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Abstract

Free-space optical (FSO) communication offers significant technical and operational ad-

vantages such as higher bandwidth capacity, robustness to electromagnetic interference,

a high degree of spatial confinement (bringing virtually unlimited reuse and inherent se-

curity), low power requirements, and unregulated spectrum. FSO communication can be

deployed as an efficient solution for a wide range of applications such as last-mile access,

fiber back-up, back-haul for wireless cellular networks, and disaster recovery among others.

Although FSO system have many appealing features, they have rather disappointing

performance for long links due to the degrading effects of atmospheric turbulence-induced

fading. In this dissertation, we investigate different diversity techniques to boost the per-

formance of FSO systems in the presence of the atmospheric turbulence-induced fading.

In Chapter 3, we investigate receive diversity in coherent FSO systems considering

both turbulence-induced amplitude and phase fluctuations under weak turbulence regime.

To mitigate the wavefront phase distortion effect, modal compensation is deployed at the

receiver. Under the assumption of Rician channel that models the combined effects of the

atmospheric fading and modal compensation, we derive outage probability and diversity-

multiplexing tradeoff of such systems. Our results show that, at high signal to noise

ratio (SNR) regime, the diversity gain as great as the number of receiving apertures is

achieved. Moreover, it is found that the modal compensation provides finite-SNR diversity

advantages in coherent receivers.

In Chapter 4, we investigate multi-hop transmission (serial relaying) as a form of di-

versity technique to combat atmospheric fading in coherent FSO systems. Utilizing the

same channel model as in Chapter 3 and considering decode-and-forward relaying strategy,

we quantify the outage probability and the finite-SNR diversity-multiplexing tradeoff of

this relaying scheme. Exploiting the fact that fading variance is distance-dependent in

the atmospheric channel, our results demonstrate that the multi-hop transmission takes

advantage of the resulting shorter hops and yields significant performance improvements

in the presence of fading.

In Chapter 5, we study hybrid-ARQ protocols in coherent FSO communications over

Gamma-Gamma atmospheric fading channels. We investigate and compare the perfor-
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mance of three hybrid-ARQ protocols in terms of the outage probability and throughput.

Furthermore, we characterize the outage performance at high-SNR regime by diversity

and coding gains. Our results provide insight into the performance mechanisms of differ-

ent hybrid-ARQ protocols in coherent FSO systems and demonstrate that hybrid-ARQ

significantly improves the outage performance of a coherent FSO system particularly in

strong turbulence regime.

In Chapter 6, we investigate parallel relaying in an intensity modulation/direct detec-

tion (IM/DD) FSO system. Assuming Gamma-Gamma fading model, we analyze both

decode-and-forward and amplify-and-forward modes of cooperation. Focusing on high

SNR regime, we investigate the outage probability and characterize it by the diversity and

coding gains. The diversity-multiplexing tradeoff expression of each cooperation mode is

also derived. Our performance analysis reveals that large energy savings can be achieved

through the use of parallel relaying in FSO systems.
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Chapter 1

Introduction

1.1 Free-Space Optical Communications

In optical communication systems, information is transferred by using a carrier frequency

selected from the optical frequency region, the highest portion of the electromagnetic spec-

trum. Since using higher carrier frequencies increases the available transmission bandwidth

of a system, optical communication has the capability of transmitting data at the rates as

high as terabits per second.

Figure 1.1 depicts the block diagram of a generic optical communication system [1].

The source generates information bits which are modulated onto an optical carrier. The

resulting optical field then propagates through an optical channel such as optical fiber or

turbulent atmosphere. At the receiver, the field is optically collected and converted into

an electrical signal via a photodetector. The transmitted information is then inferred from

the detected electrical signal. Based on the operating channel, optical communications can

be categorized into two main classes: fiber optical communications and free-space optical

(FSO) communications. The latter which is also known as “wireless optical” is the focus

of this dissertation.

Free-space optical communication refers to terrestrial line-of-sight optical transmission

through the atmosphere [2]. It offers significant technical and operational advantages such

as higher bandwidth capacity, robustness to electromagnetic interference, a high degree of
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1.1. FREE-SPACE OPTICAL COMMUNICATIONS

Source

Optical Modulator

and 

Transmitter

Optical Channel Optical Receiver

Figure 1.1: Block diagram of an optical communication system.

Figure 1.2: Direct detection receiver.

spatial confinement (bringing virtually unlimited reuse and inherent security), low power

requirements and unregulated spectrum. FSO communication can be deployed as an ef-

ficient solution for a wide range of applications such as last-mile access, fiber back-up,

back-haul for wireless cellular networks, and disaster recovery among others [3].

FSO systems can be categorized as either non-coherent (direct detection) or coherent

systems based on the employed detection type [1]. In the direct detection (See Figure 1.2),

the photodetector directly detects the instantaneous power of the collected field. This

detection type is cost-effective and easy to implement. However, it can only be employed

for intensity-modulated signals in which the information is contained in the power variation

of the transmitted field. In contrast to intensity modulation/direct detection (IM/DD)

systems, coherent receivers (See Figure 1.3) first mix the incoming optical field with a

strong local oscillator (LO) field. The combined field is then photodetected. The frequency

difference between the received field and the LO field can be set either to zero (homodyne

detection) or to a desired radio frequency carrier (heterodyne detection).

The implementation of coherent receivers is more difficult since the LO field should

be spatially and temporally coherent with the received field. However, the advantageous

properties of coherent FSO systems have recently motivated many researchers to direct

their attention to such systems. Coherent systems, by virtue of mixing the received signal

2



1.2. DIVERSITY TECHNIQUES IN FSO COMMUNICATIONS

Figure 1.3: Coherent detection receiver.

with the strong LO field, have much better spatial selectivity compared to their non-

coherent counterpart. The spatial selectivity property is particularly useful for applications

where background noise, multiple access (or intentional) interference, and atmospheric

turbulence are performance-limiting factors rather than fundamental quantum effects which

are usually only encountered in vacuum channels. In multiple access scenarios, where

there are multiple users willing to communicate with a central terminal, coherent systems

can increase interference suppression by tens of decibel [4]. In addition, with heterodyne

detection, information can be recovered from the amplitude, phase or polarization of the

received field, which can considerably increase the spectral efficiency.

1.2 Diversity Techniques in FSO Communications

A major performance degrading factor in FSO systems, particularly for long ranges, is

turbulence-induced fading [5]. A typical fade can last milliseconds and considering that

FSO systems operate at the rate of several gigabits per second, a single fade can result in

the loss of a large number of consecutive bits. This has motivated many researchers to in-

vestigate temporal and spatial diversity techniques such as channel coding, [6,7], advanced

sequence detection techniques [8, 9], and spatial diversity [10–17]. Among those, spatial

diversity is particularly attractive with its lower complexity. Spatial diversity involves the

use of multiple transmit and/or receive apertures and has been well investigated in wire-

less radio frequency (RF) communications. Spatial diversity can be easily implemented

in FSO systems since the optical wavefront coherence length in the atmosphere is of the

3



1.2. DIVERSITY TECHNIQUES IN FSO COMMUNICATIONS

order of centimeters. Therefore, multiple transmitters or receivers only need to be placed

centimeters apart to experience independent fading channels. Besides its role as a fading-

mitigation tool, multiple-aperture structure reduces the potential for temporary blockage

of the laser beam by obstructions e.g., birds.

Although spatial diversity has been investigated in detail for IM/DD systems, see e.g.,

[11–13, 16, 17] and the references therein, the current literature on coherent FSO systems

with spatial diversity is sparse [10, 14, 15]. Haas et al. have addressed the concept of

transmit diversity in [10] and proposed space-time channel codes (inspired from RF wireless

communication literature) through the minimization of pair wise error probability. In [14]

and [15], Lee and Chan have studied receive diversity in coherent FSO systems through

the derivation of outage probability. The main focus of their work is the spatial selectivity

of coherent receivers which mitigates the effect of background light.

An alternative method to exploit spatial diversity advantages is cooperative diversity,

also known as user cooperation, which has been originally introduced for RF wireless

systems [18–20]. In RF wireless communications, a cooperative diversity system takes

advantage of the broadcasting nature of RF transmission in which the signal transmitted

by a source node is overheard by other than destination nodes. The source node along

with those nodes which overhear and are willing to share their resources (these nodes are

defined as relays) create a virtual antenna array. Such a cooperative scheme is able to

extract spatial diversity advantages in a distributed manner.

Cooperative diversity has been also investigated in the context of FSO communica-

tions [21–26]. Particularly, in [24], two different configurations of cooperative diversity are

considered, namely parallel and serial relaying. In parallel relaying, the source deploys

multiple transmitters with each of them pointing out in the direction of a corresponding

relay node. This induces an artificial broadcasting which is normally not possible with a

single transmitter in FSO communication due to the line-of-sight nature. The outage anal-

ysis of parallel FSO relaying presented in [24] has been obtained for log-normal turbulence

model which is limited to weak turbulence conditions. This analysis has been extended

to Gamma-Gamma fading channels in [26] for decode-and-forward (DF) relaying strategy.

Both of these works have assumed that there is no line-of-sight link between the source

and the destination.

4



1.2. DIVERSITY TECHNIQUES IN FSO COMMUNICATIONS

On the other hand, serial relaying is a multi-hop transmission scheme where the signal

transmitted by the source node (equipped with a single transmitter) propagates through

a number of intermediate relay nodes until the destination node. It should be emphasized

that serial relaying is typically used in wireless RF communication to broaden the signal

coverage for limited-power transmitters and does not offer increase in spatial diversity

order. However, unlike the RF channel, the fading variance of FSO channel is distance-

dependent. Smartly exploiting this fact, it has been demonstrated in [24] and [27] that

impressive performance improvements can be obtained against the degrading effects of

turbulence fading in FSO systems through increase in spatial diversity order. It should

be also noted that all previous works [21–26] on cooperative FSO communications assume

IM/DD systems.

Besides different physical layer techniques, automatic retransmission request (ARQ)

can be also applied to FSO systems for further performance improvement. ARQ is a

packet-oriented feedback-based data transmission technique which is implemented at the

data link layer [28]. With the help of ARQ, the receiver reports back the decoding sta-

tus to the transmitter. If the received signal is successfully decoded, an acknowledgement

(ACK) is fed back to the transmitter and it moves on to the next information message in

the transmission queue. On the other hand, in the case of failure, the receiver feeds back

a negative acknowledgement (NACK) and the transmitter retransmits the same message.

The process continues this way until either the transmitter receives an ACK or the maxi-

mum number of ARQ rounds1 per message is reached. If the latter case happens, an error

is declared. In this case, the message may be kept in the transmission buffer for a later

attempt or simply discarded. Besides stand-alone ARQ protocols, several types of hybrid-

ARQ (H-ARQ) protocols (i.e., protocols which combine channel coding with ARQ) have

been proposed in the context of RF communication, see e.g. [28–30], and the references

therein.

Recently, the concept of H-ARQ has been extended to FSO communications [31–33].

In [31], an incremental redundancy H-ARQ protocol has been studied for FSO systems

through simulations using a low-density-parity-check code family with a particular focus

on practical implementation aspects. In [32], the packet error rate performance of chase

1The successive transmission of the same massage in an ARQ protocol is referred as “round”.
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combining H-ARQ protocol over log-normal atmospheric fading channels has been ana-

lyzed. In [33], an ARQ protocol based on Round Robin algorithm and random network

coding has been proposed for FSO systems. The currently available sparse literature on

ARQ in FSO systems has mainly considered IM/DD systems.

1.3 Summary of the Dissertation and Main Contribu-

tions

In Chapter 2, we present a brief introduction to FSO communications over atmospheric

channels. In Chapter 3, we investigate receive diversity in coherent FSO systems consider-

ing the effects of both atmospheric turbulence-induced amplitude fluctuations and phase

aberrations. Our analysis differs from earlier work [10, 14, 15] in the sense that we take

into account the effect of turbulence-induced phase distortion. Phase compensation tech-

niques [34] can be deployed in coherent receivers to mitigate the phase distortion effects.

Our analysis builds on a recently introduced statistical model [35] that characterizes the

combined effects of the log-normal turbulence-induced fading and phase compensation.

Because of the slowly varying nature of fading in optical channels, we consider outage

probability as an appropriate performance measure. Our results demonstrate that sig-

nificant performance gains can be obtained through the deployment of multiple receive

apertures and phase compensation in coherent FSO communications. We also investigate

the link reliability, as quantified by the diversity gain [36], and the tradeoff between the link

reliability and the spectral efficiency, as quantified by the diversity-multiplexing tradeoff

(DMT) [37]. We derive a DMT expression for finite SNR regime which provides insight

into performance mechanisms of coherent FSO systems under practical operation range.

The derived expression is shown to be a function of the number of receive apertures as

well as the effective channel parameter which depends on the turbulence-induced fading

characteristics and the number of compensated modes. Our results also demonstrate that

modal compensation acts as an additional diversity source besides multiple apertures at

the receiver side. The main results of this chapter have been reported in [38,39].

In Chapter 4, we investigate multi-hop transmission as a distributed spatial diversity

technique. In contrast to earlier works [21–24] which have assumed IM/DD systems, we
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focus on coherent FSO systems. Specifically, we consider a serial relaying configuration

in which the relay nodes employ DF relaying strategy and each of them and the receiver

are equipped with multiple heterodyne receivers with phase compensation. Taking into

account the effects of both amplitude fluctuations and phase aberrations, we derive outage

probability and DMT expressions for the system under consideration. Our outage analysis

yields impressive power savings for multi-hop relaying even with a single-relay. Our DMT

analysis further demonstrates that the multi-hop transmission improves the diversity gain

throughout the range of the multiplexing gain at practical SNR values. The main results

of this chapter have been published in [40,41].

In Chapter 5, we present fundamental performance measures on H-ARQ protocols in

coherent FSO communications. Specifically, we consider three H-ARQ protocols: 1) At

least once (ALO), 2) Repetition time diversity (RTD) with maximum ratio combiner at

the receiver, and 3) Incremental redundancy (INR). We analyze the outage performance

and throughput of these protocols in the presence of the Gamma-Gamma turbulence chan-

nel. Our analysis demonstrates significant performance improvements through the de-

ployment of ARQ protocols particularly in the strong turbulence regime. Our asymptotic

outage analysis further shows that all protocols provide the same diversity order given

by MN min {α, β} where α and β are the Gamma-Gamma channel parameters, N is the

number of receive apertures, and M is the maximum number of ARQ rounds. On the other

hand, the coding gains achieved by these three protocols are different. While the coding

gain of the ALO scheme is independent of M , those of the RTD and INR schemes grow

linearly with respect to M in the range of sufficiently large M values. Our throughput

analysis further demonstrates that the INR protocol provides considerably more through-

put advantages at large values of transmission rate compared to other protocols. The main

results of this chapter have been reported in [42,43].

In Chapter 6, we return our attention to IM/DD systems and investigate parallel relay-

ing in IM/DD FSO communications over Gamma-Gamma fading channels. We assume a

single relay and a line-of-sight link between the source and the destination. For relay node,

we consider both DF and amplify-and-forward (AF) modes of cooperation. We develop

performance characterizations in terms of the outage probability focusing on high-SNR

regime. Specifically, we derive the asymptotic outage performance of each cooperation

mode and then, based on the derived expression, quantify the diversity and coding gains

7



1.3. SUMMARY OF THE DISSERTATION AND MAIN CONTRIBUTIONS

at high-SNR regime. Furthermore, we present DMT expressions for direct transmission

and underlying cooperation schemes. Our analysis demonstrates that parallel relaying im-

proves the performance of FSO systems by bringing diversity advantages. The diversity

gain in the cooperative transmission improves as much as the minimum of the diversities

of the source-relay and the rely-destination channels compared to direct transmission. In

addition, between the source-relay and the relay-destination channels, the channel that has

worse statistical characteristics dominates the outage performance (diversity and coding

gains) at high-SNR regime. Furthermore, comparing two protocols, we show that DF and

AF cooperation modes always provide the same diversity gain. However, their coding gains

can be different depending on the underlying channels’ conditions.
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Chapter 2

Background

In this chapter, we present a brief overview of the optical communication through the

atmosphere. First, the photodetection process is reviewed. This process represents the

key operation in the optical receivers. Afterward, the characteristics of atmospheric tur-

bulent channels are summarized and widely used statistical models for these channels are

presented.

2.1 Optical Detection Theory

Photodetection is the process of converting information-bearing optical beam into its equiv-

alent electrical signal with the aim of recovering the transmitted information. The pho-

tosensitive surface of the photodector responds to the impinging light by releasing free

electrons. These released electrons are then affected by an external electric voltage which

causes a current flow at the output of the photodector.

The average rate of the electron release is proportional to the incident optical power

as [1]

nq(t) =
η

~νc

∫
|U (t, r)|2W (r)dr, (2.1)

where U (t, r) is the incident optical field, r is the position vector on the receive aperture

plane, νc is the optical carrier frequency in Hertzs, ~ is the Planck’s constant, and η is the

quantum efficiency of the photodetector. The quantum efficiency indicates the fraction of
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2.1. OPTICAL DETECTION THEORY

the incident field power which will be actually detected [1]. The function W (r) in (2.1)

defines the area of the receive aperture, i.e.,

W (r) =

 1 if |r| 6 D/2
0 if |r| > D/2

, (2.2)

where D is the aperture’s diameter.

The probability of observing an electron over an extremely short time interval (t, t+∆t)

is given by

Pr {one electron in (t, t+ ∆t)} ≈ nq(t)∆t (2.3)

and the probability of not observing an electron is given by

Pr {zero electron in (t, t+ ∆t)} ≈ 1− nq(t)∆t. (2.4)

Consequently, the probability of observing two or more electrons in this small time interval

is approximately zero. In addition, the number of electrons observed in non-overlapping

time intervals is statistically independent. Therefore, the electron count during a certain

time interval can be modeled by a Poisson process with the average count rate of nq(t) [1].

An electron released at a random time instance tm produces a response function Λ (t− tm)

which is determined by the electron’s transit behavior. The area under the response func-

tion is equal to a single electron charge q. Assuming t = 0 as the time origin for the

photodetection process, the photodetected output current is the superposition of the indi-

vidual effects of each electron released during the time interval (0, t). Hence, the output

current can be written as [1]

i(t) =

k(0,t)∑
m=0

Λ(t− tm), (2.5)

where tm is the release time of the mth electron and k(0, t) is the electron count process

during (0, t). Therefore, i(t) is a sum of a random number of randomly located response

functions Λ(t− tm). Such processes are called shot noise processes [1].

For an ideal photodetector with Λ(t) = qδ(t), where δ(t) is the Dirac delta function,

10



2.2. STATISTICAL CHARACTERIZATION OF THE ATMOSPHERIC TURBULENT CHANNEL

the mean and the auto-covariance of i(t) can be respectively obtained as [1, 44]

E [i(t)] =
ηq

~νc

∫
|U (t, r)|2W (r)dr, (2.6)

cov [i(t), i(t′)] = δ(t− t′)ηq
2

~νc

∫
|U (t, r)|2W (r)dr, (2.7)

where E[·] denotes the expectation operator. Although the mean and the auto-covariance

of i(t) can be computed by (2.6) and (2.7), the actual probability distribution function of

this shot noise process at any time instance t is generally difficult to determine. However,

when the incident field on the photodector surface is strong enough, i(t) can be modeled

by a Gaussian random process [1]. In a typical heterodyne receiver, the local oscillator

field is much stronger than the received optical field. This condition assures the Gaussian

shot noise model in this type of receivers [1]. On the other hand, the presence of strong

background light radiation in the practical IM/DD FSO systems justifies this model [5].

2.2 Statistical Characterization of the Atmospheric

Turbulent Channel

An optical beam propagating through the atmosphere experiences a number of degrada-

tions. Aerosols and molecules trapped by the Earth’s gravity and the thermal inhomo-

geneities in the atmosphere cause absorption and scattering which result in power loss and

wavefront distortion of the transmitted optical field. The path loss of the atmospheric

channels is given by [44]

`(Z) =
ATXARX

(Zλ̄)2 e−σZ , (2.8)

where ATX and ARX respectively denote the areas of the transmit and the receive apertures,

Z is the path length in meters, λ̄ is the wavelength of the optical field in meters, and σ is the

power attenuation coefficient which consists of scattering and absorption components [1,44].

Besides the path loss, the FSO channel is subject to atmospheric turbulence-induced

fading. Space-varying and time-varying thermal inhomogeneous structure of the atmo-

sphere induces random refractive-index fluctuations. Atmospheric medium consists of
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many thermal pockets with varying temperatures and diameters. The flow of these ther-

mal pockets create eddies of refractive index turbulence. This turbulence causes random

amplitude fluctuations (scintillation) and phase variations (aberration) of the optical field

propagating through the atmosphere. The size of turbulence eddies normally ranges from

a few millimeters to a few meters, denoted as the inner scale l0 and the outer scale L0,

respectively [2].

Several statistical models, such as log-normal distribution, K distribution, I-K distribu-

tion, negative exponential distribution [2,45], and most recently Gamma-Gamma distribu-

tion [46] have been proposed for the atmospheric fading channel. Among them, log-normal

and Gamma-Gamma models have attracted most attention in the literature respectively

for weak turbulence and weak to strong turbulence regimes because of their better fit to

experimental measurements.

