
Modeling and Evaluating Energy
Performance of Smartphones

by

Rajesh Palit

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

c© Rajesh Palit 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Rajesh Palit

iii

Abstract

With advances in hardware miniaturization and wireless communication technologies even
small portable wireless devices have much communication bandwidth and computing power.
These devices include smartphones, tablet computers, and personal digital assistants. Users
of these devices expect to run software applications that they usually have on their desktop
computers as well as the new applications that are being developed for mobile devices. Web
browsing, social networking, gaming, online multimedia playing, global positioning system
based navigation, and accessing emails are examples of a few popular applications. Mobile
versions of thousands of desktop applications are already available in mobile application
markets, and consequently, the expected operational time of smartphones is rising rapidly.

At the same time, the complexity of these applications is growing in terms of computa-
tion and communication needs, and there is a growing demand for energy in smartphones.
However, unlike the exponential growth in computing and communication technologies,
in terms of speed and packaging density, battery technology has not kept pace with the
rapidly growing energy demand of these devices. Therefore, designers are faced with the
need to enhance the battery life of smartphones. Knowledge of how energy is used and
lost in the system components of the devices is vital to this end. With this view, we focus
on modeling and evaluating the energy performance of smartphones in this thesis. We also
propose techniques for enhancing the energy efficiency and functionality of smartphones.

The detailed contributions of the thesis are as follows: (i) we present a finite state ma-
chine based model to estimate the energy cost of an application running on a smartphone,
and provide practical approaches to extract model parameters; (ii) the concept of energy
cost profile is introduced to assess the impact of design decisions on energy cost at an
early stage of software design; (iii) a generic architecture is proposed and implemented for
enhancing the capabilities of smartphones by sharing resources; (iv) we have analyzed the
Internet traffic of smartphones to observe the energy saving potentials, and have studied
the implications on the existing energy saving techniques; and finally, (v) we have provided
a methodology to select user level test cases for performing energy cost evaluation of appli-
cations. All of our concepts and proposed methodology have been validated with extensive
measurements on a real test bench.

Our work contributes to both theoretical understanding of energy efficiency of software
applications and practical methodologies for evaluating energy efficiency. In summary,
the results of this work can be used by application developers to make implementation
level decisions that affect the energy efficiency of software applications on smartphones. In
addition, this work leads to the design and implementation of energy efficient smartphones.

v

Acknowledgements

First and foremost, I express my profound indebtedness to my supervisor, Dr. Sagar Naik,
who has supported me throughout my thesis with his patience and constant guidance while
allowing me to work in my own way. This thesis would not have been completed without
his utmost support and encouragement. I offer my sincere gratitude to my co-supervisor,
Dr. Ajit Singh, for his advice, support, and encouragement. His business experience and
intuitions enriched my growth as a researcher. I take this opportunity to thank all of the
committee members of this thesis for their valuable time, support, and advice.

My deepest gratitude goes to my parents, Mira Palit and Nani Gopal Palit, who allowed me
to pursue my degree, though, without me, they became very lonely and helpless at times. I
would like to thank my uncle, my sisters and brothers-in-law for the constant support they
provided to my parents. I would especially like to mention the name Sukumar Chowdhury,
my brother-in-law whose enormous support has enabled me to come to this stage of my
life. I am indebted to him more than he knows.

I cannot ignore the inspiration that I have constantly received from my son, Roshan, who
was born in the middle of my PhD tenure. Although my life became difficult, he has helped
me understand the true meaning of life and responsibility.

Finally, I like to thank my friends and individuals who helped me in any way at Waterloo
to complete my degree. I would specially mention the names, Michael and Sukanta, who
proof read three chapters of my thesis.

vii

Dedication

To all of my teachers, especially Apu Dey, Purnendu Bhattachariya, and Muhammad Yakub
Ali, whose teaching, love, and inspiration have been the great possession in my life.

Where The Mind is Without Fear

WHERE the mind is without fear and the head is held high

Where knowledge is free

Where the world has not been broken up into fragments

By narrow domestic walls

Where words come out from the depth of truth

Where tireless striving stretches its arms towards perfection

Where the clear stream of reason has not lost its way

Into the dreary desert sand of dead habit

Where the mind is led forward by thee

Into ever-widening thought and action

Into that heaven of freedom, my Father, let my country awake.

Rabindranath Tagore

ix

Table of Contents

List of Tables xvii

List of Figures xix

List of Acronyms xxiii

1 Introduction 1

1.1 Smartphone and its Components . 1

1.2 Resource Constraints . 4

1.3 Energy Management and Applications . 5

1.4 Designing Energy Efficient Applications . 6

1.5 Energy Management Strategies . 7

1.5.1 Smart Battery Aided Design . 7

1.5.2 Energy-Efficient GUI Design . 7

1.5.3 Energy-saving micro-Sleep Techniques 8

1.5.4 Energy-efficient Communication Techniques 9

1.5.5 Programming and Compilation Techniques 10

1.5.6 High-level Energy Management Techniques 10

1.5.7 Integrated Power Management Techniques 10

1.6 Problem Descriptions . 10

1.7 Solution Strategies . 12

xi

1.8 Validation Methodology . 13

1.9 Robustness of Solution Strategies . 14

1.10 Summary of Contributions . 15

1.11 Organization of this Thesis . 16

2 Energy Consumption Model 19

2.1 Problem Description . 19

2.1.1 Motivation . 19

2.1.2 Framework . 20

2.1.3 Contributions . 23

2.2 Related Work . 24

2.2.1 Simulation and Emulation Based Estimation Tools 24

2.2.2 Measurement Based Estimation Tools 25

2.2.3 Studies of Energy Consumption Behaviors 26

2.2.4 Energy Efficient Techniques . 26

2.2.5 Energy Efficient Systems . 27

2.3 Energy Consumption Model . 28

2.4 Getting Model Parameters . 34

2.5 Energy Cost Profile of a Device . 35

2.5.1 Profile Parameters . 36

2.5.2 Experimental Setup . 38

2.5.3 Experimental Results . 40

2.5.4 An Example . 43

2.6 Summary . 45

3 Capability and Functionality Enhancement 47

3.1 Problem Description . 47

3.1.1 Background . 48

xii

3.1.2 Motivation . 48

3.1.3 System Model and Design Criteria 49

3.1.4 Research Objectives . 51

3.1.5 Contributions . 52

3.2 Related Work . 52

3.3 Architecture . 55

3.3.1 Device and Connection Management (DCM) 56

3.3.2 Framework for Information Exchange (FIX) 60

3.3.3 Possible Security Issues . 61

3.4 Prototype Implementation and Model Validation 61

3.5 Experimental Setup . 63

3.6 Results and Discussions . 64

3.6.1 Energy Costs for Basic Operations 64

3.6.2 Energy Costs for Transferring a File 67

3.7 Summary . 71

4 Anatomy of Smartphone WiFi Traffic 73

4.1 Problem Description . 73

4.2 Related Work . 77

4.3 Selection of Applications and Performance Metrics 79

4.3.1 Chosen Applications . 79

4.3.2 Performance Metrics . 80

4.4 Experimental Setup . 81

4.5 Observations and Discussions . 82

4.6 Impacts on Energy Saving Methods . 87

4.6.1 Impact of Burst Duration and Size 88

4.6.2 Impact of Burst Inter-arrival Time 88

4.6.3 Coordination between Device and AP 88

xiii

4.7 Packet Aggregation Scheduler . 91

4.8 Low Energy Data-packet Aggregation Scheduler 92

4.9 Analysis . 94

4.9.1 Used Terms and Symbols . 94

4.9.2 Bursts sent on formation time . 95

4.9.3 Bursts sent on size . 96

4.9.4 Bursts sent on number of packets 101

4.10 Simulation and Experimental Results . 101

4.11 Summary . 105

5 Design of Energy Performance Testing 107

5.1 Problem Description . 107

5.2 Literature Review . 110

5.2.1 Software Performance Testing . 110

5.2.2 Testing on Mobile Devices . 111

5.2.3 Combinatorial Interaction Testing (CIT) 113

5.3 Formulation of Test Cases . 114

5.4 Challenges . 115

5.4.1 Number of Configurations . 115

5.4.2 Choosing Applications, Contents, and Durations 116

5.5 Proposed Methodology . 117

5.5.1 Categorization of Parameters . 117

5.5.2 Number of Configurations for Active Parameters 119

5.5.3 Choosing A Primary Parameter . 121

5.5.4 Parameter with Continuous Value 121

5.5.5 Energy Cost Metric . 122

5.6 Test Bench . 122

5.7 Experimental Results . 123

5.8 Limitations . 126

5.9 Summary . 127

xiv

6 Conclusions and Future Directions 131

6.1 Conclusions . 131

6.2 Future Directions . 133

List of publications 135

References 139

xv

List of Tables

3.1 Comparison of required time and energy cost for different scenarios 70

4.1 Impact of the analysis on different MAC-level energy saving techniques . . 90

4.2 Simulation parameters . 102

5.1 Primary configuration . 120

5.2 Dependency check table . 121

5.3 Examples of energy cost metrics . 122

5.4 Examples of basic parameters (G0) . 127

5.5 Examples of active parameters (G1) . 128

5.6 Examples of passive parameters (G2) . 129

xvii

List of Figures

1.1 Components of a smartphone. 2

1.2 Market share of smartphone OS (Gartner, November 2011). 3

1.3 Relationships among user, applications, OS and battery. 5

1.4 Organization of this thesis. 17

2.1 Schematic diagram of our proposed energy estimation framework. 22

2.2 Components between application layer and battery on a portable device. . 28

2.3 FSM models for processor, communication interface and storage. 30

2.4 FSM diagrams for display and memory. 31

2.5 Power consumption in different states of HTC Nexus One. 31

2.6 Instantaneous current consumption profile of a device. 32

2.7 Schematic diagram of energy estimation process using device emulator. . . 35

2.8 User-interfaces of a device emulator. 36

2.9 Interactions of applications with operating system. 37

2.10 Experiment setup of test bench. 39

2.11 Power consumption for computation. 40

2.12 Power consumption and data rates for encrypting and decrypting data. . . 41

2.13 Power consumption for reading and writing data in the external storage. . 41

2.14 Power consumption for transmitting UDP data packets via WiFi. 42

2.15 Energy consumption for transferring 1 megabyte of data. 43

2.16 Energy consumption for transferring 2 megabytes of data. 44

xix

2.17 Instantaneous power consumption for transmitting data packets via WiFi. 44

3.1 Smartphone communicating with a laptop in two different scenarios. 49

3.2 State transition diagram of server device. 56

3.3 Timing diagram of task offloading using UCCI. 57

3.4 Power consumption of a laptop in different states. 59

3.5 Placement of UCCI in protocol stack. 59

3.6 User interface of an UCCI based application. 60

3.7 Snapshot of an Android based UCCI application. 62

3.8 Logical view of our experimental setup. 63

3.9 Power consumption for computation. 65

3.10 Power consumption for reading and writing data in the internal storage. . . 65

3.11 Power consumption for transmitting data packets via WiFi. 66

3.12 Power consumption and data rates for encrypting and decrypting data. . . 66

3.13 Power consumption and data rates for downloading data. 68

3.14 Power consumption and data rates for uploading data. 69

3.15 Energy consumption for transferring a file of 1 MB size. 70

3.16 Power consumption and processing rate for compression/decompression. . . 71

4.1 Connection details of network packet probing setup. 76

4.2 Schematic diagram of performance metrics. 80

4.3 Connection setup for verifying the impact of access point (AP). 82

4.4 Distribution of uplink and downlink packet size for random web browsing. 83

4.5 Distribution of uplink and downlink packets’ inter-arrival time for random
web browsing. 83

4.6 Distribution of uplink burst durations. 84

4.7 Distribution of uplink burst sizes. 84

4.8 Distribution of downlink burst sizes. 85

4.9 Number of data packets in uplink bursts. 85

xx

4.10 Distribution of downlink burst inter-arrival times. 86

4.11 Distribution of burst inter-arrival times in both directions. 86

4.12 View of the aggregator as a queuing system. 91

4.13 Flow diagram of the aggregation process. 92

4.14 Timing diagram of the aggregation process. 94

4.15 Reduction in energy costs. 102

4.16 Average packet delays . 103

4.17 Received and transmitted overheads. 103

4.18 Average burst size and inter-arrival time at MAC layer. 104

4.19 Current consumption for different burst formation time. 105

5.1 System model of proposed test configuration. 115

5.2 Categorization of smartphone parameters 118

5.3 Experiment setup of test bench. 123

5.4 Connection details of device, battery and power supply. 124

5.5 Energy metrics for YouTube video. 124

5.6 Energy metrics for Internet browsing. 125

5.7 Energy metrics for composing email. 125

5.8 Energy metrics for various network connections. 126

5.9 Differences in current consumption at brightness levels of 50% and 75%. . . 126

xxi

List of Acronyms

3G Third Generation Mobile Telecommunications

AES Advanced Encryption Standard

AP Access Point (WLAN)

BER Bit Error Rate

CIT Combinatorial Interaction Testing

CPU Central Processing Unit

DES Data Encryption Standard

EDGE Enhanced Data rates for GSM Evolution

FPGA Field-Programmable Gate Array

FSM Finite State Machine

FTP File Transfer Protocol

GPS Global Positioning System

GSM Global System for Mobile Communications

HSDPA High-Speed Downlink Packet Access

HSUPA High-Speed Uplink Packet Access

HTTP HyperText Transfer Protocol

JVM Java Virtual Machine

xxiii

MAC Medium Access Control

MGF Moment Generating Function

MTU Maximum Transmission Unit

NFC Near Field Communication

NIC Network Interface Card

OS Operating System

PDA Personal Digital Assistant

PSM Power-Saving Mode

QoS Quality of Service

RAM Random Access Memory

SFTP Secured File Transfer Protocol

SNR Signal-to-Noise Ratio

SoC System-On-Chip

SoC State of Charge

TCP Transport Control Protocol

UCCI Universal Computing and Communication Interface

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

USB Universal Serial Bus

VoIP Voice over Internet Protocol

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WWAN Wireless Wide Area Network

xxiv

Chapter 1

Introduction

Since the invention of the transistor, enormous progress and development in the field of
solid state physics has continually reduced the size of the semi conductor devices. The
capability, or, the speed of electronic devices has increased exponentially while their size
and cost has decreased to the same extent. Over time, these technological advancements
have allowed digital communication to evolve, and in the 1980’s the cell phone emerged.
Due to their inherent support for portability and mobility, hand-held devices connected to
wireless networks have become widely popular.

In the early years, mobile phones were used only for voice calls and short message
services (SMS). The users could also avail push/pull services to some extent with limited
data service. Later on, with the overwhelming penetration of Internet into society, there
was a huge demand for full-fledged data service in cellular networks. To meet the user
demands, newer standards and technologies for wireless networks and hand-held devices
have been brought to market, and are now widely accepted by end users all over the
world. The success and growth of Internet based services have profoundly impacted global
economics, as well as the ways in which people communicate and live their lives [43]. This
trend is ongoing and it seems that smartphones will become as prevalent in our daily lives
as electricity and motor vehicles.

1.1 Smartphone and its Components

There has been a rapid evolution in the industry of handheld device over the last couple
of years. These devices include smartphones, personal digital assistants (PDA), and tablet

1

computers. By the end of 2010, over 75% of the world’s population had subscribed to
mobile phones and about 55% of them were smartphone users in developed countries [67].

Smartphones can be defined as small computers with high speed wireless communi-
cation interfaces. The smartphone market is one of the most competitive markets for
semiconductor vendors. At the low end, cost pressures are pushing them to integrate their
hardware components into single-chip devices. At the high end, they are required to keep
up with the newest air interfaces, such as HSDPA and HSUPA, while adding TV-quality
video, 3D graphics, and other multimedia functions to the processors. They need to find
the right balance of cost and multimedia performance to meet the demands of carriers and
end users.

Display

Memory

Storage

MMCs / SDs

Camera

Image Sensors

Numeric Keyboard

QWERT Keyboard

Touch Screen

Processor

OMAP Series

ARM Series

Qualcomm

Energy Supply (Battery)

Lithium Ion / Lithium Polymer

NiCd / NiMH

Microphone

SpeakerOS Kernel

Middleware

Application Execution

Environment (AEE)

User Interface

Framework

Application Suite

Android, iOS,

BlackBerry,

Windows Mobile,

Symbian

Bluetooth

WiFi

GSM CDMA 1x

3G / LTE

Global positioning system (GPS)

Near field communication (NFC)

Accelerometer / Compass

Proximity sensors / Ambient light sensors

Applications

Figure 1.1: Components of a smartphone.

Figure 1.1 depicts the components of a state-of-the-art smartphone. The devices typi-
cally have low-power-consuming RISC (Reduced Instruction Set Computer) microproces-
sors manufactured by companies like Texus Instrument (TI) and ARM Qualcomm. They

2

generally have random access memory (RAM) of around 256 MB to 1GB and several gi-
gabytes of removable flash memory. The power supply is usually equipped with a 3.7 volt
lithium-ion battery ranging from 800 to 1500 milliampere hour (mAh). They have Half
VGA or Quarter VGA color displays most often with touch screen capabilities. Smart-
phones also have cameras, GPS (Global Positioning System) receivers, and other sensors
mentioned in the figure. On the software side, there are a few main streams of Operating

Android (Google)

52%

Symbian (Nokia)

17%

iOS (Apple)

15%

BlackBerry (RIM)

11%

Bada (Samsung)

2%

Windows Mobile

(Microsoft)

2%
Others

1%

Figure 1.2: Market share of smartphone OS (Gartner, November 2011).

Systems (OS) used in the mobile phones. As shown in Fig. 1.2, about 52% of the smart-
phones in the market use Android OS from Google. Symbian OS by Nokia shares 17% of
OS market. The iOS used in iPhone shares 15% of the market. BlackBerry uses its own
proprietary OS, which covers 11% of the market. Windows Mobile OS captures 2% market
shares. There also exist Palm garnet OS and some linux based OS like LiMo, Mobilinux
in the market.

Smartphone applications, or mobile applications, colloquially referred to as apps come
with the smartphone, or are downloaded by users from various mobile software distribution
platforms, known as the App Store or Market. There are more than 325 thousand applica-
tions on Android market and more than half a million applications on Apple’s App Store.

3

The number of downloads reached more than 10 billion in app store at the end of 2011, and
it is expected that by the year 2015 the total app downloads per year will reach close to
50 billion. The categories of mobile applications include (i) Games; (ii) Social networking;
(iii) News and weather forecast; (iv) Maps, navigation, search, and location based service;
(v) Online music and video; (vi) Entertainment and food; (vii) Sports; (viii) Banking, fi-
nance, and mobile payment; (ix) Shopping; (x) Productivity; and (xi) Travel, lifestyle, and
mobile health monitoring.

1.2 Resource Constraints

Among the applications on smartphones, Internet browsing, online video and music playing,
gaming, social networking, news, weather, stock reports, global positioning system (GPS)
aided maps, navigation, and searching are at the top of the charts [44, 93]. Uploading
photos and videos directly to social networks and voice-over-IP (VoIP) clients are becoming
increasingly popular. Moderate computing power, communication bandwidth, and above
all, innovative development tools have enabled the creation of mobile versions of many
popular desktop applications [125]. The complexity of these applications is growing in
terms of computation and communication needs with increasing device functionality. As a
consequence of this increased usability, the demand for increased operating time, or battery
life of smartphones is rising rapidly.

Unlike other resources such as memory and processor, energy is an exhaustible resource.
Energy cannot be reclaimed once it is spent [130]. Therefore, energy must be diligently
used in handheld devices. The concern about energy availability has become more acute
due to the volume of third-party applications available on the Internet. In addition, there
has not been a satisfactory development in battery technology in terms of energy capacity.
The battery capacity has not increased at the same pace as other components of handheld
devices. The state-of-the-art mobile device from Google, Nexus S has a standby time of
18 days, whereas its talk-time is just 7 hours on 3G networks. Similarly, smartphones
last only 2 − 3 hours when online video is played. This dependence on battery energy
puts a severe constraint on the availability of these devices. Therefore, devising energy
management strategies have attracted the attention of hardware and software designers of
smartphones. In this thesis, we focus on designing energy efficient software applications
for smartphones.

4

1.3 Energy Management and Applications

The term energy management is used to mean a reduction in the overall energy consump-
tion of a system through effective use of the system resources, and to keep the hardware
components at low power consumption state as long as possible without sacrificing the
system performance. Energy management can be performed at several levels in the system
hierarchy [91]: the hardware component, the operating system (including protocols), the
application and the user level.

Users generally lack knowledge about the power consumption of each component of the
device, and are reluctant to make frequent energy management decisions. The hardware
level approach may be thought to be appropriate as the hardware parts physically drain the
battery energy. However, the hardware is there to fulfill the software needs, and software is
the ultimate consumer of energy. Basically, hardware and software level approaches should
not be considered mutually exclusive; instead they are supplementary in nature. Therefore,
focus should be given on software level optimizations in the devices with hardware level
energy saving features [34].

User

Application 1 Application 2 Application N

Operating System (OS)

Middleware / API / Virtual Machines

CPU Memory Display Storage GPSWiFi 3G ...

Smart Battery

...

Figure 1.3: Relationships among user, applications, OS and battery.

Figure 1.3 depicts the relationship between the energy usage hierarchy of a smartphone.
Users run applications on devices, and applications utilize hardware components such as
the CPU and memory through middleware and OS interfaces to accomplish a task. The
OS coordinates and schedules the access to hardware. However, it has no control over how
efficiently the application uses hardware components. The OS also does not control how
much energy a hardware component consumes to remain in a certain state. Therefore,
energy efficient applications and hardware components with energy saving features play a

5

pivotal role in achieving overall energy efficiency of smartphones. The role of an energy-
aware OS is to take advantage of the power saving features of software applications and
hardware components.

1.4 Designing Energy Efficient Applications

The key challenges in designing energy efficient smartphone applications are as follows:

• User Expectation: Users of smartphones expect to run software applications that
they usually have on their desktop computers as well as the mobile applications de-
veloped for mobile devices. The complexity, processing power, and communication
requirements of these applications are high in comparison to smartphone resources,
and they ultimately drain high amounts of battery energy. Most importantly, achiev-
ing energy efficiency without compromising user experience is a challenging task.

• Application Development Environment: As mentioned earlier, there are al-
ready more than a million applications in the market. A significant portion of these
applications is designed and implemented on an ad hoc basis, and good software en-
gineering guidelines are not followed. The development processes of the applications,
OS and hardware are independent, and devices are diverse in terms of processor,
memory, display types. Moreover, not all designers are aware of the energy saving
potentials of OS, communication and other hardware components. High level energy
cost information is not also available to them. All of these issues are challenges for
developing energy efficient smartphones.

• Lack of Performance Evaluation Tools: Performance defects such as energy and
delay performances are mostly invisible in desktop environments due to availability
of abundant power, and high processing and communication bandwidth. However,
they become visible in mobile platforms because of the lack of such resources. Due to
the large number of configurations, there is a lack of consistent testing configurations
across devices. The absence of a mobile test bench which is required for GPS, cellular
and other location based testing, and difficulty in replicating the behavior of a real-
battery are two more challenges in performance testing of smartphones.

6

1.5 Energy Management Strategies

We present a broad overview of existing energy management strategies for wireless portable
devices in this chapter. Comprehensive details of software based energy saving method-
ologies for handheld devices can be found in [104]. Surveys of system-level dynamic
power management techniques, energy efficient network protocols for wireless networks,
and power-aware mobile multimedia applications can also be found in [11, 72, 172]. Dis-
cussions of related work have been given further with each solution approaches we have
provided in the following chapters.

1.5.1 Smart Battery Aided Design

Smart batteries are re-chargeable batteries augmented with additional sensing and SoC
computation logic. They play a key role in making applications adaptive to the amount
of energy left in the battery. Power consumption pattern or load profile has a significant
impact on battery lifetime [123]. Some profiles may let a battery to recover from time to
time, whereas some other load profiles may not let the battery to recover. Therefore, task
scheduling is an important system-level instrument which can adjust system load based on
state of charge (SoC) information to prolong battery lifetime.

Chiasserini and Rao [24, 25] have mentioned that charge recovery takes place under
bursty or pulsed discharge conditions. Hence, this phenomena can be exploited to enhance
the actual capacity of the battery. They explore stochastic battery models to track charge
recovery in conjunction with battery lifetime. Software designers need to be aware of the
battery characteristics in order to be able to schedule the major energy consuming tasks
in such a way that the resulting load profile leads to the longest battery lifetime.

1.5.2 Energy-Efficient GUI Design

Display is one of the largest energy consuming components in mobile devices. Display
along with user interactions form graphical user interaction (GUI) sub-system. A number
of techniques have been proposed to minimize the energy consumption of GUI sub-system,
and a few categories are described below:

1. Brightness Control of the Backlight: These techniques, namely, dynamic lumi-
nance scaling (DLS) and concurrent brightness and contrast scaling (CBCS) keep the

7

perceived contrast of still images as close as possible to the original while achieving
power reduction from the backlight system [19, 23].

2. Frame Buffer Compression: Frame buffer compression reduces the number of
frame buffer accesses, and thus saves energy. Shim et al. [138] have shown that frame
buffer compression reduces the display energy cost by 50 − 66%. When differential
Huffman coding is used to compress the frames [139], the frame buffer activity is
reduced by 52− 90%.

3. Dark Window Optimization: An active window on display uses only about 60%
of the total screen area, and the content of the screen can be displayed on much
lower power displays with no apparent loss in visual quality. These are the two
observations from a survey conducted by Iyer et al. [68]. They proposed several dark
windows optimization techniques that allow the windowing environment to change
the brightness and color of portions of the screen that are not of interest to the user.

Zhong and Jha [175] make the following recommendations to make GUI design energy-
efficient: (i) Even an idle system consumes much energy so reducing the usage time for a
task is an effective way of energy reduction. (ii) Do something while waiting for user input.
(iii) Minimize screen changes as it costs energy to change even a single pixel. (iv) Since
text input is much slower, avoid or minimize text input. (v) Features that do not accelerate
usage should be avoided.

1.5.3 Energy-saving micro-Sleep Techniques

There is a significant difference in energy costs of the sleep and idle states of a proces-
sor [117]. Brakmo et al. [16] have introduced the concept of a µSleep state so that under
certain conditions the processor can be put in the µSleep state instead of the idle state. If
there is no process to run, the processor is moved into the OS idle state, and the scheduler
makes a decision to move the processor to the µSleep state or to the processor idle state.
A real-time clock alarm or an external event causes the processor to move back to the
running state. Their experiments have shown that µSleep can reduce energy consumption
by more than 60% when the experimental Itsy pocket PC is lightly loaded.

Liu et al. [89] proposed a micro power management (µPM) scheme that allows a WiFi
transceiver to sleep for very short intervals, such as a few microseconds. It can be used to
sleep even between two MAC frames. This client-based solution uses prediction to exploit
short idle intervals, and any support from the AP is not needed. To control data loss,
µPM takes advantages of the retransmission mechanism in 802.11.

8

1.5.4 Energy-efficient Communication Techniques

1. MAC Level Techniques: Around 90% of the energy can be saved by the Wireless
NIC at the cost of increased delay in web-page downloads [79]. The authors of [79],
Krashinsky et al. proposed a Bounded Slowdown protocol (BSD) to cope with the
delay problem. The energy saving techniques proposed in [146, 162] use inactivity
timers to decide when to switch off the Wireless NIC. Stemm and Katz [146] use
knowledge of application behavior to compute the timeout duration, whereas, Yan
et al. [162] estimated the inter-arrival times in a dynamic fashion to switch off
the WNIC. Havinga and Smit [58] proposed a TDMA based energy efficient MAC
protocol in which the AP schedules packet transmissions. The authors apply mobile
grouping strategy that allows an STA to have a concatenated uplink and downlink
phase, and the transceiver enters a low power mode for the remaining time of a
frame. The schedule traffic in bursts strategy allows a transceiver to stay in a low-
power mode for an extended period of time.

2. Proxy Assisted Energy Saving: A proxy works as an intermediary between mo-
bile hosts and streaming servers. Applications running on the mobile user device
send requests for streaming media objects to the local proxy. A proxy can enable
a hand-held device to save energy in a number of ways, for example, by reducing
the volume of contents to be downloaded by user devices, and/or by making data
traffic bursty so that the intervals between bursts are long enough for devices to put
their communication interfaces to sleep state. The detailed energy saving potentials
of a Transforming Proxy, an HTTP-level Power Aware Web Proxy, a Power Aware
Streaming Proxy, and a Streaming Audio Proxy can be found in [3, 127].

3. Source-level Power Control: Multimedia content servers apply a number of en-
ergy saving strategies. Examples of such server-based techniques are: (i) traffic
shaping to enable a user device to put its communication interface to sleep state [1],
and (ii) resolution control of video frames [84]. These techniques do not involve any
proxy between the media servers and hand-held devices.

4. TCP Based Energy Saving: The Transmission Control Protocol (TCP) related
energy efficiency of hand-held devices are categorized into two groups: (i) computa-
tional energy cost of executing the protocol details, such as congestion control, ACK
generation, checksum computation, and round-trip time (RTT) [134], and (ii) TCP-
assisted controlling the wireless NIC [2, 13], where TCP connection stays inactive for
a while, thereby giving an opportunity to put the NIC in a low-power state.

9

1.5.5 Programming and Compilation Techniques

The potential for energy reduction through modification of software application and com-
pilation has been studied since the mid 90s [49, 80, 105, 149, 159]. The concept of a set of
base costs of instructions plays a key role in these studies. Tiwari et al. [149] have proposed
a measurement-based instruction-level power analysis technique that makes it feasible to
effectively analyze the energy consumption of software. A number of energy reduction
techniques have been proposed which include: (i) reducing memory access, (ii) energy
cost driven code generation, (iii) instruction re-ordering for low power consumption, and
(iv) instruction packing and dual memory loads.

1.5.6 High-level Energy Management Techniques

A number of techniques have been studied at the application-level to achieve energy ef-
ficiency in hand-held devices. Those are data compression and download scheduling at
the application-level and computation offloading. In the first approach, the decompression
tasks on a client device are appropriately interleaved with downloading activities to max-
imize energy saving [161]. In the computation offloading approaches, some computation-
intensive tasks are transferred from a user device to a server [52, 86, 152, 153, 158].

1.5.7 Integrated Power Management Techniques

Solutions for energy efficiency have been proposed at various computational levels, namely,
cache and external memory access optimization, dynamic voltage scaling, dynamic power
management for disk and network interfaces, efficient compilers, and application/middleware
adaptations. The optimization techniques developed at each level have remained largely
independent of the other abstraction levels, thereby not exploiting the opportunities for
further improvements achievable through cross-level integration. The binding for this set
of techniques is accomplished by system-level energy management approaches [34, 91, 119].

1.6 Problem Descriptions

In this thesis, a number of problems are addressed which share a common objective of
achieving energy efficiency in smartphones. We cover two primary challenges regarding
mobile application development process. The first challenge is to have high-level energy

10

cost information so that designers can take advantage of that during the design phase of
energy efficient applications. A finite state machine based energy consumption model is
proposed which is augmented with an existing application development process to achieve
better energy efficiency. The second challenge is to have a consistent energy evaluation
test bench for comparing test results of energy performance, we propose a measurement
test bench that considers the values of different smartphone parameters during a test, and
reduce the number of test configurations significantly.

In addition, we have addressed an upper-level (or, application level) energy manage-
ment technique that enhances the functionality of smartphones by accessing resources on
other devices. We have also investigated an energy efficient communication strategy that
includes a data packet aggregation algorithm based on different burst parameters of smart-
phone Internet traffic. The background, motivation, related literature review, and detailed
descriptions of each problem are presented in Chapter 2 through Chapter 5. These chap-
ters are independent of each other. We provide a brief overview of the problems in the
following paragraphs.

An in-depth understanding of how energy is consumed by an application, i.e., an energy
consumption model, is a prerequisite for designing energy efficient applications. Energy
cost analysis, the breakdown of energy consumption in different states of an application and
in different hardware components such as processor, communication interface, display, and
storage is important in this regard. In fact, analysis of energy performance often leads to
energy-efficient application design. Designers concentrate on energy intensive components
of an application and put effort to gain energy efficiency which results in reduced energy
consumption.

Moreover, knowledge about the impact of design decisions on energy consumption is
very useful at an early design stage as changes made in the final stage of an application
are more expensive [73]; this helps reduce the time and cost of developing energy efficient
applications. Suppose that the energy cost, speed, and compression ratio of a compression
process are known. If the data rate and energy cost of a communication link are known, it
is easy to decide whether or not compression before sending certain data is energy-efficient.
We have addressed these two issues by proposing a finite state machine (FSM) based energy
consumption model for software applications and by introducing the concept of energy cost
profile that is comprised of high level energy cost information.

Additionally, we addressed the problem of resource constraints in smartphones to facili-
tate energy efficient sharing of resources among the smartphones. Smartphones are built to
work alone and they typically cannot access or share each other’s hardware or software re-
sources. In the presence of a resource sharing infrastructure, these devices are able to share

11

and access each other’s hardware, software resources, and data. The concept of universal
computation and communication interface (UCCI) is introduced in this regard. As smart-
phones have become the preferred means of communication, and the smartphone traffic
constitutes an increasingly large share of Internet traffic. As such, exploiting the energy
saving potentials for wireless interfaces is highly relevant to smartphones. We propose a
MAC level frame aggregation scheduler algorithm, LEDAS by observing smartphone WiFi
traffic characteristics.

Finally, the problem of designing energy performance testing of smartphones is ad-
dressed. Millions of test configurations exist due to the large number of user controllable
parameters in smartphones. Dealing with such volume of test configurations is quite im-
practical. A concept of user level test case for smartphones is introduced, and a heuristic
based methodology is proposed for reducing the number of test cases for smartphone energy
performance testing.

1.7 Solution Strategies

A brief overview of the solution strategies that address the problems mentioned above is
given in the following. Details are provided in the following chapters.

1. Energy Consumption Model: The behaviors of the hardware components of
smartphone are modeled as finite state machines (FSM), and the states are identified
from the perspective of power consumption instead of their operational details. On
the other hand, an application is viewed as a sequence of high-level activities, inter-
spersed with idle periods. The duration of an activity coupled with the power levels
associated with the corresponding hardware states allows us to calculate the energy
cost of the activities. The work addresses the challenge of estimating energy cost of
an application, and details of this approach can be found in Chapter 2.

2. Energy Cost Profile of Devices: The energy cost profile of a device contains
high level energy cost information for performing application level tasks such as cost
of sending a data packet of different sizes, and cost of writing a data block in the
storage. It also includes the power consumption information for the different states of
hardware components, such as idle, active and sleep states of the device’s processor,
and transmission, and reception states of the communication interfaces. The energy
cost profile can be very useful at an early stage of application design process. This
work addresses the challenge of having an energy-aware application development
process, and details of this strategy can be found in Chapter 2.

