
Modeling trust in multiagent
mobile vehicular ad-hoc networks
through enhanced knowledge
exchange for effective travel

decision making

by

John Finnson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2012

c© John Finnson 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis explores how to effectively model trust in the environment of mobile vehic-
ular ad-hoc networks. We consider each vehicle’s travel path planning to be guided by
an intelligent agent that receives traffic reports from other agents in the environment.
Determining the trustworthiness of these reports is thus a critical task. We take as a
starting point the multi-dimensional trust model of Minhas et al. That work had a
two-phased approach: i) model trust and ii) execute an algorithm for using that trust
modeling, when deciding what route to take. The framework presented in this thesis
aims to clarify i) the messaging that should be supported, ii) the internal representa-
tion of the messaging and the trust information and iii) the algorithms for sending and
receiving information (thus updating knowledge) in order to perform decision making
during route planning. A significant contribution is therefore offered through clarifi-
cation and extension of the original trust modeling approach. In addition we design a
comprehensive, extensive simulation testbed that is used to validate the effectiveness
and robustness of the model. This testbed supports a variety of metrics and is able
to perform testing in environments with a large number of cars. This constitutes the
second significant contribution of the thesis.

Overall, we present a valuable model for knowledge management in mobile vehic-
ular ad-hoc networks through a combination of trust modeling, ontological represen-
tation of concepts and facts, and a methodology for discovering and updating user
models. Included is a representation and implementation of both a push-based and
pull-based messaging protocol. We also demonstrate the effectiveness of this model
through validation conducted using our simulation testbed, focusing first on a sub-
set of the multi-faceted trust model in order to highlight the value of the underlying
representation, decision making algorithm and simulation metrics. One very valu-
able result is a demonstration of the importance of the combined use of the different
dimensions employed in the trust modeling.

iii

Acknowledgements

First and foremost I offer my sincerest gratitude to my supervisor, Dr. Robin Cohen
and co-supervisor, Dr. Grant Weddell for being outstanding advisors. Their invalu-
able guidance, encouragement, and support from the initial research to the final stages
enabled me to make this thesis successful. Furthermore, I am deeply indebted to Dr.
Peter van Beek and Dr. Richard Trefler for serving on the thesis committee.

I warmly thank Amirhossein Vakili and John Champaign for their valuable advice
and guidance to make my graduate studies successful. Thanks as well to Paul Kates,
Jie Zhang, Umar Farooq Minhas, and Thomas Tran for providing me with valuable
feedback on my research.

I am very grateful to all of my colleagues and friends: Michael Cormier, Adam
Hartfiel, Rhiannon Rose, Tyrel Russell, John Doucette, Hadi Hosseini, Ayman Sha-
laby, Tomasz Rozdeba, Rajesh Kumar, Dan Attrell, Nea Powell, and Sarah Ruffell
for being such great friends and making my life much more enjoyable throughout my
stay at Waterloo.

I thank the David R. Cheriton School of Computer Science for providing the
support and equipment I needed to produce and complete my thesis and NSERC for
funding my studies.

Finally, my warmest appreciation goes to family, especially my father Doug Finn-
son, who has been supporting me throughout my time preparing and writing my
thesis, and my late mother Mary Rose Finnson, who has been a source of inspiration
throughout my university career.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgments iv

Table of Contents vii

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Motivating Scenarios . 3

1.1.1 Traffic Congestion . 3
1.1.1.1 Inexperienced Agent 3
1.1.1.2 Experienced Agent 4

1.1.2 Dishonest Agents . 4
1.1.2.1 Few Dishonest Agents 4
1.1.2.2 Many Dishonest Agents 4

1.1.3 Conclusion . 5

2 Background 6
2.1 Agents and Multiagent Systems . 6
2.2 Ontologies . 6
2.3 Provenance . 7
2.4 Vehicle Ad-Hoc Network (VANET) 7
2.5 A Multi-faceted Trust Management Framework 7

2.5.1 Majority Consensus . 10
2.6 Knowledge Provenance . 13

2.6.1 Distributed Trust Reasoning 13

v

3 Framework 16
3.1 Structure Overview . 16
3.2 Coordinator Element . 17

3.2.1 Controller Component . 18
3.2.2 Communication Component 18
3.2.3 VANET-Reasoner Component 19

3.3 Ontology Element . 19
3.3.1 Vont and KP Knowledge Base 19
3.3.2 Mediator Component . 20
3.3.3 VANET-Ont Reasoner . 20

3.4 Agent Modeling . 20

4 The Model 21
4.1 Knowledge Base . 21

4.1.1 Knowledge Base Design . 22
4.1.2 Vont Ontology . 22
4.1.3 KP Ontology . 27

4.2 Communication . 28
4.2.1 Communication Protocols . 29

4.2.1.1 Pull . 29
4.2.1.2 Push . 30
4.2.1.3 Pull and Push . 30

4.2.2 Messages . 33
4.2.3 Processing . 33

4.3 Trust . 42
4.3.1 Advice Gathering Update . 43
4.3.2 Trust in the Ontology . 44
4.3.3 Trust Modeling with Numeric Traffic Reports 45

4.3.3.1 Confidence Calculation 45
4.3.4 Majority . 46

4.3.4.1 Majority Calculation 47
4.3.4.2 Suspicion Calculation 47

4.3.5 Experience . 49
4.3.6 Role . 49
4.3.7 Time/Location . 50
4.3.8 Direct/Indirect . 50
4.3.9 Confidence Calculation Examples 51
4.3.10 Travel Decisions when using Numeric Trust Modeling 53

4.4 Model Summary . 53

vi

5 Validation 55
5.1 Motivating Scenarios Revisited . 55
5.2 Implementation . 56

5.2.1 3rd Party Software . 56
5.2.2 Ontology Details . 57
5.2.3 Communication Details . 58

5.2.3.1 Priority Roads . 58
5.2.4 Trust Modeling Details . 58

5.2.4.1 VANET-Ont Reasoner 58
5.2.4.2 Pathing . 59
5.2.4.3 Information Sparsity 60

5.3 Experimental Setup . 60
5.4 Core Simulations . 64
5.5 Model Simulations . 69
5.6 Framework Simulations . 72

6 Discussion and Conclusion 76
6.1 Our Journey to the Framework and Results 76

6.1.1 Reflection on Related Work 77
6.1.1.1 Knowledge Bases . 77
6.1.1.2 Trust Modeling . 78

6.2 Future Work . 81
6.2.1 Additional Simulation . 81
6.2.2 Extended KP Propositions Use 81
6.2.3 Greedy Agents . 81
6.2.4 Disconnected Agents . 82
6.2.5 Destination Awareness . 82
6.2.6 Honesty Queries . 82
6.2.7 Recognizing Patterns of Agent Behavior 82
6.2.8 Data Expiration . 83
6.2.9 Real World Implementation 83

6.3 Conclusion . 83

Bibliography 86

Appendices 90

A Confidence Geometric Series 90

vii

List of Tables

2.1 Actions. Reprinted from [14] . 14
2.2 Fluents. Reprinted from [14] . 15

4.1 Pull and Push Message Contents . 34

5.1 Simulation Types . 61
5.2 Simulation Framework Variables . 62
5.3 Simulation Algorithm Variables . 63

viii

List of Figures

2.1 A Multi-faceted Trust Management Framework, from Minhas et al.[20] 8
2.2 Knowledge Provenance Ontology. 14
2.3 Example of distributed trust reasoning in social networks. 15

3.1 UML Component Diagram of the VANET Model. 17

4.1 VANET Vont Ontology. 23
4.2 VANET Vont Ontology with all Object Properties. 24
4.3 VANET Vont Ontology with all Object Properties, initial instances,

and important Datatype Properties. 26
4.4 Knowledge Provenance Ontology showing all variables. 36
4.5 Example of KP and Vont instances describing a traffic report. 37
4.6 UML Sequence Diagram of an agent pushing their current location and

congestion information to another agent. 37
4.7 UML Sequence Diagram of an agent sending request for information

about a priority road. 38
4.8 UML Sequence Diagram of an agent receiving a request for information

about a specific road and sending a response. 40
4.9 UML Sequence Diagram of an agent receiving information about a road. 41
4.10 High Level Activity Diagram of the Model Framework. 54

5.1 Average Speed. 65
5.2 Average Paths. 66
5.3 Avg Path Time comparison of our Basic model vs. best case, worst

case, and No P scenarios . 67
5.4 Profiling scenario with 50% honesty (Basic, Hon 0.5). 67
5.5 Non-Profiling scenario with 50% honesty (Basic, No P, Hon 0.5). . . 67
5.6 Worst case scenario that does not use traffic information (No Traffic). 68
5.7 Avg Path Time comparison of our Full model vs. best case, worst case,

and No P scenarios . 69
5.8 Avg Path Time comparison of simulation types over varying degrees of

honesty at 10,000 seconds . 70
5.9 Avg Path Time comparison, multidimensional trust component variations 71
5.10 Avg Path Time comparison, multidimensional parameter variations . 72

ix

5.11 Avg Path Time comparison, varying number of agents 73
5.12 Avg Path Time comparison, varying message interval 74
5.13 Avg Path Time comparison, varying communication protocols 75

x

Chapter 1

Introduction

An intelligent agent is a software program designed to assist a user in accomplishing
a task using automated reasoning, taking into consideration the user’s goals and
preferences. A mobile vehicular ad-hoc network is a network of vehicles that may
be traveling on a road, where communication between the cars is supported. In
this thesis, we assume each vehicle is representing a user and each user’s travel path
planning is guided by an intelligent agent.

In the work of Minhas et al.([20, 18]) a framework was proposed to support the
exchange of information about traffic towards more effective decision making of intel-
ligent agents in transportation environments, through mobile ad-hoc vehicular net-
works. That model focused on determining the reliability of the knowledge being
exchanged, by modeling the trustworthiness of the agent providing the advice. This
was achieved by using a multi-faceted approach whereby an agent’s trustworthiness
depended on a combination of that agent’s role, the direct experience of that agent’s
trustworthiness, a modeling of the time and location of the agent’s advice and an
aggregation of collective advice from the environoment, in order to model majority
consensus. In addition, the framework provided for a limiting of the number of agents
to consult, so that only the most trustworthy advice overall would form the basis of
the agent’s decision making (and so that in scenarios which required quick decision
making one could scale back on processing by focusing on a smaller selection of over-
all advice, whereas longterm planning could enjoy the luxury of extended information
gathering).

The overall approach of the framework was to propose an algorithm for integrating
the various influences on modeling trustworthiness in order to enable a decision to
be made by an agent, following an exchange of information from other agents in the
environment. Formulae enabled a proper discounting of advice that was possibly stale
in time and location, and a proper increased value to the advice being presented by
agents in authority roles, such as police.

The model was validated as effective through its use in a modest simulated traf-
fic environment, where cars made decisions about travel routes based on the advice
received and where cars that were less effective in selecting trustworthy advice would

1

2

suffer from poorer travel speed overall, in the environment.
One central question that was not addressed sufficiently well was simply a proper

articulation of the actual communication between the agents in the environment.
Exactly what form the messages would take, what knowledge they would yield and
how then that knowledge could be represented (in order to reason with it) was simply
encapsulated in sample examples such as “Is there heavy traffic on Road X?” expecting
a reply of “Yes” or “No”.

In this thesis, we present a framework to support effective exchange of existing
knowledge between agents through a clearer encapsulation of the messaging that is
performed. In order to achieve this goal, we explore a subtopic in the design of effective
knowledge bases known as provenance. In this context, one examines propositions
being exchanged and one models the authority of the source of the proposition within
an overall ontological structure for the set of sources. In so doing, one is able to not
only clarify the messaging performed but also to deduce reliability of that knowledge,
with an initial provenance measure. Using methods for constructing knowledge bases
to support provenance, we propose a specific solution for the messaging and for the
representation of the knowledge that will be managed by the agents in our mobile
vehicular ad-hoc network (VANET), as the backdrop for their decision making about
route planning in the environment.

Once this has been established, the trust modeling framework of Minhas et al.[20]
can then be re-examined in order to provide finer distinctions on trust modeling of the
sources of advice. This then leads to a framework which is able to offer: i) detailed
representation of knowledge to be exchanged which integrates both ontological and
propositional elements ii) motivated by knowledge provenance research, an integra-
tion of various features of propositions which assist agents in their decision making
about route planning iii) representation of trust modeling measures iv) specification
of an algorithm for information exchange which clarifies when, where and with whom
knowledge is shared, towards effective decision making for the agents in the environ-
ment.

This framework is, in turn, validated through a careful implementation in a de-
tailed, expanded simulation of actual traffic flow, employing large numbers of cars
making decisions about travel based on knowledge received from others in the mobile
environment; an effective modeling of the trustworthiness of those agents; significant
metrics for determining whether effective decisions about routes were achieved within
the simulation. We are able to demonstrate significant improvements in average speed
of cars, average number of paths completed by cars during the simulation, and av-
erage path time of cars when using our proposed framework for message exchange,
knowledge representation and trust modeling.

At the core, we provide a valuable specification of the context in which a request
for information would be conveyed. This leads to a more careful characterization of
how the knowledge that is gained from the communication should (and should not)
influence the transportation decision of the agent and how that knowledge should be
stored and accessed. As such, we also offer insights into a companion question, namely:

3

when should agents issue requests for information, in order to carry out effective
transportation planning? This is provided through an overall proposed algorithm for
information gathering from agents in these dynamically changing environments. As
such, beginning to clarify more carefully the communication that is flowing between
agents leads us to not only specify the format of the messaging, but also the conditions
under which communication would occur, when updates to user models would ensue,
and some specification of the reason and context of the communication that can
become part of the agent’s overall decision making process.

Overall, this research culminates in a clearer articulation of the knowledge gath-
ering procedure recommended for agents in mobile vehicular ad-hoc networks (an im-
portant transportation application), with respect to what should be asked, to whom,
when; this serves to specify not only the format of messages but also the updating
frequency, to then lead to evaluations of trustworthiness that are leveraged to result
in effective decisions about travel. This results in a framework that enables effective
transportation decisions based on proper management of the knowledge exchanged
between agents – one that has been validated as valuable through extensive simula-
tions.

1.1 Motivating Scenarios
This section presents a few scenarios in the VANET domain to motivate the need
for our proposed framework. These scenarios demonstrate issues in traffic routing
and peer trust that can arise in the VANET domain. In these examples, we clarify
the value of exchanging information about congestion of roads between vehicles - the
primary message that we propose within the framework developed for this thesis. The
first section details how vehicle congestion can arise from lack of situational awareness.
The second section details how agents could easily be misled if the information being
received is not treated critically.

1.1.1 Traffic Congestion
This section outlines a few scenarios where drivers in a city encounter traffic conges-
tion. The congestion delays described could be avoided through situational awareness
of congested roads.

1.1.1.1 Inexperienced Agent

An agent (A1) is passing through the city to a destination beyond and is unfamiliar
with the city. Relying on a typical GPS system, A1 follows its instructions and
attempts to take the GPS’s outlined shortest path. The shortest path uses a main
road, and results in A1 being delayed for an extended period of time. If A1 had taken
any of the side routes then he would have avoided the main road’s congestion and
saved a lot of time.

4

1.1.1.2 Experienced Agent

An agent (A2) controlling a vehicle needs to reach a destination in as little time as
possible. A2’s destination is a parking garage for his work. A2 also has a GPS, which
advises a similar route to that of A1’s; however, he has been living in the city for a
long time and is very familiar with how commuting works. A2 knows that the advised
route will be very congested and even though it is the shortest path, he will be delayed
a long time. As a result, A2 ignores the GPS and takes a side route to his destination.

During A2’s detour, several things can go wrong. For example, while Agent A2 is
attempting to take his side route, he could be unaware of a car crash which causes
him to be late for work. Agent A2 could also be unaware that the side path has had
rising popularity with the veterans of the city. Even though the side route is not as
congested as the main road, taking a different route could have saved A2 some time.

1.1.2 Dishonest Agents
This section outlines a few scenarios where drivers in a city communicate with each
other about traffic scenarios. The agents in the system are fully trusting of the
communicated information, which results in malicious agents taking advantage of
the system by sending false information. The use of dishonest information could be
avoided in these scenarios through profiling (i.e. trust modeling) and other techniques,
such as the modeling of agent roles.

1.1.2.1 Few Dishonest Agents

Agent A2 learned his lesson about situational awareness and now communicates with
other cars about traffic scenarios. Another agent (A3) also communicates with other
cars; however, he is one of a few agents who are greedy and dishonest, and take
advantage of the system by informing all other cars that their current road is very
congested, even though it is not. This is not entirely unreasonable to expect, in an
environment where self-interested agents prefer to reduce the traffic on their current
route. A2 is trusting and always believes information from other agents. During a
commute, A2 is informed by A3 that his side road is very congested due to a traffic
accident. Using this information, A2 takes the main road which he believes is less
congested and is unnecessarily delayed. Even though there are only a few malicious
cars, they can have a substantial impact on the overall traffic flow of the city. After
A3 broadcasts his dishonest reports, he manages to get to his destination with little
delay.

1.1.2.2 Many Dishonest Agents

The congestion communication system has been in place for a while now and the
system is now filled with dishonest agents who are trying to emulate the success
of A3’s dishonesty. The high number of dishonest agents results in the city having

5

congestion issues comparable to what existed before the congestion communication
system was used. This is due to most of the roads being reported with similarly bad
congestion values, resulting in agents not using traffic information and defaulting to
using the route with the shortest distance.

1.1.3 Conclusion
Examining these scenarios, the conclusion is that exchange of information about traffic
congestion on roads would be valuable, but that a careful modeling of the trustworthi-
ness of the agents providing these reports is warranted. The remainder of the thesis
develops a framework to enable this communication and modeling, together with a
comprehensive validation of its effectiveness.

Chapter 2

Background

This chapter describes some terminology and foundational related work.

2.1 Agents and Multiagent Systems
In artificial intelligence, an intelligent agent is defined as an autonomous entity that
observes and acts upon an environment and directs its activity in order to achieve its
goals [25].

Multiagent systems are defined in [31] as: "... systems in which several interacting,
intelligent agents pursue some set of goals or perform some set of tasks.” Multiagent
systems (MAS) are used to solve problems that are difficult or impossible for an
individual agent to solve.

2.2 Ontologies
In computer science, ontologies formally represent knowledge as a set of concepts
within a domain, and the relationships between those concepts. Ontologies are used
by intelligent agents to reason about entities within a domain and serve the purpose
of describing the domain. An ontology is defined in [12] as a "...formal, explicit
specification of a shared conceptualization." Ontologies can be formally understood
in the context of a dialect of description logic (DL) [2]. This applies for instance to
OWL2 in relation to the semantic web [21].