2.2.1 Log-normal Turbulence Model

A simple statistical model for the atmospheric turbulence-induced fading is based on the

Rytov method [45]. According to this method, the atmosphere turbulent medium consists

of several thin slabs. As the optical beam propagates through the atmosphere, each slab

modulates the field from the previous slab’s perturbation by some incremental amount.

The perturbation caused by the kth slab is given by eχk+jϕk . Therefore, the atmospheric

fading can be obtained by the superposition of these perturbations as

g =
∏
k

eχk+jϕk = exp

(∑
k

χk + j
∑
k

ϕk

)
= exp (χ+ jϕ) , (2.9)

where the log-amplitude variable, χ =
∑

k χk, and the phase variable, ϕ =
∑

k ϕk, have

normal distributions according to the central limit theorem [45].

Therefore, the atmospheric fading power coefficient, also called scintillation in the

optical literature, is a log-normal random variable with the probability distribution function

(pdf) of

fh(h) =
1

h
√

8πσ2
χ

exp

(
−(ln(h)− 2µχ)2

8σ2
χ

)
, (2.10)
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where h denotes the fading power coefficient (h = |g2|), and µχ and σ2
χ are the mean and

the variance of the random variable χ, respectively. For plane wave propagation through

a horizontal path, the log-amplitude variance σ2
χ is given by [45]

σ2
χ = 0.307C2

nκ
7/6Z11/6, (2.11)

where κ and C2
n respectively denote the optical wave-number and the refractive-index

structure constant [45].

2.2.2 Gamma-Gamma Turbulence Model

Although log-normal distribution is the most widely used model for the probability density

function of the atmospheric fading power coefficient due to its simplicity, this model is

only applicable to weak turbulence conditions [45]. As the strength of the turbulence

increases and multiple self-interference effects must be considered, log-normal statistics

exhibit large deviations compared to experimental data. It has been particularly observed

that log-normal pdf underestimates the behavior in the tails as compared with measurement

results [47,48]. Since detection and outage probabilities are primarily based on the tails of

the pdf, underestimating this region significantly affects the accuracy of the performance

analysis.

Due to the limitations of log-normal distribution for moderate and strong turbulence,

Gamma-Gamma statistical model has been proposed recently by Al-Habash et al. [46]

which provides a good match to experimental measurements for a wide range of turbu-

lence conditions from weak to strong fluctuation regimes. In this model, the irradiance

(optical power per unit surface area) of an optical beam propagating through the atmo-

sphere is modeled as a modulation process in which small-scale (diffractive) fluctuations are

multiplicatively modulated by large-scale (refractive) fluctuations. Small-scale fluctuations

are associated with turbulent eddies smaller than the Fresnel zone or the spatial coher-

ence radius, whichever is smaller. Large-scale fluctuations in the irradiance are generated

by turbulent eddies larger than the first Fresnel zone or the scattering disk, whichever is

larger. Small-scale and large-scale fluctuations are assumed to be statistically independent

and both of them follow Gamma distribution [46].

13
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Consequently, the atmospheric fading power coefficient can be modeled by Gamma-

Gamma (ΓΓ) distribution with the probability density function of

fh(h) =
2(αβ/µ)(α+β)/2

Γ(α)Γ(β)
h(α+β)/2−1Kα−β

(
2
√
αβh/µ

)
, (2.12)

where Kν(·) denotes the modified Bessel function of the second kind of order ν [49] and

µ = E[h]. The positive parameters α and β respectively represent the effective number

of large-scale and small-scale eddies in the scattering process. For plane-wave propagation

and zero inner scale, α and β are respectively given by [2]

α =

exp

 0.49σ2
R(

1 + 1.11σ
12/5
R

)7/6

− 1


−1

β =

exp

 0.51σ2
R(

1 + 0.69σ
12/5
R

)5/6

− 1


−1

(2.13)

where σ2
R denotes the Rytov variance

σ2
R = 1.23C2

nκ
7/6Z11/6. (2.14)

Rytov variance indicates the strength of the turbulence fluctuations. Weak, moderate,

and strong turbulence conditions are characterized by σ2
R < 1, σ2

R ≈ 1 , and σ2
R > 1,

respectively [2]. In the weak turbulence regime, the effective numbers of small-scale and

large-scale eddies are large resulting in α� 1 and β � 1. Note that in this regime, σ2
R ≈

4σ2
χ, where σ2

χ is the log-amplitude variance given in (2.11). As the fluctuations increase and

the focusing regime is approached1, both α and β decrease considerably. With increasing

path length or turbulence strength, multiple-scattering process weakens the focusing effect

and the irradiance fluctuations slowly begin to decrease and ultimately saturates. Beyond

the focusing regime and approaching the saturation regime, β approaches to one, indicating

that the effective number of small-scale eddies finally reduces to one. On the other hand,

α increases again by increasing turbulence strength and eventually becomes unbounded

in the saturation regime. In this regime, the Gamma-Gamma distribution approaches the

negative exponential distribution [46].

1In this regime, the focusing caused by large-scale eddies achieves its strongest effect.
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2.2.3 Rician Channel Model

Atmospheric turbulence also distorts the spatial coherence of a coherent optical beam prop-

agating through the atmosphere. In effect, the coherent wavefront is divided into several

smaller regions over which the beam is approximately coherent. The spatial coherence of

an optical wavefront is quantified by the coherence function which can be obtained at weak

turbulence regime by using the Rytov method as [45]

ΓC(r) = exp
(
−6.88(r/r0)5/3

)
, (2.15)

where r denotes the separation distance between two points on the wavefront, and r0 is the

Fried parameter [50] which indicates the atmospheric coherence length. For plane wave

propagation, r0 is given by [50]

r0 = 1.68
(
C2
nκ

2Z
)−3/5

. (2.16)

r0 places fundamental limitations on the performance of the coherent receivers. In

fact, it has been shown that [50] when the receive aperture diameter D is less than r0,

the performance of the coherent receivers improves by increasing the receive aperture size.

However, when D goes beyond r0, the performance of the system is saturated respect to the

receive aperture size and cannot be improved by increasing D. It means that the receiver

responds only to an effective aperture diameter D = r0. Hence, r0 indicates a saturation

length which characterizes the sensitivity of coherent receivers to the coherence properties

of the atmospheric turbulent medium.

To mitigate the distortion of the received optical field due to the turbulence, phase

compensation techniques can be employed in coherent receivers. Phase compensation can

be implemented as either zonal or modal method [34]. In the zonal method, the aper-

ture is divided into an array of independent segments which are controlled individually to

compensate the phase distortion. In the modal compensation, the total phase distortion is

decomposed into a set of basis functions (modes) such as Zernike polynomials [51] and then

a few modes of this expansion are corrected. The commonality of circular apertures and

lenses makes Zernike polynomials attractive for modal compensation because they are a

set of orthonormal polynomials defined over a unit circle. The residual phase variance after
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the compensation of J Zernike terms over an aperture with diameter D is given by [51]

σ2
ϕ = ∆J(D/r0)2, (2.17)

where the coefficient ∆J is determined by the number of compensated modes. The first

few values of ∆J are shown in Table 2.1. For large values of J (J > 10), ∆J can be

approximated as ∆J ≈ 0.2944J−
√

3/2 [51].

∆1 = 1.0299 ∆5 = 0.0880 ∆9 = 0.0483 ∆13 = 0.0328 ∆17 = 0.0255

∆2 = 0.582 ∆6 = 0.0648 ∆10 = 0.0401 ∆14 = 0.0304 ∆18 = 0.0244

∆3 = 0.134 ∆7 = 0.0587 ∆11 = 0.0377 ∆15 = 0.0279 ∆19 = 0.0232

∆4 = 0.111 ∆8 = 0.0525 ∆12 = 0.0352 ∆16 = 0.0267 ∆20 = 0.0220

Table 2.1: Zernike coefficients

In [35], Belmonte and Kahn have developed a statistical model to characterize the

combined effects of turbulence-induced phase distortion and amplitude fluctuation on the

performance of the coherent receivers with modal phase compensation. This model is based

on the Rytov method which is valid only for the weak turbulence regime. The parameters of

the proposed model depend on the turbulence conditions and the number of compensated

modes applied at the receive aperture.

Let URX(t, r) be the received field at the receive aperture plane perturbed by turbulence

after propagation through the atmosphere. URX(t, r) can be represented as

URX(t, r) = Us(t) exp (χ(r) + jϕ(r)) , (2.18)

where Us(t) is the turbulence-free received field, and χ(r) and ϕ(r) respectively represent

the log-amplitude and the phase variations caused by the atmospheric turbulence.

The information carrying current at the output of the photodetector can be obtained

as [1, 35]

x(t) = 2<Re

{∫
URX(t, r)U∗L(t)W (r)dr

}
(2.19)

= 2<ARX Re {ξUs(t)U∗L(t)} ,
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where < = qη/(~νc) is the photodetector responsivity [45], UL(t) is the local oscillator field,

ARX = πD2/4 is the receive aperture area, and ξ is the effective fading coefficient after

heterodyning which is given by

ξ =
1

ARX

∫
exp (χ(r) + jϕ(r))W (r)dr (2.20)

=
1

ARX

∫
exp (χ(r)) cosϕ(r)W (r)dr︸ ︷︷ ︸

ξr

+j
1

ARX

∫
exp (χ(r)) sinϕ(r)W (r)dr︸ ︷︷ ︸

ξi

,

where ξr and ξi respectively represent the integrals of the real and the imaginary parts of the

turbulence effect over the receive aperture. These continuous integrals can be expressed

as finite sums over G statistically independent cells (the area within which the received

wavefront is approximately coherent) existing in the aperture, i.e.,

ξr ≈
1

G
G∑
k=1

expχk cosϕk, (2.21)

ξi ≈
1

G
G∑
k=1

expχk sinϕk, (2.22)

where χk and ϕk are the log-amplitude and the phase of the kth cell, respectively. The

number of independent coherent cells in the aperture is given by2 [35]

G =
{

1.09(ρ0/D)2Γ
[
1.2, 1.08(D/ρ0)5/3

]}−1

, (2.23)

where Γ (·, ·) denotes the lower incomplete Gamma function, and ρ0 is the generalized Fried

parameter which corresponds to partially compensated wavefronts. The generalized Fried

parameter after the compensation of J Zernike terms is given by [52]

ρ0 ≈ (3.44/∆J)3/50.286J−0.362r0. (2.24)

Under the assumption that G is large enough, ξr and ξi approach jointly normal distri-

bution with probability density function of [53]

fξr,ξi (ξr, ξi) =
1

2πσrσi
exp

(
−(ξr − µr)2

2σ2
r

)
exp

(
−(ξi − µi)2

2σ2
i

)
, (2.25)

2Note that r0 in Equation (22) of [35] should be replaced by ρ0.
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where µr, σ
2
r , µi, and σ2

i respectively denote the mean of ξr, the variance of ξr, the mean

of ξi, and the variance of ξi which can be obtained as [35]

µr = e−(σ2
χ+σ2

ϕ)/2, (2.26)

σ2
r = (1/2G) (1 + e−2σ2

ϕ − 2e−σ
2
χ−σ2

ϕ), (2.27)

µi = 0, (2.28)

σ2
i = (1/2G)(1− e−2σ2

ϕ). (2.29)

In (2.26)-(2.29), σ2
χ and σ2

ϕ are the log-amplitude variance and the residual phase variance

after modal compensation given by (2.11) and (2.17), respectively.

Consequently, the fading amplitude, a = |ξ|, approximately follows Ricean distribution

with the following pdf [35]

fa(a) =
2a (1 + K)

a2
exp

(
−K− (1 + K) a2

a2

)
I0

2a

√
K(1 + K)

a2

 , (2.30)

where I0(·) denotes the zero-ordered modified Bessel function of the first kind [49] and

a2 = σ2
r +σ2

i +µ2
r . The parameter K is the ratio of the strength of the coherent component

to the incoherent one in the detected field and is given by

K =

 a2√
µ4
r + 2µ2

r(σ
2
i − σ2

r)− (σ2
i − σ2

r)
2
− 1

−1

. (2.31)
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Chapter 3

Coherent FSO Communications with

Multiple Receivers

In this chapter, we investigate the performance of a coherent FSO communication system

with multiple heterodyne receivers. Our analysis builds on the Rician channel model which

characterizes the combined effects of turbulence-induced phase distortions and amplitude

fluctuations on coherent receivers. We derive closed-form expressions for the outage proba-

bility, diversity-multiplexing tradeoff, and diversity gain both for finite and asymptotically

high SNR values.

3.1 System Description

Figure 3.1 illustrates the block diagram of a coherent FSO system with N heterodyne

receivers. Receive apertures are separated by more than a coherence length to ensure the

independence of the fading channels. All receive apertures are assumed to be located within

the transmitter field-of-view. To compensate the phase distortion due to the turbulence,

modal compensation [34] is deployed in each receive aperture.

The received field at the aperture plane of the kth (1 6 k 6 N) receiver is given by

Urk(t, r) = us(t)e
j(2πνct+θs(t))e[χk(r)+jϕk(r)], (3.1)
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Figure 3.1: Block diagram of a coherent FSO system with multiple heterodyne receivers.

where us(t)e
jθs(t) is the complex envelope of the modulation signal. χk(r) and ϕk(r) repre-

sent the turbulence-induced log-normal amplitude fluctuations and Gaussian phase varia-

tions of the kth channel, respectively.

Let UL(t) = ALej(2πνLt+θL) be the LO field in the single receiver scenario with amplitude

AL, frequency νL, and phase θL. The LO field of the kth receiver is multiplied by a

proper weighting factor λk, 1 6 k 6 N , i.e., ULk(t) = λkUL(t) under the constraint of∑N
k=1 |λk|

2 = 1. This constraint ensures that the total LO power in the multi-receiver

scenario is equivalent to the LO power in the single receiver case. The summation of the

received optical field and the LO field in each diversity branch passes into a photodetector.

The total output current of the system is the summation of the output currents of N

photodetectors. After the combination of diversity branches’ outputs, a band-pass filter is

employed to extract the intermediate frequency (IF) component of the total output current.

The noise term at each photodetector output is dominated by the local oscillator shot

noise and can be modeled as AWGN [1]. Hence, the IF component of the kth photodetec-
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tor’s output current can be presented as

yk(t) = xk(t) + nk(t) (3.2)

= 2<Re

{∫
Urk(t, r)U∗Lk(t)Wk(r)dr

}
+ nk(t)

=
π

2
<D2

kus(t)AL Re
{
ej(2πνIF t+θs(t)−θL)ξkλ

∗
k

}
+ nk(t),

where nk(t) is the Gaussian noise term and xk(t) is the information carrying part in which

νIF = νc− νL denotes the intermediate frequency, Wk(r) defines the area of the kth receive

aperture with diameter Dk, and ξk represents the effective fading coefficient (after phase

compensating and heterodyning) of the kth diversity branch. As discussed in Section 2.2.3,

ξk can be modeled by a complex Gaussian random variable and its amplitude, ak = |ξk|
follows Rician distribution. We assume that ξks are independent identically distributed

(i.i.d). The noise term nk(t) has zero mean and its power spectral density can be calculated

by using (2.7) as

N0,k = q<
∫
|ULk(t)|2Wk(r)dr (3.3)

= q<π
4
D2
k|λk|2A2

L.

For the sake of fair comparison in terms of the received signal power, the aperture area

of each receiver in the multiple receiver system is assumed to be 1/N times the aperture

area of a single receiver system, i.e., Dk = D/
√
N , 1 6 k 6 N , where D denotes the receive

aperture diameter in the benchmark single receiver system (N = 1). Consequently, using

(3.2), the IF component of the total output current can be presented as

yT (t) =
N∑
k=1

yk(t) =
N∑
k=1

xk (t)︸ ︷︷ ︸
xT (t)

+
N∑
k=1

nk (t)︸ ︷︷ ︸
nT (t)

, (3.4)

where xT (t) is given by

xT (t) =
πD2

2N
<ALus(t) Re

{
ej(2πνIF t+θs(t)−θL)

N∑
k=1

ξkλ
∗
k

}
, (3.5)

and the power of nT (t) in the signal carrier bandwidth Bs can be calculated by using (3.3)

as

PnT =
π

2
qBs<

D2

N
A2
L. (3.6)
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Therefore, the output instantaneous SNR of the system after heterodyning and combining

diversity branches can be obtained as

γ =
PxT
PnT

=
π

4
D2 <Is

qNBs

∣∣∣∣∣
N∑
k=1

ξkλ
∗
k

∣∣∣∣∣
2

, (3.7)

where PxT is the output signal power and Is = |us(t)|2 denotes the time average irradiance

of the optical signal in Watts per square meters (W/m2). By using Cauchy-Schwartz

inequality [54], the values of λks which maximize SNR can be found as

λk,opt =
ξk√
N∑
i=1

|ξi|2
. (3.8)

Consequently, the corresponding SNR at the maximal ratio combiner output is given by

γ =
ρ

N

N∑
k=1

a2
k, (3.9)

where ρ = π<IsD2/(4qBs) is the SNR in the absence of turbulence.

3.2 Diversity and Multiplexing Gains

In this section, we first provide some basic definitions of diversity and multiplexing gains,

then present the related derivations for the coherent FSO system under consideration.

Diversity and multiplexing gains are two performance measures commonly used in the

performance analysis of wireless radio-frequency multiple antenna systems [55]. There are

two potential gains which can be exploited from a multiple antenna system. If the channels

between individual transmit-receive antenna pairs experience independent fading, multiple

parallel spatial channels are effectively created. By sending different information through

these channels, the data rate can be increased in comparison to a single antenna system.

This increase in the data rate is known as multiplexing gain. On the other hand, by

sending the same information through multiple independent channels, independently faded

replicas of the information will be obtained at the receiver. Through proper processing of
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these multiple replicas, one can decrease the error probability. The resulting performance

advantage is known as diversity gain.

In general, a scheme that maximizes one gain over a specific communication channel

does not guarantee to maximize the other. In fact, it is shown in [37] that there is a

tradeoff between these two gains called diversity-multiplexing tradeoff (DMT) which pre-

vents maximizing both gains simultaneously. DMT characterizes the maximum possible

diversity gain that can be achieved at a given multiplexing gain over a communication

channel. Although, this concept has been originally proposed for multiple-input multiple-

output (MIMO) systems, DMT can be defined for any communication system including

single-input single-output (SISO) systems [37].

3.2.1 Asymptotic versus Finite-SNR DMT

Conventional definitions of diversity and multiplexing gains apply to the asymptotic case

when SNR approaches infinity. The diversity gain is defined as [37]

d = − lim
ρ→∞

logPout(R, ρ)

log ρ
, (3.10)

where R is the target data rate, ρ is the average SNR, and Pout(R, ρ) is the outage prob-

ability. If the data rate R is not fixed and increases with SNR, the multiplexing gain is

defined as [37]

r = lim
ρ→∞

R(ρ)

log ρ
. (3.11)

From (3.10) and (3.11), one can observe that d is in fact a function of r when the data

rate is variable. In such cases, it is said that the diversity gain d(r) is achieved at the

multiplexing gain r. The curve of d(r) is known as (asymptotic) DMT [37].

Since conventional definitions apply to the asymptotically high SNRs, definitions for

diversity and multiplexing gains for finite-SNR regimes have been further introduced which

are particularly useful in evaluating these gains at practical SNR values. The finite-SNR

diversity gain is given by [56]

df (R, ρ) = −∂ logPout(R, ρ)

∂ log ρ
. (3.12)
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It represents the negative slope of the log-log plot of the outage probability versus SNR

at a target data rate R. When the data rate increases with SNR, the multiplexing gain

in finite-SNR regime is defined as the ratio of the data rate R(ρ) to the capacity of an

AWGN channel at a given SNR. It is given by [56]

rf =
R(ρ)

log(1 + ρ)
. (3.13)

Inserting (3.13) in (3.12), the finite-SNR DMT can be obtained as

df (rf , ρ) = − ρ

Pout(rf , ρ)

∂Pout(rf , ρ)

∂ρ
. (3.14)

It can be readily checked that the definitions of finite-SNR diversity and multiplexing gains

are consistent with the asymptotic ones, that is, limρ→∞df = d and limρ→∞rf = r.

3.2.2 Derivation of Outage Probability

The outage probability at a given data rate R is defined as [36]

Pout(R) = Pr {C(γ) < R} , (3.15)

where C(γ) is the instantaneous capacity of the underlying channel and is given by C(γ) =

log2 (1 + γ) for an AWGN channel. Since C(·) is monotonically increasing with γ, (3.15)

can be expressed as

Pout(R) = Pr {γ < γth} , (3.16)

where γth = C−1(R) denotes the threshold SNR that is required to support the rate R.

Replacing (3.9) in (3.16), we have

Pout(R) = Pr {z < Nγth/ρ} , (3.17)

where z =
∑N

k=1 a
2
k is a non-central chi-square random variable with 2N degrees of freedom

and the non-centrality parameter 2KN (K is the Rician channel parameter given in (2.31)).

