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Abstract

Transportation is important in making supply chain decisions. With the careful con-

sideration of transportation expenses, the performance of each supply chain member, as

well as the entire supply chain, could be improved significantly. The purpose of this re-

search is: 1) to explore and identify the various situations that relate to replenishment and

transportation activities; and 2) to reveal the strength of the connection between purchase

quantity and transportation discounts, and integrate the two discounts to enhance supply-

chain coordination. The problem is analyzed and categorized into four representative cases,

depending on transportation. To aid the supplier or the carrier to determine the discount

that should be offered, in light of the buyer’s reaction to that discount, decision models

are proposed under three different circumstances.

First, assuming a single product, we investigate the quantity discounts from the

supplier’s perspective, via a noncooperative game-theoretical approach and also a joint

decision model. Taking into account the price elasticity of demand, this analysis aids a

sole supplier in establishing an all-unit quantity discount policy in light of the buyer’s

best reaction. The Stackelberg equilibrium and the Pareto-optimal solution set are derived

for the noncooperative and joint-decision cases, respectively. Our research indicates that

channel efficiency can be improved significantly if the quantity discount decision is made

jointly rather than noncooperatively. Moreover, we extend our model in several directions:

(a) the product is transported by a private fleet; (b) the buyer may choose to offer her

customers a different percentage discount than that she obtained from the supplier; and
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(c) the case of multiple (heterogeneous) buyers. Numerical examples are employed, here

and throughout the thesis, to illustrate the practical applications of the models presented

and the sensitivity to model parameters.

Secondly, we consider a situation with a family of SKUs for which the supplier will offer a

quantity discount, according to the aggregate purchases of the product group. Management

of those items is based on the modified periodic policy. From the supplier’s point of view,

what are the optimal parameters (breakpoint and discount percentage)? For deterministic

demand, we discuss the cases in which demand is both constant and price-sensitive. First

as a noncooperative Stackelberg game, and then when the two parties make the discount

and replenishment decisions jointly, we illustrate the impact of price-sensitivity and joint

decision making on the supplier’s discount policy.

The third approach studies the case in which transportation of the goods by a common

carrier (a public, for-hire trucking company) is integrated in the quantity discount decisions.

In reality, it is quite difficult for the carrier to determine the proper transportation discount,

especially in the case of LTL (less-than-truckload) trucking. This is not only because of

the “phantom freight” phenomenon, caused by possible over-declaration of the weight by

the shipper, but also due to the fact that the discount relates to both transportation and

inventory issues. In this research, we study the problem of coordinating the transportation

and quantity discount decisions from the perspectives of the parties who offer the discounts,

rather than the ones that take them. By comparison of the noncooperative and cooperative

models, we show that cooperation provides better overall results, not only to each party, but
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also to the entire supply chain. To divide the extra payoffs gained from that cooperation, we

further conduct a coalition analysis, based upon the concept of “Shapley Value.” A detailed

algorithm and numerical examples are provided to illustrate the solution procedure.

Finally, the thesis concludes with comprehensive remarks. We summarize the contribu-

tions of this thesis, show the overall results obtained here, and present the directions that

our research may take in the future.
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Chapter 1

Introduction

A Supply Chain is a complicated system that physically manufactures and transports prod-

ucts to customers. Interacting with other social systems, a typical supply chain involves

multiple stages, diverse participants, and many other factors. As the essential link be-

tween stages, transportation plays a vital role in any supply chain system (Chopra and

Meindl, 2010). This research targets the truck mode, as an important case, to focus on

determination of the optimal discount schedule for transportation.

1.1 Problem statement

To transport products to another supply chain member, a company may either ship by

its own vehicle (the case of “private fleet”) or employ a public, for-hire transportation
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service provider (called a “common carrier”). When a private fleet is used, whoever is

in charge of the shipment needs to incorporate the transportation expenses in his/her

own operational decision making, while, in the other case, it is the common carrier’s

responsibility to determine how to charge for the transportation services. Details about

the different decisions and cost structures related to these two situations are discussed in

Section 1.3.

More specifically, there are two types of common-carrier trucking services, Less-than-

truckload (LTL) and truckload (TL) freight. These are offered by companies that are

quite distinct. A TL carrier moves goods directly from origin to destination. An LTL

carrier, however, requires a network of terminals which permit collection of products from

more than one customer. Loads are combined at an origin terminal, delivered on a single

vehicle to a destination terminal, and deconsolidated there for local delivery to the ultimate

consignees (buyers or receivers of the goods)(Figure1.1).

1.2 Why does transportation matter?

In the recent few decades, significant attention has been paid to the coordination among

members in a supply chain. Quantity discounts, having been proved to be a useful co-

ordinating mechanism, have been broadly analyzed and explored, from the perspective of

both operations management and marketing (Choi et al. 2005). Not only the two par-

ties involved in a purchasing activity, but also the entire distribution channel can benefit
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Figure 1.1: Illustration of an LTL transportation operation

from employing quantity discounts. However, although it is a major portion of the total

relevant costs, the transportation expense has frequently been omitted or assumed fixed.

Consideration of transport has often been neglected, both when the supplier makes pric-

ing decisions, and when the buyer decides replenishment quantities. These omissions may

result in unexpected losses related to the reordering decisions.

To illustrate the impact of transportation cost on lot-sizing decisions, consider Example

1.1. This simple distribution channel contains three parties: a supplier, a buyer, and a

carrier, as depicted in Figure 1.2. The supplier, denoted by S, manufactures a certain

product and sells it according to an established quantity-discount schedule: the product

is sold at a unit price of $ 400 for any order less than or equal to 39 units, and $ 360 per

3



Supplier (S)

Buyer (B)

Products        

Transportation Fee

Purchasing Payment

CarrierCarrier (C)

Figure 1.2: A simple distribution channel

unit for any order of 40 or more units, respectively. The buyer, denoted by B, purchases

120 units of this product annually from S. The carrier, denoted by C, is a common carrier

that provides trucking service to ship the product from S to B, based on a predetermined

freight tariff. (Here, we assume that B pays for the transportation.) Suppose that each

unit of the product weights 500 pounds. The transportation cost per hundredweight (100

pounds), i.e. cwt, is $ 10 for shipping a weight of less than 30 000 pounds, but $ 7/cwt for

any larger weight. Note that this is an all-unit discount.

Suppose B’s ordering cost is $ 300 per order, and inventory holding cost per unit is 20%

of the purchase price. Then, according to the traditional economic order quantity (EOQ)

model, B’s EOQ based on the undiscounted and discounted unit purchase prices can be

calculated as 30 units and approximately 32 units per order, respectively. Naturally, the

calculated value of 32 units is not eligible for the purchase-quantity discount.

Now consider the situation that B is aware only of S’s quantity discount but not C’s

transportation discount schedule. This is because S, and not B, discussed the transporta-

tion arrangements with C. To determine the optimal replenishment quantity, the relevant

4



Table 1.1: Cost information for Example 1.1 ∗

Order quantity 30 units 40 units 50 units 60 units

Ordering cost $ 1 200 $ 900 $ 720 $ 600

Inventory cost $ 1 200 $ 1 440 $ 1 800 $ 2 160

Purchase cost $ 48 000 $ 43 200 $ 43 200 $ 43 200

Transportation cost $ 6 000 $ 6 000 $ 5 040 $ 4 200

Total relevant cost $ 56 400 $ 51 540 $ 50 760 $ 50 160

* All costs are annual figures.

costs that need to be taken into account include those of ordering, inventory holding, and

purchasing. By comparing the total relevant cost (TRC) calculated by the undiscounted

EOQ (30 units) and the breakpoint (40 units), B would determine a reorder quantity of

40 units, with the relevant costs of $ 45 540. At this quantity, the transportation cost is

$ 6 000, which brings B’s total costs to $ 51 540. However, we may also notice that, when B

increases the replenishment quantity to 50 units, TRC decreases to $ 50 760, which is $ 780

lower than the value obtained in the previous situation. Actually, if B had the knowledge

of both discounts, and had included the consideration of transportation cost in the first

place, an optimal order quantity of 60 units would have been found. At this replenishment

level, the total relevant costs are minimized at $ 50 160. This is $ 1 308 lower than when

Q = 40 units, and $ 600 less than even TRC for a quantity of 50 units. The details of the

cost information for this example can be found in Table 1.1.

This improvement is due to a specific feature of the transportation discount, the so-
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called “bumping clause” phenomenon. As stated previously, the transportation rates of-

fered by C are $ 10/cwt for lots which weigh less than 30 000 pounds, and $ 7/cwt for any

greater weight. Then the transportation costs per shipment and per year are as depicted

in Figure 1.3. Note that when the shipping weight is between 210 cwt and 300 cwt, it

is advantageous to over-declare the weight to be 300 cwt, which would result in a lower

transportation charge per year.

The savings caused by this over-declaration is demonstrated by the difference between

EF and EG, which, reflecting the annual transportation charge, is the downward-sloped

line MN. The amounts of 210 cwt and 300 cwt are defined as WBT (smallest weight where

over- declaration is advantageous) and MWT (stated minimum weight to obtain discount),

respectively. The phenomenon of over-declaration is referred to as evoking the “bumping

clause,” or as the shipment of “phantom freight.” Because of the bumping clause, it

becomes much more complicated for the carrier to determine the LTL discount schedule

that should be offered, than it is for a supplier to set the traditional purchase-quantity

discount. The details regarding this problem are explained later in this chapter.

As demonstrated by this simple example, there is a strong relationship between in-

ventory and transportation decisions. With the consideration of this relationship, buyers

would choose better lot-sizing alternatives than if only inventory-related issues were con-

sidered.
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Figure 1.3: Transportation charges for the simple numerical example
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1.3 Motivation and objectives

As mentioned in the previous sections, integration of the purchase-quantity and transporta-

tion discounts is vital to buyers. In fact, the impacts are not restricted only to buyers.

Thinking from the supplier’s point of view, the increase of order sizes would be undoubt-

edly welcome. With the same order frequency, larger order sizes would result in higher

total annual profits. On the other hand, with no change in annual demand, smaller order

frequency would result in lower annual order processing and/or fixed manufacturing setup

charges. Another benefit to the supplier is that the buyer’s revised order pattern may

reduce the supplier’s opportunity cost of holding inventory (Lee and Rosenblatt, 1986).

Monahan (1984) also mentioned that larger order sizes would cause shifts in the mag-

nitude and timing of the invoice payments by buyers. These types of shifts might give

suppliers the possibility of using the buyers’ money, not only more, but also earlier.

Similarly, LTL carriers could potentially benefit, too, not just because of the reduction

in annual fixed operating expenses caused by fewer shipments each year. The shipment-

consolidation-related costs could also be decreased. Shipment consolidation is a general

technique employed by LTL carriers to combine several smaller shipments into one or

more truckloads. It is obvious that a pattern of larger shipments would make it more

straightforward to consolidate a full truckload.

Moreover, the achievable improvement of channel efficiency and effectiveness is another

motivation. Recall that a supply chain network consists of many parties that provide
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products and services to fulfill customers’ requests. The essential purpose of a successful

supply chain is to maximize the overall generated value, which is the difference between

the revenue created from end-customers and the costs of the entire supply chain (Chopra

and Meindl, 2010). Evidently, the optimization of this value and its division among all

involved parties really needs the coordination and cooperation across the supply chain.

An exploration of the carrier’s role and the effect of its transportation rate would be

challenging, yet helpful in this manner.

Another emerging motivation of this research is the “Green” issue. Critical environ-

mental problems confront countries all over the world. Shipment of larger loads can reduce

the negative impacts that transportation has on the environment.

In light of the above motivations, the main objectives of this research are:

1) To explore the various situations that relate to replenishment and transportation

activities, and thus, to identify the characteristics of each situation; and

2) To reveal the strength of the connection between quantity and transportation dis-

counts, and integrate the setting of these discounts, to enhance the benefits to supply chain

members.

1.4 Four cases of transportation problems

Two key players need to be considered in any transportation problem. The shipper (referred

to as “supplier” in this thesis) is the party who sends the products, while the consignee

9



(referred to as “buyer”) is the party who receives the goods. Recall that products may be

transported between successive nodes of a supply chain, i.e. from the supplier to the buyer,

by a private fleet or a common carrier. Under the condition of a private fleet, depending

upon negotiations between the supplier and buyer, either party may provide the vehicle

and be responsible for the transportation decisions and transportation cost.

However, when a common carrier is employed to move the product, the transportation-

pricing decisions are made by the carrier. These include decisions on consolidation as well

as price and discount-schedule determination. Depending upon circumstances, either the

supplier or buyer may select the outside carrier, and then pay that firm for providing the

transportation services.

Consequently, the actual situations in reality may involve two players, supplier and

buyer, or three players, the supplier, buyer and carrier. This thesis classifies those situations

into four cases according to players’ participations and decisions. Table 1.2 shows the

details for the four cases of any combined transportation-ordering problem.

In Case I, the supplier provides the private fleet. So, with the consideration of trans-

portation expense, the supplier decides his production plan as well as the selling price and

relevant quantity discount. The buyer then takes that selling price schedule and determines

the order quantity. In Case II, the buyer provides the private fleet. Hence, different from

the first case, the buyer needs to consider the transportation expense when making replen-

ishment decisions. Case III reflects the situation that the supplier pays for common-carrier

transportation services. In this case, the carrier makes all transportation-pricing decisions
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Table 1.2: Classification of decisions for the four cases

Case # C1 or P2 Trans3

paid by

Buyer Supplier Carrier

I P Supplier a) Order quan-

tity considering

EOQ and quantity

discount

a) Selling price and

relevant quantity

discount; b) Trans-

portation costs; c)

Production plan

N/A

II P Buyer a) Order quantity

considering EOQ,

quantity discount,

and transportation

costs

a) Selling price

and relevant quan-

tity discount; b)

Production plan

N/A

III C Supplier a) Order quan-

tity considering

EOQ and quantity

discount

a) Selling price and

relevant quantity

discount; b) Pro-

duction plan and

shipment plan

a) Transportation

discount policy;

b) Transportation

costs; c) Consolida-

tion, vehicle routing

and other issues

IV C Buyer a) Order quantity

considering EOQ,

quantity discount,

and transportation

payments

a) Selling price

and relevant quan-

tity discount; b)

Production plan

a) Transportation

discount policy;

b) Transportation

costs; c) Consolida-

tion, vehicle routing

and other issues

1. ‘C’ denotes common carrier;

2. ‘P’ stands for private fleet; and

3. ‘Trans’ stands for transportation.

11



and offers a transportation discount schedule. Then, the supplier takes the transportation

discount schedule, determines his own product plan, and offers the selling-price schedule.

The buyer’s decisions are the same as those in the first case. In Case IV, the buyer pays

for the service of a public, for-hire trucking company. Thus, the buyer determines the

replenishment policy based on the transportation and selling discount schedules offered by

the common carrier and the supplier, respectively. The motivating example of Table 1.1 is

one instance of this case.

During any decision-making process, cost is always a vital factor that impacts the final

outcomes. Corresponding to our four cases, the relevant cost structures that need to be

considered by each player are listed in Table 1.3. As shown, the main costs considered

in our research consist of those related to production, ordering, inventory holding, and

transportation. Sahin et al. (2009) discussed the details of various transportation-related

costs. For our purposes, we classify those costs into two portions, fixed and variable costs.

Further details will be given when these costs appear in our models.

On the basis of the four cases in Table 1.2, our research intends to develop decision

models. In each case, conditions will be found, such that the entire distribution channel

and every party involved would benefit.
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Table 1.3: Cost analysis for the four cases

Case # Parties Production Ordering Inventory Transportation Transportation

cost cost cost fixed cost variable cost

I Buyer - X X - -

Supplier X X X X X

Carrier - - - - -

II Buyer - X X X X

Supplier X X X - -

Carrier - - - - -

III Buyer - X X - -

Supplier X X X - X∗

Carrier - - - X X

IV Buyer - X X - X∗

Supplier X X X - -

Carrier - - - X X

∗ Transportation fees paid to the carrier.

1.5 Organization of the thesis

Figure 1.4 outlines the organization of this thesis. Chapter 1 has begun with a brief in-

troduction of this research, including problem statement, motivation and objectives. Then

the focal research was classified into four cases, which captures the essential relationships

among the players involved, and yields a better understanding of the relevant decisions and

cost structure for each party. The literature review of Chapter 2 exhibits historical and
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Chapter 1: Introduction

Chapter 2: Literature Review

Chapter 3: 

Quantity Discount for a 

Single Product

Chapter 4: 

Quantity Discount for a 

Family of Items

Chapter 5: 

Coordination of Quantity 

and Transportation 

Discounts

Chapter 6: Conclusion and Future Work

· Noncooperative and 

joint models

· Extension I: private fleet

· Extension II: different 

retail discount

· Extension III: multiple 

buyers

· Coordinating 

replenishments (MPP) 

· Noncooperative and 

joint models

· Constant and price-

sensitive demands

· Common-carrier 

transportation (LTL)

· Shipment consolidation

· Inventory and 

transportation decisions

· Noncooperative and 

cooperative models

· Coalition formation

Figure 1.4: Organization of the thesis

contemporary approaches related to this topic, as well as their advantages and disadvan-

tages. Also, it reflects on how those previous approaches inspire out research. Chapters 3

though 5 report our research contributions. The topic is investigated from three different

aspects: the quantity discount for a single product, for a family of items, and coordinating

the quantity and transportation discounts. Numerical examples are employed to illustrate

the proposed models throughout the thesis. Finally, Chapter 6 emphasizes the findings

of this research and its hoped-for significance. That chapter summaries the work we have

done and drafts a blueprint for future research.
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Chapter 2

Literature Review

This chapter presents an overview of the literature in analyzing both purchasing and trans-

portation discounts. The first section discusses achieving supply chain coordination by

using a quantity discount, specifically, the optimal quantity discount problem mainly from

the supplier’s standpoint. Then, the second portion of the review includes the efforts to

optimize replenishment decisions with consideration of transportation expenses. Finally

and more specifically, a typical game-theoretical framework, a Stackelberg game model, is

introduced along with a review of applications in discount pricing decisions.
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2.1 Supply chain coordination with quantity discounts

Supply chain coordination deals with the relationships among the supply chain members,

and concerns how to achieve the benefits of overall goals with joint efforts. Many different

coordination mechanisms have been studied in the literature. In this review, we omit parts

of the relevant literature, such as supply chain coordination with contracts (Cachon and

Zipkin, 1999; Cachon and Lariviere, 2001, 2005; Cachon and Kök, 2010), quick response

(Iyer and Bergen, 1997; Krishnan et al., 2010), accurate response to early sales (Fisher and

Raman, 1996), continuous replenishment planning (Vergin and Barr, 1999; Raghunathan

and Yeh, 2001; Yao and Dresner, 2008), vendor managed Inventory (Gümüş et al., 2008;

Darwish and Odah, 2010; Bookbinder et al., 2010), and information sharing within a supply

chain (Aviv and Federgruen, 1998; Gavirneni et al., 1999; Lee et al., 2000; Lee and Whang,

2000). Instead, we focus on the quantity discounts, as it is the main concern of our research.

The quantity discount problem is prevalent in the inventory management realm. Tradi-

tional analyses of this problem considered primarily the viewpoint of the buyer: calculating

the optimal order quantity, which minimizes the buyer’s total relevant costs. However, by

switching to the perspective of the supplier, the situation becomes significantly different.

Monahan (1984) presented a quantity discount pricing model to maximize a vendor’s

incremental net profit and cash flow by adjusting the pricing structure to encourage buyers

to increase the order size. His model was described, however, in comments by Banerjee

(1986) and Joglekar (1988), as a single-item, single-customer, and single-vendor model
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based on several “unreasonable implicit assumptions”. Therefore, Lee and Rosenblatt

(1986) generalized Monahan’s model and developed an algorithm to solve the supplier’s

joint ordering and price discount problem.

Lal and Staelin (1984) addressed this problem by constructing a unified pricing pol-

icy which motivates the buyer to increase the order quantity, so that the costs for both

the buyer and supplier are decreased. Characterizing the range of order sizes and prices

which reduce costs for buyer and supplier, Dada and Srikanth (1987) studied and devel-

oped a model based upon Lal and Staelin’s model. The model was extended to allow a

price-dependent inventory holding cost, for which the corresponding calculation is more

complicated than for an independent and constant holding cost.

Chakravarty and Martin (1988) developed a discount pricing model, in which a sole

supplier has an infinite production rate, and a single buyer utilizes a periodic review system.

Assuming a constant and uniform demand rate, a negotiation mechanism was introduced to

allocate a sharing of the savings. A few years later, Chakravarty and Martin (1991) relaxed

the assumption of constant demand to a demand that varies with respect to the retail

price, which is addressed as an additional decision variable independent of the discounted

wholesale price.

Weng (1995) attempted to combine the research of marketing and operations literature.

He proposed a coordination mechanism using an order-quantity discount and a periodic

franchise fee. Chen et al. (2001) considered a two-echelon system, in which a supplier

distributes a single product to multiple retailers who in turn sell to consumers. They showed
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that Weng’s scheme is not guaranteed to coordinate the channel when the retailers are not

identical. Through comparison of a centralized and decentralized systems, they illustrated

that the optimum level of channelwide profit can be also achieved when the system is

decentralized, but only via periodically charged fixed fees and a nontraditional discount

pricing scheme. That nontraditional discount is the sum of three discount components

based on retailer’s: 1) annual sales volume, 2) order quantity, and 3) order frequency.

Li and Liu (2006) developed a discount model for a supplier-buyer system with multiple

periods and probabilistic customer demand. They showed the benefit of making joint deci-

sions, and designed a method to divide this extra benefit between the buyer and supplier.

That method can be employed to obtain the optimal quantity discount policy. Lau et al.

(2008) studied a situation in which a manufacturer sells products to a very large number

of retailers. This manufacturer does not need to coordinate the replenishment cycle with

the retailers, and the handling charge paid by the retailers can be reduced when orders are

sufficiently large.

