
Computing Popov Forms of
Polynomial Matrices

by

Soumojit Sarkar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2011

c© Soumojit Sarkar 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis gives a deterministic algorithm to transform a row reduced matrix to canon-
ical Popov form. Given as input a row reduced matrix R over K[x], K a field, our algorithm
computes the Popov form in about the same time as required to multiply together over
K[x] two matrices of the same dimension and degree as R. Randomization can be used to
extend the algorithm for rectangular input matrices of full row rank. Thus we give a Las
Vegas algorithm that computes the Popov decomposition of matrices of full row rank. We
also show that the problem of transforming a row reduced matrix to Popov form is at least
as hard as polynomial matrix multiplication.

iii

Acknowledgements

I would like to thank all the little people who made this possible.

iv

Dedication

This is dedicated to the one I love.

v

Contents

List of Figures vii

1 Introduction 1

1.1 Cost model . 4

1.2 Lower bound . 5

1.3 Inverse with limited precision . 6

2 Key ideas 7

3 Row reduced to weak Popov form 10

3.1 LUP decomposition with pivot selection bias 10

3.2 Algorithm ReducedToWeakPopov . 12

4 Weak Popov to Popov 14

5 Unimodular transformation for row reduced decomposition 18

6 Popov decomposition of nonsingular matrices 22

7 Conclusions and future work 26

Bibliography 27

vi

List of Figures

1.1 Algorithm LimitedPrecisionInverse . 6

3.1 Algorithm ModifiedFastLUP . 11

3.2 Algorithm ReducedToWeakPopov . 13

4.1 Algorithm WeakToPopov . 17

5.1 Algorithm UnimodularFactor . 19

6.1 Algorithm NonsingularPopovDecomp . 22

6.2 Algorithm ModifiedRowReduce . 24

6.3 Algorithm FullRowRankPopov . 25

vii

Chapter 1

Introduction

This thesis considers the problem of lattice reduction, or row reduction, for matrices over
the ring K[x] of univariate polynomials with coefficients from a field K. Row reduction of a
matrix A over K[x] is the problem of finding a basis with row degrees as small as possible for
the lattice L(A) generated by all K[x]-linear combinations of rows of A. For the following
example, recall that a matrix U ∈ K[x]n×n is unimodular precisely when detU is a nonzero
constant from K. Two matrices A,R ∈ K[x]n×n are left equivalent (i.e., the rows of A and
R generate the same lattice) if and only if A = UR for U ∈ K[x]n×n a unimodular matrix.
We remark that in the literature some authors (for example [4]) prefer to consider the
equivalent but transposed situation of column reduction, where the unimodular transform
on the right.

Example 1. Let us indicate a polynomial of degree t with [t]. The following shows the
degree structure in a particular matrix A ∈ K[x]4×4, a row reduced form R of A, and the
unimodular matrix U such that A = UR.

A =


[13] [13] [12] [12]
[13] [13] [12] [12]
[13] [13] [12] [12]
[13] [13] [12] [12]

 =

U
[12] [11] [11] [9]
[12] [11] [11] [9]
[12] [11] [11] [9]
[12] [11] [11] [9]


R

[1] [1] [1] [1]
[2] [2] [2] [2]
[2] [2] [2] [2]
[4] [4] [4] [4]


Let A ∈ K[x]n×n be nonsingular. A fast Las Vegas probabilistic algorithm for com-

puting a reduced basis R of A is given in [6]. Our main contribution in this thesis is a
deterministic algorithm that computes the canonical Popov reduced basis P , together with
the unimodular matrix U such that A = UP , in about the same time as required to mul-
tiply together two polynomial matrices of the same dimension and degree as A. To clearly
state our contributions, and to compare with previous work, we recall from [9, page 385]

1

the precise definition of a row reduced form and the normalization conditions required for
a row reduced form to be in canonical Popov form.

Let v ∈ K[x]1×n be a row vector over K[x]. The degree of v, denoted by deg v, is the
maximal degree of all entries. The pivot index of v, denoted by piv(v) is the index of the
rightmost entry of degree deg v. The leading coefficient vector, LC(v) ∈ K1×n, of v over K
is obtained by only keeping the coefficient of xdeg v of all entries of v. Let A be a matrix
over K[x]. The degree of A, denoted by degA, is the maximal degree of its rows. The
leading coefficient matrix of A, denoted by LC(A), is the matrix over K formed by taking
the leading coefficient of each row of A.

