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Abstract

The development of predictive appearance models for organic tissues is a challenging

task due to the inherent complexity of these materials. In this thesis, we closely examine

the biophysical processes responsible for the appearance attributes of whole blood, one

the most fundamental of these materials. We describe a new appearance model that

simulates the mechanisms of light propagation and absorption within the cellular and fluid

portions of this specialized tissue. The proposed model employs a comprehensive, and

yet flexible first principles approach based on the morphological, optical and biochemical

properties of blood cells. This approach allows for environment driven changes in the cells’

anatomy and orientation to be appropriately included into the light transport simulations.

The correctness and predictive capabilities of the proposed model are quantitatively and

qualitatively evaluated through comparisons of modeled results with actual measured data

and experimental observations reported in the scientific literature. Its incorporation into

rendering systems is illustrated through images of blood samples depicting appearance

variations controlled by physiologically meaningful parameters. Besides the contributions

to the modeling of material appearance, the research presented in this thesis is also expected

to have applications in a wide range of biomedical areas, from optical diagnostics to the

visualization and noninvasive imaging of blood-perfused tissues.
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Chapter 1

Introduction

The realism of computer generated images is directly associated with the careful modeling

of material appearance, i.e., how different materials reflect, transmit and absorb light. Ac-

cordingly, one of the focal points of computer graphics research has been the development

of light interaction models to enable the rendering of believable images of a wide range of

man-made and natural materials. In recent years, substantial efforts have been directed

toward the development of models that can also be used in a predictive manner [25], ex-

tending their scope of applications to other disciplines. For example, predictive models of

light interaction with organic materials can be employed in the design of more effective

diagnostic procedures and instruments [45, 22, 6, 76]. However, despite the remarkable

progress that has been achieved in material appearance modeling [16], predictive solutions

for fundamental organic materials remain elusive. In this thesis, we investigate the inter-

actions of light with one of the most important of these materials, human blood, a highly

specialized type of connective tissue [20] in which cells are suspended and carried in a fluid

called plasma.

The spectral and spatial distributions of light incident on whole blood not only de-
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Figure 1.1: Image rendered using the proposed model of light interaction with human
blood.

termine its appearance attributes (e.g., color and translucency), but also provide crucial

information about the medical condition of an individual. For example, the noninvasive

optical monitoring of oxygen saturation, known as pulse oximetry, is arguably one of the

most important methods for assessing the well-being and safety of patients during surgery,

anesthesia recovery and critical care [18, 22]. Computations of light propagation in blood

are also often performed to correlate theoretical results to measured values in order to

determine changes to biochemical and morphological characteristics of blood triggered by

pathological conditions [66, 22, 57]. Furthermore, the appearance of blood-perfused tissues

are significantly affected by tissue blood content since the properties of whole blood itself
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are substantially different from those of soft tissues [80]. For these reasons, predictive simu-

lations of light interactions with blood controlled by physiologically meaningful parameters

are also of great importance for the imaging, screening, diagnosis and treatment of tissue

disorders [45, 68, 6, 79].

In this thesis, we present a novel model for the predictive simulation of light inter-

actions with blood. The proposed model employs a first principles approach that takes

into account the specific morphological and optical properties of blood cells, to compute

both the spectral (reflectance and transmittance) and spatial (scattering) responses asso-

ciated to the appearance attributes of blood. Using this approach, the proposed cell-based

model of light interaction with whole blood, herein referred to as the CLBlood model,

can account for changes in the biophysical properties of blood cells and plasma under

different physiological conditions and rheological states (stationary and steady flow). We

remark, however, that our investigation focuses on light-matter interaction issues, i.e., the

modeling of blood flow dynamics is beyond the scope of this work. Since our research is

aimed not only at rendering applications, but also at biomedical applications, the CLBlood

model is designed to provide multispectral predictions in the ultraviolet (UV), visible and

near-infrared (NIR) regions of the light spectrum. The correctness of these predictions

are quantitatively and qualitatively evaluated through detailed comparisons with actual

measured data and observations of blood optical phenomena reported in the scientific lit-

erature. We also present images rendered using the CLBlood model (e.g. Figure 1.1) to

further illustrate its predictive capabilities and its use in realistic image synthesis.

The remainder of this thesis is organized as follows. The next section provides a con-

cise review of related work in the biomedical and computer graphics fields. Chapter 3

provides an overview of blood optical properties that are essential for the modeling of its

appearance attributes under different physiological and rheological conditions. Chapter 4

describes the CLBlood model. Chapter 5 outlines our evaluation procedures and provides

3



the biophysical data set used in our simulations so that they can be seamlessly reproduced

by computer graphics and biomedical researchers. Chapter 6 presents the evaluation re-

sults and discusses the predictive capabilities of the proposed model. Chapter 7 concludes

the thesis and highlights directions for future work.
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Chapter 2

Related Work

In the biomedical field, models based on the Twersky’s theory [3, 4, 43] and the diffusion

theory [72, 70] and its approximations, such as the diffuse dipole [31] and multipole ex-

pansions [17], have been employed in the estimation of blood optical parameters. While

models based on the original Twersky’s theory do not describe the spatial distribution

of the reflected and transmitted light [72], models based on the original diffusion theory

provide valid approximations for light transport in a medium whose absorption coefficient

is significantly smaller than its scattering coefficient [68]. However, this condition is not

satisfied for blood in visible spectral domains. Numerical adding-doubling [62] and Monte

Carlo methods [28] can overcome this limitation [80]. Accordingly, they have been applied

in a number of inverse algorithms aimed at the determination of blood optical properties

[54, 68, 81, 66, 22]. Recently, Monte Carlo methods have also been employed in the quan-

tification of absorption flattening effects [56] and in two-dimensional simulations aimed at

the NIR detection of blood coagulation [57]. In general, the accuracy of simulations based

on these analytical and numerical approaches is limited by oversimplifications with respect

to the scattering and absorption properties of blood components. For example, light is

often assumed to traverse a blood cell without any internal reflections, which can result in
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significant deviations from the actual absorption profile of whole blood [38, 66]. Also, the

collective scattering behavior of whole blood is often simulated using empirical phase func-

tions or scattering theories that represent blood cells by cylinders, spheres or ellipsoids, and

these approximations can lead to significant deviations from the actual scattering profile

of whole blood [80, 36, 55, 78].

Few computer graphics related papers addressing the appearance of blood have been

published to date. In visualization works aimed at applications in biology and medicine

[30, 52, 67, 53, 59, 63], the appearance of blood is usually rendered using simplified color

coded schemes. In realistic rendering applications, models of light interaction with human

tissues (e.g., [39, 15, 41]) account for the presence of blood through the incorporation of

absorption coefficients of blood-borne pigments in the simulations. Although there are a

number of detailed models aimed at the realistic rendering of fluid media (e.g., [23, 26])

and particulate materials (e.g., [73, 34, 32]), these models are not designed to account for

specific morphological, optical and physiological factors affecting light interactions with

blood cells. These factors are essential for the predictive modeling of whole blood appear-

ance. Furthermore, to the best of our knowledge, none of the existing material appearance

models accounts for rheological effects on the specific optical properties of material con-

stituents. These effects can result in noticeable changes in the absorption and scattering

profiles of whole blood [10, 45].

6



Chapter 3

Blood Optical Properties

The cellular portion of blood is called formed elements, and it includes the erythrocytes

or red blood cells (RBCs), the white blood cells (WBCs) and the platelets (PLTs) [14].