This problem has also been discussed from the perspective of game theory. Kohli and

Park (1989) studied the quantity discount problem under the framework of a cooperative

two-player bargaining game. Their research aimed to maximize the joint cost saving (effi-

ciency gain) of the monopolistic supplier and the single buyer (or a homogeneous group of

buyers), and then, divide the cost-saving to the two players corresponding to each player’s

“bargaining power” (the degree to which one party has the capability to dominate the

situation over the other). More recently, a specific game model, a Stackelberg model, has
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been broadly applied in determining the optimal quantity discount schedule. The details

about the basic facts and implementation of this game-theoretic model are addressed in

Section 2.3.

2.2 Joint decisions on inventory and transportation

Most of the literature reviewed in the last section did not take transportation costs into

account when determining the quantity discount schedule. Normally, the inventory and

transportation decisions are made by different segments of an organization. However, as

illustrated in the first chapter, the interaction between these two decisions is crucial to

minimize an organization’s total relevant costs, and thus, to improve the overall perfor-

mance. The impacts of this interaction are gradually emerging in the practical decision

process. Many interested parties and scholars have come to realize the importance of in-

tegrating transportation issues into inventory decisions, especially those on replenishment

(Russell and Cooper, 1992; Carter et al., 1995a; Carter and Ferrin, 1996). This section

covers research on those joint decisions of inventory and transportation.

Meyer et al. (1959) were the first to consider the relationship between the two decisions

and integrate the inventory approach in determining the values of different transporta-

tion modes. Constable and Whybark (1978) presented a mathematical model including

transportation attributes and inventory policy parameters, where backorders are allowed.

Dissimilar to other literature, Burns et al. (1985) emphasized the distribution proce-
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dure, and developed an analytic method for minimizing all transportation and inventory

costs involved in shipping products from a supplier to many customers. Two distribution

strategies, direct shipping and peddling, were investigated and compared. In addition to

the exact joint determination, a heuristic procedure was presented and evaluated. Buffa

and Munn (1989) proposed a model whose freight-rate involved shipping distance and

weight. Their algorithm obtained the optimal reordering time, such that the total logistic

costs, consisting of inventory and transportation costs, were minimized. Bookbinder et al.

(1989) employed a spreadsheet simulation model and a linear programming model to ob-

tain the best decision policy in inventory, warehousing, and transportation for a Canadian

fine-paper distributor.

Russell and Krajewski (1991) presented an analytical algorithm for finding the optimal

order quantity that reflects both transportation economics and quantity discounts. (This

algorithm was adjusted by Carter et al. (1995b) in adapting to anomalous cases existing

in the freight rate schedule.) One year later, Russell and Krajewski (1992) proposed a

mixed integer linear programming model to obtain a coordinated replenishment policy

including multiple items from a common supplier, with the consideration of both quantity

and transportation discounts.

Tersine and Barman (1991) structured the quantity and freight discounts into replenish-

ment decisions, concerning dual discount situations with an all-unit or incremental quan-

tity discount, and all-weight or incremental freight discounts. Arcelus and Rowcroft (1992)

compared the impacts of three cases of freight rate structures and quantity discounts on a
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profit-maximizing firm, with or without disposals. Considering the supplier’s standpoint,

Martin (1993) presented a model to obtain the quantity discounting policy based on the

assumption of a single-buyer situation, a step-functional shipping cost with multiple break

points, and an annual demand linearly related to the unit price. With the consideration

of possible frequency or time consolidations, Speranza and Ukovich (1994) aimed to de-

rive a shipping strategy for multiple products on a single link by analyzing the tradeoff

between transportation and inventory costs, which are both influenced by the frequency

of shipment. Based on the classical EOQ model, Tersine et al. (1995) analyzed a firm’s

lot-sizing problem by integrating quantity and transportation discounts into a restructured

discount schedule. Decomposition rules were provided, so that the composite model can

be disaggregated to other specific cases.

Çetinkaya and Lee (2000) and Chaouch (2001) proposed an analytical model for joint

inventory and transportation decisions in a vendor-managed inventory system. Swenseth

and Godfrey (2002) noticed the opportunity of over-declaring the shipment weight, so

that a TL shipment or another LTL weight-break can be reached. They incorporated

two freight rate functions, the inverse (a constant charge per shipment) and the adjusted

inverse (TL freight rate plus an LTL-adjusting term), into the determination of a firm’s

inventory replenishment decision. In the work of Zhao et al. (2004), the multiple uses of

vehicles were considered along with the transportation cost in optimizing the long-term

average costs for a supplier-retailer logistic system. Without ignoring the over-declaration

options in shipping products, Abad and Aggarwal (2005) developed a model to determine
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the reseller’s selling price in addition to the regular lot-sizing decisions. Elhedhli and Benli

(2005) included a carload discount schedule in an optimal lot-sizing procedure and analyzed

the resulting total cost function.

Wang et al. (2006) proposed a mixed-integer programming mathematical model to deal

with a multi-item, single-vendor, single-buyer problem such that the cost of the entire

system is minimized. Cardós and Garcia-Sabater (2006) accounted for the operational and

client service constraints in designing an inventory replenishment policy for a consumer

products retail chain. Rieksts and Ventura (2008) made the efforts of studying TL and

LTL simultaneously to obtain further reductions in the overall average costs. Darwish

(2008) examined the integrated effects of purchasing and transportation issues on inventory

decisions under the condition of a stochastic demand rate. Four different combinations of

quantity and transportation discounts for a continuous review system are presented and

discussed in that paper. Ouyang et al. (2008) analyzed an integrated inventory system

with a price-sensitive demand rate when both trade credit and freight rate are linked to

the order quantity.

Toptal (2009) presented a replenishment decision model with the consideration of a

stepwise freight cost and an all-unit quantity discount. Then, the model was applied to

a single-period problem under several scenarios. Hwang (2009) analyzed a dynamic lot-

sizing model considering production and inbound transportation to the VMI warehouse. He

showed that the most important parameter influencing the system is the minimum replen-

ishment quantity, and that the minimum replenishment quantity policy is successful only
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when large-size demands are guaranteed based on collaborations. Chang (2011) showed

that the existing algorithm for determining the optimal lot sizes, incorporating quantity

and freight discounts, may lead to a suboptimal solution. Key steps of the algorithms were

then modified to achieve a global optimal solution.

Quantity and transportation discounts have thus been studied and discussed for decades,

as noted by our survey in this section. However, not much literature integrates decisions by

the carrier into their investigation. The coordination of the discount schedules for supplier

and carrier is thus the main purpose of our research. In order to perform the analysis,

a game theoretical framework is introduced and employed. Some basics of this specific

game-theory model, as well as its implementations in the quantity discount problems, are

explained in the next section.

2.3 Implementation of the Stackelberg Model

2.3.1 Basics of the Stackelberg game

Developed by von Stackelberg (1934), such a game is a dynamic model of duopoly in which

a dominant player (leader) moves first and a subordinate (follower) moves subsequently

(Gibbons, 1992), having been informed of the dominant player’s move. The Stackelberg

equilibrium analyzes and specifies the behaviors of the players when one of them has the

ability to enforce his/her strategy on the other. Acting independently and noncoopera-
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tively, both players try to maximize their own payoffs (Chiang et al., 1994).

“Perfect information” is one of the most important properties of a Stackelberg game.

Under this condition, the follower has an absolute knowledge about the leader’s action,

and the leader is also aware of the follower’s reaction.

As applied in economics, the equilibrium of a Stackelberg game corresponds to solutions

of the maximization problem:

max
aL∈AL

uL(aL, RF (aL)), (2.1)

subject to:

RF (aL) ∈ arg max
aF∈AF

uF (aL, aF ). (2.2)

where Ai is the set of actions for player i; ai ∈ Ai is the specific action of player i; ui is

the payoff function that represents player i’s preferences; RF (aL) is the follower’s reaction

to the leader’s action; player L refers to the leader and player F refers to the follower

(Gibbons, 1992; Osborne and Rubinstein, 1994). This type of model can be solved by a

certain methodology called “backward induction,” which starts from the follower getting

the move at the second stage of the game. Given the action aL previously chosen by the

leader, the follower is now facing the problem shown in Equation (2.2).

Suppose that for each ai ∈ Ai , there is only one optimal solution, RF (aL), to this

follower’s problem. That is the follower’s reaction, and also the best response to the

leader’s action. With perfect information, the leader identifies this follower’s game and the

optimal solution to it. So, knowing the follower’s reaction, the leader’s problem at the first
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stage becomes the optimization problem depicted by Equation (2.1).

Assume that this problem for the leader also has a unique solution, a∗L. Then, the

backward-induction outcome of this game is (a∗L, RF (a∗L)) (Gibbons, 1992).

2.3.2 Application of the Stackelberg model to the discount-pricing

problem

In the past few decades, the Stackelberg model has been applied to various areas in supply

chain management, such as inventory and production issues, outsourcing in dynamic envi-

ronments, as well as pricing strategies. This section reviews the utilization of this model

in generating the supplier’s quantity discount decisions. Because of the strong connection

to our research, it is helpful to carry out a thorough retrospection of these applications.

Table 2.1 summarizes a few of the Stackelberg model implementations in quantity

discount pricing decisions. Note that the summary is carried out on the basis of five

characteristic criteria. First of all, for a leader-follower approach, such as the Stackelberg

model, the power structure and the dominant player of the focal situation become very

important. Two examples of that power structure are: 1) the “manufacturer-Stackelberg”

(“[mS]”) game, in which a manufacturer, or supplier, is the dominant player that acts as

the leader in the Stackelberg game; and 2) the “retailer-Stackelberg” (“[rS]”) game, in

which the dominant player is the retailer instead. Next, the model size is always a vital

criterion in formulating an optimization problem, as it may significantly affect the difficulty
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of the solution procedure.

Thirdly, various types of discounts involve different cost information, which would

greatly diversify the model formulations. Basically, two types of discount schedules exist

in Business-to-Business transactions: lot-size-based and volume-based quantity discounts.

And the discount based on the lot size can be further divided into two schemes: all-unit

and incremental discounts. Moreover, the characteristics of demand information may have

great impacts on the outcome of a pricing decision, not to mention the resulting compli-

cations. Lastly, the cost structures for both supplier and buyer need to be considered in

modeling the discount problem. As some of the literature has been reviewed in the first

section of this chapter, brief discussions of others are conducted as follows.

Chiang et al. (1994) investigated the problem in both noncooperative and cooperative

models. Stackelberg equilibrium and Pareto Optimality criteria were respectively employed

in their analysis to find a set of optimal strategies. Parlar and Wang (1994) studied the

discount decisions for a supplier with a group of homogeneous customers. Starting from

the Stackelberg equilibrium using a general quantity discount schedule, the paper indicated

that both the supplier and buyers can benefit from the discount, as long as the supplier

offers such a discount schedule that induces the buyers to order more than the EOQ.

Wang (2002) extended the work of Parlar and Wang (1994) to the case of multiple

groups of homogeneous buyers. Under the framework of the Stackelberg game, the sup-

plier’s discount schedule can be formulated and calculated from a simple non-linear pro-

gramming model with the consideration of minimizing the buyer’s total costs. The supplier
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then provides this unified discount schedule to multiple homogeneous buyers, each with a

different demand and cost structure. Several critical features of the model were studied

and explained.

Under the condition of deterministic but price-sensitive demand, Viswanathan and

Wang (2003) investigated a single-supplier, single-buyer distribution channel. Both the

quantity and volume discounts, as well as a simultaneous combination of the two discounts,

were studied in that paper. Wang and Wang (2005) integrated the research of Wang (2002)

and Viswanathan and Wang (2003). Analyzed in this 2005 paper is the situation of one

supplier selling a single product to multiple groups of homogeneous buyers with price-

sensitive demand.

Yang and Zhou (2006) focused on a two-echelon system with one monopoly supplier

and several groups of homogeneous buyers. Aiming to improve both the channel profit and

each player’s profit, two unified discount pricing schemes, the regular quantity discount and

the incremental volume discount, were developed based on a manufacturer-Stackelberg

game. Qin et al. (2007) considered a supply chain consisting of a single buyer (or a

group of homogeneous buyers) with price-sensitive demand, purchasing one product from

a sole supplier. Assuming a linear inverse demand function, this paper compared the

system profit obtained from the volume discount policy when the supplier and buyer(s)

work independently, to that policy in the case that they work jointly. Considering a

stochastic price-sensitive demand situation, Zhou (2007) proposed four quantity-discount

pricing policies. Those policies were compared with respect to the two parties’ profits and
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the channel efficiency.

Chen (2010) analyzed a newsvendor problem, in which a returns policy with a wholesale-

price-discount scheme is proposed to achieve supply chain coordination. He showed how

the manufacturer sets the discounted wholesale price in a returns-discount contract, and

how this contract can improve the supply chain efficiency. Hsieh et al. (2010) examined a

short-term discount offered at the beginning of the replenishment cycle to multiple retailers

in a two-stage distribution system. Results of the authors revealed that the distributor’s

profit improvement due to coordination is decreasing in the number of retailers and the

inventory holding cost rate, but increasing in the price elasticity.

As a unique publication, Lau et al. (2007) analyzed the discount pricing problem by

applying the [rS] game rather than the usual [mS] game. They studied a dominant-retailer

scenario, under which the retailer (buyer) has relatively higher market power over the

manufacturer (supplier). Also, the paper proposed a so-called “reverse quantity discount”

scheme, which is offered by the retailer to the supplier to improve the former’s profit and

coordinate the channel.

2.4 Summary

This chapter has reviewed the existing literature related to the quantity and transportation

discount problems. Quantity discounts have been examined for a long time. Our review

first focused on the supplier’s decision about determining the quantity discount, such that
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the supplier would gain extra profit, and the buyer would not be worse off. From the buyer’s

perspective, it is beneficial to make the inventory and transportation-purchase decisions

jointly. Those research efforts have solved some problems on a wide scale. Nevertheless,

in answering these questions, we end up with more questions: Would the carrier’s pricing

decision affect the problem? In other words, what would be the impact on the situation of

including that firm’s procedure to determine the transportation discount? Can decisions

on quantity and transportation discounts be coordinated to improve the overall supply

chain performance? If the answer is “yes”, how can this coordination be done? These are

questions that motivate our research.

Another main content of this chapter has been to introduce the particular leader-

follower structure of the Stackelberg game model, and its applications to quantity discount

problems. The relevant literature exhibits its strength in solving the quantity discount

problem. More specifically, the thorough cost analysis and the game-theoretic model pro-

posed by Wang (2002) shows us the opportunities, i.e. that the Stackelberg game frame-

work can be used to serve our purpose. Subsequently, the ideas of this game will be

employed to develop our decision models that follow in Chapters 3 to 5.
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Chapter 3

Supplier’s Optimal Quantity

Discount Policy for a Single Item 1

3.1 Introduction

As discussed in Chapter 2, significant attention has been paid in the past few decades

toward the coordination among the members of a supply chain. As a useful coordinat-

ing mechanism, quantity discounts have been broadly analyzed and explored, from the

perspective of both operations management and marketing (Choi et al. 2005). Not only

the two parties involved in a purchasing activity, but also the entire distribution channel,

can benefit from employing quantity discounts. In the realm of inventory management,

1This chapter is an extended version of Ke and Bookbinder (2012a)
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traditional analyses of the quantity discount problem primarily consider the viewpoint of

the buyer: calculating the optimal order quantity, which minimizes the buyer’s total rele-

vant costs. However, upon switching to the perspective of the supplier, the situation may

become significantly different.

Taking into account the price elasticity of demand, the models proposed in this chap-

ter aid a sole supplier in establishing a discrete all-unit quantity discount policy without

ignoring the buyer’s payoff. The quantity discount problem is investigated, first nonco-

operatively under the framework of a Stackelberg game, and then jointly based on the

multiobjective decision making process.

Li and Wang (2007) reviewed the coordination mechanisms of supply chain systems.

According to their categorization, our research applies to deterministic demand in both

decentralized and centralized systems. Our work differs from previous approaches in the

following ways. First of all, we integrate the price elasticity of demand into the deter-

mination of a supplier’s optimal quantity discount policy. To be specific, the demand is

formulated as a function of price elasticity rather than of price. This way of defining de-

mand focuses more on the relationship between the demand and the quantity discount.

Moreover, by slightly shifting the product’s price within a small range, the elasticity of

demand is rather easy to calculate. Secondly, considering the maximization of each party’s

payoff as the two objectives, our joint decision model is developed based on multiobjective

decision making: Pareto-optimal solution sets can thus be obtained and analyzed. Thirdly,

we obtain cost savings in transportation. Then, we extend our model to the case in which
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the buyer offers her customers a retail discount, one whose parameters may differ from the

supplier’s wholesale discount policy. This is expressed by a multiplicative factor, enabling

the buyer to choose a favorable retail discount that maximizes her profit. Moreover, we

present an approach for the case of heterogeneous buyers that differs from existing research.

Rather than offering distinct discount percentages to each group of buyers, we illustrate

that significant improvements can be achieved when some of the groups are combined to

one discount level.

The rest of this chapter is organized as follows. A noncooperative game-theoretic model

based on the Stackelberg equilibrium is developed and analyzed first. Correspondingly, the

determination of a quantity discount policy from the viewpoint of the supplier is presented.

Next, a joint decision model is proposed to maximize the combined gains for both the

supplier and buyer. For each of the extensions discussed above, we present numerical

examples and sensitivity analyses to show the impacts of various parameters. Finally, we

conclude the chapter with summary remarks.

3.2 Assumptions and notation

We begin with the following assumptions (the first and third of which are later relaxed):

1. There is a sole supplier, one buyer (or a group of homogeneous buyers), and a single

break-point.
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2. Just one product is involved. Accordingly, a unique (positive) value of price elasticity

of demand is considered; demand is higher when price drops.

3. The buyer is assumed to sell the product at the same discount percentage from her

regular price that she received from the supplier.

4. Both buyer and supplier employ the economic order quantity (EOQ) model.

5. An all-unit quantity discount situation is assumed.

6. Both players can estimate the relevant information, such as the product’s price elas-

ticity of demand, annual demand rate, the inventory holding cost of each party, as

well as their ordering cost, product acquisition cost, and selling price.

7. The buyer is assumed to buy wisely, i.e., she would accept the chance to gain more

profit when and wherever possible, for example by taking the discounted price.

Note that our research starts at the point that the market is in equilibrium, i.e. the

supplier offers a unit selling price to the buyer, and the buyer orders the products at

her EOQ level. This assumption has been extensively used in many relevant papers, for

example, Wang (2002), Rubin and Benton (2003), and Qin et al. (2007), to name a few.

Our models employ the following notation.

D Buyer’s annual demand.

P Unit acquisition cost without quantity discount for buyer.

R Unit selling price for buyer.

v Unit acquisition cost for supplier. The supplier, as a wholesaler or distributor,
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pays this price for the product; when supplier is a manufacturer, this is the

production cost per unit. Either way, no discount is available at this stage.

Ai Order processing cost: i = B or S represents the buyer or supplier, respectively.

Hi Unit inventory holding cost per year ($/unit/year).

η The absolute value of the product’s price elasticity of demand.

Q Buyer’s optimal order quantity (EOQ) before discount. Q =
√

2DAB/HB.

q Buyer’s actual order quantity, at the discounted price.

q′ Buyer’s best order quantity, when a discount is possible.

ρ Price discount (0 < ρ < 1).

ϕ Quantity break point. When ordering a quantity less than ϕ, buyer pays the origi-

nal price P without discount; otherwise, buyer pays the discounted price, (1− ρ)P .

TCj Buyer’s total annual costs: j = 0 or 1 represents the value without or with a

quantity discount.

πij Profit gained from the product by player i for the case j.

Πi Payoff gained by the buyer, taking advantage of the quantity discount.

Since, usually, demand increases (decreases) as price decreases (increases), we have η =

−%∆D/%∆R. Also, according to the third assumption, buyer sells the product at the same

discount percentage from her regular price that she received from the supplier, hence we

have ∆R/R = ∆P/P . Therefore, η = −%∆D/%∆P , where %∆D =
Dafter−Dbefore

Dbefore
× 100%
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and %∆P =
Pafter−Pbefore

Pbefore
× 100%. Correspondingly, when the supplier offers a discount ρ,

the discounted selling price is (1 − ρ)P ; at that price, and considering elasticity, buyer’s

annual demand becomes (1 + ηρ)D.

Occasionally, we will employ a superscript, s, applying to certain notation, such as ρ,

q, and Πi. s = (N), (J), (t), and (r) will denote values obtained from the noncooperative

model, joint decision model, models with transportation considerations, and models that

consider a different retail discount, respectively.

3.3 Payoff analysis

In our models, the payoffs represent the profits gained or costs saved by each party due to

the quantity discount.

3.3.1 Buyer’s payoff

From the preceding assumptions and notation, the buyer’s total cost before discount is

TC0 = DP +
ABD

Q
+
QHB

2
. (3.1)

where C =
√

2DABHB is the minimal total cost when the buyer employs an EOQ policy.

Correspondingly, the buyer’s profit can be calculated by subtracting total cost from the
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revenue of selling the product, i.e.,

πB0 = DR− TC0 = DR−DP − C. (3.2)

With discount, the new price is (1− ρ)P , and annual demand increases to (1 + ηρ)D.

Thus, buyer’s total cost is

TC1 = (1 + ηρ)D(1− ρ)P +
AB(1 + ηρ)D

q
+
q(1− ρ)HB

2
. (3.3)

As assumed, when purchasing at a discounted price, the buyer establishes her selling

price as (1− ρ)R. So the buyer’s profit with discount is πB1 = (1 + ηρ)D(1− ρ)P − TC1.

