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Abstract 

Chromium (VI) is a pervasive groundwater contaminant that poses a considerable threat to 

human health. Remediation techniques have focused on the reduction of the highly mobile 

Cr(VI) to the sparingly soluble, and less toxic, Cr(III) species. Traditionally, remediation 

performance has been evaluated through the measurement of Cr(VI) concentrations; however, 

this method is both costly and time-consuming, and provides little information regarding the 

mechanism of Cr(VI) removal. More recently, Cr isotope analysis has been proposed as a tool 

for tracking Cr(VI) migration in groundwater. Redox processes have been shown to produce 

significant Cr isotope fractionation, where enrichment in the 
53

Cr/
52

Cr ratio in the remaining 

Cr(VI) pool is indicative of a mass-transfer process. This thesis describes laboratory batch and 

column experiments that evaluate the Cr isotope fractionation associated with the reduction of 

Cr(VI) by various materials and under various conditions. 

 Laboratory batch experiments were conducted to characterize the isotope fractionation 

during Cr(VI) reduction by granular zero-valent iron (ZVI) and organic carbon (OC). A 

decrease in Cr(VI) concentrations was accompanied by an increase in 
53

Cr values for the ZVI 

experiments. Data were fitted to a Rayleigh-type curve, which produced a fractionation factor 

 = 0.9994, suggesting a sorption-dominated removal mechanism. Scanning electron 

microscopy (SEM), X-ray absorption near-edge structure (XANES) spectroscopy, and X-ray 

photoelectron spectroscopy (XPS) indicated the presence of Cr(III) on the solid material, 

suggesting that reduction of Cr(VI) occurred. A series of batch experiments determined that 

reaction rate, experimental design, and pre-treatment of the ZVI had little to no effect on the Cr 

isotope fractionation. The interpretation of isotope results for the organic carbon experiments 
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was complicated by the presence of both Cr(VI) and Cr(III) co-existing in solution, suggesting 

that further testing is required. 

 A laboratory column experiment was conducted to evaluate isotopic fractionation of Cr 

during Cr(VI) reduction by OC under saturated flow conditions. Although decreasing dissolved 

Cr(VI) concentrations also were accompanied by an increase in 
53

Cr values, the isotope ratio 

values did not fit a Rayleigh-type fractionation curve. Instead, the data followed a linear 

regression equation yielding  = 0.9979. Solid-phase analysis indicated the presence of Cr(III) 

on the surface of the OC. Both the results of the solid-phase Cr and isotope analyses suggest a 

combination of Cr(VI) reduction mechanisms, including reduction in solution, and sorption 

prior to reduction. The linear characteristic of the 
53

Cr data may reflect the contribution of 

transport on Cr isotope fractionation. 
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Chapter 1: 

Introduction 

Chromium (VI) is a highly toxic and mobile groundwater contaminant that has been 

traditionally remediated by reduction to the sparingly soluble, and less toxic, Cr(III) species. 

Recent advances in analytical techniques have revealed that reduction of Cr(VI) generates Cr 

isotope fractionation that can be used to assess the extent of reduction (Ellis et al., 2002). 

Combining Cr isotope measurements with traditional Cr(VI) concentration measurements and 

solid-phase analyses may provide a rapid and cost-effective method for tracking the migration 

of Cr(VI) in groundwater. The primary goal of the research presented in this thesis was to 

characterize the Cr isotope fractionation during the reduction of Cr(VI) by two common 

reactive materials, granular zero-valent iron (ZVI) and organic carbon (OC), and to evaluate 

the potential influence of transport on Cr isotope fractionation under saturated flow conditions. 

This chapter provides essential background information on the behaviour of Cr(VI) in 

groundwater, an overview of Cr(VI) treatment by ZVI and OC, and a brief review of the 

current research on Cr isotope fractionation. 

1.1 Background 

1.1.1 Cr(VI) in Groundwater 

Hexavalent chromium (Cr(VI)) is a common groundwater contaminant of major concern to 

human health. While trivalent chromium (Cr(III)) is an essential micronutrient, Cr(VI) is both a 

mutagen and a carcinogen (Losi et al., 1994), with the potential to cause oxidative damage to 
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DNA in the human body (O'Brien and Kortenkamp, 1994). Although it can be derived from 

natural geological sources, much of the Cr(VI) released into the environment is a by-product of 

industrial activities, such as leather tanning and electroplating (Blowes, 2002). In an extreme 

example, from a site in Oregon, USA, there were Cr(VI) concentrations of up to 14,600 mg L
-1

 

in the groundwater as a result of a leaky process tank at a plating facility (Palmer and 

Wittbrodt, 1991). In its oxidized form, Cr(VI) exists in groundwater as HCrO4
-
, CrO4

2-
, and 

Cr2O7
2-

 oxyanions, and is highly mobile and toxic (Losi et al., 1994). Treatment of Cr(VI) in 

groundwater is generally accomplished through reduction, as Cr(III) is both less mobile and 

less toxic (Losi et al., 1994). 

Multiple remediation techniques exist to effect the reduction to Cr(III). These include 

pump and treat, permeable reactive barriers (PRBs), direct injection of a reductant, and natural 

attenuation by the substrate. Natural attenuation is preferable because it is low-cost and non-

invasive (Blowes, 2002). A wide variety of materials can be used as electron donors for the 

reduction of Cr(VI), including aqueous Fe(II) (Eary and Rai, 1988; Sevim and Demir, 2008), 

granular zero-valent iron (Blowes et al., 1997; Dutta et al., 2010), organic carbon (Bolan et al., 

2003; Park et al., 2008), and certain bacteria (Lovley and Phillips, 1994; Cummings et al., 

2006). In all cases the goal is reduce Cr(VI) to the less toxic Cr(III) form through the following 

reaction (Losi et al., 1994): 

 

(1.1)   
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Aqueous Cr(III) generated during Cr(VI) reduction is readily precipitated as Cr(OH)3 under 

moderate to high pH conditions (Rai et al., 1987; Palmer and Wittbrodt, 1991): 

 

(1.2)  

 

Once immobilized through precipitation, the reduced Cr(III) remains in situ, and the site is 

considered to be adequately remediated. In some treatment systems, further steps may be taken 

to remove the precipitated Cr(III) through filtration or sedimentation (Losi et al., 1994). 

1.1.2 Treatment of Cr(VI) by Zero-Valent Iron and Organic Carbon 

Granular zero-valent iron (ZVI) is frequently used for the treatment of Cr(VI) in groundwater, 

particularly in the construction of permeable reactive barriers (PRBs) (Blowes et al., 1997; 

Blowes et al., 2000; Jeen et al., 2008). The ZVI is available through commercial sources as 

scrap granular Fe from industrial activities, but can also be generated in the laboratory, 

generally as micro- or nano-sized particles (Gheju, 2011). Reduction of Cr(VI) is achieved 

through the corrosion of Fe, which occurs readily under anaerobic conditions and releases 

dissolved Fe(II) (Blowes et al., 2000): 

 

(1.3)  

 

The aqueous Fe(II) is then available as an electron donor for the reduction of Cr(VI) to Cr(III), 

which is coupled with the oxidation of Fe (Blowes et al., 1997): 
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(1.4)  

 

In addition to the precipitation of Cr(OH)3, reduced Cr(III) also has been observed to co-

precipitate with Fe(III) in the form of hydroxides or (oxy)hydroxides (Blowes et al., 1997): 

 

(1.5)  

 

(1.6)  

 

Organic carbon also is a common material used for the treatment of Cr(VI) in 

groundwater, and can be derived from a wide range of sources including manure, sawdust, pine 

needles, and fungal biomass (Bolan et al., 2003; Park et al., 2005; Park et al., 2008). The 

reduction of Cr(VI) is coupled with organic carbon degradation, which can be described by the 

following reaction (Bolan et al., 2003): 

 

(1.7)  

 

The application of organic carbon for Cr(VI) remediation is potentially advantageous, as the 

biomaterials are inexpensive and the reaction does not produce the large volumes of secondary 

waste generated through other techniques (Park et al., 2005). 
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1.1.3 Chromium Isotopes 

Chromium has four stable isotopes, 
50

Cr, 
52

Cr, 
53

Cr, and 
54

Cr, with natural abundances of 

4.35%, 83.8%, 9.5%, and 2.37%. Following the complete radioactive decay of 
53

Mn (half-life 

of 3.7 Myr) to 
53

Cr in the early history of the Earth, materials of terrestrial origin should be 

expected to exhibit identical Cr isotope signatures (Frei and Rosing, 2005). However, certain 

processes have been observed to fractionate Cr isotopes. In particular, the transition from 

tetrahedrally-coordinated Cr(VI) to octrahedrally-coordinated Cr(III) during Cr reduction is 

predicted to cause the largest change in isotope composition (Schauble et al., 2004). The lighter 

isotope, 
52

Cr, is preferentially reduced due to its higher vibrational energy (Schauble et al., 

2004), resulting in an enrichment of 
53

Cr in the remaining unreacted Cr(VI) pool. This 

enrichment is measured as the change in the ratio of 
53

Cr/
52

Cr, and is expressed as 
53

Cr in 

units of per mil (‰) relative to a standard according to the following equation: 

 

(1.8)  

 

where positive 
53

Cr values in the remaining Cr(VI) are indicative of reduction. 

Analytical advances have been made in the field of non-traditional stable isotope 

geochemistry such that changes in the δ
53

Cr signature can be measured (Ellis et al., 2002). 

Simultaneous measurement of all four stable Cr isotopes is crucial for detecting the relatively 

small changes in the 
53

Cr/
52

Cr ratio during Cr isotope fractionation. Two types of instruments 
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are currently used for such analysis of Cr isotopes: thermal-ionization mass spectrometers 

(TIMS) and multi-collector inductively-coupled plasma mass spectrometers (MC-ICP-MS). 

1.1.4 Tracking Cr(VI) Migration in Groundwater 

Traditionally, Cr(VI) concentration measurements have been used to monitor the extent of 

Cr(VI) remediation (Blowes, 2002). More recently, the application of Cr isotopes has been 

proposed as a beneficial tool for tracking Cr(VI) migration in groundwater (Blowes, 2002; 

Ellis et al., 2002). Whereas concentration measurements describe only the changes in Cr(VI), 

Cr isotope fractionation can provide more complete information on the conditions in the 

subsurface and the presence of any mass-transfer processes (Blowes, 2002). Laboratory 

experiments have demonstrated that the degree of 
53

Cr enrichment is dependent on the 

reductant and the mechanism of Cr(VI) removal (Ellis et al., 2002, 2004; Sikora et al., 2008; 

Berna et al., 2010; Zink et al., 2010; Døssing et al., 2011), suggesting that careful evaluation of 

potential remediation materials will be necessary prior to the application of this new tool in the 

field. 

The first published Cr isotope results appear in Ellis et al. (2002), where a significant 

enrichment in 
53

Cr was observed during Cr(VI) reduction in laboratory batch experiments 

using magnetite and sediment slurries. The isotope data follow a Rayleigh-type fractionation 

curve, which assumes that the product (Cr(III)) is completely isolated from the reactant 

(Cr(VI)), and results in an exponential increase in 
53

Cr as the fraction of remaining Cr(VI) 

decreases. A kinetic fractionation factor ( ) can be calculated to describe the extent of 

fractionation using the following equation (Clark and Fritz, 1997): 
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(1.9)  

 

where R is the isotope ratio, R0 is the initial isotope ratio, and f is the fraction of Cr(VI) 

remaining in solution. The work by Ellis et al. (2002) establishes = 0.9965 for Cr(VI) 

removal by magnetite, which is attributed to reduction in solution. Similar batch experiments 

using a variety of materials as the electron donor have generated values ranging from 0.9950 

to 0.9985 (Table 1.1). Subsequent work by Ellis et al. (2004) investigated the effect of sorption 

on Cr isotope fractionation. As predicted by Schauble et al. (2004), a lack of change in 

coordination number results in little to no fractionation (Table 1.1). Using  = 0.9965 for 

reduction in solution, and  = 1.0000 for sorption, Døssing et al. (2011) attributed their  value 

of 0.9985 to a mixture of mechanisms: direct Cr(VI) reduction by Fe(II)aq, and sorption of 

Cr(VI) to green rust followed by reduction that did not fractionate the remaining Cr(VI) pool. 

Observations of enriched 
53

Cr values in field samples have been reported in the 

literature (Ellis et al., 2002; Izbicki et al., 2008; Berna et al., 2010; Raddatz et al., 2011). The 

samples were obtained from various sources, including groundwater contaminated by plating 

waste in California (Ellis et al., 2002; Berna et al., 2010), laboratory waste in Idaho (Raddatz et 

al., 2011), and natural geological sites in the Mojave Desert (Izbicki et al., 2008). Attempts 

were made to use the Cr isotope data to determine the extent of Cr(VI) reduction, but 

interpretation was found to be convoluted due to system heterogeneities and high background 

Cr(VI) concentrations (Izbicki et al., 2008; Berna et al., 2010). In addition, the influence of 
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transport on isotope fractionation during Cr(VI) reduction under saturated flow conditions is 

largely unknown. 

1.2 Research Objectives 

The primary objectives of the research described in this thesis are to enhance the understanding 

of Cr isotope fractionation during treatment by various reactive materials to more effectively 

use Cr isotopes as a tool for tracking Cr(VI) migration in groundwater. Used in tandem with 

traditional geochemical measurements and solid-phase analyses, Cr isotopes can provide more 

detailed information about the geochemical processes occurring during Cr(VI) treatment. The 

ultimate goal of this type of research into Cr isotopes is to develop a more rapid and cost-

effective technique for evaluating the performance of Cr(VI) treatment projects in the field. 

Specific objectives of the research for this thesis included: 

  Characterization of the Cr isotope fractionation during Cr(VI) treatment by granular 

ZVI and organic carbon, and assessment of the effect of varying experimental 

conditions on fractionation. 

 Evaluation of the Cr isotope fractionation during Cr(VI) treatment by organic carbon 

under saturated flow conditions that more closely replicate field conditions. 
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1.3 Thesis Organization 

This thesis is presented as two research papers related to the objectives outlined in the previous 

section. The first paper, presented as Chapter 2, describes laboratory batch experiments 

conducted to evaluate the Cr isotope fractionation during Cr(VI) treatment by granular zero-

valent iron and organic carbon under a variety of conditions. Chapter 3 presents data from a 

column study designed to investigate Cr isotope fractionation during Cr(VI) treatment by 

organic carbon under saturated flow conditions. The final chapter, Chapter 4, presents a 

summary of findings from the two research papers and recommendations for future research. 
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Table 1.1 Summary of fractionation factors ( ) from the Cr isotope literature. 