The pdf of z is given by [57]

fz(z) =
(1 + K)

a2

(
(1 + K)z

NKa2

)N−1
2

e
−KN−(1+K) z

a2 IN−1

2

√
K(1 + K)Nz

a2

 , (3.18)
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where IN−1(·) is the (N − 1)th-order modified Bessel function of the first kind [49]. Hence,

the outage probability is given by

Pout(R, ρ) =

∫ Nγth
ρ

0

fz(z)dz (3.19)

= 1−QN

(
√

2KN,

√
2(1 + K)Nγth

ρa2

)
,

where QN (x, y) is the generalized Marcum Q-function of order N defined as [57]

QN(x, y) =
1

xN−1

∫ ∞
y

ωN exp
(
−(ω2 + x2)/2

)
IN−1 (xω) dω. (3.20)

3.2.3 Derivation of Finite-SNR DMT

When the transmission rate of the system increases with respect to SNR, (3.13) yields

R(ρ) = rf log(1 + ρ). Consequently, the threshold SNR γth can be obtained in terms of rf

and ρ as

γth = 2R − 1 = (1 + ρ)rf − 1. (3.21)

Substituting (3.21) in (3.19) and replacing the resulting expression in (3.14), we have

df (rf , ρ) =
ρ

1−QN (ζ, ϑ)

∂QN (ζ, ϑ)

∂ϑ

∂ϑ

∂ρ
, (3.22)

where ζ =
√

2KN and ϑ is given by

ϑ =

√
2(1 + K)N [(1 + ρ)rf − 1]

ρa2
. (3.23)

Using Leibniz integral rule [58], we have

∂

∂ϑ
QN (ζ, ϑ) = − ϑN

ζN−1
e
−(ϑ2+ζ2)

2 IN−1(ζϑ). (3.24)

Inserting (3.24) in (3.22) and doing some mathematical manipulations, we obtain

df (rf , ρ) =
ϑN+1e

−(ϑ2+ζ2)
2 IN−1(ζϑ)

2ζN−1 [1−QN (ζ, ϑ)]

(
1− rfρ(1 + ρ)rf−1

(1 + ρ)rf − 1

)
. (3.25)
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Next, we investigate the asymptotic value of the DMT at the high-SNR regime. Ex-

pressing the Marcum Q-function in terms of its series form [57] and using the equivalent

series form of the modified Bessel function [49], (3.25) can be rewritten as

df (rf , ρ) =

∞∑
k=0

1
k!(N+k−1)!

(
ζϑ
2

)2k

∞∑
i=0

(
ϑ2

2

)i [ ∞∑
k=0

1
k!(i+k+N)!

(
ζϑ
2

)2k
] (1− rfρ(1 + ρ)rf−1

(1 + ρ)rf − 1

)
. (3.26)

For ρ→∞, we have ϑ→
√

Θρr−1,where Θ = 2(1 + K)N/a2. Noting 0 6 r < min {1, N}
[37], it can be found out that limρ→∞ϑ = 0. Therefore, the asymptotic value of DMT at

high SNR can be obtained as

lim
ρ→∞

df (rf , ρ) = N(1− r). (3.27)

This result agrees with the asymptotic behaviour of the DMT for multiple receive antenna

systems analyzed in the context of RF communications [37].

3.2.4 Derivation of Finite-SNR Diversity Gain for a Fixed Data

Rate

When the data rateR is kept fixed, the threshold SNR value γth is constant (i.e., not a func-

tion of ρ). Replacing (3.19) in (3.12), we obtain the finite-SNR diversity gain which turns

out to have an identical form of (3.22) where ϑ is now given by ϑ =
√

2(1 + K)Nγth/(ρa2).

Consequently, we obtain

df (R, ρ) =
ϑN+1e

−(ϑ2+ζ2)
2 IN−1(ζϑ)

2ζN−1 [1−QN (ζ, ϑ)]
. (3.28)

At high-SNR regime, we have

lim
ρ→∞

df (R, ρ) = N, (3.29)

demonstrating that the diversity gain is determined by the number of receive apertures.

For a sanity check, note that, at high-SNR regime, the diversity gain at a fixed rate R
is expected to be equal to the DMT evaluated at r = 0. For r = 0, (3.27) yields N which

coincides with (3.29).

26



3.3. NUMERICAL RESULTS AND DISCUSSIONS

3.3 Numerical Results and Discussions

In this section, we present numerical results for the outage probability, finite-SNR DMT,

and diversity gain derived in the previous sections. We assume an FSO system with

wavelength λ̄ = 1.55µm operating in turbulence conditions with C2
n = 5 × 10−14 m−2/3.

The path length is Z = 1 km and the aperture diameter of the equivalent single receiver is

chosen as D = 25 cm.

Before we present information theoretic results, we first validate the underlying statis-

tical model for the system with above characteristics. In Figure 3.2, we use Monte Carlo

method to simulate the exact channel of each diversity branch for different numbers of

receive apertures (N) assuming that J = 3 Zernike modes are compensated in each aper-

ture.The Rician pdf used in the theoretical derivation is provided as well. It is observed

from Figure 3.2 that the simulated data and the Rician pdf provide a very good match. To

quantify the statistical matching, we have also calculated the overlapping coefficient ∆ [59]

between the theoretical pdf and the empirical pdf. ∆ = 1 means that two pdfs are exactly

the same and ∆ = 0 means two pdfs are completely distinct. In our case, we have found

∆ = 0.9992, ∆ = 0.9942, ∆ = 0.9896, and ∆ = 0.9836 for N = 1, 2, 3, and 4, respectively.

Figure 3.3 demonstrates the outage probability given by (3.19) along with the Monte

Carlo simulation versus normalized turbulence-free SNR (i.e., ρ/γth) for various numbers

of receive apertures N = 1, 2, 3, 4 and J = 3 compensated modes in each aperture. Due to

the time-consuming nature of the Monte-Carlo simulations, simulation results are provided

up to 10−6. We observe a very good match between analytical and simulation results. The

required SNR to achieve a target outage probability of 10−5 for N = 1 is 64 dB (not shown

in the figure for the brevity of the presentation). Through the deployment of multiple

apertures, we observe impressive performance gains (in terms of the power efficiency) of 30

dB, 42.5 dB, and 48 dB, respectively, for N = 2, 3, and 4 in comparison to the benchmark

scheme of single receive aperture system. It is also observed that, at high-SNR regime,

the diversity gain is determined by the number of receive apertures as expected from our

analytical result given by (3.29).

Figure 3.4 illustrates the finite-SNR DMT given by (3.26) for a system with N = 2 and

J = 6 assuming SNR = 10, 20, 30, 60 dB. It is interesting to note that for practical SNR
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Figure 3.2: Simulated and Rician pdfs for different number of receive apertures.

values, the maximum diversity gain does not occur at zero multiplexing gain. This is mainly

due to the presence of the coherent component in the received field which is a phenomenon

also observed in wireless RF systems [56,60]. Recall from (3.25) that the finite-SNR DMT

is a function of not only the number of receive apertures but also the channel parameter K,

which is defined as the ratio of the strength of the coherent component to the incoherent one

in the detected field. When SNR increases, the incoherent (random) component begins to

dominate the system performance and the DMT curve gradually approaches its asymptotic

value, i.e., the plot labeled with SNR =∞.

Figure 3.5 depicts the finite-SNR diversity gain for a fixed data rate (given by (3.28))

assuming different number of receive apertures N = 1, 2, 3, 4 and J = 3. It is observed that,

for N = 1, the maximum diversity gain is achieved in high-SNR regime. In this case, the

strength of the coherent component to the incoherent one in the detected field (quantified

by K) is so small that the effective channel distribution approaches Rayleigh distribution.

As N increases, K improves and consequently, the maximum diversity gain occurs at a finite

value of SNR. In this range of moderate SNRs, the coherent component is the dominating
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factor and results in a peak in the finite-SNR diversity gain. As SNR increases, the

incoherent component begins to dominate and decreases the diversity gain which finally

converges to the asymptotic one determined by the number of receive apertures.

In Figure 3.4 and Figure 3.5, we have observed the effect of the coherent component

(through dependence on K) on the system performance. One can check from (2.31) that

K is a function of channel parameters as well as the number of compensated modes (J )

latter of which is in fact a system design parameter. In Figure 3.6, we study the effect

of J on the finite-SNR diversity gain. We assume J = 1, 6, 11, 21 and consider N = 1.

Similar to our observations in Figure 3.5 for N = 1, when J = 1 (only the “piston” mode is

compensated), K is very small and consequently, the effective channel behaves like Rayleigh

distribution and causes maximum diversity gain to occur at high-SNR regime. But, as J

increases, the finite-SNR diversity gain takes larger values. This actually indicates that

modal compensation acts as an additional diversity source besides multiple apertures in

the finite-SNR regime. Nevertheless, the asymptotic value for all cases converges to the
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Figure 3.6: The effect of the modal compensation on the finite-SNR diversity gain.

number of receive aperture (N = 1 in this example), as expected from (3.29).

As our results demonstrate, both multiple receivers and modal compensation provide

diversity gains. Preference of one method to another or simultaneous deployment depends

on the cost and complexity issues. In the absence of atmospheric fading, deployment of a

large receive aperture increases the total received signal power and therefore improves the

system performance. On the other hand, the presence of the atmospheric turbulence causes

the incoherency of the received field and results in significant performance degradation

particularly for large apertures.

For performance improvement, one can increase the number of compensated modes,

but this comes at the cost of higher complexity. Alternatively, one can create an effective

large aperture at the receiver by deploying multiple smaller apertures whose total aperture

area is equal to that of the large one. When the diameter of each aperture becomes smaller,

the received wavefront is more coherent over each aperture compared to the system with a

larger aperture. Therefore, only a few first modes can be compensated to yield a desirable
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performance and high order compensation is not required.
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Chapter 4

Multi-Hop Coherent FSO

Communications

In this chapter, we investigate multi-hop relaying in coherent FSO communications over

atmospheric channels. We consider an FSO relaying system with DF relay nodes and

multiple heterodyne receivers with modal compensation. Considering the combined effects

of turbulence-induced amplitude fluctuations and phase aberrations, we derive the outage

probability and quantify the potential performance improvements through the derivation

of DMT and diversity gain.

4.1 System Model

We consider a coherent multi-hop FSO relaying system as illustrated in Figure 4.1. The

source signal arrives at the destination via a sequence of K+1 hops through K intermediate

relays. The nodes in the network are serially indexed from 0 to K + 1 where k = 0 and

k = K + 1 refer to the source and the destination, respectively. We consider full-duplex

relaying and assume no interference between individual FSO channels. The link range

ZSD (i.e., distance from the source to the destination) is given by ZSD =
∑K+1

k=1 Zk where

Zk, k = 1, 2, . . . , K + 1, is the length of the kth hop. All nodes are equipped with single

transmitters and each has the transmit-optical power of P = PT/(K + 1) where PT is the

total power budget of the system.
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Figure 4.1: Coherent FSO multi-hop relaying configuration.

Relay and destination nodes have more than one heterodyne receiver (not necessarily

the same number) to further exploit the receive diversity. Let the kth node, 1 6 k 6

K + 1, be equipped with mk parallel heterodyne receivers. The aperture diameter of

each receiver located in the kth node is given by Dk = D
/√

mk where D is the total receive

aperture diameter. All receive apertures are located within the field-of-view of the previous

transmitter. Receive apertures are separated by more than the channel coherence length

to ensure independent fading channels.

Each relay first combines the diversity branches using a maximum ratio combiner [57].

Then, it decodes the transmitted information and retransmits it to the next relay (or to

the destination in the last hop). The noise term at each receiver’s output is dominated by

the LO shot noise and can be modeled as AWGN. Using the results of Section 3.1, the IF

component of the output signal at the kth node after heterodyning and diversity combining

is given by

yk(t) = xk(t) + nk(t), (4.1)

where nk(t) is the noise term and the information carrying part xk(t) is

xk(t) =
π

2
<AL

D2

mk

√√√√ mk∑
i=1

|ξk,i|2uk(t) cos [2πνIF t+ θk(t)− θL] . (4.2)

Here, uk(t)e
jθk(t) is the complex envelope of the modulation signal received at the kth node,

and ξk,i denotes the effective fading coefficient of the ith diversity branch in the kth hop.

As discussed in Section 2.2.3 of Chapter 2, ak,i = |ξk,i| follows Rician distribution with

parameters a2
k,i and Kk,i. We assume that the channel coefficients within each hop are i.i.d,

i.e., Kk,i = Kk and a2
k,i = a2

k for 1 6 i 6 mk. Sub-channels from one hop to another hop

are assumed to be mutually independent, but not necessarily identical.
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4.2 Derivation of Outage Probability

In the multi-hop transmission scheme with the DF relaying under consideration, the outage

of any intermediate sub-channels causes a failure in the source-destination communication.

Hence, using (3.16), the outage probability of the end-to-end scheme, denoted by P SD
out , is

given by

P SD
out = Pr

{
K+1⋃
k=1

(γk < γth)

}
(4.3)

= 1− Pr

{
K+1⋂
k=1

(γk > γth)

}

= 1−
K+1∏
k=1

(
1− P k

out

)
where P k

out is the outage probability of the kth intermediate single-input multiple-output

(SIMO) link with mk receive apertures, and γk = Pxk/Pnk is the output SNR at the kth

node. Pxk and Pnk are, respectively, the average received signal power and the noise power

at the kth node. Using (4.2), Pxk is calculated as

Pxk =
π

2

D2

m2
k

<2A2
LP

2
rk

mk∑
i=1

a2
k,i, (4.4)

where Prk = |uk(t)|2πD2/4 is the average received optical power at the kth node in the

absence of the atmospheric fading effect. Prk is related to the average transmit optical

power per transmit aperture (P ) by Prk = LkP where Lk denotes the path loss of the kth

hop normalized with respect to the path loss of the end-to-end link, i.e.,

Lk =
` (Zk)

` (ZSD)
. (4.5)

On the other hand, the noise power within the signal bandwidth of Bs is given by

Pnk =
π

2
qBs<

D2

mk

A2
L. (4.6)

Using (4.4) and (4.6), we have

γk =
Lkρ

mk (K + 1)

mk∑
i=1

a2
k,i, (4.7)
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where ρ = <PT/qBs is the total turbulence-free and path loss-free SNR of the system.

Noting that ak,i has Rician distribution with parameters Kk and a2
k, we obtain P k

out as

P k
out = 1−Qmk

(√
2mkKk,

√
2mk(1 + Kk)(K + 1)

Lkρa2
k

γth

)
. (4.8)

Therefore, inserting (4.8) in (4.3), the outage probability of the end-to-end transmission is

obtained as

P SD
out = 1−

K+1∏
k=1

Qmk

(√
2mkKk,

√
2mk(1 + Kk)(K + 1)γth

Lkρa2
k

)
. (4.9)

4.3 Diversity and Multiplexing Gains

4.3.1 Finite-SNR DMT

When the transmission rate R increases by SNR as R(ρ) = rf log(1 + ρ), the threshold

SNR γth depends on rf and ρ as γth = 2R−1 = (1 + ρ)rf −1. Replacing this in (4.9) yields

P SD
out (rf , ρ) = 1−

K+1∏
k=1

Qmk (ζk, ϑk), (4.10)

where ζk =
√

2mkKk and

ϑk =

√
2mk(1 + Kk)(K + 1)

Lkρa2
k

((1 + ρ)rf − 1). (4.11)

From (3.14) and (4.10), the finite SNR DMT of the end-to-end scheme can be obtained as

dSDf (rf , ρ) = − ρ

P SD
out(rf , ρ)

∂P SD
out(rf , ρ)

∂ρ
(4.12)

=
ρ

1−
K+1∏
k=1

Qmk (ζk, ϑk)

K+1∑
k=1

(
∂Qmk (ζk, ϑk)

∂ϑk

∂ϑk
∂ρ

K+1∏
i=1,i 6=k

Qmi (ζi, ϑi)

)
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After some mathematical manipulations, we obtain dSDf (rf , ρ) as

dSDf (rf , ρ) =

(
1− rfρ(1 + ρ)rf−1

(1 + ρ)rf − 1

) K+1∑
k=1

(
ϑ
mk+1

k

ζ
mk−1

k

e
−(ϑ2k+ζ2k)

2 Imk−1(ζkϑk)
K+1∏

i=1,i 6=k
Qmi (ζi, ϑi)

)

2

[
1−

K+1∏
k=1

Qmk (ζk, ϑk)

] .

(4.13)

It is also possible to write dSDf (rf , ρ) in terms of the finite-SNR DMT of each SIMO

sub-channel. Rewriting (4.13) as

dSDf (rf , ρ) =

K+1∏
i=1

Qmi (ζi, ϑi)[
1−

K+1∏
k=1

Qmk (ζk, ϑk)

] (4.14)

×
K+1∑
k=1

ϑmk+1
k Imk−1(ζkϑk)e

−(ϑ2k+ζ2k)
2

2ζmk−1
k [1−Qmk (ζk, ϑk)]

(1− rfρ(1 + ρ)rf−1

(1 + ρ)rf − 1

)(
1−Qmk (ζk, ϑk)

Qmk (ζk, ϑk)

)

and using the values of P k
out and P SD

out given in (4.8) and (4.9), respectively, we obtain

dSDf (rf , ρ) =
1− P SD

out

P SD
out

K+1∑
k=1

dkf (rf , ρ)
P k
out

1− P k
out

, (4.15)

where

dkf (rf , ρ) =
ϑmk+1
k

ζmk−1
k

e
−(ϑ2k+ζ2k)

2 Imk−1(ζkϑk)

2 [1−Qmk (ζk, ϑk)]

(
1− rfρ(1 + ρ)rf−1

(1 + ρ)rf − 1

)
, (4.16)

is the finite-SNR DMT of the kth SIMO sub-channel.

For a sanity check, the asymptotic behavior of the derived DMT at high SNR is inves-

tigated in Appendix 4A. It is shown that

lim
ρ→∞

dSDf (rf , ρ) = m̂(1− r), 0 6 r < 1 (4.17)

where m̂ = mink {mk}. This result agrees with the asymptotic DMT of the multi-hop

relay channels analyzed in the context of RF communications [61]. It demonstrates that

at high SNR regime, the DMT of the end-to-end scheme is determined by the minimum of

the underlying sub-channels’ DMT values throughout the range of the multiplexing gain.
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4.3.2 DMT for the Symmetrical Configuration

In the previous section, we have investigated our system for the general case in which

sub-channels from one hop to another hop are independent but not necessarily identically

distributed. In the following, we consider a symmetrical scenario in which the relay nodes

are evenly distributed between the source and the destination, i.e., Zk = ZSD/(K + 1),

1 6 k 6 K + 1. All the relays and the destination are assumed to have equal number of

heterodyne receivers denoted by mo (mk = mo ∀k). It is further assumed that sub-channels

from one hop to another hop are independent and identically distributed with parameters

Ko and a2
o (Kk = Ko and a2

k = a2
o ∀k). Under these assumptions, the outage probability in

(4.10) can be simplified as

P SD
out = 1−

[
Qm

(√
2moKo,

√
2mo(1 + Ko)(K + 1)

Loρa2
o

((1 + ρ)rf − 1)

)]K+1

, (4.18)

where Lo is the normalized path loss for all hops. The finite-SNR DMT in (4.13) can be

also simplified as

dSDf (rf , ρ) =
(K + 1)ϑmo+1e

−(ζ2+ϑ2)
2 Imo−1 (ζϑ)QK

mo (ζ, ϑ)

2ζmo−1
(
1−QK+1

mo (ζ, ϑ)
) (

1− rfρ(1 + ρ)rf−1

(1 + ρ)rf − 1

)
, (4.19)

where ζ =
√

2moKo and ϑ =
√

2mo(1 + Ko)(K + 1) ((1 + ρ)rf − 1) /(Loρa2
o).

For this special case, we prove in Appendix 4B that the finite-SNR DMT of the end-

to-end scheme is upper bounded by

dSDf (rf , ρ) 6 d1
f (rf , ρ), (4.20)

where d1
f (rf , ρ) is the finite-SNR DMT of each SIMO sub-channel. This demonstrates

that for a target transmission rate, the reliability (indicated by the diversity gain) of the

end-to-end scheme is upper bounded by that of each intermediate hop.

4.3.3 Finite SNR Diversity Gain for a Fixed Transmission Rate

In this section, we derive the finite SNR diversity gain when the transmission rate R is

fixed, i.e., it does not vary with SNR. Note that under this assumption, γth is a constant and

38



4.4. NUMERICAL RESULTS AND DISCUSSIONS

independent of ρ. Using (3.10) and (4.9), the finite SNR diversity gain of the end-to-end

scheme for a fixed R is obtained as

dSDf (R, ρ) =

K+1∑
k=1

(
ϑ
mk+1

k

ζ
mk−1

k

e
−(ϑ2k+ζ2k)

2 Imk−1(ζkϑk)
K+1∏

i=1,i 6=k
Qmi (ζi, ϑi)

)

2

[
1−

K+1∏
k=1

Qmk (ζk, ϑk)

] , (4.21)

in which ϑk is now given by ϑk =

√
2mk(1 + Kk)(K + 1)γth/(Lkρa2

k). From (4.13) and

(4.21), it can be readily checked that

dSDf (rf , ρ) = dSDf (R, ρ)
∣∣
R=rf log(1+ρ)

×
(

1− rfρ(1 + ρ)rf−1

(1 + ρ)rf − 1

)
. (4.22)

Although the derivations of the finite-SNR DMT and the diversity gain at a fixed rate

are very similar, they represent two individual performance metrics at practical SNR values

and they are not equivalent for any specific value of multiplexing gain r. However, at high

SNR regime, it is expected that the diversity gain at a fixed rate R will be equal to the

DMT at r = 0 [37]. It can be readily checked from (4.17) that the asymptotic DMT at

r = 0 is given by m̂ while from (4.21) one can obtain limρ→∞d
SD
f (R, ρ) = m̂, as expected.

