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Abstract

Recently, erasure networks have received significant attention in the literature [1–7] as

they are used to model both wireless and wireline packet-switched networks. Many packet-

switched data networks like wireless mesh networks [8–10], the Internet [11–13], and Peer-

to-peer networks [14] can be modeled as erasure networks. The reason is that each packet

contains an internal error detection code, like the Cyclic Redundancy Check (CRC), which

allows the receiver to detect and discard erroneous packets [12,15–17].

In any erasure network (wireless mesh network, the Internet, or Peer-to-peer network),

path diversity works by setting up multiple parallel connections between the end points

using the topological path redundancy of the network. Our analysis of diversity over

erasure networks studies the problem of rate allocation (RA) across multiple independent

paths, coding over erasure channels, and the trade-off between rate and diversity gain in

three consecutive chapters.

In chapter 2, Forward Error Correction (FEC) is applied across multiple independent

paths to enhance the end-to-end reliability. We prove that the probability of irrecoverable

loss (PE) decays exponentially with the number of paths. Furthermore, the RA problem

across independent paths is studied. Our objective is to find the optimal RA, i.e. the

allocation which minimizes PE. The RA problem is solved for a large number of paths.

Moreover, it is shown that in such asymptotically optimal RA, each path is assigned

a positive rate iff its quality is above a certain threshold. Finally, using memoization

technique, a heuristic suboptimal algorithm with polynomial runtime is proposed for RA

over a finite number of paths. This algorithm converges to the asymptotically optimal RA

when the number of paths is large. For practical number of paths, the simulation results

demonstrate the close-to-optimal performance of the proposed algorithm.

Chapter 3 addresses the problem of lower-bounding the probability of error (PE) for any

block code over an input-independent channel. First, we define an input-independent chan-
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nel in a mathematically accurate way. For discrete memoryless channels, this definition

coincides with that of row-symmetric (or simply symmetric) channels which are well-known

in the literature. However, we propose a general definition which includes channels with

memory extended over a block of N symbols. Next, we derive a lower-bound on PE for a

general input-independent channel and find the necessary and sufficient condition to meet

this bound with equality. The rest of this chapter applies this lower-bound to three spe-

cial input-independent channels: erasure channel, super-symmetric Discrete Memoryless

Channel (DMC), and q-ary symmetric DMC. It is proved that Maximum Distance Sep-

arable (MDS) codes achieve the minimum probability of error over any erasure channel

(with or without memory). Moreover, we prove that perfect codes achieve the minimum

probability of error over super-symmetric channels. Furthermore, for the case of symmetric

DMC, we simplify our general lower-bound and propose an algorithm to compute it based

on the method of types [18] in information theory. We also prove that this lower-bound is

exponentially the tightest lower-bound we can achieve. Finally, for ternary and 4-ary sym-

metric channels, the proposed lower-bound is compared with the previous lower-bounds on

PE in moderate block lengths.

Chapter 4 addresses a fundamental trade-off between rate and diversity gain of an

end-to-end connection in erasure networks. An erasure network is modeled by a directed

graph whose links are orthogonal erasure channels. Furthermore, the erasure status of

the links is assumed to be fixed during each block of transmission and known only by the

destination node. For each link e in the graph, a message transmitted on e is erased with

probability pω(e). We define the diversity gain as limp→0
log PE

log p
where PE is the probability

of error. Intuitively speaking, the diversity gain is the asymptotic slope of PE versus 1
p

in logarithmic scale. This definition is similar to the standard definition of diversity gain

for the slow Rayleigh fading channel in the wireless communication literature [19] if 1
p

is

interpreted as Signal-to-Noise-Ratio (SNR).

First, we study the homogeneous erasure networks in which links have the same erasure

probability and capacity. We derive the optimum trade-off between diversity gain and end-

to-end rate. Then, we prove that a variant of the conventional routing strategy combined

with an appropriate forward error correction (FEC) at the end-nodes achieves the optimum

diversity-rate trade-off. Next, we consider general erasure networks in which different links

may have different values of erasure probability and capacity. We prove that there exist

general erasure networks for which any conventional routing strategy fails to achieve the
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optimum diversity-rate trade-off. However, for any general erasure graph, we show that

there exists a linear network coding strategy which achieves the optimum diversity-rate

trade-off.

Finally, we study the diversity-rate trade-off through simulations. The erasure graphs

are constructed according to the Barabasi-Albert and Waxman random models. The er-

ror probability is depicted for different network strategies and different rate values. The

depicted results confirm the trade-off between rate and diversity gain for each network

strategy. Moreover, diversity gain is plotted versus the rate for different conventional rout-

ing and the linear network coding strategies. It is observed that linear network coding

outperforms all conventional routing strategies in terms of the diversity gain 1.

1The material of this thesis is also presented in [15,16,20,21]
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Chapter 1

Introduction

This work covers three topics related to erasure networks : i) rate allocation across multiple

paths, ii) coding over input-independent channels, iii) diversity-rate trade-off in erasure

networks. All of these terms will be accurately defined in the next three chapters. Moreover,

the next three sections of this chapter go through the motivation, background, and major

contributions on each topic. However, before getting into that, it is important to emphasize

on one point about the general theme of this thesis: all of the results of this work are

valid only when the assumptions corresponding to the results (the models) hold. The

model we use in chapter 2 captures the end-to-end channel, while the model in chapter 4

describes a network with one source, one destination, and many intermediate nodes and

links. Although we have tried to justify our assumptions and models based on observations

and facts from practical networks like wireless mesh networks and the Internet, we have

to emphasize that one should use extreme caution in applying and extending the results

of this thesis to real-world networks. The models we have considered in this work are,

at best, abstractions of practical networks which capture their main concepts but ignore

many details. The real-world networks, on the other hand, are extremely complex, and it

is naive to expect them to behave as simply as our models do.

Moreover, many of the schemes introduced in this thesis (multi-path routing, network

coding, etc) are not easy (although not impossible) to apply on legacy networks like the

Internet. However, our results on them may provide valuable insight about the design

of future networks for special purposes. These special purposes may include financial or

medical applications, for which very high reliability and low latency are required [22,23].
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Chapter 1. Introduction

1.1 Rate Allocation Across Multiple Paths

1.1.1 Motivation

In recent years, path diversity over packet switched networks has received significant

attention. This idea is applied over different types of networks like wireless mesh net-

works [8–10, 24], the Internet [11–13], and Peer-to-peer networks [14]. Many studies have

shown that path diversity has the ability to simultaneously improve the end-to-end rate

and reliability [11,12,16,25–27]. In order to apply path diversity over any packet switched

network, two problems need to be addressed: i) setting up multiple independent paths

between the end-nodes (multipath routing) ii) utilizing the given independent paths to

improve the end-to-end throughput and/or reliability. In this work, we focus on the sec-

ond problem and try to develop a mathematical analysis of path diversity which is valid

for any type of underlying network. Due to the inherent flexibility of wireless mesh net-

works, many routing protocols can be modified to support multipath routing over such

networks [24, 28–34]. Thus, we consider a wireless network as the underlying network.

However, it should be noted that the results of this work stay valid for any other un-

derlying network (e.g. path diversity over the Internet) as long as multiple independent

paths are given. Assuming a set of independent paths, we utilize Forward Error Correction

(FEC) across the given paths and analyze the reliability gain achieved by path diversity

mathematically. Furthermore, the rate allocation (RA) problem across the given paths is

addressed, and a polynomial suboptimal algorithm is introduced for this purpose.

1.1.2 Relation to Previous Works

References [27], [12], and [35] study the RA problem over multiple independent paths.

Assuming each path follows the leaky bucket model, reference [27] shows that a water-

filling scheme provides the minimum end-to-end delay. On the other hand, reference [12]

considers a scenario of multiple senders and a single receiver, assuming all the senders share

the same source of data. The connection between each sender and the receiver is assumed

to be independent from others and follow the Gilbert model. In order to benefit from

path diversity, the authors apply FEC across independent paths. A Maximum Distance

Separable (MDS) block code, like Reed-Solomon code, is used for FEC. [12] proposes a

receiver-driven protocol for packet partitioning and rate allocation. The packet partitioning

2



Chapter 1. Introduction

algorithm ensures no sender sends the same packet, while the RA algorithm minimizes

the probability of irrecoverable loss in the FEC scheme [12]. They only address the RA

problem for the case of two paths. A brute-force search algorithm is proposed in [12]

to solve the problem. Generalization of this algorithm over multiple paths results in an

exponential complexity in terms of the number of paths. Moreover, it should be noted

that the scenario of [12] is equivalent, without any loss of generality, to the case in which

multiple independent paths connect a pair of end-nodes as they assume the senders share

the same data.

Djukic and Valaee utilize path diversification to provide low probability of packet loss

(PPL) in wireless networks [10]. Similar to our work, they consider each path as an erasure

channel following the multi-state Markov model. Moreover, it is assumed that the feedback

is not fast enough to acknowledge the receipt of each packet. Thus, an MDS code is applied

across multiple independent paths as a FEC method. The authors of [10] compare two RA

schemes: blind allocation and optimal allocation. The blind RA is used when the source

has no information about the quality of the paths. Hence, it distributes the traffic across

the paths uniformly. It is shown that even blind RA outperforms single-path transmission.

When a feedback mechanism periodically provides the source with information about the

quality of each path, the transmitter has the chance to find the RA which minimizes PPL

(optimal allocation). The authors propose a greedy algorithm for this purpose.

Most recently, in an independent work, Li et al. have addressed the RA problem [35].

Same as [10, 12] and our work, the authors of [35] apply an MDS code for FEC across

multiple independent paths. However, unlike [12], the authors study the problem for any

general number of paths, denoted by L. Using the discrete to continuous approximation,

the authors approximate the total number of lost packets over all paths with a continuous

random variable. Furthermore, assuming a large number of paths with a large number of

packets over each path, they apply the Central-Limit Theorem (CLT) [36] to approximate

the distribution of the number of lost packets with the Normal Distribution. Using this

distribution, the authors propose a pseudo-polynomial algorithm, based on Dynamic Pro-

gramming, to estimate the optimal RA for a large number of paths. However, CLT can not

be applied to solve this problem. The reason is that in this case, the variance of the fraction

of lost packets scales as O( 1
L
) to zero. Instead, as we show in this work, the distribution

of lost packets can be computed using Large Deviation Principle (LDP) which results in a

distribution totally different from the normal distribution. Hence, the pseudo-polynomial

3



Chapter 1. Introduction

algorithm proposed in [35] can not necessarily approximate the optimal RA even for large

number of paths.

1.1.3 Contribution

In this work, we utilize path diversity to improve the performance of FEC between two

end-nodes over a general packet switched network. The details of path setup process is not

discussed here. Similar to [10,12,27,35], it is assumed that L independent paths are set up

by a smart multipath routing scheme or overlay network. Moreover, as in [10,35,37,38], each

path is assumed to be an erasure channel modeled as a continuous M -state extended Gilbert

model. It should be noted that the well-known 2-state Gilbert channel used in [12,17,39–41]

is a special case of the extended Gilbert model studied here. Probability of irrecoverable

loss (PE) is defined as the measure of FEC performance. In another work, we have shown

that MDS block codes have the minimum probability of error over any erasure channel

with or without memory [21]. Hence, as in [10, 12, 35], MDS codes are applied for FEC

throughout this work. The contributions of this work can be listed as follows:

• Path diversity is shown to simultaneously achieve an exponential decay in PE and a

linear increase in the end-to-end rate with respect to L, while the delay stays fixed.

Furthermore, the decaying exponent is analyzed mathematically based on LDP.

• The RA problem is solved for the asymptotic case (large values of L).

• It is proved in the asymptotically optimal RA, each path is assigned a positive rate iff

its quality is above a certain threshold. Quality of a path is defined as the percentage

of the time it spends in the bad state. This result is important since for the first

time in the literature, an analytical criterion is proposed to predict whether adding

an extra path improves reliability.

• A heuristic suboptimal polynomial algorithm, based on the memoization technique,

is introduced to solve the RA problem for any arbitrary number of paths. Unlike the

brute-force search in [12], this algorithm has a polynomial complexity, in terms of L.

• The proposed algorithm is proved to converge to the asymptotically optimal RA as

L grows.
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• Through the simulation results, the proposed algorithm is shown to achieve a near-

optimal performance for practical number of paths.

1.2 Coding over Input-Independent Channels

1.2.1 Motivation

This work is inspired by our previous work [21] on the optimality of Maximum Distance Sep-

arable (MDS) codes over erasure channels. In that work, we prove that MDS codes achieve

the minimum probability of error over any erasure channel (with or without memory). In

an attempt to extend that result, we define a new class of channels called input-independent

channels of which erasure channels are a special case. Input-independent channels can be

memoryless or have memory extended over the block length N . In the case of Discrete

Memoryless Channels (DMC), the defined input-independent channel turns into the well-

known symmetric DMC. Intuitively speaking, input-independent channels are the ones

which behave the same way no matter which codeword is transmitted over them. Accord-

ing to this definition, it becomes obvious that erasure channels and symmetric DMC’s are

both input-independent.

In this work, we introduce a lower-bound on the probability of error (PE) for any block

code over an input-independent channel. This lower-bound is not entirely new and can be

derived from Theorem 28 in [42]. However, our contribution is that

• we introduce a much simpler proof of this lower-bound for the specific case of input-

independent channels.

• Using the properties of input-independent channels, we come up with the necessary

and sufficient condition to satisfy the lower-bound with equality.

In the case of erasure channels, this lower-bound confirms our previous result on the opti-

mality of MDS codes. For the symmetric MDC, the lower-bound turns into a much stronger

(tighter) lower-bound than the previous sphere-packing based bounds on PE [43–45], es-

pecially for short to moderate block lengths.
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1.2.2 Related Work

Extending Shannon’s work [46], Feinstein [47] was the first who observed that the error

probability (PE) for maximum likelihood decoding of a randomly-generated code can be

upper-bounded by an exponentially decaying function with respect to the code block length

N . This exponent is positive as long as the rate stays below the channel capacity, R < C.

Following this result, tighter upper-bounds were proposed in the literature [48–50]. For

rates below the critical rate, modifications of random coding are proposed to achieve tighter

bounds [51]. There are also a number of lower-bounds on the probability of error for any

codebook. The most famous of them is known as the sphere packing bound [43]. Lower-

bounds on PE are very important as they give us an idea how much the performance of a

practical code with finite block length N can be improved.

Both the sphere packing lower-bound and the random coding upper-bound are expo-

nentially tight for rates above the critical rate [52]. In other words, in the asymptotic case

where N grows very large, they both converge to e−NEr(R) where Er(R) is the famous ran-

dom coding error exponent for the rate R [50]. However, the rate of convergence for sphere

packing bound is shown to be very slow (O( 1√
N

)) [44]. This makes the sphere packing

bound practically useless for N < 10000 in most channels. There has been a number of

works to improve this bound for moderate to short block lengths. Reference [44] tightens

the sphere packing bound for finite-length codes by re-examining the original derivation of

this bound and using better bounding techniques. More recently, [45] improves the sphere-

packing bound for symmetric channels even further, while keeping the general framework

of sphere packing bound in place.

Most recently, [42] introduces a series of upper and lower bounds on the size (equiva-

lently rate) of any block code with the length N and the probability of error PE over DMC

and Additive White Gaussian Noise (AWGN) channels. Obviously, these bounds translate

to upper and lower bounds on the probability of error for any block code with limited

length and rate R over these channels. Indeed, Theorem 3.1 of our work can be derived

by selecting a uniform output distribution in Theorem 28 of [42]. Moreover, Theorem 35

in [42] introduces a lower-bound on PE of Binary Symmetric Channel (BSC) which matches

our result in section 3.4 exactly. However, our lower-bound in section 3.4 is more general

in the sense that it is valid for non-binary symmetric DMC as well.

The following list summarizes the previous lower-bounds on PE of block codes over

different channels and compares them with the lower-bound in section 3.4, denoted by
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L(N, K, π).

• SP59: this lower-bound [53] is valid for soft decoding of equal-energy codewords with

Gaussian constellation over the AWGN channel. It can be used as a benchmark for

comparison when the input constellation is M -PSK over the AWGN channel with

hard or soft decoding.

• SP67: the original sphere packing lower-bound on PE in [43], valid for any DMC.

However, it can not be used for channels with infinite output alphabet size.

• VF2004: Velambois and Fossorier’s [44] improvement on SP67, valid for any DMC.

Moreover, it can be used for channels with infinite output alphabet size.

• ISP2008: the Improved Sphere-packing Bound (ISP) [45] for symmetric DMC. It is

also valid for channels with infinite output alphabet size.

• BSC2010: introduced in Theorem 35 of [42] and is valid for BSC only. It ex-

actly matches our lower-bound, L(N, K, π), introduced in section 3.4. However,

L(N,K, π) can also be used for non-binary (q-ary) symmetric DMC.

• BEC2010: introduced in Theorem 38 of [42] and is valid for memoryless Binary

Erasure Channel (BEC) only. In Theorem 3.3, we show that this lower-bound is

achieved by MDS codes in the general case, i.e. q-ary erasure channel with memory.

The lower-bound L(N, K, π) introduced in section 3.4 has its own limitations; it is

valid for q-ary symmetric DMC only. Moreover, it is valid for symmetric DMC’s with

limited output alphabet size only. However, we have shown that for short to moderate

block lengths, L(N, K, π) outperforms other known lower-bounds (SP59, SP67, VF2004,

ISP2008) significantly. For the case of BSC, it matches BSC2010 exactly. Moreover, similar

to all of the above bounds, it is exponentially tight for asymptotically large block lengths.

This asymptotic tightness is guaranteed by Theorem 3.5.

1.2.3 Contribution

The contributions of this work can be listed as follows:

• The input-independent channel is defined in a mathematically accurate way. The def-

inition includes channels with memory extended over a block of N symbols. For the
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case of a DMC, this definition can be simplified into the well-known row-symmetric

(also sometimes called symmetric) channel.

• A lower-bound on PE for a general input-independent channel is reintroduced. This

result can be derived from Theorem 28 in [42]. However, we have offered a simpler

proof which is based on the properties of input-independent channels. Moreover, the

necessary and sufficient condition to meet this lower-bound with equality is given in

this work.

• Applying the above lower-bound, we prove that MDS codes achieve the minimum

probability of error over any erasure channel (with or without memory). This is not

a new result. We have proved the same result in [21] using a deterministic binning

technique. However, we offer a new proof in this work considering the erasure channel

as a special case of the general input-independent channel.

• Again applying the above lower-bound, we prove that a perfect code achieves the

minimum probability of error over a super-symmetric DMC (defined in this work).

• We simplify the introduced general lower-bound for the special case of a symmetric

DMC and propose an algorithm to compute it using the method of types in informa-

tion theory [18]. This algorithm has the complexity of O(N q), i.e. it is polynomial

in terms of the block length N and exponential in terms of the alphabet size q. This

imposes a restriction on applicability of the algorithm. However, it should be noted

that the main application of this algorithm is on short to moderate block codes; for

large values of N , the sphere packing bound and its improvements are already good

enough. We have been able to run the algorithm for short to moderate block codes

with small alphabet size on an average home computer.

• It is shown that the introduced lower-bound for symmetric DMC exponentially equals

the random coding upper-bound, e−NEr(R). This implies that in the asymptotic case,

the introduced lower-bound is exponentially tight.

• For finite-length codes over ternary and 4-ary symmetric channels, we compare our

lower-bound with the sphere packing bound [43] as well as the recent improvements

to it [44, 45]. It is observed that our lower-bound is much tighter than the previous

bounds, especially for smaller block lengths.

8



Chapter 1. Introduction

1.3 Diversity-Rate Trade-off in Erasure Networks

1.3.1 Motivation

Recently, erasure networks have received significant attention in the literature [1–7] as they

are used to model both wireless and wireline networks. This work addresses a fundamental

trade-off between rate and the diversity gain of an end-to-end connection over an erasure

network whose links are orthogonal erasure channels. We show that in a general erasure

network, conventional routing1 fails to achieve the optimum diversity-rate trade-off, while

linear network coding always achieves the optimum trade-off between rate and diversity

gain. All the terms in the italic font are defined in a mathematically accurate way in

section 4.2. Here, we aim to intuitively explain the main idea of this work through an

example.

Example 1.1. It is easy to observe the diversity-rate trade-off in the erasure network of

Fig. 1.1. This simple network consists of only two nodes and n disjoint links between

them. Each link transfers one packet (or q-ary symbol) per time slot from source to the

destination and may be in the erasure (OFF) mode with the probability p. If the link is

OFF, it stays OFF for the entire transmission block. To achieve the maximum reliability,

the source should transmit the same data symbol on all n links. Hence, for the rate r = 1,

the probability of error would be PE = pn. To maximize the rate, the source has to

transmit n different data symbols on the n links to the destination. Thus, for r = n and

small values of p, we have PE = np(1−p)n−1 ≈ np ∝ p where ∝ stands for the proportional

to relation. Now the arising questions are:

• What can we do between these two extreme points?

• Can we achieve some degree of reliability (diversity) without sacrificing too much

rate?

• What is the maximum achievable reliability (diversity gain) given a certain end-to-end

rate?

1For the mathematically accurate definition of conventional routing refer to Definition 4.8 in subsec-
tion 4.2.4. Intuitively speaking, conventional routing includes any routing scheme in which the intermediate
nodes forward or copy and forward the received messages (packets) to the outgoing links without perform-
ing any algebraic operation on the contents of the packets. In contrast, linear network coding works by
forwarding a linear combination of the received packets at the outgoing links.
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In the special case of Fig. 1.1, these questions can be answered as follows. Consider the

case where the source intends to transmit r (1 < r < n) data symbols to the destination.

Applying a Maximum Distance Separable (MDS) code [21,54] of size [n, r] (like the Reed-

Solomon code [55]), the source encodes the r data symbols to n symbols and transmits

them over the n links to the destination. For any MDS code of size [n, r], the receiver can

decode the original data symbols if it receives at least r symbols out of the n transmitted

symbols correctly [56]. Therefore, for small values of p, PE can be approximated as PE ≈(
n

n−r+1

)
pn−r+1 ∝ pn−r+1. In section 4.3, we prove that the described scheme achieves

the best result in terms of limp→0
log PE

log p
(later defined as the diversity gain) for any rate

r. �

The reason we focus on the asymptotic region (p→ 0) can be explained as follows. We

expect PE to be a continuous function of p. Using Taylor series [57], we can write PE as

PE =
∑∞

i=0 Kip
i, where Ki’s do not depend on p. Of course, Ki can be zero for certain

values of i. Let us assume the smallest power of p (with nonzero coefficient) in the Taylor

series is 0 ≤ d. For small enough values of p, PE can be approximated as PE ≈ Kdp
d.

This lets us quantify PE with the exponent d and ignore the coefficient Kd. It is easy to

observe that in this example, 1
p

has the same role that Signal-to-Noise-Ratio (SNR) has in

slow Rayleigh fading wireless channels [19] (for which PE ∝ SNRd). Thus, it is intuitively

useful to interpret 1
p

as the SNR in our work. Consequently, small values of p correspond

to the high SNR region. Following the wireless communication terminology, we refer to the

exponent of p as the diversity gain. In the wireless communication literature, the diversity

gain d is the (decaying) slope of PE versus SNR at the high SNR region.

In the example of Fig. 1.1, for any 1 ≤ r ≤ n, the diversity gain d = n− r +1 decreases

as r increases. In sections 4.3 and 4.4, we show that the trade-off between the rate and

diversity gain is present in any erasure graph. The objective of this work is to characterize

the optimum diversity-rate trade-off in general erasure graphs. Intuitively speaking, the

optimum diversity-rate trade-off achieves the maximum diversity gain among all end-to-end

connections for a given rate2.

The trade-off between diversity and multiplexing gain was first introduced in the con-

text of wireless Multiple-Input Multiple-Output (MIMO) channels. Zheng and Tse [19]

defined the multiplexing gain and diversity gain for the high-SNR block-Rayleigh fading

MIMO channel. Multiplexing gain is proportional to rate and can be interpreted as the

2For the mathematically accurate definition, refer to Definition 4.12 in subsection 4.2.3.
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Figure 1.1: A simple erasure network consisting of n disjoint paths.

normalized rate (normalized by log(SNR)). Next, they derived the optimal trade-off be-

tween the two gains. Although our model (erasure network) is totally different from the one

in [19], an analogy between the trade-offs in both works can be observed if 1
p

is interpreted

as the SNR. The motivation in this work is partly due to this observation.

1.3.2 Related Work

A wireline network is modeled by a directed graph G = (V , E) where V and E represent

communication nodes and links, respectively. Moreover, the links are noiseless orthogonal

channels with a specific capacity and no interference on each other. According to the

well-known Ford-Fulkerson Theorem [58], conventional routing can achieve the unicast

capacity of any wireline network which is equal to the minimum-cut of the corresponding

weighted graph [59]. Li et al. [59] have shown that this result is not valid for the multicast

case. Indeed, there exists simple wireline networks (such as the butterfly network [60])

such that an operation other than the simple routing and forwarding is needed in the

intermediate nodes in order to achieve the multicast capacity [61]. Hence, linear network

coding at the intermediate nodes is introduced to achieve the multicast capacity of wireline

networks [59–61].

The wireline network model has many limitations and can not be applied in many

practical networks. Recently, general networks in which links can be erroneous or interact

with each other have received significant attention in the literature, e.g. see [1–7, 62].

Dana et. al consider the erasure network in which the broadcast nature of the wireless
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networks is incorporated while no interference is assumed at the received side of each node.

Assuming that the erasure locations on all links of the network are provided to the final

destination, the authors derive the ergodic capacity of the network and show that linear

network coding can achieve the capacity [1]. Most recently, Avestimehr et. al [4] show

that linear network coding can achieve the (unicast and multicast) capacity of any linear

deterministic network with the possible broadcast and interference nature. Yeung and Cai

in [5, 6] study the general network whose links can be erroneous (not necessarily erasure).

Generalizing the well-known lower-bounds and upper-bounds of the classical coding theory

(Singleton bound, Hamming bound, and Gilbert-Varshamov bound), the authors obtain

bounds for the number of errors that the network codes can correct in a general network.

This subject is further investigated by Koetter and Kschischang in [7]. In contrast with the

previous work, the authors assume noncoherent transmission strategy in which the source

and destination nodes are unaware of the underlying network topology and the particular

linear network coding operations performed at the intermediate nodes.

Among the general networks, the class of erasure networks is of particular interest.

Many packet-switched data networks like wireless mesh networks, the Internet, or the

virtual overlay networks can be modeled as erasure networks. The reason is that each

packet contains an internal error detection code, like the Cyclic Redundancy Check (CRC),

which lets us interpret the packet as a q-ary symbol transmitted over erasure links [12,15–

17].

Linear network coding is applied in [62, 63] in order to provide protection against net-

work failures. Reference [62] studies the topic of network recovery and distinguishes be-

tween path, node, or link protection against non-ergodic link failures in the network. It

is demonstrated that many traditional recovery methods (used in conventional routing)

can be written in terms of the general framework provided by linear network coding. The

authors of [62] consider two formulations for network management: centralized and node-

based. In the centralized formulation, the whole network switches between several (end-to-

end) linear network codes in order to combat non-ergodic link failures. In other words, the

network (the receiver and/or intermediate nodes) adopts the appropriate network code,

depending on the state of the network. The measure of performance (management re-

quirement metric) is defined as the logarithm of the number of codes the network switches

among. The rationale for this metric is that this equals the information bits one needs

to encode the suitable network code for each state of the network. The node-based for-
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mulation works similarly except that the metric is different. For this formulation, the

network management requirement is defined as the sum over all nodes of the logarithm of

the number of behaviors for each node. Again, the rationale for this metric is that this

is the number of information bits one needs to inform each and every node of its appro-

priate behavior according to the network state. For each formulation, [62] considers two

recovery schemes: receiver-based and network-wide. In the receiver-based scheme, the only

nodes which are allowed to alter their input-output relations are the receiver nodes. In

network-wide recovery schemes, on the other hand, the intermediate nodes are allowed to

switch between different codes depending on the state of the network. Considering these

formulations, [62] achieves lower and upper bounds on the network management metrics for

recovery from all single-link failures. The lower-bound is valid for arbitrary connections,

while the upper-bound holds for multi-transmitter multicast connections only.

The other reference [63] combines the problem of distributed source coding with linear

network coding. It applies random linear network coding for transmission and compression

of information in multi-source multicast scenarios with correlated sources. The beauty of

this scheme is that intermediate nodes freely pick their coefficients from a large field with no

coordination with each other. The only requirement is that the receivers should know the

end-to-end transfer matrix of the network. The authors show that this approach achieves

the multicast capacity as the network length increases. Moreover, they prove that this

scheme compresses the information in a distributed manner, generalizing the known error-

exponents for linear Slepian-Wolf coding [64] automatically. Finally, they demonstrate the

potential advantages of linear network coding over conventional routing in two practical

cases: i) distributed network setting, ii) dynamically varying connections. In the former

case, the number of nodes is very large or the topology is changing. Thus, it is expensive

or infeasible to maintain the routing states and we need to apply distributed randomized

routing schemes. In the latter case, the source-destination pairs may vary or go through

ON-OFF periods. They show that in both cases, linear network coding provides higher

probability of successful decoding with much lower complexity.

1.3.3 Contribution

In this work, we study a network modeled by an acyclic directed graph G = (V , E) whose

links are orthogonal erasure channels. Such a network is regarded as an erasure graph

throughout the thesis. Each link e ∈ E has the maximum rate of σ(e) and the erasure
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probability of pω(e). Erasure status of the links are assumed to be fixed during one block

of transmission3. Moreover, erasure status of the links is assumed to be known only by

the destination node. Hence, neither the source nor the intermediate nodes are aware of

the links’ status. This is the case in many realtime applications where the source can not

utilize any feedback or retransmission request due to the tight delay constraints.

Here, we study the behavior of network strategies for an end-to-end connection in an

erasure graph in the asymptotic scenario where p → 0. Network strategies are used to

increase the end-to-end rate or to improve the end-to-end reliability. However, we show

that there exists a fundamental trade-off between the end-to-end rate and reliability. The

contributions of this work can be listed as follows:

• For any fixed rate r, as p → 0, the error probability is shown to decay as pd where

d denotes the diversity gain of the corresponding end-to-end connection. Moreover,

d(r) is shown to be a decreasing function of r.

• In a homogeneous erasure graph where σ(e) = ω(e) = 1 for all links e ∈ E , it is proved

that the combination of MDS coding at the source and appropriate conventional

routing at the intermediate nodes achieves the optimum diversity-rate trade-off.

• For any general erasure graph, we show that there exists a linear network coding

strategy which achieves the optimum diversity-rate trade-off.

• In general erasure graphs, it is proved that conventional routing is not optimum in

terms of diversity-rate trade-off. More accurately, there exist general erasure graphs

for which any conventional routing strategy fails to achieve the optimum diversity-

rate trade-off.

Unlike the previous works which suggest the potential benefit of linear network coding

in the error-free multicast scenario (in terms of the achievable rate), the above results

introduce the benefit of linear network coding in the erasure unicast scenario (in terms of

the diversity gain).

3For the mathematically accurate definition of the model, refer to section 4.2.
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Rate Allocation Across Multiple

Paths

2.1 Introduction

2.1.1 Multipath Routing over Wireless Mesh Networks

In order to exploit path diversity, it is desirable to set multiple independent paths be-

tween the end nodes. This problem is addressed throughput the literature [28–34, 65, 66].

A set of paths are defined to be independent if their corresponding packet loss patterns

are independent. According to the definition, any set of disjoint paths are independent.

Even when the paths are not completely disjoint, their loss and delay patterns show a

high degree of independence as long as they do not share any congestion points or bottle-

necks [12, 67–72]. Many techniques are proposed to detect the shared congestion points,

such as cross-correlation-based approach [73], entropy-based approach [74], and wavelet-

based approach [75]. Hence, the independence of a set of paths can be verified by the

mentioned bottleneck detection algorithms.

