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Abstract

Strong field approximation (SFA) is the most important approximation in the analytical
theory of intense laser matter interaction. Based on SFA many analytical theories have been
developed such that a broad spectrum of strong field physics phenomena can be described.
The central idea of SFA-based theories is to approximate the electron propagation in the
continuum by the Gordon-Volkov wavefunction - a well studied analytical solution to the
time-dependent Schrodinger equation where the electron is driven by the laser field only.
This approximation captures some of the essential features of strong-field physics, but at
the same time causes several problems in the theory. In this thesis a comprehensive study
of the SFA has been presented. We introduce the SFA in both the length gauge and the
velocity gauge. The adequacy of SFA has been discussed by comparing the theory to the
numerical solution to the time-dependent Schrédinger equation (TDSE). The numerical
method of solving TDSE is presented as a separate chapter.

In order to obtain a better understanding of the applicability of SFA-based theory,
we tested the major approximations in the theory by using three different models: the
zero-range potential, the hydrogen atom and the hydrogen molecular ion. The accuracy of
the method of steepest descent (MSD) and other major approximations in the analytical
theory have also been examined. Targeting at the generalization of the SFA-based theories,
several extensions and improvements of SFA have been proposed. We will review them in
detail and bring them into unity.

One of the most successful aspect of the SFA-based theories is to describe and de-
compose electron dynamics into components such that identification of different physical
processes becomes possible. For instance, the direct ionization and non-sequential double
ionization bear clear definitions only within the SFA-based framework. The physical inter-
pretation becomes more straight forward due to the fact that there is a close connection
between the quantum orbital and classical trajectory. The MSD is a mathematical tool to
bridge the quantum orbital and the classical trajectory in an SFA-based theory. We will
discuss MSD within a systematic framework so that the higher order asymptotic expansion
terms can be obtained in a straight forward way.

After gaining substantial understanding of the SFA and the MSD we developed a graph-
ic user interface (GUI) software that is capable of calculating strong field ionization rates,
photo-electron spectra and high harmonic generation spectra. The software interface and
algorithms have been presented in the thesis. Sample calculations were done and compared
with the previously obtained results.

In the last chapter of the thesis, we further developed the theory to describe a two-laser
ionization scheme where one laser is chosen to be resonantly coupled two real states and
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the other is a strong few-cycle laser pulse. We demonstrate the periodic dependence of
the total ionization on the appearance time of the strong few-cycle laser pulse. In the
case of few-cycle pulses with lower intensity, we observed side-bands in the photoelectron
spectrum, whose intensity vary periodically with the appearance time of the pulse. We
show that our extended theory is able to explain these phenomena adequately.
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Chapter 1

Introduction

Electron is first discovered by British physicist J.J.Thomson in the year of 1897 [I]. It is
considered as an elementary particle that has definite mass and charge, but it does not
possess any internal degrees of freedom. The electron mass is so tiny such that grouping
trillions of trillions of electrons together can not even change the readings on a bathroom
scale. The charge it carries is so little that when trillions of electrons passing through your
finger tip in a second you can barely feel anything. It is hard to imagine the electron with
such an insignificant appearance plays the most significant role in the modern technology.
In fact, any further understanding of the electron properties may lead to a technology
revolution. For example, in the past several decades people have witnessed the revolution
of the electronic industry. The central technology of the revolution - integrated chip, is
developed based on the deep understanding of electron transport properties in the semi-
conductor materials. The rapid development of modern chemical industry is also based on
the comprehensive understanding of the electronic structure of the atoms and molecules.
Through ab initio calculations people start to understand why the atoms bond to form
molecules, what information can be retrieved from the atomic molecular spectra and how
people can control the chemical reactions by altering the electronic states using light. It
is exactly this thorough understanding of the electronic structure that helped people to
design new materials that can do the job never could be imagined before, helped biologist
to discover the very basic mechanism that life itself depending on, thereby tackling the
ancient philosophical questions from a scientific perspective.

The understanding process will never reach an end. Rapid development of light source
technologies allow people to access more information in the atomic and molecular level and
at the same time gaining substantial controllability of the electron motion. A great leap
forward during this time period is the invention by Maiman [2] in 1960 - light amplification
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by stimulated emission of radiation, better known as laser. This device provides a unique
way of generating intense coherent light radiation which can be used as a tool to probe
and control the electron motion. Quantum mechanics is the the theory that describes the
interaction. It takes tens of genius minds several decades to sketch the outline of the theory;
thousands of diligent scientists have been working on the details and the extensions. As
the laser technology becomes more and more advanced, higher laser intensities and shorter
pulse length can be achieved, thereby pushing the theory to a region that have never been
encountered before. To understand where this trend will lead us, we should first briefly
review the history of laser-atom interaction according to an increasing laser-intensity.

In the early days when the laser intensity is low, atoms respond linearly to the external
laser fields. First order perturbation theory is commonly used to describe the laser-atom
interaction. A generally accepted physical picture behind the theory is given by the follow-
ing. FElectrons initially occupied the field-free orbitals that possess discrete energy levels.
When the laser is shone on the atom, the electron will make transition from one orbital to
the other by absorbing/emitting one photon from/to the laser field. As a result the electron
will be in a superposition of the field-free orbitals hence breaking the spacial symmetry
of the charge distribution. Polarization is used to describe the response. In this particu-
lar case the polarization of atom can be written as a linear function of the electric field
strength: P(t) = x(WE(t), where the linear susceptibility x(*) only depends on the atom
itself. One year after the invention of laser, Franken et al. discovered the second-harmonic
generation which can be considered as the milestone that marks the beginning of nonlinear
optics [3]. Sum-frequency and difference-frequency generations were observed in the ex-
periments by Harris et al. in the late 1967 [4]. These are the second order nonlinear effects
which can be described by adding the second order nonlinear susceptibility term to the
polarization: P(t) = yWE(t) +x® E?(t). In this new picture, an atom can simultaneously
interact with two photons such that coherent adding or subtracting photon frequencies
becomes possible. Based on this new discovery people have invented new methods that
can alter the laser frequency. For example Ou et al. used potassium titanyl phosphate
crystal to double the laser frequency such that 85 percent conversion efficiency has been
achieved [5]. Since then the laser spectrum can be extended to a much broader regime
than before.

In the same year as the discovery of second-harmonic generation, Kaiser and Garret
observed two-photon absorption which soon became a useful spectroscopic tool for deter-
mining the energy levels that are not accessible through one photon transition [6]. The Kerr
electro-optic effect discovered by Scottish physicist John Kerr in 1875 can now be achieved
using the laser field itself (optical Kerr effect). These phenomena are known as the third
order nonlinear effects which can be fitted into the theoretical picture by adding a third or-



der nonlinear susceptibility term to the polarization P(t) = xW E(t)+xP E(t)+x E3(t).
In the gas phase where the second term vanishes due to symmetry, we can express the total
polarization as P(t) = x(WE(t) + x®® E3(t). The nonlinear refractive index is related to
the susceptibilities by

n® = 1+4m (XU +3xW | Eo)

where Ej is the laser field amplitude. Clearly it becomes an intensity-dependent quantity.
The intensity-dependent refractive index has led to many interesting physics. Laser self-
focusing and self-trapping in the medium were first demonstrated by Lallemand et al.
in 1965 [7]. This new finding helped Spence et al. invent the Kerr-lens mode-locking
which can be used to generate ultra-short femtosecond laser pulses; hence higher laser
intensity can be achieved (60 fs in 1991) [8]. What we can see here is an alternating pattern
of progress: a deep understanding of the laser-matter interaction helped people develop
better laser technologies and then the improved laser systems can be used to gain further
knowledge about laser-matter interaction. Of course this alternating progress will also urge
the development in other fields. For example, laser beam filamentation were discovered
as a result of irregularities initially present on the laser wavefront. The filamentation can
induce fluorescence or breakdown which were proposed to be a potential candidate for
remote sensing [9]. The optical bistability first proposed by Szdke et al. in 1969 and later
observed in experiment by Gibbs et al. in 1976 may allow people to create all-optical
switching devices for communication and computation [10].

From the theoretical point of view the perturbation theory has been very successful
in explaining these nonlinear phenomena. Together with the rapid development of the
theoretical methods for calculating the electronic structure, the perturbation theory has
been used to predict the values of the nonlinear susceptibilities for varies kinds of ma-
terials [11]. However as the laser intensity grows higher ionization becomes significant,
the conventional perturbation theory fails to explain the novel phenomena observed in the
experiments. For instance the peak suppression phenomenon and the plateau region in
the above threshold ionization spectrum clearly indicate the failure of the conventional
perturbation theory [I2]. Several non-perturbative theories have been proposed. They all
have their advantages and disadvantages depending on the laser parameter region and the
quantity that need to be calculated. One common feature for all the non-perturbative
theories is the consideration of laser field after the electron is promoted to the continuum.
This step which is also referred as the dressing of the continuum becomes essential to the
theory of strong field physics. Gordon-Volkov solution of the electron in the presence of the
external electric field has been discovered by Gordon [13] and Volkov [I4] independently.
Later in 1964 Keldysh proposed the strong field approximation which can be considered
as a very effective way to embed the Gordon-Volkov solution into the quantum mechanical



S-matrix formalism. It is the combination of the Gordon-Volkov solution and the S-matrix
formalism that forms the most widely used theory in strong field physics [15]. Because the
theory is based on an S-matrix formalism, it has a great flexibility to be extended to other
physical processes such as high harmonic generation and non-sequential double ionization.

The change from perturbative to a non-perturbative treatment leads to drastic change
of the physical pictures. Because the number of photons involved in each transition be-
comes large, the quantization phenomena becomes less significant and the system can be
considered as more classical-like. Within the transition region, one often finds that two
completely different physical pictures may peacefully co-exist without any contradiction.
For different parameter regions one can find one interpretation that is superior than the
other. The crucial point is to define a proper parameter that will tell people when to use
what picture.

In this thesis we will mainly focus on the non-perturbative theory that is based on the
strong field approximation (SFA). The organization of the thesis can be summarised as
follows:

In Chapter [2] we introduce the SFA-based theories in detail. A formal derivation of
the S-matrix expansion is given and followed by the introduction of SFA in the length
gauge and the velocity gauge. The comparison between the two gauges clearly indicates
that SFA-based theories are gauge dependent. This is the most serious problem caused
by SFA that does not have any general solution yet. The other problems caused by SFA
are discussed in subsequent sections. First of all the Coulomb correction problem can be
partially solved using a semiclassical method. Secondly, the resonance effect or polarization
effect can be included by introducing a partition of the Hilbert space. In the end of this
chapter we introduce the Lewenstein theory of high harmonic generation which can be
considered as the most successful extension of Keldysh’s theory to the other strong field
physics phenomenon.

In Chapter |3| we focus on the mathematical technique, known as the method of steep-
est descent (MSD), that plays the central role in calculating the transition amplitude in
quantum mechanics. Sometimes it is also referred as the saddle point method (or the sad-
dle point approximation). This technique will be used to evaluate the temporal integrals
arisen in the SFA-based theories given by the previous chapter. Distinction has been made
between the situation with singularity coincide with the saddle point and the situation
without singularity.

In Chapter 4] we test the SFA and the method of steepest descent and other relevant
approximations using three models: the zero-range potential atom, the hydrogen atom and
the hydrogen molecular ion. Each model represent a characteristic example for a class of
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problems in the strong-field ionization. The purpose of the test is to gain some knowledge
about the validity of the crucial approximations in the theory, so that for a certain model
we can avoid the physical parameter region where the theory becomes inappropriate. This
study will be beneficial to the program that we will introduce in the next chapter.

In Chapter |5| we introduce the strong field ionization calculator which is a graphic
user interface program written in the MATLAB computing environment. The calcula-
tor combines the quantum chemistry softwares such as GAMESS or GAUSSIAN with the
SFA-based theories introduced in Chapter [2] It is capable of calculating the strong field
ionization rate, the photoelectron spectrum and the high harmonic generation spectrum.
The calculator has three major advantages. First of all it is computational less demanding
compared to the ab initio numerical methods. A laptop computer will be sufficient for all
its purposes. Secondly, it makes the SFA-based theories easily accessible through its user
friendly graphic interface. All of the complicated formalism is hidden in the background
which does not need to be concerned for most of the purposes. Lastly, the fact that this
calculator is based on the S-matrix expansion with SFA makes it easily extendible. For
instance, we can include Coulomb correction, resonance effect or different gauge calcula-
tions. The non-sequential double ionization process can also be included in the program.
Despite all the advantages, deficiency of this program is also clear. Because of the SFA | the
calculation can only achieve qualitative accuracy in general. Comparison to the ab initio
calculations is recommended if possible.

In Chapter [6] we introduce the numerical method that has been used to perform the ab
initio calculations in the thesis. The numerical solution to the time-dependent Schrodinger
equation can be considered as the exact result that is used to compare with the SFA-based
theories. However, due to its great demand on the computational power we can only use
the simplest system with a highly symmetric situation to test the theory.

In Chapter [7] we study a case that has two laser fields with different intensities. This
chapter can be considered as an extension of the SFA-based theory to the two-color laser
fields interaction. We theoretically investigated the interesting electron dynamics under
these two laser fields. Comparison with the numerical calculations has confirmed the
predictions by the theory.

In Chapter |§| we conclude this thesis with a discussion of future works.

In Appendix A we discuss Green’s function and its relation to the time evolution op-
erator. In Appendix B we present detail derivation of the transition rate. In Appendix C
the static tunneling ionization rate of hydrogen atom is derived in the parabolic coordinate
system. In Appendix D, detail of the derivation of the analytic formula for the tunneling
ionization rate is given.



Chapter 2

Theory of strong field ionization and
high harmonic generation

2.1 Introduction

The theory of intense laser atom interaction has been well developed nowadays (see Becker
and Faisal [16] or Milosevic, et al. [I7] for recent reviews). The method can be traced back
to the strong field approximation (SFA) proposed by Keldysh in 1964 [I5], which is the
most successful non-perturbative treatment of strong laser ionization of atoms. Keldysh
employed the length gauge in the description of the electromagnetic interaction with an
atom. Together with the pioneering work of Faisal [I8] and Reiss [19, 20] who used the
velocity gauge to describe the atom-laser interaction, their method is also known as the
KFR theory. While an exact theory should be gauge independent, the KFR theory, after
the introduction of the SFA, become gauge dependent, and it is not clear which gauge
would give a more accurate result in general. There is evidence that the length gauge
gives better results for negative ions [21I] and the nitrogen molecule [22]. One of the major
accomplishments of Keldysh was that his theory properly accounts for the two limiting cases
of strong field ionization: multiphoton ionization and tunneling ionization, depending on
whether the value of an adiabaticity parameter,

N=—, where wy = (2.1)

o 2ml.

is larger or smaller than unity. Here w is the laser frequency, I, is the atomic ionization
potential and Ej is the laser electric field amplitude. w; can be interpreted as the tunneling
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frequency. v is commonly known as the Keldysh parameter. Keldysh’s original paper [15]
considered only the case of a hydrogen atom, and details of the derivations were not
presented. While Keldysh’s approach tends to underestimate the total ionization rate
[23], a quasiclassical method was developed [24, 25] to treat the correction due to the
Coulomb potential. In a series of papers, Perelomov, Popov and Terentev (PPT) [26, 27]
extended Keldysh’s treatment to the case of a general atom ionized by lasers of both linear
polarization and elliptical polarization. In their approach both the Volkov propagator
and the quasiclassical propagator were used. The quasiclassical approach allows them
to include the Coulomb correction by improving the action in a perturbative way. A
matching procedure was proposed to take proper account of the asymptotic behaviour
of the initial state of the electron. After the Coulomb correction, a simple analytical
ionization rate formula for atoms were derived. It is only until recently, the higher order
Coulomb correction is obtained which is believed to be valid in arbitrary values of the
Keldysh parameter [28]. See also the recent reviews by Popov on the Keldysh theory [29]
and the quasiclassical method [30]. Their formula can be compared to the well-known
ADK formula [31] in the tunneling limit v < 1.

In addition, the KFR theory has been extended to the study of high harmonic generation
process (HHG) [32], 33] for the long laser pulse. The essential features of HHG spectrum
can be well explained using this theory. The concept of quantum path born naturally in the
formalism is shown to be closely related to the classical model known as the simple man’s
model [34]. The quantum path takes complex values with the real part corresponding to
the classical trajectory and the imaginary part is associated with the tunneling nature of
electronic wavefunction. An extension of the theory to the HHG by ultra-short laser pulse
can be found in reference [35].

Further attempts to extend KFR theory to the molecular case has been made in refer-
ences [30, 37, 38]. Many phenomena observed in the molecular ionization experiments can
be well explained using the extended theory, but there are still some unsettled issues. For
instance, the theory predicts a suppression of the ionization yields for the molecules having
an anti-bonding symmetry valence orbital [39]. According to this prediction suppression is
expected for the Fy molecule. However this prediction is not confirmed by any experiment
[40]. Another example is the charge resonance enhanced ionization (CREI) first predicted
theoretically by Zuo et al. and later observed in experiments [41, 42]. At the time of
writing we have not aware of any SFA-based theory that is capable of describing the CREI
properly. Considering all these facts we believe that the extension of the KFR theory to
the molecular case is far from complete.

In this chapter we present a detailed derivation of the KFR theory and its extensions. we
summarize the formal results for the ionization amplitude based on the Dyson equations for
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the evolution operators. We apply the SFA to the exact ionization amplitude and derive
expressions for the differential and total ionization rates in term of an SFA transition
amplitude L, (k).

2.2 The formal derivation

The derivation in this section closely follows reference [43]. We shall employ atomic units
throughout this thesis (m = e = A = 4wy = 1 so that the charge on an electron is ¢ = —1).
The Schrodinger equation for the system is

10, W(t)) = H(t) (1)) (2:2)

For a system interacting with a laser field, the total Hamiltonian can be partitioned ac-
cording to

H(t) = Ho(t) + V(1) (2.3)
where the solution to the unperturbed system
(0|0 (t)) = Ho(t) |®(1)) (2.4)

is assumed known. The partition in eq. is not unique: we may choose different unper-
turbed Hamiltonians I:I((]i) (t) for the initial states |®®(¢)) and ]:Iéf) (t) for the final states
|®W)(t)) of the system [16]. To obtain formal expression for the transition amplitude, it
is convenient to express the total wave function |U(#)) in terms of the unperturbed wave
function |®(¢)). This can be accomplished by using the Green’s function method [16], or
the evolution operator formalism [I7]. We shall employ the evolution operators in this sec-
tion, and discuss the Green’s function technique and its relation to the evolution operators

in Appendix [A]

The evolution operators can be defined by the solutions to the following initial value
problems

[@-ﬁ@ﬁMﬂ):o,U@ﬂ:L (2.5)
P&—Eﬁﬂ%@ﬁ — 0, Uyt t)=1 (2.6)

where 1 is the unit operator. If |¥(¢')) and |®(#)) are the full wave function and unper-
turbed wave function, respectively, at t’, then

(U (1) = U, ) (t)), |2(t) = To(t,t)|@(t)) (2.7)

8



clearly satisfy the Schrédinger equations (2.2) and (2.4)), respectively, and the appropri-
ate initial conditions. Hence U(t, ') propagates the wavefunction |¥(Z)) under the full
Hamiltonian eq.(2.3)), while Uo(t,t') propagates the unperturbed wave function [®(t)) in
the absence of the perturbation V'(¢). They obey the group and unitary relations
Ut t)=Ut U ), Utt)=U{1);
Uo(t, 1) = Up(t, " U (t", 1), Uyt t') = US(t,1). (2.8)

The evolution operators are related by the following Dyson equations (see Appendix ,

cqs.(510). (511). and eq.(ATS)):

O(t.t) = Uolt, t') — i / Dot )V (R (1) (2.9)
O(t,t) = Dot #') — i / e OV () Do ), (2.10)

If V(t') = 0 as t' — —o0 so that U(—oc) = ®(—o0), these Dyson equations together with
eq.(2.7) give

[T(1)) = |@(t)) —i/_ dr Uy(t, 7)V (1) ¥(7)), (2.11)
(¥ (1)) = [(t)) —z‘/_ dr U(t, 1)V (1)|®()); (2.12)

which are equivalent to the Lippmann-Schwinger equations (A.6) and (A.9) in Appendix
[Al

We can now study the dynamics of the electron based on the above expansion. The
initial and final states |®;(¢)) and |®(¢)) will be the bound and continuum states of the
system in the presence of the binding potential of the system but in the absence of the
laser field [17, 44] so that they are orthogonal to each other: (®(¢)|®;(t)) = 0. V(t) then
represents the interaction of the system with the laser, which will be denoted by VL(t)
where Vi, (t) = 0 as t — +oo. The transition amplitude is given by

My = Tim (@ (1) W (1)) (2.13)

where |W;(t)) is the total wave function evolved from |®;(t')), ' — —oo, in the presence of
the binding potential with the laser turned on at t’. Using the evolution operator eq.([2.7)
to write |¥;(t)) = U(t,t')|®;(t')), t' = —oo, the Dyson equation (2.10) then gives

t

My = —ilim [ dr (®p0)|0(t,7)VL(7)|®:(7)), (2.14)

t—o0 S



where we note that (®;(¢)|Uy(t, )| Pi(t')) = (Ps(¢)|Pi(t)) = 0. Eq.(2.14) is ezact. It is
sometimes referred to as the "prior” form of the transition amplitude [16, [45].