This result demonstrates that, at high SNR regime, the diversity order of the end-to-end

transmission is restricted by the minimum number of receive apertures of each hop.

4.4 Numerical Results and Discussions

In this section, we present numerical results for the outage probability, DMT and diversity

gain using the analytical expressions derived in the previous sections. We consider an FSO

system with the wavelength λ̄ = 1.55µm operating in the turbulence conditions with the

refractive index structure constant C2
n = 1 × 10−14 m−2/3 and attenuation of 0.44dB/km

(i.e., σ ≈ 0.1). The link range is ZSD = 5 km and the total receive aperture diameter at

each node is D = 25 cm.

In the first three figures (Figure 4.2-Figure 4.4), to demonstrate the diversity advantages

extracted from multi-hop transmission in FSO systems, we assume each node is equipped
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Figure 4.2: Outage probability for multi-hop coherent FSO systems with K = 1, 2, and

mo = 1.

with single receive aperture i.e., mk = 1, 1 6 k 6 K+1, and therefore, no receive diversity

is available. At each receive aperture, J = 6 Zernike modes are compensated. We assume

a symmetrical scenario for these figures.

Figure 4.2 illustrates the outage probability given by (4.9) versus normalized SNR

(ρ/γth) for K = 1, 2. For comparison purposes, the outage probability of the direct trans-

mission is also presented in this figure. It is observed that multi-hop transmission exploits

the distance-dependent characteristic of fading variance and significantly improves the

system performance. Specifically, at a target outage probability of 10−8, impressive per-

formance improvements of 31.5 dB and 39.2 dB are, respectively, observed with one and

two relays in comparison to the benchmark direct transmission system.

Figure 4.3 depicts the finite SNR diversity gain given by (3.28) for a fixed transmission

rate R. This actually corresponds to the negative slope of the outage probability curves

illustrated in Figure 4.2. It is observed that increasing the number of relays improves the

finite-SNR diversity gain. Moreover, the maximum diversity gain occurs at a finite value
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Figure 4.3: Finite SNR diversity gain at a fixed transmission rate R for K = 1, 2, and

mo = 1.

of SNR. This is mainly due to the presence of the coherent component in the received field.

Indeed, at moderate SNRs, the presence of the coherent component causes a steep drop in

the outage probability and results in a peak in the finite SNR diversity gain. As the SNR

increases, the incoherent (random) component begins to dominate the system performance

and decreases the diversity gain to its asymptotic value which is equal to one in our case.

Figure 4.4 illustrates the finite SNR DMT given by (4.13) for various numbers of relays

K = 1, 2 assuming a fixed SNR = 10 dB. It is observed that multi-hop transmission

provides diversity advantages throughout the range of the multiplexing gain. Especially,

at high values of multiplexing gain, the diversity gain of the direct transmission approaches

zero which can be avoided by the proposed multi-hop transmission.

Figure 4.5 presents a performance comparison between multi-hop coherent and IM/DD

systems assuming the deployment of single relay and single receive apertures. For IM/DD

systems, it has been shown in [62] through experimental observations that the effective

fading amplitude coefficient for a large receive aperture follows log-normal distribution.
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Figure 4.4: Finite-SNR DMT for K = 1, 2, and mo = 1 at a fixed SNR = 10 dB.

Under the assumption of background noise-limited receiver and following similar steps as

in [24], we obtain the outage probability for the multi-hop IM/DD scheme as

P SD
out,IM/DD = 1−

K+1∏
k=1

1−Q

 ln
(

<LkPT
(K+1)

√
2q<BsPbγth

)
− 2σ2

χ(D)

2σχ(D)

, (4.23)

where Q(·) denotes the Gaussian Q-function [57], and Pb is the background noise power

in each receiver aperture. In (4.23), σ2
χ(D) is the log-amplitude variance of a receive

aperture with diameter D, and for the plane-wave propagation in the weak turbulence

regime with zero inner scale of turbulence ( l0 → 0) and infinite outer scale (L0 →∞) can

be approximated as [63]

σ2
χ(D) ≈ σ2

χ(0)

[
1 + 1.062

(
κD2

4Z

)]−7/6

, (4.24)

where σ2
χ(0) is the log-amplitude variance for a point receiver (D = 0) given in (2.11).

We assume that Bs = 1GHz, R = 2 bits/symbol, and Pb = 1 mW. Performance

plots in Figure 4.5 are provided under the assumption of same transmit power PT for
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Figure 4.5: Performance comparison of coherent and IM/DD multi-hop systems (K = 1

and mo = 1).

both systems. We observe that, for small values of PT , coherent detection brings better

performance compared to the incoherent one, even for low order of compensation (J = 3).

Performance curves for coherent and incoherent systems intersect for larger values of PT

since the infinite diversity order for a Rician channel (in coherent system) is just one

while for a log-normal channel (in IM/DD system) is infinity. However, if the degree of

compensation increases at the cost of higher complexity, considerable power gains can be

achieved by coherent detection for a desired value of outage probability.

In the following, we consider a coherent FSO system with multiple receive apertures

to further exploit the receive diversity advantages. It is assumed that J = 3 modes are

compensated in each receive aperture. The system is equipped with two relay nodes (i.e.,

K = 2) distributed between the source and the destination with distances Z1 = 1 km,

Z2 = 2.5 km, and Z3 = 1.5 km. We consider three different systems based on the number

of receive apertures at each node. In the first system (S1), we assume m1 = m2 = m3 = 2.

In the second system (S2), we have m1 = 2, m2 = 3, and m3 = 2. Finally, in the third

43



4.4. NUMERICAL RESULTS AND DISCUSSIONS

0 5 10 15 20 25 30 35 40 45 50
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

ρ/γth [dB]

O
u
ta
g
e
p
ro
b
a
b
il
it
y

 

 

Direct Transmission

S1

S2

S3

Figure 4.6: Outage probability of asymmetrical systems S1, S2 and S3.

system (S3), we have m1 = 1, m2 = 3, and m3 = 2.

Figure 4.6 depicts the outage probability versus normalized SNR (ρ/γth) for these three

systems. A common observation for all systems is the impressive performance improve-

ments through multi-hop transmission coupled with the receive diversity. For small values

of SNR (SNR < 5 dB), the outage performance of S2 and S3 is the same while both out-

perform S1. In this range, the second sub-channel (i.e., the longest hop which experiences

the poorest fading conditions) has the worst outage performance and acts as a bottleneck

in the performance of the end-to-end data transmission. Hence, increasing the number of

receive apertures at the second relay from two (in S1) to three (in S2 and S3) improves

the performance. On the other hand, as SNR increases, performance curves of S2 and S3

deviate from each other because the incoherent component of the Rician channel begins

to dominate the system performance and the deployment of receive diversity at the first

relay results in S2’s additional performance improvement. In this regime, the performance

of S3 is restricted by its first relay which has only one receive aperture. It can be readily

checked from (4.17) that the asymptotic diversity gain of S1, S2 and S3 is given by two,
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Figure 4.7: DMT of system S2 for different values of SNR.

two, and one, respectively.

Figure 4.7 depicts the finite SNR DMT of S2 for various values of SNR. It is observed

that, for finite values of SNR, the maximum diversity gain does not occur at zero multi-

plexing gain. Similar to our observations in Figure 4.3, this is due to the presence of the

coherent component. When SNR increases, the incoherent component begins to dominate

the system performance and the DMT curve gradually approaches its asymptotic value.

Recall that the number of receive apertures in each hop is given by m1 = 2, m2 = 3, and

m3 = 2. It is observed that as SNR increases gradually, the DMT performance approaches

min {2, 3, 2}×(1−r) = 2(1−r). Therefore, the asymptotic DMT of the end-to-end scheme

is determined by the minimum of the DMT values of all sub-channels throughout the range

of the multiplexing gain.
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Appendix 4A. Proof of (4.17)

In this appendix, we derive the asymptotic value of DMT given by (4.17) starting from

the finite-SNR DMT expression of (4.13). It can be readily checked that when ρ→∞, we

have ϑk →
√

Θkρr−1, where Θk = 2mk(1 + Kk)(K + 1)/(Lka2
k). Since r < 1 [37], we have

limρ→∞ϑk = 0, ∀ k. Consequently, we can write

lim
ρ→∞

dSDf (rf , ρ) = lim
ϑk→0

c1

2c2

× lim
ρ→∞

[
1− rfρ(1 + ρ)rf−1

(1 + ρ)rf − 1

]
, (4.25)

where we have defined c1 and c2 as

c1 ,
K+1∑
k=1

(
ϑmk+1
k

ζmk−1
k

e
−(ϑ2k+ζ2k)

2 Imk−1(ζkϑk)
K+1∏

i=1,i 6=k

Qmi (ζi, ϑi)

)
, (4.26)

c2 , 1−
K+1∏
k=1

Qmk (ζk, ϑk). (4.27)

It is easy to see that the second limit term in (4.25) yields 1 − r. For the solution of

the first limit expression, we first work with c2. Replacing the Marcum Q-function by its

series form [57], we obtain

lim
ϑk→0

c2 = lim
ϑk→0

[
1−

K+1∏
k=1

(
1− e

−(ϑ2k+ζ2k)
2

∞∑
i=mk

(ϑk
ζk

)i
Ii(ζkϑk)

)]
. (4.28)

Using the small argument form of the modified Bessel function of the first kind [57], (4.28)

can be rewritten as

lim
ϑk→0

c2 = lim
ϑk→0

[
1−

K+1∏
k=1

(
1− e

−(ϑ2k+ζ2k)
2

∞∑
i=mk

(ϑ2
k/2)

i

i!

)]
(4.29)

= lim
ϑk→0

[
1−

K+1∏
k=1

(
1− (ϑ2

k/2)
mk

mk!
e
−(ϑ2k+ζ2k)

2

)]

= lim
ϑk→0

K+1∑
k=1

(ϑ2
k/2)

mk

mk!
e
−(ϑ2k+ζ2k)

2 .

Defining m̂ , min
k
mk and k̂ , arg(min

k
mk), we obtain

lim
ϑk→0

c2 = lim
ϑk̂→0

(
ϑ2
k̂
/2
)m̂

m̂!
e
−(ζ2k̂+ϑ

2
k̂)

2 . (4.30)
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For c1 given in (4.26), first note that limϑi→0Qmi(ζi, ϑi) = 1 [57]. Therefore, using the

small argument form of the modified Bessel function [57], we have

lim
ϑk→0

c1 = lim
ϑk→0

2
K+1∑
k=1

(ϑ2
k/2)

mk

(mk − 1)!
e
−(ϑ2k+ζ2k)

2 (4.31)

= lim
ϑk̂→0

2

(
ϑ2
k̂
/2
)m̂

(m̂− 1)!
e
−(ϑ2k̂+ζ

2
k̂)

2 .

Finally, utilizing (4.30) and (4.31) in (4.25), we obtain the asymptotic DMT expression as

given by (4.17).

Appendix 4B. Proof of (4.20)

From (4.16), d1
f (rf , ρ) can be readily derived as

d1
f (rf , ρ) =

ϑmo+1

ζm−1

e
−(ϑ2+ζ2)

2 Imo−1(ζϑ)

2 [1−Qmo (ζ, ϑ)]

(
1− rfρ(1 + ρ)rf−1

(1 + ρ)rf − 1

)
. (4.32)

Using (4.19) and (4.32), we have

dSDf (rf , ρ)

d1
f (rf , ρ)

=
(K + 1)QK

mo(ζ, ϑ)
K∑
i=0

Qi
mo(ζ, ϑ)

. (4.33)

Since 0 6 Qmo (ζ, ϑ) 6 1 [57], we have QK
mo (ζ, ϑ) 6 Qi

mo (ζ, ϑ) for 0 6 i 6 K which yields

(K + 1)QK
m0

(ζ, ϑ) 6
K∑
i=0

Qi
mo(ζ, ϑ). (4.34)

Consequently, using(4.34) in (4.33), we obtain (4.20).
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Chapter 5

Hybrid-ARQ protocols in Coherent

FSO Communications

In this chapter, we investigate the performance of hybrid-ARQ techniques in coherent FSO

communications. Under the assumption of a Gamma-Gamma statistical fading channel

model, we derive outage probability and throughput expressions for three H-ARQ proto-

cols. We further characterize the outage performance at high values of SNR through the

diversity and coding gains.

5.1 Coherent FSO Systems with H-ARQ

We consider a point-to-point FSO system equipped with a single transmit aperture and

multiple receive apertures. The transmitter is assumed to have an infinite buffer of infor-

mation to send1 and uses a complex Gaussian codebook with unit average power to encode

its message. The transmitted signal passes through the slowly time-varying FSO channel

which can be modeled as a non-ergodic block-fading channel wherein the fading coefficient

remains constant over each block, but changes independently from one block to another.

The receiver is equipped with N receive apertures that are separated by more than

an atmospheric coherence length to ensure independent fading channels. The area of

1This simplified scenario allows mathematical tractability and can be considered as a bound on the

actual performance [64].
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each receive aperture is assumed to be ARX/N where ARX is the aperture area in the

benchmark single aperture system. This condition assures that the received signal power

remains constant for various values of N . Each aperture is small enough compared to

the coherence length so that the received field remains coherent all over the aperture.

Furthermore, all receive apertures are assumed to be located within the transmitter field-

of-view. Heterodyne detection is employed in each diversity branch. The receiver then

uses a maximum ratio combiner [57] to combine the diversity branches’ outputs.

Noting that the noise in a practical heterodyne detector is dominated by the LO shot-

noise which can be modeled as AWGN, we can write the baseband model of the output

electrical signal after heterodyning and diversity combining as

y
[l]
i =

√√√√ ρ

N

N∑
v=1

hi,vx
[l]
i +

N∑
v=1

n
[l]
i,v, (5.1)

where x
[l]
i and y

[l]
i are respectively the input and output signals, i = 1, 2, . . . indexes the

channel’s block number, l = 1, . . . , L counts the channel uses in each block, v = 1, . . . , N

indexes the diversity branches, and n
[l]
i,v is the circularly symmetric complex Gaussian noise

with unit variance. hi,v denotes the atmospheric fading power coefficient which follows

the Gamma-Gamma distribution and its pdf is given2 in (2.12). ρ is the photo-detected

electrical SNR over all receive apertures in the absence of turbulence, which is given by

ρ = <ARXIs/qBs. Under the assumption of i.i.d fading coefficients and i.i.d noise terms,

the output instantaneous electrical SNR over the ith block is given by

γi =
ρ

N

N∑
v=1

hi,v. (5.2)

We assume that a delay-free error-free feedback channel is available in the underlying

system to deploy one of the H-ARQ protocols originally introduced in [64].

In the ALO protocol, the transmitter encodes K information nats using L symbols and

transmits them with the rateR = K/L nats per second per Hertz (nps/Hz) in each channel

block. If decoding failure occurs, the transmitter sends the same encoded packet in the

2We ignore the path loss effect in this chapter and assume that all fading power coefficients are nor-

malized such that µ = 1.
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next round3. The receiver considers only the last received packet to decode the current

message. This process continues until successful decoding is achieved within M rounds or

an error is declared.

In the RTD protocol, the transmitter operates the same as that in the ALO protocol.

The receiver performs maximum ratio combining on all the packets it has received so far

to decode the current message.

In the INR protocol, the transmitter sends additional redundancy symbols in each round

until successful decoding occurs. Specifically, K information nats are encoded by using a

mother code with length ML and rate R/M . Each codeword is divided into M packets of

L symbols and each packet is transmitted in each ARQ round. The first m (m = 1, . . . ,M)

packets of each codeword form a codeword of a punctured code of length mL and rate

R/m. This punctured code is obtained from the mother code through deleting the last

M −m packets. In each round, the receiver tries to decode the current message by using

all the packets received until that round. The ACK/NACK procedure is repeated until the

receiver decodes the current message successfully or all M packets of the mother code are

transmitted.

5.2 Outage Performance, Diversity and Coding Gains

In this section, we first derive the outage performance for each protocol and then, based

on the derived expressions, quantify the diversity and coding gains at high-SNR regime.

5.2.1 Basic Definitions and Lemmas

Outage Probability- Let Am define the event that the per symbol instantaneous mutual

information at round m (denoted by Im) crosses level R (the transmission rate of the first

round), i.e., Am = {Im > R}. The outage probability after m ARQ rounds is consequently

3Each ARQ round spans a channel block. Therefore, the channel remains fixed within each ARQ round,

but is i.i.d across ARQ rounds.
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given by

Pout(m) = Pr
{
A1, . . . , Am

}
(5.3)

= Pr {I1 ≤ R, . . . , Im ≤ R} .

An outage event occurs if the mutual information after the maximum number of ARQ

rounds is still smaller than R, i.e., m = M is reached in (5.3). In the rest of this chapter,

whenever we mention outage probability without specifying the number of ARQ rounds,

we implicitly mean Pout(M).

Diversity and Coding Gains- At high-SNR regime, the outage probability in most

cases can be approximated as [65]

Pout ∼ (O · ρ)−d (5.4)

where d and O are respectively inferred as outage diversity gain and outage coding gain.

The diversity gain indicates the slope of the outage probability curve versus average SNR

(ρ) on a log-log scale while the coding gain determines the relative horizontal shift of this

curve.

Lemma 5.1. Let z denote the sum of k i.i.d Gamma-Gamma random variables with mean

µ and parameters α and β. The distribution of z can be efficiently approximated4 by a

single Gamma-Gamma random variable with mean kµ and parameters φk and ψk, i.e.,

fz(z) ≈ 2

Γ(φk)Γ(ψk)z

(φkψk
kµ

z
) (φk+ψk)

2 Kφk−ψk

(
2

√
φkψk
kµ

z

)
, (5.5)

where fz(z) denotes the pdf of z, and φk and ψk are respectively given by

φk = kυ + εk, (5.6)

ψk = kτ, (5.7)

with υ = max {α, β} and τ = min {α, β}. In (5.6), εk denotes an appropriately chosen

adjustment parameter given by

εk = (k − 1)
−0.127− 0.95υ − 0.0058τ

1 + 0.00124υ + 0.98τ
. (5.8)

4To evaluate the validity of such a statistical approximation, a goodness-of-fit statistical test, such as

Kolmogrov- Smrinov (KS) test can be used [66,67].
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See [66] for the proof.

Lemma 5.2. Let z denote the sum of k i.i.d Gamma-Gamma random variables with mean

µ and shaping parameters α and β. The pdf of z can be approximated by a single-term

polynomial for small values of z (z → 0+), i.e.,

fz(z) ∼
(

Γ(υ − τ)(υτ/µ)τ

Γ(υ)

)k
zkτ−1

Γ (kτ)
. (5.9)

The proof is given in Appendix 5A.

5.2.2 ALO Protocol

In the ALO protocol, the receiver considers only the most recently received packet and has

no memory of the past packets. Therefore, the events Ams in (5.3) are i.i.d and the per

symbol instantaneous mutual information at round m for this protocol is given by [64]

Im,ALO = log(1 + γm), (5.10)

where γm is the output instantaneous electrical SNR at round m and given by (5.2).

Consequently, from (5.3), the outage probability of the ALO protocol after m rounds,

denoted by Pout,ALO(m), is obtained as

Pout,ALO(m) =
m∏
i=1

Pr {Ii,ALO ≤ R} (5.11)

= [Pr {I1,ALO ≤ R}]m

=

[
Pr

{
log
(

1 +
ρ

N

N∑
v=1

h1,v

)
≤ R

}]m
.

An accurate approximation of Pout,ALO(m) for finite values of ρ can be obtained by using

Lemma 5.1. Rewriting the Bessel function in (5.5) in terms of the Meijer-G function [68, p.

665, Eq. 8.4.23.1] and using [68, p. 46, Eq. 1.16.2.1], we obtain

Pout,ALO(m) ≈
[

1

Γ(φN)Γ(ψN)
G2,1

1,3

(
φNψNγth/ρ

∣∣∣ 1

φN , ψN , 0

)]m
, (5.12)

52



5.2. OUTAGE PERFORMANCE, DIVERSITY AND CODING GAINS

where G(·) denotes the Meijer G-function [69], φN and ψN are obtained by replacing k = N

in (5.6) and (5.7), respectively, and γth is defined as γth = exp(R)− 1.