Ontologies are typically used as structural frameworks for organizing information,
in a hierarchical fashion, showing classes and subclasses relationships, instances and
properties. The descriptive nature of ontologies has promoted the creation of seman-
tic databases for knowledge representation in areas such as biomedical informatics,
systems engineering, the semantic web, and artificial intelligence [27, 24, 28, 13]. DL-
based ontologies are especially suited for "open worlds" where the collection of facts
may be incomplete.

6

7

2.3 Provenance
The term provenance comes from the French word provenir. It is defined in [1] as
referring to the chronology of the ownership or location of an object. In computer
science, provenance is used to determine the source of information, such as traffic
data, in order to assess whether it is trustworthy or not.

Databases in computer science often are concerned with provenance to a certain
degree and usually contain provenance information, either for tracking ownership or
data usage. Ownership usually concerns the source, or creation information, of data
while data usage concerns the modification and access of data [6].

2.4 Vehicle Ad-Hoc Network (VANET)
A vehicular ad-hoc network (VANET) is a subset of mobile ad-hoc networks (MANETs),
and represents technology that concerns networks of inter-connected cars, typically
represented as nodes or agents. Self-configuring infrastructureless ad-hoc networks
from these cars arise through some type of wireless communication and the ability for
cars to dynamically join or leave the network. These networks are typically used to
communicate and/or coordinate for a certain task or purpose.

Real world examples of VANET systems are some taxi companies, which com-
municate positions and customer requests, and buses, which communicate positions
and other important information for staying on schedule. One of the most common
types of information communicated within these networks is traffic data, such as road
closures or car crashes, so that the cars within these networks won’t be delayed by
these unforseen circumstances.

2.5 AMulti-faceted Trust Management Framework
The examples of VANET systems of the previous section, involving taxis and buses,
described vehicles of relatively small groups which were strictly managed. This section
describes the work by Minhas et al.[20, 18], which introduces the idea of larger groups
of unmanaged vehicles that communicate traffic information. The research presented
in Minhas et al.[20, 18] does not limit the cars that may join or leave the VANET. This
allows for communication and coordination for a larger scale of vehicles, including the
possibility of all vehicles within a city being connected. The goal of this thesis is
to expand upon the research presented in this section and to validate it within an
implemented simulation framework.

An immediate issue arises from this type of open network, which is addressed
in the work of Minhas et al.[20, 18]. When communicating traffic information, the
vehicle you are communicating with may not be trustworthy and may be sending false
information for devious or greedy purposes. An example of this was described in the
motivating scenario of Section 1.1.2.1. Minhas et al.[20, 18] introduce a multi-faceted

8

trust management framework for dealing with these dishonest agents, providing each
agent with the most accurate and trustworthy data.

The driver of each vehicle in our VANET environment is considered to be a user.
In order for each vehicle on the road to make effective traffic decisions, information
is sought from other vehicles (about the traffic congestion on a particular road).
The traffic information communicated might be from a less than reputable source.
As a result it becomes important to model the trustworthiness of the other agents
that provide information. The multi-faceted trust management framework shown in
Figure 2.1 [20, 18] includes role-based trust and experience-based trust in an integrated
evaluation metric. This is used for determining trustworthiness of vehicular agents
that can in turn be used to determine the reliability of the information shared by
these agents.

Aggregated
 Feedback

Associated
Confidence

Role-based

Experience-based

P
rio

rity-b
ased

Majority-opinion

E
ven

t/T
ask

S
p

ecific

Scalable Decentralized Coping with
Sparsity

L
o

ca
ti

o
n

/T
im

e
S

p
ec

if
ic

S
en

sitive to

P
rivacy

S
ys

te
m

-l
ev

el

S
ec

u
ri

ty

Figure 2.1: A Multi-faceted Trust Management Framework, from Minhas et al.[20]

Role-based trust acknowledges that certain vehicles in the environment may play
a particular role and, on this basis, merit greater estimates of trustworthiness. For
example, there may be vehicles representing the police, taxis, buses, and other traffic
authorities or ones representing radio stations dedicated to determining accurate traf-
fic reports by maintaining vehicles in the vicinity of the central routes. Or there may
be a collection of users representing a “commuter pool”, routinely travelling the same
route, sharing advice. The proposal for considering roles when reasoning about travel

9

is to group users together according to their designated role, but then to still be able
to order each collection of role-based users from the most to the least trustworthy,
on the basis of past experience with the users. Role-based trust is also particularly
useful for coping with the data sparsity problem where agents may not have much
experience with each other in large and open VANET environments.

Experience-based trust allows for an agent to continuously model and update its
trust in another based on direct experiences between them. The incorporation of
the experience-based trust is to make use of any evidence from direct interactions,
whenever available, into the trust calculation. Consideration of any past personal
experiences with users allows the model to include any learning about particular
users due to previous encounters, specifically modeling trustworthiness each time and
adjusting the level of trust to be higher or lower, based on the outcome of the advice
that is offered.

Experience-based trustworthiness is represented and maintained according to equa-
tions 2.1 and 2.2.

TA(B)←
{
TA(B) + α(1− TA(B)) if TA(B) ≥ 0,
TA(B) + α(1 + TA(B)) if TA(B) < 0, (2.1)

TA(B)←
{
TA(B) + β(1− TA(B)) if TA(B) ≥ 0,
TA(B) + β(1 + TA(B)) if TA(B) < 0, (2.2)

where TA(B) ∈ (−1, 1) is the trust value indicating the extent to which agent A
trusts (or distrusts) agent B according to A’s personal experience in interacting with
B, 0 < α < 1 is a positive increment factor, and −1 < β < 0 is a negative decrement
factor. After A follows an advice of B, if the advice is evaluated as reliable, then the
trust value TA(B) is increased by Equation 2.1. Otherwise, if B’s advice is evaluated
as unreliable, then TA(B) is decreased by Equation 2.2. These enable agents to update
their trustworthiness value for other agents, based on past experiences.

Values of α and β can be set to be event-specific. For example, when asking about
a major accident, these values may be set high, to reflect considerable disappointment
with inaccurate advice. The framework also incorporates a requirement for users to
reveal whether the traffic information they are providing has been directly observed
or only indirectly inferred from other reports that user has received. The critical
distinction of direct or indirect reporting then influences the values set for α and
β, introducing greater penalties for disappointment with direct advice. Minhas et
al.[19] discusses at greater length incentives to honesty that are introduced within
this framework; for brevity, we omit that discussion in this thesis.

Note that Minhas et al. introduces priority-based trust modeling as well, setting
a restricted number of users n to consult for each travel decision. This is clarified in
the following subsection.

10

2.5.1 Majority Consensus
A central calculation to influence the travel decision of each user is the determination
of majority consensus amongst the users providing advice about a particular road.
We outline below the calculations performed by a user for this reasoning within the
framework of Minhas et al.

Step 1: The user maintains, as part of her model of other users, an ordered list
of users to ask for advice:

G1 : u11, u12, u13, ..., u1k

G2 : u21, u22, u23, ..., u2k
...

Gj : uj1, uj2, uj3, ..., ujk

This list is ordered from higher roles to lower roles (e.g. G1 is the highest role), with
each group of users of similar roles being ordered from higher experience-based trust
ratings to lower ratings. Thus, uij represents the user in role group i that is at the
jth level of experience-based trust1. Hence, this ordered list combines role-based trust
and experience-based trust into a priority-based approach.

Step 2: The user sets a value n = number of users whose advice will be consid-
ered2.

Step 3: The user asks the first n users from her ordered list the question, receives
their responses (reports), and then performs majority-based trust measurement:

Step 3A: Suppose that q of these n users declare that their reports are from direct
experience. The asking user determines whether there are sufficient direct witnesses
such that she can make a decision based solely on their reports, by comparing q with
a threshold Nmin

3.
Step 3B: If q ≥ Nmin, then the asking user will only consider the reports from the

q direct witnesses. If a majority consensus on a response can be reached, up to some
tolerance set by the asker (e.g. the user may want at most 30% of the responders to
disagree), then the response is taken as the advice and followed.

Step 3C: If q < Nmin, then there are insufficient direct witnesses. In this case, the
asking user will consider reports from both direct and indirect witnesses, assigning
different weight factors to them, computing and following the majority opinion.

Step 3D: Once the actual road conditions are verified, the asking user adjusts
the experience-based trust ratings of the reporting users: It penalizes (rewards) more
those users who reported incorrect (correct) information in the direct experience case
than those users with incorrect (correct) information in the indirect experience case.

1There is no need for each group to have the same number of elements. We provide here only a
simplified example.

2This integrates task-based trust. For instance, a user may set n to be fairly small, say n ≤ 10,
if she needs to make quick driving decision, or set a larger n if she has time to process responses.

3See equation (7) in [19] for how to compute this threshold.

11

Step 3E: If a majority consensus cannot be reached, then requiring majority con-
sensus for advice is abandoned. Instead, the user relies on role-based trust and
experience-based trust (e.g., taking the advice from the user with highest role and
highest experience trust value).

Step 4: In order to eventually admit new users into consideration, the user will
also ask a certain number of users beyond user un in the list. The responses here will
not be considered for decision, but will be verified to update experience-based trust
ratings and some of these users may make it into the top n users, in this way.

The computation of majority consensus adheres to the set of formulae outlined
below:

Suppose user A receives a set of m reports R = {R1, R2, ..., Rm} from a set of
n other users B = {B1, B2, ..., Bn} regarding an event. User A will consider more
heavily the reports sent by users who have higher level roles and larger experience-
based trust values. When performing majority-based process, also taken into account
is the location closeness between the reporting user and the reported event, and the
closeness between the time when the event has taken place and that of receiving the
report. Below Ct represents time closeness, Cl location closeness, Te experience-based
trust and Tr role-based trust. Note that all these parameters belong to the interval
(0, 1) except that Te needs to be scaled to fit within this interval.

For each user Bi (1 ≤ i ≤ n) belonging to a subset of users B(Rj) ⊆ B who report
the same report Rj ∈ R (1 ≤ j ≤ m), the effect of its report is aggregated according
to the above factors. The aggregated effect E(Rj) from reports sent by users in B(Rj)
can be formulated as follows:

E(Rj) =
∑

Bi∈B(Rj)

Te(Bi)Tr(Bi)
Ct(Rj)Cl(Bi)W (Bi)

(2.3)

In this equation, experience-based trust and role-based trust are discounted based on
the two factors of time closeness and location closeness. Note that location closeness
Cl(Bi) depends only on the location of user Bi while time closeness Ct(Rj) depends
on the time of receiving the report Rj. Ct(Rj) can also be written as Ct(Bi) because
it is assumed that each report is sent by an unique user at a possibly different time.
W (Bi) is a weight factor set to 1 if user Bi who sent report Rj is an indirect witness,
and W (Bi) is set to a value in (0, 1) if user Bi is a direct witness4.

To consider the effect of all the different reports, the majority opinion is then

M(Rj) = max
Rj∈R

E(Rj) (2.4)

which implies the report that has the maximum effect, among all reports.
4For example, setting W (Bi) = 1/2 for the case of direct witnesses indicates that the asking user

values direct evidence twice more than indirect evidence.

12

A majority consensus can be reached if

M(Rj)∑
Rj∈RE(Rj)

≥ 1− ε (2.5)

where ε ∈ (0, 1) is set by user A to represent the maximum error rate that A can
accept. A majority consensus can be reached if the percentage of the majority opinion
(the maximum effect among different reports) over all possible opinions is above the
threshold set by user A.

Finally, a core processing algorithm was proposed for use by each user that seeks
advice from other vehicles in the environment, which is summarized in Algorithm 1.

Algorithm 1: Computation Steps
while on the road do

if in need of advice then
Choose n; //number of users to ask for advice
Prioritize n users;//according to roles and experiences
Send requests and receive responses;
if response consensus > acceptable ratio then

Follow advice in response;
end
else

Follow advice of user with highest role and highest trust value;
end

end
Verify reliability of advice;
Update users’ trust values;

end

The trust modeling framework described above clarifies the algorithms that lead
to the calculation of the trustworthiness value which would then be stored in each
user model. Trip planning decisions of a vehicle would then be made in light of these
particular user models.

Elements that require further clarification are the detailed representation of a
user model (where trustworthiness information is stored, relative to other information
about the user), the world model (where user models and information not specific to
users, such as road location and congestion data are stored), a specific proposal for
communication protocols (when updates to the user model should occur and what
they contain) and the design of a high level agent infrastructure (design of how world
and user model, communication protocols, and reasoning components combine with
each other). The last element is especially important for preparing this research to
be applicable for real world implementation. This thesis presents solutions to these

13

elements, which are elaborated in the chapters that follow.

2.6 Knowledge Provenance
Provenance means the origin, the source of something, or the history of the ownership
or location of an object [1]. The concept of provenance is central to this thesis and
essential to the Semantic Web. Huang explains that provenance “tells not only what
is the information source but also how this information is derived, what is the context
of this information, and how this information is used” [14]. All of this information is
extremely important for determining the value and integrity of an information resource
[3]. This is defined as provenance based judgment. In order to effectively use data
from sources, provenance reliability needs to be assessed. This is especially important
for the VANET research where other cars might be unreliable sources of information.
Certain traffic reporting sites may also be more reliable than others, which can affect
which value will be officially used. From this observation, provenance assessment is
important for all sources and is therefore used in this thesis on all resources.

As explained, the purpose of knowledge provenance (KP) is to address the problem
of how to determine the validity and origin of information/knowledge on the web [9].
The goal of Huang’s thesis [14], was to fully describe, represent, and model provenance
in the context of the web.

Provenance information is primarily described by Huang through propositions. A
proposition is an atomic piece of information that is annotated with provenance infor-
mation. Huang represents propositions through an ontological class structure shown
in Figure 2.2. Instances of each class are used to represent individual propositions.

The primary concern of Huang’s knowledge provenance research was determining
the validity of information through investigating its source. This was done through a
process of finding and establishing the source, which defines the provenance, and then
assessing the reliability of the provenance. When finding the fundamental source of
data, this can possibly involve routing through multiple sites. This is very common
on the internet where sites often cite information from other sites, that also do the
same.

2.6.1 Distributed Trust Reasoning
This section describes the concept of distributed trust reasoning (DTR) and how it
functions in relation to knowledge provenance. DTR attempts to solve the problem of
modeling trust in a social network where personal trust judgments are not accessible
in a search. The work by Huang proposes a DTR model constructed by using situation
calculus [14]. This section describes the terminology and actions for distributed trust
reasoning and how they are used.

DTR works with KP as a functional layer on top of it. DTR is used when KP
is implemented in a distributed world, with each agent assumed to have its own

14

Figure 2.2: Knowledge Provenance Ontology.

Table 2.1: Actions. Reprinted from [14]
Action Definition/Semantics
request(e,query(e,e’,q)) ⊆ E × D

Agent e requests agent e’ whether fluent q holds.
checkAnswer(e,query(e,e’,q),w) ⊆ E × D × D

Agent e gets answer w for the query.
acceptQ(e’,query(e,e’,q)) ⊆ E × D

Agent e’, accepts query from agent e.
replyQ(e’,query(e,e’,q),w) ⊆ E × D × {Yes, No}

Agent e’ replies to the query from agent e with w.

knowledge base.
Situation calculus is primarily composed of actions, which can be performed in

the world and fluents, which describe the state of the world. Table (2.1) and (2.2),
modified from [14], summarize the new actions and fluents needed for the KP world.

These actions and fluents are used to question friends as to whether they trust
each other. The friend could subsequently ask their friends if they do not have an
answer. Through this process, a transitivity of trust occurs which allows friends and
the original requestee to determine the validity of the source and its data [14]. This
process is demonstrated in figure (2.3), conveniently cast into the VANET domain.

This thesis focuses on VANET, which uses agents rather than web sites to define
the source of data. The proposed framework replaces the KP reasoner in [14] with a
new one that is specific to the VANET domain, and will be described in this thesis.

15

Table 2.2: Fluents. Reprinted from [14]
has_query(query(e,e’,q)) ⊆ D

Relational fluent. Query from e to e’ has been made.
has_answer(query(e,e’,q),w) ⊆ D × D × D

Relational fluent. Query from e to e’ has answer w.
has_task(e,e’,q) ⊆ E × E × F

Relational fluent. Agent e has task to answer question
q from agent e’.

query(e,e’,q) ⊆ E × E × F → F
Functional fluent. Represents a query from agent e to
e’ about fluent q.

Figure 2.3: Example of distributed trust reasoning in social networks.

Chapter 3

Framework

This chapter and the following chapters present the original work of the thesis, which
seeks to expand upon the foundational research presented in Section 2.5 and imple-
ment it within a simulation framework.

This chapter introduces the expanded multi-faceted trust management framework
by describing the high level infrastructure of an individual agent (within VANET),
as well as components which seek to represent and clarify the elements which lacked
clarification in Section 2.5.

This thesis adopts a multiagent systems approach where each vehicle in the en-
vironment is equipped with an intelligent agent that determines the path for the
vehicle to follow, based on reports received from other vehicles in the environment.
Due to this structure, messaging between vehicles becomes a central element of the
overall framework. Our solution for messaging is motivated by the proposals of [14]
for distributed agent communication.

An important result in this chapter is the creation of a framework for knowledge
representation to function as a semantic repository for the VANET terms and to serve
as the knowledge base used by the VANET agents as part of their reasoning about
other agent and paths to follow in the transportation environment. The knowledge
base is expressed as an ontology, V-Ont + KP, motivated by the representation used
in [14]. This knowledge base fulfills the element roles of a world and user model, which
were lacking clarification in Section 2.5.

3.1 Structure Overview
Our overall framework consists of an underlying knowledge representation, proposed
messaging, and proposed trust modeling (The Model) together with a simulation
testbed (The Simulation). The testbed is used to validate the model as valuable
for enabling effective transportation decision making (i.e. route selection) by intelli-
gent agents, sensitive to information about the environment data received from other
intelligent agents. Figure 3.1 presents a UML component diagram of our proposed

16

17

framework. This diagram illustrates all of the major components of the framework and
how they fit into the overall model for a single agent. Certain aspects of the diagram
are specifically descriptive of the simulation implementation (presented in Chapter
5); however, the overall structure is descriptive of the general model framework.

Figure 3.1: UML Component Diagram of the VANET Model.