Many well-known mesh network routing protocols like AODV [76] and DSR [77] can

be modified to support multipath routing. Indeed, DSR can find multiple paths naturally

by its flooding behavior [77]. However, it does guarantee that the found paths are disjoint.

The Split Multipath Routing (SMR) [28] solves this problem as it avoids dropping duplicate

Route Request (RREQ) packets by the intermediate nodes. Of course, this is achieved at the

cost of more RREQs and higher routing overhead. Similarly, the Multipath Source Routing
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(MSR) [34] introduces a multiple path routing protocol extended from DSR. Based on the

measurement of Round-Trip Times (RTT), MSR also proposes a scheme to distribute the

load among multiple paths. Leung et al. [33] propose the MP-DSR protocol which focuses

on a newly defined metric for the QoS called the end-to-end reliability. MP-DSR is an

algorithm which selects multiple paths with low fail probability associated by stable radio

links. [32] addresses the problem of transmitting video with double description in the case

where non of the paths to the destination is significantly more reliable than the others. The

problem is turned into an optimization which is too complex to have a closed-form solution.

Thus, the authors apply the metaheuristic genetic algorithm to find a suboptimal solution.

Then, it is shown that this method can be incorporated into many existing on-demand

routing protocols like DSR [32]. Finally, the Robust Multipath Source Routing Protocol

(RMPSR) is another extension to DSR to support multipath video communication over

wireless networks.

AMODV [30] is an Ad-hoc On-demand Multipath Distance Vector routing protocol

based on the concept of link reversal extending from AODV. In contrast with the DSR-

based multipath routing protocols, AMODV discovers multiple link-disjoint loopfree paths.

AODVM [31] is another extension to AODV which finds multiple reliable routing paths.

Similarly, AODV-BR [29] introduces an algorithm to find back up routing paths over Ad

hoc networks. [9] proposes a novel multipath hybrid routing protocol, Multipath Mesh

(MMESH), which effectively discovers multiple paths over wireless mesh networks. Simu-

lation results show that MMESH is able to balance the traffic by avoiding hot paths, i.e.,

the paths with higher traffic load. AMTP [65], an ad hoc multipath streaming protocol for

multimedia delivery which selects multiple maximally disjointed paths with best QoS to

maximize the aggregate end-to-end throughput. AMTP is able to accurately differentiate

between packet losses due to different network conditions. In case of a path being broken,

it seamlessly switches to a proper path and therefore maintains high streaming quality.

When there are multiple channels between the wireless mesh nodes, it is easier to find

multiple independent paths across the network. Reference [8] applies the idea of multipath

routing in such a scenario to increase the end-to-end throughput. Wei et al. [26] address the

problem of path selection over a wireless network by taking into account the interference

between the wireless links. Their goal is to minimize the packet drop probability (PDP).

The problem of optimal multipath selection is shown to be NP-hard. Therefore, they

introduce a heuristic algorithm to find a close-to-optimal set of paths. A previous work
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by the same authors [78] studies video multicast over wireless ad hoc networks. To take

advantage of network path diversity in the multicast case, an algorithm to find multiple

disjoint and near-disjoint trees is proposed. Finally, reference [24] introduces CodeCast,

a network-coding-based ad hoc multicast protocol, for (mainly multimedia) applications

which require limited (low) packet rate as well as limited (low) latency. For such applica-

tions, the authors have shown that path diversity can be used to mitigate the non-local

packet loss problem with very small overhead.

2.1.2 Path Diversity over the Internet

In the Internet, the end-points have no control over the path selection process. Indeed,

letting the end nodes set the paths requires modification of the IP routing protocol and

extra signaling between the routers which are extremely costly. To avoid such an expense,

overlay networks are introduced [70, 71, 79]. The basic idea of the overlay network is to

equip very few nodes (smart nodes) with the desired new functionalities while the rest

remain unchanged. The smart nodes form a virtual network connected through virtual or

logical links on top of the physical network. Thus, overlay nodes can be used as relays to

set up independent paths between the end nodes [13,80–82].

Topology of the underlying physical network is an important factor in the design of

the overlay network. Indeed, improper design of the overlay network can result in shared

bottlenecks between different virtual links [83]. In such cases, even if two paths are disjoint

in the virtual level, a large degree of dependency may be observed between them. Hence, a

class of topology-aware overlay networks are proposed to maximize independence between

the virtual links [83–89]. For instance, the overlay nodes can utilize latency [84, 85] or

the underlying IP topological information [83, 86–89] to select the neighbors and form

the overlay graph. It is shown that the topology-aware overlay networks can provide a

satisfactory degree of independence between disjoint paths (disjoint in the virtual level) [83].

Moreover, distributed algorithms can be utilized to construct and/or maintain overlay

networks. Reference [90] addresses the problem of distributed overlay network design

based on a game theoretical approach, while [91] studies overlay networks failure detection

and recovery through dynamic probing.

Another issue which may degrade path diversity in overlay networks is having bottle-

necks in the links connecting the end-nodes to the network. To address this problem, the

idea of multihoming is proposed [13,92]. In this technique, the end users are connected to
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more than one Internet Service Providers (ISP’s) simultaneously. It is shown that multi-

homing assists overlay networks to set up extra independent paths between the end-points,

i.e. improves the end-to-end reliability considerably [13].

2.1.3 Applications of Path Diversity

Recently, path diversity is utilized in many applications (see [17, 93–97]). Reference [95]

combines multiple description coding and path diversity to improve the quality of service

(QoS) in video streaming. In [25], multiple descriptions of video are routed throughput

different paths across a wireless mesh network. It is assumed that coding is non-hierarchical

in the sense that none of the descriptions is the main description. Instead, the distortion

decreases gradually as the receiver receives more descriptions of the video. Moreover, non

of the paths has significantly better quality than the others, and each link is modeled by a

2-state Markov model called the Gilbert channel. [25] concludes that in this setup, utilizing

multiple paths improves both the rate and reliability.

Packet scheduling over multiple paths is addressed in [98] to optimize the rate-distortion

function of a video stream. Reference [97] utilizes path diversity to improve the quality of

Voice over IP streams. According to [97], sending some redundant voice packets through

an extra path helps the receiver buffer and the scheduler optimize the trade-off between

the maximum tolerable delay and the packet loss ratio [97].

In [11], multipath routing of TCP packets is applied to control the congestion with

minimum signaling overhead. When the underlying network is an ad hoc wireless network,

a similar result is reported [99]. In other words, transmitting video over multiple paths

is shown to decrease the average congestion and end-to-end distortion. [100] proposes a

multiflow reatime transport protocol for wireless networks. Through both mathematical

analysis and comprehensive simulation, it is shown that partitioning the video packets

across multiple paths improves queuing performance of the multimedia data, resulting is

less congestion, smaller delay, and higher utilization of the bottleneck link bandwidth [100].

Content Distribution Networks (CDN’s) can also take advantage of path diversity for

performance improvement. CDN’s are a special type of overlay networks consisting of Edge

Servers (nodes) responsible for delivery of the contents from an original server to the end

users [79,101]. Current commercial CDN’s like Akamai use path diversity based techniques

like SureRoute to ensure that the edge servers maintain reliable connections to the original

server. Video server selection schemes are discussed in [80] to maximize path diversity in
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Table 2.1: Important Parameters
Notation Refers to Section

L number of the paths 1.1.3
N length of an FEC block (in packets) 2.2.2
K number of information packets 2.2.2

in an FEC block
α=(N−K)/N FEC overhead 2.2.2

T transmission time of an FEC block 2.2.3
Sreq required end-to-end rate (pkt/sec) 2.2.3
Ni number of packets transmitted on 2.2.3

path i in each FEC block
Si, Wi rate and max. rate of path i (pkt/sec) 2.2.3

PE probability of irrecoverable loss 1.1.3
xi = Bi/T fraction of bad bursts on path i during T 2.3

ρi fraction of end-to-end rate assigned to path i 2.3.1
J number of path types 2.3.2

γj = Lj/L fraction of paths of type j 2.3.2
ηj fraction of the end-to-end rate 2.3.2

allocated to paths of type j, see (2.7)
η? asymptotically optimal rate allocation vector 2.3.2

ηopt=Nopt/N optimal rate allocation vector 2.3.2
Nj number of packets transmitted on 2.4

paths of type j in each FEC block
probability of having more than k errors over 2.4

PN
e (k, j) paths of types 1 to j for the allocation vector N

Qj(n, k) probability of having exactly k errors out 2.4
of the n packets sent over paths of type j

Nopt optimum allocation vector 2.4

P opt
e (n, k, j) PNopt

e (k, j), i.e., min PE 2.4

P̂e(n, k, j) lowerbound of P opt
e (n, k, j), see (2.16) 2.4

N̂=(N1,...,NJ ) suboptimum allocation vector 2.4
K=(K1,...,KJ ) typical error event 2.4

CDN’s.

2.1.4 Chapter Organization

The rest of this chapter is organized as follows. Section 2.2 describes the system model.

Performance of FEC in two cases of multiple identical paths, and non-identical paths are

analyzed in section 2.3. Section 2.4 studies the RA problem, and proposes a suboptimal

RA algorithm. Finally, section 2.5 concludes the chapter.
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2.2 System Modeling and Formulation

2.2.1 End-to-End Channel Model

From an end to end protocol’s perspective, performance of the lower layers in the protocol

stack can be modeled as a random channel called the end-to-end channel. Since each packet

usually includes an internal error detection coding (for instance a Cyclic Redundancy

Check), the end-to-end channel is modeled as an erasure channel.

Numerous measurements studies have suggested that bursty loss behavior is the most

dominant characteristic of the end-to-end channel over different underlying networks, in-

cluding wireless mesh networks and the Internet [10,38,102–104]. Hence, a variety of models

have been proposed to capture this bursty behavior, including the 2-state Gilbert model,

the M -state Extended Gilbert model, and the Hidden Markov model [37,38,102,105,106].

This chapter assumes the continuous time M -state extended Gilbert model for the end-

to-end channel, see Fig. 2.1. This model achieves a good balance between model accuracy

and simplicity [35, 37, 38]; it is much more accurate than the 2-state Gilbert Model, while

only requires 2(M − 1) parameters to be estimated (as opposed to M2 parameters in the

General Markov Model). It should be noted that the well-known 2-state Gilbert channel

used in [12,17,39–41] is a special case of the extended Gilbert model studied here.

It is worth mentioning that the main results of this chapter remain valid for any end-

to-end channel model. More precisely, PE still decays exponentially versus L and the

asymptotically optimal RA follows the same formula. However, the decaying exponent of

PE is a function of the bad burst probability distribution which should be recomputed

according to the new end-to-end channel model. Moreover, in the proposed suboptimal

RA algorithm, no assumption is made regarding the end-to-end channel model and/or the

bad burst probability distribution. In other words, the input parameters to the proposed

algorithm consist of the probability mass function (pmf) associated with the number of

erasures over different paths. These input parameters are computed in polynomial time

in appendix 2.6.8 for any general Markov model which obviously includes the extended

Gilbert model as a special case.

The behavior of the continuous time extended Gilbert model can be described as follows.

The channel spends an exponentially distributed random amount of time with the mean
1
µg

in the Good state. Then, it alternates to the first Bad state, B1, and stays in that

state for another random duration exponentially distributed with mean 1
µb1

+κ1
. Then, the
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κ1

µb2

B1G B2 BM−1

µg

µb1

µbM−1

κ2 κM−2

Figure 2.1: Continuous-time M -state Extended Gilbert model of the end-to-end channel

channel either goes back to the good state or transits to a deeper bad state, denoted by

B2. Similarly, the channel can move to deeper bad states consecutively before going back

to the good state. The steady state probability of being in the good or any of the bad

states are denoted by πg and πbi
. It is easy to observe that πg = 1

µgΞ
and πbi

= 1
(µbi

+κi)Ξ

where Ξ , 1
µg

+
∑M−1

i=1
1

µbi
+κi

. The packets transmitted during the good state are received

correctly, while they are lost if transmitted during any of the bad states (B1 to BM−1).

Therefore, the average probability of error, πb, is equal to the steady state probability of

being in any of the bad states, πb =
∑M−1

i=1 πbi
.

2.2.2 FEC Model

In real-time applications like video and audio over wireless mesh networks or IP, due to the

delay requirement, conventional retransmission based schemes such as automatic repeat

request (ARQ) are impractical. On the other hand, FEC is shown to be favorable for such

real-time scenarios with tight QoS requirement [10, 39, 40, 107–109]. However, FEC could

be ineffective when bursty packet loss occurs and such loss exceeds the recovery capability

of the FEC codes. To mitigate this problem via path diversity, this work applies FEC

across multiple paths.

Each packet is provided with an internal coding such as the Cyclic Redundancy Check

(CRC) which enables the receiver to detect an error inside each packet. Hence, the receiver
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can consider the end-to-end channel as an erasure channel. Assuming the length of each

packet is r bits, the alphabet size of the end-to-end channel would be q = 2r. Other than

the coding inside each packet, a FEC scheme is applied between packets. Every K packets

are encoded to a Block of N packets where N > K to create some redundancy. The N

packets of each block are distributed across the L available independent paths, and are

received at the destination with some loss (erasure). The ratio of α , N−K
N

defines the

FEC overhead. It is proved that among all block codes of the same size, any Maximum

Distance Separable (MDS) code, such as the Reed-Solomon code, provides the minimum

probability of error over an erasure channel (either memoryless or with memory) [21].

Moreover, MDS codes can reconstruct the original K data packets at the receiver side if

K or more of the N packets are received correctly [55]. This property makes MDS codes

favorable FEC schemes over the erasure channels [35,110–112].

Since MDS codes are used for FEC, the probability of irrecoverable loss, PE, is adopted

as the reliability metric. An irrecoverable loss occurs when more than N − K packets

are lost in a block of N packets. It is shown in [21] that PE is almost equal to the error

probability of the maximum likelihood decoder for an MDS code, PE . More precisely, PE

can be bounded as

PE ≤ PE ≤
(

1 +
1

q − 1

)
PE

where q denotes the alphabet size of the MDS code which is very large in our application.

The reason PE is used as the measure of system performance is that while many practical

low-complexity decoders for MDS codes work perfectly if the number of correctly received

symbols is at least K, their probability of correct decoding is much less than that of

maximum likelihood decoders when the number of correctly received symbols is less than

K [55]. Thus, in the rest of this chapter, PE is used as a close approximation of decoding

error.

2.2.3 Rate Allocation Problem

The RA problem is formulated as follows. L independent paths, 1, 2, . . . , L, connect the

source to the destination, as indicated in Fig. 2.2(a). Information bits are transmitted

as packets, each of a constant length r. Each path has a rate constraint of Wi packets

per second. This constraint can be considered as an upperbound imposed by the physical

characteristics of the path. For a specific application and FEC scheme, we require the rate
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Ni

N1

NL

Path 1

Path i

Si =
Ni

T
=

Ni

N
Sreq ≤ Wi

Source Internet Destination

L∑

i=1

Ni = N

L∑

i=1

Si = SreqPath L

Traffic ReassemblerTraffic Allocator

Sreq =
N
T

(a)

T

Ni Packets

1

Si

=
T

Ni

(b)

Figure 2.2: RA problem: a block of N packets is being sent from the source to the desti-
nation through L independent paths over the network during the time interval T with the
required rate Sreq = N

T
. The block is distributed over the paths according to the vector

N = (N1, . . . , NL) which corresponds to the RA vector S = (S1, . . . , SL)
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Correctly
Received
Packet

Ei = 3

T

Bi

Lost or
Incorrect
Packet

Bad

Burst

1

Si

Figure 2.3: A bad burst of duration Bi happens in a block of length T . Ei = 3 packets are
corrupted or lost during the interval Bi. Packets are transmitted every 1

Si
seconds, where

Si is the rate of path i in pkt/sec.

of Sreq packets per second from the source to the destination. Obviously, we should have

Sreq ≤
∑L

i=1 Wi to have a feasible solution. As mentioned in the previous subsection, the

information packets are coded in blocks of length N packets. Hence, it takes T = N
Sreq

seconds to transmit one block.

The RA vector N = (N1, . . . , NL) is defined as the number of packets in one block

sent through each path. The objective of the RA problem is to find the optimal RA

vector, i.e. the RA vector minimizing the probability of irrecoverable loss, PE, defined

in the previous subsection. The RA vector should satisfy the constraints
∑L

i=1 Ni = N

and Ni

T
≤ Wi,∀ 1 ≤ i ≤ L. The latter constraint follows from the bandwidth constraint,

Si = Ni

T
≤ Wi.

The above formulation of RA problem is valid for any finite number of paths and any

chosen values of N and T . However, in section 2.3 where the performance of path diversity

is studied for a large number of paths, and also in Theorem 2.2 where the optimality of

the proposed suboptimal algorithm is proved for the asymptotic case, we assume that N

grows linearly in terms of the number of paths, i.e. N = n0L, for a fixed n0. The reason

behind this assumption is that when L grows asymptotically large, the number of paths

eventually exceeds the block length, if N stays fixed. Thus, L − N paths become useless

for the values of N larger than N . At the same time, it is assumed that the delay imposed

by FEC, T , stays fixed with respect to L. This model results in a linearly increasing rate

as the number of paths grows.
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2.2.4 Discrete to Continuous Approximation

To compute PE, we have to find the probability of ki packets being lost out of the Ni

packets transmitted through path i, for all 1 ≤ i ≤ L, 0 ≤ ki ≤ Ni. Let us denote the

number of erroneous or lost packets over the path i with the random variable Ei. Any two

subsequent packets transmitted over the path i are 1
Si

seconds apart in time, where Si is

the transmission rate over the i’th path. Now, we define the continuous random variable

Bi as the duration of time that path i spends in the bad state in a block duration, T . It is

easily observed that the probability P{Ei ≥ ki} can be approximated with the continuous

counterpart P{Bi ≥ ki

Si
} when the inter-packet interval is much shorter than the average

bad burst duration. According to the extended Gilbert model, the average bad burst

duration can be lower-bounded by 1
µb1

+κ1
. Therefore, as long as we have

1

Si

� 1

µb1 + κ1

,

the discrete to continuous approximation is valid (see Fig. 2.3).

The necessity of this condition can be justified as follows. In case this condition does not

hold, any two consecutive packets have to be transmitted on two independent states of the

channel. Thus, no gain would be achieved by applying diversity over multiple independent

paths. The continuous approximation is just used in section 2.3. On the other hand,

section 2.4 studies the RA problem in the original discrete format.

2.2.5 Notation and System Parameters

Table 2.2 summarizes the main assumptions made in our network model and problem

formulation. The important parameters which are used throughout the chapter are sum-

marized in Table 2.1. Moreover, the following mathematical notations are used in the rest

of the chapter. P{.} and E{.} are defined as the probability and expected value operators,

respectively. The notation PE
.
= e−u(α)L means limL→∞− log PE

L
= u(α). f(L) = o(g(L))

is equivalent to limL→∞
f(L)
g(L)

= 0, and f(L) = O(g(L)) means that ∃L0,M > 0 : ∀L >

L0, |f(L)| < M |g(L)|.

2.3 Performance Analysis of FEC on Multiple Paths

According to the discrete to continuous approximation in subsection 2.2.4, when the Ni

packets of the FEC block are sent over path i, the loss count can be written as Bi

T
Ni.
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Table 2.2: Main Assumptions
Assumption Comments

L independent paths justified in subsection 2.1.1 and 2.1.2
used in sections 2.3 and 2.4

discrete to continuous justified in subsection 2.2.4
approximation used in section 2.3

justified in subsection 2.2.1
Extended Gilbert Model used in section 2.3

results valid without this assumption
see subsections 2.2.1 and 2.3.1 for details

Hence, the total ratio of lost packets is equal to

L∑
i=1

BiNi

TN
=

L∑
i=1

Biρi

T

where ρi , Si

Sreq
, 0 ≤ ρi ≤ 1, denotes the portion of the bandwidth assigned to path i.

xi , Bi

T
is defined as the portion of time that path i has been in the bad state (0 ≤ xi ≤ 1).

Hence, the probability of irrecoverable loss for an MDS code is equal to

PE = P

{
L∑

i=1

ρixi > α

}
. (2.1)

In order to find the optimum rate allocation, PE has to be minimized with respect to the

allocation vector (ρi’s), subject to the following constraints:

0 ≤ ρi ≤ min

{
1,

Wi

Sreq

}
,

L∑
i=1

ρi = 1 (2.2)

where Wi is the bandwidth constraint on path i defined in subsection 2.2.3.

2.3.1 Identical Paths

When the paths are identical and have equal bandwidth constraints1 (Wi = W for ∀ 1 ≤
i ≤ L), due to the symmetry of the problem, the uniform RA (ρi = 1

L
) is obviously the

1The case where Wi’s are different is discussed in Remark 2.4 of subsection 2.3.2
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optimum solution. Of course, the solution is feasible only when we have 1
L
≤ W

Sreq
. Then,

the probability of irrecoverable loss can be simplified as

PE = P

{
1

L

L∑
i=1

xi > α

}
. (2.3)

Let us define Q(x) as the probability density function of x. Since x is defined as x = B
T
,

clearly we have Q(x) = TfB(xT ), where fB(t) is the probability density function (pdf)

of B. Defining E{} as the expected value operator throughout this chapter, E{x} can

be computed based on Q(x). We observe that in (2.3), the random variable xi’s are

bounded and independent. Hence, the following well-known upperbound in large deviation

theory [113] can be applied

PE ≤ e−u(α)L

u(α) =

{
0 for α ≤ E{x}
λα− log(E{eλx}) otherwise

(2.4)

where the log function is computed in Neperian base, and λ is the solution of the following

non-linear equation, which is shown to be unique by Lemma 2.1.

α =
E{xeλx}
E{eλx}

. (2.5)

Since λ is unique, we can define l(α) = λ. Even though being an upperbound, inequal-

ity (2.4) is exponentially tight for large values of L [113]. More precisely

PE
.
= e−u(α)L (2.6)

where the notation
.
= means lim

L→∞
− log PE

L
= u(α). Note that u(α) depends on the pdf of

B, fB(t), which is computed in appendix 2.6.1. Of course, equation (2.6) is valid regardless

of the pdf of B.

Next, we state the following lemmas which are required for the analysis of the next

subsection. The proofs can be found in the appendices 2.6.2 and 2.6.3, respectively.

Lemma 2.1. u(α) and l(α) have the following properties:

1. ∂
∂α

l(α) > 0
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Figure 2.4: (a) PE vs. L for different values of α. (b) The exponent (slope) of plot (a) for
different values of α: experimental versus theoretical values.

2. l (α = 0) = −∞

3. l (α = E{x}) = 0

4. l (α = 1) = +∞

5. ∂
∂α

u(α) = l(α) > 0 for α > E{x}

Lemma 2.2. Defining y = 1
L

∑L
i=1 xi, where xi’s are i.i.d. random variables as already

defined, the probability density function of y satisfies fy(α)
.
= e−u(α)L, for all α > E{x}.

Remark 2.1. A special case is when the block code uses all the bandwidth of the paths.

In this case, we have N = LWT , where W is the maximum bandwidth of each path, and

T is the block duration. Assuming α > E{x} is a constant independent of L, we observe

that the information packet rate is equal to K
T

= (1− α) WL, and the error probability is

PE
.
= e−u(α)L. This shows using MDS codes over multiple independent paths provides an

exponential decay in the irrecoverable loss probability and a linearly growing end-to-end

rate in terms of the number of paths, simultaneously.

Example 2.1. Consider the scenario of transmitting a video stream with the DVD quality

(using either MPEG-2 or MPEG-4) over multiple identical paths. The bitrate per path is
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selected to be 1 Mbps. The number of paths varies from L = 1 to L = 6. Hence, the end-

to-end video bitrate varies in the range of 1− 6 Mbps, in accordance with [114–118]. The

block transmission time is T = 200 ms which imposes an acceptable end-to-end delay for

the video stream. The payload of each video packet is assumed to be 4 kb. Accordingly,

the block length equals to N = n0L where n0 can be written as n0 =
1 Mbps

4 kb
T = 50.

The end-to-end channel follows a 2-state Gilbert model with 1
µg

= 2500 ms and 1
µb

= 52

ms, in accordance with [12, 17]. Coding overhead is changed from α = 0.16 to α = 0.48.

Figure 2.4 compares the result of (2.6) with the simulation results. PE is plotted versus

L in semilogarithmic scale in Fig. 2.4(a) for different values of α. We observe that as L

increases, log PE decays linearly which is expected noting equation (2.6). Also, Fig. 2.4(b)

compares the slope of each plot in Fig. 2.4(a) with u(α). Figure 2.4 shows a good agreement

between the theory and the simulation results for practical number of paths. Moreover,

it verifies the fact that the stronger the FEC code is (larger α), the higher is the gain we

achieve through path diversity (larger exponent).

2.3.2 Non-Identical Paths

Now, let us assume there are J types of paths between the source and the destination,

consisting of Lj identical paths of type j (
∑J

j=1 Lj = L). Without loss of generality,

we assume that the paths are ordered according to their associated type, i.e. the paths

from 1 +
∑j−1

k=1 Lk to
∑j

k=1 Lk are of type j. We denote γj =
Lj

L
. According to the i.i.d.

assumption, it is obvious that ρi has to be the same for all paths of the same type. ηj and

yj are defined as

ηj =
∑

Pj−1
k=1 Lk<i≤

Pj
k=1 Lk

ρi

yj =
ηj

Lγj

∑
Pj−1

k=1 Lk<i≤
Pj

k=1 Lk

xi. (2.7)

Following Lemma 2.2, we observe that fyj
(βj)

.
= e

−γjuj(
βj
ηj

)L
. We define the sets SI , SO and

ST as
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SI =

{
(β1, β2, · · · , βJ) |0 ≤ βj ≤ 1,

J∑
j=1

βj > α

}

SO =

{
(β1, β2, · · · , βJ) |0 ≤ βj ≤ 1,

J∑
j=1

βj = α

}

ST =

{
(β1, β2, · · · , βJ) |ηjE {xj} ≤ βj,

J∑
j=1

βj = α

}

respectively. Hence, PE can be written as

PE = P

{
J∑

j=1

yj > α

}

=

∫
SI

J∏
j=1

fyj
(βj)dβj

.
=

∫
SI

e

−L

J∑
j=1

γjuj(
βj

ηj

) J∏
j=1

dβj

(a).
= e

−L min
β∈SI∪SO

J∑
j=1

γjuj

(
βj

ηj

)

(b).
= e

−L min
β∈SO

J∑
j=1

γjuj

(
βj

ηj

)

(c).
= e

−L min
β∈ST

J∑
j=1

γjuj

(
βj

ηj

)

(d).
= e

−L

J∑
j=1

γjuj

(
β?

j

ηj

)
(2.8)

where (a) follows from Lemma 2.3, (b) follows from the fact that uj(α) is a strictly in-

creasing function of α, for α > E{xj}, and (c) can be proved as follows. Let us denote

the vector which minimizes the exponent over the set SO as β̂
?
. Since ST is a subset of
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SO, β̂
?

is either in ST or in SO − ST . In the former case, (c) is obviously valid. When

β̂
?
∈ SO − ST , we can prove that 0 ≤ β̂?

j ≤ ηjE{xj}, for all 1 ≤ j ≤ J , by contradiction.

Let us assume the opposite is true, i.e., there is at least one index 1 ≤ j ≤ J such that

0 ≤ β̂?
j ≤ ηjE{xj}, and at least one other index 1 ≤ k ≤ J such that ηkE{xk} < β̂?

k .

Then, knowing that the derivative of of uj(α) is zero for α = E{xj} and strictly positive

for α > E{xj}, a small increase in β̂?
j and an equal decrease in β̂?

k reduces the objective

function,
∑J

j=1 γjuj

(
βj

ηj

)
, which contradicts the assumption that β̂

?
is a minimum point.

Knowing that 0 ≤ β̂?
j < ηjE{xj}, for all 1 ≤ j ≤ J , it is easy to show that the minimum

value of the objective function is zero over SO, and ST has to be an empty set. Defining

the minimum value of the positive objective function as zero over an empty set (ST ) makes

(c) valid for the latter case where β̂
?
∈ SO − ST . Finally, applying Lemma 2.4 results in

(d) where β? is defined in the lemma.

Lemma 2.3. For any continuous positive function h(x) over a convex set S, and defining

H(L) as

H(L) =

∫
S

e−h(x)Ldx

we have

lim
L→∞

− log(H(L))

L
= inf

S
h(x) = min

cl(S)
h(x)

where cl(S) denotes the closure of S (refer to [119] for the definition of the closure opera-

tor).

Proof of Lemma 2.3 can be found in appendix 2.6.4.

Lemma 2.4. There exists a unique vector β? with the elements β?
j = ηjl

−1
j

(
νηj

γj

)
which

minimizes the convex function
∑J

j=1 γjuj(
βj

ηj
) over the convex set ST , where ν satisfies the

following condition
J∑

j=1

ηjl
−1
j

(
νηj

γj

)
= α. (2.9)

l−1() denotes the inverse of the function l() defined in subsection 2.3.1.

Proof of Lemma 2.4 can be found in appendix 2.6.5.

Equation (2.8) is valid for any fixed value of η. To achieve the most rapid decay of PE,
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the exponent must be maximized over η.

lim
L→∞

− log PE

L
= max

0≤ηj≤1

J∑
j=1

γjuj

(
β?

j

ηj

)
(2.10)

where β? is defined for any value of the vector η in Lemma 2.4. Theorem 2.1 solves the

maximization problem in (2.10) and identifies the asymptotically optimum RA. The proof

can be found in appendix 2.6.6.

Theorem 2.1. Consider a point-to-point connection over the network with L independent

paths from the source to the destination, with a large enough bandwidth constraint2. The

paths are from J different types, Lj paths from the type j. Assume a block FEC of size

[N,K] is sent during a time interval T . Let Nj denote the number of packets in a block

of size N assigned to the paths of type j, such that
∑J

j=1 Nj = N . The RA vector η is

defined as ηj =
Nj

N
. For fixed values of γj =

Lj

L
, n0 = N

L
, k0 = K

L
, T and asymptotically

large number of paths L, the optimum rate allocation vector η? equals to

η?
j =



0 if α ≤ E{xj}

γjlj(α)
J∑

i=1, α>E{xi}

γili(α)

otherwise (2.11)

if there is at least one 1 ≤ j ≤ J for which α > E{xj}. Furthermore, the probability of

irrecoverable loss corresponding to η? decays as

PE
.
= e−L

PJ
j=1 γjuj(α). (2.12)

In the case where α ≤ E{xj} for 1 ≤ j ≤ J , PE
.
= 1 independent of the allocation vector

η.

Remark 2.2. Theorem 2.1 can be interpreted as follows. For large values of L, adding a new

2By the term ‘large enough’, we mean the bandwidth constraint on a path of type j, Wj , satisfies the
condition ηjn0

Tγj
≤Wj . The reason is that ηj must satisfy both conditions of 0 ≤ ηj ≤ 1 and Nj

TLj
= ηjn0L

TγjL ≤
Wj , simultaneously. When Wj is large enough such that ηjn0

Tγj
≤Wj , the latter condition is automatically

satisfied, and the optimization problem can be solved.
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Figure 2.5: (a) PE versus L for the combination of two path types, half from type I and
half from type II. (b) The normalized aggregated weight of type I paths in the optimal
rate allocation (ηopt

1 ), compared with the value of η1 which maximizes the exponent of
equation (2.10) (η?

1).

type of path contributes to the path diversity iff the path satisfies the quality constraint

α > E{x}, where x is the percentage of time that the path spends in the bad state during

the time interval [0, T ]. Only in this case, adding the new type of path exponentially

improves the performance of the system in terms of the probability of irrecoverable loss.

Remark 2.3. Observing the exponent coefficient corresponding to the optimum allocation

vector η?, we can see that the typical error event occurs when the ratio of the lost packets

on all types of paths is the same as the total fraction of the lost packets, α. However, this

is not the case for any arbitrary RA vector η.