 

Material Mechanism Source 

magnetite;  

pond sediment;  

estuarine sediment 

0.9965;  

0.9965;  

0.9967 

reduction in solution Ellis et al. (2002) 

goethite; alumina 1.0000 sorption Ellis et al. (2004) 

Shewanella oneidensis 0.9959;  

0.9983 

biotic reduction Sikora et al. (2008) 

sediment slurry 0.9969;  

0.9976 

reduction by green rust Berna et al. (2010) 

H2O2 0.9965;  

0.9950 

reduction in solution Zink et al. (2010) 

Fe(II)(aq) 0.9964;  

0.9985 

reduction in solution;  

mix of reduction in 

solution and sorption 

followed by reduction 

Døssing et al. (2011) 
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Chapter 2: 

Isotopic Fractionation During Reduction of Cr(VI) 

by Zero-Valent Iron and Organic Carbon: 

Batch Experiments 
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2.1 Summary 

The application of chromium isotopes for tracking Cr(VI) migration in groundwater requires 

careful characterization of the isotope fractionation curve. A series of laboratory batch 

experiments was conducted to evaluate the Cr isotope fractionation associated with Cr(VI) 

reduction by granular zero-valent iron and organic carbon. A 50 mg L
-1

 Cr(VI) solution was 

introduced to each reactive material in a series of six batch experiments that compared variable 

experimental conditions, including pre-treatment of the solids, experimental design,  reaction 

rates, and solution matrix. Isotope measurements were performed on the aqueous samples, 

along with analyses of pH, Eh, alkalinity, and dissolved cations and anions. The batch systems 

containing zero-valent iron exhibited a decrease in dissolved Cr(VI) concentrations with an 

increase in 
53

Cr that followed a Rayleigh-type trend with an average fractionation factor ( ) 

of 0.9994, suggesting a sorption-dominated removal mechanism. Analysis of the solid material 

by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) indicated 

that solid-phase Cr was widely distributed across the surface of the reactive material. 

Chromium(VI) reduction was suggested for all experiments by the presence of Cr(III) on the 

surface of the solids, measured by X-ray absorption near edge structure (XANES) spectroscopy 

and X-ray photoelectron spectroscopy (XPS). Interpretation of isotope results for the organic 

carbon experiments was convoluted by the presence of both Cr(VI) and Cr(III) in solution, 

indicating that changes to the sample preparation method are required to analyze the isotope 

composition of the Cr(VI) in these samples. Results from this study demonstrate that batch 

experiments are essential to evaluate Cr isotope fractionation for each reactive material prior to 
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applying Cr isotopes as a tool for tracking Cr(VI) migration in groundwater. In addition, this 

study shows that combining different analytical techniques, such as aqueous, solid-phase, and 

isotope measurements, may provide data that either reinforces an initial hypothesis or generates 

complementary information. 

2.2 Introduction 

Chromium (VI) is a highly soluble and mobile groundwater contaminant most commonly 

derived from tanning and electroplating (Blowes, 2002). This oxidized form of Cr is toxic, 

existing in groundwater as HCrO4
-
, CrO4

2-
, and Cr2O7

2-
 oxyanions (Losi et al., 1994). 

Treatment methods focus on the reduction of Cr(VI) to the less soluble Cr(III), which is readily 

precipitated and immobilized under mildly acidic, neutral, and alkaline conditions (Rai et al., 

1987; Palmer and Wittbrodt, 1991). Electron donors for Cr(VI) reduction include aqueous 

Fe(II) (Eary and Rai, 1988; Sevim and Demir, 2008), granular zero-valent iron (Blowes et al., 

1997; Dutta et al., 2010), organic carbon (Bolan et al., 2003; Park et al., 2008), and certain 

bacteria (Lovley and Phillips, 1994; Cummings et al., 2006). 

Chromium has four stable isotopes, 
50

Cr, 
52

Cr, 
53

Cr, and 
54

Cr, with natural abundances 

of 4.35%, 83.8%, 9.5%, and 2.37%. Redox changes, such as the transition from tetrahedrally-

coordinated Cr(VI) to octrahedrally-coordinated Cr(II), can cause a shift in the 
53

Cr/
52

Cr ratio 

(Schauble et al., 2004). The lighter isotopes are preferentially reduced, resulting in an 

enrichment of 
53

Cr relative to 
52

Cr in the unreacted Cr(VI) and a corresponding depletion in the 

reduced Cr(III). Isotopic enrichment of Cr(VI) is indicative of mass-transfer processes such as 

reduction, therefore the measurement of stable Cr isotopes has been proposed as a tool for 
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tracking Cr(VI) migration in groundwater (Blowes, 2002; Ellis et al., 2002). Observations of 

enriched 
53

Cr values have been reported from various field settings (Ellis et al., 2002; Izbicki 

et al., 2008; Berna et al., 2010; Raddatz et al., 2011), but interpretation of these results remains 

challenging due to heterogeneity of the substrate and high natural background Cr(VI) 

concentrations (Izbicki et al., 2008; Berna et al., 2010). 

Recent laboratory studies have demonstrated that the extent of isotopic fractionation 

relies on the type of electron donor involved with Cr(VI) reduction (Ellis et al., 2002, 2004; 

Sikora et al., 2008; Berna et al., 2010; Zink et al., 2010; Døssing et al., 2011). A measurable 

enrichment of 
53

Cr was first reported by Ellis et al. (2002) as a result of Cr(VI) reduction by 

magnetite. Similar results were later observed in sediment slurry batch experiments from Berna 

et al. (2010) and reduction by aqueous Fe(II) conducted by Døssing et al. (2011). In contrast, 

Ellis et al. (2004) demonstrated that little to no isotope fractionation occurs during sorption of 

Cr(VI) by minerals such as goethite and alumina, likely because no change in coordination 

occurs. In this study, batch experiments were conducted to assess the degree of Cr isotope 

fractionation during Cr(VI) treatment by granular zero-valent iron and organic carbon. 

Additional potential influences were also considered, including pre-treatment of the zero-valent 

iron, experimental design, and changes in reaction rate. Analyses of water chemistry, solid-

phase mineralogy, and stable Cr isotopes were performed to evaluate the results. 
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2.3 Laboratory Methods 

2.3.1 Experimental Setup 

Laboratory batch experiments were conducted using both granular zero-valent iron (ZVI; 

Connelly GMP, Chicago, IL, USA) and organic carbon (OC) as mixed deciduous-tree leaf 

mulch from a local landfill (Region of Waterloo Waste Management, Waterloo, ON, Canada) 

to evaluate the Cr isotope fractionation during Cr(VI) reduction. All of the experiments were 

carried out in an anaerobic chamber (Coy Laboratory Products Inc., Grass Lake, MI, USA) 

under a 3.5% H2/balance N2 atmosphere. Varying experimental conditions were tested, 

including single batch flask vs. multiple flask treatment, untreated vs. pre-treated ZVI, and 

changes in the mass of treatment media relative to the initial volume of solution (Table 2.1). 

Replicate experiments (designated „A‟ and „B‟) were performed to assess reproducibility for all 

experiment types except for a multi-flask experiment using zero-valent iron in artificial 

groundwater (ZVI-MP). Single-flask experiments, where multiple samples were collected from 

a single batch reaction flask over time, were performed using one 400 mL amber glass bottle 

(VWR International, Radnor, PA, USA). For the multi-flask experiments, between five and 

twenty 250 mL amber glass bottles were used for each experiment and one bottle was 

randomly selected and sampled sacrificially at each time step. At several time steps in each 

multi-flask experiment, duplicate bottles were sampled simultaneously to assess reproducibility 

within the experiment. 

Connelly ZVI was used as-received for batch experiments ZVI-S10, ZVI-S100, and 

ZVI-M. A separate experiment (ZVI-MP) was performed to test the treatment capability of 
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ZVI after removal of the oxide coatings. The removal of the oxide coatings was intended to 

simulate the removal of oxidation products during aging of a permeable reactive barrier. The 

ZVI was sieved at 16 – 60 mesh (0.25 – 1.19 mm) and then soaked in 1 M HCl. The acid was 

periodically decanted and replaced over the course of 6-7 hours, resulting in the ZVI changing 

in color from brown to black. After a final 1 M HCl rinse, the ZVI was submerged in 0.1 M 

HCl and transported into the anaerobic chamber, where it was rinsed with Ar-purged high-

purity Milli-Q
®
 water and vacuum-filtered. The cleaned ZVI was packed into a 20 x 5 cm 

Plexiglas
®
 column through which Ar-purged deionized (DI) water was pumped for 2 weeks, 

followed by Ar-purged CaCO3-saturated DI water for 4 weeks. Following the development of 

reducing conditions as indicated by redox measurements of the effluent, the column was 

disassembled in the anaerobic chamber and the pre-treated ZVI was weighed out into amber 

glass bottles. Moisture content of the pre-treated ZVI was determined both by oven-drying and 

freeze-drying. 

The organic carbon was sieved at < 10 mesh (2.00 mm) to remove large particles such 

as twigs, and then covered to prevent drying. Moisture content of the OC was determined by 

weighing a representative sample before and after heating for 24 hours in a 100°C oven. 

Appropriate masses of each reactive material were weighed out into amber glass bottles, which 

were then placed in the anaerobic chamber and allowed to equilibrate. 

A 50 mg L
-1

 Cr(VI) input solution was prepared by dissolving K2Cr2O7 in either DI 

water or CaCO3-saturated DI water (Table 2.1). The input solution was purged with anaerobic 

grade Ar(g) in the anaerobic chamber for 2-3 hours prior to use. Batch experiments were 

initialized by adding an appropriate volume of input solution to each of the reaction bottles. A 
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control bottle was included in each experiment in which Cr-free water was added to the solids 

to monitor for Cr contamination in the reactive material. Initially the reaction flasks were 

agitated on an orbital shaking table in the anaerobic chamber (replicate „A‟). Subsequent 

bottles were hand tumbled twice a day at regular intervals (replicate „B‟). The ZVI-MP batch 

experiment was also hand tumbled. 

2.3.2 Water Sampling and Analysis 

Aqueous sampling was performed in the anaerobic chamber using disposable polyethylene 

(PE) syringes (BD, Franklin Lakes, NJ, USA). Samples were drawn directly out of the single-

flask experiment bottles, while the multi-flask bottles were vacuum-filtered through 0.45 m 

cellulose acetate filters (Whatman, UK) to halt the reaction prior to sampling. Samples from 

the OC-M experiments were strongly coloured orange-brown even after filtration, suggesting 

the presence of dissolved organic carbon (DOC). Measurements of pH and redox potential (Eh) 

were immediately performed in the anaerobic chamber on unfiltered samples. The pH was 

determined using an Orion Ross 815600 electrode (Thermo Scientific, Waltham, MA, USA), 

which was calibrated with standard pH 4 and 7 buffers. The performance of the Eh electrode 

(Orion 9678, Thermo Scientific) was checked with Zobell‟s solution (Nordstrom, 1977) and 

Light‟s solution (Light, 1972) prior to sampling. Alkalinity measurements were performed on 

sample aliquots filtered through 0.2 m Supor membrane filters (Acrodisc, Pall, UK) by 

adding the bromocresol green-methyl red indicator and titrating to the end point with H2SO4. 

Due to volume limitations, pH, Eh, and alkalinity measurements were not performed on single-

flask experiments. Filtered sub-samples (0.2 m) were retained unacidified in refrigerated PE 



 

 18 

bottles (Thermo Scientific Nalgene, Rochester, NY, USA) for anion analyses, while samples 

for cation and Cr isotope analyses were acidified to pH < 2 with HNO3 prior to refrigeration. 

Unacidified samples were promptly analyzed for Cr(VI) concentrations on a Hach DR/2010 

spectrophotometer at 540 nm using the 1,5-diphenylcarbohydrazide method (Greenberg et al., 

1992). Concentrations of inorganic anions were determined by ion chromatography (Dionex 

DX 600). Cation concentrations were measured by inductively coupled plasma-optimal 

emission spectrometry (Thermo Scientific iCAP 6500) and inductively coupled plasma-mass 

spectrometry (Thermo Scientific XSeries 2) on samples acidified to pH < 2 with trace-metal 

grade HNO3. 

2.3.3 Chromium Isotope Analysis 

Acidified samples were purified and pre-concentrated for Cr isotope analysis using an ion-

exchange separation method modified from Ball and Bassett (2000). All sample preparations 

were carried out in a HEPA-filtered laminar flow hood. Sample aliquots containing 20 g Cr 

were mixed with 8 g Cr from a 
50

Cr-
54

Cr double spike solution composed of enriched Cr 

metal (ISOFLEX USA, San Francisco, CA, USA) dissolved in 2 N HNO3. High purity Milli-

Q
®
 water was added to the sample-spike mixture to obtain a total volume of 9 mL. Ammonium 

persulfate (Sigma-Aldrich, St. Louis, MO, USA) was added to each sample (1 mL of 0.2 mol 

L
-1

), and the mixture was gently boiled for ~25 minutes to oxidize the Cr (Schoenberg et al., 

2008). Incomplete oxidation was observed for the OC samples, presumably due to 

interferences from DOC. Modifications were made such that 1 mL of saturated ammonium 
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persulfate was added to the sample-spike mixture for the high DOC samples, and the samples 

were processed until the recovery was sufficient for isotope analysis. 

A 3 mL SPE column (Supelco, Bellefonte, PA, USA) was loaded with 0.5 mL Bio-Rad 

AG1-X8 anion exchange resin sandwiched between two 20 m frits (Supelco, Bellefonte, PA, 

USA). Preliminary testing revealed that the resin contained trace amounts of Fe and other 

metals. Prior to addition of the sample, the resin was cleaned by saturating with 2 N HNO3
 
for 

2 hours and then flushing with additional 2 N HNO3 and high-purity water to remove these 

contaminants. The resin was then conditioned by sequentially passing 2 mL each of 6 N, 4 N, 2 

N, and 1 N HNO3, followed by 20 mL of high-purity Milli-Q
®
 water through the column. 

Oxidized sample-spike mixtures were pipetted onto the exchange resin and flushed with 15 mL 

of water to remove impurities. The Cr(VI) retained on the exchange resin was reduced to 

Cr(III) by saturating the resin in 2 N HNO3 for 2 hours. After reduction the Cr was eluted into 

a sample vial with 2 N HNO3 and Milli-Q
®

 to achieve a final concentration of 2 mg L
-1

 Cr and 

1 N HNO3. Purified samples were diluted 1:1 with Milli-Q
®
 prior to analysis. Standards were 

prepared simultaneously with the unknown samples, following the identical procedure. Two 

aliquots of the Cr(NO3)3·9H2O NIST SRM 979 standard (known isotopic composition) were 

included in the preparation procedure for every 8 unknown samples. One high-purity Milli-Q
®

 

water blank and one sample duplicate were also included at the sample preparation stage. 