Although the volume fraction of human blood occupied by the formed elements, clinically

known as the hematocrit and denoted by HCT , usually varies from 0.37-0.52, lower values

can also be observed under in vivo conditions (e.g., during heart surgery, the patient’s

hematocrit is usually lowered [50]), and may be lower than 0.01 under in vitro conditions

(e.g., during blood optics investigations and disease screening tests [80, 22]). The optical

properties of human blood under normal physiological conditions are largely determined

by light interactions with plasma and RBCs [80], which account for 99% of the formed ele-

ments [51]. The effects of the optical properties of WBCs and PLTs on the light scattering

and absorption by whole blood are considered negligible [80, 50].

RBCs have a thin plasma membrane that encloses mainly a hemoglobin solution. The

absorption and scattering of light by the RBCs are two to three orders of magnitude higher

than those of the other blood components [51]. The light scattered by a single RBC depends

on its shape, volume, refractive index and orientation [36]. Normal RBCs are characterized
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by a biconcave disk shape (Figure 3.1), with a volume, surface area and diameter ranging

from 80− 108µm3, 119− 151µm2 and 7.2− 8.44µm respectively [12, 80]. Their refractive

index corresponds essentially to the refractive index of the hemoglobin solution due to the

negligible thickness (≈ 7nm) of their membrane [75]. With respect to the angular distri-

bution of the scattered light, the RBCs are characterized by a strong forward scattering

behavior, with an average scattering angle about 5◦ [42] and an exponential fall-off [36].

The main morphological characteristics of the RBCs, such as the presence of concav-

ities on their sides (minimum thickness Tmin = 0.81 ± 0.35µm and maximum thickness

Tmax = 2.58± 0.27µm [12, 80]), make exact light scattering calculations difficult [78]. It

has been demonstrated by theoretical studies [74, 78] and corroborated by recent exper-

iments [36] that the use of simplified geometric representations for the RBCs, such as

cylinders with rounded edges, spheres and ellipsoids, result in inaccurate scattering and

absorption estimations. Environmental factors, however, may alter their shape, volume

and refractive index. For example, when a RBC is exposed to a hypotonic solution, it may

acquire water and swell.

Figure 3.1: Color coded scanning electron micrograph of red blood cells. Image credits:
Tina Carvalho/MicroAngela.

The absorption of light by the RBCs is dominated by hemoglobin in its functional,
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oxygen-binding, forms [18], namely oxyhemoglobin and deoxyhemoglobin. Other types

of hemoglobin that do not bind oxygen reversibly, known as dysfunctional hemoglobins,

namely methemoglobin, carboxyhemoglobin and sulfhemoglobin, comprise less than 3%

of the total hemoglobin content in healthy individuals [18, 29, 82]. It is worth noting

that sulfhemoglobin is not normally present in the human body [24]. Water also plays a

minor role in the absorption of light by RBCs, notably in the NIR range. Since RBCs

are essentially a package of hemoglobin solution, the Beer-Lambert law can be employed

to quantify the absorption of light traveling within this solution [75]. It is necessary to

take into account, however, that the optical path of light traveling within a cell may

increase due to multiple reflections at its internal boundary [38, 66]. Hence, the amount of

light absorbed within the RBC depends on the cell shape, orientation with respect to the

incident light as well as its hemoglobin concentration and oxygen saturation level, SaO2,

which determines the fraction of oxyhemoglobin and deoxyhemoglobin.

It is important to note that the optical properties of whole blood differ markedly from

those of hemoglobin solutions, which follow the Beer-Lambert law [38, 46, 60]. Light may

traverse whole blood without encountering the RBCs, a phenomenon known as the sieve

effect [60]. Alternatively, its optical pathlength may be increased due to the refraction

between and within the RBCs, a phenomenon known as detour effect [11]. In whole

blood, sieve effects may reduce the absorption of light by intracellular hemoglobin, while

detour effects may increase it in comparison with the amount light absorbed by solutions

in which the same concentration of hemoglobin is uniformly dispersed [38, 60]. The sieve

effect is more pronounced for low hematocrit samples [60], while the detour effect is more

pronounced in high hematocrit samples [46].

Pure plasma consists of approximately 90% water, 7-9% proteins (about 60% albu-

min, 36% globulin and 4% fibrinogen) with the balance being composed of electrolytes,

metabolic intermediates, vitamins, nutrients and waste products [14]. RBCs may also re-
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lease hemoglobin into plasma due to the damage of their membrane caused by mechanical

or chemical impact, a process known as hemolysis [66]. Plasma absorption in UV to vis-

ible range is associated with the absorption due to chromophores found in proteins and

other molecules, while in the NIR range its is dominated by water absorption. The scat-

tering properties of pure plasma are mainly described by Rayleigh scattering of protein

molecules [51]. Although plasma shows weak absorption and scattering behaviors when

compared to the RBCs, it has a noticeable influence on the absorption profile of whole

blood due to its refractive index differences with the RBCs. These differences may result

in an increase of the path length of light traversing the RBCs [66], which, in turn, increase

the probability of light being absorbed within these cells.

The scattering and absorption properties of whole blood are significantly affected by its

motion state measured in terms of its shear rate, which is defined as the velocity gradient

in the direction normal to the flow [45]. At low shear rates, the cells are randomly oriented.

As the shear rate increases, many randomly oriented cells start to exhibit angular rotation

(rolling or tumbling) and align with the major axis parallel to the flow direction. Although

the degree of alignment increases with the shear rate, it also depends on the hematocrit. At

high shear rates and high hematocrit (above 0.4), the alignment becomes more pronounced

and the cells start to show some degree of elongation [10, 45].
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Chapter 4

The CLBlood Model

The proposed model employs a first principles simulation framework in which light is

represented by discrete rays, each one traveling at a given wavelength λ. Within this

framework, the interactions of light with plasma and individual cells are modeled as a

random walk process. Scattering and absorption events are probabilistically accounted for

using data driven procedures and wave optics resources when appropriate.

The CLBlood simulation pipeline can be divided into four main stages: cell representa-

tion, plasma-light interactions, cell positioning and cell-light interactions. These stages are

implemented using Monte Carlo methods that rely on the generation of random numbers ξi,

for i = 1, 2, ..., 9, uniformly distributed in the interval [0, 1]. The following description of

this pipeline concentrates in the red blood cells due their dominant optical role. The in-

teractions of light with other cells, such as WBCs and PLTs, can be handled similarly to

the RBCs and are implicitly addressed in the model formulation by analogy.
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4.1 Cell Representation

When a ray hits a cell, it can be reflected back to the surrounding medium or transmitted

to the cell interior. In order to compute the probabilities of light reflection and absorption

by a cell, we need a geometrical representation that can closely approximate its shape

under different conditions. Furthermore, this representation needs to support operations

performed during the subsequent simulation stages, namely the calculation of the cell

volume and cross-sectional area (in the direction perpendicular to the ray propagation

direction), the computation of ray-cell (internal boundary) intersections and the selection

of random points on the surface of the cell facing the ray propagation direction.

Accordingly, we created a parametric NURBS1 representation [48] for the red blood cells

(Figure 4.1). This representation allows us to accurately perform the required operations

and effectively handle changes in the cells’ morphology such as elongation and swelling.

We used the biconcave cross-section profile of an unstressed red blood cell [71] to adjust

the control points of the NURBS representation in order to have its volume and diameter

within the typical range of normal red blood cells. Standard rejection sampling techniques

were then used to calculate the volume and the cross-sectional area of our in silico cells.