Remark 2.4. An interesting extension of Theorem 2.1 is the case where all types have iden-

tical erasure patterns (uj(x) = uk(x) for ∀ 1 ≤ j, k ≤ J and ∀x), but different bandwidth

constraints. Adopting the notation of Theorem 2.1, the bandwidth constraint on ηj can

be written as
ηjn0L

TγjL
≤ Wj, where Wj is the maximum bandwidth for a path of type j. Let

us define η̃? as the allocation vector which maximizes the objective function of equation

(2.10), and satisfies the bandwidth constraints too. η? is the maximizing vector for the

unconstrained problem, defined in Theorem 2.1. According to equation (2.11), we have

η?
j = γj for ∀1 ≤ j ≤ J . It is obvious that η̃? = η? if η?

j ≤
γjWjT

n0
for all j. In case η?

j

does not satisfy the bandwidth constraint for some j, η̃? can be found by the water-filling
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algorithm. More accurately, we have

η̃?
j =


γjWjT

n0

if η̃?
j ≤ γjΥ

γjΥ if η̃?
j <

γjWjT

n0

(2.13)

where Υ can be found by imposing the condition
∑J

j=1 η̃?
j = 1. Figure 2.6 depicts water-

filling among identical paths with four different bandwidth constraints. Proof of equa-

tion (2.13) can be found in appendix 2.6.7.

Example 2.2. Consider the scenario of transmitting a video stream with the DVD quality

(using either MPEG-2 or MPEG-4) over multiple paths of two types. The number of paths

for each type are equal, i.e. γ1 = γ2 = 0.5. The total number of paths varies from L = 2 to

L = 8. Both type of paths are modeled as 2-state Gilbert channels with 1
µg

= 2500 ms, in

accordance with [12,17]. Furthermore, the average bad burst duration are equal to 1
µb1

= 50

ms for the first type and 1
µb2

= 100 ms for the second type. The block transmission time

is T = 200 ms which imposes an acceptable end-to-end delay for the video stream. The

payload of each video packet is assumed to be 5 kb. The end-to-end rate increases linearly

with L such that Sreq

L
= 1 Mbps. Hence, the block length equals to N = 40L. The coding

overhead is α = 0.3. Figure 2.5(a) shows PE of the optimum RA versus L. The optimal

RA, ηopt, is found by exhaustive search among all possible allocation vectors. The figure

depicts a linear behavior in semi-logarithmic scale with the exponent of 0.9137, which is

comparable to 0.9256 predicted by (2.11).

In this scenario, let us denote η?
1 as the value of the first element of η?, given in

equation (2.11). Obviously, η?
1 does not depend on L. Moreover, ηopt

1 is defined as the

normalized aggregated weight of type I paths in the optimal RA. Figure 2.5(b) compares

ηopt
1 with η?

1 for different number of paths. It is observed that ηopt
1 converges rapidly to η?

1

as L grows.

2.4 Suboptimal Rate Allocation

In order to compute the complexity of the RA problem, we focus our attention on the

original discrete formulation in subsection 2.2.3. According to the model of subsection 2.3.2,

we assume the available paths are from J types, Lj paths from type j, such that
∑J

j=1 Lj =
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Figure 2.6: WaterFilling algorithm over identical paths with four different bandwidth
constraints.

L. Obviously, all the paths from the same type should have equal rate. Therefore, the RA

problem is turned into finding the vector N = (N1, . . . , NJ) such that
∑J

j=1 Nj = N , and

0 ≤ Nj ≤ LjWjT for all j. Nj denotes the number of packets assigned to all the paths of

type j. Let us temporarily assume that all paths have enough bandwidth such that Nj can

vary from 0 to N for all j. There are
(

N+J−1
J−1

)
L-dimensional non-negative vectors of the

form (N1, . . . , NJ) which satisfy the equation
∑J

j=1 Nj = N each representing a distinct

RA. Hence, the number of candidates is exponential in terms of J .

First, we prove the RA problem is NP [120] in the sense that PE can be computed in

polynomial time for any candidate vector N = (N1, . . . , NJ). Let us define PN
e (k, j) as

the probability of having more than k errors over the paths of types 1 to j for a specific

allocation vector N. We also define Qj(n, k) as the probability of having exactly k errors

out of the n packets sent over the paths of type j. In appendices 2.6.8 and 2.6.9, Qj(n, k)’s

are computed for any general M -state Markov channel model with polynomial complexity.

Hence, we can assume that Qj(n, k)’s are precomputed and stored for all n and k and path
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types. Then, the following recursive formula holds for PN
e (k, j)

PN
e (k, j) =


Nj∑
i=0

Qj(Nj, i)P
N
e (k − i, j − 1) if k ≥ 0

1 if k < 0

PN
e (k, 1) =

N1∑
i=k+1

Q1(N1, i). (2.14)

To compute PN
e (K, J) by the above recursive formula, we apply a well-known technique

in the theory of algorithms called memoization [121]. Memoization works by storing the

computed values of a recursive function in an array. By keeping this array in the memory,

memoization avoids recomputing the function for the same arguments when it is called

later. To compute PN
e (K, J), an array of size O(KJ) is required. This array should be filled

with the values of PN
e (k, j) for 0 < k ≤ K, and 1 ≤ j ≤ J . Computing PN

e (k, j) requires

O(K) operations assuming the values of PN
e (i, j−1) and Qj(Nj, i) and

∑Nj

i=k+1 Qj(Nj, i) are

already computed for 0 ≤ i ≤ k. Thus, PN
e (K, J) can be computed with the complexity

of O(K2J) if the values of Qj(Nj, k) are given for all Nj and 0 ≤ k ≤ K. Following

appendix 2.6.9, we note that for each j, Qj(Nj, k) for 0 ≤ k ≤ K is computed offline with

the complexity of O(K2Lj) + O
(
M2 Nj

Lj
K
)
. Hence, the total complexity of computing

PN
e (K, J) adds up to

O(K2J) +
J∑

j=1

O

(
K2Lj + M2Nj

Lj

K

)
(a)
= O(K2J) +

J∑
j=1

O
(
K2Lj + M2NjK

)
(b)
= O

(
K2L + M2KN

)
(2.15)

where (a) follows from the fact that
Nj

Lj
< Nj, and the term O(K2J) is omitted in (b) since

we know that J < L.

Now, we propose a suboptimal polynomial time algorithm to estimate the best path

allocation vector, Nopt. Let us define P opt
e (n, k, j) as the probability of having more than

k errors for a block of length n over the paths of types 1 to j minimized over all possible
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RA’s (N = Nopt). First, we find a lowerbound P̂e(n, k, j) for P opt
e (n, k, j) from the following

recursive formula

P̂e(n, k, j) =


min

0≤nj≤min {n,bLjWjT c}

nj∑
i=0

Qj(nj, i)·

P̂e(n− nj, k − i, j − 1) if k > 0

1 if k ≤ 0

P̂e(n, k, 1) =
n∑

i=k+1

Q1(n, i). (2.16)

Using memoization technique, we need an array of size O(NKJ) to store the values of

P̂e(n, k, j) for 0 < n ≤ N , 0 < k ≤ K, and 1 ≤ j ≤ J . According to the recursive

definition above, computing P̂e(n, k, j) requires O(NK) operations assuming the values of

Qj(nj, i) and P̂e(n − nj, k − i, j − 1) and
∑nj

i=k+1 Qj(nj, i) are already computed for all i

and nj. Thus, it is easy to verify that P̂e(N, K, J) can be computed with the complexity

of O(N2K2J) when the values of Qj(nj, i) are given for all 0 < nj ≤ N and 0 ≤ i ≤ nj.

According to appendix 2.6.9, for each 1 ≤ j ≤ J , Qj(nj, i) can be computed for all

0 < nj ≤ N and 0 ≤ i ≤ nj with the complexity of O(N3Lj) + O(M2 N2

Lj
). Thus,

computing Qj(nj, i) for all 1 ≤ j ≤ J , and 0 < nj ≤ N , and 0 ≤ i ≤ nj, has the

complexity of
∑J

j=1 O(N3Lj) + O(M2 N2

Lj
) = O(N3L + M2N2J). Finally, P̂e(N,K, J) can

be computed with the total complexity of O(N2K2J + N3L + M2N2J).

The following lemma guarantees that P̂e(n, k, j) is in fact a lowerbound for P opt
e (n, k, j).

The proof is given in appendix 2.6.10.

Lemma 2.5. P opt
e (n, k, j) ≥ P̂e(n, k, j).

Algorithm 1 recursively finds a suboptimum allocation vector N̂ based on the lower-

bound of Lemma 2.5.

Intuitively speaking, the proposed suboptimal algorithm recursively finds the typical

error event (Kj’s) which has the maximum contribution to the error probability, and assigns

the RA (N̂j’s) such that the estimated typical error probability (P̂e) is minimized. Indeed,

Lemma 2.5 shows that the estimate used in the algorithm (P̂e) is a lower-bound for the

minimum achievable error probability (P opt
e ). Comparing (2.16) and the while loop in

Algorithm 1, we observe that the values of N̂j and Kj can be found in O(1) during the
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Algorithm 1 Proposed Suboptimal RA Algorithm

Require: N, K, J, (L1, . . . , LJ), Qj(·, ·), P̂e(·, ·, ·)
Ensure: (N̂1, . . . , N̂J)

Initialize j ← J ; n← N ; k ← K;
while j > 1 and k ≥ 0 do

N̂j ← argmin
0≤nj≤min {n,bLjWjT c}

nj∑
i=0

P̂e(n− nj, k − i, j − 1) ·Qj(nj, i);

Kj ← argmax
0≤i≤N̂j

Qj(N̂j, i)P̂e(n− N̂j, k − i, j − 1);

Update n← n− N̂j; k ← k −Kj; j ← j − 1;
end while
for m = 1 to j do

N̂m ← b
n

j
c;

end for
for m = 1 to (n mod j) do

N̂m ← N̂m + 1;
end for
return (N̂1, . . . , N̂J);

computation of P̂e(N, K, J). Hence, complexity of the proposed algorithm is the same as

that of computing P̂e(N, K, J) which is O(N2K2J + N3L + M2N2J).

The following theorem guarantees that the output of the above algorithm converges to

the asymptotically optimal RA introduced in Theorem 2.1 of section 2.3.2, and accordingly,

it performs optimally for large number of paths. The proof can be found in appendix 2.6.11.

Theorem 2.2. Consider a point-to-point connection over the network with L independent

paths from the source to the destination, each with a large enough bandwidth constraint. The

paths are from J different types, Lj paths from the type j. Assume a block FEC of the size

[N,K] is sent during an interval time T . For fixed values of γj =
Lj

L
, n0 = N

L
, k0 = K

L
, T

and asymptotically large number of paths (L) we have

1. P̂e(N, K, J)
.
= P opt

e (N, K, J)
.
= e−L

PJ
j=1 γjuj(α)

2.
N̂j

N
= η?

j + o(1)

3.
Kj

N̂j
= α + o(1) for α > E{xj}.
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where α = k0

n0
and uj() are defined in subsections 2.3.1 and 2.3.2. P̂e(N,K, J) is the lower-

bound for P opt
e (n, k, j) defined in equation (2.16). N̂j is the total number of packets assigned

to the paths of type j by the suboptimal rate allocation algorithm. η?
j is the asymptotically

optimal RA given in equation (2.11). Kj is also defined in Algorithm 1.

Example 2.3. The proposed algorithm is compared with four other allocation schemes

over L = 4 and L = 3 paths in Fig. 2.7. The optimal method uses exhaustive search

over all possible allocations. ‘Best Path Allocation’ assigns everything to the best path

only, ignoring the rest. ‘Equal Distribution’ scheme distributes the packets among all

paths equally. Finally, the ‘Asymptotically Optimal ’ allocation assigns the rates based on

equation (2.11). A DVD-quality video stream with the end-to-end rate of Sreq = 3.2 Mbps

is studied in both scenarios of Fig. 2.7. The block transmission time is T = 250 ms which

imposes an acceptable end-to-end delay for the video stream. The payload of each packet

is adopted to be 4 kb. Accordingly, the block length would be equal to N = SreqT = 200

packets. The FEC coding overhead is fixed at α = 0.2. The paths follow the 2-state

Gilbert model with 1
µg

= 2500 ms. However, quality of the paths are different as they have

different average bad burst durations: (a) In the case of 3 paths, the average bad burst of

the paths ( 1
µb

’s) are listed as [75 ms, 75 ms±∆]; (b) In the case of 4 paths, the average bad

burst of the paths ( 1
µb

’s) are listed as [75 ms± ∆
2
, 75 ms± 3∆

2
]; As observed, the median of

1
µb

of paths is fixed at 75 ms in both scenarios. ∆ represents a measure of deviation from

this median. ∆ = 0 describes the case where all the paths are identical. The larger is ∆,

the more variety we have among the paths and the more diversity gain might be achieved

using a judicious RA.

As seen, our suboptimal algorithm tracks the optimal algorithm so closely that the

corresponding curves are not easily distinguishable in most cases. However, the ’Asymp-

totically Optimal ’ RA results in lower performance since L is relatively small which makes

the asymptotic analysis assumptions invalid. Comparing Fig. 2.7(a) and Fig. 2.7(b), it is

observed that increasing L from 3 to 4 paths reduces the gap between the ’Asymptotically

Optimal ’ RA and the optimal RA considerably.

When ∆ = 0, the ‘Equal Distribution’ scheme obviously coincides with the optimal

allocation. This scheme eventually diverges from the optimal algorithm as ∆ grows. How-

ever, it still outperforms the best path allocation method as long as ∆ is not too large.

For very large values of ∆, the best path dominates all the other ones, and we can ignore

the rest of the paths. Hence, the best path allocation eventually converges to the optimal
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Figure 2.7: Optimal and suboptimal RA’s are compared with equal distribution and best
path allocation schemes for different values of ∆: (a) L = 3, (b) L = 4.

scheme when ∆ increases.

2.5 Conclusion

In this chapter, we have studied the performance of Forward Error Correction over a

block of packets sent through multiple independent paths. Adopting MDS codes, the

probability of irrecoverable loss (PE) is shown to decay exponentially with the number of

paths. Furthermore, the rate allocation (RA) problem across independent paths is studied.

It is shown that in the asymptotically optimal RA, each path is assigned a positive rate

iff its quality is above a certain threshold. Finally, the RA problem is studied for any

arbitrary number of paths. A heuristic suboptimal algorithm is proposed which computes

a near-optimal allocation in polynomial time. For large values of L, the result of this

algorithm is shown to converge to the optimal RA. Simulation results verify the validity

of the theoretical analysis in several practical scenarios and also show the near-optimal

performance of the proposed suboptimal algorithm.
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2.6 Appendices

2.6.1 Probability Distribution of Bi

First, we compute the distribution of Bi for the 2-state Gilbert model. We denote the

values of Bi with the parameter t to emphasize that they are expressed in the unit of time.

Here, we focus on one path, for example path 1. Therefore, the index i can be temporarily

dropped in analyzing the probability density function (pdf) of Bi.

We define the events g and b, respectively, as the channel being in the good or bad

states at the start of a block. Then, the pdf of B can be written as

fB(t) = fB|b(t)πb + fB|gπg. (2.17)

LetN T
s denote the number of consecutive states the channel experiences during the interval

T . For instance, N T
s = 3 means that the channel switches its state twice in a block

transmission time. Now, we define fm
B|b(t) as

fm
B|b(t) = lim

δ→0

P
{
t ≤ B < t + δ & N T

s = m|b
}

δ
. (2.18)

fm
B|g(t) can be defined similarly.

For m = 1, due to the memoryless nature of the exponential distribution, we have

f 1
B|b(t) = δ(t− T )e−µbT

f1
B|g(t) = δ(t)e−µgT . (2.19)

For odd values of m > 1, let τ1 to τm denote the times the channel spends in different

states. If the channel starts from the bad state, we have
∑m+1

2
i=1 τ2i−1 = t and

∑m−1
2

i=1 τ2i =

T − t. Thus fm
B|b(t) can be written as

fm
B|b(t)=

∫
D

µbe
−µbτ1µge

−µgτ2 . . . µge
−µgτm−1e−µbτm

m−2∏
i=1

τi

=µ
m−1

2
b µ

m−1
2

b e−µbte−µg(T−t)4m−1
2

(t)4m−3
2

(T − t)

(2.20)
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where D and 4k(t) are defined as

D ,

(τ1, . . . , τm)

∣∣∣∣∣∣∀i : τi > 0,

m+1
2∑

i=1

τ2i−1 = t,

m−1
2∑

i=1

τ2i = T − t

 ,

4k(t) ,
∫

zi>0

. . .

∫
Pk

i=1 zi≤t

dz1 . . . dzk.

It is easy to observe that 4k(t) is the volume of a k-dimensional simplex with the edge of

length t. By mathematical induction on k, it can be shown that 4k(t) = tk

k!
. Therefore,

making similar arguments for the even values of m, we have

fm
B|b(t)=



µg
(µbt)

m−1
2 (µg (T − t))

m−3
2(

m−1
2

)
!
(

m−3
2

)
!

e−µbte−µg(T−t)

for m odd

µb
(µbtµg (T − t))

m
2 −1(

m
2 − 1

)
!
(

m
2 − 1

)
!
e−µbte−µg(T−t)

for m even

Based on similar arguments, fm
B|g(t) can be written as

fm
B|g(t)=



µb
(µbt)

m−3
2 (µg (T − t))

m−1
2(

m−3
2

)
!
(

m−1
2

)
!

e−µbte−µg(T−t)

for m odd

µg
(µbtµg (T − t))

m
2 −1(

m
2 − 1

)
!
(

m
2 − 1

)
!
e−µbte−µg(T−t)

for m even

Having fm
B|b(t) and fm

B|g(t) for all m, we can write

fB|b(t) =
∞∑

m=1

fm
B|b(t)

fB|g(t) =
∞∑

m=1

fm
B|g(t). (2.21)

Combining the above equations with (2.17), fB(t) can be computed. Noting the factorial
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terms in the denominator of fm
B|b(t) and fm

B|g(t) and the fact that max{t, T − t} = T

for 0 ≤ t ≤ T , it can be verified that both fm
B|b(t) and fm

B|g(t) decrease very rapidly for
m−3

2
> max{µbT, µgT}. Therefore, in the practical cases, we do not need to compute an

infinite summation to get a close approximation of fB(t).

For the Extended Gilbert model, the pdf of B can be computed as follows. Here,

equation (2.17) should be replaced with fB(t) = fB|g(t)πg+
∑M−1

i=1 fB|bi
(t)πbi

. Moreover, for

any specific sequence of state transitions (τ1, . . . , τm) of length m, similar to the argument

of equation (2.20), it can be shown that fB|bi
(τ1, . . . , τm) only depends on the summation

of τi’s which belong to the same state. Accordingly, similar to (2.21), fB|bi
(t) and fB|g(t)

can be recomputed by summing over all lengths m and all state transition sequences of

length m.

2.6.2 Proof of Lemma 2.1

1) We define the function v(λ) as

v(λ) =
E{xeλx}
E{eλx}

. (2.22)

Then, the first derivative of v(λ) will be

∂

∂λ
v(λ) =

E{x2eλx}E{eλx} − [E{xeλx}]2

[E{eλx}]2
. (2.23)

According to Cauchy-Schwarz inequality, the following statement is always true for any

two functions of f() and g()(∫
x

f(x)g(x)dx

)2

<

∫
x

f 2(x)dx

∫
x

g2(x)dx (2.24)

unless f(x) = Kg(x) for a constant K and all values of x. If we choose f(x) =
√

x2Q(x)exλ

and g(x) =
√

Q(x)exλ, they can not be proportional to each other for all values of x.

Therefore, the numerator of equation (2.23) has to be strictly positive for all λ. Since

the function v(λ) is strictly increasing, it has an inverse v−1(α) which is also strictly

increasing. Moreover, the non-linear equation v(λ) = α has a unique solution of the form

λ = v−1(α) = l(α).
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2) To show that l(α = 0) = −∞, we prove an equivalent statement of the form lim
λ→−∞

v(λ) =

0. Since x is a random variable in the range [0, 1] with the probability density function

Q(x), for any 0 < ε < 1, we can write

lim
λ→−∞

v(λ) = lim
λ→−∞

∫ ε

0
xQ(x)exλdx +

∫ 1

ε
xQ(x)exλdx∫ 1

0
Q(x)exλdx

≤ lim
λ→−∞

∫ ε

0
xQ(x)exλdx∫ ε

0
Q(x)exλdx

+

∫ 1

ε
xQ(x)dx∫ ε

0
Q(x)e(x−ε)λdx

(a)
= lim

λ→−∞

∫ ε

0
xQ(x)exλdx∫ ε

0
Q(x)exλdx

(b)
= lim

λ→−∞

x1Q(x1)e
λx1

Q(x2)eλx2
(2.25)

for some x1, x2 ∈ [0, ε]. (a) follows from the fact that for x ∈ [0, ε], (x− ε)λ→ +∞ when

λ→ −∞, and (b) is a result of the mean value theorem for integration [57]. This theorem

states that for every continuous function f(x) in the interval [a, b], we have

∃ x0 ∈ [a, b] s.t.

∫ b

a

f(x)dx = f(x0)[b− a]. (2.26)

Equation (2.25) is valid for any arbitrary 0 < ε < 1. If we choose ε → 0, x1 and x2 are

both squeezed in the interval [0, ε]. Thus, we have

lim
λ→−∞

v(λ) ≤ lim
λ→−∞

lim
ε→0

x1Q(x1)e
λx1

Q(x2)eλx2
= lim

ε→0
x1 = 0 (2.27)

Based on the distribution of x, v(λ) is obviously non-negative for any λ. Hence, the

inequality in (2.27) can be replaced by equality.

3) By observing that v(λ = 0) = E{x}, it is obvious that l(α = E{x}) = 0.

4) To show that l(α = 1) = +∞, we prove the equivalent statement of the form lim
λ→+∞

v(λ)

= 1. For any 0 < ε < 1 and x ∈ [1 − ε, 1], (x − 1 + ε)λ → +∞ when λ → +∞. Then,
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defining ζ = 1− ε, we have

lim
λ→+∞

∫ ζ

0
xQ(x)exλdx∫ 1

0
Q(x)exλdx

≤ lim
λ→+∞

∫ ζ

0
xQ(x)dx∫ 1

ζ
Q(x)e(x−ζ)λdx

= 0. (2.28)

Since the fraction in (2.28) is obviously non-negative for all λ, this inequality can be

replaced by an equality. Similarly, we have

lim
λ→+∞

∫ ζ

0
Q(x)exλdx∫ 1

ζ
xQ(x)exλdx

≤ lim
λ→+∞

∫ ζ

0
Q(x)dx∫ 1

ζ
xQ(x)e(x−ζ)λdx

= 0. (2.29)

which can also be replaced by equality. Now, the limit of v(λ) is written as

lim
λ→+∞

v(λ) = lim
λ→+∞

∫ ζ

0
xQ(x)exλdx +

∫ 1

ζ
xQ(x)exλdx∫ 1

0
Q(x)exλdx

(a)
= lim

λ→+∞

∫ 1

ζ
xQ(x)exλdx∫ 1

0
Q(x)exλdx

(b)
=

(
lim

λ→+∞

∫ ζ

0
Q(x)exλdx +

∫ 1

ζ
Q(x)exλdx∫ 1

ζ
xQ(x)exλdx

)−1

(c)
=

(
lim

λ→+∞

∫ 1

ζ
Q(x)exλdx∫ 1

ζ
xQ(x)exλdx

)−1

(d)
=

(
lim

λ→+∞

Q(x1)e
x1λ

x2Q(x2)ex2λ

)−1

(2.30)

for some x1, x2 ∈ [1− ε, 1]. (a) follows from equation (2.28), and (b) is valid since the final

result shows that limλ→+∞ v(λ) is finite and non-zero [57]. (c) follows from equation (2.29),

and (d) is a result of the mean value theorem for integration. If we choose ε → 0, x1 and

x2 are both squeezed in the interval [1− ε, 1]. Then, equation (2.30) turns into

lim
λ→+∞

v(λ) =

(
lim

λ→+∞
lim
ε→0

Q(x1)e
x1λ

x2Q(x2)ex2λ

)−1

=

(
lim
ε→0

1

x2

)−1

= 1.
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5) According to equations (2.4) and (2.5), the first derivative of u(α) is

∂u(α)

∂α
= l(α) + α

∂l(α)

∂α
− E{xeλx}

E{eλx}
∂l(α)

∂α
= l(α).

2.6.3 Proof of Lemma 2.2

Based on the definition of probability density function, we have

lim
L→∞

− 1

L
log (fy(α))

= lim
L→∞

− 1

L
log

(
lim
δ→ 0

P{y > α} − P{y > α + δ}
δ

)
(a)
= lim

δ→ 0
lim

L→∞
− 1

L
log

(
P{y > α} − P{y > α + δ}

δ

)
≥ lim

δ→ 0
lim

L→∞

1

L
(− log (P{y > α}) + log δ)

(b)
= u(α) (2.31)

where (a) is valid since log is a continuous function, and both limitations do exist and are

interchangeable. (b) follows from equation (2.6). The exponent of fy(α) can be upper-

bounded as

lim
L→∞

− 1

L
log (fy(α))

(a)
= lim

δ→ 0
lim

L→∞

− log (P{y > α} − P{y > α + δ}) + log δ

L
(b)

≤ lim
δ→ 0

lim
L→∞

− log
(
e−L(u(α)+ε) − e−L(u(α+δ)−ε)

)
+ log δ

L

= lim
δ→ 0

lim
L→∞

u(α) + ε−
log
(
1− e−Lχ

)
L

(c)
= u(α) + ε (2.32)

where χ = u(α + δ)− u(α)− 2ε. Since u(α) is a strictly increasing function (Lemma 2.1),

we can make χ positive by choosing ε small enough. (a) is valid since log is a continuous

function, and both limits do exist and are interchangeable. (b) follows from the definition

of limit if L is sufficiently large, and (c) is a result of χ being positive. Selecting ε arbitrarily
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small, results (2.31) and (2.32) prove the lemma.

2.6.4 Proof of Lemma 2.3

According to the definition of infimum, we have

lim
L→∞

− log(H(L))

L

≥ lim
L→∞

− 1

L
log

(
e
−L inf

S
h(x)

∫
S

dx

)
(a)
= inf

S
h(x). (2.33)

where (a) follows from the fact that S is a bounded region. Since h(x) is a continuous

function, it has a minimum in the bounded closed set cl(S) which is denoted by x?. Due

to the continuity of h(x) at x?, for any ε > 0, there is a neighborhood B(ε) centered at

x? such that any x ∈ B(ε) has the property of |h(x) − h(x?)| < ε. Moreover, since S is a

convex set, we have vol (B(ε) ∩ S) > 0 . Now, we can write

lim
L→∞

− log(H(L))

L

≤ lim
L→∞

− 1

L
log

(∫
S∩B(ε)

e−Lh(x)dx

)
≤ lim

L→∞
− 1

L
log

(
e−L(h(x?)+ε)

∫
S∩B(ε)

dx

)
= h(x?) + ε. (2.34)

Selecting ε to be arbitrarily small, (2.33) and (2.34) prove the lemma.

2.6.5 Proof of Lemma 2.4

According to Lemma 2.1, uj(x) is increasing and convex for ∀1 ≤ j ≤ J . Thus, the

objective function f(β) =
∑J

j=1 γjuj(
βj

ηj
) is also convex, and the region ST is determined

by J convex inequality constraints and one affine equality constraint. Hence, in this case,

KKT conditions are both necessary and sufficient for optimality [122]. In other words, if
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there exist constants φj and ν such that

γj

ηj

lj(
β?

j

ηj

)− φj − ν = 0 ∀1 ≤ j ≤ J (2.35)

φj

[
ηE{xj} − β?

j

]
= 0 ∀1 ≤ j ≤ J (2.36)

then the point β? is a global minimum.

Now, we prove that either β?
j = ηjE{xj} for all 1 ≤ j ≤ J , or β?

j > ηjE{xj} for

all 1 ≤ j ≤ J . Let us assume the opposite is true, and there are at least two elements

of the vector β?, indexed with k and m, which have the values of β?
k = ηkE{xk} and

β?
m > ηmE{xm}, respectively. For any arbitrary ε > 0, the vector β?? can be defined as

below

β??
j =


β?

j + ε if j = k

β?
j − ε if j = m

β?
j otherwise.

(2.37)

Then, we have

lim
ε→0

f(β??)− f(β?)

ε

= lim
ε→0

1

ε

{
γkuk

(
β?

k + ε

ηk

)
+ γmum

(
β?

m − ε

ηm

)
−γmum

(
β?

m

ηk

)}
(a)
= lim

ε→0

γk

ηk

lk

(
β?

k + ε′

ηk

)
− γm

ηm

lm

(
β?

m + ε′′

ηm

)
= −γm

ηm

lm

(
β?

m

ηm

)
< 0 (2.38)

where ε′, ε′′ ∈ [0, ε], and (a) follows from the Taylor’s theorem. Thus, moving from β?

to β?? decreases the function which contradicts the assumption of β? being the global

minimum.

Out of the remaining possibilities, the case where β?
j = ηjE{xj} (∀1 ≤ j ≤ J) obviously

agrees with Lemma 2.4 for the special case of ν = 0. Therefore, the lemma can be

proved assuming β?
j > ηjE{xj} (∀1 ≤ j ≤ J). Then, equation (2.36) turns into φj = 0

(∀1 ≤ j ≤ J). By rearranging equation (2.35) and using the condition
∑J

j=1 βj = α,
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Lemma 2.4 is proved.

2.6.6 Proof of Theorem 2.1

Sketch of the proof: First, it is proved that η?
j > 0 if E{xj} < α. At the second step, we

prove that η?
j = 0, if E{xj} ≥ α. Then, KKT conditions [122] are applied for the indices

1 ≤ k ≤ J where E{xk} < α to find the maximizing allocation vector, η?.

Proof: The parameter ν is obviously a function of the vector η. Differentiating equa-

tion (2.9) with respect to ηk results in

∂ν

∂ηk

= −
vk

(
νηk

γk

)
+

νηk

γk

v′
k

(
νηk

γk

)
J∑

j=1

η2
j

γj

v′
j

(
νηj

γj

) (2.39)

where vj(x) = l−1
j (x), and v′

j(x) denotes its derivative with respect to its argument. The

objective function can be simplified as

g(η) ,
J∑

j=1

γjuj(
β?

j

ηj

) =
J∑

j=1

γjuj

(
vj(

νηj

γj

)

)
. (2.40)

ν? is defined as the value of ν corresponding to η?. Next, we show that ν? > 0. Let

us assume the opposite is true, i.e., ν? ≤ 0. Then, according to Lemma 2.1, we have

vj(
ν?ηj

γj
) ≤ E{xj} for all j which results in g(η?) = 0. However, it is possible to achieve

a positive value of g(η) by setting ηj = 1 for the one vector which has the property of

E{xj} < α, and setting ηj = 0 for the rest. Thus, η? can not be the maximal point. This

contradiction proves the fact that ν? > 0.

At the first step, we prove that η?
j > 0 if E{xj} < α. Assume the opposite is true for

an index 1 ≤ k ≤ J . Since
∑J

j=1 η?
j = 1, there should be at least one index m such that

η?
m > 0. For any arbitrary ε > 0, the vector η?? can be defined as below

η??
j =


ε if j = k

η?
j − ε if j = m

η?
j otherwise.

(2.41)
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ν?? is defined as the corresponding value of ν for the vector η??. Based on equation (2.39),

we can write

∆ν =

ν?? − ν? = (2.42)

vm

(
ν?η?

m

γm

)
+

ν?η?
m

γm

v′
m

(
ν?η?

m

γm

)
− E{xk}

J∑
j=1

η?2
j

γj

v′
j

(
ν?η?

j

γj

) ε + O(ε2).

Then, we have

lim
ε→0

g(η??)− g(η?)