High-precision Cr isotope measurements were performed by multi-collector 

inductively-coupled plasma mass spectrometry (Thermo Scientific Neptune) in medium-

resolution mode using the stable inlet system (double cyclonic spray chamber). All four stable 

Cr isotopes (
50

Cr, 
52

Cr, 
53

Cr, and 
54

Cr) were measured simultaneously along with 
49

Ti, 
51

V, and 
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56
Fe to facilitate corrections due to isobaric interferences on 

50
Cr and 

54
Cr. Off-centre peak 

measurements were performed to minimize polyatomic interferences from 
40

Ar
14

N on 
54

Cr and 

40
Ar

16
O on 

56
Fe. Sensitivity on the 

52
Cr signal was in the range of 4-6 V ppm

-1
. Integration time 

was 4.194 seconds, with 1 block of 300 cycles.  

The 
50

Cr-
54

Cr double spike solution was used to quantify isotope fractionation induced 

by sample preparation and instrumental mass bias. A double-nested iterative routine modified 

from Siebert et al. (2001) was implemented to subtract the contribution from Ti, V, and Fe, and 

extract the composition of the naturally fractionated sample. A 2  outlier test was performed 

on the raw data, after which the iterative routine was applied to each of the individual 

measurements, averaging only the final values. The results are expressed as 
53

Cr in per mil 

(‰) relative to the NIST SRM 979 Cr isotope standard, where: 

 

(2.1) 

 

 

Data were fitted to a Rayleigh distillation model, allowing a kinetic fractionation factor to be 

calculated as follows (Clark and Fritz, 1997): 

 

(2.2)  

 

where R is the isotope ratio, R0 is the initial isotope ratio, f is the fraction of Cr(VI) remaining 

in solution, and  is the kinetic fractionation factor. External reproducibility for this method 
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was calculated to be ±0.05‰ (2 ) on the 
53

Cr/
52

Cr ratio, determined from daily measurements 

of SRM 979 prepared with each sample set. Submission of four unknown samples to an 

independent laboratory for Cr isotope analysis validated the performance of the above method 

within ±0.06‰ (2 ). 

2.3.4 Solid-Phase Sampling and Analysis 

The treatment material solids were separated from solution in the anaerobic chamber by 

vacuum-filtering through a 0.45 m cellulose acetate filter.  Each sample was immediately 

stored in an 8 mL PE bottle, which was transferred out of the anaerobic chamber in a small 

sealed container and stored in a freezer within 5-10 minutes of sampling. After freezing 

overnight, the solids were reintroduced to the anaerobic chamber and the bottles were opened 

and loaded into glass vessels in preparation for freeze-drying. The samples were then removed 

from the anaerobic chamber and promptly attached to a freeze-drier (Labconco FreeZone, 

Kansas City, MO, USA). After drying, the samples were placed back in the anaerobic chamber 

where the sample bottles were sealed and stored in a vacuum desiccator.  

Field emission-scanning electron microscopy (FE-SEM; Leo1530, Carl Zeiss SMT 

GmbH, Germany) with energy dispersive spectroscopy (EDS; EDAX Pegasus 1200, AMETEK 

Inc., USA) were used to examine secondary precipitates. The freeze-dried samples were 

mounted on Al stubs with C tape and coated with a 10-12 nm thick Au layer to ensure 

conductance. An accelerating potential of 15 kV was used for backscatter electron (BSE) 

imaging and collection of semi-quantitative EDS spectra. 
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Synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure 

(XANES) spectroscopy were performed at the GSE-CARS beamline 13-BM-D at the 

Advanced Photon Source, Argonne National Laboratory (Chicago, IL, USA). Several samples 

were chosen from each experiment, representing both early and late time in the reaction. All 

sample preparation was performed in the anaerobic chamber. The samples were mounted 

separately in 1 mm-thick Al sample holders between two layers of Kapton® tape. Reference 

materials were ground using an acid-washed agate mortar and pestle and passed through a 63 

μm stainless steel sieve. These materials were spread onto polyethylene terephthalate (PET) 

tape (Scotch Magic Tape, 3M, St. Paul, MN, USA), which was layered to a thickness of 300 - 

500 m and sealed between two additional layers of PET tape. Bulk Cr K-edge XANES 

spectra were collected with an unfocused incident beam (~0.5 × 3 mm). Spectra for samples 

were collected using a four-element Si detector (Vortex ME-4, SII NanoTechnology USA Inc., 

Northridge, CA, USA), whereas spectra for reference materials were collected in transmission 

mode. Replicate scans were averaged and smoothed, and linear combination fitting was 

performed using the program ATHENA, which is a component of the IFEFFIT software 

package (Ravel and Newville, 2005).  

X-ray photoelectron spectroscopy (XPS) was performed at Surface Science Western 

(SSW; University of Western Ontario, London, ON, Canada) using a Kratos Axis Ultra X-ray 

photoelectron spectrometer. Subsamples were transferred into 8 mL PE bottles in the anaerobic 

chamber and transported to the XPS facility in a sealed container. Samples were exposed to 

atmospheric oxygen only when they were mounted on PET tape attached to the sample holder 

immediately prior to analysis. Survey scans and Cr 2p spectra were collected for all samples. In 



 

 23 

addition, Fe 2p spectra were collected for the ZVI samples. Processing of the XPS data was 

performed at SSW. 

2.3.5 Geochemical Modeling 

Aqueous geochemistry results were modeled using the multi-component reactive transport 

model MIN3P (Mayer, 1999). Reactions for the corrosion of ZVI coupled with the reduction of 

Cr(VI) and H2O implemented in the model were established by Mayer et al. (2001) and 

subsequently used by Jeen (2005). The reaction describing the degradation of OC coupled with 

the reduction of Cr(VI) was adapted from Amos et al. (2004). Modeling was used to calculate 

saturation indices (SI) to identify mineral phases controlling the reactions, including the 

precipitation of secondary minerals based on the databases from Mayer et al. (2001) and Jeen 

(2005) and phases observed during analysis of the solid material. Cr(VI) removal rates were 

calculated from the analyzed aqueous concentrations and adjusted within the model to match 

the experimental results. 

2.4 Results and Discussion 

2.4.1 Aqueous Geochemistry 

The replicate measurements of aqueous geochemistry and Cr isotope fractionation were in very 

close agreement for most of the batch experiments. One replicate experiment was chosen for 

discussion in this study, although the complete results for all experiments can be found in 

Appendix A. Replicate „A‟ was selected for the single-flask experiments (ZVI-S10 and ZVI-

S100), which were shaken on an orbital shaking table, while replicate „B‟ was chosen for the 
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multi-flask experiments (ZVI-M and OC-M), which were hand-tumbled (see Section 2.3.1). 

Data presented in the figures include results from only the selected replicate experiments. 

Results differed significantly between the replicate OC-M experiments (OC-MA and OCM-B; 

Table 2.2); this difference was likely due to the change in shaking technique between the 

replicate experiments, which resulted in exposure of a greater proportion of the reactive 

material surface area to the Cr(VI) solution in the second experiment. The lack of 

reproducibility of the OC-M experiments will be further discussed in Section 2.4.3.4. 

Rapid increases in pH were observed for both ZVI and OC experiments (Figure 2.1). 

Both ZVI-M and OC-M input solutions exhibited slightly acidic pH values (5.44 and 5.39), 

while the CaCO3-saturated input solution of ZVI-MP was initially slightly alkaline at 8.77. In 

the absence of CaCO3 (ZVI-M), the pH reached a maximum value of 10.70. This large increase 

in pH is partly due to the reduction of H2O, which is characteristic of ZVI corrosion under 

anaerobic conditions (Blowes et al., 2000): 

 

(2.3)  

 

Reduction of Cr(VI) by ZVI also is accompanied by an increase in pH, though the subsequent 

precipitation of Cr(III)-Fe(III) (oxy)hydroxides produces H
+
. Overall, an increase in pH is 

observed (Blowes et al., 1997; Blowes et al., 2000): 

 

(2.4)  
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(2.5)  

 

An increase in pH also was observed for ZVI-MP. However, in the presence of CaCO3 in 

solution a lower maximum value of 9.96 was observed at the end of the experiment. An 

increase in pH results in a shift in the carbonate-bicarbonate (CO3
2-

-HCO3
-
) equilibria. 

Saturation index values indicate that the equilibrating solution was supersaturated with respect 

to the carbonate minerals calcite (CaCO3) and ferrous hydroxycarbonate (Fe2(OH)2CO3).  The 

precipitation and dissolution of these minerals has the potential to buffer the overall pH value 

in the system (Jeen et al., 2008). The increase in pH up to 9.29 observed in OC-M is 

characteristic of the degradation of organic carbon coupled with Cr(VI) reduction (Bolan et al., 

2003): 

 

(2.6)  

 

Trends in Eh were less well defined, likely due to the low concentrations of 

electroactive redox species in solution and the presence of high concentrations of chromate, 

which causes interferences with the platinum electrode (Nordstrom and Wilde, 2006). Both 

ZVI-M and OC-M exhibited initial Eh values of 600 mV, which decreased fairly consistently 

throughout the experiments to 185 mV and 260 mV. The initial Eh of ZVI-MP was slightly 

lower at 370 mV, dropping as low as -170 mV before ending at 110 mV. In all cases, the redox 

measurements suggest a relatively weak trend toward reducing conditions. 
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Total alkalinity increased in both the ZVI-M and OC-M batch systems, from an initial 

value of 1.5 mg L
-1

 (as CaCO3) to values of 35-40 mg L
-1

 and 135 mg L
-1

, respectively. High 

alkalinity values in the OC-M batch experiment can be attributed to organic carbon degradation 

(Eq. 2.6). In contrast, an initial relatively high total alkalinity of 128 mg L
-1

 for the ZVI-MP 

experiment was followed by a steady decrease to a final value of 58 mg L
-1

. This overall 

decreasing trend is most likely due to carbonate mineral precipitation as a result of increasing 

pH (Gui et al., 2009). Geochemical modeling indicated a maximum saturation index (SI) of 

1.48 for CaCO3 and 0.49 for Fe2(OH)2CO3 after 0.2 days. Carbonate precipitation in ZVI-MP 

is further indicated by the change in aqueous Ca concentration, which was initially 52.7 mg L
-1

 

and decreased steadily to below the method quantification limit (MQL) of 0.4 mg L
-1

 by the 

end of the experiment. 

Dissolved metal concentrations varied between the experiment types and throughout 

each experiment. Concentrations of dissolved metals were very low in the Cr(VI)-DI water 

input solution. Therefore, any increase in the concentrations of trace metals was assumed to be 

derived from the reactive material. Aqueous Fe concentrations were low in both ZVI multi-

flask experiments, increasing to 30 g L
-1

 in ZVI-M while remaining below the method 

detection limit (MDL) of 0.17 g L
-1

 in ZVI-MP. The control sample for ZVI-M contained 674 

g L
-1

 Fe(aq), suggesting that the low concentrations in the Cr-containing samples were the 

result of precipitation of Fe, likely as Fe (oxy)hydroxides and Fe hydroxycarbonate in the 

presence of CaCO3 (Blowes et al., 1997; Jeen et al., 2007). The concentrations of Mg, Mn, and 

Zn initially increased to maximums of 0.50 mg L
-1

, 0.42 mg L
-1

, 0.07 mg L
-1

, respectively, in 

the ZVI-S100 experiment, followed by a fairly steady decrease as the reaction progressed. 
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Similar trends were observed in the other ZVI experiments, although the experiments with a 

smaller mass of reactive material resulted in lower aqueous concentrations. This observation 

suggests that these metals may be removed from solution during precipitation of secondary 

minerals, perhaps including co-precipitation with Cr(III). Substantial increases in dissolved 

metal concentrations were observed in the OC experiment, including Ca (up to 17 mg L
-1

), Fe 

(up to 1.9 mg L
-1

), Mg (up to 8.8 mg L
-1

), Na (up to 14 mg L
-1

), and Si (up to 2.3 mg L
-1

), 

along with corresponding increases in anion concentrations (Cl up to 101 mg L
-1

, PO4 up to 16 

mg L
-1

, SO4 up to 29 mg L
-1

). Benner et al. (1997) also observed a marked increase in 

dissolved constituents, particularly Cl, in surface water recharge that had passed through a pile 

of compost material used in PRB construction. 

2.4.2 Chromium Removal 

2.4.2.1 Aqueous Results 

An initial sharp decrease in Cr(VI) concentration was observed in all batch experiments, 

followed by a slower removal rate until the reaction was complete (Figures 2.1 and 2.2). 

Measurements of Cr(VI) by spectrophotometer and CrTOT by ICP-OES and ICP-MS were in 

close agreement for all ZVI experiments (R
2
 = 0.988-0.999), indicating that any reduced 

Cr(III) had been rapidly and effectively removed from solution. Similar measurements for the 

OC experiments were in very poor agreement, differing in concentrations by as much as 8.1 

mg L
-1

 (Table 2.2). Samples from the OC experiment were strongly coloured orange-brown, 

even after filtering, suggesting high concentrations of DOC which may have interfered with the 
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spectrophotometric measurements. The highly coloured matrix did not affect CrTOT 

measurements, as indicated by complete recovery of a Cr-spiked OC control sample. 

Removal of Cr(VI) occurred more rapidly in the single-flask ZVI-S10 than the multi-

flask ZVI-M experiments, which had equivalent initial solid-solution ratios. Approximately 

20% of the aqueous Cr(VI) in ZVI-S10 was removed after the first hour, progressing to almost 

95% after 24 hours. In experiment ZVI-M over 50% of the Cr(VI) remained after 24 hours 

(Figure 2.1 and 2.2). Complete removal (< 0.1 mg L
-1

) occurred in ZVI-M after more than 11 

days. Although the two experiments initially had the same solid-solution ratio (1:25), removal 

of solution during sampling of ZVI-S10 changed this ratio as the experiment progressed. As 

the volume decreased, the remaining Cr(VI) in solution could have more easily made contact 

with the surface of the ZVI, increasing the rate of removal in comparison to ZVI-M. The effect 

of increased reaction rate was investigated by comparing single-flask experiments ZVI-S10 

and ZVI-S100 (solid-solution ratio of 1:25 vs. 1:2.5). As expected, ZVI-S100 reacted much 

more quickly than ZVI-S10, with complete Cr(VI) removal (0.00 mg L
-1

) observed in less than 

2 hours (Figure 2.2). Accounting for the difference in mass of reactive material, the Cr(VI) 

removal rate of ZVI-S100 was still substantially greater per g than ZVI-S10. Increased Cr(VI) 

removal also was observed for the pre-treated ZVI-MP experiment in comparison to ZVI-M 

(same solid-solution ratio), reaching 40% removal after 1 hour and complete removal (< 0.07 

mg L
-1

) after 4.15 days (Figure 2.1). Pre-treatment of the ZVI removed the oxidized coating, 

exposing the Fe(II) and Fe(0) core, thus likely promoting more effective reduction of Cr(VI) 

from solution. In addition, BET measurements indicated that the pre-treated ZVI had a surface 
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area per mass ratio more than three times greater than the untreated ZVI, which may have 

contributed to the observed increase in Cr(VI) removal rate. 