2.3 Strong field approximation and choice of gauge

Two gauges are commonly used in the theory: The length gauge (LG) and the velocity
gauge (VG). In principle the calculation results should be invariant with respect to the
change of gauge; however, due to the strong field approximation, the gauge invariance is
broken. It is thus important to keep track on both gauges in all the calculations. Sometimes
different gauge will even provide us different physical intuitions. There is still no universal
rule to clarify the choice of gauge. In the end the result should be compared with the
numerical solution of the time-dependent Schrodinger equation and the experiments.

2.3.1 SFA-LG

Keldysh applied the strong field approximation (SFA) to the ionization of the hydrogen
atom [15], and his theory can readily be applied to other atoms [46, [47, 48] and molecules
[49] under the single-active-electron approximation (SAEA), in which the ionizing electron
is assumed to move independently in an effective potential V, in the presence of the laser
field. In this case, the total Hamiltonian eq. for the active electron can be written as

R 1 R R
H = —§v2 + Vo + Vi(t), (2.15)

where
Vi(t) =r-E(t) (2.16)

is the interaction of the electron with the electric field E(t) of the laser under the dipole
approximation in the length gauge. Our starting point is the exact equation (2.14]), in
which the initial state is the single electron ground state |®;(t)) = [1;)e'?' and the final
state is the single electron scattering state |®;(t)) = |ix(t)) specified by momentum k.

The approximations that lead to the Keldysh’s result are succinctly summarized by W.
Becker, et al.[33] The first approximation is to replace the full evolution operator U (t, 7) in
eq. by the evolution operator Uv(t, 7) for a free electron in the presence of the laser,
which satisfies

~

[i&t—]:[L(t)] Oy(t,t)) = 0, HL(t):—%V2+VL(t). (2.17)

10



Uv(t, 7) is commonly known as the Volkov evolution operator (or Volkov propagator). The
Volkov wave function satisfying the Schrodinger equation

i0h]dnc (1) = He(t) |0 (t)) (2.18)

is given in coordinate representation by [50]
Sic (1, 1) = (r|gy (1)) = A0 = (plle + A (1)) (2.19)

where A (t) is the vector potential related to the electric field by E(t) = —0,A(t), [k+A(¢))
denotes a plane wave state with momentum p = k + A(t), and

1

S(t) =5 / t k+ At dt’ (2.20)

is the classical action. The Volkov evolution operator is given in terms of the Volkov
functions eq.(2.19) by

Oy (t,) = / e 9K 0) (0] (2.21)

It can readily be verified that eq.(2.21)) satisfies the definition (2.17)) using eq.((2.18); fur-

thermore the completeness of the plane wave states gives the initial condition Uy (¢',t") = 1,
as required by eq.(2.6)). The transition amplitude eq.(2.14]) then takes the form

My; = i lim /_ dr ()| Ov (8, )V (7) 1) €27 (2.22)

Recall that the exact expression of the transition amplitude eq.(2.14] - was obtained by
choosing V(1) = Vi(7) in the Dyson equation for U(t,#). Other ch01ce for V(7) is possible
in further application of the Dyson equation. Thus the result of eq.(2.22)) can be considered
to be the first term of a perturbation series [51] obtained by applymg the D son equation
eq.(2.10) with V(7) = V, to the full evolution operator U(t,7) in eq. Eq.
represents the ”direct” ionization process in which the electron detached from the atom
escapes without further interaction with the atomic core. Higher order terms give rise to
additional interaction of the ionizing electron with the ion core, leading to "rescattering
effects” [32] [51], 52]. We shall only be concerned with direct ionization in this thesis.

To obtain the final Keldysh result, a second approximation is introduced where the

scattering state |1y (t)) in eq.(2.14)) is replaced by the plane wave state |¢y (t)) = |k)e#°#/2,
which amounts to neglecting the spherical wave of the scattering state. In this case, for

11



a laser adiabatically turned on at ¢ — —oo and turned off at ¢ — oo, ()| Uy (8, 7) ~
(b ()| Uy (t,7) = (¢p) (T)| as t — oo, giving the Keldysh amplitude

My;

12

—i /_ h dr (o (7)| Vi(7) [1hi) ™™

— / dt/dgr efi[k+A(t)]-r+iS(t) r- E(t) wi(r)eﬂpt

[e.9]

= —i/dt e ® (k + A(t) v - B(t)| ;) (2.23)

where we have used the Volkov function eq.(2.19) and the dipole interaction eq.(2.16)), and
we define the combined action by

S,(t) = S(t) + Lyt. (2.24)

Now the laser field is assumed to be linearly polarized
E(t) = Egcoswt (2.25)

where Eq is a constant vector. This electric field is derivable from the vector potential

E
A(t) = —sinwt. (2.26)
W

The action eq.(2.20|) can then be evaluated to give

w2

k? kE, 0
Sp(t) = S(t)+ Lt = (7 +U, + [p) t+ <ﬂ coswt — ;]—5 sin th) , o (2.27)

E2
where 0 is the angle between k and Ey, and U,, = 4—02 is the pondermotive potential which

is the time-average kinetic energy of a free electron in the laser field. Thus the integrand
of the transition amplitude eq.(2.23) contains the following factor periodic in time with

. 2m . . . .
eriod T'= —, which can be expanded in a Fourier series
b
w

[ k-E, Up S 4
el( w20 coswt—ﬂSIIl?wt) <k+A(t> ‘I‘ . E(t)|w1> = Z Ln(k)eflml-}t’ (228)

n=—oo
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with Fourier coefficients

‘Eq

La(k) = ~ / gt ¢t [< cost=5Esn2t) (1 A (1) |r - B(2)] w»] . (2.29)

T
Substituting egs.(2.27)) and (2.28]) into eq.(2.23]) and evaluate the integral over ¢, the tran-

sition amplitude can be expressed in term of L, (k) as

/{32
= —92mi Z Ln( ( +U,+ I, — nw) (2.30)

n>ng

where n are integers and now = U, +I,. Taking advantage of the delta function in eq.(2.30)

/{52
to write nwt = (E +U, + Ip) t, the Fourier coefficients of eq.(2.29)) can be simplified as

e iSp(t
Ln(k) = ?/0 dt "W (k + A(t) [r - E(t)] ;) (2.31)
:_%/0 dt (k+A(t) [0 )Sh(t) 5D (2.32)

where the second form of L, (k), eq.(2.32)), is obtained by noting that

(k+A(t)|r-E(t)| ;) = /d?’r e FADITYE LB (H)i(r) = /d3r O { e HAWDITL 4y (7).

Integrating by parts with respective to ¢ gives the desired result since the integrated term
vanishes due to its periodicity [53]. L, (k) can be interpreted as the transition amplitude
of an electron into a continuum state with momentum k after absorbing n photons. The
rate of ionization into the momentum state |k) is given by [19, 20, [16]

Ly —hm |Mfz| —27?25( +U, + 1, —nw) L, ()|, (2.33)

n>ng

a result derived in Appendix [B] The total ionization rate is

FT:/ dgk Z/ df T ( (2.34)

n>no
where the differential ionization rate is defined by
kn 2 .
r,(0) = Dy |Ln (k)| sin® (2.35)
T
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and k2 = 2(nw— U, — I,). Thus the amplitude L, (k) of eq.(2.31]) or eq.(2.32)) is the central
quantity of interest in the SFA calculation of strong field ionization [15] 26} [54] 44l 16}, 17,
55, [56).

For low laser frequency excitation, the change in the electric field during the tunneling
of the electron through the barrier will be negligible, and the tunneling ionization rate for
an electron in a static field F, given to exponential order by [57, 58 [31]

Wstat(E) ~ exp {—2%%)2} , (2.36)

would be applicable. In fact PPT [26] suggested that in the adiabatic limit v < 1, the
total ionization rate for plane polarized laser excitation eq.(2.25)) can be calculated from

2

3E
0 wstat(E(]); (237)

W(ij)%

qs

where the first factor results from averaging the rate over a period of E(t) = Eqycoswt
[20, 29, 59]. The quasi-static theory and its generalization [31] have proven to be very
successful in analyzing tunneling ionization by intense 10.6 pum lasers [60, [61]. We shall
compare the adiabatic limits of the total rate I'y of eq. with the quasi-static result
of eq. for various models in the chapte.

2.3.2 SFA-VG

Faisal and Reiss first introduced the SFA in the velocity gauge [18, 19, [62]. Their approach
can be summarized as the following. The total Hamiltonian of the single active electron
reads

- —%V2 VL Vo), (2.38)
where

Vi(t) = —iV - A(t) + %AQ(t) (2.39)
is the interaction of the electron with the electric field of the laser under the dipole ap-

proximation. The vector potential is related to the electric field by E(t) = —0;A(t), where
in this derivation it takes the explicitly form of eq.(2.26). In the transition amplitude

14



eq.(2.14), the ground state v; of the unperturbed Hamiltonian is used as the initial state
and the final state is approximated by the free electron state. In the SFA, again we replace
the the full time evolution operator by the Volkov evolution operator

UVG(t ) = / ‘(bvvc > < K’VG(t')

where |¢,""“(t)) is the Volkov state in the velocity gauge whose coordinate representation
is given by [63]

, (2.40)

o O (r,t) = (rloy () = T = (rfk)e S0 (2.41)

The action S(t) takes the same form as in eq.(2.20]). Substitute eq.(2.40)),(2.41) into e-
q.(2.14)) we can write the transition amplitude as

MUE ~ i / ar (606w |Valm)| i) e

= —i / dt / dPr e HTHSW (v - A(t) +%A2(t)) ei(r)et

oo

= —z‘/dt eSe(0) <k’(—iV~A(t)+%A2(t))'¢i>

— 00
[e.9]

- /dt 'St [k At )—i—%AQ(t)} (k|;) (2.42)

where S, (¢) is given by eq.(2.27). Noting that

1 i( XE0 coswi— YR sin 2w 0 i( KB coswi— Y sin 2w
N §A2(t))e (R0 cos wt— 52 sin 2ut+Upt) _ 9 (B0 coswt— Y2 sin? tJrUpt)7 (2.43)

and use integration by parts we can further simplify eq.(2.42)) and obtain

k2 i 3 B2 ) kEBq cost cc)Secosw f@sin w
Mpf o~ =i <5+1p) (k[e) /dm(g Ul )i (PR coswt g simat) g 4y

—00

Recognizing the generating function of the generalized Bessel function [64]

ei(’“‘ggi;osgcoswtf%sianQ _ Ze—mwtj (M U ) (245)

w? 2w
n
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where the generalized Bessel function J, (u, v) is expressed in terms of the Bessel functions
Jp (u) as

To (w,0) = > Josop (u) i (v), (2.46)

MVE ~ (2.47)
, kEycos@ U k? k2

Following the same procedure as before we can obtain the differential ionization rate as
kEycos@ U,
Jn T 9 9o .

2 2w) (kn[t)i) 2 (l;—’% + Ip)2. (2.48)

In the tunneling region one can show that the velocity gauge total ionization rate is also
given by eq.(2.36) to exponential accuracy; however, the pre-exponential factor is different
from the LG calculation [20].

Ky,

T or

[ (6)

2.4 Semiclassical theory and the Coulomb correction
to the SFA

One of the major problems of SFA is that it neglects the long range Coulomb tail of the
residue ion once the active electron is promoted to the continuum by the intense laser field.
On the other hand, based on WKB approximation, Ammosov, Delone and Kranov derived
the static strong field ionization rate for atoms [3I]. The ADK-formula is proven to be
reliable for the calculation of the tunneling ionization rate in the atomic cases [60]; however,
the theory is intrinsically time independent which can only describe the limiting case of
the tunneling ionization. Multi-photon ionization picture is completely absent. Perelomov,
Popov and Terent’ev introduced SFA using a semiclassical propagator such that both the
time dependent effect and the long range Coulomb tail can be incorporated [27]. This
method which is called the imaginary time method can be viewed as a bridge connecting
the WKB method and the Keldysh’s approach. By comparing the Keldysh theory to the
semiclassical calculation a better understanding of the action (eq.(2.24)) may be obtained,
hence rendering the possibility of introducing a Coulomb correction to the SFA.
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Following the derivation in references [26], 27] we write the wavefunction as

|U;(r, 1)) = —i/ dt'/d3r'G(r,r';t,t')%(r’)|¢,~(r',t')), (2.49)

where G(r,r';t,t') is the semiclassical propagator, V,(r’) is the binding potential and
|ti(r', ")) is the initial state. We restrict our discussion to exponential accuracy so the
time evolution propagator in the semiclassical limit can be written as

G(r, v/t 1') ~ eiSolutt), (2.50)

where the action Sy(r,r’;¢,t’) is calculated along the classical trajectory r. starting from
r',t’ ending at r,t and given by

t
So(r,r’;tt’):/ {L (tc,r.,7)}dr, (2.51)
t/

where L (f.,r.,7) is the Lagrangian. Substituting the semiclassical propagation into e-
q.(2.13)) the transition amplitude becomes

t—o00

My fim [t [ (o, ViSO () (2.52)

To calculate the ionization rate one can approximate the the final state by a free electron
wave function. Hence the inner product becomes the Fourier transform of the propagator

My; ~ lim [ dt’ / d*r’ / dPre Tt Sotrrihi) g o 1 (1), (1), (2.53)

t—o00

Recall the method of steepest descent (MSD) according to which the integral can be ap-
proximated by the saddle point formula [65]

/ d*re!®g(r) ~ /g r,), (2.54)
where the saddle point is given by
V. f(rs) =0. (2.55)
Applying MSD to the Fourier transform we can obtain the saddle point equation

VeSo(r,r'st,t") —k = 0. (2.56)
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The equation has the formal solution

k = V,.So(r,r';t,t")
0S5y
or,

_ /t a_L(SI- _|_8_L51‘- ﬁ
~ Ju\or, ¢ ot °f or.

t dr
= .05 c 05‘0 =
[:ﬁ)r +p r}5n

= p, (2.57)

where p denotes the conjugate momentum to the the coordinate r. We drop the subscript
of p. because the variation is made at the end point (r ). In the velocity Gauge, which
we will use in the subsequent section, the canonical momentum is conserved in time. At
the saddle point the exponent in eq.(2.53)) can be written as

Wo(p,r';t,t") = So(r,r';t,t') —p-r, (2.58)

which is recognized as the Legendre transformation of the classical action. Finally we can
write the transition amplitude as

t—o0

My; ~ lim dt’/d3r’eiW°(p’r/;t’t/)eﬂpt/Vb(r/)wi(rl). (2.59)

The integration in eq.(2.59)) can be evaluated using the method of steepest descent.
The saddle points are found by solving the saddle point equations

oWy(p,r';t, t/
“%; )y 1 =0 (2.60)

VeWo(p,r'st, t") = 0. (2.61)

Recall the total time derivative of the action can be written as

dWy(p,1';t,t') oWo(p, 15t t") -
o = o0 +r1' - VeWo(p,r'st,t)

= —L(r1.t). (2.62)
Hence we can write eq.(2.60)) as
f’-p’—L(f’,r’,t’)—l—IP =
H(p'\ ', t)+1, = 0, (2.63)
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where H(p’,r’,t) is the Hamiltonian. The solutions of the above equation in general
will have complex values for the case of bound state where I, = —E, > 0. Hence the
trajectories will be complex which reflect the tunneling nature of the electron dynamics.
One can consider the total transition amplitude eq. reducing to a summation over the
amplitudes of several complex-valued classical trajectories. They are still called classical
trajectories because the Newtonian equation of motion is satisfied. Eq. determines
the saddle time t. that can be considered as the starting time of the electron sub-barrier
motion. In addition, the electron is assumed to be starting at the origin so

r.(t) =10 =0+ irjp,. (2.64)

S

Note the imaginary part is added to ensure the electron trajectory to be real in real time.

2.4.1 The leading order approximation - SFA

To proceed further we first consider the leading order approximation of the Lagrangian in
velocity gauge given by

c_

1
L(te,re,7) = 51‘«2 .- A, (2.65)
where A(7) is the same laser vector potential defined in eq.(2.19). The Coulomb binding
potential is neglected. Consequently we can write eq.(2.63)) as

1
3 o' + A+ 1, =0, (2.66)

where p’ is the canonical momentum which is a conserved quantity. The saddle point
equation is equivalent to the SFA in KFR theory. The Newtonian equation of motion can
be written as

t.(1) = —E(7), (2.67)

where the E(7) describes the electric field of the laser. Integrate eq.(2.67) we obtain the
electron velocity

1.(7) =v(r) =p + A(7). (2.68)
Integrate eq.(2.68]) again to obtain the complex trajectory

r.(7) = 1o+ p' (7 — t) + x(7) — x.(ts), (2.69)
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where 0,x.(7) = A(7).

Finally we write

Wo(p7r0;t’t;) = W()(pvrﬂ;tat;) "‘Ipts

= /t; dr {%I"C(T)2 —1.(7) - A(T)} —p-r+ I,

_ /t dr {% P+ A — [p' + A(r)] A(T)} et Lt (2.70)

Eq. will give us p’ = 0 which means among all the complex trajectories with different
canonical momentum p’ only the the one with p’ = 0 will contribute the most to the
transition probability. In the deep tunneling region when v < 1 one only needs to consider
this trajectory to obtain the total ionization rate. In the next step the canonical momentum
is set to be zero p = p’ = 0. Combining eq. and , we can solve the velocity of

the electron at the saddle time as a pure imaginary number given by

Folty) = +iy/T, @.11)

together with eq.(2.64])) forms the complete initial condition of the complex trajectories.
The + sign is chosen based on a physical consideration.

We also assume the laser field is given by eq.(2.25)) and (2.26)) so that

x(T) = —S COS WLT. (2.72)
WL
We obtain
E E
r.(7) =ro+ —5 CoSwT — —g coswrts, (2.73)
WL wr

where ¢, can be solved explicitly from eq.(2.66|) and given by

1 . [ KWL l ) KW, .70
ty= — it R b ) — 0 2.74
o arcsin <z B, ) o arcsin ( B ) ZWL (2.74)

and k = /21,. The velocity of the electron is given by

E
to(7) = A(T) = —w—LO sin wp . (2.75)
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In eq. the upper integration limit is a real number and the lower integration limit is
a pure imaginary number. Since the Lagrangian is analytic in the complex plane we can
choose arbitrary integration path from ¢, to t. It is possible to choose a real time ty, < t
such that both the electron trajectory r. and velocity r.(7) become real at time ¢y, and
afterward. this can be done by choosing r;,, in eq. to be

E
Timg = —SCOSth (2.76)
WL
so that the trajectory can be written as
E
r.(7) = —3 COS WL T, (2.77)
wr,
which is real when 7 becomes real. Recall that the ionization rate is given by
M 7 2 17, ISRV
I = | jji | ~ ’61W0|2 — 6—2J{VV0}7 (278)

where T is the total interaction time. As we can see only the imaginary part of W,
contributes to the transition rate. The classical action beyond t; becomes real so that it
does not contribute to the transition probability. We should thus only consider the initial

point 7 = ts. Eq.(2.70) can be written as

& {Wo(p,ro;t,t’s)} = —% /j dr {A(1)*} + Lt (2.79)

Substitute eq.(2.75)) into eq.(2.79) we can obtain

Ny O 1E 1
R {Wg(p,ro;t,ts)} = 5@—% ty — s sin 2wrts | + Ipts
i B2 1. . 70
= éw_g {7’0 - Zsmh%—o} + zIpw—L (2.80)
The transition rate is given by
T o e~ 23{Woerott)} _ e(UPHp)%f%SthTD. (2.81)

At the limit when the Keldysh parameter v — 0 eq.(2.81)) will approach to a simple
exponent form given by

o Up . 2(21,,)3/?
e(Up+]p)£_ﬁslnhQTo N e_?’pTO (282)

Note this exponent is exactly the same as eq.(2.36]) obtained in section which implies
that the semiclassical method proposed by PPT [27] agrees with the Keldysh’s theory [15]
at least to the exponential accuracy.
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2.4.2 The second order approximation - Coulomb correction

In the next step we shall consider the correction of the transition amplitude due to a long
range Coulomb potential [26], 27]. We can write the action as

W(p7 Io; tv tiq) - W()(pa Io; t? t,s) + I/T/vl (p7 Io; t? t/s)ﬂ (283)

where W is the variation of the classical action due to a binding potential

A
Va(re(r)) = — : (2.84)
[re(7)]
In principle this variation should include both the variations of the classical trajectory r.(7)
and the saddle time t., but as a leading order correction we can assume the trajectory is
not changed so that the first order variation can be calculated using the leading order
trajectory

Wy(poro: 1)) = — /t Vi (ro(r))dr. (2.85)

However there is a fundamental difficulty to evaluate the integral. The Coulomb poten-
tial becomes very strong when the electron is near the origin so the perturbation method
may not be applicable. The solution suggested in reference [27] is known as a matching
procedure. The idea of this matching is to divide the sub-barrier motion into two region-
s: the near-core region where the Coulomb potential dominates the electron trajectory,
and the far-core region where the external electric field dominates the electron trajectory.
Consequently the temporal integral in eq. can be partitioned as the following

~ tm

Wi(p, ro; t,t,) :—/t, Vb(rc(T))dT—/t Vi(re(r))dr, (2.86)

where the intermediate time t,, is proposed to separate the electron’s inner-core motion
and the far-core motion. At this stage the choice of t,, on the complex time plane is
completely arbitrary but it should be very close to the saddle time #,. We can use the
asymptotic behaviour of the field-free wave function

Z

i) ~ (k) 7T = et (2.87)

to identify the divergent part of the action. There should be an agreement between the
first term on the right-hand side of the eq.(2.86) and the divergent part of the action of
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the asymptotic form of the field-free wave function so that we set them to be equal and
written

tm Z
- / Vi(ro(r))dr = —iZ I sy, (2.88)
t/

K

where r,, is the electron coordinate at time ¢,,.