ε

= lim
ε→0

1

ε

{
ν?2η?

k

γk

v′
k

(
ν?η?

k

γk

)
ε− ν?2η?

m

γm

v′
m

(
ν?η?

m

γm

)
ε

+ ν?∆ν

J∑
j=1

η?2
j

γj

v′
j

(
ν?η?

j

γj

)
+ O(ε2)

}
(a)
= ν?

{
vm

(
ν?η?

m

γm

)
− E{xk}

}
(2.43)

where (a) follows from (2.42). If the value of (2.43) is positive for an index m, moving in

that direction increases the objective function which contradicts with the assumption of

η? being a maximal point. If the value of (2.43) is non-positive for all indices m whose

η?
m > 0, we can write

E{xk} ≥
J∑

m=1

η?
mvm

(
ν?η?

m

γm

)
= α (2.44)

which obviously contradicts the assumption of E{xk} < α.

At the second step, we prove that η?
j = 0 if E{xj} ≥ α. Assume the opposite is true

for an index 1 ≤ r ≤ J . Since
∑J

j=1 η?
j = 1, we should have η?

s < 1 for all other indices s.
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For any arbitrary ε > 0, the vector η??? can be defined as

η???
j =


η?

j − ε if j = r

η?
j + ε if j = s

η?
j otherwise.

(2.45)

ν??? is defined as the corresponding value of ν for the vector η???. Based on equation (2.39),

we can write

∆ν =ν??? − ν?

=
ε

J∑
j=1

η?2
j

γj

v′
j

(
ν?η?

j

γj

) {vr

(
ν?η?

r

γr

)
+

ν?η?
r

γr

v′
r

(
ν?η?

r

γr

)

−vs

(
ν?η?

s

γs

)
− ν?η?

s

γs

v′
s

(
ν?η?

s

γs

)}
+ O(ε2). (2.46)

Then, we have

lim
ε→0

g(η???)− g(η?)

ε

= lim
ε→0

1

ε

{
ν?2η?

s

γs

v′
s

(
ν?η?

s

γs

)
ε− ν?2η?

r

γr

v′
r

(
ν?η?

r

γr

)
ε

+ ν?∆ν
J∑

j=1

η?2
j

γj

v′
j

(
ν?η?

j

γj

)
+ O(ε2)

}
(a)
= ν?

{
vr

(
ν?η?

r

γr

)
− vs

(
ν?η?

s

γs

)}
(2.47)

where (a) follows from (2.46). If the value of (2.47) is positive for an index s, moving in

that direction increases the objective function which contradicts with the assumption of

η? being a maximal point . If the value of (2.47) is non-positive for all indices s whose

η?
s > 0, we can write

E{xr} < vr

(
ν?η?

r

γr

)
≤

J∑
s=1

η?
svs

(
ν?η?

s

γs

)
= α (2.48)

which obviously contradicts the assumption of E{xr} ≥ α.
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Now that the boundary points are checked, we can safely use the KKT conditions [122]

for all 1 ≤ k ≤ J , where E{xk} < α, to find the maximizing allocation vector, η?.

ζ =
ν?2η?

k

γk

v′
k

(
ν?η?

k

γk

)
+ ν?

J∑
j=1

η?2
j

γj

v′
j

(
ν?η?2

j

γj

)
∂ν

∂ηk

|ν=ν?

(a)
=−ν?vk

(
ν?η?

k

γk

)
(2.49)

where ζ is a constant independent of k, and (a) follows from (2.39). Using the fact that∑J
j=1 ηj = 1 together with equations (2.9) and (2.49) results in

ζ = −αν?

ν? =
∑

E{xj}<α

γjlj(α). (2.50)

Combining equations (2.49) and (2.50) results in equation (2.11) and g(η?) =
∑J

j=1 γjuj(α).

2.6.7 Proof of Remark 2.4

Based on the arguments similar to the ones in appendix 2.6.6, it can be shown that η̃?
j = 0

iff E{xj} ≥ α. Since all the types are identical here, this means η̃?
j > 0 for all j. Similar

to equation (2.49), applying KKT conditions [122], gives us

vj

(
ν̃?η̃?

j

γj

)
=


−ζ if η̃?

j <
γjWjT

n0

−ζ − σj if η̃?
j =

γjWjT

n0

(2.51)

where σj’s are non-negative parameters [122]. Putting Υ =
lj(−ζ)

ν̃? proves equation (2.13).

2.6.8 Discrete Analysis of One Path

Q(n, k, l) is defined as the probability of having exactly k errors out of the n packets sent

over the path l. To compute Q(n, k, l) for any general M -state Markov model, the following

parameters are required: 1) a M ×M matrix Π with the elements πs′|s which represents

52



Chapter 2. Rate Allocation Across Multiple Paths

the channel transition behavior. πs′|s is the probability of the channel being in the state s′

provided that it has been in the state s when the last packet was transmitted; 2) a vector

q = (q1, . . . , qM) where qs denotes the probability of having erasure conditioned on being

in the state s.

For ∀ s ∈ {1, . . . , M}, πs is defined as the steady state probability of being in the state

s. Obviously, the steady state probability vector π = (π1, . . . , πM) can be computed using

the equation set π = Ππ and
∑M

s=1 πs = 1.

Depending on the initial state of the path l, Ps(n, k, l) is defined as the probability of

having k errors out of the n packets sent over this path when we start the transmission in

the state s. It is easy to see that

Q(n, k, l) =
M∑

s=1

πsPs(n, k, l). (2.52)

Ps(n, k, l) can be computed from the following recursive equation

Ps(n, k, l) =
M∑

s′=1

qsπs′|sPs′(n− 1, k − 1, l) +

M∑
s′=1

(1− qs) πs′|sPs′(n− 1, k, l) (2.53)

with the initial conditions

Ps(n, k, l) = 0 for k > n

Ps(n, k, l) = 0 for k < 0

Ps(n, k, l) = 1 for k = n = 0. (2.54)

According to the recursive equations in (2.53), to compute Ps(n, k, l) by memoization

technique, the functions Ps() should be calculated at the following set of points denoted

as S(n, k)

S(n, k) = {(n′, k′) | 0 ≤ k′ ≤ k, n′ − n + k ≤ k′ ≤ n′} .

Cardinality of the set S(n, k) is of the order |S(n, k)| = O (k (n− k)). Since O(M) oper-

ations are needed to compute the recursive functions Ps() at each point and M functions
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Ps(n, k, l) (s = 1, . . . ,M) have to be computed, Ps(n, k, l) is computable with the complex-

ity of O (M2k (n− k)) which give us Q(n, k, l) according to equation (2.52). It is worth

mentioning that if the M -state extended Gilbert model is adopted, the computational

complexity of obtaining Q(n, k, l) would be reduced to O (Mk (n− k)).

2.6.9 Discrete Analysis of One Type

When there are n packets to be distributed over Lj identical paths of type j, uniform

distribution is obviously the optimum. However, since the integer n may be indivisible by

Lj, the Lj dimensional vector N is selected as

Nl =


b n

Lj

c+ 1 for 1 ≤ l ≤ Rem(n, Lj)

b n

Lj

c for Rem(n, Lj) < l ≤ Lj

(2.55)

where Rem(a, b) denotes the remainder of dividing a by b. N represents the closest integer

vector to a uniform distribution.

EN(k, l) is defined as the probability of having exactly k erasures among the n packets

transmitted over the identical paths 1 to l with the allocation vector N. According to the

definitions of Qj(n, k) and EN(k, l), it is obvious that Qj(n, k) = EN(k, Lj). EN(k, l) can

be computed recursively as

EN(k, l) =
k∑

i=0

EN(k − i, l − 1)Q(Nl, i, l)

EN(k, 1) = Q(N1, k, 1) (2.56)

where Q(Nl, i, l) is given in appendix 2.6.8. Since all the paths are assumed to be identical

here, Q(Nl, k, l) is the same for all path indices, l. According to the recursive equations

in (2.53), the values of Q(Nl, i, l) for all 0 ≤ i ≤ k and 1 ≤ l ≤ Lj can be calculated with the

complexity of O(M2Nlk) = O
(
M2 n

Lj
k
)
. According to the recursive equations in (2.56),

computing EN(k, l) requires memoization over an array of size O(kl) whose entries can be

calculated with O(k) operations each. Thus, EN(k, l) is computable with the complexity

of O(k2l) if Q(Nl, i, l)’s are already given. Finally, noting that Qj(n, k) = EN(k, Lj), we
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can compute Qj(n, k) with the overall complexity of O(k2Lj) + O
(
M2 n

Lj
k
)
.

2.6.10 Proof of Lemma 2.5

The lemma is proved by induction on j. The case of j = 1 is obviously true as P̂e(n, k, 1) =

P opt
e (n, k, 1). Let us assume this statement is true for j = 1 to J − 1. Then, for j = J , we

have

P̂e(n, k, J)

(a)

≤
NJ∑
i=0

QJ(N opt
J , i)P̂e(n−N opt

J , k − i, J − 1)

(b)

≤
NJ∑
i=0

QJ(N opt
J , i)P opt

e (n−N opt
J , k − i, J − 1)

(c)

≤
NJ∑
i=0

QJ(N opt
J , i)PNopt

e (k − i, J − 1)

(d)
= PNopt

e (k, J) = P opt
e (n, k, J)

where Nopt denotes the optimum allocation of n packets among the J types of paths such

that the probability of having more than k lost packets is minimized. (a) follows from

the recursive equation (2.14), and (b) is the induction assumption. (c) comes from the

definition of P opt
e (n, k, l), and (d) is a result of equation (2.16).

2.6.11 Proof of Theorem 2.2

Sketch of the proof: First, the asymptotic behavior of Qj(n, k) is analyzed, and it

is shown that for large values of Lj (or equivalently L), equation (2.60) computes the

exponent of Qj(n, k) versus L. Next, we prove the first part of the theorem by induction

on J . The proof of this part is divided to two different cases, depending on whether K
N

is

larger than E{xJ} or vice versa. Finally, the second and the third parts of the theorem

are proved by induction on j while the total number of path types, J , is fixed. Again, the

proof is divided into two different cases, depending on whether K
N

is larger than E{xj} or

vice versa.

Proof: First, we compute the asymptotic behavior of Qj(n, k) for k > nE{xj}, and n
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growing proportionally to Lj, i.e. n = n′Lj. Here, we can apply Sanov’s Theorem [113,123]

as n and k are discrete variables and n′ is a constant.

Sanov’s Theorem. Let X1, X2, . . . , Xn be i.i.d. discrete random variables from an al-

phabet set X with the size |X | and probability mass function (pmf) Q(x). Let P denote

the set of pmf’s in R|X |, i.e. P =
{
P ∈ R|X || P (i) ≥ 0,

∑|X |
i=1 P (i) = 1

}
. Also, let PL

denote the subset of P corresponding to all possible empirical distributions of X in L ob-

servations [123], i.e. PL = {P ∈ P| ∀i, LP (i) ∈ Z}. For any dense and closed set [119]

of pmf’s E ⊆ P, the probability that the empirical distribution of L observations belongs

to the set E is equal to

P {E} = P {E ∩ PL}
.
= e−LD(P?||Q) (2.57)

where P? = argmin
P∈E

D(P||Q) and D(P||Q) =
∑|X |

i=1 P (i) log P (i)
Q(i)

.

Focusing our attention on the main problem, assume that P is defined as the empirical

distribution of the number of errors in each path, i.e. for ∀i, 1 ≤ i ≤ n′, P (i) shows

the ratio of the total paths which contain exactly i lost packets. Similarly, for ∀i, 1 ≤
i ≤ n′, Q(i) denotes the probability of exactly i packets being lost out of the n′ packets

transmitted on a path of type j. The sets E and Eout are defined as follows

E = {P ∈ P|
n′∑

i=0

iP (i) ≥ β} (2.58)

Eout = {P ∈ P|
n′∑

i=0

iP (i) = β}

where β =
k

n
. Noting E and Eout are dense sets, we can compute Qj(n, k) as

Qj(n, k)
(a)
= P {Eout}

(b).
= e

−Lj min
P∈Eout

D (P||Q)
(2.59)

where (a) follows from the definition of Qj(n, k) as the probability of having exactly k

errors out of the n packets sent over the paths of type j given in section 2.4, and (b) results

from Sanov’s Theorem.

Knowing the fact that the Kullback Leibler distance, D(P||Q), is a convex function

of P and Q [124], we conclude that its minimum over the convex set E either lies on an
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interior point which is a global minimum of the function over the whole set P or is located

on the boundary of E. However, we know that the global minimum of Kullback Leibler

distance occurs at P = Q /∈ E. Thus, the minimum of D(P||Q) is located on the boundary

of E. This results in

Qj(n, k)
(a).
= e

−Lj min
P∈Eout

D (P||Q)

= e
−Lj min

P∈E
D (P||Q) (b).

= e
−γjLuj(

k

n
)

(2.60)

where (a) and (b) follow from equations (2.59) and (2.6), respectively.

2.6.11.1 First Part of Theorem

We prove the first part of the theorem by induction on J . When J = 1, the statement is

correct for both cases of K
N

> E{x1} and K
N
≤ E{x1}, recalling the fact that P̂e(n, k, 1) =

P opt
e (n, k, 1) and u1(x) = 0 for x ≤ E{x1}. Now, let us assume the first part of the theorem

is true for j = 1 to J − 1. We prove the same statement for J as well. The proof can

be divided into two different cases, depending on whether K
N

is larger than E{xJ} or vice

versa.

Case 1:
K

N
> E{xJ}

According to the definition, the value of P̂e(N, K, J) is computed by minimizing
∑nJ

i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1) over nJ (see equation (2.16)). Now, we show that for

any value of nJ , the corresponding term in the minimization is asymptotically at least

equal to P opt
e (N,K, J). nJ can take integer values in the range 0 ≤ nJ ≤ N . We split

this range into three non-overlapping intervals of 0 ≤ nJ ≤ εL, εL ≤ nJ ≤ N(1 − ε), and

N(1 − ε) < nJ ≤ N for any arbitrary constant ε ≤ min
{
γj, 1− K

N

}
. The reason is that

equation (2.60) is valid in the second interval only, and we need separate analyses for the

first and last intervals.

First, we show the statement for εL ≤ nJ ≤ N(1− ε). Defining iJ = bnJ
K
N
c, we have

iJ
nJ

=
K

N
+ O(

1

L
),

K − iJ
N − nJ

=
K

N
+ O(

1

L
) (2.61)
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as ε is constant, and K = O(L), N = O(L). Hence, we have

nJ∑
i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , iJ)P̂e(N − nJ , K − iJ , J − 1)

(a).
= e

−L

J∑
j=1

γjuj

(
K

N
+ O

(
1

L

))

(b).
= e

−L

J∑
j=1

γjuj

(
K

N

)
(2.62)

where (a) follows from (2.60) and the induction assumption, and (b) follows from the fact

that uj()’s are differentiable functions according to Lemma 2.1 in subsection 2.3.1.

For 0 ≤ nJ ≤ εL, since ε < γj, the number of packets assigned to the paths of type J

is less than the number of such paths. Thus, one packet is allocated to nJ of the paths,

and the rest of the paths of type J are not used. Defining πb,J as the probability of a path

of type J being in the bad state, we can write

QJ(nJ , nJ) = πnJ
b,J = e

−nJ log

0

@

1

πb,J

1

A

. (2.63)

Therefore, for 0 ≤ nJ ≤ εL, we have

nJ∑
i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , nJ)P̂e(N − nJ , K − nJ , J − 1)

.
= e

−L

J−1∑
j=1

γjuj

(
K − nJ

N − nJ

)
− nJ log

(
1

πb,J

)

(a)

≥ e

−L

J−1∑
j=1

γjuj

(
K

N

)
− Lε log

(
1

πb,J

)

(b).
= e

−L
J−1∑
j=1

γjuj

(
K

N

)
≥ e

−L
J∑

j=1

γjuj

(
K

N

)
(2.64)
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where (a) follows from the fact that K−nJ

N−nJ
≤ K

N
, and (b) results from the fact that we can

select ε arbitrarily small.

Finally, we prove the statement for the case nJ > N(1− ε). In this case, we have

nJ∑
i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , K)P̂e(N − nJ , 0, J − 1)

(a)

≥ e
−LγJuJ

(
K

N (1− ε)

)

(b)

≥̇ e

−L

J∑
j=1

γjuj

(
K

N

)
(2.65)

where (a) follows from the fact that ε < 1− K
N

and P̂e(n, 0, j) = 1, for all n and j. Setting

ε small enough results in (b).

Inequalities (2.62), (2.64), and (2.65) result in

P̂e(N,K, J) ≥̇ e

−L

J∑
j=1

γjuj (α)

(2.66)

Combining (2.66) with Lemma 2.5 proves the first part of Theorem 2.2 for the case when
K
N

> E{xJ}.

Case 2:
K

N
≤ E{xJ}

Similar to Case 1 (
K

N
> E{xJ}), we show that for any value of 0 ≤ nJ ≤ N , the

corresponding term of the minimization in equation (2.16) is asymptotically at least equal

to P opt
e (N, K, J). Again, the range of nJ is partitioned into three non-overlapping intervals.

For any arbitrary 0 < ε < min
{
γJ , 1− K

N
, 1

K

}
, and for all nJ in the range of εL < nJ ≤

N(1− ε), we define iJ as iJ = dnJE{xJ}e. We have

iJ
nJ

= E{xJ}+ O

(
1

L

)
≥ E{xJ}

K − iJ
N − nJ

<
K

N
+ O

(
1

L

)
(2.67)
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Hence,

nJ∑
i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , iJ)P̂e(N − nJ , K − iJ , J − 1)

(a).
= e

−LγJuJ

(
iJ
nJ

)
− L

J−1∑
j=1

γjuj

(
K − iJ
N − nJ

)

(b)

≥ e
−LγJuJ

(
E{xJ}+ O

(
1

L

))
·

e

−L
J−1∑
j=1

γjuj

(
K

N
+ O

(
1

L

))

(c).
= e

−L

J∑
j=1

γjuj

(
K

N

)
(2.68)

where (a) follows from (2.60) and the induction assumption, and (b) is based on (2.67). (c)

results from the facts that uj()’s are differentiable functions, and we have uJ (E{xJ}) = 0,

both according to Lemma 2.1 in subsection 2.3.1.

For 0 ≤ nJ ≤ εL, the analysis of the Case 1 and inequality (2.64) are still valid. For

nJ > (1− ε)N , we set iJ = dE {xJ}nJe. Now, we have

iJ ≥ nJE{xJ} > (1− ε)NE{xJ} ≥ (1− ε)K. (2.69)

The above inequality can be written as

K − iJ < εK < 1 (2.70)

since ε < 1
K

. Noting that K and iJ are integer values, it is concluded that K ≤ iJ . Now,
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we can write

nJ∑
i=0

QJ(nJ , i)P̂e(N − nJ , K − i, J − 1)

≥ QJ(nJ , iJ)P̂e(N − nJ , K − iJ , J − 1)
(a)
= QJ(nJ , iJ)

≥̇ e
−LγJuJ

(
E {xJ}+

1

nJ

)
(b)

≥̇ e
−LγJuJ

(
E {xJ}+

1

(1− ε) N

)

.
= e

−LγJuJ

(
E {xJ}+ O

(
1

L

))
(c).
= 1 (2.71)

where (a) follows from the fact that K ≤ iJ , and P̂e(n, k, j) = 1, for k ≤ 0. (b) and (c)

result from nJ > (1− ε)N and uJ (E{xJ}) = 0, respectively.

Hence, inequalities (2.64), (2.68), and (2.71) result in

P̂e(N,K, J) ≥̇ e

−L

J∑
j=1

γjuj (α)

(2.72)

which proves the first part of Theorem 2.2 for the case of K
N
≤ E{xJ} when combined with

Lemma 2.5.

2.6.11.2 Second and Third Parts of Theorem

We prove the second and the third parts of the theorem by induction on j while the total

number of types, J , is fixed. The proof of the statements for the base of the induction,

j = J , is similar to the proof of the induction step, from j + 1 to j. Hence, we just give

the proof for the induction step. Assume the second and the third parts of the theorem

are true for m = J to j + 1. We prove the same statements for j. The proof is divided

into two different cases, depending on whether K
N

is larger than E{xj} or vice versa.
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Before we proceed further, it is helpful to introduce two new parameters N ′ and K ′ as

N ′ = N −
J∑

m=j+1

N̂j

K ′ = K −
J∑

m=j+1

Kj.

According to the above definitions and the induction assumptions, it is obvious that

K ′

N ′ =
K

N
+ o(1) = α + o(1). (2.73)

Case 1:
K

N
> E{xj}

First, by contradiction, it will be shown that for small enough values of ε > 0, we have

N̂j > εN ′. Let us assume the opposite is true, i.e. N̂j ≤ εN ′. Then, we can write

P̂e(N
′, K ′, j)

(a)
=

N̂j∑
i=0

P̂e(N
′ − N̂j, K

′ − i, j − 1)Qj(N̂j, i)

≥ P̂e(N
′ − N̂j, K

′ − N̂j, j − 1)Qj(N̂j, N̂j)

(b).
= Qj(N̂j, N̂j)e

−L

j−1∑
r=1

γrur

(
K ′ − N̂j

N ′ − N̂j

)

(c)

≥ e

−Ln0

(
1−

J∑
r=j+1

ηr

)
ε log

(
1

πb,j

)
·

e

−L

j−1∑
r=1

γrur

(
K ′

N ′

)

(d)

>̇ e

−L

j∑
r=1

γrur (α)

(2.74)

where (a) follows from equation (2.16) and step (2) of our suboptimal algorithm, (b) results

from the first part of Theorem 2.2, and (c) can be justified using arguments similar to those

of inequality (2.64). (d) is obtained assuming ε is small enough such that the corresponding
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term in the exponent is strictly less than Lγjuj

(
K′

N ′

)
and also the fact that K′

N ′ = α + o(1).

The result in (2.74) is obviously in contradiction with the first part of Theorem 2.2, proving

that N̂j > εN ′.

Now, we show that if N̂j > (1 − ε)N ′ for arbitrarily small values of ε, we should have

E {xr} > α for all 1 ≤ r ≤ j − 1. In such a case, we observe
N̂j

N ′ = 1 + o(1), proving the

second statement of Theorem 2.2. To show this, let us assume N̂j > (1− ε)N ′. Hence,

P̂e(N
′, K ′, j) =

N̂j∑
i=0

P̂e(N
′ − N̂j, K

′ − i, j − 1)Qj(N̂j, i)

≥̇ P̂e(N
′ − N̂j, 0, j − 1)Qj(N̂j, K

′)
(a)

≥̇ e
−Lγjuj

“

K′
(1−ε)N′

” (b).
= e−Lγjuj(α+o(1)) (2.75)

where (a) follows from the fact that P̂e(n, 0, j) = 1, for all values of n and j, and the fact

that N̂j ≥ (1−ε)N ′. (b) is obtained by making ε arbitrarily small and using equation (2.73).

Applying (2.75) and knowing the fact that P̂e(N
′, K ′, j)

.
= e−L

Pj
r=1 γrur(α), we conclude that

E {xr} > α, for all values of 1 ≤ r ≤ j − 1.

P̂e(N
′, K ′, j) can be written as

P̂e(N
′, K ′, j)

= min
0≤Nj≤N ′

Nj∑
i=0

P̂e(N
′ −Nj, K

′ − i, j − 1)Qj(Nj, i)

(a).
= min

εN ′≤Nj≤(1−ε)N ′
max

0≤i≤Nj

P̂e(N
′ −Nj, K

′ − i, j − 1)Qj(Nj, i)
(b).
= min

εN ′≤Nj≤(1−ε)N ′
max

E{xj}Nj<i≤Nj

e

−Lγjuj

(
i

Nj

)
− L

j−1∑
r=1

γrur

(
K ′ − i

N ′ −Nj

)
.
= e

−L max
εN ′≤Nj≤(1−ε)N ′

min
E{xj}Nj<i≤Nj

Md(i, Nj)

(c).
= e

−L max
ε≤λj≤(1−ε)

min
E{xj}λj<βj≤λj

Mc(βj, λj)
. (2.76)
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where Md(i, Nj) and Mc(βj, λj) are defined as

Md(i, Nj) = γjuj

(
i

Nj

)
+

j−1∑
r=1

γrur

(
K ′ − i

N ′ −Nj

)

Mc(βj, λj) = γjuj

(
βj

λj

)
+

j−1∑
r=1

γrur

(
α− βj

1− λj

)
.

In (2.76), (a) follows from the fact that N̂j is bounded as εN ′ ≤ N̂j ≤ (1− ε)N ′. (b) results

from equation (2.60), P̂e(n, k, j) being a decreasing function of k, and the fact that we have

Qj(Nj, i) ≤ 1
.
= Qj(Nj, E {xj}Nj) for i < E {xj}Nj. βj and λj are defined as βj = i

N ′ and

λj =
Nj

N ′ . (c) is a result of having Mc(βj, λj) = Md(i, Nj) + O
(

1
L

)
. Hence, the discrete to

continuous relaxation is valid.

Let us define
(
β∗

j , λ
∗
j

)
as the values of (βj, λj) which solve the max-min problem in

(2.76). Differentiating Mc(βj, λj) with respect to βj and λj results in

0=
γj

λ∗
j

lj

(
β∗

j

λ∗
j

)
−

j−1∑
r=1,

E{xr}<ζ

γr

1− λ∗
j

lr (ζ)

0=

−
γjβ

∗
j

λ∗2
j

lj

(
β∗

j

λ∗
j

)
+

j−1∑
r=1,

E{xr}<ζ

γr(α− β∗
j )

(1− λ∗
j)

2
lr (ζ)

+

γj

λ∗
j

lj

(
β∗

j

λ∗
j

)
−

j−1∑
r=1,

E{xr}<ζ

γr

1− λ∗
j

lr (ζ)

 ∂β∗
j

∂λj

|λj=λ∗
j


where ζ =

α− β∗
j

1− λ∗
j

. Solving the above equations gives the unique optimum solution (β∗
j , λ

∗
j)

as

β∗
j = αλ∗

j

λ∗
j =

γjlj(α)
j∑

r=1,α>E{xr}

lr(α)

(2.77)
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Hence, the integer parameters Kj, N̂j defined in the suboptimal algorithm have to satisfy
Kj

N ′ = β∗
j + o(1) and

N̂j

N ′ = λ∗
j + o(1), respectively. Based on the induction assumption, it is

easy to show that

N ′

N
=

j∑
r=1,E{xr}<α

γrur(α)

J∑
r=1,E{xr}<α

γrur(α)

(2.78)

which completes the proof for the case of E {xj} < K
N

.

Case 2:
K

N
≤ E{xj}

In this case, we show that
N̂j

N
= o(1). Defining ij = dE{xj}N̂je, we have

K ′ − ij

N ′ − N̂j

= α− (E{xj} − α)
N̂j

N ′ − N̂j

+ o(1) (2.79)

using equation (2.73). Now, we have

P̂e(N
′, K ′, j)

=

N̂j∑
i=0

P̂e(N
′ − N̂j, K

′ − i, j − 1)Qj(N̂j, i)

≥ P̂e(N
′ − N̂j, K

′ − ij, j − 1)Qj(N̂j, ij)
(a).
= e−Lγjuj (E{xj}+ o(1)) ·

e

−L

j−1∑
r=1

γrur

(
α− (E{xj} − α)

N̂j

N ′ − N̂j

)

.
= e

−L

j−1∑
r=1

γrur

(
α− (E{xj} − α)

N̂j

N ′ − N̂j

)
(2.80)

where (a) follows from the first part of Theorem 2.2 and (2.60). On the other hand,
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according to the result of the first part of Theorem 2.2, we know that

P̂e(N
′, K ′, j)

.
= e

−L

j−1∑
r=1

γrur (α)

. (2.81)

According to Lemma 2.1, ur(β) is an increasing function of β for all 1 ≤ r ≤ j − 1. Thus,∑j−1
r=1 γrur (β) is also a one-to-one increasing function of β. Noting this fact and comparing

(2.80) and (2.81), we conclude that
N̂j

N ′ = o(1) as E {xj} − α is strictly positive. Noting

(2.78), we have
N̂j

N
= o(1) which proves the second part of Theorem 2.2 for the case of

K
N
≤ E{xj}.
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Chapter 3

Coding over Input-Independent

Channels

In this chapter, we focus on a general class of channels called input-independent channels, of

which erasure channels are a special case. Input-independent channels can be memoryless

or have a memory extended over the block length. Symmetric discrete memoryless channels

are also a special case of input-independent channels. First, we define this class in a

mathematically accurate way. Next, we derive a lower-bound on PE of any code over an

input-independent channel. Using this lower-bound, we prove the optimality of MDS codes

over erasure channels (with or without memory).

The rest of this chapter is organized as follows. Section 3.1 defines the input- in-

dependent channel and introduces a lower-bound on PE for a general input-independent

channel. Section 3.2 applies this lower-bound on erasure channels (with or without mem-

ory) and proves optimality of MDS codes over this class of channels. In section 3.3, the

super-symmetric DMC is studied and it is shown that perfect codes are optimal across this

channel. Finally, we simplify the proposed lower-bound for symmetric DMC and compare

it with the previously-known bounds on PE in section 3.4.

3.1 Input-Independent Channel

This section first defines an input-independent channel in a mathematically accurate way.

The definition includes channels with memory extended over a block of N symbols. Next,

we prove the main theorem on input-independent channels which has applications in the
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rest of the chapter.

Definition 3.1. Input-Independent Channels : consider a channel with the input alpha-

bet A = {a1, a2, . . . , a|A|} and the output alphabet B = {b1, b2, . . . , b|B|}. A block of N

transmitted symbols is denoted by the vector x ∈ AN and the received vector by y ∈ BN .

The channel is input-independent iff for any x1,x2 ∈ AN , there is a one-to-one mapping

σ12 : BN → BN such that for all y ∈ BN , we have P{y|x2} = P{σ12(y)|x1}.

The one-to-one mapping σ12() may seem confusing. However, it simply represents a

permutation of the elements in BN . Intuitively speaking, the above definition means that

the channel shows the same response regardless of the input vector. In other words, P{y|x}
follows the same probability mass function (pmf) for all x. Next, a specific ordering of the

values in this pmf is defined.

Definition 3.2. Sorted pmf Vector : consider an input-independent channel as defined in

Definition 3.1. For any x ∈ AN , we sort the values of P{y|x} for all y ∈ BN in the

non-increasing order into a vector of length B , |B|N . Due to the input-independent

characteristic of the channel, the sorted vector is the same for all x ∈ AN . Thus, we can

define the sorted pmf vector corresponding to the channel p , [p1, p2, . . . , pB]′, such that

p1 ≥ p2 ≥ . . . ≥ pB.

To complete the definitions required in our main theorem, we need to define a code

(codebook) over the input-independent channel and the decoder corresponding to it.

Definition 3.3. Codebook : consider an input-independent channel as defined in Defini-

tion 3.1 and the corresponding sorted pmf vector as defined in Definition 3.2. A code

(codebook) of size M and length N is a set of M codewords of length N from the al-

phabet A, each representing a message. In other words the code C can be written as

C , {c1, c2, . . . , cM} such that ∀i, 1 ≤ i ≤M : ci ∈ AN .

Definition 3.4. Decoder : corresponding to a code C of size M and length N (Defini-

tion 3.3), a decoder is defined as a partitioning of the received vector set BN to M disjoint

subsets, each consisting of the received vectors mapped to a specific message (codeword).

We introduce 3 notations associated with a decoder:

• For any ci ∈ C, D(ci) is defined as the subset of BN which includes all the received

vectors mapped to ci. We refer to D(ci) as the decision region corresponding to ci.
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• Conversely, for any y ∈ BN , we define fdec(y) = c ∈ C iff y ∈ D(c).

• Assuming an equiprobable codebook, the average probability of error is defined as

PE , 1

M

M∑
i=1

P{fdec(y) 6= ci|x = ci}

where x ∈ AN and y ∈ BN are the transmitted and received vectors, respectively.

Hence, fdec() denotes the decoding function which maps the received vector y to one

of the codewords. Now, we are ready to prove the main theorem of the chapter which

provides a lower-bound on the probability of error of any code over an input-independent

channel.