In analysis of the diagram, the design is separated into two areas, Coordinator
and Ontology. This depicts a clear separation between how knowledge is stored and
how it is used. The Simulation Parameters artifact is a file of parameters that would
be used by the components in the Coordinator node to set up a simulation run of
the implementation (discussed further in Chapter 5). The following subsections will
describe the Coordinator and Ontology elements and their relative components. Due
to Figure 3.1 being indicative of a single agent’s framework, the following sections
will be described in reference to the resident agent. The resident agent references
the native agent which possess the components being discussed. This is an accurate
description due to the system being designed for an Ad-Hoc network with no other
components existing outside the described framework.

3.2 Coordinator Element
The Coordinator node is separated into two areas, VANET components (VANET-
Coor) and a Controller, labelled JiST/SWANS1, used to issue vehicle commands such
as turning at an intersection, and to send messages. VANET-Coor is made up of two
components, VANET-Comm and VANET-Reasoner. VANET-Comm is responsible

1This specific label is representative of an architecture that serves as the controller. This enables
us to connect well to the specific controller used in our Simulation testbed, described in Chapter 5.

18

for all communication. This includes when to send messages, what messages con-
tain, and how to process them. VANET-Reasoner is responsible for the majority of
reasoning and processing of controller information and stored semantic knowledge.

3.2.1 Controller Component
The Controller component is treated as a self contained modular component that acts
as a gateway for mediating all low level interactions with vehicles, such as physically
sending a message to another car, controlling the speed at which the resident car is
traveling, or advising an optimal route for the vehicle.

Due to an open-ended treatment of this component its role can be filled in various
ways, such as implementing a 3rd party simulation software or a GPS device that
is connected to a real car. The validation of this thesis in Chapter 5 implements
the JiST/SWANS simulation software to fill the role of a controller component. The
possibility of connecting a GPS device leads to the possibility of real world deployment
which is further discussed in the future work section of Chapter 6.

The majority of roles tied to the controller component are autonomous and never
need interaction, such as controlling the speed of a car. However, some responsibilities
are fundamentally tied to the VANET framework, such sending messages and deciding
what path to take. These actions interact with the VANET components through
the VANETMobilityModel. The VANETMobilityModel serves as an extension to
the controller component and is responsible for communication between the VANET
components and the controller.

3.2.2 Communication Component
The VANET-Comm communication component is responsible for sending and man-
aging all messages to and from other agents. This responsibility is divided into two
different areas, communication protocols, such as pull and push, and message manage-
ment, which was inspired from the messaging proposals of [14]. The communication
protocols are referred to in this thesis as the pull and/or push protocol. Message
management is referred to in this thesis as KP-Comm. The pull and push protocols
control why and when to send messages. KP-Comm is responsible for how the mes-
sages are structured, according to Section 2.6.1. The Communication component also
interacts with the Reasoner component which determines what the messages contain.
Who the messages are sent to is determined either randomly (Push) or from inter-
acting with the Reasoner component (Pull), which then interacts with the Ontology
node to retrieve a trustworthy agent’s information. The pull and push protocols and
KP-Comm are more thoroughly described in Section 4.2.1.

19

3.2.3 VANET-Reasoner Component
The Reasoner component is responsible for processing and determining the important
operations of the other components of the Coordinator and Ontology nodes. These
responsibilities can be grouped into two areas, processing messages and acting as
a mediator to retrieve traffic information for the Controller component. Processing
messages is a complicated task which can involve issuing responses to information
requests and processing message information to inform the Ontology node of newly
discovered information, such as roads, agents, or congestion data 2.

Interaction with the Controller component is mediated through VANETMobili-
tyModel. Processing of semantic knowledge is done through interactions with the
VANET-Ont component through the VontMediator mediator. The diagram’s indi-
cated socket connection is specific to the simulation’s implementation and is described
in Chapter 5.

3.3 Ontology Element
The Ontology node contains two elements, a VANET-Ont component and a Vont +
KP knowledge base. The VANET-Ont component is responsible for mediating com-
munication with the VANET-Reasoner of the Coordinator node, performing complex
knowledge base interactions, and contains a reasoner for modifying the trust of agents
and calculating a majority opinion of congestion data. The Vont + KP knowledge
base contains all of the resident agent’s knowledge of the world, including congestion
data, and profiles of other agents.

3.3.1 Vont and KP Knowledge Base
The Vont and KP Knowledge base is responsible for hosting all semantic data for
the resident agent. Each agent will manage its own Knowledge Base (its view of the
world). As such, each agent’s knowledge base includes models of other agents in the
environment. The VANET-Ont component interacts with the knowledge base to com-
plete various tasks such as dynamically creating and adding new instances, updating
instances, retrieving semantic data, and querying for collections of related semantic
data. This knowledge base is described as Vont and KP because it is designed as a
modular combination of two ontologies, a VANET ontology (Vont) and a Knowledge
Provenance (KP) ontology which are further described in Section 4.1. The KP ontol-
ogy is a general purpose ontology with classes that represent propositions. The Vont
ontology is specific to the VANET domain and is used by the KP ontology to describe
propositions. This setup, similar to the Controller component, allows for the Vont
ontology to be possibly replaced with another ontology if this framework were to be
applied to a different domain.

2Depending on whether the agent is honest or dishonest, responses will ether contain truthful or
misleading information.

20

3.3.2 Mediator Component
The Mediator component is contained within the VANET-Ont component and is re-
sponsible for all interactions with the knowledge base and the Coordinator node. The
knowledge base interactions include knowledge base instance additions, updates, re-
trievals, and queries. The interactions with the Coordinator node, specifically the
VANET-Reasoner component, mostly involve the VANET-Reasoner sending new in-
formation to be added to the knowledge base or requesting important information.
The requests for information typically involve calculating the majority congestion of
a road or information of a trustworthy agent. This requested information is then used
by the Controller component and the VANET-Comm component, respectively.

3.3.3 VANET-Ont Reasoner
The Reasoner component is contained within the VANET-Ont component and is
responsible for reasoning about and executing the more complex knowledge base in-
teractions. These interactions include the processing of agents for trust updates, and
processing new congestion data to form majority opinions, which are then stored in
the knowledge base and sent to the Coordinator node. This component interacts with
the Mediator component to perform knowledge base interactions and to send messages
to the Coordinator node.

3.4 Agent Modeling
A fundamental aspect of the proposed VANET framework is its representation, gath-
ering, management, and use of trust information. This information plays a role in
each of the components detailed in Figure 3.1. The VANET-Comm component is
responsible for gathering trust information. VANET-Ont is responsible for represent-
ing trust information and most of its management, which includes the trust modeling
algorithms. VANET-Reasoner is responsible for issuing requests to VANET-Ont in
order to perform trust-based decision making for path planning. The Jist/Swans Con-
troller knows the paths that can be taken by the vehicle, in order to direct the car’s
next move.

The following chapter details the proposed Model, with references to the com-
ponents of Figure 3.1 and its relevant generalizations, specifically how VANET was
redesigned, the messaging design, and the knowledge base. The trust model is also
described in greater detail with its implications into the different areas of the pro-
posed model. Chapter 5 details the implementation of the proposed framework, with
references to the components of Figure 3.1 and the aspects which are specific to the
implementation and their design rationale. That chapter will also detail relevant
metrics of the simulations and display their results.

Chapter 4

The Model

This chapter outlines the proposed model of the framework, which defines a general-
ized system of collecting, storing, and using trust-dependent information. The model
can be described as being motivated by the Knowledge Provenance research from [14]
and the VANET research from Minhas et al.[20, 18] with extensions and updates that
will be detailed in this chapter. This proposed model can be repurposed for other
trust-based projects; however, for the purposes of this thesis the VANET project of
Minhas et al. (henceforth simply referred to as VANET), its unique problems, con-
cepts, and scenarios from Section 1.1 are used in defining parts of the model. This
chapter is separated into three sections: the first defines the use of ontologies to store
semantic information, the second defines how this information is collected through
distributed agent messaging, and the last defines how the information and types of
trust are used to make decisions.

4.1 Knowledge Base
The VANET model makes use of knowledge bases to store relevant information. Each
individual agent maintains its own knowledge base that respects the same ontology
(as displayed in Figures 2.2 and 4.1) but is populated with unique instances and
values. The ontology is designed as the combination of two separate ontologies, a
modified version of the Knowledge Provenance (KP) ontology from [14] shown in
Figure 2.2, and a new ontology called Vont, which contains all previous and new
semantic information from the VANET project and is shown in Figure 4.1.

Knowledge bases were chosen as the primary means of information storage for rea-
sons of simplicity and competency in the intelligent agent domain and their inherent
advantage for representing open world information. The Knowledge Provenance work
by [14] initially provides an OWL/RDF [17] implementation in that thesis’ appendix.
Included is the use of classes, individuals, variables, and relationships to describe its
data. Classes define types of objects, individuals are unique instances of class objects,
and variables are used to describe either basic or complicated relationship information

21

22

about instances. The chosen knowledge base design is thus reflective of description
logics [2], which integrate both a terminological and an assertional component.

4.1.1 Knowledge Base Design
Knowledge bases are particularly useful in agent based systems and our framework.
This is because they allow us to formulate an ontology that can be robust and gener-
ically descriptive while allowing a population of instances that make each knowledge
base unique to the agent it belongs to. An important additional concept that is in-
troduced to the ontologies used by this model is the use of classes that represent
propositions, as in the Knowledge Provenance work.

The dual ontology nature of the model allows for the propositions of the KP
ontology to use the descriptive language of the other ontology, defined in this thesis
as Vont, to describe its contents. The KP and Vont ontologies are combined in a
separated design in which no fundamental concepts overlap and create unnecessary
complexities or conflicts. Vont instances never reference KP instances. However, KP
proposition instances reference Vont instances. An example is shown in Figure 4.5
of Section 4.1.3. References do not directly impact Vont instances, but simply entail
that additional related information is provided through KP proposition instances.

The necessity of using Vont to describe the content of KP proposition instances
stems from the need for a computer to be capable of understanding the content of a
KP proposition for analytical purposes, such as a reasoner analyzing the content of
a traffic report proposition to understand the road it’s concerning and the reported
congestion. The formal hierarchy of these two ontologies can be described as Vont
forming a basic descriptive level, which is used by the KP ontology to describe its
content, but still remaining fundamentally disjoint. The model’s role is to create and
populate the combined knowledge base with instances for each ontology, to then have
its data used in other components of the model.

4.1.2 Vont Ontology
The VANET ontology (Vont) was created to semantically describe most concepts
and relationships from the VANET research described in Section 2.5. The ontology
contains many definitive and abstract classes and relationships so that it can be used
to describe a wide range of VANET scenarios with minimal confusion. The design of
the Vont ontology also was intended to be easily modified so that it can be utilized
for future research. Figures 4.1, 4.2, and 4.3 show the Vont Ontology created from
the VANET project [20, 18].

Figure 4.1 shows a basic representation of the Vont ontology. The Vont ontology
forms a collection of classes and subclasses with inter and intra instance relationships.
Classes represent an initial concept at the top, like v-ont:Location, and then subclasses
of the concept as children, like v-ont:Road. Classes of Vont are depicted in Figure 4.1

23

Figure 4.1: VANET Vont Ontology.

with arrows from children pointing to their parent with an isa label indicating an is
a relationship.

24

Figure 4.2: VANET Vont Ontology with all Object Properties.

25

Figure 4.2 shows an expanded diagram of 4.1, which includes all Object Properties.
Object Properties are class properties which reference an instance of another class.
For example, v-ont:Agent has the Object Property v-ont:has_Location which points
to the class v-ont:Location. This Object Property indicates that an instance of v-
ont:Agent can have the property v-ont:has_Location, which references an instance of
v-ont:Location and thus indicates the last known location of the agent instance.

26

Figure 4.3: VANET Vont Ontology with all Object Properties, initial instances, and important Datatype Properties.

27

Figure 4.3 shows an expanded diagram of 4.2, which includes some important
Datatype Properties. Datatype Properties are class properties which store a basic
datatype value. For example, v-ont:Agent has the Datatype Property v-ont:trust_Degree.
This Datatype Property indicates that an instance of v-ont:Agent can have the prop-
erty v-ont:trust_Degree, which contains a number that indicates the resident agent’s
current trust of the v-ont:Agent instance. The Datatype Properties of the figure are
further described in the sections which are responsible for their processing.

An agent’s knowledge base initially has no instances. The exception is the vanet:Role
class which initially has four instances, indicated in Figure 4.3, which are the four
different types of roles an agent can have from Section 2.5. The knowledge base
is dynamically populated with instances through requests by the VANET-Reasoner
component. The VANET-Reasoner component makes requests to the VANET-Ont
component to populate the agent’s knowledge base with Vont instances that will be
used to create KP propositions, such as locations and foreign agents. These requests
are triggered dynamically when new information is encountered, such as encountering
a new agent, which the resident agent previously had no contact with, or encountering
a new road previously untraveled. The full range of requests may be specific to the
implementation. The ones used in our simulation are discussed in Chapter 5.

Instances can also be modified under certain circumstances. The most common
type of modification is to agent instances, which define the resident agent’s model of
a particular agent. Example modifications can be an update to the trust variable as
a result of reasoning about advice received from the agent about a particular road, or
an update to the agent’s location variable after receiving a message from the agent
about its current location.

4.1.3 KP Ontology
The Knowledge Provenance ontology (KP) introduces the important concept of propo-
sitions to our model’s knowledge base. The ontological structure for these propositions
can be seen in Figure 2.2 and 4.4. A proposition is an atomic piece of information that
is annotated with provenance information. It is through these KP propositions that
our model can provide specific information such as the source agent and domain spe-
cific data such as, in our application, road congestion values, to be used in trust and
certainty evaluations. The hierarchal nature shown in Figure 2.2, and the expanded
version shown in Figure 4.4, describes the different types of proposition classes that
can be used by our proposed model. The practical use of these propositions is defined
by an implementation of this proposed model, and is described in Chapter 5. KP
propositions are typically created and then stored for future use. 1

The different types of propositions also help classify the type of information they
are presenting and annotating. The range of propositions and their descriptive nature
can be used to describe a wide range of situations. For example, this thesis, for the

1They can be modified later on; however the implementation of this thesis in Chapter 5 does not
make use of post-creation modifications to propositions.

28

purposes of the implementation, utilizes Asserted Propositions kp:AssertedProp to de-
scribe information that was directly observed and Derived Propositions kp:DerivedProp
to describe information that was indirectly observed or derived from other proposi-
tions. Direct and indirect observations are more thoroughly discussed in Section 4.3.8.

The KP propositions help annotate important domain information and present
it in a standardized format. This thesis focuses on the VANET domain, with Vont
describing its semantics. As discussed in the previous sections, Vont is used by the
KP ontology as a descriptive layer, describing the information which is being an-
notated. An example would be a KP asserted proposition instance referencing an
instance of Vont:Traffic which represents a traffic report of a location, reported by an
agent defined in a variable of the proposition. A detailed example of a KP instance
referencing Vont instances is shown in Figure 4.5. The arrows in the figure with the
io label indicate an instance of relationship.

Figure 4.5 demonstrates the use of Vont and KP classes and instances to de-
scribe a message received about the congestion of a single road. The figure’s con-
tents are representative of a small portion of a single agent’s knowledge base at a
certain time. Black boxes are representative of classes, red boxes are representa-
tive of instances, contents of the boxes represent properties, and arrows represent
relations. The figure contains an old instance of the KP Original Proposition class
(kp:AssertedProp-10-FromAgent39) whose content property references a Vont traf-
fic report (v-ont:Traffic-10At-21-FromAgent-39), and includes additional provenance
information about the creator of the report (v-ont:Agent-39), when it was received,
and the associated certainty. The creator of the report references an instance of the
Vont Agent class (v-ont:Agent-39); relative properties are shown, such as the agent’s
role, identification number, and trust degree. The trust of the agent is reflected in
the proposition instance. The proposition’s referenced traffic report (v-ont:Traffic-
10At-21-FromAgent-39) contains a congestion value, a reference to the road instance
in question (v-ont:Road-21), and other variables used to calculate the confidence of
the report. The road instance shows relative properties, such as last time updated,
identification number, and trusted congestion value. The proposition is old because
the time stamp for the road instance is higher than that of the proposition instance.

The use of the Vont ontology in conjunction with the KP ontology can semantically
define anything from the VANET project. A large portion of this semantic and
trust information is gathered from interations with other agents. Section 4.2.1 details
messaging within the model. This includes the use of the model’s ontology definitions
to describe queries within messages.

4.2 Communication
The VANET agents communicate with other agents in order to collect important
information that is to be stored in their knowledge base. The previous VANET
research [20, 18] lacked a communication protocol or a clarification of the structure of

29

a message’s content. In this section, we define and describe these components as well
as how messages are processed and used. The communication procedure for what is
transmitted and how, is an expansion of the Knowledge Provenance (KP) distributed
system communication model from [14].

A major change to the original way VANET approached messages is that previ-
ously an agent first had a demand for advice and then proceeded to message other
agents. In the version of VANET presented in this thesis, agents are able to con-
stantly receive messages, responses are stored, and then relevant information is used
when there is a demand. The design rationale of this update was due to a practical
infeasibility of sending, waiting, then receiving advice at the moment it is needed. Ad-
ditionally, the unbiased nature of sending requests and storing advice allows for the
model to profile many more agents even if their advice is not used for travel decisions.

4.2.1 Communication Protocols
The KP communication model [14] was designed with a pull based communication
protocol, where agents send requests to other agents for information. In addition to
this classic pull oriented design of the KP model, this thesis introduces a push based
protocol for broadcasting information. These protocols dictate when communication
is initiated and to whom. Either or both of the two protocols can be used for commu-
nicating information between agents. Both protocols are used in the simulations of
Chapter 5, with a separate simulation demonstrating their performance differences.

This thesis uses two types of messages which are designed for the various protocols:
1) the fundamental and basic message is a location and congestion transmission; 2)
the other message is to request the congestion information of a specific road. The
following subsections describe each of the protocols, how they send these messages,
and their use in combination. The presented framework is capable of functioning with
only the pull or push based protocol active, or their use in combination. This will be
demonstrated with simulations in Chapter 5.

4.2.1.1 Pull

The pull protocol allows agents (requester) to request information from other agents
(requestee). The trustworthiness of the information from the requestee agent is mod-
eled and used to determine what path to follow based on the report produced.

The overall protocol is capable of transmitting and receiving both types of mes-
sages. This subsection describes the most basic configuration of the model, which
only requests and receives location and congestion information. Section 4.2.1.3 will
include a description of the model which utilizes both pull and push protocols and
further clarifies possible message types.