12

3. Universal Computing and Communication Interface: We introduce the con-
cept of UCCI, a generic model for sharing resources among portable wireless devices.
The UCCI consists of two protocols DCM and FIX that enable any device to com-
municate with another device without having prior knowledge of each other. When
a device finds that it either does not have the functionality, does not have sufficient
resources to execute a task, or that it intends to save energy, the device exports that
task to a nearby server. This work addressed the challenge of application-level energy
management, and details of this technique can be found in Chapter 3.

4. Low Energy Data-packet Aggregation Scheduler: Data packets of the web
browser, YouTube video player, and Skype VoIP caller on smartphones are captured
using a network packet analyzer. The distributions of packet sizes and inter-arrival
times of the packets in uplink and downlink traffic are observed. The packets are then
grouped into bursts based on their inter-arrival time. The distributions of durations,
inter-arrival times of the bursts, and number of packets in each burst are computed to
observe the energy saving potentials. Based on the observations, a MAC level frame
aggregation scheduler is proposed which considers burst formation time, burst size,
and number of packets in a burst. The details of this energy-efficient communication
technique can be found in Chapter 4.

5. Design of Energy Performance Testing: The large number of configurations of a
smartphone is reduced in two steps. In the first step, the user settable parameters of a
smartphone are identified, and categorized into basic, active, and passive parameters.
The active parameters are then divided into two groups based on their impact on
energy consumption. To the best of our knowledge, we are the first to address this
problem of having consistent test configuration, and the details can be found in
Chapter 5.

1.8 Validation Methodology

The proposed solutions were validated by conducting experiments on a real energy mea-
surement test bench. A number of state-of-the-art smartphones, namely, BlackBerry 9700,
Google G1, Nexus One, Nokia E71, and HTC HD2 have been used in the experiments.
Full details of the setup are given prior to the discussion of results for each solution. An
experiment is repeated at least three times, and each time 30− 45 readings of power con-
sumption are recorded. After obtaining the sets of readings, graphs are plotted to observe
any discrepancy or abnormality; mean and standard deviation are then computed to check

13

the consistency of the data. 3G link related experiments are conducted at different times
of day to observed any variations in readings. The variations in data were noted with
the corresponding results. The experiments were conducted by multiple persons (research
assistants) to check against individual mistakes.

Solution Specific Validation Approaches

1. Energy Consumption Modeling: In the absence of smartphones, initially, the
experiments were conducted on laptops. The obtained results were published in [116].
Later on we conducted experiment on Google G1 and Nexus One to validate our
models.

2. Capability and Functionality Enhancement: Two prototypes were developed
on BlackBerry 9700 and Nexus One smartphones to realize the concept of universal
computing and communication interface (UCCI). We have shown the efficacy of the
model by awaking a laptop, transferring task, and putting the laptop into sleep state
after completing the task.

3. Anatomy of Smartphone WiFi Traffic: We used Google Nexus One, iPhone
3Gs, and BlackBerry 9700 to observe the WiFi traffic. To evaluate the performance
of our proposed packet aggregation scheduler, LEDAS, we derived closed form for-
mula through analysis, and conduct both simulation and experiments to evaluate the
performance.

4. Design of Energy Performance Testing: In evaluating energy performances of
network related applications (NRA), we used four different smartphones of Android,
BlackBerry, Nokia, and Windows Moblie operating systems to show the energy per-
formance for running network related applications.

1.9 Robustness of Solution Strategies

The robustness of our proposed ideas are explained by identifying their strength in the
following areas.

1. As long as the hardware components of a device can be modeled as finite state
machine based on their power consuming states, our proposed energy consumption
model can be applicable to that device. Our model is also easily applicable to tablets

14

and other small systems such as PDAs. The proposed model is also extensible, as
new hardware components can be added to the model by identifying their power
consuming states.

2. The proposed UCCI concept is independent of the implementation process. In the
prototype implementation, Bluetooth link was used for WPAN communication. Any
other links such as NFC or ad hoc WiFi link can be used to communicate locally
instead of Bluetooth link. Even infrastructure WLAN can be used when available.
In fact, we have shown that infrastructure WLAN link is more energy saving.

3. The proposed data-packet aggregation scheduler is compatible with any MAC pro-
tocol as long as they support frame aggregation.

4. In our design of energy performance testing, there is a provision for checking depen-
dency of power consumption on other hardware components. This helps to address
issues where several hardware components are fabricated on the same chip.

1.10 Summary of Contributions

In this thesis, we focus on designing energy efficient smartphone applications. We explored
issues that impact the energy consumption of smartphones, and introduce a formal model
to better understand the energy consumption behavior of applications. The information
gathered in the energy cost estimation process is utilized to build energy cost profile of
devices that help design energy efficient applications. A summary of contributions in this
thesis is given in the following.

• A finite state machine (FSM) based formal model is proposed to estimate the energy
cost of mobile applications. We discuss the challenges involved in extracting model
parameters, and propose a practical approach to estimate energy consumption of
mobile applications. The concept of energy cost profile of handheld devices is intro-
duced, which facilitates energy-efficient design of applications in the early stage of
application development.

• The concept of UCCI, a generic model for sharing resources among portable wireless
devices is presented. Two prototypes have been developed on Android and Black-
Berry smartphones namely, HTC Nexus One and BlackBerry 9700 to demonstrate
the efficacy of the model. We explain how and in what situations resource sharing
can be effective, and save energy with less delay.

15

• A test bench is described to capture and analyze the wireless access traffic generated
by smartphone applications. Based on the above observations, we have identified
opportunities to design new energy saving techniques specifically tuned for smart-
phones.

• The concept of user level test cases has been introduced to evaluate the energy cost of
running applications on smartphones. A test selection technique is applied to a class
of Network Related Applications, and the detailed design and implementation of a
test bench is described to execute those test cases. This work provides a framework
for researchers and developers to conduct experiments for evaluating the energy cost
of applications on smartphones. To the best of our knowledge, this work is the first
to address energy performance testing of mobile applications.

1.11 Organization of this Thesis

The solution strategies discussed in Section 1.7 are described in Chapter 2 through Chap-
ter 5. The conclusions, summary and potential extension to the proposed work are given
in Chapter 6. The detailed organization is given in Fig. 1.4.

16

1. Introduction

2. Energy

Consumption Model

4. Anatomy of

Smartphone WiFi

Traffic

3. Capability and

Functionality

Enhancement

5. Design of Energy

Performance Testing

6. Conclusions and

Future Directions

List of Publications

References

Finite state

machine (FSM)

based model

Related work

Extraction of model

parameters

Energy cost profile

of a device

Experimental

results

Summary

Problem

description

Related work

System

architecture

Prototype

implementation

Experimental

results

Summary

Selection of

applications and

performance

metrics

Observations and

discussions

Packet aggregation

scheduler

Analytical Analysis

Results

Summary

Formulation of test

cases

Challenges

Proposed

methodology

Test bench

Experimental

results

Summary

Smartphone and its

components

Resource constraints

Challenges

Energy efficient strategies

Problem description

Solution strategies

Validation and robustness

of solution strategies

Summary of contributions

Background

Problem and solution

strategies

Summary of contributions

Future research

directions

Figure 1.4: Organization of this thesis.

17

Chapter 2

Energy Consumption Model

In this chapter, we present a finite state machine based model to estimate the energy
cost of applications running on a portable handheld device. We introduce a concept of
energy cost profile that comprises the high level energy cost information as well as the
power consumption of different states of hardware components of a device. The high level
energy cost information can be used by application developers to consider the impacts of
design decisions on energy cost at an early stage of software design. We propose to plug
in the energy cost profile into the existing device emulators to estimate energy cost of an
application. By means of extensive experiments we show the impacts of packet sizes at
the transport layer of communication, block sizes to read/write data involving micro-disk,
and block sizes for data encryption and decryption on energy performance of application
software.

2.1 Problem Description

This section has been organized in terms of four subsections: (i) motivation; (ii) proposed
framework; and (iii) contributions. We summarize the organization of this chapter at the
end of this section.

2.1.1 Motivation

To the developers and researchers, energy-efficiency means to enhance the capability and
functionality of the devices so that they can run applications longer with the same amount

19

of energy. Energy cost analysis, the breakdown of energy consumption in different states
of an application and in different hardware components such as processor, communication
interface, display, and storage is important to them. In fact, analysis of energy performance
leads to energy-efficient application design. Designers concentrate on energy intensive
components of an application and put effort to gain energy efficiency which results in
reduced energy consumption.

Analysis of the complexity of a software application can be mapped to the energy cost
using power consumption models of different hardware components such as processor, mem-
ory, display, and storage [70]. However, this approach becomes intractable for modeling
event-driven, interactive applications with different system level complexities such as mem-
ory hierarchy, input-output buffering, and many peripheral components of smartphones.
This strategy is not easy to automate and is not practiced much.

Energy profiling of applications by means of physical measurements is limited to the
entire chip due to chip integration, architecture and packaging [49, 66]. The final chip
may not be available during software design and implementation phases. For a developer,
it is not practicable to perform measurements for all applications on all devices to give the
energy performance results.

The simulation-based power profiling techniques mainly focus on embedded systems
with dedicated applications, and these are available only for the lower levels of hardware
design, at the circuit level and to a limited extent at the logic level [132, 82, 83]. These
tools are very slow and it is impractical to evaluate the power consumption of smartphone
software because the application power consumption would only be known at the very last
stage of the design process. The emulation based approaches speed up the power estimation
process, but they need prototyping platform such as an FPGA-board and software tools
to get an estimate of energy consumption and profile information [51, 56, 30].

This work focuses on how the application developers can weigh the implications of their
application design decisions on power consumption. We use a concept of energy cost profiles
of devices, and propose a measurement and software emulation based energy performance
evaluation framework.

2.1.2 Framework

We, at first, formulate an analytical model for estimating energy consumption of a software
application. The behaviors of the hardware components of a mobile device are modeled as
finite-state machines (FSM). The states have been identified from the perspective of power
consumption instead of their operational details. An application is viewed as a sequence of

20

high-level activities, interspersed with idle periods. Intuitively, the duration of an activity
coupled with the power levels associated with the corresponding hardware states allows
us to calculate the energy cost of the activities. In order to estimate the energy cost of
an application, we need to map the theoretical model into a practical framework so that
we are able to measure the energy performance. Our proposed framework comprises the
following elements.

Energy Cost Profile of a Device: The energy cost profile of a device contains high level
energy cost information for performing application level tasks such as cost of sending
a data packet of different sizes, and cost of writing a data block in the storage. It also
includes the power consumption of the different states of the hardware components
such as idle, active and sleep states of the device’s processor, and transmission,
and reception states of the communication interfaces. This information is crucial to
making application design decisions.

Software Device Emulator: The second component, software emulator of a device, is
available to the developers from all major smartphone platforms, namely, Android,
iPhone, and BlackBerry. When an application is executed on an emulator, accurate
information about how an application uses the different hardware components can
be obtained by running the application. For example, the Nokia Energy Profiler
enables measurement of power used by an S60 device and provides details of some
key power-consuming activities, such as CPU, mobile-network, and IP-traffic activ-
ity [110]. Therefore, if we plug-in the energy cost information, such as costs for CPU,
send/receive data packets in the emulator, the cost for executing an application can
be easily estimated.

The advantage of our approach is twofold: (i) we reuse existing infrastructure i.e., the
software emulator of the devices. Hence we do not need any extra simulator, or hardware
modules. As the device emulator behaves like an actual device, we get most accurate
information about the application behavior. Getting application behavior is very crucial
as applications are event driven, interactive, and becoming increasingly complex. (ii) Since
the power consumption in different hardware states remain largely constant, we need to
measure the hardware state-power cost once, and that can be done by the experts.

We describe how to integrate the energy estimation framework in the development
cycle of mobile applications in Fig. 2.1. Designers refer to the energy cost profile of a
target device during the design phase, make high-level energy-performance trade-offs, and
implement an initial version of a target application. The energy cost of the initial version of
the application is obtained by running it on the device emulator with the energy-cost profile

21

of the target device. In fact, energy evaluation can be carried out along with functionality
testing. After analyzing the energy costs in different hardware components as well as
different states of an application, adjustments are made in the design to achieve better
energy efficiency, if necessary. This process is iterated until the target energy performance
level is achieved.

Energy cost profile

of device ‘x’

Software application

requirements

Design phase
Implementation

phase

Initial

Implementation (s)

Energy performance

test on device emulator with

cost profile of ‘x’

Final

Implementation

Further optimization is

required

No further optimization

is needed

A B

C

D

E

F

G

Figure 2.1: Schematic diagram of our proposed energy estimation framework.

Knowledge about the impact of the design decisions on energy consumption is very
useful at an early design stage as changes made in the final stage of an application are more
expensive [73]. Our proposed energy cost profile of a device becomes available at an early
design stage, and it provides high-level energy cost information to application designers.
Thus it helps reducing the time and cost of developing energy efficient applications. Here,
we give a few examples below where design decisions need to be made based on energy
cost information.

• Compressing data before transmission results in saving energy in some scenarios;

• Accuracy of location information can be compromised with less frequent access of
the global positioning system (GPS);

22

• Offloading a computation intensive task to cloud or a nearby surrogate server costs
less energy in some scenarios;

• Additional energy is required for using the secure file transfer protocol (SFTP) to
satisfy a security requirement instead of FTP.

In the above mentioned scenarios, the designers need high level energy cost information to
make decisions for energy efficiency. Suppose that the energy cost, speed, and compression
ratio of a compression process are known. If the data rate and energy cost of a commu-
nication link are known, it is easy to decide whether or not compression before sending is
energy-efficient. Our proposed energy cost profile contains those information to make de-
sign decisions for energy efficiency. We provide examples of energy cost profile parameters
of a smartphone using a energy performance measurement testbed in Section 2.5.

2.1.3 Contributions

We summarize the contributions of this work in the following.

• We discuss the issues related to energy performance evaluation of mobile applications
and present a finite-state machine (FSM) based formal model to estimate the energy
cost of mobile applications (Section 2.3).

• An energy estimation framework is proposed to extract the values of the model
parameters. We show how to relate them with FSM based energy consumption
model (Section 2.4).

• The concept of energy cost profile of handheld devices is introduced, which facilitates
energy-efficient design of applications in the early stage of application development
(Section 2.5).

• We have conducted on-device experiments to validate our proposed framework and
discuss the results (Section 2.5.3).

The rest of this chapter is organized as follows. We discuss the related work in Sec-
tion 2.2 which is followed by the description of FSM based energy consumption model.
Section 2.4 explains how to get parameters of the model (Block–F of Fig. 2.1). In Sec-
tion 2.5, we describe energy cost profile (Block–A of Fig. 2.1), experimental setup for energy
cost profile of HTC Nexus One smartphone. Results from the experiment are discussed in
the same section. We conclude this chapter in Section 2.6.

23

2.2 Related Work

The key concepts of software strategies for energy management and system level power-
aware design techniques have been described in [91, 150]. Lorch and Smith [91] discussed
how energy management can be done at different levels of a system, and how the energy
management strategies can be evaluated. Unsal and Koren [150] defined the terminolo-
gies related to energy-aware techniques. A comprehensive survey of software based energy
saving techniques for handheld devices has been done by Naik [104]. Kansal and Zhao
[74] discussed the research challenges in application layer energy optimization, and demon-
strated how energy-profiling helps a developer choose between alternative designs in the
energy performance trade-off space.

Many energy estimation models and related energy efficient solutions have been pro-
posed in the literature at different abstraction levels such as circuit level, code level, and
system level. In this section, we mainly discuss system level techniques and tools. In
system level, a system is decomposed into a set of components such as display, memory,
and CPU, and each component is modeled individually with its own power level. We also
include few papers on simulation and emulation based energy estimation for completeness.

2.2.1 Simulation and Emulation Based Estimation Tools

There are a number of simulation based energy estimation techniques that use different
levels of abstraction of the hardware such as circuit, gate, register transfer, architecture
level. The level of details influences the accuracy and speed of the simulators [14, 102,
64]. The instruction level power consumption models measure power consumption of each
instruction while executed in a loop [149, 132, 82]. Celebican et al. [18] proposed a cycle
accurate energy simulator for peripheral devices. The simulation based power estimation
tools focus on dedicated system-on-chip embedded systems where accuracy of estimation is
important. However, these techniques require long simulation times due to their inherent
nature, and thus they are impractical for complex applications and systems like smartphone
platforms.

Authors of [51, 56, 30] proposed the idea of power emulation using hardware acceleration
to speedup computation as compared to simulation based approaches. Hardware proto-
typing platforms such as FPGA-boards are used to estimate power consumption along
with functional characteristics in real time. These approaches drastically accelerate the
development process. However, significant challenges are there due to increased hardware
complexity of devices such as smartphones.

24

2.2.2 Measurement Based Estimation Tools

Flinn et al. [49] described a tool called PowerScope for profiling energy usage of an ap-
plication. It continuously samples the power for profiling application energy usage. An
external hardware multimeter with an in-built clock is used to sample the monitored de-
vice. At each sampling time, the CPU status of the monitored computer is noted. This
status consists of the current value of the Program Counter, the Process ID (PID) and the
interrupt handling details. At the same time, the multimeter records the instantaneous
current, and voltage values. Later, during a energy profiling post-process stage, the CPU
values are associated with the multimeter readings for each sampled interval in order to
reconstruct the power consumption details of the monitored computer.

Banerjee et al. [9] presented a tool called PowerSpy, which tracks and reports the battery
energy consumed by the different threads of a monitored application, the operating system
(OS), and other applications in a multi-threaded environment along with I/O devices.
Initially, PowerSpy keeps track of an application’s CPU times, I/O activities and energy
consumption. Then, the energy consumption by other applications are filtered to get the
energy consumption by that particular application.

Since the energy sampling in hardware method is done independent of the system being
monitored, the sampling frequency can be very high and is independent of any OS activity.
The instantaneous power values are also more accurate than the software counterparts.
The software approach is limited by the sampling rate at which the OS gets updates from
the actual battery, and suffers from the drawback that at very high sampling rates, the
battery device may not be able to report the changes accurately.

Haid et al. [57] proposed a co-processor for run-time energy estimation in system-on-
chip (SoC) designs. The performance overhead of this profiling technique is low as the
estimation is done through hardware and fully parallel to the functional units on the SoC.
With the presence of a such a co-processor, the energy cost of individual applications can
easily be measured and profiled. This co-processor can be activated only during energy
cost profiling to save energy consumed by the co-processor itself.

Zhang et al. [173] described a tool called PowerBooter for automatic power model
construction on smartphones. It uses built-in battery voltage sensors and knowledge of
battery discharge behavior to monitor power consumption. It controls the states of the
hardware components to get the breakdown of energy consumption. The authors used
another tool called PowerTutor that uses the power model generated by PowerBooter
for online power estimation. PowerBooter makes the power models for new smartphone
variants, and the PowerTutor facilitates designing and selection of power efficient software

25

for embedded systems. Dong and Zhong [41] proposed a high-rate automated energy model
called Sesame. Sesame also uses smart battery interface of smartphones instead of external
circuitry, and it includes a set of techniques to overcome the limitations of batteries for
energy modeling up to 100 Hz speed.

2.2.3 Studies of Energy Consumption Behaviors

Ferreira et al. [47] collected 7 million battery usage information points from 4000 par-
ticipating devices across the world. They analyzed charging activity, energy level, device
type, temperature, voltage and uptime of batteries to assess how users charge their smart-
phones, and the implication of charging on battery life and energy usage. The author
argued that such study helps identifying design opportunities for reducing energy cost,
and also predicting when energy intensive applications should be scheduled.

Carroll and Heiser [17] stressed the need for a good understanding of where and how
the energy is used. They presented a detailed measurement analysis of over all energy
consumption of a smartphone along with a breakdown of power distribution to CPU,
memory, display, graphics hardware, audio, storage, and networking interfaces. Though
they did not use latest generation smartphone in their main experiment, it still provides
a good understanding of the energy consumption of the handheld devices. Specially the
energy consumption breakdown can help make high-level design decisions.

Wang and Manner [154] examined the energy costs for sending and receiving per bit of
user data over Edge, 3G and WiFi. The energy consumption characteristics they provide
help application designers in choosing communication interfaces for longevity of battery
life. Qian et al. [121] implemented a tool called Application Resource Analyzer (ARO)
to analyze the radio resource usage for smartphone applications. The ARO comprises two
components: the data collector and the analyzers. The data collector captures data for
radio interface usage, user activity, and application performance. The collected data are
fed into the analyzers for offline analysis.

2.2.4 Energy Efficient Techniques

Balasubramanian et al. [8] studied the energy consumption patterns of 3G, GSM and
WiFi technologies. They found that 3G and GSM incur a high tail energy overhead after
each episode of data transfer. Based on their observation, they developed a protocol called
TailEnder which reduces energy consumption of mobile applications. TailEnder basically
fetches more data in advance, and improves user-specific response times with less energy.

26

Based on the same observation, authors of [88] developed a scheme called TailTheft which
employ a Dual Queue Scheduling algorithm to prefetch and delay data transfer. Dogar et
al. [40] proposed a technique called Catnap that keeps the WiFi interface in the sleep
state even during data transfer.

Shye et al. [141] collected traces of user activities on a smartphone and used the
information to characterize power consumption. They observed that energy consumption
widely varies user to user, and the display and the CPU are the two largest power consuming
components on smartphones. To reduce the energy consumption between two interactions
of a user, the authors implemented a scheme that slowly reduces the screen brightness
over time. Their optimization techniques save 10.6% of total system energy savings with
a minimal impact on user satisfaction.

At the code level, Naik and Wei [105] studied how the designs of algorithms and im-
plementations affect energy utilization. They observed that different instructions consume
different amount of energy, and proposed three energy saving strategies: assigning live
variables to registers, avoiding repetitive address computations, and minimizing memory
accesses. Jain et al. [70] extended the work of Naik et al. [105] to identify some important
factors and their impact on energy cost. These factors include CPU operations, memory
access, I/O, and switching complexity. By distinguishing the importance of these factors
on energy consumption, algorithms can be designed to achieve energy efficiency. How-
ever, the proposed model at the code level did not address I/O components including a
communication subsystem involved in web-based applications.

2.2.5 Energy Efficient Systems

Rumble et al. [130] proposed an OS called Cinder that is developed on top of HiStar
OS. Cinder consists of capacitors, and they are instruments for tracking and enforcing
energy usage in a system. The task profiles of Cinder keep the statistics of application
energy consumption, and let the users to express energy policies for applications in terms
of minutes or hours based on previous application behavior. Thus the capacitors apply
energy policies generated by task profiles according to the intent of the user of a device.
Zeng et al. [170, 171] coined the term first class OS resource for energy, and proposed
currentcy model to generate energy policy and enforce in a system.

27

2.3 Energy Consumption Model

In this section, we present a formal energy consumption model. In the next section, we
present a practical approach to extract the model parameters for estimating the energy
consumption of an application.

Smartphones comprise software applications, an operating system (OS) and hardware
components. Users interact with the applications through input/output components such
as keypad, display and touch screen. Communication interfaces such as cellular, WiFi,
and Bluetooth connect them with other devices. For all activities, the applications utilize
the hardware components which are controlled and managed by the OS. Hardware com-
ponents ultimately consume energy supplied by the battery. A simplified diagram is given
in Fig. 2.2 to show the energy consumption relationship of the components of a device.
However, different applications require the participation of hardware components in dif-
ferent proportions, and thus, the energy consumed by the applications varies. If we know
the energy cost of using the hardware components and the usage patterns of the different
components by an application, we can calculate the amount of energy consumed by an
application.

User

Software Applications

C
o
m
p
u
ta
ti
o
n

C
o
m
m
u
n
ic
a
ti
o
n

S
to
ra
g
e

D
is
p
la
y

B
a
tt
e
ry

V

I

O
th
e
rs

Operating System

Hardware Components

Figure 2.2: Components between application layer and battery on a portable device.

A hardware component stays in different power states based on their functionalities.
Hardware components with energy saving features can stay in low power states temporarily
when they are not needed. Therefore, we need to know the details of the states and state-
switching behavior of the components. For this, we can use a Finite State Machine (FSM)
notation as it is widely used to describe the dynamic behavior of hardware components
[28, 59].

We define a general FSM as FSM = (Σ, S,Λ, ∂), where Σ is an input alphabet (control
messages of hardware components), S is a set of states, Λ is a state transition functions

28

Λ : S×Σ → S, and ∂ is a power function. The power function ∂ : S → < returns a real
valued power level consumed in a state. Here, we assume constant power consumption, i.e.,
when a hardware component remains in a state for a certain length of time, the component
draws constant amount of power. In this case, if the supply voltage of a device remains
constant, the consumed power is directly proportional to current. We use the idea of state
residence time to denote a period of time in which a hardware component remains in a
particular state. Under the constant power assumption, given the current level l of a state
and the state residence time ∆t, the energy consumption of a component is v×l×∆t, where
v is the supply voltage. Let FSMi = (Σi, Si,Λi, ∂i) denote an instance of the general FSM
for a hardware component i. At the abstract level, this component has ni number of states
with each state satisfying the constant power assumption. Let Si = {si,1, si,2, · · · , si,ni}
denote the state set containing these states.

Based on the preceding discussion, we describe the power consumption states of different
hardware components of a device. Figure 2.3 illustrates the power consumption states of
processor, communication interface and storage. Generally, the computation component is
referred to as the processor integrated with input/output element controllers. We assume
that only the processor in the computation component has a power-saving feature and
operates in three modes: active, idle, and sleep (Fig. 2.3(a)). In the active state, a processor
becomes busy executing instructions and consumes its highest power. In the idle state,
the processor does not execute any instruction, but remains ready to execute. Processor
utilization is almost zero in the idle mode. In the sleep mode, most of the circuitries in a
processor are turned off, whereas the timer and the wake-up circuitry remain enabled.

An FSM model for the communication interface is given in Fig. 2.3(b). Typically,
a transceiver has four states (operating modes) with each state satisfying the constant
power assumption [59]; in order of decreasing power levels, the states are transmission
(Tx), reception (Rx), idle, and sleep. As shown in Fig. 2.3(c), the number of states of a
storage component, e.g., internal storage or external SD card storage is also four: Write,
Read, Idle and Sleep.

Power consumption in a state of some components varies depending upon some pa-
rameters. For example, power consumption in active state of display varies based on its
brightness level. Similarly, the power consumption of memory are different in Write and
Read states based on the level of memory hierarchy at which it performs an operation.
The FSM models of display and memory are given in Fig. 2.4, where h is the number of
memory hierarchy levels. In fact, some processors have multiple operational modes with
varying power consumption and speeds, and in such cases we get multiple sub-states of the
active state.

29

ActiveIdleSleep

(a) Power states of a processor.

Transmission

(Tx)

Reception

(Rx)

IdleSleep

(b) Power states of a communication inter-
face.

Write

Read

IdleSleep

(c) Power states of a storage component.

Figure 2.3: FSM models for processor, communication interface and storage.

Figure 2.5 shows the power consumption of a HTC Nexus One device in different states.
It consumes 35 milliwatts (mW) of power in stand-by mode when display is off. The device
consumes 453 mW of power when it is ready to execute user applications with display on;
we call it idle mode. To observe the processor’s power consumption, we compute the
exponents of pairs of random real numbers to fully load the processor. Then, the power
consumption of the system becomes 1057 mW. To check the power consumption of writing
to and reading from storage, we write and read data blocks of 1 kilobyte. The corresponding
amounts of power consumption are 801 and 719 mW. Thus, after we subtract the idle costs,
processor, storage write, and storage read costs become 954, 348, 266 mW, respectively.

While the experiment was conducted, every time we fully engaged a specific component
for a while, and observed constant power consumption. However, when an application
runs on a device, it utilizes one or more components at a time according to its needs
and the power consumption pattern varies over time. Thus the instantaneous current
consumption changes randomly as shown is Fig. 2.6. In order to get energy consumption
of an application, average current consumption is computed over certain period. In Fig. 2.6,
the average current consumption is 254.7 milli-ampere in 40-second time. Since the power
supply voltage is 3.7 volts, energy consumption becomes 37.7 Joules.

30

Sleep

Active (Brightness Level)

b1 b2 bmaxIdle

(a) Power states for display.

Read

(r1)

Write

(w1)

IdleSleep

Read

(rh)

Write

(wh)

(b) Power states for memory.

Figure 2.4: FSM diagrams for display and memory.

0

250

500

750

1000

1250

0 10 20 30 40 50 60 70 80

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
 (
m
W
a
tt
)

Time (second)

Storage
Write

Storage
Read

Active
CPU

Idle

Stand
By

Figure 2.5: Power consumption in different states of HTC Nexus One.

Having the above practical examples, we now formulate the expression for energy con-
sumption on a device. Suppose that there are n number of hardware components in a
portable device. Each of the components has a fixed number of predefined states, ni. Now
state si,j means the jth state of component i, where 1 ≤ j ≤ ni. Suppose that component i
switches to state j, ni,j number of times in a given time period T and it stays δti,j,k amount
of time each time it enters si,j, where 1 ≤ k ≤ ni,j. From the above model definition and
description, we can now derive the formula of energy consumption E(T) by the device in
time period T . As shown in Eq. 2.2, ∆ti,j is the total amount of time that component i
stays in state j within time period T . In Eq. 2.3, ψ(Si,j) is the fixed current consumption

31

0

100

200

300

400

500

0 10 20 30 40 50

C
u
rr
e
n
t
C
o
n
s
u
m
p
ti
o
n
 (
m
A
m
p
e
re
)

Time (second)

Average Current
Consumption

Figure 2.6: Instantaneous current consumption profile of a device.

with constant voltage supply v.

E(T) =
n∑
i=1

ni∑
j=1

∂(si,j)

ni,j∑
k=1

δti,j,k (2.1)

=
n∑
i=1

ni∑
j=1

∂(si,j)∆ti,j (2.2)

= v
n∑
i=1

ni∑
j=1

ψ(si,j)∆ti,j (2.3)

The energy estimation given in Eq. 2.3 does not include the cost of switching states of
the hardware components. As expressed in Eq. 2.1, ∆ti,j is a sum of ni,j state residence
times. For example, a processor routinely switches from idle to active, active to idle and so
on while an application is executed. The residence times in these states varies depending
on the attributes of applications and the scheduling algorithm followed by the OS. The
energy required to switch from one state to another state is very small in comparison to
the energy spent in different states of a component. The energy of switching states can be
expressed as a summation of products of number of state switching and energy required
for each switching. In Eq. 2.4, ε(T) indicates the total energy spent in switching states in
time T , where, εi,j is the required energy for switching into state j from any other state of

32

component i. Intuitively, the energy cost increases with the number of switching of states.

ε(T) =
n∑
i=1

ni∑
j=1

ni,j εi,j (2.4)

According to Eq. 2.3, we can compute the total energy consumption, once we know
the power consumption of each state of the components and the state residence times
of those states. From an application point of view, when we want to estimate the energy
consumption, we need to know the states and residence time of each state of all components
used by that particular application. However, the OS schedules different applications to
access different components of a device. Since there are a number of applications and
the OS running simultaneously on a device, the particular time when an application gets
access to a component or how long it continues to access the component cannot be known
a priori. Moreover, the length of time that an application uses a component at a time can
be very small, which can be even in microsecond range.

For some components such as a processor, the usage information can be extracted
easily for the peripheral components, such as communication interface, it is difficult to
get the timing and get the residence time of each state indicated in the model. However,
the energy consumption for performing activities such as sending or receiving data can be
measured for those components. Therefore, the energy cost can be calculated by taking
products of power consumption and residence times of states for some components; for
some other components, the energy costs can be calculated by activities performed in
those components. We rewrite Eq. 2.3 in the form of Eq. 2.5 to incorporate the two
approaches for estimating energy. The n components are divided into two sets of m and
n −m components. For the first set, the energy cost is estimated using Eq. 2.3, and for
the second set of components (m+ 1 to n), energy costs are estimated based on activities.
Suppose that an activity l performed on component i is denoted by ai,l, and ξ(ai,l) expresses
the energy cost of performing activity ai,l. Now, Eq. 2.3 takes the form of Eq. 2.5.

E(T) = v

m∑
i=1

ni∑
j=1

ψ(si,j)∆ti,j +
n∑

i=m+1

∑
∀l

ξ(ai,l) (2.5)

The terms given in Eq. 2.5 are easily computed in device emulator environments, which
we discuss in the next section.

33

2.4 Getting Model Parameters

For some components, the power consumption in all the states, and state residence times
are needed according to Eq. 2.5. For the rest of the components, energy consumption based
on activities performed are required to estimate the energy consumption of an application.
The authors of [49, 9] implemented separate tools for computing these values. They used
system level primitives to capture the state residence times on a device, and used hardware
and software tools, respectively, to measure the consumed power. However, we propose to
use a device emulator for state residence time and use of hardware tools to measure the
power consumption of the hardware states. The advantages of using those tools are as
follows:

• Device emulators are available to application developers from the OS vendors. Black-
Berry has emulators for all of their devices. In the Android emulator, settings such
as RAM size, OS version, and storage size can be customized to have desired device
settings. Therefore, application developers do not need to buy actual devices to test
their applications. In the Android emulator, the profile information is available, and
most importantly, the system calls can be made on emulator by loading appropriate
applications. To our understanding, a device emulator can be used to get the state
residence time easily, with less effort and costs.

• As Banerjee et al. [9] also mentioned, software tools for measuring a system’s power
consumption or loss of battery energy have many drawbacks. It is limited by the
sampling rate at which the OS gets updates from the battery. Moreover, the battery
circuitry may not be able to report its SoC (State of charge) state accurately at
high sampling rates. Thus the results obtained from software tools are dependent
on the particular device and its battery. The hardware approach is costly and the
developers require expertise to handle the equipments. Most importantly, the power
consumption in different states of components are fixed, so, there is no need to
measure them every time, which is a loss of time and effort, whereas these values can
be measured once and supplied by the manufacturers.

A schematic diagram of the estimation process is given in Fig. 2.7, the hardware con-
figuration and energy cost profile of a target device x are fed into a device emulator. When
target application y is run on the emulator, the usage profile on the device x is evaluated.
Usage profile contains the usage information of the hardware components by the appli-
cation. Processor utilization and number and size of data packets sent/received by the
application in a given time duration are example parameters of usage profile. The total

34

energy cost as well as the costs in different hardware components can be calculated by
applying Eq. 2.5. Another energy cost is computed without running application y and the
difference of costs is the energy cost of running the target application y on device x.

Energy cost profile

of device ‘x’

Emulator configured

for device ‘x’

Usage profile of ‘y’ and

energy profile of ‘x’

Application

‘y’

Energy cost of ‘y’ on

‘x’ and its breakdown

Emulator of device

‘x’ with cost profile

Figure 2.7: Schematic diagram of energy estimation process using device emulator.

Figure 2.8 illustrates the user interfaces of the proposed emulator. A hardware con-
figuration is chosen from the available options and the emulator is launched to execute a
target application (2.8(a)). The emulator gives the values of state residence times such
as the utilization of the processor which is a percentage of processor usage, storage read
and write parameters, and parameters for communication interfaces. To get the amount
of energy spent by the application, we need to plug-in the power consumption profile of
the hardware states [42, 61]. As shown in Fig. 2.8(b), a developer can observe the changes
in energy consumption by the applications by adjusting the values of power consumption.
The details of how to get costs using energy cost profile is described in the next section.