Theorem 3.1. Consider a codebook C = {c1, c2, . . . , cM} with M equiprobable codewords

of length N over an input-independent channel (with or without memory) with the input

alphabet A and the output alphabet B as defined in Definition 3.1. We have the following

lower-bound on the average probability of error for any decoder

PE ≥ 1−
b B

M
c∑

i=1

pi −
mod(B,M)

M
pb B

M
c+1

where bxc denotes the largest integer number smaller than x, and mod(a, b) indicates the

remainder of dividing a by b. p represents the sorted pmf vector described in Definition 3.2,

and B = |B|N .

Proof This theorem can be proved by selecting a uniform distribution on the output

alphabet in Theorem 28 of [42]. However, we provide an alternative proof in Appendix 3.6.1

which is based on the properties of input-independent channels. �

Next, we state a necessary and sufficient condition on the codebook (and the decoder)

which achieves the lower-bound in Theorem 3.1.

Theorem 3.2. Consider a codebook C = {c1, c2, . . . , cM} with M equiprobable codewords

of length N over an input-independent channel (with or without memory) with the input

alphabet A and the output alphabet B as defined in Definition 3.1. Let PE denote the
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average probability of error for the decoder associated with the code as described in Defini-

tion 3.4. PE satisfies the inequality in Theorem 3.1 with equality iff the following condition

is satisfied:

min
c∈C

min
y∈D(c)

P{y|c} ≥ max
c∈C

max
y/∈D(c)

P{y|c}. (3.1)

Proof See Appendix 3.6.2. �

3.2 Erasure Channels with Memory

This section applies Theorem 3.1 and Theorem 3.2 to study general q-ary erasure channels

and obtain an optimality result. The result achieved here is NOT new, but the proof is.

We have published the same result in [21] (however, for linear MDS codes) with a different

proof. The importance of the new proof is that the optimality result can be interpreted

as a special case of the general theorems we proved in the previous section. Moreover, the

MDS code does not have to be linear. We start with the formal definition of an erasure

channel.

Definition 3.5. An erasure channel is defined as the one which maps every input symbol to

either itself or to an erasure symbol ξ. More accurately, an arbitrary channel (memoryless

or with memory) with the input vector x ∈ AN , |A| = q, the output vector y ∈ (A ∪ {ξ})N ,

and the transition probability P {y|x} is defined to be erasure iff it satisfies the following

conditions:

1. P {yj /∈ {xj, ξ} |xj} = 0, ∀ j, where xj and yj denote the j’th elements of the vectors

x and y.

2. Defining the erasure identifier vector e as

ej ,
{

1 yj = ξ

0 otherwise

P{e|x} = P{e}, i.e. e is independent of x.
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It is easy to check that the erasure channel defined above is indeed an input-independent

one. Therefore, the two theorems in the previous section can be used to find a lower-bound

on its PE. Here, we generalize our previous result in [21] to non-linear MDS codes and

provide an alternative proof for it.

Theorem 3.3. A (linear or non-linear) block code of length N with M equiprobable code-

words over an arbitrary erasure channel (memoryless or with memory) of alphabet size q

has the minimum probability of error (assuming optimum, i.e., maximum likelihood decod-

ing) among all block codes of the same size if that code is Maximum Distance Separable

(MDS).

Proof It is important to note that the straightforward application of Theorem 3.1 (with

the output alphabet size of q + 1) does not result in a tight lower-bound. The intuitive

reason behind this fact is that when a codeword of length N is transmitted over an erasure

channel, the number of possible received vectors is much less than (q + 1)N . Therefore,

we analyze the erasure channel as a combination of multiple (parallel) input-independent

channels with smaller received vector sets; we can do that since in an erasure channel, the

receiver always knows the erasure pattern before decoding the codeword. This technique

is explained in Appendix 3.6.3. �

3.3 Super-Symmetric DMC

In this section, we focus on super-symmetric discrete memoryless channels (DMC). This

channel is depicted in Fig. 3.1. Each transmitted symbol is received flawlessly with the

probability 1 − π or goes to one of the other q − 1 symbols with the equal probability

π′ = π
q−1

. We also assume that 1 − π > π′ or equivalently π < q−1
q

which not a strict

condition for large alphabet sizes. Applying the theorems of section 3.1 to this simple

channel, we get the following neat result.

Theorem 3.4. A (linear or non-linear) block code of length N with M equiprobable code-

words over a super-symmetric discrete memoryless channel of alphabet size q has the min-

imum probability of error (assuming optimum, i.e., maximum likelihood decoding) among

all block codes of the same size if that code is a perfect code. A code is perfect if it satisfies

the Hamming inequality, M
∑t

k=0

(
N
k

)
(q − 1)k ≤ qN , with equality.
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Figure 3.1: Super-symmetric memoryless discrete channel with alphabet size q. Each
symbol goes to itself with the probability 1− π and goes to each one of the other symbols
with the probability π′ = π

q−1
.

Proof See Appendix 3.6.4. �

3.4 Symmetric DMC

This section proposes a lower-bound on PE for any code of length N with qK equiprobable

codewords over a symmetric discrete memoryless channel (DMC). This channel is a more

general one than the super-symmetric DMC studied throughout section 3.3. The definition

of symmetric DMC we use in this work is the same as the one in [18]. Comparing the

following definition with Definition 3.1, it is obvious that the symmetric DMC is an input-

independent channel.

Definition 3.6. Consider a DMC with the input and output alphabetA = {a1, a2, . . . , aq}.
Let us define the q × q channel transition matrix S = [sij] where sij , P{aj received| ai

transmitted}. The channel is symmetric if all rows and all columns of S are permutations

of a sorted probability vector π where π1 ≥ π2 ≥ · · · ≥ πq ≥ 0 and
∑q

i=1 πi = 1.

Based on the above definition, we can define a permutation corresponding to each

input symbol in the alphabet as follows. For each input symbol ak ∈ A, we know that

the transition probabilities conditioned on ak being transmitted are a permutation of the
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Figure 3.2: Error exponent of L(N, K, π), i.e. − log L(N,K,π)
N

, for a quadratic symmetric
channel with π = [0.90, 0.05, 0.03, 0.02] and the rate of R = K

N
log q = 0.6 log q is compared

with error exponents of lower-bounds SP67 [43], VF2004 [44], and ISP2008 [45] for different
values of N . Random coding error exponent Er(R) (lower-bound on error exponent) is
shown as the horizontal line.

vector π. Let us denote this permutation by σak
(). Then for any output symbol al ∈ A,

we have P{al|ak} = πj where j = σak
(al).

Let us consider an arbitrary code of length N with qK equiprobable codewords over the

symmetric channel defined in Definition 3.6. A codeword c ∈ C is transmitted, and any

vector y ∈ AN can be received. We define the vector N with the length q and entries Nj as

Nj ,
N∑

i=1

I(j = σci
(yi)). In this definition, ci and yi denote the i’th entries of vectors c and

y, respectively. I(s) is the indicator function, i.e. I(s) = 1 if the statement s is true, and

I(s) = 0 otherwise. We also define the extended distance between c and y as d(c,y) , N.

Since the channel is memoryless, we have P{y|c} =
∏q

j=1 π
Nj

j for all of the received

vectors whose extended distance satisfies d(c,y) = N. There exist
(

N
N

)
=

N !∏q
j=1 Nj!

such

vectors. Following a similar terminology in [18], we call this group of vectors the type

associated with N. The number of different types we can have equals the number of

solutions to the equation
∑q

j=1 Nj = N such that Nj ≥ 0 for all j. Thus, there exist
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(
N+q−1

q−1

)
= O(N q−1) different types1. The big-O notation is defined as f(N) = O(g(N)) iff

∃Ω, N0 such that ∀N > N0, we have |f(N)| ≤ Ω|g(N)|.
The output vector space has the cardinality of qN , and there are qK codewords in

the codebook. Using Theorem 3.1, we have the following lower-bound L(N,K, π) , 1 −∑qN−K

i=1 pi on PE for any code. p1 to pqN−K denote the qN−K largest values in the set

{P{y|c}}y∈AN . To identify these values, we need to sort different types based on their

probabilities (probability of each vector in the type being received given a codeword is

transmitted). Therefore, we form the table T with
(

N+q−1
q−1

)
rows and two columns. Each

row corresponds to one of the possible types; the first column of the t’th row T (t, 1) =∏q
j=1 π

Nj

j represents the probability of each member of the type being received given a

codeword is transmitted. The second column T (t, 2) =
(

N
N

)
equals the number of vectors

in the type. Next, we can use the quick sort algorithm to sort the rows in T based on their

first column values. We define t? as

t? , min
Pt

t′=1 T (t′,2)≥qN−K
t. (3.2)

In other words, t? denotes the minimum number of types (rows) we need to include to form

a decision region of size qN−K . Using t?, we can find the lower-bound of PE

L(N,K, π) = 1−
t?−1∑
t=1

T (t, 1)T (t, 2)−

T (t?, 1)

(
t?∑

t=1

T (t, 2)− qN−K

)
. (3.3)

The above equation is based on the simple principle that we should include the more

probable types before the less probable ones.

Having L(N,K, π), the arising question is that how tight this lower-bound on PE is.

In other words, can we find a lower-bound which is larger than L(N,K, π) and is still

valid for codes over the symmetric DMC ? To answer these questions in the asymptotic

case, we define a new notation. We define f(N)
.
= g(N) iff 1

N
lim

N→∞
f(N) =

1

N
lim

N→∞
g(N).

Comparators
.

≥ and
.

≤ are also defined similarly. Then, we have the following theorem on

1Although there exist O(Nq−1) different types, the number of vectors in each type is in the order of
O(qN ). Thus, we need O(N) bytes to store the number of vectors for each type. The total memory we
need for all types is in the order of O(Nq).
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Figure 3.3: For block length N = 128, K = 48, and 3-PSK constellation with hard decoding
in presence of AWGN noise (a ternary DMC), L(N, K, π) is compared with lower-bounds
SP59 [53], SP67 [43], VF2004 [44], and ISP2008 [45] for different values of Eb

N0
.

the asymptotic behavior of L(N, K, π) when K
N

is constant as N grows.

Theorem 3.5. Consider a symmetric DMC as described in Definition 3.6. For K
N

= r <
C

log q
, we have L(N,K, π)

.
= e−NEr(R) where R = r log q is the transmission rate of the code.

Moreover, C = log q − H(π) denotes capacity of the channel, and Er(R) is the random

coding error exponent of the channel as defined by Gallager in [50]. Furthermore, any other

lower-bound on PE, say L′(N,K, π), is asymptotically smaller than L(N,K, π), i.e. we

have L(N, K, π)
.

≥ L′(N,K, π).

Proof See Appendix 3.6.5. �

Finally, we compare L(N,K, π) with four other lower-bounds and the random coding

upper-bound e−NEr(R) [50]:

• SP59: this lower-bound [53] is valid for soft decoding of equal-energy codewords with

Gaussian constellation over the AWGN channel. It can be used as a benchmark for

comparison when the input constellation is M -PSK over the AWGN channel with

hard or soft decoding.

• SP67: the original sphere packing lower-bound on PE in [43], valid for any DMC.

75



Chapter 3. Coding over Input-Independent Channels

• VF2004: Velambois and Fossorier’s [44] improvement on SP67, valid for any DMC.

• ISP2008: the Improved Sphere-packing Bound (ISP) [45] for symmetric DMC.

In Fig. 3.2, error exponent of L(N,K, π), i.e. − log L(N,K,π)
N

, is compared with error

exponents of lower-bounds SP67 [43], VF2004 [44], and ISP2008 [45] for different values of

N . The channel is a quadratic one with π = [0.90, 0.05, 0.03, 0.02] and rate R = K
N

log q =

0.6 log q. Random coding error exponent Er(R) (lower-bound on error exponent) is shown

as the horizontal line. We know that all of the exponents converge to Er(R) as N grows.

However, it is clearly seen that L(N, K, π) converges much faster (in shorter block lengths)

than the other lower-bounds.

Figure 3.3 considers the block length N = 128, K = 48, and a ternary DMC resulting

from 3-PSK constellation with hard decoding in presence of AWGN noise. L(N, K, π)

is compared with lower-bounds SP59 [53], SP67 [43], VF2004 [44], and ISP2008 [45] for

different values of Eb

N0
. It is observed that in very low Eb

N0
, SP59 is the tightest of the

previous lower-bounds, while ISP2008 becomes the tightest as Eb

N0
grows. However, in any

case, the best of the previous lower-bounds remain almost 2dB below the upper-bound

for typical values of PE (10−4 to 10−10). On the other hand, L(N, K, π) (our new lower-

bound) follows the upper-bound (e−NEr(R)) with almost 0.5dB gap. This translates to a

huge improvement in lower-bounding PE for short block lengths.

Figure 3.4 considers the block length N = 64, K = 32, and a quadratic DMC resulting

from QPSK constellation with hard decoding in presence of AWGN noise. L(N, K, π) is

compared with lower-bounds SP59 [53], SP67 [43], VF2004 [44], and ISP2008 [45]. Among

the previous lower-bounds, ISP2008 is the tightest except in very low Eb

N0
in which SP59

dominates. Examining the plot for typical values of PE, from 10−4 to 10−10, it is observed

that for a fixed PE, L(N, K, π) is just 0.5dB below the upper-bound. This should be

compared to the tightest of the previous lower-bounds, ISP2008, which is typically 1.5

to 2dB below the upper-bound. Again, we see that our proposed lower-bound by far

outperforms the previous ones.

3.5 Conclusion

We study the problem of lower-bounding the probability of error (PE) over input- indepen-

dent channels. An input-independent is defined in the general case (channels with mem-
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Figure 3.4: For block length N = 64, K = 32, and QPSK constellation with hard decoding
in presence of AWGN noise (a quadratic DMC), L(N,K, π) is compared with lower-bounds
SP59 [53], SP67 [43], VF2004 [44], and ISP2008 [45] for different values of Eb

N0
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ory), and a lower-bound on PE is introduced. Next, we apply this general lower-bound

on three special input-independent channels: erasure channel, super-symmetric Discrete

Memoryless Channel (DMC), and q-ary symmetric DMC. We show that Maximum Dis-

tance Separable (MDS) codes achieve the minimum probability of error over any erasure

channel (with or without memory). Moreover, we prove that perfect codes achieve the

minimum probability of error over a super-symmetric channel. Finally, we propose a new

lower-bound for PE of any block code over symmetric DMC and show that this bound is

exponentially tight. For ternary and 4-ary symmetric channels, the proposed lower-bound

is compared with the previous lower-bounds in moderate to short block lengths. It is shown

that our lower-bound by far outperforms the previous bounds, especially for shorter block

lengths.
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3.6 Appendices

3.6.1 Proof of Theorem 3.1

We define Pc , 1−PE. Then, proving the theorem is equivalent to finding an upper-bound

on Pc as follows

Pc =
1

M

M∑
i=1

P {fdec(y) = ci|x = ci}

(a)
=

1

M

M∑
i=1

P {y ∈ D(ci)|x = ci}

=
1

M

M∑
i=1

∑
y∈D(ci)

P {y|x = ci}

(b)

≤ 1

M

M∑
i=1

|D(ci)|∑
j=1

pj

(c)
=

1

M

B∑
l=1

klpl (3.4)

where (a) follows from the definition of fdec() and D(ci) (Definition 3.4). (b) results from

the definition of the sorted pmf vector in Definition 3.2. (c) is true if the vector k =

[k1, k2, . . . , kB]′ is defined as follows

kl ,
M∑
i=1

I (|D(ci)| ≥ l) (3.5)

where I() is the indicator function, i.e. I(s) = 1 if the statement s is true, and I(s) = 0

otherwise. According to the above definition, kl denotes the number of decision regions

(D(ci)) whose cardinality is larger than or equal to l. As we have only M decision regions,

the vector k obviously satisfies the following inequalities

M ≥ K1 ≥ K2 ≥ . . . ≥ KB ≥ 0. (3.6)
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Moreover, the number of decision regions with cardinality l equals kl − kl+1. The total

number of vectors y in all decision regions (with any cardinality) is

BkB +
B−1∑
l=1

l(kl − kl+1) =
B∑

l=1

kl = B. (3.7)

Using the above two results on the vector k, we can write

MPc

(a)

≤
B∑

l=1

kl pl

(b)

≤
b B

M
c+1∑

l=1

kl pl + pb B
M

c+2

B∑
l=b B

M
c+2

kl

(c)
=

b B
M

c+1∑
l=1

kl pl + pb B
M

c+2

B−
b B

M
c+1∑

l=1

kl


= M

b B
M

c∑
l=1

pl −
b B

M
c∑

l=1

(M − kl)pl +

kb B
M

c+1pb B
M

c+1 + pb B
M

c+2

B−
b B

M
c+1∑

l=1

kl


(d)

≤ M

b B
M

c∑
l=1

pl − pb B
M

c+1

b B
M

c∑
l=1

(M − kl) +

kb B
M

c+1pb B
M

c+1 + pb B
M

c+2

B−
b B

M
c+1∑

l=1

kl


= M

b B
M

c∑
l=1

pl − pb B
M

c+1(B− mod(B,M)

+

b B
M

c+1∑
l=1

kl) + pb B
M

c+2

B−
b B

M
c+1∑

l=1

kl


(e)

≤ M

b B
M

c∑
l=1

pl + mod(B,M)pb B
M

c+1 (3.8)
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where (a) follows from (3.4), while (b) and (d) and (e) result from the fact that the elements

in the sorted pmf vector p are listed in the non-increasing order. (c) is based on (3.7). �

3.6.2 Proof of Theorem 3.2

Necessary Condition: let us assume (3.1) is true. For any c0 ∈ C and any y1 ∈ D(c0) and

y2 /∈ D(c0), we can easily write

P{y1|c0} ≥ min
c∈C

min
y∈D(c)

P{y|c}

≥ max
c∈C

max
y/∈D(c)

P{y|c} ≥ P{y2|c0}. (3.9)

Defining the set P(c0) , {P{y|c0}|y ∈ D(c0)} and using the above result, we conclude

that

P(c0) = {p1, p2, . . . , p|D(c0)|} (3.10)

where pi denotes the i’th element of the sorted pmf vector. In other words, the |D(c0)|
elements in P(c0) take their highest possible values.

Similar to the proof of Theorem 3.1, we define Pc = 1−PE. Using the result in (3.10),

it is seen that the inequality (b) in (3.4) turns into an equality. Therefore we can write

Pc =
1

M

B∑
l=1

klpl (3.11)

where kl is defined in 3.5.

Next, using (3.10) and the non-increasing order of the sorted pmf vector, the condition

in (3.1) translates to

p
D
≥ p

1+ D (3.12)

where we define D , max
c∈C
|D(c)| and D , min

c∈C
|D(c)|. Now, we can imagine two possible

cases:

1. Cardinality of the decision region corresponding to c, i.e. |D(c)|, is the same for all

c ∈ C. Since the decision regions altogether must cover all of the space B, this is

equivalent of |D(c)| = B
M

for all c ∈ C. According to the definition of kl in (3.5),

we have kl = M for 1 ≤ l ≤ B
M

and l = 0 for all other l. Replacing the values of
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kl in (3.11), it is easy to verify that the inequality in Theorem 1 is satisfied with

equality.

2. At least two decision regions have different cardinalities, i.e. |D(c)| is NOT the same

for all c ∈ C. This means that D ≥ 1 + D. Due to the non-increasing order of the

sorted pmf vector, we conclude that pD ≤ p1+D. Combining this result with (3.12),

we have

p1+D = p2+D = · · · = pD = p0 (3.13)

for a constant p0.

Using the fact that
∑M

i=1 |D(ci)| = B, it is easy to show that

D > bB
M
c

D < bB
M
c+ 1 (3.14)

Having this bound for bB
M
c, we are ready to prove the necessarily condition as follows.

M Pc
(a)
=

B∑
l=1

klpl

(b)
= M

D∑
l=1

pl + p0

D∑
l=1+D

kl

(c)
= M

D∑
l=1

pl + p0 (B−MD)

(d)
= M

D∑
l=1

pl + p0M

(
bB
M
c −D

)
+

p0 mod (B,M)

(e)
= M

D∑
l=1

pl + M

b B
M

c∑
l=D+1

pl +

p1+b B
M

c mod (B,M) (3.15)

where (a) follows from (3.11). (b) and (e) result from (3.13) and the definition of kl

in (3.5) which gives us kl = M for l ≤ D and kl = 0 for l > D. (c) follows from (3.7),
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and (d) is a direct result of the fact that B = MbB
M
c + mod(B,M). Replacing Pc

with 1− PE in (3.15) proves the necessary condition for case (2).

Sufficient Condition: we assume that the code (and the decoder) satisfies the inequality

in Theorem 3.1 with equality and prove that (3.1) must follow. The proof is obvious when

D = D. Thus, we give the proof only for the case where at least two decision regions have

different cardinalities.

Let us focus on (3.8) in the proof of Theorem 3.1. According to our assumption,

inequalities (a), (b), and (d) in (3.8) are satisfied with equality, i.e. are tight. Replacing

(a) with equality leads to inequality (b) in (3.4) being tight. This in turn requires the

condition in (3.10) to hold. In other words, the set P(c0) , {P{y|c0}|y ∈ D(c0)} must

include the |D(c0)| highest values for all c0 ∈ C. In the proof of the necessary condition,

we have already shown that under the condition in (3.10), (3.12) and (3.1) are equivalent.

Hence, we need to prove (3.12) instead of (3.1).

Going back to (3.8) and replacing inequality (b) with equality, we get

B∑
l=b B

M
c+3

kl

(
pb B

M
c+2 − pl

)
(a)
=

D∑
l=b B

M
c+3

kl

(
pb B

M
c+2 − pl

)
= 0

where (a) follows from the definition of kl in (3.5). Due to the non-increasing order of the

sorted pmf vector, none of the terms in the summation can be negative. Thus, all of the

terms should be equal to zero. Moreover, by definition, kl > 0 for l ≤ D. Hence, we must

have

pb B
M

c+2 = pb B
M

c+3 = · · · = pD (3.16)

if bB
M
c+ 2 ≤ D.
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Similarly, replacing inequality (d) in (3.8) with equality, we get

b B
M

c∑
l=1

(M − kl)
(
pl − pb B

M
c+1

)
(a)
=

b B
M

c∑
l=D+1

(M − kl)
(
pl − pb B

M
c+1

)
= 0

where (a) follows from the fact that kl = M for l ≤ D by definition. Again, all the terms

are non-negative. Thus, they all should be zero. Moreover, by definition, kl < M for

l ≥ D + 1. Hence, we must have

pD+1 = pD+2 = · · · = pb B
M

c = pb B
M

c+1. (3.17)

Combining (3.16) and (3.17) with (3.14), we see that condition (3.13) is satisfied. Hav-

ing (3.13), (3.12) is satisfied. As explained earlier, this is equivalent of (3.1) being proved.

Therefore, the proof of the sufficient condition is complete. �

3.6.3 Proof of Theorem 3.3

The trick used in the proof of this theorem is adaptive decision regions in the decoder.

Due to the nature of the erasure channel, the decoder can immediately extract the erasure

identifier vector e from the received vector y. Therefore, it can adjust the decision regions

according to e.

We start by the definition of the MDS code. A code is MDS iff it satisfies the Singleton

bound by equality, i.e. if we have M = qN−d+1 where d is the minimum Hamming distance

of the code. Next, let m denote the number of non-zero elements in the binary vector e,

i.e. m ,
∑N

i=1 ei. For any erasure pattern (vector) e, we define the set Y(e) as the set of

all possible received vectors if one of the codewords in the codebook C is transmitted and

the erasure pattern e is observed, i.e.

Y(e) ,
{
y ∈ (A ∪ {ξ})N |∃ c ∈ C :

P{y|x = c & e occurred} > 0} . (3.18)

Now, we consider the following two cases.
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1. m ≤ d − 1: let us assume any two distinct codewords c1 ∈ C and c2 ∈ C are

transmitted. It is easy to see that the corresponding received vectors y1 and y2 must

be distinct as well. The reason is that if this is not true, the distance between c1

and c1 would be less than d which is impossible by the definition of d. Therefore,

in this case, we have |Y(e)| = M and each y ∈ Y(e) corresponds to exactly one

codeword. The decision regions {D(ci)}Mi=1 are chosen as follows. For each y ∈
Y(e) ⊆ (A ∪ {ξ})N , y is placed at D(ci) of the codeword ci it corresponds to. All

other vectors y ∈ (A ∪ {ξ})N − Y(e) are impossible to occur and can be placed in

an arbitrary decision region, say D(c1). Using (3.4), probability of correct decoding

given e can be written as Pc|e = 1.

2. d ≤ m ≤ N : consider an arbitrary possible received vector yi ∈ Y(e). We choose

m − d + 1 erasure symbols (ξ) in specific locations in yi. There are qm−d+1 distinct

ways to enhance yi by replacing these m− d+1 erasure symbols with elements from

the input alphabet set A. We define Ci as the set of all such enhanced vectors from yi.

Obviously, we have |Ci| = qm−d+1 where |.| is the cardinality operator. We can do the

same enhancement for all other y ∈ Y(e) and obtain disjoint sets C1, C2, . . . , C|Y(e)|.

Now, consider the union of all such sets C̄ ,
|Y(e)|∪
i=1

Ci. Since C̄ includes all possible

enhancements of Y(e), i.e. partial codewords with N −m non-erased symbols, it is

obvious that C̄ should include all the partial codewords with N − d + 1 non-erased

symbols (at the specified locations). Hence, we have |C̄| (a)
= |Y(e)|qm−d+1 ≥M where

(a) follows from the fact that C̄ is the union of |Y(e)| disjoint sets C1, C2, . . . , C|Y(e)|.

On the other hand, we know that members of C̄ are vectors of length N−d+1 entries

from the input alphabet A. Hence, we have |C̄| ≤ qN−d+1 (a)
= M where (a) follows

from the definition of the an MDS code. Combining this with the lower-bound on

the cardinality of C̄ in the previous paragraph, we get |C̄| = M = qN−d+1. In other

words, each member of C̄ corresponds to the partial vector of exactly one codeword

in the codebook C.

Finally, since |Ci| = qm−d+1 for all i, we conclude that |Y(e)| = qN−m. This means

that every yi ∈ Y(e) may be associated to any of the qm−d+1 codewords yi can be

enhanced to. We pick one of such qm−d+1 codewords arbitrarily. By proper labeling

of the codewords, we can assume that yi is mapped to ci for 1 ≤ i ≤ |Y(e)| = qN−m.
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Then obviously, we have P{yi|x = ci & e occurred} = 1. As in the previous case, all

other vectors y ∈ (A ∪ {ξ})N − Y(e) are impossible to occur and can be placed in

an arbitrary decision region, say D(c|Y(e)|+1). It should be noted that in the defined

decoder here, we have |D(ci)| = 1 for 1 ≤ i ≤ |Y(e)| = qN−m, while D(ci) = ∅ for

qN−m < i ≤M .

It is easy to check that the above-described decoder (with the defined decision regions)

satisfies condition (3.1) in Theorem 3.2 readily. Therefore, an MDS code satisfies the

lower-bound of Theorem 3.1 on PE and is optimal. Using (3.4), probability of correct

decoding given e can be written as

Pc|e =
1

M

M∑
i=1

∑
y∈D(ci)

P {y|x = ci & e occurred}

=
1

M

|Y(e)|∑
i=1

1 =
1

qm−d+1
. (3.19)

Combining the above two cases, we conclude that

PMDS
E = 1−

∑
e

P{e}Pc|e

= 1−
N∑

m=d

∑
e:w(e)=m

P{e}
(

1− 1

qm−d+1

)

where w(e) denotes the Hamming weight of the binary vector e. Moreover, it is easy to

see that in the described decoder, we have P{y|x = fdec(y)} = 1 for all y ∈ Y(e). The

vectors in y ∈ (A ∪ {ξ})N−Y(e) are impossible to occur given e. For such vectors we have

P{y|x = c} = 0 for all c ∈ C. Therefore, this decoder obviously satisfies the maximum

likelihood condition, i.e. P{y|x = fdec(y)} ≥ P{y|x = c} for all y ∈ (A ∪ {ξ})N and

c ∈ C. �

3.6.4 Proof of Theorem 3.4

We start by the definition of perfect codes. A code is perfect if it satisfies the Hamming

inequality, M
∑t

k=0

(
N
k

)
(q− 1)k ≤ qN , with equality. t is defined as t , bd−1

2
c. Graphically

speaking, this means that each codeword is surrounded by a sphere of radius (Hamming
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distance) t. Such spheres are obviously disjoint (use the triangle inequality on the Hamming

distance metric and the fact that 2t < d). If the union of these spheres for all codewords

covers the received vector space AN , the code is perfect.

For every y ∈ AN and c ∈ C, we have P{y|x = c} = (1−π)N−d(y,c)π′d(y,c) where d(y, c)

denotes the Hamming distance between y and c. This is a decreasing function of d(y, c)

as we assumed 1− π > π′.

For each c ∈ C, we set D(c) as all of the received vectors in the sphere of radius t

centered at c. Since the code is perfect, these decision regions cover the received vector

space. With this structure of decision regions, we have

min
c∈C

min
y∈D(c)

P{y|c} ≥ (1− π)N−tπ′t ≥ max
c∈C

max
y/∈D(c)

P{y|c}

and the condition (3.1) in Theorem 3.2 is satisfied. Therefore, the perfect code is optimal

and achieves the lower-bound of Theorem 3.1 on PE. Moreover, the structure of the decision

regions implies that the decoder is a maximum likelihood decoder. �

3.6.5 Proof of Theorem 3.5

We know that T (t, 1) = eN
Pq

j=1 nj log πi . Moreover, based on the method of types in [18], it

is easy to verify that T (t, 2)
.
= eN(H(n)+o(1)) where n , N

N
and H(.) is the entropy function.

Thus, we have T (t, 1)T (t, 2)
.
= e−N(D(n||π)+o(1)) where D(.||.) denotes the Kullback-Leibler

distance defined in [18]. Next, we write

L(N,K, π)
(a)

≥
(N+q−1

q−1 )∑
t=t?+1

T (t, 1)T (t, 2)

.
=

(N+q−1
q−1 )∑

t=t?+1

e−ND(n||π)

(b).
= e−ND(n??||π)

(c)

≥ e−ND(n?||π) (3.20)

where n?? , argmin
n∈S1

D(n||π), and S1 is defined as the set of all types which corre-

spond to the rows t? + 1 to the last row in the sorted table T . Similarly, we define
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n? , argmin
n∈S2

D(n||π) and S2 , {n|eNH(n)
.

≥ qN−K = eN(1−r) log q}. In the above inequality,

(a) follows from (3.3). (b) results from the fact that the dominant term in a summation

with a polynomial number of terms (polynomial in terms of N) is the term with the largest

exponent. (c) is based on S2 ⊆ S1, i.e. any n ∈ S2 can not correspond to any of the types

in the first t? rows of the table T .

According to (3.20), the problem of lower-bounding L(N, K, π) reduces to solving the

following optimization problem

min D(n||π)

s.t. H(n) ≥ (1− r) log q and
∑q

j=1 nj = 1. (3.21)

Since D(n||π) is a convex function of n and has a global minimum of zero at n = π outside

of the optimization region, it is easy to show that the minimum point resides on the edge

where H(n) = (1− r) log q. Using the Lagrangian method, we get

D(n?||π) = (β − 1)

∑q
j=1 πβ

j log πj∑q
j=1 πβ

j

− log

(
q∑

j=1

πβ
j

)
(3.22)

where the parameter β is the solution of the following non-linear equation

R = log q + β

∑q
j=1 πβ

j log πj∑q
j=1 πβ

j

− log

(
q∑

j=1

πβ
j

)
. (3.23)

Also, it can be shown that 1
2
≤ β ≤ 2, or equivalently 0 ≤ 1−β

β
≤ 1.