Algorithm 2 describes the pull-based protocol and the location and congestion
request message to an agent. The algorithm is triggered according to a set commu-
nication frequency. The information received generates an update to the knowledge

30

base of the recipient.

Algorithm 2: Pull Based Communication Protocol
while on the road do

if Triggered according to communication frequency then
Request location and congestion of an agent;

end
end

4.2.1.2 Push

A push protocol allows agents to send information to other agents, even if it were
not requested. The trustworthiness of the sender agent is still modeled; this may
then be employed during decision making about travel paths. Algorithm 3 describes
the push-based protocol and the location and congestion transmission message of an
agent. The algorithm is triggered according to a set communication frequency. The
information received generates an update to the knowledge base of the recipient.

Algorithm 3: Push Based Communication Protocol
while on the road do

if Triggered according to communication frequency then
//Broadcast current location and congestion to agents
Broadcast current location and congestion;

end
end

4.2.1.3 Pull and Push

This subsection describes the complete configuration of the model, which utilizes both
protocols and message types. This configuration is used as a default in the simulations
of Chapter 5. In this configuration, for scenarios where ongoing broadcasts from
vehicles are supported, the push protocol is utilized for transmitting the location and
congestion message while the pull protocol is utilized for the second message type,
where congestion information is requested for a certain road.

The push based protocol is utilized for transmitting current location and conges-
tion information, instead of the pull based protocol, because it allows for an easier
flow of information due to a reduction in the number of messages needed for a basic
location and congestion transmission. The pull based protocol requests the current
location and congestion of another agent and then receives the response at a later
time. Using the push protocol, only one message is needed because each agent can

31

simply message other agents its current location and congestion rather than requiring
vehicles to also send an unnecessary request.

The second message type, for retrieving congestion information about a certain
road, has two sub messages, a request and a response, and is initiated by a pull
protocol. Due to the possibility that the requestee agent may not have any information
on the requested road, it is possible that no response is sent and received. The
information received from these messages are stored in the requester agent’s knowledge
base as a proposition, described in Section 4.1.3 and 4.3.2, and may be used or judged
when appropriate. The content of these messages are explained in Section 4.2.2.

This thesis encountered an issue with the pull based protocol suggested by the
VANET research in terms of requesting specific information. Examining the algorithm
proposed by the VANET model of Section 2.5, the messaging proposed was vague. It
was suggested that the message content (congestion information about a road) would
be a “yes” or “no” response to a question “Is this road congested?” and that this
response would be pulled to the requesting agent. When the pulls would occur was
also left vague as “in need of advice”. As such, which roads were being investigated
was also unspecified. This thesis addresses this issue by introducing the concept of
priority roads, which are roads that are dynamically designated as important for an
agent. The concept of a priority road facilitates messaging (and hence the updating
of user models). Roads are placed into priority for an agent through the framework
dynamically recognizing a lack of congestion information, which may have otherwise
altered the decision of the agent. The subsequent request for congestion information
concerning the priority road will fill the agent’s earlier gap of congestion information.
Note that when a report about a priority road is received, its status may be altered
to cause it to be removed from the priority list (if sufficient information on that road
has accumulated).

Algorithm 4 describes the push and pull based protocol and how a priority road
information request is sent by agents. The algorithm is triggered according to a set
communication frequency. We return to briefly discuss priority roads in connection
with path decision making in Section 4.3.1.

The rationale in having two types of communication protocols is to allow for an
easier flow of information as well as future model development, such as the existence
of a global agent which would use the push protocol to send important information
such as news of a car crash. This thesis uses only two sets of messages, three unique
messages in total. These are outlined in Table 4.1 and described in the following
subsection. The model’s communication protocols are designed however to be ex-
tendable in so that it can host a multitude of different messages. The pull protocol
could be used for any type of information gathering, such as a personal inquiry about
the receiving agent or less direct inquiry, for example about a third agent.

32

Algorithm 4: Pull and Push Based Communication
while on the road do

if Triggered according to communication frequency then
//Pull protocol
//Get road to request advice about and agent to request from
if priority road exists then

Choose highest priority road;
Get trustworthy agent;
if Trustworthy agent exists then

Send request to trustworthy agent for advice concerning the high
priority road;

end
else

Send request to any agent for advice concerning the high priority
road;

end
end
//Push protocol
//Broadcast current location and congestion to agents
Broadcast current location and congestion;

end
end

33

4.2.2 Messages
The specific contents of messages are designed around the KP distributed commu-
nication work [14]. These messages are composed of two important components, in
addition to the requester and requestee. The first is a query, specifying the question
to be answered. The second is an answer in the form of a fluent. Huang defines
fluents in his KP thesis as “... a property (of the world) whose value is dependent on
situations.” The Model’s ontological definitions of things such as classes and variables,
which are universally understood by agents in the model, are used in the query to
define the question.

Table 4.1 details the contents of the three messages discussed in the previous Sec-
tions which are utilized in this thesis. The three messages are a transmission of an
agent’s location and congestion (Location and Congestion Push), a request for con-
gestion information about a specific road (Priority Road Information Pull Request),
and a response for congestion information about a specific road (Priority Road In-
formation Pull Response). The queries of messages indicate either what the agent is
requesting or sending by transmitting the corresponding ontology classes. The flu-
ents of messages contain the content of the messages, typically a reference to a class
instance and/or basic data types which convey some sort of information.

For example, a sample Priority Road Information Pull Request message sent
by a requesting agent would reference the v-ont:Location and v-ont:Traffic classes
in the query and then supply a reference to an instance of v-ont:Location such as
(Highway401(v-ont:location instance)). The requestee would receive this message and
recognize it as a request for congestion information about Highway401. If the re-
questee agent is honest it will respond with the Priority Road Information Pull Re-
sponse message, for example (Highway401(v-ont:location instance),23(roads conges-
tion value)) as its fluent. The requesting agent would recognize the fluent and interpret
it as a congestion report on the location, and an appropriate KP proposition instance
would be created.

In observation of the messages from Table 4.1, they all have the same Query but
different Fluents. This is due to messages between agents consisting only of traffic
information. Future work in Section 6.2 in Chapter 6 discusses other types of messages
that could be utilized by the proposed model and thesis, such as requests for trust
information about other agents.

4.2.3 Processing
This section details the processing of the communication protocols, use of message
contents, and the interaction of VANET-Comm with the other components of our
framework shown in Figure 3.1.

The Model’s messaging system is thoroughly described by Figures 4.6, 4.7, 4.8, and
4.9. The figures detail how the model uses the JiST/SWANS Controller component
to send messages between agents, the layered processing of the messages by VANET-

34

Table 4.1: Pull and Push Message Contents
Location and
Congestion Push

Priority Road
Information Pull
Request

Priority Road
Information Pull
Response

Sending
Agent

Resident Agent Requester Agent Requestee Agent

Receiving
Agent

Foreign Agent Requestee Agent Requester Agent

Query ([v-ont:Location],
[v-ont:Traffic])

([v-ont:Location],
[v-ont:Traffic])

([v-ont:Location],
[v-ont:Traffic])

Fluent ((v-ont:Location
instance),
(congestion value))

(v-ont:Location
instance)

((v-ont:Location
instance),
(congestion value))

Comm, with its use of the KP distributed communication model, and the management
and use of the semantic information by the VANET-Reasoner and VANET-Ont com-
ponents. With the exception of Figure 4.6, the figures are organized into the order
they would be processed chronologically. The first, Figure 4.6, is the process in which
an agent would send a push message. The second, Figure 4.7, is an agent requesting
advice. This figure also signifies the start of a sequence of events and messages which
are conveying in the remaining figures. The third, Figure 4.8, is an agent receiving
an advice request then sending a response. The last is Figure 4.9, an agent either
receiving a response to their original request or receiving a push message. Messages
that contain congestion information are processed by adding them to the knowledge
base and executing the trust modeling process of Algorithm 7 to calculate a major-
ity opinion. Algorithm 7 is more thoroughly detailed in Section 4.3. The sequence
diagrams depict the flow of processing and how components communicate with each
other to complete the operation.

The sequence diagram of Figure 4.7 shows the flow of processing for an agent
executing a pull protocol request to another agent for advice. This information is
to be stored in this agent’s knowledge base and used in path planning and agent
profiling.

The VANET-Comm: PushProtocol is a continually executing process which is
responsible for periodically pushing advice to agents. This process only exits when
advice no longer needs to be pushed. The process begins by retrieving an agent and
then creating a knowledge provenance fluent, contained within a query to embody the
information being pushed. This query is then issued as a task to the part of VANET-
Comm which contains the knowledge provenance distributed communication model
(per Section 3.3), described in Section 3.2.2, which is responsible for processing all
communication tasks. After the task is processed by KP, the message is sent to the
requestee agent. After the message is sent, PushProtocol waits for a certain amount

35

of time and then restarts this sequence shown in Figure 4.6.
We assume that the frequency in which these messages are sent is set high enough

(every 5-16 seconds for example) so that over a certain amount of time the number of
messages sent will emulate a broadcast. The design rationale for sending a message
according to a frequency, and not a set of messages as a broadcast, is so that channels
will not be clogged with too many messages (which may be very large depending on
the broadcast feature).

36

Figure 4.4: Knowledge Provenance Ontology showing all variables.

37

Figure 4.5: Example of KP and Vont instances describing a traffic report.

Figure 4.6: UML Sequence Diagram of an agent pushing their current location and
congestion information to another agent.

38

Figure 4.7: UML Sequence Diagram of an agent sending request for information about a priority road.

39

The VANET-Comm: PullProtocol, similar to PushProtocol, is a continually exe-
cuting process that is responsible for periodically requesting advice from agents. A
loop is formed which is indicated by the last two method calls. This loop only ex-
its when advice no longer needs to be collected. The requesting process begins by
retrieving an agent. A knowledge provenance fluent is then created and contained
within a query to embody the information being requested. This query is then issued
as a task to the part of VANET-Comm which contains the knowledge provenance dis-
tributed communication model, which is responsible for processing all communication
tasks. After the task is processed by KP, the message is sent to the requestee agent.
After the message is sent, PullProtocol waits for a certain amount of time, set by the
communication frequency, and then starts this sequence shown in Figure 4.7 again.

40

Figure 4.8: UML Sequence Diagram of an agent receiving a request for information about a specific road and sending a
response.

41

Figure 4.9: UML Sequence Diagram of an agent receiving information about a road.

42

The sequence diagram of Figure 4.8 is a direct result of the process from Figure
4.7. It describes an agent receiving the request from the previous sequence diagram,
processing it, and sending a response accordingly with the requested advice. However,
it is important to indicate that in the trust domain of VANET, if this receiving agent
is not honest then the resulting advice’s information may be false.

The process initially begins by the JiST/SWANS controller component receiving
the message and informing PullProtocol. PullProtocol subsequently processes the
message by supplying it to the KP communication model. The KP communication
model begins its processing of the message by determining it as a request, which is
then accepted, issued as a task, and then processed as a task. The task is processed
by the VANET-Reasoner component which retrieves the advice information from the
VANET-Ont component and contains it within a fluent. The fluent is returned to
the KP communication model and made into a reply which is sent to the requesting
agent.

The sequence diagram of Figure 4.9 is a direct result of either sequence diagrams
4.8 or 4.6. The process begins in a way that is similar to Figure 4.8, by having the
JiST/SWANS controller component receiving the message and informing PullProto-
col (or PushProtocol), which processes it by supplying it to the KP communication
model. The KP communication model recognizes that the message is a response,
and allows VANET-Reasoner to process it. The advice is processed by first checking
whether the advice information’s objects already exist semantically in the knowledge
base. Examples of such objects in VANET would be the requestee agent and its
current location. If they do not exist then the missing objects are added. This is
done by VANET-Reasoner sending a request to the VANET-Ont component to add
the objects. VANET-Ont receives the request and adds the requested objects to the
agent’s knowledge base. Once the advice information’s objects are checked and pos-
sibly added to the knowledge base, another request is made to add the advice report,
which subsequently returns a new congestion calculation for the road.

4.3 Trust
This section outlines and details the incorporation of trust into the components of
Figure 3.1 to facilitate the profiling of agents within the framework. Important mod-
ifications and updates to the Muti-faceted Trust Management Framework of Section
2.4 are also introduced and explained. Trust modeling is important because it drives
decision making about path planning for vehicles.

The VANET trust modeling research utilized various types of trust to theoreti-
cally optimize profiling effectiveness and efficiency (see Section 2.4). The key trust
components are separated into three areas, 1) experience based trust, 2) role based
trust, and 3) majority opinion [20, 18]. Experience based trust, as the name implies, is
trust that has been built up with a particular agent over time, eventually more greatly
valuing their reports. Role based trust is trust that is assigned by default to agents of

43

a particular role. Majority opinion is a summarization of reports from a collection of
agents, with an aggregated trustworthiness value that must be above a threshold to
be used. The calculation models time and location closeness and distinguishes direct
and indirect reports.

We begin with a clarification of how our messaging framework would support trust
modeling in the context of Boolean traffic reports. We then progress to a description
of messaging and trust modeling in support of numeric-valued reports.

4.3.1 Advice Gathering Update
In Section 4.2.1, we proposed a messaging framework that has agents receiving traffic
reports with a certain frequency, leading to updates to the knowledge base. This
constitutes information gathering outside the case where “advice is needed”.

We now clarify how this proposed information gathering does not radically change
the use of trust and traffic information in Algorithm 1. Algorithm 1 theoretically
sends requests only to agents in a prioritized list, when advice was needed. Our
proposed update to this algorithm, shown in Algorithm 5, would have each agent’s
knowledge base continuously updated with periodic messages, from the pull, push or
both protocols. When advice is needed, the most relevant and trustworthy reports
are chosen and used.

Algorithm 5:NewMajority Computation Steps, with Advice Gathering Update
while on the road do

Send requests and receive responses;
if in need of advice then

Choose n reports R; //number of reports to use for advice
Check Priority Road(Current Road);//to help update the Priority list
Prioritize n reports; //according to roles and experiences
if response consensus > acceptable ratio then

Follow advice in response;
end
else

Follow advice of user with highest role and highest trust value;
end

end
Verify reliability of advice;
Update users’ trust values;

end

The work by Minhas et al. mentioned in Section 2.5 presented a Multi-faceted
Trust Management Framework that was described as operational for Boolean values of
congestion (Heavy (True), Light (False)). In order to calculate a majority opinion, re-
ports which featured the same Boolean value of congestion were aggregated together.

44

The percentage of reports with same congestion value would be compared against a
threshold to determine whether the advice would be followed. The trust modeling
itself respects the formulae outlined in Section 2.5. The use of a new advice gathering
protocol (as per Algorithm 4) would not intrinsically alter the majority opinion cal-
culation; it simply clarifies how traffic reports are retrieved. Note that calling Check
Priority Road(Current Road) within this algorithm has the eventual effect of coping
with stale or missing information on roads that are critical to current path planning.
Algorithm 6 describes the conditions for when a road is added to the list of priority
roads. This ultimately achieves the same objective desired by the VANET model of
Minhas et al., namely to be well informed about roads that are currently important
for decision making.

Algorithm 6: Check Priority Road(Current Road)
if NO Rj for Current Road OR Rj for Current Road IS old then

Add Current Road to list of priority roads;
end

4.3.2 Trust in the Ontology
The knowledge base described in Section 4.1 was chosen to store all trust information.
This information is primarily stored as a variable of Vont agent and KP proposition
instances. Three types of interactions are performed on trust variables of these in-
stances. The first is creation: all agents are given a default trust initially and all
propositions are assigned a trust value depending on the agent they are associated
with. The second type of interaction is retrieval where trust values are retrieved
for evaluating confidence and/or for considering propositions into a list of N priority
propositions. The last interaction is the most complicated and involves modifica-
tion of the agent’s trust variable. This is only performed on agent instances to update
within one agent’s knowledge base its trust in the agent in question.

The trust update action is only performed by a reasoner within the VANET-
ont component which is responsible for profiling agents. Agents are profiled when
the model encounters information that suggests that the trustworthiness of an agent
needs to be uploaded in the knowledge base. These evaluations are important to the
advice processing algorithm of Figure 7, which will be described later in this Section,
and are used to profile the agents and update their trust accordingly.

The proposed use of a knowledge base for storing user models and world spe-
cific data does not alter the calculations or use of trust related information, such as
the majority opinion. The proposed knowledge base simply clarifies how informa-
tion is stored and accessed. Many classes and properties of the proposed Ontology
are mentioned in the following subsections and chapters to reference how and where
information is stored.

45

4.3.3 Trust Modeling with Numeric Traffic Reports
In this section we clarify how our framework could support the use of numeric traffic
reports, leading to a “confidence metric” used for trust modeling, in contrast to the
Boolean evaluation of traffic in Section 2.4. Section 4.3.1 described how our proposed
framework can support Boolean values of traffic and trust. Our new proposed con-
fidence metric and use of numeric congestion and trust values serve to allow a more
accurate description of traffic and agent information, which will be explained in this
subsection.

The original theory in Section 2.5 assumed that congestion would be communicated
as a simple true (Heavy) or false (Light), stating either that the road was congested
or not. However, direct application may result in an unfair and biased calculation
of the majority opinion. This is because determining whether a road is congested or
not is a subjective opinion and is prone to inaccuracies. Also, by representing the
congestion as a Boolean, this severely limits the system’s ability to compare roads,
evaluate agents, and make the best decisions. Our proposed model seeks to alleviate
this problem by representing congestion as a number , which will bring a more suitable
level of accuracy to the system 2.

Formula (2.3) shows the calculation for the aggregated effect of a majority opinion.
The new way of representing congestion as a numeric value requires a careful recasting
of formula (2.3). (2.3) aggregates the effect of all agents that sent the same report
(i.e. cong = true). This simple aggregation of similar reports is impossible with the
new congestion representation because there are no longer only two types of reports
(Cong=true or Cong=false). In the new framework, each report must be evaluated
for addition into the majority opinion system. This is done by giving the report a
confidence and then evaluating it for inclusion into the majority opinion (similar to
the aggregated effect calculation). The following sections will detail how the factors of
experience and role based trust, time and location closeness, and whether the advice
is direct or indirect are incorporated into our proposed confidence metric and utilized
in calculating a majority opinion.

4.3.3.1 Confidence Calculation

Confidence functions as a metric similar to trust, and is calculated by combining many
different report and agent factors, which were introduced in Formula 2.3 and will be
described in detail later in this section. These factors include experience and role
based trust, time and location closeness, and whether the advice is direct or indirect.