Definition 2. A nonsingular matrix

P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 =


~p1
~p2
...
~pn

 ∈ K[x]n×n

is row reduced if LC(P) is nonsingular. If, in addition, P satisfies the following normal-
ization conditions it is in Popov form.

(i) The pivot indices piv(~p1), . . . , piv(~pn) are distinct.

(ii) The pivot entries p1,piv(~p1), . . . , pn,piv(~pn) are monic.

(iii) deg ~pi ≤ deg ~pi+1 for 1 ≤ i < n, and if deg ~pi = deg ~pi+1 then piv(~pi) < piv(~pi+1).

(iv) Nonpivot entries have degree less than that of the pivot entry in the same column.

If P satisfies only condition (i) it is said to be in weak Popov form [10].

Any nonsingular A ∈ K[x]n×n has a unique decomposition A = UP with U unimodular
and P in Popov form. The Popov form is a canonical form for left equivalence which has
row degrees as small as possible, in particular, degP ≤ degA. We also remark that the
multi-sets of row degrees of row reduced forms that are left equivalent are identical.

Example 3. Consider the row reduced form R from Example 1. The following shows the
possible degree structure in a weak Popov form W of R, and in the canonical Popov form
P of R. The pivot entries in each row have been underlined.

R
[1] [1] [1] [1]

[2] [2] [2] [2]

[2] [2] [2] [2]

[4] [4] [4] [4]

→
W

[1] [1] [1] [1]

[1] [2] [2] [1]

[2] [1] [1] [1]

[3] [4] [3] [3]

→
P

[1] [1] [1] [1]

[2] [1] [1] [0]

[1] [2] [2] [0]

[1] [4] [1] [0]


2

Algorithms and complexity analysis for computing row reduced forms of matrices over
K[x] are given in [4, 6, 10, 14], see also the references in [14]. The problem of minimal
approximant basis computation (see [13]) is very closely tied with that of row reduced basis
computation. The best known algorithm for minimal approximant basis computation with
a rectangular input matrix is given by [15]. In this thesis, cost estimates will be given in
terms of field operations from K, and we use ω for the exponent of matrix multiplication:
two n × n matrices over a commutative ring can be multiplied in O(nω) operations from
the ring.

Let A ∈ K[x]n×n be nonsingular with degA = d. The deterministic algorithm in [10]
computes the Popov form P of A in time O(n3d2). The algorithm in [10] is inherently
iterative and does not seem amenable to a recursive approach which might introduce fast
matrix and polynomial arithmetic. In [6] a Las Vegas randomized algorithm is given to
compute a row reduced form of A with expected running time O (̃nωd), which is about the
same time as required to multiply together two polynomial matrices of the same dimension
and degree as A. Our first contribution in this thesis is to give an O (̃nωd) deterministic
algorithm to transform a row reduced matrix (such as produced by the algorithm in [6])
to Popov form. To the best of our knowledge, a transformation from row reduced form to
Popov form in this time bound was not previously known. Note that in the particular case
when the degrees of all rows of a row reduced form R are equal, we can transform R to
Popov form P in time O(nω d) using the identity P = LC(R)−1R. Our effort in this thesis
is devoted to the more subtle case when the row degrees of R are distinct.

On the one hand, for many applications a non-canonical row reduced form R of A will
suffice. In particular, a row reduced form gives a basis for L(A) that has row degrees
as small as possible, and will satisfy the highly useful predictable degree property [9]: for
polynomials u1, . . . , un ∈ K[x], we have deg u1~p1 + · · ·+ un~pn = maxi{deg ui + deg ~pi}.

On the other hand, computing the Popov form has some obvious advantages. Being
canonical, equality of two lattices over K[x] can be determined by checking that their
Popov basis are identical. If asked for a basis for a lattice over K[x], returning the Popov
instead of only a row reduced form is analogous to a computer algebra system returning
the normalized (i.e., monic) gcd of two scalar polynomials. Indeed, given two nonsingular
matrices A,B ∈ K[x]n×n, the Popov basis P of the lattice generated by the rows of A and
B gives a canonical matrix greatest common right divisor of A and B: A and B can be
expressed as A = U1P and B = U2P for polynomial matrices U1 and U2 for which there
exists polynomial matrices V1 and V2 such that V1U1 + V2U2 = In.