The second term of eq.(2.86)) can be evaluated by linearization of equation of motion
near the saddle point ¢/ where in the tunneling limit v — 0, w;, — 0 we can make the
approximations:

arcsin (7224 ) K
t’ = _ N B/ — ] —
° wr, ZEO
E(t)) — E,. (2.89)
(2.90)

Then Taylor expand the classical trajectory near the saddle time

1
r.(7) ~ §E0 (72 — £2) mik(T — t,). (2.91)
Substitute eq.(2.88)), (2.91)) into eq.(2.86) and evaluate the integral we obtain
= Z t tm) ik (t, —t
Wa(porost,t]) = —i 21 (et bm) 06 {tm = L)) (2.92)
K ts — tm
When considering the limit ¢,,, — t5 we can obtain
~ A A 2k3
W t 1) = —i=1In (—2ik*ts) = —i=In [ — |. 2.93
(pomt ) =~ 2 (~2ist) = —iZ 1w (22 (2.99
Substitute eq.(2.93)) into eq.(2.83)) we can obtain the total ionization rate
~ E —2Z ~
I oc e 2{WEroitt)} _ <_0) o283 {Wo(prosttl) } (2.94)
2k3 '

Comparing eq.(2.94) with eq.(2.81)) we can see that the Coulomb correction is given by a

multiplication factor:
By \ 2%
Qe = (2—/&) . (2.95)

This correction factor has been used to correct the SFA ionization rate in the Keldysh-type
theories.
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2.5 Including the excited state - the dressed state pic-
ture

When atoms or molecules are present in the strong external electric field polarization
effect will be induced. The polarization of the electron cloud can be considered as a
superposition of the field-free ground state and the excited state; however, the Keldysh
theory only considered the ionization from the ground state of the electron. Excited states
have been completely ignored. In this section we will introduce a method that is capable
of including the dressed states to the Keldysh formalism. Polarization effect comes out as
a limiting case of the dressed states when the external field becomes static.

2.5.1 Partition of the Hilbert space

First of all we will follow the discussion in reference [66] and introduce the projection

~

operator defined by partitioning the identity operators I.

= [00) (sl +16u) (0] + D 160 (6

e£g,u

(2.96)

~

I= P, P,

where |¢) is a complete set of eigen-states defined by the field-free Hamiltonian. The total
Hamiltonian and the wavefunction can be partitioned accordingly

I'HI = PIHP, + PIHP, + P/V,P. + PV, P,
= ﬂb+ﬁc+ﬁbc+ﬁcb (297)
[|U) = B,|U) + B, |0)
= V), + [¥), (2.98)

Substitute eq.(2.97)), (2.98) into the time-dependent Schrédinger equation (TDSE) we can
obtain

{ o ot o+ Ho | {19), +9),} = 0, {19), + [ ¥),) (2:99)

which is completely equivalent to the original TDSE at the moment. The new form of the
equation allows us to include dressing to the initial state in the Keldysh theory. To do so
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we should first introduce the approximation that will decouple the bound subspace and
the continuum subspace. Eq.(2.99) can be written as

{ B, =0} 19), + . W), + Hoet T, + Hy |9), = 6, 9),, (2.100)

where the third term on the LHS is neglected because we only want to consider the tran-
sition amplitude from the bound state to continuum. We further assume the population
change in the bound subspace is negligible we can decouple eq.(2.100]) into two equations
so that

{Hb - i@t} ), = 0 (2.101)
i0, | W), — H. | V) = Hy |V), . (2.102)

Note this approximation is consistent with the SFA in the KFR theory. The decoupling
process allows us to solve the bound state dynamics as initial condition first and substi-
tute into Keldysh’s formalism to obtain the transition amplitude. Depend on the initial
condition and the external field, the electron can be in either a field-free eigenstate repre-
sentation or in a Floquet eigenstate representation. In the next section we will examine
these two representations in more details.

2.5.2 Two-level initial state model

When the external laser field is periodic with period 7}, the exact Hamiltonian will also be
periodic. Define the Floquet Hamiltonian

Hyp = H, —i0, (2.103)
such that one can find corresponding Flogeut eigenstates

Hyp ’GBi> = At ‘dsi> ; (2.104)

where )gzgi> are functions of time with period 7,,. AL denote the two eigenvalues. The

solution of eq.([2.101]) that describes the initial state can be written as a linear combination
of the Floquet eigenstates

|\IJ>b = a+€_i)\+t

QZ~5+> g et

&_> , (2.105)
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which is in a dressed state representation.

In the next step we should find a relation between the two basis. Within two level
model the electronic wave function is given by a linear combination of the ground state

¢g(R,r) = (r|pp,) and the first excited state ¢, (R, 1) = (r|dy):
Wy = F,(004(R) + Fult)ou(R) (2.106)

where R denotes an adiabatic parameter which in the case of a diatomic molecule can be
the internuclear separation whose varying rate is much less than the electronic motion.
The coefficients of the field-free states can be obtained by

(et ) (Z00)=a(FRS). e

where I,(R) and [,(R) are the eigenvalues of the ground state and the first excited states
respectively. Under dipole approximation the linearly polarized external electric field is
given by

E(t) = Epz cos(wrt + ¢). (2.108)
In the length Gauge the off-diagonal term can be written as
w(R,t) = Zg,Eocos(wpt + @), (2.109)

where Z,, = (¢4(R)|z|¢u(R)) is the transition dipole moment. Even though in this thesis
we are mainly concerning the ionization of atoms adding the parameter R is for our future
convenience. Next we can define an unitary transformation

. eilste=izt 0

0 0 eilutez‘%t

ilgt

(2.110)

that transforms both the Hamiltonian and the wave function in eq.(2.107]).The detuning
parameter is given by

A=wy(R)—w,=1,(R)—1I1,(R) —wg (2.111)

The Floquet Hamiltonian after the transformation and the rotating wave approximation
(RWA) takes the simple form

Li—Iy+w,  ZyuFEo

. . 1
—1 o _ -
Uy Hely = Hy = P R (2.112)
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This new Hamiltonian can be diagonalized using another unitary transformation

U H U, = ( AO‘ A0+ ) : (2.113)
where
& cos (ﬁ) —sin (ﬁ)
o= (Sl o) 2

1
A = 15\/& + (ZyuBo)?. (2.115)

The Floquet eigenstates (dressed states) are given by

€Z~5+ = Cos (g) ei(If%)tcﬁg + sin (g) ei(l“+%)t¢u (2.116)
¢_ = —sin (g) ei<Ig_%)t¢g + cos (g) ei<1“+%)t¢u, (2.117)
where
_Zaull

tan (¢) = (2.118)

A

When the external laser field is slowly varying we can apply the adiabatic approximation
to eq.(2.101)). Diagonalize the instantaneous eigenvalue equation

ﬁbmj)b = AU), (2.119)

is equivalent to diagonalize the Floquet eigenvalue equation (2.104]) which will lead to two
polarized states expressed in terms of a superposition of the field-free eigenstates. The

polarized states are given be eq.(2.116}) (2.117)) with w;, = 0.

Once the bound state dynamics is solved we can use the solution as initial state to solve
the ionization problem described by eq.(2.102)). For application example, see eq.(7.28) in
section [C.3.1]
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2.6 The Lewenstein model of HHG

Leweinstein first introduced the strong field approximation to describe the high harmonic
generation process [32]. The theory starts from calculating the electron dipole moment:

p(t) = (W()] (=r) [ (1)), (2.120)

where |U(t)) is the exact solution to the single active electron Schrodinger equation in the
presence of the laser and the binding potential. Using the Dyson eq.(2.10), replacing the
exact time evolution operator by the Volkov operator (eq.) and keeping the leading
order term, we obtain

p(t) =~ z’/t dt’ <<;5i(t) rUy (£, ") Vi (1) ¢(t’)> + c.c. (2.121)

—00

In the length gauge and under dipole approximation we can write

pu(t) =i /_ e / é;‘;} (6 [tk + A(D) (k + A(t) |t 1) - B(#)eS 0t 4 ce (2.122)

where the action is given by

Sy(k,t,t') = /t,t dt" {% k+ A" + Ip} . (2.123)

The numerical evaluation of the four dimensional integral in eq.(2.122)) is computationally
demanding; however, one can approximate the momentum integral using the method of
steepest descent. According to this method the saddle point which contributes the most
to the integral is given by the equation

VieS,y(k, ¢, ) ek, = 0. (2.124)
Assume the vector potential of the laser field is known, we can write the solution of
eq.(2.124)) as

t
,A t// dtll
k, — ftt%z (2.125)

Making a Taylor expansion of S,(k,t,t") around k = k, we obtained

Sy(k,t,t') ~ /t dt” {% ko + A" + Jp} + (t — k> + O(k%). (2.126)

t/
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Note the linear term in k is absent due to the eq.(2.124]). We further approximate the
pre-exponential terms by the leading order expansion

(el + A ) (k+ A [r] 60) ~ (6 x|k, + AWM) (k, + A e 6) . (2127)
Substitute eq.(2.126]), (2.127)) into eq.(2.122)) we obtained a three dimensional Gaussian

integral with complex exponent. By choosing the path of steepest descent we can change
the integral to a real Gaussian integral. In this specific case the integration path for each
momentum component should be chosen along a vector which is —45° with respect to the
real axis. The Gaussian integral thus can be evaluated analytically and we obtained the
dipole moment

u(t) ~ z/; ' {% = j(t _ t,))] " e A)

et (k, + A(t)) - B(t') + c.c., (2.128)
where d (ks + A(t)) = (ks + A(t) |r| ¢;). The convergence factor € is introduced which

will be taken in the limit ¢ — 0". In Lewenstein’s original paper a change of variable is
introduced 7 =t — t' so that eq.(2.128) can be re-written as

2

[ IR R
u(t) ~ i /0 dr {m} d* (k, + A(1))
ekt d (k, + A(t — 7)) -E(t — 1) + c.c. (2.129)

According to the principle of classical electromagnetism one should expect the HHG spec-
trum to be proportional to the Fourier transform of the dipole moment

T,/2 '
/ u(t)e™ dt

—Tp/2

I(w) o lim — (2.130)

Tp—00 Tp

To proceed further we introduce a monochromatic CW laser pulse with linear polarization
along the z-axis so A(t) is given by eq.(2.26)). The action can be integrated analytically so
we obtain

1 1

Sp(ks,t,7) = 5 |:—/€§7’ + 20, (T - ﬂ(sin 2wt — sin 2wy (t — T))>:| + L7, (2.131)
L

where

E
ks = Tocosth—coswL(t—T). (2.132)
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Note we have dropped the vector notation because the saddle point eq. enforces
the photoelectron momentum to be parallel to the laser polarization hence the motion of
electron is only restricted in the direction of laser polarization. When substitute eq.,
into eq. we found the dipole moment becomes a periodic function of ¢ with
period T, = i—: so that in the frequency domain it will peaked at the integer multiples
of wr.In the next step we will show that only the odd harmonics will contribute to the

spectrum.

The Fourier coefficient defined in eq.(2.130]) can also be written as a summation of two
integrals

Tp/2 ‘ 0 . Tp/2 ‘
/ p(t)e™rtdt = / p(t)e ™ rtdt + / p(t)e™rtdt (2.133)
—T,/2 —T,/2 0
0 . 0 . ’
— / M(t)@mw]“tdt + / /,L(tl + Tp/Z)eme(t +Tp/2)dt/,
T/ T,/

where n is an integer. Normally the initial state of the electron wavefunction has definite
parity (either even or odd) so the transition dipole matrix element will have the symmetry
property given by

d(—k) = Fd(k), (2.134)

where — for even and + for odd parity. In addition, after half a laser cycle the mechanical
momentum of the electron will be inverted by the laser field so that

d(k, + A(E){t +T,/2} — d(—k, — A(t)), (2.135)

Furthermore, the electric field will change direction and the action in eq.(2.131)) remains
the same. Putting things together we can conclude that

Wt +T,/2) = —u(t) (2.136)
If the integer n = 2m is an even number we can write eq.([2.134))

Tp/2 i 0 ) 0 . /
/ /L(t)elQmetdt — / M(t)eszthdt + / M(t/ + Tp/2)€z2me(t +Tp/2)dt/

~Tp/2 ~T,/2 ~T,/2
0 ) 0 ) ,
— / ’u(t)eﬂmw,;tdt . / M(t/)eszth dt/
~Ty/2 ~Ty/2
= 0. (2.137)

Therefore the even harmonics will vanish and only the odd terms contribute to the spec-
trum.
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Chapter 3

The method of steepest descent

3.1 Introduction

The method of steepest descent (MSD) is a powerful technique to find an asymptotic
expansion of the exponential type integrals [67]. These integrals usually arise from the
calculation of transition amplitudes in quantum mechanics. In the previous chapter we
have seen that the transition amplitude in the SFA-based theory can be expressed as
temporal integrals which may or may not have singularities in the complex domain. In
this chapter we will discuss the application of MSD to these integrals. The usual formula
for the leading order asymptotic expansion can be given by

10) = [N ~ %Z(@e)%ﬂmx (3.)
c <0

where ) is a real constant assumed to be large. Both g(z) and f(z) are analytic functions
in the complex plane. zj is the saddle point defined by equation

¥ _,

= (3.2)

z2=20

The constant phase ¢ is chosen so that 3(z — z9)?f”(z) must be real. In the following
sections we will generalize this formula to higher order expansions.
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Figure 3.1: Path around the saddle point

3.2 Asymptotic expansion with singularity

The transition amplitude of eqs.(2.32), (2.42)), (2.129), (2.53) can be considered to be
special cases of the integral

e)\w(z)
I(/\):/Cg(z)[—dz (3.3)

w'(2)]

where w(z) has a simple saddle point at 2y such that w'(zp) = 0, wj = w"(29) # 0, and
the path of integration C' can be deformed to lie on the paths of steepest descent (PSD)
passing from one valley of w(z) to another, avoiding the singular point z, (see Fig{3.1)).
We assume that g(z) is analytic at zp. A systematic asymptotic expansion of I(\) can be
developed employing the Watson’s lemma as the parameter A\ — oo [67]. In the paper [43],
we gave the first order term of the asymptotic expansions of a similar integral. Here we
derive the second order term of the expansion for eq.(3.3) [68].

Introducing a new integration variable 7 by
T =wy — w(z) (3.4)

where wy = w(z), the integral (3.3) becomes

g(Z AMwo—T)
I(\) =— — 0= d 3.5
( ) A |:w/(z>y+1:| z=w—Hwo—7) ‘ " ( )
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Figure 3.2: The loop path

el

where it can be shown that eq.(3.4) maps the PSD into the loop path L in the 7-plane
[69, 67, 43] (see Fig[3.2)). Near the simple saddle point zo,

1 1 1
U}(Z) = w0+§wg(z—zo>2—|—511}8’(2—20)34_ , w,(Z) = U)g(Z—Zo)—f—gwg/(Z—ZO)Q—f— .
' (3.6)
With 2 — 29 = pe®, the argument of 2z — 2y on the PSDs satisfies [67], [43]
0__a+7r 9__0z+37r (3.7)
R A T ’

where wj = |w{|e’®, 0 < o < 27, so that e () ~ e~ oo Xalwi10* We label the paths of
steepest descent from zy by D; and Dy, corresponding to 6; and 65, respectively [43]. For
simple saddle points, the directions of steepest descent are directly opposite to each other:

0y — 6, = m. We only need to consider the following two possibilities in deforming the path
C to lie along the PSDs [43] (see Fig3.3):

e Case A: first along the path of steepest ascent —D; towards zy, avoiding z, counter-

clockwise along a small semicircle, and leaving z, along the path of steepest descent
Dy;
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Figure 3.3: Paths of steepest descent
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e Case B: first along the path of steepest ascent — D, towards zy, avoiding zy counter-
clockwise along a small semicircle, and leaving z, along the path of steepest descent
D;.

The first order mapping is obtained [43] by truncating the series for w(z) in eq.(3.6|) to the
quadratic term and inverting eq.(3.4)):

o \2
z— 2= (w—;) eFi2 (3.8)

0

where £ correspond to the Cases A and B, respectively. Then eq. maps the PSDs in
the z-plane to a loop contour in the 7-plane which comes in from oo above the cut on the
positive real 7 axis, loops around the branch point at the origin counterclockwise to below
the cut, and return to co below the cut on the positive real 7 axis.

With w'(2) given by eq.(3.6)), the integrand of eq.(3.5) has a pole of order v + 1 at 2,
and it can be expanded in a Laurent series as:

1 ay a2
_ 3.9
w/(z)u—l—l (Z _ ZO)V—H + (Z _ ZO)V + ’ ( )
where . ( Dt
v+ 1wy
aq :W, CLQZ—W,"' . (310)

We now require a higher order expansion of of the inverse mapping for eq.(3.4): let

2r\'"? .
z—z2=¢(1+¢) where  § = (—) etis. (3.11)

1!
Wy

Substituting eq.(3.11)) into eq.(3.4), noting that —%w{)’ 2 = 7 and ignoring terms O(g?), we

obtain
w{)” 1
€= —6w6,§[1—|—(9(7'2)], (3.12)

where we observe that e = O(§) = O(T%). Since g(z) is analytic at zp, we can make a
Taylor series expansion

9(2) = go + go(z — 20) + - - (3.13)
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where gy = g(20), g, = ¢'(20), etc. Substituting eqs. (3.10)), (3.11]), (3.12) and (3.13) into
the Laurent expansion (3.9)) yields an asymptotic expansion in 7:

v+1

9(z) % W\ P sz
wl(z)u+1 (wg)zz+1 o

() i (D0 g AN 14
() o (gt ) o)) e

Now, Watson’s lemma for the loop integral

I\ = /L e f(r)dr

states that [67] if (i) f(7) is analytic in the complex 7-plane except on the cut along the
real axis with 7 = 0 a branch point, (ii) f(7) = O(e"7) as |7| — o0, a real, for some sector
around the real axis, and (iii) f(7) ~ >~ cn™™ as |7| — 0, arg(7) # 0 with Re(r,,)
increasing monotonically to oo as m — oo, then

z7rrm

~ —2mi Z N EEmp as A — 00. (3.15)

Substituting (3.14) into (3.5) and identifying ro = —** and 1 = —%, we can apply
Watson’s lemma and obtain from eq.(3.15))

. . 1w y 1
1) = e (1) e 05 (4) (et i)
2uf] 5 D() A 2] T(5) \A 6ug g

Lo G)] . (3.16)

The first order term has been derived earlier [43]. If there are more than one isolated
saddle points, we simply sum up the contributions from each saddle point.

3.3 Asymptotic expansion without singularity
In this subsection we show the derivation of the higher order expansion of the the integral

eq.(2.32) along the path of steepest descent when the pre-exponential is not singular at
the saddle point. The integral can be written as

154D — /PSD dtf(t)e*r®), (3.17)
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where the pre-exponential function f () is analytic at the saddle point ¢, of the exponential
function. This integral basically corresponds to the case v = 0 in the previous section. To
find the higher order expansion of 194" we follow the same procedure as before. Using

the mapping eq.(3.4), we obtain
54D — / dr [f(t) } ¢ (ts) =T (3.18)
L t(r)

Sp(t)
where L is the loop path of Fig[3.1] The Laurent series expansion of the pre-exponent is
given by

ft) _ an

A t—t)+..., 1
S,(0) t_ts—l—ao—i-m( )+ (3.19)

where

Sy(ts)

o = ) (f’(ts) B S’”(ts))

DS \ f(8)  25)(t)

f(ts) f”(ts) f’(ts)S’”(ts) S""(ts)

Sy (ts) (2f(ts) C2f(t)Sy(ts) 65;;(758)) ' (3.20)

The second order expansion of the mapping of eq.(3.11)) can be re-written as

ay

t—t, = BT — af?T, (3.21)
where
B 2) % B Sm(ts)
B= L‘Sgas)} Y= Ty (3:22)

Combining eq.(3.19) with eq.(3.21])) and substituting into eq.(3.18]), we obtain
- 1
I94D0 — _jeiSn(ts) / dr [u— + (a_ra+ ag) + (a_1®B+ a B)VT| e (3.23)
L B VT

Recall the integral representation of the Gamma function
/ e TrVdr = (™ — DI'(v + 1), (3.24)
L
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which can be applied to eq.(3.23) to obtain
[SAD 22'\/%%(3@'5?“5) Fivm(a_10%8 + a, B)etSr ), (3.25)

The first order term in eq.(3.25)) is the same as eq.(3.1) in the introduction. The next
leading order correction is given by the third order term because

/ dr(a_1a+ ag)e”” = 0. (3.26)
L
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Chapter 4

Testing the strong field
approximation and other
approximations

In this chapter we will apply the asymptotic expansions derived in Chapter |3|to the transi-
tion amplitudes derived in Chapter[2]for three well studied models: the zero range potential,
the hydrogen atom and the hydrogen molecular ion. The critical approximations will be
tested by comparing the results with the exact numerical integrations.

