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Abstract

We address bootstrapping secure multicast in enterprise and public-safety settings. Our work

is motivated by the fact that secure multicast has important applications in such settings, and that

the application setting significantly influences the design of security systems and protocols.

This document presents and analyzes two designs for the composition of the authentication

protocol, Kerberos, and the key transport protocol, Multimedia Internet KEYing (MIKEY). The

two designs are denoted to be KM1 and KM2. The main aspect in which the objective impacts

the design is the assumption of an additional trusted third party (called a Key Server) that is the

final arbiter on whether a principal is authorized to receive a key.

Secure composition can be a challenge, and therefore the designs were kept to be simple so

they have intuitive appeal. Notwithstanding this, it was recognized that even simple, seemingly

secure protocols can have flaws. Two main security properties of interest called safety and avail-

ability were articulated. A rigorous analysis of KM1 and KM2 was conducted using Protocol

Composition Logic (PCL), a symbolic approach to analyzing security protocols, to show that the

designs have those properties.

The value of the analysis is demonstrated by a possible weakness in KM1 that was discovered

which lead to the design of KM2. A prototype of KM1 and KM2 was implemented starting with

the publicly available reference implementation of Kerberos, and an open-source implementation

of MIKEY. This document also discusses the experience from the implementation, and present

empirical results which demonstrate the inherent trade-off between security and performance in

the design of KM1 and KM2.

iii



Acknowledgements

I want to express my deepest gratitude to my supervisors, Dr. Mahesh Tripunitara and Dr.

Gordon Agnew. The creation of this thesis would not have been possible without Dr. Tripuni-

tara’s close guidance and insight in this research topic. His enthusiasm in research encouraged

and motivated me to refine my knowledgebase and be creative in deriving solutions. Also with-

out Dr. Gordon Agnew’s introduction to the Cisco Graduate Internship Program, I may not have

had the resources which allowed me to pursue graduate studies. It was truly an honour to have

both opportunities bestowed upon me.

I would also like to thank all the members of the Cisco team that aided me throughout the

internship. I am especially grateful for their support as it was an exceptionally difficult period for

them. In particular, I would like to thank my manager, Matthias Loeser for his mentorship, my

mentor, Fangjin Yang who never hesitated in providing me with helpful advice in various aspects

of life and career, and of course Suran De Silva for organizing this program.

Lastly, I wish to thank all my friends for helping me through all the difficult times and acted

as my family away from home. They provided the environment that filled me with entertainment,

emotional support and care throughout my undergraduate and graduate studies. In alphabetical

order by surname: Yuki Cheung, Kenneth Lam, Henry Pang, Alice Tsang, Ronald Wan, Abraham

Wong, Lily Wong, Noreen Wong, Osman Wong, and Wallace Wu. Thank you all for everything.

iv



Dedication

I would like to thank my dad, Sak Fai Woo, my mom, Lillian Woo, my brother, Tim Woo,

and my other significant half, Connie Ling for their endless and altruistic support. Their love and

care reached far from the other side of the world. I dedicate this thesis to them.

v



Table of Contents

List of Tables ix

List of Figures x

Glossary xii

1 Introduction 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Kerberos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 IETF MSec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vi



2.3 Multimedia Internet KEYing (MIKEY) . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Protocol Composition Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Composition of Kerberos and MIKEY 16

3.1 Design of KM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Design of KM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 PCL Analysis 21

4.1 KM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 KM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 A weakness in KM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Implementation 32

5.1 KM1 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 KM2 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Confidentiality of Group Memberships . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Administrative Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Empirical Results 39

6.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



6.2.1 Test 1: Number of clients . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.2 Test 2: Number of groups . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.3 Test 3: Group size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.4 Test 4: Group Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Related Work 48

8 Conclusions and Future Work 51

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.1.1 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.1.2 PCL Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.1.3 Group Rekeying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1.4 Authenticated Cross-Realm Group Communication . . . . . . . . . . . . 52

8.1.5 Alternative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References 55

viii



List of Tables

6.1 Illustration of high group diversity . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Illustration of low group diversity . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



List of Figures

2.1 The Kerberos authentication protocol. . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 IETF Msec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Security properties for KM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 KM1 – GCKS as a Kerberos principal. . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 KM2 – Multicast group as a Kerberos principal. . . . . . . . . . . . . . . . . . . 18

4.1 KM1 expressed in PCL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Axioms, definitions and rules used in our proof . . . . . . . . . . . . . . . . . . 24

4.3 Proof for the part of Assertion (b) from Proposition 1 that pertains to safety. . . . 25

4.4 Roles of KM2 protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 KM2 PCL Proof for Safety property . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Average total time to complete client requests with varying number of clients. . . 41

6.2 Average total time to complete client requests with varying number of clients

authorized to groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

x



6.3 Average total time to complete client requests with varying group sizes. . . . . . 44

6.4 Average total time to complete client requests with varying group assignment

with fixed number of clients and groups. . . . . . . . . . . . . . . . . . . . . . . 46

xi



Glossary

API Application Programming Interface

GCKS Group Controller and Key Server

GSA Group Security Associations

IETF Internet Engineering Task Force

IP Internet Protocol

KAS Kerberos Authenticaion Server

KDC Key Distribution Centre. In Kerberos’s context, this is both the KAS and

TGS

Kerberos A single sign-on centralized authentication protocol

KM1 First proposed protocol presented in this document

KM2 Second proposed protocol presented in this document

MAC Message Authentication Code

MIKEY Multimedia Internet KEYing protcol

MIME Multipurpose Internet Mail Extenseions

MITKerberos Open-sourced implementation of Kerberos protocol [26]

MSec Multicast Security

PC Personal Computer

PCL Protocol Composition Logic

xii



RAM Random Access Memory

RFC Request For Comment, a memorandum published by IETF

SIP Session Initiation Protocol

SPI Security Parameter Index

TCP Transmission Control Protocol

TEK Traffic Encryption Key

TGK Traffic Encryption Key Generation Key

TGS Kerberos Ticket Granting Sever

TGT Kerberos Ticket Granting Ticket

TKT Kerberos session Ticket

xiii



Chapter 1

Introduction

1.1 Problem Description

Multimedia group communication is becoming a common channel for everyday work within

enterprises and institutes. Protecting the privacy and confidentiality of its content is paramount

in network security.

In group communication, two or more principals (e.g., humans or IP addresses) form an entity

called a group. When the principals communicate in the context of the group, anything trans-

mitted by a member of the group is received by all others in the group. Group communication,

and its underlying technology, multicast, have important applications in both Internet-scale, and

enterprise and public-safety settings.

In this document’s context, bootstrapping is the transport of an initial cryptographic key

which can be used to secure future communications, including the transport of other keys. Group

key management protocols are examples of security protocols that allow the establishment of

keying materials that can be used by its underlying transport layer’s encryption mechanism.

1



This essentially is what the Internet Engineering Task Force (IETF)’s multicast security work-

ing group (MSec) [20] calls a registration protocol [4, 16]. Its intent is to transport an initial

cryptographic key to authorized members of a group so they can then communicate securely

with other members of the group. All members of the group possess this key. However, the

process of bootstrapping for such a protocol or system is not always trivial. This thesis attempts

to address this problem.

1.2 Contributions

The contribution of this thesis are the two possible designs of bootstrapping for secure group

communication in the enterprise and public-safety settings. Both designs were rigorously an-

alyzed and validated through prototype implementation. There is extensive prior work on au-

thenticated key agreement and transport and also considerable work on group key transport and

agreement (related work will be discussed in Section 7). However, prior work typically designs

new protocols “from scratch.” The designs proposed in this thesis instead leverages existing de

facto standard protocols, and ones that are deployed widely, which is arguably more realistic.

Also, discussion of the implementation will be provided. The starting points for the imple-

mentation are the publicly available reference implementation of Kerberos [26] and an open-

source implementation of MIKEY [25] . Empirical results will be presented based on the im-

plementation that demonstrate the inherent trade-offs between security and performance in the

designs. Additionally, the implementation using open-sourced software libraries will provide

insights in how existing systems can adapt to the protocol proposed.
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1.3 Design Overview

Kerberos [29] was adopted as the authentication protocol as it is the de facto standard for authen-

tication in enterprise and public-safety settings. Kerberos is a protocol for centralized authenti-

cation. It was based originally on a well-known authentication protocol with a trusted third-party

[28]. Kerberos will be discussed in more detail in Section 2.1.

Multimedia Internet Keying or MIKEY [1] was adopted as the key transport protocol for two

reasons. One is that it is a proposed standard for key transport from the IETF. The other reason

is that an express intent of Arkko et al. [1] is for MIKEY to be useful as a registration protocol to

transport group keys as characterized by IETF MSec. Based on the findings of this thesis, there is

no prior work on how exactly this would work. This thesis addresses this gap by proposing two

ways in which a group key is transported to only authenticated and authorized group members.