Please refer to Appendix A for details about the use of this technique.

Figure 4.1: Sketch depicting the NURBS representation of biconcave RBCs employed by
the CLBlood model. Left: whole volume. Right: cross section.

1NURBS - Non-Uniform Rational B-Splines [22]
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4.2 Plasma-Light Interactions

When a ray first interacts with a blood volume, a standard Fresnel test is performed

taking into account the angle of incidence of the incoming light and the refractive index

differences of the surrounding medium and plasma. This test consists in computing the

Fresnel coefficient, F , at the interface between the two media using the Fresnel equations [7,

6], and comparing it with a random number ξ1. If ξ1 ≤ F , then the ray is reflected back to

the surrounding medium. Otherwise, it is transmitted to the fluid portion of blood where

it may travel a distance d before hitting another interface with the surrounding medium or

a cell. In both cases, Fresnel tests are performed to determine the next step in the random

walk process. The computation of d and the Fresnel tests involving the cells are described

in the next sections.

A ray traversing a distance d in the plasma may be subject to scattering and absorption

events. To account for scattering caused by protein molecules, we initially compute the

Rayleigh scattering coefficient [49]:

µs(λ) =
128π5r6(c/M)

3λ4

(
(ηp/η)2 − 1

(ηp/η)2 + 2

)2

(4.1)

where η, c, r, and M respectively represent the refractive index, concentration, molecular

radius and weight of each type of protein, and ηp corresponds to the refractive index of

plasma. We then employ µs(λ) to compute the Rayleigh scattering probability for each

type of protein using [62]:

Pµs(λ) = 1− e−µs(λ)d. (4.2)

Finally, if ξ2 < Pµs(λ), then the ray direction is perturbed according to the Rayleigh
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scattering phase function [62] implemented using rejection sampling as shown in Algo-

rithm 1, where θR represents the polar perturbation angle, and φR corresponds to the

azimuthal perturbation angle.

Algorithm 1 Rejection sampling for Rayleigh scattering.

φR ← 2πξ3

repeat
θR ← πξ4

until ξ5 ≤
(

3
√

6
8

)
(1 + cos2 θR) sin θR

return (θR, φR)

To compute the absorption probability, we employ a stochastic representation of the

Beer-Lambert law [62]:

Pµap (λ) = 1− e−µap (λ)d, (4.3)

where µap(λ) corresponds to the effective absorption coefficient of plasma. After Pµap (λ)

is computed, the testing is performed, i.e., if ξ6 < Pµap (λ), then the ray is terminated.

4.3 Cell Positioning

The human blood has approximately 5 × 106 red blood cells per mm3 [14]. This makes

the construction of the entire geometrical layout of the cells beforehand impractical. For

this reason, in the CLBlood model, we generate the cells on demand, i.e., a cell is proba-

bilistically positioned in the blood volume to enable the simulation of its interactions with

light. After the simulation is performed, the cell is discarded, and the process is repeated

for the next cell (Figure 4.2). Hence, using this instantiation strategy, previously employed

in the simulation of light transport in sand [34, 35], we can explicitly account for cell-light

interactions without having to store them.
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Figure 4.2: Sketch illustrating possible paths that can be followed by a ray traversing
a blood sample in which the cells are probabilistically positioned on demand during the
simulations, and then discarded. Top: light returns to the surrounding medium. Bottom:
light is absorbed.

When a ray is traversing through plasma, we first probabilistically determine the dis-

tance d that the ray travels before hitting a cell. Its computation takes into account the

distribution and the volume occupied by cells in the medium as well as their orientation.

This is essential for the convergence of the model predictions to the same results that

would have been obtained if the entire layout of the cells were geometrically assembled.

Accordingly, d is computed using the following expression [34]:

d = − 1

K(~ω)
log ξ7, (4.4)

where K(~ω) represents the cross-sectional area of the RBCs per unit volume given a ray

traveling in a direction ~ω. This parameter can be further separated into two components

depicted in the following integral over all possible orientations of the RBCs in the blood

volume:
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K(~ω) =

∫
~u

n(~u)G(~u, ~ω)d~u, (4.5)

where n(~u) represents the number of RBCs per unit volume with the orientation given by

~u, and G(~u, ~ω) corresponds to the cross-sectional area of the RBCs with an orientation ~u

and exposed to the direction ~ω of the current ray. If the cells are assumed to be randomly

oriented, i.e., all possible orientations have equal probability, then the parameter n(~u)

is reduced to HCT/(4π MV C), where MVC represents the mean volume of the RBCs.

For notation simplicity, we represent the ratio HCT/MV C by δ in the remainder of this

section.

The formula for G(~u, ~ω) depends on the shape of the cell being used. Considering the

NURBS representation used for our in silico cells, G(~u, ~ω) is given by:

G(~u, ~ω) =
1

2
(γ1|(1− cosψ)|+ γ2| cosψ|), (4.6)

where γ1 and γ2 are the cross-sectional areas of the in silico cells viewed from the side and

the top respectively, and ψ corresponds the inclination angle between the direction of the

ray, ~ω, and the direction that the top of the cell is facing. For the sake of conciseness,

derivation details are provided in Appendix B. Hence, in the case in which all possible cell

orientations have an equal probability, K(~ω) can be analytically expressed as:

Krandom = 0.5 (γ1 + γ2) δ. (4.7)

Recall that during steady flow the cells are likely to have a rolling distribution (Chap-

ter 3). We remark that G(~u, ~ω) is given by Equation 4.6. Since in this case the cells are
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rotating with respect to an axis perpendicular to the flow direction defined by a vector ~a,

we have n(~u) = δ/2π, which gives:

Krolling(~ω) = δγ1(1− | sin β|) +
δ

2π
(γ1(2π − 4) + 4γ2)| sin β|, (4.8)

where β is the angle between ~ω and ~a.

Under high shear rate conditions, the cells are likely to be horizontally aligned with the

flow (Chapter 3). In this case, the calculation of the cross-sectional area per unit volume

becomes simpler. Since all the cells are oriented the same way, we have n(~u) = δ, which

gives:

Kaligned(~ω) = δ(γ1(1− | cosψ|) + γ2| cosψ|). (4.9)

where ψ is the angle between ~u and ~v.

Once the distance d is computed, the orientation of the cell is selected by sampling

the probability distribution function (PDFs) associated with the orientations that were

considered while generating the distance. It is important to note that given ~ω, some

orientations have a much larger cross-sectional area (i.e., G(~u, ~ω)) than others. Therefore,

the PDFs for the three orientation cases were derived (Appendix C) such that orientations

that have a larger G(~u, ~ω) have a higher probability of being selected. As described by

Kimmel [33], the general expression for the PDF is given by:

p(~u) =
1

K
n(~u)G(~u, ~ω) =

n(~u, ~ω)G(~u, ~ω)∫
~u
n(~u, ~ω)G(~u, ~ω)d~u

. (4.10)

In the three distributions cases we considered in this work, n(~u) is a constant, which results
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in:

p(~u) =
G(~u, ~ω)∫

~u
G(~u, ~ω)d~u

. (4.11)

Using Equation 4.11, we can obtain the PDFs for the three orientation distribution cases

considered in our simulations, namely random, rolling, and aligned, which are presented

in the remainder of this section. Their derivation details are provided in Appendix C.

In the random case, the polar and azimuthal angles can be selected independently and

their PDFs are given by:

prandom(ψ) =
γ1(1− | cosψ|) + γ2| cosψ|

γ1 + γ2

, (4.12)

prandom(φ) =
1

2π
, (4.13)

where ψ and φ correspond respectively to the polar and azimuthal angles with respect to

the ray direction ~ω.