To illustrate the analogy between the Popov form and the normalized monic gcd, it is
useful to consider the definition of Popov form used in [4], which, up to a (unique) row
permutation, is identical to the classical one we have given in Definition 2: condition (iii)
is replaced with the condition that piv(~p)i = i, that is, the rows are permuted so that the
pivots are on the diagonal. Following [4, Definition 2.1], a row reduced matrix P as in (1.1)

3

is in Popov form precisely when LC(P) is lower triangular and the normalization condition
LC(P T) = In is satisfied. Given the Popov form P of A, we can exploit the normalization
condition LC(P T) = In to get a fast algorithm that computes U = AP−1 deterministically.

Producing a canonical form is also advantageous from an algorithmic point of view: a
randomized Las Vegas algorithm for computing the Popov form P , instead of an arbitrary
row reduced form R, will always return the same result even if different random choices
are made. Many randomized algorithms require that the field K be large enough to ensure
a positive probability of success. For example, the algorithm for row reduction in [6] first
performs a random shift of variable x→ x− γ to ensure that x does not divide detA. To
ensure a probability of success at least 1/2 in the worst case, γ should be chosen form a
subset of K of size at least 2nd. If #K is too small, a common technique is to work over a
small algebraic extension K̄ of K that contains sufficiently many elements. However, a row
reduced form R of A ∈ K[x]n×n may be over K̄[x] if computed over K̄[x]. Nonetheless, even
if we pass over an algebraic extension, the Popov form P must be over the ground field:
A ∈ K[x]n×n → R̄ ∈ K̄[x]n×n → P ∈ K[x]n×n.

Our algorithm to transform R to P proceeds in two phases as illustrated in Example 3:
first we transform R to a weak Popov form W , then we transform W to Popov form P .
The first phase uses a careful modification of the LUP decomposition algorithm described
in [1], and the second phase utilizes the fast minimal approximant basis algorithm of [6].

The rest of thesis is organized as follows. Chapter 2 recalls some facts about row reduced
bases. Chapter 3 gives the algorithm to transform a row reduced form to weak Popov form.
Chapter 4 gives an algorithm to go from weak Popov to Popov form. Chapter 5 gives a
method to compute the unimodular transformation U = AR−1 given a full row rank matrix
A and any row reduced matrix R left equivalent to it. Chapter 6 gives the deterministic
algorithm to produce the decomposition A = UP for a nonsingular A. Chapter 6 gives
a Las Vegas algorithm for producing the same decomposition for full row rank matrices.
Chapter 7 concludes, and offers a simple reduction of the problem of polynomial matrix
multiplication to that of transforming a row reduced form to Popov form. Actually, we
show that even the problem of transforming a matrix in weak Popov form to Popov form
is as hard as polynomial matrix multiplication.

1.1 Cost model

Algorithms are analysed by bounding the number of required field operations from a field K
on an algebraic random access machine; the operations +, −, × and “divide by a nonzero”
involving two field elements have unit cost.

We use ω to denote the exponent of matrix multiplication: two n × n matrices over
a ring R can be multiplied with O(nω) ring operations from R. We use M for polynomial

4

multiplication: let M :Z≥0 → R>0 be such that polynomials in K[x] of degree bounded by
d can be multiplied using at most M(d) field operations from K. We refer to [12] for more
details and references about ω and M. We assume that 2 < ω ≤ 3, and that M(ab) ≤
M(a)M(b) for a, b ∈ Z>1. Some of our complexity estimates will implicitly make the
assumption that M(t) ∈ O(nω−1). This assumption states that if fast matrix multiplication
techniques are used, then fast polynomial multiplication should also be used.

1.2 Lower bound

Given two polynomials a, b ∈ K[x] with b nonzero, we denote by Rem(a, b) and Quo(a, b)
the unique polynomials such that a = Quo(a, b) b + Rem(a, b) with deg Rem(a, b) < deg b.
If a and b have degree bounded by d then both the Rem and Quo operation have cost
O(M(d)), and if b is a power of x both operations are free in our cost model. If the
first argument of Rem or Quo is a matrix or vector the intention is to apply the function
elementwise to the entries.