The rate of Cr(VI) removal by ZVI is dependent on Cr(VI) concentration, pH, and the 

surface area of Fe (Gould, 1982; Mayer et al., 2001): 

 

(2.7)  

 

where  is in units of mol L
-1

 bulk s
-1

, k is the rate constant normalized to the ZVI 

surface area (L H2O m
-2

 iron s
-1

), S is the reactive surface area concentration of ZVI (m
2
 iron  

L
-1

 bulk), and [Cr(VI)] and [H
+
] are in units of mol L

-1
 H2O. Rate constants were calculated for 

ZVI-M and ZVI-MP using measured values of Cr(VI) and pH, and the surface area measured 

by the Brunauer-Emmett-Teller (BET) method (Brunauer et al., 1938). The untreated ZVI had 

a specific surface area of 2.86±0.54 m
2
 g

-1
, whereas the surface area of the pre-treated ZVI was 

9.54±0.93 m
2
 g

-1
. Calculated k values were then adjusted during geochemical modeling to fit 

the experimental data. Rate constants were not calculated for ZVI-S10 or ZVI-S100 because no 

pH measurements were conducted for these experiments due to volume restrictions. 

Experimental rate constant (k) values were in close agreement with values fitted in MIN3P, 

suggesting that the conceptual model was appropriate. The average experimental k value for 

ZVI-M was 7.64 x 10
-5

 L H2O m
-2

 Fe s
-1

, whereas the fitted value was 7.94 x 10
-5

 L H2O m
-2

 

Fe s
-1

. Similar k values were calculated for ZVI-MP, averaging 1.73 x 10
-4

 L H2O m
-2

 Fe s
-1

, 

with a fitted value of 1.00 x 10
-4

 L H2O m
-2

 Fe s
-1

. 
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The rate of Cr(VI) removal by organic carbon is dependent on the concentration of 

Cr(VI) and OC (Wittbrodt and Palmer, 1995): 

 

(2.8)  

 

Discrepancies between Cr(VI) and CrTOT measurements for OC-M contributed to 

inconsistencies in the calculated rate constants. Although the Cr(VI) data suggest that the 

reaction was complete after 3 days, the CrTOT value at that time was 3.7 mg L
-1

. Using the 

Cr(VI) values, the overall removal rate was similar to ZVI-MP. For the purposes of 

geochemical modeling, the reaction was assumed to be pseudo-first order (Wittbrodt and 

Palmer, 1995; Tokunaga et al., 2003) and an average effective rate constant (keff) of 1.49 x 10
-2

 

s
-1

 was calculated from the Cr(VI) data. Fitting of the model resulted in a keff of 1.00 x 10
-5

 s
-1

, 

which was substantially different from the experimental value, suggesting that the conceptual 

model may not be representative of the reaction processes. 

2.4.2.2 Solid-Phase Characterization 

Samples at the end of each batch experiment were selected for solid-phase characterization 

measurements to increase the likelihood of detecting Cr-bearing precipitates. EDS mapping of 

several samples showed that the Cr was widely distributed across the surface of the reactive 

material, and a targeted collection of semi-quantitative spectra identified only minor Cr 

hotspots. The highest concentration of precipitated Cr was detected on ZVI-M at 8.90 wt %, 

though the targeted area exhibited no visual characteristics to differentiate it from the 
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background material (Figure 2.3b). All other ZVI samples ranged in solid-phase Cr 

concentration from 1.83% to 2.50% by weight. Well-developed hexagonal Fe-O-C precipitates 

characteristic of Fe hydroxycarbonate (Lindsay et al., 2008) were observed in the ZVI-MP 

samples (Figure 2.3a), but were absent from samples without exposure to CaCO3 (Figure 

2.3b,c). A large rhombohedral calcite crystal was observed in ZVI-MP, consistent with the 

carbonate precipitation suggested by the geochemical calculations (see Appendix A). Very 

little solid-phase Cr was detected on OC-M, a result of the same mass of Cr distributed across a 

much larger surface area than the ZVI samples (Figure 2.3d). Trace amounts of other elements, 

such as Co, Mn, Al, Ni, Si, and Mg, also were observed in all samples, with higher quantities 

in OC-M, which is consistent with the aqueous chemistry measurements. 

XANES spectra characterized by the absence of the pre-edge 3d-4p peak indicative of 

Cr(VI) were observed in all samples (Figure 2.4). The Cr K-edge position the of OC-M 

samples was consistent with a Cr(III) oxidation state and the XANES spectra most closely 

resembled Cr(OH)3 or Cr-acetate hydroxide. Linear combination fitting were consistent with 

the visual observations, suggesting that the samples contained up to 20% Cr-acetate and 

balance Cr(OH)3 (Table 2.2).  

Although the dominant Cr K-edge position of the ZVI-M samples also was consistent 

with a Cr(III) oxidation state, a small shoulder was observed on some spectra in the same 

position as Cr metal (Figure 2.4). The presence of up to 37% Cr metal was suggested by linear 

combination fitting, whereas ZVI-M samples without the observed shoulder generally were  

> 85% Cr(OH)3. Chemical analysis revealed that Connelly ZVI contains up to 0.2 wt % Cr 

(Connelly GPM, written communication). Under a bulk X-ray beam, both elemental Cr metal 
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in the reactive material and precipitated Cr(III) would be represented in the sample spectra, 

resulting in the occasional appearance of a Cr metal shoulder similar to that observed in Figure 

2.4. The complete absence of the characteristic Cr(VI) pre-edge feature demonstrates the 

reduction of Cr(VI) to Cr(III) for all reactive materials. Results from XPS analysis further 

support reduction to a Cr(III) oxidation state. Fitting of the Cr 2p spectra suggests that the 

dominant form is Cr(OH)3 for both ZVI-M and ZVI-MP. No Cr was detected on OC-M 

samples during XPS analysis, likely due to the small mass of Cr distributed over a large surface 

area. 

2.4.3 Chromium Isotope Fractionation 

2.4.3.1 Influence of Material 

The reactivity of untreated and pre-treated ZVI was compared with the ZVI-M and ZVI-MP 

experiments, which differed only in preparation of the reactive material. Isotopic composition 

of the input solutions exhibited 
53

Cr values of 0.00±0.08‰ for ZVI-M and 0.07±0.10‰ for 

ZVI-GW relative to SRM 979. Decreasing Cr(VI) concentrations were accompanied by an 

increase in 
53

Cr values up to 1.85±0.10‰ relative to the input for ZVI-M and 1.30±0.09‰ for 

ZVI-MP (Figure 2.5). Isotopic data were fitted to a Rayleigh-type fractionation curve 

generating  values of 0.9994 and 0.9995, suggesting that the degree of fractionation was very 

small. 

Reduction of Cr(VI) by ZVI is thought to occur via two possible mechanisms: (1) 

heterogeneous (direct) reduction by contact with the ZVI surface following adsorption of 

Cr(VI), and (2) homogeneous (indirect) reduction by dissolved Fe(II) released during 
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heterogeneous reduction (Gheju, 2011). Sorption of aqueous Cr(VI) does not cause significant 

isotope fractionation (  = 1.0000), since no change in coordination occurs (Ellis et al., 2004; 

Schauble et al., 2004). In contrast, for homogeneous reduction (i.e. reduction in solution) Ellis 

et al. (2002) established a fractionation factor of 0.9965, a value that also was observed by 

Døssing et al. (2011). The isotope results for both ZVI-M and ZVI-MP suggest Cr(VI) removal 

was dominated by sorption. Subsequent reduction to Cr(III) on the ZVI surface, as indicated by 

solid-phase analysis, would have no effect on the isotopic composition of the remaining Cr(VI) 

in solution. Assuming  = 1.0000 for sorption and  = 0.9965 for reduction in solution, a 

calculation was performed similar to Døssing et al. (2011) to determine the proportion of 

Cr(VI) removal attributed to each mechanism. Using an average  = 0.9994 for ZVI-M and 

ZVI-MP, the results from this calculation indicate that 83% of Cr(VI) removal by ZVI was the 

result of direct reduction following sorption, whereas only 17% was the result of homogeneous 

reduction in solution. 

The Cr isotope measurements indicated that the mechanism was similar for both 

untreated and pre-treated ZVI experiments. These results, coupled with the solid-phase 

analyses, suggest that sorption followed by reduction at the ZVI surface was the dominant 

Cr(VI) reduction mechanism for Connelly ZVI. Slower removal rates in ZVI-M may be 

indicative of the greater time required for the Cr(VI) to penetrate the oxidation layers and reach 

the Fe(II) and Fe(0) core needed for reduction (Gheju, 2011). 
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2.4.3.2 Influence of Experimental Design 

Single- and multi-flask batch experiment designs were compared with ZVI-S10 and ZVI-M, 

which initially contained the same solid-solution ratio. The Cr in the input solution for ZVI-

S10 had a 
53

Cr value of -0.03±0.09‰. An increase in 
53

Cr up to 2.01±0.13‰ relative to the 

input solution (Figure 2.5) was observed, corresponding to a steady decrease in Cr(VI) 

concentration. Data from ZVI-S10 was fitted to a Rayleigh-type curve, and the calculated  

 = 0.9993 was nearly identical to the  = 0.9994 calculated for ZVI-M. 

The comparison between the single-flask batch experiment and the multi-batch 

experiment was made to evaluate whether changing solid-solution ratios as samples were 

gathered through the experiment would artificially enhance the isotope fractionation. An 

analogous multi-flask experiment should not induce an artificial enhancement because a 

separate bottle is used for each sample in the time series. A significant increase in reaction rate 

was observed in ZVI-S10, which reached completion after 3 days, while ZVI-M was complete 

after 11 days. This increased reaction rate was likely due to the changing solid-solution ratio in 

ZVI-S10; as the volume of solution decreased, the mass of Cr(VI) in the remaining volume 

would have been in greater contact with the surface of the reactive material. Nonetheless, the 

isotope measurements provided a fractionation factor for ZVI-S10 that was nearly identical to 

the value obtained for ZVI-M, indicating no effect from the diminishing reservoir volume in 

the single-flask experiment. These results also demonstrate that the mechanism of Cr(VI) 

removal was the same in both experiments, despite the difference in reaction rate. 
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2.4.3.3 Influence of Reaction Rate 

The rate of Cr(VI) removal was increased by adjusting the mass of ZVI from 10 g in ZVI-S10 

to 100 g in ZVI-S100, while maintaining identical initial solution volumes. The reaction in 

ZVI-S100 progressed to completion in less than 2 hours, while exhibiting isotope fractionation 

that increased from the initial 
53

Cr = -0.03±0.09‰ to 
53

Cr = 2.29±0.13‰ relative to the input 

(Figure 2.5). Fitting the isotope data from ZVI-S100 to a Rayleigh-type curve generated a 

fractionation factor of 0.9994, nearly identical to the  = 0.9993 for ZVI-S10. These results 

suggest that a change in reaction rate due to a change in the mass of reactive material did not 

have an effect on the extent of isotope fractionation. Fractionation is expressed as the ratio of 

the individual isotope reaction rates (Clark and Fritz, 1997), so it follows that the isotope 

fractionation should not change as the overall reaction rate changes. 

2.4.3.4 Organic Carbon Results 

Unlike the ZVI batch experiments, results of the organic carbon repeat experiments (OC-MA 

and OC-MB) differed substantially, likely due to a change in shaking technique between the 

two sets of experiments. Concentrations of Cr(VI) in the OC-MB batch declined to 0.04 mg L
-1

 

after 3 days, while the concentrations in the OC-MA batch declined to less than 50% of the 

initial Cr(VI) after the same period (Table 2.2). The results were further complicated by a 

significant difference between Cr(VI) and CrTOT concentrations. As discussed in Section 

2.4.2.1, CrTOT measurement accuracy was demonstrated by spiking the DOC-rich matrix with a 

known quantity of Cr standard. Initial observations thus suggest that the Cr(VI) measurements 
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by Hach spectrophotometer were erroneous, perhaps due to the strong orange-brown colour of 

the solution. 

A 
53

Cr value of -0.05±0.09‰ was observed for the input solution of OC-MA, while a 

value of 0.01±0.09‰ was observed for OC-MB. As expected, the majority of OC-M samples 

exhibited an increase in 
53

Cr with decreasing Cr(VI) concentration (Table 2.2). This trend 

ceased for the last sample of OC-MA, collected at 24 days after the start of the experiment. 

Although Cr(VI) measurements suggested that the reaction was complete, CrTOT analysis by 

ICP-OES indicated that 8.3 mg L
-1

 Cr remained in solution. Isotope analysis revealed a 
53

Cr 

value of -0.45±0.10‰, corroborated by duplicate sample aliquots that were processed and 

analyzed independently.  

Application of Cr isotopes for tracking Cr(VI) in groundwater assumes that all reduced 

Cr(III) is rapidly and completely removed from solution, usually through precipitation, which 

should occur readily at the circumneutral to high pH values observed in the OC-M batch 

experiments (Blowes, 2002). Rayleigh-type isotope fractionation relies on complete isolation 

of the product from the reactant, causing an exponential increase in positive 
53

Cr values in the 

remaining Cr(VI) pool, and corresponding negative 
53

Cr values in the reacted Cr(III) (Ellis et 

al., 2002). A negative 
53

Cr value thus suggests that the Cr(VI) was not completely isolated 

from the reacted Cr(III). The sample preparation procedure described in Section 2.3.3 assumed 

that only Cr(VI) is present in solution, which is valid if the Cr(VI) and CrTOT data can be 

closely correlated. If both unreacted Cr(VI) and reduced Cr(III) co-existed simultaneously in 

solution, the resulting Cr isotope analysis would be an average of the positive 
53

Cr of the 
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Cr(VI) and the negative 
53

Cr of the Cr(III). The overall 
53

Cr may either be negative or 

positive, according to the proportion of mass contributed from each oxidation state. 