In the case where the cells are rolling around an axis ~a, we know the orientation is

mostly fixed except for determining how much the cell is rotated with respect to ~a. The

PDF in this case is then given by:

prolling(θ) =
χ+ (γ1(1− | cos θ|) + γ2| cos θ|)| sin β|

2πχ+ | sin β|[γ1(2π − 4) + 4γ2]
, (4.14)

where θ is the rotation angle and χ = γ1(1− | sin β|).

In the case where all cells are aligned, they all must have the same orientation ~U .

Hence, if ~u = ~U , then the PDF is then given by:
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paligned(~u) =


1 if ~u = ~U

0 otherwise

(4.15)

Finally, we randomly pick the hitting point on the cell surface among the set of points

facing the ray. This can be selected with a uniform distribution. After the position,

orientation and hitting point are selected, the model simulates the cell-light interactions

as described in next section.

4.4 Cell-Light Interactions

When the light hits a cell, we initially determine whether it is reflected or enters the cell

by performing a Fresnel test using the refractive index differences between plasma and

the hemoglobin solution within the cell. If the light enters the cell, we test whether it is

absorbed by generating a random number ξ7 and comparing with the probability of light

absorption within the cell given by Pµas (λ, ), where µas represents the effective absorption

coefficient of the solution inside the cell. If ξ7 < Pµas (λ), then the ray is terminated.

Otherwise it is scattered.

Although the absorption probability can be computed on the fly, performance improve-

ments are obtained by pre-computing it offline since the same operations are repeated for

all cells. In this case, the Pµas (λ) values are stored in a table indexed by wavelength and

the incidence geometry of the incident light, i.e., the intersection point x and the angle of

incidence θi with respect to the cell’s normal vector at this point. Due to the overall sym-

metry of the RBCs, only a small number of points need to be taken into account in order

to obtain asymptotically convergent results in the simulations. For example, the results

provided in Chapter 6 were obtained considering seven points and an angular resolution of
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2◦.

The probability of absorption Pµas (λ) is computed by simulating the interactions of light

inside the cell. Once a ray penetrates the cell, we compute its intersection point with the

internal surface of the in silico cell using a practical ray-NURBS intersection algorithm[48].

At each intersection point, a Fresnel test is performed to determine whether the ray exits

the cells or continues to bounce inside it. The termination of a ray due to light absorption

between each bounce is also probabilistically determined using the Beer-Lambert law [62]:

P r
µas

(λ) = 1− e−µas (λ)dc , (4.16)

where dc corresponds to the distance traveled by the ray within the cell, i.e., between

bounces. The effective absorption coefficient of the solution inside the cell can be expressed

as:

µas(λ) = cf (SaO2∗εoh(λ)+(1−SaO2)∗εdh(λ))+cd∗(εmh(λ)+εch(λ)+εsh(λ))+α(λ), (4.17)

where cf and cd represent the concentration of the functional and dysfunctional hemoglobins,

εoh(λ), εdh(λ), εmh(λ), εch(λ), and εsh(λ) correspond to the extinction coefficients of oxy-

hemoglobin, deoxyhemoglobin, methemoglobin, carboxyhemoglobin and sulfhemoglobin

respectively, and α(λ) is the absorption coefficient of water. After P r
µas

(λ) is computed,

the absorption testing is performed, i.e., if ξ8 < P r
µas

(λ), then the ray is terminated. For

the offline pre-computations mentioned above, this process is repeated for m rays. For

example, the simulation results presented in Chapter 6 were obtained using m = 106.

If the ray is scattered by the cell, its direction of propagation is perturbed using a data

driven approach based on measurements of angular scattering distributions performed for

single RBCs [36]. Accordingly, the polar perturbation angle θs is randomly selected from an
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exponential scattering distribution with a mean of 5◦ [42], while the azimuthal perturbation

angle φs is randomly selected assuming an azimuthal symmetry, i.e., φs = 2πξ9.
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Chapter 5

Evaluation Framework

The predictions provided by the CLBlood model were quantitatively and qualitatively

evaluated through comparisons of modeled data with actual measured data [27, 50, 81]

and experimental observations provided in the biomedical literature [38, 10, 45, 46, 70, 60].

In this section, we describe the steps taken so that the actual measurements conditions

were reproduced as faithfully as possible in our in silico experiments. We also provide the

values assigned for user specified parameters and the sources for the “fixed” biophysical

quantities that are not normally subject to change in the simulations.

The actual measured data employed in our quantitative comparisons was obtained

by placing fully oxygenated blood samples (SaO2 = 1.0) inside fused quartz cuvettes.

In the case of the measured spectral reflectance data, Meinke et al. [50] employed an

integrating sphere spectrophotometer and placed the cuvette at an angle of 8◦ to the

incident light to exclude the Fresnel reflectance of the cuvette and measure only the diffuse

directional-hemispherical reflectance. In the case of the measured scattering distribution

data, Yarolavsky et al. [81] and Hammer et al., [27] employed a goniophotometer and placed

the cuvette at an angle of 0◦ to the incident light. The measurements of the intensity
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distribution of the scattered light were taken in the range from 2.5◦-175◦ and reported as

normalized intensity values in arbitrary units (a.u.). The corresponding modeled data was

obtained employing the same experimental set-ups used in the actual measurements, which

were reproduced using a virtual spectrophotometer [8, 7] and a virtual goniophotometer

[6, 40]. The modeled spectral curves used in our qualitative comparisons, unless otherwise

stated, were also obtained considering a directional-hemispherical geometry and an angle of

incidence of 8◦. It is worth noting that the scattering intensity measurements performed by

Hammer et al. were normalized above one, and the measurements performed by Yarolavsky

et al. do not include values between 80◦ and 100◦. These aspects were also taken into

account in the plotting of the modeled and measured scattering profiles.

In the actual experiments performed by Meinke et al. [50] a 0.116mm thick cuvette

was employed. They also measured the MVC of the RBCs in their blood samples, which

was reported to be 83µm3. Unless otherwise stated, the same values were used in our in

silico experiments, along with a cell diameter of 8.21µm [80] and a cell hemoglobin content

equal to 29.5pg [44]. A 2% hemolysis was observed in the actual reflectance measurements

by Meinke et al. [50] and incorporated in the computation of the corresponding modeled

reflectance data used in our quantitative comparisons. For the fixed spectral quantities

used in our simulations, namely the molar extinction coefficients of oxyhemoglobin and

deoxyhemoglobin (Figure 5.1), the specific absorption coefficient of water (Figure 5.2), the

effective absorption coefficient of plasma (Figure 5.3) as well as the refractive indices of

hemoglobin and fused quartz (Figure 5.4), we employed spectral curves available in the

literature. The curve for the plasma refractive index (Figure 5.5) used in our experiments

corresponds to 91% solution in which the concentrations of albumin, globulin and fibrino-

gen are 4.6g/L and 2.6g/L and 0.38g/dL respectively [47]. Average values for the refractive

indices of albumin, globulin and fibrinogen, which were also obtained using data available

in the literature, are 1.514 [1], 1.511 [1] and 1.563 [2] respectively. In addition, values for
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their molecular weights and molecular radii, correspond to 1.13 × 10−19g/molecule [69],

2.7nm [37]; 1.62 × 10−19g/molecule [13], 2.95nm [13]; and 5.65 × 10−19g/molecule[65],

10.8nm [65] respectively. For experiments involving hemolysis, the effective absorption co-

efficient of plasma was adjusted to take into account light absorption by hemoglobin. Since

the presence of dysfunctional hemoglobins was not reported in the actual experiments, they

were not included in the corresponding simulations either. However, the effects of methe-

moglobin and sulfhemoglobin on the appearance of whole blood samples were illustrated

through images rendered using the proposed model and considering their molar extinction

coefficients (Figure 5.6).