It will be useful to define an additional function B to bound the cost of the extended gcd
operation, as well as other gcd-related computations. We can take either B(d) = M(d) log d
or B(d) = d2. Then the extended gcd problem with two polynomials in K[x] of degree
bounded by d can be solved in time O(B(d)).

Given that the Popov form P has the same set of row degrees as a reduced form
R, and only requires some additional normalization conditions to be satisfied, a natural
question that arises is if the transformation from R to P is at least as hard as polynomial
matrix multiplication: we answer this question affirmatively with a reduction similar to
the well known reduction [1, Page 246] of scalar matrix multiplication to triangular matrix
inversion.

Let A,B ∈ K[x]n×n have degree bounded by d. The following matrix C with degree
bounded by 2d+ 1 is row reduced since it is in weak Popov form:

C :=

[
xd+1In B
−xd+1A x2d+1In

]
∈ K[x]2n×2n.

The Popov form P of C is obtained as follows:

[
I
A I

] C[
xd+1I B
−xd+1A x2d+1I

]
=

P[
xd+1 B

AB + x2d+1I

]
.

We obtain the following result.

5

Theorem 4. If we have an algorithm (algebraic ram) for transforming a nonsingular
2n × 2n row reduced matrix of degree 2d + 1 to Popov form with P (n, d) operations from
K, then two n × n matrices of degree d over K[x] can be multipied together with P (n, d)
operations from K.

1.3 Inverse with limited precision

Now we recall how Newton iteration [12, Algorithm 9.3] can be used for computing the
inverse of a matrix up to a given precision. Since each step of the algorithm can be

LimitedPrecisionInverse(A, x, n, d)
Input: A nonsingular A ∈ K[x]n×n with d = degA.
Output: Rem(A−1, xd).
Condition: Rem(A, x) is nonsingular.

C = Rem(A, x);
H := C−1;
for i to dlog de do

H := Rem(2H − AH2, x2
i
);

od;
return Rem(H, xd)

Figure 1.1: Algorithm LimitedPrecisionInverse

performed using O(nω) operations from the field K and the for loop dlog de iterations, the
overall cost of the algorithm is O(nωM(d)). Thus we can conclude the following lemma.

Lemma 5. Algorithm LimitedPrecisionInverse is correct and it uses O(nωM(d)) oper-
ations from the field K.

6

Chapter 2

Key ideas

Row reduced and Popov forms are defined for matrices of arbitrary shape and rank profile.
In this thesis, we restrict ourselves to matrices of full row rank. The following definition
generalizes Definition 2 to the case of full row rank matrices.

Definition 6. A full row rank matrix

P =


p11 p12 · · · p1m
p21 p22 · · · p2m
...

...
. . .

...
pn1 pn2 · · · pnm

 =


~p1
~p2
...
~pn

 ∈ K[x]n×m

is row reduced if LC(P) has full row rank n. If, in addition, P satisfies the following
normalization conditions then it is in Popov form.

(i) The pivot indices piv(~p1), . . . , piv(~pn) are distinct.

(ii) The pivot entries p1,piv(~p1), . . . , pn,piv(~pn) are monic.

(iii) deg ~pi ≤ deg ~pi+1 for 1 ≤ i < n, and if deg ~pi = deg ~pi+1 then piv(~pi) < piv(~pi+1).

(iv) deg pk,piv(~pi) < deg pi,piv(~pi) for k ∈ {1, 2, . . . , i− 1, i+ 1, i+ 2, . . . , n}, 1 ≤ i ≤ n.

If P satisfies only condition (i) it is said to be in weak Popov form [10].

The following lemma recalls an essential feature of row reduced bases called the pre-
dictable degree property.

Lemma 7. [9, Theorem 6.3-13] If R ∈ K[x]n×m is row reduced and v =
[
v1 · · · vn

]
∈

K[x]1×n, then deg vR = maxi{deg vi + deg Row(R, i)}.

7

For example, the row produced by
v[

[2] [3]
] R[

[3] [1]
[2] [2]

]
∈ K[x]1×2 must have a degree

of 5.

Corollary 8. If two row reduced matrices R1 ∈ K[x]n×m1 and R2 ∈ K[x]n×m2 have the
same degree profile, i.e., deg Row(R1, i) = deg Row(R2, i) for all 1 ≤ i ≤ n, then for any
unimodular transformation U the following holds: if UR1 is row reduced then so is UR2.