2.5 Energy Cost Profile of a Device

In this section, we discuss the concept of energy cost profile in detail, and describe the
experimental setup for evaluating the energy cost profile. In the experiments, we measure

35

Device Emulator User InterfaceDevice Emulator User Interface

2.2

3.0

4 GB

8 GB

Processor

ARM 11

Cortex

RAM Size

1024 MB

512 MB

Android Version

Internal Storage

16 GB

UMTS

EDGE

Comm Interface

WiFi

Option 1

Option 2

Others

Option 3

Launch Quit

(a) For choosing components of a device.

Power and State InformationPower and State Information

Google Nexus One

Google Nexus S

Samsung Galaxy II

Custom Phone

CPU

Active

500

Power in milliwatts

Set

Component

State

(b) For choosing power-state information of a device.

Figure 2.8: User-interfaces of a device emulator.

the parameters such as processing cost, data encryption cost, read/write costs of HTC
Nexus One smartphone and explain the outcomes of the experiments. An example is given
to show the importance of energy cost profile at the end of this section.

2.5.1 Profile Parameters

Applications get access to the hardware components via middleware, OS, and communi-
cation protocols, as depicted in Fig. 2.9. A software developer needs to choose the values
of parameters such as buffer size, packet size, or block sizes during the implementation
phase. However, the relationships between such application level parameters and energy

36

costs are not always intuitive or linear [114]. Consequently, these values should be cho-
sen carefully in order to develop energy efficient applications. The concept of energy cost
profile helps during design and analysis phases by providing suitable range and energy
consumption trends of such parameters. In the energy estimation phase, the cost profile
helps the estimation process by providing power consumption data in different states of
hardware components, such as the power consumption in the active state of a processor,
idle state of a communication component. It also provides energy costs of high level tasks,
such as for sending a data packet or compressing a file.

Security APIs TCP/UDP Connection File System

Application
read(buffer,size)

w
rite(buffer,size)

re
c
e
iv

e
(p

a
c
k
e
t,
s
iz

e
)

s
e
n
d
(p

a
c
k
e
t,
s
iz

e
)

en
cr
yp

t(b
lo
ck

,s
iz
e)

de
cr
yp

t(
bl
oc

k,
si
ze

)

Operating System (OS)

Figure 2.9: Interactions of applications with operating system.

Suppose that an application needs to transfer s bytes of data from a smartphone to
an Internet server. The skeleton of the program is given in Program 2.5.1. A software
developer of this application needs to make some high level design decisions such as which
communication link or security protocol to use for transferring data. A comparison of
energy costs helps to make these high level decisions. In addition, the energy consumption
can further be optimized by choosing appropriate values of parameters of a selected high
level component. For example, WiFi communication link is selected to transfer data, and
by choosing suitable packet sizes, the energy consumption can be further reduced. As we
observe in Program 2.5.1, the cost of computation is also affected by the read/write or
packet size parameters due to the number of calls needs to make from the application.

37

Algorithm 2.5.1: Data Transfer()

s← size of data
x← buffer size for reading from storage
y ← block size for encryption
z ← packet size for sending data
· · ·
for i← 1 to d s

x
e

read from storage(x)
encrypt read data(y)
send encrypted data(z)
· · ·

To estimate the energy cost of the given application, the costs of performing tasks
involved with the application are required. We provide a sample list of very common
parameters in the following.

• energy costs of reading and writing in the storage;

• energy costs of data encryption and decryption;

• power consumption when a processor is active;

• energy required to send and receive a data packet using different communication
interface;

• energy costs of display with different brightness levels;

The costs of operating other components such as global positioning system (GPS) and
built-in camera are important for designing applications involving them. We conducted
experiments to get some of the costs on HTC Nexus One smartphone. Before discussing
the results, we describe the experimental setup in the following.

2.5.2 Experimental Setup

We use a test bench to facilitate experimentation of smartphones to evaluate parameters of
energy cost profile. As shown in Fig. 2.10, the setup includes (i) smartphone(s); (ii) power

38

supply with a high precision current measurement unit; (iii) a desktop or laptop computer
to control and monitor the power supply unit; (iv) a wireless Access Point (AP); (v) a web
server; and (vi) a cellular network connection with data access.

INTERNET

Laptop
Power Supply with

High Precision

Current

Measurement Unit

Smartphone
WiFi

Access

Point

Web ServerRouter

Router
Cellular Access

Point (BTS)

Figure 2.10: Experiment setup of test bench.

The power supply is initialized with the battery ratings of the smartphone through a
controller program installed on a laptop computer. The smartphone is turned on and a
test configuration is selected before conducting experiment [113]. The consumed current is
measured by a monitor program installed in the same computer with and without running
the test application. We used Keithley 2304A, a high speed power supply with accuracy
in measuring current of ±(0.2% + 400µA).

We take three sets of readings without running a target application and take another
three sets of readings by running the target application. Then we check the individual
set of readings whether or not the readings have similar trend and do not contain much
fluctuations. Finally, we calculate the average from each set of readings, and take the
difference to get the average power consumption by the application. The energy cost is
computed by taking products of power consumption and application execution time.

39

2.5.3 Experimental Results

In this section, we discuss the results of the following energy cost parameters performed
on HTC Nexus One smartphone.

• Power consumption of processor in active state;

• Power consumption and processing rate of DES (Data Encryption Standard) algo-
rithm;

• Power consumption for read and write with the sdcard (Secure Digital Card);

• Comparison of energy costs for using 3G, WiFi and Bluetooth communication links.

We have used three standard CPU benchmarking programs to fully load the processor,
and measured the power consumption of HTC Nexus One device. These programs do
not use storage, and communication. The power consumption of the device are measured
twice: when a program is executed and when that program is not executed. The difference
of the averages of two sets of readings gives the cost of executing the program. As shown
in Fig. 2.11, the device draws almost same power for all three benchmark programs. This
energy cost information along with processor utilization (e.g., 50% CPU utilization in 50
seconds means processor is fully active for 25 seconds) helps the application designers to
get an estimate of the processing costs.

0

100

200

300

400

500

600

Dhrystone Whetstone Linpack

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
s
 (
m
W
)

CPU Benchmark Programs

Figure 2.11: Power consumption for computation.

As we mentioned in the beginning of this section, the energy costs of security measures
cannot be known until the end of the implementation phase. However, the processing

40

speed and corresponding energy cost for different block sizes help the designers to build
energy efficient design. Fig. 2.12 shows the power cost information for the encryption and
decryption processes on HTC Nexus One device.

300

400

500

600

700

800

900

1000

Encryption (DES) Decryption (DES)

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
s
 (
m
W
)

Minimum

Average

Maximum

(a) Power consumption for encryp-
tion/decryption.

150

200

250

300

350

400

450

500

Encryption (DES) Decryption (DES)

P
ro
c
e
s
s
in
g
 R

a
te
 (
k
b
p
s
)

Average

Maximum

Minimum

(b) Obtained data rate for encryp-
tion/decryption.

Figure 2.12: Power consumption and data rates for encrypting and decrypting data.

Power consumption for reading and writing to storage media (specifically in sdcard) is
given in Fig. 2.13. Data blocks of different sizes with random content were written to and
read from the storage to measure the writing and reading speeds and power consumption.
We observe that larger block sizes consume less power for the same reading or writing
speed; however, applications will need more memory. The difference in power consumption
is almost 100 mW between block sizes of 256 and 512 bytes. The designers need to make
a trade-off between them.

200

250

300

350

400

450

500

550

600

256 512 768 1024 2048 4096 8192

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
 (
m
ill
iw
a
tt
s
)

Read/Write Block Size (bytes)

Read (8.5MB/Sec)

Write (3.65MB/Sec)

Figure 2.13: Power consumption for reading and writing data in the external storage.

41

The same trends were observed in case of communication components. For a fixed
data rate, smaller data packets incur more protocol overheads, and consequently consume
more power. Data packets of size around maximum transmission unit (MTU) are most
economic. A detail study of the impact of size of packets can be found in [114]. In the
presence of moderate bit-error-rate (BER), benefit of larger packet size can be offset by
re-transmissions. We observe the power consumption by sending UDP data packets from
the device to a laptop computer. The delays between two consecutive packets are varied
to maintain fixed data rates. For example, the delay between two 256-byte packets is 2
milliseconds for 1 megabytes per second (mbps) data rate, and it is 32 milliseconds for
two 2048-byte packets at 512 kilobytes per second (kbps) data rate. Figure 2.14 shows the
power consumption. We observe that the difference in power consumption is about 40 mW
for 256 and 1280-byte packets, and double data rate is obtained at the expense of only 20
mW. The differences in power consumption becomes significant when such an application
runs for minutes or hours.

250

275

300

325

350

375

400

256 512 768 1024 1280 1536 1792 2048

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
s
 (
m
ill
iw
a
tt
)

UDP Packet Sizes (bytes)

1024 kbps 512 kbps

Figure 2.14: Power consumption for transmitting UDP data packets via WiFi.

We also conducted several experiments to compare the energy costs of downloading
and uploading a file via 3G, WiFi, and Bluetooth links. The results shown in Fig. 2.15
appear to be counter-intuitive as downloading a file consumes more energy than uploading
a file via 3G and WiFi links. This is due to the slow speed and power consumption for the
decryption process involved with SFTP (Secure File Transfer Protocol) process.

This high-level energy cost information for all components of a device help the designers
to get insights into how the energy costs vary with different application level parameters,
and thus they come up with better energy efficient application designs.

42

0

10

20

30

40

Download Upload

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
J
o
u
le
) 3G WiFi Bluetooth

Figure 2.15: Energy consumption for transferring 1 megabyte of data.

2.5.4 An Example

In this section, we demonstrate the importance of energy cost profile at design time with an
example. We developed an application to read data from external storage (i.e., SD card)
of HTC Nexus One smartphone, and send the data after encryption with 56-bit DES (Data
Encryption Standard) to a server located on the Internet. This application involves reading
from storage, processing and data transmissions. To observe the energy consumption
we considered block sizes of 256, 512, 1024, and 2048 bytes for reading, encryption and
sending the data. We use 2, 4, 8, and 16 milliseconds intervals, respectively, between two
consecutive data packets to achieve constant data rates. Later on, the interval between two
consecutive packets is also kept fixed at 2 millisecond, which yield proportionately higher
data rates for larger data packets. The data packets are sent via the WiFi link.

Figure 2.16 shows the measured energy consumed by the application for fixed and
variable data rates. For fixed data rate, we see that 256-byte block transmission consumed
36% more energy than the 1024-byte block transmission. For variable data rate, 256-
byte block transmission consumed 162% more energy than the 1024-byte blocks. Further
increment in the block sizes requires more memory allocation without significant saving of
energy.

We looked at the instantaneous power consumption to explain the energy consumption
behavior while the application was executed. In case of fixed data rate transmission, larger
packet sizes yield fewer packets transmitted over the same time. Since the number of
packets are less, power consumption reduce for larger packet sizes. The phenomenon is
evident in the first half of Fig. 2.17. For variable data rate, packets are sent at a fixed rate,
and larger data packets draw more power. However, they take less time to complete the

43

0.0

2.5

5.0

7.5

10.0

12.5

15.0

256 512 1024 2048

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
s
 (
J
o
u
le
)

Block Size of Data for Reading, Encryption, and Transmission (bytes)

Fixed Data Rate

Variable Data Rates

Trandline for Fixed Data Rate

Trendline for Variable Data Rates

Figure 2.16: Energy consumption for transferring 2 megabytes of data.

transmission as the total data size is same for all cases. It may be noted that a device

0

100

200

300

400

500

600

1 16 31 46 61 76 91 106 121 136 151 166

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
s
 (
m
W
)

Time (Second)

2
5
6
b
y
te
s

1
0
2
4
b
y
te
s

2
5
6
b
y
te
s

1
0
2
4
b
y
te
s

2
5
6
 b
y
te
s
*

1
0
2
4
 b
y
te
s

2
0
4
8
 b
y
te
s

2
5
6
 b
y
te
s

5
1
2
 b
y
te
s

1
0
2
4
 b
y
te
s

2
0
4
8
 b
y
te
s

5
1
2
 b
y
te
s

Figure 2.17: Instantaneous power consumption for transmitting data packets via WiFi.

consumes a certain amount of power to start running an application. This state is referred
to as the idle state, and when an application actually executed it draws additional power
on top of the power consumed in the idle state. For the HTC Nexus One smartphone, the
power consumption in idle state is around 460 mW. On the other hand, a device having no
application to execute can be put in sleep state. In the sleep state, a device consumes very
low power, and it is about 10 mW for HTC Nexus One. Therefore, when an application can
accomplish a task with less amount of time, it also helps reducing additional energy spent
for keeping a device in idle state. For real time or interactive applications it is difficult to
make such decisions.

∗ in Fig. 2.17 indicates the packet size used in the corresponding episode of transmission.

44

The energy cost outcomes that we obtain for the above example are fully compatible
with the estimations and trend we have got in the energy cost profile in the last section.

2.6 Summary

We have presented a finite state machine based model to estimate the energy cost of mobile
applications. We provided evidence from an energy measurement test-bench to explain the
model parameters. We proposed to use smartphone device emulators to estimate the
energy costs and discuss the rationale behind it. To help designers in making decisions
at an early design phase, the concept of energy cost profile of a device was introduced. It
provides energy cost information of different hardware components so that the designers
take measures to improve their designs to make the applications more energy efficient. We
have conducted experiments on our energy measurement testbed comprising a state-of-the-
art smartphone to provide practical examples of energy cost profile of a device. Finally,
we have shown the effectiveness of the whole idea with an example.

45

Chapter 3

Capability and Functionality
Enhancement

We propose the concept of Universal Computing and Communication Interface (UCCI)
that facilitates such sharing of resources between two wireless portable devices. This model
comprises two basic components: Device and Connection Management (DCM) protocol
and Framework for Information Exchange (FIX). DCM devises a unique way to save energy
by allowing a server to stay in sleep state while its service is not needed. On the other
hand, FIX enables software applications on a small device to use resources such as CPU,
Internet bandwidth and storage available on a larger computer. We have used state-of-the-
art smartphones HTC Nexus One, BlackBerry 9700 and a laptop to develop prototypes of
the proposed idea. We have conducted extensive experiments on the devices and measured
the real-time energy consumption. This work explains situations under which such resource
sharing can lead to energy saving. We also assessed the latency in accomplishing a task
performed through sharing of resources.

3.1 Problem Description

In this section, we provide background and motivation for the work presented in this
chapter. Then, we describe the system model, design criteria and research objectives of
this work which are followed by the summary of contributions. We discuss the organization
of this chapter at the end of this section.

47

3.1.1 Background

Smartphones are equipped with essential gadgets such as global positioning system (GPS),
digital camera, and multiple communication interfaces. As a result, the functionality of
these devices is not limited to exchanging voice calls, rather users use their phones to access
email, browse Internet, and play multimedia contents. The features and functionalities of
these devices are improving day by day with reduced size and price. Accordingly, the usage
of these devices are becoming more and more common in daily life and user expectations
in terms of running heavier applications are rising rapidly.

These devices are powered by small, re-chargeable batteries, and unfortunately, the
growth in battery technology has not kept pace with the rapidly growing energy demand
of these smart devices [120]. For example, the battery of a state-of-the-art smartphone
lasts only 3 − 4 hours when online video is played. A GPS aided navigation application
runs around the same amount of time when it runs solely on battery. This dependence on
battery energy puts a severe constraint on the availability of these devices [52]. Moreover,
it is not feasible to equip the handheld devices with full-featured hardware components
due to size and limited battery energy. Consequently, these devices are not capable of
running resource intensive applications, which limits the functionality of these devices.
In comparison to the size and weight of the smartphone, laptop computers are large and
heavy, with relatively higher capacity CPU, battery, and communication bandwidth.

3.1.2 Motivation

Due to the complementary attributes of laptops computers and smartphones, nowadays
professionals, business executives and university students use laptops as well as smart-
phones to meet their computing and communication needs. However, they often feel the
necessity for sharing resources between these devices. For example, when they work on
their laptop, they like to access some files, 3G data networks, or even the on-board cam-
era of their smartphone; or, they may need to access the high capacity processor, high
bandwidth data network available on the laptop while they work on their smartphone.
Sometimes they need to access a licensed software from one device to another. Most
importantly, they often need to share their data among these devices.

In Fig. 3.1(a), a smartphone user is connected to Internet through a laptop. The
user might be interested to do it if the phone is not subscribed to cellular data services,
or even with a subscription to data service, the user may still divert its Internet traffic
through the laptop. Because the data service may not be available in some places or, the

48

connection speed might be poor, or the cost of the data service is high. Fig. 3.1(b) shows
a scenario where a smartphone user is retrieving a file from his/her laptop as the laptop is
not accessible for the time being. This may happen when the laptop is in the trunk of a
car or in the airplane overhead cabin box, or, the laptop may run short of battery energy,
so the user does not want to open it. The display on the laptops consumes around 36% of
its total energy consumption [71], so it could be a simple case of energy awareness.

C
e
ll
u
la
r
D
a
ta
 L
in
k

Router

WPAN Link

(a) A smartphone is accessing Internet
through a computer.

(b) A user is retrieving a file from laptop.

Figure 3.1: Smartphone communicating with a laptop in two different scenarios.

Thus the shortcomings of resource constraints in portable devices can be overcome by
sharing resources which results in functionality enhancement. In addition to that a device
is able to save its battery energy by using resources of other devices instead of its own. In
fact, energy saving was the most significant factor for offloading tasks from a mobile device
to a server device [86, 55, 158, 53, 22]. The benefits sharing resources are threefold: (i) a
device acquires some functionalities which it does not possess itself; (ii) it is able to access
some resources which does not belong to it; and (iii) it saves energy. All of these benefits
are very much appealing to the users, and the devices become more useful to them.

3.1.3 System Model and Design Criteria

As shown in Fig. 3.1(a), the participating devices can communicate with each other via
multiple communication links such as wireless local and/or personal area networks. We
refer a device as a server when it allows other devices (clients) to access its resources.
A server can be a laptop, a desktop computer or some other dedicated device having
computation and communication facilities. We assume that the server device permits the

49

clients to do so because they belong to same owner or the server device gets incentives for
rendering services. In the following, we describe the design objectives to accomplish the
task of resource sharing in energy efficient manner.

• Communication Link: Connection establishment is a prerequisite for sharing re-
sources among participating devices, and the Internet can be used to establish such
connections. However, the Internet is not available when a user remains outside of
user’s workplace, and also, integrity and security of the personal data always remain
a major concern. Also, routing data through Internet where source and destination
are in close proximity will unnecessarily burden the Internet. Therefore, a local com-
munication link that requires low energy, and meet security constraints is suitable
for this purpose. On the other hand, a wired connection requires a physical contact
by cables, and it also limits the movement of a device, thus a wireless link is much
preferred for this purpose.

• Service On-demand: A server is able to provide instant access to its resources when it
remains available all the times. Consequently, it consumes energy to remain always
On (further discussed in Section 3.3). Thus when a server is not used frequently,
it wastes energy most of the times just to remain available. This situation can be
avoided if a server becomes available only when its service is needed. We call it
service on-demand. A client device awakes a server when it needs service. Here,
saving of energy comes with a latency in getting service after a request is made.

• Software Framework: In addition to the communication link between client and sever,
there must be an agreement among them so that they are able to communicate, and
transfer data for sharing resources. There are diverse types of devices available in
the market, and they come with different platforms (operating systems). Therefore,
a generic framework (cross-platform) is essential to accomplish the task of resource
sharing.

• Energy Saving: Sometimes a client accesses resources on a server to attain some
functionality which that client does not possess, and in such scenario, energy saving
is not an objective for both client and server. However, in some situations, a client
accesses high capacity resources of a server to save its time and energy. In such cases,
we assume that the server comes with an adequate supply of energy, resources. and
we mainly focus on energy saving in the client device. The condition of saving energy
is relaxed only when functionality enhancement is prime objective.

50

3.1.4 Research Objectives

We propose a generic architecture called Universal Computation and Communication In-
terface (UCCI) to enable communication between a mobile client and a nearby server
device. Prior work advocates only for offloading a computational task to another device,
but we have included the communication and sharing of resources in our model. We also
consider the energy expense of the server device, because in our model the server itself
can be a portable device running on battery, and the server device can remain in sleep
state. UCCI consists of Device and Connection Management (DCM) and Framework for
Information Exchange (FIX) protocols. DCM uses personal area wireless link (Bluetooth)
to communicate a server, and it uses the ‘Wake ON’ feature of the server to awake it
from sleep state to active state. DCM puts a server again in sleep state when service is
not needed. FIX works on top of DCM and it facilitates the sharing of information and
resources between a client and a server.

‘Wake ON’ feature allows a device to be turned on by a network message. Such a
device can be kept in a very low power state by turning on the ‘Wake ON’ feature, and
make the device available for use when necessary. We have conducted a set of experiments
to observe the energy costs of a devices in different power consumption states with and
without turning on the ‘Wake ON’ feature. Results show that the energy costs (overhead)
for activating ‘Wake ON’ feature is very less.

We need to know the steps that take place in UCCI connection to evaluate the impact
of resource sharing on energy consumption. The data processing rate and energy costs of
basic operations such as communication, computation, storing and retrieving data from
storage need to be investigated to estimate the costs of performing a task on a device.
Then, we are able to compare the costs with and without resource sharing. Suppose that a
smartphone, x accesses a resource, r (CPU) on a laptop, y. To accomplish this, x needs to
follow the steps [55]: (i) needs to maintain a connection with y, (ii) reads data and related
codes from its storage, (iii) sends them to y, (iv) waits for the results, and (v) receives the
results. Data speed of the communication link between the devices and the data processing
rate at device y contribute to the latency of the overall process, and the energy spent in
transmitting and receiving data constitutes the energy cost. The reading and writing of
data from and to the storage remain the same when a task is accomplished in device x.
There is also some costs incurred in x for staying active while the task is processed in y,
however, it can be avoided by properly scheduling the device x to awake up when the task
is completed. We measured these costs on a state-of-the-art smartphone, HTC Nexus One,
and discuss the possible scenarios when and how sharing of resources can be effective and
efficient.

51

3.1.5 Contributions

The main strength of this work is that we have not only designed a model, but also have
developed prototypes to show the validity of the model. We have implemented the system
using the off-the-shelf devices. We summarize the principal contributions of our work
below.

• (c1) We introduce the concept of UCCI, a generic model for sharing resources among
portable wireless devices. UCCI consists of two protocols DCM and FIX that enable
any device communicate with another device without having prior knowledge of each
other. when a device finds that it does not have the functionality or enough resource
to execute a task or it intends to save energy, the device exports that task to a nearby
server. when a device has multiple communication links available to it, the device
can pick a suitable one to fit its need and for saving energy.

• (c2) Two prototypes have been developed on Android and BlackBerry smartphones
namely, HTC Nexus One and BlackBerry 9700 to demonstrate the efficacy of the
model.

• (c3) To observe the energy saving aspects of UCCI, we conducted experiments to
measure the application level energy and communication costs for different usage
scenarios.

• (c4) We discuss the experimental results and explain how and in what situations
resource sharing can be effective, and save energy with less delay. We also discuss
the various security aspects, and argue that the model does not give rise to any new
security threats.

The rest of this chapter is organized as follows. In section 3.2, we discuss related
work such as task offloading and low power personal area network communications. In
section 3.3, we explain the working principle of our framework. Section 3.4 describes the
prototype implementation of the proposed framework and it is followed by experimental
setup in section 3.5. Section 3.6 presents the experimental results with discussions. We
put conclusions in section 3.7.

3.2 Related Work

We review some substantial prior work in this section. We begin with discussing the benefits
and costs of offloading followed by the different techniques or methods of offloading. We

52

also explain the reasons behind different design issues of our model. We finish this section
with a discussion of the reasons for considering Bluetooth as the client to server device
communication link.

Gitzenis et al. [52] studied the problem of task offloading and power management in
wireless computing. They presented a Markovian dynamic control framework to opti-
mize the task migration and processor speed/power management. They pointed out that
task offloading results into energy savings at the mobile terminal (sparing its processor
from computations) and execution speed gains due to (typically) faster server processor(s).
However, the overheads are the energy cost for terminal-server wireless communication and
the delay for uploading the task and getting back the results. The net gains (or losses)
depend on network connectivity and server load. Their observation is: for a task with
low communication and high computation requirements, migration is advantageous under
both criteria of energy consumption and response delay. However, to accomplish this, the
wireless connectivity must be strong and the server has to be lightly loaded. Weak con-
nectivity turns migration into a less attractive option. In our model, we consider the short
range personal area wireless link which is robust with relatively moderate bandwidth. For
example, Bluetooth v2.1 supports 2 Mbps application to application data rate and Blue-
tooth v3.0 supports up to 24 Mbps. According to the observations in this research, our
proposed model and its operating environment are suitable for task offloading.

Zhao et al. [174] studied a case where resource limitation forces offloading of a task.
They propose a H.264 encoder modularization and energy models for offloading. They
mainly focus on the usage of the computation offloading method to H.264 video encoder
on mobile devices. Results from three of their offloading schemes show that offloading the
encoding part of inter frames or the whole video encoder can save large amounts of energy.
They observe that with efficient wireless link, computation offloading techniques would be
more efficient to save energy on mobile devices.

Rudenko et al. [129] present an automation framework for computation offloading and
it records the average power consumption of a repetitive task for deciding whether to
offload the task. Kremer et al. [80] propose an offloading scheme that uses check-pointing
techniques to handle disconnection events for wireless connection. The cost model for
local computation is based on the average computation time. Rong et al. [126] study
offloading under real-time constraints. They use multiple synthetic tasks and each task
has a known constant computation time. Li et al. [86] propose making offloading decisions
at function level. The computation of each function is assumed to be a constant and
obtained by profiling. Wang et al. [153] propose a method of parametric compiler analysis
to determine the computation time. The method considers only simple parameters, such
as the command line options. It cannot analyze more complex data such as an image. All

53

these methods require estimating the computation time before execution in order to make
offloading decisions. In contrast, Xian et al. [158] use a timeout method and do not require
such estimation. In their study, a timeout is set for computation instead of an idle period.
If the computation is longer than the timeout, the computation is offloaded to a remote
server to conserve the energy for the client.

Gurun et al. [55] present a framework that makes computation offloading decisions
in computational grid settings. The schedulers in such environment determine when to
move parts of a computation to more capable resources to improve performance. They
mentioned that offloading decision amounts to predicting the bandwidth between the local
and remote systems to estimate costs associated with offloading. They formulated the
problem as a statistical decision problem, and evaluate the efficacy of a number of different
decision strategies. They found that a Bayesian approach which incorporates change-point
detection in its formulation of the prior distribution is the most effective of those they
investigated.

Gu et al. [53] propose an adaptive offloading system that includes two key parts: a
distributed offloading platform and an offloading inference engine. They mainly focus on
the memory. When the application memory requirement approaches the mobile device’s
maximum memory capacity, the system initiates offloading. The system partitions the
application’s program objects into two groups, offloading some to a powerful nearby sur-
rogate to reduce the device’s memory requirement. With the offloading inference engine,
runtime offloading can effectively relieve memory constraints for mobile devices. Having
studied the pros and cons of the methods of offloading, we designed a very light and simple
Offloading Decision Maker (ODM) engine. At first, it does not partition a task running
parts in the mobile device and parts in the server. Rather it decides before executing a task
whether to offload or not. In case of offloading, the whole task is migrated to server and
an interface is executed for sending data and receiving the results. In making the decision,
ODM considers the applications resources requirements, availability of offloading service,
system’s resource meter and energy state and above all user’s permission.

Mahmud et al. [92] emphasize on having an energy-efficient scheme for simultaneous or
single operation of the wireless interfaces attached to Multi-service User Terminal (MUT).
MUT stands for the devices that have multiple wireless interfaces for receiving various
classes of services from the networks. They propose a simple model for predicting energy
consumption in a terminal attributed to the wireless network interfaces. Then, the actual
consumption patterns are measured to estimate the parameters of the model. They ob-
serve that each access technology has a different data rate, network latency, interaction
capability, mobility support, and cost per bit because each has been designed with specific
services in mind. They stress on the need to have comprehensive understanding of the

54

power consumption of the devices/modules in various operational states. Complying with
this understanding we explored the energy cost of communication on different communi-
cation links that a smart phone typically possesses. And we use the results in designing
our system model.

In mobile to server device communication we use Bluetooth link, because, Bluetooth
is widely adopted as short range communication protocol and almost all the smart phones
come with a Bluetooth connectivity. More importantly the next generation Bluetooth v3.0
module is going to be more energy efficient, more secure and is supposed to provide higher
data rates of around 24Mbps. We summarize the strength of this work below:

• The concept of awaking a server on demand basis is very crucial. Instead of spending
energy by keeping the server awake all the times, the server device saves significant
portion of energy by being in sleep mode. We may compare the situation with
constant polling versus interruption when the an event occurs.

• The idea of task exporting has been around for quite sometime and the design ob-
jective or target platforms were assumed to be grid or mesh networks. We view task
offloading between peer devices, where functionality enhancement is the key objective
and energy saving comes as a by product.

We have not only proposed a design or concept, we have implemented the whole system
with existing hardware available in the market. This is the most important strength of
this work.

3.3 Architecture

In our model, a device is termed as a client or a server based on its role or functionality
in an ongoing session. A client device in a session may act as a server during some other
session when another device seeks a service from it. So the terms client and server are
not tightly coupled with a device. For example, when a smartphone accesses resources
of a laptop, the laptop becomes a server and the smartphone becomes a client. On the
other hand, the laptop becomes a client when it accesses the files of the same smartphone.
In this case, the smartphone acts as a server. The working principles of the three UCCI
components are given below.

55

3.3.1 Device and Connection Management (DCM)

A server device can stay in several states of operation as shown in Fig. 3.2 and it is able to
provide service in active state. In sleep (or inactive) state, it suspends all of its operations
except the ‘Wake On’ feature. ‘Wake On’ feature refers to the capability of waking up
from sleep state to active state after getting a special message through a communication
interface such as LAN, Wireless LAN (WLAN) and Universal Serial Bus (USB). To enable
‘Wake On’ feature, a device needs to scan for particular message while sleeping. When
both client and server stay in the same network, a client device needs to know the Internet
protocol (IP) address of the server device. However, a client needs to know the Medium
Access Control (MAC) address of the server to ‘Wake Up’ the server by sending magic
packet.

Mobile

Client

Server

Sleep/

Hibernation

Active

Figure 3.2: State transition diagram of server device.

Now, let us explain how a client obtains the address of a server device:

• Server in active state: An active server periodically broadcasts its service list with its
device address. Before initiating a connection, a client scans for devices surrounding
it and makes a list of devices. The user of the client is then asked to select the server
from the server list.

A magic packet is sent to wake up a device from sleep state. This packet contains 255 in consecutive 6
bytes, followed by 16 repetitions of the target device’s 6-byte MAC address anywhere within its payload.
The magic packet is typically sent as a UDP datagram to port 7 or 9.

56

• Server in sleep state: When a server is in sleep state, it does not broadcast its address,
and in this case a client needs to get the address from the user or from history data.
If the server device belongs to the same owner, he/she knows the device address and
for a public server, the address of the device needs to be printed on it. Otherwise,
a client won’t be able to wake it up. Usually, a client device keeps a short list of
devices which are connected quite often, and thus a user does not require to input
the server address all the times. As all the devices have user-friendly names, users
are not expected to input bizarre hexadecimal device addresses.

Server Client

S
le
e
p

WELCOME

A
c
tiv
e

WAKEUP

HELLO

Communications

Communications

Results

SLEEP

A
c
tiv
e

Figure 3.3: Timing diagram of task offloading using UCCI.

A client does not need to send a WAKEUP message to turn on the server as it is already
in active state. However, client sends a HELLO message to check whether the server is
ready to accept a connection. For an inactive server, a client sends a WAKEUP message
to activate the server. The relative timing of the events is given in Fig. 3.3. After sending
the WAKEUP message, the client waits for a while (10 seconds) for the server to come
in active state. It then sends a HELLO message to check whether the server becomes
active. The server replies with a WELCOME message. If the client does not receive a
WELCOME message within a time frame (5 sec), it again sends HELLO message. In the
HELLO message, the client mentions its identity and service request. Thus the server

57

transfers the controls to specific handlers. After completing the task, the client sends a
SLEEP message to put the server in sleep mode.

Hardware and Software Requirements

The required hardware and software tools necessary to implement the UCCI model are
already available in the marketplace and we now describe hardware and software require-
ments for server and client devices below:

• Hardware requirements for server: A server device is equipped with a low power
short range high speed wireless communication module to communicate with the
client. The server also has ‘Wake On’ feature so that it can be awaken from sleep
state. Otherwise, a server needs to be ON all the times to make its services available,
and for a portable device it is not affordable.

• Hardware requirements for client: A client device includes the same low power wire-
less communication module to connect with the server. It is capable of sending special
‘Wake UP’ signal using the device address of the server so that the communication
module at the server can wake up the server from sleep mode. The client’s module
also capable of searching surrounding server modules and services.

• Software requirements for server/client: After establishing the connection between
server and client, the server verifies identity of the client, and based on the requested
service type, the server transfers the handle to the specific handler. In our im-
plementation, we used Java and no specialized tools was necessary to develop the
applications on the client and server sides.

Hardware components with energy saving features [116] are available in the digital sys-
tem since long. Personal computers are equipped with ‘Wake On LAN’, ‘Wake On USB’
features. Some of the Bluetooth and WLAN hardware components have ‘Wake On’ capa-
bility and some Operating Systems (OS) such as Mac OS supports these features. However,
‘Wake On Bluetooth’ can easily be incorporated on the OS if hardware supports this fea-
ture. Another way to enable ‘Wake On’ option is by exploiting ‘Wake On USB’ feature.
It is done by attaching an USB Bluetooth module in the device’s USB port.

Energy Saving Measures

The graph in Fig. 3.4 depicts the benefits of sleep/Wake-UP model of the server. A laptop
that we have used in our experiment consumes 19.2 and 14.4 watts in active state, with

58

19.20

14.40

0.74 0.78 0.51 0.56

0

5

10

15

20

25

Active with
display

Active without
display

Sleep without
Wake ON

Sleep with
Wake ON

Hibernation
without Wake

ON

Hibernation
with Wake ON

W
a
tt

Figure 3.4: Power consumption of a laptop in different states.

and without display, respectively. Whereas, in sleep and hibernation states, the laptop
consumes only 0.78 and 0.56 watts, which are just 4.06% and 2.92% of the active state,
respectively.

Fig. 3.4 also shows that the increased energy consumption for turning on the ‘Wake On’
feature is only 5.4% and 10% more in sleep and hibernation states respectively. However,
‘Wake On’ feature is needed to put an active server to sleep state and put it back to active
state when it is requested for service. As a result, it is definitely energy saving to adopt
the sleep/Wake-UP model instead of being always active. It is worth mentioning that a
device takes time to switch from hibernation to active or sleep to active states. These
delays usually range from 5 to 20 seconds and they vary system to system. The delay
for switching from hibernation to active state is longer, and the decision whether to put a
server in hibernation or sleep state depends on the type of application. For quicker response
time, a client needs to put the server in sleep state rather than in hibernation state.