Details of MIKEY that are relevant to this work will be discussed in Section 2.3.

The manner in which the objective of transporting a group key impacts the designs as there

is an assumption on the existence of a trusted third-party, separate from the authentication mech-

anism, that is the final arbiter on whether a principal is authorized to a key. In keeping with

terminology from IETF MSec, this trusted third-party is called the Group Controller and Key

Server (GCKS) [4, 16].

It can be argued that the composition presented can be used for the authenticated transport

of any key, and not just group keys. This is certainly true. However, it may be more efficient to

use other approaches in such cases, such as authenticated Diffie-Hellman [14] or the user-to-user

mode of Kerberos [29], that do not involve the additional trusted third-party, the GCKS.
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1.4 Methodology

Compositions of the nature needed by this work can be a technical challenge [9]. Consequently,

simplicity is a design criterion in the process of composition. The intent is that this results in a

composed protocol that is amenable to intuiting desired security properties. (However, too much

simplicity, as presented in the initial design, KM1, can in itself result in security problems. This

will be discussed this in Section 4.3.)

Notwithstanding the design philosophy of simplicity, it was recognized that history is replete

with seemingly correct security protocols being broken. Therefore, it behooves the necessity

to rigorously analyze the designs. Indeed, it is such analysis that lead to the discovery of the

weakness in KM1 as forementioned. The properties of interest were expressed and analyzed

using Protocol Composition Logic (PCL) [12, 15, 32] .

There are two reasons that PCL is an appropriate choice in this context. One is that the

problem addressed is one of secure composition. Two protocol suites that exist, and that can be

shown or are widely thought to be secure, are composed into a single protocol suite. Prior work

on PCL provides constructs and terminology to characterize the kinds of compositions that the

proposed designs use. The two kinds are sequential and parallel composition [32, 33].

The other reason that PCL is a good choice is convenience. With PCL, security properties of

interest can be proved by considering the actions of honest principals only [12, 32]. The actions

of adversaries do not have to explicitly be modelled. A principal is said to be honest if it faithfully

executes the steps that correspond to a role in the protocol. In the proofs, it was shown that honest

principals send out “safe” messages only. Roy et al. [32] provide a precise characterization of

safe messages; informally, a message is safe if any data that is to be kept secret that appears as

part of the message is protected by a cryptographic key that is a member of a set of keys that was

initially prescribed. Once it can be shown that honest principals send out safe messages only,
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there is no longer a need to explicitly model adversaries. This can then be the basis for proving

other security properties of interest.

To demonstrate the feasibility of the proposed design, an implementation of the protocol

using publicly available third-party libraries. This also allows the collection of empirical mea-

surements that will be used for efficiency and performance analysis.

1.5 Outline

The remainder of this thesis is organized as follows. In the next section, details of IETF Msec,

Kerberos, MIKEY and Protocol Composition Logic that are relevant will be discussed. Section

3 will present the proposed protocol, KM1 and KM2. Section 4, discusses the analysis of KM1

and KM2 using PCL. This also includes a possible weakness in KM1 that KM2 does not have,

and as associated trade-off in the total number of keys for each design. Section 5 discusses the

implementation of KM1 and KM2. Also, some empirical results will be presented based on the

implementation in that section. Related work will be discussed in Section 7, and conclude with

Section 8.

5



Chapter 2

Background

2.1 Kerberos

This section will provide a limited discussion on Kerberos. Reader should be referred to Neuman

et al. [29] for a more comprehensive treatment.

Kerberos [29] is a protocol for centralized authentication. By centralized, it means that it re-

lies on a trusted third-party. Its original design was based on the work of Needham and Schroeder

[28]. It has since been changed to incorporate other advances, such as the work of Denning and

Sacco [13]. It is a de facto standard for authentication in enterprise and public-safety settings

[23].

In Figure 2.1, the Kerberos protocol and its participants are shown. C is a client that seeks to

authenticate itself, and prove this to a server S, from whom it seeks some service. KAS is the

Kerberos Authentication Server that is able to accept and validate C’s credentials. TGS is the

Ticket Granting Server that hands out authentication tokens called tickets. The KAS and TGS

together are the trusted third-party; in deployments, they are sometimes implemented together
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C

AS

1 2

TGS

3
4

S
5

6

1. AS REQ

2. AS REP

3. TGS REQ

4. TGS REP

5. AP REQ

6. AP REP

Figure 2.1: The Kerberos authentication protocol. Step 6 is shown dotted as it is optional. Steps

1–2 are used by C to authenticate itself to the KAS and acquire a ticket granting ticket, TGT

. Steps 3–4 are used by C to leverage the TGT to authenticate itself to the TGS and acquire a

ticket, TKT . Step 5 is used by C to leverage TKT and authenticate itself to S. Step 6 is used

to authenticate S to C.

as a Key Distribution Center (KDC). S relies on the KAS and TGS to have authenticated C. C

demonstrates this to S by presenting a valid ticket issued by the TGS.

The details of Steps 1–4 are not important to the work in this thesis. However, it is assumed

that the KAS and TGS successfully authenticate C, and provide it with a valid ticket to contact

S in those steps. That assumption is well-founded — these properties have been established for

Kerberos in prior work [6, 8, 32]. Furthermore, the longevity of Kerberos gives confidence that

it is a sound protocol for authentication [23].

In Step 5, C sends the following AP REQ message to S.

AP REQ: AUTH C,S, {TKT}KS

7



AUTH C,S = {S,C, T}KC,S

TKT = C, S, T,Lifetime,KC,S

TKT is the ticket issued by TGS in Step 4. It is encrypted with KS , the long-term key known to

S and TGS only, and is therefore intended to be opaque to C. AUTH is called an authenticator;

it is constructed by C. S validates the contents of AUTH against the contents of TKT . T is a

timestamp, Lifetime indicates the validity of the ticket, and KC,S is a session key generated by

TGS for use by C and S.

In Step 6, S may optionally authenticate itself to C. This message is called AP REP. its for-

mat is not shown as the protocol uses a different AP REP in KM from what is used in Kerberos

(see Section 3).

2.2 IETF MSec

Multicast enables group communication and an example of an associated group security archi-

tecture is the Multicast Group Security Architecture. The architecture is discussed by Hardjono

and Weis [16] and Baugher et al. [4]. This document will refer the architecture as “IETF MSec.”

While the focus of IETF MSec appears to be Internet-scale settings, it can be argued that it is

also applicable in enterprise and public-safety settings. Furthermore, based on the knowledge at

the creation of this document, there is no alternative that is as widely accepted.

A comprehensive discussion of IETF MSec is beyond the scope of this document. Figure 2.2,

shows its main components and processes. The focus of IETF MSec is a cryptographic approach

to securing multicast. There are several cryptographic keys that a client needs to acquire before it

is able to communicate as part of a group. These keys are derived or transported with protection

from an initial key. As the problem addressed in this document is that of bootstrapping secure

8



Policy
Infrastructure

Authorization
Infrastructure

GCKS

Client

Registration Registration

Rekey

Data Security

Client

Figure 2.2: IETF Msec. This figure is adapted from Baugher et al. [4]. Our focus is the registra-

tion protocol.

multicast, the focus is the transport of this initial key for the group; called the “group key”, where

KG denotes the group key of the group G along with the Group Security Associations (GSA). In

the context of IETF MSec, a Security Association usually contains the following attributes:

• selectors, such as source and destination transport addresses.

• properties, such as an security parameter index (SPI) or cookie pair, and identities.

• cryptographic policy, such as the algorithms, modes, key lifetimes, and key lengths used

for authentication or confidentiality.

• keys, such as authentication, encryption and signing keys.

A client acquires KG using what IETF MSec calls a registration protocol with an entity that

it calls the Group Controller and Key Server (GCKS) (see Figure 2.2). The GCKS “represents
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the entity and functions relating to the issuance and management of cryptographic keys used

by a multicast group” [16]. Once the client acquires KG, it is able to communicate with the

others in the group. The GCKS entity is responsible in accessing the policy and authorization

infrastructures to determine how it should handle client requests.

The following are the aspects and components of IETF MSec that are relevant to this work.

• Whether a client is authorized to a group. This is enforced by the GCKS. The policy that

underlies such client authorization is beyond the scope of this thesis. For the purposes

of this thesis, authorization is modelled at the level of abstraction that a client is either

authorized or is not authorized to a group at a given instant.

In the context of bootstrapping with Kerberos, the division of authority between Kerberos

and components of IETF MSec needs to be considered. One of the main design choices

that was made was to ensure that the GCKS is the final arbiter on authorization to groups,

as is required by IETF MSec. Consequently, this also is an aspect from IETF MSec that

was captured in the proposed designs.