It should be noted that for one receive-aperture (N = 1), there is no need to use the

approximation given in Lemma 5.1, and Pout,ALO(m) has an exact expression given by

Pout,ALO(m)|N=1 =

[
1

Γ(α)Γ(β)
G2,1

1,3

(
αβγth/ρ

∣∣∣ 1

α, β, 0

)]m
, (5.13)

To analyze the asymptotic outage performance at large values of SNR, we employ

Lemma 5.2. Substituting k = N and µ = 1 in (5.9), and using the result in (5.11), we have

Pout,ALO(M) ∼
[∫ Nγth/ρ

0

ΓN(υ − τ)(υτ)Nτ

ΓN(υ)Γ (Nτ)
zNτ−1dz

]M
(5.14)

=

(
ΓN(υ − τ)(Nυτγth)

Nτ

ΓN(υ)Γ (Nτ + 1)

)M

ρ−MNτ .

Thus, using (5.4), we obtain the outage diversity and coding gains of the ALO protocol,

respectively, as

dALO = MNτ, (5.15)

OALO =
1

Nτυγth

(
Γ(υ)Γ1/N (Nτ + 1)

Γ(υ − τ)

)1/τ

. (5.16)

5.2.3 RTD Protocol

Since the receiver performs maximum ratio combining on all received packets in the RTD

protocol, the SNR is accumulated over H-ARQ rounds. Therefore, the per symbol instan-

taneous mutual information at round m for this protocol is given by [64]

Im,RTD = log
(

1 +
m∑
i=1

γi

)
. (5.17)

Because γi is nonnegative, {Im,RTD} is a non-decreasing sequence which results in [64]

Pout,RTD(m) = Pr {I1,RTD ≤ R, . . . , Im,RTD ≤ R} (5.18)

= Pr {Im,RTD ≤ R} ,
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where Pout,RTD(m) denotes the outage probability of the RTD protocol after m rounds.

Substituting (5.2) in (5.17) and (5.18) yields

Pout,RTD(m) = Pr

{
log
(

1 +
ρ

N

m∑
i=1

N∑
v=1

hi,v

)
≤ R

}
. (5.19)

By using Lemma 5.1, [68, p. 665, Eq. 8.4.23.1], and [68, p. 46, Eq. 1.16.2.1], an accurate

approximation of Pout,RTD(m) at finite SNR values is obtained as

Pout,RTD(m) ≈ 1

Γ(φmN)Γ(ψmN)
G2,1

1,3

(
φmNψmN

γth
mρ

∣∣∣∣∣ 1

φmN , ψmN , 0

)
, (5.20)

where φmN and ψmN are obtained by replacing k = mN in (5.6) and (5.7), respectively.

The asymptotic approximation of Pout,RTD(M) at high-SNR regime can be obtained by

using Lemma 5.2 with k = MN as

Pout,RTD(M) ∼
∫ Nγth/ρ

0

(
Γ(υ − τ)(υτ)τ

Γ(υ)

)MN
zMNτ−1

Γ (MNτ)
dz (5.21)

=
ΓMN(υ − τ)(Nυτγth)

MNτ

ΓMN (υ) Γ (MNτ + 1)
ρ−MNτ .

Consequently, the outage diversity and coding gains of the RTD protocol at high-SNR

regime are respectively obtained as

dRTD = MNτ, (5.22)

ORTD =
1

Nτυγth

(
Γ (υ) Γ1/MN (MNτ + 1)

Γ(υ − τ)

)1/τ

. (5.23)

5.2.4 INR Protocol

In the INR protocol, the mutual information is accumulated over H-ARQ rounds at the

receiver. Therefore, for this protocol, the instantaneous mutual information at round m is

given by [64]

Im,INR =
m∑
i=1

log (1 + γi). (5.24)
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Similar to (5.18) for the RTD protocol, we have Pout,INR(m) = Pr {Im,INR ≤ R} where

Pout,INR(m) denotes the outage probability of the INR protocol after m rounds. Using

(5.2) and (5.24), we have

Pout,INR(m) = Pr

{
m∑
i=1

Ji ≤ R
}
, (5.25)

where

Ji = log
(

1 +
ρ

N

N∑
v=1

hi,v

)
. (5.26)

The probability distribution of
∑m

i=1 Ji can be calculated from the m-fold convolution

of the pdf of Ji. Unfortunately, the exact pdf of Ji is not available. However, we can use

Lemma 5.1 to derive an accurate approximation of the pdf of Ji, i.e.,

fJi(Ji) ≈
2(φNψN/ρ)(φN+ψN )/2

Γ(φN)Γ(ψN)
exp(Ji) (5.27)

× (exp(Ji)− 1)(φN+ψN )/2−1KφN−ψN

(
2

√
1

ρ
φNψN (exp(Ji)− 1)

)
.

It should be noted that for a system with single receive aperture (N = 1), fJi(Ji) can

be exactly derived from (2.12) as

fJi(Ji)|N=1 =
2(αβ/ρ)(α+β)/2

Γ(α)Γ(β)
exp(Ji)(exp(Ji)− 1)(α+β)/2−1Kα−β

(
2

√
αβ

ρ
(exp(Ji)− 1)

)
.

(5.28)

Finding a closed form expression for the distribution of
∑m

i=1 Ji with the help of (5.27) is

still a difficult task. In the following, we derive lower and upper bounds on Pout,INR(m).

Lower Bound - Using Jensen’s inequality for the logarithm function [54], we have

1

m

m∑
i=1

log
(

1 + γi

)
6 log

( 1

m

m∑
i=1

(1 + γi)
)
. (5.29)

Replacing γi from (5.2), we obtain

Pr

{
m log

(
1

m

m∑
i=1

(
1 +

ρ

N

N∑
v=1

hi,v

))
6 R

}
6 Pr

{
m∑
i=1

log
(

1 +
ρ

N

N∑
v=1

hi,v

)
6 R

}
.

(5.30)
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It can be figured out that the right-hand side of (5.30) is Pout,INR(m) in (5.25). Let us

denote the left-hand side of (5.30) by Pout,LB(m), i.e.,

Pout,LB(m) = Pr

{
m log

(
1

m

m∑
i=1

(
1 +

ρ

N

N∑
v=1

hi,v

))
6 R

}
. (5.31)

This can be approximately obtained by using Lemma 5.1 as

Pout,LB(m) ≈ 1

Γ(φmN)Γ(ψmN)
G2,1

1,3

(
φmNψmNγth,m/ρ

∣∣∣∣∣ 1

φmN , ψmN , 0

)
, (5.32)

where φmN and ψmN are obtained by replacing k = mN in (5.6) and (5.7), respectively,

and γth,m is defined as γth,m = exp(R/m)− 1.

Upper bound - We use following lemmas to derive the upper bound.

Lemma 5.3. (Minkowski Inequality) For zi, wi > 0, i = 1, 2, . . . ,m, we have[
m∏
i=1

zi

]1/m

+

[
m∏
i=1

wi

]1/m

6

[
m∏
i=1

(zi + wi)

]1/m

. (5.33)

See [54] for the proof.

Lemma 5.4. Let qis denote i.i.d Gamma-Gamma random variables with mean µ and

shaping parameters α and β. The cumulative distribution function (cdf) of the random

variable w =
∏m

i=1 qi is given by

Fw(w) =
1

Γm(α)Γm(β)
G2m,1

1,2m+1

(αβ/µ)mw

∣∣∣∣∣∣∣
1

α, . . . , α︸ ︷︷ ︸
m times

, β, . . . , β︸ ︷︷ ︸
m times

, 0

 . (5.34)

The proof is given in Appendix 5B.

Using Lemma 5.3 with zi = γi and wi = 1, we have[( m∏
i=1

γi

)1/m

+ 1

]m
6

m∏
i=1

(1 + γi). (5.35)

Replacing γi from (5.2) in (5.35) yields

Pr

{
m∑
i=1

log
(

1 +
ρ

N

N∑
ν=1

hi,ν

)
6 R

}
6 Pr

{
m log

(
1 +

ρ

N

( m∏
i=1

N∑
ν=1

hi,ν

)1/m
)

6 R
}
.

(5.36)
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It is clear from (5.25) that the left-hand side of (5.36) is Pout,INR(m). We denote the

right-hand side of (5.36) by Pout,UB(m), i.e.,

Pout,UB(m) = Pr

{
m log

(
1 +

ρ

N

( m∏
i=1

N∑
ν=1

hi,ν

)1/m
)

6 R
}
. (5.37)

An approximation of Pout,UB(m) is calculated by using Lemma 5.1 and Lemma 5.4 as

Pout,UB(m) ≈ 1

Γm(φN)Γm(ψN)
G2m,1

1,2m+1

(φNψNγth,m/ρ)m

∣∣∣∣∣∣∣
1

φN , . . . , φN︸ ︷︷ ︸
m times

, ψN , . . . , ψN︸ ︷︷ ︸
m times

, 0

 ,

(5.38)

where φN and ψN are obtained by replacing k = N in (5.6) and (5.7), respectively.

For a system with single receive-aperture, an exact expression for Pout,UB(m) can be

obtained by using Lemma 5.4 as

Pout,UB(m)|N=1 =
1

Γm(α)Γm(β)
G2m,1

1,2m+1

(αβγth,m/ρ)m

∣∣∣∣∣∣∣
1

α, . . . , α︸ ︷︷ ︸
m times

, β, . . . , β︸ ︷︷ ︸
m times

, 0

 . (5.39)

At high-SNR regime, the outage lower bound given in (5.31) can be approximated as

Pout,LB(M) ∼ ΓMN(υ − τ)(MNτυγth,M)MNτ

ΓMN (υ) Γ (MNτ + 1)
ρ−MNτ , (5.40)

by using Lemma 5.2. Hence, the outage diversity and coding gains of Pout,LB(M) are

respectively given by

dLB = MNτ, (5.41)

OLB =
1

MNτυγth,M

(
Γ (υ) Γ1/MN (MNτ + 1)

Γ(υ − τ)

)1/τ

. (5.42)

Evaluating the asymptotic approximation and, consequently, the diversity and coding

gains based on Pout,UB(M) is not an easy task. However, it can be proven that [64]

Pout,INR(M) 6 Pout,RTD(M) 6 Pout,ALO(M), (5.43)

i.e., the outage probability of the INR protocol is upper bounded by that of the RTD and

ALO protocols. Therefore, from the definition of the outage diversity gain given in (3.10),
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the diversity gain of the INR protocol is lower bounded by that of the ALO and RTD

protocols which is given by MNτ (according to (5.15) and (5.22)). This result, together

with (5.41) and the squeeze theorem [70], yields the diversity gain of the INR protocol as

dINR = MNτ. (5.44)

5.2.5 Remarks on Diversity and Coding Gains

Our asymptotic analysis above demonstrates that all considered protocols provide the

same diversity order, which is the product of the maximum number of ARQ rounds (M),

the number of receive apertures (N), and the minimum of the Gamma-Gamma channel

parameters, i.e., τ = min {α, β}. On the other hand, the coding gains of three protocols

are different. As can be observed from (5.16), the coding gain of the ALO protocol is a

constant independent of M and is simply equal to that of a system without any H-ARQ

protocol. This result is expected since the ALO protocol does not have memory. However,

since the transmission of the same information packet is repeated over M independent

channel realizations, this protocol provides as much diversity order as the other protocols.

Different from ALO, the coding gains of the RTD and INR protocols depend on M . As

shown in Appendix 5C, the coding gains of the RTD and INR protocols increase linearly

with respect to M for the large values of M , i.e.,

O{RTD,INR}
.
= M. (5.45)

However, they show different behavior with respect to the transmission rate, R. From

(5.23) and (5.42), we have

OLB

ORTD

=
1

M

(
e

(M−1)R
M + · · ·+ 1

)
. (5.46)

This demonstrates that, for a given M , the ratio between the coding gain of the lower

bound and that of RTD increases exponentially with respect to R. Later, we will show

numerically in Section 5.4 that OINR/ORTD (where OINR is the exact outage coding gain

of the INR protocol) has similar behavior. In other words, by increasing the transmission

rate, asymptotic outage performance of the RTD protocol degrades exponentially compared

to that of the INR protocol. This degraded performance behavior of the RTD protocol is
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due to its sub-optimal coding structure. The code structure in the RTD protocol is in fact

equivalent to a concatenated code where the outer code has a length of L symbols and the

inner code is a repetition code of length M . Therefore, the RTD protocol can be basically

interpreted as a repetition code which is spectrally inefficient at high-SNR regime.

5.3 Throughput Analysis

Throughput is the average rate of the data successfully decoded at the receiver side. The

overall throughput of an H-ARQ protocol expressed in nps/Hz is given by [64]

T =
R [1− p(M)]

1 +
M−1∑
m=1

p(m)

, (5.47)

where R is the transmission rate of the first round and p(m) is the probability that the

message is not correctly decoded at the receiver after m H-ARQ rounds. Assuming random

coding and typical set decoding under the assumption of large packet lengths (L→∞), the

probability that the message is not correctly decoded at the receiver after m H-ARQ rounds

is equivalent to the outage probability after m H-ARQ rounds [64], i.e., p(m) = Pout(m)

where Pout(m) is given by (5.3). In the sequel, we use this equivalency and evaluate the

throughput of each protocol.

ALO Protocol- Substituting (5.12) in (5.47), the throughput of the ALO protocol is

obtained as

TALO ≈ R
[

1− 1

Γ(φN)Γ(ψN)
G2,1

1,3

(
φNψNγth/ρ

∣∣∣ 1

φN , ψN , 0

)]
. (5.48)

For a single receive aperture system, TALO can be exactly obtained by using (5.13) in (5.47)

which yields

TALO|N=1 = R
[

1− 1

Γ(α)Γ(β)
G2,1

1,3

(
αβγth/ρ

∣∣∣ 1

α, β, 0

)]
. (5.49)

It is clear from both (5.48) and (5.49) that the throughput of the ALO protocol is inde-

pendent of M (i.e., the maximum number of H-ARQ rounds). This is expected due to the

memoryless nature of this protocol.
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RTD Protocol- Inserting (5.20) in (5.47), we obtain a closed-form approximation for

the throughput of the RTD protocol as

TRTD ≈ R
1− 1

Γ(φMN )Γ(ψMN )
G2,1

1,3

(
φMNψMN

γth
Mρ

∣∣∣∣∣ 1

φMN , ψMN , 0

)

1 +
M−1∑
m=1

1
Γ(φmN )Γ(ψmN )

G2,1
1,3

(
φmNψmN

γth
mρ

∣∣∣∣∣ 1

φmN , ψmN , 0

) . (5.50)

This indicates that the throughput of the RTD protocol, unlike that of ALO, is a function

of M . In fact, TRTD increases with respect to M .

INR Protocol- As earlier discussed in Section 5.2.4, obtaining a closed form analytical

expression for Pout,INR(m) is a difficult task. However, we can bound the throughput of the

INR protocol using the derived bounds on Pout,INR(m) in Section 5.2.4. Specifically, using

the lower bound (given by (5.32)) in (5.47), we obtain an upper bound on the throughput

as

TUB ≈ R
1− Pout,LB(M)

1 +
M−1∑
m=1

Pout,LB(m)

. (5.51)

On the other hand, using (5.38) in (5.47) yields a lower bound for TINR as

TLB ≈ R
1− Pout,UB(M)

1 +
M−1∑
m=1

Pout,UB(m)

. (5.52)

In addition, comparing the expressions of Im,ALO, Im,RTD, and Im,INR , given respectively

in (5.10), (5.17), and (5.24), one can show that [64]

TALO 6 TRTD 6 TINR. (5.53)

The above inequalities indicate that TINR is also lower bounded by TRTD. Later, through

numerical results, we will see in Section 5.4 that TLB is much tighter than TRTD as a lower

bound for TINR. We should also note that similar to TRTD, TINR increases with respect

to the maximum number of ARQ rounds, M , i.e., both RTD and INR protocols have the

property that “the longer we wait, the more we gain” [64].
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5.4 Numerical Results and Discussions

In this section, we illustrate the analytical results derived in the previous sections and

evaluate the effects of various system parameters on the performance. In all figures, unless

otherwise stated, we assume plane-wave propagation and moderate turbulence regime with

Rytov variance σ2
R = 1 (α = 4.3939 and β = 2.5636).

Figure 5.1 demonstrates the outage probability5 versus average SNR (ρ) for the H-ARQ

protocols under consideration assuming a single receive aperture, the transmission rate at

the first round equal to R = 3 nps/Hz, and the maximum number of ARQ rounds equal

to M = 3. In this figure, plots are obtained as follows.

• For the ALO protocol, the outage probability for the single receive-aperture case is

exactly given by (5.13).

• For the RTD protocol, the exact expression for Pout,RTD(M) is obtained by inserting

N = 1 in (5.19) and performing the M -fold convolution of the Gamma-Gamma pdf

given in (2.12). The approximate expression for Pout,RTD(M), which is obtained by

using Lemma 5.1, is given in (5.20) with N = 1.

• For the INR protocol, the outage probability (according to (5.25)) is obtained by

the M -fold convolution of the exact pdf of Ji given in (5.28). The lower and upper

bounds are calculated based on (5.32) (with N = 1) and (5.39), respectively.

From Figure 5.1, it is observed that the INR protocol has the best outage performance

among all protocols. That is followed by RTD. The asymptotic outage approximations

obtained from Lemma 5.2 are also sketched in this figure. As observed, the asymptotic

approximations are very accurate at high-SNR regime. In addition, the slope of all these

curves is 7.69 confirming that all protocols achieve the same diversity gain of M min {α, β}.
However, since they provide different coding gains, the corresponding asymptotic curves

have horizontal shift respect to each other. Our results also demonstrate that the exact

INR performance curve is very close to its lower bound indicating that the lower bound in

(5.32) is considerably tight.

5To highlight the accuracy of the derived asymptotic approximations at high-SNR regime, the numerical

results are provided for very small values of the outage probability as well as its practical values.
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Figure 5.1: Outage probability versus average SNR (ρ) assuming N = 1 , M = 3, and

R = 3.

Figure 5.2 depicts the outage probability versus SNR with similar assumptions to Figure

5.1 except that the receiver is now equipped with two apertures (N = 2). In this figure,

plots are obtained as follows.

• For the ALO protocol, the exact outage probability (according to (5.11)) is obtained

by the N -fold convolution of the Gamma-Gamma pdf. The approximate expression

is given in (5.12).

• For the RTD protocol, the exact Pout,RTD(M) in (5.19) is obtained through the

MN -fold convolution of the Gamma-Gamma pdf. The approximate expression of

Pout,RTD(M) is given in (5.20).

• For the INR protocol, the exact Pout,INR(M) in (5.25) is obtained by the Monte

Carlo simulation. The approximate value of Pout,INR(M) is derived through the M -

fold convolution of the approximated pdf of Ji given in (5.27). Lower and upper

bounds are calculated based on (5.32) and (5.38), respectively.

62



5.4. NUMERICAL RESULTS AND DISCUSSIONS

0 5 10 15 20 25 30 35 40
10

−20

10
−15

10
−10

10
−5

10
0

SNR [dB]

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

ALO, Approx.
ALO, Exact
RTD, Approx.
RTD, Exact
INR, Upper Bound
INR, Exact
INR, Approx.
INR, Lower Bound
Asymptotic

Figure 5.2: Outage probability versus average SNR assuming N = 2, M = 3, and R = 3.

As observed, the “exact” curves precisely match with the corresponding “approximation”

ones, demonstrating the accuracy of the approximation in Lemma 5.1. In addition, all

protocols achieve the same diversity gain of 15.38, as expected from the derived expression

MN min {α, β}.

Figure 5.3 demonstrates the outage performance versus SNR for different values of

M in a single receive-aperture system (N = 1), assuming R = 3 nps/Hz. As expected,

the outage probability curves6 of different protocols coincide for M = 1. In addition,

comparing the curves corresponding to M = 1 with those for M > 1 clearly shows that

H-ARQ improves the outage performance of FSO systems at the cost of delay and rate loss.

Precisely, at a target outage probability of 10−6, we observe impressive performance gains

of 16.4 dB, 19.7 dB, and 25 dB, respectively, by using the ALO, RTD, and INR protocols

with M = 3 in comparison to a system without H-ARQ (M = 1). The slope of curves also

indicates that the diversity order at high-SNR regime is proportional to M .

6In the following, if a curve is not labeled by “exact” or “approximation”, it indicates an “exact” one.
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Figure 5.3: Outage performance versus SNR for various values of M (N = 1 and R = 3).

Figure 5.4 depicts the outage probability versus SNR for different values ofR, assuming

M = 3 and N = 1. As expected, the performance of the RTD and ALO protocols

deteriorates considerably by increasing R. On the other hand, the benefit of INR respect

to other protocols becomes more evident at larger values ofR. To be more precise, consider

the curves associated with R = 0.5 nps/Hz. For this rate, to achieve a target outage

probability of 10−6, INR brings, respectively, 4.1 dB and 0.8 dB SNR gains compared to

ALO and RTD. As R increases to 6 nps/Hz, these gains increase drastically to 15.7 dB and

12.4 dB, respectively. This indicates that INR significantly outperforms other protocols

particularly for high rates at the cost of higher complexity.