After simplification,

πB1 = (1 + ηρ)D(1− ρ)(R− P )− AB(1 + ηρ)D

q
− q(1− ρ)HB

2
. (3.4)

Therefore, the buyer’s payoff after discount is ΠB(q, ρ) = πB1 − πB0, or

ΠB(q, ρ) = D(R− P )ρ(η − ηρ− 1) +
C

2

[
2− Q

q
(1 + ηρ)− q

Q
(1− ρ)

]
. (3.5)
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3.3.2 Supplier’s payoff

Total costs for the supplier include his own acquisition cost, plus the costs of handling the

buyer’s orders, of holding inventory, and the long-term costs related to inventory. When

products are sold to the buyer at the original price without any discount, the profit is

πS0 = DP −Dv − ASD

Q
− QHS

2
. (3.6)

With discount, the supplier’s profit becomes

πS1 = (1 + ηρ)D(1− ρ)P − (1 + ηρ)Dv − AS(1 + ηρ)D

q
− qHS

2
. (3.7)

Then, supplier’s payoff after the quantity discount is ΠS(q, ρ) = πS1 − πS0, or

ΠS(q, ρ) = −DPρ(1− η + ηρ)−Dvηρ+ ASD

(
1

Q
− 1 + ηρ

q

)
+
HS

2
(Q− q). (3.8)

This formulation of the supplier’s inventory-related cost was first introduced by (Dolan,

1978), then employed and extended by others, such as Lal and Staelin (1984), Dada and

Srikanth (1987), and Wang (2002). Wang (2002) notes that, although the supplier’s optimal

replenishment policies are not considered, the preceding formulation reasonably approxi-

mates the gain to a supplier who uses stationary inventory replenishment polices.
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3.4 Noncooperative model

In reality, after the supplier determines his quantity discount policy, the buyer reacts to

that policy and chooses her order quantities and schedules. That is why the Stackelberg

equilibrium is used to analyze this noncooperative game-theoretic model.

The Stackelberg game is a dynamic model of duopoly in which a dominant player

(leader) moves first and a subordinate (follower) moves sequentially (Gibbons, 1992), hav-

ing been informed of the dominant player’s move. Such a framework contains the concept

of a “hierarchical equilibrium solution,” which analyzes and specifies the behaviors of the

players when one of them has the ability to enforce his/her strategy on the other. In our

model, the Stackelberg equilibrium allows the supplier, considered as the leader, to con-

struct the quantity discount policy. The supplier thus maximizes his own payoff, taking

account that the buyer, considered as the follower, is attempting to maximize her payoff.

3.4.1 Model development

Starting from buyer’s perspective, equating ∂ΠB/∂q to zero, we have

q′ =

√
2DAB(1 + ηρ)

HB(1− ρ)
= Q

√
1 + ηρ

1− ρ
, (3.9)

where Q is the EOQ at the non-discounted price. Note that q′ > Q.

Similarly, from supplier’s point of view, differentiating with respect to the discount
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rate, ρ, and substituting q′ for q, we have

∂ΠS(q′, ρ)

∂ρ
= −2DPηρ−DP (1− η)−Dvη

−

√
1

(1 + ηρ)(1− ρ)

[
HSQ

4

(
1 + η

1− ρ

)
+
DAS

2Q
(η − 1− 2ηρ)

]
= 0. (3.10)

Then, from Eq.(3.10), the price discount ρ can be written as a function of elasticity,

ρ = Φ(η), with other parameters (D, P , v, HS, and AS) assumed known and constant.

Once ρ is determined, the quantity break point ϕ can be decided by maximizing the

supplier’s profit at this particular discount. The supplier’s payoff is

ΠS(ϕ) = −DPρ(1− η + ηρ)−Dvηρ+D

(
1

Q
− ηρ

ϕ

)
AS +

1

2
(Q− ϕ)HS. (3.11)

Solving
dΠS(ϕ)

dϕ
=
DAS(1 + ηρ)

ϕ2
− 1

2
HS = 0, we have

ϕ =

√
2DAS(1 + ηρ)

HS

. (3.12)

Eq.(3.12) can be expressed in terms of Q as

ϕ = Q

√
ASHB

ABHS

(1 + ηρ). (3.13)

Eq.(3.13) indicates that the supplier reaches his maximum payoff when buyer orders
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the quantity ϕ = Q

√
ASHB

ABHS

(1 + ηρ) each time. However, only when the buyer’s payoff

exceeds that in the original EOQ model, would she change her order quantity from Q to

ϕ and take the discount.

We discuss separately the cases ϕ > q′ and ϕ ≤ q′. When ϕ > q′,

ρ < 1− ABHS

ASHB

. (3.14)

Replacing the q in Eq.(3.5) by ϕ, we have

ΠB(ϕ, ρ) = D(R− P )ρ(η − ηρ− 1) +
C

2

[
2− Q

ϕ
(1 + ηρ)− ϕ

Q
(1− ρ)

]
. (3.15)

If ΠB(ϕ, ρ) ≥ 0, buyer orders ϕ units at the discount price; otherwise, buyer keeps original

EOQ without taking discount (See Figure 3.1(a) and Example 3.1 below).

When ϕ ≤ q′, and thus ρ ≥ 1− ABHS

ASHB

, the buyer orders q′ units at the discount price.

Since the optimal discount rate, ρ, is obtained by maximizing ΠS(q′, ρ), , the supplier would

also have a positive payoff, Π(N)

S (q′, ρ), under this scenario (Figure 3.1(b)).

Models for the fixed-demand problem (Chiang et al., 1994; Wang, 2002) take no account

of elasticity of demand. Our model, by contrast, computes payoffs based on profits of

each party, rather than considering only the total costs for buyer. When demand varies

as a result of changes in price, the buyer’s revenue, as well as her total cost, are both

impacted; the traditional fixed-demand model no longer applies. Note also, for price-
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sensitive demand, the supplier may still gain profit even when buyer orders her EOQ

at a discounted price. This results from extra demand due to price elasticity. Detailed

numerical illustrations follow.

3.4.2 Procedure for noncooperative model

The supplier can thus determine his optimal quantity discount policy as follows:

Step 1 Calculate buyer’s EOQ before discount, and the corresponding profit;

Step 2 Compute the optimal discount rate, ρ, by Eq.(3.10);

Step 3 Solve for the optimal price break point, ϕ, by Eq.(3.13) with ρ as in Step 2;

Step 4 Compare the values of ϕ and q′ to obtain the final policies and respective payoffs,

Π(N)

B and Π(N)

S , for each party. Then make sure both payoffs ≥ 0. If the supplier’s

payoff < 0, he will not offer a quantity discount; while if the buyer’s payoff < 0, she

would decline the discount and keep her original order pattern.

3.4.3 Example 3.1

To demonstrate the procedure of determining a given supplier’s optimal all-unit quantity

discount policy, the following parameters are assumed: D = 1000 units, η = 2, P = $35,

R = $50, AB = $500, HB = $10, v = $10, AS = $400, and HS = $3.

The EOQ can be calculated as Q = 316 units. From Eq.(3.10), the optimal percentage

discount ρ = 9.91%. Thus, we obtain the corresponding values of q′ as 365 units and
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ϕ = 565 units. This is the optimal break point for that supplier, i.e., if buyer’s order

quantity is greater than 565 units, the unit price should be set at $35×(1−9.91%) = $31.53;

otherwise, the price is $35 per unit. Under this quantity discount policy, supplier’s payoff

is Π(N)

S = ΠS(ϕ = 565) = $843. For the buyer, since she has to order 565 units each time

to be able to obtain the discount, she achieves a payoff of Π(N)

B = ΠB(ϕ = 565) = $748.

Figure 3.1(a) illustrates the payoffs for supplier and buyer at various order quantities.

We now modify the value of HS to $8, keeping other parameters unchanged. With the

same EOQ, the new values for q′, ρ and ϕ become 360 units, 9% and 344 units, respectively.

Thus, if ϕ = 344(< q′) is employed as the quantity break point by the supplier, the buyer

would order q = 360 units each time. The supplier’s payoff is then $562 and the buyer’s

payoff $992. Figure 3.1(b) shows the payoffs for each party at various order quantities in

this case.

3.5 Joint decision model

Let us now assume that the buyer and supplier agree to make the quantity discount de-

cisions together. Instead of separately maximizing the two individual payoffs, the joint

benefit of the two parties is maximized. Specifically, the supplier agrees to offer the deter-

mined discount percentage, and the buyer agrees to an order quantity equal to the discount

break point. Then, the two parties share the joint benefit (no extra charges).
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(a) ϕ > q′

(b) ϕ ≤ q′

Figure 3.1: Payoffs for buyer and supplier as a function of order quantities (noncooperative)
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3.5.1 Model development

We thus maximize the payoffs of each party as the two objectives when making the joint

decision. In what follows, λ ∈ [0, 1] is a weight used to integrate the two objectives. The

Pareto-optimal solution set for this problem is obtained by varying the value of λ (Cohon,

1978). The joint payoff ΠJ gained from the discount decision is therefore

ΠJ(q, ρ) = λΠB(q, ρ) + (1− λ)ΠS(q, ρ). (3.16)

To maximize ΠJ , we set
∂ΠJ(q, ρ)

∂q
= 0 and get

q =

√
2D(1 + ηρ)[λAB + (1− λ)AS]

λHB(1− ρ) + (1− λ)HS

. (3.17)

Note that

q(λ = 1) =

√
2DAB(1 + ηρ)

HB(1− ρ)
; (3.18)

and

q(λ = 0) =

√
2DAS(1 + ηρ)

HS

. (3.19)

Comparison of expressions (3.18) with (3.9), and (3.19) with (3.12), shows that q(λ =

1) = q′ and q(λ = 0) = ϕ, respectively the buyer’s optimal order quantity under the

discount and the quantity discount point obtained in the noncooperative model.
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Now, let us take the first derivative of ΠJ(q, ρ) with respect to ρ. We have

∂ΠJ(q, ρ)

∂ρ
= λ

∂ΠB(q, ρ)

∂ρ
+ (1− λ)

∂ΠS(q, ρ)

∂ρ
,

or

∂ΠJ(q, ρ)

∂ρ
= λDR(η − 1) + (1− 2λ)DP (η − 1)− 2λDRηρ

− 2(1− 2λ)DPηρ− (1− λ)Dvη − Dη

q
[λAB + (1− λ)AS]

+
1

2
λHBq. (3.20)

It is easy to see that the second derivative

∂2ΠJ(q, ρ)

∂ρ2
= −2λDRη − 2(1− 2λ)DPη < 0. (3.21)

So ΠJ(q, ρ) is maximized at the value that satisfies
∂ΠJ(q

′, ρ)

∂ρ
= 0.

Replacing q by the expression (3.17), we find

∂ΠJ(q, ρ)

∂ρ
= −2Dη[λR + (1− 2λ)P ]ρ+D(η − 1)[λR + (1− 2λ)P ]

− (1− λ)Dvη − η

√
D[λAB + (1− λ)AS][λHB(1− ρ) + (1− λ)HS]

2(1 + ηρ)

+
λHB

2

√
2D(1 + ηρ)[λAB + (1− λ)AS]

λHB(1− ρ) + (1− λ)HS

= 0. (3.22)
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Solving Eq.(3.22) gives us the optimal discount percentage that both players agree to.

The buyer’s corresponding order quantity can then be calculated by Eq.(3.17).

Besides the fact that we include price elasticity of demand, there are three other differ-

ences between our model and that of Chiang et al. (1994). Firstly, they assume neither the

supplier nor buyer would be worse off after the cooperation. This reasonable assumption

is based on the concept of “individual rationality”. However, our research found that the

benefit of cooperation would be very limited if each player considers his/her gain sepa-

rately. Instead, we assume a cooperative environment in which the two players can share

the benefit from making the decision together, and both achieve much higher payoffs (see

Example 3.2). The second difference is that Chiang et al. (1994) restrict the buyer’s cost

by a budget limit; we do not. Furthermore, those authors use an integer variable, n, to

represent the multiple of buyer’s order quantity such that nQ is the supplier’s order or

production quantity. In our case, the supplier’s concern is only about the proportion of his

payoff that results from the change of buyer’s order quantity due to the quantity discount.

3.5.2 Example 3.2

Suppose that the buyer and supplier, with the same parameters as in Example 3.1, now

make the quantity discount decisions jointly. By varying the value of λ between 0 and 1,

the Pareto frontier can be achieved. Figures 3.2(a) and 3.2(b) show the Pareto efficient

frontiers for the cases ϕ > q′ and ϕ ≤ q′, respectively. As λ increases, the buyer’s payoff,
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ΠB, increases, and the supplier’s payoff, ΠS, decreases. This is quite intuitive because

the value of λ indicates the importance of the buyer’s payoff in making the joint decision.

Results obtained naturally favour the buyer for larger λ.

Figure 3.2 also illustrates the relationship between the Pareto optimal solution sets ob-

tained from the joint decision model and the best noncooperative solutions. The triangular-

shaped points indicate solutions of the noncooperative model, and the star-shaped points

are the best solutions of the joint model with λ = 0.5. Figures 3.2(a) and 3.2(b) both show

that the noncooperative solutions are very close to the Pareto frontiers. This observation

tells us that, although both player’s payoffs can be improved by moving northeasterly

to the Pareto curves, the improvements would be fairly small (no more than 2% in this

example).

Nevertheless, the results can be significantly boosted if we first maximize the total

channel payoffs under the joint decision-making environment, then divide the extra gain

between buyer and supplier. Numerically, when ϕ > q′, ΠJ(λ = 0.5) = $1972, while,

from the noncooperative model, we have Π(N)

B + Π(N)

S = 748 + 843 = $1591. The total

improvement due to making the decision jointly is $ 381. Assuming the buyer and supplier

would divide this improvement equally between them, we get Π(J)

B = 939 and Π(J)

S = 1033.

Compared to the noncooperative model, the payoffs of the buyer and supplier are enhanced

by 25% and 23%, respectively. Similarly, when ϕ ≤ q′, the payoffs of the buyer and supplier

after the division are $1090 and $660, improved by around 10% and 17%, respectively.

Additionally, compared to Example 3.1, we find that the quantity discount percentage
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Figure 3.2: Pareto frontier for the joint decision model
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Table 3.1: Comparison of the noncooperative and joint decision models ∗

ϕ > q′ ϕ ≤ q′

Noncooperative ρ(N) 9.91% 9%

model q(N) 565 360

Π
(N)
B $748 $992

Π
(N)
S $843 $562

Joint decision ρ(J) 14.1% 13.5%

model q(J) 446 371

ΠJ(λ = 0.5) $1972 $1750

Π
(J)
B $939 $1090

Π
(J)
S $1033 $660

* Here and in the following tables, the demand after discount is D(1 + ηρ), where D = 1000 units is the

base demand.

when ϕ > q′ is 14.1%, which is deepened by 42%, and the order quantity is 446 units,

a decrease of 21%. For the case ϕ ≤ q′, comparison shows that the discount percentage

is raised from 9% to 13.5%, while the order quantity is only slightly increased. These

differences show that, by making decisions together, both players may greatly benefit,

enjoying a deeper discount without much increase in the order quantity (See Table 3.1).

3.6 Transportation considerations

In some cases, the buyer or supplier may offer their own vehicle to transport the products.

Then, in addition to the impact on purchasing, inventory and ordering costs, quantity
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discounts may also yield transportation cost savings for the responsible party. Our model

can deal with that situation by simply modifying one input parameter.

3.6.1 Model extension 1

We assume that the buyer provides a private fleet, thus transporting products in her own

truck. With Cbf and Cbv as fixed and variable transportation costs, buyer’s total cost is

TC(t)

0 = DP + (AB + Cbv)D/Q+QHB/2 + Cbf . (3.23)

Accordingly, the buyer’s payoff after the discount can be reformulated as

Π(t)

B (q, ρ) = D(R− P )ρ(η − ηρ− 1) +
C(t)

2

[
2− Q

q
(1 + ηρ)− q

Q
(1− ρ)

]
, (3.24)

where C(t) =
√

2DHB(AB + Cbv) .

Comparison of Eqs. (3.24) and (3.5) shows that this model can account for transporta-

tion costs by adding the variable portion to the ordering cost, i.e, replacing the buyer’s

ordering cost AB by A(t)

B = AB + Cbv . Note for A(t)

B , we still need to determine whether

ϕ > q′ or ϕ ≤ q′; the same conditions as for AB must also be satisfied by A(t)

B .

Similar modification can also be made if, instead, it is the supplier’s vehicle that will

be employed. In this case, we substitute A(t)

S = AS + Csv for the supplier’s ordering cost

AS, where Csv represents the supplier’s variable transportation cost per trip.
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3.6.2 Example 3.3

In this section, four sets of parameters are used to illustrate the practicability of our

extended models. Table 3.2 lists the related parameters as well as results from the corre-

sponding calculation. We consider the private fleet provided by the buyer or supplier, and

both cases of ϕ > q′ and ϕ ≤ q′ for each situation.

Take the first column for example. This column shows the situation with buyer’s

private fleet, under the case of ϕ > q′. For the noncooperative and joint models, the

discount percentages and order quantities are 9.76% and 565 units, as well as 13.86% and

555 units, respectively. Compared to the noncooperative model, the joint decision model

gives a deeper discount and a lower order quantity, but in the meantime, results in higher

respective payoffs for both buyer and supplier ($ 1074 and $ 756 jointly versus $ 986 and

$ 669 noncooperatively). From the table, we can see that these advantages of the joint

decision model also hold for other situations.

3.7 Different retail discount

So far, we assumed that the buyer sells the item at the same discount percentage that

she obtained when purchasing that product at a discounted price. In practice, the buyer

may choose a selling price that maximize her profit (or payoff), rather than simply offer

the same discount after she receives it. In this section, we assume that the retail discount

percentage offered by the buyer to end customers is a certain multiple x times the discount
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Table 3.2: Results for transportation by private fleet (four sets of parameters)

Buyer’s private fleet Supplier’s private fleet

ϕ > q′ ϕ ≤ q′ ϕ > q′ ϕ ≤ q′

Transportation cost Cbv = $500 Cbv = $1000 Csv = $200 Csv = $200

Cbf = $1000 Cbf = $1000 Csf = $1000 Csf = $1000

HS $3 $3 $3 $12

Noncooperative ρ(Nt) 9.76% 9.6% 9.77% 8.13%

model q(Nt) 565 629 690 356

Π
(Nt)
B $986 $955 $338 $915

Π
(Nt)
S $669 $645 $1095 $456

Joint decision ρ(Jt) 13.86% 13.67% 14% 12.91%

model q(Jt) 555 645 493 366

Π
(t)
J (λ = 0.5) $1830 $1759 $2059 $1592

Π
(Jt)
B $1074 $1035 $651 $1026

Π
(Jt)
S $756 $724 $1408 $566

53



that she received from the supplier. Taking into account this multiple, the supplier may

change his quantity discount policy accordingly.

3.7.1 Model extension 2

Suppose the buyer offers a discount of xρ to the end customer, where ρ is the discount she

receives from the supplier, and x ≥ 0. Since −η = (∆D/D)/(∆R/R), we have

∆D = −η · ∆R

R
·D = −η(−xρ)D = xηρD. (3.25)

Let the new demand rate be D(1 + xηρ) = D(1 + η̄ρ), where η̄ = xη. Thus, we can

rewrite the payoff functions for the buyer and supplier. Specifically, buyer’s profit after

the discount is

π(r)

B1(x, q, ρ) =D(1 + η̄ρ)R(1− xρ)−D(1 + η̄ρ)P (1− ρ)

− ABD(1 + η̄ρ)

q
− 1

2
qHB(1− ρ). (3.26)

Here the superscript (r) refers to the case in which the retailer (buyer) may offer a

different discount. With the updated payoff functions, varying the value of x gives the

corresponding discount policies for the supplier. And then, the buyer’s retail discount can

be determined by choosing that value x which maximize her payoff.

In particular, the payoff in the joint model can be expressed as
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max
x,q,ρ

Π(r)

J (x, q, ρ) = λΠ(r)

B (x, q, ρ) + (1− λ)Π(r)

S (x, q, ρ)], (3.27)

s.t.

Π(r)

B (x, q, ρ) ≥ 0;

Π(r)

S (x, q, ρ) ≥ 0;

0 ≤ ρ ≤ 1;

x ≥ 0.

Solving this maximization problem gives the supplier’s optimal discount policy, as well

as the buyer’s retail discount schedule.

3.7.2 Example 3.4

To illustrate the impact of buyer’s independent retail discount policy on the supplier’s

quantity discount determination, we allow x to vary from 0.75 to 1.20 for the noncooper-

ative cases, and show the payoff curves for the buyer and supplier in Fig. 3.3. Consider

Fig. 3.3(a), ϕ > q′. Note that when x < 0.75, the supplier and buyer both lose because

the profit gained in additional demand cannot cover the losses from the discounts. When

x > 1.20, the buyer still loses due to the large retail discount she offers. Therefore, it is only

when 0.75 ≤ x ≤ 1.15 that both parties would like to consider the possibility of offering

discounts. The range that is mutually favourable to discounts changes to 0.75 ≤ x ≤ 1.20

when ϕ ≤ q′ in Fig. 3.3(b). The optimal results are listed in Table 3.3.
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(a) ϕ > q′

(b) ϕ ≤ q′

Figure 3.3: Payoffs for buyer and supplier as a function of x (noncooperative)
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Table 3.3: Optimal results when the retail discount = xρ

ϕ > q′ ϕ ≤ q′

Noncooperative ρ(Nr) 8.78% 8.27%

model x(N) 0.965 0.972

x(N)ρ(Nr) 8.48 % 8.04 %

q(Nr) 558 356

Π
(Nr)
B $750 $1005

Π
(Nr)
S $707 $461

Joint decision ρ(Jr) 15.41% 14.34%

model x(J) 0.905 0.932

x(J)ρ(Jr) 13.94% 13.36%

q(J) 450 371

ΠJ(λ = 0.5) $2004 $1768

Π
(J)
B $1023 $1156

Π
(J)
S $981 $612
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3.8 Case of heterogeneous buyers

In the previous sections, we have shown that both the supplier and buyer can benefit

from the quantity discount. However, the circumstances become much more complicated

when more than one buyer is involved. In this section, we extend our consideration to

a situation in which a sole supplier sells a single product to m heterogeneous groups of

buyers (k = 1, 2, · · ·,m). Each group of buyers has its own demand and cost structure.