The rheological states in which the actual experiments were performed were also taken

into account in our simulations. Unless otherwise stated, for experiments performed in a

stationary (suspension) state, the RBCs were assumed to be randomly oriented (Chap-

ter 3). Since the experiments by Meinke et al. [50] were performed under steady flow and

high shear rate conditions, we considered the RBCs to be either randomly oriented with

angular rotation (30%) or aligned with the flow (70%) in the corresponding simulations.

These figures were selected considering experimental work [45] performed under similar

rheological conditions. Since the actual measured reference data used in the quantita-

tive comparison was obtained either for samples with HCT below 0.4 or in a stationary

(suspension) state, cell elongation was not considered in those comparisons.
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Figure 5.1: Molar extinction coefficient curves for oxyhemoglobin and deoxyhe-
moglobin [61].
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Figure 5.2: Specific absorption coefficient (s.a.c.) curve for water [58].
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Figure 5.3: Effective absorption coefficient curve for plasma [51].
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Figure 5.4: Refractive index curves for hemoglobin [21] and fused quartz[9].
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Figure 5.5: Refractive index curve for plasma [1, 58].
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Figure 5.6: Molar extinction coefficient curves for methemoglobin [64] and sulfhe-
moglobin [82].
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Chapter 6

Results and Discussion

Figure 6.1 presents comparisons of modeled reflectance curves with actual measured curves

provided by Meinke et al. [50] for different HCT values. These comparisons show that the

shapes of the modeled curves closely agree with the shapes of their measured counterparts.

As demonstrated in the latter, below 600nm, a region where absorption prevails over scat-

tering [50], the reflectance of blood increases with decreasing HCT, while above 600nm, it

decreases. As it can be observed in Figure 6.1, the modeled curves can correctly reproduce

this behavior. The comparisons depicted in Figure 6.1 also indicate a close quantitative

agreement between the modeled and measured curves, specially considering that certain

biochemical and biophysical input parameters, such as hemoglobin content and cell diam-

eter, correspond to averaged data. It is also worth noting that Meinke et al. mentioned

the possibility of minor instrument and preparation errors in the reference measurements.

Figure 6.2 presents comparisons of scattering intensity profiles provided by the CLBlood

model with actual scattering intensity profiles measured by Hammer et al. [27], for a wave-

length of 514nm, and Yarolavsky et al. [81], for a wavelength of 633nm. These comparisons

reveal a close quantitative and qualitative agreement between the model predictions and
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Figure 6.1: Comparison of modeled reflectance curves provided by the CLBlood
model with curves measured by Meinke et al. [50] under steady flow conditions.
Top: HCT = 0.33. Center: HCT = 0.17. Bottom= HCT = 0.08.

the measured data, demonstrating that the strong forward scattering behavior of whole

blood is captured by the proposed model.

The two functional hemoglobin forms, oxyhemoglobin and deoxyhemoglobin, have the

same molar extinction coefficient around 800nm, their isosbestic point [80]. By reducing

the level of oxygenation, the reflectance decreases for wavelengths below this point, and

increases for wavelengths above it as demonstrated in experiments by Meinke et al. [50].
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Figure 6.2: Comparison of modeled scattering intensity profiles provided by the CLBlood
model with actual scattering intensity profiles measured at 514nm by Hammer et al. [27]
and at 633nm by Yarolavsky et al. [81], for blood suspensions with HCT = 0.4 and
HCT = 0.38 respectively. Left: 514nm. Right: 633nm.

Experiments by Serebrennikova et al. [70] also show that a dramatic reduction of the

level of oxygenation results not only in the flattening of the characteristic oxyhemoglobin

“w” signature between 500nm to 600nm, but also in a significant enhancement in the

reflectance peak around 480nm and in the reflectance dip around 760nm. The curves

presented in Figure 6.3 indicate that the CLBlood model captures this non-trivial behavior

of the functional hemoglobins, which provides the basis for noninvasive optical monitoring

procedures such as pulse oximetry. This behavior is also responsible for the distinct bright

red appearance of oxygenated (arterial) blood in comparison with the dark red appearance

of deoxygenated (venous) blood [18], which are illustrated in the images presented in

Figure 6.4.

Recall that motion may affect the properties of red blood cells, and consequently how

light is reflect and transmitted by flowing blood. Experiments described in literature [10,

45] show that as the shear rate increases, the RBCs start to align with their major axis

parallel to the flow direction (Figure 6.5). This change of orientation, in turn, increases

light reflection and reduces light transmission. We have performed simulations to examine

the predictive capabilities of the CLBlood model with respect to these effects. As can
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Figure 6.3: Comparison of modeled reflectance curves provided by the CLBlood model
with different levels of oxygenation (SaO2) in whole blood suspensions with HCT = 0.4.

Figure 6.4: Images of blood droplets (HCT = 0.4) on a microscope slide rendered using
CLBlood showing spectral variations due to different oxygenation levels. Left: oxygenated
(arterial) blood. Right: deoxygenated (venous) blood.

be observed in Figure 6.6, the results of our in silico experiments are consistent with the

reflection and transmission changes observed in the experiments reported in the literature.

Figure 6.5: An illustration of RBCs with their major axis aligned parallel to the flow
direction.

We remark that the optical properties of whole blood differ markedly from those of

hemoglobin solutions due to sieve and detour effects [38, 60, 46]. While the former reduces
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absorption (notably in bands of absorption maxima), the latter increases absorption (no-

tably in bands of absorption minima) [66, 56, 6, 5]. For samples with low hematocrit, the

net result of these phenomena is a reduction in the amount of light absorbed by whole blood

in comparison with the amount of light absorbed by solutions in which the same concentra-

tion of hemoglobin is uniformly dispersed (e.g., completely hemolysed blood samples) [60],

while for samples with a high hematocrit, the net result is an increase in the amount of

light absorbed by whole blood [46]. CLBlood was tested by running simulations involving

a fully hemolysed blood suspension and whole blood suspension composed of intact cells

and checking that the absorptances show the expected qualitative traits. Figure 6.7 depicts

the results of our in silico simulations. As indicated in the graphs, the cell-based design

of the CLBlood model correctly incorporates sieve and detour effects responsible for the

distinct appearances of whole blood and hemoglobin solutions. These distinct appearances

are further illustrated in the images presented in Figure 6.8.

Besides its connection with oxygen saturation levels, the blood color is also a diag-

nostic pointer for serious medical conditions associated with the excess of dysfunctional

hemoglobins in the blood, such as methemoglobinemia and sulfhemoglobinemia, usually

caused by a drug reaction [82, 24]. Large amounts of these dysfunctional hemoglobins

may give blood a chocolate-brown appearance [29, 24, 77, 82]. These abnormal chromatic

attributes of blood are illustrated in the images presented in Figure 6.9. Images with pure

dysfunctional hemoglobin are shown only for illustrative purposes as over 70% dysfunc-

tional hemoglobin content are terminal.