Figure 5.5 demonstrates the outage probability of the ALO protocol versus SNR for

two different turbulence conditions: weak turbulence regime with σ2
R = 0.1 (α = 21.5890,

β = 19.8208) and strong turbulence regime with σ2
R = 10 (α = 5.6893, β = 1.1016). We

assume R = 2 and N = 1 in this figure. As observed, for an FSO system operating at weak

turbulence regime, the ALO protocol with M = 3 brings 4 dB performance improvement

compared to a system without ARQ (M = 1) to achieve a target outage probability of
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Figure 5.4: Outage probability versus SNR for various values of R (N = 1 and M = 3).
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Figure 5.5: Outage probability of ALO protocol versus SNR for two different turbulence

conditions (N = 1, R = 2).
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Figure 5.6: Ratio of RTD and INR coding gains versus R.

10−6. Nevertheless, this performance improvement increases considerably to 36.3 dB at

strong turbulence regime. Similar results can be readily observed for the RTD and INR

protocols. Therefore, it is figured out that H-ARQ improves the performance of a coherent

FSO system in the strong turbulence regime more drastically than in the weak turbulence

regime. This is due to the fact that H-ARQ increases the reliability of a communication

system and this beneficial property is more demanded in the strong turbulence regime.

Figure 5.6 depicts the ratio of the coding gains in the INR and RTD protocols (i.e.,

OINR/ORTD)7 for a single-aperture system versus R for M = 2, 3, 5. The ratio OLB/ORTD,

given by (5.46), is also demonstrated in this figure. We observe that OINR/ORTD follows

similar trend as OLB/ORTD, i.e., the outage coding gain of INR grows exponentially with

respect to R compared to that of RTD. This again confirms that INR brings much more

outage performance improvement than RTD at high transmission rate.

7To obtain OINR, we first obtain Pout,INR at a large value of SNR, e.g., ρ = 100 dB, by M -fold

convolution of the exact pdf of Ji in (5.28) and then compute OINR = (Pout,INR)−1/dINR/ρ, according to

(5.4).
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Figure 5.7: Throughput versus R for N = 1, M = 3, and ρ = 10 dB.

Figure 5.7 illustrates the throughput of three protocols versus R assuming M = 3 and

ρ = 10 dB. The upper and lower bounds of TINR, respectively given by (5.51) and (5.52),

are also included in this figure. It is observed that TLB is much tighter than TRTD as a

lower bound on TINR. In addition, we observe that the curves of different schemes overlap

for small values of R since one round of transmission is enough for decoding when R is

small. However, as R increases, due to the sub-optimality of ALO and RTD protocols,

their curves are considerably below the INR curve.

Appendix 5A. Proof of Lemma 5.2

In our proof, we use the small argument approximation approach of [71]. In this approxi-

mation, the term corresponding to the smallest exponent of z in the power series expansion

of fz(z) becomes our focus. To derive this term, we first evaluate the Laplace transform of
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fz(z) as

Fz(s) =

∫ ∞
0

exp(−sz)fz(z)dz (5.54)

= (Fh(s))
k ,

where Fh(s) is the Laplace transform of the Gamma-Gamma pdf with unit mean and

shaping parameters α and β. Fh(s) can be calculated from

Fh(s) =

∫ ∞
0

exp(−sh)fh(h)dh, (5.55)

where fh(h) is given in (2.12). Rewriting the integrand in terms of the Meijer G-function

using [68, p. 633, Eq. 8.4.3.1] and [68, p. 665, Eq. 8.4.23.1], i.e.,

exp(−sh) = G1,0
0,1

(
sh
∣∣∣ −

0

)
, (5.56)

Kα−β

(
2
√
αβh/µ

)
=

1

2
G2,0

0,2

(
αβh/µ

∣∣∣∣∣ −
(α− β)/2, (β − α)/2

)
, (5.57)

and then further using [68, p. 346, Eq. 2.24.1.1], we obtain

Fh(s) =
1

Γ(α)Γ(β)
G2,1

1,2

(
αβ

µs

∣∣∣∣∣ 1

α, β

)
. (5.58)

The convergent series expansion for the Meijer G-function is given by [72, p. 1033, Eq.

9.303]

Gm,n
p,q

(
z

∣∣∣∣∣ (rp)

(tq)

)
=

m∑
i=1

m∏
v=1

Γ(tv − ti)′
n∏
v=1

Γ(1 + ti − rv)
q∏

v=m+1

Γ(1 + ti − tv)
p∏

v=n+1

Γ(rv − ti)
zti (5.59)

× pFq−1

(
(−1)p−m−nz

∣∣∣∣∣ (1 + ti − rp)
(1 + ti − tq)′

)
,

for p < q, z 6= 0, and no two of the ti terms (i = 1, . . . ,m) differ by an integer. The symbol

(rp) denotes the sequence r1, r2, . . . , rp, the sign (·)′ indicates that the term corresponding
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to v = i is absent, and pFq−1(·) is the generalized hyper-geometric function [69]. We assume

that α− β /∈ Z, where Z denotes the set of integers8.

Utilizing (5.59) in (5.58), we have

Fh(s) =
Γ(β − α)

Γ(β)

(
αβ

µs

)α
1F1

αβ
µs

∣∣∣∣∣∣ α

1 + α− β

+
Γ(α− β)

Γ(α)

(
αβ

µs

)β
1F1

αβ
µs

∣∣∣∣∣∣ β

1 + β − α

 .

(5.60)

Substituting 1F1(·) by its series form [69], we obtain the following convergent series for

Fh(s)

Fh(s) =
∞∑
i=0

ai(α, β)

sα+i
+
∞∑
i=0

ai(β, α)

sβ+i
, (5.61)

where

ai(α, β) =
Γ(β − α)Γ(1 + α− β)Γ(α + i)

i!Γ(α)Γ(β)Γ(1 + α− β + i)

(
αβ

µ

)α+i

. (5.62)

Substituting (5.61) in (5.54), Fz(s) is expressed as

Fz(s) =
k∑

n=0

(
k

n

) ∞∑
i=0

bi(k − n, n)

snα+(k−n)β+i
, (5.63)

where bi(p, q) = a
(p)
i (α, β)∗a(q)

i (β, α) [72, p. 18, Eq. 0.316]. Here, ∗ denotes the convolution

operator and a
(p)
i (α, β) means that ai(α, β) is convolved p times with itself.

The pdf of z is derived by the inverse Laplace transform of Fz(s) as

fz(z) =
k∑

n=0

(
k

n

) ∞∑
i=0

bi(k − n, n)

Γ (nα + (k − n)β + i)
xnα+(k−n)β+i−1. (5.64)

Now, confining our attention only to the term corresponding to the smallest exponent of

z in the series (5.64), the small argument approximation of fz(z) is obtained as

fz(z) ∼
(
a0 (τ, υ)

Γ(τ)Γ(υ)

)k
zkτ−1

Γ (kτ)
, (5.65)

where τ = min {α, β} and υ = max {α, β}. Finally, substituting a0 (τ, υ) from (5.62) in

(5.65), we obtain (5.9).

8This assumption is not a limiting restriction because it holds for typical values of α and β [2]. Fur-

thermore, if necessary, α and β can be selected such that α − β + ε ∈ Z with some small constant ε to

approximate the case α− β ∈ Z [16].
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Appendix 5B. Proof of Lemma 5.4

We want to derive the cdf of the random variable w =
∏m

i=1 qi where qis are i.i.d. Gamma-

Gamma random variables with mean µ and shaping parameters α and β. We use Mellin

transform technique [69] to derive the pdf of w, denoted by fw(w). The Mellin transform of

fw(w) is defined as the (s−1)th moment of w, i.e., E[ws−1]. Hence, fw(w) can be obtained

by the inverse Mellin transform of E[ws−1] as

fw(w) =
1

2πj

∫
C

E[ws−1]w−sds, (5.66)

where C is an appropriate contour [69].

Since qis are i.i.d, E[ws−1] can be obtained as

E[ws−1] =
m∏
i=1

E
[
qs−1
i

]
, (5.67)

where E[qs−1
i ] is the (s − 1)th moment of qi, and is obtained by using (2.12) and [72, p.

676, Eq. 6.561.16] as

E
[
qs−1
i

]
=

(
αβ

µ

)1−s
Γ (α + s− 1) Γ (β + s− 1)

Γ(α)Γ(β)
. (5.68)

Inserting (5.67) and (5.68) in (5.66), we obtain fw(w) as

fw(w) =
w−1

Γm(α)Γm(β)
× 1

2πj

∫
C

Γm (α + s− 1) Γm (β + s− 1)

((
αβ

µ

)m
w

)−(s−1)

ds.

(5.69)

Using the definition of the Meijer G-function [69], i.e.,

Gm,n
p,q

z
∣∣∣∣∣∣ (rp)(tq)

 =
1

2πj

∫
C

m∏
i=1

Γ(ti + s)
n∏
i=1

Γ(1− ri − s)
p∏

i=n+1

Γ(ri + s)
q∏

i=m+1

Γ(1− ti − s)
z−sds, (5.70)

fw(w) in (5.69) can be represented as

fw(w) =
w−1

Γm(α)Γm(β)
G2m,0

0,2m

(αβ
µ

)m
w

∣∣∣∣∣∣∣
−

α, . . . , α︸ ︷︷ ︸
m times

, β, . . . , β︸ ︷︷ ︸
m times

 . (5.71)
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Therefore, the cdf of w, denoted by Fw(w), is obtained by using (5.71) and [68, p. 46, Eq.

1.16.2.1] as

Fw(w) =

∫ w

0

fw(t)dt (5.72)

=
1

Γm(α)Γm(β)
G2m,1

1,2m+1

(αβ
µ

)m
w

∣∣∣∣∣∣∣
1

α, . . . , α︸ ︷︷ ︸
m times

, β, . . . , β︸ ︷︷ ︸
m times

, 0

 .

Appendix 5C. Proof of (5.45)

First we start with the RTD protocol. Using (5.23), we have

lim
M→∞

lnORTD

lnM
= lim

M→∞

ln Γ(υ)

τ lnM
+ lim

M→∞

ln Γ (MNτ + 1)

MNτ lnM
(5.73)

− lim
M→∞

ln Γ (υ − τ)

τ lnM
− lim

M→∞

Nτυγth
lnM

= lim
M→∞

ln Γ (MNτ + 1)

MNτ lnM
.

From Stirling’s approximation, we have ln Γ(x) ≈ (x− 1/2) lnx − x for x → ∞ [69].

Employing this approximation in (5.73), we have

lim
M→∞

lnORTD

lnM
= lim

M→∞

MNτ ln (MNτ)

MNτ lnM
(5.74)

= 1,

which results in ORTD
.
= M .

Likewise, it can be shown from (5.42) that OLB
.
= M . In addition, as observed in

(5.43), the outage probability of the RTD protocol is an upper bound for that of the INR

protocol. Therefore, we have a lower bound (ORTD) and an upper bound (OLB) for OINR

both of which grow linearly respect to M for its large values. Hence, noting that the limits

of functions preserve inequalities [70], we have CINR
.
= M and the proof is completed.
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Chapter 6

Parallel Relaying in IM/DD FSO

Communications

In this chapter, we return our focus to IM/DD FSO communications and investigate the

performance of parallel relaying over the Gamma-Gamma fading channels. We consider an

IM/DD FSO system with a single relay and a line-of-sight link between the source and the

destination. We analyze two classes of cooperation; DF and AF. Focusing on high-SNR

regime, we develop performance characterizations of each cooperation mode in terms of

the outage probability, outage diversity and coding gains, and DMT.

6.1 System Model

Consider the parallel FSO relaying scheme in Figure 6.1. Information is to be transmitted

from the source terminal S to the destination terminal D with the assistance of the relay

terminal R. We assume full-duplex (bi-directional) transceivers which are the common

choice in commercial FSO links. The relay node utilizes either DF strategy or AF strategy

to relay the received signal to the destination. The destination makes its final decision by

maximum ratio combining [57] the received signals from the direct (source-destination) link

and the indirect (relay-destination) link. Let PT denote the average transmitted optical

power in a direct transmission system that we will use as the benchmark scheme. For a fair

comparison, we assume that each of the three transmitting terminals (TRXS,1,TRXS,2, and
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Figure 6.1: Parallel FSO relaying system.

TRXR,2) in each cooperation cycle uses an average transmitted optical power of PT/3. Let

yD,1 and yD,2 respectively denote the detected electrical signals at the TRXD,1 and TRXD,2

terminals of the destination, and let yR be the detected electrical signal at TRXR,1 terminal

of the relay. These signals are respectively given by

yD,1 = <hSDxS + nD,1, (6.1)

yD,2 = <hRDxR + nD,2, (6.2)

yR = <hSRxS + nR, (6.3)

where xS is the intensity modulated source signal with E[xS] = PT/3, and xR is the

relay transmitted signal. nD,1, nD,2, and nR are the noise terms in TRXD,1, TRXD,2,

and TRXR,1 terminals, respectively. Each noise term is the superposition of the thermal

noise and the background light induced shot noise, and is modeled as zero-mean signal-

independent Gaussian noise [11] with variance σ2
n. The noise terms are assumed to be

mutually independent.

In (6.1)-(6.3), hSR, hRD, and hSD respectively denote the atmospheric fading power

coefficients of the source-relay (S-R), relay-destination (R-D), and source-destination (S-D)

links. We assume that hSR, hRD, and hSD respectively follow ΓΓ(α1, β1,L1), ΓΓ(α2, β2,L2),

and ΓΓ(α3, β3, 1) distributions where L1 and L2 are, respectively, the path losses of S-R

and R-D links normalized by the path loss of S-D link.

The value of xR in (6.2) depends on the relaying strategy. In the DF mode, the relay first

decodes the received signal after direct detection and then repeats the source transmission

with optical power PT/3. We assume that the relay is allowed to forward only if it has
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decoded correctly. Otherwise, it remains silent. Hence, we have xR = xS when the relay is

active.

In the AF mode, the relay first normalizes the detected electrical signal yR by factor√
h2
SR<2P 2

T/9 + σ2
n to satisfy its average power constraint, then modulates the normalized

signal by optical power PT/3, and retransmits it to the destination. Therefore, xR in (6.2)

is given by xR = ΦRyR where ΦR is given by

ΦR =
PT/3√

h2
SR<2P 2

T/9 + σ2
n

. (6.4)

6.2 Outage Analysis

As given by (3.15), the outage probability is defined as the probability that the instan-

taneous capacity of the underlying channel is below the transmission rate R. The exact

capacity of an FSO IM/DD channel corrupted by AWGN is still an open problem. How-

ever, upper and lower bounds on this channel’s capacity under different power constrains

have been recently derived [73, 74]. Using the results of [73], the capacity of an IM/DD

FSO channel at high-SNR regime satisfies

C(γ) ∼ 1

2
log(γ), (6.5)

where γ denotes the instantaneous electrical SNR.

The following lemma and its corollary are used in the outage analysis of this section.

Lemma 6.1. Let V be a random variable with ΓΓ2(α, β, µ) distribution and the pdf of

fV (V ). The Laplace transform of fV (V ), denoted by FV (s), satisfies

FV (s) =
Γ(υ − τ)(υτ/µ)τ

2Γ(υ)Γ(τ)

Γ(τ/2)

sτ/2
+ o

(
(1/s)τ/2

)
, (6.6)

where τ = min {α, β} and υ = max {α, β}.

The proof is given in Appendix 6A.

Corollary 6.1. The pdf of the random variable V with ΓΓ2(α, β, µ) distribution can be

approximated by a single-term polynomial for small values of V (V → 0+), i.e.,

fV (V ) =
Γ(υ − τ)

2Γ(υ)Γ(τ)
(υτ/µ)τV τ/2−1 + o

(
V τ/2−1

)
. (6.7)
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6.2.1 Direct Transmission

As a benchmark scheme, we first investigate the outage performance of the direct trans-

mission (DT), i.e., no relay is used. In this case, the instantaneous electrical SNR at the

destination, denoted by γDTD , can be obtained by using (6.1) as

γDTD = ρh2
SD, (6.8)

where ρ = (<PT )2/σ2
n is the average electrical SNR in the absence of atmospheric channel

effect. Substituting γDTD in (3.16) and using [68, p. 665, Eq. 8.4.23.1], [68, p. 665, Eq.

8.4.23.1], and [68, p. 46, Eq. 1.16.2.1], the outage probability of direct transmission is

obtained as

PDT
out =

1

Γ(α3)Γ(β3)
G2,1

1,3

(
α3β3

√
γth/ρ

∣∣∣∣∣ 1

α3, β3, 0

)
(6.9)

with γth = C−1(R), where C(·) is the instantaneous capacity of IM/DD FSO channels.

By using Corollary 6.1, the outage probability of the direct transmission at high-SNR

regime can be approximated as

PDT
out ∼ (ODT · ρ)−dDT , (6.10)

wherein the diversity gain (dDT ) and the coding gain (ODT ) are respectively given by

dDT = τ3/2, (6.11)

ODT =
1

γth(υ3τ3)2

(
Γ (υ3 − τ3)

Γ (υ3) Γ (τ3 + 1)

)−1/dDT

. (6.12)

with τ3 = min {α3, β3} and υ3 = max {α3, β3}.

On-off keying (OOK) and pulse position modulation (PPM) are two binary-level mod-

ulation schemes which are most popular in IM/DD FSO systems. Although these schemes

typically have simple and inexpensive implementations, they are spectrally inefficient. To

overcome this deficiency, the direct detection ofM-level intensity modulation, also referred

as M-level pulse amplitude modulation (M-PAM), can be employed in IM/DD FSO sys-

tems which provides higher bandwidth than binary level schemes. For more details on

different modulation schemes in FSO communications please refer to [75].
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The DMT concept presented in Section 3.2 of Chapter 3 is obtained based on the outage

probability wherein the only performance limiting factor is the channel fading. This DMT

is referred as the optimal DMT that can be achieved in the underlying system and is

independent of the coding/modulation scheme employed at the transmitter. In reality,

however, the system performance is limited by both the fading and the noise. In other

words, due to use of imperfect channel codes, some symbols might be detected erroneous

at the presence of the noise.

Hence, to consider the malicious effect of the noise, the average error probability is

used which is obviously lower bounded by the outage probability. Therefore, the DMT of a

practical scheme is upper bounded by the optimal DMT obtained by the outage expression.

A coding/modulation scheme is called DMT achieving if it achieves the optimal DMT, i.e.,

at a given multiplexing gain, the decaying rate of the average error probability versus SNR

at high-SNR regime mimics that of the outage probability. In the following, we first derive

the optimal DMT of the direct transmission at high-SNR regime and then, demonstrate

that M-PAM achieves the optimal DMT of a point-to-point IM/DD FSO system.

Let the data rate of the system increase with respect to SNR as R ∼ r log ρ for large

values of ρ, where r denotes the multiplexing gain. Utilizing (6.5) in the outage expression

of (3.15) and then using (6.8), we have

PDT
out

.
= Pr

{
1

2
log(γDTD ) < r log ρ

}
(6.13)

= Pr
{
h2
SD < ρ−(1−2r)

}
.
= ρ

−τ3
2

(1−2r), for 0 6 r < 1/2

where we have used Corollary 6.1 in the last exponential equality.

Therefore, from the definition of (asymptotic) DMT given in (3.10), it can be realized

that the optimal DMT of the direct transmission is given by

dDT (r) =
τ3

2
(1− 2r), 0 6 r < 1/2 (6.14)

As can be observed, the multiplexing gain in a point-to-point IM/DD FSO channel goes

only up to 1/2 instead of one. This is in contrast to the fact that the maximum multiplexing

gain achieved in a point-to-point RF channel [37] (and also in a point-to-point coherent
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FSO channel) is one. Such a different result is due to the square-law operation of the direct

detection on the received optical signal in IM/DD FSO channels.

Theorem 6.1. M-PAM achieves the optimal DMT of the direct transmission, i.e.,

PDT
E

.
= ρ−dDT (r), (6.15)

where PDT
E is the average error probability at the destination when the source usesM-PAM.

The proof is given in Appendix 6B.

6.2.2 Decode-and-Forward Mode

By using (6.1)-(6.3), the instantaneous electrical SNR at the destination for the DF mode

can be obtained as

γDFD =

h2
SDρ/9, γDFR < γth(
h2
RD + h2

SD

)
ρ/9, γDFR > γth

(6.16)

where γDFR = h2
SRρ/9 is the instantaneous electrical SNR at the relay. The first condition in

(6.16), i.e., γDFR < γth, indicates that the relay was not able to decode the source signal and

therefore remained silent. On the other hand, γDFR ≥ γth means that the relay successfully

decoded the source signal and retransmitted it to the destination. Note that in (6.16),

we have assumed that the relay cannot decode successfully if and only if an outage event

occurs in S-R channel.

Using (6.16) and (3.16), the outage probability of the DF mode can be expressed as

PDF
out = Pr

{
h2
SDρ/9 < γth

}
Pr
{
h2
SRρ/9 < γth

}
+ Pr

{(
h2
SD + h2

RD

)
ρ/9 < γth

}
Pr
{
h2
SRρ/9 > γth

}
.

(6.17)

Deriving a closed form expression for PDF
out is a difficult task, if not impossible. However,

an asymptotic approximation can be obtained as follows.