• The goal is to transport KG. It is acquired by a client as a consequence of running the

registration or re-registration protocol. In the context of this work, the problem of boot-

strapping multicast is the problem of transporting KG to a client that is authorized to be a

member of a group.

2.3 Multimedia Internet KEYing (MIKEY)

MIKEY [1] is an IETF proposed standard protocol for the transport of cryptographic keys. Two

of MIKEY’s design goals make it a particularly good choice as the key transport protocol to use

in bootstrapping secure multicast.
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One is that MIKEY is intended to be lightweight. Indeed, the default in the pre-shared key

mode of MIKEY is to transport a key in a single round of protocol communication. The second

design aspect of MIKEY that makes it a good fit for us is that one of its explicit intents is to be

useful for key transport as part of the registration protocol in IETF MSec. However, how exactly

MIKEY should be used as part of IETF MSec has, not been specified prior to this work. KM1

and KM2 can be seen as two proposals for how this should happen.

In the remainder of this section, only details of MIKEY that are relevant to this work will be

presented. Both designs focuses on MIKEY’s pre-shared key mode; however, KM is compatible

with its other modes as well. MIKEY’s other modes are public-key and Diffie-Hellman [1].

MIKEY defines two roles for its participants: Initiator and Responder. The Initiator has a

key that it wants to transport to the Responder. When used in the pre-shared key mode, MIKEY

assumes that the Initiator and Responder share a symmetric key with which the MIKEY payload

can be protected. This key is different from the key that is to be transported.

The goal of MIKEY is to deliver sufficient keying materials for the Responder to derive the

Traffic Encryption Key (TEK) , the key used for the multimedia traffic encryption. This includes

the encrypted TEK Generation Key (TGK) along with other security policies as parameters to

generate the TEK.

The Initiator initiates communication by sending what Arkko et al.[1] call an I MESSAGE,

whose format is the following.

I MESSAGE: HDR, T,RAND, [IDi], [IDr], {SP},KEMAC

KEMAC: E(pre-shared key, {TGK})||MAC

In the above message, [·] indicates an optional component of the message, E(k,m) indicates

the encryption of message m using key k, || denotes concatenation and {·} indicates zero or

11



more occurrences of the component. The HDR is called a general MIKEY header. It is used

to transport data such as the version number of MIKEY that is being used, and an identifier for

the message. It is also used to communicate some other important information, such as what

pseudo-random function is to be used to generate keys, and whether the Initiator expects the

Responder to send a response. T is a timestamp; MIKEY relies on synchronized clocks to detect

replay. This is one of the design choices that makes MIKEY lightweight.

RAND is a random seed for key generation. IDi is the identity of the Initiator, and IDr is

the identity of the Responder. The reason they are optional is that one of the participants may

already have state regarding the other; MIKEY allows this, and accounts for it by making those

fields optional. The SP stands for “security policy.” Its intent is to communicate the policy that

the participants should use in their choices regarding security, such as the encryption algorithm to

be used. KEMAC contains the key (TGK) being transported. It is encrypted with the pre-shared

key. KEMAC also contains a Message Authentication Code (MAC) for the receiver to verify

authenticity and integrity.

The design presented in this docment use the I MESSAGE only. Therefore, other kinds of

MIKEY messages will not be discussed. Based on the findings of this work, there has been no

rigorous security analysis of MIKEY. However, it was adopted for the reasons cited at the start

of this section, and because it is a proposed standard of the IETF. Arkko et al. [1] include a

section titled “Security Considerations” as required by the IETF, in which they argue the security

of MIKEY. The proofs in this document for the security properties of KM assume the security

of MIKEY in the “safe message” sense as discussed in Section 1.4 as part of the discussions on

PCL. That is, it was assumed that if a message is safe, then transporting that message between

honest participants using MIKEY keeps that message safe.
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2.4 Protocol Composition Logic

PCL is sound in a sense that is customary in mathematical logic [12]. If a property is entailed

syntactically, then it is entailed semantically. It should be pointed out, however, that there are

known limitations in the use of PCL in proving security properties. Probably the most significant

is that it is a symbolic approach, and does not give us any assurances about the computational

difficulty that an attacker would face in compromising (an implementation of) the designs. Proofs

in PCL idealize cryptographic functions such as encryption and randomization. Nevertheless, it

can be argued that the proofs provide confidence that the designs are sound. Leveraging more

recent work that bridges the computational and symbolic approaches (see, for example, [10]) to

prove that the compositions are sound is a topic for future work.

A comprehensive description of PCL is again, beyond the scope of this document. Sufficient

background on PCL will be provided on demand so the work presented is understandable.

Security Properties There are two security properties of primary interest; they are shown in

PCL notation in Figure 2.3. These are instantiated for the designs in Propositions 1 and 2 in

Section 4.

In the figure, the group that seeks to transport the key is denoted as G, and the key associated

with it as Γ. X̂, K̂AS , T̂GS and ĜCKS are called principals in PCL. The principal X̂ is used

to represent a client that seeks to acquire a group key. The principals K̂AS and T̂GS are the

Authentication Server and Ticket Granting Server in Kerberos (see Section 2.1).

A principal instantiates a thread of execution that plays a role in a protocol. A thread that

corresponds to the principal X̂ is written as X or (X̂, η). An example of a role from this work

is in Figure 4.1. A role specifies sequential protocol operations such as “receive message,” “en-

crypt” and “send message.” In Figure 2.3, the initial condition, “For X̂ 6= . . .” specifies that it

13



For X̂ 6= K̂AS ∧ X̂ 6= T̂GS ∧ X̂ 6= ĜCKS ,

Safety : ∃η.Has((X̂, η),Γ) ⊃ GroupAuth(X̂,G)

Availability : Honest(X̂) ⊃ (GroupAuth(X̂,G) ⊃ (∀η.Has((X̂, η),Γ)))

Figure 2.3: The two main security properties for KM, expressed in PCL. The safety property

asserts that if some thread of a principal X̂ has the key for the group G, then X̂ is an authorized

member of G. The availability property asserts that if X̂ is an authorized member of G then it

acquires the key for G.

does not consider cases that X̂ is one of those principals. The reason is that the K̂AS , T̂GS and

ĜCKS are trusted third-parties in the protocol. The first two are from Kerberos (see Section 2.1)

and the last is from IETF MSec [20].

In PCL, assertions involve predicates and formulas. Corresponding to each protocol action

(e.g., “encrypt with symmetric key”) is a predicate (e.g., “SymEnc.”) Such a predicate is used to

indicate that the action occurred. There may also be other predicates and formulas that do not

correspond directly to an action. None of the predicates that appears in Figure 2.3 corresponds

to a protocol action.

In the figure, the Has, Honest and GroupAuth predicates is used to express the security prop-

erties. The first two have been used extensively in prior work on PCL; the last was introduced

to express authorization to a multicast group. The Has predicate is used to indicate that a thread

possesses a particular piece of data. The Honest predicate indicates that a principal is honest; that

is, its threads faithfully follow the steps that correspond to a role in the protocol. The GroupAuth

predicate is used to indicate that a principal is authorized to a multicast group.

The safety property in Figure 2.3 expresses that if any thread of X̂ possesses the group key
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Γ, then X̂ is authorized to the group G. (The symbol “⊃” may be read informally as “implies.”)

The availability property expresses that provided X̂ is honest, if it is authorized to G, then all of

its threads possess Γ. In Propositions 1 and 2 in Section 4, the expected situation in which these

properties to hold was specified. The situation is that a thread of X̂ faithfully executes a role in

KM.

It is argued that the safety and availability properties that is articulated above are meaningful

as the main security properties of interest in the current context. Underlying the argument is the

observation that in the current context, ultimately the goal is about transporting Γ to authorized

group members. The safety and availability properties capture an “if and only if” condition – a

client should have Γ if and only if it is authorized by the GCKS to it, and its threads faithfully

play the role of a client.

We acknowledge that there may be other security considerations that are of interest beyond

the safety and availability properties. For example, the confidentiality of group memberships

may be important in some settings. Properties other than the safety and availability properties

are not considered in this work. An articulation and consideration of other properties is topic for

future work.

15



Chapter 3

Composition of Kerberos and MIKEY

In this section, the description is provided for KM1 (Section 3.1) and KM2 (Section 3.2). The

design criteria for KM are simplicity, efficiency and scalability. It can be argued that in each case

that the designs have adhered to the first criterion of simplicity. This is essential to the designs

since it utilizes existing standards.

Our initial approach is to consider extending the existing protocols. This is directly reflected

by the sequential composition of Kerberos and MIKEY for KM1. KM2 examines the concept of

the group entities being as Kerberos principals. This serves as an mean for authority delegation.

This also leverages the existing Kerberos principal management infrastructure to include group

management.

Efficiency and scalability will be addressed as part of the empirical assessment of the imple-

mentations in Section 6.
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Figure 3.1: KM1 – GCKS as a Kerberos principal.