3.8.1 Model extension 3

Assume that there are w discount levels (l = 1, 2, · · ·, w;w ≤ m). We develop a heuristic

solution procedure that is based on our noncooperative model and a few ideas presented

by Wang (2002) (Fig. 3.4).

More specifically, as stated by Wang, “a larger buyer is given a higher (at least not

lower) break point.” This is reasonable and understandable. But in practice, even after

ranking buyers in ascending order by their EOQ before any discount, it is still very chal-

lenging to make sure that a larger buyer receives a higher discount level. Therefore, we

employed Proposition 5 of Wang (2002): the payoff of a certain buyer (or group of buyers)

at the corresponding discount level is the same as at the next lower break point under the

supplier’s optimal discount schedule. This condition guarantees that a consistent discount

policy (i.e. having the same multiple breakpoints and discount percentages) is available to

every retailer.
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Figure 3.4: Heuristic solution procedure for the case of heterogeneous buyers
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However, while buyers’ payoffs are assured, the supplier also has to gain more by offering

a higher discount. So another condition is introduced in our procedure: comparing the

supplier’s payoff at a newly-derived discount level to that at the next lower level. If this

new level gives higher payoff, the supplier confirms it and continues to further calculate

a successive level; otherwise, the supplier would like this group of buyers to use the most

recent discount level. Thus, situations can appear in which more than one group of buyers

share the same discount level.

Despite all the adaptation from Wang (2002), our approach still differs from it in many

ways. First of all, Wang’s model treats constant demand; ours considers price-sensitivity.

Secondly, Wang assumed that each group of buyers fits into its own discount level. But

we allow more than one group of buyers to possibly share a given discount level. So the

number of discount levels does not have to be the same as the number of groups of buyers.

Thirdly, in determination of the first discount level: Wang’s solution method permits the

payoff to the first group of buyers to equal 0, while in our method, the payoffs to that group

are maximized. Finally, according to our calculation, the supplier may still benefit when

buyers order at their EOQ. Results are shown and compared in the following numerical

illustration.
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Table 3.4: Demand and cost parameters (Based upon Lal and Staelin (1984)and Wang

(2002))

HS = 3; η = 2;P0 = 35

Group k nk Dk HBk ABk ASk Qk

1 632 362 11.60 145 81 96

2 363 1 658 11.00 283 147 292

3 85 4 191 10.50 407 305 570

4 30 9 228 10.00 526 445 985

5 8 14 966 9.50 634 573 1 413

6 4 18 565 9.25 1 176 1 063 2 173

7 6 25 346 9.00 1 305 1 275 2 711

3.8.2 Example 3.5

To demonstrate the application and advantages of our model, the instance employed by

Wang (2002) (originally from Lal and Staelin (1984)) is used here. A large US manufacturer

(supplier) sells one product to 1128 buyers with a wholesale price of $35. All buyers were

divided by Lal and Staelin (1984) into seven homogeneous groups based on their demands

and estimated cost structures. Information regarding these groups is listed in Table 3.4; nk

gives the number of buyers in each group. Additionally, we assume that the price elasticity

of demand for this product is 2. Both our procedure and that of Wang (2002) are applied

to this example, with respective results in Tables 3.5 and 3.6.

Our optimal discount schedule contains four discount levels (break points) instead of

seven. The discount percentage varies from 9.96% to 13.95% for us, while Wang’s is
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Table 3.5: Optimal quantity discount schedule obtained by our method

Group k ρ(%) ϕ q′ q ΠSk
∗ ΠBk

∗ Π
(l−1)
Bk

∗ nkΠSk nkΠBk

1 9.96 153 110 153 280 328 0 177 174 207 296

2 10.82 445 341 445 1 271 1 858 1 858 461 373 674 273

3 12.53 1 032 682 1 032 3 271 5 082 5 082 278 031 432 010

4 1 178 1 178 6 721 12 549 11 329 201 617 376 457

5 13.95 2 704 1 723 2 704 11 002 20 468 20 468 88 019 163 748

6 2 649 2 704 12 507 27 022 25 233 50 026 108 086

7 3 305 3 305 17 030 37 047 34 589 102 178 222 280

Column sum 52 081 104 353 98 559 1 358 419 2 184 149

∗ ΠSk = payoff that supplier gains from each member of buyer group k; ΠBk = corresponding payoff of

this buyer; Π
(l−1)
Bk = payoff gained by each member of group k at discount level (l − 1).

Table 3.6: Optimal quantity discount schedule obtained by the method of Wang (2002)

Group k ρ(%) ϕ q′ q ΠSk ΠBk Π
(l−1)
Bk nkΠSk nkΠBk

1 1.65 142 98 142 106 0 0 66 992 0

2 2.38 413 303 413 561 370 370 203 643 134 310

3 3.64 956 601 956 2 130 1 358 1 358 181 050 115 430

4 4.77 1 732 1 057 1 732 5 585 4 512 4 512 167 550 135 360

5 5.71 2 524 1 536 2 524 10 014 9 281 9 281 80 112 74 248

6 6.88 3 896 2 401 3 896 13 739 13 529 13 529 54 956 54 116

7 7.52 4 978 3 024 4 978 19 610 20 334 20 334 117 660 122 004

Column sum 51 745 49 384 49 384 871 963 635 468
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relatively lower with a range of 1.65% to 7.52%. Although the supplier gains lower payoffs

from our two largest groups, his total payoff is now $ 1 358 419, an increase of 56%

compared to results of Wang’s method. From the buyers’ side, each group shows a higher

payoff, and total payoffs to all buyers increase to $ 2 184 149, more than 3.4 times that in

Wang (2002).

In addition, let us further compare our results to the joint model. Assume that each

buyer group negotiates separately with the supplier about the discount policy in the joint

case. The discount schedule obtained is listed in Table 3.7. The total payoffs, to the buyer

groups plus supplier from the joint model, are $ 3 802 165. This shows a slight increase,

$ 259 597 or about 7.33%, compared to the noncooperative case (sum of last two columns

of Table 3.5).

These results may be understood as follows. Relative to Table 3.6 (Wang’s model), both

parties are much better off in Table 3.5 (our model). Table 3.7’s outcomes (joint model)

are in turn just a little better for the buyer and supplier than in Table 3.5. That change is

somewhat small (7.33%) because the buyer benefits to such a great extent from our model

over Wang’s. The net effect is that, for these parameters, the outcome of the proposed

noncooperative procedure (Table 3.5) is close to that of the joint model (Table 3.7).
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Table 3.7: Optimal quantity discount schedule obtained by the joint model (λ = 0.5)

Group k ρ(%) ϕ ΠJk
∗ nkΠJk

1 14.25 128 717 453 143

2 14.52 385 3 435 1 246 924

3 14.62 803 8 900 756 477

4 14.70 1 418 19 902 597 050

5 14.74 2 053 32 491 259 930

6 14.68 3 142 39 966 159 866

7 14.79 4 248 54 796 328 776

Column sum 160 207 3 802 165

∗ ΠJk denotes the joint payoff of the supplier and each member of buyer group k.

3.9 Numerical analyses

With three examples, we have compared results obtained from the noncooperative and

joint decision models. Here we discuss further impacts of a few main parameters on two

key outcomes: the discount percentage and channel efficiency, defined as the total payoffs of

the two players gained from the quantity discount, i.e., ΠB+ΠS. Unless clarified otherwise,

parameter values are as in previous examples.

Firstly, the relationship between η and ρ from Eq. (3.10) is examined. Fig. 3.5 shows

the function ρ = Φ(η) when η is varied from 1 to 5. It turns out that when η < 1.5, the

value ρ = Φ(η) calculated directly from Eq. (3.10) is negative. Since we must have ρ ≥ 0,

ρ is assigned the value of 0: no quantity discount. ρ is increasing in η when η ≥ 1.5. The
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larger value of η indicates that demand grows more quickly than the price has dropped,

i.e., product demand increases by a greater percentage. The result is higher profit for the

supplier, with the buyer no worse off.

Fig. 3.6 shows ρ = Φ(η) for v = 0, $10, and $20. As expected, the lower the price

the supplier pays for the product, the greater the discount he provides the buyer. And

when buyer’s annual demand D goes up, the channel efficiency improves (Fig. 3.7). Joint

decision making yields a clear benefit, one that increases in D. The joint decision model

gives a deeper discount (Examples 3.2 and 3.3), but the two models have similar discount

patterns.

Fig. 3.8 depicts the respective impacts of AB/AS and HB/HS on channel efficiency for

the noncooperative model. Each curve first increases, then decreases. The reason is that

the buyer’s order quantity may equal ϕ or q′ in different portions of the curve, depending

upon parameter values. Finally, Table 3.8 summarizes the effects of varying the preceding

parameters on channel efficiency and on ρ for both the noncooperative and the joint models.

3.10 Summary

Real world complications motivated us to ask, Would switching the perspective, from the

player who takes the discount to the one who sets it, improve the effectiveness and efficiency

of a supply chain? Generally, the answer is yes.

From the supplier’s perspective, and including the price elasticity of demand, a non-
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Figure 3.5: Sample relation ρ = Φ(η) between ρ and η

Figure 3.6: Curves for ρ = Φ(η) for several values of v
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Figure 3.7: Impact of D on the channel efficiency

Figure 3.8: Effects of AB/AS and HB/HS on channel efficiency for noncooperative model
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Table 3.8: Impacts of varying parameters on two key results

Channel efficiency (ΠB + ΠS) Discount percentage (ρ)

Noncooperative Joint Noncooperative Joint

AB/AS ↑ First ↑, then ↓ ↓ ↓ ↓

HB/HS ↑ First ↑, then ↓ ↑ ↑ Almost the same

D ↑ ↑ ↑ ↑ ↑

v ↑ ↓ ↓ ↓ ↓

η ↑ ↑ ↑ ↑ ↑

cooperative game-theoretic approach and a joint decision model were developed. These

should aid a sole supplier in determining an all-unit quantity discount for a single-buyer

distribution channel. Pareto optimality can be achieved by jointly considering the bene-

fits of both the supplier and buyer. The importance of transportation led us to extend

our models to the case of product shipment by the private fleet of either the supplier or

buyer. We also considered the fact that the buyer may wish to select best retail price to

maximize her own payoff. Additionally, a heuristic solution procedure (Fig. 3.4) showed

the possibility of significant improvements (Tables 3.5 and 3.6) by condensing the hetero-

geneous buyer-groups to a smaller number of discount levels. Numerical instances showed

application of the models.

Recall that we introduced four cases for the provision of transportation. One of the

model extensions in this chapter showed the solution structure of Cases I and II, the two

private-fleet cases. In the next chapter, we will discuss the situation in which the buyer

orders a family of items from the supplier.
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Chapter 4

Supplier’s Optimal Quantity

Discount Policy for a Family of

Items 1

4.1 Introduction

In Chapter 3, we have investigated the quantity discount problem involving one item, a

single supplier and one or multiple buyers. However, in a real supply chain system, there

always exist situations in which a buyer needs to procure several items from the same sup-

plier. Any purchase order with a certain supplier, even for a single SKU, may incur a fixed

1This chapter is an extended version of Ke and Bookbinder (2012b)
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cost; but each additional SKU on that same order adds only a much smaller fixed cost. The

grouping of a family of items may be based upon different factors, such as their functions

(for example, periodic maintenance of a machine may require a systematic replacement of

a few items), their characteristics (various items may have similar inventory review policies

or may be stored at the same location), or upon vendor-imposed requirements (e.g. a pub-

lisher may be required by the printer to order at least four products together). When this

is the case, the coordinated replenishment of these items may benefit the buyer in terms of

savings on purchase price and the costs of transportation and ordering. That coordination

may also make relevant scheduling decisions easier.The modified periodic policy (MPP) is a

method to determine the replenishment policy when dealing with the multi-item situation.

In the MPP (e.g. Silver et al. (1998)), one or more SKUs are considered “base items,”

replenished every T periods; all other SKUs in the group are replenished less often, at an

order quantity that will last some multiple of T periods.

With the consideration of quantity discounts, coordinating replenishment decisions for

multiple items becomes more complicated. The question of a quantity discount has usually

been analyzed from the perspective of the buyer: For a given discount scheme, should that

buyer purchase a large enough amount, to be able to take advantage of a reduced cost per

unit? Research for this purpose has been done by authors such as Chakravarty (1984),

Russell and Krajewski (1992), Li and Huang (1995), Silver et al. (1998), Xu et al. (2000),

Cha and Moon (2005), Moon and Cha (2006), Moon et al. (2008), Cha and Park (2009),

and Shi and Zhang (2010), to name a few. A comprehensive review of related works can
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be found in Khouja and Goyal (2008).

However, by switching the viewpoint from the buyer to supplier, the situations may be

significantly different. Actually, the quantity discount has been employed as a coordination

mechanism to improve the performance not only of each single party, but also of the overall

supply chain (in this chapter, buyer plus supplier). As mentioned in Chapter 3, the case of

a single item has been broadly investigated in the literature. Studies regarding this matter

have been thoroughly reviewed in Chapter 2.

Chen and Chen (2005a,b) employed a saving-sharing mechanism, through a quantity

discount scheme adopted from Lal and Staelin (1984), to achieve the Pareto improvement.

That discount approach was originally developed to deal with a problem in which only one

product is distributed from the supplier to the buyer(s), but the pricing structure of this

product does not alter its ultimate demand.

In this chapter, we aim to aid the supplier in setting the quantity discount policy. That

discount scheme will be determined according to the aggregate purchases of the product

group. Both constant and price-sensitive demands will be examined and compared, to

illustrate the impact that the price-sensitivity may have on the supplier’s discount policy.

The remainder of Chapter 4 is organized as follows. Based on the assumptions and

notation, we develop a noncooperative model based on the Stackelberg game (Model I),

separately considering the payoffs to the supplier and buyer. That model is analyzed from

the supplier’s perspective in assisting him to set the group discount for a family of items
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with constant and deterministic demand. Next, we present a joint model (Model II), which

maximizes the total payoffs of the two parties. The model then is extended to analyze the

case of price-sensitive demand, both noncooperatively (Model III) and jointly (Model IV).

Numerical examples are employed through the chapter to show the application of our

approaches.

4.2 Assumptions and notation

Our research considers a situation in which a buyer purchases, from a single supplier,

products belonging to a family of n items. The buyer and supplier respectively employ the

MPP and EOQ as the inventory policy. We start at the point that the two parties have

already formed a buyer-seller relationship in the market, i.e, the supplier has set a selling

price for each item, and sells these products to the buyer; and the buyer orders the group

of products at a pattern that is determined by MPP.

The demand Di for each item i is assumed to be constant per unit time for Models I

and II, and price-sensitive for Models III and IV. This supplier offers a group discount to

the buyer: a certain discount percentage is offered on each unit ordered when the total

dollar value of a single replenishment exceeds a predetermined breakpoint. When the buyer

purchases the products at the discounted prices, she is assumed to sell these items at the

same discount percentage from her regular prices.

Additionally, we assume that the supplier is aware of all relevant information of the
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buyer, such as her annual demand rate for each item, her inventory holding cost, and

ordering cost. The following notation will be employed.

n Number of items in the family (item index i = 1, 2, ..., n).

Di Annual demand rate of item i in the absence of a discount.

Pi The purchase price of product i, paid by the buyer to supplier.

Ri Buyer’s selling price of item i.

ηi Price elasticity of demand of item i.

AB Buyer’s major ordering cost for the family, when at least one item is ordered.

aBi Buyer’s minor ordering cost, when item i is included in a group replenishment.

r Buyer’s inventory holding cost (% of purchase price).

AS Supplier’s major setup cost for the family.

aSi Supplier’s minor setup cost for item i, when that item is included in a

production batch.

Hi Supplier’s holding cost for inventory of item i.

vi Supplier’s acquisition price of product i.

ρ Fractional discount applicable to aggregate orders from the group (0 < ρ < 1).

mi The integer number of base intervals that the replenishment quantity of item i

will last.

T0 The base item’s EOQ before discount, expressed as a time supply.

TB Buyer’s best order policy after discount (as a time supply).

TS The order quantity to maximize supplier’s payoff (as a time supply).
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TJ The order policy to maximize the joint payoff of the two parties (as a time

supply).

Tb The breakpoint of the group discount, expressed as a time supply.

Vb The breakpoint in terms of the total value of replenishment.

Πs
B Buyer’s payoff gained from the discount. s = [C] and [S] denote, respectively,

the cases of constant and price-sensitive demands.

Πs
S Supplier’s payoff gained from the discount.

Πs
J Joint payoffs of the supplier and buyer.

4.3 Constant demand case

In our analyses, the payoff to the particular party refers to the profits gained or the costs

saved by the group discount.

4.3.1 Buyer’s payoff

Before the group discount is offered by the supplier, there is a time interval T0 between

replenishments of the family. A set of multipliers mi has been determined and is employed,

again before the discount. So for each item i, the replenishment quantity is DimiT0, hence

the average inventory level is DimiT0/2.
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The buyer’s major ordering cost AB is incurred every T0 units of time, whereas the

cost aBi is incurred only once in every miT0 periods. Therefore, the buyer’s total annual

relevant cost before the discount can be expressed as

TRC [C]
0 =

n∑
i=1

DiPi +

(
AB +

n∑
i=1

aBi
mi

)
1

T0

+
1

2
rT0

n∑
i=1

miDiPi, (4.1)

where DiPi is the purchase expense for each item i.

Setting ∂TRC [C]
0 /∂T0 = 0 gives the expression of T0, that is

T0 =

√√√√√√√√√
2(AB +

n∑
i=1

aBi/mi)

r
n∑
i=1

miDiPi

.

Substitution of T0 back into Eq. (4.1) gives the lowest costs for a give set of mi’s:

TRC [C]
0 =

n∑
i=1

DiPi +

(
AB +

n∑
i=1

aBi
mi

)
√√√√√√√√

2(AB +
n∑
i=1

aBi/mi)

r
n∑
i=1

miDiPi

+

√√√√√√√√√
2(AB +

n∑
i=1

aBi/mi)

r
n∑
i=1

miDiPi

×
r

n∑
i=1

miDiPi

2
,
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which can be simplified to

TRC [C]
0 =

n∑
i=1

DiPi +

√√√√2

(
AB +

n∑
i=1

aBi
mi

)
r

n∑
i=1

miDiPi.

Thus, the integers mi must be equal to the values that minimize

(
AB +

n∑
i=1

aBi
mi

)
r

n∑
i=1

miDiPi.

The derivation of mi for each item i can be found in Silver et al. (1998), Section 11.2.2.

According to those authors, the items are first numbered such that ai/(DiPi) is smallest

for item 1. We set m1 = 1. The other values for mi’s are

mi =

√
aBi
DiPi

× D1P1

AB + aB1

.

(Throughout, the calculated values of mi, and later m′i, are to be rounded to the nearest

integer, as required by the MPP.)

With the discount fraction of ρ, buyer’s total annual relevant cost is

TRC [C]
1 = (1− ρ)

n∑
i=1

DiPi +

(
AB +

n∑
i=1

aBi
mi

)
1

TB
+

1

2
rTB(1− ρ)

n∑
i=1

miDiPi.

Therefore, buyer’s payoff due to the discount is Π[C]
B = TRC [C]

0 − TRC [C]
1 . After simpli-
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fication, we have

Π[C]
B = ρ

n∑
i=1

DiPi +

(
AB +

n∑
i=1

aBi
mi

)(
1

T0

− 1

TB

)
+

1

2
r

n∑
i=1

miDiPi

[
T0 − TB(1− ρ)

]
. (4.2)

4.3.2 Supplier’s payoff

As to the supplier’s cost structure, we consider his costs incurred with only this buyer,

including his own production acquisition cost, the cost of handling the buyer’s orders, and

the corresponding inventory holding cost.

Similar to the buyer’s ordering costs, the supplier also has a major cost AS for handling

orders of this family of products and a minor cost aSi for each item i. So before the

discount, the supplier’s profit is

π[C]
S0 =

n∑
i=1

DiPi −
n∑
i=1

Divi −
(
AS +

n∑
i=1

aSi
mi

)
1

T0

+
1

2
T0

n∑
i=1

miDiHi.

Then, the profit after the discount is

π[C]
S1 = (1− ρ)

n∑
i=1

DiPi −
n∑
i=1

Divi −
(
AS +

n∑
i=1

aSi
mi

)
1

TS
+

1

2
TS

n∑
i=1

miDiHi.

So supplier’s payoff after applying the group discount is Π[C]
S = π[C]

S1 − π[C]
S0, which can be
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rewritten as

Π[C]
S = −ρ

n∑
i=1

DiPi +

(
AS +

n∑
i=1

aSi
mi

)(
1

T0

− 1

TS

)
+

1

2

n∑
i=1

miDiHi

[
T0 − TS

]
. (4.3)

4.3.3 Model I - Noncooperative model with constant demand

The Stackelberg game is a dynamic game model in which the player with dominant power

(leader) moves first, and the other player (follower) observes the leader’s movements and

reacts to these movements based upon the follower’s best interests. This is a close rep-

resentation of what happens in a real discount problem. Therefore, our noncooperative

model employs a Stackelberg equilibrium, which allows the supplier (leader) to construct

a quantity discount policy by maximizing his payoff, in light of the buyer’s (follower) best

reaction of attempting to maximize her own payoff.

To maximize buyer’s payoff, set ∂Π[C]
B /∂TB = 0. (Note that this objective function,

Eq. (4.2), is concave in TB.) Then, the buyer’s best policy is to order a time supply of

TB =

√√√√√√√√√
2

(
AB +

n∑
i=1

aBi
mi

)
r(1− ρ)

n∑
i=1

miDiPi

=
T0√
1− ρ

. (4.4)

LEMMA 4.1. Suppose the demand rate is deterministic and constant. The supplier is

then worse off if buyer orders her EOQ at the discounted price. That is,
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Π[C]
S = π[C]

S1(TB)− π[C]
S0(T0) < 0.