Our proposed Equation for calculating confidence must effectively replace Formula
2Note that a reported congestion value for instance of 23 would ideally be representing the actual

number of cars on the road; in reality a car would be more likely to provide a value on a fixed scale
to represent whether the traffic it observed were very heavy, moderate or light, for example. It may
also be reasonable for cars to report their speed and for this to be used as a reflection of the road’s
congestion. In so doing, this deflects issues of number of cars relative to length of the road, for
example.

46

2.3, while representing a trust-like metric. Modifications to confidence should then
be reflected in a manner similar to how trust is increased and decreased in Equations
2.1 and 2.2. α and β function in these Equations as a standard for increasing and
decreasing trust, respectively. For our proposed confidence calculation it did not make
sense to atomically increase or decrease the value according to the influencing factor
(role, time closeness, etc.). The increase or decrease should reflect the significance
of the factor. As a result, our proposed confidence metric replaces Formula 2.3 with
Equation 4.1, where Equations 2.1 and 2.2 are used as the basis for calculating the
confidence of report Rj, through a modified summation of a geometric series 3.

The factors of role based trust, time and location closeness, and whether the advice
is direct or indirect in formula (2.3), are reflected through Variable (G). Experience
based trust of an agent automatically forms the default value of the confidence metric
(CurrConf(Rj)). Variable (G) represents the number of times4 to increase or decrease
confidence. G’s calculation is specific to each factor. If G is calculated to a negative
value, this indicates that β should be used instead of α. Examples are shown in
Section 4.3.9. The following sections briefly detail how each factor influences G;
however the exact calculations are dependent on how parameter values are chosen,
within an implementation.

Conf(Rj) = (CurrConf(Rj)− 1)(1− (α or β))|G| + 1 (4.1)

As an example, Figure 4.5 presents the use of Vont and KP classes and instances
to describe a message received about the congestion of a single road. Factors of ex-
perience and role based trust, time and location closeness, and whether the report is
direct or indirect are shown in the knowledge base instances through the parameters
described in the previous section. These parameters would be used to calculate the
confidence metric presented in parameter kp:believedCertaintyDegree. Section 4.3.9
demonstrates a mathematical calculation of the confidence according the default im-
plementation parameters.

4.3.4 Majority
Majority based trust is incorporated into our framework as a core algorithm for de-
termining the trustworthiness of an agent, to then dictate whether to believe the
congestion value reported about a road, which influences path planning. Section 2.4
describes majority based trust as a consensus, with a value which has been agreed
upon by many agents. For our proposed non-Boolean extension to trust modeling,
majority based trust is described as an opinion, where a similar value has been agreed

3A Geometric series is necessary because the calculations are capturing atomic increases in trust
values but we are reasoning about non-Boolean factors that are therefore not atomic. See Appendix
A for a fuller depiction of the geometric series in question.

4Note that we use the absolute value of G as the exponent in order to ensure that the number
of times is a positive number.

47

upon by many agents. The rationale for the change from a Boolean based congestion
value to a numerical congestion value was described in Section 4.3.3.

The advice is used by choosing and prioritizing information from various reports
and calculating a majority opinion, which is followed if its confidence is above a
threshold, similar to the threshold of Equation 2.5. The primary advice presented in
the VANET project would be road congestion reports, which would be used to help
an agent decide what roads to take and which to avoid by considering all the facets of
the multidimensional trust model. This continues to hold in our framework. In our
calculation, if the confidence is below a threshold, then the advice is used from the
report with the highest confidence.

The majority opinion is calculated using Algorithm 7. All relevant advice report
propositions referencing an object, for example a location in the VANET domain, are
retrieved and prioritized into a list of size n. The majority opinion is then calculated,
stored, and reported back to VANET-Reasoner. During the processing of potential
propositions, if a report contains information that is suspicious, such as an extremely
high congestion report, the sender is reported as a suspicious agent. Labeling agents
as suspicious is helpful in order to remove them from consideration, regardless of
their current trustworthiness value. The reasoner component of VANET-Ont, which is
responsible for profiling agents and updating trust values, would process the suspicious
agent, profiling it and updating its trust value in the knowledge base.

4.3.4.1 Majority Calculation

Algorithm 7 is a modified algorithm from Algorithm 1, which shows the calculation of
a majority opinion in the framework. The algorithm uses suspicious agent detection
in helping to avoid the inclusion of congestion advice which is outside a standard
deviation from the current majority congestion. The majority opinion is used if there
are at least n agents to use advice from and the majority confidence is above the
majority threshold.

4.3.4.2 Suspicion Calculation

Suspicion detection is important to include to help avoid congestion advice that
greatly deviated from the current majority. Only using advice that has similar conges-
tion reports forms our majority opinion, rather than conceiving of majority opinion
as just an average congestion of the highest trusted agents (n).

If an agent is deemed suspicious, then they are reported and the agent’s advice is
not used in the majority opinion calculation. However, the reverse is possible where
if an agent’s advice has higher confidence than the majority and confidence greatly
deviates from the majority. If this happens then the majority confidence is decreased
proportionally and the agent’s advice is potentially used as the report with highest
confidence.

48

Algorithm 7: New Majority Computation Steps, with Numerical Congestion
Metric
while on the road do

Send requests and receive responses;
if in need of advice then

Choose n reports R; //number of reports to use for advice
Check Priority Road(Current Road);//to help update the Priority list
Prioritize n reports; //according to Confidence (roles, experiences, time,
location, and if report is indirect or direct)
foreach n reports do

if Rj suspicious then
Report suspicious agent Rj;

end
else

Include report Rj in Majority;
end
if Majority suspicious then

Decrease Majority confidence;
end

end
if Majority confidence > acceptable threshold && Number of reports >
n threshold then

Follow advice in response;
end
else

Follow advice of report with highest confidence;
end

end
Verify reliability of reports;
Update users’ trust values;

end

49

4.3.5 Experience
Experience based trust is the most basic type of trust and is applied to every agent
in our model framework. As detailed in Section 2.4, it is trust as a result of direct
experiences with the individual agent. This is emulated in our framework model
through attributing a trust value (v-ont:trust_degree) to each v-ont:Agent instance in
the resident agent’s knowledge base, shown in Figure 4.3 and 4.5, and updating when
the model encounters information that it can use in a judgmental nature. An example
of such information would be from detecting suspicious information being reported
by an agent, encountering definitive information that can be used as a comparison
factor against information previously reported by an agent, or processing the opinion
of a more trusted agent about the agent in question. Since experience based trust is
the most basic type of trust, this forms the basis of the confidence calculation.

This facet of trust management is very simple but powerful. The thesis’ imple-
mentation in Chapter 5 demonstrates this through basic simulations which only use
experience and majority based trust.

4.3.6 Role
Experience based trust is a powerful tool for profiling agents; however, it is often
challenged in scenarios with data sparsity. Data sparsity is an absence of agents with
which the resident agent has had previous experience. This is often the case in the
real world where it is rare to encounter a car which you have previously profiled.

Role based trust helps alleviate the issue of data sparsity by assigning roles to
agents in our model framework. As detailed in Section 2.4, predefined roles (e.g.
police patrols, traffic reporters or taxi drivers) are assigned to all agents in the system.
Different roles may be associated with different levels of trust. The Model uses the
four different types of roles, motivated by the classification of Minhas et al: Ordinary,
Seniority (e.g. commuter pool), Authority (e.g. news station car), Expert (e.g. police).
These roles are stored as default instances of the v-ont:Role class and referenced in
the v-ont:has_Role variable of v-ont:Agent instances, shown in Figure 4.3 and 4.5.

Role based trust is incorporated into a proposition’s confidence calculation by
increasing it by a magnitude proportional to the particular role’s rank. Role rank
of each role is shown in Figure 4.3 through the v-ont:role_Rank variable. Equation
4.2 shows how G is calculated for Equation 4.1. RPenal is a standard value for
weighting roles, and RoleRank is the rank of the roles. G is inversely proportional
to RoleRank so that higher roles (Authority has RoleRank of 2) warrant greater
increases in confidence.

G = RPenal/RoleRank (4.2)

50

4.3.7 Time/Location
It can often be the case that an agent receives a great deal of reports about a road,
with some being more accurate than others. A combination of time and location
closeness is used in confidence calculations to determine how accurate reports are.
Time closeness is a measure of how old the report is with respect to when the advice
is needed. Location closeness is a measure of how how far the agent providing the
report is to the road in question.

Time and location closeness helps alleviate the issue of old and inaccurate reports
by assigning these metrics to traffic report propositions and using them in confidence
calculations in our model framework. As detailed in Section 2.4, metrics of time and
location closeness are used in calculating a majority consensus. Our proposed model
similarly uses these metrics in calculating a majority opinion, through modifying the
confidence of propositions by a magnitude inversely proportional to these metrics.5
These metrics are stored in the v-ont:time_Closeness and v-ont:location_Closeness
variables of v-ont:Traffic instances, shown in Figure 4.3 and 4.5.

Equations 4.3 and 4.4 show how G is calculated for Equation 4.1. TPenal and
LPenal are standard values for weighting time and location respectfully. TimeDiffer-
ence and LocDifference are time difference and location difference respectively. Multi-
plicativeFactor is a standard multiplicative factor for the calculation (max confidence
increase will be MultiplicativeFactor, and not 1, if TimeDifference or LocDifference is
0.). The calculation finds the difference between TimeDifference/LocDifference and
TPenal/LPenal and then divides the difference by TPenal/LPenal. This achieves the
purpose of scaling the values to be within their unit metrics.6

G = (TPenal − TimeDifference)/TPenal ∗MultiplicativeFactor (4.3)
G = (LPenal − LocDifference)/LPenal ∗MultiplicativeFactor (4.4)

4.3.8 Direct/Indirect
The model framework of this thesis also incorporates the distinction of direct and
indirect reports. Direct reports are reports which have been directly observed and
reported by an agent. Indirect reports are direct reports of a third agent which are
stored in the knowledge base of the agent the resident agent is communicating with.

For example, when one agent (Ar) communicates with another agent (A2) through
a pull request concerning a priority road (R1), A2’s highest confidence traffic report
concerning R1 may have been reported by another agent (A3) and not A2. A2 would
send Ar the report and indicate that it is an indirect report (A2 did not create

5This is consistent with the placement of these factors in the denominator of Equation 2.3. The
specific magnitude used in the implementation of Chapter 5 is explained in Section 5.3.

6This required scaling was not considered in sufficient detail in the model of Minhas et al. and
Equation 2.3.

51

the report), which would include A2’s confidence of the report. A2 calculates the
confidence using the report’s experience and role based trust, and time closeness 7.

The inclusion of indirect reports, as opposed to only allowing direct reports, is
important because it greatly increases the response rate of a pull request concerning a
priority road. Indirect reports, however, may be more inaccurate than direct reports.
This is taken into consideration through the use of the corresponding agent’s confi-
dence of the report (A2’s confidence of the report) and by modifying the confidence
value of a report by a predetermined factor.

As detailed in Section 4.1.3, the KP ontology is used to distinguish direct and
indirect propositions. 8

Equation 4.5 shows how G is calculated for Equation 4.1. InPenal is a standard
value for penalizing indirect reports, and IfIndirect is 1 if the report is indirect and 0
otherwise.

G = InPenal ∗ IfIndirect (4.5)

4.3.9 Confidence Calculation Examples
This subsection presents two examples which describe how the confidence metric for a
report is calculated according to the multidimensional trust factors of experience and
role based trust, location and time closeness, and whether the report is indirect or
not. The following examples will show iterative modifications to the confidence value
of a report according to the various factors.

The following calculation demonstrates how the confidence value for the report in
Figure 4.5 was calculated. Note that all the parameter values used in these examples
are the ones used in our implementation 9(described in Chapter 5).

7Location closeness is not incorporated because it is dependent on the agent who is using the
report.

8Chapter 5 describes the implementation’s specific use of the KP classes to distinguish direct
and indirect propositions.

9However, we use InPenal=-2 in the example here instead for a more effective illustration.

52

Example 1: (illustrating α)

Confidence = Agent_39:trust_degree (0.6)

Gtime = (TPenal(90)-TimeDiff(18))/TPenal(90)
*MultiplicativeFactor(1.5)

Gtime = 1.2

Confidence(0.6) = (Confidence(0.6)-1)(1− α)|Gtime|+1
Confidence = 0.6475

Gloc = (LPenal(200)-LocDiff(100))/LPenal(200)
*MultiplicativeFactor(1.5)

Gloc = 0.75

Confidence(0.6475) = (Confidence(0.6475)-1)(1− α)|Gloc|+1
Confidence = 0.674

Example 2: (illustrating β)

Confidence = Agent_41:trust_degree (0.7)

Grole = RPenal(8)/RoleRank(2)
Grole = 4

Confidence(0.7) = (Confidence(0.7)-1)(1− α)|Grole|+1
Confidence = 0.8032

Gtime = (TPenal(90)-TimeDiff(180))/TPenal(90)
*MultiplicativeFactor(1.5)

Gtime = -1.5

Confidence(0.7813) = (Confidence(0.7813)-1)(1− β)|Gtime|+1
Confidence = 0.7413

Gloc = (LPenal(200)-LocDiff(500))/LPenal(200)
*MultiplicativeFactor(1.5)

Gloc = -2.25

Confidence(0.7604) = (Confidence(0.7604)-1)(1− β)|Gloc|+1
Confidence = 0.6100

53

Gindirect = InPenal(-2)*IfIndirect(1)
Gindirect = -2

Confidence(0.6991) = (Confidence(0.6991)-1)(1− β)|Gindirect|+1
Confidence = 0.4385

4.3.10 Travel Decisions when using Numeric Trust Modeling
Algorithm 7 clarifies whether an agent will choose to take a certain road or not based
on consensus about the congestion on the road. If the agent wants to reason about
which road to choose (from a set of possible roads), it can run Algorithm 7 for each
road 10.

4.4 Model Summary
In this chapter we have presented our model and described each of its proposed
components. Figure 4.10 describes the high level processing of our model framework
and how each of the components from Figure 3.1 work together.

Figure 4.10 refers to many of the processes and algorithms we have described in
this chapter. The activity diagram elements within VANET-Ont: Mediator shows
the mediation of requests from VANET-Reasoner and the use of the knowledge base
(Process Request (Uses KB)). VANET-Ont: Reasoner outlines how the component
waits and processes requests that profile agents and update their experience-based
trust. JiST/SWANS briefly defines where the controlling of the vehicle is done
(driving/pathing/simulating) and displays its interactions with the other components
through information discovery (Encounter new Information) and requests for conges-
tion information (Need Advice). Where decision making about travel occurs is in Run
Simulation/ Drive to Destination(driven by its path planning algorithm). VANET-
Reasoner outlines the component’s role in congestion advice retrieval, reasoning about
New Information from JiST/SWANS and VANET-Comm, and sending requests to
VANET-Mediator. VANET-Reasoner clarifies the push and pull protocols within the
component and their interaction with VANET-Reasoner.

10Note that this is in fact what we do in our implementation in Chapter 5.

54

Figure 4.10: High Level Activity Diagram of the Model Framework.

Chapter 5

Validation

This chapter describes the implementation of the framework model proposed in this
research and presents simulation results which demonstrate its effectiveness in the
VANET domain. The implementation was designed to simulate a number of VANET-
enabled cars that can efficiently route themselves to randomly generated destinations,
utilizing congestion information gathered by communicating with other cars, while
modeling the trust of other agents and their congestion advice. The implementation
includes all aspects of the proposed framework. Experience, Role, and Majority based
trust are implemented and tested, including the use of time and location closeness
and distinguishing direct from indirect reports. The following sections describe the
implementation, including third party software, simulation details, design rationale,
and testing results.

5.1 Motivating Scenarios Revisited
This section revisits the motivating scenarios from Section 1.1 and describes how
the use of our framework model could solve their issues. The motivating scenarios
included four situations which were grouped into congestion issues and honesty issues.

The first congestion scenario described a typical and simple case where an inexperi-
enced agent is traveling through a city, trying to reach a destination, but unnecessarily
is delayed by heavy traffic. The second congestion scenario described an experienced
agent who attempts to avoid congestion, by using a side route, but is delayed by un-
forseen circumstances. Both of these congestion issues could have easily been avoided
through an implementation of our framework model into their GPS systems. Their
GPS systems, through the utilization of ad-hoc information from other cars, would
inform the driver of the path that would take the least time.

The scenarios with honesty issues implement a system similar to ours into their
GPS, but it does not take into consideration agent honesty. The first honesty scenario
described how a resident agent is fully trusting and is misled by a dishonest agent. The
second honesty scenario described how the implemented congestion communication

55

56

system fails due to a large amount of dishonest agents. Through the implementation of
our system, with profiling (i.e. trust modeling) enabled, the resident agent of the first
scenario could avoid the dishonest agent’s advice if they previously profiled them or
if other more trustworthy advice existed which contradicts the dishonest advice. The
second scenario would most likely be avoided, because the dishonest agent from the
previous scenario would most likely not succeed due to the incorporation of multiple
reports. If it were the case that there were a high number of dishonest agents, this
would not have a substantial impact on the resident agent. This is because our
proposed framework model would ignore bad advice from dishonest agents, because
of previous experience, and the few honest agents would quickly become trusted, and
be used for gathering traffic information. Our simulations in the following sections
will demonstrate these claims.

5.2 Implementation
The implementation is designed as a VANET extension to an existing real time traffic
simulator. Each car within the simulation is representative of an individual agent that
implements the proposed VANET framework of Figure 3.1. This means in a 100 car
simulation there are 100 instances of the framework, including 100 knowledge bases
and 100 VANET-Reasoners.

This section discusses various implementation specifics associated with parts of
the framework model from Chapter 3 and 4 and how they are significant to the
simulation’s execution. The most important details described in this section is use of
3rd party software, the separation of the ontology from the simulator, the dynamic
growth of knowledge bases, communication protocols used, range of communication
messages, the operation of the trust modeling component, and where majority opinion
is used in the simulator.

5.2.1 3rd Party Software
The implementation makes use of the following third party software, JiST/SWANS,
vans, DUCKS, and Protege 1. JiST stands for Java in Simulation Time; it is a high-
performance discrete event simulation engine that runs over a standard Java Virtual
Machine (JVM). SWANS stands for Scalable Ad-hoc Network Simulator; it is built
on top of the JiST platform and serves as a host of network simulation tools. Vans
is a project comprising the geographic routing and the integrated Street Random
Waypoint model (STRAW). STRAW utilizes an A* search algorithm to calculate
shortest path to a destination. DUCKS is a simulation execution framework, which

1Minhas et al. also used JiST/SWANS, vans, and DUCKS in a modest simulation that tracked
average speed of vehicles using trust modeling in order to validate its worth. However, no traffic
reports were actually exchanged so that only parts of their trust modeling were explored and their
representation of vehicle path choices was a general estimate.