Finally, Figures 1.1 and 6.10 present images rendered using the CLBlood model to fur-

ther demonstrate its predictive capabilities and its integration into realistic image synthesis

frameworks. Furthermore, they illustrate appearance variations associated with different

physiological parameters. From a visual perspective, HCT and SaO2 are the most impor-

tant model parameters considering samples with the same thickness and under the same
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Figure 6.6: Comparison of modeled spectral curves considering different levels of RBC
alignment for a blood sample (HCT = 0.4 and SaO2 = 0.7) under steady flow conditions.
Top: reflectance. Bottom: transmittance.

rheological conditions. Note that variations on thickness may also result in noticeable (vi-

sual) appearance changes as depicted in Figure 1.1 (HCT = 0.4 and SaO2 = 0.7). The

rendering of the images (1536×1152 pixels) presented in Figures 1.1 and 6.10 took ≈ 4.5h,

while the rendering of the remaining smaller images (768 × 576 pixels, before cropping)

took ≈ 2h on a dual 6 core Intel Xeon X5650 processors (2.66GHz) with 24GB RAM.
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Figure 6.7: Comparison of modeled bihemispherical absorptance curves provided by the
CLBlood model considering fully hemolysed and whole blood (intact cells) suspensions.
Top: HCT = 0.05 and SaO2 = 0.7. Bottom: HCT = 0.4 and SaO2 = 0.7.

Figure 6.8: Images of blood samples under a microscope slide chip rendered using CLBlood
illustrating the appearance differences between hemolysed blood and whole blood. Both
samples have HCT = 0.4 and SaO2 = 0.7. Left: fully hemolysed sample. Right: whole
blood (intact cells).
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Figure 6.9: Images rendered using CLBlood illustrating the appearance of blood samples
(HCT = 0.4) containing mixtures of abnormal amounts of methemoglobins (top row) and
sulfhemoglobin (bottom row) with arterial (oxygenated) blood. Percentage of dysfunctional
hemoglobin to oxyhemoglobin from left to right: 10%, 30%, 70%, 100%.

Figure 6.10: Image of blood samples showing chromatic and translucency changes caused
by different HCT values. From front to back: 0.05, 0.15, 0.35 and 0.49.
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Chapter 7

Conclusion and Future Work

We have described the first predictive model of light interaction with human blood pre-

sented in the computer graphics literature. The CLBlood model provides spectral and

scattering responses for blood samples under a wide range of physiological and rheological

conditions. The model predictions have been evaluated through in silico experiments, and

the results of these experiments show a close quantitative and qualitative agreement with

actual measured data and experimental observations reported in the biomedical literature.

Despite the comprehensive first principles approach employed in the design of the

CLBlood model, only a small set of physiologically meaningful parameters, such as the

hematocrit and the oxygen saturation level, are required to predictively control the render-

ing of blood samples with distinct appearances. We remark that most of the biophysical

quantities employed in the simulations, such as refractive indices and absorption coef-

ficients, are not normally subject to change, and, therefore, can be kept fixed during

rendering.

Due to their stochastic nature, the simulations performed by the CLBlood model are

time consuming. However, alternatives exist to enhance their accuracy-to-cost ratio. For
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example, several stages of the simulation pipeline can be effectively executed offline, and

their results stored and directly accessed during rendering time.

In our future work, we intend to explore several open avenues for interdisciplinary

theoretical and applied research involving the diagnosis of medical conditions through

blood spectral signatures. For example, several diseases related to the abnormal occurrence

of dysfunctional hemoglobins can change the color of blood and blood-perfused tissues

dramatically. We also intend to investigate the effects of extreme flow and abnormal

physiological conditions on the cellular anatomy, and, consequently, on the appearance of

whole blood and blood-perfused tissues.
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Appendix A

Cross-sectional Area of a

Red Blood Cell

All possible orientations of RBCs can be represented by giving the direction that their

minor axis is facing. Accordingly, the orientation of a RBC with its major axis lying on

the XY-plane (Figure A.1) would have the orientation [0, 0, 1]. Let ~ω be the direction that

the cell is being viewed. The CLBlood model requires the calculation of the cross-sectional

area of the RBC as viewed from ~ω, i.e., G(~u, ~ω). To derive a closed formula for G(~u, ~ω),

note that the NURBS shape used is symmetrical. That is, the only variable that affects

G(~u, ~ω) is the inclination angle, ψ, between ~u and ~ω.

If ψ = 0, then G(~u, ~ω) is the cross-sectional area as viewed from above, γ2 (Figure A.1).

If ψ = π/2, then G(~u, ~ω) is the cross-sectional area as viewed from the side, δ1. For ψ

between 0 and π/2, G(~u, ~ω) is given by a linear combination of γ1 and γ2. That is:

G(~u, ~ω) = αγ1 + βγ2. (A.1)

To determine the variables, α and β, a Monte Carlo technique was used to calculate
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Figure A.1: An illustration of an RBC with its major axis lying on the XY-plane. The
eye is positioned such that G(~u, ~ω) is the cross-sectional area viewed from above.

G(~u, ~ω) for ψ in range [0, π/2] [33]. This experiment showed that α = 1 − | cosψ| and

β = | cosψ| result in a good agreement between the faster analytical method and the

Monte Carlo technique (Figure A.2). Therefore, we employ the following expression for

the cross-sectional area of the red blood cell viewed from ~ω:

G(~u, ~ω) = γ1(1− | cosψ|) + γ2| cosψ|. (A.2)
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Figure A.2: Comparison of cross-sectional area (with respect to the inclination angle ψ)
computations performed using the selected Monte Carlo technique and the corresponding
analytical formula.
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A.1 Determining the Average Cross-sectional Areas

With NURBS, we are able to create a bounding volume for the RBC as well as perform ray

intersections. This allows us to use a standard Monte Carlo rejection sampling technique

to determine the average cross-sectional areas of the RBC viewed from the side and from

the top, denoted by γ1 and γ2, respectively. This is done offline to increase performance.

To compute the cross-sectional area, we first create a bounding sphere for the NURBS

representation. Then we cast rays towards the bounding sphere, where the rays originate

from a disc. This disc should be perpendicular to the ray direction as well as have the same

radius as the bounding sphere. The origin of each ray is selected randomly from a point

on the disc and an intersection test is performed to determine whether the ray hits the

NURBS model. N number of rays is cast and the total number of rays that intersected the

NURBS model, num, is recorded. The cross-sectional area as viewed from the direction of

the rays can then be calculated as:

Cross-sectional Area = num/N ∗ Adisc, (A.3)

where Adisc is the area of the disc. Therefore, we can compute γ1 by casting the rays to

the side profile of the RBC. Similarly, we can compute γ2 by casting the rays to the top

profile of the RBC.

A.2 Determining Volume of the NURBS model

To compute the volume of the NURBS model, a similar technique to the one used in

Appendix A.1 was used. A bounding box for the NURBS model was computed. Then

N number of points was randomly sampled in the bounding box and the total number of

50



random points sampled inside the NURBS model, num, was recorded. The volume of the

NURBS model can then be calculated as:

V = num/N ∗ VBoundingBox, (A.4)

where VBoundingBox is the volume of the bounding box used.

51



Appendix B

Cross-sectional Area per

Unit Volume

In this section, we derive formulas forK(~ω), the cross-sectional surface area per unit volume

for a ray traveling in the direction of ~ω, with respect to three common distributions of red

blood cell orientations, namely random, aligned and rolling, with respect to one axis.