Although the majority of the 
53

Cr values for both OC-MA and OC-MB were positive, 

the observation of a negative value for only one sample suggested that all of the results 

required further examination. The Cr isotope results for the OC experiments potentially 

represented a contribution from both Cr(VI) and Cr(III). Despite filtering the solution first at 

0.45 m during vacuum-filtering and then at 0.2 m during subsampling, it appeared that the 

samples retained for analysis contained Cr(III). Precipitated Cr would have been removed 

during filtering, suggesting that dissolved Cr(III) remained in the solution, perhaps complexed 

with DOC. As a result, it was not possible to characterize the fractionation curve for the OC-M 

batch experiments using samples processed in the manner outline in Section 2.3.3. Further 

development of the sample preparation procedure would be required to separate the Cr(VI) and 

Cr(III) in solution prior to isotope analysis. Evidence of unprecipitated Cr(III) indicated that 

more testing is necessary to fully understand the mechanism of Cr(VI) removal by organic 

carbon, and to characterize the associated Cr isotope fractionation. 

2.4.4 Implications for Tracking Cr(VI) in Groundwater 

Understanding the dominant removal mechanism in a given environment is crucial for the 

application of Cr isotopes for tracking Cr(VI) migration in groundwater. Batch experiments to 

evaluate the influence of Cr(VI) removal on isotope fractionation are necessary prior to 

interpretation of field samples. Results from all ZVI batch experiments suggested that the 

dominant mechanism for Cr(VI) treatment by Connelly ZVI was heterogeneous reduction. 
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Characterized by a primary sorption step (Gheju, 2011), this mechanism resulted in little 

isotopic fractionation in the remaining Cr(VI) pool. In the case of a permeable reactive barrier 

(PRB) composed of Connelly ZVI, a lack of substantial Cr isotope fractionation may not 

necessarily be indicative of a lack of treatment by reduction. This study showed that although 

the extent of isotope fractionation during Cr(VI) treatment by ZVI  was relatively small, solid-

phase analysis indicated reduction to Cr(III), which is the desired effect of this type of 

groundwater treatment (Blowes et al., 2000). 

Experiments designed to evaluate Cr(VI) reduction using untreated ZVI  are likely most 

representative of the condition of ZVI immediately following the construction of a PRB. Once 

below ground, however, reducing conditions develop naturally as the ZVI is exposed to low-

oxygen, CaCO3-saturated groundwater of the Cr(VI) plume (Mayer et al., 2001). Comparison 

experiments in this study demonstrated that although the removal rates were much more rapid 

for the pre-treated ZVI, the dominant Cr(VI) reduction mechanism was the same for untreated 

and pre-treated ZVI, exhibiting indistinguishable isotope fractionation curves. Indications that 

the reaction rate had no effect on the Cr isotope fractionation, provided the mechanism of 

removal remains unchanged, simplifies the use of Cr isotopes for assessing treatment of 

Cr(VI)-contaminated groundwater. 

2.5 Conclusions 

 Treatment of Cr(VI) by Connelly ZVI was accompanied by a slight Cr isotope 

fractionation, exhibiting a Rayleigh-type curve with a corresponding average  

 = 0.9994. 
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 Isotope results indicated that removal of Cr(VI) by Connelly ZVI was dominated by a 

heterogeneous reduction mechanism, which is characterized by sorption prior to 

reduction. 

  Pre-treatment of ZVI to remove oxidized coatings improved Cr(VI) removal rates but 

had no effect on Cr isotope fractionation, suggesting that the removal mechanism was 

the same as removal by the untreated ZVI. 

 Experimental design had no effect on the isotope results in this study. A multi-flask 

design is preferable because it allows solid analysis to be conducted over time, whereas 

solid analysis in a single-flask design is only possible at the conclusion of the 

experiment. 

 Changes in reaction rate by adjusting the mass of reactive material had no effect on Cr 

isotope fractionation, simplifying the application of this tool to field settings. 

 Isotope analysis of OC experiments resulted in a negative 
53

Cr value, suggesting that 

Cr(III) remained in solution, possibly complexed with DOC. Further research is 

required to understand the Cr(VI) removal mechanism by organic carbon, and to 

separate the Cr(VI) from Cr(III) prior to isotope analysis. 

 Simple and careful batch experiments such as those performed in this study are 

essential to identify the mechanism of Cr(VI) reduction and characterize the associated 

isotope fractionation. Batch experiments should be performed with various reactive 

materials, and under various conditions, prior to the application of Cr isotopes as a tool 

to track Cr(VI) migration in groundwater. 
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Figure 2.1 Aqueous geochemistry as a function of time for multi-flask batch experiments. 

Error bars represent standard deviation of replicate samples within the time series (error bars 

are smaller than symbols for some analyses; see Appendix A for list of replicate samples). 

Total alkalinity is expressed as mg L
-1

 CaCO3. Fraction of Cr(VI) remaining was calculated as 

C/C0 using CrTOT values for ZVI-M and ZVI-MP and Cr(VI) values for OC-M. 
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Figure 2.2 Fraction of Cr(VI) remaining in solution as a function of time for the single-flask 

batch experiments. 
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Figure 2.3 Backscatter SEM images for (a) ZVI-MP, (b) ZVI-M, (c) ZVI-S100, and (d) OC-

M. All samples were taken from the end of each experiment. Circle in (a) indicates hexagonal 

Fe-O-C precipitates characteristic of Fe hydroxycarbonate. 
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Figure 2.4 Bulk XANES spectra of Cr for a selection of ZVI and OC samples. Reference 

materials represent three Cr oxidation states: Cr(III) as Cr(OH)3 and Cr-acetate hydroxide, 

Cr(0) as Cr metal, and Cr(VI) as K2Cr2O7. Shaded area indicates peak position for Cr(VI). 

Arrows indicate the small shoulder observed on certain ZVI samples, likely from the Cr metal 

content of the reactive material. 
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Figure 2.5 Isotope results for all ZVI batch experiments. Rayleigh-type fractionation was 

observed for all experiments, generating very similar fractionation factors as follows: ZVI-M  

 = 0.9994 (solid line), ZVI-MP  = 0.9995 (short-dashed line), ZVI-S10  = 0.9993 (dotted 

line), and ZVI-S100  = 0.9994 (long-dashed line). 
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Table 2.1 Summary of type of reactive material and experimental conditions for batch 

experiments. 

 

Experiment Type Reactive 

material 

Mass solids 

(g dry wt) 

Input volume 

(mL) 

Input matrix 

ZVI-S10 single Connelly ZVI 10 250 DI water 

ZVI-S100 single Connelly ZVI 100 250 DI water 

ZVI-M multi Connelly ZVI 6 150 DI water 

ZVI-MP multi 
Connelly ZVI,  

pre-treated 
6 150 

CaCO3-saturated 

DI water 

OC-M multi leaf mulch 6 150 DI water 
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Table 2.2 Summary of results from replicate organic carbon batch experiments. An orbital 

shaker was used for OC-MA, while hand-shaking was implemented for OC-MB. 

 

Experiment 
Time Concentration (mg L

-1
) 53

Cr ±1

(days) Cr(VI) CrTOT (‰) (‰) 

OC-MA 0.00 51 49.1 -0.05 0.09 

 0.09 40 34.5 0.14 0.09 

 0.93 32 28.9 0.45 0.09 

 1.75 35 30.6 0.27 0.09 

 4.75 25 21.2 0.53 0.08 

 24.0 0.20 8.3 -0.45 0.10 

OC-MB 0.00 50 46.1 0.01 0.09 

 1.00 22 16.8 0.61 0.08 

 2.00 3.1 9.8 0.86 0.09 

 2.30 0.90 4.9 1.03 0.09 

 3.00 0.04 3.7 n/a n/a 

n/a = Cr concentration too low for isotope analysis 
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Table 2.3 Linear combination fitting results for XANES analysis on ZVI-M and OC-M 

samples. Standards used for ZVI-M fitting included Cr(OH)3 and Cr metal; Cr-acetate was 

added for OC-M fitting. 

 

Experiment 
Time Content (%) 

(days) Cr(OH)3 Cr metal Cr-acetate 

ZVI-M 1.00 94.7 5.3 - 

 2.00 98.0 2.0 - 

 3.00 63.4 36.6 - 

 4.00 88.0 12.0 - 

 4.81 77.2 22.8 - 

 5.31 85.1 14.9 - 

 7.04 92.3 7.7 - 

 10.08 68.7 31.3 - 

 11.13 89.0 11.0 - 

OC-M 1.00 76.1 5.1 18.9 

 2.00 74.4 6.0 19.6 

  3.00 76.6 3.4 20.0 
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Chapter 3: 

Chromium Isotope Fractionation During Reduction 

of Cr(VI) Under Saturated Flow Conditions 
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3.1 Summary 

Chromium isotopes are promising indicators of Cr(VI) reduction in groundwater; however, the 

influence of transport on fractionation has not been fully examined. A laboratory column 

experiment was conducted to evaluate isotopic fractionation of Cr during Cr(VI) reduction 

under controlled flow conditions. Simulated groundwater containing 20 mg L
­1

 Cr(VI) was 

pumped through a saturated column containing quartz sand with 10% (v/v) organic carbon. 

Isotope measurements were performed on both effluent and profile samples. Dissolved Cr(VI) 

concentrations decreased while 
53

Cr increased, indicating that reduction of Cr(VI) occurred. 

Solid-phase analysis by scanning electron microscopy (SEM) and X-ray absorption near edge 

structure (XANES) spectroscopy indicated the presence of Cr(III) on the surface of the organic 

carbon. The 
53

Cr data followed a linear regression equation yielding a fractionation factor ( ) 

of 0.9979, whereas previous studies of batch experiments under similar geochemical conditions 

demonstrated Rayleigh-type isotope fractionation. The linear characteristic of the current 
53

Cr 

data may reflect the contribution of transport on Cr isotope fractionation. 

3.2 Introduction 

Hexavalent chromium (Cr(VI)) is a pervasive groundwater contaminant, frequently derived 

from industrial activities such as tanning and electroplating (Blowes, 2002). This toxic and 

carcinogenic contaminant Cr(VI) is highly soluble and mobile in groundwater as HCrO4
-
, 

CrO4
2-

 and Cr2O7
2-

 oxyanions (Losi et al., 1994). The reduction of Cr(VI) to Cr(III), which is 

characterized by low solubility in groundwater, decreases Cr mobility (Palmer and Wittbrodt, 
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1991). Therefore, the mobility of Cr in groundwater is controlled by the availability of electron 

donors that promote Cr(VI) reduction.  

There are four stable Cr isotopes, 
50

Cr, 
52

Cr, 
53

Cr, and 
54

Cr, with natural abundances of 

4.35%, 83.8%, 9.5%, and 2.37%. Various mechanisms can cause a shift in the 
53

Cr/
52

Cr ratio, 

the most important of which are redox changes due to the transition from tetrahedrally-

coordinated Cr(VI) to octahedrally-coordinated Cr(III) (Schauble et al., 2004). Materials 

known to effectively reduce Cr(VI) include Fe(II) (Eary and Rai, 1988; Ellis et al., 2002), zero-

valent iron (Blowes et al., 1997; Jeen et al., 2008), organic carbon (Bolan et al., 2003; Park et 

al., 2008), and certain bacteria (Cummings et al., 2006; Sikora et al., 2008). Preferential 

reaction of the lighter isotopes during reduction results in an enrichment in 
53

Cr relative to 
52

Cr 

in the remaining Cr(VI) pool. The application of stable Cr isotope ratios to groundwater has 

been proposed as a method to track Cr(VI) migration processes (Blowes, 2002; Ellis et al., 

2002). Although measurements of Cr(VI) concentrations provide limited information on the 

conditions of the subsurface environment, shifts in 
53

Cr values are indicative of mass-transfer 

processes (Losi et al., 1994; Blowes, 2002). Laboratory batch experiments have demonstrated 

that the degree of isotope enrichment is dependent on the mechanism of removal and the 

reductant (Ellis et al., 2002, 2004; Sikora et al., 2008; Berna et al., 2010; Zink et al., 2010; 

Døssing et al., 2011). Increases in 
53

Cr values have been observed in field settings (Ellis et al., 

2002; Izbicki et al., 2008; Berna et al., 2010; Raddatz et al., 2011), though relationships 

between Cr(VI) concentrations and 
53

Cr/
52

Cr ratios often are found to be complicated by 

system heterogeneity and natural background concentrations (Izbicki et al., 2008; Berna et al., 

2010).
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The application of Cr stable isotopes to track Cr(VI) migration in groundwater relies 

upon a detailed understanding of relationships between 
53

Cr values and the processes that 

control Cr mobility. The influence of transport on isotope fractionation during Cr(VI) reduction 

is largely unknown. Ellis et al. (2004) predicted that the 
53

Cr signature may be skewed at the 

fringes of a plume due to magnification of the very slight fractionation that could occur due to 

sorption of Cr(VI). In this study, a laboratory column experiment was conducted to evaluate 

Cr(VI) reduction by organic carbon under saturated flow conditions. Analyses of the stable Cr 

isotope ratios, water chemistry, and solid-phase geochemistry were performed, providing 

results to assess the influence of transport on Cr isotope fractionation. 

3.3 Materials and Methods 

3.3.1 Experimental Setup 

Simulated groundwater containing 20 mg L
­1

 Cr(VI) was prepared by dissolving K2Cr2O7 in 

CaCO3-saturated deionized water. This solution was pumped in an upward direction through a 

40 cm long column packed with 90% (v/v) quartz sand and 10% (v/v) organic carbon as mixed 

deciduous-tree leaf mulch from a local landfill. The column had an inner diameter of 5 cm, was 

fitted with influent and effluent ports, and had 15 sampling ports positioned at 2.5 cm intervals 

along its length. A flow rate of approximately 0.35 pore volumes (PVs) per day was employed. 

Effluent samples were collected at 3 to 4 day intervals, and measurements of pH, redox 

potential (Eh relative to the standard hydrogen electrode) and alkalinity were made. The pH 

was determined using an Orion Ross 815600 electrode (Thermo Scientific, Waltham, MA), 

which was calibrated with standard pH 4 and 7 buffers. The Eh electrode (Orion 9678, Thermo 
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Scientific) was tested with Zobell‟s solution (Nordstrom, 1977) and Light‟s solution (Light, 

1972) prior to sampling. Sub-samples were passed through 0.45 m Supor membrane filters 

(Acrodisc, Pall, UK) and retained for anion, cation and Cr isotope analyses. Alkalinity 

measurements were performed on filtered sample aliquots by adding the bromocresol green-

methyl red indicator and titrating to the end point with H2SO4. Two sets of profile samples also 

were collected after approximately 5.5 and 8.5 PVs. Concentrations of Cr(VI) were initially 

measured on a Hach DR/2010 spectrophotometer at 540 nm using the 1,5-

diphenylcarbohydrazide method (Greenberg et al., 1992). Concentrations of inorganic anions 

were determined by ion chromatography (Dionex DX 600). Cation concentrations were 

measured by inductively-coupled plasma mass spectrometry (Thermo Scientific XSeries 2) on 

samples acidified to pH < 2 with trace-metal grade HNO3. 