DCM FIX

Client App

IP Layer

MAC Layer

TCP

DCM FIX

Server App

IP Layer

MAC Layer

TCP

S
e
rv
e
r
O
F
F

Figure 3.5: Placement of UCCI in protocol stack.

59

Placement of UCCI in OSI Model

Fig. 3.5 shows the position of UCCI in the network protocol stack. When a server device
is in sleep state, a client can only reach its MAC layer by sending a WAKEUP message.
After getting the WAKEUP message, server switches to active state and the client is able
to access the server application, and further interactions take place.

3.3.2 Framework for Information Exchange (FIX)

The software applications such as remote file browsing, sharing, remote desktop sharing,
Internet sharing, sharing camera or GPS data basically involve exchange of data. They are
productivity or utility tools which are simple yet they provide the users of these devices
with very useful services. One practical example would be very relevant here, users tend
to take weeks to download the files of captured videos and photos from digital cameras.
Because they need to connect devices to computers via cables. In the following, we describe
how UCCI facilitates these types of tasks using FIX.

When a client connects a server device, it initially retrieves service information from
the server. Then, the client device lays out the service list, and allows its users to choose
an option as shown in Fig. 3.6. When a user selects an option, the client device sends
the corresponding code to the server, and server execute corresponding module to further
communicate with the client device.

Device Name

File Explorer

Internet Sharing

GPS/Camera

Device Name
Device Name

Info

Turn On/Off

Services

Exit

Back Exit
Info Back

Copy Del

World.bmp

Test.txt

Crush.mp3

Paper.doc
Task Sharing

Desktop Sharing

Play Multimedia / Controls

Figure 3.6: User interface of an UCCI based application.

Some software applications require extensive computation power and large memory
capacity and claim good amount of energy. Such types of applications can be outsourced to
take the advantage of CPU and memory on server devices. As we discussed in section 3.2,
many techniques have been proposed in the literature regarding task offloading. For task
offloading, the application need to have options for local and remote processing and when

60

user select remote processing, the application transfer and manage through application
programming interface (API). In our prototype, we have used Java to implement task
outsourcing feature.

3.3.3 Possible Security Issues

We point out the possible security threats that are involved in UCCI model, and discuss
below how these issues can be resolved by taking appropriate measures.

• Authentication: The UCCI service should be restricted to the authorized users and
devices. In our model, we consider Bluetooth which has built-in authorization module
using PIN codes. Therefore, no user can connect to another device without knowing
the PIN code.

• Secure communication link: As the data and tasks are migrated from one device
to another, we need to ensure that the communication link is secure in the first
place. Likely, secure personal area wireless communication is available and Bluetooth
v3.0 supports 128-bit Advanced Encryption Standard (AES) which is state-of-the-
art security protocol. However, encryption and decryption of data consumes much
energy and its use is recommended only when there is a need.

• Software Security: When a task is transferred to a server, we need to ensure that it
does not break server’s security, and also no other application on server can intercept
the data or code of the task. In UCCI, an exported task is executed on a Java Virtual
Machine (JVM), and therefore, in the controlled environment, the task cannot break
the security of the server, or any other application can access the information of
others.

• Hardware Security: In our model, the server or client devices typically belong to the
same owner, so the threat of hardware intimidation is less in this case. Hardware
intimidation is not a new security threat arises from our model, and users need to be
cautious about this when they connect to a public device.

3.4 Prototype Implementation and Model Validation

To implement prototypes for the proposed UCCI, we have used a Toshiba Tecra R10-ES1
laptop as a server device with Windows 7 operating system on it. A HTC Nexus One

61

and a BlackBerry 9700 smartphones were used as clients to build our prototypes. The
smartphones communicate with the laptop through its built-in Bluetooth link. However,
the operating system does not allow the Bluetooth device to wake it up from sleep state.
We used an external mouse (Microsoft Wireless Laser Mouse 8000) to facilitate that. An
USB dangle is attached with laptop and the mouse communicates with the dangle using
Bluetooth link. The USB dangle connects the laptop as human interface device (HID),
and thus the mouse is able to awake the laptop from sleep state. If the OS supports
the ‘Wake On’ feature of the built-in Bluetooth device, the external mouse would not
be needed. With an appropriate device driver, features of these two Bluetooth devices
can undoubtedly be combined. However, we avoided that as we have developed only the
prototype of our concept.

Figure 3.7: Snapshot of an Android based UCCI application.

We developed an application for server and two versions of the client application to
implement UCCI. All applications are written in Java, and the client applications are
modified to fit with Android and BlackBerry OS. A screenshot of the client application
is given in Fig. 3.7. It shows Android OS version of the application which is running on
the HTC Nexus One smartphone. The user interface of the BlackBerry version is the
same and is installed on a BlackBerry 9700 device. The applications are able to establish
UCCI connections via both the WLAN and Bluetooth links. The ‘Wake On’ feature of
the WLAN works only in presence of AP, and it is not supported in WiFi adhoc mode.
Moreover, WLAN link becomes useless while the user on the road or in the place where
there is no support ‘Wake On’ packet forwarding.

62

Using the application shown in Fig. 3.7, the smartphone (HTC Nexus One) wakes up
the server (Toshiba laptop) from sleep state, and transfers data using Bluetooth link. After
processing the data, the results are sent back to the smartphone, and the laptop is put
back into sleep state again. In fact, once the laptop is connected with the smartphone,
we can access and use the resources on it, it is just a matter of attaching appropriate
software applications. We play audio/video, and control the volume on the laptop from
the smartphone, and similar activities can be performed on the smartphone from a laptop.

3.5 Experimental Setup

As discussed in section 3.1, we need to know the energy costs of the basic operations such as
computation, communication and storing data on a device, so that we are able to estimate
the energy saving when sharing of resources takes place. If a device spends much energy in
transferring data to the server, the net energy gain becomes less, in fact, it can be negative
in some situations. In this section, we describe the experimental setup that we used to
conduct experiments for evaluating energy costs.

INTERNET

Laptop
Power Supply with

High Precision

Current

Measurement Unit

Smartphone
WiFi

Access

Point

Web ServerRouter

Router
Cellular Access

Point (BTS)

Bluetooth

Link

Pow
er

Sup
ply

W
ir
e
d
 C

o
n
e
ct

io
n

Figure 3.8: Logical view of our experimental setup.

As shown in Fig. 3.8, we connect the HTC Nexus One smartphone with a Keithley

63

2304A high speed power supply to measure the current consumption of the smartphones.
The power supply is connected to a desktop PC via USB port, and using a controller
program on that PC, we set required output voltage (3.7 volts) on the power supply.
We sampled the consumed current by the smartphones one second interval and readings
were taken throughout the execution of an operation. For example, before initiating a file
transfer using SFTP (Secure File Transfer Protocol) we start probing current, and stop
after the transfer stops. We repeat the experiments at least 3 times, and each time we
take 5 sets of readings for each scenario. Each set contains 50 to 150 readings based on
the duration of the operations. We show the variations in the readings by providing the
maximum, minimum and mean values of the readings. Prior to conducting experiments,
we configured the settings and battery connections of the smartphone as described in [113].

3.6 Results and Discussions

In this section, we present the energy costs of some basic operations such as computation,
communication and data storage and retrieval for HTC Nexus One. Then we show the
costs of transferring a file from the same smartphone to a server located in the Internet.

3.6.1 Energy Costs for Basic Operations

We chose three widely used CPU benchmark programs, namely, Linpack, Whetstone and
Dhrystone to evaluate the cost of computation on HTC Nexus One smartphone. We used
another Android application which computes the exponents of two random real numbers
continuously. We executed these four applications for 20 seconds each time, and measure
the current consumption. Fig. 3.9 shows the power consumption of the smartphone for
each of the applications, and we see that the benchmark programs consume about 961
milliwatts. On the other hand, the exponent computation application consumes about
1100 milliwatts as it involves only floating-point operations. Once we know the energy
cost of CPU for full utilization, the energy cost of an application for computation can be
calculated based on its CPU utilization [116].

We obtained the energy costs of reading and writing in the built-in storage of the same
smartphone by a simple application which reads and writes data in blocks of different sizes.
We varied the block size from 256 bytes to 8 kilobytes, and the application reads a file
of 256 megabytes, and write a file of 128 megabytes with random contents. The reading
process takes around 30.5 seconds, and writing takes around 36 seconds irrespective of
block size. The results in Fig. 3.10 show that smaller block size consumes more power.

64

437

961 962 961

1102

0

200

400

600

800

1000

1200

Idle Dhrystone Whetstone Linpack Exponent
Computation

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
 (
m
ill
iw
a
tt
s
)

CPU Benchmark Programs

Figure 3.9: Power consumption for computation.

200

250

300

350

400

450

500

256 512 768 1024 2048 4096 8192

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
 (
m
ill
iw
a
tt
s
)

Read/Write Block Size (bytes)

Read (8.5MB/Sec)

Write (3.65MB/Sec)

Figure 3.10: Power consumption for reading and writing data in the internal storage.

Fig. 3.11 shows the power consumption for transmitting UDP data packets of 1472
bytes via WiFi interface (802.11g). The experiment was done on the same HTC Nexus
One smartphone. The data rates were varied as we changed the transmission interval
between two packets. It is interesting to observe that for smaller transmission intervals the
power consumption amounts are same. The maximum size of an unsegmented UDP packet
that can be sent from application layer is 1472 bytes in this scenario. More information on
the impact of packet size and delay on power consumption can be found in [114]. Though
we have shown only for WiFi interface, the effect of packet length and intervals is also
significant in other interfaces.

We also measured the cost of data encryption and decryption with an application
that uses Java standard API for 64-bit DES (Data Encryption Standard) encryption and

65

0

500

1000

1500

2000

2500

0

100

200

300

400

500

5 10 25 50 100 250 500 750 1000

D
a
ta
 R

a
te
 (
k
b
p
s
)

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
 (
m
ill
iw
a
tt
s
)

Transmission Interval (milliseconds)

Power Cosumption for UDP Packets Transmission
(Packet Size = 1472 bytes)

Power Consumptions

Data Rate

Figure 3.11: Power consumption for transmitting data packets via WiFi.

decryption algorithm. The application reads a large file of 32 megabytes and writes the
same file after encryption. Later on, the encrypted file is read back by the application, and
stored as a separate file after decryption. The power consumption and processing speeds
of the processes are given in Fig. 3.12. We see that though the power consumption for
decryption is less than the encryption process, the data processing speed for decryption is
significantly less in compare to the encryption process. We see the impact of this during
secure file transfer process that we discuss later in this section.

300

500

700

900

1100

1300

1500

Idle State Encryption (DES) Decryption (DES)

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n
 (
m
ill
iw
a
tt
s
)

Minimum

Average

Maximum

(a) Power consumption for encryp-
tion/decryption.

150

250

350

450

Encryption (DES) Decryption (DES)

P
ro
c
e
s
s
in
g
 R

a
te
 (
k
b
p
s
)

Average

Maximum

Minimum

(b) Obtained data rate for encryp-
tion/decryption.

Figure 3.12: Power consumption and data rates for encrypting and decrypting data.

With the help of energy cost information presented above, we are now in a position to
make energy-aware decisions. For example, it requires 1233 Joules of energy to store in
the internal storage, and another 412 Joule to read the file when necessary. If we want
to store the file in a storage server in the Internet, with basic cost information, we can
calculate the required energy for transmitting and receiving the file over the communication

66

with appropriate security measures. Of course, storing in the network server involves more
energy, specially when we need to access the file frequently. However, when the device is
running short of storage space, we compel to store it on the network server.

3.6.2 Energy Costs for Transferring a File

Now we investigate the energy consumption of a task which involves resource sharing via
UCCI. We choose to transfer a file from the smartphone to a SFTP server located in the
Internet. This task of transferring a file from the smartphone can be accomplished in the
following ways:

• Scenario 1 (S1): send the file from smartphone directly via 3G link,

• Scenario 2 (S2): send the file to the laptop via Bluetooth link, and then send it to
the SFTP server from the laptop,

• Scenario 3 (S3): compress the file in the smartphone, and then send the compressed
file via 3G link, and

• Scenario 4 (S4): send the uncompressed file to the laptop, compress it there, receive
it from the laptop via Bluetooth link, and send the compress file via 3G link.

We measured the energy consumed by the smartphone in each of the above scenarios. For
that, we, at first, evaluated the power consumption and data rates for 3G (WWAN) and
Bluetooth (WPAN) links to estimate the energy costs for transferring data. We also mea-
sured the cost of transferring data over WiFi link as it falls in between WWAN and WPAN
in terms of coverage. We conducted the experiments during different times of the day, and
repeated the experiments to avoid any temporary fluctuations in the measurements. It is
worth mentioning that these results are dependent on the location of the mobile tower,
WiFi access point and local interference, but we took no measures that might affect the
data rates of any of these links. Therefore, we may consider these results as an instance of
a typical scenario experienced by users.

Fig. 3.13 and Fig. 3.14 show values of the mean, minimum and maximum power con-
sumption and obtained data rates during downloading and uploading of files from/to the
SFTP server. We observe that the data rates in uploading are higher than that of down-
loading, which is counter intuitive. We performed some additional experiments to verify
this result. We used simple FTP protocol to transfer files, and found that data exchange
rates are much higher in this case, and download rates are higher than upload rates. We

67

0

250

500

750

1000

1250

1500

3G WiFi Bluetooth

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n

(m
ill
iw
a
tt
)

Average

Minimum

Maximum

(a) Power consumption for downloading.

0

200

400

600

800

1000

3G WiFi Bluetooth

D
a
ta
 R
a
te
s
 (
k
b
p
s
)

Average

Minimum

Maximum

(b) Obtained data rate for downloading.

Figure 3.13: Power consumption and data rates for downloading data.

also examined the energy costs of reading and writing data from/to storage. We found
that writing data on sdcard consumes 35% more power than reading data whereas writing
is done at 42% of the reading speed. Actually, when we send a file through SFTP, the
following operations take place: reading the file from storage, encryption the file data,
transmission of the data. On the other hand, when we receive a file via SFTP - reception
of file data, decryption of the received data, and writing the data on the storage take place.
In SFTP process, operations other than the transmission/reception speeds dominate the
overall data processing rates. Further study is necessary to investigate this matter. Data
are more vulnerable in the WWAN or WLAN than in WPAN and for that reason we used
SFTP to transfer data. Fig. 3.15 shows the energy expense for downloading and uploading
a one megabyte file. We see that 3G link costs 10 times more than the Bluetooth link
when we transfer the file. Data transfer costs over WiFi link is also lower than that of 3G

68

0

250

500

750

1000

1250

1500

3G WiFi Bluetooth

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n

(m
ill
iw
a
tt
)

Average

Minimum

Maximum

(a) Power consumption for uploading.

0

1000

2000

3000

4000

5000

3G WiFi Bluetooth

D
a
ta
 R
a
te
s
 (
k
b
p
s
)

Average

Minimum

Maximum

(b) Obtained data rate for uploading.

Figure 3.14: Power consumption and data rates for uploading data.

link.

To measure the energy costs for scenario S3 and S4, we measured the energy cost and
data processing rates of compression and decompression process on the HTC Nexus One.
As shown in Fig. 3.16(a), power consumption for compression and decompression are 1236
and 1184 milliwatts, respectively. The data processing rates during compression and de-
compression are about 2456 and 4818 kilobytes, respectively (shown in Fig. 3.16(b)). Using
the results from the experiment, we are now able to calculate energy costs of transferring
files via 3G, WiFi and Bluetooth links with or without compressing the data. Compres-
sion ratio is the most important factor in deciding whether to compress before transferring
data. The compression ratios of JPEG (Joint Photographic Experts Group) and MPEG
(Moving Picture Experts Group) format files (users typically encounter in smartphone) are
very low and sometimes become negative even after using efficient compression algorithms

69

0

10

20

30

40

Download Upload

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
J
o
u
le
) 3G WiFi Bluetooth

Figure 3.15: Energy consumption for transferring a file of 1 MB size.

[33]. In our experiment, we used Android’s ZipInputStream and ZipOutputStream class for
compressing portable data format (pdf) files and the compression ratio was only 12.5%.

Table 3.1: Comparison of required time and energy cost for different scenarios

Scenarios Time Required Energy Consumption

(Second) (Joule)

S1 76.99 99.93

S2 32.79 8.76

S3 69.45 90.02

S4 153.81 109.72

We calculated the energy costs and processing times for uploading a file of size 5 (five)
megabytes using four scenarios mentioned in the beginning of this section. The results
are given in Table.3.1. In scenario S2, the consumed energy is the least among the four
scenarios. We assume that server has much higher Internet bandwidth, and we did not
include the time to upload the file from UCCI server to SFTP server in scenario S2. In
scenario S3, the cost is less than that of S1, but the difference is not significant. In fact,
the compression ratio is a critical factor here, higher compression ratio yields better energy
saving. The completion time of whole uploading process is also important. Presented en-
ergy costs are the costs uploading process only. During the file uploading, the device needs
to be active which consumes additional energy (about 450 milliwatts on our smartphone).
Therefore, energy cost in scenario, S4 is the worst in all respects. The data rates and

70

1000

1100

1200

1300

1400

1500

Zip UnZip

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n

(m
ill
iw
a
tt
)

Average

Minimum

Maximum

(a) Power consumption (milliwatt).

2000

3000

4000

5000

Zip UnZip

P
ro
c
e
s
s
in
g
 R
a
te
s

(k
ilo
b
y
te
s
/s
e
c
)

Average

Minimum

Maximum

(b) Processing rate (kilobytes).

Figure 3.16: Power consumption and processing rate for compression/decompression.

energy consumption for WiFi link are much better than that of 3G link, and therefore, a
secure WiFi link (if available) should be preferred over 3G link.

3.7 Summary

We have proposed UCCI, a generic architecture for facilitating communication between two
wireless portable devices such as a smartphone and a laptop. This framework allows a server
device to remain in sleep state unless its service is needed by a client device. It exploits
the ‘Wake On’ feature of the server device and uses the personal area low power Bluetooth
link, and then, optionally, puts the server back into sleep state. To validate our model,
we have developed two prototypes using state-of-the-art BlackBerry 9700 and HTC Nexus

71

One smartphones. We discuss the impact of this model by measuring power consumption
on the client in different states through on-device experimentation. We compared the costs
of transferring a file over 3G, WiFi, and Bluetooth links and measured the energy costs of
data compression and decompression processes to show how they affect the energy budget
of a smartphones.

72

Chapter 4

Anatomy of Smartphone WiFi Traffic

We analyze the WiFi access traffic of Android based HTC Nexus One, Apple’s iPhone
3GS, and BlackBerry 9700 smartphones for different classes of applications, namely, web
browsing, YouTube video playing, and Skype VoIP calling. We set up a bench to capture
the WiFi access traffic data of smartphone applications, and analyzed the data in terms of
packet size, packet inter-arrival time, burst duration, burst inter-arrival time, and burst size.
We discuss the implications of these observed parameters on existing MAC level energy
saving techniques. Then, we propose a Low Energy Data-packet Aggregation Scheduler
(LEDAS) that accumulates a number of upper layer packets into a burst at medium access
control (MAC) level based on formation time, size, and number of packets. We have given
a flowchart description of the technique. By means of analysis, we have derived expressions
for the average values of burst size, burst inter-arrival times, and number of packets in a
burst. Finally, we have evaluated the energy saving potential of LEDAS on a smartphone.

4.1 Problem Description

Today’s smartphones are equipped with good processing capabilities, graphical user in-
terface (GUI), and multiple radio interfaces, because of significant development in micro-
electronics technology. More capabilities are being built into these phones, and they are
able to support resource intensive applications. These applications include web browsing,
social networking, email client, online gaming, online multimedia playing, global position-
ing system (GPS) based navigation, and weather and stock updates. Due to these network
related applications, smartphones draw a significant amount of wireless access traffic while

73

producing much uplink traffic. This traffic volume is growing rapidly and significantly
faster than broadband traffic volume [157].

Though wireless access traffic of smartphones is routed through cellular and 802.11
based WiFi data networks, Universal Mobile Telecommunications System (UMTS) based
3G cellular data networks typically require more energy with less data rates compared
to WiFi based networks [117]. Moreover, WiFi hotspots have become very common at
homes, institutions and public places. Accordingly, smartphones use WiFi data link by
default due to its accessibility, higher bandwidth, and less cost in comparison with cellular
networks. Cellular data networks are mainly used while the users walk around or stay on
transports. Analysis of residential digital subscriber lines (DSL) of a large European ISP
shows that there is a significant and increasing number of active smartphone connections
[93]. Therefore, novel energy saving measures need to be addressed for both cellular and
WiFi based data networks.

Unfortunately, the growth in battery technology has not kept pace with the rapidly
growing energy demand of these smart devices. The battery of a state-of-the-art smart-
phone generally lasts only 3−4 hours when online video is played. A GPS aided navigation
application runs around the same amount of time when it runs on battery. This dependence
on battery energy puts a severe constraint on the availability of these devices. Therefore,
there is a strong motivation for designing all aspects of smartphones from the perspective
of battery energy [104].

Battery driven portable devices that are capable of saving energy, comprise of hardware
components with energy saving features. Such a component has several operational modes,
i.e. states, with different levels of energy consumption. For example, the communication
component can have four operational modes, namely, transmission, reception, idle, and
doze [114]. The power consumption levels in the reception and transmission modes are
much higher than the doze and idle modes [137]. Intuitively, energy can be saved by
keeping a transceiver in the doze mode for as long as possible, as determined by an operating
system (OS). Similar energy-saving features are incorporated in processor design, display,
and other hardware components [16].

The energy saving strategies for communication interfaces can broadly be classified
into two categories: (i) inactivity threshold strategy, and (ii) micro power management
(µPM). Inactivity threshold strategy is based on the principle that the longer a component
has been inactive, the longer it will continue to be inactive [91]. When a user does not
interact with a smartphone for a while, the device turns off the display and further saves
energy by keeping all the hardware at minimum energy level. Only minimal interaction
is maintained with the network to trace call and to update applications’ status. A recent

74

study [45] revealed that users interact with their smartphones in a bursty manner, and each
session of interactions (usage burst) generally lasts for 10 − 250 seconds. A smartphone
starts a timer to observe the idle period after each usage burst, and goes into idle mode to
save energy once the period exceeds a preset threshold.

In contrast to the inactivity threshold strategy discussed above, micro power manage-
ment (µPM) is applicable during a usage burst, and this technique deals with keeping a
component in low energy state (pause or doze mode) for a very short interval so that the
functionality of the device is not compromised. The fundamental requirement for these
strategies is the ability of the related hardware component to go into low power mode for
a very short period of time. The short interval is in the range of microseconds to couple
of milliseconds [16, 89]. This strategy enables a communication interface to enter into
power-saving mode even between two medium access control (MAC) frames. The gaps
between successive frame exchange can further be extended by aggregating couple of data
packets into one MAC frame, which make room for hardware to be in low energy state
for longer period of time [114, 78, 176]. Though the concept of packet aggregation on the
device side is new, various forms of traffic aggregation have been used in data backbone
networks, and new techniques are being proposed to achieve higher bandwidth and energy
efficiency [98, 143].

The process of packet aggregation adds delay to data packets and creates packets of
larger size than that of the original packets. However, some kinds of traffic such as VoIP
and real-time multimedia are very much delay sensitive. For each type of communication
interface, there is a threshold value for data packets, known as maximum transmission unit
(MTU). For example, a 1500-byte packet is the largest packet allowed by Ethernet at the
network layer [148]. If the size of a data packet to be transmitted exceeds MTU size, that
packet is segmented into multiple packets. As a result, it is not advantageous to have an
aggregated packet whose size is more than MTU; rather, it causes more overheads. There-
fore, while applying µPM, clear understanding of the nature of traffic and distributions
of the inter-arrival times and sizes of the network data packets is required to maintain a
certain level of performance and quality of service (QoS).

In this chapter, we present an in-depth insight into the characteristics of wireless access
traffic, which will spur the development of micro power management strategies for the WiFi
communication interface of smartphones. We have collected wireless access traffic data of
smartphones for some representative applications [44], and studied the characteristics of
individual packets as well as packet bursts for both uplink and downlink traffic.

We gathered the Internet traffic data of three state-of-the-art smartphones, namely,
HTC Nexus One, iPhone 3GS, and BlackBerry 9700, connected to Internet via WiFi net-

75

Internet

Network Packet

Analyzer

Wireless

Access Point

Smartphone

NIC 1

NIC 2

Figure 4.1: Connection details of network packet probing setup.

work. We route the traffic from and to a smartphone via a desktop computer as shown
in Fig. 4.1. The WiFi access point (AP) is attached to the computer and only one smart-
phone is associated with the AP at a time. Therefore, all data packets traveled to and
from smartphone can be sniffed by the packet analyzer running on the desktop computer.
The traffic data for 3G networks could be collected at the cellular base station (BTS) or by
placing a packet probing application in the smartphones. However, we did not have access
to the BTS of cellular networks or have packet probing applications for the smartphones.
The analysis of wireless access traffic in 3G networks is beyond the scope of this work, and
we aim to investigate that in future.

We carried out web browsing, YouTube video playing, and Skype VoIP calling on the
smartphones. A network packet analyzer installed on the desktop computer captured
all the data packets. In the dataset, we observed some network management packets
originated from the WiFi AP and we exclude them from further processing. We examine
the distribution of packet sizes and inter-arrival times of the packets in uplink and downlink
traffic. The packets are grouped into bursts based on their inter-arrival time. Then, we
compute the distribution of durations, inter-arrival times of the bursts, and number of
packets in each burst. As we discuss in Section 4.6, the parameters are very important
in designing energy saving techniques for communication interface of a smartphone. For
example, the duration of bursts is crucial in designing packet aggregation techniques at
the MAC level. This work makes the following contributions.

• We present a test bench to capture and analyze the wireless access traffic generated
by smartphone applications.

• We run representative applications on smartphones and analyze the characteristics of
the wireless access traffic over the wireless network by means of duration, inter-arrival

76

time, size of burst and number of packets per burst.

• We have collected traffic data from iPhone 3GS, BlackBerry 9700 and HTC Nexus
One, and observed whether there is any significant difference in the distributions of
the above mentioned parameters.

• We observed that the size of almost 80% of the uplink data packets is less than 66
bytes, and about 60% of the downlink packets have less than 1 millisecond inter-
arrival time. For uplink traffic, it is about 50%. The inter-arrival times of bursts in
both directions is more than 10 millisecond for more than 90% of the bursts.

• Based on the above observations, we have identified opportunities to design new
energy saving techniques specifically tuned for smartphones.

The rest of this chapter is organized as follows. We review some substantial work that
focus on energy saving measures for communication module in Section 4.2. The details of
our test bench is described in Section 4.4, analysis of the results is given in Section 4.5.
We propose a packet aggregation scheduler at the end of this chapter.

4.2 Related Work

We discuss the relevant prior work in energy saving in wireless networks. One paper pro-
poses a scheme for optimizing inactivity periods of a mobile device in 3G cellular networks,
and the rest of the papers focus on 802.11 based infrastructure wireless networks.

Yang [163] investigated the discontinuous reception (DRX) mechanism for saving energy
of mobile devices in the Universal Mobile Telecommunications System (UMTS) networks.
The DRX mechanism is controlled by two parameters: the inactivity timer threshold tI and
the DRX cycle tD. Based on a M/G/1 queueing model with vacations, the author studies
the optimal values for tI and tD which maximize the energy saving in mobile devices. The
author also presents an adaptive algorithm called dynamic DRX (DDRX) that dynamically
adjusts the values of tI and tD close to the optimal values.

Liu et al. [89] proposed micro power management (µPM) scheme that works in the
client devices. It allows a WiFi radio to sleep for short intervals, in the range of a few
microseconds. The communication interface can be used to sleep even between two MAC
frames to save energy. The µPM technique uses predictions to exploit short idle intervals,
and it relies on 802.11 retransmissions to recover from any mis-predictions.

77

Tan et al. [147] proposed an application-independent protocol, called power save mode
(PSM) throttling. This transport level technique reshapes TCP traffic into periodic bursts
with the same average throughput as the server transmission rate. Clients accurately
predict the arriving time of packets, and turn on/off the wireless interfaces accordingly.
PSM-throttling can minimize power consumption on TCP-based bulk traffic by effectively
utilizing available Internet bandwidth without degrading the performance of application
perceived by the user.

Rozner et al. [128] claimed that depending on the PSM implementation strategies,
traffic of the other clients in the same network (competing background traffic) causes
upto 300% more energy consumption in a client device. Moreover, the capacity of a
wireless network reduces due to the unnecessary retransmissions and unfairness. They
propose Network-Assisted Power Management (NAPman) algorithm for WiFi devices that
addresses the above issues. NAPman distinguishes traffic of a PSM client from the traffic of
competing constantly awake mode (CAM) clients and other PSM clients. Then it enforces
a work-conserving first-come-first serve (FCFS) policy only to the packets of clients that
are awake at any given time. This energy-aware fair scheduling minimizes client energy
and unnecessary retransmissions.

Agrawal et al. [2] proposed an algorithm named Opportunistic PSM (OPSM). This
scheme is effective when all the connected devices are engaged in web browsing, which is
characterized by small file downloads over TCP, with a short duration of inactivity or think
time in between two downloads. It performs better than static PSM when the number of
associated devices with an AP increases. The reason behind the improved performance
is that OPSM only permits one download at any time, due to which a device gets the
maximum throughput and this results in least energy consumption. In static PSM this is
not the case, since it allows simultaneous downloads, which leads to longer file download
times and hence consumes more energy than OPSM.

Kim et al. [78] present a MAC level frame aggregation scheme, which can improve the
throughput performance. By aggregating small-size frames into a large frame, it reduces
MAC and PHY layer overheads. Their measurement results show that the throughput
performance can be improved by 2 to 3 Mbps by applying the frame aggregation technique
in the IEEE 802.11b standard. They have also proposed that frame aggregation can easily
be performed above the MAC service access point (SAP) easily with device driver modifi-
cations. This work dealt with the impact of frame aggregation on throughput performance,
and they did not consider any traffic pattern or impact of frame aggregation on QoS.

Zhu et al. [176] address the power saving problem by developing a model for stochas-
tic analysis of timer-based power management in infrastructure WLANs. Based on this

78

model, the probabilities that a device is active, idle, or dozing are derived, and the power
consumption of the device, number of frames buffered, and average delay per frame are
obtained. This scheme produce bursty traffic to keep the communication interface in doze
mode for longer period of time. However, it does not reduce the MAC/PHY layer data
overheads. Specifically, the PHY layer overhead is very much significant in WLAN.

Nath et al. [106] proposed to transmit multiple beacons, one for every client associated
to the AP. Each client estimates the round-trip-time (RTT) of the current TCP connection
and sends this information to the AP, based on this information the AP schedules the
beacon frames to the clients.

Ra et al. [122] mention a class of applications that is often naturally delay-tolerant
so that it is possible to delay data transfers until a lower-energy option becomes available.
They present an optimal online algorithm for energy-delay trade-off using the Lyapunov
optimization framework. Their results show that their algorithm can be tuned to achieve
a broad spectrum of energy-delay trade-off, and it can save 10− 40% of battery energy for
some workloads.

Our work explores the characteristics of wireless access traffic which must be taken
into account in designing micro power management (µPM) techniques for smartphones.
Smartphone’s communication hardware is capable of being in doze mode for short intervals
(as low as 4 milliseconds), and this feature can be utilized even when the device interacts
with its user. In this work, we investigate the requirements of traffic patterns of network
related applications, and suggest guidelines for developing novel energy saving techniques.

4.3 Selection of Applications and Performance Met-

rics

To get representative statistics of the wireless access traffic of smartphones, it is very
important to consider a set of relevant applications that constitute smartphone traffic. We
have considered a set of applications according to usage rating given in [44]. In this section,
we also describe the metrics that we measured from the traffic data.

4.3.1 Chosen Applications

We selected three state-of-the-art smartphones, namely, HTC Nexus One, iPhone 3GS and
BlackBerry 9700 which run on the most popular mobile operating systems (OS). Then, we

79

chose a set of representative network related applications on smartphones to gather traffic
data [44]. The applications are: (i) random web browsing, (ii) social networking website,
facebook.com browsing, (iii) YouTube video playing, and (iv) Skype VoIP calling. In case
of web browsing, we randomly browsed news websites such as cnn.com and www.cbc.ca/

news/, searched in google.com, and accessed emails on gmail.com. During facebook.com
browsing, we followed links, status on friends’ wall, and viewed photos. We played two
videos on YouTube.com for online video data, and made VoIP calls using Skype to gather
VoIP trafiic. The duration of each of the tasks was about 10 minutes. Though we collected
data from three different smartphones, in this work, we used the data obtained from HTC
Nexus One handset, and only a subset of the results is shown due to lack of space.

4.3.2 Performance Metrics

In the traffic data, we intended to observe the distribution of packet inter-arrival times,
packet sizes, and burstiness of traffic. We were mainly interested to see the attributes of
the bursts. Fig. 4.2 shows different parameters of a burst.Burst DurationPacket Inter-arrival Time Burst Inter-arrival Time Data PacketTime

Figure 4.2: Schematic diagram of performance metrics.

We explain the performance metrics and discuss their importance below.

• Burst Duration is the difference of arrival times between the first and last packets in
a burst. We do not consider the duration of a burst containing only one packet.

• Burst Size is the sum of sizes of all data packets in a burst. The packet includes
application data, and headers of transport, network and MAC levels. The MAC level
header size is 14 bytes in all cases as the packets are captured at wired portion of
the link.

• Packets per Burst is the total number of packets in a burst.

80

cnn.com
www.cbc.ca/news/
www.cbc.ca/news/
google.com
gmail.com

• Burst Inter-arrival Time is the time gap between the arrival of the last packet of a
burst and arrival of first packet of the next burst is referred as the burst inter-arrival
time.

A burst containing a couple of data packets, and with less duration can easily be aggregated
at MAC level before transmission. Aggregation process reduces MAC and PHY level
overheads. A communication interface can utilize the larger burst inter-arrival times by
being into low energy mode during those intervals. Energy saving by overhead reduction,
and by staying longer in low energy mode are our concerns.

4.4 Experimental Setup

The network connection details for collecting traffic data packet information from a smart-
phone is shown in Fig. 4.1. A 802.11g based access point (AP) is connected to a network
interface card (NIC) of a desktop computer which is connected to the Internet through an-
other NIC. Internet connection is shared between the two NICs of the desktop computer.
If only one smartphone is connected with AP, most of the packets captured by the packet
analyzer, originate from the smartphone. There is a small number of network management
packets exchanged by the AP, and those packets are discarded during analysis.