3.1 Design of KM1

• Steps 1 – 4 are the same as in Figure 2.1 with S = GCKS .

• Step 5, S = GCKS in TKT , and AUTH C,GCKS = {G,C, T}KC,GCKS
, where G is the

identity of the group that C wants to join.

• Step 6 is the following MIKEY message – MIKEY-INIT: C,G, T, {KG}KC,GCKS
.

KM1 is conceptually simple: GCKS is treated as the server, S, in Kerberos. Steps of KM1

are shown in Figure 3.1. Steps 1–4 are from Kerberos. Step 5 is also from Kerberos; it is the

AP REQ message (see Section 2.1) with S instantiated to GCKS in TKT , and S instantiated

to the identity of the group G whose key C seeks, in AUTH . Unlike in Kerberos, however, Step

6 is not optional. It is a MIKEY message that is used to transport the group key, Γ from the

GCKS to the client, C.

Consequently, the registration protocol from IETF MSec can be seen as Steps 5 and 6: a

sequential composition of Step 5 from Kerberos, and a new step, with MIKEY for key transport.
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The simplicity of KM1 belies an important nuance: the session. The session key, KC,GCKS ,

is used for two purposes. It is used by C to authenticate itself to the GCKS, and further by

the GCKS to authorize C to the key Γ. This is indicated by the mismatch between TKT and

AUTH; the former identifies the GCKS, and the latter, G. Even if C is not authorized to any

group, it passes the first test, that of authenticating itself to the GCKS.

An immediate consequence is a possible denial-of-service attack by unauthorized clients on

the GCKS. However, given that the scenario considered is closed enterprise and public-safety

settings, we argue that this is not a major threat. C still needs to be able to acquire a valid ticket

to authenticate itself to the GCKS.

There is still an over-reliance of KC,GCKS , however. Indeed, in Kerberos, this key is used

only to authenticate C to the server. Our observation regarding this over-reliance is related to a

possible weakness in KM1 that is discussed in Section 4.3.

3.2 Design of KM2

C

AS

1 2

TGS

3
4 GCKS

5

6

G
7

Figure 3.2: KM2 – Multicast group as a Kerberos principal.
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• Steps 1 – 4 are the same as in Figure 2.1 with S = G, where G is the identity of the group

that C wants to join.

• Step 5 is the following MIKEY message – MIKEY-INIT-TGS: C,G, T, {KC,G}KG
. T is

the timestamp.

• Step 6 is the following MIKEY message – MIKEY-INIT-GCKS: C,G, T, {Γ}KC,G
.

• Step 7 was shown as a dotted line as there is no authentication or authorization step that

corresponds to it.

KM2 is somewhat more complex than KM1. In KM2, rather than using Kerberos for only

authentication, the GCKS delegates a portion of the authorization to groups to the TGS. How-

ever, we emphasize that in keeping with IETF MSec, the GCKS remains the final arbiter on

group authorizations.

The GCKS now no longer has a role from amongst the traditional roles in Kerberos. Rather,

the group G that C seeks to join is identified as a Kerberos principal; it is perceived as the server,

S.

Figure 3.2 shows the components and steps in KM2. As the figure indicates, Step 5 is now

communication from the TGS to the GCKS. Step 6 is communication from the GCKS to C.

Both these steps involve the transport of keys, and both use MIKEY. That is, KM2 as composing

Steps 1–4 of Kerberos with the two new steps, 5 and 6, that use MIKEY. The registration protocol

from IETF MSec corresponds to Steps 4–6.

The GCKS is shown in a dotted circle as it does not correspond to any roles in Kerberos.

The group G is shown in a solid circle as it is perceived as the server in Kerberos to which C

seeks to authenticate itself.
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The contents of the MIKEY messages in Steps 5 and 6 are shown in the caption of Figure

3.2. In Steps 3 and 4, C identifies the group G as the server to which it wants to authenticate

itself. The TGS determines whether C is authorized to G. If so, it transports KC,G to C in Step

4. This session key is intended to protect the transport of the group key Γ that is sent in Step 6

by the GCKS to C. Notwithstanding the issuance of KC,G to C by the TGS, the GCKS may

withhold the transport of Γ to C for policy reasons. In this manner, the GCKS remains the final

arbiter on group authorizations.

It may seem somewhat curious that the TGS was chosen to communicate directly with the

GCKS in Step 5. Instead, it could have been Step 5 to be communication from C to theGCKS,

with the TKT communicated by the TGS in Step 4 used by C to demonstrate to GCKS that it

is authentic. We conjecture that this alternative approach is largely equivalent to KM2. However,

it has a conceptual problem. The TKT identifies G as the server, and not GCKS. We argue that

our design of KM2 is cleaner.
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Chapter 4

PCL Analysis

As mention in Section 1, KM1 and KM2 has been analyzed using PCL [12, 15, 32]. Here, we

present one of our proofs that illustrates our approach. Also, the discussion of our analysis

explicates the assumption that lead us to discover the possible weakness in KM1 that is discussed

in Section 4.3.

4.1 KM1

Figure 4.1 shows KM1 expressed in PCL. There are two roles, Client and GCKS. The Client

is assumed to be composed sequentially with the client operations from Steps 1–4 of Kerberos.

We refer the reader to Roy et al. [32, 33] for an expression of those steps in PCL. As Figure 4.1

indicates, the Client first constructs the AUTH , which involves encrypting G. Ĉ. t with the key

K
Ĉ,ĜCKS

. The operation “.” is used to indicate concatenation in PCL. As mentioned in Section

1 in the context of the security properties of interest, Ĉ and ĜCKS are principals, and t is the

timestamp. The symbol “:=” is used for instantiating a variable to the left with the value to its
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Client(C, K̂AS , T̂GS , ĜCKS , t) [ GCKS(S) [

· · · Steps 1–4 of Kerberos · · ·

· · · tkt is received in Step 4 · · ·

receive tkt . encc,s

encc,s := symenc G. Ĉ. t,K
Ĉ,ĜCKS

text tkt := symdec tkt , K
ĜCKS

send tkt . encc,s match text tkt as Ĉ. ĜCKS . t′. K
Ĉ,ĜCKS

text c,s := symdec encc,s, KĈ,ĜCKS

receive t. encs,c match text c,s as G. Ĉ. t

texts,c := symdec encs,c, KĈ,ĜCKS
encs,c := symenc Γ, K

Ĉ,ĜCKS

match texts,c as Γ send t. encs,c

] C ] S

Figure 4.1: KM1 expressed in PCL.

There are two roles, Client and GCKS. Some details were omitted, such as the crytographically

strong checksum used in MIKEY, which would appear in the send step of the GCKS and the

receive step of the Client.
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right.

The mnemonics symenc, send, receive, symdec and match are used to indicate oper-

ations that a thread that executes a role carries out. As their names suggest, they are used to

encrypt, send, receive, decrypt and compare strings, respectively. Each corresponds to a predi-

cate which becomes true after the action is executed. For example, once “send m” is executed

by a thread X , the predicate Send(X,m) is true.

The following proposition asserts the correctness of KM1. The symbol “`” can be read

informally as “entails.” Roles in [·]X with the subscript X identifies the thread that executes it.

Part (a) asserts that if the GCKS role is executed by a thread faithfully, then the safety property

is satisfied. Clearly, execution of the GCKS role only cannot guarantee the availability property.

Part (b) of the assertion is that if a thread executes the Client role faithfully, then the safety and

availability properties from Figure 2.3 are satisfied.

Proposition 1 The following are true.

(a) KM1 ` [GCKS]S Safety

(b) KM1 ` [Client]C Safety,Availability

We present a proof in PCL for the safety property of Part (b) in Figure 4.3. For our proof, we

need to adopt some definitions, axioms and inference rules. We show the ones that we need for

the proof we present in Figure 4.2.