Proof. To arrive at a contradiction, let us assume that UR1 is row reduced but UR2 is not.
So there must exist an index 1 ≤ i ≤ n such that deg Row(UR1, i) < deg Row(UR2, i). Let
row-i of U be u =

[
u1 · · ·un

]
∈ K[x]1×n, then from Lemma 7:

deg Row(UR2, i) = max
j
{deg uj + deg Row(R2, j)}.

But since R1 and R2 have the same degree profile, we will have:

deg Row(UR2, i) = max
j
{deg uj + deg Row(R1, j)} = deg Row(UR1, i).

In the following lemma, we use ∗̄ to denote a square nonsingular matrix over K, and ∗d
to denote a rectangular matrix over K[x] of degree bounded by d. The next lemma follows
as a corollary of Lemma 7.

Lemma 9. Let R, R̄ ∈ K[x]n×m be full row rank and row reduced matrices that are left
equivalent. If both R and R̄ have rows ordered such that degrees are nondecreasing, then
the degrees of the rows of R and R̄ are the same. Furthermore, if d1, d2, · · · , dk is the
nondecreasing sequence of distinct degrees of the rows of R, then

T
∗

∗d2−d1 ∗
...

...
. . .

∗dk−d1 ∗dk−d2 · · · ∗


R
R[d1]

R[d2]

...
R[dk]

 =

R̄
R̄[d1]

R̄[d2]

...
R̄[dk]

,
where the block decomposition satisfies the requirements of matrix multiplication, and R[di]

denotes the submatrix of R comprised of the rows of degree di.

In the following corollary, let

X =


xdk−d1I

xdk−d2I
. . .

xdk−dkI

 ∈ K[x]n×n, (2.1)

8

where the dimension of the diagonal block xdk−diI corresponds to the row dimension of
R[di], 1 ≤ i ≤ n.

Corollary 10. Let R, R̄ and T be as in Lemma 9, and X be as in (2.1). Then L :=
LC(xdkXTX−1) ∈ Kn×n, with LLC(R) = LC(R̄).

Proof. The result can be seen most easily by passing over the ring of Laurent polynomials.
Note that

(XTX−1)XR = XR̄,

with all rows in XR and XR̄ of degree dk, and XTX−1 = L+O(x−1) for L ∈ Kn×n.

In the next chapter our goal is to find a matrix T as in Lemma 9 such that W = TR ∈
K[x]n×n is in weak Popov form. The following lemma, a corollary of Corollary 10, states
that it is sufficient to solve this transformation to weak Popov form for a scalar input
matrix, namely for LC(R) ∈ Kn×n.

Lemma 11. Let R ∈ K[x]n×m have full row rank, be row reduced, and have rows ordered
so that degrees are nondecreasing. If T̄ ∈ Kn×n is a unit lower triangular such that W̄ =
T̄ LC(R) ∈ Kn×n is in weak Popov form, then T := X−1T̄X ∈ K[x]n×n is unimodular and
W = TR ∈ K[x]n×n is in weak Popov form.

Example 12. The following partially specified matrix

R =


73x+ 56 68x+ 24 65x+ 90 3x+ 16

78x2 + · · · 59x2 + · · · 69x2 + · · · 3x2 + · · ·
60x2 + · · · 41x2 + · · · 83x2 + · · · 5x2 + · · ·
75x4 + · · · 94x4 + · · · 70x4 + · · · 3x4 + · · ·


is row reduced, where K = Z/(97). The following shows a transformation of LC(R) to weak
Popov form W̄ .

T̄
1
96 1
89 71 1
3 38 33 1


LC(R)

73 68 65 3
78 59 69 3
60 41 83 5
75 94 70 3

=

W̄
73 68 65 3
5 88 4
67

3


If we set

T =

X−1
x−3

x−2

x−2

1


T̄

1
96 1
89 71 1
3 38 33 1


X

x3

x2

x2

1

=


1

96x 1
89x 71 1 0
3x3 38x2 33x2 1

 ,
then W = TR is in weak Popov form with W̄ = LC(W).