Theorem 6.2. The outage probability of the DF mode at high-SNR regime can be approx-

imated as

PDF
out ∼ (ODF · ρ)−dDF , (6.18)
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wherein the diversity gain (dDF ) and the coding gain (ODF ) are respectively given by

dDF = (τn + τ3) /2, (6.19)

ODF =


ODF
n τ1 6= τ2(
2∑
i=1

(
ODF
i

)−dDF)−1/dDF

τ1 = τ2

(6.20)

with τi = min {αi, βi} for i = 1, 2, 3, and n = arg min
i∈{1,2}

{τi}.

ODF
1 and ODF

2 in (6.20) are respectively given by

ODF
1 =

1

9γth

(
Γ (υ1 − τ1) (υ1τ1/L1)τ1

Γ (υ1) Γ (τ1 + 1)
× Γ (υ3 − τ3) (υ3τ3)τ3

Γ (υ3) Γ (τ3 + 1)

)−2/(τ1+τ3)

, (6.21)

ODF
2 =

1

9γth

(
Γ (υ2 − τ2) (υ2τ2/L2)τ2

Γ (υ2) Γ (τ2)
× Γ (υ3 − τ3) (υ3τ3)τ3

Γ (υ3) Γ (τ3)
× B (τ2/2, τ3/2)

2 (τ2 + τ3)

)−2/(τ2+τ3)

,

(6.22)

where υi = max {αi, βi} for i = 1, 2, 3, and B (x, y) is the Beta function [72].

The proof is given in Appendix 6C.

When the transmission rate R increases with respect to SNR as R ∼ r log ρ, utilizing

(6.5) and (6.16) in (3.15), we have

PDF
out

.
= Pr

{
h2
SD < ρ−(1−2r)

}
Pr
{
h2
SR < ρ−(1−2r)

}
(6.23)

+ Pr
{
h2
SD + h2

RD < ρ−(1−2r)
}

Pr
{
h2
SR > ρ−(1−2r)

}
.

Consequently, for 0 6 r < 1/2, PDF
out at high-SNR regime satisfies

PDF
out

.
= ρ−

1
2

(σn+σ3)(1−2r), (6.24)

where we have used the results of Appendix 6C.

Therefore, from (3.10), the optimal DMT of the DF mode is given by

dDF (r) =
1

2
(τn + τ3) (1− 2r) , 0 6 r < 1/2. (6.25)

It is observed that since the underlying cooperative system is full-duplex, the maximum

multiplexing gain of 1/2 for IM/DD FSO channels (see (6.14)) is achieved.
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Theorem 6.3. If both source and relay utilize M-PAM for the data transmission, the

optimal DMT of the DF mode is achieved, i.e.,

PDF
E

.
= ρ−dDF (r), (6.26)

where PDF
E is the average error probability at the destination when M-PAM is used.

The proof is given in Appendix 6D.

6.2.3 Amplify-and-Forward Mode

The instantaneous electrical SNR at the destination for the AF mode can be obtained by

using (6.1)-(6.3) as

γAFD =
<2P 2

T

9σ2
n

(
h2
SD +

(<ΦRhSRhRD)2

(<ΦRhRD)2 + 1

)
. (6.27)

Replacing the relay’s amplification factor ΦR from (6.4) and noting that ρ = (<PT )2/σ2
n,

we obtain

γAFD = h2
SDρ/9 +H

(
h2
SRρ/9, h

2
RDρ/9

)
, (6.28)

where H(x, y) , xy/(x+ y + 1).

Therefore, the outage probability of the AF mode can be expressed as

PAF
out = Pr

{
h2
SD +

9

ρ
H
(
h2
SRρ/9, h

2
RDρ/9

)
6 9γth/ρ

}
. (6.29)

Deriving a closed form expression for the outage probability of the AF mode becomes

complicated. In the following, we analyze its performance at high-SNR regime.

Theorem 6.4. The outage probability of the AF mode at high-SNR regime can be approx-

imated as

PAF
out ∼ (OAF · ρ)−dAF , (6.30)

wherein the diversity gain (dAF ) and the coding gain (OAF ) are respectively given by

dAF = (τn + τ3) /2, (6.31)

OAF =


OAF
n τ1 6= τ2(
2∑
i=1

(
OAF
i

)−dAF)−1/dAF

τ1 = τ2

(6.32)
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with n = arg min
i∈{1,2}

{τi}, and OAF
i for i = 1, 2 is given by

OAF
i =

1

9γth

(
Γ (υi − τi) (υiτi/Li)τi

Γ (υi) Γ (τi)
× Γ (υ3 − τ3) (υ3τ3)τ3

Γ (υ3) Γ (τ3)
× B (τi/2, τ3/2)

2 (τi + τ3)

)−2/(τi+τ3)

.

(6.33)

The proof is given in Appendix 6E.

When the data rate of the system increases with respect to SNR as R ∼ r log ρ at

high-SNR regime, using (6.28), (6.5), and (3.15) results in

PAF
out

.
= Pr

{
h2
SD +

9

ρ
H
(
h2
SRρ/9, h

2
RDρ/9

)
< ρ−(1−2r)

}
. (6.34)

Using the results of Appendix 6.E with ω(ε) = ε(1−2r), we have

PAF
out

.
= ρ

−1
2

(σn+σ3)(1−2r), 0 6 r < 1/2. (6.35)

Consequently, from (3.10), the optimal DMT of the AF mode is given by

dAF (r) =
1

2
(τn + τ3) (1− 2r) , 0 6 r < 1/2. (6.36)

Comparing (6.36) with (6.25), one can realize that both cooperation modes provide the

same optimal DMT.

6.2.4 Remarks on Diversity and Coding Gains

Our asymptotic analysis above demonstrates that both cooperation modes provide the same

diversity order, which is the diversity of the direct transmission plus the minimum of the di-

versities of S-R and R-D channels1. In addition, as observed in (6.21) and (6.33), ODF
1 and

OAF
1 are just functions of S-R and S-D links’ parameters, and are independent of the R-D

link’s parameters. Similarly, as observed in (6.22) and (6.33), ODF
2 and OAF

2 are just func-

tions of R-D and S-D links’ parameters, and are independent of the S-R link’s parameters.

It indicates that when S-R channel is worse than R-D channel statistically, which corre-

sponds to σ1 < σ2 (n = 1), we have PDF
out ∼

(
ODF

1 ρ
)−(τ1+τ3)/2

and PAF
out ∼

(
OAF

1 ρ
)−(τ1+τ3)/2

,

1Using corollary 6.1, it can be shown that the diversity orders of S-R and R-D channels are respectively

given by τ1/2 and τ2/2.
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and consequently, the asymptotic outage probabilities of both modes are independent

of R-D link’s characteristics. On the other hand, when R-D channel is worse than S-

R channel statistically, i.e., σ2 < σ1 (n = 2), we have PDF
out ∼

(
ODF

2 ρ
)−(τ2+τ3)/2

and

PAF
out ∼

(
OAF

2 ρ
)−(τ2+τ3)/2

, and therefore, the asymptotic outage performances are indepen-

dent of S-R link’s characteristics. Hence, the outage performance at high-SNR regime in

both modes is dominated by either S-R or R-D link that has the worse statistical charac-

teristic. Note that if S-R and R-D channels have the same statistical characteristics, both

channels affect the high-SNR outage performance.

In addition, it can be observed that ODF
1 (see (6.21)) is different from OAF

1 (see (6.33)).

However, ODF
2 and OAF

2 (see (6.22) and (6.33)) are the same. Therefore, depending on

the underlying channels’ conditions, two modes may provide different coding gains despite

the same diversity gain. More precisely, when R-D channel is statistically worse than S-R

channel and dominates the outage performance at high-SNR regime (which corresponds to

n = 2), both modes provide the same coding gains. On the other hand, when S-R channel

is statistically worse than R-D channel and dominates the asymptotic outage performance

(which corresponds to n = 1), we show in Appendix 6F that the AF mode outperforms

the DF mode at high-SNR regime in the sense that

ODF
1 6 OAF

1 . (6.37)

This result can be interpreted as follows. When the S-R channel is statistically worse than

the R-D channel, it is more probable that the instantaneous S-R channel goes in the fade

such that the relay cannot decode its received signal correctly. Therefore, the relay is not

helpful in the DF mode, but can at least amplify and forward the received signal in the

AF mode.

6.3 Numerical Results and Discussions

In this section, we illustrate the analytical results derived in the previous sections and evalu-

ate the effect of underlying channels’ characteristics on the performance of two cooperation

modes. We assume plane-wave propagation in turbulence conditions with refractive-index

structure constant C2
n = 2.5 × 10−14m−2/3 and attenuation of 0.44 dB/km. The system
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Figure 6.2: Outage probability versus normalized SNR, ZSR = 1.5 km, ZRD = 2 km, and

ZSD = 3 km .

is operating in the wavelength of λ̄ = 1.55 µm. Note that since we assume the same

refractive-index structure constant and wavelength for all S-R, R-D, and S-D channels in

this section, only the links’ lengths dominate the channels’ characteristics (see (2.13) and

(2.14)), i.e., the channel with the longest (shortest) length has the worst (best) statistical

characteristics.

Figure 6.2 depicts the outage probabilities of the DF and AF modes versus normalized

average SNR (ρ/γth). The path lengths of S-R, R-D, and S-D links are respectively assumed

ZSR = 1.5 km, ZRD = 2 km, and ZSD = 3 km. The outage probability of direct transmission

is also presented in this figure as a benchmark. Both exact outage probability and derived

asymptotic approximation are displayed. The exact outage curves of the DF and AF

modes are respectively obtained from (6.17) and (6.29) via the Monte Carlo simulation.

It is observed that the diversity gain of both cooperation modes (i.e., the slope of the

corresponding outage probability curve) is 1.57 confirming the observation of (τ2 + τ3) /2

from (6.19) and (6.31) respectively for the DF mode and the AF mode. This is a significant
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Figure 6.3: Outage probability versus normalized SNR, ZSR = 2 km, ZRD = 1.5 km, and

ZSD = 3 km .

increase over the diversity gain of τ3/2 = 0.67 obtained from the direct transmission.

The diversity advantages obtained by cooperation modes considerably improve the system

performance. For instance, at a target outage probability of 10−4, cooperation modes2 bring

28 dB energy savings compared to the direct transmission. We note that, in this figure,

since the relay is closer to the source than to the destination, R-D channel is worse than

S-R channel statistically (τ2 < τ1) and consequently dominates the outage performance of

both cooperation modes at high-SNR regime. In addition, as illustrated in Section 6.2.4,

since R-D channel dominates the outage performance, both modes achieve the same coding

gain (besides the same diversity gain) and consequently bring the same outage performance

at high-SNR regime.

Figure 6.3 depicts the outage probability versus normalized average SNR for coopera-

tion modes under consideration assuming ZSR = 2 km, ZRD = 1.5 km, and ZSD = 3 km.

With this configuration, the relay is closer to the destination than to the source, and con-

2Both modes have the same asymptotic performance at this point.
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sequently, S-R channel is statistically worse than R-D channel. It is observed that both

cooperation modes achieve the same diversity gain of (τ1 + τ3) /2. However, since S-R

channel dominates the asymptotic outage performance (n = 1), the AF mode provides

higher coding gain than the DF mode and consequently brings better outage performance

at high-SNR regime, as expected from (6.37).

Figure 6.4 demonstrates the optimal DMT curves of direct transmission and cooperation

modes assuming ZSR = 1.5 km, ZRD = 2 km, and ZSD = 3 km . As can be seen, cooperative

transmission improves the diversity gain throughout the range of the multiplexing gain.

Note that both modes (see (6.25) and (6.36)) provide the same optimal DMT. In addition,

as mentioned earlier, due to the square-law operation of the direct detection on the received

optical power, the multiplexing gain goes only up to 1/2. This maximum multiplexing gain

is achieved by the underlying cooperation modes since they are full-duplex. The maximum

achievable diversity gains of direct transmission and cooperation modes are obtained at

r = 0 which are obviously τ3/2 = 0.67 and (τ2 + τ3) /2 = 1.57, respectively.
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Appendix 6A. Proof of Lemma 6.1

Before proceeding, for simplicity in notation, we define new random variables u , h2
SD,

v , h2
SR, w , h2

RD, and z
∆
= u + w with pdfs fu(u), fv(v), fw(w), and fz(z), respectively.

These random variables will be also used in the next appendices. We take the similar

approach as Appendix 5A in this appendix.

FV (s) can be obtained by utilizing (2.12) as

FV (s) =

∫ ∞
0

exp
(
−sh2

) 2(αβ/µ)(α+β)/2

Γ(α)Γ(β)
h(α+β)/2−1Kα−β

(
2
√
αβh

)
dh (6.38)

=
1

4π

2α+β

Γ(α)Γ(β)
G4,1

1,4

(
(αβ/µ)2

16s

∣∣∣∣∣ 1
α
2
, α+1

2
, β

2
, β+1

2

)
,

where we have used (5.56), (5.57), and [68, p. 346, Eq. 2.24.1.1].

In the following, we assume that α− β /∈ Z3. Using the series expansion of the Meijer

G-function given in (5.59) and doing some mathematical manipulations, we obtain the

following convergent series for FV (s)

FV (s) =
∞∑
m=0

am(α, β, µ)

sm+α/2
+
bm(α, β, µ)

sm+(α+1)/2
+
am(β, α, µ)

sm+β/2
+
bm(β, α, µ)

sm+(β+1)/2
, (6.39)

where

am(x, y, µ) =

√
πΓ(y − x)

Γ(x)Γ(y)

(xy/µ)2m+x

m!22m+1

Γ(1 + x− y)

Γ(1 + x− y + 2m)

Γ(m+ x/2)

Γ(m+ 1/2)
, (6.40)

bm(x, y, µ) =
−√πΓ(y − x− 1)

Γ(x)Γ(y)

(xy/µ)2m+x+1

m!22m+2

Γ(2 + x− y)

Γ(2 + x− y + 2m)

Γ (m+ (x+ 1)/2)

Γ(m+ 3/2)
.

(6.41)

Consequently using (6.39), we can rewrite FV (s) as

FV (s) =
a0(τ, υ, µ)

sτ/2
+ o

(
(1/s)τ/2

)
, (6.42)

where τ = min {α, β} and υ = max {α, β}. Substituting a0(τ, υ, µ) from (6.40) in (6.42),

the lemma is proved.

3We make this assumption for all the Gamma-Gamma channels under consideration, i.e., αi − βi /∈ Z
for i = 1, 2, 3.
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Appendix 6B. Proof of Theorem 6.1

The average symbol error probability for the direct transmission system, when the source

uses M-PAM, is given by [76,77]

PDT
E =

2(M− 1)

M

∫ ∞
0

Q
(√

Aρu
)
fu(u)du, (6.43)

where A = 3/(M− 1)(2M− 1), and Q(·) is the Gaussian Q-function [57]. Replacing the

Q-function with its definite integral form [57], PDT
E can be rewritten as

PDT
E =

2(M− 1)

πM

∫ ∞
0

(∫ π/2

0

exp

(
− Aρu

2sin2φ

)
dφ

)
fu(u)du (6.44)

=
2(M− 1)

πM

∫ π/2

0

Fu

(
Aρ

2sin2φ

)
dφ,

where Fu(s) is the Laplace transform of fu(u). Using Lemma 6.1 and noting that u follows

ΓΓ2(α3, β3, 1) distribution, we have

Fu(s) =
a0(τ3, υ3, 1)

sτ3/2
+ o

(
(1/s)τ3/2

)
, (6.45)

where τ3 = min {α3, β3}, υ3 = max {α3, β3}, and am(x, y, µ) is given in (6.40).

Substituting s = Aρ/(2sin2φ) in (6.45) and then utilizing the result in (6.44), we obtain

the following approximation for PDT
E at high-SNR regime

PDT
E ∼ (M− 1)

πMAτ3/2
23τ3/2a0(τ3, υ3, 1)B

(
(τ3 + 1)

2
,
(τ3 + 1)

2

)
ρ−τ3/2, (6.46)

where B (x, y) is the Beta function [72], and we have used [72, p. 395, Eq. 3.621.1]. Noting

that A = 3/(M− 1)(2M− 1) and M = 2R ∼ ρr, we obtain

PDT
E

.
= ρ

−τ3
2

(1−2r). (6.47)

This concludes the proof.
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Appendix 6C. Proof of Theorem 6.2

Using the new notation, the outage probability of the DF mode in (6.17) can be rewritten

as

PDF
out = Pr {v < 9γth/ρ} × Pr {u < 9γth/ρ} (6.48)

+ Pr {v ≥ 9γth/ρ} × Pr {z < 9γth/ρ} .

Noting that v follows ΓΓ2(α1, β1,L1) distribution and using Corollary 6.1, Pr {v < 9γth/ρ}
in (6.48) can be approximated at high-SNR regime as

Pr {v < 9γth/ρ} ∼
∫ 9γth/ρ

0

Γ(υ1 − τ1)

2Γ(υ1)Γ(τ1)
(υ1τ1/L1)τ1vτ1/2−1dv (6.49)

=
Γ(υ1 − τ1)(υ1τ1/L1)τ1

Γ(υ1)Γ(τ1 + 1)
(9γth/ρ)τ1/2.

where τ1 = min {α1, β1}, υ1 = max {α1, β1}.

Similarly, Pr {u < 9γth/ρ} can be approximated at high-SNR regime as

Pr {u < 9γth/ρ} ∼
Γ(υ3 − τ3)(υ3τ3)τ3

Γ(υ3)Γ(τ3 + 1)
(9γth/ρ)τ3/2. (6.50)

The high-SNR approximation of Pr (z < 9γth/ρ) is obtained as follows. The smallest

exponent of z in the power series expansion of fz(z) is in our interest at high-SNR regime.

To derive this term, we first evaluate the Laplace transform of fz(z) as

Fz(s) =

∫ ∞
0

exp(−sz)fz(z)du (6.51)

= Fu(s)× Fw(s),

where Fu(s) and Fw(s) are the Laplace transforms of fu(u) and fw(w), respectively. Using

Lemma 6.1, we have

Fu(s) =
a0(τ3, υ3, 1)

sτ3/2
+ o

(
(1/s)τ3/2

)
, (6.52)

Fw(s) =
a0(τ2, υ2,L2)

sτ2/2
+ o

(
(1/s)τ2/2

)
, (6.53)

where τi = min {αi, βi}, υi = max {αi, βi} for i = 1, 2, 3, and am(x, y, µ) is given in (6.40).
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Utilizing (6.52) and (6.53) in (6.51) results in

Fz(s) =
a0(τ3, υ3, 1)a0(τ2, υ2,L2)

s(τ2+τ3)/2
+ o

(
(1/s)(τ2+τ3)/2

)
. (6.54)

By taking the inverse Laplace transform of (6.54), fz(z) can be written as

fz(z) =
a0(τ3, υ3, 1)a0(τ2, υ2,L2)

Γ ((τ2 + τ3)/2)
z

(τ2+τ3)
2
−1 + o

(
z

(τ2+τ3)
2
−1
)
. (6.55)

Consequently, by replacing a0(τ3, υ3, 1) and a0(τ2, υ2,L2) from (6.40) in (6.55), Pr {z < 9γth/ρ}
for large values of ρ satisfies

Pr {z < 9γth/ρ} ∼
Γ (υ2 − τ2) (υ2τ2/L2)τ2

Γ (υ2) Γ (τ2)
× Γ (υ3 − τ3) (υ3τ3)τ3

Γ (υ3) Γ (τ3)
(6.56)

× B (τ2/2, τ3/2)

2 (τ2 + τ3)
× (9γth/ρ)(τ2+τ3)/2,

wherein we have used B(x, y) = Γ(x)Γ(y)/Γ(x+ y) [72, p. 909, Eq. 8.384.1].

Inserting (6.49), (6.50), and (6.56) in (6.48) and noting that Pr {v ≥ 9γth/ρ} → 1 as

ρ→∞, we obtain the asymptotic approximation of PDF
out as in Theorem 6.2.