Our starting premise, that is expressed in Line (13) of Figure 4.3 is that before execution

of the thread C, SafeNet(Γ,K) is true, and the safety property holds for every principal. The

predicate SafeNet is discussed extensively by Roy et al. [32, 33]. Informally, it holds if across

all threads of all principals, any occurrence of Γ is a message is protected by some key from the
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GA SymEnc(ĜCKS ,Γ, K
X̂,ĜCKS

) ⊃ GroupAuth(X̂,G) (4.1)

HON

[ ]X φ ∀ρ∈Q.∀P∈BS(ρ). φ [P ]X φ

Q ` Honest(X̂) ⊃ φ (4.2)

GI φ [a1; . . . ; an]X φ

where φ ∈ {GroupAuth(Ŷ , G),¬GroupAuth(Ŷ , G)}, (4.3)

and ∀i. ai 6= symenc Γ, K, for some K (4.4)

DSN SafeNet(s,K) ≡ ∀X. SendsSafeMsg(X, s,K) (4.5)

SAF0 ¬SafeMsg(s, s,K) (4.6)

POS SafeNet(s,K) ∧ Has(X,M) ∧ ¬SafeMsg(M, s,K) ⊃ ∃k ∈ K.Has(X, k) ∨ New(X, s)

(4.7)

KSEC Has(X,KÂ,B̂) ⊃ (X̂ = Â) ∨ (X̂ = B̂) (4.8)

ENC4 SymDec(X,E[k](m), k) ⊃ ∃Y. SymEnc(Y,m, k) (4.9)

Figure 4.2: Axioms, definitions and rules used in our proof

Used in Figure 4.3. GA and GI are new to our work and regard group authorization. KSEC can

be shown from the results of Roy et al. [32], and the remainder are from prior work [12, 32, 33].
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Premise, K = {K
Ĉ1,ĜCKS

, . . . ,K
Ĉn,ĜCKS

} Start(C) [ ]C SafeNet(Γ,K) ∧ ∀X̂.Safety (4.10)

Case 1 : Start(C) [ ]C GroupAuth(Ĉ, G) (4.11)

GI GroupAuth(Ĉ, G) [Client]C GroupAuth(Ĉ, G)

(4.12)

(14), (15) [Client]C Safety (4.13)

Case 2 : Start(C) [ ]C ¬GroupAuth(Ĉ, G) (4.14)

DSN SafeNet(Γ,K) [Client]C SafeNet(Γ,K) (4.15)

Premise [Client]C Has(C,Γ) (4.16)

SAF0 ¬SafeMsg(Γ,Γ,K) (4.17)

(13), (18), (19), (20) [Client]C SafeNet(Γ,K) ∧ Has(C,Γ)∧ (4.18)

¬SafeMsg(Γ,Γ,K)

(21),POS,¬New(C,Γ) [Client]C ∃k ∈ K.Has(C, k) (4.19)

(22),KSEC [Client]C Has(C, k) ∧ (k = K
Ĉ,ĜCKS

) (4.20)

(23),ENC4 [Client]C ∃Y. SymEnc(Y,Γ,K
Ĉ,ĜCKS

) (4.21)

(24),KSEC,¬SymEnc(C,Γ,K
Ĉ,ĜCKS

) [Client]C SymEnc(GCKS ,Γ,K
Ĉ,ĜCKS

) (4.22)

GA [Client]C GroupAuth(Ĉ, G) (4.23)

(19), (26) [Client]C Safety (4.24)

Figure 4.3: Proof for the part of Assertion (b) from Proposition 1 that pertains to safety.
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set of keys K. That is, even though Γ may have been transmitted, it was done so only under the

protection of some key from K. The set K, in our context, is all the session keys issued by the

TGS for use by the client and the GCKS.

The proof is broken down into two cases. Case 1 assumes that the principal Ĉ is already

authorized to G prior to the execution of the thread C. In this case, all that is needed to show is

that GroupAuth(Ĉ, G) continues to hold after the execution of Client byC. We use the axiom GI

as the basis to infer this. The axiom asserts that the validity or invalidity of group authorization

is not affected by a sequence of actions, none of which is the encryption of Γ with some key K.

For Case 2, it is assumed that Ĉ is not authorized to G before the thread C executes. In this

case, we adopt the premise in Line (19) that after execution of Client by C, C has Γ. We then

need to show that this implies GroupAuth(Ĉ, G). We infer, in Line (21) that the conditions for

Axiom POS are met, and therefore, in Line (22) we assert that C has a key k from the set K. In

Line (23) we infer, from the axiom KSEC about Kerberos, that this key must be a session key

issued to a thread of Ĉ.

Then, in Lines (24) and (25), we infer that given that C has an encryption of Γ, some thread

must have performed the encryption. Again, KSEC allows us to infer that that thread belongs

to the principal ĜCKS . An application of the axiom GA then allows us to conclude that Ĉ is

authorized to the group G.

4.2 KM2

The two roles TGS CLIENT and TGS CLIENT in KM2 are composed in parallel. They are

both executed at the Kerberos TGS. The role TGS CLIENT transports the key KĈ,Ĝ that is

shared by the client and the group identified as the Kerberos principal Ĝ to the client. The role
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TGS CLIENT(A, Ĝ, Ĉ, t) [ TGS GCKS(B, Ĝ, Ŝ , t) [

tkt := symenc Ĉ.Ĝ.t.K
Ĉ,Ĝ

,K
Ĝ,T̂GS

encb,s := symenc K
Ĉ,Ĝ

,K
Ĝ,T̂GS

enca,c := symenc Ĝ.t.K
Ĉ,Ĝ

,K
Ĉ,T̂GS

signb,s := sign (G. Ĉ. Ŝ. t. encb,s),KĜ,T̂GS

send Ĉ. tkt . enca,c mikeyb,s := G. Ĉ. Ŝ. t. encb,s. signb,s

] A send mikeyb,s

] B

CLIENT(C, Â, Ŝ , t) [ GCKS(S) [

receive tkt . enca,c receive mikeyb,s

receive mikeys,c match mikeyb,s as G. Ĉ. Ŝ. t. encb,s. signb,s

texta,c := symdec enca,c,KĈ,T̂GS
verify signb,s, (G. Ĉ. Ŝ. t. encb,s), KĜ,T̂GS

match texta,c as Ĝ.t.K
Ĉ,Ĝ

textb,s := symdec encb,s, KĜ,T̂GS

match mikeys,c as G. Ĉ. Ŝ. t. encs,c. signs,c match textb,s as K
Ĉ,Ĝ

verify signs,c, (G. Ĉ. Ŝ. t. encs,c), KĈ,Ĝ
new Ktgk;

texts,c := symdec encs,c,KĈ,Ĝ
encs,c := symenc Ktgk, KĈ,Ĝ

match texts,c as Ktgk signs,c := sign (G. Ĉ. Ŝ. t. encs,c), KĈ,Ĝ

] C mikeys,c := G. Ĉ. Ŝ. t. encs,c. signs,c

send mikeys,c

] S

Figure 4.4: Roles of KM2 protocol.
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TGS GCKS transports that key to the GCKS. Note that the GCKS implements the Kerberos

principal Ĝ. As in Figure 4.1, we omit some details, such as the checksum that is be used in the

message sent in TGS GCKS that uses MIKEY for key transport.

In the following proposition, we assert that KM2 has the same properties as KM1 with regards

to the security properties of interest. A difference is that for KM2, we need to make the assertion

for the TGS as well, as Step 4 is considered to be part of the registration protocol of IETF MSec.

Also, there is a parallel composition [32] of Steps 4 and 5. That is, they may occur in any order

with respect to one another. Of course, one can simply choose not to model this in PCL, and

mandate that the two steps occur in a particular order.

Proposition 2 The following are true.

(a) KM2 ` [TGS (TGS CLIENT | TGS GCKS)]S Safety

(b) KM2 ` [GCKS]S Safety

(c) KM2 ` [Client]C Safety,Availability

However, this does not capture the flexibility that no ordering needs to be imposed. In prac-

tice, not imposing an ordering may have efficiency benefits; for example, the TGS may be able

execute several instances of Step (5) in batch, and incur the cost of only a single session with the

GCKS.

The manner in which we reconcile this parallel composition is to first split the actions of the

TGS into three roles: TGS, which executes all actions of the TGS prior to the two send actions

of Steps (4) and (5), TGS CLIENT that executes the send action of Step (4) and TGS GCKS

that executes the send action of Step (5). In the proposition below, “|” is used to indicate parallel

composition.
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Premise,K =
{
K
Ĉ,T̂GS

, K
Ĝ,T̂GS

}
Start(S) [TGS]S SafeNet(KĈ,Ĝ,K) (4.25)

(29)
[

encc,g := symenc Ĝ.t.KĈ,Ĝ, KĈ,T̂GS

]
S

SafeMsg(encc,g, KĈ,Ĝ,K) (4.26)

(30)
[

encc,g := symenc Ĝ.t.KĈ,Ĝ, KĈ,T̂GS
;

tkt := symenc Ĉ.Ĝ.t.KĈ,Ĝ, KĜ,T̂GS

]
S

SafeMsg(tkt.encc,g, KĈ,Ĝ,K) (4.27)

(31) [TGS CLIENT]S SendsSafeMsg(S,KĈ,Ĝ,K)

(4.28)

(29), (32),DSN [TGS; TGS CLIENT]S SafeNet(KĈ,Ĝ,K) (4.29)

Figure 4.5: KM2 PCL Proof for Safety property

Proof for the maintenance of the invariant we need to prove safety in KM2 by the parallel com-

position of the roles TGS CLIENT and TGS GCKS, for the role TGS CLIENT. The invariant

is SafeNet(KĈ,Ĝ,K) for K = {K
Ĉ,T̂GS

, K
Ĝ,T̂GS

}. The proof for TGS GCKS is similar.