On the other hand, random coding error exponent [50] is defined as

Er(R) , max
0≤ρ≤1

{
−ρR + max

Q
E0(ρ,Q)

}
(3.24)

where Q is the input distribution, and E0(ρ,Q) equals

E0(ρ,Q) , − log

 q∑
j=1

 q∑
k=1

Q(k)P{j|k}
1

1 + ρ


1+ρ .
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Due to the symmetry of the channel, the uniform input distribution maximizes E0(ρ,Q)

for each ρ. Therefore, the value of ρ which maximizes (3.24) can be found by solving the

equation R =
∂E0(ρ,Q)

∂ρ
. Solving this equation, we see that

Er(R) =−
ρm

∑q
j=1 π

1
1+ρm
j log πj

(1 + ρm)
∑q

j=1 π
1

1+ρm
j

− log

(
q∑

j=1

π
1

1+ρm
j

)
(3.25)

where ρm is the solution to the following non-linear equation

R =log q +

∑q
j=1 π

1
1+ρm
j log πj

(1 + ρm)
∑q

j=1 π
1

1+ρm
j

− log

(
q∑

j=1

π
1

1+ρm
j

)
. (3.26)

Setting β = 1
1+ρm

, we clearly see that equations (3.25) and (3.26) are identical to (3.22)

and (3.23). Therefore, we have D(n?||π) = Er(R). Based on (3.20), it is concluded that

L(N, K, π)
.

≥ e−NEr(R).

We know that L(N, K, π) is a lower-bound on PE of any code over the symmetric DMC.

Moreover, there exists at least one codebook (constructed by random coding) for which

PE ≤ e−NEr(R). Hence, we must have L(N, K, π)
.

≤ e−NEr(R). Combining this with the

result of the previous paragraph, we get L(N, K, π)
.
= e−NEr(R).

Finally, let us assume there exists another lower-bound L′(N, K, π) on PE of any code

of size [N,K]. For the same reason described in the previous paragraph, we know that

L′(N,K, π)
.

≤ e−NEr(R) .
= L(N,K, π). Therefore, L(N, K, π) is exponentially the tightest

lower-bound we can have in the asymptotic case. �
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Chapter 4

Diversity-Rate Trade-off in Erasure

Networks

This chapter addresses a fundamental trade-off between rate and diversity gain in erasure

networks. An erasure network is modeled by a directed graph whose links are orthogonal

erasure channels. Furthermore, the erasure status of the links is assumed to be fixed during

each block of transmission and known only by the destination node. For each link e in the

graph, a message transmitted on e is erased with probability pω(e). We define the diversity

gain as limp→0
log PE

log p
where PE is the probability of error. Intuitively speaking, the diversity

gain is the asymptotic slope of PE versus 1
p

in logarithmic scale. This definition is similar

to the standard definition of diversity gain for the slow Rayleigh fading channel in the

wireless communication literature [19] if 1
p

is interpreted as Signal-to-Noise-Ratio (SNR).

Using diversity gain as a measure of reliability, we show that there is a fundamental

trade-off between rate and reliability in erasure networks. Moreover, it is shown that

conventional routing fails to achieve the optimum trade-off between these two. Instead,

linear network coding achieves the optimum trade-off between rate and reliability in all

cases.

Unlike the previous works which suggest the potential benefit of linear network coding

in the error-free multicast scenario (in terms of the achievable rate), our result demonstrates

the benefit of linear network coding in the erasure single-source single-destination scenario

(in terms of the diversity gain). To the best of our knowledge, this is the first work in

the literature which compares conventional routing and linear network coding in unicast

applications.
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Table 4.1: Different Notations for Diversity Gain
Notation Description Defined in

maximum diversity gain among all Definition 4.12 in
dopt(r) end-to-end connections with rate r subsection 4.2.5

maximum diversity gain among all Definition 4.13 in
dmax end-to-end connections with non-zero rate subsection 4.2.5

min
d≥0,r>r̃(d)

d Definition 4.20 in

d?(r) section 4.4
diversity gain of MDS coding + Disjoint section 4.3

dMDR(r) Routing end-to-end connection with rate r
diversity gain of MDS coding + Max-Flow subsection 4.5.2

dMMR(r) Routing end-to-end connection with rate r
diversity gain of MDS coding + Max-Flow subsection 4.5.2

dMMRD(r) Routing with Detours for rate r

4.1 Notation and Organization

throughout this chapter, capital bold letters represent matrices, while lowercase bold letters

and regular letters represent vectors and scalars, respectively. The superscript ′ stands for

the matrix transpose operation, while the operator det(.) denotes the determinant of a

matrix. Moreover, all sets are denoted by calligraphic letters. Finally, f(p) = O (g(p)) iff

∃ε0, c > 0 such that |f(p)| ≤ c|g(p)| for ∀ 0 < p < ε0 (the standard big-O notation).

Different notations are used to denote diversity gain in different scenarios throughout

the chapter. These notations are listed in table 4.1.

The rest of the chapter is organized as follows. Section 1.3.2 reviews the related work.

In section 4.2, the system model is introduced, and the technical terms used in our work

are defined in a mathematically accurate way. These definitions include concepts like era-

sure graph, end-to-end connection, diversity gain, optimum diversity-rate trade-off, con-

ventional routing, and linear network coding. Section 4.3 is dedicated to the analysis

of diversity-rate trade-off for homogeneous erasure graphs. In section 4.4, we study the

diversity-rate trade-off in the general erasure graphs. Section 4.5 presents the simulation

results and compares the performance of linear network coding and conventional routing.

Finally, section 4.6 concludes the chapter.
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4.2 System Model and Definitions

4.2.1 Network Graph

The network is modeled as an erasure graph which is defined as follows.

Definition 4.1. Erasure Graph: a graph G = (V , E) is called an erasure graph if the

following conditions are met.

1. G is directed, weakly connected [125], and acyclic.

2. Each link e ∈ E has two states: ON and OFF. ∀ e ∈ E , e is OFF with the probability

pω(e) and is ON with the probability 1− pω(e).

3. For ∀ e ∈ E connecting u ∈ V to v ∈ V − {u}, u transmits a vector of length σ(e)

consisting of q-ary symbols per time slot on the link e. Then, if e is ON, v receives

the transmitted vector correctly during the same time slot. Otherwise (if e is OFF),

v receives an erasure symbol, ξ, independent of the transmitted vector.

4. σ(e) is a positive integer number, σ(e) ∈ Z+.

5. For ∀ e ∈ E , if e is ON (OFF), it stays ON (OFF) for the whole block of transmission.

In other words, links do not change their states in a block.

6. Graph links are delay-free. More accurately, the delay on each link is so small that a

message transmitted from the source at the time slot 1 ≤ t ≤ T can reach any other

node in the graph within the same time slot.

The the rest of this subsection lists some basic definitions which are used in the rest of

the chapter.

Definition 4.2. Head and Tail : for ∀ e ∈ E connecting u ∈ V to v ∈ V − {u}, h(e) = u

denotes the head of the link and τ(e) = v denotes its tail.

Definition 4.3. For ∀ e ∈ E , xe,t ∈ Fσ(e)
q denotes the σ(e) symbols sent on the link e at

the time slot t. Fq represents the Galois field of size q.

Definition 4.4. For every set S ⊆ E , σ(S) is defined as σ(S) ,
∑

e∈S σ(e). Similarly,

ω(S) is defined as ω(S) ,
∑

e∈S ω(e).
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Definition 4.5. For ∀ v ∈ V , Lin(v) denotes the set of incoming links to v, and Lout(v)

denotes the set of outgoing links from v.

Definition 4.6. Consider the nodes s ∈ V and z ∈ V − {s}, where there exists at least

one directed path from s to z. Any partition of V to two disjoint sets V1 and V2 such that

s ∈ V1 and z ∈ V2 is called an s− z cut of the graph G = (V , E). The set of links from V1

to V2 is called an s− z cutset, CV1,V2(s, z). In other words, we define

CV1,V2(s, z) , {e ∈ E|τ(e) ∈ V1, h(e) ∈ V2} . (4.1)

Definition 4.7. Min-Cardinality-Cut & Min-Cut : for every pair of end-nodes s ∈ V and

z ∈ V−{s}, the s−z min-cardinality-cut, MCC(s, z), is defined as the minimum cardinality

of s− z cutsets, i.e. MCC(s, z) , min
V1,V2⊂V:s∈V1,z∈V2,V1

T

V2=∅
|CV1,V2(s, z)|. Similarly, min-cut,

MC(s, z), is defined as MC(s, z) , min
V1,V2⊂V:s∈V1,z∈V2,V1

T

V2=∅
σ (CV1,V2(s, z)).

4.2.2 Justification of the Model

It should be noted that the erasure network model described in Definition 4.1 is an abstrac-

tion which captures the essential aspects of many practical networks like: i) wireless mesh

networks, ii) the Internet, iii) overlay networks [70, 71, 79]. Overlay networks are virtual

networks constructed over the Internet for various purposes and applications. Peer-to-Peer

(P2P) networks [14] and Content Delivery Networks (CDN) [79,101] are examples of over-

lay networks built over the Internet. The former consists of many end users sharing (music

and video) files. The latter is a special overlay network consisting of Edge Servers (nodes)

responsible for delivery of the contents (e.g. large files or video streams) from an original

server to the end users.

Based on the nature of the underlying network, the two assumptions in the erasure

network model (Definition 4.1) are justified here.

• Erasure status of the links does not change in one transmission block : for wireless mesh

networks, this assumption is equivalent to the well-known slow fading model [19, 126].

In case the erasure network models the Internet or an overlay network working over

the Internet, this assumption can be justified for many applications, for example, video
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transmission. Consider a high-quality video stream (30 frame/sec) with the end-to-end

rate of 1 − 2 Mbps. According to [127], the average size of video packets is around

500− 1500 Bytes, depending on the type of the packet1. This means that video packets

are transmitted every 4−12 ms on the average2. Due to the high computational complexity

of both linear network coding and Forward Error Correction (FEC) across packets, the

block length is kept below 100 − 150 packets in both coding methods [12, 15, 35, 129].

Thus, the block duration stays well below the ≈ 2 sec limit. On the other hand, many

studies have shown that the outage of Internet links or routers typically last for much

longer periods (in the order of a few seconds to minutes) [130, 131]. The outage event

may arise due to congestion in a router or an automatic update of the Internet path by

the Border Gate Protocol (BGP) [130,131].

• Delay-free links : this assumption is added to the model to make the comparison between

conventional routing (with the possibility of FEC at the end nodes) and linear network

coding easier. However, all of the results of the chapter can be extended to erasure

networks whose links have non-negligible delay.

Let us consider linear network coding first. As later described in Definition 4.9 in subsec-

tion 4.2.4, each intermediate node generates several linear combinations (weighted sums

with different weights) of the received symbols (packets) and transmits them through the

outgoing links. Following the setup in [59], we assume that each packet includes a tag

(header) which contains the time of transmission from the source node. Since there are

multiple paths with different delays from the source to each intermediate node, the sym-

bols (packets) reaching the intermediate node at each instant of time do not correspond

to the symbols transmitted by the source at the same time. Thus, the intermediate node

has to wait long enough so that it receives all the symbols with the same time tag (gen-

erated at the same time) before it generates and transmits their linear combinations on

the outgoing links. Obviously, as long as the block duration T is much longer than the

maximum end-to-end delay of the erasure graph, the performance of the system is the

same as that of a delay-free network.

Similarly, when conventional routing takes advantage of FEC at the end nodes, the desti-

1Video packet size varies depending on the instantaneous rate and the type of frame the packet corre-
sponds to [127,128].

2The term “on the average” is important as the inter-packet time may vary significantly in video
applications.
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nation node has to wait some extra time until it receives all of the packets routed through

different paths (with different delays). Again, as long as the difference between the fastest

and slowest end-to-end paths (in terms of the delay) is negligible compared to the block

duration, the system can be effectively modeled by a delay-free network. For a more com-

prehensive discussion about linear network coding and routing in networks with delay,

refer to [59, 61, 63]; when each link has a fixed delay of one unit, all of the equations in

our work stay valid after multiplying a delay operator D to the entry corresponding to

that link in network transfer matrix F. Thus, we can still write the determinants of the

end-to-end transfer matrices as polynomials in terms of all the linear coefficients (weights)

as well as the delay operator D.

4.2.3 End-to-End Connection

An end-to-end connection from the node s ∈ V to the node z ∈ V−{s} with the normalized

rate r over T time slots is denoted by notation C(s, z, r) in this work. Such an end-to-end

connection consists of the following components.

• Messages : a set of equiprobable messagesM = {m1,m2, . . . , mM}, where M = qrT .

• Message Vectors: a one-to-one mapping of the messages to the vectors of size rT

with elements in Fq

w = f(m)

f : M→ FrT
q (4.2)

Therefore, sending the message m ∈M is equivalent to sending the vector w ∈ FrT
q .

• Encoding Strategy : for ∀ e ∈ Lout(s), we consider a set of encoding functions

xe,t = fs,e(t,w)

fs,e : {1, . . . , T} × FrT
q → Fσ(e)

q . (4.3)

Therefore, fs,e(t,w) is the vector of symbols the source transmits on the outgoing

link e at time t if it tries to send the message vector w.
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• Network Strategy : for every intermediate node u ∈ V − {s, z}, ∀ e ∈ Lout(u), we

consider a set of forwarding functions

xe,t = fe,t (Yu,t) (4.4)

fe,t : T (Σ, t, Fq ∪ {ξ})→ Fσ(e)
q

where Yu,t is defined as a matrix of size σ (Lin(u)) × t whose j’th column contains

all the symbols u has received in the time slot j. Intuitively speaking, Yu,t includes

all the symbols that the node u has received (on all of its incoming links) up to the

time t. Moreover, we define Σ , σ (Lin(u)), and T (m,n,A) denotes the set of all

m× n matrices with entries in the set A.

• Decoding Strategy : we consider a decoding function at the end node

ŵ = fz (Yz,T )

fz : T (σ (Lin(z)) , T, Fq ∪ {ξ})→ FrT
q (4.5)

where Yz,T is defined similar to Yu,t in the previous bullet. ŵ is the estimate of the

transmitted message vector at the receiver side. The receiver decodes the message

as m̂ = f−1(ŵ) where f() is defined in (4.2).

4.2.4 Conventional Routing & Linear Network Coding

Definition 4.8. Conventional Routing : an end-to-end connection C(s, z, r) uses conven-

tional routing if the following conditions are satisfied.

1. For ∀ e ∈ Lout(s) and 1 ≤ t ≤ T , we should have xe,t ∈ Wσ(e) where W is the set of

all elements in the message vector w.

2. For ∀u ∈ V − {s, z} and ∀ e ∈ Lout(u) and 1 ≤ t ≤ T , we should have xe,t ∈ Yσ(e)
u,t

where Yu,t denotes the set of all the elements in the matrix Yu,t. Moreover, the routing

function which selects the elements of xe,t out of the elements in Yu,t can only depend

on the state (ON or OFF) of the incoming edges to u. In other words, the set of

outgoing links on which a specific incoming symbol is forwarded is independent of the

incoming symbols. Instead, it only depends on the ON-OFF states of the incoming

links.
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The above definition describes the routing schemes used in the conventional packet

switched networks. A set of symbols (packets) are generated at the source and are conveyed

to the destination through the network. The intermediate nodes do not perform any

algebraic computation on the symbols (packets); they either simply forward or copy-and-

forward the packets received through the incoming links to the outgoing links.

Definition 4.9. Linear Network Coding : for an integer value of r, an end-to-end connec-

tion C(s, z, r) uses linear network coding if the following conditions are satisfied.

1. At the source side: for ∀ e ∈ Lout(s) and 1 ≤ t ≤ T , we have

xe,t = Γe wt (4.6)

where wt ,
[
w(t−1)r+1, w(t−1)r+2, . . . , wtr

]′
and Γe is a matrix of size σ(e)× r relating

the input message vector to the inputs for the edge e.

2. At the intermediate nodes: for ∀u ∈ V − {s, z} and ∀ e ∈ Lout(u) and 1 ≤ t ≤ T , we

have

xe,t =
∑

e′∈Lin(u),e′is ON

Be,e′xe′,t (4.7)

where Be,e′ is a matrix of size σ(e)×σ(e′) relating the output vector on edge e to the

input vector on edge e′. It should be noted that the linear operator here is performed

only on the inputs of the edges which are ON. In other words, whenever we have

xe′,t = [ξ, ξ, . . . , ξ]′ (a vector of length σ(e′) consisting of erasure symbols), xe′,t is

just discarded.

3. At the destination side: for 1 ≤ t ≤ T , we have

ŵt =
∑

e∈Lin(z),e is ON

Λexe,t (4.8)

where ŵt is defined similar to wt and Λe is a matrix of size r×σ(e) relating the inputs

on edge e to the estimated message. It should be noted that the linear operator here

is performed only on the inputs of the edges which are ON.

The above definition means that the source transmits multiple linear combinations of

r message symbols in each time slot. The intermediate nodes also produce multiple linear
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combinations of the received symbols and transmit them on the outgoing links. The end

node should be able to reconstruct the r message symbols transmitted in each time slot by

computing linear combinations of the received symbols.

Note that the described linear network code is defined for integer values of r. However,

any non-integer rate can be achieved by time-sharing between two linear network codes

with different integer rates.

4.2.5 Diversity Gain

In section 1.3 of chapter 1, we introduced the diversity gain of an end-to-end connection

over an erasure graph as the (decaying) slope of PE versus p in the logarithmic scale as

p→ 0. We also stated that this definition is compatible with the concept of diversity gain

in the wireless communication literature if 1
p

is interpreted as the SNR. In this subsection,

we accurately define the previously introduced concepts.

Definition 4.10. Probability of Error : for an end-to-end connection from s to z with the

normalized rate r over T time slots, the probability of error is defined as

PE , P{m̂ 6= m} (a)
= P{ŵ 6= w} (4.9)

where P{.} denotes the probability of an event, and (a) follows from the fact that the

function f() in (4.2) is one-to-one.

Remark 4.1. For each block, let us define the binary random variable E, where E = 1 if

m̂ 6= m, and E = 0, otherwise. Then, we clearly have PE = E{E}. In other words, PE

represents the statistical average of E in each block. In case we have a very long data

stream composing a large number of blocks, time average of E converges to the statistical

average of E (due to ergodicity). Intuitively speaking, the observed percentage of error

converges to the probability of error.

Definition 4.11. Diversity Gain: for an end-to-end connection from s to z with the

normalized rate r, C(s, z, r), we define the diversity gain as

dC , lim
p→0

lim
T→∞

log PE

log p
. (4.10)
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Definition 4.12. Optimum Diversity Gain: for a rate r and end nodes s and z, the

optimum diversity gain is defined as the maximum diversity gain over all possible end-to-

end connections between s and z with rate r

dopt(r) , max
C(s,z,r)

dC. (4.11)

Remark 4.2. We will later show that dopt(r) is a decreasing function of r. More accurately,

there is a trade-off between dopt(r) and r.

Definition 4.13. Maximum Diversity Gain: for the end nodes s and z, the maximum

diversity gain is defined as

dmax , max
r>0

dopt(r). (4.12)

Definition 4.14. Strategy Factor : for an end-to-end connection C(s, z, r), we define the

strategy factor as

AC , lim
p→0

lim
T→∞

PE

pdC . (4.13)

Example 4.1. Consider the network of Example 1.1 with the number of links n = 5 and rate

r = 3. The following end-to-end connection is denoted by C(s, z, r): every r packets are

coded into an MDS code of length n and then transmitted over the n links (as described in

Example 1.1). Figure 4.1 depicts the plot of PE versus 1
p

in the log-log scale for C(s, z, r).

dC = 3 is the slope of the tangential line at 1
p
→∞. The strategy factor AC can be found

at the intersection of this tangential line with the vertical line 1
p

= 1.

4.3 Homogeneous Erasure Graphs

In this section, we analyze the diversity-rate trade-off over erasure graphs with homogeneous

links defined as follows.

Definition 4.15. An erasure graph G = (V, E) is called a Homogeneous Erasure Graph

(HEG) if all the links have the same capacity and the same erasure probability. In other

words, ∀e ∈ E , we have σ(e) = ω(e) = 1.
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Figure 4.1: PE vs. 1
p

in the log-log scale for the network of Fig. 1.1 with n = 5 and r = 3.

The diversity gain is dC = 3 and the strategy factor AC is indicated in the plot.

Remark 4.3. In this work, to keep the analysis simple, we have defined an HEG such that

σ(e) = ω(e) = 1 for all e ∈ E . However, the results stay valid (with some scaling factors)

if ∀e ∈ E , we have ω(e) = ω0 and σ(e) = σ0 for some constants ω0 and σ0. We can still

apply the results of this subsection using the scaled rate r′ = r
σ0

and substituting p with

p′ = pω0 . Thus, the diversity gain d = limp→0
log PE

log p
gets scaled by the factor 1

ω0
.

Furthermore, we define deterministic erasure graph to proceed with our analysis.

Definition 4.16. An erasure graph, in the sense of Definition 4.1, is called deterministic

if we have p = 0.

Lemma 4.1. Consider a deterministic erasure graph G = (V, E) with the end nodes s ∈ V
and z ∈ V − {s}. If there exists an s − z cutset CV1,V2(s, z) with σ (CV1,V2(s, z)) < r, then

for any end-to-end connection C(s, z, r), we have limT→∞ PE = 1.

Proof See appendix 4.7.1. �

Lemma 4.2. In a HEG with the s− z min-cardinality-cut MCC(s, z), we have

lim
T→∞

PE ≥ n (s, z, MCC(s, z)− dre+ 1) pMCC(s,z)−dre+1 (1 + O(p))
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for any end-to-end connection C(s, z, r). Here, n(s, z, α) denotes the number of sets S ⊆ E
of cardinality α such that there exists a s− z cut of minimum cardinality, CV1,V2(s, z), for

which S ⊆ CV1,V2(s, z). Thus, we have dopt(r) ≤ MCC(s, z)−dre+1. MCC(s, z) is defined

in Definition 4.7.

Proof See appendix 4.7.2. �

Lemma 4.3. In a HEG with the s−z min-cardinality-cut MCC(s, z), there exist MCC(s, z)

link-disjoint paths from s to z.

Proof This lemma is direct result of the Ford-Fulkerson Theorem and the fact that σ(e) =

1 for ∀ e ∈ E in a HEG. �

Definition 4.17. MDS Coding + Disjoint Routing (MDR): in a HEG with the s− z min-

cardinality-cut MCC(s, z), an MDR end-to-end connection with the integer normalized

rate r ≤ MCC(s, z) is defined as follows:

1. At any time slot t, the node s encodes w(t−1)r+1, . . . , wtr to MCC(s, z) q-ary symbols

using an MDS code.

2. Then, s transmits the MCC(s, z) q-ary symbols along the MCC(s, z) link-disjoint

paths to z, one symbol per path.

3. If r or more symbols are received correctly by z, it can reconstruct w(t−1)r+1, . . . , wtr.

Otherwise, an error is declared.

For non-integer values of r, an MDR end-to-end connection is achieved by time sharing. s

uses an MDR connection with the rate brc for dre − r percent of the time and an MDR

connection with the rate dre for the rest of time.

Remark 4.4. According to Definition 4.17, it is obvious that MDR is a special case of

conventional routing.

Remark 4.5. For any MDS code of size [n, r], we know that the receiver can decode the

original r data symbols if out of the n transmitted symbols, at least r of them are received

correctly [56].
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L

Figure 4.2: Ladder-shaped HEG

Theorem 4.1. Consider a homogeneous erasure graph G = (V , E) and a MDS cod-

ing+disjoint routing end-to-end connection which transmits messages over MCC(s, z) link-

disjoint paths from s to z where MCC(s, z) is the min-cardinality-cut between s and z.

Assume the length of the i′th path is li, for 1 ≤ i ≤ MCC(s, z). Then, for every rate r ≥ 0,

the end-to-end connection achieves the diversity gain dMDR = (MCC(s, z)− dre+ 1)+ and

the strategy factor3

AMDR =
∑
I⊆P

|I|=dMDR

∏
x∈I

lx (4.14)

where P , {1, 2, . . . , MCC(s, z)}, and we define x+ , x+|x|
2

.

Proof See appendix 4.7.3. �

Remark 4.6. According to Theorem 4.1, for an MDR end-to-end connection with the nor-

malized rate r ≤ 1, the strategy factor is equal to AMDR =
∏MCC(s,z)

i=1 li.

Theorem 4.2. Consider a homogeneous erasure graph G = (V , E) and a pair of source

and destination nodes, s, z ∈ V. For every rate r ≥ 0, the optimum diversity gain is equal

to dopt(r) = (MCC(s, z)− dre+ 1)+ where MCC(s, z) is the min-cardinality-cut between s

and z and x+ , x+|x|
2

. Furthermore, there exists a MDS coding+disjoint routing end-to-end

connection which achieves the optimum diversity-rate trade-off.

Proof Combining Theorem 4.1 and Lemma 4.2, the proof becomes obvious. �
3Strategy factor is defined in Definition 4.14 in subsection 4.2.5.
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Definition 4.18. Flooding : an end-to-end connection with the rate r = 1 over a HEG is

called flooding if the following conditions are satisfied:

1. For ∀ e ∈ Lout(s) and 1 ≤ t ≤ T , we should have xe,t = wt.

2. For ∀u ∈ V − {s, z} and ∀ e ∈ Lout(u) and 1 ≤ t ≤ T , we should have

xe,t =

{
0 if X ⊆ {0, ξ}
wt otherwise

(4.15)

where X is the set of all elements in the t’th column of Yu,t, i.e. all of the symbols u

has received in at time slot t. The matrix Yu,t is defined in (4.4). Since in each time

slot t only one symbol wt is being broadcast, it is easy to verify that X can consist of

at most 3 elements: 0, ξ, and wt. The above equation simply states that if wt ∈ X ,

the node broadcasts it at all of the outgoing edges. Otherwise, it broadcasts 0.

Intuitively speaking, flooding works by each intermediate node broadcasting the same

packet on all of the outgoing links.

Theorem 4.3. Consider a homogeneous erasure graph G = (V , E) and a pair of source

and destination nodes, s, z ∈ V. A flooding end-to-end connection from s to z achieves

the maximum diversity gain dfl = dmax = MCC(s, z) with the minimum possible strategy

factor of Afl = N(s, z) where N(s, z) is the number of min-cardinality-cuts between s and

z.

Proof See appendix 4.7.4. �

Example 4.2. Ladder Grid : consider the ladder-shaped HEG of Fig. 4.2. Clearly, we have

MCC(s, z) = 2 in this graph. An MDR end-to-end connection with the rate r = 1 consists

of two disjoint paths from s to z. Each path has the length of L+1 links. Thus, according

to Theorem 4.1 and Remark 4.6, such an MDR end-to-end connection has the diversity

gain of dMDR = 2 and the strategy factor of AMDR = (L + 1)2.

On the other hand, flooding provides us with the same diversity gain, dfl = 2, and a

better (lower) strategy factor. According to Theorem 4.3, Afl = N(s, z) where N(s, z)

denotes the number of min-cardinality-cuts between s and z. In the graph of Fig. 4.2,

there are L + 2 cuts of cardinality 2. L of them correspond to the L steps on the ladder.
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Figure 4.3: Square-shaped HEG

The last two cuts disconnect the end point (s and z) from the rest of the graph. Hence,

we have Afl = N(s, z) = L + 2 which is much less than AMDR = (L + 1)2.

Example 4.3. Square Grid : consider the square-shaped HEG of Fig. 4.3. Again, we have

MCC(s, z) = 2 in this graph. Any MDR end-to-end connection with the rate r = 1 consists

of two paths of length 2L links each. Thus, according to Theorem 4.1 and Remark 4.6,

it has the diversity gain of dMDR = 2 and the strategy factor of AMDR = 4L2. Flooding

provides us with the same diversity gain, dfl = 2, and a much better (lower) strategy

factor, Afl = 2. The reason is that there are only two cuts of cardinality 2 in the graph,

the ones disconnecting s and z from the rest of the graph.

4.4 General Erasure Graphs

In this section, we analyze the diversity-rate trade-off for the general erasure graphs, mean-

ing that σ(e)’s and ω(e)’s can take different values. As we will observe, in the general

case, conventional routing fails to achieve the optimum diversity-rate trade-off. However,

we show that linear network coding in the intermediate nodes can achieve the optimum
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diversity-rate trade-off. First, we define the following notations.

Definition 4.19. Consider an erasure graph G = (V , E). For a pair of end nodes s, z ∈ V
and any value of d ≥ 0, r̃(d) is defined as the minimum value of MC(s, z) over all graphs

G′ = (V , E ′) such that E ′ ⊆ E and ω(E − E ′) ≤ d. Equivalently,

r̃(d) = min
V1,V2

min
S⊆CV1,V2

(s,z)

ω(S)≤d

σ (CV1,V2(s, z)− S) , (4.16)

where CV1,V2(s, z) is an s− z cutset in G, such that V1,V2 ⊂ V ; s ∈ V1; z ∈ V2;V1

∩
V2 = ∅.

Definition 4.20. Consider an erasure graph G = (V , E). For a pair of end nodes s, z ∈ V
and any rate r ≥ 0, d?(r) is defined as

d?(r) , min
d≥0,r>r̃(d)

d,

Lemma 4.4. r̃(d) and d?(r) are both decreasing functions.

Proof See appendix 4.7.5. �

Lemma 4.5. Consider an erasure graph G = (V , E) and a pair of end nodes s, z ∈ V. For

any end-to-end connection C(s, z, r) with rate r ≥ 0, we have limT→∞ PE ≥ pd if r > r̃(d).

Equivalently, we have limT→∞ PE ≥ pd?(r).

Proof See appendix 4.7.6. �

Lemma 4.6. Consider an erasure graph G = (V , E), end nodes s, z ∈ V, d ≥ 0, and

any rate r ≤ r̃(d). The symbols transmitted on the links of G are assumed to be in

Fq as explained in Definition 4.3. Let EOFF denote the set of OFF edges. For suffi-

ciently large values of q, there exists a linear network coding4 strategy CNC(s, z, r) such

that P {error |ω (EOFF) ≤ d} = 0.

Proof See appendix 4.7.7. �

4Linear network coding is defined in Definition 4.9.
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r=350, Linear Network Coding
r=350, MMR
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Figure 4.4: PE of linear network coding, MDS Max-Flow Routing (MMR), and MDS Max-
Flow Routing with Detours (MMRD) vs. 1

p
in logarithmic scale for different rates r = 350

and r = 316. The network parameters are |V| = 40, m = 5, and 10 < σ(e) < 100.

Theorem 4.4. Consider a general erasure graph G = (V , E) and a pair of end nodes

s, z ∈ V. The symbols transmitted on the links of G are assumed to be in Fq as explained

in Definition 4.3. For sufficiently large values of q, there exists a linear network coding

end-to-end connection which achieves the optimum diversity-rate trade-off. Moreover, the

optimum diversity-rate trade-off is equal to d?(r) as defined in Definition 4.20.

Proof See appendix 4.7.8. �

Theorem 4.5. There exists an erasure graph G = (V , E) and end nodes s, z ∈ V such

that no conventional routing end-to-end connection from s to z can achieve the optimum

diversity-rate trade-off, d?(r). Conventional routing is defined in Definition 4.8.

Proof See appendix 4.7.9.

Remark 4.7. Theorem 4.5 shows a sharp distinction between HEG’s and general erasure

graphs. In a HEG, according to Theorem 4.1, it is possible to achieve the optimum diversity

gain for any rate using conventional routing (MDS Coding + Disjoint Routing). On the

other hand, in the general erasure graphs, there are cases where any conventional routing

strategy fails to achieve the optimum diversity gain. In such cases, the intermediate nodes
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r=310, Linear Network Coding
r=310, MMR
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Figure 4.5: PE of linear network coding, MDS Max-Flow Routing (MMR), and MDS Max-
Flow Routing with Detours (MMRD) vs. 1

p
in logarithmic scale for different rates r = 310

and r = 300. The network parameters are |V| = 40, m = 5, and 10 < σ(e) < 100.

have to perform algebraic operation (instead of simple forwarding) on the incoming symbols

(packets) to achieve dopt(r).