4.1 The zero-range potential

In this section, we present results of numerical calculations of the differential and total
ionization rates under the SFA and various additional approximations, for the case of an
atom with zero-range potential. The zero-range potential model has been extensively used
for the study of strong field ionization [26] [70] and high harmonic generation [71], 33]. The
three dimensional delta function potential

0

Vilr) = o) (4.1)

Yi(r) = \/;e—:r (4.2)
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2
K
with ionization potential I, = CR The momentum representation of this wave function

can readily be evaluated:

(k+A()]v:) = / d’y 7 AT 4y (x) = =Y (43)

Eq.(2.32)) becomes simply

27
Lo(k) = —,/Zi / dr ¢iSr(7) (4.4)
T Jo

so that in eq.(3.25) is applicable, yielding asymptotically

£i5p (1) £iSp ()
_l’_
[Sy(r)]V2 (S (r-)]M?

Lo(k) = —Vk { 1 e/, (4.5)

Here we only adopt the leading order term in eq.(3.25)) which will be sufficient in the case
of zero-range potential. The tunneling limit of the ionization rate when v < 1 can now be

obtained from eq.(4.16)-(4.19) as

82312
LI e (%) (4.6)
823\ my

(See AppendixD] for more details)
Substituting the static result eq.(C.17)) into eq.(2.37), we obtain the quasi-static ion-

1zation rate

Ey [3Ey _25°
~ —\/—e

r 3Eo (4.7)

7 2k V k3
which is identical to the lowest order adiabatic SFA rate of eq. if we ignore the O(v?)
term in the exponent. Such agreement has not been obtained for the case of the hydrogen
atom where the electron interacts with the nucleus by the long-range Coulomb potential.
This result proved SFA to be quantitatively accurate for the ionization of a zero-range
potential atom.

In the next step we choose the parameter k = 1 so that I, = % and use this model

to examine the validity of the crucial approximations in the theory. We first discuss the
calculations of the ”exact” SFA rates of egs.(2.34) and ([2.35)), which require the numerical
evaluation of the amplitude eq.(4.4). The integral in eq.(4.4) can be calculated either
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Figure 4.1: Integrand of eq.(4.4)) along real path 7.

for real 0 < 7 < 27, or along a suitable path in the complex 7-plane. To illustrate
the numerical procedure, we choose an exciting laser with A = 800 nm and intensity
I = 10 W/cm?, giving a Keldysh parameter v = 0.338. The threshold photon number
for excitation is ny, = 48 where ny, is the smallest integer ny, > ng. In Fig. we plot
the real and imaginary parts of the integrand of eq. for n —ny =1 and 0 = 7.
Clearly, the integrand is a rapidly varying function of 7. Since the integrand is an analytic
function of 7, by Cauchy Theorem, the path of integration can be deformed to the complex
path z = 7 4 ¢ arcsinh v, 0 < 7 < 27, as the integrals along z = 7y arcsinh v and
z = 2w +i(l — y) arcsinh v, 0 < y < 1, cancel each other due to the periodicity of the
integrand. In Fig. [1.2] we consider the behavior of the integrand along this complex path,
and we observe that the integrand is a smooth function of 7. Thus we expect numerical
integration along the complex path to be more efficient than along the real path. Indeed,
we found the integral along the complex path converges to 6 significant figures using a
simple trapezoidal method with 51 points, while to achieve the same accuracy along the
real path, more than 200 points are required. Similar efficiency of the complex integration
is found for other laser parameters. Hence in our calculation of the "exact” SFA rates, we
employ the complex integration method.

The approximations crucial to the understanding of the strong-field dynamics were
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Figure 4.2: Integrand of eq.(4.4) along complex path z = 7 + i arcsinh 7.

Table 4.1: Keldysh parameters for laser parameters used in present study.

Iy (W/em?) | A =400 nm | A =532 nm | A= 800 nm | A = 1064 nm
1 x 10t 2.135 1.605 1.068 0.803
5 x 101 0.955 0.718 0.478 0.359
1 x 10 0.675 0.508 0.338 0.254
5 x 101 0.302 0.227 0.151 0.114
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r©

Figure 4.3: T',(0) for n — ny, = 0. A = 800 nm and I = 10" W/cm?. Solid line: exact
SFA; dot-dash line: SPA; dash line: LPEA; dotted line: LPEANI, interference ignored.

e The method of steepest descent (also refereed as saddle-point approximation),
e The low photoelectron energy approximation (LPEA),

e The low photoelectron approximation neglecting interference (LPEANTI).

The saddle-point approximation (SPA) is used to evaluate the integral over 7 for the
transition amplitude L, (k), resulting in eq.(D.5) for the ionization rate. Secondly, the low
photoelectron energy approximation (LPEA) is employed to give the simple expression
for the probability density of eq.(D.16]), with which the differential ionization rate T',(6)
of eq. can be evaluated. Furthermore, when the interference term in eq. is
neglected (low photoelectron energy approximation neglecting interference, LPEANI), the
sum over the number of photons absorbed and the integral over 6 can be evaluated analyt-
ically, in the limit where the Keldysh parameter 7 is small, to give the adiabatic ionization
rate I'yq of eq., which can be compared with the quasi-static rate I'j of eq.. It is
important to determine the validity these approximations as the laser parameters change.
Here we calculate the differential and total ionization rates for the laser parameters shown
in Table [4.1], in which we list the corresponding values of the Keldysh parameter .
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Figure 4.4: I',,(0) for n — ny, = 5. See caption for Fig.

In Fig. the differential ionization rates I, (f) for n — ny, = 0 are presented for
the exact SFA as well as various approximate calculations for A = 800 nm and I = 10%°
W /cm?. In this case, both the SPA and the LPEA results agree very well with the exact
SFA results, reproducing the oscillations of I',,(0) as a function of §. As expected, when
the interference term of the LPEA is neglected, these oscillations disappear, replaced by
an average smooth spectrum. Similar comparison is made in Fig. for the differential
ionization rates for n — ny, = 5. The SPA still gives reasonable results, reproducing again
the oscillations of the differential ionization rate, although deviation from the exact SFA
results is discernable near § = 0 and # = 7. In general the SPA gives reasonable results
for all the laser parameters used in this study. The LPEA tends to over-estimate the
differential ionization rate, and the oscillations suffer a phase shift when compared with
the exact result. This is not surprising since photoelectrons with larger n — ny, will have
higher kinetic energy, making the LPEA less accurate.

Fig.4.5|shows the results for the integral ionization rate Fg? ) = / df T',,(0) as a function

of n — ny, for A = 800 nm and I = 10" W/cm?. The SPA results agree very well with

the exact SFA results, reproducing the oscillations of Fgfl ) as a function of n. The LPEA
results also show oscillations as a function of n, although the LPEA oscillations get out of
phase from the exact SFA, and the LPEA tends to over-estimate the integral rate. Again,
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Figure 4.5: ng ) as a function of n — ngp. See caption for Fig.

neglecting the interference term of the LPEA produces a smooth average spectrum.

We present the results for the total ionization rate 'y in Fig. for the laser parame-
ters given in Table[d.1] Naturally, the ionization rate increases rapidly as the laser intensity
increases, and decreases as the laser wavelength increases although in the log scale, the
variation with wavelength becomes less pronounced with increasing laser intensities. In
the log scale, the differences between the various approximations are difficult to be dis-
tinguished. In Fig. 4.7 we plot the absolute relative errors for the SPA, the LPEA, and
the LPEANI. In these calculations, the sum over n and the integral over 6 in eq. are
performed numerically. Overall the SPA gives the best results, with average relative errors
about 10%. As the laser wavelength increases, both the LPEA and the LPEANI generally
become more accurate. This trend indicates that at low laser frequencies, the electrons
can be viewed as tunneling out the potential barrier with small momentum.

In the study of strong field ionization, it is customary [15] [72} [73] to describe the dy-
namics as "multiphoton” or "tunneling” according to the Keldysh parameter v > 1 or
~v < 1, respectively, although it has been argued that strong field phenomena may require
additional parameters for a complete description [20, [74]. Thus it is interesting to plot
the relative errors as a function of the Keldysh parameter in Fig. [4.8 using the same data
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Figure 4.6: 'y as a function of laser parameters. Squares: SPA; diamonds: LPEA; trian-
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(a) SPA relative errors

percentage error

1.0e13

(b) LPEA relative errors

percentage etror

1.0e13

(¢) LPEANI relative errore

percentage error

1.0e13

Figure 4.7: Relative errors in I'r as a function of laser parameters for (a) SPA, (b) LPEA,
and (c) LPEANI. See caption for Fig[4.|
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Figure 4.8: Relative errors in I'r as a function of 7. Squares: SPA; diamonds: LPEA;
triangles: LPEANI.

from Fig. [4.7 As we have already seen, the saddle-point approximation works reasonably
well for both the multiphoton ionization region and the tunneling ionization region. Error
introduced by the SPA is less than 40% in the worst case studied here. The SPA errors
appear to be mainly a function of v only, for the various laser intensities and wavelengths
studied. However, the saddle-point approximation result is not a monotonic function of the
Keldysh parameter. From the multiphoton region the SPA relative error first decreases as
~ decreases until it reaches the tunneling region with v ~ 0.5, then it increases as vy further
decreases. The lowest errors occurs around 0.5 < v < 1 with the laser intensity between
10 W/cm? and 10 W /em?. The region v < 0.5 corresponds to high laser intensities and
low wavelengths, and the SPA errors become larger again even though the Keldysh param-
eter is small. The relative errors from the LPEA, and the LPEANI are more scattered and
consistently worse that the SPA results. The relative errors from the LPEA and LPEANI
are comparable with each other for v < 0.5 although they are rather larger (~ 40%) and
peak around v ~ 0.3 at about ~ 80%. The relative errors generally decrease as 7y increases.

Finally, we summarize the results for the total ionization rates under different approx-
imations along with the exact SFA results for various laser parameters in Table [4.2] As
mentioned earlier, the saddle-point approximation gives rather accurate results for all laser
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Table 4.2: Total ionization rate I'r in a.u.

Iy (W/cm?) A=400nm | A =532nm | A =800 nm | A = 1064 nm
1 x 10" exact SFA | 6.03x107" | 1.39x10™" | 7.51x107Y | 4.49x107°
SPA 6.77x10°7 | 1.53x1077 | 7.87x107% | 4.61x1078
LPEA 6.67x10°7 | 1.65x1077 | 8.49x107% | 5.13x10°8
LPEANI | 6.62x1077 | 2.00x10°7 | 820x10~% | 5.14x10°8
[oa - — - 5.07x10~8
Ty —~ — — 2.27x1078
5 x 10 exact SFA | 1.10x107* | 7.39x10™° | 6.13x10~° 6.07x10°°
SPA 1.14x10™* | 7.72x107° | 5.94x107° 5.51x1075
LPEA 1.54x107* | 9.61x107° | 8.29x107° | 8.21x107°
LPEANI | 1.38x107* | 1.05x10~* | 827x107® | 8.12x107°
[ 1.26x10~* | 1.01x10~* | 8.58x107° | 8.12x107°
Lys 7.56x107° | 7.56x107° | 7.56x107° | 7.56x107°
1 x 10 exact SFA | 5.16x10~* | 4.87x10~* | 4.64x10~* | 4.54x107*
SPA 5.30x107* | 4.79x107* | 4.19x107* | 3.74x107*
LPEA 8.20x107* | 7.32x107* | 6.59x107* | 6.36x107*
LPEANI | 7.60x107* | 7.04x107* | 6.70x107* | 6.41x107*
[ua 7.81x107* | 7.23x107* | 6.83x107* | 6.69x107*
Ty 6.53x10~* | 6.53x10~* | 6.53x107* | 6.53x10~*
5 x 10™ exact SFA 0.0099 0.0099 0.0089 0.0064
SPA 0.0087 0.0078 0.0061 0.0040
LPEA 0.0184 0.0173 0.0129 0.0090
LPEANI 0.0182 0.0174 0.0127 0.0090
Loa 0.0197 0.0195 0.0194 0.0194
r 0.0194 0.0194 0.0194 0.0194

qs

49



parameters while the low photoelectron energy approximations LPEA and LPEANI tend
to overestimate the total ionization rates. The adiabatic rate ',y and the quasi-static rate
I';s are meaningful only in the tunneling region where v < 1. Eq. shows that 'y
is independent of the laser frequency, while I',4 of eq. has only a weak dependence
in laser frequency via the correction term in the exponent. For the moderately high in-
tensities of 5 x 10 and 1 x 10'® W/cm?, they provide semi-quantitative results, although
the correction term in I'yq seems to make the results worse than I'ys for most of the laser
parameters studied here. At the laser intensity of 10'* W/ecm?, T,y and Ty give the worst
results as expected, since the Keldysh parameter ~v is large at low intensities. However,
at the high laser intensity of 5 x 10 W/ecm?, both I,y and 'y over-estimate the total
ionization rate I'r by about a factor of two, even though the Keldysh parameter is small.
This suggests that the Keldysh parameter alone may not be enough to specify the adiabatic
condition in strong fields [74].

4.2 The hydrogenic atom

The hydrogen atom has a long-range Coulomb potential:

V= —- (48)

r

with ground state wavefunction

oi(r) = ﬁe_r. (4.9)
We can apply the result of to calculate the ionization amplitude . For the
simple case of an hydrogenic atom in its 1s ground state,
2/ 2T
Lk+A@)?+1)° S0
where we use eq. to evaluate S, (t) = S’(t) + I,. Substituting eq. into eq.,

we obtain

(k+A(t) [ ¢3) = (4.10)

2ﬁ T eiSp(t)
L (k)= ——— _ 4.11
) = 2 / e (4.11)
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For low-frequency and high-intensity laser excitation, the integral is dominated by the local
behavior of the integrand at the saddle points {¢;} given by

y 1
Sp<t5) =35

5 [k + At))+1,=0. (4.12)

For plane-polarized monochromatic laser excitation (eq.), the saddle point equation
gives rise to two complex saddle points ¢, and ¢_ which contribute to the integral
dominantly. The ionization amplitude is proportional to the integral of eq. if
we identify Mw(z) with iS(t), g(z) = 1 and v = 1. Using eq.(3.16)) and recognizing the
deformed paths to go around both ¢4 correspond to Case B, we obtain the second order
asymptotic result for the ionization amplitude

iS_
L9 = wivi | S8 + (1 4+5) (4.13)
where
28" 1
by = o (i51)"? (4.14)
s
St = Sp(ts), 8% = Sy(ts), and SY = S(t+). Similar results were obtained in reference

[75] which was derived from a dlfferent method. Our method has the advantage that the
asymptotic nature of each term is rigorously given by Watson’s lemma, and higher order
terms, should they become necessary, can be systematically derived.

Next we will compare the results of first and second order expansion with those from
exact calculation of the Keldysh integral of eq.. The laser parameters are chosen to
be in the tunneling ionization region. Because of conservation of energy the momentum k&
can only take discrete values given by

b = /2 (0w — U, — 1), (4.15)

where the photon order n can be any positive integer such that the momentum is real.

In Figs{d.9 and we compare the ionization probability distributions of a hydrogen
atom ([, = 0.5) obtained from our asymptotic expansions with those from exact numerical
evaluation of eq. for different photon orders. We choose laser wavelength A\ ~ 900 nm
and intensity Iy ~ 2 x 101W /cm?, giving ny = 19.8 and it takes a minimum of n = 20
photons to ionize the atom. Our calculation shows that the low photon order electrons
will have broader angular distribution than the high photon order electrons. The saddle
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Figure 4.9: Ionization probability distribution |L,(6)[* of hydrogen atom with [, = 0.5
for n = 20, Ey = 0.07 and w;, = 0.05. The blue continuous line is the exact numerical
integration; the green dashed line, second-order saddle point result; the red dot line, the
first-order saddle point result; the green continuous line, second-order saddle point result

with LPEA; the red continuous line, first-order saddle point result with LPEA.
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Figure 4.10: Same as Fig. except that n = 25

point approximation tends to underestimate the total probability of ionization; however
the shape of the angular distribution is maintained, and the second order results are in
closer agreement with the exact calculations. Our systematic approach can be generalized
to ionization from excited states for which the singularities at the saddle points will be of
higher order, and higher order MSD will become necessary [56].

To facilitate the derivation of analytical formulas it is also worth examining the low
photoelectron energy momentum approximation (LPEA) [26], 43]. Following our paper
[43], we expand about k = 0 to obtain

S, ~ i [n arcsinhy — zy/1 + 72]

2(1+7?) ik*vy cos® 0

+2 kcos — ———= + O(k%), 4.16
. 2Tyt ) 0
S_ =~ n7r+i[narcsinh7—27 1—1—72}
1 2 k2 20
-2 Mkcosé’— A + O(k?), (4.17)

w 2wy/1+~?
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S a2 diw?zy\/1 4+ 42+ O(k), (4.18)
and
ST~ 4w’z (1+29%) + O(k). (4.19)

Here, v = \/1,/2U, is the Keldysh parameter, z = U, /w is the intensity parameter, and 6
is the angle between the electric field of the laser and momentum k.

Using the LPEA results of eqgs.(4.16)-(4.19) and following the procedure of reference
[43] to integrate over #, sum over n, and take the limit that the Keldysh parameter 7 is
small (the tunneling limit), we obtain the total ionization rate

1 bY 2
Tp == [14+2¢/222 ) k2\/3aE, e 5o, (4.20)
2 3V mk3

where kK = (/2I,. The second term in the bracket is the contribution from the second order
asymptotic expansion. For a laser intensity of Iy ~ 2 x 10W /ecm?, eq.(4.20)) indicates that
the second order contribution is about 10%.

We also assess the validity of the LPEA in Figs. and [£.10, For low photon orders
i.e. n =20 in Fig. 4.9 the LPEA results are in good agreement with the corresponding
saddle point results. When we increase the photon order to n = 25 in Fig. [4.10] the LPEA
introduces a ”phase shift” to the angular distribution.

The ionization rate after absorption of n photons is obtained by integrating over the
angles:

Fn:/ df sin 6| L, |>. (4.21)
0

In order to see how much error the LPEA introduces to the total ionization rate, we
plot the partial ionization rate I';, as a function of the photon order in Fig. [£.11 We
observe that the LPEA results follow the exact calculations closely, implying that the
LPEA is reliable for the laser parameters chosen. This suggests that the LPEA mainly
distorts the angular distribution of the photoelectrons for higher photon orders, but may
not significantly affects the total ionization rate.

The tunneling limit of the ionization rate for the hydrogen atom (eq.(4.20)) is different
from the quasi-static result

3 2
gs = 4| —= e Fo. (4.22)
(=T}

r
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Figure 4.11: Plot I, versus n for hydrogen atom with I, = 0.5. Ey = 0.073 and w;, = 0.05.
The blue continuous line (circle) is the exact numerical integration; the green dashed line
(diamond), second-order saddle point result; the red dashed line (square), the first-order
saddle point result; the green continuous line (cross), second-order saddle point result with
LPEA; the red continuous line (star), first-order saddle point result with LPEA.
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Such disagreement has already been noted by Keldysh, who attributed it to the neglec-
t of the Coulomb interaction in the final state by the SFA. He then suggested that a
”crude quasiclassical analysis” including this interaction would result in a correction factor
Lyy/hw(1 + 42 to the ionization rate. However, no detail was given, and we are not
aware of any derivation of this factor in the literature. Quasiclassical analysis of strong
field ionization has subsequently been studied by Perelomov and co-workers |27, 24, 25] (see
Popov [30] for a recent review), and recently by Popruzhenko and co-workers [76, [77) 28].
For a linearly polarized laser field eq., a Coulomb correction factor

4

Q= E_02 (4.23)
was obtained for the hydrogen atom [24, 30, [77, 28] (see also eq.(2.97])). Similar correction
factor was found by Bauer using the WKB Coulomb correction for the final state of the
ionizing electron [55], and by Vanne and Saenz who studied the adiabatic limit of the
velocity-gauge SFA [78]. However, multiplying the result of eq. by @ still would
not yield the quasi-static rate eq.. Hence the adiabatic limit of the SFA ionization
rate for systems with Coulomb interactions and its relation to the quasi-static rate deserve
further investigation.