29



We then employ the parallel composition theorem of Roy et al. [32, 33]. That theorem asserts

that given two protocolsQ1 andQ2, such thatQ1 ` Ψ andQ2 ` Ψ, and Ψ ` Φ, then the parallel

composition of Q1 and Q2, Q1 | Q2 ` Φ. What we seek, then, is some property Ψ that helps us

prove our safety property. The property Ψ, in our case, is that SafeNet(KĈ,Ĝ,K) is true for K

that contains the long-term keys of principals in Kerberos (KC and KG, in particular).

We show the proof for the role TGS CLIENT in Figure 4.5. We start in Line (29) with the

premise that before execution of the role, the invariant we seek to prove holds. Then, in Lines

(30) and (31), we infer that the key KĈ,Ĝ remains safe as any message in which it is contained is

protected by a key from K. We infer in Line (32) that the role TGS CLIENT sends out KĈ,Ĝ in

safe messages only, and then we are able to conclude in Line (33) that the sequential composition

of TGS and TGS CLIENT maintains our invariant. The proof for TGS GCKS is similar, and

we are able to infer the invariant for the parallel composition as we seek.

4.3 A weakness in KM1

Our work on the proof for Proposition 1 reveals a potential weakness in KM1. Indeed, this was

our motivation for designing KM2 as an alternative.

In our work, it is assumed that the Kerberos infrastructure is secure. That is, the principals

K̂AS and T̂GS are trusted to be honest, keys are kept secret by principals that possess them, only

safe messages are sent out, and clients are authenticated correctly. However, we are sensitive to

the interface between Kerberos, and the MIKEY steps of KM that we add to Kerberos. We argue

that weaknesses that lie in this interface make the composed protocol particularly vulnerable.

The session key, K
Ĉ,ĜCKS

, is used at this interface between Kerberos and the MIKEY steps.

In KM1, K
Ĉ,ĜCKS

is used to protect all group keys to which the client is authorized. In other
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words, the security (secrecy) of all the group keys to which a client is authorized relies on the

security of K
Ĉ,ĜCKS

. We make this observation precise in the following proposition.

Proposition 3 KM1 ` ∃η.Has((X̂, η), K
Ĉ,ĜCKS

) ⊃

(GroupAuth(Ĉ, G) ⊃ ∀γ.Has((X̂, γ),Γ))

KM2 does not have this weakness. A consequence of the partial delegation of group au-

thorization to the TGS by the GCKS is that session keys are specific to each group. The

compromise of a session key leads to the compromise of one group key only.
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Chapter 5

Implementation

We have implemented KM1 and KM2. The starting points for our implementations were the

open-source, reference implementation of Kerberos [26], and an open-source implementation of

MIKEY [25]. We have made our implementation available publicly as open-source [37].

We used the sample code (sclient.c and sserver.c ) delivered as part of the MITKer-

beros source package [26] as a reference to develop the Kerberos client and server code. In

the MIKEY implementation with which we started, MIKEY messages are carried as part of the

MIME payload in SIP [30]. However, we wanted our implementation to be independent of SIP.

The associations with SIP related objects were removed in the extracted MIKEY library. This

allowed us to isolate the MIKEY library from other MiniSIP source code.

The sample code demonstrates a generic test that allows a Kerberos client to acquire service

tickets and authenticate itself to a Kerberos service host. The sample applications were changed

to C++ application to easily invoke the C++ MIKEY library in the MiniSIP project [25]. Changes

made to the KDC source code are designed to be compatible with existing Kerberos clients.

For both prototypes, the client needs to pre-acquire the TGT . MITKerberos has a tool kinit
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that allows the end-user to perform this task. It performs Steps 1 and 2 of Kerberos and saves the

TGT into a cache at the client.

5.1 KM1 Prototype

The prototype for KM1 consists of two files, sclient.cxx and gcks1.cxx . The sclient is a

Kerberos client principal that attempts to contact the GCKS. The GCKS listens on a specified

TCP port for any incoming messages. The client uses the krb5_sendauth Kerberos API call to

send an authenticator to authenticate itself to the GCKS and awaits a reply.

To allow the client to indicate the multicast group, we attach this information to the krb5_-

authdata data structure as part of the credentials supplied to krb5_sendauth . This krb5_-

authdata with become part of the authenticator that is sent in the AP REQ. As a result, the

GCKS uses a modified version of the krb5_recvauth Kerberos API call, krb5_recvauth_-

gcks to allow the GCKS to directly retrieve the associated authorization data.

This method is of utilizing the authorization-data field of the authenticator is justified and is

compliant with Kerberos. The authorization data ”is optional and will only appear when addi-

tional restrictions are to be placed on the use of a ticket, beyond those carried in the ticket itself”

[29]. There are existing proposed standards that utilizes this optional field such as Kerberos

Cryptosystem Negotiation Extension [38]. Within our context, we argue that the GCKS must

know the target group to determine whether the client is authorized to that intended group.

KM1 required no code changes to the MITKerberos KDC. The GCKS implemented in gcks1.cxx

is just like any other Kerberos server from the standpoint of setup. The administrator is required

to first create a Kerberos service principal for the GCKS and generate a keytab file associated

to that principal. Then the generated keytab file needs to be transferred onto the GCKS host
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machine.

The keytab file allows the GCKS to retrieve its own credentials. It essentially contains the

long term key KGCKS . This key is used to decrypt the ticket that contains the session key shared

between the client and the GCKS (refer to Figure 4.1). This keytab file can be created using

the local/sbin/kadmin.local executable and the ktadd [-k keytab_filename] <service

name> command [27].

5.2 KM2 Prototype

A copy of the sclient from KM1 was modified to adapt to KM2. Similarly, we have gcks2.cxx

for KM2 GCKS. Instead of using the sendauth API call, the client uses the krb5_get_credentials

MITKerberos API call. This function attempts to retrieve the session ticket credentials for the

client with a particular Kerberos service principal (multicast group) from the client’s local cache.

If the session ticket does not exist in the local cache, it will use a cached Kerberos TGT (obtained

through the kinit tool) to acquire a new session ticket.

This prototype also requires an additional KDC request flag in the TGS REQ request to notify

the Kerberos KDC to contact the GCKS. The client was modified to also wait for the GCKS’s

reply separately. However, this creates a possible race condition since the TGS REP is needed

before the message from the GCKS can be decrypted. This issue remains future work for further

investigation.

An additional KDC request flag (named KDC_OPT_MIKEY ) was added to the existing list of

KDC options for KDC request located in the MITKerberos krb5.h (global header) file. This

method of extending KDC request flag complies with the RFC [29]. The client simply performs

a bitwise OR operation with the other request flags. For example, this can be done using the
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following line of code:

krb5_flags req_flags =

AP_OPTS_MUTUAL_REQUIRED | KDC_OPT_MIKEY;

This allows the client to distinguish its requests to the KDC server.

On the KDC server, our code injection is placed after the TGS REQ is authenticated and

when the session key SKC,G is generated. The KDC is assumed to have a mechanism to deter-

mine the mapping of the multicast group to a specific GCKS to forward its request to. Afterwards,

the KDC will retrieve the multicast group’s private key (KG) between the TGS and the chosen

GCKS from its database. This key would have been created and dsitrbuted to the GCKS when

the multicast group principal entry was created in the KDC database.

The TGS will send the I MESSAGE encrypted byKG through its own pre-defined channel to

the delegated GCKS to forward the SKC,G. An additional payload is needed for the I MESSAGE

to indicate the client’s address and the intended multicast group. This is necessary for the GCKS

to identify the client-to-group mapping. Similarly, the second I MESSAGE encrypted by SKC,G

will carry the TGK along with the additional payload for the client to ensure the request is

properly mapped to the correct multicast group.

5.3 Confidentiality of Group Memberships

The new payload introduced in KM2 is added as an GeneralExtension MIKEY payload as sup-

ported by the original MIKEY protocol (section 6.15 [1]). This GeneralExtension payload has

integrity protection as it is included as part the calculation of the MIKEY message’s MAC.

However, some environment may require such mappings (group membership assignment)

to remain confidential. For example, we may not want to reveal the identities of agents that
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are assigned to a particular investigation even within the same institute. In such scenarios, we

recommend the payload should also be encrypted using the SKC,G. This additional encryption

step was not implemented in our prototype as it is an optional requirement and believed to have

limited impact on the overall analysis.

KM1 does not have this concern. Since the membership information is contained within

the authenticator, it is encrypted as part of its original design. No extra steps are needed to

accomplish this.

5.4 Perturbation

Both KM1 and KM2 are designed to have minimal effects on existing architecture. Apart from

administrative tasks, KM1 allows existing KDC to operate without any modifications. This is a

strong advantage over KM2. Especially in enterprise and public-safety settings, any modifica-

tions to existing systems can impose large administrative overhead. The costs and potential risk

factors involved to update all instances of master and slave servers must be carefully examined.