Proof. If the buyer orders TB = T0/
√

1− ρ, the supplier’s payoff is, from Eq. (4.3),

Π[C]
S = −ρ

n∑
i=1

DiPi +

(
AS +

n∑
i=1

aSi
mi

)(
1

T0

−
√

1− ρ
T0

)
+

1

2

n∑
i=1

miDiHi

[
T0 −

T0√
1− ρ

]
.

After some algebra,

∂Π[C]
S

∂ρ
= − 1

1− ρ
×

[
n∑
i=1

DiPi(1− ρ)− 1

2T0

(
AS +

n∑
i=1

aSi
mi

)
− T0

4

n∑
i=1

miDiHi

]
.

Let K =
n∑
i=1

DiPi(1− ρ)− 1

2T0

(
AS +

n∑
i=1

aSi
mi

)
− T0

4

n∑
i=1

miDiHi.

If K ≤ 0, we must have Π[C]
S < 0. If K > 0, ∂Π[C]

S /∂ρ < 0. And since Π[C]
S (ρ = 0) = 0,

we again find Π[C]
S < 0 for any positive value of ρ.

Therefore, the supplier loses if buyer orders her EOQ at the discounted price.

From this lemma, we find that the supplier has to set the group discount in such a way

that the buyer orders more than her EOQ, so that he can gain profit from offering the

discount. Now, to maximize the supplier’s payoff, set ∂Π[C]
S /∂TS = 0. We then have

TS =

√√√√√√√√√
2

(
AS +

n∑
i=1

aSi
mi

)
n∑
i=1

miDiHi

. (4.5)
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This indicates that supplier would like to encourage the buyer to order at intervals of

Tb = TS periods, by offering a group discount applied to her total purchasing value.

Note that the group discount is offered on each replenishment. Besides, the smallest

replenishment size corresponds to the total replenishment value of all items having mi = 1.

Therefore, the position of the breakpoint, in terms of the total value of replenishment, can

then be calculated as:

Vb = Tb
∑
i∈I

DiPi. (4.6)

where I denotes the set of all items having mi = 1.

We also notice that the payoff for supplier is a monotone decreasing function of ρ.

To offer this discount, the supplier has to ensure that he gains a positive payoff, i.e.,

Π[C]
S (Tb) ≥ 0. After simplification, we have

ρ ≤ ρU =

(
1

T0

− 1

Tb

)2

(
AS +

n∑
i=1

aSi
mi

)
− T0Tb

n∑
i=1

miDiHi

2
n∑
i=1

DiPi

. (4.7)

Similarly, the buyer’s payoff is a monotone increasing function of ρ. So she would

only take the discount if she can save on her total relevant costs, i.e., Π[C]
B (Tb) ≥ 0. After

80



manipulating,

ρ ≥ ρL =

(
1

T0

− 1

Tb

)rT0Tb

n∑
i=1

miDiPi − 2

(
AB +

n∑
i=1

aBi
mi

)
2

n∑
i=1

DiPi + rTb

n∑
i=1

miDiPi

. (4.8)

Thus, we have found an upper bound, ρU , and also a lower bound, ρL, on the percentage

of discount the supplier should offer. (Note that ρU ≥ ρL is both necessary and sufficient for

a feasible discount percentage to exist.) Both the supplier and the buyer will benefit from

the group discount policy for any discount percentage between ρU and ρL. Realize that

when ρ = ρU(ρL), the payoff to the supplier (buyer) is zero. By examining the degree to

which his payoff would be shared with the buyer, the supplier may determine his discount

percentage within this range. Numerical examples will follow in Sec. 4.3.5.

4.3.4 Model II - Joint model with constant demand

Now we assume a centralized system in which the supplier and buyer agree to make the

decisions on quantity discount and replenishment together. The joint payoffs are maximized

and shared between the two parties with no extra charges.

81



The joint payoff of the buyer and supplier is defined as

Π[C]
J = Π[C]

B + Π[C]
S =

(
AB +

n∑
i=1

aBi
mi

)(
1

T0

− 1

TJ

)
+

1

2
r

n∑
i=1

miDiPi

[
T0 − TJ(1− ρ)

]
+

(
AS +

n∑
i=1

aSi
mi

)(
1

T0

− 1

TJ

)
+

1

2

n∑
i=1

miDiHi

[
T0 − TJ

]
.

After manipulation,

Π[C]
J =

(
AB + AS +

n∑
i=1

aBi + aSi
mi

)(
1

T0

− 1

TJ

)
+

1

2

(
r

n∑
i=1

miDiPi +
n∑
i=1

miDiHi

)
T0

− 1

2

[
r(1− ρ)

n∑
i=1

miDiPi +
n∑
i=1

miDiHi

]
TJ . (4.9)

To maximize the joint payoff, set ∂Π[C]
J /∂TJ = 0, so we have

TJ =

√√√√√√√√√
2

(
AB + AS +

n∑
i=1

aBi + aSi
mi

)
r(1− ρ)

n∑
i=1

miDiPi +
n∑
i=1

miDiHi

. (4.10)

Since ∂2Π[C]
J /∂T

2
J = −2

(
AB+AS+

n∑
i=1

aBi + aSi
mi

)/
T 3

J < 0, the solution of TJ in Eq. (4.10)

is optimal.

Set the breakpoint Tb = TJ . Then, replacing TJ in Eq. (4.9) by Tb, the value of ρ may

be obtained by maximizing Π[C]
J . Thus, the joint model can be written as the following

nonlinear optimization problem:
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max
Tb,ρ

Π[C]
J (Tb, ρ) =

(
AB + AS +

n∑
i=1

aBi + aSi
mi

)(
1

T0

− 1

Tb

)
+

1

2
T0

(
r

n∑
i=1

miDiPi +
n∑
i=1

miDiHi

)
−1

2
Tb

[
r(1− ρ)

n∑
i=1

miDiPi +
n∑
i=1

miDiHi

]
. (4.11)

s.t.

Π[C]
B (Tb, ρ) ≥ 0;

Π[C]
S (Tb, ρ) ≥ 0;

0 < ρ < 1.

Solving this maximization problem gives the supplier’s best choice of Tb and ρ for the

group discount policy. The breakpoint Vb, i.e., the total replenishment value, can then be

computed from Eq. (4.6).

LEMMA 4.2. Compared to the noncooperative approach, the optimal policy is to order

more frequently in the joint model. That is, as a time supply, TJ < TS.

Proof. The order quantity that maximizes the supplier’s payoff is higher than that which
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maximizes the buyer’s. Thus TS > TB, so we have:

TJ =

√√√√√√√√√
2

(
AB + AS +

n∑
i=1

aBi + aSi
mi

)
r(1− ρ)

n∑
i=1

miDiPi +
n∑
i=1

miDiHi

<

√√√√√√√√√
2

(
AS +

n∑
i=1

aSi
mi

)[
1 +

n∑
i=1

miDiHi

/
r(1− ρ)

n∑
i=1

miDiPi

]
r(1− ρ)

n∑
i=1

miDiPi +
n∑
i=1

miDiHi

<

√√√√√√√√√
2

(
AS +

n∑
i=1

aSi
mi

)
n∑
i=1

miDiHi

= TS.

LEMMA 4.3. In the case of constant demand, when the joint payoffs are maximized, only

the buyer’s payoff is positive. The supplier needs to share the payoff gained by the buyer.

Proof. From Eq. (4.11), we notice that Π[C]
J is monotonically increasing with respect to ρ.

Hence Π[C]
J is maximized when ρ is at its highest value.

The upper limit of ρ can be obtained by setting Π[C]
S (Tb, ρ) = 0. Therefore, at the
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Table 4.1: Numerical example 4.1 - Parameters

AB = 200; r = 20%;AS = 1800

Item 1 Item 2 Item 3

Di 1200 120 70

Pi 50 20 10

aBi 120 120 120

aSi 80 80 80

Hi 7 2 1

optimal solution, the only party that gains positive payoff (cost saving) is the buyer, while

the supplier has zero payoff and needs to share the payoff gained by the buyer.

Lemmas 4.2 and 4.3 will be further illustrated by the following numerical example.

4.3.5 Numerical example 4.1 - Constant demand

In this section, we consider a case where the buyer purchases three items. Table 4.1 lists

the values of relevant parameters. Item 1 has the smallest value of ai/(Divi), so according

to MPP, we set m1 = 1. Then the values of m2 and m3 can be calculated as 3 and 6,

respectively. Using these mi values, we get T0 = 0.23 year = 84 days.

From the supplier’s perspective, solving Eq. (4.5) gives TS = 0.63 years ≈ 232 days. By

setting Tb = TS, we calculate the value of the replenishment break point as Vb = $ 38 066.

So the buyer can take advantage of the group discount only when the total value of a

85



Table 4.2: Numerical example 4.1 - Results

% of payoff shared

by the buyer 0 25% 50% 75% 100%

ρ 2.71% 3.34% 3.98% 4.65% 5.34%

Π
[C]
B 0 422 858 1310 1778

Π
[C]
S 1659 1266 858 437 0

replenishment exceeds Vb.

From Eqs. (4.7) and (4.8), the upper and lower bounds of the discount are ρU = 5.34%

and ρL = 2.71%. Figure 4.1 illustrates the payoffs for buyer and supplier at different

discount percentages between the bounds. Now, by examining the percentage of payoffs

he would allocate to the buyer, the supplier can determine his discount policy. Table 4.2

shows the discount policy and corresponding payoffs according to the degree to which the

supplier is willing to share the payoff. The first row of the table is the percentage of the

payoff which goes to the buyer. For example, assuming that the supplier shares half the

total profit with the buyer, by our calculation, we have ρ = 3.98%. Under this discount

policy, the payoffs of supplier and buyer are Π[C]
S = Π[C]

B = $ 858.

Next, we apply the joint model with the same set of parameters. The optimal discount

policy obtained from the optimization model (4.11) is ρ = 4.74% and Tb = 0.44 years ≈ 160

days. The breakpoint for the replenishment value Vb can be thus calculated as $ 26 750.

At that breakpoint, the joint payoff achieves $ 2 400. This improves the total payoff by

$ 684, compared to solution of the first model.
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Figure 4.1: Payoffs for buyer and supplier as a function of discount percentage (Numerical
example 4.1)
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Examining the two models, the joint model provides the higher discount percentage

(4.74% vs 3.98%) and lower breakpoint ($ 26 750 vs $ 38 066), but a higher joint payoff. If

the supplier and buyer were to divide this payoff improvement equally between them, both

would be much better off (each would receive profits of $ 1 200 from the joint decisions).

4.4 Price-sensitive demand case

So far, we discussed the case in which the demands for all items are constant and deter-

ministic. However, in practice, the demand rate increases by ∆D as the price decreases

(∆P < 0). So we extend our model to consider the impact on demand due to a change in

price.

Instead of a regular demand function, we introduce the price elasticity of demand,

denoted by ηi, for each item i. The buyer is assumed to sell the products at the same

discount percentage from her regular price, when she purchases the group of items at the

discounted prices. Therefore, we have

ηi = −∆Di/Di

∆Ri/Ri

= −∆Di/Di

∆Pi/Pi
.
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4.4.1 Buyer’s payoff

Before any discount, the buyer’s total annual cost is

TRC [S]
0 =

n∑
i=1

DiPi +

(
AB +

n∑
i=1

aBi
mi

)
1

T0

+
1

2
rT0

n∑
i=1

miDiPi,

where

mi =

√
aBi
DiPi

× D1P1

AB + aB1

,

which is exactly the same as in the constant-demand case. However, taking into account

the price sensitivity of demand, not only the buyer’s annual cost, but also her revenue,

changes due to the discount she receives. Therefore, we now consider the annual profit of

the buyer, rather than only cost. The buyer’s profit before discount is

π[S]
B0 =

n∑
i=1

DiRi − TRC [S]
0 .

Buyer’s total relevant cost after discount is

TRC [S]
1 = (1−ρ)

n∑
i=1

Di(1 +ηiρ)Pi +

(
AB +

n∑
i=1

aBi
m′i

)
1

TB
+

1

2
rTB(1−ρ)

n∑
i=1

m′iDi(1 +ηiρ)Pi,

where

m′i =

√
aBi

Di(1 + ηiρ)Pi(1− ρ)
× D1(1 + η1ρ)P1(1− ρ)

AB + aB1

= mi

√
(1 + η1ρ)

(1 + ηiρ)
. (4.12)
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Note that when the ηi are the same for each item, we have m′i = mi.

So the profit of buyer who benefits from a discount fraction ρ is

π[S]
B1 =

n∑
i=1

Di(1 + ηiρ)Ri(1− ρ)− TRC [S]
1 .

Correspondingly, the buyer’s payoff from the discount is Π[S]
B = π[S]

B1− π[S]
B0. After simpli-

fication, we have

Π[S]
B = ρ

n∑
i=1

Di(Ri − Pi)(ηi − ηiρ− 1) + AB

(
1

T0

− 1

TB

)
+

(
1

T0

n∑
i=1

aBi
mi

− 1

TB

n∑
i=1

aBi
m′i

)
+

1

2
r

[
T0

n∑
i=1

DiPimi − TB(1− ρ)
n∑
i=1

Di(1 + ηiρ)Pim
′
i

]
. (4.13)

4.4.2 Supplier’s payoff

Supplier’s profit before the discount is identical to the case with constant demand:

π[S]
S0 =

n∑
i=1

DiPi −
n∑
i=1

Divi −
(
AS +

n∑
i=1

aSi
mi

)
1

T0

+
1

2
T0

n∑
i=1

miDiHi.

With the consideration of price elasticity of demand, his profit after the discount is

π[S]
S1 = (1−ρ)

n∑
i=1

Di(1+ηiρ)Pi−
n∑
i=1

Di(1+ηiρ)vi−
(
AS+

n∑
i=1

aSi
m′i

)
1

TS
+

1

2
TS

n∑
i=1

m′iDi(1+ηiρ)Hi.

So supplier’s payoff after applying the group discount is Π[S]
S = π[S]

S1 − π[S]
S0, which can be
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rewritten as

Π[S]
S = ρ

n∑
i=1

DiPi(ηi − ηiρ− 1)− ρ
n∑
i=1

Diηivi + AS

(
1

T0

− 1

TS

)
+

(
1

T0

n∑
i=1

aSi
mi

− 1

TS

n∑
i=1

aSi
m′i

)
+

1

2

[
T0

n∑
i=1

DiHimi − TS
n∑
i=1

Di(1 + ηiρ)Him
′
i

]
. (4.14)

4.4.3 Model III - Noncooperative model with

price-sensitive demand

Given a discount ρ, the buyer’s best response is to select an order pattern that maximizes

her payoff. It is easy to show that Π[S]
B in Eq. 4.13 is concave with respect to TB. So we

set ∂Π[S]
B /∂TB = 0 to maximize this function, and obtain

TB =

√√√√√√√√√
2

(
AB +

n∑
i=1

aBi
m′i

)
r(1− ρ)

n∑
i=1

m′iDi(1 + ηiρ)Pi

. (4.15)

When the ηi are the same for each item, and thus when m′i = mi,

TB =
T0√

(1− ρ)(1 + ηiρ)
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The supplier will take advantage of the buyer’s best response, to determine the discount

percentage that should be offered. Substituting TB for TS in Eq. (4.14), the supplier’s

optimal discount percentage ρ can be obtained by solving the maximization problem:

max
ρ

Π[S]
S (ρ, TB,m

′
i) = ρ

n∑
i=1

DiPi(ηi − ηiρ− 1)− ρ
n∑
i=1

Diηivi + AS

(
1

T0

− 1

TB

)
+

(
1

T0

n∑
i=1

aSi
mi

− 1

TB

n∑
i=1

aSi
m′i

)
+

1

2

[
T0

n∑
i=1

DiHimi − TB
n∑
i=1

Di(1 + ηiρ)Him
′
i

]
, (4.16)

s.t.

Π[S]
B (ρ, TB,m

′
i) ≥ 0;

Π[S]
S (ρ, TB,m

′
i) ≥ 0;

0 < ρ < 1.

where TB and m′i can be found by Eqs. (4.15) and (4.12), respectively.

Once ρ is determined, the quantity breakpoint Tb can be determined by maximizing

the supplier’s profit at this particular discount.
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Solving ∂Π[S]
S /∂TS = 0, we have

Tb = TS =

√√√√√√√√√
2

(
AS +

n∑
i=1

aSi
m′i

)
n∑
i=1

m′iDi(1 + ηiρ)Hi

(4.17)

Accordingly, the breakpoint in terms of the total value of replenishment can be calculated

by Eq. (4.6).

A solution procedure is introduced to solve this model (Fig. 4.2). We start from the

situation that no discount is applied. The buyer determines her replenishment pattern, i.e.

mi and T0, for the group of n items according to MPP. By employing mi as the initial value

of m′i, TB is calculated by Eq. (4.15). In light of buyer’s best order interval, the supplier

computes the best discount percentage ρ for this group and the corresponding breakpoint

Tb. Then, the value of m′i is updated with ρ. If this newly obtained value of m′i is identical

or very close to the previous one, we have found the optimal discount policy; otherwise,

we use this new value and re-do the calculations of TB, ρ, and Tb, until the integer m′i does

not change any more. Note that we keep on checking the payoffs for supplier and buyer in

each iteration, to make sure both parties can benefit from the group discount.
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No optimal discount 
policy obtained

END

START

Figure 4.2: Solution procedure for the noncooperative model with price-sensitive demand
(Model III)
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4.4.4 Model IV - Joint model with price-sensitive demand

Now we define the joint payoff of the buyer and supplier, as the summation of the supplier

and buyer’s payoffs. After simplification, we have

Π[S]
J (TJ , ρ) = Π[S]

B (TJ , ρ) + Π[S]
S (TJ , ρ)

= ρ
n∑
i=1

DiRi(ηi − ηiρ− 1)− ρ
n∑
i=1

Diηivi

+
1

T0

(
AB + AS +

n∑
i=1

aBi + aSi
mi

)
− 1

TJ

(
AB + AS +

n∑
i=1

aBi + aSi
m′i

)

+
1

2
T0

(
r

n∑
i=1

DiPimi +
n∑
i=1

DiHimi

)

−1

2
TJ

[
r

n∑
i=1

Di(1 + ηiρ)Pi(1− ρ)m′i +
n∑
i=1

Di(1 + ηiρ)Him
′
i

]
. (4.18)

Let ∂Π[S]
J (TJ , ρ)/∂TJ = 0, to find

TJ =

√√√√√√√√√
2

(
AB + AS +

n∑
i=1

aBi + aSi
m′i

)

r

n∑
i=1

Di(1 + ηiρ)Pi(1− ρ)m′i +
n∑
i=1

Di(1 + ηiρ)Him
′
i

. (4.19)

Set Tb = TJ , then calculate the discount fraction ρ by solving ∂Π[S]
J (TJ , ρ)/∂ρ = 0. So
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the joint model can be written as the following maximization problem:

max
Tb,ρ

Π[S]
J (Tb, ρ) = ρ

n∑
i=1

DiRi(ηi − ηiρ− 1)− ρ
n∑
i=1

Diηivi

+
1

T0

(
AB + AS +

n∑
i=1

aBi + aSi
mi

)
− 1

Tb

(
AB + AS +

n∑
i=1

aBi + aSi
m′i

)

+
1

2
T0

(
r

n∑
i=1

DiPimi +
n∑
i=1

DiHimi

)

−1

2
Tb

[
r

n∑
i=1

Di(1 + ηiρ)Pi(1− ρ)m′i +
n∑
i=1

Di(1 + ηiρ)Him
′
i

]
. (4.20)

s.t.

Π[S]
B (Tb, ρ) ≥ 0;

Π[S]
S (Tb, ρ) ≥ 0;

0 < ρ < 1.

To find the solution for this joint model, we employ a procedure (Fig. 4.3) similar

to that of the noncooperative case. First, for each item i, we initialize the m′i with the

value of mi obtained before the discount, and thus solve the maximization problem given

by Eq. (4.20) for Tb and ρ. Compute the joint payoff Π[S]
J and update the values of m′i

accordingly. Then the maximization problem is re-solved with those updated values, until

no additional change occurs.

Notice that it may happen that the joint payoff decreases after updating the m′i value.

This is because the updating process is carried out by the buyer, who could gain positive
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Figure 4.3: Solution procedure for joint model with price-sensitive demand (Model IV)
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payoff from that process. However, the updating may have negative impact on the sup-

plier’s payoff, and accordingly, on the joint payoff. If this situation does occur, we assume

that the buyer would not continue the updating: In Model IV, the joint payoff receives the

highest consideration.

4.4.5 Numerical example 4.2 - Price-sensitive demand

To demonstrate the application of the two models with price-sensitive demand, we again

employ a numerical example considering a group of three items, but now each has a (dis-

tinct) price elasticity of demand. Respective parameters are listed in Table 4.3. Before

the discount, item 1 is set as the base item (m1 = 1), due as before to its lowest value of

ai/(Divi); and correspondingly, we have m2 = 3 and m3 = 6. Then, as in Example 4.1, the

value of T0 is computed as 0.23 years ≈ 84 days.

Table 4.4 shows the procedure in solving the noncooperative case. The first iteration

is based on the original mi values before discount. We obtain the discount policy with a

discount percentage ρ = 8.35% and the breakpoint in terms of total replenishment value,

Vb = $ 23 129. After updating m′i, we enter the second iteration, which gives a discount

policy of ρ = 8.36% and Vb = $ 23 272 (or Tb = 131 days in time value). Since no further

change occurs in m′i after updating, we stop here. The optimal discount policy that the

supplier should offer is found in the last iteration (iteration 2). This policy gains the

supplier and buyer extra profits of $ 1297 and $ 766, respectively.
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Table 4.3: Numerical example 4.2 - Parameters

AB = 200; r = 20%;AS = 600

Item 1 Item 2 Item 3

Di 1200 120 70

ηi 2 0.5 3

Pi 50 20 10

Ri 65 26 13

vi 15 6 3

aBi 120 120 120

aSi 80 80 80

Hi 7 2 1

Fig. 4.4 illustrates the payoffs for buyer and supplier as a function of the replenishment

interval. We see that the buyer’s payoff is maximized at TB = 83 days, but she has to

order every 131 days to obtain the group discount offered by the supplier. Even though

her payoff is lower than that indicated by the level TB, the buyer can still gain positive

payoff, which is the motivation for her to increase order quantities and take the discount.