4.3 The H] molecular ion

In this section we extend the Keldysh formalism to the ionization of the Hy molecular ion.
This model is the simplest example of a two-center binding potential which is given by
1 1

r— Bo|  |p 4 Bap’

Vi(r) = — (4.24)
The ion is assumed to be oriented along the z-axis with its center at the origin. The inter-
nuclear separation is denoted by Ry. The initial electronic wave function is approximated

by the LCAO-MO [50]
N"i?} —KTA —KT
¢ =1\ 35— (e 7B, (4.25)

where r 4, rp are the distances of the electron from the nuclei. In this section we shall only
consider HJ in its equilibrium configuration with Ry = 2 a.u., I, = 1.065 a.u., and x = 1.
The normalization factor is

1
N = . 4.26
1+ (1 + kR + %R2R%) e—rkRo ( )
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It has long been recognized by Keldysh [15] that since the scattering amplitude has poles at
the momentum corresponding to the bound state energies, the integrand for the ionization
amplitude of eq. or eq. has poles at the saddle points, provided that the exact
wave function is used, as illustrated by eq. for the hydrogen atom. However, when
an approximate wave function such as the LCAO-MO eq. is used, the poles of the
momentum wave function will be shifted from the saddle points, and eq. will not
be suitable for the saddle-point calculation of the ionization amplitude. Instead, eq.
should be used, and using eq. and the Fourier transform eq., we obtain (see
eq.(7) of reference [79])

Ly(k) = /T dt [f1(t) + fo(t)] €0 (4.27)
where
ivV'N RyE(t) . [v.(t)Ry 1
fit) = — sin 5
T 2 ( 2 ) [(k+2A)2 +]I,)q]
folt) = —ig oS <Vz(t2)R0) v=(1) (4.28)

3
[(k+2A)2 4 ];{]

v(t) is the z-component of k + A(t) and I = 0.5 a.u. is the ionization potential for the
hydrogen atom. This expression differs from the atomic case in that the singularities do
not coincide with the saddle points as noted above. To calculate the integral in eq. by
the saddle-point method, we distort the path of integration from the real t-axis to the path
of steepest descent. Since the ionization potential of hydrogen is less then the ionization
potential of the HJ molecular ion, the distorted path encloses the poles of fi(¢) and f5(t)
which can be taken into account by the residue theorem. Hence

Ly(ky) = LFA?) — 270 Y " Res [fi(t) + fa(t)] (4.29)

where L4P) i the saddle-point contribution to the integral. In eq.(3.25)), we obtain up
to the third order asymptotic terms for L;SAD), where we note that the second order term
vanishes for this integral. Numerical comparison with numerical integration of eq.(4.27)

indicates that the first order term is adequate for the LCAO orbital. The first order
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contribution is given by the first term of eq.(3.25)

1
1 ] 2 iSp(ts)
EE

1
1 2 v, (ts)eisp(ts)
iSp(ts) [(k+1§(ts))2 + IZJ;I} 57

(4.30)

where the saddle points t; again are given by eq.(4.12). Since we consider only the e-
quilibrium configuration, the sinusoidal factors in f;(t) and f5(¢) can be considered to be
slowly varying and are included only in the pre-exponential factors in L4P) For large

internuclear separations these terms should be included in determining the saddle points

[79]

5kt A(t)) + 1, £ E(t,) -

! % =0, (4.31)
and oscillations in the ionization rate as a function of the internuclear separation will
occur. For large internuclear separations the initial state should be dressed and low lying
excited states should be included [45]. In this chapter we restrict our discussion at the
equilibrium configuration. The contribution from the residue of the poles can be obtained
from standard procedures. In Fig. [£.12] we plot the results for the total ionization rate
of eq.(2.34] - from exact numerical integration of eq.(4.27)) and the saddle point calculation
with residue correction (SAD-RC) of eq. - We also present the ionization rate from
using only LAY of eq.(4.30) for L n(kn). Clearly the contribution from the singularities
is significant. As the intensity increases the error decreases as expected according to the
theory of asymptotic analysis. We also plot the total ionization rate on the same graph
calculated from a numerical solution of the time-dependent Schrodinger equation (TDSE)
where we fix the nuclei at the equilibrium separation. The ground state energy as well as
the electronic wave function is first obtained by the imaginary time method. We choose
for calculation a rectangular box with —30a.u. < z < 30a.u., —30a.u. < y < 30a.u., and
—50a.u. < z < 50a.u. The second-order split operator method is used for time propagation
and the FFT algorithm is employed. For real time propagation we use a 4-cycle laser
pulse with sine-squared envelope. The laser parameters are chosen so that the depletion
of ground state is not significant. Due to the use of absorbtion boundary conditions, the
ionization rate is calculated from the depletion of the probability of the electron remaining
in the box. A weak static electric field Eq,x = 0.001 a.u. is applied in the x direction to
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Figure 4.12: Total ionization rate versus electric field Ey for model hydrogen molecular
ion: I, = 1.065. Laser frequency w; = 0.05. The red continuous line (circle), exact
numerical integration; the blue dashed line (diamond), saddle point calculation with the
residue correction; the green dash-dot line (triangle), saddle point calculation without the
residue correction; the black solid line (circle), TDSE calculation.
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help the ionized electron to reach the boundary. This electric field is weak so that it will not
affect the ionization rate. We check our program by comparing the results with reference
[41] and found the qualitative trend is reproduced. This is sufficient for our purpose since
SFA calculations are expected to be qualitatively accurate. Indeed we find in Fig. [4.12
that the Keldysh ionization rates agree well with the TDSE calculations. We also notice
the error decreases as the intensity increases. This demonstrates the validity of SFA at
large laser intensity.
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Chapter 5

The strong field ionization calculator

5.1 Introduction

The computational method of solving time-dependent Schrodinger equation is developing
rapidly during the past several decades. The method has been shown to be very accurate
such that in most of the situations, it can predict the experimental results within quan-
titative accuracy; however, a serious draw back to the TDSE method is that it requires
significant memory storage and takes considerable length of computation time. In some
cases it is either implausible or unnecessary to use the TDSE method. An alternative way
to interpret the experimental results is to combine the SFA-based theories with quantum
chemistry softwares [22, [38], 80, 36, B7, [40]. A central problem of combining quantum
chemistry software with the SFA-based theories is to justify the single active electron ap-
proximation (SAEA) and to obtain the one-electron wave function that will be used as the
initial state in the SFA-based theories. Depending on the calculation, different initial wave-
functions may be obtained. Kjeldsen and Madsen [22, [38] used Hartree-Fock approximation
to calculate the initial wavefunction, taking the highest occupied atomic/molecular orbital
(HOMO) as the initial single active electron orbital. Since the electron correlation energy is
completely absent in the Hartree-Fock calculation, the authors suggested that this method
can only be meaningfully applied on molecular systems where effects of electron-electron
correlation are small. Similar approach is taking by Becker et al. to study the polyatomic
molecules and the saturated ionization of fullerenes [80, B6]. Reasonable agreement to
experiments were found. Mishima and Lin improved the Hartree-Fock approximation by
applying the modified GUASSIAN-2 model (G2M) to include the correlation energy at
the initial state for large polyatomic molecules [37]. More recently, Vladimir studied the
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strong field ionization of fluorine molecule using the molecular SFA in the velocity gauge
based on the density-functional-theory (DFT) [40]. Accurate initial electronic orbital and
binding energies were obtained so that the calculations were able to predict the correct
trend of the ionization rate with respect to its companion atom.

In this chapter we present a graphic user interface (GUI) MATLAB program that
combines the quantum chemistry software (GAMESS or GAUSSIAN) with the SFA-based
theories. As the first step we implement the Hartree-Fock-SFA based laser-atom inter-
action. For the Hartree-Fock type calculations the simplest way to incorporate the single
active electron approximation is to introduce the frozen orbital approximation under which
the initial state is taken to be the highest occupied atomic orbital (HOAO) and all the low-
lying orbitals are kept frozen. The HOAO can be expressed in terms of linear combination
of Cartesian Gaussians. Since the analytic form of the Fourier transform of the Cartesian
Guassian basis set can be found, we can represent the transition amplitude from the HOAO
to the Volkov state as a linear combination of these analytic forms. The temporal integral
is implemented numerically and the momentum integral in HHG calculation is evaluated
using the saddle point method.

Since the physical interpretation of SFA-based theories is well understood, we expect
this GUI program to be helpful to the interpretation of the experimental data. This
program can be modified to adapt to any quantum chemistry calculations using Cartesian
Guassian basis set. We expect our program to work adequately for the light atoms in
which the correlation energy is small. A generalization to the heavy atoms and molecules
will be considered in the future. Including the correlation energy will be our next task.

5.2 Single-active electron approximation

We briefly review the formal derivation in Chapter [2| under the context of Hartree-Fock
approximation so that the single active electron approximation can be more rigorously
formulated. The total Hamiltonian for a system interacting with laser field can be parti-
tioned as H(t) = Hy + Vi (t) where Hy is the Hamiltonian of the system unperturbed by
the laser, and VL(t) represents the interaction of the system with the laser. In the Keldysh
formalism, the length gauge is used and

Vi(t) = Z r; - E(t) (5.1)

is the interaction of the electrons with the electric field E(t) of the laser under the dipole
approximation. The transition amplitude for the ionization is given by eq.(2.14). We ap-
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proximate the initial electron wavefunction by the single-determinant Hartree-Fock wave-
function, written

1
V' N!

In addition, we assume that the final electronic state of the ion is unrelaxed so that it can
be written as

@Z(T) = det |¢1¢2¢N| B_iEit. (52)

Up(r) = U(rt) @)

\/%det by ... on] = Er (5.3)

where ¢y is a Volkov wavefunction given by eq.(2.19)). Substitute eq.(5.2), (5.3)) into
eq.(2.14])) we can obtain

Q

My ~ —i / dr (") (k+ A(7) |r-E(7)] 1) , (5.4)

—0o0

which is similar to the one-electron transition amplitude of eq.(2.23)). Consequently the
amplitude L, (k) of eq.(2.31]) is the central quantity of interest in the SFA calculation of
strong field ionization [15, 26} 4], 44], 16, 17, 55 56].

We employ the Lewenstein theory to calculate HHG spectrum of atoms [32] (see Chapter
(2])). Based on the recent study we assume the major contribution to the HHG spectrum
is coming from the HOAO [81]. Since the HHG spectrum is proportional to the Fourier
transformation of the dipole moment we numerically integrate eq. and use fast
Fourier transform to obtain the spectrum.

5.3 Fourier representations of a general Gaussian

To calculate the photoelectron spectrum from eq. and HHG spectrum from eq.
for a specific atom we need to know the electron orbital ¢; as well as the ionization potential
I,. They can be obtained through a Hartree-Fock-type calculations (restricted close shell
Hartree-Fock calculation (RHF) or restricted open shell Hartree-Fock calculation (ROHF))
with the Pople’s N21 split valence basis sets (3-21G). In this basis set the electron orbital
is represented by a linear combination of the Cartesian Gaussians:

o1 = A1c1G(ny,m, L ar) + AjeaG(n,m, L as) + AsesG(n,m, L, ag), (5.5)

63



where A;, ¢; are the coefficients and a; are the exponents.
G(n,m,l,a) = Ra"y"zle " (5.6)

The three integers n, m, [ are determined by the orbital symmetry and R is the normaliza-
tion constant. To calculate eq.(2.31]) using eq.(5.5)), we calculate the Fourier transformation
of a general Gaussian from

Gk,n,m,l,a) = /d3re_ik'rG(n m,l,a) = (i 0\ zi : i 9\ / dPr ¢~kremar?
) 19y » Y - ) ] - 37@; (9ky 8kz

CON" /. 0N/ 0\ N L (RR2)
= (Zak’x> (za—ky) (Zﬁkz) (&)3/2 e 4a : (5.7)

Recall the definition of Hermite polynomial

2 ndn 2

dan

we can rewrite eq.(5.7)) as

B R (71')3/2 i n+m-1
k — _
G( anam7laa) (a)g/g 2\/5

where the Hermite polynomials are conveniently generated by the recurrence relation

Ho(.T) = 1
Hi(x) = 2z
Hy(x) = 2zH,(z)—2nH, (z). (5.10)

Substitute eq.(5.9)) into eq.(2.32) and numerically implement the temporal integration we
can obtain the transition amplitude

T
Ln(k):—%/o dt St ZACZ (k+ A(t),n,m,l,a). (5.11)

To calculate the HHG spectrum, the dipole matrix element can be obtained by using

/ dPr e TrG(n,m, 1, a) = —iViG (k,n,m, 1, a) (5.12)
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Figure 5.1: The interface of the program

so that

3
d(k) = —iVi ¥ AiiG (k,n,m,1,a). (5.13)
=1

5.4 Test calculations

5.4.1 Photoelectron angular distribution

The interface of our program is shown in Fig. [5.1, To use the calculator the user must
manually create an input file and save it in the same folder as the program. A program
that can automatically generate the input file is under development. Using the ”Add file
to List” button the user may add as many input files as demanded. The added files will
appear in the list box as individual entries. When the user selecting the entry in the list box
the program will plot the electron density distribution in the plot region and corresponding
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data will be displayed in the message box. Laser parameters can be entered to the text
boxes in atomic unit.

To obtain the photoelectron angular distribution the user can simply click the ” Angu-
lar” button. As an example the photoelectron angular distributions of hydrogen atom are
plotted in Figs. for varies laser parameters and photon orders. The laser is linearly
polarized alone the z-axis. The photoelectron waves form concentric rings on a spherical
surface. It is interesting to notice the rings first become thinner and then denser as the
Keldysh parameter decreases. The threshold photoelectrons have broad angular distribu-
tion and can be emitted both near the poles and the equator (i.e. along and perpendicular
to the laser polarization). As the photon order increases the photoelectrons tend to be
ejected only near the poles. This observation suggest that in the deep tunneling ionization
region when large number of photons are required to ionize the system we would expect
the photoelectrons to be ionized along the direction of the laser electric field only. This
prediction is consistent with the quasi-static tunneling ionization picture [31].

In addition we compare our Fig. with Fig.1 obtained in reference [82]. Both cal-
culations predict a side-lobe emitted at 45° and 135° from the laser polarization direction
(the main lobe) for the 10th order ATI photoelectrons. Despite the fact that results in
reference [82] are obtained from a quantum electrodynamics calculation we still found
reasonable agreement.

The photoelectron angular distributions of carbon atom are plotted in Fig. for
various laser parameters and photon orders. In this case the HOAO is chosen to be a
p.-type orbital and the laser polarization direction is along the z-axis. Similar as before
we found the threshold photoelectrons are emitted closer to the equator and higher order
photoelectrons are emitted closer to the poles. Comparing to the hydrogen atom case we
notice the photoelectrons tend to be emitted from the direction of the lobes of that p-orbital.
No photoelectron is emitted exactly at the poles for all photon order. This is because the
initial wavefunction carries nonzero angular momentum along the laser polarization which
will be conserved during the ionization process. Hence the azimuthal angular distribution
of the initial state is preserved in the photoelectron emission.

5.4.2 Photoelectron energy distribution and total ionization rate
In addition we study the photoelectron energy distribution of an argon atom ionized by a

laser field linearly polarized along the z-axis. The HOAO of argon atom consist of three de-
generate p-type orbitals each is occupied by an anti-spin electron pair. Because the system
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Figure 5.2: Photoelectron angular-distribution of hydrogen atom. In the multi-photon
region where the Keldysh parameter v = 3.2, Ey = 0.0206, w;, = 0.0652. Panel (a): The
polar plot with ¢ = 0, photon order is indicated by the number above each plot; Panel (b):
The 3D plot for the corresponding photon order.
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Figure 5.3: Photoelectron angular-distribution of hydrogen atom. In the transition region
where the Keldysh parameter v = 0.68, Ey = 0.073, w;, = 0.05. Panel (a): The polar plot
with ¢ = 0, photon order is indicated by the number above each plot; Panel (b): The 3D
plot for the corresponding photon order.
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Figure 5.4: Photoelectron angular-distribution of hydrogen atom. In the tunneling region
where the Keldysh parameter v = 0.34 Ey = 0.073, wy, = 0.025. Panel (a): The polar plot
with ¢ = 0, photon order is indicated by the number above each plot; Panel (b): The 3D
plot for the corresponding photon order.

has azimuthal symmetry we consider p, and p, orbitals separately. The photoelectron en-
ergy distributions from the p,-orbital as well as the p,-orbital are plotted in Fig. [5.6, Both
calculations show suppression in the lowest order ATI peaks. This phenomenon is known as
the peak switching which is attributed to the upshifting of the ionization threshold by the
pondermotive energy of the laser field (see [83] and the references therein). The intensities
of the ATT peaks decay exponentially as the photon order increase. Small wiggles can be
observed for the p.-orbital photoelectron energy distribution. This is due to the two-center
nature of the p-type orbitals from which the photoelectrons emitted interfere with each
other. As discussed in reference [84] the interference will give rise to an additional sine
factor in the transition amplitude. The phase of the sine function is proportional to the
dot product of the photoelectron momentum with the relative position vector of the two
centers. Since the photoelectron tends to be emitted parallel to the laser polarization di-
rection, when the two-center is aligned with the laser polarization the interference pattern
becomes more pronounced. This effect can be clearly seen in the Fig. by comparing the
p.-orbital to the p,-orbital. The total ionization rates for the two orbitals are plotted in
Fig.[5.7 It shows that the ionization is more probable for the p,-orbital than the p,-orbital.
Since the ionization rates are differed by two orders of magnitude it is reasonable to take
into account only the p.-orbital for the total ionization rate calculation.
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Figure 5.6: The photoelectron spectrum for Ar in the tunneling region where the Keldysh

parameter v = 0.6 Fy = 0.09, wy, = 0.05. p, orbital, the blue squares; p, orbital, the red
circles. Laser polarization is along the z-axis.
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Figure 5.9: The HHG spectrum of Ar atom (p,-orbital). The laser parameters are given
by Ey = 0.074, wy, = 0.05, 8, = 0 and ¢, = 0. The vertical line indicates the location of
the classical cutoff energy E..

Furthermore, we use our program to do the same calculation as in the reference [85] for
the purpose of testing our program. As shown in Fig our result agrees to the dotted
line in Fig.1(a) of reference [85]. In this particular calculation, we obtain the ionization
energy (I, = 0.496) which is slightly higher than the exact value: 0.5 by 1%. This is caused
by the basis truncation error when a finite-size Gaussian basis set is used.

5.4.3 HHG spectra

The HHG spectra can be obtained by numerically integrating eq. and calculating
the FFT of the dipole moment. In this section we study the HHG spectrum of argon atom
in the presence of a linearly polarized laser field, where the polarization direction is given
by é = sin 0y, cos ¢ & +sin Oy, sin ¢y +cos O, 2. First of all we select the p,-orbital to be the
active orbital for the HHG and plot the spectrum in Fig.[5.9 We found the odd harmonics
have intensities that are 20 orders of magnitude larger than the even harmonics. This is
a well-known effect which can be explained using the symmetry of the transition dipole

73



107 7

Relative intensity

10

35| o

10

‘ ‘
0 5 10 15 20 25
Energy in atomic unit

T

Relative intensity

s s
0 5 10 15 20 25
Energy in atomic unit

Figure 5.10: The HHG spectrum of Ar atom (p,-orbital). The laser parameters are given
by (a) Ey = 0.14, wy = 0.025, 0, = 0 and ¢, = 0; (b) £y = 0.14, wy = 0.025, §;, = § and
¢r, = 0. The red thin vertical line indicates the location of the classical cutoff energy. The
blue thick vertical line is for comparison of the locations of the two minima.
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matrix elements (see Section . In addition, a relatively flat plateau can be seen followed
by a sharp cutoff. The cutoff energy is in good agreement with the prediction given by
the three step model [34]. The model predicts a cutoff energy at E. = I, + 3.17U,. As we
can see the program is capable of reproducing some of the important features of the HHG
processes.

Using a low-frequency high-intensity laser field we can extend the cutoff energy to
the soft X-ray region. A minimum is observed at 13.7 a.u. as shown in Fig. 5.10h. To
understand the origin of this minimum we make small variations to the laser parameters
and found that the position of the minimum is unchanged with respect to the laser intensity
and frequency provide the cutoff energy is high enough to reveal the minimum. In reference
[86] a minimum is also observed experimentally in the HHG spectrum of argon which is
located at 51eV (= 2a.u.). This minimum is closely related to the Cooper minimum EI in
the single-photon-ionization efficiency. The question is what causes the large difference in
location between the Cooper minimum and our calculation. In reference [88] Lein proposed
the two-center scattering model that explained the constructive or destructive interference
in the HHG spectrum of diatomic molecules. We try to apply this model to explain the
minimum in our calculation even though there is no actual two-Coulomb center in our
problem. The double lobe of the p.-orbital form a two-center emitter from which the
high harmonic emissions interfere with each other. When the laser polarization is changed
to = 7,0 = 0 we found the minimum is shifted towards the higher energy region (see
Fig. p.10b); however, this shift is too small comparing with the prediction by the two-
center scattering model. We found the model is inappropriate in this case. Furthermore,
in references [89] the authors already point out that in general the two-center model is
inaccurate in reproducing some of the interference features. They suggested an alternative
time-dependent dipole model which is essentially the SFA in the velocity gauge with a
semiclassical Coulomb correction. Since our program is based on SFA in the length gauge
we speculate that it is because of the neglecting of the Coulomb potential that causes
the large difference in location between the Cooper minimum and our calculation. To
have a Cooper minimum at least one node should be present both in the initial and final
wavefunctions of the transition dipole matrix. Therefore it is essential to include the
Coulomb correction in order to reproduce the correct location of the minimum in the HHG
spectrum.