From a broader perspective, however, KM2 does not affect existing KDC algorithms. As

mentioned in Section 5.2, after the KDC identifies the KDC OPT MIKEY flag, it will send the

MIKEY I MESSAGE to the GCKS. If the flag is not set, the execution flow will be exactly

the same as original Kerberos. As recommended in Kerberos V5 RFC [29], the KDC should

return appropriate error message if the KDC cannot recognize certain option flags. If the system

supports this feature, the client can identify whether the server supports the KM2 protocol.
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5.5 Administrative Authority

For administrative authority, both designs has clear distinctions. KM2 requires each group to be

a Kerberos principal. Hence, the KDC administrators has authority on group creation/removal

but group membership management is still managed by the GCKS. In KM1, the GCKS has full

authority over group management. Depending on the organization’s administrative structure, this

may influence one’s preference for each design.

For an organization that requires centralized administrative control over all group manage-

ment, then the difference between KM1 and KM2 is minimal. However, for organizations that

prefer isolating multicast group management from KDC administration (notion of least priv-

ileged security design principle [35]), then KM1 is more suitable if the weakness in KM1 is

acknowledged (single point of failure, see Section 4.3).

5.6 Usability

Usability takes a predominant role in the acceptability of a security system design (or psycholog-

ical acceptability, as explained in early works by Saltzer, J.H. and Schroeder, M.D. [35]). For a

thorough analysis, a discussion is provided to show some brief insight on usability based on our

implementation experience.

Kerberos is a Single Sign-on authentication service. This means a Kerberos user is only

required to enter their secret key once so all subsequent requests are processed using the TGT.

A Kerberos client may already have a TGT in its ticket cache from previous Kerberos-related

actions (e.g. logging into a corporate account at system startup). This implies as long as there’s

a valid TGT, there will be no extra security-related steps needed for the user to initiate group
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communication. A Kerberos-authenticated user will not be required to enter a password to access

the group communication service. This seamless experience applies to both KM1 and KM2.

As an administrator, the management of Kerberos principals is no different from the existing

mechanism. For KM1, only one extra Kerberos principal is required for the GCKS. For KM2,

the number of Kerberos principal managed is proportional to the number of groups created and

destroyed. Given that the number of groups are relatively static, the amount of administrative

work is also bound to a constant factor. The intuition is that Kerberos principals can be created

for groups prior to communication and should instead be enabled/disabled dynamically when

necessary by the GCKS, the final arbiter. We argue that the usability of the system for GCKS to

manage group member assignment or access control is out of the scope of this document as it is

recognized to be independent from our protocol’s design.

In the following section, we present some empirical results we have collected from our imple-

mentation. The results reveal interesting trade-offs between performance and the choice between

KM1 and KM2.
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Chapter 6

Empirical Results

6.1 Experiment Design

We ran our experiments on a 2.4GHz Intel PC with 4 GB of RAM that runs the Ubuntu Linux

operating system. The test suite used for the experiments was written in C. It involves executing

scripts that will automatically handle the creation/removal of Kerberos principals, ticket caches

and executing instances of the client and server programs (as discussed in Section 5).

There are several scenarios of interest that we examined. We consider the following as pos-

sible parameters within the context of group communication:

• Varying the number of clients in total

• Varying the number of groups

• Varying the number of clients assigned per group

• Varying group diversity
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The results are shown graphically in Figures 6.1–6.4. Each data point is a mean of as many

samples as it took for the coefficient of variation to be less than 5%. We then calculated a 95%

confidence interval. These are shown with the vertical error bars in the graphs. The reason for

computing confidence intervals is to check whether the confidence intervals overlap. If they do,

then we cannot consider the two values to be statistically distinct (with that confidence).

In all cases, the total time that it takes clients to acquire group keys for all groups to which

they are authorized was measured. This is the vertical axis. The clients attempt to acquire keys

only to those groups to which they are authorized.

6.2 Results

In Figure 6.1–6.3, 3 curves were plotted for each of KM1 and KM2. In Figure 6.4, there are 2

curves for each of KM1 and KM2.

6.2.1 Test 1: Number of clients

In Figure 6.1 we measure the relationship between the number of clients and time to acquire

keys. For one curve, there is only one group, and all clients are authorized to that group. For

another, there are three groups of which all clients are members. And for the third, 5 groups were

created in total; a client was authorized and assigned to 3 of the 5 groups uniformly at random.

In the latter two cases, each client will make three requests. The difference between those two

cases will determine whether number of groups within the database will affect the relationship

with number of clients given a constant number of groups assigned to a client.

In all 3 cases, there’s a linear relationship between the number of clients and the time re-

quired to process their requests. If we examine when the number of groups are increased, the
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Figure 6.1: Average total time to complete client requests with varying number of clients.

relationship remains the same. In fact, for KM1 when the groups assigned were multiplied by

3, the total time required also increased by the same factor. This is not the case for KM2 as the

time required increased by a greater factor. However, this relates to the impact of the number of

groups instead of clients, as explained in Section 6.2.2.

This result is as expected as the testing script was implemented to process client requests

sequentially. The only overhead that might be caused the number of clients is the lookup time

for the client’s record in the KDC database. From the results, it suggests the effects are minimal.
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6.2.2 Test 2: Number of groups
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Figure 6.2: Average total time to complete client requests with varying number of clients autho-

rized to groups.

In Figure 6.2, we study how the performance of KM1 and KM2 is affected by an increase in

the number of groups. As with Figure 6.1, performance is quantified as the total time it takes

all clients to acquire groups keys for all the groups to which they are authorized. 3 curves were

plotted for each of KM1 and KM2. For one curve, there was only 1 client, and this client is

authorized to all groups. For another, there were 5 clients, each of which is authorized to all

groups. And for the third, there were 10 clients, each of which is authorized to all groups.
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This graph also shows there’s a linear relationship between the number of groups and the time

taken for all the clients to be completed. However, the number of groups has a greater impact on

KM2 than KM1 as indicated by the gradient of the line.

One explanation is after a client’s first group request in KM1, all subsequent group requests

will not require the KDC’s involvement. That removes 4 out of 6 steps of the protocol. Although

KM1 theoretically has only 1
3

of the steps required by KM2, not all step’s computation time are

equal. Hence, the total execution time for KM1 may not be 1
3

of KM1. This effect is directly

related to caching mechanism of the system implemented as mentioned in Section 6.2.5.

6.2.3 Test 3: Group size

In Figure 6.3, we study performance as the size (number of members) of groups increases. As

with the prior cases, performance is measured as the total time for clients to acquire group keys.

Again, 3 curves were polotted for each of KM1 and KM2. A constant number of clients was

chosen; 50 in this case. Then uniformly at random, authorized the clients to groups to ensure a

certain size for each group. For one curve, there was one group only. For another curve, there

were 5 groups, and for the third curve there were 10 groups.

Figure 6.3 results are somewhat similar to Figure 6.2. The distinction lies again in the mag-

nitude of increase for increasing group size. Comparing Figure 6.2 with 10 clients assigned to 50

groups to Figure 6.3 with 10 groups each with 50 clients assigned, KM2 reached almost 15000ms

for Test 3 whilst it only reached 9000ms for Test 2. For KM1, it reached around 6000ms for Test

3 and less than 5000ms for Test 2.

The difference between the two cases is that in Test 2, the client’s ticket cache is reused for

all subsequent group requests. However, Test 3 clears client’s ticket cache after each group’s
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Figure 6.3: Average total time to complete client requests with varying group sizes.

client finishes their requests. Although this related directly to the implementation details of the

tests, it again demonstrates the critical impact that the ticket cache has.

6.2.4 Test 4: Group Diversity

In Figure 6.4, we plot the impact on performance of what we call “group diversity.” Intuitively,

groups are diverse when they do not share common members. For the case of an unbounded

number of clients and a constant number of groups, for example, the assignment of a client to

exactly one group results in the highest diversity. The assignment of all clients to all groups
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results in the lowest diversity.

To better illustrate the group diversity defined for our test case, Tables 6.1 and 6.2 are pre-

sented for the case where the group size is 2 and there are 5 groups. The X in the table marks

that a client is assigned to a particular group.

In the case of high group diversity, chances of client being in the same group as another client

is low. For the case of low group diversity, all the clients are assigned to the same two groups.

Table 6.1: Illustration of high group diversity
Client

a b c d e

G
ro

up

1 x x
2 x x
3 x x
4 x x
5 x x

Table 6.2: Illustration of low group diversity
Client

a b c d e

G
ro

up

1 x x
2 x x
3 x x
4 x x
5 x x

Based on Figure 6.4, it can be seen that there are no effects on group diversity. This is as

expected as the number of client requests being processed are the same. In a client’s view, it

needs to perform two group requests. Each client’s request is independent of other clients’ group

requests. Unless there’s optimization related to client lookup, there should also be no difference

on the server side. Hence, there should not be a correlation between the two.