As a packet analyzer, we used Wireshark (http://www.wireshark.org/), an open
source and widely used network packet analyzer in the industry and educational institu-
tions. Wireshark does not manipulate things on the network, it only examines packets
on a network. To collect smartphone’s Internet traffic data, we connect one smartphone
with the AP at a time, and run an application. Then we collect the packet information
from the Wireshark, installed on the computer. The captured data packets are exported
as spreadsheet from Wireshark for further analysis. Then, the packets are separated into
uplink and downlink packets based on the source and destination IP addresses.

One or more packets are marked as a group when the inter-arrival times between two
consecutive packets are less than a threshold value. Each of the groups is referred to as a
burst. A burst may contain only one packet if the time gaps with its previous and next
packets are more than the threshold. The time span between the first and the last packets in
a burst can be any positive time period. To the best of our knowledge, the state switching
timing (active to sleep and sleep to active) of state-of-the-art device circuitry is around 4
milliseconds. Therefore, the threshold value is set to 5 milliseconds.

As we collect traffic information at the desktop computer, a data packet travels via
AP from a smartphone before arriving at the analyzer. Thus, the AP adds some delay to

81

http://www.wireshark.org/

Internet

Wireless

Access Point

Laptop

NIC 1

NIC 2

Packet

Analyzer 1

Packet

Analyzer 2

Figure 4.3: Connection setup for verifying the impact of access point (AP).

each packet and that may not be uniform for all packets due to buffering effect. Presence
of uneven delays corrupt the timing of packet inter-arrival times, and to investigate this
effect we use a laptop computer with another packet analyzer on it (Fig. 4.3). We run
applications on laptop computer and gather packet information at both analyzers and
compare the statistics obtained from both sources. The results are discussed in the next
section.

4.5 Observations and Discussions

The information regarding sizes and inter-arrival times of uplink and downlink data packets
is crucial for designing an effective micro power management strategy for smartphones’
communication interfaces. With this objective, we at first compare the total number
of uplink and downlink packets for different application scenarios. Then we show the
distribution of size and inter-arrival time of individual packets in uplink and downlink
traffic. The same attributes of bursts are discussed later in this section. Finally, we discuss
the impact of the AP and operating systems (OS).

In social networking website (facebook.com) browsing, the amount of uplink packets is
about 80% of the downlink packets, and in case of random web browsing, it is in the range
of 70% to 95%. The numbers of packets in uplink and downlink traffic are almost equal in
VoIP traffic. Only for YouTube video traffic, the amount of uplink packets is only 18% of
the downlink traffic. Thus, the amount of uplink packets is significant as compared to the
downlink packets except for YouTube video traffic.

The size of the packets in the uplink traffic is usually smaller, which are mostly ACKs
(80% for random web browsing). For downlink traffic, about 60% of packets are of above

82

0%

20%

40%

60%

80%

100%

<
=
6
6

1
0
0

5
0
0

7
0
0

1
0
0
0

1
2
0
0

1
4
0
0

>
=
1
4
0
0

N
o
rm
a
li
z
e
d
 F
re
q
u
e
n
c
y
 o
f

P
a
c
k
e
t
S
iz
e
 (
U
p
li
n
k
 +
 D
o
w
n
li
n
k
)

Packet Size (bytes)

Uplink Packet

Downlink Packet

Uplink Packet (Cumulative)

Downlink Packet (Cumulative)

Figure 4.4: Distribution of uplink and downlink packet size for random web browsing.

1400 bytes in random web browsing, and almost all packets are of MTU size in case of
YouTube video playing. The distribution of the packet size is given in Fig. 4.4. The uplink
and downlink packet size in Skype VoIP traffic is around 71 bytes. A significant portion
of the packets in both uplink and downlink traffic have very little inter-arrival times. As
shown in Fig. 4.5, more than 45% of the uplink packets have inter-arrival time of below 1
millisecond, and above 60% of the downlink packets have inter-arrival time of less than 1
millisecond. In the following paragraphs, we present the characteristics of bursts formed
by the uplink and downlink traffic.

0%

20%

40%

60%

80%

100%

<
=
 0
.2
5

0
.5 1 2 3 4 5

1
0

2
0

>
 2
0

N
o
rm

a
li
z
e
d
 F

re
q
u
e
n
c
y
 o

f
P

a
c
k
e
t
 I
n
te

r-
a
rr

iv
a
l
T
im

e
 (
U

p
li
n
k
 +

 D
o
w

n
li
n
k
)

Packet Inter-arrival Time (millisecond)

Uplink Packet

Downlink Packet

Uplink Packet (Cumulative)

Downlink Packet (Cumulative)

Figure 4.5: Distribution of uplink and downlink packets’ inter-arrival time for random web
browsing.

Burst Duration Fig. 4.6 shows the distribution of burst durations of uplink traffic.
More than 95% of the bursts last less than 10 milliseconds. Almost 40% of the bursts live
at best 1 millisecond. This phenomenon is very much interesting. This kind of shorter
burst duration also indicates that packets within a burst are independent of each other.

83

No response is required from the destination node before sending all the packets in a burst.
We observe exactly the same trend with the downlink traffic.

0%

20%

40%

60%

80%

100%

0.25 0.5 1 2 3 4 5 10 20 50
Burst Duration (millisecond)

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

 o
f

U
p

lin
k

B
u

rs
t

D
u

ra
ti

o
n

Web Browsing
Facebook
YouTube
Skype
Web Browsing (Cumulative)
Facebook (Cumulative)
YouTube (Cumulative)
Skype (Cumulative)

Figure 4.6: Distribution of uplink burst durations.

Burst Size The distribution of uplink burst size is given in Fig. 4.7. Most of the burst
sizes fall below 1500 bytes. Almost 70% of the bursts formed in YouTube uplink traffic
are single-packet bursts of 66 bytes in length. Those are basically transport level ACKs.
Again, for Skype uplink traffic all bursts contain one packet of size around 70 bytes. In
more than 50% of the cases, the burst sizes in uplink traffic for web browsing fall in between
200 to 1000 bytes. The burst sizes in the downlink traffic are larger compared to sizes of

0%

20%

40%

60%

80%

100%

≤66 75 100 200 500 1000 1200 1400 1500 ≥1600
Burst Size (bytes)

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

o
f

U
p

lin
k

B
u

rs
t

S
iz

e Web Browsing
Facebook
YouTube
Skype
Web Browsing (Cumulative)
Facebook (Cumulative)
YouTube (Cumulative)
Skype (Cumulative)

Figure 4.7: Distribution of uplink burst sizes.

uplink traffic (shown in Fig. 4.7 and Fig. 4.8). For web browsing and online video playing,
the burst size generally remains above 2000 bytes. The burst size becomes as large as 50

84

kilobytes for YouTube video traffic. This differences in burst sizes of uplink and downlink
traffic require different strategies for energy saving in both directions.

0%

20%

40%

60%

80%

100%

≤66 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

>2
00

00

Burst Size (bytes)

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

 o
f

D
o

w
n

lin
k

B
u

rs
t

S
iz

e

Web Browsing
Facebook
YouTube
Skype
Web Browsing (Cumulative)
Facebook (Cumulative)
YouTube (Cumulative)
Skype (Cumulative)

Figure 4.8: Distribution of downlink burst sizes.

Packets per Burst The distribution of packets per burst in uplink traffic is given in
Fig. 4.9. More than 50% of the bursts contain 2 or more packets during web browsing.
In YouTube uplink traffic, about 70% of the bursts contain single packet, and almost all
bursts are single packet burst for Skype uplink traffic. In case of downlink traffic, similar
trend is observed for web browsing and Skype calling. However, YouTube traffic contains
25% single packet burst, and 25% bursts with more than 25 packets. This bursty traffic is
an indication of energy saving measure at transport level, which provides more idle time
to the communication interface.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 10 15 20 25 50
Number of Packets per Burst

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

 o
f

N
u

m
b

er
 o

f
P

ac
ke

t
p

er
 U

p
lin

k
B

u
rs

t

Web Browsing
Facebook
YouTube
Skype
Web Browsing (Cumulative)
Facebook (Cumulative)
YouTube (Cumulative)
Skype (Cumulative)

Figure 4.9: Number of data packets in uplink bursts.

85

Burst Inter-arrival Time Fig. 4.10 shows the distribution of burst inter-arrival times
for downlink traffic. Only 15% of the bursts has less than 10 milliseconds of inter-arrival
time, and 60% of the bursts have inter-arrival times of more than 20 milliseconds. Same
trend is also observed in uplink traffic.

0%

20%

40%

60%

80%

100%

≤10 20 30 40 50 60 70 80 90 >90
Burst Inter-arrival Time (millisecond)

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

 o
f

D
o

w
n

lin
k

B
u

rs
t

In
te

r-
ar

ri
va

l T
im

e

Web Browsing
Facebook
YouTube
Skype
Web Browsing (Cumulative)
Facebook (Cumulative)
YouTube (Cumulative)
Skype (Cumulative)

Figure 4.10: Distribution of downlink burst inter-arrival times.

The results discussed so far are based on separate uplink and downlink traffic data, and
separate analysis is required for packet aggregation techniques. However, the communica-
tion module of a smartphone needs to be active for sending and receiving of data packets,
and therefore, we examine a dataset which contains both the uplink and downlink data.
Fig. 4.11 shows the distribution of burst inter-arrival times in both directions of traffic
for webpage and Facebook browsing. Around 30% of the bursts have inter-arrival times of
less than 10 milliseconds. In case of web browsing, half of the bursts come more than 20
milliseconds apart.

0%

20%

40%

60%

80%

100%

≤10 20 50 100 200 500 1000 2000 5000 >5000
Burst Inter-arrival Time (millisecond)

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

 o
f

B
u

rs
t

In
te

r-
ar

ri
va

l T
im

e
(U

p
lin

k+
D

o
w

n
lin

k)

Web Browsing

Facebook

Web Browsing (Cumulative)

Facebook (Cumulative)

Figure 4.11: Distribution of burst inter-arrival times in both directions.

86

Placement of Packet Analyzer To observe the effect of AP on the route of traffic
data, we used a laptop with packet analyzer on it instead of a smartphone. We browsed
random web pages, and captured packets on the laptop as well as on the desktop computer
as usual (Fig. 4.3). On the packet analyzer of the laptop, 40% of the packets in the uplink
traffic have inter-arrival time of 0.25 millisecond or less, and for downlink traffic it is 42%
of the packets. On the other hand, the packet analyzer on the desktop PC, we found 33%
of the uplink packets have inter-arrival time of 0.25 millisecond or less and for downlink
packets it is 68%. These numbers suggest that the AP is reducing the burstiness of the
traffic in both directions by introducing uneven delays, and therefore, the presented results
give a conservative estimate about the traffic bursts.

Impact of OS To observe any possible impact of operating system (OS) or device on
the wireless access traffic, we conducted the same set of experiments on three different
smartphones namely, HTC Nexus One, iPhone 3GS and BlackBerry 9700 by keeping all
other parameters unchanged. However, we did not observe any significant differences in
the distribution of the parameters discussed above.

4.6 Impacts on Energy Saving Methods

We summarize the characteristics of uplink and downlink traffic, and discuss the potential
application of those attributes in designing energy saving techniques. The characteristics
of uplink traffic are as follows:

• Durations of more than 95% of the bursts are below 10 milliseconds (Fig. 4.6);

• Inter-arrival times of more than 80% of the bursts are grater than 10 milliseconds
(Fig. 4.10);

• Sizes of almost all uplink bursts are less then 1500 bytes (Fig. 4.7);

• Number of packets per burst is less than 16 (Fig. 4.9);

We observe the same statistics for downlink traffic except for the burst size. The
downlink burst size is usually larger, and in case of YouTube video traffic, burst size becomes
up to 50 kilobytes (Fig. 4.8). When we consider the bursts in both directions, only 30%
of the bursts come less than 10 milliseconds apart (Fig. 4.11). Based on the analysis
given above, we discuss its implication on different MAC level energy saving techniques in
Table. 4.1. We explain the effects of different burst parameters in the following.

87

4.6.1 Impact of Burst Duration and Size

Different applications on a smartphone communicate with different servers. Sometimes
even one application communicates with more than one server. However, all communica-
tions are routed through the AP in infrastructure wireless networks. Small burst durations
(couple of milliseconds) create opportunities for holding data packets in a burst without
affecting the applications’ performance. As most of the burst size is less than MTU in
uplink traffic, all the packets in a burst can be aggregated into a MAC frame. On the
other hand, for larger burst size as in downlink traffic, several MAC frames containing in-
dividual packets can be accumulated before transmitting them at a time. There are several
derivatives of frame aggregation techniques [89, 176], and they basically create longer idle
periods for a communication interface. In addition to that frame aggregation technique
reduces MAC and PHY layer overheads significantly. However, large burst sizes introduce
longer packet delays, and re-transmission rate also increases in presence of moderate bit
error rate (BER).

4.6.2 Impact of Burst Inter-arrival Time

The inter-arrival time of bursts gives us insight into how long the communication interface
should go into doze mode for saving energy. Results show that about 35% of the bursts
have inter-arrival time of less than 10 milliseconds. Therefore, a millisecond-level dozing
is essential for uninterrupted flow of the data traffic. However, the beacon interval is 100
milliseconds in existing WiFi networks, and therefore, the current beacon interval is unable
to accommodate energy saving management scheme in presence of online multimedia or
VoIP traffic. Moreover, sending PS-POLL for receiving data after each tiny doze interval
is impractical, because energy saved from short doze mode would be spent in sending PS-
POLL messages. Therefore, coordinating the state information of the devices with the AP
is a crucial design issue.

4.6.3 Coordination between Device and AP

The values of device’s doze interval and AP’s PSM (Power Save Mode) message interval
must be chosen in such a way that an AP is able to track the state of an attached device
without getting an explicit PS-POLL message. On the device side, a device needs to wait
for a PSM message after waking up from doze state. It either expects data packets from the
AP or goes into doze mode again according to the status value in the PSM message. The

88

challenge in the device side is to reduce the wait time before going into doze mode further.
To achieve these objectives, one or more of the following measures worth investigation.

Natural Coordination As we mentioned in the beginning of this section, the number
of uplink packets is comparable to downlink data packets, and the distribution of burst
inter-arrival times in uplink traffic is similar to the downlink traffic. A device can take
advantage of this natural phenomenon by synchronizing the doze interval with the uplink
frame rate. An AP informs a device of any buffered data using the Acknowledgment’s
(ACK) more data field, and the device receives subsequent frames from the AP. No extra
PSM message is needed here. However, this scheme may not work when the uplink frame
rate is low as compare to downlink rate (as in YouTube traffic).

PSM Message with ACK In infrastructure wireless networks, in any data exchange,
the access point becomes either a sender or a receiver, and it often needs to send ACKs.
Since the beacon message is large, and beacon interval is long, an AP can tag the buffer
status of connected devices with MAC level ACKs.

For example, if an AP supports 256 devices, it needs only a 8 bytes vector to indicate
the status for each device. This technique does not require extra PHY or MAC level
overheads, and the status message can be sent more frequently. The client devices can
update themselves accordingly.

Extra PSM Message When the network is under-loaded, AP does not need to send
ACKs very often. In such situations, AP itself can send PSM messages time to time
containing buffer status. AP does not run on battery and in low traffic scenario, this
frequent PSM messaging will not reduce network throughput.

89

T
ab

le
4.

1:
Im

p
ac

t
of

th
e

an
al

y
si

s
on

d
iff

er
en

t
M

A
C

-l
ev

el
en

er
gy

sa
v
in

g
te

ch
n
iq

u
es

T
ra

ffi
c

P
a
ra

m
e
te

rs
O

b
se

rv
a
ti

o
n

s
S

ta
n

d
a
rd

P
S

M
(e
.g
.,

[5
0
])

F
le

x
ib

le
B

e
a
c
o
n

P
e
ri

o
d

T
e
ch

n
iq

u
e

M
ic

ro
-P

o
w

e
r

S
a
v
in

g
T

e
ch

n
iq

u
e
s

F
ra

m
e

A
g
g
re

g
a
ti

o
n

T
e
ch

n
iq

u
e
s

(e
.g
.,

[1
0
6
])

(e
.g
.,

[1
6
,

8
9
])

(e
.g
.,

[2
,

7
8
,

1
7
6
])

P
a
ck

et
S

iz
e

(F
ig

.
4.

4
)

A
b

o
u

t
8
5%

o
f

th
e

u
p

li
n

k
p

ac
k
et

s
ar

e
sm

al
le

r
th

a
n

1
00

b
y
te

s
a
n

d
6
0
%

of
th

e
d

ow
n

li
n

k
p

a
ck

et
s

a
re

gr
ea

te
r

th
an

1
40

0
b
y
te

s.

x
x

x
S

m
a
ll

er
p

ac
k
et

s
in

u
p

li
n

k
a
re

su
it

a
b

le
fo

r
a
g
gr

eg
at

io
n

as
a

n
u

m
b

er
o
f

th
em

fi
t

in
to

a
M

A
C

fr
a
m

e.
L

a
rg

er
p

ac
ke

ts
in

d
ow

n
li

n
k

a
re

su
it

ab
le

fo
r

a
cc

u
m

u
la

ti
on

in
to

a
p

h
y
si

ca
l

la
ye

r
fr

am
e,

so
th

a
t

p
h
y
si

ca
l

la
ye

r
ov

er
h

ea
d

is
re

d
u

ce
d

.
B

u
rs

t
or

P
ac

k
et

In
te

r-
a
rr

iv
a
l

T
im

e
(F

ig
.

4
.1

0
&

F
ig

.
4
.1

1)

T
h

e
in

te
r-

ar
ri

va
l

ti
m

es
o
f

80
%

o
f

th
e

u
p

li
n

k
p

ac
ke

ts
is

le
ss

th
an

20
m

il
li

se
co

n
d

s,
a
n

d
it

is
le

ss
th

an
1

m
il

li
se

co
n

d
fo

r
6
0
%

of
th

e
d

ow
n

li
n

k
p

ac
ke

ts
.

T
h

e
in

te
r-

a
rr

iv
a
l

ti
m

es
of

7
0%

o
f

th
e

b
u

rs
ts

in
b

ot
h

u
p

li
n

k
an

d
d

ow
n

li
n

k
tr

a
ffi

c
is

m
o
re

th
a
n

1
0

m
il

li
se

co
n

d
s.

S
m

a
ll

in
te

r-
ar

ri
va

l
ti

m
es

o
f

p
ac

ke
ts

a
re

n
ot

su
it

a
b

le
.

T
h

e
lo

w
es

t
b

ea
co

n
in

te
rv

al
in

st
a
n

d
a
rd

P
S

M
is

1
00

m
il

li
se

co
n

d
s,

w
h

er
ea

s,
o
n

ly
2
0%

o
f

th
e

p
a
ck

et
s

(s
ee

F
ig

.
4
.5

)
h

av
e

in
te

r-
ar

ri
va

l
ti

m
e

o
f

m
o
re

th
a
n

20
m

il
li

se
co

n
d

s.
T

h
er

ef
o
re

,
st

a
n

d
a
rd

P
S

M
is

n
ot

fe
a
si

b
le

to
sa

ve
en

er
gy

w
h

en
a
p

p
li

ca
ti

o
n

s
(u

se
d

in
th

e
a
n

a
ly

si
s)

ru
n

on
a

d
ev

ic
e.

H
ow

ev
er

,
w

h
en

a
d

ev
ic

e
is

in
id

le
st

at
e,

st
a
n

d
a
rd

P
S

M
ca

n
b

e
u

se
d

to
sa

ve
en

er
g
y

u
ti

li
zi

n
g

th
e
d
o
ze

m
o
d

e.

L
o
n

g
er

b
u

rs
t

in
te

r-
a
rr

iv
a
l

ti
m

es
ca

u
se

le
ss

n
u

m
b

er
of

b
ea

co
n

m
es

sa
ge

s.
F

or
th

e
k
in

d
of

tr
a
ffi

c
w

e
o
b

se
rv

ed
,

th
is

te
ch

n
iq

u
e

re
q
u

ir
es

tr
an

sm
is

si
on

o
f

fr
eq

u
en

t
b

ea
co

n
m

es
sa

g
es

as
th

e
in

te
r-

ar
ri

va
l

ti
m

es
o
f

60
%

of
th

e
p

ac
ke

ts
(s

ee
F

ig
.

4
.5

a
n

d
F

ig
.

4.
1
1)

ar
e

le
ss

th
an

20
m

il
li

se
co

n
d

s.
S
ig

n
ifi

ca
n
t

p
o
rt

io
n

o
f

b
an

d
w

id
th

w
o
u

ld
b

e
sp

en
t

o
n

se
n

d
in

g
b

ea
co

n
m

es
sa

g
es

w
it

h
in

cr
ea

se
d

n
u

m
b

er
o
f

cl
ie

n
ts

at
ta

ch
ed

to
a
n

A
P

.

In
te

r-
fr

am
e

sp
ac

e
d

oz
in

g
is

al
w

ay
s

b
en

efi
ci

al
(i

f
ac

h
ie

va
b

le
).

H
ow

ev
er

,
lo

n
ge

r
in

te
r-

a
rr

iv
al

ti
m

es
ca

n
b

e
u

ti
li

ze
d

in
d
oz

in
g

if
co

or
d

in
at

io
n

w
it

h
th

e
A

P
ca

n
b

e
m

a
in

ta
in

ed
.

T
h

es
e

te
ch

n
iq

u
es

su
g
ge

st
to

u
ti

li
ze

ve
ry

sm
a
ll

in
ac

ti
ve

p
er

io
d

s
ev

en
in

b
et

w
ee

n
M

A
C

in
te

r
fr

a
m

e
sp

ac
es

.
T

h
ou

gh
d

oz
in

g
fo

r
a

co
u

p
le

of
m

ic
ro

-s
ec

o
n

d
s

is
q
u

it
e

ch
a
ll

en
gi

n
g

gi
ve

n
th

e
p

re
se

n
t

st
at

e
of

th
e

w
ir

el
es

s
in

te
rf

a
ce

s,
it

d
o
es

n
ot

re
q
u

ir
e

co
-o

rd
in

at
io

n
w

it
h

th
e

A
P

.

S
m

a
ll

in
te

r-
ar

ri
va

l
ti

m
es

ar
e

a
ls

o
g
o
o
d

a
s

th
ey

re
su

lt
in

sm
al

l
b

u
rs

t
d

u
ra

ti
o
n
s.

8
0%

of
th

e
u

p
li

n
k

b
u

rs
ts

h
av

e
le

ss
th

a
n

5
m

il
li

se
co

n
d

o
f

in
te

r-
a
rr

iv
al

ti
m

es
an

d
th

es
e

b
u

rs
ts

co
n

si
st

o
f

p
ac

ke
ts

o
f

sm
al

le
r

si
ze

s.
T

h
es

e
fe

at
u

re
s

a
re

at
tr

a
ct

iv
e

fo
r

fr
a
m

e
a
gg

re
ga

ti
o
n

te
ch

n
iq

u
es

.
In

te
r-

a
rr

iv
al

ti
m

es
of

p
ac

ke
ts

ca
n

a
ls

o
b

e
co

n
tr

ol
le

d
b
y

tr
an

sp
o
rt

le
ve

l
te

ch
n

iq
u

e
su

ch
as

P
S

M
-t

h
ro

tt
li

n
g

[1
47

]
to

fa
ci

li
ta

te
fr

am
e

a
g
gr

eg
at

io
n

.

B
u

rs
t

D
u

ra
ti

on
(F

ig
.

4.
6)

A
b

o
u

t
8
0%

o
f

th
e

b
u

rs
ts

h
a
s

d
u

ra
ti

on
of

le
ss

th
a
n

1
0

m
il

li
se

co
n

d
s.

x
x

x
D

at
a

p
ac

ke
ts

in
cu

r
le

ss
d

el
ay

fo
r

sm
a
ll

b
u

rs
t

d
u

ra
ti

on
s.

T
h

e
o
b

se
rv

ed
b

u
rs

t
d

u
ra

ti
on

s
a
re

sm
a
ll

er
th

an
th

e
p

ac
ke

t
in

te
r-

ar
ri

va
l

ti
m

es
of

V
o
IP

tr
affi

c.
B

u
rs

t
S

iz
e

(F
ig

.
4
.7

&
F

ig
.

4.
8)

T
h

e
si

ze
of

th
e

90
%

of
th

e
u

p
li

n
k

b
u

rs
ts

is
le

ss
th

an
10

0
0

b
y
te

s.
In

d
ow

n
li
n

k
tr

affi
c,

th
e

b
u

rs
t

si
ze

s
va

ry
w

it
h

th
e

ty
p

e
o
f

th
e

a
p

p
li

ca
ti

o
n

s,
an

d
fo

r
Y
o
u
T
u
be

v
id

eo
,

th
e

b
u

rs
t

si
ze

s
go

b
ey

on
d

20
k
il

ob
y
te

s.

x
x

x
S

m
a
ll

er
b

u
rs

t
d

u
ra

ti
on

s
so

m
et

im
es

le
ad

to
la

rg
er

b
u

rs
t

si
ze

s,
a
n

d
b

a
se

d
on

tr
affi

c,
lo

n
g
er

b
u

rs
t

d
u

ra
ti

on
s

ca
n

al
so

re
su

lt
in

to
sm

al
le

r
b

u
rs

t
si

ze
s.

T
h
u

s,
b

o
th

ti
m

er
a
n

d
si

ze
b

a
se

d
th

re
sh

o
ld

s
n

ee
d

to
b

e
u

se
d

in
ag

g
re

g
a
ti

on
te

ch
n
iq

u
es

.

x
d

en
ot

es
th

a
t

a
te

ch
n

iq
u

e
d
o
es

n
o
t

d
ea

l
w

it
h

th
at

p
a
ra

m
et

er
.

90

4.7 Packet Aggregation Scheduler

Motivated by the observations discussed earlier in this chapter, we investigated the en-
ergy saving potential of data packet aggregation at MAC layer. In infrastructure wireless
networks, clients forward all data packets from different applications to the WLAN or cel-
lular access point. The packets that arrive as a burst are good candidates for aggregation
process for reducing delay incurred by the packets due to accumulation process. If the
aggregation process is accomplished in network layer, several queues would be needed to
maintain individual source-destination pair, and the resultant traffic in each flow exhibits
less burstiness. On the other hand, some might argue that applications send as much data
as possible at a time, so gathering consecutive packets from an application might reduce
the performance, even impede the functionality of the application. Though developers do
not always send optimum size data packets as they do not keep energy efficiency in mind,
that claim is valid to some extent. This situation can be avoided by aggregating packets
from several applications in MAC layer. However, consecutive packets with very little
inter-arrival time can be aggregated as the short time interval implies the independence of
each packet.

The IEEE 802.11n standard enables high data speed connection which is about 100
Mbps measured at MAC layer. To accommodate such data rate, it supports two MAC
level frame aggregation techniques, namely, Aggregate-MAC Service Data Unit (A-MSDU)
and Aggregate-MAC Protocol Data Unit (A-MPDU). These two aggregation techniques
can also be combined in two levels [87, 135, 145]. However, the standard does not specify
the scheduler for these schemes, and it is left as vendor’s choice. Here, we propose a packet
aggregation scheduler named as Low Energy Data-packet Aggregation Scheduler (LEDAS)
in this regard.

Figure 4.12: View of the aggregator as a queuing system.

LEDAS accumulates a number of upper layer packets into a burst at medium access
control (MAC) level, based on formation time, size, and number of packets. With this
scheme, larger bursts lead to longer inactivity periods during which the communication
module can be kept in doze mode. Figure 4.12 shows a schematic diagram of the aggre-
gation process. Fewer MAC frames lead to less overheads and contentions in the wireless

91

yes

yes

no

no

buffer is empty, a

packet arrives

buffer next

arriving packet

buffer packet,

start burst-timer

send packet and

receive ACK

fetch or send data till available

burst-timer

expires

Listen

data in AP

TIM-timer

expires?

yes

goto doze

mode

no

update

TIM-timer

data in

AP or host

doze

viable?

RF circuitry ON

LEDAS

no

yes A B

C

Figure 4.13: Flow diagram of the aggregation process.

medium. However, the data packets incur delays due to the accumulation process. We
have given a detail flowchart description of the technique. By means of analysis, we have
derived the distributions of burst size, burst inter-arrival times, and number of packets for
three different burst selection criteria. We evaluated the efficacy of the technique by sim-
ulations and showed the energy-delay trade-offs. Finally, we evaluated the energy saving
potential of LEDAS on a state-of-the-art HTC Nexus One smartphone.

4.8 Low Energy Data-packet Aggregation Scheduler

A flow diagram of the aggregation process is given in Fig. 4.13 and an algorithm showing
the working principle of LEDAS is given in 4.8.1. It basically receives packets originating
from different applications through Logical Link Control (LLC) sub-layer. The packets
are held here until a hold time expires (τ), or the total size of the packets exceeds some
threshold (α) or the number of packet crosses some limit (γ). The aggregated packet is
termed as burst and hold time is termed as burst formation time. After a burst is formed,
it is pushed into the MAC module. Normally, size of a burst is kept in a range of [α, β].
When the size of a burst exceeds α, it is sent to MAC. In some cases, the size of an ongoing
burst is less than α, but the size exceeds β after the arrival of the next packet. In such
situations, burst is formed with existing packets and the newly arrived packet is considered
for next burst.

92

Algorithm 4.8.1: LEDAS()

comment: Initialization

α is minimum burst length
β is maximum burst length
γ is maximum number of packets in a burst
n is number of packets in buffer
b is length of packets in buffer
w is length of a new packet
t timer is TIM timer
b timer is burst timer
status is state of LEDAS

n← 0, b← 0
buffer← φ, status← idle

comment: Buffer Empty (Idle Mode)

while status = idle

do

if t timer = clock()

then

{
listen beacon
receive-buffered-data()

if a packet arrives in host

then

{
add-to-buffer(packet)
status← active

if no buffered data in AP or host

then

{
put RF circuitry in doze mode
till t timer expires

comment: Buffer NOT Empty (Active Mode)

while status = active

do

if b ≥ α or b timer = clock() or n = γ

then

{
add-to-mac-buffer()
status← idle

else if a packet arrives
if (b+ w) < β

then add-to-buffer(packet)
else if (b+ w) > β

then

{
add-to-mac-buffer()
add-to-buffer(packet)

procedure add-to-buffer(packet)
buffer← packet
n← n+ 1, b← b+ w
return

93

4.9 Analysis

Figure 4.14 shows the timing diagram of the aggregation process. The burst timers starts
as the first packet arrives at the empty buffer. As shown in the figure, the size of the buffer
increases as the subsequent packets arrive. A burst is released based on the burst size
(α, β), burst timer (τ) and number of packets (γ) in a burst. We consider the distribution
of inter-arrival time of the packets (A) and the distribution of incoming packet sizes (S)
as exponential with mean λ and 1/µ, respectively. We analyze the process and present
a summary of the findings here. The general idea is taken from [124] and [98]. The
inter-arrival time of bursts (T) is the difference of arrival time of the first packet of two
consecutive bursts. The distributions of burst size and number of packets in a burst are B
and N , respectively.

T, B, N

a1 a2a0 an+1an

T, B, N

Burst Formation Time (Z)

s
iz

e
 (

S
)

s1

s2

s3

sn
sn-1

time

Packet Arrival (A)

t0 t1 t2 tn+1tn

A ~ Packet Inter-arrival Rate, Exp (λ)

S ~ Packet Size, Exp (1/µ)

T ~ Dist. of Burst Inter-arrival Time

B ~ Dist. of Burst Size

N ~ Dist. of Number of Packets in a Burst

an-1

B.F.T. (Z)

Figure 4.14: Timing diagram of the aggregation process.

4.9.1 Used Terms and Symbols

The symbols and terms used in this analysis are as follows:

• Distribution of packet arrival time (A) is exponential with rate λ and pdf is denoted
by fA(t);

• Distribution of packet size (S) is exponential with mean µ and its pdf is denoted by
fS(l);

94

• Probability density function (pdf) of burst formation time (Z) is denoted by fZ(t);

• Probability density function (pdf) of inter-arrival time between two consecutive
bursts(T) is denoted by fT (t);

• Probability mass function (pmf) of the number of packets in a burst (n) is denoted
by PN(n);

• Probability density function (pdf) of the length of a burst (B) is denoted by fB(x);

• Minimum burst length, α;

• Maximum burst length, β;

• fSn(x) expresses the convolution of fS(x) with itself n times;

• ΦS(u) is the Moment Generating Function (MGF) of some distribution, S;

• sn is the length of nth packet and

• Lk is the sum of lengths of k packets

4.9.2 Bursts sent on formation time

When a packet arrive at empty buffer, a timer is started and a burst is sent when the
timer reaches τ . So, the burst formation time is τ . The burst inter-arrival time, T can be
expressed as Eq. 4.1. The mean of packet arrival time (A) is 1

λ
, therefore, mean of T can

be expressed as Eq. 4.2.

T = A+ τ (4.1)

E[T] =
1

λ
+ τ (4.2)

A burst contains n packets if (n− 1) packets arrive in time τ after the first packet arrive.
Thus the probability that a burst contains n packets can be given as Eq. 4.3.

PN(n) =
(λτ)n−1e−λτ

(n− 1)!
(4.3)

To compute the mean number of packets in a burst, we use moment generating function
(MGF) of N . Once the MGF is known, the distribution of N will be known. The MGF

95

of N can expressed as in Eq. 4.4. The expected number of packets in a burst is given in
Eq. 4.5.

ΦN(u) =
∞∑
n=1

eunPN(n)

=
∞∑
n=1

eun
(λτ)n−1e−λτ

(n− 1)!

ΦN(u) = e−λτeu+λτeu (4.4)

E[N] = Φ′N(0) = 1 + λτ (4.5)

To obtain the properties of burst size, B, we used the Theorem 6.12 of [164]. The
probability distribution of B is given in Eq. 4.6 and MGF of B can be expressed as Eq. 4.7.
The MGF of packet size distribution, S is in Eq. 4.8.

fB(x) =
∞∑
n=1

fSn(x)PN(n) (4.6)

ΦB(u) = ΦN(ln ΦS(u)) (4.7)

ΦS(u) =

∫ ∞
0

eulfS(l)dl =

∫ ∞
0

eul
1

µ
e−

l
µdl =

1

1− µu
(4.8)

Now the MGF of burst size distribution, B and expected burst size E[B] are given in
Eq. 4.9 and Eq. 4.10, respectively.

ΦB(u) = e−λτ
e

λτ
1−µu

1− µu
(4.9)

E[B] = Φ
′

B(0) = µ(1 + λτ) (4.10)

4.9.3 Bursts sent on size

When bursts are released based on their size, two situations can take place: (i) current
burst size is below α, and when a new packet arrives, the burst size falls in between
[α, β]. In this case, the newly arrived packet is included and sent with the current burst;
(ii) current burst size is below α, but when a new packet arrives, the burst size exceeds
β. In this case, the new packet is included in the next burst, and current burst is sent

96

with size less than α. The probability that a burst contains n number of packets can be
expressed Eq. 4.11.