57

allows for a Simulation Parameters file to be provided to define the simulation. Protege
is a free, open source ontology editor and knowledge base framework.2 Note that the
total lines of code (JiST/SWANS software plus our own code) was 85,000, where
approximately 35,000 was implementation code.

5.2.2 Ontology Details
The Protege API allows for easy editing and visualization of Ontologies. Due to this
and its base language, Protege was chosen as the primary means of ontology inter-
action within the VANET-Ont component, as indicated in Figure 3.1. The Protege
API is based in Java, which was desired and convenient due to the JiST/SWANS
simulator being Java based.

The VANET-Ont knowledge base component of the implementation runs on a sep-
arate process from the simulation component. This is indicated in Figure 3.1 by the
component diagram separating everything into either the Ontology or Coordinator
node. The component diagram also shows that communication and data transfer be-
tween the nodes is done using sockets. The need for separating these two components
is the result of a solution to an observed fundamental issue in the JiST software, where
it is impossible to execute Protege API commands from within the simulation. The
necessitated separation also has the benefits of enforced modularity and utilization of
multiple threads.

The VANET-Ont component has three main elements, a server element which
receives, interprets, and processes messages from the simulation’s VANET-Reasoner
component, a mediator element which calls the actual Protege API methods, and
a reasoner element which runs on its own thread and is responsible for profiling
and executing trust modifications. During the execution of requests, the simulation
component simply waits for a return message, which indicates the completion of the
request. This waiting insures a coherent parallel nature to the two components. The
only exception to this is the trust reasoner which operates outside of this request and
wait procedure. This was intended to allow the simulator to not be delayed by trust
reasoning which could be done in parallel.

The cars/agents created in the simulation each create their own Knowledge Base,
which is initially empty but all follow the Vont + KP ontology described in Chapter
4.1. During the simulation, each car autonomously and dynamically populate their
database as they encounter road sections, other cars, messages, etc. This dynamic
behavior serves to be both space efficient and to accurately simulate a real world
scenario.

The implementation’s use of the KP ontology is limited to the kp:assertedProp
and kp:derivedProp classes. Asserted Propositions kp:AssertedProp describe informa-
tion that was directly observed and Derived Propositions kp:DerivedProp describe
information that was indirectly observed or derived from other propositions. The

2We choose to employ the OWL-Lite dialect here.

58

simplistic use of these two classes is effective enough for distinguishing direct and
indirect reports. Future work in Section 6.2 describes the possibility of use a larger
range of KP propositions to describe more complicated scenarios.

5.2.3 Communication Details
The implementation includes both the pull and push protocol. Differences in per-
formance between the two protocols will be shown in Section 5.6. The current im-
plementation includes all messages shown in Table 4.1. Congestion is represented as
the number of cars on the road3; it is also possible to use average speed to repre-
sent congestion. The sending of all messages in the implementation uses the built in
communication system of the JiST/SWANS simulator.

5.2.3.1 Priority Roads

As explained in Section 4.2.1.3, this thesis encountered an issue with the pull based
protocol from the original VANET research in terms of requesting specific information.
The pull based protocol and its associated message requests congestion information
about a specific road. The challenge is specifying what road to request information
about. This thesis addresses this issue by introducing the concept of priority roads,
which are roads that have been deemed important for an agent during the execution
of the simulation.

The concept of a priority road facilitates messaging (and hence the updating of
user models). Priority roads are implemented by storing a list of important roads in
a priority list, which are retrieved by the pull based protocol when the messaging fre-
quency determines it is time to send an information request for a priority road. Roads
are added to this list when the pathing algorithm looks for congestion information
about a road and either none exists or the data is very old. Roads are removed from
the list when a set number of retrievals has been done. The priority list is constantly
maintained and stores a road and the number of times advice and information has
been retrieved for the road since it was added to the list.

5.2.4 Trust Modeling Details
5.2.4.1 VANET-Ont Reasoner

The VANET-Ont reasoner operates autonomously on a separate thread from all other
implementation components. The only interaction with other components comes from
other components issuing tasks to the reasoner’s queues. These tasks are either agents
of interest or recently updated local road segments. These are subsequently processed
and result in an update to one or more agents’ trust variable or no action at all. Agents
of interest are agents that have demonstrated either a highly accurate or inaccurate

3This is determined directly through the simulation software.

59

report during a congestion evaluation. Recently updated local road segments are
road segments, and their congestion value, which have been reported directly from
the resident agent and should be regarded as absolute truth. Due to the congestion
being absolute truth, the reasoner can systematically inspect the knowledge base and
evaluate any propositions that were reported within a specified time of this local
report.

5.2.4.2 Pathing

Agents within the JiST/SWANS simulation software utilize an A* search algorithm
that determines the most effective path for a car to take to its destination.

The A* search algorithm is the driving force behind when an agent is in need of
advice. The algorithm is called either when a new destination is set for an agent, and
the agent has to find out how to most effectively reach the destination, or if an agent’s
path is reassessed during their journey, so that the algorithm can incorporate more
recently received traffic information.

The A* algorithm used within our framework operates as follows:

1. It is provided with the agent’s current location and destination.

2. It incrementally assesses potential roads, from the current location to the des-
tination, according to a cost.

(a) The potential road’s cost is calculated as its length plus congestion (triggers
in need of advice).

3. It returns a list of roads which forms a path to the destination that has the
least cost (which theoretically takes the shortest amount of time, according to
current traffic information).

The algorithm attributes a cost to every road segment. The JiST/SWANS initially
calculated this cost as the length of the road segment. In our implementation, cost is
calculated as the length of the road segment and its congestion. Equation 5.1 shows
the specific calculation of a road’s cost. RoadCong is the congestion of the road, which
is multiplied by a simulation specific weight CongWeight. CongWeight is specific
to the implementation and the value we use is shown in Table 5.3. The retrieval
of a road’s congestion signifies an agent being in need of advice from Algorithm 7.
Congestion data is stored both in the agent’s knowledge base and in a hash table,
within the VANET-Reasoner component, for quick reference.

RoadCost = RoadLength+ CongWeight ∗RoadCong; (5.1)

To facilitate efficient use of congestion information, and to increase the speed of
the A* search algorithm, the implementation post-processes traffic information to
form majority opinions so that the information can be immediately retrieved during

60

algorithm execution. This means that majority opinions are calculated every time
new information is retrieved, which is then stored in a local hash table for constant
time (O(1)) retrieval by the A* algorithm.

5.2.4.3 Information Sparsity

The simulation software initially creates a set number of agents in the environment,
which continuously seek new destinations. During the simulation, we decided to have
agents request and push messages every 6-15 seconds; with 100 cars in total, experi-
ence with every other car would be gained quickly. Due to the reuse of agents/cars
within the simulation, it was not possible to truly simulate information sparsity. In-
formation sparsity is the case where an agent cannot effectively use experience based
trust due to the lack of agents which they have had previous experience with. In or-
der to simulate environments with low experience-based trust, we introduce a variable
called sparsity.

Information sparsity is an important testing variable which reflects the scarcity of
agents in the real world that you may have had previous contact with (For example,
80% sparsity resembles having a lack of previous experience with 80% of the agents).
This in effect greatly influences the effectiveness of experience based trust. Role based
trust is utilized to cope with this sparsity. Information sparsity is implemented in the
simulation framework as the percent to which all trust updates are ignored, therefore
hindering experience based trust.

5.3 Experimental Setup
This section describes the experimental setup and the simulation tests performed to
compare and contrast the effectiveness of the framework’s implementation against
a variety of scenarios, border cases, and variations of core parameters (like agent
honesty and percent sparsity). The different simulations and groups of simulations
serve to either demonstrate the effectiveness or robustness of the model, or the value
of separate parts of the model. The different simulation types are shown in Table 5.1.

Our first set of experiments incorporated experience-based trust and majority-
based trust, alone. These were the central elements of the VANET framework (and
we anticipated exploring the value of other trust modeling facets in later simulations).
We call this type of simulation Basic. This was also implemented using the push
protocol for communication, for simplification.4 A second simulation type, with all
trust modeling facets integrated, we refer to as Full. This implements the combined
push-pull communication protocol outlined in Algorithm 4.5

The scenario descriptions are fairly straightforward except for the last case where
parameters are also listed in the scenario’s name. Basic and Full are typically paired

4Note that this means that priority roads were not modeled or used in travel decision making.
5Pull messages were required in order to support the direct/indirect trust facet: agents need to

be able to comment on whether information on a specific road is only known indirectly.

61

Table 5.1: Simulation Types
Name Description Type
No Traffic Simulation without our framework or

any incorporation of traffic data.
Worst case
scenario

Omni Simulation without our framework but
incorporations traffic data by querying
the road through the JiST/SWANS
simulator.

Best case
scenario

Basic Simulation with just Majority and
Experience based trust.

Basic
scenario

Full Simulation with all multidimensional
trust components.

Full
utilization
scenario

Full/Basic +
(Parameter(s))

Full or Basic simulation with a
modification on one or more
parameters.

Special case
scenario.

with an honesty degree and whether trust modeling is enabled. The simulation frame-
work begins each simulation by processing these parameters and variables from a con-
figuration file. Table 5.2 and 5.3 show the full list of parameters which can be set
in the system. Many parameters are shown as a decimal number that represents a
percent (Hon 0.5 is 50% honesty which means that 50% of the agents are honest). Not
all parameters are indicated in the simulation’s name. If a parameter is not indicated
then it is either set to its default value for the scenario type or indicated in the figure.

Testing includes three different metrics and three different groups of simulations.
The three metrics are average speed, average number of paths, and average path time.
The three different groups of simulations are core, model and framework.

The three distinct metrics are used to quantify the performance of the simulation.
The first metric of average speed is the most basic, representing average speed of cars
over the duration of the simulation. The second metric is average number of paths.
A path is a collection of roads that form a route to an agent’s destination. Due to
the simulation using a pathing system, opposed to random movement, at the end
of every agent’s path it needs to recalculate and start a new path. The number of
paths an agent completes during a simulation is calculated as this metric and more
effectively measures the performance of the system than the first metric.6 The last
metric is average path time, which is simply the average time taken for a path to
complete during a simulation. The average path time is of particular interest because
the overall goal of this research is to allow an agent to reach its destination in the
shortest amount of time. Due to average path time’s importance, it is used to quantify

6A vehicle which completes fewer paths in total is one which is making poorer decisions about
travel.

62

Table 5.2: Simulation Framework Variables
Parameter
Name

Description Representation Default
Value

Honest agents Percent of honest agents. Hon # (0.5 is
50% honesty)

0.5

Number of
agents

Number of agents and cars
simulated in the tests.

Agent # (100 is
100 agents)

100

Message interval Interval between congestion
request messages sent by
the agents.

MsgI #-# (6-15
is 6-15 second
message
intervals)

6-15

Profiling Use of profiling. No P indicates
no use of
profiling (False)

True
(Basic,
Full)

Role Use of role based trust. Role # (0.2 is
20% agents are
given a role
above Ordinary)

0(Basic)
0.2(Full)

Time closeness Use of time closeness
factor.

Time False(Basic)
True(Full)

Location
closeness

Use of location closeness
factor.

Loc False(Basic)
True(Full)

Indirect
messages

Use of indirect messages. Indirect False(Basic)
True(Full)

Information
sparsity

Percent of agent trust
updates ignored to
simulate data sparsity.

MThresh # (0.6
means 60% of
trust updates
are ignored)

0

Dishonest Lie
Percent

Percent of the time a
dishonest agent lies.

Lie # (0.8 is
80% of the time
dishonest agents
lie)

1

63

Table 5.3: Simulation Algorithm Variables
Parameter
Name

Description Representation Default
Value

Majority N Number of agents used in a
majority opinion.

MajN # (10 is
10 agents used)

10

Honest trust
increase α

Standard increment to an
agent’s trust resulting from
an honesty evaluation, with
a maximum value of 1.0.

α # (0.1 is 10%
trust increase)

0.1

Dishonest trust
decrease β

Standard decrement to an
agent’s trust resulting from
an honesty evaluation, with
a minimum value of 0.0.

β # (0.2 is 20%
trust decrease)

0.2

Advice trust
threshold

Threshold where only
agents with a trust value
above this percent may be
considered for advice.

AThresh #
(0.41 is 41%
trust threshold)

0.41

Majority
confidence
threshold

Threshold which the
majority opinion must be
above in order to be
considered.

MThresh #
(0.51 is 51%
majority
threshold)

0.51

Role
penalization

Standard factor for
increasing confidence
depending on agent role.

RPenal # 8

Time
penalization

Standard comparison factor
for time closeness.

TPenal # 90

Location
penalization

Standard comparison factor
for location closeness.

LPenal # 200

Indirect
penalization

Standard factor for
modifying confidence if the
advice is indirect.

InPenal # 1

Congestion
Weight

Standard factor for
weighting the congestion
value when calculating a
road’s A* cost.

CongWeight # 20

64

most of the simulations.
The three groups of simulations organize simulations into similar topics and impor-

tance. Core simulations in Section 5.4 demonstrate the effectiveness and robustness
of our simulation framework against core scenarios (No Traffic (Worst case scenario),
Omni (Best case scenario)). Model simulations in Section 5.5 demonstrate the effec-
tiveness and robustness of our simulation framework against scenarios that include the
more complicated model parameters (Role #, Time, Loc, Indirect). A more detailed
comparison of varying honesty values is also included. Framework simulations in Sec-
tion 5.6 demonstrate the effectiveness and robustness of our simulation framework
against scenarios that vary implementation parameters of the framework (Number of
agents, Message Interval). All simulation tests results are averaged over 5 runs.

5.4 Core Simulations
This section presents results from simulations that contrast the effectiveness of our
simulation framework against core scenarios, using all metrics. Core scenarios are the
No Traffic, Omni, and Basic scenarios, as well as scenarios that do not use profiling
(No P)(i.e. agents do not model the trustworthiness of the traffic reports received
and assume that they are truthful). These simulations validate the fundamental
effectiveness of using traffic data in path planning and the incorporation of profiling
presented in framework model of this thesis.

For Figure 5.1, all of the simulations that used profiling or the omni setup aver-
aged close to the same speed at the end of the 10000 second simulation. The other
simulations (No P or No Traffic) produced a predictably declining performance as the
honesty percentage approached the worst case scenario7. The curves in the scenarios
are representative of the simulations approaching a steady state.

For Figure 5.2, we use a metric of average number of paths. Recall that higher
average number of paths indicates better success with travel decisions and thus higher
performance. All of the simulations that used profiling or the omni setup averaged
close to the same number of paths at the end of the 10000 second simulation. The other
simulations produced a predictably declining performance as the honesty percentage
approached the worst case scenario.

Figure 5.3 examines a third metric, average path time (appropriate due to the
ultimate goal of reducing the travel time of users). This figure compares the worst
case scenario against the best case scenario and various simulations which use our
VANET system with the Basic simulation settings, at different degrees of honesty.
Greater average path time in the figure indicates lower performance. As seen in the
figure, the simulations that used our trust modeling framework (except Basic, Hon
0.1) or the omnipresent setup averaged close to the same path time at the end of
the 10000 second simulation. The other simulations produced a predictably declining

7Omni appears to be outperformed at times. This occurs when agents take paths with little
traffic that are in fact long detours (better average speed, but poorer choices due to time of travel).

65

Figure 5.1: Average Speed.

performance as the honesty percentage approached the worst case scenario. The Basic,
Hon 0.1 simulation did much worse than the other Basic simulation most likely due
to the extreme lack of trustworthy agents, but it still performed significantly better
than the Basic, No P, Hon 0.1 simulation. The VANET trust modeling simulations
show approximately a 35% decrease in average path time over the worst case scenario.
The curves in the scenarios are representative of the simulations approaching a steady
state. Another observed trend is the tendency for the profiling-enabled simulations
to reach a steady state faster than the other simulations.

Figure 5.4, 5.5, and 5.6 are screen shots taken directly from the simulator. These
demonstrate the differences in congestion the simulations have at 10,000 seconds.
Each of the numbered squares represents an agent and its respective car. The lines
represent roads. A map of a real city is provided to the simulator. The road grid
shown is a small section of the city which is created using coordinates provided in the
Simulation Parameters file. The colors are representative of speed. White means no
speed. Green represents increasing speed. Yellow represents no change in speed. Red
represents decreasing speed.

Figure 5.4 demonstrates a simulation that uses the key elements of our framework
implementation with trust modeling (Basic, Hon 0.5). Cars in the screen shot have
a relatively equal distribution throughout the city. Figure 5.5 demonstrates the same
simulation but with no trust modeling (Basic, No P, Hon 0.5). Cars shown are less

66

Figure 5.2: Average Paths.

distributed throughout the city and congestion can be seen in the middle roads and
intersections. This is likely due to these intersections and roads being most often
considered in shortest path calculations. The last screen shot, Figure 5.6, demon-
strates a simulation that does not use our implementation or any traffic metrics in
path calculations (No Traffic). The congestion in the middle roads and intersections is
substantially greater, logically resulting in slower car speeds and longer travel times.
The presented figures visually demonstrates the effectiveness of our proposed model
framework on the traffic congestion of a city.

67

Figure 5.3: Avg Path Time comparison of our Basic model vs. best case, worst case,
and No P scenarios

Figure 5.4: Profiling scenario with 50% honesty (Basic, Hon 0.5).

Figure 5.5: Non-Profiling scenario with 50% honesty (Basic, No P, Hon 0.5).

68

Figure 5.6: Worst case scenario that does not use traffic information (No Traffic).

69

5.5 Model Simulations
This section presents results from simulations that contrast the effectiveness of our
simulation framework against scenarios that include various dimensions of the pre-
sented trust model with various parameter settings. The average path time metric
is primarily used within the simulations of this section. Included scenarios compare
the Full simulation type against No Traffic, Omni, Basic, and No P scenarios. The
incremental inclusion of the model’s multidimensional trust components are also sim-
ulated and compared. These simulations validate the fundamental effectiveness of the
framework model’s more complicated components, such as Role, Time and Location
closeness, and the inclusion of indirect messages.