We now consider the case in which the supplier and buyer make the discount and

replenishment decisions jointly. Table 4.5 shows the procedure whereby the optimal joint

decision is obtained. Similar to the noncooperative case, we start our calculations from

the m′i value before the discount, and continue until the updating brings no more change

or negligible change to this value for each item i. However, through comparison of results
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Figure 4.4: Payoffs for buyer and supplier as a function of replenishment interval (Numer-
ical example 4.2)
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Table 4.4: Solution procedure for Model III

m′i Updated

Iterations (items 1,2,3) ρ TB TS Tb Vb Π
[S]
B Π

[S]
S m′i

1 1,3,6 8.35% 0.224 yrs 0.361 yrs 0.361 yrs 23 129 756 1 306 1,3,5

82 days 132 days 132 days

2 1,3,5 8.36% 0.226 yrs 0.358 yrs 0.358 yrs 23 272 766 1 297 1,3,5

83 days 131 days 131 days

attained from the two iterations, we realize that the first iteration provides a higher joint

payoff. Therefore, the buyer would not update his order pattern (the value of m′i for each

item i). Instead, she would agree to keep the original mi values to make sure that system

maximization is achieved. The optimal joint decisions are: 1) the supplier offers a discount

of 11.76% on this group of items; and 2) the buyer places her order every 104 days, with

a total replenishment value for each order of $ 18 167.

Accordingly, the joint payoff gained from these decisions is $ 2426, an increase of $ 363

compared to the total payoffs for the supplier and buyer in the noncooperative case. If

both parties agree to divide this extra payoff equally, the buyer and supplier would receive

profits of $ 948 and $ 1478 from the joint decisions, respectively. We also notice that the

optimal replenishment policy obtained by making decisions jointly is to place orders every

104 days, which is less than the 131 days by the noncooperative model.

We performed an extensive data analysis based upon more than 5,000 parameters sets.

The following relations were found between the solutions of the noncooperative and joint
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Table 4.5: Solution procedure for Model IV

m′i Updated

Iterations (items 1,2,3) ρ Tb Vb Π
[S]
J m′i Notes

1 1,3,6 11.76% 0.284 yrs 18 167 2 426 1,3,5 Optimal

104 days

2 1,3,5 11.77% 0.287 yrs 18 774 2 424 1,3,5 no need to

105 days update mi

models in the case of price-sensitive demand:

1. It is optimal to order more frequently in the joint model than in the noncooperative

model. As a time supply, one has TJ < TS.

2. The quantity discount percentage obtained from the joint model is greater than the

one from the noncooperative model.

3. The total payoffs for the supplier plus the buyer are significantly improved when they

agree to make decisions jointly, compared to when each makes an individual decision.

Finally, we compare the numerical results of Examples 4.1 and 4.2. Note that, except

for a few extra parameters related to the price-sensitivity, we assume a larger value of AS

in the constant-demand case (AS = 1800 in Table 4.1 but AS = 600 in Table 4.3). This

is for illustrative purposes: The larger value of AS results in a deeper discount percentage.

However, even then (see Table 4.6), the optimal discount percentage for the constant-

demand case is still much lower than in the case of price-sensitive demand (3.98% compared
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Table 4.6: Comparisons of the four models

Model I II III IV

ρ 3.98% 4.74% 8.36% 11.76%

Tb (days) 232 160 131 104

Vb 38 066 26 750 23 272 18 167

ΠS 858 1 200 1 297 1 478

ΠB 858 1 200 766 948

ΠJ 1 716 2 400 2 063 2 426

to 8.36% for the noncooperative models, and 4.74% compared to 11.76% for the joint

models).

We also notice from Fig. 4.4 that, when the demand rate is price-sensitive, the supplier’s

payoff is positive even if the buyer orders her EOQ at the discounted price. This is quite

the opposite to the cases with constant demand rate (Lemma 4.1). These comparisons

illustrate the huge impacts of price elasticity on the supplier’s optimal discount policy.

The reason for those impacts is very straightforward. When demand is constant, the

payoffs are gained from savings in the ordering costs. However, when demand changes

with the price fluctuation, those payoffs result from increases in sales, in addition to the

ordering-cost savings. Therefore, we can say that the price elasticity of demand is an

important motivator for a discount.
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4.5 Summary

The research in this chapter concerns a situation regarding a buyer purchasing multiple

items from a single supplier. We defined what is meant by the optimal discount scheme,

and showed how to determine it. With the group discount, a buyer’s best decision could be

to order a larger amount, one that will satisfy demand during a longer interval, a greater

multiple of the base period T . However, that interval between replenishments (i.e. the

quantity breakpoint for the group discount) is chosen by maximizing the supplier’s payoff

function. The supplier offers that discount, to encourage the buyer to take it, by providing

a positive payoff to her.

We first assumed that the demand rate of each item is deterministic and constant.

As functions of the particular replenishment intervals involved, we determined an upper

bound and also a lower bound on the percentage of discount the supplier could offer.

We demonstrated that, for any discount percentage between the two bounds, both the

supplier and buyer will benefit from the group discount policy. Additionally, another

model maximizing the joint payoff of the supplier and buyer was presented. In a simple

numerical example, the joint model showed a better overall result than did the case of

separate payoffs to buyer and supplier. That is, each party is better off in the case of the

joint model.

Moreover, we developed a model considering the fact that demand can change due

to fluctuations in price. Two solution procedures were developed for the noncooperative
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and joint models, accompanying the corresponding maximization problems. Through com-

parison of the numerical results from the two examples, we showed the impacts of price

elasticity on the supplier’s optimal discount policy, and illustrated that price elasticity of

demand is one of the most important motivations for both the supplier and buyer, to offer

and accept a discount.

We have conducted extensive graphical analyses over the full feasible range for param-

eters in the functions Π[S]
S [Eq. (4.16) for Model III] and Π[S]

J [Eq. (4.20) for Model IV]. For

example, Π[S]
J [Eq. (4.20)] was found to be unimodal in T for fixed ρ, and unimodal in ρ

for fixed T . This unimoldality explains why, in the various numerical tests, our algorithms

(Figs. 4.2 and 4.3) converge rapidly.

Note that our models can also be implemented when more than one buyer purchases

from this single supplier. In such a case, the supplier would offer a group discount separately

to each buyer, rather than offering a common discount to all buyers. More specifically,

a second buyer may purchase items which are only partially the same as those of the

first buyer. The supplier would then negotiate with the second buyer using the same

approach, but likely obtain a slightly different policy, because of the distinct products with

correspondingly changed demands and cost structures.

Our next step, in Chapter 5, will be to coordinate decisions on transportation with the

determination of a quantity discount policy. In addition to a private fleet, goods movement

can also be done by common carrier (a public, for-hire trucking company). In that case,

however, the situation becomes more complicated due to the LTL transportation pricing
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scheme with “bumping clause.” This is the over-declaration of the shipment weight, when

advantageous, to obtain the all-unit transportation discount. In Chapter 5, we will conduct

comprehensive analyses, both noncooperatively and cooperatively, regarding the problem

of coordinating the quantity and transportation discount schedules for the supplier and

carrier.
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Chapter 5

Coordinating the Discount Decisions

of Carrier and Supplier

5.1 Introduction

In Chapters 3 and 4, we have discussed the quantity discount problem from the supplier’s

point of view. However, a supply chain is a complicated system that not only physically

manufactures products but also delivers them to customers. Transportation between suc-

cessive nodes thus plays a vital role in any supply chain. In spite of its significant impacts,

the transportation expense is often omitted or assumed fixed, either when the supplier

makes pricing decisions, or when the buyer decides replenishment quantities. This neglect

of transportation can easily overwhelm any savings related to good inventory management.
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In the past few decades, the interaction between transportation and inventory manage-

ment has gradually grown in influence in the practical decision process. Many scholars have

come to realize the importance of integrating transportation issues into those involving in-

ventory, especially replenishment decisions. Taking into consideration both the quantity

and transportation discounts, researchers tried to determine the optimal replenishment

policy for a buyer. Publications in this area include Russell and Krajewski (1991, 1992),

Carter et al. (1995a), Tersine et al. (1995), Darwish (2008), and Toptal (2009), to name a

few. Çetinkaya (2005) has conducted a detailed review regarding this topic.

Nevertheless, by switching the perspective from the party who takes the discount to

the parties who determine the discounts, the situations may become significantly different.

Various studies have illustrated the quantity discount as a coordination mechanism to im-

prove the performance of a distribution channel involving buyer(s) and supplier. Chapters

3 and 4 proposed several analytic models to assist the supplier in determining the quan-

tity discount policy in the cases of a single buyer, multiple buyers or a family of items.

Through examining the payoffs derived, those works showed that not only the supplier,

but also the buyer, can benefit from the discounts. Details and a comprehensive review of

related studies can be found in Chapter 2.

Now let us take a look at a situation involving discounts in both the purchase quantity

and in transportation. Consider a simple supply chain, in which a for-hire Less-than-

Truckload carrier provides transportation services. The freight rate schedule per hundred-

weight (100 pounds), i.e. cwt, is $ 48/cwt for shipping a weight of 120 cwt or more, but
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$ 50/cwt for any smaller weight. A supplier manufactures and sells a product, each unit

weighting 1 cwt, to a buyer according to a quantity discount schedule. As the one who is

responsible for the transportation cost, the supplier would like to take the advantage of

this all-unit transportation discount. He therefore offers a purchase quantity discount as

follows: the unit selling price is $ 200, but the buyer can receive 5% off this regular price

when she orders 120 units or more each time.

Suppose the order processing costs for the buyer and supplier are $ 300 and $ 800 per

order, respectively. The inventory holding costs are 20% of the dollar value of the inventory

for the buyer and supplier, and $ 50 per cwt per year for the carrier. The cost incurred by

the carrier to transport an order from the supplier to the buyer is $ 400 per trip. Then,

according to the EOQ model, the best order quantity of the buyer is 42 units before any

discount. At this moment, the buyer’s annual relevant cost is $ 25 697. Now if the buyer

would like to take that 5% discount, i.e. increasing the order quantity to 120 units, her

annual cost can be further reduced by $ 197. It is obviously profitable for the buyer to

make this change in her orders. So far, it seems that the two discounts work perfectly

together, as the buyer is better off by taking them.

Next, let us examine the revenues and cost structures for the supplier and carrier. When

the buyer orders at her EOQ level, the profits for the supplier and carrier are $ 15 313

and $ 3808, respectively. However, these two profit numbers respectively decrease by $ 272

and $ 1448, due to the buyer’s decision of taking the discount schedules that each party

determined and offered by themselves. In this case, the overall performance of the supply
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chain (buyer plus supplier plus carrier) is worse, after buyer obtains the discount.

This example reveals the importance of determining the optimal discount schedules of

supplier and carrier. From the supplier’s perspective, the possibility of taking advantage

of a transportation discount is definitely helpful in terms of cost saving and increased

profit. But how should he readjust the quantity discount according to that transportation

discount? On the other hand, how should the carrier set a transportation discount that

would benefit both carrier and supplier? Most importantly, would the integration of quan-

tity and transport discounts further improve the overall performance of the supply chain?

In this research, we aim to coordinate the purchase-quantity and transportation discount

decisions. Both noncooperative and cooperative models are analyzed from the viewpoints

of the supplier and carrier.

The rest of this chapter is organized as follows. On the basis of the assumptions and

notation, the payoffs of the three parties are examined. Next, we develop a noncooperative

game-theoretic model under the framework of the Stackelberg game, separately considering

the payoffs to the buyer, supplier, and carrier. Then, a cooperative model assuming trans-

ferable utilities is proposed to maximize the joint payoffs of the three parties. We further

conduct a coalition analysis based upon the concept of Shapley Value to fairly divide the

extra payoffs gained from the cooperation. Numerical examples are employed to show the

applications of approaches introduced in this chapter, followed by concluding remarks.

110



5.2 Assumptions and notation

Consider a situation involving three parties: a single buyer purchases one product from a

supplier, and a common carrier is responsible for transporting the goods to the buyer. Both

buyer and supplier employ the economic order quantity (EOQ) model, while the carrier

uses the economic shipping weight (ESW) approach.

The ESW approach is an alternative formulation of the economic shipment quantity

(ESQ) model (Brennan, 1981; Burns et al., 1985; Abdelwahab and Sargious, 1990; Higgin-

son, 1995), the most-employed model in determining the target shipment quantity. The

basic idea of ESQ is to accumulate the orders received until a predetermined target size is

reached. Then the carrier dispatches all those orders as one consolidated load. Minimizing

the sum of transportation and inventory holding costs, the simplest case of ESQ can be

expressed as

ESQ =

√
2âF

r
,

where â is the order arrival rate, F is the sum of all fixed costs associated with a vehicle

dispatch, and r is the inventory holding cost per unit item per time period. Transferring

the unit expression from number of orders (as in ESQ) to weight, we have

ESW =

√
2âFE(W )

rw
,

where E(W ) is the expected weight of a customer order and rw is the inventory holding
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cost per unit weight per time period. Let λ = âE(W ) represent the build-up rate, i.e.

the total weight accumulated in the time period corresponding to â. ESW can then be

expressed as

ESW =

√
2Fλ

rw
.

In this chapter, we further assume that this supplier’s shipments have no impact on λ.

After adding in those shipments, the transportation capacity of the carrier is still not

exceeded.

We start our study at the point that the market is in an equilibrium, such that both the

supplier and carrier respectively offer standard rates for the product and for transportation,

and the buyer orders at her EOQ level. The supplier offers an all-unit quantity discount

based on buyer’s replenishment quantity, and the carrier offers an all-unit transportation

discount on the corresponding shipment weight each time. The demand rate of the product

is assumed constant, and does not change according to any variations in price.

Additionally, all players are assumed to be able to estimate the relevant information,

such as the annual demand rate, the inventory holding cost of each party, as well as the

corresponding ordering cost, product acquisition cost, transportation related costs, and

selling price. Also, all parties are assumed to act wisely, i.e., they would accept the chance

to gain more profit when and wherever possible. The following notation is employed.

Index:

i i = B, S or C indicates the buyer, supplier or carrier, respectively.
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j The stage that the problem is in. j = 0, 1 or 2 represents the stages in which

no discount, one discount or two discounts have been offered, respectively.

k k = N or V respectively denotes the rate before and after the transportation

discount (i.e. for non-volume and volume shipments, respectively).

Product’s notation:

D Buyer’s annual demand.

w Unit weight of the product.

Buyer’s notation:

x Unit selling price offered by the buyer to end-customers.

AB Buyer’s order processing cost.

rB Buyer’s interest rate for holding inventory per time period.

Qj Buyer’s order quantity at Stage j.

Supplier’s notation:

pj The unit selling price offered by the supplier to buyer at Stage j.

v Unit acquisition cost for supplier. The supplier, as a wholesaler or distributor,

pays this price for the product; when supplier is a manufacturer, this is the

production cost per unit.

AS Supplier’s order processing cost.

rS Supplier’s interest rate for holding inventory per time period.
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ϕ Quantity break point. When ordering a quantity less than ϕ, buyer pays the

original price p without discount; otherwise, buyer pays the discounted price,

(1− ρ)p, where ρ is the percentage discount offered (0 < ρ < 1).

Carrier’s notation:

λ The mean build-up rate for the carrier’s loads.

rw The variable cost of carrying inventory per unit weight per time period.

F The sum of all fixed costs associated with a vehicle load.

MWT Stated minimum weight to obtain discount, i.e. breakpoint for the trans-

portation discount.

fk The freight rate offered by the carrier: when the weight of the shipment

≤ MWT, the freight rate is fN ; otherwise, the freight rate is fV .

Other notation:

TCj Buyer’s total annual costs for Stage j.

πij Profit gained from the product by player i for Stage j.

Πi Payoff gained by the buyer taking the advantage of the quantity discount.

Occasionally, we will employ a superscript, s, added to certain notation such as p, q,

and Πi. s = (N), (J), (PJ1), (PJ2) and (PJ3) will denote values obtained from the

noncooperative model; the joint or cooperative model; and the models that consider three

distinct coalition situations (buyer-supplier, supplier-carrier, and buyer-carrier), respec-

tively. (Those coalitions are treated in Sec. 5.6)
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5.3 Payoff analysis

In our models, the payoffs represent the profits gained or costs saved by each party due to

the discounts.

5.3.1 Buyer’s payoff

From the preceding assumptions and notation, buyer’s total cost per year at Stage j is

TCBj = Dpj +
D

Qj

AB +
1

2
QjrBpj. (5.1)

When no discount is offered, Q0 = QB =
√

2DAB/(rBp0), i.e. this is the optimal order

quantity that minimizes buyer’s total costs.

5.3.2 Supplier’s payoff

Herein, we consider the supplier’s profits gained only from this particular buyer. More

specifically, we account for the supplier’s own acquisition cost, his costs to process buyer’s

orders and to hold inventory, and the transportation cost paid to the carrier. Therefore,

we can write the supplier’s profit at Stage j as

πSj = Dpj −Dwfk −Dv −
D

Qj

AS −
1

2
QjrSv. (5.2)

115



where k = V when j = 2, otherwise k = N .

This formulation shows the supplier’s inventory-related cost (Dolan, 1978). Despite not

taking the supplier’s optimal replenishment policies into consideration, it is a reasonable

approximation of the supplier’s gain when stationary inventory replenishment polices are

employed (Wang, 2002).

5.3.3 Carrier’s payoff

Before the transportation discount, carrier’s profit gained from that certain supplier is

πC0 = πC1 = DwfN −
D

QB

F − 1

2
QBwrw. (5.3)

Note that when D and rw are values per year, this is the carrier’s annual profit.

Now consider shipment consolidation, and with a mean build-up rate of λ. the carrier’s

best dispatch weight is

ESW =

√
2Fλ

rw
. (5.4)

So, the time between dispatches can be written as

T =
ESW

λ
=

√
2F

rwλ
. (5.5)

After the discount, i.e. after the carrier has consolidated supplier’s shipments into the
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regular loads, carrier’s profit from shipments made by this supplier is

πC2 = DwfV −
1

2
Q2wrw. (5.6)

Notice from this equation that, once consolidation is possible, the fixed transportation

costs related to each dispatch is saved. That is exactly the motivation for the carrier to

offer a transportation discount.

5.4 Noncooperative model

In this model, we analyze the situation in which the three parties all act on their own, i.e.

without any cooperation with the other two parties. Again, a Stackelberg game is used

to analyze this noncooperative approach. The parties who set the prices (the supplier at

Stage 1 and carrier at Stage 2), considered as the “leaders”, will construct the discount

policy. As before, these parties thus maximize their respective payoffs, in light of the best

reactions by the parties that take the discount (the buyer at Stage 1 and supplier at Stage

2), considered as the “followers” in the game.

5.4.1 Model development

At Stage 1, before receiving the transportation discount, the supplier and buyer have

already formed a stable relationship based on the supplier’s pricing policy. With only two
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parties involved, this policy can be determined as follows.

From the buyer’s perspective, given the supplier’s quantity discount, her total annual

cost is

TCB1 = Dp1 +
D

Q
AB +

1

2
QrBp1. (5.7)

To minimize this cost, the buyer’s optimal order quantity Q =
√

2DAB/(rBp1). As proven

by Wang (2002), the supplier loses if buyer order her EOQ at the discounted price. There-

fore, the supplier has to set the discount in such a way that the buyer orders more than

her EOQ; that way, he can gain profit by offering this discount.

The supplier’s profit is

πS1 = Dp1 −DwfN −Dv −
D

Qj

AS −
1

2
Q1rSv, (5.8)

which is maximized when

Q1 = QS =

√
2ASD

rSv
. (5.9)

The selling price p1 is set to make sure that both supplier and buyer are not worse

off. Also note that supplier’s profit is a monotonically decreasing function with respect

to the price of the product. So the lower bound of p1 can be obtained by setting Π1−0
S =

πS1 − πS0 ≥ 0, i.e.

p1 ≥ p[L]

1 = p0 +

(
1

QS

− 1

QB

)
AS +

1

2D
rSv(QS −QB). (5.10)

118



Also, letting Π1−0
B = TCB0 − TCB1 ≥ 0, we have the upper bound of p1,

p1 ≤ p[U ]

1 =

Dp0 +

(
1

QB

− 1

QS

)
DAB +

1

2
QBrBp0

D +
1

2
QSrB

. (5.11)

The value of p1 can be chosen between p[U ]
1 and p[L]

1 , depending upon how the supplier

would like to share the total payoffs gained from this discount with the buyer. Note that

a condition for offering such a quantity discount is p[U ]
1 ≥ p[L]

1 .

Let us now move to Stage 2. The carrier dispatches every T =
√

2F/(rwλ) time units.

To fit the supplier’s order shipment into carrier’s dispatching schedule, the carrier would

like to encourage the supplier to send an order every nT units of time, where T is that

time between carrier’s dispatches, and n is an integer.

PROPOSITION 5.1. If the supplier’s current shipments can already be fitted into the

carrier’s regular total loads, it would not be profitable for the carrier to offer a transportation

discount.

Proof. One of the motivations for the carrier to offer such a discount is to save the fixed

transportation costs related to each load. When the supplier’s current shipments would

already fit in the carrier’s regular total loads, those fixed costs have previously been ac-

counted for. Therefore, it would be counterproductive for the carrier to encourage the

supplier change his shipping pattern. The transportation discount would only cause de-

creases in revenue, rather than any savings in the carrier’s costs.
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Therefore, the problem of determining MWT (i.e. buyer’s replenishment pattern, or

supplier’s shipment pattern) is to find a best value for n. Ordering every nT units of time,

the amount of each buyer’s replenishment is Q2 = nTD.