6.2.5 Summary

We make two observations from the graphs. One is that both KM1 and KM2 scale linearly

with the number of clients, groups, group size and group diversity. This is promising for both

approaches and suggests that they will scale well for large deployments. This linear scaling was

fully expected. One way to reason about it is to examine the number of keys that the protocol
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Figure 6.4: Average total time to complete client requests with varying group assignment with

fixed number of clients and groups.

infrastructure must manage and transport. In each case, the number of keys increases linearly

with each of the inputs.

The number of keys can also be used to reason about the second observation. The second

observation is that KM1 consistently outperforms KM2. This can be seen as a trade-off between

security and performance that is inherent to KM1 and KM2. In particular, KM1 has the possible

weakness that was discussed in Section 4.3 that KM2 does not have.

The implementation of Kerberos that was adopted [26] has a somewhat sophisticated caching
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mechanism. Repeated requests for the same key do not necessarily result in the same time

overhead, as the key may be in the cache. Our implementation of the GCKS is somewhat

rudimentary in that while it supports all the protocols as needed, it does not have a cache similar

to Kerberos.

While we argue that our empirical results provide meaningful insights about the scaling prop-

erties of KM1 and KM2, and their relative performance characteristics, It should be pointed out

that such implementation issues can significantly affect the results. A more comprehensive as-

sessment is beyond the scope of this document.
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Chapter 7

Related Work

We have explicitly incorporated Kerberos [29] and MIKEY [1] in our work. Therefore, those

pieces of work are closely related to ours. As we discuss them elsewhere in this document, we do

not discuss them further here. Also, we use PCL [12, 15, 32, 33] for our analysis. Consequently,

that work is related as well. We provide a limited discussion on PCL as needed elsewhere in

our document. Also, as our work does not propose new techniques for such analysis, we do not

discuss other approaches from the literature for it.

The motivation for us to consider the composition of Kerberos and MIKEY is the transport

of keys for secure group communication. There has been considerable work on authenticated

key agreement and distribution or transfer. Work that does not specifically address group keys,

such as those of Diffie et al. [14] and Bellare and Rogaway [7] is related to ours mostly in the

authentication part. We adopt Kerberos for authentication as it is the de facto standard in the

settings we consider.

There is also work that is focussed on group keys. Key agreement schemes such as the work

of Harn and Lin [17] are not similar to our work as they require group participants to contribute
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to the key. We assume that the enterprise wants control over the generation of keys. There is

also some work from IETF MSec that proposes new protocols for group key establishment for

secure multicast. Such work is different from ours in that they are designed “from scratch.” Our

work is on reusing an existing de facto and a proposed standard. Furthermore, to our knowledge,

unlike our work, no rigorous analysis has been done for such prior work. Examples of such work

are the Group Domain of Interpretation (GDOI) [5] and the Group Security Association and Key

Management Protocol [18]

The work of Jordan and Medina [21], is somewhat closer to ours. That work uses Kerberos

to establish group keys. We argue that the use of “pure” Kerberos, and not Kerberos per se is

less practical than what we have done. Our work is backward-compatible in settings in which

Kerberos is already used for authentication.

The work of Crescenzo and Kornievskaia [11] addresses secure multicast and Kerberos.

However, their focus is on what is called the cross-realm scenario, in which the main prob-

lem is that of an enterprise authorizing principals from another enterprise to multicast groups.

While this problem is certainly interesting, it is different from the problem that we address. Also,

they do not leverage MIKEY as we do.

There is also work on key management in the context of secure group communication.

Rafaeli and Hutchison [31] survey such work; an example is the work of Balenson et al. [3].

Such work is focussed on how the communication and key overhead can be reduced for efficient

rekeying. We do not address such issues in our work, and deal only with the initial transport of

the group key.

There has also been work on what is called “Kerberizing” applications and protocols that is

somewhat related to ours. The work of Mattsson and Tian [24], for example, Kerberizes MIKEY

by introducing new modes of operation for MIKEY. These new incorporate a ticket mechanism
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similar to that of Kerberos. Their technique can potentially be used for authenticated group key

transport. However, they do not leverage an existing Kerberos infrastructure like we do.

Other examples of such work are those of Hildrum [19], which addresses Kerberized rlogin,

and [36], which is a deployment of Kerberized ftp. Rather than Kerberizing a single application,

our work can be seen as Kerberizing a class of applications – group communication.

In this respect, our work is similar to the work on Kerberized Internet Negotiation of Keys

(KINK) [34]. The idea there, as the name suggests, is an approach based on Kerberos for key

agreement for IPSec. As such, it is more similar to key agreement for IPSec, such as IKE [22].

Their focus is not group keys. However, the existence of their work suggests that our perspective

on Kerberizing the transport of group keys is well-motivated.
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Chapter 8

Conclusions and Future Work

8.1 Future Work

8.1.1 Empirical Analysis

There are a number of topics for future work in this context. One is a more comprehensive

empirical evaluation of our implementation, and a deeper study on how the GCKS can be imple-

mented to be faithful to IETF MSec, and bound more tightly to the components of Kerberos to

make the overall system more efficient. In particular, the experience and longevity of Kerberos

implementations may offer useful lessons in building portions of the GCKS.

8.1.2 PCL Analysis

There has been research on using theorem solvers to prove PCL assertions [2]. Unfortunately,

the source provided was outdated. The PCL axioms definitions needs to be updated to be com-

patible with the latest syntax of Isabelle. This work was left outside the scope of this document.
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However, if more resources are provided, leveraging theorem solvers can provide a concrete val-

idation and contribution to the analysis. More lemmas and assertions can be proven once the

protocol is formally defined.

8.1.3 Group Rekeying

The Rekeying process provides a mean to support groups with dynamic members, as specified

by IETF MSec [16]. Its purpose is to maintain key freshness when security policy adjustments

may occur or if members leave or join the session. Although MIKEY does not fully provide a

mechanism for rekeying, it can be achieved by issuing a new MIKEY I MESSAGE (as suggested

by its RFC [1]). However, this would require unicast communication from the GCKS to each

active client. There will be a linear relationship between the cost of rekey and number of clients

per group.

Further analysis is needed to determine the cost and benefit in allowing such a feature. For

scenarios where the group sessions are relatively short, then rekeying may not be necessary.

Same applies if the group members are relatively static for each session.

8.1.4 Authenticated Cross-Realm Group Communication

As menionted before in Section 7, the problem of Cross-Realm Authentication is very different

from the issue addressed by this document. However, since our design adopts Kerberos, it might

be interesting to see its effects in the case for group communication. In the context of group

communication with Cross-Realm Authentication, one can imagine the interesting problem of

allowing authenticated Kerberos clients to communicate with clients from other realms.

For KM1, this can be achieved if the GCKS is a service principal under multiple KDC. Two
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authenticated Kerberos clients from different realms can be authenticating to the same ”multi-

realm GCKS” that maps each client to the same group. This method bypasses the traditional

model with Cross-Realm KDCs requiring shared keys[29]. One might evaluate the possible

security threat this might impose. However, the same arguments can be applied to whether the

KDC should have authority over all group management as discussed in Section 5.5.

For KM2, the GCKS is tightly bound to the KDC so a trivial solution is not apparent. This

will be left as future work.

8.1.5 Alternative Methods

Another topic for future work regards other designs that may be viable alternatives to KM1 and

KM2, and a study of the properties that those new designs have that may be superior to our

designs. We allude to one such design in Section 3.2. Of course, as is our mindset in this work,

any new design must also be rigorously analyzed as part of the future work.

8.2 Conclusions

We have proposed two designs, KM1 and KM2, for bootstrapping secure multicast with Kerberos

by composing it with MIKEY [1]. Our motivation is the authenticated transport of group keys in

environments that already deploy Kerberos for authentication. Indeed, Kerberos is the de facto

standard for authentication in enterprise and public-safety settings. Our choice of protocol for

key transport is MIKEY, which is an IETF proposed standard. One of the explicit intents of

MIKEY is for it to be usable in the registration protocol of IETF MSec.

We have rigorously analyzed KM1 and KM2 using PCL. We have pointed out that the anal-

ysis was valuable to us — it revealed a possible weakness in KM1, and it is the discovery of
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this weakness that lead us to design KM2. We have also discussed an implementation of KM1

and KM2 that we have carried out, starting with the open-source reference implementation of

Kerberos, and an open-source implementation of MIKEY. We have presented empirical results

based on our implementation that demonstrate that our designs scale well with the number of

clients, groups, group size and group diversity. They also demonstrate the inherent trade-offs

between security and performance in KM1 and KM2.
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