9

Chapter 3

Row reduced to weak Popov form

In this chapter we give an algorithm to transform a row reduced matrix to weak Popov
form. In the design of this algorithm, we need to compute the LUP decomposition of a
matrix in a specific we discuss way which in the next section.

3.1 LUP decomposition with pivot selection bias

Here in this section we show how the fast algorithm for LUP decomposition can be appro-
priately modified so that it always selects the rightmost non-zero element of a row as the
pivot element. This modification will help us in the computing a weak Popov form given
a row reduced matrix. We start our discussion by recalling how the iterative algorithm for
LUP decomposition works on an input matrix A ∈ Kn×m. For i = 1, 2, . . . , n, the algorithm
will choose a nonzero pivot element in row i of the work matrix, postmultiply it by a per-
mutation Pi, swapping column i with a latter column, if needed, to ensure the pivot entry
is located in column i, and then zero out entries below the pivot entry by premultiplying
the work matrix with a matrix Li that is unit lower triangular with all entries zero except
for possibly column i. Setting and L := (Ln · · ·L2L1)

−1, P := (P1P2 · · ·Pn)−1 and U to be
the final work matrix, gives an LUP decomposition. To ensure that the LUP decomposition
produced will lead to a transformation to weak Popov form we need to specify how the
pivot entries are chosen. Initialize a tuple D = (1, 2, . . . , n). After each row is processed
the tuple D should be updated as D := DPi.

The pivot in row i is chosen to be the nonzero entry from among the last n − i + 1
entries of row i of the work matrix for which the corresponding component of D is maximal.
We can encode this bias in the fast recursive algorithm for LUP decomposition and create
algorithm ModifiedFastLUP as described in the following paragraph.

10

ModifiedFastLUP(A, n,m)

Input: A row reduced matrix A ∈ Kn×m with rank n.

Output: Matrices L,U and P , such that A = LUP is a valid LUP decomposition of A.

Figure 3.1: Algorithm ModifiedFastLUP

When algorithm ModifiedFastLUP is applied to a full row rank n×m matrix, the base
cases of will consist in computing an LUP decomposition of a nonzero 1 × m matrix B
which corresponds to the last m columns of a row of the work matrix, 1 ≤ m ≤ n. By
modifying the algorithm as follows, it will produce the same output as the iterative version
with pivoting as specified above.

• Initialize D = (1, 2, . . . , n) at the start of the algorithm.

• At each base case involving a B ∈ K1×m, compute the unique LUP decomposition
B = LUP which has P−1 equal to the permutation that interchanges column 1 and
j, with j chosen so that D[n−m+j] is maximal from among all j with B[j] nonzero,
1 ≤ j ≤ m. Update D by interchanging D[n−m+ 1] and D[n−m+ j].

We can conclude the following lemma by using [1, Theorem 6.4].

Lemma 13. Algorithm ModifiedFastLUP is correct. The cost of the algorithm is O(mnω−1)
operations from K.

Example 14. Let R be as in Example 16. Initialize D = (1, 2, 3, 4). The first pivot we
select is the right most element of the first row of R. This gives

R1 =

L1
1
−1 1
−34 1
−1 1


R

73 68 65 3
78 59 69 3
60 41 83 5
75 84 70 3


P1

1
1

1
1

=


3 68 65 73

88 4 5
57 7 3
16 5 2


The updated D is D = (4, 2, 3, 1). The next pivot is thus chosen to be the third element

of row 2 of R1. The next elimination step gives

R2 =

L2
1

1
−26 1
−74 1


R1

3 68 65 73
88 4 5
57 7 3
16 5 2


P2

1
1

1
1

=


3 65 68 73

4 88 5
67

3 20


and D is updated to D = (4, 3, 2, 1).

11

3.2 Algorithm ReducedToWeakPopov

Our goal here is to transform a row reduced matrix to weak Popov form. By Lemma 11,
it will be sufficient to handle the scalar case, that is, given a full row rank R ∈ Kn×m,
compute a unit lower triangular transformation matrix T ∈ Kn×n such that TR is in weak
Popov form. Our approach is to compute a decomposition R = LUP where L is unit lower
triangular, U is upper triangular, and P is a permutation matrix. We accomplish this using
a modification of the well known LUP decomposition algorithm described in [1, Page 236].
The following lemma gives the idea of our approach.