Randomly distributed orientation refers to a situation where all the RBCs’ orientations

are distributed according to a random uniform distribution, i.e., all cell orientations have an

equal probability. In contrast, when the RBCs have an aligned orientation distribution, all

RBCs have the same orientation. Rolling refers to the case where all the RBCs are rotating

about the same axis. In this scenario, RBCs are rotated around the axis randomly with a

uniform distribution.
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B.1 Random Case

Given the hematocrit, H (unitless), and the volume per RBC, MVC (e.g., m3/cell), the

density of all the RBCs is given by δ = H/MV C (e.g., cells/m3). The quantity n(~u) is

defined as density of RBCs with the orientation ~u. If the distribution of the orientations

of the RBCs is completely random with equal probability of any possible orientation, then

n(~u) must be a constant. Furthermore, since δ is the density of all RBCs, the sum of n(~u)

for all orientations must be equal to δ. Therefore:

δ =

∫
Ω

n(~u)dΩ (B.1)

and

n(~u) =
δ

4π
. (B.2)

Finally, plugging Equations B.1 and B.2 into Equation 4.5 gives:

Krandom(~ω) =

∫
Ω

n(~u)G(~u, ~ω)dΩ

=

∫ 2π

0

∫ π

0

δ

4π
(γ1(1− | cosψ|) + γ2| cosψ|) sinψdψdφ

=
δ

4π

∫ 2π

0

∫ π

0

(γ1 + (γ2 − γ1)| cosψ|) sinψdψdφ

=
δ

4π

(
γ1

∫ 2π

0

∫ π

0

sinψdψdφ

)(
(γ2 − γ1)

∫ 2π

0

∫ π

0

| cosψ| sinψdψdφ
)

=
δ

4π

(
γ12π[− cosψ]π0 + (γ2 − γ1)

(∫ 2π

0

dφ

)(
2

∫ π/2

0

cosψ sinψdψ

))

=
δ

4π

(
4πγ1 + (γ2 − γ1)(4π)

∫ π/2

0

1

2
sin(2ψ)dψ

)

=
δ

4π

(
4πγ1 + (γ2 − γ1)(4π)

1

2
[−1

2
cos(2ψ)]

π/2
0

)
=

δ

4π

(
4πγ1 + (γ2 − γ1)π[− cos(2ψ)]

π/2
0

)
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=
δ

4π
(4πγ1 + (γ2 − γ1)2π)

=
δ

4π
(4πγ1 + 2πγ2 − 2πγ1)

=
δ

4π
(2πγ1 + 2πγ2)

=
δ

2
(γ1 + γ2) . (B.3)

B.2 Rolling Case

When the cells are only rolling along one axis, then the formula for K and G must be

adjusted accordingly. Because we are using ray-tracing techniques, we can derive K con-

sidering the RBCs rotating around an arbitrary local axis, ~a, in object coordinate system,

and then perform the necessary object to world transformation to place the RBCs in world

coordinate system [19].

Figure B.1: Changing cross-sectional area, G, viewed from the top as the cell rolls about
axis ~a. From left to right, θ = 0, 45◦, 90◦.

Similarly to the previous case, G(~u, ~ω) is the same as the one given by Equation A.2,

with the exception that γ2, the cross-sectional area viewed from the top, is no longer a

constant. It is dependent on the rotation angle θ, which corresponds to the angle that the

current RBC has been rotated about its rotation axis, ~a (Figure B.1). We denote γ′2(θ) as
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the θ dependent version of the cross-sectional area viewed from the top. This results in

the following expression for Grolling:

Grolling(~u, ~ω) = γ1(1− | cosψ|) + γ′2(θ)| cosψ|, (B.4)

where γ1 is still the cross-sectional area as viewed from the side (i.e., the thinner profile of

the RBC).

Note that γ′2(θ) is equal to G(~u, ~ω), where ~u is restricted to be the direction of a cell

that have been rotated by angle θ about ~a and ~ω is a direction perpendicular to ~a. This

gives:

γ′2(θ) = γ1(1− | cos θ|) + γ2| cos θ|. (B.5)

Finally, replacing Equation B.5 into Equation B.4 yields the following expression for

Grolling:

Grolling(~u, ~ω) = γ1(1− cosψ) + (γ1(1− | cos θ|) + γ2| cos θ|)| cosψ|. (B.6)

If all the cells are rolling, then there is an equal probability of the cell having θ = [0, 2π],

which gives:

δ =

∫
Ω

n(~u)dΩ (B.7)

and

n(~u) =
δ

2π
. (B.8)

After obtaining expressions for n(~u) and Grolling(~u, ~ω), we can plug them into Equa-
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tion 4.5 and derive Krolling:

Krolling(~ω) =

∫
Ω

n(~u)G(~u, ~ω)dΩ (B.9)

=

∫ 2π

0

δ

2π
(γ1(1− | cosψ|) + (γ1(1− | cos θ|) + γ2| cos θ|)| cosψ|)dθ

=
δ

2π

(∫ 2π

0

γ1(1− | cosψ|)dθ +

∫ 2π

0

(γ1(1− | cos θ|) + γ2| cos θ|)| cosψ|)dθ
)

=
δ

2π

(
γ1(1− | cosψ|)

∫ 2π

0

dθ + | cosψ|
∫ 2π

0

(γ1(1− | cos θ|) + γ2| cos θ|)dθ
)

=
δ

2π

(
γ1(1− | cosψ|)(2π) + | cosψ|

∫ 2π

0

γ1 + (γ2 − γ1)| cos θ|dθ
)

=
δ

2π

(
γ1(1− | cosψ|)(2π) + | cosψ|

(
γ1

∫ 2π

0

dθ + (γ2 − γ1)

∫ 2π

0

| cos θ|dθ
))

=
δ

2π

(
γ1(1− | cosψ|)(2π) + | cosψ|

(
2πγ1 + (γ2 − γ1)(4)

∫ π/2

0

cos θdθ

))
=

δ

2π

(
γ1(1− | cosψ|)(2π) + | cosψ|

(
2πγ1 + 4(γ2 − γ1)[sin θ]

π/2
0

))
=

δ

2π
(γ1(1− | cosψ|)(2π) + | cosψ| (2πγ1 + 4γ2 − 4γ1))

=
δ

2π
(γ1(1− | cosψ|)(2π) + | cosψ| ((2π − 4)γ1 + 4γ2))

= δγ1(1− | cosψ|) +
δ

2π
(γ1(2π − 4) + 4γ2)| cosψ|. (B.10)

We can also define Krolling with respect to the axis that the RBCs are rotating around,

i.e., the x-axis. Let β be the angle between x-axis, ~a, and ~ω. We remark that β = π/2− θ.

Then cos θ = sin β. Therefore, Krolling can also be represented by:

Krolling(~ω) = δγ1(1− | sin β|) +
δ

2π
(γ1(2π − 4) + 4γ2)| sin β|. (B.11)
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B.3 Alignment Case

For the case where the RBCs all have the same orientation, we have n(~u) = δ. We remark

that in this case G(~u, ~ω) is also given by Equation A.2 as the derivation is still applicable,

i.e., the cell shape is the same, γ1 and γ2 are the same cross-sectional areas viewed from

the side and top respectively, and the only factor that affects G(~u, ~ω) is the inclination

angle. Furthermore, because the RBCs all have the same orientation, there is no need to

integrate over the domain of all possible orientations to derive K. Accordingly, Kaligned is

given by:

Kaligned(~ω) = n(~u)G(~u, ~ω) = δ(γ1(1− | cosψ|) + γ2| cosψ|). (B.12)
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Appendix C

Probability Distribution Function for

Orientation

As mentioned in Section 4.3, the orientation of the cell must be selected from the set

of all orientations that were considered while generating the distance to the cells. This

procedure takes into account the probability distribution function (PDF) derived for each

case such that orientations that have a larger G(~u, ~ω) have a higher probability of being

selected. Details on the derivations and sampling of these PDFs are provided in the

following subsections.