3.3.2 Isotope Measurements 

Acidified samples were purified and pre-concentrated for Cr isotope analysis using an ion-

exchange separation method modified from Ball and Bassett (2000). All sample preparations 

were carried out in a HEPA-filtered laminar flow hood. Sample aliquots were mixed at a 

known ratio with a 
50

Cr-
54

Cr double spike solution composed of enriched Cr metal (ISOFLEX 

USA, San Francisco, CA) dissolved in 2 N HNO3. The mixture was gently boiled with 0.2 mol 

L
-1

 ammonium persulfate for ~25 minutes to oxidize the Cr (Schoenberg et al., 2008). A 3 mL 

SPE column was loaded with 0.5 mL Bio Rad AG1-X8 anion exchange resin sandwiched 

between two 20 m frits. The resin was conditioned by sequentially passing through 2 mL each 

of 6 N, 4 N, 2 N, and 1 N HNO3, followed by 20 mL of high-purity Milli-Q
®

 water. Oxidized 
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sample-spike mixtures were pipetted onto the exchange resin and flushed with 15 mL of water 

to remove impurities. The Cr(VI) retained on the exchange resin was reduced to Cr(III) by 

saturating the resin in 2 N HNO3 for 2 hours. After reduction the Cr was eluted into the sample 

vial with 2 N HNO3 and Milli-Q
®
, then diluted to achieve a final concentration of 1-2 mg L

-1
 

Cr. 

High-precision Cr isotope measurements were performed by multi-collector 

inductively-coupled plasma mass spectrometry (Thermo Scientific Neptune) in medium-

resolution mode using the stable inlet system (double cyclonic spray chamber). All four stable 

Cr isotopes (
50

Cr, 
52

Cr, 
53

Cr, and 
54

Cr) were measured simultaneously along with 
49

Ti, 
51

V, and 

56
Fe to facilitate corrections due to isobaric interferences on 

50
Cr and 

54
Cr. Off-centre peak 

measurements were performed to minimize polyatomic interferences from 
40

Ar
14

N on 
54

Cr and 

40
Ar

16
O on 

56
Fe. Sensitivity on the 

52
Cr signal was in the range of 4-6 V ppm

-1
. Integration time 

was 4.194 seconds, with 1 block of 100 cycles.  

The 
50

Cr-
54

Cr double spike solution was used to quantify isotope fractionation induced 

by sample preparation and instrumental mass bias. A double-nested iterative routine was 

implemented to subtract the contribution from Ti, V, and Fe, and extract the composition of the 

naturally fractionated sample (Siebert et al., 2001). A 2  outlier test was performed on the raw 

data, after which the iterative routine was applied to each of the individual measurements, 

averaging only the final values. The results are expressed as 
53

Cr in per mil (‰) relative to the 

NIST SRM 979 Cr isotope standard, where: 
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(3.1)  

 

External reproducibility for this method was calculated to be ±0.1‰ (2 ) on the 

53
Cr/

52
Cr ratio, determined from daily measurements of SRM 979 prepared with each sample 

set. Submission of four unknown samples to an independent laboratory for Cr isotope analysis 

validated the performance of the above method within ±0.06‰ (2 ). 

3.3.3 Solid-Phase Cr Characterization 

Samples of column solids were collected, frozen, and freeze-dried prior to solid-phase analysis. 

Field emission-scanning electron microscopy (FE-SEM; Leo1530, Carl Zeiss SMT GmbH, 

Germany) with energy dispersive spectroscopy (EDS; EDAX Pegasus 1200, AMETEK Inc., 

USA) were used to examine secondary precipitates. The dried samples were mounted on Al 

stubs with C tape and coated with a 10-12 nm thick Au layer to ensure conductance. An 

accelerating potential of 20 kV was used for backscatter electron (BSE) imaging and collection 

of semi-quantitative EDS spectra. 

Synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure 

(XANES) spectroscopy were performed at the GSE-CARS beamline 13-BM-D at the 

Advanced Photon Source, Argonne National Laboratory (Chicago, IL). Organic carbon and 

sand particles were mounted separately in 1 mm-thick Al sample holders between two layers of 

Kapton® tape. Reference materials were ground using an acid-washed agate mortar and pestle 

and passed through a 63 μm stainless steel sieve. These materials were spread onto 
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polyethylene terephthalate (PET) tape (Scotch Magic Tape, 3M, St. Paul, MN), which was 

layered to a thickness of 300 - 500 m and sealed between two additional layers of PET tape. 

Bulk Cr K-edge XANES spectra were collected with an unfocused incident beam (~0.5 × 

3 mm). Spectra for samples were collected using a four-element Si detector (Vortex ME-4, SII 

NanoTechnology USA Inc., Northridge, CA), whereas spectra for reference materials were 

collected in transmission mode. Processing of XANES data was performed using the program 

ATHENA, which is a component of the IFEFFIT software package (Ravel and Newville, 

2005). 

3.4 Results and Discussion 

3.4.1 Effluent Chemistry 

Effluent pH values ranged from 6.70 to 8.04, averaging 7.16±0.71 over the course of the 

experiment. Redox potential varied over time, ranging from approximately 400 mV to nearly 

600 mV. Alkalinity in the effluent initially was 600 mg L
-1

 (as CaCO3) and exhibited a steady 

decrease to < 100 mg L
-1

 after complete Cr breakthrough. Effluent calcium concentrations 

were initially 250 mg L
-1

, decreasing to 50 mg L
-1

 following complete breakthrough. 

3.4.2 Chromium Removal 

Decreases in aqueous Cr(VI) concentrations were observed in the column, and complete 

Cr(VI) removal was observed during the first 2 PVs of flow. After this time, effluent Cr(VI) 

concentrations began to increase and complete breakthrough was observed after ~12 PVs 

(Figure 3.1). Between 2 and 12 PVs, the effluent concentration of Cr(VI) increased slowly to 
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the input value of 20 mg L
-1

. Both sets of profile samples, collected after 5.5 and 8.5 PVs, 

captured the progression of the Cr(VI) concentration front through the column. The front 

progressed ~10 cm further in the second profile (Figure 3.2), demonstrating a large decrease in 

organic carbon reactivity in the first half of the column, where the Cr(VI) concentrations 

remained at the input concentration.  

Discrete Cr-bearing precipitates were observed on organic carbon particles collected at 

the conclusion of the experiment (Figure 3.3). Similar precipitates were not observed in the 

initial organic carbon material. In addition to Cr, these precipitates commonly contained Fe and 

Ni. Atomic ratios of Fe:Cr ranged from 3.6 to 4.1, whereas Ni:Cr ratios of 0.40 to 0.45 were 

observed. Though the chemical composition of the Cr-bearing precipitates was relatively 

consistent, their morphology varied both within and among the samples. The occurrence of Cr 

with other metals suggests that co-precipitation reactions contributed to Cr removal. 

Additionally, other metal-bearing phases may have served as nucleation sites for the formation 

of Cr-bearing precipitates. 

Preliminary XRF spectra were collected independently for both sand and organic 

carbon particles. Chromium was not detected on the sand particles; therefore, XANES analysis 

was not performed on this material. Spectra collected for organic carbon samples were 

consistently characterized by the absence of the pre-edge 3d-4p peak that is characteristic of 

Cr(VI) (Figure 3.3). All column samples exhibited similar XANES spectra. The Cr K-edge 

positions were consistent with a Cr(III) oxidation state and the XANES spectra closely 

resemble Cr(OH)3 or Cr-acetate hydroxide. The presence of Cr(III) and the general lack of 

Cr(VI) on the organic carbon particles were indicative of in situ Cr(VI) reduction.  
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The removal of aqueous Cr(VI) by organic carbon is thought to occur via two possible 

mechanisms: Mechanism I involves direct reduction of Cr(VI) in solution, whereas Mechanism 

II incorporates sorption of Cr(VI) with organic carbon, followed by reduction to Cr(III) and 

either release or complexation (Park et al., 2005; Park et al., 2007). If the Cr(VI) removal 

mechanism was due simply to reduction in the bulk solution followed by Cr(III) precipitation, 

Cr(OH)3 may be expected to occur on both the sand and the organic carbon particles. The 

apparent absence of Cr on sand particles suggests that Cr(VI) reduction in solution was 

localized around organic carbon particles, followed rapidly by precipitation of Cr(OH)3 due to 

the circumneutral pH (Rai et al., 1987). Sorption of Cr(VI) must also be followed by rapid 

reduction and precipitation of Cr(OH)3, as indicated by the lack of the characteristic Cr(VI) 

pre-edge peak on the XANES spectra. 

3.4.3 Chromium Isotope Fractionation 

The input solution averaged a 
53

Cr value of -0.01±0.06‰, relative to SRM 979. Decreases in 

Cr(VI) concentrations were accompanied by increases in the 
53

Cr values of up to 2.00±0.10‰ 

relative to the input solution (Figures 3.1&3.2). This trend was observed in both sets of profile 

samples and the effluent.  

Isotope fractionation curves for Cr reduction generally have been fitted to a Rayleigh 

distillation model (Ellis et al., 2002; Sikora et al., 2008; Berna et al., 2010; Zink et al., 2010; 

Døssing et al., 2011). This model assumes a closed system in which the reduced Cr(III) is 

isolated from the remaining Cr(VI), such as by precipitation, and no back-reaction occurs. As 

the proportion of reduced Cr(III) increases, the pool of Cr(VI) becomes exponentially more 
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enriched in the heavy isotopes. Data from this column experiment initially were fitted to a 

Rayleigh fractionation curve, but this model did not describe the observed data (Figure 3.4). A 

linear regression of 
53

Cr vs. the fraction of Cr(VI) remaining in solution (f) provides the best 

fit to the experimental data (R
2
 = 0.925). The fractionation factor, , was then calculated from 

the linear regression: 

 

(3.2)  

 

where 
53

Crinitial is the average value of the input solution and 
53

Crf=0 is obtained from the  

y-intercept of the regression line when no Cr(VI) remains (f = 0). 

Only one study has reported Cr isotope results that are not fitted to a Rayleigh 

fractionation model. During Cr(VI) reduction by H2O2 under acidic conditions, Zink et al. 

(2010) observed an isotope fractionation that exhibited an equilibrium effect with a 

53/52
Cr(Cr(III)-Cr(VI)) value of -3.54‰ (where 

53/52
Cr(Cr(III)-Cr(VI)) ≈ 10

3 
x ln , or  = 0.9965). At 

circumneutral pH, a kinetic effect was observed with a 
53/52

Cr(Cr(III)-Cr(VI)) value of -5.0‰  

(  = 0.9950). The equilibrium behaviour at very low pH was attributed to first-order reduction, 

which occurs only under highly acidic conditions. A lack of intermediate Cr(V) or Cr(IV) 

species during reduction from Cr(VI) to Cr(III) likely contributed to the absence of  the kinetic 

effect. 

The pH in the column was near neutral throughout the current study, so it is unlikely 

that equilibrium behaviour under acidic conditions observed by Zink et al. (2010) is relevant to 



 

 59 

this system. Fitting a Rayleigh curve to the isotope data assumes a closed system. Unlike the 

batch experiments carried out in previous studies (Ellis et al., 2002; Sikora et al., 2008; Berna 

et al., 2010; Zink et al., 2010; Døssing et al., 2011), a column is not a closed system. Instead, a 

constant source of Cr(VI) is introduced to the column, with a uniform concentration and 

isotopic composition. As the Cr(VI) in the column undergoes fractionation due to reduction, 

the isotopically enriched Cr(VI) is mixed with the unfractionated input solution by 

hydrodynamic advection and dispersion. Advection and dispersion could result in less enriched 

53
Cr values than expected for closed systems. 

A fractionation factor of 0.9979 was determined using Equation 3.2 and a linear 

regression through all of the data (effluent and profiles). This indicates less extensive 

fractionation than  previously reported by Ellis et al. (2002), where the  value for Cr(VI) 

reduction by magnetite was found to be 0.9965. Investigations into Cr(VI) sorption by goethite 

and aluminum oxide determined that the effect of sorption on Cr isotope fractionation was 

negligible (Ellis et al., 2004). More recently, Døssing et al. (2011) obtained a fractionation 

factor of 0.9985 for Cr(VI) reduction by aqueous Fe(II), which they concluded to be the result 

of a combination of two reduction mechanisms: direct reduction by Fe(II)aq that produced an 

isotopic fractionation, and sorption and subsequent reduction by green rust that did not result in 

a measurable fractionation. The  value of 0.9979 obtained in this study also suggests Cr(VI) 

reduction due to a combination of mechanisms, and is similar to the value determined by 

Døssing et al. (2011). Calculations using  values of 0.9965 for reduction in solution and 

1.0000 for sorption (Ellis et al., 2002, 2004) indicate that ~60% of the Cr(VI) was reduced in 

solution, while ~40% underwent sorption prior to reduction to Cr(III). Both the results of the 
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solid-phase Cr and isotope analyses suggest a combination of Cr(VI) reduction mechanisms, 

such as those proposed by Park et al. (2005). 

The “reservoir effect” described by Berna et al. (2010) also may diminish the apparent 

Cr isotope fractionation observed under saturated flow conditions. Organic carbon comprised 

only 10% (v/v) of the column matrix. If reduction had occurred in association with the organic 

carbon, and no reduction is caused by the quartz sand, it is reasonable to assume that 

heterogeneous reduction occurred. The mixing of pore water in contact with the organic carbon 

with water from the sand areas of the column likely produced  an average 
53

Cr smaller than 

the intrinsic fractionation due to organic carbon alone (Berna et al., 2010). 

3.4.4 Implications for Tracking Cr(VI) Migration in Groundwater 

Chromium isotopes can be used as a tool for tracking reduction in natural systems if there is a 

full understanding of the nature of the fractionation. Ellis et al. (2002) have provided a baseline 

fractionation factor for abiotic reduction in solution. However, additional mechanisms of 

Cr(VI) removal are possible (Palmer and Wittbrodt, 1991). Although preliminary attempts to 

utilize Cr isotopes to track Cr(VI) migration have been made (Ellis et al., 2004; Izbicki et al., 

2008; Berna et al., 2010; Raddatz et al., 2011), assuming that a single fractionation factor 

applies to mechanisms of Cr(VI) removal in all settings may not be suitable. The influence of 

transport on Cr isotope fractionation also presents another potential complication to the 

application of Cr isotopes to field studies. Previous attempts to fit field data to a fractionation 

curve have assumed a Rayleigh model (Izbicki et al., 2008; Raddatz et al., 2011); however, the 
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results of this study suggested that the shape of the isotope fractionation curve may be 

influenced by transport in the plume. 

