nativesignal name="HPROT" width="4" />

<nativesignal name="HTRANS" width="2" />

<nativesignal name="HMASTLOCK" />

<nativesignal name="HRDATA" width="#DWIDTH" />

<nativesignal name="HWDATA" width="#DWIDTH" />

<nativesignal name="HREADY" />

<nativesignal name="HRESP" />

</architecture >

<command tool="build_ahblite">

<param val="#OUTPUT_FILE" prefix=""/>

<param val="#MODULE_NAME" prefix=""/>

<param val="$ADDRESS_WIDTH" prefix=""/>

<param val="$DATA_WIDTH" prefix=""/>

<param val="#AWIDTH" prefix=""/>

<param val="#DWIDTH" prefix=""/>

</command >

</sgmulti -adapter >

Figure B.7: Example XML file for an AHB-Lite bus adapter module
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<sgmulti -master >

<name>cortexm0 </name>

<friendlyname >ARM Cortex -M0</friendlyname >

<adapter name="ahblite">

<param name="AWIDTH" value="32" />

<param name="DWIDTH" value="32" />

</adapter >

<settings >

<property name="DUMMY" description="Dummy property"

type="boolean" />

</settings >

<extrasignals >

<signal name="NMI" disconnect="0" />

<signal name="IRQ" width="16" disconnect="0" />

<signal name="TXEV" />

<signal name="RXEV" disconnect="0" />

<signal name="LOCKUP" />

<signal name="SYSRESETREQ" />

<signal name="SLEEPING" />

</extrasignals >

<command tool="build_cortexm0">

<param val="#OUTPUT_FILE" prefix="-o" />

<param val="#MODULE_NAME" prefix="-m" />

<param val="%DUMMY" />

</command >

</sgmulti -master >

Figure B.8: Example XML file for an ARM Cortex-M0 master device module
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