!The existence of zeros in dipole matrix elements and the associated minimum (called Cooper minimum)
in photoionization cross sections has been known for ground states of alkali atoms for long time [87]
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Chapter 6

Numerical method in strong field
physics

6.1 Introduction

The SFA-based theory must be compared with the exact numerical solution to the time-
dependent Schrédinger equation (TDSE) in order to justify the approximations used in
the theory. In this chapter we will introduce a numerical method that can be used to
test our theory for the atomic case. The method was first introduced by Muller [90] and
later developed to a density-functional-theory-based TDSE solver by Bauer [91]. It takes
advantage of the symmetry of the ionization process and transforms the three-dimensional
TDSE into a system of coupled one-dimensional TDSEs. The maximum angular momen-
tum of the electron determines the truncation of the coupled system TDSEs. We will
derive the formalisms in both the length gauge and the velocity gauge. The calculation is
implemented in MATLAB.

6.2 The velocity gauge calculation

The time-dependent Schrodinger equation describing the electron-laser interaction in the
velocity gauge reads

{_V; L V() - z‘A(t)@z} U(r,t) = id,U(r, 1), (6.1)
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where under the dipole approximation the interaction Hamiltonian in the spherical coor-
dinates is given by

AN, = —iA(t) (cos 00, — Smeag) (6.2)

The electronic wavefunction expanded in a linear combination of the spherical harmonics
as

U(r,0,¢) = ZRZ/ (r, £)Yim (0, 6). (6.3)

The Laplacian in spherical coordinate has the following form

, 10 [(,0 1 0 0 1 8_2
V= r2or (97“ +T281n6’89 Sme(% +r2sin29 0% )" (64)

We recall the relation

1 0 ) 1 0? I(1+1
{—ﬂ = (sme 89> o (g) } Vial0.0) = -y 0.0)  (65)

such that when substituting eqgs.(6.2))-(6.5)) into eq.(6.1)) and using the orthogonality rela-
tions of the spherical harmonics we obtain a set of coupled differential equations for the
coefficients Ry, (r, t)

i0 R (1) z{ 110 (7" 0 ) G +V(T)}Rzm(ﬂt) +

272 9r or 272

+ Z <lm —iA(t) (cos 00, — 812089>
l/

l’m> Riym(r,t), (6.6)
where

<lm ‘O

rm') = / 1Y (6, 6)OYi (6. 9) (6.7)

for any operator O. Next we can define the new function ¢y, (r,t) by

lem( )

r

Rim(r,t) = (6.8)
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such that when substituting into eq. we obtain

10* 1(l+1)

Oy um (1, 1) = {—ﬁw t 50

—iA(t) Z <lm ‘ (cos Oro,r—t — 811;689>

l/

T vm} Dun(r 1) +

l'm> ¢l’m(7"7 t), (69)

where the operator rd,r~! is due to the fact that [r, d,] # 0. In order to evaluate the inner
product in the second term of eq.(6.9) we use the recurrence relations [92)]

U +m)( —m)
COS HY/m(Q,gb) = \/(21, i 1)(21, — 1>Y2/71m(97 ¢)

N "+m+ 1) —m+1)
(2l +1)(2U' + 3)

Y2/+1m(97 (b) (61())

and

(U +m)(l' —m)
QU+ 1)(21 — 1)

— sin gaen’m(gv ¢) = (l/ + 1)\/ Yil_lm(e’ Qb)

_l,\/(l’—i—m—l—1)(l/—m—|—1)Yll+1m(9’¢)‘ 6.11)

(20" + 1)(2l' + 3)
When substituting the recurrence relations into eq. we obtain

iBbum(rt) = {182 I(1+1)

2 Or? 212

+ V(r)} Gim (1, t) +

20+ 1)(20 +3)

, (L+m)(l—m) 1
— ZA(t)\/(Ql—i— 1)<2l — 1)’/“87»’/“ ¢l—1m(r7 t)

- iA(t)\/(l+m+1)(l_m+1)r0rr_1qbl+1m(7“,t)

iA(t) (l+m+1)({—m+1)
- 2)\/ R PR R
+.i%@&l_1“/8;17%;i7g¢hmxnﬂ. (6.12)
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Further substituting relation rd,r=* = —r=! + 9, into eq.(6.12), we obtain

iObum(r ) = {_%aa_; l(l;21)+v<r)}¢zm<r,t)+
. z’A(t)\/ < e 3§l2;+”";)+ D0, 6141l )
- Z-Au)\/ )
_ Z"4171@)(”1)\/ (H(Z:iglzz_fg D i 1)
. z'AT(t) z \/ (%liniiglm_—?) b1 (r 1), (6.13)

The 3D TDSE is now reduced to a system of coupled 1D TDSEs. In practice one has to
truncate the expansion in the eq. at a maximum [ value denoted as Lmax. Note there
is no coupling between different values of m; hence it is set to be the same value as the
initial state. This cylindrical symmetry is crucial for the current method to be applicable.
The Crank-Nicholson method is then used to propagate the wavefunction in time. We
approximate the radial Hamiltonian by first order finite-difference which reads

88_22¢lm(r’ ) = G (T + h,t) — 2¢zm(27’, t) 4 Gum(r — hst)
" h
(9r¢lm(r, t) _ ¢lm(7" + h, t) 2—h¢lm(7” — h, t) ‘ (6‘14)

The method is accurate to O(h?). Higher order finite-difference is also available [90].

6.3 The length gauge calculation

In the length gauge calculation we start from the time-dependent Schrédinger equation

{_V; FV(r) + VL(t)} U(r,t) = i0,U(r, 1), (6.15)

where in the dipole approximation the interaction Hamiltonian is given by

Vi(t) = rcosOE(t). (6.16)
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The wavefunction can be written as a linear combination of the spherical harmonics

as given by eq.(6.3). Substituting eq.(6.3)-(6.5)) into eq.(6.15)), we obtain a set of coupled

differential equations for the coefficients Ry, (r,t)

10 Ry (7, 1) = {—liﬁ (r2§> + W+ + V(r)} Rim(r,t) +

212 0r 2r2
+3 (Im|rcos OE(t)| I'm) Ry (r,1). (6.17)
l/
We define again
m(r,t
Rim(r, t) = w (6.18)

and substitute into eq.(6.17)) to obtain

2
010 (r:0) = {5 30 + L V0 o) +
+> (Im|rcosOE(t)| I'm) ¢ym(r, ). (6.19)
ll

Using the recurrence relation eq.(6.10) and the orthogonality condition for spherical har-
monics, we can write the above equation as
1%  1(l+1)

Oum(r,8) = {‘5@* 22

l+m+1)—-m+1)
* rE(t)\/ (20 + 1)(20 1 3) Drim(r?)

+ V(T)} qblm(T, t) +

+ rE(t)\/ ((; z++ﬂ3§lzz_—ﬂ;)) Gi_1m(7 1). (6.20)

Again the 3D TDSE now reduces to a system of coupled 1D TDSEs. The Crank-Nicholson
method can be used to propagate the wavefunction. The equation is simpler in the length
gauge than in the velocity gauge. In fact the Hamiltonian matrix in length gauge can
be written as a sparse matrix with only 5 non-zero diagonals as compared to the velocity
gauge Hamiltonian matrix which has 9 non-zero diagonals. Hence for a total ionization
rate calculation when the grid size is not very large, the length gauge is a better choice.
For the photoelectron spectrum calculation the grid size must be large enough to include
all the outgoing electron waves it turns out the velocity gauge calculation gives better
convergence.
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6.4 The photoelectron spectrum

The photoelectron spectrum is given by
2
I(e) = [(®[W)[", (6.21)

where |U) is the wavefunction after time propagation and |®.) is the field-free eigenstates.
Unfortunately, it is difficult to list all the eigenstates, therefore, calculation based on the
definition is not practical. One practical way to obtain the photoelectron spectrum is the
window operator first proposed by Schafer and Kulander [93]. The operator is defined as
the following

gn

v

W(Ea e TL) = N on )
(o

(6.22)

where Hj is the field-free Hamiltonian, € is the energy coordinate; v and n are parameters
related to the window shape and width. Take the window operator and operate on the
final wavefunction we obtain

ot

o 2n
(H@ — €> + ’YQn

&)

o

) 7 >_cel®e)
(H() — 6) + ’72n €
D

(=

o Ce/ |CI)E/>, (623)

where co are the expansion coefficients of the wavefunction in the field-free basis. The

photoelectron spectrum is given by

~—0

I(e) = lim <xp

2n
Y
. 2" T 2" , \I’>
O e O
J— - /2
= gD e <<

Since the function in the bracket of eq.(6.24])) reduces to a delta function at the limit
v — 0, the photoelectron spectrum can be obtained by scanning through a demand range
of €. In practice there is a fundamental difficulty in calculating eq.(|6.24)) directly. Since the

on 2
S ) (6.24)
+ 72

€ —¢)
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operator Hy is in the denominator it is computationally very expansive to directly compute
the operation

X) = (Flo - Z> w " 0. (6.25)

Instead one should be solving the linear system of equations
W(e,v,n) 7 x) = [¥) (6.26)

for |x), where the inverse operator W(e,y,n)~! can be written as a product form

2n71
Y Wle,yn) =] {ﬁo —et 7€W} {ﬁo T VGW} (6:27)
k=1
and the constant phase is given by v, = (2’;—;1)

In our program, we implement the window operator with n = 3, (k = 1,2, 3,4) so that
the inverse window operator can be written as

,YQnW(Eﬂ Y5 n)_l - {[’A[O — €+ fyeiynk:l

{
{
{

ﬁo —€— ’ye“’"kzl

Hy — e + e'nk=3 Hy — ¢ — ye'nh=s

N~ Y~

f{o — e+ fyeiunkzz} {HO € — ,yeiunk:2

0— €+ 76”"’“24} {]:10 —€— 76“’”’“4} . (6.28)
By solving the linear system of equations ([6.26|) iteratively we can obtain the vector |x).

From eq.(6.25]) and eq.([6.24]) we can see that the photoelectron spectrum is approximately
given by

I(e) = (x|x), (6.29)

provided 7 is chosen to be small.
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Chapter 7

Influence of ultra-short pulse on
resonantly driving system

7.1 Introduction

One important class of laser-matter interaction, two-color ionization, has been studied for
over a decade and covering a wide range of physical parameters [94, 05, 06, 97, 98], ©5], Q9]
100, 101]. The early studies use two commensurate laser fields to ionize the atoms so that
the relative phase between the laser pulses becomes an important parameter. The phase-
dependent effect has been discussed both theoretically [102] [10T], O8] and experimentally
[94], 103, 104]. Watanabe and Schumacher showed that both the total ionization rate and
the above-threshold ionization (ATI) peaks vary periodically with the relative phase [104].
Schafer, et al. [102] suggested that the angular distribution for the lowest ATI peak can
be controlled by the phase angle. In addition, Protopapas et al. [97), O8] studied the high
harmonic generation spectrum in the two-color laser field and found that the plateau region
can be extended, and the cutoff is sensitive to the relative phase between the two lasers.
Furthermore, it has been found that the ATI spectrum generated by a fundamental field
together with its 13th harmonics produced pronounced side-bands beside the main pho-
toionization peak [105] [106]. The side-bands can be interpreted as the emission/absorption
of additional photons to/from the intense fundamental field by the electron after ionization
by the harmonic field. This observation supports the idea that the two-color ionization
dynamics is more controllable than the one color ionization dynamics because the bound-
free and free-free transitions are separable in the former case and entangled in a complex
way in the latter [I05]. More recently experiments have confirmed the possibility of gen-
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erating attosecond pulses [107]. This result directly leads to another important category
of the two-color experiments. When combining an attosecond x-ray pulse with a strong
low frequency laser field [108], 109] 110] 111, 1T12] the attosecond streaking camera is born.
This idea has been used to probe the electron and molecular dynamics and to character-
ize a laser pulse. Recent progress in the high harmonic generation technique also allows
higher order harmonics to be used in the two-color experiment. One interesting aspects
discussed by Ishikawa [113] is that the high frequency laser field (harmonic pulse) can drive
transition between two bound states or between a bound state and a nearby virtual state,
and a subsequent few cycle laser pulse can ionize the system. An enhancement of the
conversion efficiency by 17 orders of magnitude in the high harmonic generation spectrum
is discovered. Apparently the resonance effect plays a significant role in the ionization and
high harmonic generation processes.

In this chapter a sufficiently strong high frequency laser is tuned on resonance with
the ground state and the first excited state such that Rabi oscillation occurs between
the two levels. In addition we observed the resonance two-photon ionization peak (TIP)
in the photoelectron spectrum which is a result of simultaneous absorption of two high
energy photons. Subsequently, depending on its intensity, an intense few-cycle laser pulse
can either ionize the system or produce side-bands beside the TIP. We anticipate the
appearance time of the few-cycle pulse relative to the Rabi oscillations can be used to
control the ionization rate as well as the side-band intensities.

In section we model the system using a one-dimensional hydrogen atom with soft-
core potential first introduced by Eberly [114 [1T5]. We choose the intensity of the few-cycle
pulse such that strong field ionization (SFI) from the excited state is possible. The SFI rate
is in general much greater than the resonance two-photon ionization rate; hence it becomes
dominant in this region. We show that the SFI probability depends on the appearance
time of the few-cycle laser pulse periodically. By depleting the excited state, the intense
short pulse not only resets the Rabi oscillation, but also introduces a time shift that is
proportional to the pulse length. We then lower the intensity of the few-cycle pulse such
that SFI is suppressed. Resonant two-photon ionization becomes dominant in this region.
A subsequent few-cycle laser pulse generates side-bands near the resonance two-photon
ionization peak. We show that the side-bands intensity can be controlled by adjusting the
appearance time.

In section we developed a general theory that can be used to describe the electron
dynamics under few cycle laser pulse in the presence of resonant driving frequency. The
theory is based on Dyson expansions of the time propagation operator which correspond to
different partitions of the total Hamiltonian. We will show that the choice of the partition
can be guided by the dominant physical process at varies laser intensities. Our theory is
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capable of explaining most of the observations in the section except the AC-stark shift
out of resonance by the few-cycle laser pulse. In the end of this section a numerical solution
to the 3D time-dependent Schrédinger equation for Hydrogen atom in the presence of both
laser fields is given. The results support the qualitative prediction by our theory and agree
with the one dimensional model in section [Z.2l

7.2 One dimensional model study

The Hamiltonian of the system is given by
1 02 1
2022 /14 22’

where H, is Hamiltonian of an isolated atom, and we use the length gauge and the dipole
approximation to describe the interaction of the atom with the lasers. By diagonalizing H,
in the spatial-grid representation, a set of energy eigenstates is obtained. The ground state
¢4 has binding energy of I, = 0.67 and is used as the initial state for the time propagation.
The first excited state ¢. has binding energy I, = 0.2752. The electric field due to the two
lasers can be written as a sum of the high frequency continuous wave (HFCW) laser field
and the low frequency few-cycle (LFFC) laser pulse:

H=Hy+2zE(t), Hy=

(7.1)

E(t) = By sin(wpgt) + By ™7 sin (wp7), (7.2)

where 7 = t — T, and T}, is the appearance time of the LFFC laser pulse. We assume
that the HFCW laser field is resonantly coupling the ground state to the first excited
state so that wy = I. — I, = 0.3948, and set the field amplitude F; = 0.003 in all
our calculations. The central frequency of the LFFC pulse is w;, = 0.05 and the field
amplitude varies from Fy = 0.05 to £y = 0.008 in our studies. We choose ov = 3 x 107? in
our calculations and propagate the system for a time interval of T; = 5026.5 (315 cycles of
the HFCW laser) using the split operator technique and the FFT algorithm [116]. During
the time propagation we project the wave function onto the positive energy eigenstates to
obtain the photoelectron spectrum (PES) in real time. Two virtual detectors are set up
at the boundaries before the absorption region. These detectors will record the electron
probability flux in real time. The sum of the electron flux over all interaction time can be
interpreted as the total ionization probability.

We first consider the case of a high intensity LFFC pulse in the presence of a HFCW
laser. As shown in Fig. [7.1fa) the total ionization rate has an oscillatory behavior as a
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Figure 7.1: (a): Ionization probability versus 7, with Ey = 0.05. (b): Time shift 7§ (see
Fig. versus the trapezoidal pulse length 7). Here T, = 2412 and E5 = 0.04.

function of T,. Now the high intensity LFFC pulse will rapidly deplete the excited state
population by over-the-barrier ionization. On the other hand the ground state is far below
the potential barrier and it will survive the pulse. Before the appearance of the LFFC,
the system undergoes Rabi oscillation in the presence of the HFCW laser (see Fig. .
Consequently when the LFFC pulse is turned on near the maxima of the excited state
population, the ionization rate reaches maxima, but when the LFFC pulse appears at the
maxima of the ground state population, the ionization rate will be a minimum. Hence the
ionization probability oscillates with the Rabi frequency, as observed in Fig. (a). In Fig.
7.2 we plot the populations of the ground state and the first excited state in the presence
of a 5-cycle laser pulse. When the LFFC pulse arrives, the population in the excited state
drops rapidly while the population in the ground states remains approximately constant.
The observation suggests that the HFCW laser cannot efficiently couple the ground state
and the first excited state in the presence of the LFFC pulse because of the AC Stark shift
out of resonance. This phenomenon resembles the quantum Zeno effect [117]. It is clear
that most ionization is from the excited states and not from the ground state because of
the exponential dependence of the ionization rates on the ionization potential. After the
pulse the system returns to the Rabi oscillations with a constant time shift T with respect
to the unperturbed Rabi oscillation. The time shift is approximately equal to the LFFC
pulse length, but it also depends on the rising and falling edges of the pulse. In order
to eliminate the latter factor we introduced a trapezoidal pulse envelope with rising and
falling times of one optical cycle, and we plot the time shift T versus the pulse length T,
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Figure 7.2: Ground state (dash-dotted) and first excited state (thick solid) populations
versus time; Unperturbed Rabi oscillation (dotted); The LFFC pulse (thin solid); The
total population in both states(dark thin solid); The dark arrow defines the time shift 7.
T, = 2412. Ey = 0.003 and E, = 0.05.

of the flat top region in Fig. [7.1(b). A linear relationship is obtained which suggests that
one can use Ty to characterize the LFFC pulse.

Next we study in Fig. the effect of a lower intensity LFFC pulse on the bound
state dynamics of the two-level system. In this case, the population of the ground state
does not remain constant in the presence of the LFFC pulse, indicating that the AC
shift of the two levels is not sufficient to switch them totally out of resonance with the
HFCW laser. The electron in the excited state is tunneling ionized by the LFFC pulse
while the ground state population is pumped to replenish it. After the pulse, the system
undergoes Rabi oscillations again with both states ¢, and ¢. populated. This behavior can
be explained using the Feyman-Vernon-Hellwarth (FVH) representation [I18] in which the
system is described by a state vector in a Bloch sphere, while the resonant CW laser field is
represented by a constant field vector along the z-axis. Initially the system is in its ground
state and the state vector lies along the negative z-axis and hence will precess in the yz-
plane about this field vector, giving rise to the Rabi oscillation. The appearance of a LFFC
pulse of moderate intensity introduces an additional field vector along the negative z-axis
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Figure 7.3: Ground state (dash-dotted) and first excited state (thick solid) populations

versus time; The LEFC pulse (thin solid); The total population in both states(dark thin

solid). T, = 2412. F; = 0.003 and E, = 0.015.

so that the state vector no longer precesses in the yz-plane. After the passing of the LFFC
pulse, the state vector will precess on a cone about the z-axis so that its z-component,
which represents the population difference, will oscillate about 0 with an absolute value
less than 1. We can characterize the electron dynamics by assuming that immediately
after the LFFC pulse the bound state component of the wave function of the system can
be approximated by

Yy = /1 — P [cosV ¢, + sinde?e.], (7.3)

where ¥, ¢ are real angles and P is the ionization probability. In the FHV representation,
the length of the state vector represents the total population in the two states and the
orientation is given by the angles 29 and ¢, respectively. We plot the angles as functions
of the pulse amplitude E5 in Fig. [7.4] Two regions can be recognized: a rapidly changing
region followed by a plateau region. Such clear transition is an indication of the rapid
depletion of the excited states. It is interesting to note that the onset of the plateau region
occurs at an intensity just above the classical over-the-barrier value of I?/4.