Appendix 6D. Proof of Theorem 6.3

In this practical scenario, the relay determines whether it decodes the source signal correctly

or not using a cyclic redundancy check (CRC) code [29]; the source first segments its data

bits into blocks that are augmented with a CRC code. Each block of bits is then modulated

using optical M-PAM and transmitted. If the relay decodes correctly, it retransmits the

source signal to the destination using the same M-PAM. Otherwise, the relay remains

silent. Hence, the symbol error probability at the destination can be obtained as

PDF
E = Pr {Error |Relay cannot decode correctly} × Pr {Relay cannot decode correctly}

+ Pr {Error |Relay decodes correctly} × Pr {Relay decodes correctly} (6.57)

=

(
2(M− 1)

M

)2 ∫ ∞
0

Q
(√

Aρu/9
)
fu(u)du×

∫ ∞
0

Q
(√

Aρv/9
)
fv(v)dv

+

(
2(M− 1)

M

)∫ ∞
0

∫ ∞
0

Q
(√

Aρz/9
)
fz(z)dz

×
(

1− 2(M− 1)

M

∫ ∞
0

Q
(√

Aρv/9
)
fv(v)dv

)
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where A = 3/(M− 1)(2M− 1). Using the definite integral form of Q-function [57], we

have

PDF
E =

(
2(M− 1)

πM

)2
(∫ π/2

0

Fu

(
Aρ

18sin2φ

)
dφ

)
×
(∫ π/2

0

Fv

(
Aρ

18sin2φ

)
dφ

)
(6.58)

+
2(M− 1)

πM

∫ π/2

0

Fz

(
Aρ

18sin2φ

)
dφ×

(
1− 2(M− 1)

πM

∫ π/2

0

Fv

(
Aρ

18sin2φ

)
dφ

)

where Fu(s), Fv(s), and Fz(s) are the Laplace transforms of fu(u), fv(v), and fz(z), re-

spectively. Utilizing Lemma 6.1 with s = Aρ/(18sin2φ), we have∫ π/2

0

Fu

(
Aρ

18sin2φ

)
dφ =

a0(τ3, υ3, 1)

(Aρ/9)τ3/2
23τ3/2−1B

(
τ3 + 1

2
,
τ3 + 1

2

)
, (6.59)∫ π/2

0

Fv

(
Aρ

18sin2φ

)
dφ =

a0(τ1, υ1,L1)

(Aρ/9)τ1/2
23τ1/2−1B

(
τ1 + 1

2
,
τ1 + 1

2

)
, (6.60)

where we have used [72, p. 395, Eq. 3.621.1].

In addition, using (6.54) with s = Aρ/(18sin2φ) and [72, p. 395, Eq. 3.621.1], we obtain∫ π/2

0

Fz

(
Aρ

18sin2φ

)
dφ =

a0(τ2, υ2,L2)a0(τ3, υ3, 1)

(A/9)(τ2+τ3)/2
23(τ2+τ3)/2−1B

(
τ2 + τ3 + 1

2
,
τ2 + τ3 + 1

2

)
.

(6.61)

Consequently, inserting (6.59)-(6.61) in (6.58), we obtain the high-SNR approximation of

PDF
E as

PDF
E ∼

{
Cnρ

−(τn+τ3)/2 τ1 6= τ2

(C1 + C2) ρ−(τn+τ3)/2 τ1 = τ2

, (6.62)

where n = arg min
i∈{1,2}

{τi} and

C1 =
(M− 1)2

π2M2

a0(τ1, υ1,L1)a0(τ3, υ3, 1)

(A/9)(τ1+τ3)/2
B

(
τ1 + 1

2
,
τ1 + 1

2

)
B

(
τ3 + 1

2
,
τ3 + 1

2

)
23(τ1+τ3)/2,

(6.63)

C2 =
M− 1

πM
a0(τ2, υ2,L2)a0(τ3, υ3, 1)

(A/9)(τ3+τ2)/2
B

(
τ2 + τ3 + 1

2
,
τ2 + τ3 + 1

2

)
23(τ2+τ3)/2. (6.64)

By substituting A = 3/(M− 1)(2M− 1) and M = 2R ∼ ρr, the proof is completed.
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Appendix 6E. Proof of Theorem 6.4

Following lemma is used to prove Theorem 6.44.

Lemma 6.2. For a positive δ, let us define rδ , δH(v/δ, w/δ), where v and w are two

independent random variables with distributions ΓΓ2(α1, β1,L1) and ΓΓ2(α2, β2,L2), re-

spectively, and H(x, y) , xy/(x+ y + 1). Let ψ(δ) > 0 be a continuous function of δ with

lim
δ→0

ψ(δ) = 0 and lim
δ→0

δ/ψ(δ) = c <∞. Then, for δ → 0, we have

Pr {rδ < ψ(δ)} ∼ Y (ψ(δ))τn/2, (6.65)

where τi = min {αi, βi} for i = 1, 2, n = arg min
i∈{1,2}

{τi}, and Y is a constant given by

Y =

{
Xn τ1 6= τ2

X1 +X2 τ1 = τ2

, (6.66)

wherein Xi for i = 1, 2 is given by

Xi =
Γ (υi − τi) (υiτi/Li)τi

Γ (υi) Γ (τi + 1)
, (6.67)

with υi = max {αi, βi} for i = 1, 2.

Proof. We start with a lower bound.

Pr {rδ < ψ(δ)} = Pr {1/v + 1/w + δ/(vw) > 1/ψ(δ)} (6.68)

> Pr {1/v + 1/w > 1/ψ(δ)}
≥ Pr {max (1/v, 1/w) > 1/ψ(δ)}
= 1− Pr {v ≥ ψ(δ)}Pr {w ≥ ψ(δ)}
= Pr {v < ψ(δ)}+ Pr {w < ψ(δ)} − Pr {v < ψ(δ)}Pr {w < ψ(δ)} .

Using Corollary 6.1, for δ → 0 we have

Pr {v < ψ(δ)} ∼ Γ(υ1 − τ1)(υ1τ1/L1)τ1

Γ(υ1)Γ(τ1 + 1)
(ψ(δ))τ1/2, (6.69)

Pr {w < ψ(δ)} ∼ Γ(υ2 − τ2)(υ2τ2/L2)τ2

Γ(υ2)Γ(τ2 + 1)
(ψ(δ))τ2/2. (6.70)

4We take the similar approach as [20, Appendix I] in this appendix.
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Consequently, utilizing (6.69) and (6.70) in the bound of (6.68), we obtain

lim inf
δ→0

Pr {rδ < ψ(δ)}
(ψ(δ))τn/2

≥ Y, (6.71)

where Y is given in (6.66).

For the other direction, we have

Pr {rδ < ψ(δ)} = Pr {1/v + 1/w + δ/(vw) > 1/ψ(δ)} (6.72)

=

∫ ∞
0

Pr

{
1/v >

1/ψ(δ)− 1/w

1 + δ/w

}
fw(w)dw

≤ Pr {w < Ωψ(δ)}+

∫ ∞
Ωψ(δ)

Pr

{
1/v >

1/ψ(δ)− 1/w

1 + δ/w

}
fw(w)dw,

where Ω > 1 is a constant. Let Θ > Ω be another constant. We break the integral in the

bound of (6.72) into two integrals as

Pr {rδ < ψ(δ)} ≤ Pr {w < Ωψ(δ)}+

∫ ∞
Θψ(δ)

Pr

{
1/v >

1/ψ(δ)− 1/w

1 + δ/w

}
fw(w)dw (6.73)

+

∫ Θψ(δ)

Ωψ(δ)

Pr

{
1/v >

1/ψ(δ)− 1/w

1 + δ/w

}
fw(w)dw

≤ Pr {w < Ωψ(δ)}︸ ︷︷ ︸
(I)

+ Pr

{
1/v >

1− 1/Θ

ψ(δ) + δ/Θ

}
︸ ︷︷ ︸

(II)

+

∫ Θψ(δ)

Ωψ(δ)

Pr

{
1/v >

1/ψ(δ)− 1/w

1 + δ/w

}
fw(w)dw︸ ︷︷ ︸

(III)

,

where the second inequality follows from the fact that Pr {1/v > (1/ψ(δ)− 1/w)/(1 + δ/w)}
is non-increasing in w. Using Corollary 6.1, terms (I) and (II) of (6.73) for δ → 0 satisfy

(I) ∼ Γ (υ2 − τ2) (υ2τ2/L2)τ2Ωτ2/2

Γ (υ2) Γ (τ2 + 1)
(ψ(δ))τ2/2, (6.74)

(II) ∼ Γ (υ1 − τ1) (υ1τ1/L1)τ1

Γ (υ1) Γ (τ1 + 1)

(
1 + c/Θ

1− 1/Θ

)τ1/2
(ψ(δ))τ1/2. (6.75)

By a change of variable w′ = w/ψ(δ), term (III) in the bound of (6.73) can be rewritten as

(III) = ψ(δ)

∫ Θ

Ω

Pr

{
v <

ψ(δ) + δ/w′

1− 1/w′

}
fw (w′ψ(δ)) dw′. (6.76)
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Using Corollary 6.1, for δ → 0 we have

Pr

{
v <

ψ(δ) + δ/w′

1− 1/w′

}
∼ Γ (υ1 − τ1) (υ1τ1)τ1

Γ (υ1) Γ (τ1 + 1)

(
1 + c/w′

1− 1/w′

)τ1/2
(ψ(δ))τ1/2, (6.77)

fw (w′ψ(δ)) ∼ Γ(υ2 − τ2)(υ2τ2/L2)τ2

2Γ(υ2)Γ(τ2)
(w′ψ(δ))

τ2/2−1
. (6.78)

By utilizing (6.77) and (6.78) in (6.76), term (III) for δ → 0 satisfies

(III) ∼ (ψ(δ))(τ1+τ2)/2 Γ (υ1 − τ1) (υ1τ1/L1)τ1

Γ (υ1) Γ (τ1 + 1)

Γ (υ2 − τ2) (υ2τ2/L2)τ2

Γ (υ2) Γ (τ2 + 1)
(6.79)

×
∫ Θ

Ω

1

2
(w′)

τ2/2

(
1 + c/w′

1− 1/w′

)τ1/2
dw′︸ ︷︷ ︸

Λ(Ω,Θ,c)

,

where Λ(Ω,Θ, c) is finite for any Θ > Ω > 1 and c <∞.

Consequently, inserting (6.74), (6.75), and (6.79) in (6.73), we obtain

lim sup
δ→0

Pr {rδ < ψ(δ)}
(ψ(δ))τn/2

≤ Y ′ (6.80)

where

Y ′ =

{
X ′n τ1 6= τ2

X ′1 +X ′2 τ1 = τ2

, (6.81)

with n = arg min
i∈{1,2}

{τi}, and X ′1 and X ′2 are respectively given by

X ′1 =
Γ (υ1 − τ1) (υ1τ1/L1)τ1

Γ (υ1) Γ (τ1 + 1)

(
1 + c/Θ

1− 1/Θ

)τ1/2
, (6.82)

X ′2 =
Γ (υ2 − τ2) (υ2τ2/L2)τ2Ωτ2/2

Γ (υ2) Γ (τ2 + 1)
. (6.83)

The constants Θ > Ω > 1 are arbitrary. Choosing Θ arbitrarily large and Ω arbitrarily

close to one, we obtain X ′i = Xi for i = 1, 2, where Xi is given in (6.67), and Y ′ = Y ,

where Y is given in (6.66). Consequently, from (6.80), we have

lim sup
δ→0

Pr (rδ < ψ(δ))

(ψ(δ))τn/2
≤ Y. (6.84)

Combining (6.71) with (6.84), the lemma is proved.
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Defining ε = 9/ρ and ω(ε) = γthε as a function of ε, the outage probability of the AF

mode in (6.29) can be rewritten as

PAF
out = Pr {u+ εH (v/ε, w/ε) < ω(ε)} (6.85)

= Pr {u+ rε < ω(ε)}

=

∫ ω(ε)

0

Pr {rε < ω(ε)− u} fu(u)du

= ω(ε)

∫ 1

0

Pr {rε < ω(ε)(1− u′)} fu (ω(ε)u′) du′,

where we have used a change of variable u′ = u/ω(ε) in the forth equality. By using Lemma

6.2 with δ = ε and ψ(δ) = ω(δ)(1− u′), Pr {rε < ω(ε)(1− u′)} for ε→ 0 satisfies

Pr {rε < ω(ε)(1− u′)} ∼ Y ((1− u′)ω(ε))
τn/2. (6.86)

In addition, using Corollary 6.1, for ε→ 0 we have

fu (ω(ε)u′) ∼ Γ(υ3 − τ3)

2Γ(υ3)Γ(τ3)
(υ3τ3)τ3(ω(ε)u′)

τ3/2−1
. (6.87)

Inserting (6.86) and (6.87) in (6.85), we have

Pr {u+ rε < ω(ε)} ∼ Y
Γ (υ3 − τ3) (υ3τ3)τ3

2Γ (υ3) Γ (τ3)
(ω(ε))(τn+τ3)/2

∫ 1

0

u′
τ3/2−1

(1− u′)τn/2du′

= Y
Γ (υ3 − τ3) (υ3τ3)τ3

2Γ (υ3) Γ (τ3)
B (1 + τn/2, τ3/2) (ω(ε))(τn+τ3)/2, (6.88)

where we have used [72, p. 315, Eq. 3.191.1 ]. By substituting Y from (6.66), ω(ε) = γthε,

and ε = 9/ρ, the proof is completed.

Appendix 6F. Proof of (6.37)

Following lemma and its corollary are used to prove the inequality of (6.37).

Lemma 6.3. Let m, l, p, and q be positive real numbers, such that (p−m)(q− l) ≤ (≥) 0.

Then

Γ(p+ l + 1)Γ(m+ q) ≥ (≤) Γ(p+ q + 1)Γ(m+ l). (6.89)
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See [78] for the proof.

Corollary 6.2. For every pair of positive real numbers x and y, we have

Γ(x+ 1)Γ(y + 1) ≤ Γ(x+ y + 1). (6.90)

Proof. First, we assume x ≥ 1 and y > ε, where ε is an arbitrary small number. Hence,

we have (x− 1)(y − ε) ≥ 0. Putting p = x, m = 1, q = y, and l = ε in Lemma 6.3 results

in

Γ(x+ ε+ 1)Γ(y + 1) ≤ Γ(x+ y + 1)Γ(1 + ε). (6.91)

Choosing ε arbitrarily close to zero, we obtain

Γ(x+ 1)Γ(y + 1) ≤ Γ(x+ y + 1), if x ≥ 1, y > 0 (6.92)

Similarly, putting p = y, m = 1, q = x, and l = ε in Lemma 6.3, one can obtain

Γ(x+ 1)Γ(y + 1) ≤ Γ(x+ y + 1), if x > 0, y ≥ 1 (6.93)

Finally, we assume that 0 < x < 1, and 0 < y < 1. Therefore (y − 1)(1 − x) ≤ 0.

Putting p = y, m = 1, q = 1, and l = x in Lemma 6.3, we have

Γ(y + x+ 1)Γ(2) ≥ Γ(y + 2)Γ(x+ 1) (6.94)

= (y + 1)Γ(y + 1)Γ(x+ 1)

≥ Γ(y + 1)Γ(x+ 1),

where the second inequality follows from the assumption that y > 0. Noting that Γ(2) = 1,

(6.94) yields

Γ(x+ 1)Γ(y + 1) ≤ Γ(x+ y + 1), if 0 < x < 1, 0 < y < 1 (6.95)

Combining (6.92), (6.93), and (6.95), the corollary is proved.

Using (6.21) and (6.33), we obtain

OAF
1

ODF
1

=

(
2(τ1 + τ3)

τ1τ3B (τ1/2, τ3/2)

)2/(τ1+τ3)

(6.96)

=

(
Γ (τ1/2 + τ3/2 + 1)

Γ (τ1/2 + 1) Γ (τ3/2 + 1)

)2/(τ1+τ3)

,
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where we have used B(x, y) = Γ(x)Γ(y)/Γ(x + y) [72, p. 909, Eq. 8.384.1]. Substituting

x = τ1/2 and y = τ3/2 in Corollary 6.2, we obtain

Γ (τ1/2 + τ3/2 + 1)

Γ (τ1/2 + 1) Γ (τ3/2 + 1)
≥ 1, (6.97)

and consequently (6.37) is proved.
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Chapter 7

Concluding Remarks

7.1 Summary of Contributions

In this dissertation, we have investigated and analyzed several diversity techniques for FSO

communications. In Chapter 3, we analyzed the performance of receive diversity in coherent

FSO systems considering both atmospheric turbulence-induced amplitude fluctuations and

phase aberrations. Modal compensation technique is deployed at each receive aperture to

mitigate the turbulence-induced wavefront phase distortion. We have derived closed form

expressions for the diversity gain which quantifies the link reliability and the DMT which

quantifies the compromise between the link reliability and the spectral efficiency (i.e., the

multiplexing gain). For sufficiently large SNR, we demonstrate that the DMT converges

to N(1 − r) where N and r respectively denote the number of receive apertures and the

multiplexing gain. Asymptotical diversity gain (i.e., DMT evaluated at r = 0) is therefore

determined by the number of receive apertures. Our results further demonstrate that

for practical SNR values the diversity gain can be larger than N as a result of phase

compensation deployed in the system. In other words, phase compensation acts as an

additional diversity source besides the diversity gain offered by the multiple apertures.

In Chapter 4, we presented multi-hop relaying as a powerful fading mitigation tool in

coherent FSO communications over atmospheric turbulence channels. Different from those

employed in RF wireless systems, multi-hop FSO relaying takes advantage of the resulting

shorter hops as a diversity source. This is a result of the distance-dependency characteris-
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tics of the fading amplitude and phase variance in coherent FSO systems. We have derived

the outage probability, finite SNR DMT, and finite SNR diversity gains taking into account

the effects of both turbulence-induced amplitude fluctuation and phase aberration. Our

results quantify the performance gains in terms of the diversity and multiplexing avail-

able through multi-hop relaying and yield impressive performance improvements over the

conventional direct transmission.

In Chapter 5, we have presented an information-theoretic analysis of H-ARQ proto-

cols in coherent FSO communications. Specifically, we have analyzed three H-ARQ pro-

tocols, namely ALO, RTD and INR protocols. For each protocol, we have derived the

outage performance and then, based on the derived expressions, quantified the diversity

and coding gains at high-SNR regime. Our results have demonstrated significant perfor-

mance improvements available through the deployment of ARQ over atmospheric channels.

These improvements are as a result of the temporal diversity gain inherent to ARQ. In

the Gamma-Gamma atmospheric channel under consideration, we have shown that all

three protocols achieve the same diversity gain given by MN min {α, β} where α and β

are the Gamma-Gamma channel parameters, N is the number of receive apertures, and M

is the maximum number of ARQ rounds. We have further investigated and compared the

throughput of ARQ protocols. Our results have demonstrated that INR protocol consid-

erably brings more throughput advantages at large values of transmission rate compared

to the other protocols.

In Chapter 6, we have analyzed parallel relaying in IM/DD FSO communications.

Specifically, we have considered an FSO system with a line-of-sight link between the source

and the destination and a single relay with either DF or AF relaying strategy. For each

cooperation mode, we have derived the asymptotic outage performance and then, based

on the derived expression, quantified the diversity and coding gains at high-SNR regime.

Our results demonstrate that parallel relaying improves the performance of FSO systems

by bringing diversity advantages. Moreover, between S-R and R-D channels, the channel

with worse statistical characteristics dominates the outage performance (both diversity and

coding gains) at high-SNR regime. Comparing two cooperation modes, we have shown that

both modes achieve the same diversity gain given by the diversity gain of S-D channel plus

the minimum of the diversity gains of S-R and R-D channels. However, their coding gains

can be different depending on the channels’ characteristics. In fact, when R-D channel is
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statistically worse than S-R channel, both modes provide the same coding gain. On the

other hand, when S-R channel is statistically worse than R-D channel, the AF mode brings

higher coding gain than the DF mode and consequently outperforms the DF mode at high

SNR regime. We have also investigated the DMT of direct transmission and cooperation

modes. Our results demonstrate that both cooperation modes achieve the same optimal

DMT. Furthermore, it has been shown that the optimal DMT of the direct transmission

and the DF mode can be achieved by M-PAM.

7.2 Future Research Directions

In Chapter 3, we have assumed that the receive apertures are placed sufficiently far apart,

so that the turbulence-induced fading coefficients of diversity branches are statistically

independent. This condition maximizes the receive diversity gain. However, for some sce-

narios in which the receive apertures cannot be located in enough distance from each other,

the fading coefficients may be correlated. Therefore, performance analysis of coherent FSO

systems with multiple receive apertures and correlated fading coefficients is of interest as

a future research topic.

In Chapter 4, the performance analysis has been carried out for equal power allocation

among different nodes. However, when the system has an asymmetrical configuration,

the transmit-optical power of each node can be adjusted properly to optimize the outage

performance of the system. Therefore, optimal transmit power allocation among relay

nodes in the proposed multi-hop relay-assisted system can be investigated as a future

work. Moreover, investigating the performance of multi-hop relaying in coherent FSO

communications with AF relay nodes can be another topic for the future work.

The information theoretic analysis of H-ARQ protocols in coherent FSO communica-

tions, presented in Chapter 5, is based on the infinite-length Gaussian random codes. In

practice, the complexity resulting from using such unstructured codebooks may be re-

strictive. Extending this analysis to practical finite-length codes can be considered as an

interesting topic. In addition, our analysis has been based on heterodyne detection at the

receiver side. Investigating the outage performance of H-ARQ protocols in IM/DD FSO

systems can be also a potential future work.
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In Chapter 6, we focused on a single-relay channel. Our analysis can be extended to

multiple-relay scenario. Also, our analysis has been carried out for the DF and AF coop-

eration modes. Other modes of cooperation have been also proposed in the context of RF

communications, e.g., compress-and-forward and compute-and-map [18, 79]. In compress-

and-forward the relay compressed the received signal, which contains the source message

and noise, into a new codeword and sends it to the destination. In compute-and-map the

relay first quantizes the received signal at the noise level and then re-encodes and retrans-

mits it to the destination. These cooperation modes can be also extended to the parallel

FSO relaying.
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