C.1 Random

In this case, all possible orientations need to be considered. The orientation, ~u, of the cell

can be separated into two parameters: polar angle ψ with respect to the ray direction,

~ω, and azimuthal angle φ with respect to the plane perpendicular to ~ω. Starting with

Equation 4.11, we obtain:
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prandom(ψ, φ) = p(~u)

=
G(~u, ~ω)∫

~u
G(~u, ~ω)d~u

=
G(~u, ~ω)∫ 2π

0

∫ π
0
G(~u, ~ω) sinψdψdφ

=
G(~u, ~ω)

2π
∫ π

0
G(~u, ~ω) sinψdψ

. (C.1)

We then proceed to obtain the marginal density functions for φ and ψ. The marginal

density function for φ is given by:

prandom(φ) = prandomAzimuthal(φ)

=

∫ π

0

prandom(ψ, φ) sinψdψ

=

∫ π

0

G(~u, ~ω)

2π
∫ π

0
G(~u, ~ω) sinψdψ

sinψdψ

=
1

2π
∫ π

0
G(~u, ~ω) sinψdψ

∫ π

0

G(~u, ~ω) sinψdψ

=
1

2π
. (C.2)

To sample φ from an uniform PDF in the range of 0 to 2π, one can employ Algorithm 2,

where ξ10 represents a random number uniformly distributed in the interval [0, 1].

Algorithm 2 Sampling prandom(φ).

φR ← 2πξ10

The marginal density function for ψ is given by:
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prandom(ψ) = prandomPolar(ψ)

=
prandom(ψ, φ)

prandomAzimuthal(φ)

=
2πG(~u, ~ω)

2π
∫ π

0
G(~u, ~ω) sinψdψ

=
γ1(1− | cosψ|) + γ2| cosψ|∫ π

0
(γ1 + (γ2 − γ1)| cosψ|)) sinψdψ

=
γ1(1− | cosψ|) + γ2| cosψ|

γ1

∫ π
0

sinψdψ + (γ2 − γ1)
∫ π

0
| cosψ| sinψdψ

=
γ1(1− | cosψ|) + γ2| cosψ|

γ1[− cosψ]π0 + 2(γ2 − γ1)
∫ π/2

0
cosψ sinψdψ

=
γ1(1− | cosψ|) + γ2| cosψ|

γ1(2) + 2(γ2 − γ1)
∫ π/2

0
1
2

sin(2ψ)dψ

=
γ1(1− | cosψ|) + γ2| cosψ|

2γ1 + (γ2 − γ1)[−1
2

cos(2ψ)]
π/2
0

=
γ1(1− | cosψ|) + γ2| cosψ|

2γ1 + (γ2 − γ1)

=
γ1(1− | cosψ|) + γ2| cosψ|

γ1 + γ2

. (C.3)

For simplicity, we use rejection sampling to sample this PDF. It was implemented

using Algorithm 3 and considering random numbers ξ11 and ξ12 uniformly distributed in

the interval [0, 1].

C.2 Rolling

In the case, the orientation of the cell is fixed except for its rotation, represented by

the angle θ, about ~a, the rotation axis. Once again, we start with Equation 4.11, and

substitute G by Equation B.4, the cross-sectional area associated with the rolling cells
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Algorithm 3 Rejection sampling for prandom(ψ).

if γ1 > γ2 then
max ← γ1

else
max ← γ2

end if
max ← max / (γ1 + γ2)
repeat
ψ ← πξ11

until max ∗ ξ12 ≤ prandomPolar(ψ) sinψ

case. This results in:

prolling(θ) =
G(~u, ~ω)∫
G(~u, ~ω)dθ

=
γ1(1− | sin β|) + (γ1(1− | cos θ|) + γ2| cos θ|)| sin β|∫ 2π

0
γ1(1− | sin β|) + (γ1(1− | cos θ|) + γ2| cos θ|) sin βdθ

=
γ1(1− | sin β|) + (γ1(1− | cos θ|) + γ2| cos θ|)| sin β|

γ1(1− | sin β|)
∫ 2π

0
dθ + | sin β|

∫ 2π

0
γ1 + (γ2 − γ1)| cos θ|dθ

=
γ1(1− | sin β|) + (γ1(1− | cos θ|) + γ2| cos θ|)| sin β|

γ1(1− | sin β|)2π + | sin β|
(
γ1

∫ 2π

0
dθ + (γ2 − γ1)(4)

∫ π/2
0

cos θdθ
)

=
γ1(1− | sin β|) + (γ1(1− | cos θ|) + γ2| cos θ|)| sin β|

γ1(1− | sin β|)2π + | sin β|
(

2πγ1 + 4(γ2 − γ1)[sin θ]
π/2
0

)
=
γ1(1− | sin β|) + (γ1(1− | cos θ|) + γ2| cos θ|)| sin β|

γ1(1− | sin β|)2π + | sin β| (γ1(2π − 4) + 4γ2)
. (C.4)

We also use rejection sampling to sample this PDF. It was implemented using Algo-

rithm 4 and considering random numbers ξ13 and ξ14 uniformly distributed in the interval

[0, 1].
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Algorithm 4 Rejection sampling for prolling(θ).

if γ1 > γ2 then
max ← γ1

else
max ← γ2

end if
max ← max / γ1(1− | sin β|)2π + | sin β| (γ1(2π − 4) + 4γ2)
repeat
θ ← 2πξ13

until max ∗ ξ14 ≤ prolling(θ)

C.3 Aligned

When all the cells are aligned to an orientation, represented by ~U , selecting the orientation

becomes trivial. The orientation is always ~U . The resulting PDF is then given by:

paligned(~u) =


1 if ~u = ~U

0 otherwise

(C.5)
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Beer-Lambert’s Law, 9

cross-sectional area, 12

cross-sectional area per unit volume, 15

cuvette, 22

detour effect, 9

dysfunctional hemoglobin, see hemoglobin

erythrocyte, 7

formed elements, 7

Fresnel test, 13

goniophotometer, 22

hematocrit, 7

hemoglobin

carboxyhemoglobin, 9

deoxyhemoglobin, 9

dysfunctional, 9

functional, 9

methemoglobin, 9

oxygen saturation, 9

oxyhemoglobin, 9

sulfhemoglobin, 9

hemolysis, 10

isosbestic point, 28

light transport, 14

Monte Carlo methods, 11, 38, 40

NURBS, 12

plasma, 9

albumin, 9

fibrinogen, 9

globulin, 9

protein, 13

proteins, 9

scattering, see rayleigh scattering

platelets, 7

pulse oximetry, 2

random walk, 11

Rayleigh phase function, 14

Rayleigh scattering, 10

rejection sampling, 14

63



scattering coefficient, 13

red blood cells, 7

absorption, 9

diameter, 8

elongation, 10, 24

membrane, 7

placement, 16

positioning, 14

scattering, 7

shape, 8

surface area, 8

volume, 8

rejection sampling, 12

rheological states, 24

aligned, 24

random, 24

rolling, 10, 16

shear rate, 10

sieve effect, 9

spectrophotometer, 22

suspension, 24

white blood cells, 7
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