When the LFFC pulse intensity is further decreased, the tunneling ionization from the
excited state is completely suppressed. Even in the absence of the LFFC pulse, the HFCW
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Figure 7.4: (a): O versus Es. (b): ¢ versus Esy, T, = 2412. The vertical line (red) indicates
the classical over the barrier field strength.

laser field is strong enough to cause resonance two-photon ionization, indicated by the
peak at 2wy — I, = 0.12 in the PES in Fig. [7.5(a). The ionization is multiphoton in
nature, and it will generate symmetric electron flows to the left and to the right as shown
in Fig. [7.5(b). We find the flux intensity oscillating with the Rabi frequency, and (not
shown) the electron outgoing wave forms a train of wave packets. Each successive packet
is separated by a distance L = Tgrv, where Tx is the period of Rabi oscillation and v is
the photoelectron velocity. Taking into account the traveling time from the atom to the
detector, we find that the variation of the electron flux follows that of the excited state
population. In the presence of the LFFC laser pulse, side-bands emerge near the TIP
whose relative intensities oscillate with 7, as shown in Fig. [7.6] Since the side-bands can
be interpreted as the absorption (appearing to the right of TIP) or emission (appearing to
the left of TIP) of additional photons from/to the LFFC laser field in addition to the two
high energy photons [106], one can effectively control the absorption/emission of additional
photons by varying the time of appearance of the intense few-cycle pulse. The physical
reason of this control relies on the fact that free electron does not absorb photons. When
the electron wave packets created by the HFCW laser are far away from the parent atom
at the time the LFFC pulse is applied, it will not absorb/emit additional photons from/to
the intense laser pulse, and the side-band is suppressed. If the LFFC pulse is switched
on when the electron wave packet is near the parent atom, the electron can efficiently
absorb/emit additional photons from/to the intense laser pulse. We have developed an S-
matrix formalism in three dimensions to address the physics behind the side-band control
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Figure 7.5: (a): photoelectron spectrum from the HFCW laser alone. (b): Total electron
outgoing flux versus time. Positive flux indicates electron flow to the right while negative
flux represents electron flow to the left. £y = 0.003.

scheme (see section for detail). Using the velocity gauge, we found that the total
transition amplitude My; can be written as a sum over the partial transition amplitudes
of distinct photon orders M7, where n represents the number of photons absorbed from
or emitted to the few-cycle laser pulse during ionization. When the LFFC pulse length
T, is sufficiently large so that the interference between different photon orders becomes
negligible, the side-band peak intensities are given by

|M}i]2 = 27TTp2

J (g, g) ‘2 (wr¢)*sin? (%T) 6o (k)2 (7.4)

where J,((,3) is the generalized Bessel function [20] with z = Uy, /wg, ( = Esky, cosf,
0 is the angle between the laser polarization and the outgoing momentum k,, of the ion-
ized electron, Uy, = E3/4wy is the ponderomotive potential of the low-frequency laser,
k, ~ \/ 2(wg — I — Usp + nwy), gzze(k:n) is the Fourier transform of the excited state wave
function, and 2 is Rabi frequency. (See the next section for the derivation of eq) It
is clear from Eq. the side-band intensities will oscillate in the Rabi frequency with
respect to the appearance time of the few-cycle laser pulse T,. Indeed this behavior is
verified by the numerical simulation as shown in Fig. (see inset window).
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7.3 The theory of electron dynamics under few cy-
cle laser pulse in the presence of resonant driving
frequency

In order to understand the observations in the previous section we study the system from
a more general point of view. The total Hamiltonian of the system can be written as

H(t) = Hy+ V(1) + Vi (), (7.5)

where the field-free Hamiltonian contains the kinetic energy term and the binding potential
term given by

Hy =T + Vy(r). (7.6)

The interaction with laser fields are described in the velocity gauge under dipole approxi-
mation written

Vilt) = iV - Ap(t) + S AL (7.7)
and
Virlt) = —iV - An(t), 8)

where the the vector potentials are related to the laser electric fields by E(t) = —0;A(t)
and Ey(t) = —0,Ay(t) respectively. In writing the interaction Hamiltonian eq.(7.7) and
eq., we have introduced additional time dependent factors in the gauge transformation
so that the time dependent terms 1A% (¢) and A (t)- Ay(t) were transformed away. Since
we are interested in the influence of ultrashort pulse on resonantly driven systems, the high
frequency laser field Ey(t) is chosen to be a CW laser that will resonantly couple two real
orbitals of the system given by the field-free Hamiltonian in eq.(7.6). The low frequency
laser is chosen to be a high intensity few-cycle laser pulse. More explicitly the electric fields
are given by the equations

EH(t) = E1 SiIl((,UHt) (79)
and

E.(t) = Exf(t) sin(wrt + ¢), (7.10)
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where f(t) = f(t — T,) is the envelope function of the laser pulse which is centered at 7,
with the pulse length 7),. We refer the parameter 7, as the appearance time of the pulse.

The Schrodinger equation for the system reads
W0, (t)) = H(t)|W(t)). (7.11)

To reformulate the above equation in the S-matrix language we can introduce the partition
to the total Hamiltonian

A

H(t) = Hy(t) + V(1) (7.12)
such that the reference system,
10V (t) = Hu (1) Va (1)), (7.13)

is assumed to be soluble. In addition, we define the time evolution operators corresponding
to the total and the reference Hamiltonian

{@'at - ﬁ(z)} O(t.t) =0, U, 1) =1, (7.14)

{iat - ﬁH(t)} Ug(t,¢) =0, Upg(t',t") =1 (7.15)

such that these time evolution operators are related by the Dyson equations

Ut,t") = Uyt t) —i / t drU (t, 7)\Vi (1) Ug (7, 1), (7.16)

tl

O(t 1) = Oy (t ) —i / el (6. )WV ()T (. ), (7.17)

tl

We emphasize on the fact that the partition in eq.(7.12)) leads to the Dyson expansion
given by eq.(7.16)) ,(7.17)); however, the partition is by no means unique. One can show
that an alternative partition,

H(t) = Hy(t) + Vi (1), (7.18)

will lead to another set of Dyson expansions given by

Ut,t") = UL(t,t') —i / t drU (t, )V (1) UL(7, 1), (7.19)

¢
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Ut t) =Ug(t,t') —i / t drUL(t, )V (7)U (7, t). (7.20)

t/

Furthermore, the reference Hamiltonian Hp(t) can be partitioned according to Hp(t) =
Hy+ Vi(t). We can further write

A A t A A

Ur(t,t') = Uy(t,t') — Z/ drUL(t, 7))V (T)Uo(T, 1), (7.21)

t/

where the (70(7', t') is the field-free time evolution operator. The transition amplitude to
the field-free final states |¢¢(t)) is given by

My; = Tim (0, ()2 (0)) = (r (D0 (¢ )a(t)), (7.22)

where |1);(t')) denotes the initial field-free state from which the system is evolved. For
different laser intensities different Dyson expansion, eq.— , may be used to expand
the transition amplitude eq.. In the next subsections we will discuss these cases
separately.

7.3.1 High intensity LFFC laser pulse

When the intensity of the LFFC laser pulse is high we substitute eq.(7.16) into eq.(7.22)
and obtain

(W OI (6 () = (g () T (1, ) i)
i / dr (4 (0|0 (8, )V (7) U (7 ) (). (7.23)

Based on the 1D model studied in the previous section we anticipate that the tunneling
ionization rate by a high intensity LFFC pulse is much greater than the resonance two-
photon ionization rate, hence the leading term on the RHS of eq. is ignored for the
moment. Using the SFA we can write the second term as [15], 43]

t

(WrOIU(E 1) i) ~ —i/ dr(k|Uy (t, T)VL(T)Un (1, 8) [1i(t)), (7.24)
t/

where Uy (t,7)|k) is the Volkov solution to the TDSE for an electron in the presence of

LFFC laser field only. Consider eq.(7.24) which describes an electron initially prepared in
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a field-free state and then propagated by the HFCW laser field. At time 7 the electron
is perturbed by the LFFC laser pulse Vi (7), ionized. After the ionization, the electron is
only propagated by the LFFC laser pulse such that both the Coulomb potential and the
HFCW laser field are neglected. The transition time 7 has to be considered at all possible
moments so that a coherent summation is carried out as an integral in eq.. Before the
ionization the electron is bounded so that most of the electron wave packet is concentrated
at the nuclear core region. Hence we can approximate the pre-ionization propagation by a
two-level system in the presence of a resonant HFCW laser field. After the ionization, the
strong field approximation can be applied because the free electron wave-packet spreads
out in the space such that the effect by Coulomb potential is significantly reduced. We
write the pre-ionization wavefunction as

Un (1, t)|0i() = ¢o(7)|6g) + cu(T)|0), (7.25)

where |¢,) and |¢,) are the eigenstates of the field-free Hamiltonian. The coefficients will

satisfy the TDSE
(ot ") (a) = (20). )

where (1) is the transition dipole moment given by

u(r) = —iAu(7) - (99| V]du). (7.27)

I,, I, denote the corresponding ionization potentials. The time dependent coefficients
¢g and ¢, should contain both the information of the ionization potential as well as the
population in each state. When substituting eq.([7.25)) into equation we obtain

Mj; ~ —i / dr ([ Oy (¢, 7) Vi (r)ey (7))

i /t dr (k|0 (¢, 7) Vi (7) e (7) [, (7.98)

The first term on the RHS gives us the Keldysh transition amplitude from the ground
state and the second term on the RHS gives us the Keldysh transition amplitude from the
excited states. Use the coordinate representation of the Volkov solution we obtained

My ~ —i / t dr (k|1 ) ey () DV (1)
-if () ea (SO (1), (7.20)
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where
1 T
S(r) = 5 / it [k + AL ()] (7.30)
and (k|,), (k|i,) are the Fourier transform of the ground state and the excited state
respectively. From the theory of two-level system, we assume the coefficients are given by

cy(T) = COS(%)@”"T

Qr. .

cu(T) = isin(7)6”“7,

where € is the Rabi frequency. Recall that the tunneling ionization rate depends exponen-
tially on the laser intensity and the ionization potential. Considering the large ionization
potential difference between the two levels, we assume that only the ionization from the

excited state are possible. Hence we obtain

(7.31)

t Q 1 T
My; ~ (k|iy,) / dr Sin(%)VL(T) exp {iIuT + 5/ dt' [k + AL(t')]Z} : (7.32)
t/
Note the integration is gated by the envelope function f(t) such that ﬁ — ;;“jTT:/;.

The LFFC laser pulse is relatively short comparing to the Rabi period so that the time
dependent factor sin(%) remains approximately constant during LFFC pulse interaction.
We can replace it by a constant factor Sin(Q;‘F“) which then can be pulled out from the

integration and written

To+Tp/2 T
My; =~ (k) sin(QQTCL)/ drVy(T) exp {i[uT + %/ dt' [k + AL(t’)]Q} . (7.33)

To—Tp/2

Since the ionization probability is proportional to the |My;|?, we immediately see the

periodical dependence of the ionization rate on the time of appearance T,. It has the same
period as the Rabi oscillation. For more accurate calculations, the integration in eq.([7.32))
can be implemented numerically after the functional form of the LFFC laser pulse is given.

7.3.2 Low intensity LFFC laser pulse

When the intensity of the LFFC laser pulse is low we substitute eq.(7.20)) into eq.([7.22)
and obtain

W OIT () = (s ([T (8, )in())
—i / dr (1O (6, 7) Vi () (7, ) (). (7.34)
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The same expression is also obtained in reference [I19]. The first term on the RHS is
associated with the direct multi-photon ionization of the system by the LFFC laser pulse
only, while the second term takes into account the simultaneous interaction with both laser
fields. In the side-band study we only consider the second term because the intensity of
the LFFC pulse is low enough such that the tunneling ionization probability from both of
the real orbitals can be neglected. Using the SFA for the continuum and approximating
the pre-ionization state by two-level system, we can write the transition amplitude as

WO () ()) ~
g / dr (KO (£, 7)Vir (7)o (1) 1)

— / dr (k|0 (1, 7) Vi (7)ea(7) ). (7.35)

Since the direct ionization from the ground state is much less probable comparing to the
ionization from the excited state, we neglect the first term on the RHS of eq.(7.35) and
write

My ~ —i /t dr (k[T (8, 7)Via () (7) [, (7.36)

Using the coordinate representation of the Volkov solution we obtain

t

My ~ —2<kwu)/ dre, (1) DV (1), (7.37)

tl
where S(7) is the same as in eq.(7.29)) and
Substituting eq.([7.31)) into eq.(7.37) we can partition the integral into three regions:

a=Tp/ T
Mp; =~ (k) /T o dr sin(&) exp {zl/ dt” [k + At + i]uT} Vi (T)

t/ 2 2

To+Tp/2 Or L 2
F kil / drsin(57) exp {"5 / dt” [k + AL (") + z'IuT} Vir(7)

Tu=T, /2
(ki) /t dr sin(2T) exp {i%/Tdt” [k+A{€tL’ﬂ2+iIur} V(7). (7.39)

Ta+Tp/2 2
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The first and the third terms on the RHS describe the ionization by HFCW laser field when
the LFFC laser pulse is turned off. They will only give us a two-photon ionization peak
in the photoelectron spectrum. We will discuss them in the next subsection. The second
term describes the ionization by a HFCW laser field to the continuum which is also dressed
by the LFFC laser pulse; therefore, it will give us both the two-photon ionization peak and
the side-bands in the photoelectron spectrum. Hence we focus our study on the second
term in eq.. Numerical integration of this equation is straight forward; however, we
need to proceed further in order to extract a simple physical picture. Assume the envelope
function of the vector potential is given by a square function so that A (7) is given by

, . T, T,
Appsin(wp(t—1T,)), if 7€ [Ta -2, T, + 7] (7.40)
0, otherwise
and the vector potential of the HFCW laser is given by
Ay (1) = Apoe ™H7. (7.41)

When substituting eq.(7.40)), (7.41]) into eq.(7.39) and completing the integral in the ex-

ponent we obtain

Ta+Tp/2 k- A
My ) [ drep fi (K22 conun) - Dsin(onm)) |
w w

To—Tp/2 L L

Q 7 —Q—w T
sin(~5 )k - Apoe (et =) (7 49

2
where U, = % is the pondermotive potential. Representing the periodic function as

Fourier series we obtain

k-A U,
exp {z < L0 cos(wrr) — 2—psin(2wL7)) } =

wr wr

DPA(S g) LT (7.43)

where z = Uy,/wy, ¢ = Esk, cosf, 0 is the angle between the laser polarization and the
outgoing momentum k,, of the ionized electron. When substituting eq. into eq.
and evaluating the integral by adding a Gaussian envelope we can obtain the eq.. The
equation clearly shows an oscillation of the side-bands intensity as a function of the time
of appearance.
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7.3.3 The resonant two-photon ionization

The first and the third terms on the RHS of eq. describe the ionization by HFCW laser
field when the LFFC laser pulse is turned off. The electron is ionized through absorption of
two photons from the HFCW laser field. In order to understand the periodic dependence of
the side-bands it is worth to examine the resonant two photon ionization one step further.
We start with eq. and change the Volkov propagator to a free particle propagator.

My ~ —i /t A (K| U pree (t, 7) Vit (7)eu(T) ). (7.44)

Use the coordinate representation of the free electron wave function and the time dependent

coefficient in eq.([7.31)) we can obtain

1 L S
My; =~ (k|u)k - Ao (2_> / dre [l huwntg]
Z t/

1 LY 1=
+(k|uw)k - Ano (2—)/ drel T+ 2], (7.45)
1 t
where the explicit form of the vector potential in eq.(7.41]) is also assumed. The time

integral in eq.(7.45)) will give rise to two delta functions that enforce the conservation of
energy.

1 k2 Q

2i) 2 2
1 k2 0
+(k|vu)k - Apo (Z) 05+ Tu—wn + 3). (7.46)

Assume the Rabi frequency €) is much less than wy — I, thus the two photoelectron
momentum ky and k_ differ only by a small value given by

Q

ky —k_ =~ TN (7.47)
where A = wy — I,,. The result implies that the outgoing electron wavefunction can be
described as a superposition of two momentum components with slightly different values.
The interference pattern will give rise to beats in the photoelectron flux as shown in the
panel (b) of Fig. This temporal modulation of the outgoing electron flux by Rabi fre-
quency is confirmed by numerical simulation. It is not surprising to see the side-bands
amplitude follows the same time variation as the outgoing photoelectron flux. This obser-
vation suggests that the continuum-continuum transition only occurs within a very short
time window defined by the ionization process.
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7.4 3D numerical studies

In this section we perform limited calculations using a 3D time-dependent Schrodinger
equation (TDSE) solver for the hydrogen atom to compare with some of the 1D results.
Due to the large computational demand of the 3D calculations, we are not able to explore
all the parameter space used in the previous section, and we consider only the case of a
low intensity LFFC laser pulse in the presence of a HFCW laser.

The total Hamiltonian is now given by
- 1 1
H= —§v2 — = +rcosfE(t), (7.48)
r

where E(t) is the electric field of the two lasers given by eq.(7.2). We assume that both
lasers have linear polarization along the z-axis so that 6 is the polar angle of the electron
coordinate r. The TDSE is solved in spherical coordinates where the angular part of the
wavefunction is expanded in the spherical harmonics

Lma:l:

\Ij(rat) = Z Rl,m(T)Yz,m(& ¢) (7'49)

Since the Hamiltonian commutes with the angular momentum operator ﬁz, the quantum
number m remains to be a good quantum number during the time propagation. We
choose the initial state to be the ground state of a hydrogen atom. The wavefunctions of
the hydrogen atom in the absence of the lasers are calculated using the imaginary time
propagation method [120], giving ionization energies I, = 0.4988 and I, = 0.1250 for
the ground and excited states, respectively. The HFCW laser is on resonance so that
wg = I, — I, = 0.3737. The field strength is £y = 0.003 which corresponds to the laser
intensity 3.16 x 10 W/cm?. The central frequency of the LFFC pulse is chosen to be
wr = 0.1 so that the side-bands are well separated from each other. The LFFC field
amplitude is F, = 0.008 and we use a Gaussian envelope function f(7) = e 7 with
a = 6 x 1079 so that the laser pulse contains approximately 5 cycles within the envelope
as in the 1D model. The Crank-Nicholson method is used to propagate the wavefunction
in time.

We show in Fig. the populations for the ground state and the first excited state
when only the HFCW laser field is present. The Rabi oscillations can be clearly observed
with a period of T = 2820. When the LFFC laser pulse is applied, side-bands appear
whose amplitudes vary as a periodic function of the appearance time T, (see Fig. .
This observation is consistent with Fig. for the 1D case, providing support that the 1D
calculations can be used to study at least qualitatively the two-color ionization phenomena.
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Figure 7.7: The ground state (blue) and the first excited state (red) populations as a
function of time.

7.5 Conclusion

We have studied the electron dynamics under few-cycle laser pulse in the presence of a
resonant driving frequency for different pulse intensities and appearance times. In this
case the electron dynamics can be understood by dividing the time evolution into two
regions temporarily. Before ionization the electron is evolved in a two level system coupled
by the high frequency laser field. After the ionization the binding potential and the high
frequency laser field are neglected so that the electron can be described by a Volkov state.
Based on this two-stage model our conclusions can be summarized as the following. For
the high laser intensity, the SFI rate is found to be a periodic function of the appearance
time T,. The pulse resets the bound portion of electronic wave function to the ground
state and introduces a time shift 7, which is proportional to the pulse length. At low
intensity where SFI is completely suppressed, side-bands appear near the TIP. We find
that the side-band peak intensity also depends periodically on the pulse appearance time
T,. These findings can be used to characterize the few-cycle pulse as well as controlling
the ionization processes.
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Figure 7.8: The one-photon side-band intensity as a function of appearance time T,,.
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Chapter 8

Future works

One of the major role of theory is to interpret the experimental data such that hidden in-
formation can be extracted. Up until now the most reliable theoretical method is to start
from the first principle, solve the time-dependent Schrodinger equation numerically and
obtain the measurable quantities using the electronic wavefunction and quantum mechan-
ical postulates. The drawback of the ab initio calculation is that it requires astronomical
computational power even for a reasonable small system like water molecule; therefore, its
application to larger molecules seems to be improbable.

On the other hand, by combining the quantum chemistry software with the SFA-based
theory, ionization of large molecules can be calculated at the cost of a reasonable computa-
tional power. This approach will become very useful when the following problems can be
solved. (i) The Coulomb-correction problem: It is known that the SFA completely neglect-
ed the Coulomb potential when the electron is excited to the continuum. A comparison
between the long-range Coulomb interaction case (the hydrogen atom) and the zero-range
potential case in Chapter [4] clearly illustrates the effect of long-range Coulomb tail during
the ionization dynamics. In the atomic case, the effect of a long-rage Coulomb tail can
be added to the theory by using a semi-classical method [27] as described in Chapter .
The semiclassical Coulomb correction which is proven to be successful in the atomic case
should be extended to the molecular case. A crucial step is to implement the matching
procedure and obtain a second order classical trajectory for a molecular system that has
complex geometry. (ii) Rescattering-related problems: During the ionization process, be-
cause of the oscillatory nature of laser fields, a significant fraction of the ionized electron
will revisit the parent ion. The theory should include rescattering effects in the transition
amplitude. Depending on the laser parameters, three physical processes may occur during
the rescattering. First of all the electron may re-collide elastically with the residue ion and
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then leave the core region, giving rise to HATI [121]. Secondly, the electron may re-collide
inelastically with the residue ion such that excitation or ionization of the second electron
can be caused, producing NSDI [122]. Thirdly, the electron may be recaptured by the
residue ion through the emission of a high energy photon, generating high harmonic spec-
tra, a topic we cover in this thesis. All of the aforementioned rescattering processes can
be described using the SFA and a higher order expansion in the S-matrix formalism. (iii)
The excited-state problem: A study of the H; molecular ion in Chapter [4] suggests that
electronic excited states play significant roles in the strong field ionization of molecules
especially when the molecule is in a high vibrational state. The theory must include con-
tributions from excited states. This problem can be partially solved by partitioning the
Hilbert space into a bound subspace and a continuum subspace as described in Chapter [2]
A two-level system or a few-level system can be used to approximate the bound subspace
dynamics while the Volkov wavefunction can be used to simulate the electron dynamics in
the continuum. The transition amplitude from the bound state to the continuum becomes
a superposition of the KFR-type transition amplitudes with time dependent coefficients.