Chromium isotopes remain a potential tool for tracking Cr(VI) migration in 

groundwater. Characterization of local fractionation factors will provide further insight into the 

conditions and mechanisms present in different contaminated areas. Recent studies 

demonstrate that Cr isotope fractionation during reduction may be more complex than initially 

anticipated (Berna et al., 2010; Døssing et al., 2011). By combining multiple approaches, 

including standard geochemical analyses, Cr isotope measurements, and spectroscopic 

techniques such as SEM and XANES, our ability to describe these complex systems can be 

improved. 

3.5 Conclusions 

 Removal of Cr(VI) by organic carbon under saturated flow conditions was 

accompanied by an enrichment in 
53

Cr which followed a linear trend described by  

 = 0.9979. 

 Isotope results indicated a combination of two Cr(VI) removal mechanisms: (I) direct 

reduction in solution localized around the organic carbon particles, and (II) sorption of 

Cr(VI) to the organic carbon followed by reduction. 

 Observations of solid-phase Cr(III) on the organic carbon indicated that reduction of 

Cr(VI) had occurred. 

 The application of multiple analytical techniques was essential for interpreting the 

results of this column study. 
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 The linear trend of the isotope data may indicate an influence of transport on Cr isotope 

fractionation under saturated flow conditions. Further investigation of this possible 

influence is necessary prior to the application of Cr isotopes for tracking the migration 

of Cr(VI)-contaminated groundwater in a field setting. 
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Figure 3.1 Effluent Cr(VI) concentration and corresponding 
53

Cr values over 30 pore 

volumes (88 days). Breakthrough occurred after approximately 12 pore volumes. 
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Figure 3.2 Profile Cr(VI) concentration and corresponding 
53

Cr values taken after 

approximately a) 5.5 PVs and b) 8.5 PVs. 
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Figure 3.3 XANES spectra collected for Cr(OH)3, Cr-acetate, and K2Cr2O7 standards and for 

Cr on the organic carbon particles at each position sampled along the column starting from the 

input at 1 cm. The spectra for the column samples indicate the Cr spectra most closely 

resemble spectra for Cr(OH)3 and Cr-acetate standards, suggesting the Cr is present primarily 

as Cr(III). The shaded region indicates the position of the characteristic Cr(VI) pre-edge 

feature, with negligible Cr(VI) in the column samples. SEM images show chromium-bearing 

precipitates observed on organic carbon particles collected 1 cm from the column input (a & 

b). Scale bar represents 2 m. 
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Figure 3.4 Isotope results for the effluent samples and both profiles. A linear regression on the 

pooled data results in  = 0.9979 (solid line). The dashed line represents a Rayleigh curve with 

 = 0.9965. 
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Chapter 4: 

Conclusions 

4.1 Summary of Findings 

Changes in 
53

Cr are indicative of mass-transfer processes. As such, measurements of Cr 

isotopes have been proposed as a means of tracking Cr(VI) migration in groundwater (Blowes, 

2002; Ellis et al., 2002). Previously published results have demonstrated that the extent of 

53
Cr enrichment depends on the reactive material and the mechanism of Cr(VI) removal (Ellis 

et al., 2002, 2004; Sikora et al., 2008; Berna et al., 2010; Zink et al., 2010; Døssing et al., 

2011). Results from this thesis contribute to a more complete understanding of the factors that 

control Cr isotope fractionation under various conditions. 

Laboratory batch experiments using granular zero-valent iron (ZVI) and organic carbon 

(OC) were conducted to characterize the extent of Cr isotope fractionation during reduction of 

Cr(VI) (Chapter 2). Decreases in Cr(VI) concentrations were accompanied by increases in 

53
Cr values for all ZVI experiments. Rayleigh-type fractionation was observed in the ZVI 

experiments, suggesting that the reduced Cr(III) was effectively isolated from the remaining 

Cr(VI) pool. Despite a wide range of reaction rates, fractionation factors ( ) were very similar 

for all ZVI experiments, varying only from 0.9993 to 0.9995. Assuming  = 1.0000 for 

sorption of Cr(VI) (Ellis et al., 2004) and  = 0.9965 for homogeneous reduction of Cr(VI) in 

solution (Ellis et al., 2002), the isotope results in Chapter 2 suggest that Cr(VI) removal by ZVI 

occurred primarily as a result of sorption. Solid-phase Cr analysis by XANES, SEM, and XPS 
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indicated that only reduced Cr(III) was present on the surface of the reactive material, 

suggesting that the Cr(VI) was rapidly reduced following sorption, and that any Cr(VI) reduced 

in solution was immediately precipitated. Characterization of the mechanism of Cr(VI) 

removal by ZVI and the associated isotope fractionation is crucial for the application of Cr 

isotopes for tracking Cr(VI) migration in groundwater undergoing remediation by ZVI. 

 Several potential influences on Cr isotope fractionation were considered, including pre-

treatment of the ZVI, experimental design, and changes in reaction rate. Although removing 

the oxidized coating from the ZVI during pre-treatment resulted in an increased Cr(VI) 

removal rate, the isotope results were very similar, suggesting that the mechanism of removal 

was also similar. A comparison of single- vs. multi-flask experimental design resulted in 

almost no difference in the isotope fractionation. Nonetheless, a multi-flask design is 

preferable so that solid-phase analyses can be performed vs. time. Finally, changes in reaction 

rate induced by adjusting the mass of reactive material also resulted in no difference in isotope 

fractionation. 

 The interpretation of the isotope results for the organic carbon batch experiments was 

complicated by a large discrepancy between Cr(VI) and CrTOT measurements, suggesting that 

Cr(III) was not completely removed from solution. The sample preparation method for Cr 

isotope analysis was not designed to process samples with a mixture of Cr(VI) and Cr(III) in 

solution. As a result, the isotope data for these experiments were influenced by a positive 
53

Cr 

contribution from the Cr(VI) and a negative 
53

Cr contribution from the Cr(III). Further 

development of the sample preparation method is required to discern the true Cr isotope 

fractionation trend for these samples. 
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 Results from the column study presented in Chapter 3 also exhibited decreasing Cr(VI) 

concentrations accompanied by increasing 
53

Cr values. Unlike the batch experiments in 

Chapter 2, the isotope data did not follow a Rayleigh-type fractionation; instead, a linear trend 

was fitted with a fractionation factor  = 0.9979. Park et al. (2005) proposed that two possible 

mechanisms of Cr(VI) removal by organic carbon exist: (I) direct reduction in solution, and (II) 

sorption of Cr(VI) followed by reduction. The isotope results in Chapter 3 suggest that Cr(VI) 

removal in the column occurred through a mixture of the two mechanisms, where Mechanism I 

would produce an isotope fractionation with  = 0.9965 and Mechanism II would cause no 

measurable fractionation (  = 1.0000). Analyses of solid-phase Cr by SEM and XANES 

indicated the presence of only Cr(III) as Cr(OH)3 or Cr-acetate, consistent with the reaction 

mechanism inferred from the Cr isotopes. 

Chapter 3 reported the first results that demonstrate Cr isotope fractionation during 

reduction under transport conditions. Numerous batch experiments presented in the literature 

(Ellis et al., 2002; Sikora et al., 2008; Berna et al., 2010) strongly suggest that Cr fractionation 

follows a Rayleigh model, so it is reasonable to speculate that the linear behaviour of the 

isotope data can be attributed to transport effects. This observation suggests that an analogous 

batch experiment in the absence of transport would exhibit Rayleigh-type fractionation similar 

to the vast majority of the experiments in the literature. 
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4.2 Recommendations 

Chromium isotopes are a promising tool for tracking Cr(VI) migration in groundwater. 

However, results from this thesis reinforce the need to characterize the degree of fractionation 

prior to the application of this tool to a field setting. Reduction of Cr(VI) can be accomplished 

using a variety of electron donors, including magnetite, Fe(II), ZVI, organic carbon, H2O2, and 

bacteria. Both published results and data from this thesis demonstrate that Cr isotope 

fractionation varies significantly depending on the reductant. Further laboratory experiments 

should be conducted to evaluate the fractionation associated with materials intended for use in 

Cr(VI) treatment. Batch experiments should be performed on reactive material sampled from 

Cr(VI)-contaminated field sites, whether it is the natural substrate or an engineered PRB, to 

identify the removal mechanism and associated isotope fractionation. Results in this thesis 

have shown that multiple analytical approaches, such as traditional geochemical 

measurements, Cr isotopes, and solid-phase analyses, are essential for building a complete 

understanding of the Cr(VI) treatment mechanism. In addition, laboratory column experiments 

using a variety of reactive materials will be necessary to further investigate the possible 

influence of transport on Cr isotope fractionation under saturated flow conditions. These 

laboratory-scale studies will provide insight into the behaviour of Cr isotope fractionation 

during Cr(VI) reduction under a variety of conditions, and will thus facilitate the interpretation 

of field data. 

The method of sample preparation for Cr isotope analysis described in this thesis was 

designed with the expectation that all Cr in solution is in the form of Cr(VI). Samples from the 

organic carbon batch experiments appeared to contain a mixture of Cr(VI) and Cr(III), even 
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after filtering. As a result, it was not possible to acquire reliable results for the isotope 

composition of the Cr(VI) in these samples. It would be beneficial to adapt the sample 

preparation method so that samples such as these can be analyzed for Cr isotopes. Further 

batch experiments using organic carbon should be conducted to investigate the mechanism of 

Cr(VI) removal and determine the form of Cr(III), as well as to characterize the Cr isotope 

fractionation. 
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Summary of Data Presented in Chapter 2 
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Table A.1 Summary of general chemistry and Cr concentrations for multi-flask batch 

experiments. 

 

Sample Time pH Eh Concentration (mg L
-1

)  

 
(days) 

 
(mV) Alk Cr(VI) CrTOT 

ZVI-MA 0.0 4.91 -210 3.5 52 49 

 
0.2 6.22 225 7.5 40 38 

 
0.4 6.70 240 8.5 39 37 

 
0.6 6.92 245 16 30 28 

 
0.8 6.32 250 11 35 33 

 
1.0 6.63 240 14 32 30 

 
1.3 7.45 305 22 25 23 

 
3.0 9.48 -490 25 20 20 

ZVI-MB* 0.0 5.44 585 1.5 46 47 

 
1.0 6.75 435 21 25 25 

 
2.0 9.25 380 23 19 19 

 
3.0 10.11 340 26 15 15 

  
10.25 325 29 14 14 

 
4.0 10.58 320 32 9.0 9.6 

 
4.2 10.59 280 33 8.0 8.0 

  
10.45 200 35 9.0 8.8 

 
4.8 10.58 305 29 7.0 7.5 

  
10.66 245 25 6.0 6.5 

 
5.3 10.64 285 33 5.1 5.0 

  
10.65 135 35 5.7 5.3 

 
6.0 10.67 255 33 5.6 5.4 

  
10.64 120 34 2.6 2.4 

 
6.4 10.65 260 34 5.2 4.8 

  
10.72 220 37 3.5 3.2 

 
7.0 10.69 225 37 2.8 2.8 

 
7.4 10.67 250 36 3.7 3.5 

 
9.2 10.72 195 39 0.80 < 0.12 

 
10.1 10.71 205 34 0.22 n/d 

 
11.1 10.71 225 36 0.13 n/d 

 
CONTROL 9.14 295 3.5 0.00 n/d 

Alk = total alkalinity as mg L
-1

 CaCO3; * = replicate experiment presented in main body; 

n/a = parameter not measured; n/d = below MDL 
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Table A.1 Continued. 

 

Sample Time pH Eh Concentration (mg L
-1

)  

 
(days) 

 
(mV) Alk Cr(VI) CrTOT 

ZVI-MP* 0.00 8.77 370 128 42 46 

 
0.04 9.42 385 110 27 26 

 
0.07 9.45 125 118 21 23 

 
0.10 n/a n/a n/a 29 27 

 
0.14 n/a n/a n/a 23 25 

 
0.28 n/a n/a n/a 17 18 

 
0.46 n/a n/a n/a 17 17 

  
9.67 215 78 13 13 

 
0.94 n/a n/a n/a 7.0 7.9 

  
n/a n/a n/a 8.5 8.7 

 
1.2 9.74 -135 63 5.7 6.8 

  
n/a n/a n/a 6.5 7.3 

 
1.5 n/a n/a n/a 4.1 3.0 

  
n/a n/a n/a 5.7  6.1 

 
2.0 9.91 -170 56 2.0 1.6 

  
n/a n/a n/a 1.6 1.6 

 
2.3 n/a n/a n/a 1.3 1.0 

  
n/a n/a n/a 1.4 0.98 

 
3.0 n/a n/a n/a 0.64 0.48 

  
n/a n/a n/a 0.76 0.62 

  4.2 9.96 115 58 0.07 0.07 

OC-MA 0.00 4.94 425 2.0 51 49 

 
0.09 7.29 -40 75 40 34 

 
0.93 9.23 -470 92 32 29 

 
1.8 8.44 -435 94 35 31 

 
4.8 9.08 -390 140 25 21 

  24 9.13 -395 206 0.20 8.3 

OC-MB* 0.00 5.39 615 1.5 50 46 

 
1.0 8.56 390 110 22 17 

 
2.0 9.25 330 110 3.1 9.8 

 
2.3 9.29 260 120 0.90 4.9 

 
3.0 9.28 310 135 0.04 3.7 

 
CONTROL 8.87 -65 141 0.05 0.01 

Alk = total alkalinity as mg L
-1

 CaCO3; * = replicate experiment presented in main body; 

n/a = parameter not measured; n/d = below MDL 
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Table A.2 Summary of Cr concentrations for single-flask batch experiments. 