PN(n) = Pr(Ln−1 < α and Ln ≤ β) or Pr(Ln < α and Ln+1 > β)

= Pr(α < Ln < β|Ln−1 < α) + Pr(Ln+1 > β|Ln < α) (4.11)

Now, the probability of each part can be expressed as Eq. 4.12 and Eq. 4.13. The first
part,

Pr(α < Ln < β|Ln−1 < α) =

α∫
0

Pr(α < Ln ≤ β|Ln−1 = l)fSn−1(l) dl n ≥ 1

=

α∫
0

Pr((α− l) < sn ≤ (β − l))fSn−1(l) dl

=

α∫
0

[FS(β − l)− FS(α− l)] fSn−1(l) dl

=

α∫
0

(e−
α
µ − e−

β
µ)e

l
µ × Erlang(l;n− 1, µ) dl

=

α∫
0

(e−
α
µ − e−

β
µ)e

l
µ × ln−2e−

l
µ

µn−1(n− 2)!
dl

=
(e−

α
µ − e−

β
µ)

µn−1(n− 2)!
×

α∫
0

ln−2 dl

=
(e−

α
µ − e−

β
µ)(α

µ
)n−1

(n− 1)!
(4.12)

97

And, the second part,

Pr(Ln+1 > β|Ln < α) =

α∫
0

Pr(Ln+1 > β|Ln = l)fSn(l) dl n ≥ 0

=

α∫
0

Pr(sn+1 > (β − l))fSn(l) dl

=

α∫
0

(1− FS(β − l))× Erlang(l;n, µ) dl

=

α∫
0

e−
β−l
µ × Erlang(l;n, µ) dl

=

α∫
0

e−
β−l
µ × ln−1e−

l
µ

µn(n− 1)!
dl

=

α∫
0

e−
β
µ ln−1

µn(n− 1)!
dl

=
e−

β
µ (α

µ
)n

n!
(4.13)

The probabilities that a burst contains n number of packets are given in the following
equation (Eq. 4.14).

PN(n) =

 e−
β
µ n = 0

(e
−αµ−e−

β
µ)(α

µ
)n−1

(n−1)!
+

e
−βµ (α

µ
)n

n!
n = 1, 2, . . .

(4.14)

98

The MGF of distribution, N is derived in Eq. 4.15.

ΦN(u) =
∞∑
0

enuPN(n)

=
∞∑
1

enu
(e−

α
µ − e−

β
µ)(α

µ
)n−1

(n− 1)!
+
∞∑
0

enu
e−

β
µ (α

µ
)n

n!

= (e−
α
µ − e−

β
µ)

∞∑
1

enu(α
µ
)n−1

(n− 1)!
+ e−

β
µ

∞∑
0

enu(α
µ
)n

n!

= (e−
α
µ − e−

β
µ)eu+α

µ
eu + e−

β
µ e

α
µ
eu (4.15)

We get,

E[N] = Φ′N(0) = 1 +
α

µ
− e−

β−α
µ (4.16)

The probability distribution of burst inter-arrival time can be expressed as Eq. 4.17.

fT (t) =
∞∑
n=1

fAn(t)PN(n)

=
∞∑
n=1

Erlang(t;n, λ)PN(n) (4.17)

The MGF of T can be expressed as Eq. 4.18.

ΦT (u) = ΦN(ln ΦA(u)) (4.18)

99

Now, the MGF of the distribution of packet arrival (A) is,

ΦA(u) =

∫ ∞
0

eutfA(t)dt

=

∫ ∞
0

eutλe−λtdt

= λ

∫ ∞
0

e−(λ−u)tdt

=
λ

λ− u
(4.19)

Hence, ΦT (u) becomes,

ΦT (u) = ΦN(ln ΦA(u))

= (e−a − e−b)ΦA(u)eaΦA(u) + e−beaΦA(u) (4.20)

The expected values of burst inter-arrival time, E(T) and expected value of burst
formation time, E(Z) become (given in Eq. 4.21 and Eq. 4.22),

E[T] =
1

λ
[1 +

α

µ
− e−

β−α
µ] (4.21)

E[Z] =
1

λ
[
α

µ
− e−

β−α
µ] (4.22)

Now, the probability distribution function of burst size can be expressed as Eq. 4.23.
The expected value of the burst size can also be computed by taking product of average
packet size and expected number of packets in a burst. The expected value of burst size is
given in Eq. 4.24.

fB,N(x, n) =

∫ L

0

fS(x− L)fSn−1(l)dl L < x ≤ β

fB(x) =
∞∑
n=1

∫ L

0

fS(x− L)fSn−1(l)dl (4.23)

E[B] = µE[N]

E[B] = α + µ(1− e−
β−α
µ) (4.24)

100

4.9.4 Bursts sent on number of packets

In this case, a burst is released when it accumulates γ packets. Since the packet arrival
process is exponential, the distribution of burst inter-arrival time, T takes Erlang distri-
bution (Definition 3.7 in [164]). The probability distribution function can be expressed as
Eq. 4.25. The expected value of T is given in Eq. 4.26.

fT (t) =
λγtγ−1e−λt

(γ − 1)!
(4.25)

E[T] =
γ

λ
(4.26)

fB(x) = fSγ (x) (4.27)

ΦB(u) = (ΦS(u))γ (4.28)

E[B] = Φ′B(0) = γµ (4.29)

The probability distribution function and MGF of burst size, B are given in Eq. 4.27
and Eq. 4.28, respectively. Intuitively, the expected burst size is γµ, and the number of
packets in each burst is γ.

4.10 Simulation and Experimental Results

We evaluate the performance of the proposed LEDAS scheme through simulation and ex-
periments. For simulation, we used Pawan, a simulator for Infrastructure WLAN with
PSM. We have integrated LEDAS with Pawan and measured the values of different per-
formance metrics such as reduction in energy consumption, and average packet delay. The
simulation parameters are given in Table 4.2. At the end of this section, we present the
results of our experiments on HTC G1 smartphone, the first smartphone from Google with
Android operating system.

Figure 4.15 shows the reduction in energy cost for different packet aggregation time
(also referred as burst formation time, BFT). The values are normalized with energy cost
without packet aggregation or with 0 (zero) burst formation time. In the range of 20
milliseconds to 40 milliseconds of BFT, the consumed energy reduced to 40% to 60% in
transmission and reception, respectively. These values are proportional to reduction in
transmission and reception times which is a result of reduced number of MAC level frame
transmissions and hence reduced overheads.

101

Table 4.2: Simulation parameters
Parameter Value Parameter Value

SIFS 10 µs Transmit (Tx) 2000 mW
DIFS 50 µs Receive (Rx) 1000 mW
EIFS 268 µs Listen (Ls) 800 mW

Slot Time 20 µs Doze 25 mW
PLCP Header Time 96 µs CWmin 31
MAC Header Size 34 bytes CWmax 1023

MAC ACK 14 bytes [α, β] [1200, 1400]
PS-POLL Size 20 bytes γ 16

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100

E
n

e
rg

y
 S

p
e

n
t

Burst Formation Time (msec)

Reception Transmission

Figure 4.15: Reduction in energy costs.

We present the average packet delay, which can be seen as a cost of packet aggregation
in Fig. 1.16. Without packet aggregation, the delay is negligible although it varies from 15
to 45 milliseconds for 20 to 100 milliseconds of BFT. For most of the applications, these
delays, especially for the lower BFTs, are very much tolerable except for few, which require
high quality of service (QoS) constraints. This figure also shows the average number of
network level packets in each burst. As the number of concurrent applications running on
smartphones grow, more packets can be combined in one MAC frame and more benefit
can be obtained from LEDAS.

We present the average packet delay, which can be seen as a cost of packet aggregation
in Fig. 4.16. The delay varies from 15 to 45 milliseconds for 20 to 100 milliseconds of BFT.
The delay is negligible in absence packet aggregation. For most of the applications, these
delays, especially for the lower BFTs, are very much tolerable except a few, which require
to maintain high quality of service (QoS) constraints. This figure also shows the average

102

number of network level packets in each burst. As the number of concurrent applications
running on smartphones grow, more packets can be combined in one MAC frame and more
benefit can be obtained from LEDAS.

0

2

4

6

8

10

0

10

20

30

40

50

0 20 40 60 80 100

M
e

a
n

 B
u

rs
t

S
iz

e
 (

p
a

ck
e

ts
)

M
e

a
n

 P
a

ck
e

t
D

e
la

y
 (

m
se

c)

Burst Formation Time (msec)

Mean Packet Delay Mean Burst Size

Figure 4.16: Average packet delays

0%

5%

10%

15%

20%

25%

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100

O
v

e
rh

e
a

d
 D

a
ta

 (
b

y
te

s)

N
u

m
b

e
r

o
f

M
A

C
 F

ra
m

e
s

Burst Formation Time

MAC Frames

Received Overheads

Transmitted Overheads

Figure 4.17: Received and transmitted overheads.

In WLANs, for every MAC level transmission of data packets, there is MAC level
acknowledgment. Therefore, there are both transmission and reception overheads to send
a data packet. The amount of overhead is shown in Fig. 4.17. The overheads are about
8% and 3% for 40 milliseconds of BFT, whereas the normal overheads are 22% and 9%,
respectively. This is simply due to the reduction in number of MAC frames. Due to the
aggregation process of upper layer packets, number of MAC frames reduced as the BFT
increases. The side effect of this phenomenon is that there will be less contention for the
acquisition the of the wireless channel and more bandwidth is utilized for exchanging data.

103

0

20

40

60

80

100

0

200

400

600

800

1000

0 20 40 60 80 100

B
u

rs
t

In
te

r-
a

rr
iv

a
l

T
im

e
 (

m
se

c)

B
u

rs
t

S
iz

e
 (

b
y

te
s)

Burst Formation Time (msec)

Burst Size Burst Inter-arrival Time

Figure 4.18: Average burst size and inter-arrival time at MAC layer.

In Fig. 4.18, we show the average burst size and average inter-arrival time of each burst
at the MAC layer. As the burst formation time increases, more upper-layer packets are
accumulated, and thus, the size of the burst increases. The increase in inter-arrival time
between two consecutive bursts is particularly important to us. As the inter-arrival time
increases, the RF circuitry can be turned off for longer period of time and more energy is
saved by being in doze mode.

In the experiment, we used a Toshiba Tecra R10-ES1 laptop as server with Windows 7
operating system on it. A HTC G1 smartphone was used to carry out the experiment as a
client. To measure the current consumption, we connect the smartphone with a Keithley
2304A high speed power supply [76]. The power supply is connected to a desktop PC on
the USB port, and using a controller program on that PC, we set required output voltage
on the power supply. Then we monitor the consumed current by the target device in
millisecond intervals with ±0.002mA accuracy.

The reduction in current consumption is given in Fig. 4.19. The current readings drop
to 19 mAmp from 23 mAmp which may seem insignificant. However, the actual benefit
of LEDAS comes from the utilization of the idle time between two consecutive bursts
by keeping the communication interface to doze mode. We did not have enough access
to control the interface in HTC G1. Therefore, the result yields partial benefit and the
outcome is substantial.

104

15

17

19

21

23

25

0 20 40 60 80 100

C
u

rr
e

n
t

(m
A

m
p

)

Burst Formation Time (msec)

Figure 4.19: Current consumption for different burst formation time.

4.11 Summary

We have discussed potential energy saving issues by anatomizing the WiFi access data
traffic of smartphones. We study the challenges associated with designing energy saving
strategies for communication module. We have derived certain values and bounds from
practical usage data. It will help the system designers to come up with better design
and implementations. We also proposed low energy data packet aggregation scheduler
(LEDAS). The performance of the proposed scheme is evaluated through analysis, simula-
tions and experiments on a smartphone.

105

Chapter 5

Design of Energy Performance
Testing

In this chapter, we provide a methodology to select user level test cases for performing
energy cost evaluation of smartphone applications. We define the concept of a user level
test case for smartphones and show that, due to configuration settings, there exist millions
of such test cases. We propose a test selection technique to reduce the number of test
cases. The proposed technique is applied to four different smartphones and their energy
costs are evaluated for running common network related applications. We have developed a
state-of-the-art test bench to execute those test cases for real applications on smartphones,
and measure their actual energy costs.

5.1 Problem Description

There has been a rapid evolution in the smartphone industry over the last couple of years.
Moderate computing power, communication bandwidth, and above all, innovative devel-
opment tools have enabled the creation of mobile versions of the favorite desktop applica-
tions [125]. Among the applications, Internet browsing, online video and music playing, so-
cial networking, news, weather, stock reports, global positioning system (GPS) aided maps,
navigation, searching, games, and productivity software are at the top of the charts [44, 93].
Uploading photos and videos directly to social networks and voice-over-IP (VoIP) clients
are becoming more and more popular.

These applications are resource intensive in terms of bandwidth, processing power,
and/or display, and naturally they draw a good amount of battery energy. However, there

107

has not been much improvement in energy density of battery [123]. Development in battery
technology is not keeping pace with development in other sub-systems of smartphones.
Consequently, battery energy puts the ultimate bottleneck on the performance capability,
and availability of a smartphone. Therefore, there is a strong urge for designing all aspects
of smartphones from the perspective of battery energy.

Users are generally not concerned with the speed of the processor, amount of memory,
and the operating system of a smartphone though they care about a brand-name. On
the other hand, what really matters to them is whether or not it contains interesting ap-
plications and how long the smartphone runs applications without recharging its battery.
Thus energy cost measurement of applications is useful to the users, rather than the hard-
ware level energy cost information. Another interesting phenomenon regarding users and
applications of smartphones is the diversity of smartphone usage. Not all the users use
all classes of applications on their smartphones. Different clusters of users favor different
groups of applications.

Falaki et al. [45] characterized four key dimensions of smartphones which includes user
interactions and usage of applications. Their survey reveals that users differ by one or more
orders of magnitude along all the dimensions. For example, the mean amount of traffic
per day varies from 1 to 1000 megabytes. They observed that despite these quantitative
differences, qualitative similarities also exist among users. Users can be clustered according
to their activities on smartphones. Therefore, when the performance of a smartphone is
mentioned, the type of performance should also be noted. Otherwise, it will likely be
marginally helpful only to a small percentage of users. A user level test case should
consider a group of applications that correspond to a user group. Thus the end users will
benefit from the outcomes of the tests.

The energy performances of two mobile applications can be compared by measuring
the energy costs while executing the applications on a smartphone. In this case, the ap-
plications are intended for the same purpose, e.g., applications for playing videos. The
energy performances of two smartphones can also be compared by running the same ap-
plication (perhaps, different versions) on those devices. As we explore in Section 5.4,
typical smartphones possess a number of user settable parameters, and settings of these
parameters have significant impact on the energy costs of smartphones. Hence the settings
of these parameters, termed as configurations of the smartphones, should be consistent
to have an unbiased outcome. For example, comparison of energy cost performances of
two smartphones conducted at different levels of brightness (e.g., 25% and 75%) is unfair.
Therefore, the configurations of a smartphone must be considered during testing for fair
and representative test results.

108

Besides producing inconsistent test configurations, the large number of user settable pa-
rameters of smartphones lead to millions of test configurations [4]. This makes the energy
performance testing of smartphones impractical. Thus covering the test space, in other
words, measuring the impacts of all parameters with reduced number of test configurations
is the most crucial challenge in evaluating energy performance of mobile applications. We
introduce the concept of user level test case and test configurations of smartphones. In this
work, we consider network related applications, applications that require network commu-
nications, and present a methodology to measure energy costs with reduced and consistent
test configurations. To reduce the number of test configurations, we categorize the smart-
phone parameters into three groups, namely, basic, active and passive. We have chosen
five smartphones: BlackBerry 9700, HTC HD2, HTC Nexus One, Nokia E71 and Apple
iPhone 3GS and studied their configurable parameters. Tables containing the parameters
are given in Appendix-A. The active parameters are further divided into primary and
stand-along parameters to reduce the number of test configurations. A detailed method-
ology is presented in Section 5.5.

In performance testing, definition of test metrics play an important role to comprehend
test results [156]. The energy cost of a test case is found as an average current for a
given test configuration and the amount of energy is calculated by multiplying the average
current by voltage and duration of the experiment. However, measured energy cost may
not be a good metric for comparing two smartphones as they might have same type of
battery but with different energy capacities. In that case, an application with same energy
cost in both devices runs longer on the device with higher battery energy. Hence an energy
cost metric should fully reflect the energy consuming behavior of an application and a
smartphone. We propose an energy cost metric based on the average current consumed by
an application, and energy capacity of the battery.

The methodology to evaluate the energy cost can be applied by developers as well as
users if they have access to a test bench that we propose in this chapter. Thus, the users
or product critics will have better instrument to test smartphones. On the other hand, the
manufactures and developers will be able to enhance the system design and development
by focusing on specific user groups. In this work, we make the following contributions:

• We define the concept of user level test cases to evaluate the energy cost by running
applications on smartphones. We discuss why different sets of test cases are needed
for evaluating energy cost of smartphones.

• We explain why the configurations of smartphones are so important for conduct-
ing experiments. We observe the challenges in selecting test configurations and the
attributes of the test applications (Section 5.4).

109

• We discuss how to identify all such test cases. We apply a test selection technique
to a class of applications called Network Related Applications (NRAs) (Section 5.5).

• We present the detailed design and implementation of a test bench to execute those
test cases (Section 5.6), and execute few test cases on four smartphones and compare
their results (Section 5.7).

Finally, we identify the limitations in performing energy tests of smartphones (Section
5.8). There has been little work reported describing approaches to performance testing
of software applications. To the best of our knowledge, this work is the first that focuses
on energy performance testing of mobile applications. In the next section, we present a
general review of literature related to our work.

5.2 Literature Review

Although no reported work in the literature has direct similarity with our proposed work,
in this section, we review a few papers to understand the concept. The software appli-
cations for mobile devices are generally developed in traditional computing environments
such as on a desktop or a laptop, and are deployed in smartphones. As a result, the fun-
damentals of software engineering principles, i.e., analysis, design, implementation, and
testing are still applicable to the engineering of mobile devices and applications [155]. Our
proposed work involves three key elements: (i) software performance testing, (ii) testing
on smartphone, and (iii) combinatorial interaction testing (CIT). We divide this section
into three subsections to review papers under each topic, and at the end of each subsec-
tion, we explain how our work is related to the discussed work. In the smartphone testing
subsection, we cite some additional work for completeness.

5.2.1 Software Performance Testing

Weyuker and Vokolos [156] observed that lack of sufficient planning for performance issues
often causes problems while an application is in use. They examined software performance
testing issues, identified objectives for performance testing, and prescribed a methodol-
ogy to form performance test cases. In performance testing, design of test case selection
strategies means to test for performance criteria rather than functional correctness criteria.
The criteria for performance measurement such as throughput, stimulus-response time, and
scalability are considered from a user’s perspective. According to the authors, formation of

110

performance test cases starts with identifying the software processes that directly influence
the overall performance of the system. The subsequent steps are as follows:

• For each process, input parameters that significantly affect the performance of the
system are selected. The number of input parameters is kept small to avoid a large
test space.

• Values of the selected parameters are chosen from both average and heavy workloads,
which reflect desired usage scenarios.

• When a parameter forms a range, representative values from within this range are
chosen. Each selected value forms a separate test case.

Denaro et al. [38] argue that performance evaluation of distributed software applica-
tion is useful in early development stages when important architectural choices are made.
They observed that most of the critical performance faults are often introduced initially
because of wrong architectural choices. Their proposed approach for early performance
testing of distributed component-based applications consists of four phases: (i) for a given
set of architecture design, select use-case scenarios relevant to performance, (ii) map the
selected use cases to the actual deployment technology and platform, (iii) produce stubs of
components that are not available in the early stages of the development, but are needed to
implement the use cases, and (iv) execute the test. Our proposed work falls in the category
of performance testing, and we followed the fundamental steps described in [156, 38] in our
testing methodology.

5.2.2 Testing on Mobile Devices

Efficiency is one of the most important issues of mobile software engineering because of
the resource scarcity. It applies to many aspects of mobile applications such as algorithms,
power consumption, network access, data storage, visualization, user interface, and er-
gonomics. However, much work has not been done in these areas. Dedicated devices can
be optimized for maximum battery life, but mobile applications may inadvertently make
extensive use of battery draining resources [97]. A comprehensive review of energy saving
methodologies is presented in [104]. Naik discusses the issues related to application to
physical layer from energy saving point of view. Naik and Tripathi [103] explain the need
for automating system test process as they are easily repeatable, time consuming, and easy
to automate. Due to the number of configurations and test cases, automation of mobile

111

software test process is essential. Operating system (OS) assisted utility programs can be
used to set configuration and get usage profiles [101] of the applications.

Bo et al. [15] mentioned that mobile devices are highly resource constrained in terms of
processing ability, memory capacity and communication ability. Hence, an intrusive testing
approach may affect the results of the testing. The diversity of the devices and platforms
reduces the re-usability and maintainability of test cases. Moreover, the typical mobile
applications highly interactive, and the devices often accept activations from the users and
send responses back for user to take further actions. Thus automation of usage scenarios
is difficult because of unpredictive user’s actions. The authors discussed the drawbacks
of commercially available TestQuest and Digia AppTest in detail. They proposed a black
box testing approach called MobileTest, based on sensitive-event, such as reception of a
Short message service (SMS). MobileTest uses capture-replay mechanism to help testers
automate their test case generation task. This approach involves automatically capturing
user interactions, and later replaying the interactions.

Satoh [133] developed a framework called Flying Emulator to test mobile applications
to validate the applications on their real environment. This mobile agent based emulator
performs application transparent emulation of its target device for applications written in
Java. It facilitates the evaluation of application behavior on wireless networks without the
need of the tester to move across different networks to validate a given mobile application
behavior. Its main purpose is to enable application-level software to be executed and tested
with the services and resources provided through its current network as if the application
was being moved and executed on that target device when attached to the network. Other
work based on black box and mobile agent based testing can be found in [136, 90, 167, 65].

Niranjan et al. [8] present a measurement study for energy consumption in smartphones
with 3G, GSM and WiFi. They proposed a protocol to reduce the energy consumption
for some applications. Jose et al. [12], emphasize that context-aware applications in mo-
bile phone consume a large amount of energy, hence the number of operations in those
applications may be decreased to reduce the energy consumption.

Huang et al. [63] developed a methodology to compare the user perceived performance
of network applications in terms of some performance metrics. Those metrics fluctuate
very much with carriers and devices. Xiao et al. [160] have shown that WLAN consumes
less energy than WCDMA during video download and upload via YouTube. Similarly,
Nurimen et al. [112] discussed that if contents are uploaded for other users during active
downloading then it consumes little amount of extra energy in peer to peer applications.

Kim et al. [77] proposed a performance testing method at the unit test level for emulator
based testing environment. Since the performance defects found at system level testing

112

often takes more time and efforts to reveal, the overall cost of the development process
goes high. They utilize a database called MObilePBDB based on benchmark data from
target device and integrate the test tools called PJUnit in the development environment
like Eclipse. The setup basically predicts performance time of the application unit in the
target mobile device.

5.2.3 Combinatorial Interaction Testing (CIT)

A System Under Test (SUT) generally comprises a number of parameters that take dif-
ferent values. Exhaustive testing that considers all possible combinations of test cases is
desirable [26]. However, it is not feasible to carry out exhaustive testing because of the
exponential explosion of the number of test cases. Suppose a smartphone has 10 user set-
table parameters, and each can take on 5 different values. The total number of combination
becomes 105. Hence only a subset of all test cases can practically be considered as a test
space [96]. Combinatorial Interaction Testing (CIT) is a technique to reduce the number
of test cases of a software system systematically for testing [21, 31, 36, 81].

For a given SUT with k parameters, the main idea of combinatorial testing is to cover
every possible value combination of no more than t parameters. Here, t is called the test
strength. The value of t is a small number and the corresponding combinatorial test is called
t-way testing [21, 81, 6, 108]. Experience suggests that not every parameter contributes to
each fault and many faults are caused by interactions between a relatively small number of
parameters, and this understanding is the key for t-way combinatorial testing. The 2-way
testing popularly known as pairwise testing is based on the observation that software faults
often involve interaction between two parameters.

Kuhn et al. [81] explains combinatorial testing with example and discussed the impor-
tance of it. Combinatorial testing is accomplished by constructing a set of tests known as
Mixed Covering Array or Covering Array that covers all t-way combinations of parameter
values. Results from their investigations show that many faults are caused by a single pa-
rameter value, and the progressively fewer faults are observed for higher oder interactions.
For example, in a web server application about 40% of the failures were caused by a single
value, another 30% were caused by the interaction of two parameters, and a cumulative
total of almost 90% were triggered by three or fewer parameters.

While building the Mixed Covering Array (MCA), it is assumed that different parame-
ters are independent of each other. However, configurations included in MCA may become
invalid due to application constraints [31, 32]. Ignoring constraints leads to inaccurate
test planning and waste of effort. The authors of [32] discussed constraints with examples

113

from highly configurable system like Nokia 6000, and proposed a technique to represent
constraints. They describe ways to integrate constraint checking with the existing CIT
algorithms.

Chen et al. [21] addressed the issues of shielding parameters in combinatorial testing.
The shielding parameters in many real-life applications disable other parameters in cer-
tain conditions. They proposed Mixed Covering Array with Shielding Parameters (MCAS)
to explain the problem caused by shielding parameters. The authors mentioned that in
realistic software applications, there may exist both regular constraints and shielding pa-
rameters, and dealing with combination of these two kinds of relationship is more difficult.

Smartphone parameters such as 3G data connection, WiFi, Bluetooth, volume, and
brightness are not independent with respect to an application, and some of them are shield-
ing parameters at the same time. For example, for an image viewer application, there is
no role of volume, and when WiFi data connection is turned on, 3G data connection auto-
matically shuts down. Thus the testing environment contains interactions with constraints
and shielding parameters, which is quite complex as Chen et al. [21] mentioned. Analysis
of such systems has not yet been reported in the literature, and our proposed methodology
is based on heuristic.

5.3 Formulation of Test Cases

Suppose that a smartphone has m number of user settable parameters denoted by Ud
= {B1, B2, B3, . . ., Bm}. A parameters Bj takes a value (bj) from an ordered set ν(Bj),
and the kth instance of parameter Bj is referred to as bkj . The total number of different
states of Bj is denoted by η(Bj). Another representation of η(Bj) is |ν(Bj)|, which is the
number of elements in ν(Bj). For example, brightness (referred as B32 in Table 5.5) of a
smartphone’s display is a parameter that a user can set at different levels. Therefore, for
brightness, ν(B32) = {0, 25, 50, 75, 100}, η(B32) = 5, and an instance of B32, b2

32 = 50.

A configuration of a smartphone is an instance of all user settable parameters for
executing a test case. The set of all configurations, S, can be given as {ν(B1) × ν(B2) ×
. . .× ν(Bm)}. A configuration (βi) is a member of S, and is expressed as {b1, b2, . . . , bm}.
Let us consider another parameter, Data Access Mode (referred as B37 in Table 5.5),
where, ν(B37) = {OFF, WiFi, EDGE, 3G} and η(B37) = 4. If we consider only these two
parameters B32 and B37, then {25,WiF i} and {50, 3G} are two examples of configuration.

An application setting, αi comprises {Ai, Ci, Ti}. Ai represents the class and description
of an application and Ci indicates types of content for Ai. Ti is the execution time of Ai

114

on a smartphone. Suppose that there is a video file player application (a1) that supports
only MPEG (c0

1) and Flash (c1
1) format of video files. The number of different contents is

denoted by η(Ci) and for this application, η(C1) = 2. The time durations for executing
these two types of video files are t01 (for example, 60 sec) and t11 (for example, 90 sec),
respectively.

Display

Power Supply &

Energy

Measurement

Instrument

Configuration, β

Application, α

Output, θ
Smartphone

Figure 5.1: System model of proposed test configuration.

A test case γi is represented as a pair <input; expected output>. An application
setting, αi and a device configuration, βi constitute an input. The output θi of a test
case is expressed as energy cost metric that we propose in this work. We formally express
γi : 〈αi, βi; θi〉 and Fig. 5.1 shows a logical diagram of the test configuration. An application
is executed by setting the user settable parameters according to a specific configuration
and the consumed energy is measured by a high resolution current measurement unit.

5.4 Challenges

There are two main challenges involved in test case selection process: (i) large number
of configurations, (ii) large number of applications, and a variety of contents for these
applications. We describe the details of each challenge in this section.

5.4.1 Number of Configurations

We examined various user settable parameters of smartphones and identified the ones
which are expected to influence the energy consumption while running an application on
smartphones. We identified the configurable parameters for a set of smartphones, and
some of them are listed in Table 5.5 and 5.6. In these tables, ‘Yes’ means the parameter is
available, ‘No’ implies it is not available and ‘Alternative’ implies that a similar parameter
is available. Most of the parameters can be set as On/Off or Manual/Auto while others

115

have a list of options to select from. Now, the number of test cases (Nc) on smartphones
can be given as:

Nc = Sd ×
M∑
i=1

Xd(Ai)× η(Ci) (5.1)

Here, Ai is a selected application, Sd is the number of configurations in device d, M is
the number of selected applications. Xd(Ai) can be expressed as:

Xd(Ai) =

{
1 if Ai is executable in device d;
0 otherwise.

(5.2)

At this point, the challenge is to identify the values of Sd, M and η(Ci) such that it
provides a feasible set of test cases for running target group of applications on smartphones
for different user groups and further determining the impact of an individual parameter on
energy consumption.

A straightforward way to identify all the configurations is to consider all possible com-
binations of the available parameters. We present a general expression for a single smart-
phone. Later, we exemplify this expression for HTC Nexus One smartphone. We define,

Sd =
∏
Bj∈Ud

η(Bj) (5.3)

Descriptions of Ud, Bj and η(Bj) are given in Section 5.3. Based on the discussion, the
number of experiments (Nc) for HTC Nexus One can be calculated as follows: we found
that there are 19 parameters in U2 for HTC Nexus One. By applying Eq. 5.3, we get,
S2 ≈ 47X106. If we further consider the number of applications and contents, the total
number of test cases, (Nc), will be huge. To develop a feasible methodology for energy
measurement, a subset of the existing configurations needs to be chosen so that selected
test cases disclose the behaviors of energy cost patterns.

5.4.2 Choosing Applications, Contents, and Durations

It is not feasible to measure the energy cost of running each of the applications, and as
such we need to select few applications (termed as test applications) from each class which
represent a group of applications. For example, an online video playing application requires

116

Internet access and at the same time, it needs to decode the video frames. Therefore, an
online video playing program needs to be developed (or, chosen from existing applications)
which very much represents the attributes of online video playing applications.

The content or input to an application may impact the energy costs. For example, a
video playing application may consume different amount of energy for different video files.
Different video format require different amount of processing time and also, they need to
fetch different size of Internet data. Based on the number of connected players through
networks and/or settings of a game, the energy costs of game vary. Therefore, a note of
content type in the test case description is important.

The duration of running a test case is also critical as it captures the variation of energy
costs over time. We need to measure the energy costs for a complete cycle of execution,
so that the subsequent phase of execution is just a replication of the measured stage of an
application. By complete cycle, we refer the time duration, during which, an application
fully exhibits its energy consumption behavior.

5.5 Proposed Methodology

The objectives of our proposed methodology are (i) to have a consistent test configuration
across smartphones, so that we will be able to compare the results; and (ii) to capture
the energy consumption behaviors of an application with reduced number of experiments.
An experiment is an execution of a test application on a given test configuration. A test
application is a software realization of a test case and a test configuration is a particular
setting of all user settable parameters in a smartphone.

To ensure a consistent test configuration, we at first need to know all the parameters
of a smartphone, which involve in the energy consumption. For that, we examined such
parameters of five (5) smartphones, namely BlackBerry 9700, HTC Nexus One, Nokia E71,
HTC HD2 and iPhone 3GS.

5.5.1 Categorization of Parameters

We explored the parameters of the smartphones, and make a comprehensive list of the
parameters found on those devices. The values of some parameters cannot be changed
or fixed, and the values of some parameters can be set at different levels. Since the
combination of different values of all parameters are vast in number, it requires much time

117

and effort to deal with these parameters individually. Intuitively, categorization of these
parameters according to their impacts on the energy consumption is useful in this situation
to reduce number of test cases. With this view, we proposed categorizing the parameters
of a smartphone into three main groups which are illustrated in Fig. 5.2. Parameters with
fixed values are categorized into basic parameters, and the rest of the parameters are called
active and passive parameters. We define the groups as following.

All

Parameters ���

Stand-alone

Parameters ���
��

Basic

Parameters (��)

Active

Parameters (��)

Passive

Parameters (��)

Primary

Parameters ���
��

Figure 5.2: Categorization of smartphone parameters

• Basic Parameters (G0): This group contains all the parameters whose values are
fixed. A user cannot change or adjust the values of those parameters. Processor,
Memory and size of display fall in this group. Table 5.4 in the appendix shows
the basic parameters of the five smartphones mentioned earlier. These parameters
affect the energy consumption of a device, and their impacts just remain the same
throughout the testing process. For this reason, we can keep them aside during the
testing process. However, when we compare two or more smartphones on energy
performance, the differences in these parameters must be noted during the analysis
of the test results.

• Active Parameters (G1): This group contains the parameters whose values are set-
table. The user can control and adjust the values of those parameters. Basically,
these parameters are some utility programs on top of operating system (OS), which
control hardware components. Applications for controlling volume of a device, bright-
ness of the display, turning on/off the global positioning system (GPS) are examples
of active parameters. Table 5.5. The active parameters are further divided into two
groups as described below.

– Primary Parameters (Gp
1): An active parameter is regarded as primary pa-

rameter. It appears to consume a significant proportion of the total power

118

consumption. Variation of it values yields more informative test results. The
primary parameter selection criteria are further discussed in Section 5.5.3.

– Stand-alone Parameters (Gs
1): The rest of the active parameters are stand-alone

parameters.

• Passive Parameters (G2): This group contains the rest of the parameters whose
values are also adjustable by the users. They are also utility programs incorporated in
the OS or from third parties. For example, WiFi Hotspot and Bluetooth Discoverable
are programs which use WiFi and Bluetooth interfaces, respectively. They do not
control the hardware components, but they use hardware components, and thus, they
affect the test outcomes. During the testing process, we need to take out the effect
of other applications by removing them or by keeping their effect fixed throughout
the testing process. Thus, we turn off or fix certain values for these parameters. We
particularly concern about the listed parameters given in Tab. 5.6 as they come with
most of the smartphone operating systems or they are third party applications that
are becoming more common in smartphone environments.

The central idea of our proposed technique is to keep the value of G2 parameters to
certain levels and then vary the G1 parameters to see their impact on the energy costs of
an application.

5.5.2 Number of Configurations for Active Parameters

We pick an application (Ai) based on a test case and select a potential parameter (Bi)
from G1 that expects to have more impact on energy cost for Ai. For instance, Network
data access mode is chosen for NRAs. Then, we vary (Bi) and observe the energy cost
of Ai. During this time, all other parameters in G1 are kept fixed to certain values.
Parameters of G2 are kept constant throughout all experiments. We refer this set as
primary configurations. To measure the impact of other parameters of group G1, we
choose another parameter (Bj) from G1 and observe the joint impact of Bi and Bj on
the energy cost of application (Ai). This set of configurations is termed as stand-alone
configurations. Numbers of primary and stand-alone configurations are denoted by Spd and
Ssd, respectively.