From Eq (5.6), we can see that πC2 is a monotonically decreasing function with respect

to n. Therefore, the best value of n can be found by solving

n− 1 <
Q1

TD
< n (5.12)

where Q1 is the optimal order quantity for Stage 1, in which only the quantity discount is

offered.

Thus, if the supplier dispatches a shipment every nT units of time, the amount of each

replenishment is Q2 = nTD. Accordingly, MWT can be set as nTDw.

Since the carrier’s payoff gained from this supplier has to be non-negative,

i.e. Π2−1
C = πC2 − πC1 ≥ 0, we can calculate the lower bound of fV as

fV ≥ f [L]

V = fN +
1

2

(
nT − Qs

D

)
rw −

F

QSw
. (5.13)

Note that the carrier must make sure that the supplier takes the discount, and ships exactly

the weight of MWT every time, i.e. sends out shipments every nT units of time. Otherwise,

the carrier could not consolidate this supplier’s shipment with the regular loads because of

the mismatched schedule.
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fV also has to be set to guarantee that both other parties can benefit, i.e. the payoffs

of both the supplier and buyer should be non-negative.

From the supplier’s perspective, the profit after receiving the transportation discount

is

πS2 = Dp2 −DwfV −
AS

nT
− 1

2
nTDrSv. (5.14)

Letting Π2−1
S = πS2 − πS1 = 0, the upper bound of fV is

fV ≤ f [U ]

V = fN +
1

w

[(
p[U ]

2 − p1

)
−

(
1

nTD
− 1

QS

)
AS −

1

2
rSv

(
nT − QS

D

)]
. (5.15)

Here p[U ]
2 can be obtained by setting Π2−1

B = TCB1 − TCB2 = 0, i.e.

p[U ]

2 =

Dp1 +

(
D

QS

− 1

nT

)
AB +

1

2
QSrBp1

D +
1

2
nTDrB

. (5.16)

Similarly, from Π2−1
S = πS2 − πS1 ≥ 0, we can get the lower bound of p2 as

p2 ≥ p[L]

2 = p1 + w(fV − fN) +

(
1

nTD
− 1

QS

)
AS +

1

2
rSv(nT − QS

D
). (5.17)

However, it is also possible that the carrier may set WBT to be less than Q1, i.e.

fV
fN
nTD ≤ Q1. (5.18)
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In this case, after analyzing the freight rates of the carrier, the supplier may choose to

over-declare the weight of his current shipment.

PROPOSITION 5.2. The carrier is worse off if the supplier over-declares the shipment

weight, and sends out shipments according to his own schedule.

Proof. If the supplier over-declares the weight of his current shipments, the carrier’s revenue

decreases. However, the costs incurred by the carrier, due to this supplier, are unchanged:

the supplier keeps his original shipment schedule. So the carrier’s profit decreases, i.e. the

carrier’s payoff from the transportation discount is negative.

Therefore, the carrier’s freight tariff and discount rate should be determined such that

the supplier would not be able to profitably over-declare the weight of his current shipments.

Rather, the supplier should be encouraged to take the schedule that the carrier “assigns”.

In other words, the carrier has to make sure that supplier’s cost at MWT is not higher

than his cost at Q1 (with the over-declaration), i.e.

DwfV +
AS

nT
+

1

2
nTDrSv ≤

D

Q1

nTDwfV +
DAS

Q1

+
1

2
Q1rSv. (5.19)

5.4.2 Additional consideration

As mentioned in the simple example in Chapter 1 (Example 1.1), a specific characteristic of

common-carrier freight rates is the “bumping clause,” or the shipping of “phantom freight.”
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When the shipment weight is less than MWT, but greater than a certain weight WBT ≡

MWTfV /fN , it is advantageous to over-declare the weight to be MWT, which would

result in a lower transportation cost. WBT is the smallest weight where over declaration

is advantageous. Figure 1.3 in Chapter 1 illustrates this phenomenon.

Because of the bumping clause, the carrier also requires that, with the given transporta-

tion discount, the supplier’s new EOQ at the discounted freight rate should be between

WBT and MWT. That new EOQ is

Q′s =

√
2D(AS + fVMWT )

rSv
=

√
2D(AS + fNWBT )

rSv
. (5.20)

In this case, the supplier would obviously send out a shipment every Q′S/D units of time.

Based on the supplier’s choices, the carrier then has to set the transportation discount such

that nTD = Q′S, i.e.

f ′V =
1

2w
nTrSv −

AS

nTDw
. (5.21)

To summarize, if f [L]

V ≤ f ′V ≤ f [U ]

V , then f ′V is the freight rate the carrier should set;

otherwise, choose the freight rate fV , as described above.

5.4.3 Example 5.1

A numerical example is employed to illustrate the procedure of determining the quantity

and transportation discounts. The relevant parameters are shown in Table 5.1.

123



Table 5.1: Parameters for Examples 5.1-5.3

Product D 120 units/year

w 1 cwt/unit

Buyer AB $300 /order

rB 0.2 /$/year

Supplier AS $800 /order

rS 0.2 /$/year

v $100 /unit

p0 $200 /unit

Carrier λ 10 000 cwt/year

F $400 /trip

rw $50 /cwt/year

fN $50 /cwt

Before any discount has been offered, the buyer orders Q0 = QB = 42 units each

time. Entering Stage 1, the supplier encourages buyer to increase her order quantity to

Q1 = QS = 98 units by offering her a quantity discount. Analyzing the payoff functions for

the buyer and supplier, the upper and lower bounds of the discounted prices are found to be

$ 195.14 (i.e. a discount of 2.427%) and $ 193.94 (3.031%), respectively. Both the supplier

and buyer can benefit from any quantity discount between 2.427 and 3.031%.The supplier

then determines a quantity discount policy within this range, through examination of the

degree that he would like to share the payoff with the buyer. Table 5.2 lists the discount

policy at this stage and the corresponding payoffs according to the extent of sharing. For

example, assuming 50% of the total payoff is shared, the price is determined as $ 194.57

per unit (2.717%), and we have Π1−0
S = $ 75 and Π1−0

B = $ 75.
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Table 5.2: Example 5.1 - Supplier’s discount policy for Stage 1

% of payoff

allocated to buyer 0% 25% 50% 75% 100%

ρ 2.427% 2.569% 2.717% 2.871% 3.031%

Π1−0
B 0 $37 $75 $115 $157

Π1−0
S $145 $111 $75 $38 0

At Stage 2, we first consider the carrier’s perspective. With 300 working days per

year, the carrier’s ESW can be obtained as 400 cwt, which gives a transportation policy

of dispatching every 0.04 years, i.e. 12 days. From Eq (5.12), we can calculate n = 21,

which determines the carrier’s MWT = nTDw = 100 cwt, i.e. the weight of supplier’s

shipments have to be greater than 10 000 lbs to receive the transportation discount. To

make sure both the carrier and supplier can gain payoffs from this discount, the upper

and lower bounds of fV are obtained from Eqs (5.15) and (5.13) as $ 49.65 and 46.50 per

cwt, respectively. Table 5.3 lists the transportation discount policy at this stage and the

corresponding payoffs according to the degree to which the carrier is willing to share the

payoff with the supplier. For instance, assuming that the carrier would like to keep 50%

of the payoffs, we get fV = $ 48.08 per cwt. By examining the supplier’s over-declaration

condition described by Eq (5.19), this rate is feasible.

Now taking this transportation discount, the supplier would like to revise his quantity

discount policy, aiming to encourage the buyer to further increase her order quantity to

Q2 = nTD = 100 units. Similar to Stage 1, we can calculate p[U ]
2 = 194.22 per unit
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Table 5.3: Example 5.1 - Carrier’s discount policy for Stage 2

% of payoff

allocated to supplier 0% 25% 50% 75% 100%

fV $49.65 $48.86 $48.08 $47.29 $46.50

Π2−1
S 0 $94 $189 $284 $378

Π2−1
C $378 $284 $189 $94 0

(2.888%) and p[L]
2 = 192.65 per unit (3.675%). As before, the supplier then determines the

quantity discount to offer, through the percentage of total payoffs shared with the buyer.

Assuming the supplier decides to evenly divide those payoffs with the buyer, the price

should be 193.47 per unit (3.266%). This price guarantees additional payoffs of $ 98 for

both the supplier and buyer. From this example, we find that, with a discounted freight

rate of $ 48.08 per cwt and a quantity discount of 3.266%, the total payoffs for the buyer,

supplier and carrier can be calculated as $ 173, $ 173, and $ 189, respectively.

5.5 Cooperative model

This section studies a situation where the buyer, supplier, and carrier agree to make their

inventory and discount decisions jointly. We propose a cooperative game model with

“transferable utility.” In this type of game, each player has the option to give any amount

of gains to another player. The net monetary flow decreases the giving player’s utility

payoff, and increases the receiving player’s utility payoff (Myerson, 1991). Therefore, the
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objective becomes to maximize the total joint profits of the three parties, rather than each

individual payoff. Then, all parties share the benefits with no extra cost.

5.5.1 Model development

We define the joint profit as

πJ = πB2 + πS2 + πC2

= Dx−

(
AB

nT
+

1

2
nTDrBp2

)
−

(
AS

nT
+

1

2
nTDrSv

)
− 1

2
nTDrw. (5.22)

Assuming buyer keeps the same selling price, we can rewrite the above equation as an

optimization problem that minimizes the joint cost. At the same time, the payoffs for all

parties should be positive, i.e.

min
n,p,fV

TCJ =
AB

nT
+

1

2
nTDrBp2 +

AS

nT
+

1

2
nTDrSv +

1

2
nTDrw; (5.23)

s.t.

Π2−0

B = πB2 − πB0 ≥ 0;

Π2−0

S = πS2 − πS0 ≥ 0;

Π2−0

C = πC2 − πC0 ≥ 0;

n integer; p, fV ≥ 0.
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Note that we skip j = 1 (the middle stage) in this case. That is because when all parties

make their decisions together, they don’t need to consider the case of a single discount.

LEMMA 5.1. By making decisions jointly, neither the purchasing price nor the trans-

portation price is higher than the result in the noncooperative model.

Proof. From Eqs (5.23), we notice that TCJ is monotonically increasing in p. So when p is

at its lowest value, TCJ is minimized. That lower bound of p can be obtained by setting

Π2−0
S = 0, i.e.

p(J) = p[L] = p0 + w(fV − fN) +

(
1

nTD
− 1

QB

)
AS +

1

2
rSv

(
nT − QB

D

)
. (5.24)

Also, from Π2−0
S ≥ 0, we find that p is minimized when fV is at its lowest value. This

lower bound f [L]

V can be found by setting Π2−0
C = 0, i.e.

f (J)

V = f [L]

V = fN +
1

2

(
nT − QB

D

)
rw −

F

QBw
. (5.25)

Since both p(J) and f (J)

V are at their lowest levels, we have pJ ≤ p[N ] and f JV ≤ f [N ]

V ,

respectively.

LEMMA 5.2. By making decisions jointly, the value of the integer n is lower than in the

noncooperative case.
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Proof. From the objective function of the joint model, letting ∂TCJ/∂n = 0, we have

n(J) =
1

T

√
2(AB + AS)

D(rBp+ rSv + rww)
. (5.26)

Note that the order quantity that maximizes the supplier’s payoff is higher than that

which maximizes the buyer’s. Therefore, comparing to the noncooperative model:

n(J) <
1

T

√
2(AB + AS)

D(rBp+ rSv)
<

1

T

√√√√√2AS

(
1 +

rBp

rSv

)
D(rBp+ rSv)

=
1

T

√
2AS

DrSv
=
QS

T
≤

⌈
QS

T

⌉
= n(N).

Furthermore, because n(J) < n(N), the time between supplier’s shipments is shorter,

and accordingly, the weight of each shipment is lower. This fact would make it easier for

the carrier to consolidate these shipments to the regular loads with fewer worries about

exceeding transportation capacity.

PROPOSITION 5.3. When the joint payoffs are maximized, only the buyer’s payoff is

positive. Both other parties need to share the payoff gained by the buyer.

Proof. From the previous proofs, we have the solutions for the joint decision model as:

n(J) =
1

T

√
2(AB + AS)

D(rBp+ rSv + rww)
;
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p(J) = p0 + w(fV − fN) +

(
1

nTD
− 1

QB

)
AS +

1

2
rSv

(
nT − QB

D

)
;

f (J)

V = fN +
1

2

(
nT − QB

D

)
rw −

F

QBw
.

Note that p(J) and f (J)

V are obtained by letting Π2−0
S = 0 and Π2−0

C = 0, respectively.

Therefore, at the optimal solution, the only party that gains payoff (cost saving) is the

buyer, while the other two parties each have zero profit. Therefore, at this point, all three

parties need to share the payoff gained originally by the buyer.

PROPOSITION 5.4. By making decisions jointly, the total payoffs for the buyer, sup-

plier, and carrier together are higher than the aggregate individual payoffs from the nonco-

operative model.

Proof. For both the noncooperative and cooperative models, the aggregate payoffs for

the buyer, supplier, and carrier together are the profit gained from the discount policies,

compared to the situation when no discount is offered, i.e. Stage 0. Therefore, whichever

case has a higher total profit gives a higher payoff.

We also notice that the cooperative model is solved to maximize this total profit [Eq.

(5.22)]. So no matter how payoffs are allocated among the players in the noncooperative

model, the corresponding aggregate profit is less than the optimal solution obtained from

Eq. (5.23), i.e. the maximum profit of Eq. (5.22).
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5.5.2 Example 5.2

Suppose that all three parties, with the same parameters listed in Table 5.1, are now

making decisions jointly. Solving Eqs (5.23) gives n(J) = 10, p(J) = $ 189.94 per unit, and

f (J)

V = $ 42.03 per cwt. Relative to the noncooperative model, the values of p and fV are

higher, and the value of n is lower.

These results boost the joint payoff to the level of $ 1237, about 2.3 times that of

the total payoffs obtained from the noncooperative model (Π(N)

J = Π(N)

B + Π(N)

S + Π(N)

C =

173 + 173 + 189 = $ 535).

5.6 Coalition analysis

From Examples 5.1 and 5.2, we realize that total payoffs for the three parties are signifi-

cantly improved from cooperation. However, can the three parties fairly divide the extra

payoffs among them? To effectively solve this allocation problem, a coalition analysis based

on the idea of Shapley Value is conducted in this section. We introduce a profit-sharing

mechanism in which each player shares an additional amount of payoff equaling to his/her

Shapley value.

Coalition formation is the most emphasized topic in cooperative game theory. When

more than two players are involved in a game, a subset of all the players may choose to

act cooperatively and share the payoffs gained from this coalition among them. Note that
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our cooperative model introduced in the last section is a special case of coalition, that

involving all three players. That can thus be called the “grand coalition.”

The Shapley Value is the value to a player of the opportunity to play a cooperative

game. This method was proposed by Shapley (1953) to calculate a unique expected payoff

allocation for the players in each coalition form. Through the Shapley value to each player

of the game, one can obtain a measure of the utility that this player can reasonably be

expected to receive in the game (Myerson, 1991). More specifically, given a utility-sharing

game, let the players join the coalition one at a time. Each player’s contribution is the

incremental value that this player adds to the payoff at joining. The Shapley Value of a

player is his average utility contribution over all possible orderings of the players (Young,

1994). A principle of sharing based on contribution gives each player an incentive to

cooperate.

Let N be the player set, i.e. N = {B, S,C}, where B, S, and C respectively denote the

buyer, supplier and the carrier. The characteristic function u(J ) specifies the maximum

value that can be realized by coalition J (J ⊆ N ). This function represents the amount

of transferable utility that the members of J could earn without any help from the players

outside of J . We always have u(∅) = 0. The Shapley Value is defined as a unique value,

φ(.), for all characteristic functions u(.). This value can be computed using

φi(u) =
∑
J⊆N−i

|J |!(|N | − |J | − 1)!

|N |!
[u(J ∪ i)− u(J )], (5.27)
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where i = B, S or C, respectively represents the three parties.

Note that when |J | = 1, the values of u({B}), u({S}), and u({C}) can be obtained

in the noncooperative model with no sharing among the parties, i.e. u({B}) = Π(N)

B ,

u({S}) = Π(N)

S , and u({C}) = Π(N)

C . Also, the value of u(N ) can be computed by the joint

payoffs from the cooperative approach, i.e. u(N ) = ΠJ . The next three subsections study

the coalitions between two of the players and calculate the value of u(J ) when |J | = 2.

5.6.1 Case I: J1 = {Buyer, Supplier}

The buyer and supplier act together, while the carrier is on its own. Two stages exist,

in addition to the starting stage j = 0: in Stage 1, the buyer and supplier make their

joint decisions about the quantity discount; and then, the carrier’s transportation discount

decision comes into action in Stage 2.

The best solution from the buyer-supplier perspective is obtained by solving the opti-

mization problem:

max
Q,p

πBS1 = πB1 + πS1

= Dx−

(
D

Q
AB +

1

2
QrBp

)
−

(
D

Q
AS +

1

2
QrSv +DwfN

)
.
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This is equivalent to

min
Q,p

TCBS1 =
D

Q
AB +

1

2
QrBp+

D

Q
AS +

1

2
QrSv +DwfN ; (5.28)

s.t.

Π1−0

B = πB1 − πB0 ≥ 0;

Π1−0

S = πS1 − πS0 ≥ 0;

Q, p ≥ 0.

Solving this problem gives us:

Q(PJ1)

1 =

√
2D(AB + AS)

rBp
(PJ1)
1 + rSv

; (5.29)

p(PJ1)

1 = p0 +

(
1

Q(PJ1)
1

− 1

QB

)
AS +

1

2D
rSv(Q(PJ1)

1 −QB). (5.30)

Now from the carrier’s standpoint, let

n− 1 <
1

T

√
2(AB + AS)

D(rBp
(PJ1)
1 + rSv)

< n, (5.31)

or

n(PJ1) =

⌈
1

T

√
2(AB + AS)

D(rBp
(PJ1)
1 + rSv)

⌉
(5.32)
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LEMMA 5.3. The value of the integer n(PJ1) in the partial joint model (Case I) is larger

than in the joint model, but smaller than in the noncooperative model.

Proof. Compare the three integer values n from Eqs. (5.12), (5.26), and (5.32). Here there

are three different discounts, respectively for the noncooperative, the partially-joint, and

the joint models. Although the value of p differs in each case, the resulting change in

the buyer’s inventory holding cost is insignificant and can be neglected, compared to the

supplier’s holding cost. It is then easy to see that n(J) < n(PJ1) < n(N).

Similarly to the noncooperative model, with this value of n(PJ1), we can calculate the

lower bound of fV as

fV ≥ f (PJ1)[L]

V = fN +
1

2

(
n(PJ1)T − Q(PJ1)

1

D

)
rw −

F

Q(PJ1)
1 w

, (5.33)

and the upper bound of fV as

fV ≤ f (PJ1)[U ]

V = fN +
1

w

[(
p(JP1)[U ]

2 − p(PJ1)

1

)
−

(
1

n(PJ1)TD
− 1

Q(PJ1)
1

)
AS

−1

2
rSv

(
n(PJ1)T − Q(PJ1)

1

D

)]
, (5.34)
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where

p(PJ1)

2 ≤ p(PJ1)[U ]

2 =

Dp(PJ1)

1 +

(
D

Q(PJ1)
1

− 1

n(PJ1)T

)
AB +

1

2
Q(PJ1)

1 rBp
(PJ1)

1

D +
1

2
n(PJ1)TDrB

. (5.35)

Also, we can obtain the lower bound of p(PJ1)
2 as

p(PJ1)

2 ≥ p(PJ1)[L]

2 = p(PJ1)

1 + w(fV − fN) +

(
1

n(PJ1)TD
− 1

Q(PJ1)
1

)
AS

+
1

2
rSv

(
n(PJ1)T − Q(PJ1)

1

D

)
. (5.36)

LEMMA 5.4. In the case of J1 = {Buyer, Supplier}, the transportation discount does

not change the coalition payoffs for the buyer and supplier.

Proof. Acting independently to the coalition parties (supplier and buyer), the carrier would

like to maximize its own payoff in this case rather than sharing with others. Therefore, we

can determine f (PJ1)

V = f (PJ1)[U ]

V . The value of f (PJ1)[U ]

V is given by Eqs. (5.34) and (5.35).

In light of f (PJ1)

V , the supplier modifies the discounted price to make sure his own payoff

is positive, i.e. setting p(PJ1) = p(PJ1)[L]
2 . Note from Eqs. (5.34)-(5.36), it is easy to show

that when f (PJ1)

V = f (PJ1)[U ]

V , p(PJ1)[L]
2 = p(PJ1)[U ]

2 . Therefore, at this value of f (PJ1)[U ]

V , payoffs

for both the buyer and supplier stay the same as in Stage 1.

With the optimal values obtained for n(PJ1), p(PJ1), and f (PJ1)

V , we can compute the
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coalition payoff for the buyer and supplier (the optimal value of Π1−0
B + Π1−0

S in Eq. (5.28)),

which is determined as u(J1), where J1 = {Buyer, Supplier}.

5.6.2 Case II: J2 = {Supplier, Carrier}

The second case of the partial joint model describes a situation that the supplier and carrier

make decisions together first, and then the supplier offers the determined quantity discount

to the buyer. The buyer then decides whether to take the advantage of the discount or

not.

For the supplier and carrier, they would like to maximize their joint profit, i.e.

max
n,p,fV

πSC2 = Dp−

(
1

nT
AS +

1

2
nTDrSv

)
− 1

2
nTDwrw (5.37)

s.t.

Π2−0

S = πS2 − πS0 ≥ 0;

Π2−0

C = πC2 − πC0 ≥ 0;

n integer; p, fV ≥ 0.

Solving this optimization problem, we have

n(PJ2) =
1

T

√
2AS

D(rSv + wrw)
, (5.38)
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f (PJ2)

V = fN +
1

2

(
n(PJ2)T − QB

D

)
rw −

F

QBw
, (5.39)

and the lower bound of p is

p(PJ2)[L] = p0 +
1

2

(
n(PJ2)T − QB

D

)
wrw −

F

QB

+

(
1

n(PJ2)TD
− 1

QB

)
AS

+
1

2
rSv

(
n(PJ2)T − QB

D

)
. (5.40)

LEMMA 5.5. The value of the integer n(PJ2) in the coalition model (Case II) is lower

than in the noncooperative model.