4.5 Numerical Results

This section utilizes numerical evaluation to compare the performance of linear network

coding and conventional routing over erasure networks with random topologies. The net-

work topology is generated based on the random models explained in the next subsection.

4.5.1 Network Topology

To model the topology of practical networks realistically, we use the well-known Boston

university Representative Internet Topology gEnerator (BRITE) [132, 133]. BRITE has

the ability to construct random network topologies based on the Barabasi-Albert (BA)

model [134] and Waxman model [135]. The BA model is able to capture the scale-free and

power-law degree distribution phenomena which are observed in many networks like the IP

routers, World Wide Web, social networks (Facebook, Orkut), scientific paper citations,

etc [136]. This model is based on two principles: incremental growth and preferential
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Figure 4.6: dopt(r) is compared with the envelope of MMR and MMRD diversity gain
for 100 random routing schemes. MMR and MMRD stand for MDS Max-Flow Routing
and MDS Max-Flow Routing with Detours, respectively (see subsection 4.5.2). Subfigures
(a) to (d) correspond to the four network topologies described in subsection 4.5.1. The
topologies are generated based on the BA model.
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Figure 4.7: dopt(r) is compared with the envelope of MMR and MMRD diversity gain
for 100 random routing schemes. MMR and MMRD stand for MDS Max-Flow Routing
and MDS Max-Flow Routing with Detours, respectively (see subsection 4.5.2). Subfigures
(a) to (d) correspond to the four network topologies described in subsection 4.5.1. The
topologies are generated based on Waxman model.

108



Chapter 4. Diversity-Rate Trade-off in Erasure Networks

connectivity [134]. The BRITE topology generator identifies the BA model with two

parameters: the number of nodes (|V|) and the connectivity parameter m. During the

incremental growth phase, once a new node joins the network, it selects m old nodes and

connects to them. Due to the principle of preferential connectivity, the old nodes which

already have higher degrees are more likely to be selected. In other words, the probability

that an old node is selected by the new node is proportional to its degree [134].

The number of edges in a random graph with |V| nodes generated by the BA model

can be computed as follows. The first node has no other nodes to connect to and forms

zero new links. The second node forms one new link. Similarly, for 1 ≤ i ≤ m, the i’th

node added to the network forms i−1 new links. The nodes after the m’th node each form

exactly m new links. Adding all of the links together gives us the total number of edges

|E| = m|V| − m(m+1)
2

.

On the other hand, Waxman model is based on the simple assumption that two close

nodes are exponentially more likely to connect (and form a link) than two far apart

nodes [135]. This property is called local preference. In the original Waxman model [135],

the nodes are uniformly distributed in a square of size Z1 × Z2. The probability that

two nodes u and v with the distance l(u, v) of each other are connected is equal to

P (u, v) = αe−
l(u,v)

βZ where Z =
√

Z2
1 + Z2

2 is the largest Euclidean distance between any

two points in the area. The parameter α controls the total number of edges in the graph,

while β determines the ratio of long edges to the short ones. Unfortunately, according

to this model, the average degree of a node grows infinitely large as the total number of

nodes in the graph (|V|) grows. This trend is in contrast with the observations in most

practical networks like the Internet where the average degree stays limited as the network

grows [137]. Therefore, BRITE applies a variation of Waxman model in which each node

connects to m other nodes. Thus, the number of edges would be |E| = m|V|. When adding

a link whose tail is the node ui, there are |V| − 1 candidates for the head. Modified Wax-

man model picks the closer nodes with higher probability, i.e. the probability of uj being

selected is [138]

P (ui, uj) =
e−

l(ui,uj)

βZ

j′=|V|∑
j′=1,j′ 6=i

e−
l(ui,uj′ )

βZ

.

Unlike the BA model, Waxman model results in a degree distribution which decays expo-

nentially at large degrees [139]. Although this is in contrast with the scale-free property
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observed in the Internet [136], Waxman model is widely used to generate small-size net-

works due to its simplicity and local preference property [140]. We apply the modified

Waxman model with β = 0.2 (the default value in BRITE software [138]).

As stated, the BA model emulates the behavior of the real networks in the asymptotic

case where the number of nodes (and edges) in the graph is very large [136]. However, due

to the high complexity of computing dopt(r), we do not grow the number of nodes more

than ≈ 50 and the number of edges more than ≈ 250 in the simulations. Therefore, we also

test graphs constructed based on the Waxman model which is more suitable for small-size

networks.

BRITE topology generator assigns a random capacity value σ(e) to any edge e ∈ E . σ(e)

follows the heavy-tailed Pareto distribution [141] with the shape factor γ = 1.2 (the default

value in BRITE software [138]), the minimum value set at BWmin, and the maximum at

BWmax. ω(e) is set to one for all e ∈ E , i.e. each link in the graph may be OFF with the

probability p. We run the simulations for 4 BA topologies and 4 Waxman topologies:

• (a) |V| = 40, m = 5, and 10 < σ(e) < 100,

• (b) |V| = 40, m = 5, and 10 < σ(e) < 15,

• (c) |V| = 30, m = 4, and 10 < σ(e) < 100,

• (d) |V| = 30, m = 4, and 10 < σ(e) < 15.

As explained before, the number of nodes and edges in the network is kept small due to

high complexity of computing dopt(r). The reason we adopted the connectivity parameter

m equal to 4 or 5 is that for smaller values of m, the network becomes too sparse (and in

some cases unconnected). Even if the network stays connected, the min-cut (bottleneck)

between most of source-destination pairs is composed of the edges connecting one of the

end-nodes to the rest of the network. In such cases, there is not much of difference between

the performance of conventional routing and linear network coding.

The distribution of the links’s capacity (σ(e)) is selected such that networks (a) and

(c) become very heterogeneous, in the sense that capacity of their links vary significantly.

On the other hand, networks (b) and (d) can be viewed as almost-homogeneous erasure

networks. The reason is that capacity of the links in these graphs do not vary significantly.
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4.5.2 Random Routing vs. Linear Network Coding

To have a fair comparison between conventional routing and linear network coding, we

measure the performance of three different end-to-end connections:

• Linear Network Coding: according to theorem 4.4, we know that there exists at least

one linear network coding scheme which achieves the maximum diversity gain for any

rate r, denoted by dopt(r).

• MDS Max-Flow Routing (MMR): for any 0 < r < MC(s, z), the source node, s,

encodes every r symbols (packets) into MC(s, z) symbols using an MDS code. Then,

we find a flow with the rate of MC(s, z) (max-flow) from s to the destination, z.

Finally, the state of each link is set to {ON,OFF} with the probabilities {1 − p, p}.
If less than r symbols reach the destination, an error is declared.

• MDS Max-Flow Routing with Detours (MMRD): this scheme is exactly the same

as MMR, except that the max-flow found by MMR is enhanced by adding random

extra detours to the path of each symbol from s to z. This is done until all links are

saturated and no detour can be found.

It is easily seen that both MMR and MMRD schemes can be categorized as conventional

routing end-to-end connections. Intuitively speaking, we expect MMRD to have a better

performance than MMR (dMMRD(r) > dMMR(r)). The reason is that MMRD takes advan-

tage of the unused links in the graph to send extra copies of the symbols to the destination.

This increases resilience of the end-to-end connection to link breakdowns.

The last two schemes have a random nature. Therefore, we generate up to 100 MMR

and MMRD schemes. Then for each rate, we select the MMR and MMRD schemes with

maximum diversity gain. This gives us the envelope of dMMR(r) and dMMRD(r). Our

simulation results show little variation in the the diversity gains of 100 randomly generated

MMR (and MMRD) schemes for each rate. In the cases where more than 100 (say 1000)

random MMR and MMRD schemes were generated, the maximum diversity gain of MMR

and MMRD schemes for each rate (envelope of dMMR(r) and dMMRD(r)) did not change.

Therefore, there is no need to test more than 100 MMR and MMRD schemes.

Figure 4.4 and Fig. 4.5 depict PE of linear network coding, MMR, and MMRD versus 1
p

for different rates over the BA network with topology (a) described in the previous subsec-

tion. The graph has the max-flow of MC(s, z) = 372. The diversity gains can be computed
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based on the decaying slope of PE vs. 1
p

(in logarithmic scale). It is observed that the

slope increases as the rate decreases. Moreover, the diversity gain (slope) of linear network

coding is always larger than or equal to that of conventional routing (MMR and MMRD)

for the same rate. Figure 4.6 compares dopt(r) with the envelope of MMR and MMRD

diversity gain (dMMR(r) and dMMRD(r)) for 100 random routing schemes. Subfigures (a)

to (d) correspond to the four network topologies described in the previous subsection. All

of the topologies are generated based on the BA model. In all cases, the diversity gains

take integer values only and have stepwise shapes. This is an obvious result of the as-

sumption that ω(e) = 1 for all e ∈ E . Comparing subfigure (a) with (b) and (c) with (d)

reveals that the gap between dopt(r) and conventional routing diversity gain (dMMR(r) and

dMMRD(r)) is significantly smaller in almost-homogeneous networks (graphs (b) and (d)).

In both almost-homogeneous networks (graphs (b) and (d)), the envelope of dMMRD(r) is

barely distinguishable from dopt(r) (optimal diversity gain) at all rates. This observation

verifies Theorem 4.2 which states that proper conventional routing can achieve the opti-

mum diversity-rate trade-off in homogeneous erasure networks. In topologies (a) and (c),

however, the envelope of dMMRD(r) stays considerably smaller than dopt(r). The reason

is that in such cases, the capacity of different links vary significantly, and conventional

routing fails to achieve the optimum diversity-rate trade-off.

Figure 4.7 depicts dopt(r) and the envelope of MMR and MMRD diversity gain for the

scenarios (a) to (d) with the Waxman model. It is observed that the general trend is similar

to Fig. 4.6 (the BA model), i.e. the gap between dopt(r) and dMMRD(r) is significantly larger

in heterogeneous networks (subfigures (a) and (c)) than in the almost-homogeneous ones

(subfigures (b) and (d)). However, this gap is slightly smaller in subfigures 4.7(a) and 4.7(c)

than in subfigures 4.6(a) and 4.6(c). This observation can be attributed to the fact that in

the BA model, the degree distribution is more non-uniform than in the Waxman model.

In other words, a small percentage of the nodes are highly connected, while the rest of

the nodes have low connectivity. Therefore, the advantage of linear network coding over

conventional routing is more significant in the BA model.

4.6 Conclusion

We have studied a fundamental trade-off between rate and diversity gain over an erasure

network. The erasure network is modeled as a directed acyclic graph whose links are
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orthogonal erasure channels. The erasure status of the links is assumed to be known only

by the destination node. First, we focused on the homogeneous erasure networks whose

links have the same erasure probability and capacity. The optimum diversity-rate trade-

off was derived for homogeneous erasure networks and was shown to be achievable by

MDS coding at the source node and disjoint routing in the intermediate nodes (a variant

of conventional routing). Next, we analyzed the general erasure networks whose links

may have different capacity and erasure probability values. It was proved that in general

erasure graphs, conventional routing strategies fail to achieve the optimum diversity-rate

trade-off. However, the optimum trade-off is always achievable by linear network coding.

Finally, we studied the diversity-rate trade-off through simulations over graphs constructed

based on the Barabasi-Albert and Waxman random models. The diversity gain of linear

network coding strategy was plotted versus the rate and was compared with that of different

conventional routing schemes. It was observed that linear network coding outperforms all

conventional routing strategies in terms of the diversity gain.

4.7 Appendices

4.7.1 Proof of Lemma 4.1

Let us denote the vector of symbols transmitted on the cut edges by x(C). Then w ↔
x(C)↔ ŵ form a Markov chain. Thus, the capacity of the end-to-end-channel from s to z

can be bounded as

C = lim
T→∞

1

T
I(w; ŵ)

(a)

≤ lim
T→∞

1

T
I(w;x(C))

≤ lim
T→∞

1

T
H(x(C))

(b)

≤ lim
T→∞

1

T
log2 qTσ(CV1,V2

(s,z))

= σ (CV1,V2(s, z)) log2 q

< r log2 q
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where (a) follows from the data processing inequality and (b) from the fact that x(C) takes

at most qTσ(CV1,V2
(s,z)) different values. r log2 q equals the non-normalized end-to-end rate

in bits. Using the strong version of the converse of the noisy channel (Shannon) theorem,

we know that limT→∞ PE = 1 for rates above the capacity. This proves the lemma. �

4.7.2 Proof of Lemma 4.2

Let us denote all the s − z cutsets with the minimum cardinality as C1, C2, . . . , CN(s,z).

Furthermore, we define ES as the event5 that the edges in the subset S ⊆ E are OFF and

α , MCC(s, z)− dre+ 1. Then, limT→∞ PE can be lower-bounded as

lim
T→∞

PE≥ lim
T→∞

P

error
∩∪

i

∪
S⊆Ci
|S|=α

ES




= lim
T→∞

P


∪

S,|S|=α

∃i:S⊆Ci

(
error

∩
ES
)

(a)

≥ lim
T→∞

∑
S,|S|=α

∃i:S⊆Ci

P {ES}P {error |ES }−

∑
S6=S′,|S|=|S′|=α,

∃i,j:S⊆Ci,S′⊆Cj

P {ES ∩ ES′}P {error |ES ∩ ES′ }

(b)

≥ n(s, z, α)pα −N(s, z)2

(
MCC(s, z)

α

)2

pα+1

= n(s, z, α)pα (1 + O(p)) . (4.17)

Here, (a) follows from the principle of inclusion-exclusion [142] and (b) follows from i)

Lemma 4.1, ii) the facts that P {ES} = pα and P {ES ∩ ES′} ≤ pα+1, and iii) the fact

that the number of subsets S for which we have ∃i : S ⊆ Ci, can be upper-bounded by

N(s, z)
(

MCC(s,z)
α

)
. Therefore, for any end-to-end connection C(s, z, r), the above inequality

5In the axiomatic probability theory, an event is interpreted as a set. Thus, following the convention
of this thesis, we denote all events by calligraphic letters.
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results in dC ≤ MCC(s, z)− dre+ 1. �

4.7.3 Proof of Theorem 4.1

First, let us prove the theorem for integer values of r. A path from s to z is called broken

if at least one of the links in the path is OFF. For each i, i ∈ P , the probability of path

i being broken is pi = 1 − (1 − p)li , where li is the number of links the path consists of.

It is easy to see that pi = lip(1 + O(p)). In an MDR end-to-end connection with the

normalized rate r, the r packets at the source are coded into MCC(s, z) packets using an

MDS block code of size [MCC(s, z), r]. An error occurs iff more than MCC(s, z)−r packets

are lost. This is equivalent of MCC(s, z) − r + 1 or more paths being broken (out of the

total MCC(s, z) paths). Therefore, PE can be written as

PE =

MCC(s,z)∑
d=MCC(s,z)−r+1

∑
I⊆P
|I|=d

∏
x∈I

px

=

MCC(s,z)∑
d=MCC(s,z)−r+1

∑
I⊆P
|I|=d

pd(1 + O(p))
∏
x∈I

lx

= pMCC(s,z)−r+1(1 + O(p))
∑
I⊆P

|I|=MCC(s,z)−r+1

∏
x∈I

lx.

The above result proves the theorem for integer values of r.

As explained in Definition 4.17, non-integer rates are achieved by time sharing between

two MDR connection of rates dre and brc. According to the above result, it can be seen

that the diversity gain corresponding to the higher rate (dre) is smaller and therefore

dominates. Hence, the overall diversity gain and strategy factor are identical to those of a

connection with the rate dre. This completes the proof. �

4.7.4 Proof of Theorem 4.3

A cutset is called broken if all of the links in the cutset are OFF. Let us denote Ei as

the event where the i’th s − z cutset of minimum cardinality is broken, 1 ≤ i ≤ N(s, z).
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Obviously, an error occurs iff at least one of the cutsets is broken. Hence, we have

PE = P


n(s,z)∪
i=1

Ei


≤

n(s,z)∑
i=1

P {Ei}

= N(s, z)pMCC(s,z). (4.18)

On the other hand, from Lemma 4.2, we know that lim
T→∞

PE ≥ n(s, z, MCC(s, z))pMCC(s,z).

According to the definition, we conclude that n(s, z, MCC(s, z)) = N(s, z). Hence, the

flooding end-to-end connection achieves the optimum diversity gain of MCC(s, z) and the

minimum strategy factor of N(s, z). This completes the proof. �

4.7.5 Proof of Lemma 4.4

Let us consider d ≤ d′. We have

r̃(d) = min
CV1,V2

(s,z)
min

S⊆CV1,V2
(s,z)

ω(S)≤d

σ (CV1,V2(s, z)− S)

≥ min
CV1,V2

(s,z)
min

S⊆CV1,V2
(s,z)

ω(S)≤d′

σ (CV1,V2(s, z)− S) = r̃(d′), (4.19)

where CV1,V2(s, z) is defined in Definition 4.6. This proves that r̃(d) is decreasing.

Next, let us consider r ≤ r′. We have

d?(r) = min
d≥0,r>r̃(d)

d

≥ min
d≥0,r′>r̃(d)

d = d?(r′). (4.20)

This proves that r̃(d) is decreasing with respect to d. �

4.7.6 Proof of Lemma 4.5

Let us consider a value of d such that r > r̃(d). According to the definition, there exists a

set E ′ ⊆ E such that ω(E − E ′) ≤ d and MC(s, z) = r̃(d) < r over the graph G′ = (V , E ′).
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Furthermore, let us define D as the event where all edges in E − E ′ are OFF. Then, we

have

lim
T→∞

PE ≥ lim
T→∞

P{error ∩ D}

= lim
T→∞

P{error |D}P{D}
(a)
= P{D} = pω(E−E ′) ≥ pd (4.21)

where (a) follows from Lemma 4.1 and the fact that MC(s, z) < r for the graph G′.

Next, we prove limT→∞ PE ≥ pd?(r). According to Definition 4.20, it is obvious that

r > r̃(d?(r)). Thus, setting d = d?(r) in (4.21) proves the lemma. �

4.7.7 Proof of Lemma 4.6

Sketch of the Proof: the proof is similar to the proof for capacity achievability of linear

network coding presented in [61]. Here, we have to show that there exists a linear network

code such that for any subgraph Ĝ = (V , Ê) of G for which ω
(
E − Ê

)
≤ d, it achieves the

deterministic capacity of Ĝ. To ensure this, we have to consider the multi-variate poly-

nomial obtained by multiplying the determinant of the transfer matrices corresponding

to each subgraph Ĝ and show that providing a Galois Field Fq large enough, the corre-

sponding multi-variate polynomial is not equal to zero. This method is very similar to the

algebraic anlaysis of network coding in [61,63].

Proof: let us consider an arbitrary labeling ` : {1, 2, . . . , σ(E)} → E such that for

every edge e, we have |{x |`(x) = e}| = σ(e). Now, we define the multivariate matrix

F of size σ(E) × σ(E) over Fq as follows. For any 1 ≤ i, j ≤ σ(E), we have Fi,j = 0

if h(`(j)) 6= τ(`(i)). Otherwise, Fi,j = βi,j where βi,j is a variable in Fq. βi,j denotes

the coefficient used at the node h(`(j)) to compute the effect of the corresponding input

symbol over `(j) on the corresponding output symbol over `(i). Hence, for any two edges

e, e′ with h(e′) = τ(e), every realization of {βi,j}`(i)=e,`(j)=e′ corresponds to Be,e′ defined in

Definition 4.9. Accordingly, every realization of the multivariate matrix F determines the

linear network operations in all intermediate nodes.

Similarly, we define the multivariate matrices A and C over Fq with sizes r× σ(E) and

σ(E) × r, respectively. A and C correspond to the linear network operations performed

at the destination and source nodes, respectively. More precisely, Ai,j = 0 if h(`(j)) 6= z.
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Otherwise, Ai,j = αi,j where αi,j is a variable in Fq denoting the coefficient used at the

destination node to compute the effect of the corresponding input symbol over edge `(j)

on the i’th element of the output vector, yt. Similarly, Ci,j = 0 if τ(`(i)) 6= s. Otherwise,

Ci,j = ζi,j where ζi,j is a variable in Fq denoting the coefficient used at the source node

to compute the effect of the j’th element of the message vector, wt, on the corresponding

symbol over edge `(i).

In the case where all the edges in the network are ON, using the same argument intro-

duced in [61], the input and output vectors at time t are related as yt = A (I− F)−1 Cwt.

This is due to the facts that the network is delay-free and the underlying graph is di-

rected acyclic. Hence, the receiver can successfully decode the transmitted message if

det
(
A (I− F)−1 C

)
6= 0.

However, according to the network model, each link in the graph can be in the ON

or OFF state. The state of the graph G is defined as the vector of the states of all

the links in the graph. Consider all states of the graph for which ω (EOFF) ≤ d. Let

us denote the number of such states by Ψ (obviously, Ψ ≤ 2|E|), and label them from

1 to Ψ. Corresponding to the i’th state, 1 ≤ i ≤ Ψ, we define the graph Ĝi = (V , Ê i)

where Ê i , E − EOFF, and the operator ‘−’ is defined as A − B , {x ∈ A| x /∈ B} for

any two sets A and B. Let us assume the i’th state occurs. According to the definition

of linear network coding (Definition 4.9), the intermediate nodes disregard the symbols

received from the OFF edges. Thus, the input and output vectors at time t are related as

yt = Âi
(
I− F̂i

)−1

Cwt where

F̂ i
j,k =

{
0 `(k) ∈ E − Êi

Fj,k otherwise

Âi
j,k =

{
0 `(k) ∈ E − Êi

Aj,k otherwise
.

Let us consider an arbitrary cut CV1,V2(s, z) in G. The projection of this cut on Ĝi,

CV1,V2(s, z)∩Ê i, corresponds to a cut in Ĝi which is denoted by CV1,V2

Ĝi
(s, z) , CV1,V2(s, z)∩Ê i.

Since ω
(
E − Êi

)
≤ d, we conclude that ω

(
CV1,V2(s, z)− CV1,V2

Ĝi
(s, z)

)
≤ d. Thus, we have

σ
(
CV1,V2

Ĝi
(s, z)

) (a)

≥ r̃(d)
(b)

≥ r. (4.22)
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Here, (a) results from Definition 4.19 and the facts that CV1,V2

Ĝi
(s, z) ⊆ CV1,V2(s, z) and

ω
(
CV1,V2(s, z)− CV1,V2

Ĝi
(s, z)

)
≤ d,

and (b) results from the assumption of the Lemma.

The above inequality implies that the min-cut of graph Ĝi is greater than or equal to

r, for all 1 ≤ i ≤ Ψ. Hence, according to the Ford-Fulkerson Theorem, a routing algorithm

with the rate r exists for every Ĝi. Any routing algorithm with rate r over Ĝi can be inter-

preted as a realization of Âi, F̂i,C for which the matrix Âi
(
I− F̂i

)−1

C is non-singular.

Accordingly, by defining the multivariate polynomial δi as δi , det

(
Âi
(
I− F̂i

)−1

C

)
,

we conclude that δi is a non-zero polynomial of {αj,k, βj,k, ζj,k} over Fq. Let us denote the

length of the longest path over G by LG. Hence, the entries of
(
I− F̂i

)−1

are polynomials

with the degree of at most LG− 1. Knowing that the entries of Âi and C are polynomials

with degree 1, we conclude δi is a polynomial of degree (LG + 1)r.

Let us define the multivariate polynomial δ ,
∏Ψ

i=1 δi. Since δi’s are non-zero poly-

nomials of degree at most (LG + 1)r, δ is also a non-zero polynomial of degree at most

Ψ(LG + 1)r. Let us assume q is large enough such that q > Ψ(LG + 1)r. Applying

Schwartz-Zippel Theorem [143], we have

P {δ (αj,k, βj,k, ζj,k) = 0} ≤ deg (δ)

q
≤ (LG + 1)r

q
< 1. (4.23)

Here, it is assumed that the variables are chosen independently and equiprobably from Fq.

(4.23) implies that there exists a realization such that δ 6= 0. Equivalently, there exists a

linear network code such that for all states of the network, the matrix Âi
(
I− F̂i

)−1

C is

non-singular and the message vector can be decoded with zero error probability, PE = 0.

This completes the proof of the lemma.

4.7.8 Proof of Theorem 4.4

Similar to the proof in appendix 4.7.7, we can define 2|E| different states for the graph G

labeled arbitrarily from 1 to 2|E|. Similarly, corresponding to the i’th state, we can define

the graph Ĝi =
(
V , Ê i

)
where Ê i denotes the set of ON edges. Moreover, let us define Di

as the event that the i’th state occurs. Since Di’s are disjoint and cover all the possibilities,
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PE can be upper-bounded as

PE =
2|E|∑
i=1

P{error |Di}P{Di}

(a)
=

2|E|∑
i=1

ω(E−Êi)≥d?(r)

P{error |Di}P{Di}

(b)
=

2|E|∑
i=1

ω(E−Êi)≥d?(r)

P{error |Di}pω(E−Êi)(1− p)ω(Êi)

≤
2|E|∑
i=1

ω(E−Êi)≥d?(r)

pω(E−Êi)(1− p)ω(Êi)

≤ 2|E|pd?(r). (4.24)

Here, (a) follows from Lemma 4.6 by setting

d = max
1≤i≤2|E|

ω(E−Êi)<d?(r)

ω
(
E − Ê i

)

and the facts that: i) for all states in which ω
(
E − Ê i

)
< d?(r), we have ω(EOFF ) ≤ d, and

ii) d < d?(r) which results in r ≤ r̃(d). (b) results knowing P{Di} = pω(E−Êi)(1 − p)ω(Êi).

Combining (4.24) and the lower-bound of PE obtained in Lemma 4.5 completes the proof

of the theorem. �

4.7.9 Proof of Theorem 4.5

Since the theorem is an existential one, providing a constructive example is sufficient for

the proof. Thus, we prove the theorem by presenting a graph for which no conventional

routing scheme can achieve the optimum diversity-rate trade-off.

Consider the erasure graph in Fig. 4.8. All links have the same erasure probability, i.e.

ω(e) = 1 for all edges. Furthermore, all links have unit capacity except the three links

from u to z which have the capacity of 5 symbols per time slot each. We label these links
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5

5

5
s z

u

Figure 4.8: An example of conventional routing failing to achieve dopt(r)

as e1, e2, and e3. Moreover, e4 denotes the only direct link from s to z.

Consider an end-to-end connection C(s, z, r) with r = 11 which uses conventional rout-

ing during T time-slots. Let the vectors s of size 12T denote the vector of the symbols

sent by the source on its outgoing links. Since, the intermediate node applies conventional

routing, the information symbols on the links e1, . . . , e4 correspond to specific indices of

the vector s. For i = 1 . . . 4, let Ai denote the set of all indices of s which correspond to

the symbols sent on link ei during time slot 1 to T .

We define C1(s, z) as the s− z cutset consisting of e1, . . . , e4. According to Lemma 4.1,

if any two links in C1(s, z) are OFF, we have limT→∞ PE = 1. This implies that dC ≤ 2,

i.e. we have dC = 1 or dC = 2. Next, we show that dC = 2 leads to contradiction, proving

that we must have dC = 1.

Let us assume that dC = 2. This implies that even if e3 is OFF, the end node z should

be able to decode the transmitted data from s based on the symbols conveyed through e1,

e2, and e4 with the error probability of O(p). Thus, we can write

rT = 11T
(a)

≤ |A1 ∪ A2 ∪ A4|
(b)
= |A1 ∪ A2|+ |A4|
= |A1 ∪ A2|+ T,
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where operator || denotes the cardinality of the set. Here, (a) follows from the fact that

any code with the rate greater than 1 has a strictly positive probability of error (constant

with p), and (b) follows from the fact that A4 and A1 ∪ A2 ∪ A3 are disjoint sets. The

above result is equivalent to

|A1|+ |A2| − |A1 ∩ A2| ≥ 10T (4.25)

Based on similar arguments for the cases where e2 or e3 are OFF, we can write

|A1|+ |A3| − |A1 ∩ A3| ≥ 10T

|A2|+ |A3| − |A2 ∩ A3| ≥ 10T (4.26)

Now, we have

11T
(a)

≥ |A1 ∪ A2 ∪ A3|

≥
3∑

i=1

|Ai| −
3∑

i=1

3∑
j=1
j>i

|Ai ∩ Aj|

(b)

≥ 30T −
3∑

i=1

|Ai|

(c)

≥ 15T (4.27)

Since u uses conventional routing, A1 ∪ A2 ∪ A3 is a subset of the symbol indices on

its incoming links. This results in (a). (b) can be justified by adding the inequalities

in (4.25) and (4.26). (c) results from |Ai| ≤ 5T . (4.27) is an obvious contradiction. This

contradiction proves that for r = 11 and any conventional routing end-to-end connection

C(s, z, r), we have dC ≤ 1.

However, according to Theorem 4.4, for r = 11, we have dopt(r) = d?(r) = 2. Therefore,

for this graph, the diversity gain of any conventional routing end-to-end connection is

strictly smaller than dopt(r). This completes the proof. �
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Conclusion

5.1 Contributions

In this thesis, we studied the issue of diversity and reliability over erasure networks from

three different (but inter-connected) angles: rate allocation (RA) problem, coding, and

diversity-rate trade-off (DRT) over erasure networks. The next three subsections review

our contributions on each topic.

5.1.1 Rate Allocation Across Multiple Paths

In chapter 2, we focused on analyzing the probability of irrecoverable loss (PE) for a block

of packets sent through multiple independent paths between two end-points. The end-

nodes apply Forward Error Correction (FEC) to overcome temporary packet loss on the

paths. Based on the results of chapter 3, we adopt an MDS code for FEC. We show that

PE decays exponentially as the number of paths increases. We are also able to analytically

solve the RA problem for the asymptotic case (large number of paths). It is shown that

in the asymptotically optimal RA, each path should be included in RA iff its quality is

above a certain threshold; otherwise, it is assigned the rate zero. Finally, we propose a

heuristic suboptimal RA algorithm for practical (limited) number of paths. It is proved

that this suboptimal RA algorithm converges to the asymptotically optimal one as the

number of paths increases. Unlike the optimal RA algorithm, the suboptimal one has

polynomial time complexity. Simulation results confirm the near-optimal performance of

the suboptimal RA in practical scenarios.

123



Chapter 5. Conclusion

5.1.2 Coding

Although we are mainly interested in the erasure channel, we generalize our analysis into

a more broad class of channels called input-independent channels in chapter 3. Symmetric

discrete memoryless channel (DMC) and erasure channels with memory extended over a

block of symbols are all special cases of input-independent channel. We derive a lower-

bound on PE of any code (with limited length) over a general input-independent channel.

Next, we apply this lower-bound on three special input-independent channels: erasure

channel, super-symmetric DMC, and q-ary symmetric DMC. We show that Maximum Dis-

tance Separable (MDS) codes are optimal over erasure channels (with or without memory)

in the sense that they achieve the minimum probability of error among all block codes of

the same size. Moreover, we prove that perfect codes achieve the minimum probability of

error over a super-symmetric channel. Finally, using the method of types, we simplify our

lower-bound for PE of any block code over symmetric DMC and show that this bound is

exponentially tight. For ternary and 4-ary symmetric channels, the proposed lower-bound

is compared with the previous lower-bounds in moderate to short block lengths. It is shown

that our lower-bound by far outperforms the previous bounds, especially for shorter block

lengths.

5.1.3 Diversity-Rate Trade-off over Erasure Networks

In chapter 4, we address a fundamental trade-off between rate and diversity gain for any

end-to-end connection in an erasure network. The erasure network is modeled as a directed

acyclic graph whose links are orthogonal erasure channels. First, we consider homogeneous

erasure networks whose links have the same erasure probability and capacity. It is shown

that a special form of FEC (MDS coding at the source node and disjoint routing) achieves

the optimum diversity-rate trade-off. This is obviously an example of conventional routing.