 

Sample Time Cr(VI) CrTOT 

 
(h) (mg L

-1
) (mg L

-1
) 

ZVI-S10A* 0.0 52 52 

 

0.3 48 50 

 

0.5 48 47 

 

1.0 44 43 

 

6.6 31 30 

 

19.2 11 11 

 

25.5 3.1 3.1 

  67.5 0.10 0.05 

 

CONTROL n/a 0.01 

ZVI-S10B 0.0 51 44 

 

0.5 46 43 

 

2.0 39 35 

 

6.3 25 27 

 

10.7 20 19 

 

19.9 9.2 10 

 

27.7 4.7 5.1 

  50.9 0.28 0.30 

ZVI-S100A* 0.0 52 49 

 

0.3 39 36 

 

0.7 21 20 

 

1.0 7.0 7.1 

 

1.2 1.4 0.94 

 

1.3 0.00 0.02 

  1.4 0.00 0.001 

 

CONTROL n/a 0.001 

ZVI-S100B 0.0 51 44 

 

0.3 32 28 

 

0.4 20 17 

 

0.6 12 11 

 

0.7 10 9.3 

 

0.9 0.02 0.001 

  1.0 0.00 0.001 

* = replicate experiment presented in main body  
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Table A.3 Summary of Cr isotope data for batch experiments. 

 

Sample Time f 53
Cr ±1  

  (days)   (‰) (‰) 

ZVI-MA 0.0 1.00 -0.08 0.08 

 
0.2 0.78 0.04 0.08 

 
0.4 0.75 0.08 0.08 

 
0.6 0.56 0.20 0.07 

 
0.8 0.67 0.10 0.07 

 
1.0 0.61 0.20 0.09 

 
1.3 0.47 0.31 0.07 

  3.0 0.40 0.41 0.08 

ZVI-MB* 0.0 1.00 0.00 0.08 

 
1.0 0.53 0.35 0.11 

 
2.0 0.39 0.46 0.08 

 
3.0 0.31 0.62 0.10 

  
0.29 0.60 0.07 

 
4.0 0.20 1.03 0.08 

 
4.2 0.17 1.16 0.10 

  
0.19 0.92 0.09 

 
4.8 0.16 1.05 0.07 

  
0.14 1.12 0.07 

 
5.3 0.11 1.31 0.07 

  
0.11 1.23 0.07 

 
6.0 0.12 1.20 0.07 

  
0.05 1.64 0.07 

 
6.4 0.10 1.36 0.09 

  
0.07 1.69 0.07 

 
7.0 0.06 1.85 0.10 

 
7.4 0.07 1.59 0.10 

 
9.2 0.00012 n/a n/a 

 
10.1 0.00005 n/a n/a 

  11.1 0.00010 n/a n/a 

* = replicate experiment presented in main body; n/a = parameter not 

measured (Cr concentration too low for isotope analysis) 
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Table A.3 Continued. 

 

Sample Time f 53
Cr ±1  

  (days)   (‰) (‰) 

ZVI-MP* 0.00 1.00 0.07 0.10 

 
0.04 0.57 0.50 0.09 

 
0.07 0.51 0.54 0.09 

 
0.10 0.58 0.51 0.10 

 
0.14 0.54 0.50 0.09 

 
0.28 0.39 0.72 0.09 

 
0.46 0.37 0.70 0.10 

  
0.27 0.93 0.10 

 
0.94 0.17 1.04 0.09 

  
0.19 1.08 0.10 

 
1.2 0.15 1.16 0.11 

  
0.16 1.14 0.09 

 
1.5 0.09 1.37 0.09 

  
0.13 1.24 0.09 

 
2.0 0.05 n/a n/a 

  
0.05 n/a n/a 

 
2.3 0.03 n/a n/a 

  
0.03 n/a n/a 

 
3.0 0.01 n/a n/a 

  
0.02 n/a n/a 

  4.2 0.002 n/a n/a 

OC-MA 0.00 1.00 -0.05 0.09 

 
0.09 0.70 0.14 0.09 

 
0.93 0.59 0.45 0.09 

 
1.8 0.62 0.27 0.09 

 
4.8 0.43 0.53 0.08 

  24 0.17 -0.45 0.10 

OC-MB* 0.00 1.00 0.01 0.09 

 
1.0 0.36 0.61 0.08 

 
2.0 0.21 0.86 0.09 

 
2.3 0.11 1.03 0.09 

  3.0 0.08 n/a n/a 

* = replicate experiment presented in main body; n/a = parameter not 

measured (Cr concentration too low for isotope analysis) 
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Table A.3 Continued. 

 

Sample Time f 53
Cr ±1  

  (h)   (‰) (‰) 

ZVI-S10A* 0.0 1.00 -0.03 0.09 

 
0.3 0.97 -0.01 0.10 

 
0.5 0.92 -0.06 0.08 

 
1.0 0.83 -0.03 0.09 

 
6.6 0.59 0.16 0.09 

 
19.2 0.21 0.93 0.11 

 
25.5 0.06 1.98 0.13 

  67.5 0.001 n/a n/a 

ZVI-S10B 0.0 1.00 0.06 0.08 

 
0.5 0.96 0.01 0.10 

 
2.0 0.80 0.05 0.07 

 
6.3 0.62 0.16 0.08 

 
10.7 0.43 0.30 0.08 

 
19.9 0.22 0.61 0.08 

 
27.7 0.12 0.95 0.09 

  50.9 0.01 n/a n/a 

ZVI-S100A* 0.0 1.00 -0.03 0.09 

 
0.3 0.74 0.13 0.08 

 
0.7 0.41 0.36 0.08 

 
1.0 0.15 1.10 0.12 

 
1.2 0.02 2.26 0.13 

 
1.3 0.0005 n/a n/a 

  1.4 0.00002 n/a n/a 

ZVI-S100B 0.0 1.00 0.06 0.08 

 
0.3 0.63 0.24 0.10 

 
0.4 0.39 0.44 0.09 

 
0.6 0.26 0.64 0.08 

 
0.7 0.21 0.69 0.09 

 
0.9 0.00003 n/a n/a 

 
1.0 0.00001 n/a n/a 

* = replicate experiment presented in main body; n/a = parameter not 

measured (Cr concentration too low for isotope analysis) 
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Figure A.1 Backscatter SEM image of a rhombohedral calcite crystal observed on the solid 

material from the ZVI-MP batch experiment. 
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Appendix B: 

Summary of Data Presented in Chapter 3 
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Table B.1 Summary of general chemistry and cation concentrations for input and effluent 

column samples. 

 

Sample PVs pH Eh Concentration (mg L
-1

) 

      (mV) Alk Cr(VI) Cr Ca K 

input 2.8 5.40 655 77 20 21 34 21 

 
4.9 5.61 605 88 20 21 32 17 

 
5.9 5.74 605 87 20 21 32 17 

 
10.8 7.78 490 58 20 21 33 17 

 
11.1 6.92 470 50 20 20 37 16 

 
14.9 7.50 n/a 79 20 20 37 17 

  23.9 8.01 540 75 20 20 38 16 

effluent 2.8 8.04 455 766 0.00 0.17 312 12 

 
3.8 6.92 535 511 0.00 0.10 241 20 

 
4.9 6.70 520 508 0.00 0.08 183 21 

 
6.2 6.74 515 469 0.11 0.21 239 25 

 
7.3 6.87 525 341 0.29 1.9 119 17 

 
8.7 7.23 465 291 1.9 2.8 113 17 

 
9.7 7.23 465 154 11 11 55 14 

 
10.8 7.48 430 137 17 17 46 16 

 
12.1 7.37 460 96 18 18 43 21 

 
13.5 7.09 415 93 18 18 44 17 

 
15.6 7.08 525 112 18 18 43 17 

 
19.4 6.87 495 104 18 19 40 17 

 
23.6 7.41 440 96 19 18 54 23 

  30.5 7.20 595 75 20 19 42 17 

Alk = total alkalinity as mg L
-1

 CaCO3; n/a = parameter not measured 
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Table B.2 Summary of general chemistry and cation concentrations for column profile 

samples. Profile 1 was sampled at 5.5 PVs, Profile 2 was sampled at 8.5 PVs. 

 

Sample Distance pH Eh Concentration (mg L
-1

) 

  (m)   (mV) Alk Cr(VI) Cr Ca K 

Profile 1 0.025 6.01 568 80 20 21 45 18 

 
0.075 6.35 533 195 19 18 74 20 

 
0.150 6.48 540 340 16 16 122 17 

 
0.225 6.62 533 395 8.6 9.5 136 18 

 
0.300 6.90 519 450 4.8 5.5 154 22 

  0.375 6.67 456 445 0.00 0.06 195 19 

Profile 2 0.025 n/a n/a n/a 21 21 32 17 

 
0.050 n/a n/a n/a 21 20 34 20 

 
0.075 n/a n/a n/a 20 20 37 17 

 
0.100 n/a n/a n/a 19 20 44 16 

 
0.125 n/a n/a n/a 19 20 53 14 

 
0.150 n/a n/a n/a 19 19 63 16 

 
0.175 n/a n/a n/a 19 19 70 13 

 
0.200 n/a n/a n/a 18 19 80 14 

 
0.225 n/a n/a n/a 18 17 89 20 

 
0.250 n/a n/a n/a 15 14 83 17 

 
0.275 n/a n/a n/a 12 12 96 20 

 
0.300 n/a n/a n/a 9.7 9.8 97 17 

 
0.325 n/a n/a n/a 8.0 8.1 101 17 

 
0.350 n/a n/a n/a 4.5 4.6 105 17 

  0.375 n/a n/a n/a 0.92 1.1 110 17 

Alk = total alkalinity as mg L
-1

 CaCO3; n/a = parameter not measured 
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Table B.3 Summary of Cr isotope data for input and effluent column samples. 

 

Sample PVs f 53
Cr ±1  

      (‰)  (‰)  

input 2.8 1.0 0.04 0.10 

 
4.9 1.0 0.02 0.09 

 
5.9 1.0 -0.04 0.09 

 
10.8 1.0 -0.02 0.14 

 
11.1 1.0 -0.01 0.12 

 
14.9 1.0 0.00 0.14 

  23.9 1.0 -0.04 0.13 

effluent 2.8 0.008 n/a n/a 

 
3.8 0.005 n/a n/a 

 
4.9 0.004 n/a n/a 

 
6.2 0.01 n/a n/a 

 
7.3 0.09 n/a n/a 

 
8.7 0.14 2.01 0.10 

 
9.7 0.55 0.90 0.14 

 
10.8 0.82 0.64 0.14 

 
12.1 0.88 0.58 0.14 

 
13.5 0.87 0.20 0.13 

 
15.6 0.90 0.37 0.16 

 
19.4 0.92 0.25 0.13 

 
23.6 0.91 0.29 0.11 

  30.5 0.96 0.14 0.11 

n/a = parameter not measured (Cr concentration too 

low for isotope analysis) 
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Table B.4 Summary of Cr isotope data for column profile samples. Profile 1 was sampled at 

5.5 PVs, Profile 2 was sampled at 8.5 PVs. 

 

Sample Distance f 53
Cr ±1  

  (m)   (‰)  (‰)  

Profile 1 0.025 1.05 0.15 0.11 

 
0.075 0.91 0.37 0.14 

 
0.150 0.81 0.78 0.11 

 
0.225 0.47 1.02 0.12 

 
0.300 0.27 1.83 0.11 

  0.375 0.003 n/a n/a 

Profile 2 0.025 1.02 1.54 0.08 

 
0.050 1.00 1.36 0.09 

 
0.075 1.00 0.96 0.08 

 
0.100 0.97 0.92 0.09 

 
0.125 0.97 0.49 0.07 

 
0.150 0.93 0.64 0.08 

 
0.175 0.93 0.44 0.14 

 
0.200 0.93 0.40 0.10 

 
0.225 0.86 0.21 0.09 

 
0.250 0.69 0.28 0.15 

 
0.275 0.57 0.07 0.12 

 
0.300 0.49 0.06 0.07 

 
0.325 0.40 0.08 0.14 

 
0.350 0.23 -0.06 0.10 

  0.375 0.05 n/a n/a 

n/a = parameter not measured (Cr concentration too 

low for isotope analysis) 
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Appendix C: 

Double-Spike Inversion Calculation 
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Figure C.1 Flow chart describing the calculation of the true Cr isotope composition of a 

sample using the double-spike inversion routine adapted from Siebert et al. (2001).  
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Double-Spike Inversion: Step-by-step 

The calculation of the true Cr isotope composition of a sample using the double-spike 

inversion routine adapted from Siebert et al. (2001). 

 

1. Calculate raw ratios (
53

Cr/
52

Cr, 
50

/
52

Cr, 
54

/
52

Cr) from uncorrected signals 

 

2. Calculate first assumed isotope composition of sample (SA): 

 

 

 

– standard (ST) is SRM979 

– assume initial Fnat (natural fractionation) between -1 and 1 

 

3. Calculate initial values for a, b, and c: 

 

 

 

 

 

 

 

 
 

 

– if Fnat is correct, all ratios should lie on the plane z = ax +  by + c 

– SP is the double spike composition 

 

4. Calculate initial values for MT: 

 

– measured, corrected for instrumental fractionation = Rtrue 

 

 

 

– Rmeasured is the raw measured ratio of the spiked sample (MS) 

– assume initial value for Fins 
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5. Calculate initial values for d, e, f, and g: 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

– if Fnat & Fins are both correct, the line defined by z = dx + e and z = fy + g 

should intercept with the plane defined by z = ax + by + c 

 

6. Calculate the intersection coordinates of the line with the plane: 

 

 

 

 

 

 

 

 

 
 

 

7. Assign xint, yint, and zint as the new values for MT. 

 

– xint = 53/52, yint = 50/52, zint = 54/52 

 

 

8. Calculate a new value for Fins: 

 

 

9. Repeat steps 4-8 iteratively until the value of Fins converges. 
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10. Calculate values for a, b, and c using the newest values for MT: 

 

 

 

 

 

 

 
 

 

 

11. Repeat steps 5-6 using ST & SA instead of MS & MT: 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

– values for SA were calculated in step 2 using the initial guess for Fnat 

 

 

12. Assign xint, yint, and zint as the new values for SA. 

 

 

13. Calculate a new value for Fnat: 

 

 

 

 

– use newest values for MT 

– use newest values for SA 
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14. Repeat steps 2-13 iteratively until the value of Fnat converges. 

 

– in each iteration of step 2 use the newest value of Fnat calculated in the previous 

iteration of step 13 

 

15. Calculate contribution (voltage) from interfering elements using the final value of Fins 

to adjust the isotope ratios: 

 

 

 

 

 

 

 

 

 

 

16. Calculate interference element corrected values (voltages) for 
50

Cr & 
54

Cr: 

 

 

 
 

 

 
 

 

17. Calculate interference element corrected Cr isotope ratios (
53

Cr/
52

Cr, 
50

/
52

Cr, 
54

/
52

Cr). 

 

 

18. Repeat the double spike inversion on the corrected isotope ratios (steps 2-14). 

 

– final values of SA represent the true Cr isotope ratios of the sample 

 

 