Figure 5.7: Avg Path Time comparison of our Full model vs. best case, worst case,
and No P scenarios

Figure 5.7 compares the worst case scenario against the best case scenario and
various simulations which use our VANET system with the Full (all trust multi-
dimensional trust components activated) simulation settings, at different degrees of
honesty. As seen in the figure, all of the simulations that used our trust modeling
framework (Full) or the omnipresent setup averaged close to the same path time at
the end of the 10000 second simulation. The other simulations produced a predictably
declining performance as the honesty percentage approached the worst case scenario.
In contrast with Figure 5.3, Full simulations performed significantly better compared
to the Basic simulations of similar honesty.

Figure 5.8 compares the average path time, at 10,000 seconds, of the No Traffic,
Omni, Basic, Basic, No P, and Full scenarios, across a range of honesty values.
No Traffic and Omni are shown as straight lines because they do not use honesty

70

Figure 5.8: Avg Path Time comparison of simulation types over varying degrees of
honesty at 10,000 seconds

values, but are useful as comparisons. The figure clearly shows the effectiveness of
our framework across the range of honesty values. The Basic scenario consistently
performs better than the Basic, No P scenario. The Full scenario also consistently
performs better than the Basic scenario. All of the framework enabled simulations
have a similar average path time at 0% honesty because they have no useful traffic data
(and at 100% honesty because there are no untrustworthy agents to deflect through
profiling). Figure 5.8 clearly demonstrates the impact dishonest agents can have
on simulations (Basic, No P) and the effectiveness our proposed model framework
scenarios (Basic and Full) can have on countering the influence of dishonest agents.

Figure 5.9 demonstrates the increased effectiveness of each of the multidimensional
trust components described in Sections 4.3. The incremental components demon-
strated are the base system (experience and majority based trust), then role based

71

Figure 5.9: Avg Path Time comparison, multidimensional trust component variations

trust (Role 0.2), time and location closeness (Time, Loc), and indirect advice (In-
direct). These simulations also simulate honesty at 50%, data sparsity at 50%, and
additionally compare them to the best case scenario.8 As seen in the figure, the
incremental addition of trust components demonstrated predictable and substantial
increases in performance. The simulation with sparsity enabled showed a predicably
worse performance than its counterpart. This reflects the fact that when one has
little experience-based trust, one makes poorer decisions. The simulation with role-
based trust enabled shows a dramatic increase in performance, which demonstrates
the impact roles have in situations with data sparsity. The best case scenario and the
simulations with the higher number of trust components averaged close to the same
path time at the end of the 10000 second simulation. The curves in the scenarios are
representative of the simulations approaching a steady state. Another observed trend
is the tendency for the component-enabled simulations to have a steadier state than
the other simulations.

Finally, Figure 5.10 explores variations in parameter values to demonstrate the
robustness of our proposed framework. We note that, even if there are very few roles
assumed or if dishonest agents lie inconsistently, our framework is able to adapt and
yield excellent performance. When using all dimensions (Full), being more challenged
with experienced-based trust (higher sparsity) degrades performance slightly as does
having less role-based trust to rely on.

8The worst case (i.e. No Traffic) is not present so that a finer granularity of the presented
simulations can be shown.

72

Figure 5.10: Avg Path Time comparison, multidimensional parameter variations

5.6 Framework Simulations
This section presents results from simulations that evaluate the robustness of our
simulation framework through simulations that modify simulator-specific variables,
such as the number of agents and messaging frequency. The average path time metric
is the one primarily used within the simulations of this section. Included scenarios
compare the Full and Basic simulation types against No Traffic, Omni, and No P
scenarios that feature the modified parameter where appropriate.

Figure 5.11 compares the average path time, at 10,000 seconds, of the No Traffic,
Omni, Basic, Basic, No P, and Full scenarios, across a range of values for the number
of agents in the environment. The figure clearly shows the robustness of our framework
across the span of agent values. The simulations around 50 agents have approximately
the same path time because with such a small number of cars there is no real need for
using traffic information in path planning. When increasing the number of agents, the
Basic scenario consistently performs better than the Basic, No P scenario. The Full
scenario also consistently performs better than the Basic scenario, when there are
more than 50 agents. Figure 5.11 clearly demonstrates the robustness and scalability
of our proposed model framework and implementation across a range of values for the
number of agents in the environment.

Figure 5.12 compares the average path time, at 10,000 seconds, of the No Traffic,
Omni, Basic, Basic, No P, and Full scenarios, across various messaging intervals
(where x-y means that messages are sent every x to y seconds)9. The purpose of the
figure is to demonstrate the robustness of the simulations when there are more or
fewer messages. No Traffic and Omni are shown as straight lines because they do

9Messages are sent according to intervals to avoid all agents sending messages at the same time.

73

Figure 5.11: Avg Path Time comparison, varying number of agents

not use communication protocols, but are useful as comparisons. The figure clearly
shows the robustness of our framework, especially the Full scenario, across various
messaging intervals. The Basic scenario consistently performs better than the Basic,
No P scenario until the message interval increases to (12-30 seconds) at which point
the two lines are comparable. (This is because Basic is no longer receiving information
at a sufficient frequency.). The Full scenario consistently performs better than the
Basic scenario, with a more gradual decrease in performance as the message interval
increases.10

Figure 5.13 compares the average path time, at 10,000 seconds, of the No Traffic,
Omni, Basic, Basic, No P, and Full scenarios, with various communication protocols

10This more gradual decrease is likely due in part to the pull protocol requesting information on
roads with more immediate priority and use, generating information on roads that will be used in
decision making.

74

Figure 5.12: Avg Path Time comparison, varying message interval

enabled. No Traffic and Omni are listed under No Msgs because they do not use
communication protocols, but are useful as a comparison. This figure is important for
backing up our claim in Section 4.2.1 that replacing the pull protocol, for requesting
agent location and congestion data, with the push protocol, which more simply sends
out the resident agent’s location and congestion data, does not impact performance.
Our design rationale for this was to reduce the number of messages sent between
agents.

75

Figure 5.13: Avg Path Time comparison, varying communication protocols

Chapter 6

Discussion and Conclusion

6.1 Our Journey to the Framework and Results
One of the questions we set out to answer was the following: how can a proposed
trust model used by intelligent agents representing drivers, be properly validated as
valuable for producing effective vehicular travel decisions.

The VANET work of Minhas et al. had included preliminary validations in a
simulated traffic environment. But the model of the intelligent reasoner for these
simulations was very modest: allowing yes/no decisions at what time and finessing
the proper simulation of exchanging traffic reports.

This challenge led us to the formulation of an extensive simulation testbed. This
in turn required us to specify with far greater clarity the communication that was
intended to take place between agents that would form the backdrop for the trust
modeling and the subsequent travel decision making. Addressing this problem then
obligated us to specify not only the desired content of the messaging but some appro-
priate underlying knowledge representation. Because trust modeling was an important
element of that representation, we ultimately decided to introduce a representation
framework that would not only store the information needed for decision making but
would also facilitate reasoning about trustworthiness. For this we ended up repur-
posing the concept of knowledge provenance, as described in detail in Chapter 3 and
4.

Resolving the appropriate content for messaging was only one central design deci-
sion. The other was to specify with sufficient clarity the messaging that would occur,
the conditions under which information would be exchanged. To resolve this problem,
we developed a design that could potentially support a variety of possible messaging
protocols, both push-based and pull-based. In addition, we carefully clarified as well
the relationship between when messaging occurs, when reasoning about path planning
occurs and when updates to user models occur (the central elements of the overall
automated reasoning of the intelligent agents in our vehicular environment). All of
this detail had been previously left unspecified in the models of Minhas et al.

With some decisions about message content and message delivery in hand, we

76

77

turned to the underlying multi-faceted trust model of Minhas et al. to see how it might
be validated, in full. It seemed clear that the binary traffic reports originally conceived
by the authors could be expanded to include more useful communication, as well. To
this end, we developed an overall design that supported a richer form of information
exchange. In particular, when validating the model we sketched traffic reports being
forwarded between agents which offered a congestion value, as more specific detail
concerning the road in question. This then required us to develop more detailed
algorithms for how to reason about the trustworthiness of agents, with this form of
information exchange. Those algorithms are defined in Chapter 4. As we developed
these algorithms, we also developed a useful extension to the trust modeling, affecting
the algorithms for both experience-based and majority-based trust calculations, the
concept of a suspicious agent.

Ultimately, it became clear that a very rich and detailed simulation testbed would
be required in order to enable complex testing of any trust model for vehicular travel
decisions. Towards this end we developed a complete testbed, sketched in Chapter
5. With this testbed we were then able to quantitatively compare the inherent value
of different facets in the multi-dimensional trust model and to confirm more defini-
tively the importance of including all the facets of trust modeling that this framework
proposed. The way the testbed was designed, it was also possible to simulate a myr-
iad of different parameter values and environmental conditions, in order to confirm
the robustness of Minhas et al.’s model. A final element that we introduced in our
construction of the simulation testbed was a novel modeling technique, the inclusion
of what we refer to as priority roads. We are able to demonstrate that integrating
this concept faciltiates the proper validation of trust models and serves to clarify in
greater detail the ideal conditions under which messaging between vehicles should
occur. This in turn then specifies the conditions under which user modeling updates
should be occurring, as well. The concept of priority roads became an element of our
overall proposal for reasoning about path planning, incorporating trust modeling, as
summarized in the algorithms of Chapter 4.

6.1.1 Reflection on Related Work
6.1.1.1 Knowledge Bases

Our knowledge management system is managed in Protege, which is based on de-
scription logics [2], (where the metadata is terminology/ontology and the data is a
set of assertions/a collection of facts). As such, we are proposing a combination of
ontological and propositional elements which taken together enable all the central
concepts of the environment to be represented (agents, roads, locations, etc.) and a
representation of the current state of the environment to be modeled as well (in our
case, a set of propositions which differs from agent to agent, reflecting what it knows
about the current traffic conditions and what it has modeled about the other agents
in the environment).

78

Our query language supports asking facts (and obtaining appropriate trustworthi-
ness values of agents, calculated using the Vanet formulae) and the revision language
supports updates and deletes to the propositional component. As such, our particular
approach to knowledge base design is to gain the benefit of integrating both V-ont ele-
ments and KP elements, assuring a detailed representation of the world for each agent,
but one where all agents are modeling objects with the same general specifications.
Our solution therefore relies on the concept of knowledge provenance.

Ding et al. [7] also explores how to represent knowledge provenance. This is for
the context of the Semantic Web, focused on evaluating the trustworthiness of discov-
ered semantic associations. There are proposals for resolving inconsistency through
the use of heuristics. Social reputation is assumed to be providing the required prove-
nance information. The promotion of a Knowledge Provenance Infrastructure is also
offered in [26]. This is once more described in terms of supporting answers for web
applications and services.

For our application, the representation of knowledge provenance offered in [14]
served us well, because it provided a straightforward method for connecting to our V-
ont ontology. In addition, Huang uses the metaphor of agents to refer to information
sources, so we were able to leverage this in order to adjust his proposals aimed at
web sites for our context where actual intelligent agents are directing the cars. A
detailed messaging framework that allows access to the required information was also
an attractive feature.

6.1.1.2 Trust Modeling

While the Vanet reasoner is the central component in our system which enables intel-
ligent agents in vehicles to make effective route planning decisions, it relies critically
on effective management of the knowledge that is shared within the mobile environ-
ment. Included here is knowledge about the current road conditions and knowledge
about the agents providing that information, effectively managed through appropriate
messaging constructs. The design of the messaging that we employ in our framework,
drawn from the model of [14], also offers a concise way to support all the processing
needed to be incorporated into our simulation.

The multi-faceted trust model that forms the centrepiece of our proposed frame-
work for enabling effective transportation decisions in a mobile vehicular network
builds on well-established research in trust modeling by Minhas et al., originally ex-
plored for the application of electronic commerce.

Experience-based trust influences the learning performed in the trust model of [29]
which confirms the value of representing trust as something that is difficult to build
but easy to tear down, proposing that advice from only the most trustworthy peers
be followed, but the model of Minhas et al. also makes valuable distinctions between
direct and indirect reporting of trust. We are now able to show the contribution
derived from modeling this additional facet through our simulation results.

Combining experience-based trust with some kind of majority opinion is suggested

79

in the personalized trust model developed by Zhang [34] for the design of effective
e-marketplaces, which empirically demonstrates the value of integrating both private
and public trustworthiness of agents into its solution. Other researchers have proposed
trust modeling frameworks that integrate majority opinion [15, 35]. We integrate here
important consideration of time and location as well, in order to value more highly
the reports from users closer to the destination. In so doing, we are able to weight
the combination of majority and experience based considerations more appropriately.
Others have employed a social network for trust modeling (e.g. [32] consider trust
propagation in a network but this is less relevant in our sparsely populated envi-
ronment) and others propose the use of stereotypical trust [4] (but in our domain
a small set of roles can be used to reflect levels of trust.) [30] also describe trust
as multi-faceted; this work is more focused on having trust calculated differently in
distinct contexts. In addition, their selection of peer advice is based on similar prefer-
ences; for our domain, location of the user and the time of its report are more critical
determinants.

Various researchers have also explored trust modeling and multiagent systems
for traffic decision making. Lin et al.[16] have investigated the benefits achieved
by self-interested agents in multiagent-based vehicular networks through simulations.
They consider a scenario where agents can achieve road congestion information from
other agents through gossiping. These self-interested agents pose a challenge either
because they deliberately want to cause disorder or because they seek to maximize
their own utility. The authors identify the need to establish trust in VANETS through
distributed reputation mechanisms. One limitation about the work of [16] is that their
simulations do not rely on any existing network, and thus ignore the complication of
communication range, real-world traffic and driving rules such as speed limits, traffic
signals, stop signs, etc. Our simulation testbed integrates the Scalable Ad hoc Network
Simulator (SWANS) and the Street Random Waypoint model (STRAW) to simulate
real-world scenarios. Another limitation about their work and the trust modeling
work that will be introduced below is that they often evaluate the performance of
their systems using only one single metric (e.g. average speed of cars or normalized
journey length). In contrast, our testbed incorporates a variety of metrics to evaluate
the effectiveness of trust models.

Various trust models have been proposed for traffic decision making. Here, we pro-
vide a brief summary of these models and contrast with our work.1 Also focusing on
the modeling of the trustworthiness of vehicular entities, the sociological trust model
proposed in [10] shares some similarities with the multi-faceted trust management
framework of Minhas et al.[20, 18]. It is based on the principle of trust and con-
fidence tagging. Gerlach has identified various forms of trust including situational,
dispositional and system. Additionally, he presents an architecture for securing ve-
hicular communication. However, Gerlach does not provide a formalization of the

1A more complete discussion of trust management for VANETs can be found in the recent survey
paper [33].

80

architecture for combining the different types of trust together.
In contrast to the traditional view of entity-level trust, [23] propose that data-

oriented trust may be more appropriate in the domain of VANETs. Data-centric trust
establishment deals with evaluating the trustworthiness of the data reported by other
entities rather than trust of the entities themselves. Their decision logic ultimately
outputs the level of trust that can be placed in evaluated evidences indicating whether
the event related with the data has taken place or not. One of the shortcomings of
their work is that trust relationships in entities can never be formed, only ephemeral
trust in data is established, and because this is based on a per event basis, it needs
to be established again and again for every event. This is acceptable as long as there
is enough evidence either in support of or against a specific event, but in the case of
data sparsity their model is significantly challenged. [11] also present a technique that
aims to address the problem of detecting and correcting malicious data in VANETs.
Their approach maintains a model of VANET at every entity which contains all the
knowledge that a particular entity has about the VANET. Incoming information can
then be evaluated against the entity’s model of VANET. If all the data received
agrees with the model with a high probability, then the entity accepts the validity of
the data. However, this approach assumes that each vehicle has the global knowledge
of the network and solely evaluates the validity of data, which may not be feasible in
practice.

Several trust models have been proposed to not only model trustworthiness of
entities but also use the modeling results to evaluate the reliability of data. For
example, [8] have suggested building a distributed reputation model that exploits a
notion called opinion piggybacking where each forwarding entity (of the message re-
garding an event) appends its own opinion about the trustworthiness of the data.
They provide an algorithm that allows an entity to generate an opinion about the
data based on aggregated opinions appended to the message. However, this approach
repeatedly makes use of the opinions from different nodes. The nodes that provide
opinions about a message earlier will have larger influence than the nodes which gen-
erated opinions later. [22] propose an approach in which the reputation of an entity
is determined by data validation. In this approach, a few entities, which are named
as anchor nodes here, are assumed to be pre-authenticated, and thus the data they
provide are regarded as trustworthy. Data can be validated by either agreement
among peers or direct communication with an anchor node. Malicious nodes can be
identified if the data they present is invalidated by the validation algorithm. One
problem about this scheme is that it does not make use of reputation of entities when
determining the majority consensus. Overcoming some problems of the above two
models, [5] propose a trust-based message propagation and evaluation framework in
vehicular ad-hoc networks where entities share information regarding road condition
or safety and others provide opinions about whether the information can be trusted.
More specifically, the trust-based message propagation model collects and propagates
entities’ opinions in an efficient, secure and scalable way by dynamically controlling
information dissemination. This model is demonstrated to promote network scalabil-

81

ity and system effectiveness in information evaluation under the pervasive presence of
false information.

Different from the above mentioned trust modeling work, our work focuses on
clarifying the format of the messages that will be communicated among vehicular
agents regarding travel decision marking. For this, we propose the detailed ontological
representation of knowledge sharing among agents and trust information about agents.
We also provide the specification of an algorithm for information exchange which
clarifies when, where and with whom knowledge is shared towards effective decision
making for the agents in the VANET environment.

6.2 Future Work
The future work for this project plans to expand both the proposed model and im-
plementation to further describe and simulate various aspects of the VANET model.
The following subsections present a variety of possibilities for future work with the
presented framework model and simulation implementation.

6.2.1 Additional Simulation
Further troubleshooting of our chosen software for the simulation (or possible explo-
ration of other valuable simulation frameworks) is one avenue for future research. In
our current simulations, the choice of map and simulation parameters are important
factors in the execution of simulation tests. The map used for the simulations in Sec-
tion 5 was chosen due to its high stability and the significant improvement from using
the best case setup over the worst case setup. Some maps produce a much more sig-
nificant improvement but are prone to becoming jammed while others are stable but
don’t produce the traffic congestion desired. Future work might include sensitivity
tests to these map variations. Simulation parameters also have a significant impact
on the quality of the results.

6.2.2 Extended KP Propositions Use
The implementation presented in this thesis utilizes only the kp:AssertedProp and
kp:DerivedProp classes of Figure 2.2. Future work could utilize a larger range of KP
classes to describe more intricate and complicated scenarios. Fr example, the sub-
classes of kp:CompoundProp may be used to describe relations between propositions
and their collective use in describing another proposition, such as a kp:DerivedProp.