Proof. The proof is omitted due to its similarity to the proof of Lemma 5.3.

To encourage the buyer to place orders every n(PJ2)T units of time, supplier must offer

a price that guarantees Π2−0
B ≥ 0. This gives the upper bound of selling price:

p(PJ2)[U ] =

Dp0 + (
D

QB

− 1

n(PJ2)T
)AB +

1

2
rBQBp0

D +
1

2
rBn

(PJ2)TD
(5.41)

In this case, due to the coalition between the supplier and carrier, they would like

to maximize their joint payoffs and not share any gain with the buyer. Therefore the

supplier sets the selling price at its upper bound, i.e. p(PJ2) = p(PJ2)[U ], as determined by

Eq. (5.41). That joint payoff for the supplier and carrier [the optimal value of Π2−0
S + Π2−0

C

from Eq.(5.37)] is the value of u(J2), where J2 = {Supplier, Carrier}.
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5.6.3 Case III: J3 = {Buyer, Carrier}

The last case considers the situation in which the buyer and carrier cooperate and make

decisions together. In this case, at the first stage, the supplier sets and offers the quantity

discount. At Stage 2, the buyer and carrier negotiate with each other to determine the

order pattern and transportation discount, and agree to share the extra payoff gained

from this coalition. The supplier then takes the transportation discount and readjusts his

quantity discount.

This is a special case of coalition, compared to the previous two cases. The reason

is that the buyer and carrier are connected through the supplier, specifically, the selling

price that supplier offers. Not cooperating with any party in this case, the supplier would

act exactly the same as in the noncooperative situation, i.e. offer a quantity discount

that will maximize his own profit. The buyer could choose to take the discount if she can

gain non-negative payoffs from it, or discard it otherwise. This quantity discount can be

determined by the procedure proposed in the noncooperative model. Therefore, from the

supplier’s point of view, at Stage 1, the discount breakpoint is QS =
√

2ASD/rSv, and the

discounted price is

p(PJ3)

1 =

Dp0 +

(
1

QB

− 1

QS

)
DAB +

1

2
QBrBp0

D +
1

2
nTDrB

. (5.42)

Now moving to Stage 2, the joint decision of the buyer and carrier can be expressed as
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the following maximization problem:

max
n,fV

ΠBC3 = Dx−

(
Dp+

1

nT
AB +

1

2
nTDrBp

)
+DwfV −

1

2
nTDwrw (5.43)

s.t.

Π2−1

B = πB2 − πB1 ≥ 0;

Π2−1

S = πS2 − πS1 ≥ 0;

Π2−1

C = πC2 − πC1 ≥ 0;

n ≥ 1

T

√
2AS/DrSv;

n integer; fV ≥ 0.

Note that, compared to the models (5.28) and (5.37), we introduce an additional constraint

regarding the feasible range of n, generated from the breakpoint QS =
√

2ASD/rSv. The

reason is that the buyer could only take advantage of the quantity discount when her order

quantity is greater than this breakpoint.

LEMMA 5.6. The value of the integer n(PJ3) in the partial joint model (Case III) is the

same as in the noncooperative model.

Proof. Solving Eq. (5.43), we have

n =
1

T

√
2AB

D(rBp+ wrw)
. (5.44)
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However, because

n =
1

T

√
2AB

D(rBp+ wrw)
<

1

T

√
2AB

DrBp
<

1

T

√
2AS

DrSv
, (5.45)

this value of n is not feasible. Thus we must have

n(PJ3) =

⌈
1

T

√
2AS

DrSv

⌉
. (5.46)

With this transportation discount breakpoint, the supplier can now readjust his selling

price as

p(PJ3) =

Dp0 +

(
1

QB

− 1

nTD

)
DAB +

1

2
QBrBp0

D +
1

2
nTDrB

. (5.47)

Note that ΠBC3 is a monotonically increasing function of fV . Therefore, the best value

of fV is its upper bound, found from Π2−1
S = πS2 − πS1 = 0, i.e.

f (PJ3)

V ≤ f (PJ3)[U ]

V = fN +
1

w

[(
p(JP3) − p1

)
−

(
1

n(PJ3)TD
− 1

QS

)
AS

− 1

2
rSv

(
n(PJ3)T − QS

D

)]
. (5.48)

Thus, the joint payoff for the supplier and carrier can be calculated using the value of
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n(PJ3), the selling price for the product p(PJ3), and the transportation rate f (PJ3)

V respectively

obtained from Eqs. (5.46), (5.47), and (5.48). We notice that the solutions for this case

are exactly the same as in the noncooperative model. The reason for this fact is actually

very intuitive: the supplier is a “bridge” connecting the other two parties, there is no way

for the buyer and carrier to cooperate without this bridge.

This payoff [the optimal value of Π2−1
B +Π2−1

C from Eq.(5.43)] is the value of u(J3), where

J3 = {Buyer, Carrier} in this case.

5.6.4 Solution procedure using Shapley Value

Now having obtained u(.), the Shapley Values of this problem can be calculated by Eq.

(5.27). The procedure to compute the Shapley Values now follows.

Step 1 Calculate u(.) based on the noncooperative model, cooperative model, and the three

cases of coalition models. To be specific, u({B}) = Π(N)

B , u({S}) = Π(N)

S , u({C}) =

Π(N)

C , u({BS}) = ΠBS from coalition case I, u({SC}) = ΠSC from coalition case II,

u({BC}) = ΠBC from coalition case III, and u(N ) = u({BSC}) = ΠJ from the

cooperative model, respectively.

Step 2 Fill these results in the corresponding cells of Table 5.4. Note that the left column

lists 6 permutations of N = {B, S,C}, with names of the players across the top of

the table. Each cell shows that player’s contribution to the coalition it joins. This
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Table 5.4: Calculation of the Shapley Values

Payoffs

Permutation Buyer Supplier Carrier

BSC Π
(N)
B ΠBS −Π

(N)
B ΠJ −ΠBS

BCS Π
(N)
B ΠJ −ΠBC ΠBC −Π

(N)
B

SBC ΠBS −Π
(N)
S Π

(N)
S ΠJ −ΠBS

SCB ΠJ −ΠSC Π
(N)
S ΠSC −Π

(N)
S

CBS ΠBC −Π
(N)
C ΠJ −ΠBC Π

(N)
C

CSB ΠJ −ΠSC ΠSC −Π
(N)
C Π

(N)
C

contribution is the value added by the particular player (indicated by the column)

when he or she joins the preceding coalition in a permutation (specified by the row).

For example, in the permutation BSC, the buyer joins the set ∅, so the buyer is

credited with u({B}) − u(∅) = Π(N)

B . Then the supplier enters and is credited with

u({BS}) − u({B}) = ΠBS − Π(N)

B . Finally the carrier joins, and the grand coalition

is now formed. The carrier’s contribution to the resulting payoff is u({BSC}) −

u({BS}) = ΠJ − ΠBS.

Step 3 For each player’s column, compute the average over the six permutations. The figure

obtained is the Shapley Value for each player, which provides a fair share of the joint

payoffs gained from the cooperation.
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5.6.5 Example 5.3

Let us continue employing the previous parameters (Table 5.1) to study the effects of

coalitions. In Case I, the buyer and supplier first act together to make the quantity

discount decisions. By solving Eq. (5.28), we have Q(PJ1)
1 = 68 units and p(PJ1)

1 = $ 195.08

per unit, with a quantity discount percentage of 2.462%. Then, the carrier analyzes the

situation at this stage, and tries to determine its transportation discount. From Eq. (5.32),

the integer n(PJ1) can be calculated as 15. Additionally, the carrier would like to maximize

its own payoff and at the same time make sure that the payoffs of the buyer and supplier

are not negative. So the value of fV can be determined as f (PJ1)

V = f (PJ1)[U ]

V = $ 49.94 per

cwt. In light of this discounted freight rate, the supplier and buyer readjust their joint

decision to ordering each time the quantity Q(PJ1) = dn(PJ1)T e = 72 units at the price of

p(PJ1) = $ 194.66 per unit(2.672%). Under this policy, the joint payoff for the buyer and

supplier is $ 437, and the carrier’s payoff is $ 593. So we have u(J1) = u({BS}) = $ 437.

Checking the condition (Eq. (5.19)) confirms the feasibility of this rate.

For Case II, the supplier and carrier first make their discount decisions together. Solving

Eqs. (5.37) gives n(JP2) = 11 and f (PJ2)

V = $ 42.64 per cwt. The order quantity is thus 52

units. This coalition gives the supplier and carrier a joint payoff of $ 1177, i.e. u(J2) =

u({SC}) = $ 1177. Taking the preceding freight rate into consideration, the supplier

can respectively calculate from Eqs. (5.40) and (5.41) the lower and upper bounds of the

discounted selling price as p(PJ2)[L] = $ 189.89 per unit (5.054%) and p(PJ2)[U ] = $ 199.70
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per unit (0.151%). Note that, in this case, the objective of the coalition pair (supplier and

carrier) is to maximize their joint payoffs under the condition that the buyer does not lose.

Therefore the selling price is determined at the upper bound, i.e. p(PJ2) = $ 199.70. The

buyer’s payoff is zero at this price.

Case III considers the condition that the buyer cooperates with carrier, while the sup-

plier acts independently. The best coalition policy can be obtained from Eqs. (5.46)

through (5.48) as n(PJ3) = 21, p(PJ3) = $ 194.80, and f (PJ3)

V = $ 49.65/cwt, respectively.

This policy gives a joint payoff of $378 and the supplier’s payoff of $145. Therefore,

u(J3) = u({BC}) = $ 378.

Table 5.5 summarizes the results of all numerical examples in Section 5.6. Note that the

results computed for the noncooperative model are based on the situation that all players

act independently and maximize their own payoffs, i.e. no sharing among the players.

Specifically, u({B}) = Π(N)

B = 0, u({S}) = Π(N)

S = $ 145, and u({C}) = Π(N)

C = $ 378

(Tables 5.2 and 5.3). Also, from the cooperative model, u(N ) = u({BSC}) = $ 1237.

We note that the total payoffs for each of the three coalition cases are greater than

the result from the noncooperative model. These facts indicate that as the degree of joint

decision making grows, the total payoffs for the buyer, supplier, and carrier increase, i.e.

the channel efficiency can be significantly improved by coordinating with other players.

The payoffs to each party demonstrate how they can all benefit by cooperating with the

others. Those benefits increase as the degree of cooperation increases. That is,
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Table 5.5: Numerical example - Results concerning coalitions

Noncooperative Coalition Cooperative

Model

Buyer-Supplier Supplier-Carrier Buyer-Carrier (Grand

Model (Case I) (Case II) (Case III) Coalition)

p $194.80 $194.66 $199.70 $194.80 $189.94

ρ 2.599% 2.672% 0.151% 2.599% 5.029%

fV $49.65 $49.94 $42.64 $49.65 $42.03

n 21 15 11 21 10

Q 100 72 52 100 49

ΠB 0 - 0 - -

ΠS $145 - - $145 -

ΠC $378 $593 - - -

ΠBS - $437 - - -

ΠSC - - $1177 - -

ΠBC - - - $378 -

ΠJ - - - - $1237
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LEMMA 5.7. The total payoffs obtained in each of the three cases of coalitions are less

than the value from the grand-coalition model.

Proof. As in the proof of Proposition 5.4, the optimal solution of the cooperative model, i.e.

the grand coalition, yields the maximal total profit, i.e. the maximization of total payoffs.

So the aggregate payoffs for any other cases, including the noncooperative model and

coalitions involving two of the players, are feasible solutions to the problem of maximizing

the joint profit ΠJ . But the aggregate payoffs for those other cases cannot exceed those of

the cooperative model.

Employing the numerical results from Table 5.5 in Table 5.4 yields the values in Table

5.6. The Shapley Value for each player is calculated by averaging the six permutations for

each column. According to the table, the three players can divide the joint payoff of $1237

(Table 5.5) as $69, $540, and $628, respectively, to the buyer, supplier, and carrier.

There are three pair-wise coalitions. According to Table 5.6, the joint payoffs to the

players in each case is less than the sum of what those could earn by being in the grand

coalition. Hence, the grand coalition is stable in a long run.

5.7 Summary

When it comes to the coordination of transportation and inventory decisions, most research

has been conducted from the buyer’s perspective. Given both quantity and transportation
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Table 5.6: Numerical example - Shapley Value calculation

Payoffs

Coalitions Buyer Supplier Carrier

BSC 0 $437 $800

BCS 0 $859 $378

SBC $292 $145 $800

SCB $60 $145 $1032

CBS $0 $859 $378

CSB $60 $799 $378

Average $69 $540 $628

discounts, the buyer determines the replenishment policy to minimize her total costs or

maximize her own profit. Considering the four cases of transportation problems, this is

the case in which buyer chooses the carrier and pays the relevant transportation cost (Case

IV). Different from previous work, the approaches proposed in this chapter analyze Case

III, in which the supplier pays for the common-carrier transportation service.

The purpose of our research has been to coordinate the quantity and transportation

discounts offered by the supplier and carrier. We first studied the payoffs that each actor

obtained from the coordination. Distinct from the payoffs to the buyer and supplier, calcu-

lation of the carrier’s payoff required taking into account the transportation consolidation

decision by employing the ESW model. We also revealed the motivation for the carrier

to offer a transportation discount, namely to encourage that the supplier ship his orders

according to (consistent with) the carrier’s regular loads. This would save the carrier the

148



fixed transportation expenses related to an additional dispatch.

Subsequently, we developed two models for considering the discount coordination prob-

lem under the situation that each party makes decision noncooperatively or cooperatively.

In the noncooperative model, we determined the upper and lower bounds on the selling

price and the freight rate offered by the supplier and carrier, respectively. Through a

simple numerical example, and as we proved in general (Proposition 5.4), the cooperative

model showed a better overall result of the joint payoffs than the sum of separate payoffs

from the noncooperative model.

Furthermore, we conducted a coalition analysis based on the concept of the Shapley

Value. The three possible cases of coalition were discussed and integrated. A procedure to

apply the Shapley Value to fairly divide the extra gains from the cooperation was proposed

and illustrated by numerical examples.
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Chapter 6

Conclusions and Future Research

This chapter summarizes the contributions of this thesis. We conclude with the concen-

tration and orientation that our ongoing research will continue in the future.

6.1 Conclusions

Although discounts have been used and analyzed for decades, there were still so many

things about discounts that needed to be explored. The complications of reality urged us

to consider this problem in a different way. Switching the perspective from the participant

who takes the discount, to the one who sets the discount, has led to a better resolution for

improving the effectiveness and efficiency of that supply chain. However, our objective then

took this even one step further, involving both the quantity and transportation discounts.

150



We were motivated to ask, “What would be the results of coordinating these two discounts

for the supplier and the carrier,” as well as “How to achieve this coordination and make it

profitable?”

Our research started from a simple case, in which the buyer’s total costs may be signif-

icantly reduced by the joint consideration of quantity and transportation discounts. Then

the transportation problems were classified into four distinctive cases. Through the anal-

yses of decisions and costs, the problem structure was enhanced, and thus, we gained a

better understanding of the motivation and objectives. We have conducted our research

in three phases.

First of all, assuming a single product, we investigated the quantity discounts from

the supplier’s perspective, and including the price elasticity of demand. A noncooperative

game-theoretic approach and a joint decision model were developed to aid a sole supplier in

establishing an all-unit quantity discount policy in light of the buyer’s best reaction. The

Stackelberg equilibrium and Pareto optimal solution set were derived for the noncooper-

ative and joint-decision cases, respectively. Our research indicated that channel efficiency

can be improved significantly if the quantity discount decision is made jointly rather than

noncooperatively. Moreover, these two basic models were extended in three directions.

• The importance of transportation led us to extend our models to the case of product

shipment by the private fleet of either the supplier or buyer.

• We also considered the fact that the buyer may wish to set the best retail price to
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maximize her own payoff.

• A heuristic solution procedure showed the possibility of significant improvements by

condensing the heterogeneous-buyer groups to a smaller number of discount levels.

Numerical case studies were employed in Chapter 3 and throughout the thesis to illustrate

the practical applications of the models presented, and the sensitivity to model parameters.

Next, in Chapter 4, we considered a situation with a family of SKUs for which the

supplier will offer a quantity discount, according to the aggregate purchases of the product

group. Management of those items was based on the modified periodic policy. We defined

what is meant by the optimal discount scheme, and showed how to determine it.

With the group discount, a buyer’s best decision could be to order a larger amount,

one that will satisfy demand during a longer interval, i.e. for a greater multiple of the

base period T . However, that interval between replenishments (equivalent to the quantity

breakpoint for the group discount) should be chosen by maximizing the supplier’s payoff

function. The supplier offers that discount, to encourage the buyer to take it, by providing

a positive payoff to her. We demonstrated that, for any discount percentage between the

upper and lower bounds that we calculated, both the supplier and buyer will benefit from

the group discount policy. Additionally, another model maximizing the joint payoff of the

supplier and buyer was presented. In a simple numerical example, the joint model showed

a better overall result than did the case of separate payoffs to buyer and supplier. That is,

each party was better off in the case of the joint model.
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In that chapter, we developed another model, considering the fact that demand can

change due to variations in price. Two solution procedures were developed for the non-

cooperative and joint models, accompanying the corresponding maximization problems.

Through comparison of numerical results from the two examples, we showed the impacts

of price elasticity on the supplier’s optimal discount policy. We thus illustrated that price

elasticity of demand is one of the most important motivations, both for the supplier to

offer a discount and for the buyer to accept it.

In Chapter 5, our third approach studied the case in which determination of the freight

discount offered by the common carrier (a public, for-hire trucking company) is integrated

into the quantity discount decisions. The transportation discount, especially an LTL dis-

count schedule, is extremely hard to set in practice. This is not only because of the

“phantom freight” phenomenon caused by over-declaration, but also due to the fact that

such a discount relates to both transportation and inventory issues. In this research, we

studied the problem of coordinating the transportation and inventory decisions both nonco-

operatively and cooperatively. More specifically, the transportation and quantity discount

decisions were again analyzed from the perspectives of the party who offers the discounts,

rather than the one that takes them. We showed that the cooperative approach provides

better overall results, compared to the noncooperative model. To divide the extra payoffs

gained from this cooperation, we further conducted a coalition analysis based upon the

concept of Shapley Value.
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6.2 Future research

Through our three main chapters of research results, the benefits of coordination were

obvious and attractive. However, these are only tips of the iceberg. There are many

directions that can be explored in the future.

First of all, the assumptions on demand rate can be relaxed. In all inventory-related

problems, demand is perhaps the most important issue. A firm’s inventory policy can

significantly vary due to demand situations that are being faced. We have discussed the

possibility of extending the carrier’s decision model presented in Chapter 5 to incorporate

in that model the fact that demand varies with respect to price. We will again compare

the results for this extended case with those obtained in Chapter 5, and draw conclusions

on price-sensitivity analogous to those in Chapter 4.

Stochastic demand is another possible direction. Most existing discount literature does

not consider the uncertainty of demand. Randomness is important in the newsvendor

model. Although that deals with a single-period case. the newsvendor model works well

in planning perishable goods or high-fashion items, and is the foundation of the inventory

control considering uncertain demand. So our future research will extend to allow stochastic

demand rate. We will seek the impact of demand uncertainty on the discount decisions,

on replenishment policies, and on the overall supply chain performance.

Secondly, the size of a model is always critical for its development. In our research,

model sizes refer to the numbers of buyers, products, as well as discount break points.
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We have examined the quantity discount problem with extension to multiple buyers or

multiple products (a family of items). What if the carrier provides services to multiple

shippers (or suppliers, in this thesis)? Would this affect the carrier’s shipment-consolidation

decisions, and thus affect the LTL discount schedule? If yes, what about the vendor and

the buyer? What should be their policies corresponding to carrier’s decisions? All these

very interesting questions lie in this path.

Moreover, up to now, we have analyzed only a simplified payoff function from the

carrier’s perspective. Actual transportation situations are far more complicated. Many

issues need to be taken into account when we are dealing with those problems. For example,

it is necessary to consider the restriction of transport capacities, both weight and volume.

The two main concerns about the maximum number of items that can be carried per

shipment, “weigh out” and “cube out,” need to be integrated into the transportation-

pricing procedures.

It is also possible for us to study the different relationships among the supplier, carrier

and buyer. Our models assume that the party who offers discounts has the dominant

power over the other party. Therefore, the manufacturer-Stackelberg game is employed.

However, in specific situations, the party who receives discounts is dominant. In this case,

the retailer-Stackelberg game is the appropriate framework. Moreover, there also exist

situations that no player is powerful enough to dominate. A Vertical-Nash game, different

from the Stackelberg game, is then applicable. In the Vertical-Nash game, both parties

make decisions and act simultaneously. Relevant literature includes Jeuland and Shugan
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(1983), Choi (1991), as well as Chu and Messinger (1997), among others. A comparison

among the three types of game models would provide us with interesting insights.

In addition, the availability of information is a critical issue worth considering. In this

thesis, one of the most important assumptions is “perfect information”, which is essential

to a Stackelberg game model. However, in reality, although the supplier can get the exact

information of a buyer’s annual demand and EOQ directly from this buyer’s order pattern,

estimating a buyer’s ordering and inventory holding costs is extremely challenging. The

situation becomes even more complicated when the demand is stochastic. Therefore, it

is necessary to analyze the case without full information. Corbett and de Groote (2000)

derived an optimal quantity discount policy under asymmetric information and compared

it to the situation where the supplier has full information. Other research that examined

the problem of supply chain coordination with asymmetric information includes Sucky

(2006), Burnetas et al. (2007), and Esmaeili and Zeephongsekul (2010), to name a few. It

will be inspiring to read through these articles.
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