Lemma 15. Let A,R ∈ K[x]n×m have full row rank with R row reduced and left equivalent
to A, and let LC(R) = LUP be an LUP decomposition of R. If (p1, . . . , pn) is such that pi
is the index of integer i in the permuted tuple (1, 2, . . . ,m)P , then (UP)i,pi is nonzero and
entries in UP below (UP)i,pi are zero, 1 ≤ i ≤ n. Furthermore, if (UP)i,pi is the rightmost
nonzero entry in row i of UP for 1 ≤ i ≤ n, then the following holds.

(i) The matrix L−1R = UP is in weak Popov form.

(ii) Let [A′|∗] = AP−1 and [R′|∗] = RP−1, where A′, R′ ∈ K[x]n×n, if T is a unimodular
matrix such that A′ = TR′ then A = TR.

The following example is based on Example 12.

Example 16. The following shows an LUP decomposition of a nonsingular R ∈ Z4×4
97 .

R =

L
1
1 1
34 26 1
1 74 64 1


U

3 65 73 68
4 5 88

67 0
3


P

1
1

1
1

=


73 68 65 3
78 59 69 3
60 41 83 5
75 84 70 3


Now observe that T̄ and W̄ in Example 12 are equal to L−1 and UP , respectively. But

not every LUP decomposition leads to transformation to weak Popov form. For example, R
has generic rank profile and so can be decomposed as the product of a unit lower triangular
and upper triangular matrix.

To ensure that the LUP decomposition produced will lead to a transformation to weak
Popov form we need to ensure that the pivot entries are chosen from the right side of a row.
That is exactly what is done in algorithm ModifiedFastLUP (described in Section 3.1). It
is used as subroutine in the algorithm of Figure 3.2. We obtain the following result as a
corollary of Lemma 11 and Lemma 13.

Theorem 17. Algorithm ReducedToWeakPopov is correct. The cost of the algorithm is
O(mnω−1 d) operations from K.

12

ReducedToWeakPopov(R, n,m, d)

Input: A row reduced matrix R ∈ K[x]n×m with rank n and d = degR.

Output: W , a weak Popov form of R.

1. [Compute scalar transformation]
Row permute R so that degrees are nondecreasing.
R̄ := LC(R);
L,U, P := ModifiedFastLUP(R̄, n,m);

2. [Apply transformation]
Let di be the degree of row i of R, 1 ≤ i ≤ n.
X := Diag(xd1 , xd2 , . . . , xdn);
T̄ := L−1;
W := X(T̄ (X−1R));
return W

Figure 3.2: Algorithm ReducedToWeakPopov

13

Chapter 4

Weak Popov to Popov

In this chapter we show how to transform a full rank matrix W ∈ K[x]n×m that is in
weak Popov form to Popov form. The following lemma observes that we can restrict our
attention to the square nonsingular case.

Lemma 18. Let W ∈ K[x]n×m have rank n and be in weak Popov form. If B is the
submatrix of W comprised of the columns containing pivot entries, and T ∈ K[x]n×n is a
unimodular matrix such that TB is in Popov form, then TW is the Popov form of W .

Proof. Without loss of generality, up to a row permutation, assume W satisfies conditions
(i) and (ii) of Definition 6. Then we can observe that the iterative algorithm of [10,
Section 7] to transform W to Popov form P will maintain piv(Row(W, i)) = piv(Row(P, i))
for 1 ≤ i ≤ n. Now, if P̄ is the submatrix of P comprised of the columns containing the
pivot entries, then P̄ satisfies all conditions of Definition 2 and is in Popov form. Thus P̄
is the Popov form TB of B. The result follows.

The next lemma follows directly from Definition 2.

Lemma 19. Let P ∈ K[x]n×n be nonsingular and in Popov form, and let ci equal to the
degree of the pivot entry in column i, 1 ≤ i ≤ n. Set X := Diag(xd−c1 , . . . , xd−cn), where
d = degP . If Q is the permutation matrix such that QP has pivot entries located on the
diagonal, then QPX is in Popov form with every row of degree d.

Example 20. The following shows the column shift of the Popov form from Example 1.

QPX =

Q
1

1
1

1


P

[1] [1] [1] [1]

[2] [1] [1] [0]

[1] [2] [2] [0]

[1] [4] [1] [0]


X

x2

1
x2

x3

=

QPX
[4] [1] [3] [3]

[3] [4] [3] [3]

[3] [2] [4] [3]

[3] [1] [3] [4]


14

The next lemma follows from Definition 2.