Now, the total number of test cases according to our scheme is given in Eq. 5.4. Sd
in Eq. 5.1 becomes (Spd + Ssd) in Eq. 5.4. In primary configuration, only one parameter
(Bi) is considered by keeping others fixed. Therefore, the value of Spd can be given as in

119

Eq. 5.5. For example, YouTube Video Player application is an NRA and we consider Data
Access Mode (B37) for primary configurations. Therefore, we observe the energy costs for
{WiFi, EDGE, 3G} connections. The values of other parameters such as volume (B31),
brightness (B32) are kept at 25% during this period.

N
′

c = (Spd + Ssd)×
M∑
i=1

Xd(Ai)× η(Ci) (5.4)

Spd = η(Bi) (5.5)

In Table 5.1 and 5.2, we present the energy costs of different combinations of the parameters
Bi and Bj. Table 5.1 refers to the costs of primary configurations. Here, the modes
of Bi are varied while the value of Bj is kept fixed to some value, b1

j for instance. In
the stand-alone configurations, we choose another value of Bj, suppose, b2

j and conduct
experiments for different values of Bi. In Table 5.2, second row contains the energy costs
of primary configurations and third row contains costs of some stand-alone configurations.
Let, ∆k = |θ2,k − θ1,k|, where k (0 ≤ k ≤ 3) refers to the state of Bi. If values of ∆k are
equal, we conclude that energy costs for both parameters are additive, and in this case,
we need to conduct experiments only across the values of Bj with any value of Bi. On
the other hand, if values of ∆k are not equal, we need to consider all the combination
of {ν(Bi) × ν(Bj)} to fully extract the energy consumption behavior of Bi and Bj for
application Ai.

⇓ Other parameters Parameter Bi

B1, . . . , Bi−1, Bi+1, . . . , Bg b0
i b1

i b2
i b3

i

b1, . . . , bi−1, bi+1, . . . , bg θ0 θ1 θ2 θ3

Table 5.1: Primary configuration

To identify the stand-alone configurations for the same YouTube Video Player appli-
cation, let us consider another parameter brightness (B32) from G1. In primary configu-
ration, the value of B32 is 25%, for stand-alone configuration, we need to choose another
value, 50% for instance. Now, the stand-alone configurations are {WiFi, EDGE, 3G} with
brightness 50%. If the differences of energy costs for brightness levels 25% and 50% across
{WiFi, EDGE, 3G} are same, we can say that both parameters are independent of each
other and we just need to find the energy cost at brightness levels 0%, 75% and 100%.
Otherwise, we need to find energy costs for all data connections at all brightness levels.
We need to repeat this process for other parameter in G1 such as Volume.

120

P
a
ra
m
e
te
r,
 B
j Parameter, Bi

States 0 1 2 3

0 θ00 θ 01 θ 02 θ 03

1 θ 10 θ 11 θ 12 θ 13

2 θ 20 θ 21 θ 22 θ 23

3 θ 30 θ 31 θ 32 θ 33

Table 5.2: Dependency check table

The number of stand-alone configurations can be expressed formally. Let Qj is the
number of stand-alone configurations corresponding to Bj such that Bj ∈ G1. Then, Qj

can be expressed as shown in Eq. 5.6.

Qj =

{
η(Bj) Bi, Bj are independent;
(η(Bj)− 1)× Spd Bi, Bj are dependent.

(5.6)

One value of Bj is excluded from stand-alone configurations, as it is considered in
primary experiments. Now, Ssd becomes,

Ssd =
∑

Bj∈G1
∧
j 6=i

Qj (5.7)

5.5.3 Choosing A Primary Parameter

In performance testing parameters are chosen according to their degree of influence on
the performance of the system [156]. In our methodology, the larger is the number of
primary parameters, the larger is the number of test configurations. For NRAs, network
access mode plays a significant role on their energy consumption. Hence we choose to have
network access mode as the primary parameter.

5.5.4 Parameter with Continuous Value

The settable values of a parameter may appear as different forms on different smartphones.
For instance, brightness can be set at any point between 0 and 100 in HTC Nexus One,
but in BlackBerry 9700, it has to be set at 0, 10, 20, and so on. In such cases, we choose
to opt the discrete levels and set the continuous levels only to the discrete levels. Another
interesting issue is that the same levels of volume or brightness may not represent the same

121

level across the smartphones. In this case, we need to use external calibration tools such
as decibel meter, photometer to ensure same actual levels across the smartphones.

5.5.5 Energy Cost Metric

A smartphone consumes some current even when we do not run any user application, and
most of this current is consumed by the display. Suppose that the smartphone consumes
Ix amount of current when applications Ax is executed. Since the battery capacities are
different across smartphones, we suggest that the corresponding energy cost metric (θx)
of Ax for a given configuration is ξ/Ix hour. Here, ξ denotes the battery capacity. Some
examples of energy cost metric calculation are given in Tab. 5.3. It requires further analysis
and experimentation to compute the energy cost when more applications are executed
concurrently.

ξ I0 Ia Ix Iy θx θy
(mAh) (mA) (mA) (mA) (mA) (hour) (hour)
1500 7.5 50 350 80 4.3 18.7
1230 7 43 188 97 6.5 12.7
1400 9 175 196 375 7.1 3.7

Table 5.3: Examples of energy cost metrics

5.6 Test Bench

We describe a test bench to facilitate experimentation of smartphones to measure energy
costs of applications. As shown in Fig. 5.3, the setup mainly includes (i) smartphone(s);
(ii) power supply with a high precision current measurement unit; (iii) a desktop or laptop
computer to control and monitor the power supply unit; (iv) a wireless Access Point (AP);
(v) a web server; and (vi) a cellular network connection with data access.

We use the connections as shown in Fig. 5.4 to carry out the experiment. With this
connection setup, smartphone is able to read battery condition, but gets energy from the
power supply. The connected battery also does not get any power supply. We keep the
battery fully charged so that no power-saving mechanism is activated in the smartphone
due to low energy situation in the battery.

122

INTERNET

Laptop
Power Supply with

High Precision

Current

Measurement Unit

Smartphone
WiFi

Access

Point

Web ServerRouter

Router
Cellular Access

Point (BTS)

Figure 5.3: Experiment setup of test bench.

The power supply is initialized with the battery ratings of the smartphone through a
controller program installed in a desktop or laptop computer. The smartphone is turned
on and a test configuration is selected before conducting experiment. Consumed current is
measured by a monitor program installed in the same computer with and without running
the test application. We used Keithley 2304A, a high speed power supply with accuracy
in measuring current of ±(0.2% + 400µA).

5.7 Experimental Results

We used BlackBerry 9700, Nokia E71, HTC Nexus One and HTC HD2 smartphones in
our experiments. We did not execute our test cases on iPhone 3GS. Because we could not
access the battery interface as illustrated in Fig. 5.4 for the specific way the phone has
been packaged. When we discuss the results of the experiments, we do not refer to specific
smartphones, rather we use the terms Phone A, Phone B, Phone S and Phone W. We are
more interested in how to measure the performance of the devices than their brand names.
We setup the experiments as described in Section 5.6.

In Fig. 5.5, 5.6, and 5.7, we show the performances of the smartphones for different

123

Smartphone

Smart Battery
Power Supply

with

High Precision

Current

Measurement

Unit

+

+

+

-

-
-

Figure 5.4: Connection details of device, battery and power supply.

NRAs, namely, YouTube video player, Internet browsing, email composing. Then we
present the findings of some stand-alone experiments on individual devices in 5.8, and
5.9. Throughout the experiments, we fixed the parameters of Table 5.5 and 5.6 to certain
values. We do not present the details due to space limitation. The energy metric that
we proposed can be interpreted as expected lifetime of a device for a specific application.
Therefore, a higher energy metric implies better performance.

0

2

4

6

8

10

WiFi Cellular Network

E
n
e
rg
y
M
e
tr
ic
 (
H
o
u
r)

Phone A Phone B

Phone S Phone W
A

A
B

B

S

S W

W

Figure 5.5: Energy metrics for YouTube video.

Figure 5.5 shows the comparison of the four smartphones when we played a YouTube
video (animusic-pipe-dream) on them. Phone A and Phone S perform better than the
other two in case of WiFi connection, but all of them perform the same when they use
cellular data network. The average energy metric is also better for WiFi connection which
suggests the use of WiFi when available.

A similar trend is observed while we browse Internet on the smartphones. As shown in
Fig. 5.6, the energy metrics for Phone B and Phone S, are very high for WiFi connection,
compare to cellular data connection.

124

0

2

4

6

8

10

WiFi Cellular Network

E
n
e
rg
y
M
e
tr
ic
 (
H
o
u
r)

Phone A Phone B

Phone S Phone W

A

A

B

B

S

SW W

Figure 5.6: Energy metrics for Internet browsing.

0

5

10

15

20

25

WiFi Cellular Network

E
n
e
rg
y
M
e
tr
ic
 (
H
o
u
r)

Phone A Phone B

Phone S Phone W

A A

B B

S

S

W W

Figure 5.7: Energy metrics for composing email.

The smartphones show a different tendency while we compose an email. As we observe
in Fig. 5.7, the performances of all smartphones are almost similar for both WiFi and cellu-
lar connection. While composing an email, there is minimum interaction with the network
connections, and therefore, the network access modes do not impact the performance of
smartphones.

We run three video files on Phone A over WiFi connection to the full length of their
durations. The performance metrics for all the videos are almost same. This result implies
that the content does not matter while running an online video application.

Next, we observe the energy metrics for WiFi, EDGE and 3G connections on Phone B.
We ran YouTube video player using different network connections. As shown in Fig. 5.8,
we found that EDGE connection performs better than the 3G and WiFi connection. This
trend may not be similar across the smartphones.

Finally, we examine if there is any impact of data access mode (B37) on brightness (B32)
in regards to energy consumption. We discussed the technique to check the dependency
between two parameters in section 5.5. As shown in Fig. 5.9, the differences in current

125

0

2

4

6

8

10

WiFi EDGE 3G

E
n
e
rg
y
M
e
tr
ic
 (
H
o
u
r)

On Phone B

Figure 5.8: Energy metrics for various network connections.

0

5

10

15

20

Phone A Phone B Phone S

C
u
rr
e
n
t
C
o
n
s
u
m
p
ti
o
n
 (
m
A
)

WiFi Cellular Network

WiFi
WiFi

WiFi

Figure 5.9: Differences in current consumption at brightness levels of 50% and 75%.

consumption are more or less equal as we change the brightness level from 50% to 75%. This
implies that the network access mode do not impact the brightness levels in smartphones
and hence the two parameters can be considered as independent.

5.8 Limitations

We describe the limitations of energy performance testing in this section, which are mainly
due to inherent characteristics of the smartphones and their operating environments.

• Device Specifications: A device may be popular among users for some of the basic
(G0) parameters, such as display size, display intensity, user-friendliness and oper-
ating system. As a result, the energy cost of some applications can be high. The
energy performance is not a concern in such cases. This phenomenon can be seen as
a trade-off between energy cost and user perception, over which we have no control.

126

• Network Condition: We used a stand-alone access point (AP) to conduct WiFi related
experiments. However, we had no control over the EDGE and 3G networks. Due
to the fluctuations in the channel condition, variation in the results with space and
time is inevitable.

• Battery Properties: A constant voltage source was used during testing to power the
smartphones. However, the devices run on batteries, and real batteries are non-linear
devices [104]. Therefore, the measured cost metric (θ) will be slightly different from
the obtained energy cost metric from real batteries.

• Stand-alone Parameters: Same set of experiments should be conducted for all the
four devices in order to compare the test results. We set similar values for primary
parameters on all devices accordingly. However, it was not possible to obtain similar
settings for the stand-alone parameters because all the stand-alone parameters were
not available on all the devices.

We used the default applications available on the smartphone platforms to conduct the
experiments. Executing compatible versions of the same application (i.e., same design
is followed in every version) on the smartphone platforms is logical for fair comparison.
However, our objective is to evaluate the performance from user perspective, thus default
applications were purposely chosen to conduct the experiments.

Bi Parameters Description BB 9700 HTC Nexus One Nokia E71 HTC HD2 iPhone 3GS

01 Processor
Processor class
and speed

XScale 624 MHz
processors

Qualcomm
Snapdragon

QSD8250 1 GHz

ARM 11 369 MHz
processor

Qualcomm
Snapdragon

QSD8250 1 GHz

ARM Cortex A8 600
MHz, PowerVR
SGX535 graphics

02 RAM Size of RAM 256 MB RAM 512MB RAM 128 MB RAM 448 MB RAM 256 MB RAM

03 Display Size of display
480 x 360 pixels

2.44"
480 x 800 pixels

3.7"
320 x 240 pixels

2.36"
480 x 800 pixels

4.3"
320 x 480 pixels

3.5"

04
Operating
System (OS)

Name of the OS BlackBerry OS Android Symbian Windows CE iPhone OS 3

05 Battery Type & capacity Li-Ion 1500 mAh Li-Ion 1400 mAh Li-Po 1500 mAh Li-Ion 1230 mAh Li-Ion 1250 mAh

Table 5.4: Examples of basic parameters (G0)

5.9 Summary

We proposed a methodology to measure the energy performances of smartphones and
network related applications by means of reduced number of test cases. Such a testing

127

Bi Parameters Description BB 9700 HTC Nexus One Nokia E71 HTC HD2 iPhone 3GS

31 Volume
Allows the user to change

the volume level of the
device

Volume levels
(0 to 10)

Option 1:
Sounds (Silent)
Option 2: levels:

(0 to 15)

Volume levels
(0 to 10)

Option 1:
Sounds (Silent)

Option 2:
levels (0 to 15)

Volume levels
(0, 1 to 16)

32 Brightness
Allows the user to change
the brightness level of the

device

Brightness
(0, 10, 20 to 100)

Brightness
Continuously
(0 to 100%)

Display Light
Sensor (0, 25,
50, 75, 100)

Brightness
Continuously
(0 to 100%)

Brightness
Continuously
(0 to 100%)

33 Color Contrast Allows the user to select the
color contrast of the display

Contrast (Normal,
Reverse contrast,

Grey Scale)
No Different Color

Theme No No

34 Bluetooth
Allows the user to turn on/off

their bluetooth connection
whenever required.

ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF

35 GPS
Allows the user to turn on/off

their GPS connection
whenever required.

Location Data
(Enable /
Disabled)

Use GPS
satellites (Select

/ Deselect)

GPS data
(navigation,
position, trip

distance)

Location
Service
Settings

(ON/OFF)

Location
Services

(ON/OFF)

36 Data
Encryption

The user can enable or
disable the encryption

Encryption
(Enabled /
Disabled)

No
Phone Memory/
Memory Card

(ON/OFF)

Alternative
(Encrypt files
when placed
on storage)

No

37 Data Access
Mode

Allows the user to select
from WiFi/EDGE/3G

connections
Yes Yes Yes Yes Yes

Table 5.5: Examples of active parameters (G1)

framework will help the system designers to come up with better design and implementa-
tions of software applications. The challenges associated with the measurement of energy
costs and the comparison of such costs across smartphones were addressed thoroughly. We
identify the potential parameters and categorize them into different groups. Four different
state-of-the-art smartphones were used to conduct test on our energy measurement test
bench.

128

Bi Parameters Description BB 9700 HTC Nexus One Nokia E71 HTC HD2 iPhone 3GS

61 Airplane
Mode

Allows the user to
disable all
wireless

connection

ON/OFF Select / Deselect No ON/OFF ON/OFF

62 Maps

User can let the
address of the

device
recognizable

ON/OFF No Alternative
(Select GPS / Maps) No Alternative

(Select Maps)

63 Browser Push
Allows the user to

enable Push,
WAP, MDS

ON/OFF No No No No

64
Network
Selection

Mode

Let device to
select the network

manually or
automatically

Auto/Manual Search
automatically Manual/Automatic Select / Deselect /

Auto

Alternative
Carriers

(Automatic /
Select / Deselect)

65
WiFi Settings

-Network
Notification

Prompts the user
whenever any

network
notifications are

available

Alternative
(Prompt when
manual login is

required)

ON/OFF

Option 1: Show WLAN
availability (Yes/No)
Option 2: Scan for

Networks (1 to 10 min)

No ON/OFF

66 Bluetooth -
Discoverable

Makes the device
discoverable by
other Bluetooth

devices

No ON/OFF
Shown to all, Define

Period
(1 to 60 min), Hidden

No No

67

Scanning
Other

Bluetooth
Devices

Scans other
Bluetooth devices

in the vicinity
Search/Listen Scan for devices No Search No

68 Portable WiFi
Hotspot

Leads the mobile
to act as a WiFi

hotspot
No

Portable Wi-Fi
Hotspot

(Select / Deselect)
No

Alternative
Internet sharing

(Select / Deselect)

Set up Internet
Tethering

69

Pulse
Notification /
Light Event

Sounds

A click sound will
be made

whenever some
events take place

Event Sounds
(ON/OFF)

Vibrate when
pressing soft keys
and on certain UI

interactions

Alternative
Blink light for

(Off,5,15,30hrs)

Alternative
Notification Sounds

(reminders, new
message, new email,

voice mail)

ON/OFF

70 Automatic
Brightness

Allows the user to
set the brightness

to default level
No ON/OFF No ON/OFF ON/OFF

71 Automatic
Dim Backlight

Dims the display
light automatically ON/OFF No Light time-out

(5 to 60 sec)

Dim backlight
[10 sec to 5 min]
(battery) & [1 to
10min] (external

power)

No

72 Auto-rotate
Screen

The screen
rotates to have

two orientations of
display

No ON/OFF No No

Alternative
(Screen

automatically
auto-rotates)

73 Animations
Some window
animations are

shown
No Animation

(No, Some, All)

Alternative
(None, Playing,

Animation)
No No

74 Screen
Timeout

Allows the user to
set the display
timeout for the

screen

Timeout (10
sec to 2 Min)

Timeout
(15 sec to 30 min)

Timeout
(5 to 90 sec)

Timeout [1 to 10 min]
(battery) & [1 to 30

min] (external power)

Timeout
(1 - 5 min,

Never)

75
LED

Coverage
Indicator

Indicates the
presence of

network
ON/OFF No No Alternative

G-Sensor (ON/OFF) No

76
Use Location

Aiding For
GPS

Uses addition
network

information for
GPS

Location Aiding
(Enabled /
Disabled)

No No
Alternative

HTC Location service
(Enabled / Disabled)

Location Services
(ON / OFF)

77 Security -
Firewall

User can enable
or disable the

Firewall

Firewall
(Enabled /
Disabled)

No No No No

Table 5.6: Examples of passive parameters (G2)

129

Chapter 6

Conclusions and Future Directions

6.1 Conclusions

Smartphones are emerging as the preferred personal gadget of users. Increasing number
of resource intensive software applications are draining their limited energy resource. As
a result, extending the battery life of smartphones has been in the focus of researchers for
more than a decade. Numerous energy management techniques have been investigated at
different levels of system design, starting from silicon at the bottom, to application design
at the top, with communication protocols and operating systems in between. However, the
well-known end-to-end argument suggests that functions placed at low levels of a system
may be redundant or of little value when compared with the cost of providing them at
that low level. In portable devices, software applications use hardware resources through
the operating system, which in turn consume battery power when they are in use. Thus,
being on the top level, software applications play the most important role in the energy
consumption of smartphones, and as such draw considerable attention for research.

The challenges in designing energy-efficient software applications are described in Chap-
ter 1. In the mobile application development process, there is a need for high-level energy
cost information so that designers can apply that during design phase. From the designers
or developers point of view, the impact of design decisions on the energy cost is impor-
tant. Thus fewer design choices need to change after the initial energy performance test
of an application. A standard energy evaluation test bench is also crucial for comparing
energy test results of smartphones performance tests. Specifying the values of different
smartphone parameters during a test, and reducing the number of test configurations are
two potential concerns in this regard.

131

In this thesis, we have addressed the above two major issues related to mobile appli-
cation development process. In addition, we have addressed an application level energy
management technique that enhances the functionality of smartphones by accessing re-
sources on other devices. We have also investigated an energy-efficient communication
strategy that proposed a data packet aggregation algorithm based on different burst pa-
rameters. To observe the efficacy of the approach, WiFi Internet traffic data of different
smartphones were observe and analyzed. A summary of each of the strategies is described
below.

We presented a finite state machine (FSM) based model to estimate the energy cost
of mobile applications. We provided evidence from an energy measurement test bench
to explain the model parameters. We proposed the use of smartphone device emulators
to estimate energy costs and discuss the rationale behind doing so. To help designers in
making decisions at an early design phase, the concept of energy cost profile of a device was
introduced, which provides the energy cost information of different hardware components
so that designers may take measures to improve their designs and make their applications
more energy efficient. We have conducted experiments on our energy measurement testbed
comprising of a number of state-of-the-art smartphones to provide practical examples of
energy cost profiles for devices.

The proposed UCCI framework facilitates communication between two wireless portable
devices such as smartphones and laptops. This framework allows a server device to remain
in the sleep state unless its service is needed by a client device. It exploits the ‘Wake On’
feature of the server device, uses the personal area low power Bluetooth link, and option-
ally returns the server back to the sleep state. To validate our model, we have developed
two prototypes using state-of-the-art BlackBerry 9700 and HTC Nexus One smartphones.
We investigated the potential energy saving issues by anatomizing the WiFi access data
traffic of smartphones, and a packet aggregation scheduler has been proposed to keep the
communication interface in sleep states as long as possible.

To evaluate the energy cost evaluation of smartphone applications, we have defined the
concept of a user level test case for smartphones and showed that, due to configuration
settings, there exist millions of such test cases. We proposed a test selection technique
to reduce the number of test cases. The proposed technique is applied to four different
smartphones and their energy costs are evaluated for running common network related
applications. We have developed a state-of-the-art test bench to execute those test cases
for real applications on smartphones, and measure their actual energy costs.

We have shown the efficacy of our proposed ideas by means of extensive experiments
throughout the thesis. The results of this thesis can be used by application developers

132

to make implementation level decisions that allow the implementation of energy efficient
software applications, leading to the designing of energy efficient smartphones.

6.2 Future Directions

The need for energy efficiency in smartphones will become more acute in future for the
following reasons.

1. Growing Miniaturization of Hardware Components: Hardware components
are becoming increasingly smaller with more capacity. Smartphones with a quad-
core processor are already available in the market. On the other hand, the space for
battery is reducing with overall size of the devices.

2. Addition of more Sensors: New components are being added to the devices over
time. The accelerometer, proximity sensor, near field communication (NFC) are few
examples, and more sensors means more energy consumers in the system.

3. Diversification of Usage: With the development of new applications and tools,
the usage of the smartphones will be further diversified. Users will use smartphones
for mobile payment, GPS navigation, Camera and etc.

4. Development of Energy-hungry Applications: Everyday thousands of new ap-
plications are coming to application market-place to meet the user demand. Some
types of application such as gaming and map based apps are resource intensive in
terms of processing and communication need.

5. Enhanced Data Transfer and Storage Security: Security and integrity of data
has been an important concern, and it will keep growing in future. Additional com-
putation intensive measures will be required to satisfy the demand in this regard.

6. Integration of New Technology: New technologies will be integrated with smart-
phone such as cognitive radio which require constant energy for spectrum sensing.

This list is not exhaustive, these are just a few examples. Technology keeps changing
at a rapid pace, and we need new and innovative approaches to cope with the changes.
In the following, we have proposed a few potential extensions of our work and a couple of
general issues that need to be addressed for building energy efficient smartphones. These
points address the limitation of our approaches as well.

133

1. We have investigated the energy consumption of applications on top of operating
systems. During the execution of the application system resources such as CPU
and memory were readily available. However, in the presence of other applications,
available resources may become saturated. For example, the OS may need to swap
memory to accommodate an application, or an application may be kept in waiting
for a while. This kind of situation is not rare, and it needs to be addressed to get a
clear picture of energy consumption.

2. The cloud computing facilitates the offloading of computationally intensive tasks
to cloud servers for the smartphones. However, issues such as when or in what
situations offloading would be effective in terms of delay and energy are yet to be
properly addressed. There is also a need for a generic framework for offloading task
to a surrogate server.

3. When we analyzed the smartphone Internet traffic, we used only WiFi traffic, because
we did not have access to 3G traffic data. To explore the energy saving potential of
3G data network for smartphones, availability of cellular data traces is essential.

4. In the design of energy performance testing, we were able to reduce the number
of configurations, but the settings of device parameters still need to be changed
to configure a device for testing. The task of setting values of parameters can be
automated, and automation of the testing is another potential extension to our work.

5. During the experimentation, we used only one smartphone of different types. There
is a need to observe the variation of energy consumption among the devices of same
kind. For example, the variations of energy consumption on two BlackBerry 9700.
This validation technique will add more confidence to our results.

6. To receive the full benefit of energy efficient software applications, operating systems
need to properly coordinate the applications, and manage hardware components.
Thus, a system-wide integrated energy saving framework is essential. This feature is
still in its infancy.

7. Finally, there is the need for a review of existing software engineering methodolo-
gies for mobile application development. New methodologies need to be augmented
with existing software engineering processes to address the performance testing issues
related to the mobile application development cycle.

—–

134

List of Publications

Patent Applications

P01 US Patent Filed. 2008. Subject: Estimating Energy Cost of Software Applications
on Communications Devices.

P02 US Patent Filed. 2010. Subject: Method and Apparatus Pertaining to Offloading
Task Execution.

Journal Papers (Accepted and Submitted)

J01 Rajesh Palit, Ajit Singh, Kshirasagar Naik. An Architecture for Enhancing Capability
and Energy Efficiency of Wireless Handheld Devices, International Journal of Energy,
Information and Communication (IJEIC), 2(4):117-136, November 2011.

J02 Rajesh Palit, Kshirasagar Naik, Ajit Singh, Renuka Arya. Designing User Level Test
Cases for Energy Performance Evaluation of Smartphones, submitted as an invited
paper to special issues of Journal of Systems and Software (JSS) for Automation of
Software Test, November, 2011.

J03 Rajesh Palit, Kshirasagar Naik, Ajit Singh. Anatomy of WiFi Access Traffic of
Smartphones and Implications for Energy Saving Techniques, submitted to Elsevier
Computer Communications, October, 2011.

J04 Rajesh Palit, Kshirasagar Naik, Ajit Singh. Modeling and Evaluating Energy Perfor-
mance of Software Applications on Smartphones, submitted to Journal of Pervasive
and Mobile Computing (Elsevier), November, 2011.

135

Conference Papers

C01 Rajesh Palit, Ajit Singh, Kshirasagar Naik. Enhancing the Capability and Energy
Efficiency of Smartphone using WPAN, in the 22nd IEEE Symposium on Personal,
Indoor, Mobile and Radio Communications (IEEE PIMRC 2011), pages 1025–1030,
September 2011.

C02 Rajesh Palit, Kshirasagar Naik, and Ajit Singh. Impact of Packet Aggregation on
Energy Consumption in Smartphones, in the 11th International Wireless Commu-
nications and Mobile Computing Conference (IWCMC 2011), pages 589–594, July
2011.

C03 Rajesh Palit, Renuka Arya, Kshirasagar Naik, and Ajit Singh. Selection and Exe-
cution of User Level Test Cases for Energy Cost Evaluation of Smartphones, in the
proceedings of ICSE Workshop on Automation of Software Test (ACM/IEEE AST
2011), pages 84–90, May 2011.

C04 Rajesh Palit, Kshirasagar Naik, and Ajit Singh. Estimating the Energy Cost of Com-
munication on Portable Wireless Devices, in the proceedings of IFIP/IEEE Wireless
Days 2008, pages 1–5, November 2008.

C05 Rajesh Palit, Ajit Singh, and Kshirasagar Naik. Modeling the Energy Cost of Ap-
plications on Portable Wireless Devices, in the proceedings of ACM MSWiM 2008,
pages 346–353, October 2008.

C06 Rajesh Palit, Paul S Ward, Ajit Singh and Kshirasagar Naik. Energy-aware Co-
operative (ECO) Relay-Based Packet Transmission in Wireless Networks, in the pro-
ceedings of IEEE WCNC 2008, pages 2875–2880, April 2008.

C07 Renuka Arya, Rajesh Palit, and Kshirasagar Naik. A Methodology for Selecting
Experiments to Measure the Energy Consumptions in Smartphones, in the 11th In-
ternational Wireless Communications and Mobile Computing Conference (IWCMC
2011), pages 2087–2092, July, 2011.

C08 Rajesh Palit, Majid Altamimi, Kshirasagar Naik, Ajit Singh. Challenges and Op-
portunities in Designing Next Generation Energy-efficient Smartphones, in the pro-
ceedings of the 1st International Conference on Advanced Computing (ICoAC 2011),
plenary paper, December 2011.

136

Conference Papers (Submitted)

C10 Rajesh Palit, Abdulhakim Abogharaf, Kshirasagar Naik, Ajit Singh. A Generalized
Strategy for Selecting User Level Test Cases for Energy Performance Evaluation of
Smartphones, submitted to the 34th International Conference on Software Engineer-
ing (ICSE 2012), Zurich, Switzerland, June 2–9, 2012.

Book Chapter

B01 Rajesh Palit, Ajit Singh, Kshirasagar Naik. Energy Costs of Software Applications
on Portable Wireless Devices, as a chapter in the book Energy Scavenging and Op-
timization techniques for Mobile Devices by CRC Press, Taylor and Francis Group,
USA, March 2012.

137

References

[1] Andrea Acquaviva, Tajana Simunic, Vinay Deolalikar, and Sumit Roy. Remote power
control of wireless network interfaces. Journal of Embedded Computing, 1:381–389,
August 2005.

[2] Pranav Agrawal, Anurag Kumar, and Ramachandran Ramjee. OPSM - opportunistic
power save mode for infrastructure IEEE 802.11 WLAN. In Proceedings of the IEEE
International Conference on Communications Workshops, pages 1–6, May 2010.

[3] Giuseppe Anastasi, Marco Conti, Enrico Gregori, Andrea Passarella, and Luciana
Pelusi. An energy-efficient protocol for multimedia streaming in a mobile environ-
ment. International Journal of Pervasive Computing and Communications, pages
301–312, March 2005.

[4] Renuka Arya, Rajesh Palit, and Kshirasagar Naik. A methodology for selecting
experiments to measure energy costs in smartphones. In Proceedings of the 7th
International Wireless Communications and Mobile Computing Conference, IWCMC
’11, pages 2087–2092, July 2011.

[5] Hakan Aydin, Rami Melhem, Daniel Mosse, and Pedro Mejia-Alvarez. Power-aware
scheduling for periodic real-time tasks. IEEE Transactions on Computers, 53(5):584–
600, May 2004.

[6] James Bach and Patrick J. Schroeder. Pairwise testing: A best practice that isn’t.
In Proceedings of the 22nd Annual Pacific Northwest Software Quality Conference,
pages 180–196, October 2004.

[7] Valeria Baiamonte and Carla F. Chiasserini. Investigating MAC-layer schemes to
promote doze mode in 802.11-based WLANs. In Proceedings of the IEEE 58th Ve-
hicular Technology Conference, pages 3:1568–3:1572, October 2003.

139

[8] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. En-
ergy consumption in mobile phones: a measurement study and implications for net-
work applications. In Proceedings of the 9th ACM SIGCOMM IMC, pages 280–293,
November 2009.

[9] Kutty S. Banerjee and Emmanuel Agu. PowerSpy: fine-grained software energy pro-
filing for mobile devices. In Proceedings of the International Conference on Wireless
Networks, Communications and Mobile Computing, pages 2:1136–2:1141, June 2005.

[10] CPU benchmark Programs. http://www.cse.dmu.ac.uk/~bb/Teaching/

ComputerSystems/SystemBenchmarks/BenchMarks.html.

[11] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey of design
techniques for system-level dynamic power management. IEEE Transaction on Very
Large Scale Integrated Systems, 8:299–316, June 2000.

[12] Jose F. M. Bernal, Luca Ardito, Maurizio Morisio, and Paolo Falcarin. Towards
an efficient context-aware system: Problems and suggestions to reduce energy con-
sumption in mobile devices. In Proceedings of the International Conference on Mobile
Business and Global Mobility Roundtable, pages 510–514, June 2010.

[13] Davide Bertozzi, Anand Raghunathan, Luca Benini, and Srivaths Ravi. Transport
protocol optimization for energy efficient wireless embedded systems. In Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition, pages
706–711, March 2003.

[14] Chris J. Bleakley, Miguel Casas-Sanchez, and Jose Rizo-Morente. Software level
power consumption models and power saving techniques for embedded DSP proces-
sors. Journal of Low Power Electronics, 2(2):281–290, August 2006.

[15] Jiang Bo, Long Xiang, and Gao Xiaopeng. MobileTest: a tool supporting automatic
black box test for software on smart mobile devices. In Proceedings of the 2nd
International Workshop on Automation of Software Test, AST ’07, pages 37–43,
May 2007.

[16] Lawrence S. Brakmo, Deborah A. Wallach, and Marc A. Viredaz. µsleep: A technique
for reducing energy consumption in handheld devices. In Proceedings of the MobiSys,
pages 48–56, June 2004.

140

http://www.cse.dmu.ac.uk/~bb/Teaching/Computer Systems/SystemBenchmarks/BenchMarks.html
http://www.cse.dmu.ac.uk/~bb/Teaching/Computer Systems/SystemBenchmarks/BenchMarks.html

[17] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone.
In Proceedings of the USENIX Annual Technical Conference, USENIXATC ’10, pages
1–14, June 2010.

[18] Ozgur Celebican, Tajana S. Rosing, and Vincent J. Mooney. Energy estimation of pe-
ripheral devices in embedded systems. In Proceedings of the Great Lakes Symposium
on VLSI, pages 430–435, April 2004.

[19] Naehyuck Chang, Inseok Choi, and Hojun Shim. DLS: dynamic backlight luminance
scaling of liquid crystal display. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 12(8):837–846, August 2004.

[20] Naehyuck Chang, Kwanho Kim, and Hyung Gyu Lee. Cycle-accurate energy con-
sumption measurement and analysis: case study of ARM7TDMI. In Proceedings
of the International symposium on Low power electronics and design, ISLPED ’00,
pages 185–190, July 2000.

[21] Baiqiang Chen, Jun Yan, and Jian Zhang. Combinatorial testing with shielding
parameters. In Proceedings of the Asia-Pacific Software Engineering Conference,
pages 280–289, December 2010.

[22] Guangyu Chen, Byung-Tae Kang, Mahmut Kandemir, Narayanan Vijaykrishnan,
and Rajarathnam Chandramouli. Studying energy trade offs in offloading compu-
tation/compilation in java-enabled mobile devices. IEEE Transaction on Parallel
Distributed Systems, 15(9):795–809, September 2004.