Next, we study general erasure networks in which links can have different capacity

and erasure probabilities. It is proved that linear network coding can always achieve the

optimum trade-off between rate and diversity gain. More importantly, there exist networks

for which any conventional routing scheme fails to achieve this optimum trade-off. Finally,

we construct networks using the standard random graph generation models and show

that the cases where conventional routing fails are indeed very prevalent. However, linear

network coding always achieves the optimum diversity-rate trade-off.
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5.2 Future Directions

Here, we list the directions in which our work can be extended. We categorize the future

work based on the chapter (i.e topic) they correspond to.

5.2.1 FEC Rate Allocation

• Correlated paths: in chapter 2, we study the problem of Rate Allocation (RA) for

a block of packets sent through multiple independent paths between two end-points.

In other words, it is assumed the L given paths are completely independent. In many

networks, it is not easy to find more than very few completely independent paths

between most two nodes. However, it is reasonable to assume that we can easily find

multiple partially correlated paths between the end-nodes.

Intuitively speaking, we expect to get less improvement from RA over multiple par-

tially correlated paths (compared to the case where the paths are independent). For

partially correlated paths, the question is that whether PE drops exponentially with

the number of paths (L) or not? If yes, what is the exponent of PE versus L? This

would be a measure of how much of the improvement is lost because of the depen-

dency between the paths.

5.2.2 Coding

• Lower-bounding PE for non-block codes: the main lower-bound which is the basis

for all of the results in chapter 3 is valid for block codes only. An important gener-

alization of this work would include extending this lower-bound such that it is valid

for convolutional codes, etc.

• Complexity of the lower-bound for symmetric DMC’s: in section 3.4, we introduce

an algorithm for computing the general lower-bound (previously introduced in sec-

tion 3.1). This algorithm is based on he method of types in information theory [18]

and has the complexity of O(N q), i.e. it is polynomial in terms of the block length

N and exponential in terms of the alphabet size q. This imposes a serious restriction

on practicality of the algorithm and limits its application to short to moderate block

codes.
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This work can be improved significantly by introducing an algorithm which computes

(or approximates) the lower-bound on PE of block codes over symmetric DMC’s

(noted by L(N, K, π)) with polynomial complexity in terms of both block length

N and alphabet size q. It should be noted that such an algorithm does not need to

compute L(N, K, π) precisely; even an approximation (a lower-bound) to L(N, K, π)

suffices for our purpose, as long as the lower-bound to L(N, K, π) is tight enough such

that the overall lower-bound remains stronger than previously known lower-bounds.

• Symmetric DMC’s with soft decoding: the introduced lower-bound in section 3.4,

denoted by L(N, K, π), works for channels with limited alphabet size. This imposes

another restriction on the applicability of this bound. Unlike some previously known

lower-bounds [44, 45, 53], it can not be used for limiting PE of soft-decoding over

AWGN channel with symmetric constellations.

5.2.3 Diversity-Rate Trade-off

• General models for network graph: the network model studied in chapter 4 is iden-

tified by an erasure graph. An erasure graph is defined as an acyclic directed graph

G = (V , E) whose links are orthogonal erasure channels. Each link e ∈ E has the

maximum rate of σ(e) and the erasure probability of pω(e). The probability of a link

being OFF (in erasure state) is independent from the status of other links.

In the real networks modeled as erasure networks (the Internet, wireless mesh net-

works, etc), the erasure status of the links can have significant correlation with each

other. Moreover, the erasure status of each link may have a memory and depend on

the link status in the previous blocks. The fundamental trade-off we derived between

diversity and trade-off for the erasure graph model (described in the previous para-

graph) may not necessarily be valid for more general (and more practical) network

models.

• Complexity of computing the optimal diversity-rate trade-off: for any erasure graph,

we show that there exists a linear network coding strategy which achieves the opti-

mum diversity-rate trade-off, dopt(r). However unfortunately, this optimum diversity

gain for a given rate r is not easy to compute. In other to find dopt(r), we have to

compute a rather simple function over all cuts between the source and destination
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nodes. This obviously has an exponential complexity in terms of the network size. It

would be of great practical value if we can compute (or estimate) dopt(r) with lower

complexity.

• Optimum diversity-rate trade-off achieved by conventional routing: in general erasure

graphs, it is proved that conventional routing is not optimum in terms of diversity-

rate trade-off. More accurately, there exist general erasure graphs for which any

conventional routing strategy fails to achieve the optimum diversity-rate trade-off.

Since conventional routing strategies still dominate the sphere of routing in packet-

switched networks, one important question which arises is this: for a given network

and a given rate, what is the maximum diversity gain achieved by conventional

routing schemes? How different is this maximum from dopt(r)?

127



Bibliography

[1] A. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Capacity of wireless

erasure networks,” Information Theory, IEEE Transactions on, vol. 52, no. 3, pp.

789–804, 2006.

[2] B. Smith, P. Gupta, and S. Vishwanath, “Routing is Order-optimal in Broadcast

Erasure Networks with Interference,” in Information Theory, 2007. ISIT 2007. IEEE

International Symposium on, 2007, pp. 141–145.

[3] N. Ratnakar and G. Kramer, “The multicast capacity of deterministic relay networks

with no interference,” IEEE/ACM Transactions on Networking (TON), vol. 14, pp.

2425–2432, 2006.

[4] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network information

flow,” in 45th Allerton Conference on Communication, Control, and Computing,

2007.

[5] R. Yeung and N. Cai, “Network error correction, part I: Basic concepts and upper

bounds,” Communications in Information and Systems, vol. 6, no. 1, pp. 19–36, 2006.

[6] N. Cai and R. Yeung, “Network error correction, Part II: Lower bounds,” Commu-

nications in Information and Systems, vol. 6, no. 1, pp. 37–54, 2006.

[7] R. Koetter and F. R. Kschischang, “Coding for Errors and Erasures in Random

Network Coding,” Information Theory, IEEE Transactions on, vol. 54, no. 8, pp.

3579–3591, 2008.

[8] W.H. Tarn and Y.C. Tseng, “Joint Multi-Channel Link Layer and Multi-Path Rout-

ing Design for Wireless Mesh Networks,” in INFOCOM, 2007, pp. 2081–2089.

128



Bibliography

[9] N.S. Nandiraju, D.S. Nandiraju, and D.P. Agrawal, “Multipath Routing in Wireless

Mesh Networks,” in IEEE International Conference on Mobile Adhoc and Sensor

Systems, 2006, pp. 741–746.

[10] P. Djukic and S. Valaee, “Reliable Packet Transmissions in Multipath Routed Wire-

less Networks,” IEEE Transactions on Mobile Computing, vol. 5, no. 5, pp. 548– 559,

2006.

[11] H. Han, S. Shakkottai, C.V. Hollot, R. Srikant, and D. Towsley, “Multi-Path TCP:

A Joint Congestion Control and Routing Scheme to Exploit Path Diversity in the

Internet,” IEEE/ACM Transactions on Networking, vol. 14, no. 6, pp. 1260 – 1271,

2006.

[12] T. Nguyen and A. Zakhor , “Path diversity with forward error correction (pdf)

system for packet switched networks,” in IEEE INFOCOM Proc. IEEE Vol. 1, 2003,

pp. 663– 672.

[13] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh, “A Comparison of Overlay

Routing and Multihoming Route Control,” in ACM SIGCOMM, 2004, pp. 93 – 106.

[14] V.N. Padmanabhan, H.J. Wang, P.A. Chou, “Resilient Peer-to-peer Streaming,” in

IEEE International Conference on Network Protocols, 2003, pp. 16–27.

[15] S. Fashandi, S. Oveisgharan, and A.K. Khandani, “Path Diversity Over Packet

Switched Networks: Performance Analysis and Rate Allocation,” IEEE/ACM Trans-

actions on Networking, vol. 18, no. 5, pp. 1373 – 1386, 2010.

[16] ——, “Path Diversity in Packet Switched Networks: Performance Analysis and

Rate Allocation,” in IEEE Global Telecommunications Conference, GLOBECOM

’07, 2007, pp. 1840–1844.

[17] T. Nguyen and A. Zakhor, “Multiple Sender Distributed Video Streaming,” IEEE

transactions on multimedia, vol. 6, no. 2, pp. 315– 326, 2004.

[18] T. Cover and J. Thomas, Elements of Information Theory, 1st ed. New York: Wiley,

2006, pp. 284–285.

129



Bibliography

[19] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental tradeoff in

multiple-antenna channels,” IEEE Trans. Inform. Theory, vol. 49, pp. 1073– 1096,

May 2003.

[20] S. Oveisgharan, S. Fashandi, and A.K. Khandani, “Diversity-Rate Trade-off in Era-

sure Networks,” in IEEE INFOCOM, 2010, pp. 1–9.

[21] S. Fashandi, S. Oveisgharan, and A.K. Khandani, “Coding over an Erasure Channel

with a Large Alphabet Size,” in IEEE International Symposium on Information

Theory, 2008, pp. 1053–1057.

[22] S. Feng, Z. Liang, and D. Zhao, “Providing Telemedicine Services in an

Infrastructure-based Cognitive Radio Network,” IEEE Wireless Communications,

vol. 17, no. 1, pp. 96–103, 2010.

[23] V.S. Shukla, “Optical Core Networks: Architecture and Challenges,” in OptoeElec-

tronics and Communications Conference (OECC), 2010, pp. 86–87.

[24] J.S. Park, M. Gerla, D.S. Lun, Y. Yi, and M. Medard, “CodeCast: A Network-

Coding-Based Ad hoc Multicast Protocol,” IEEE Wireless Communications, vol. 13,

no. 5, pp. 76–81, 2006.

[25] N. Gogate, D.M. Chung, S.S. Panwar, Yao Wang, “Supporting Image and Video

Applications in a Multihop Radio Environment Using Path Diversity and Multiple

Description Coding,” IEEE Transactions on Circuits and Systems for Video Tech-

nology, vol. 12, no. 9, pp. 777–792, 2002.

[26] Wei Wei and A. Zakhor, “Interference Aware Multipath Selection for Video Stream-

ing in Wireless Ad Hoc Networks,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 19, no. 2, pp. 165 – 178, 2009.

[27] S. Mao, S.S. Panwar, and Y.T. Hou, “On optimal partitioning of realtime traffic over

multiple paths,” in INFOCOM 2005, Proc. IEEE Vol. 4, 2005, pp. 2325–2336.

[28] S.J. Lee and M. Gerla, “SMR: Split Multipath Routing with Maximally Disjoint

Paths in Ad hoc Networks,” in IEEE Interneational Conference on Communications,

2001, pp. 3201–3205.

130



Bibliography

[29] ——, “AODV-BR: Backup Routing in Ad Hoc Networks,” in Wireless Communica-

tions and Networking Conference, 2000, pp. 1311–1316.

[30] M.K. Marina and S.R. Das, “On-Demand Multipath Distance Vector Routing for Ad

Hoc Networks,” in IEEE International Conference on Network Protocols, 2001, pp.

14–23.

[31] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A Framework for Reliable Routing

in Mobile Ad Hoc Networks,” in INFOCOM, 2003, pp. 270– 280.

[32] S. Mao, Y.T. Hou, X. Cheng, H.D. Sherali, S.F. Midkiff, and Y.Q. Zhang, “On

Routing for Multiple Description Video Over Wireless Ad Hoc Networks,” IEEE

Transactions on Multimedia, vol. 8, no. 5, pp. 1063–1074, 2006.

[33] R. Leung, J. Liu, E. Poon, A.L.C. Chan, and Baochun Li, “MP-DSR: A QoS-aware

Multi-path Dynamic Source Routing Protocol For Wireless Ad-hoc Networks,” in

IEEE International Conference on Local Computer Networks, 2001, pp. 132–141.

[34] L. Wang, Y. Shu, O. Yang, M. Dong, and L. Zhang, “Adaptive Multipath Source

Routing in Ad Hoc Networks,,” in IEEE International Conference on Communica-

tions, 2001, pp. 867–871.

[35] Yi Li, Yin Zhang, Li Li Qiu, and S. Lam, “SmartTunnel: Achieving Reliability in

the Internet,” in IEEE INFOCOM, 2007, pp. 830–838.

[36] A. Populis and S. Pillai, Probability, Random Variables and Stochastic Processes.

McGraw Hill, 2002.

[37] H. Sanneck, G. Carle, “A Framework Model for Packet Loss Metrics Based on Loss

Runlengths,” in ACM SIGMM Multimedia Computing and Networking Conference,

2000.

[38] J. C. Bolot, “End-to-end Packet Delay and Loss Behavior in the Internet,” in ACM

SIGCOMM Conference on Communication Architectures, Protocols and Applica-

tions, 1993, pp. 289 – 298.

[39] J.C. Bolot, S. Fosse-Parisis, and D. Towsley, “Adaptive FEC-based error control for

Internet telephony,” in IEEE INFOCOM, Proc. IEEE Vol. 3, 1999, pp. 1453–1460.

131



Bibliography

[40] J.C. Bolot and T. Turletti, “Adaptive Error Control For Packet Video In The Inter-

net,” in Proc. IEEE International Conference on Image Processing, 1996, pp. 25 –

28.

[41] F. L. Leannec, F. Toutain, and C. Guillemot, “Packet Loss Resilient MPEG-4 Com-

pliant Video Coding for the Internet,” Journal of Image Communication, Special

Issue on Real-time video over the Internet, no. 15, pp. 35–56, 1999.

[42] Y. Polyanskiy, H.V. Poor, and S. Verdu, “Channel Coding Rate in Finite Blocklength

Regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–2359,

2010.

[43] R. G. Gallager, Information Theory and Reliable Communication, 1st ed. New York,

NY, USA: John Wiley & Sons, 1968, pp. 157–158.

[44] A. Velambois and P. C. Fossorier, “Sphere-packing Bounds Revisited for Moderate

Block Lengths,” IEEE Transactions on Information Theory, vol. 50, no. 12, pp.

2998–3014, 2004.

[45] G. Wiechman and I. Sason, “An Improved Sphere-packing Bound for Finite-length

Codes over Symmetric Memoryless Channels,” IEEE Transactions on Information

Theory, vol. 54, no. 5, pp. 1962–1990, 2008.

[46] C. E. Shannon, “A Mathematical Theory of Communications,” Bell Systems Tech-

nical Journal, vol. 27, pp. 379–423,623–656, 1948.

[47] A. Feinstein, “A New Basic Theorem of Information Theory,” IRE Professional

Group on Information Theory, vol. 4, no. 4, pp. 2–22, 1954.

[48] P. Elias, “Coding for Noisy Channels,” IRE Convention Record, vol. 4, pp. 37–46,

1955.

[49] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds to Error

Probability for Coding on Discrete Memoryless Channels,” Information and Control,

vol. 10, pp. 65–103,522–552, 1967.

[50] R. G. Gallager, Information Theory and Reliable Communication, 1st ed. New York,

NY, USA: John Wiley & Sons, 1968, pp. 135–144.

132



Bibliography

[51] G. Forney, “Exponential Error Bounds for Erasure, List, and Decision Feedback

Schemes,” IEEE Transactions on Information Theory, vol. 14, no. 2, pp. 206–220,

1968.

[52] R. Gallager, “The Random Coding Bound is Tight for the Average Code,” IEEE

Transactions on Information Theory, vol. 19, no. 2, pp. 244–246, 1973.

[53] C. E. Shannon, “Probability of Error for Optimal Codes in a Gaussian Channel,”

Bell Systems Technical Journal, vol. 38, pp. 611–656, 1959.

[54] Ron M. Roth, Introduction to Coding Theory, 1st ed. Cambridge University Press,

2006, pp. 333–351.

[55] ——, Introduction to Coding Theory, 1st ed. Cambridge University Press, 2006, pp.

183–204.

[56] ——, Introduction to Coding Theory, 1st ed. Cambridge University Press, 2006, pp.

16–17.

[57] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, 1976.

[58] R. Diestel, Graph Theory. Springer, 2006.

[59] Y. R. W. Li S.-Y.R. and N. Cai, “Linear network coding,” Information Theory, IEEE

Transactions on, vol. 49, no. 2, pp. 371–381, 2003.

[60] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,” Information

Theory, IEEE Transactions on, vol. 46, no. 4, pp. 1204–1216, 2000.

[61] R. Koetter and M. Medard , “An algebraic approach to network coding,” IEEE

transactions on Networking, vol. 11, no. 5, pp. 782– 795, 2003.

[62] T. Ho, M. Medard, and R. Koetter, “An Information-theoretic View of Network

Management,” Information Theory, IEEE Transactions on, vol. 51, no. 4, pp. 1295–

1312, 2005.

[63] T. Ho, M. Medard, and R. Koetter, D.R. Karger, M. Effros, Jun Shi, and B. Leong,

“A Random Linear Network Coding Approach to Multicast,” Information Theory,

IEEE Transactions on, vol. 52, no. 10, pp. 4413–4430, 2006.

133



Bibliography

[64] I. Csiszar, “Linear Codes for Sources and Source Networks: Error Exponents, Univer-

sal Coding,” Information Theory, IEEE Transactions on, vol. 28, no. 4, pp. 585–592,

1982.

[65] K. Rojviboonchai, F. Yang, Q. Zhang, H. Aida1, and W. Zhu, “AMTP: A Multipath

Multimedia Streaming Protocol for Mobile Ad Hoc Networks,” in IEEE International

Conference on Communications, 2005, pp. 1246–1250.

[66] Wei Wei and A. Zakhor, “Robust Multipath Source Routing Protocol (RMPSR) for

Video Communication over Wireless Ad Hoc Networks,” in International Conference

on Multimedia, 2004, p. 13791382.

[67] Y. J. Liang, E. G. Steinbach, and B. Girod , “Multi-stream Voice over IP using

Packet Path Diversity,” in IEEE Fourth Workshop on Multimedia Signal Processing,

2001, pp. 555–560.

[68] S. Nelakuditi, Z. Zhang, and D. H. C. Du, “On Selection of Candidate Paths for

Proportional Routing,” Elsevier Computer Networks, vol. 44, no. 1, pp. 79–102,

2004.

[69] J. Han and F. Jahanian, “Impact of Path Diversity on Multi-homed and Overlay

Networks,” in International Conference on Dependable Systems and Networks, 2004,

pp. 29–38.

[70] David G. Andersen, Resilient Overlay Networks. Master’s Thesis, Massachusetts

Institute of Technology, 2001.

[71] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-path vs. Multi-path

Overlay Routing,” in Proceedings of the 3rd ACM SIGCOMM Conference on Internet

Measurement, 2003, pp. 91 – 100.

[72] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker, “In Search of Path Diversity

in ISP Networks,” in Proceedings of the 3rd ACM SIGCOMM Conference on Internet

Measurement, 2003, pp. 313 – 318.

[73] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting Shared Congestion of Flows

via End-to-end Measurement,” IEEE/ACM Transactions on Networking, vol. 10,

no. 3, p. 381395, 2002.

134



Bibliography

[74] D. Katabi, I. Bazzi, and Xiaowei Yang, “A Passive Approach for Detecting Shared

Bottlenecks,” in IEEE International Conference on Computer Communications and

Networks, 2001, pp. 174–181.

[75] M. S. Kim, T. Kim, Y. J. Shin, S. S. Lam, E.J. Powers, “A Wavelet-Based Approach

to Detect Shared Congestion,” IEEE/ACM Transactions on Networking, vol. 16,

no. 4, pp. 763–776, 2008.

[76] C.E. Perkins, E.M. Royer, S.R. Das, “Performance Comparison of Two On-demand

Routing Protocols for Ad Hoc Networks,” IEEE Personal Communications, vol. 8,

no. 1, pp. 16–28, 2001.

[77] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless

Networks,” Mobile Computing, p. 153181, 1996.

[78] Wei Wei and A. Zakhor, “Multiple Tree Video Multicast over Wireless Ad Hoc Net-

works,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17,

no. 1, pp. 2–15, 2007.

[79] D. Clark, W. Lehr, S. Bauer, P. Faratin, R. Sami, and J. Wroclawski, “Overlay

Networks and Future of the Internet,” Journal of Communications and Strategies,

vol. 3, no. 63, pp. 1–21, 2006.

[80] M. Guo, Q. Zhang, and W. Zhu , “Selecting Path-diversified Servers in Content Dis-

tribution Networks,” in IEEE Global Telecommunications Conference, vol. 6, 2003,

pp. 3181–3185.

[81] M. Cha, S. Moon, C. D. Park, and A. Shaikh, “Placing Relay Nodes for Intra-Domain

Path Diversity,” in IEEE INFOCOM, 2006, pp. 1–12.

[82] S. Srinivasan, Design and Use of Managed Overlay Networks. PhD Dissertation,

Georgia Institute of Technology, 2007.

[83] J. Han, D. Watson, and F. Jahanian, “Enhancing End-to-End Availability and

Performance via Topology-aware Overlay Networks,” Elsevier Computer Networks,

vol. 52, no. 16, pp. 3029–3046, 2008.

135



Bibliography

[84] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware Overlay

Construction and Server Selection,” in IEEE INFOCOM, 2002, pp. 1190–1199.

[85] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Topology-aware Routing in

Structured Peer-to-peer Overlay Networks.”

[86] Zhi Li and P. Mohapatra, “QRON: QoS-aware Routing in Overlay Networks,” IEEE

Journal on Selected Areas in Communications, vol. 22, no. 1, pp. 29–40, 2004.

[87] ——, “The Impact of Topology on Overlay Routing Service,” in IEEE INFOCOM,

2004, pp. 408–418.

[88] A. Nakao, L. Peterson, and A. Bavier, “A Routing Underlay for Overlay Networks,”

in Proceedings of ACM SIGCOMM, 2003, pp. 11–18.

[89] J. Touch, Y. Wang, V. Pingali, L. Eggert, R. Zhou, and G. Finn, “A Routing Un-

derlay for Overlay Networks,” in Proc. IEEE Tridentcom, 2005, pp. 194–203.

[90] B-G Chun, R. Fonseca, I. Stoica, and J. Kubiatowicz, “Characterizing Selfishly Con-

structed Overlay Routing Networks,” in IEEE INFOCOM, 2004, pp. 1329–1339.

[91] Z. Li, L. Yuan, P. Mohapatra, and C-N. Chuah, “On the Analysis of Overlay Failure

Detection and Recovery,” Computer Networks Journal, vol. 51, no. 13, pp. 3838–

3843, 2007.

[92] A. Akella, B. Maggs, S. Seshan, and A. Shaikh, “On the Performance Benefits of Mul-

tihoming Route Control,” IEEE/ACM Transactions on Networking, vol. 16, no. 1,

pp. 91–104, 2008.

[93] Y.H. Wang and H.Z. Lin, “Multipath QoS Routing with Interference Provision in

Ad Hoc Wireless Network,” IEEE Transactions on Multimedia, vol. 22, no. 6, pp.

1325–1338, 2006.

[94] Roger Karrer, and Thomas Gross, “Multipath Streaming in Best-Effort Networks,”

in Proc. of the IEEE International Conference on Communications (ICC’03), 2003.

[95] J.G. Apostolopoulos, T. Wong, W. Tan, and S.J. Wee, “On Multiple Description

Streaming with Content Delivery Networks,” in IEEE INFOCOM, Proc. IEEE Vol.

3, 2002, pp. 1736 – 1745.

136



Bibliography

[96] “Akamai sureroute,” akamai.com/dl/feature sheets/fs edge suite sureroute.pdf.

[97] M. Ghanassi and P. Kabal, “Optimizing Voice-over-IP Speech Quality Using Path

Diversity,” in IEEE 8th Workshop on Multimedia Signal Processing, 2006, pp. 155–

160.

[98] J. Chakareski and B. Girod, “Rate-distortion optimized packet scheduling and rout-

ing for media streaming with path diversity,” in Proc. IEEE Data Compression Con-

ference, 2003, pp. 203– 212.

[99] E. Setton, X. Zhu, and B. Girod, “Congestion-optimized Multi-path Streaming of

Video over Ad Hoc Wireless Networks,” in IEEE International Conference on Mul-

timedia, 2004, pp. 1619– 1622.

[100] S. Mao, D. Bushmitch, S. Narayanan, and S.S. Panwar, “MRTP: A Multiflow Real-

Time Transport Protocol for Ad Hoc Networks,” IEEE Transactions on Multimedia,

vol. 8, no. 2, pp. 356–369, 2006.

[101] M. Afergan, J. Wein, and A. LaMeyer, “Experience with some Principles for Building

an Internet-Scale Reliable System,” in Proceedings of the Fifth IEEE International

Symposium on Network Computing and Applications (NCA’06), 2006, p. 3.

[102] M. Yajnik, S.B. Moon, J.F. Kurose, and D.F. Towsley , “Measurement and Modeling

of the Temporal Dependence in Packet Loss,” in IEEE INFOCOM Proc. IEEE Vol.

1, 1999, pp. 345–352.

[103] Wenyu Jiang and Henning Schulzrinne, “Modeling of Packet Loss and Delay and their

Effect on Real-Time Multimedia Service Quality,” in Proc. Network and Operating

System Support for Digital Audio and Video (NOSSDAV), 2000.

[104] Yin Zhang and Nick Duffield, “On the Constancy of Internet Path Properties,” in

ACM SIGCOMM Workshop on Internet Measurement, 2001, pp. 197 – 211.

[105] P. Rossi, G. Romano, F. Palmieri, and G. Iannello , “A Hidden Markov Model

for Internet Channels,” in IEEE International Symposium on Signal Processing and

Information Technology, 2003.

137



Bibliography

[106] K. Salamatian and Vaton, “Hidden Markov Modeling for Network Communication

Channels,” in Proc. ACM SIGMETRICS, 2001, pp. 92 – 101.

[107] D. Wu, Y.T. Hou, and Y-Q Zhang , “Transporting Real-time Video over the Internet:

Challenges and Approaches,” Proceedings of the IEEE, vol. 88, no. 12, pp. 1855–1877,

2000.

[108] M. Podolsky, C. Romer, and S. McCanne, “Simulation of FEC-based Error Control

for Packet Audio on the Internet,” in IEEE INFOCOM, 1998, pp. 505–515.

[109] R. Puri, K. Ramchandran, K.W. Lee, and V. Bharghavan, “Forward Error Correction

(FEC) Codes Based Multiple Description Coding for Internet Video Streaming and

Multicast,” Elsevier Signal Processing: Image Communication, vol. 16, no. 8, pp.

745–762, 2001.

[110] W. T. Tan and A. Zakhor, “Video Multicast Using Layered FEC and Scalable Com-

pression,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11,

no. 3, pp. 373–386, 2001.

[111] L. Dairaine, L. Lancrica, J. Lacan, and J. Fimes, “Content-Access QoS in Peer-to-

Peer Networks Using a Fast MDS Erasure Code,” Elsevier Computer Communica-

tions, vol. 28, no. 15, pp. 1778–1790, 2005.

[112] X. H. Peng, “Erasure-control Coding for Distributed Networks,” IEE Proceedings on

Communications, vol. 152, pp. 1075 – 1080, 2005.

[113] Amir Dembo and Ofer Zeitouni, Large Deviations Techniques and Applications,

2nd ed. New York: Springer, 1998, pp. 11–43.

[114] ISO/IEC JTC 1/SC 29, Information technology – Generic Coding of Moving Pic-

tures and Associated Audio Information: Systems, ISO/IEC 13818-1, International

Standard, October 2007.

[115] ——, Information Technology – Coding of Audio-Visual Objects – Part 10: Advanced

Video Coding, ISO/IEC 14496-10, International Standard, November 2008.

[116] K.H. Goh, D.J. Wu, J.Y. Tham, T.K. Chiew and W.S. Lee, “Real-time Software

MPEG-2 TO H.264 Video Transcoding,” in IEEE International Conference on Mul-

timedia and Expo, 2008, pp. 165–168.

138



Bibliography

[117] B. Bing, “Real-time Software MPEG-2 TO H.264 Video Transcoding,” in Commu-

nication Networks and Services Research Conference, 2008, pp. 13–17.

[118] T. Yamaguchi, T. Kanekiyo, M. Horii, K. Kawazoe and F. Kishino, “Highly Efficient

Transmission System for Digital Broadcasting Redistribution Services over IP Mul-

ticast Networks,” IEEE Transactions on Consumer Electronics, vol. 54, no. 2, pp.

920–924, 2008.

[119] J. L. Kelley, General Topology. Springer, 1975, pp. 40–43.

[120] C. H. Papadimitriou, Computational Complexity, 1st ed. New York: Addison Wesley,

1994.

[121] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

2nd ed. MIT Press, 2001, pp. 347–349.

[122] S. Boyd and L. Vandenberghe, Convex Optimization, 1st ed. Cambridge, UK:

Cambridge University Press, 2004, pp. 243–245.

[123] T. Cover and J. Thomas, Elements of Information Theory, 1st ed. New York: Wiley,

1991, pp. 291–294.

[124] ——, Elements of Information Theory, 1st ed. New York: Wiley, 1991, pp. 30–31.

[125] R. Diestel, Graph Theory. Springer, 2006, pp. 10–12.

[126] J.C. Guey, M.P. Fitz, M.R. Bell, and W.Y. Kuo, “Signal Design for Transmitter

Diversity Wireless Communication Systems over Rayleigh Fading Channels,” IEEE

Transactions on Communications, vol. 47, no. 4, pp. 527–537, 1999.

[127] J.M. Boyce and R.D. Gaglianello, “Packet Loss Effects on MPEG Video Sent over

the Public Internet,” in Proceedings of ACM International Conference on Multimedia,

1998, pp. 181 – 190.

[128] M.P. Farrera, Packet-by-Packet Analysis of Video Traffic Dynamics on IP Networks.

PhD Dissertation, University of Essex, 2005.

[129] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale content distri-

bution,” in IEEE INFOCOM, Proc. IEEE Vol. 4, 2005, pp. 2235–2245.

139



Bibliography

[130] V. Paxson, “End-to-end Routing Behavior in the Internet,” IEEE/ACM Transactions

on Networking, vol. 5, no. 5, pp. 601 – 615, 1997.

[131] C. Labovitz, A. Ahuja, F. Jahanian, “Experimental Study of Internet Stability and

Backbone Failures,” in Proceedings of ACM International Conference on Multimedia,

1999, pp. 278 – 285.

[132] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Boston university Repre-

sentative Internet Topology gEnerator,” http://www.cs.bu.edu/brite.

[133] ——, “BRITE: an approach to universal topology generation,” in Ninth International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommuni-

cation Systems, 2001, pp. 346–353.

[134] A.L. Barabsi and R. Albert, “Emergence of Scaling in Random Networks,” Science

Magazine, vol. 286, no. 5439, pp. 509 – 512, 1999.

[135] B.M. Waxman, “Routing of Multipoint Connections,” IEEE Journal on Selected

Areas in Communications, vol. 6, no. 9, pp. 1617–1622, 1988.

[136] R. Albert and A.L. Barabsi, “Statistical Mechanics of Complex Networks,” Reviews

of Modern Physics, vol. 74, no. 1, pp. 47–97, 2002.

[137] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee, “How to Model an Internetwork,”

in IEEE INFOCOM, 1996, pp. 594 – 602.

[138] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Universal Topology Gen-

eration from a User’s Perspective,” 2001, Boston University Technical Report #

BUCS-TR-2001-003.

[139] S.S. Manna1 and P. Sen, “Modulated Scale-free Network in Euclidean Space,” Phys-

ical Review E, vol. 66, no. 6, pp. 1–4, 2002.

[140] S-H Yook, H. Jeong, and A.L. Barabasi, “Modeling the Internet’s Large-Scale Topol-

ogy,” Proceeding National Academic Science USA, vol. 99, no. 21, pp. 13 382 – 13 386,

2002.

[141] W.J. Reed, “The Pareto, Zipf and Other Power Laws,” Economics Letters, vol. 74,

no. 1, pp. 15–19, 2001.

140



Bibliography

[142] M. Erickson, Introduction to combinatorics. Wiley-Interscience, 1996.

[143] R. Zippel, Effective polynomial computation. Kluwer Academic Pub, 1993.

141