In the near future we would like to tackle the aforementioned problems and generalize
the SFI-calculator to molecular cases.
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Appendix A

Green’s Functions and time evolution
operators

We can express the total wave function |W(¢)) in terms of the unperturbed wave function
|®(t)) using the Green’s function (GF) technique [16]. The full GF is defined by

A

[@'at —H®)| G ) =6t — ). (A1)

Similarly, the GF for the unperturbed Hamiltonian is defined by

[z'at - ﬁo(t): Golt,t)) = 8(t —t'). (A.2)

|W(t)) can then be related to |®(t)) by the Lippmann-Schwinger equations [16] by writing
the Schrodinger equation (2.2)) as

(10, — Ho()| [w(0)) = V() |9(2)). (A.3)

Using the unperturbed GF eq.(A.2)) and treating the RHS of eq.(A.3]) as an inhomoge-
neous term, a particular solution is given by

/ T dr Gt V()W (r)). (A4)

[e.o]

We now impose the requirement of causality that

~

Gt,t) =0, Got,t)=0 when ¢ < t'. (A.5)
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(such GFs are called retarded Green’s functions [123]). Adding the homogeneous solu-
tion ®(¢) to the particular solution eq.(A.4)), we obtain the general solution to eq.(A.3),
which is the first Lippmann-Schwinger equation after imposing the causality requirement

of eq.(A):

W(t) = |¢(t)>+/ dr Go(t, )V (7)[¥(7)), (A.6)

—0o0

The usual perturbation expansion of |¥(t)) is obtained by iterating eq.(A.6)).

A second Lippmann-Schwinger equation for |¥(¢)) can be obtained by writing eq.([2.4)
as

0, ~ ()| [0()) = ~V(2) [o(1). (A7)

Again, treating the RHS of eq.(A.7) as an inhomogeneous term and using the full GF
eq.(A.1)) we find the general solution to eq.(A.7)) to be

|[@(1)) = [W(t)) - / dr G(t, 7)V(7)|®(7)), (A.8)
where now W(¢) is the homogeneous solution to eq.(A.7). Rearranging this equation and
imposing the causality requirement of eq.(|A.5|), we obtain the second Lippmann-Schwinger
equation:

() = |B(t) + /_; dr Gt 1)V (1) D(7). (A.9)
The GFs G(t,t') and Go(t,t') are related by the Dyson equations [16]
Gt t) = Colt,t) + /t L Colt V()G ) (A.10)
N ~ ¢ ~ ~ N
Gt 1) = Colt,¥) + /t dr Gt 7V (1) Co (7, ). (A1)

The first Dyson equation (A.10]) can be obtained by letting
G(t,t) = Go(t, ') + 0G(t, 1) (A.12)
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and substituting Gy = G — 6@ into eq.(A.2):
[i@t - ﬁo(t)] 3Gt 1) = V(1) Gt 1), (A.13)

Treating the RHS of eq.(A.13) as an inhomogeneous term and using the unperturbed GF
eq.(A.2)), we find

SOt ) = / dr Co(t, TV ()Gt 1), (A.14)
Eq.(A.12) and the causality requirement eq.(A.5) give the first Dyson equation (A.10]).
The second Dyson equation (A.11)) can be similarly obtained by substituting eq.(A.12))

into eq.(A.1)):

[@'at - sz(t)] 5G(t, 1) = V(1) Golt, 1), (A.15)
whose solution is obtained using the full GF eq.(A.1))
6G(t, 1) = / dr G(t, )V (1)Go(t,1). (A.16)

Applying the causality requirement eq.(A.5)) then gives the second Dyson equation (A.11]).
Eq.(A.10) or (A.11) can be substituted into eq.(A.9)) to develop appropriate expansion of
the total wave function. This is the approach of Becker and Faisal [16].

The GFs defined above are closely related to the evolution operators used by Milosevic,
et al. [I7] We first obtain the initial conditions for the GFs by integrating eqs.(A.1)) and
(A.2) across the discontinuity:

Gt ) =1, iGo(th,t) = 1. (A.17)

Along with the causality requirement, we can define operators U (¢, ') and Uy (¢, ') by [123]

~

Gt,t") = —if(t — Ut t), Go(t,t") = —ib(t — t')Uy(t, 1), (A.18)

where 0(t — ') is the Heaviside step function, and U(¢, '), Up(t, ') are continuous at t = ¢'.
Substituting eq.(A.18]) into egs.(A.1), (A.2)) and (A.17) gives the equations of motion and

initial conditions ([2.5)) and ({2.6]) for these operators. Using eq.(A.18)), the Dyson equations
for the evolution operators (2.9) and (2.10) can be obtained directly from those for the
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GF, cqs.(A10) and (A1I).

Note that while it is permissible from eq. to use the retarded GF as propagator
| (t)) = iG(t, )| (¢)), this is only valid for ¢ > ¢, while the evolution operator U(t, ')
can propagate the wavefunction both forward and backward in time. (For t < ¢/, U (t,t)
is related to the advanced Green’s function [123]. We will not be concerned with the ad-

vanced Green’s function here.)

Using the Lippmann-Schwinger equation (A.9) for the total wave function and the
orthogonality of the initial and final states, the transition amplitude eq.(2.13)) can also be
written as

t

My; = lim dr <<I)f(t>|é(t,T)VL(T)|<I)i(T>>, (A.19)

t—o0 S

which, of course, is the same as eq.(2.14) in light of eq.(A.18)).
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Appendix B

Transition Rate

We first give an heuristic derivation of the ionization rate eq.(2.33)) from the transition
amplitude eq.(2.30) [124} 125, [62]. The rate of ionization can be defined by

o1 . (2m)?
Ly = Jim | M| = Jim == > La(k) L (k) 6 (Earr — nw) 6 (Bazy —n'w)  (B.1)

n,n’

where Ey rr = % + U, +I,. The first delta function allows one to replace Ear; by nw, and
using the Fourier representation of the second delta function

 (Barr — nle) = 5 [(n — n')es] = lim - / P g [0 A )
t—oo 27T —t/2 D n=mn "’

we obtain

Tyi =21 8 (Ears — nw)| Lo (k)| (B.3)

which is eq.(2.33)).

A rigorous derivation of the transition rate of the form of eq.(B.3|) in time-independent
collision theory is given by Goldberger and Watson [126]. For our time-dependent case, we
can similarly defining the transition rate at time ¢ by

d d .
Dalt) = Slmg(t) = mp(t) Zmi(0) + cc., (5.4)
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where similar to the derivation of eq.(2.23)), my;(¢) is the transition amplitude at time ¢:

malt) =i [ de SO (e AE) e BW)| 0 (B.5)

—00

Eq. can be used to express the integrand of eq. as
e (k+ A(t) v - B(E)| ;) = Py " Ly (k) e ™ (B.6)
so that the transition rate eq. becomes
Tut) = /t dt’ ™) (k+ A(t') |- E@)| ;) e 75O (4 |r - E(t) | k+ A(t)) + c.c.
= Lo (K)LE, (k)eltmm)wt / "y e o (B.7)
oy 0

n,

where 7 = t — ¢/ in the last step. As t — oo, terms with n # n’ oscillate rapidly and
interfere destructively so that only the n = n’ terms survive. Evaluating the integral over
7 and introducing the factor ¢ — 0 to ensure the convergence of the integral in eq.,
we obtain the transition rate

—1 1
Ly = Lo (k)?
f ;’ <)’ {EATI—nw—ie—i_EATI—nw—i-ie

= 21 ) 0(Ears — nw) |Ln(k)|” (B.8)

which is eq.(B.3)).
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Appendix C

Tunneling ionization picture

In this appendix, we consider the ionization rate for the bound state of an atom with zero-
range potential of eq. in the presence of a static electric field Fy. While the rate can
be obtained as a special case of the general formula of eq.(4) of PPT [26], it is instructive
to present a derivation following the exposition of Bisgaard and Madsen [127]. Assuming
the external electric field is along the z-direction, the interaction energy eq.(7.7)) is simply
Vi, = Eyz, and the time-independent Schrédinger equation is

{—%VZ + Vot VL} (r) = —%/ﬁ%(r), (C.1)

where —%/@2 is the energy eigenvalue of the bound state wave function eq. in the

absence of the external field. Eq.(C.1) is separable in the parabolic coordinates [57, 127]
E=r+z, n=r-—z, gf):tan_l(g). (C.2)
x

Symmetry of the initial bound state wave function eq.(4.2)) suggests that the wave function
¥ (r) should have cylindrical symmetry and independent of the azimuthal angle ¢ so that
Y(r) is independent of ¢. Thus we assume

1

Wfl(&)fﬂ”)‘ (C.3)

b(r) =
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Forr >0,V,=0and V; = %Eo(f —1). Substituting eq.(C.3)) into eq.(C.1)) and expressing
the Laplacian in terms of the parabolic coordinates yield |57, [127]

N A ) ()
1+ Da(an) = ~Sxa), (©5)

where x1(€) = VEf1(§), x2(n) = /nf2(n), B is the separation constant, and the effective
potentials are given by

1

Ui(§) = _8_£2+_€—2’% (C.6)
1 E

Uz(n) = 8P goﬁ + % (C.7)

Tunneling occurs at large negative z close to the z-axis where £ ~ 0 and n ~ —2z > 1.
The ionization can be calculated from the flux of the probability current density through
a surface S perpendicular to the negative z-direction [57, 127]:

Wetar = —/jzdSz/ 3 balOF 1, X5 (Mxa(n), (C.8)
S 0

g 2
where the current den81ty j. = Re (¢ x 1 a¢) and dS = pdpdp ~ %ndﬁdqﬁ. For & ~ 0, the
term Foé in U, of eq.(C.7) can be neglected and eq.(C.4) has the approximate solution

1
X1(&) ~ 5% exp (—Eﬁf) with (= g (C.9)
The ionization rate (C.8) then becomes

1 *
Wstat = Elm XQ(H)XIQ(U)a n > L. (C]'O)

To find x5(n) at large 1, we find appropriate solutions to eq. by the WKB method [57].
The classical turning points for Uy are determined from solving Us(n) = —k?/8, yielding
the inner and outer turning points 7, = 2/k and 1y = k*/Ej, respectively. The JWKB
wave function is then given by

MeXp S Ipldn), — m < n <
X2(n) = , (C.11)

% exp(i [; pdn +i%), 1> no
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2 2

where % =5 Us(n) and C'is a normalization constant to be determined. Thus at
large 17 > 1, eq.(C.11)) gives x3(1)x5(n) = i|C|* so that
C 2
Wstat = u (012)
K

To determine the normalization C', we shall compare the wave function eq.(C.3)) in the
tunneling region 17, < n < 1y where V;, becomes negligible with the bound state wave
function eq.(4.2). In this region, |p(n)| can be approximated by

K2 1 Ey K 2 K Eyn 2 1 Eom\
=2 (5 -gp -5 g)| =5 (-5F) +5,(-5F) e

and we obtain [127]

N

! KRN Nk
dn~ ——+ ——In| — . C.14
/770 |p| 77 3E0 + 2 1l (4/€2> ( )

()—c\ﬁ 0k <_ﬂ> - (C.15)
X2 =2V e a2 PN ) FP\3RE, ) '

where it suffices to use |p(n)| ~ x/2 for the pre-exponential factor. Substituting eqs.(C.9)
and ((C.15)) into eq.(C.3]) gives the wave function

o) =2 [ o (-5 0+.9) e () (C.16)

Comparing the WKB wave function (C.16)) with the bound state wave function (4.2)) and
noting that n + & = r, and n ~ 2r at large r and close to the negative z-axis, we obtain

| E
C = 70 e /380 From eq.(C.12|) we obtain finally

Thus

Lo -2t jaa, (C.17)

Wstat =

2K
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Appendix D

Analytical expression of L,

For low frequency and high intensity laser excitation, the integrand of the transition ampli-
tude Ly,(k) eq. or eq. contains a rapidly oscillating function *»®

(see eq.(2.27)), and the integral can be evaluated by the saddle-point method [67]. The
effect of the core potential V, enters only through the momentum representation of the
initial wave function in the SFA, and will be shown below to contribute only to the pre-
exponential factor of the final result. It is convenient to define 7 = wt so that in general

L, (k) of eq.(2.31)) or eq.(2.32)) can be expressed as

B 2m G(T>€i5p (7)
Ln(k)/o T (D.1)

where S| = dS,/dr, G is a function analytic at the saddle points 7; given by S/ (7;) = 0,
and the parameter v > 0. The possible appearance of a pole at the zeros of S} of the
integrand, as pointed out by Keldysh [15], is related to the scattering amplitude hav-
ing poles at the bound state energies. For the zero-range potential considered in Chap-
ter , (k + A(t)|#s) o< 1/S, in eq.(2.32) so that v = 0, while for the Coulomb potential
(k+ A(t)|¢:) o (1/57)? for which v =1.

From eq.(2.27) and taking advantage of the delta function in eq.(2.30)),

kE, 0 U,
S,(1) =nT + (% COST — Up sin 7 cos ’7') (D.2)

which is a rapidly oscillating function of 7. Major contributions to the integral in eq.(D. 1))
come from the saddle points which are the roots of S)(7;) = 0 where 7; are complex in
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general, and eq.(D.1)) can be evaluated by the method of steepest descents. For the simple
case v = 0, eq.(D.1]) is given asymptotically by the well-known result [67]

1
27T 2 . 1S, (T)

Ly(k) ~ Z [ml iG(1;) (), (D.3)
where the integration path is deformed from the real 7-axis of eq.(D.1) to the path of
steepest descent passing through 7; in the direction ¢; = —%f + 7 in the complex 7-plane
where 0 < o < 27 is the argument of [iS)(7;)]. For v > 0, the asymptotic evaluation of
the integral is more complicated [67, [69] [54], and we have discussed this case in Chapter .

In general, eq.(D.1)) is given asymptotically by
Ln (k) ~ Z‘Bz’ e!Frm), (D.4)

where the pre-exponential factor 9B; is proportional to [S, (Ti)]’%. Hence we require the
first and second derivative of S(7) in the asymptotic evaluation of L, (k).

While the general case of a complex atom has been discussed by PPT [26] and others
[54], to understand the procedure leading to the adiabatic limit of the ionization rate,

it suffices to consider the simple case of an s-state initial wave function, where the pre-
exponential factor of L,(k) is independent of 6. Substituting eq.(D.4]) into egs.(2.34) and
(2.35)) gives the asymptotic total ionization rate

I'p ~ i I;—;/_lldCOSQ ZSBZ ¢5p(7i)

n>ng
The derivative of S(7) can be read off from the integrand of eq.(2.20)), and from eq.([2.24])

we obtain

| E 2 /4 K
S,(T):— k——OSinT _|__p:2;;sin27'—k: —ZCOSQSiHT-f- —+27J’7 (D~6)

U, B

2

(D.5)

where z = — = 03 is the intensity parameter of Reiss [20], and 7 is the Keldysh

w w
I
parameter of eq.(2.1) which can also expressed as v = ﬁ. The second derivative of
p
the combined action is
" . 4z .
S)(7) = 4zsinTcosT — k " cosfsin 7. (D.7)
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Setting S, () in eq. to zero yields the complex saddle points 74

+

sin 7y =

k cos 6 _(2 k2sin29)1/2
Yt >

4wz 4wz

cos Ty = —i(sin? 7y — 1)%/2 (D.8)

where cos 74 has a branch cut along —1 < sin7y < 1 on the real axis. Thus, sinT_ =
[sinTy]*, cos7_ = —[cosT4]*, Im7_ = Im 7, and Re 7_ = m — Re 7. Here we consider
only the roots with Im 7; > 0, as roots with Im 7; < 0 will give unphysical solutions which
become exponentially large [128].

Eq. expressed as a function of 7 indicates that for low frequency excitation, pho-
toelectrons with large kinetic energy will appear in the spectrum with exponentially small
probability so that it is reasonable [I5] 26] to make the low photoelectron energy approxi-
mation (LPEA) and expand to second order in k

(D.9)

k?sin? 6 k cos @
sin 74 ~ 4y (1—1— o ) o8,

8wzy? dwz

This expansion for sin 7, has been given by Mishima, et al. [85] who attempted to evaluate
the integral for L, (k) by the residue theorem. Unfortunately, their procedure was shown
to be invalid [56]; nevertheless their papers [85, 129] provide many useful results in the
study of the Keldysh theory. From eq., we obtain

112 sin? 6
_ ) k cos 6 ik [7 + = ]
Ty = tarcsinh v+ 373
2v/wz(1+9%) 8wz (1+42)
712 sin® 0
k 4 1k |:’}/ + —i|
T = m+iarcsinh vy — £ . (D.10)

2y/wz (14 ~2) " 8wz (14 72)%*
Note that the inverse hyperbolic function can also be written as [29]

arcsinh v = In(y 4+ /1 + ~2). (D.11)
From eq.7 we obtain

ivk cos 0 n E2[(1 + ~?)sin? § — cos? 4]

cosTy = £4/1+72 —
. T wz(1+~2) 8wz (1 + 72)*/?

(D.12)
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Substituting eq.(D.12)) into eq.(D.2|) results in

1492 k2 20
Syre) = iRt 2y T ggg - 00 (D.13)
w 2w/1 4+ 7?2
1 2 £ 1.2 2
Sp(t—) =~ nm+iR—2 Ak kcos — ik7y cos 6 (D.14)

w 2wr/1+ 72

where R = |n arcsinh v — 2v4/1 + 72]. Since S)(7;) appears only in the pre-exponential
factor in eq.(D.4)), it suffices to retain the lowest order k£ = 0 terms in eqs. and (D.12))
so that

S) (1) ~ dizyy/1+ 72 (D.15)
Thus S)(7;) = S)(7-) and hence P, = P_. Defining & = [P+|*, eq.(D.4) gives

‘Ln(k)‘z ~ ﬁ,eiSp(u_)_{_eiSp(r_)’Q

1 2 _ k2'ycos29
1+ (—=1)"cos <4k‘ cos 6 A +77) )] e avin (D.16)

= 2R

w

which can be compared with eq.(53) of PPT [260] if we take advantage of the delta function
in eq.(2.30) and replace n in the exponential factor by

n=2(v,+1 +k2 —z+222+k2 (D.17)
Cw\ PP ) RS '

Substituting eq.(D.16|) into eq.(D.5)) gives the total ionization rate
k%'y cos2 9

o0 1
FT ~ ﬁeiQ [no arcsinh y—zy4/1+~2 ] Z kn 6—2(n—n0)arcsinh ol / dcos 0 e wV1++2 , (D]_8)

-1 m

n>ng

where we neglect the cosine term in eq. (the low photoelectron energy approximation
neglecting interference LPEANI) since the sum over this term in the strong field limit
is expected to average to zero [26], and we separate out the term (2ny arcsinh «) in
the exponent for convenience. Defining ¢ = 2(arcsinh v — —2—), f = —*—, noting

/1+72 /1+,Y2 )
k? = 2w(n — ng), and making the substitution y = \/3(n — ng) cos 6, this expression is

often written in term of the Dawson integral [130] as

—2|ng arcsinh y—z 2 2 2
T — fe 2[ 0 h y—zyy/14y ]1/% — S(v,no), (D.19)
™
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where S(v,ng) = Z e=S=m)yo(v/B(n —ng) ) is the function defined in eq.(18) of

n>ng
Keldysh [15], and wy(x) = exz/ V" dy is a special case of eq.(56) of PPT [26] with
0

m = 0.

We now study the adiabatic limit of the ionization rate when v < 1. In this case,
many terms contribute to the sum over n in eq., and we may replace the sum by an
integral over x = n — ng so that k2 = 2wz. Interchanging the order of integration of x and
cos ), we find that

0 1 d k2 0% cos2 0
- cosf o
E : kne—2z(n—no)arcsmh7 / e w1172

.
n>ng
1 o — 22 arcsinh y— 1c2520
:/ dcosé’/ dxm62( hy;v/m)
-1 7 0
1 /3

~ [ (D.20)
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where we have used the approximation [20]
arcsinh vy — L= 173 + 0. (D.21)
1+~2 3

Furthermore, setting & = 0 in eq.(D.17)) gives ng = z(1 + 27?), and the first exponential
factor in eq.(D.18)) can be simplified by [20]

4 2
(14 29 arcsinh v — y/1 + 42 ~ gfy?’ (1 — Y_O) + 0. (D.22)

Hence the total ionization rate eq.(D.18)) reduces to I'y ~ I',y where

1 /3w 8z 72
lwa=R—/— ——»1-= . D.23
! 272V my exp{ 3" ( 1())} ( )

2(21,)%?

Ey
ponential dependence on the ionization potential and the electric field of the static field

ionization rate [57] of eq.(2.36)).

Identifying 8zv® = , eq.(D.23|) to lowest order in v shows the well-known ex-
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