[23] Wei-Chung Cheng and Massoud Pedram. Power minimization in a backlit TFT-LCD
display by concurrent brightness and contrast scaling. IEEE Transactions on Con-
sumer Electronics, 50(1):25–32, February 2004.

[24] Carla F. Chiasserini and Ramesh R. Rao. Energy efficient battery management.
IEEE Journal on Selected Areas in Communications, 19(7):1235–1245, July 2001.

[25] Carla F. Chiasserini and Ramesh R. Rao. Improving battery performance by using
traffic shaping techniques. IEEE Journal on Selected Areas in Communications,
19(7):1385–1394, July 2001.

[26] Kyoung Youn Cho, Subhasish Mitra, and Edward J. McCluskey. Gate exhaustive
testing. In Proceedings of the IEEE International Test Conference (ITC), pages 1–7,
November 2005.

141

[27] Sayantan Choudhury, Irfan Sheriff, Jerry D. Gibson, and Elizabeth M. Belding-
Royer. Effect of payload length variation and retransmissions on multimedia in
802.11a WLANs. In Proceedings of IWCMC, pages 377–382, July 2006.

[28] Sue H. Chow, Yi C. Ho, and Tingting Hwang. Low power realization of finite state
machines a decomposition approach. ACM Transactions on Design Automation of
Electronic Systems, 1(3):315–340, July 1996.

[29] Cisco. Cisco visual networking index: Global mobile data traffic forecast update,
2009-2014. White Paper FLGD 08867, Cisco, February 2010.

[30] Joel Coburn, Srivaths Ravi, and Anand Raghunathan. Power emulation: a new
paradigm for power estimation. In Proceedings of the 42nd Design Automation Con-
ference, pages 700–705, June 2005.

[31] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton.
The AETG system: an approach to testing based on combinatorial design. IEEE
Transactions on Software Engineering, 23(7):437–444, July 1997.

[32] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Constructing interaction
test suites for highly-configurable systems in the presence of constraints: A greedy
approach. IEEE Transactions on Software Engineering, 34(5):633–650, September
2008.

[33] Lossless data compression software benchmarks. http://www.maximumcompression.
com/.

[34] Gerard Bosch I. Creus and Petri Niska. System-level power management for mo-
bile devices. In Proceedings of the 7th International Conference on Computer and
Information Technology, pages 799–804, October 2007.

[35] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
Ranveer Chandra, and Paramvir Bahl. MAUI: making smartphones last longer with
code offload. In Proceedings of the MobiSys, pages 49–62, June 2010.

[36] Jacek Czerwonka. Pairwise testing in real world: Practical extensions to test case
generators. In Proceedings of the 24th Pacific Northwest Software Quality Conference,
pages 419–430, October 2006.

[37] Marcio E. Delamaro, Auri Marcelo R. Vincenzi, and Juan C. Maldonado. A strategy
to perform coverage testing of mobile applications. In Proceedings of the International
workshop on Automation of Software Test, AST ’06, pages 118–124, May 2006.

142

http://www.maximumcompression.com/
http://www.maximumcompression.com/

[38] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early performance testing
of distributed software applications. In Proceedings of the 4th International Workshop
on Software and Performance, pages 94–103, January 2004.

[39] Madhav P. Desai, Hariharan Narayanan, and Sachin B. Patkar. The realization
of finite state machines by decomposition and the principal lattice of partitions of
a submodular function. Discrete Applied Mathematics, 131(2):299–310, September
2003.

[40] Fahad R. Dogar, Peter Steenkiste, and Konstantina Papagiannaki. Catnap: ex-
ploiting high bandwidth wireless interfaces to save energy for mobile devices. In
Proceedings of the MobiSys, pages 107–122, June 2010.

[41] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for
battery-powered mobile systems. In Proceedings of the MobiSys, pages 335–348, June
2011.

[42] Android emulator. Available online: http://developer.android.com/guide/

developing/devices/emulator.html, October 2011.

[43] Kamran Etemad. Overview of mobile wimax technology and evolution. IEEE Com-
munications Magazine, 46(10):31–40, October 2008.

[44] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth Kandula, and
Deborah Estrin. A first look at traffic on smartphones. In Proceedings of the 10th
annual conference on Internet measurement, pages 281–287, November 2010.

[45] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos,
Ramesh Govindan, and Deborah Estrin. Diversity in smartphone usage. In Pro-
ceedings of the MobiSys, pages 179–194, June 2010.

[46] Laura M. Feeney and Martin Nilsson. Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment. In Proceedings of
IEEE INFOCOM, pages 3:1548–3:1557, April 2001.

[47] Denzil Ferreira, Anind K. Dey, and Vassilis Kostakos. Understanding human-
smartphone concerns: a study of battery life. In Proceedings of the 9th International
conference on Pervasive computing, pages 19–33, June 2011.

[48] Jason Flinn and Mahadev Satyanarayanan. Energy-aware adaptation for mobile
applications. SIGOPS Operating Systems Review, 33:48–63, December 1999.

143

http://developer.android.com/guide/developing/devices/emulator.html
http://developer.android.com/guide/developing/devices/emulator.html

[49] Jason Flinn and Mahadev Satyanarayanan. PowerScope: a tool for profiling the
energy usage of mobile applications. In Proceedings of the 2nd IEEE Workshop
on Mobile Computer Systems and Applications, WMCSA ’99, pages 2–10, February
1999.

[50] Matthew S. Gast. 802.11 Wireless Networks: The definitive Guide. O’Reilly, second
edition, April 2005.

[51] Andreas Genser, Christian Bachmann, Josef Haid, Christian Steger, and Reinhold
Weiss. An emulation-based real-time power profiling unit for embedded software.
In Proceedings of the International Symposium on Systems, Architectures, Modeling,
and Simulation, SAMOS ’09, pages 67–73, July 2009.

[52] Savvas Gitzenis and Nicholas Bambos. Joint task migration and power management
in wireless computing. IEEE Transactions on Mobile Computing, 8(9):1189–1204,
September 2009.

[53] Xiaohui Gu, Alan Messer, Ira Greenberg, Dejan Milojicic, and Klara Nahrstedt.
Adaptive offloading for pervasive computing. IEEE Pervasive Computing, 3(3):66–
73, July 2004.

[54] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary J. Irwin, Narayanan Vijaykr-
ishnan, and Mahmut Kandemir. Using complete machine simulation for software
power estimation: the SoftWatt approach. In Proceedings of the 8th International
Symposium on High-Performance Computer Architecture, pages 141–150, February
2002.

[55] Selim Gurun, Rich Wolski, Chandra Krintz, and Dan Nurmi. On the efficacy of
computation offloading decision-making strategies. International Journal of High
Performance Computing Applications, 22(4):460–479, November 2008.

[56] Josef Haid, Christian Bachmann, Andreas Genser, Christian Steger, and Reinhold
Weiss. Power emulation: Methodology and applications for hw/sw power optimiza-
tion. In Proceedings of the 8th IEEE/ACM International Conference on Formal
Methods and Models for Codesign (MEMOCODE), pages 133–138, July 2010.

[57] Josef Haid, Gerald Kaefer, Christian Steger, and Reinhold Weiss. Run-time energy
estimation in system-on-a-chip designs. In Proceedings of the Asia and South Pacific
Design Automation Conference, pages 595–599, January 2003.

144

[58] Paul J.M. Havinga and Garard J.M. Smit. QoS scheduling for energy-efficient wire-
less communication. In Proceedings of the International Conference on Information
Technology: Coding and Computing, pages 167–171, April 2001.

[59] Paul J.M. Havinga and Gerard J.M. Smit. Energy-efficient wireless networking for
multimedia applications. Wireless Communications and Mobile Computing, Wiley,
1(2):165–184, March 2001.

[60] Jung Ha Hong and Khosrow Sohraby. On modeling, analysis, and optimization of
packet aggregation systems. IEEE Transactions on Communications, 58(2):660–668,
February 2010.

[61] Jeff Hopper and Jim Wilson. Developers guide to the arm emulator. Available
online: http://msdn.microsoft.com/en-us/library/bb630224.aspx, July 2007.

[62] Guoqiang Hu, Klaus Dolzer, and Christoph Gauger. Does burst assembly really
reduce the self-similarity? In Proceedings of the Optical Fiber Communications
Conference, OFC ’03, pages 1:124–1:126, March 2003.

[63] Junxian Huang, Qiang Xu, Birjodh Tiwana, Z. Morley Mao, Ming Zhang, and
Paramvir Bahl. Anatomizing application performance differences on smartphones.
In Proceedings of the MobiSys, pages 165–178, June 2010.

[64] Mostafa E. A. Ibrahim, Markus Rupp, and Hossam A. H. Fahmy. A precise high-
level power consumption model for embedded systems software. EURASIP Journal
of Embedded Systems, 2011:1:1–1:14, January 2011.

[65] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi. A system based on mobile
agents to test mobile computing applications. Journal of Network and Computer
Applications, 32(4):846–865, July 2009.

[66] Texus Instrument. Analyzing target system energy consumption in Code Composer
StudioTM IDE. Technical Report SPRA074A, Texus Instrument, November 2002.
Software Development Systems.

[67] Key global telecom indicators for the world telecommunication service sec-
tor. Available online: http://www.itu.int/ITU-D/ict/statistics/at_glance/

KeyTelecom.html, October 2010. International Telecommunication Union.

[68] Subu Iyer, Lu Luo, Robert Mayo, and Parthasarathy Ranganathan. Energy-adaptive
display system designs for future mobile environments. In Proceedings of the MobiSys,
pages 245–258, March 2003.

145

http://msdn.microsoft.com/en-us/library/bb630224.aspx
http://www.itu.int/ITU-D/ict/statistics/at_glance/KeyTelecom.html
http://www.itu.int/ITU-D/ict/statistics/at_glance/KeyTelecom.html

[69] Antti Jaaskelainen, Antti Kervinen, and Mika Katara. Creating a test model library
for gui testing of smartphone applications (short paper). In Proceedings of the 8th
International Conference on Quality Software, pages 276 –282, August 2008.

[70] Ravi Jain, David Molnar, and Zulfikar Ramzan. Towards a model of energy com-
plexity for algorithms [mobile wireless applications]. In Proceedings of the Wireless
Communications and Networking Conference, pages 3:1884–3:1890, March 2005.

[71] Saxena Jayashree and C.S. Ram Murthy. A taxonomy of energy management proto-
cols for ad hoc wireless networks. IEEE Communications Magazine, 45(4):104–110,
April 2007.

[72] Christine E. Jones, Krishna M. Sivalingam, Prathima Agrawal, and Jyh Cheng Chen.
A survey of energy efficient network protocols for wireless networks. Wireless Net-
works, 7:343–358, September 2001.

[73] Joon-Myung Kang, Chang-Keun Park, Sin-Seok Seo, Mi-Jung Choi, and James Won-
Ki Hong. User-centric prediction for battery lifetime of mobile devices. In Proceed-
ings of the 11th Asia-Pacific Symposium on Network Operations and Management:
Challenges for Next Generation Network Operations and Service Management, pages
531–534, October 2008.

[74] Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-aware ap-
plication design. SIGMETRICS Performance Evaluation Review, 36:26–31, August
2008.

[75] Thomas Karagiannis, Mart Molle, Michalis Faloutsos, and Andre Broido. A nonsta-
tionary poisson view of internet traffic. In Proceedings of the IEEE International Con-
ference on Computer Communications, INFOCOM ’04, pages 3:1558–3:1569, March
2004.

[76] Keithley website. http://www.keithleycom/products/fasttransient/?mn=

2304A.

[77] Heejin Kim, Byoungju Choi, and W. Eric Wong. Performance testing of mobile
applications at the unit test level. In Proceedings of the 3rd IEEE International
Conference on Secure Software Integration and Reliability Improvement, SSIRI ’09,
pages 171–180, July 2009.

146

http://www.keithleycom/products/fasttransient/?mn=2304A
http://www.keithleycom/products/fasttransient/?mn=2304A

[78] Youngsoo Kim, Sunghyun Choi, Kyunghun Jang, and Hyosun Hwang. Throughput
enhancement of IEEE 802.11 wlan via frame aggregation. In Proceedings of the IEEE
60th Vehicular Technology Conference, pages 4:3030–4:3034, September 2004.

[79] Ronny Krashinsky and Hari Balakrishnan. Minimizing energy for wireless web access
with bounded slowdown. Wireless Networks, 11:135–148, January 2005.

[80] Ulrich Kremer, Jamey Hicks, and James M. Rehg. A compilation framework for
power and energy management on mobile computers. In Proceedings of the 14th In-
ternational Workshop on Languages and Compilers for Parallel Computing (LCPC),
pages 1–12, August 2001.

[81] Rick Kuhn, Raghu Kacker, Yu Lei, and Justin Hunter. Combinatorial software
testing. IEEE Computer, 42(8):94–96, August 2009.

[82] Marcello Lajolo, Anand Raghunathan, Sujit Dey, and Luciano Lavagno.
Cosimulation-based power estimation for system-on-chip design. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 10(3):253–266, June 2002.

[83] Ikhwan Lee, Hyunsuk Kim, Peng Yang, Sungjoo Yoo, Eui-Young Chung, Kyu-Myung
Choi, Jeong-Taek Kong, and Soo-Kwan Eo. PowerViP: SoC power estimation frame-
work at transaction level. In Proceedings of the Asia and South Pacific Conference
on Design Automation, pages 551–558, January 2006.

[84] Yonghee Lee, Heejung Lee, and Heonshik Shin. Adaptive spatial resolution control
scheme for mobile video applications. In Proceedings of the IEEE International Sym-
posium on Signal Processing and Information Technology, pages 977–982, December
2007.

[85] Xiang Li, Wen-Zhan Song, and Weizhao Wang. A unified energy-efficient topology
for unicast and broadcast. In Proceedings of the ACM MobiCom, pages 1–15, August
2005.

[86] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation offloading to save energy on
handheld devices: a partition scheme. In Proceedings of the International conference
on Compilers, architecture, and synthesis for embedded systems (CASES), pages 238–
246, November 2001.

[87] Yuxia Lin and V.W.S. Wong. Frame aggregation and optimal frame size adapta-
tion for ieee 802.11n wlans. In Proceedings of the IEEE Global Telecommunications
Conference, pages 1–6, November 2006.

147

[88] Hao Liu, Yaoxue Zhang, and Yuezhi Zhou. TailTheft: leveraging the wasted time
for saving energy in cellular communications. In Proceedings of the 6th International
workshop on MobiArch, MobiArch ’11, pages 31–36, June 2011.

[89] Jiayang Liu and Lin Zhong. Micro power management of active 802.11 interfaces. In
Proceeding of the MobiSys, pages 146–159, June 2008.

[90] Zhifang Liu, Xiaopeng Gao, and Xiang Long. Adaptive random testing of mobile
application. In Proceedings of the 2nd International Conference on Computer Engi-
neering and Technology (ICCET), pages 2:297–2:301, April 2010.

[91] Jacob R. Lorch and Alan J. Smith. Software strategies for portable computer energy
management. IEEE Personal Communications, 5(3):60–73, June 1998.

[92] Khaled Mahmud, Masugi Inoue, Homare Murakami, Mikio Hasegawa, and Hiroyuki
Morikawa. Energy consumption measurement of wireless interfaces in multi-service
user terminals for heterogeneous wireless networks. IEICE Transaction on Commu-
nication, E88-B(3):1097–1110, March 2005.

[93] Gregor Maier, Fabian Schneider, and Anja Feldmann. A first look at mobile hand-
held device traffic. In Proceedings of the 11th Passive and Active Measurement Con-
ference, pages 161–170, April 2010.

[94] Massimiliano Marcon, Marcel Dischinger, Krishna P. Gummadi, and Amin Vahdat.
The local and global effects of traffic shaping in the Internet. In Third International
Conference on Communication Systems and Networks, COMSNETS ’11, pages 1–10,
January 2011.

[95] Sue Marek. Battling the battery drain, January 2002. Wireless Internet Magazine.

[96] Darko Marinov, Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Martin
Rinard. An evaluation of exhaustive testing for data structures. Technical Report
MIT-LCS-TR-921, MIT Computer Science and Artificial Intelligence Laboratory Re-
port, 2003.

[97] Robert N. Mayo and Parthasarathy Ranganathan. Energy consumption in mobile
devices: Why future systems need requirement-aware energy scale-down. Technical
Report HPL-2003-167, Hewlett Packard Labs, 2007.

[98] Xenia Mountrouidou and Harry Perros. On the departure process of burst aggrega-
tion algorithms in optical burst switching. Computer Networks, 53:247–264, February
2009.

148

[99] Xenia Mountrouidou and Harry G. Perros. Characterization of the burst aggregation
process in optical burst switching. In Proceedings of Networking, volume 3976 of
Lecture Notes in Computer Science, pages 752–764, May 2006.

[100] Radu Muresan and Catherine Gebotys. Instantaneous current modeling in a com-
plex VLIW processor core. ACM Transactions on Embedded Computing Systems,
4(2):415–451, May 2005.

[101] John D. Musa. Operational profiles in software-reliability engineering. IEEE Soft-
ware, 10:14–32, March 1993.

[102] Anish Muttreja, Anand Raghunathan, Srivaths Ravi, and Niraj K. Jha. Automated
energy/performance macro-modeling of embedded software. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 26(3):542–552, March
2007.

[103] Khirasagar Naik and Priyadarshi Tripathy. Software testing and Quality Assurance:
Theory and Practice. John Wiley and Sons, Inc., First edition, August 2008.

[104] Kshirasagar Naik. A survey of software based energy saving methodologies for hand-
held wireless communication devices. Technical Report 2010-13, Department of Com-
puter and Electrical Engineering, University of Waterloo, October 2010.

[105] Kshirasagar Naik and David S. L. Wei. Software implementation strategies for power-
conscious systems. Mobile Networks and Applications, 6(3):291–305, June 2001.

[106] Suman Nath, Zachary Anderson, and Srinivasan Seshan. Choosing beacon periods
to improve response times for wireless HTTP clients. In Proceedings of the 2nd In-
ternational workshop on Mobility management & wireless access protocols, MobiWac
’04, pages 43–50, October 2004.

[107] Mahadevamurty Nemani and Farid N. Najm. Towards a high-level power estimation
capability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(6):588–598, June 1996.

[108] Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM Computer
Survey, 43(2):11:1–11:29, February 2011.

[109] Nachi K. Nithi and Adriaan J. Wijngaarden. Smart power management for mobile
handsets. Bell Laboratory Technical Journal, 15:149–168, March 2011.

149

[110] Nokia energy profiler. Website: http://www.developer.nokia.com/Resources/

Tools_and_downloads/Other/Nokia_Energy_Profiler/.

[111] Jussi K. Nurminen. Parallel connections and their effect on the battery consumption
of a mobile phone. In Proceedings of the 7th IEEE Consumer Communications and
Networking Conference, CCNC ’10, pages 1–5, January 2010.

[112] Jussi K. Nurminen and Janne Nyrnen. Energy-consumption in mobile peer-to-peer
quantitative results from file sharing. In Proceedings of the IEEE Consumer Com-
munications and Networking Conference, pages 729–733, January 2008.

[113] Rajesh Palit, Renuka Arya, Kshirasagar Naik, and Ajit Singh. Selection and execu-
tion of user level test cases for energy cost evaluation of smartphones. In Proceeding
of the 6th international workshop on Automation of Software Test, AST ’11, pages
84–90, April 2011.

[114] Rajesh Palit, Khirasagar Naik, and Ajit Singh. Estimating the energy cost of com-
munication on portable wireless devices. In Proceedings of the Ist IFIP Wireless
Days, WD ’08, pages 1–5, November 2008.

[115] Rajesh Palit, Kshirasagar Naik, and Ajit Singh. Impact of packet aggregation on en-
ergy consumption in smartphones. In Proceedings of the 11th International Wireless
Communications and Mobile Computing Conference, IWCMC ’11, July 2011.

[116] Rajesh Palit, Ajit Singh, and Kshirasagar Naik. Modeling the energy cost of applica-
tions on portable wireless devices. In Proceedings of the 11th international symposium
on Modeling, analysis and simulation of wireless and mobile systems, MSWiM ’08,
pages 346–353, October 2008.

[117] Rajesh Palit, Ajit Singh, and Kshirasagar Naik. Enhancing the capability and energy
efficiency of smartphones using wpan. In Proceedings of the 22nd IEEE Personal
Indoor Mobile Radio Communications (PIMRC), pages 1025–1030, September 2011.

[118] Gian P. Perrucci, Frank H.P. Fitzek, Giovanni Sasso, Wolfgang Kellerer, and JJorg
Widmer. On the impact of 2G and 3G network usage for mobile phones’ battery life.
In Proceedings of the European Wireless Conference, EW ’09, pages 255–259, May
2009.

[119] Christian Poellabauer and Karsten Schwan. Energy-aware traffic shaping for wire-
less real-time applications. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 48–56, May 1994.

150

http://www.developer.nokia.com/Resources/Tools_and_downloads/Other/Nokia_Energy_Profiler/
http://www.developer.nokia.com/Resources/Tools_and_downloads/Other/Nokia_Energy_Profiler/

[120] Robert A. Powers. Batteries of low electronics. Proceedings of IEEE, 83(4):687–693,
April 1995.

[121] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen,
and Oliver Spatscheck. Profiling resource usage for mobile applications: a cross-layer
approach. In Proceedings of the MobiSys, pages 321–334, June 2011.

[122] Moo-Ryong Ra, Jeongyeup Paek, Abhishek B. Sharma, Ramesh Govindan, Martin H.
Krieger, and Michael J. Neely. Energy-delay tradeoffs in smartphone applications.
In Proceedings of the MobiSys, pages 255–270, October 2010.

[123] Ravishankar Rao, Sarma Vrudhula, and Daler N. Rakhmatov. Battery modeling for
energy aware system design. IEEE Computer, 36(12):77–87, December 2003.

[124] Manual de Vega Rodrigo and Jurgen Gotz. An analytical study of optical burst
switching aggregation strategies. In Proceedings of the 3rd International Workshop
on Optical Burst Switching, WOBS ’04, pages 20–30, October 2004.

[125] Joshua J. Romero. Smartphones: The pocketable PC. IEEE Spectrum Magazine,
January 2011.

[126] Peng Rong and Massoud Pedram. Extending the lifetime of a network of battery-
powered mobile devices by remote processing: a markovian decision-based approach.
In Proceedings of the 40th annual Design Automation Conference, pages 906–911,
June 2003.

[127] Marcel C. Rosu, C. Michael Olsen, Chandra Narayanaswami, and Lu Luo. PAWP:
a power aware web proxy for wireless LAN clients. In Proceedings of the 6th IEEE
Workshop on Mobile Computing Systems and Applications, pages 206–215, December
2004.

[128] Eric Rozner, Vishnu Navda, Ramachandran Ramjee, and Shravan Rayanchu. Nap-
man: Network-assisted power management for WiFi devices. In Proceedings of the
MobiSys, pages 91–106, June 2010.

[129] Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuenning. The
remote processing framework for portable computer power saving. In Proceedings of
the 1999 ACM symposium on Applied computing, SAC ’99, pages 365–372, August
1999.

151

[130] Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and Nickolai
Zeldovich. Apprehending joule thieves with cinder. SIGCOMM Computer Commu-
nication Review, 40:106–111, January 2010.

[131] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in
system design. ACM Transaction on Computer Systems, 2:277–288, November 1984.

[132] Mariogiovanna Sami, Donatella Sciuto, Cristina Silvano, and Vittorio Zaccaria. An
instruction-level energy model for embedded vliw architectures. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 21(9):998 – 1010,
September 2002.

[133] Ichiro Satoh. A testing framework for mobile computing software. IEEE Transactions
on Software Engineering, 29(12):1112–1121, December 2003.

[134] Alaa Seddik-Ghaleb, Yacine Ghamri-Doudane, and Sidi-Mohammed Senouci. TCP
computational energy cost within wireless mobile ad hoc network. In Proceedings
of the IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA ’09, pages 955–962, May 2009.

[135] Tamizh Selvam and Subramanian Srikanth. A frame aggregation scheduler for IEEE
802.11n. In Proceedings of the National Conference on Communications (NCC),
pages 1–5, January 2010.

[136] Sakura She, Sasindran Sivapalan, and Ian Warren. Hermes: A tool for testing mobile
device applications. In Proceedings of the Australian Software Engineering Confer-
ence, pages 121–130, April 2009.

[137] Eugene Shih, Paramvir Bahl, and Michael j. Sinclair. Wake on wireless: An event
driven energy saving strategy for battery operated devices. In Proceedings of the
ACM MobiCom, September 2002.

[138] Hojun Shim, Naehyuck Chang, and Massoud Pedram. A compressed frame buffer
to reduce display power consumption in mobile systems. In Proceedings of the Asia
and South Pacific Design Automation Conference, ASP-DAC ’04, pages 818–823,
January 2004.

[139] Hojun Shim, Youngjin Cho, and Naehyuck Chang. Frame buffer compression using
a limited-size code book for low-power display systems. In Proceedings of the 3rd
Workshop on Embedded Systems for Real-Time Multimedia, pages 7–12, September
2005.

152

[140] Victor Shnayder, Mark Hempstead, Bor rong Chen, Geoff Werner Allen, and Matt
Welsh. Simulating the power consumption of large-scale sensor network applications.
In Proceedings of the 2nd International Conference on Embedded Networked Sensor
Systems (SenSys), pages 188–200, November 2004.

[141] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: studying real
user activity patterns to guide power optimizations for mobile architectures. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 168–178, December 2009.

[142] Tajana Simunic and Stephen Boyd. Managing power consumption in networks on
chips. In Proceedings of the Design, Automation and Test Europe (DATE), pages
110–116, January 2004.

[143] Suresh Singh and Candy Yiu. Putting the cart before the horse: Merging traffic for
energy. IEEE Communications Magazine, 49:78–82, June 2011.

[144] Rishi Sinha, Christos Papadopoulos, and John Heidemann. Internet packet size dis-
tributions: Some observations. Technical Report ISI-TR-2007-643, USC/Information
Sciences Institute, May 2007.

[145] Dionysios Skordoulis, Qiang Ni, Hsiao-Hwa Chen, Adrian P. Stephens, Changwen
Liu, and Abbas Jamalipour. IEEE 802.11n MAC frame aggregation mechanisms
for next-generation high-throughput WLANs. IEEE Wireless Communications,
15(1):40–47, February 2008.

[146] Mark Stemm and Randy H. Katz. Measuring and reducing energy consumption of
network interfaces in hand-held devices. IEICE Transactions on Communications,
80:1125–1131, January 1997.

[147] Enhua Tan, Lei Guo, Songqing Chen, and Xiaodong Zhang. PSM-throttling: Mini-
mizing energy consumption for bulk data communications in WLANs. In Proceedings
of the IEEE International Conference on Network Protocols, pages 123–132, October
2007.

[148] Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Technical Ref-
erence, New Jersey, USA, 4th edition, 2002.

[149] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded soft-
ware: a first step towards software power minimization. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2(4):437–445, December 1994.

153

[150] Osman S. Unsal and Israel Koren. System-level power-aware design techniques in
real-time systems. Proceedings of the IEEE, 91(7):1055–1069, July 2003.

[151] Keith S. Vallerio, Lin Zhong, and Niraj K. Jha. Energy-efficient graphical user
interface design. IEEE Transactions on Mobile Computing, 5(7):846–859, July 2006.

[152] Cheng Wang and Zhiyuan Li. A computation offloading scheme on handheld devices.
Journal of Parallel and Distributed Computing, 64(6):740–746, June 2004.

[153] Cheng Wang and Zhiyuan Li. Parametric analysis for adaptive computation offload-
ing. SIGPLAN Notes, 39(6):119–130, June 2004.

[154] Le Wang and Jukka Manner. Energy consumption analysis of WLAN, 2G and 3G
interfaces. In Proceedings of the IEEE/ACM GREENCOM-CPSCOM, pages 300–
307, December 2010.

[155] Anthony I. Wasserman. Software engineering issues for mobile application develop-
ment. In Proceedings of the FSE/SDP workshop on future of software engineering
research, FoSER ’10, pages 397–400, November 2010.

[156] Elaine J. Weyuker and Filippos I. Vokolos. Experience with performance testing
of software systems: issues, an approach, and case study. IEEE Transactions on
Software Engineering, 26(12):1147–1156, December 2000.

[157] Nick Wood. Mobile data traffic growth 10 times faster than fixed over next five years.
Total Telecom, September 2009.

[158] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. Adaptive computation offloading
for energy conservation on battery-powered systems. International Conference on
Parallel and Distributed Systems, 1:1–8, December 2007.

[159] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. A programming environment with
runtime energy characterization for energy-aware applications. In Proceedings of the
International symposium on Low power electronics and design, ISLPED ’07, pages
141–146, August 2007.

[160] Yu Xiao, Ramya S. Kalyanaraman, and Antti Yla-Jaaski. Energy consumption of
mobile YouTube: Quantitative measurement and analysis. In Proceedings of NG-
MAST’08, pages 61–69, September 2008.

154

[161] Rong Xu, Zhiyuan Li, Cheng Wang, and Peifeng Ni. Impact of data compression on
energy consumption of wireless-networked handheld devices. In Proceedings of the
23rd International Conference on Distributed Computing Systems, pages 302–311,
May 2003.

[162] Haijin Yan, Rupa Krishnan, Scott A. Watterson, and David K. Lowenthal. Client-
centered energy savings for concurrent HTTP connections. In Proceedings of the 14th
international workshop on Network and operating systems support for digital audio
and video, NOSSDAV ’04, pages 62–67, June 2004.

[163] Shun-Ren Yang. Dynamic power saving mechanism for 3G UMTS system. Mobile
Network Applications, 12:5–14, January 2007.

[164] Roy D. Yates and David J. Goodman. Probability and Stochastic Processes. John
Wiley and Sons, Inc., Second edition, May 2005.

[165] Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with coor-
dinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transaction on
Networking, 12:493–506, June 2004.

[166] Wu Ye, Narayanan Vijaykrishnan, Mahmut Kandemir, and Mary J. Irwin. The design
and use of simplepower: A cycle-accurate energy estimation tool. In Proceedings of
the Design Automation Conference (DAC), pages 340–345, August 2000.

[167] Yongfeng Yin, Bin Liu, Chen Wang, and Hongying Ni. Research on automatic
testing technology oriented intelligent mobile terminal software. In Proceedings of
the International Conference on Communications and Mobile Computing (CMC),
pages 1:274–1:278, April 2010.

[168] Masaki Yoshio, Ralph J. Brodd, and Akiya Kozawa. Lithium-ion Batteries. Science
and Technology. Springer, First edition, January 2005.

[169] Xiang Yu, Yang Chen, and Chunming Qiao. A study of traffic statistics of assem-
bled burst traffic in optical burst switched networks. In Proceedings of the Optical
Networking and Communication Conference, pages 149–159, July 2002.

[170] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. ECOSystem: man-
aging energy as a first class operating system resource. SIGOPS Operating System
Review, 36:123–132, October 2002.

155

[171] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Currentcy: a uni-
fying abstraction for expressing energy management policies. In Proceedings of the
USENIX Annual Technical Conference, pages 43–56, June 2003.

[172] Jiucai Zhang, Dalei Wu, Song Ci, Haohong Wang, and Aggelos K. Katsaggelos.
Power-aware mobile multimedia: a survey. Journal of Communications, 4(9):600–
613, October 2009.

[173] Lide Zhang, Birjodh Tiwana, Robert P. Dick, Zhiyun Qian, Zhuoqing M. Mao,
Zhaoguang Wang, and Lei Yang. Accurate online power estimation and automatic
battery behavior based power model generation for smartphones. In Proceedings of
the IEEE/ACM/IFIP CODES+ISSS, pages 105–114, October 2010.

[174] Xiaoli Zhao, Pin Tao, Shiqiang Yang, and Fei Kong. Computation offloading for
H.264 video encoder on mobile devices. In Proceedings of the IMACS Multi-conference
on Computational Engineering in Systems Applications, pages 2:1426–2:1430, Octo-
ber 2006.

[175] Lin Zhong and Niraj K. Jha. Graphical user interface energy characterization for
handheld computers. In Proceedings of the International conference on Compilers,
architecture and synthesis for embedded systems, CASES ’03, pages 232–242, October
2003.

[176] Yi-hua Zhu and Victor C. M. Leung. Efficient power management for infrastructure
IEEE 802.11 WLANs. IEEE Transaction on Wireless Communications, 9:2196–2205,
July 2010.

156

	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Smartphone and its Components
	Resource Constraints
	Energy Management and Applications
	Designing Energy Efficient Applications
	Energy Management Strategies
	Smart Battery Aided Design
	Energy-Efficient GUI Design
	Energy-saving micro-Sleep Techniques
	Energy-efficient Communication Techniques
	Programming and Compilation Techniques
	High-level Energy Management Techniques
	Integrated Power Management Techniques

	Problem Descriptions
	Solution Strategies
	Validation Methodology
	Robustness of Solution Strategies
	Summary of Contributions
	Organization of this Thesis

	Energy Consumption Model
	Problem Description
	Motivation
	Framework
	Contributions

	Related Work
	Simulation and Emulation Based Estimation Tools
	Measurement Based Estimation Tools
	Studies of Energy Consumption Behaviors
	Energy Efficient Techniques
	Energy Efficient Systems

	Energy Consumption Model
	Getting Model Parameters
	Energy Cost Profile of a Device
	Profile Parameters
	Experimental Setup
	Experimental Results
	An Example

	Summary

	Capability and Functionality Enhancement
	Problem Description
	Background
	Motivation
	System Model and Design Criteria
	Research Objectives
	Contributions

	Related Work
	Architecture
	Device and Connection Management (DCM)
	Framework for Information Exchange (FIX)
	Possible Security Issues

	Prototype Implementation and Model Validation
	Experimental Setup
	Results and Discussions
	Energy Costs for Basic Operations
	Energy Costs for Transferring a File

	Summary

	Anatomy of Smartphone WiFi Traffic
	Problem Description
	Related Work
	Selection of Applications and Performance Metrics
	Chosen Applications
	Performance Metrics

	Experimental Setup
	Observations and Discussions
	Impacts on Energy Saving Methods
	Impact of Burst Duration and Size
	Impact of Burst Inter-arrival Time
	Coordination between Device and AP

	Packet Aggregation Scheduler
	Low Energy Data-packet Aggregation Scheduler
	Analysis
	Used Terms and Symbols
	Bursts sent on formation time
	Bursts sent on size
	Bursts sent on number of packets

	Simulation and Experimental Results
	Summary

	Design of Energy Performance Testing
	Problem Description
	Literature Review
	Software Performance Testing
	Testing on Mobile Devices
	Combinatorial Interaction Testing (CIT)

	Formulation of Test Cases
	Challenges
	Number of Configurations
	Choosing Applications, Contents, and Durations

	Proposed Methodology
	Categorization of Parameters
	Number of Configurations for Active Parameters
	Choosing A Primary Parameter
	Parameter with Continuous Value
	Energy Cost Metric

	Test Bench
	Experimental Results
	Limitations
	Summary

	Conclusions and Future Directions
	Conclusions
	Future Directions

	List of publications
	References