6.2.3 Greedy Agents
The model presented in this thesis was shown to effectively counteract the influence of
dishonest agents within the ad-hoc network. Future work could introduce and explore

82

greedy agents, which may or may not be dishonest, who ignore the advice of framework
model and decide to take the shortest route. The rationale the greedy agents would
have in doing this would be that they expect that our presented framework model is
working effectively and that the shortest route will not be as busy as it would in the
case where the framework was not being used by all vehicles.

6.2.4 Disconnected Agents
The implementation presented in this thesis equips every car/agent with a GPS that
uses our framework model. Future work could introduce disconnected cars/agents,
which would make up various portions of the overall number of cars, that do not
use our framework model and hence always take the shortest route. This would be
different from the greedy agents because they would have no communication with
framework-enabled cars/agents.

6.2.5 Destination Awareness
The framework model and implementation of this thesis primarily deals with commu-
nicating either current or older location and congestion information between agents.
Future work could introduce messages or additional message information between
agents where an agent will communicate its current destination or path. This would
be useful information for predicting future congestion of roads. It also would allow
an additional dynamic of misinformation, where the agent could communicate a false
path or destination for whatever reason. This would have to be dealt with appropri-
ately, possibly by evaluating the location information of later messages.

6.2.6 Honesty Queries
The framework model and implementation of this thesis primarily deals with com-
municating location and congestion information between agents. Future work could
introduce messages that query an agent about their trust of another agent. These
messages could help increase the rate at which agents are profiled and lead to fewer
situations where dishonest agent information is trusted and used.

6.2.7 Recognizing Patterns of Agent Behavior
It would be useful to make use of historical data of agent behaviour. For instance,
we may detect patterns of dishonesty, such as agents consistently being untruthful
when congestion is high but truthful when congestion is low. We may also detect
groups of agents that are dishonest when traveling together (perhaps reflective of
collusion). This might suggest a need to a expand the modeling of agent roles to
include stereotypes (i.e. class membership). We may also observe consistent patterns

83

of travel and congestion within a city at certain times of day, which may be valuable
to consider as part of path planning advice.

6.2.8 Data Expiration
For future work we will explore when to refresh the knowledge base, removing stale
reports. This would increase search efficiency and decrease memory usage.

6.2.9 Real World Implementation
The framework model presented in this thesis was designed with a real world im-
plementation in mind. This process would most likely take a good deal of effort and
time, but an implementation as a phone GPS add-on could be possible. Implementing
the framework in this manner would allow for easy integration into a city’s driving
population. The Android operating system and platform is a viable candidate for
implementation due to its use of Java as a primary language and the capability to al-
low applications access to a wide range of phone systems (such as the GPS). Android
phones also allow multi-threading. The phones could communicate with each other
through minimal internet access.

6.3 Conclusion
This thesis has presented a framework consisting of a model and a simulation testbed
to support effective mobile knowledge management for the application area of intel-
ligent transportation. In particular, we enable effective path planning by intelligent
agents in mobile vehicular networks through the integration of trust modeling: we en-
able the exchange of traffic reports between agents and then adjust decision making
based on the modeling of the trustworthiness of the senders of the reports. All of this
is achieved through a specific proposal for representing and employing the knowledge
that forms the basis for the agents’ travel decisions.

The VANET Ontology (V-Ont) was created to serve as a semantic repository for
the VANET terms and relations. It also provides a semantically meaningful context
which can be understood and used by external VANET software. At present, V-
Ont is designed to be powerful and general enough to describe any feasible situation
from the VANET environment, as well as to be used by third party software such
as JiST/SWANS, vans, DUCKS, and Protege. In addition, it is important to note
that the design of V-Ont would allow the ontology to be extended, if necessary, to
handle any possible situation which arises from a more generalized multi-agent mobile
vehicular ad-hoc network, and to work with various external VANET-related software
applications other than the above-listed ones.

Our approach makes use of semantic knowledge to store complex information, in-
cluding all trust information, via the design of an agent’s knowledge base (KB). The

84

current design facilitates three types of actions. The first action is creation, which
assigns an initial, default trust value to all agents. The second action is retrieval,
which reads the trust value of an agent, to evaluate the trustworthiness of the agent.
The third action, also the most complicated one, is modification, which updates
the trust value of an agent according to the rules and formulas provided by the trust
model. Clearly, more actions could be added to the knowledge base if desired. As such,
an important contribution of this approach is that the knowledge representation and
management system being used here will allow for the storage, retrieval, evaluation,
and modification of trustworthiness values not only of agents in a VANET environ-
ment, but also of agents in any multi-agent system where trustworthiness needs to be
represented.

Our work also provides a detailed design and implementation of the messaging
between agents in the VANET environment (Figures 4.6, 4.7, 4.8, and 4.9 in Section
4.3), which clearly specifies how an agent sends a request for location and congestion
information; how an agent receives a request, processes it, and sends a response
accordingly with the requested information; and how an agent receives a response to
its request and processes the requested information, including subsequent evaluation
and updating of the information to be used in decision making. Indeed, the proposed
messaging details form a communication protocol that enables agents to exchange
and understand messages, and an interaction protocol that enables agents to have
conversations with one another. This serves as a concrete sample example of how to
design and implement communication and interaction protocols for agents to operate
effectively and interact with each other productively in a society of agents.

The VANET model originally presented in Minhas et al.[20, 18] is simplified some-
what and then implemented, making use of external software, namely JiST/SWANS,
vans, DUCKS, and Protege, and offering a careful experimentation incorporating a
variety of metrics to validate the effectiveness of the model. This provides a simula-
tion testbed that can be used as a framework for the simulation of actual traffic flow
with large number of cars in a general mobile vehicular ad-hoc network. In fact, due
to the significant attention to detail in the provided simulation, we are well positioned
to offer a framework that may be deployed within actual vehicles.

The experimental evidence presented in Chapter 5 also serves to provide impressive
validation of the multi-faceted trust modeling algorithm that is central to the proposed
decision making of the vehicles. With our particular trust modeling in place, even in
scenarios where there is considerable deception in the environment, our vehicles are
able to perform their path planning extremely well, maintaining an effective speed
and travel time, without significant compromise from poor path selection.

In summary, we address an important challenge for mobile transportation envi-
ronments: facilitating the use of intelligent systems to represent and reason with
knowledge about the environment in order to enable effective traffic flow.

Included in our contributions are a proposal for reasoning with numeric informa-
tion provided by agents, set in a framework for modeling trustworthiness according
to confidence values. How majority consensus can be computed for non-Boolean trust

85

modeling is clarified in detail. This research may be of value to trust modeling re-
searchers considering a variety of possible applications.

Another contribution offered is a proposal for reasoning with information that has
been obtained through frequent broadcasts and polling. This is distinct from simply
requesting information just prior to a critical decision, which may be challenging for
environments such as ours with dynamic change and real-time decision requirements.

A final contribution is an explanation for how the concept of knowledge prove-
nance can be integrated into a trust modeling framework, emphasizing the value of
knowledge bases for agent decision making. With our design in place, the VANET
trust model of Minhas et al. is now specified much more clearly and its overall value
is confirmed more definitively. In addition, our messaging description and our exten-
sive simulation testbed now lays the groundwork for deployment of our framework in
realworld vehicular networks.

Bibliography

[1] Oxford english dictionary a, http://dictionary.oed.com/cgi/entry/
50000000/50000000se148?single=1\&query_type=word\&queryword=ADHD\
&first=1\&max_to_show=10\&hilite=50000000se148

[2] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press (2003)

[3] Berners-Lee, T., Hall, W., Hendler, J.A., O’Hara, K., Shadbolt, N., Weitzner,
D.J.: A framework for web science. Foundations and Trends in Web Science 1(1),
1–130 (2006)

[4] Burnett, C. Norman, T., Sycara, K.: Sources of stereotypical trust in multi-agent
systems. In: Proceedings. AAMAS Trust Workshop (Trust-2011) (2011)

[5] Chen, C., Zhang, J., Cohen, R., Ho, P.H.: A trust-based message propagation and
evaluation framework in vanets. In: Proceedings of the International Conference
on Information Technology Convergence and Services (ITCS) (2010)

[6] Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and
where. Found. Trends databases 1(4), 379–474 (Apr 2009), http://dx.doi.org/
10.1561/1900000006

[7] Ding, L., Kolari, P., Finin, T., Joshi, A., Peng, Y., Yesha, Y.: On Homeland Se-
curity and the Semantic Web: A Provenance and Trust Aware Inference Frame-
work. In: Proceedings of the AAAI Spring Symposium on AI Technologies for
Homeland Security. AAAI Press (March 2005), (poster paper)

[8] Dotzer, F., Fischer, L., Magiera, P.: VARS: A vehicle ad-hoc network reputation
system. In: Proceedings of the IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks. pp. 453–456 (2005)

[9] Fox, M.S., Huang, J.: Knowledge provenance. In: Proceedings of Canadian Con-
ference on AI. pp. 517–523 (2004)

[10] Gerlach, M.: Trust for vehicular applications. In: Proceedings of the Interna-
tional Symposium on Autonomous Decentralized Systems (2007)

86

87

[11] Golle, P., Greene, D., Staddon, J.: Detecting and correcting malicious data in
vanets. In: Proceedings of VANET (2004)

[12] Gruber, T.R.: A translation approach to portable ontology specifications.
Knowl. Acquis. 5, 199–220 (June 1993), http://dl.acm.org/citation.cfm?
id=173743.173747

[13] Happel, H.J., Seedorf, S.: Applications of ontologies in software engineer-
ing. In: International Workshop on Semantic Web Enabled Software Engineer-
ing (SWESE’06). Athens, USA (November 2006), http://fparreiras/papers/
AppOntoSE.pdf

[14] Huang, J.: Knowledge Provenance: An Approach to Modeling and Maintaining
The Evolution and Validity of Knowledge. Ph.D. thesis, University of Toronto
(2007)

[15] Josang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Electronic Commerce Conference (2002)

[16] Lin, R., Kraus, S., Shavitt, Y.: On the benefit of cheating by self-interested agents
in vehicular networks. In: Proceedings of International Autonomous Agents and
Multi Agent Systems (AAMAS) (2007)

[17] McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview.
W3C recommendation, W3C (Feb 2004)

[18] Minhas, U.F., Zhang, J., Tran, T., Cohen, R.: Promoting effective exchanges be-
tween vehicular agents in traffic through transportation-oriented trust modeling.
In: Proceedings of International Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS) Workshop on Agents in Traffic and Transporta-
tion (ATT) (2010)

[19] Minhas, U.F., Zhang, J., Tran, T.T., Cohen, R.: Intelligent agents in mobile ve-
hicular ad-hoc networks: Leveraging trust modeling based on direct experience
with incentives for honesty. In: Proceedings of the IEEE/WIC/ACM Interna-
tional Conference on Intelligent Agent Technology (IAT) (2010)

[20] Minhas, U.F., Zhang, J., Tran, T.T., Cohen, R.: A multifaceted approach to
modeling agent trust for effective communication in the application of mobile ad
hoc vehicular networks. IEEE Transactions on Systems, Man, and Cybernetics,
Part C 41(3), 407–420 (2011)

[21] Motik, B., Patel-Schneider, P.F., Grau, B.C.: Owl 2 web ontology language di-
rect semantics. Director (October), 1–17 (2009), http://www.w3.org/TR/2009/
REC-owl2-direct-semantics-20091027/

88

[22] Patwardhan, A., Joshi, A., Finin, T., Yesha, Y.: A data intensive reputation
management scheme for vehicular ad hoc networks. In: Proceedings of the Second
International Workshop on Vehicle-to-Vehicle Communications (2006)

[23] Raya, M., Papadimitratos, P., Gligor, V., Hubaux, J.P.: On data-centric trust
establishment in ephemeral ad hoc networks. In: Proceedings of the 27th An-
nual IEEE International Conference on Computer Communications (IEEE IN-
FOCOM). pp. 1238–1246 (2008)

[24] Rector, A., Rogers, J.: Ontological issues in using a description logic to repre-
sent medical concepts: Experience from galen. In: IMIA WORKING GROUP 6
WORKSHOP (1999)

[25] Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson
Education (2003), http://portal.acm.org/citation.cfm?id=773294

[26] da Silva, P.P., McGuinness, D.L., McCool, R.: Knowledge provenance infrastruc-
ture. IEEE Data Engineering Bulletin 26(4), 26–32 (2003)

[27] Spackman, K.A., D, P., Campbell, K.E., D, P., Cote, R.A., hon, D.S.: Snomed
rt: A reference terminology for health care. In: J. of the American Medical
Informatics Association. pp. 640–644 (1997)

[28] Sure, Y., Bloehdorn, S., Haase, P., Hartmann, J., Oberle, D.: The swrc ontology
– semantic web for research communities. In: Bento, C., Cardoso, A., Dias, G.
(eds.) Progress in Artificial Intelligence, Lecture Notes in Computer Science, vol.
3808, pp. 218–231. Springer Berlin / Heidelberg

[29] Tran, T.T., Cohen, R.: Improving user satisfaction in agent-based electronic mar-
ketplaces by reputation modelling and adjustable product quality. In: AAMAS.
pp. 828–835 (2004)

[30] Wang, Y., Vassileva, J.: Bayesian network-based trust model. In: Web Intelli-
gence, 2003. WI 2003. Proceedings. IEEE/WIC International Conference on. pp.
372 – 378 (oct 2003)

[31] Weiss, G. (ed.): Multiagent systems: a modern approach to distributed artificial
intelligence. MIT Press, Cambridge, MA, USA (1999)

[32] Yu, B., Singh, M.P.: Detecting deception in reputation management. In: Pro-
ceedings of the second international joint conference on Autonomous agents and
multiagent systems. pp. 73–80. AAMAS ’03, ACM, New York, NY, USA (2003),
http://doi.acm.org/10.1145/860575.860588

[33] Zhang, J.: A survey on trust management for vanets. In: Proceedings of the 25th
International Conference on Advanced Information Networking and Applications
(AINA) (2011)

89

[34] Zhang, J., Cohen, R.: Design of a mechanism for promoting honesty in e-
marketplaces. In: AAAI. pp. 1495–1500 (2007)

[35] Zhang, J., Cohen, R.: A framework for trust modeling in multiagent electronic
marketplaces with buying advisors to consider varying seller behavior and the
limiting of seller bids. ACM Transactions on Intelligent Systems and Technology
(ACM TIST), to appear (2011)

Appendix A

Confidence Geometric Series

This appendix seeks to further clarify and detail the geometric series equation and
design rationale for calculating confidence in Section 4.3.3.1 and to provide examples.

In Section 4.3.3.1 we proposed Equation 4.1(A.1) for calculating the confidence
of a report. Equations 2.1(A.2) and 2.2(A.3) are used as the basis for calculating
the confidence of report Rj in Equation 4.1(A.1), through a modified summation of a
geometric series.

Conf(Rj) = (CurrConf(Rj)− 1)(1− (α or β))|G| + 1 (A.1)

The following will describe why a geometric series was necessary.
Equations A.2 and A.3 shown below are used to modify the trust of an agent. In

the framework it is necessary to attribute a trust value to each report from an agent,
which we define as confidence, due to each report having possibly different attributes,
such as age and if the report was observed indirectly.

TA(B)←
{
TA(B) + α(1− TA(B)) if TA(B) ≥ 0,
TA(B) + α(1 + TA(B)) if TA(B) < 0, (A.2)

TA(B)←
{
TA(B) + β(1− TA(B)) if TA(B) ≥ 0,
TA(B) + β(1 + TA(B)) if TA(B) < 0, (A.3)

A report’s confidence is initially set to the experience-based trust of the agent
that provided the report. If Equations A.2 and A.3 were used to atomically increase
a report’s confidence according to various attributes (Time, Loc, Indirect, etc.), then
their influence on confidence would be disproportionate to their value and importance.
A simple solution to this issue would be to weight or multiply α and β according to
the attribute (Time, Loc, Indirect, etc.). However, this can result in the confidence
value being above 100% or below 0%. In addition, to solve this by simply placing a
bound on the confidence value (So that max is 100% and minimum is 0%) would not
be faithful to the founding research.

Equations A.2 and A.3 implicitly bound TA(B), and have an effect of decreasing
the magnitude by which trust is increased or decreased as the trust value becomes

90

91

greater or smaller, respectively. Equation A.1 is intended to reflect the culmination
of several increases or decreases, according to A.2 and A.3. If you were to graph the
trust value over all atomic iterations, the graph would form a Sigmoid function ("S"
curve).

Equation A.4 for a geometric series is shown below. Equation A.5 shows the
calculation at n terms in the series. This is the type of calculation we need because
we need to calculate confidence after Equation A.2 or A.3 has been applied n times
(Equivalent to G in Equation A.1). Equation A.5 can not be used because it does
not take into consideration the result of the previous calculation, which we need to.
Equation A.6 describes our calculation, after Equation A.2 or A.3 has been applied
n times, and the series which we need to represent for our calculation. Equation A.6
describes the need for each term of n terms to sum the result of all previous terms.
This is due to Equation A.2 and A.3 multiplying α and β by TA(B) (the previous
trust value). The simplification of Equation A.6 is equivalent to Equation 4.1(A.1).

a+ ar + ar2 + ...+ arn−1 = a
1− rn

1− r (A.4)

an = arn (A.5)

an = an0 + r(1 + /− an0) + r(1 + /− an1)
+r(1 + /− an2) + ...+ r(1 + /− ann−1)
= (a− 1)(1− r)|n| + 1

(A.6)

Defining our confidence calculation using Equation A.1(4.1, the simplification of
Equation A.6) allows us to utilize Equations A.2 and A.3, their Sigmoid nature and
implicit bounding, use of decimal numbers for G (n) (providing a granularity that
atomic changes do not allow), and a representation of the calculation in a simple
format.

The following example demonstrates the modification of confidence according the
time difference attribute.

92

Example 1: (Modification of Confidence according to Time)

Confidence0 = Agent_39:trust_degree (0.6)

α = 0.1

Gtime = (TPenal(90)-TimeDiff(45))/TPenal(90)
*MultiplicativeFactor(4)

Gtime = 2 (Increase Confidence0 twice)

Confidence0 = 0.6
Confidence1 = (0.6) + α(1− (0.6))

= 0.64
Confidence2(Gtime) = 0.64 + α(1− (0.64))

= 0.676

(Again using Equation 4.1)
Confidence2 = (Confidence0 − 1)(1− α)|Gtime| + 1

= ((0.6)− 1)(1− α)2 + 1
= 0.676