Lemma 21. If R ∈ K[x]n×n be a row reduced matrix with every row of degree d, then
LC(R)−1R is the Popov form of R and all its pivot elements are along the diagonal of the
matrix.

The following corollary of Lemmas 19 and 21 now shows how we may transform the
problem of computing the Popov form of a weak Popov form to that of computing a row
reduced basis of a suitably shifted matrix.

Theorem 22. Let B ∈ K[x]n×n be nonsingular and in weak Popov form, and let ci equal
to the degree of the pivot entry in column i, 1 ≤ i ≤ n. Let T be the unimodular matrix
such that P = TB is in Popov form, and let Q be the permutation matrix such that pivot
entries in QP are on the diagonal. Set d = degB and X := Diag(xd−c1 , . . . , xd−cn). If
U ∈ K[x]n×n is a unimodular matrix such that R = UBX is row reduced, then T :=
Q−1LC(UBX)−1U ∈ K[x]n×n. Moreover, deg T ≤ d.

Proof. By Lemma 19 the matrix QPX will be in Popov form with all rows of degree d.
Since QT is a unimodular matrix, QP ≡L B and so also QPX ≡L BX. Since the Popov
form QPX has all rows of degree d, the left equivalent reduced form UBX will also have
all rows of degree d. Lemma 21 now shows that the following diagram commutes.

B
Postmul. by X−−−−−−−−→ BX

Premul. by QT

y yPremul. by LC(UBX)−1U

QP
Postmul. by X−−−−−−−−→ QPX

.

The claim that T = Q−1LC(R)−1U follows.

Now consider the degree of T . Since P = TB is the Popov form of B, we have degP ≤
degB = d. The predictable degree property (Lemma 7) now implies that deg T ≤ d.

The final ingredient is the transformation of the matrix BX of Theorem 22 to row
reduced form. To accomplish this we use a minimal approximant basis computation as
described by [3, Theorem 5.2]. We will use algorithm PM-Basis of [6] to compute an order
3d+ 1 minimal approximant M ∈ K[x]2n×2n for the matrix

G =

[
BX
−In

]
∈ K[x]2n×n. (4.1)

Recall that M is a nonsingular row reduced matrix that gives a basis for the lattice {w ∈
K[x]1×n | wG ≡ 0 mod x3d+1}. We obtain the following result.

15

Lemma 23. Let B and X be as in Theorem 22. If M is a minimal approximant basis of
order 3d + 1 for G shown in (4.1), and

[
Ū R̄

]
is the submatrix of M comprised of the

rows of degree bounded by d, with Ū of column dimension n, then Ū is unimodular and R̄
is a row reduced form of BX.

Proof. First note that the degree bounds deg Ū ≤ d, deg R̄ ≤ d and degBX ≤ 2d, together
with

[
Ū R̄

]
G ≡ 0 mod x3d+1, imply that

[
Ū R̄

] [BX
−In

]
= 0. (4.2)

We will show in succession that the following hold:

(a) Ū has at most n rows.

(b) Ū is nonsingular.

(c) Ū is unimodular.

Using (c) together with (4.2) (i.e., Ū(BX) = R̄) shows that R̄ is left equivalent to BX
with all rows of R̄ of degree d. Since the Popov form of BX has all rows of degree d, R̄
must be a row reduced form of BX.

Claim (a): Since the rows of M are linearly independent, the row dimension of Ū can’t
be more than the dimension of the nullity of G, which is n.

Claim (b): From Theorem 22 we have
[
U R

]
G = 0, with degU, degR ≤ d. Since

M is minimal approximant basis, all n linearly independent rows of
[
U R

]
must be

generated by
[
Ū R̄

]
. Since U is nonsingular and Ū has at most n rows, Ū must also be

nonsingular.

Claim (c): From (4.2) we have ŪBX = R̄. Since Ū is nonsingular by claim (c), R̄
is nonsingular also. The Popov form of BX has all rows of degree d, so deg detBXnd.
Since deg R̄ ≤ d, we have deg det R̄ ≤ nd. Finally, using ŪBX = R̄ gives that deg det Ū ≤
deg det R̄− deg detBX ≤ 0, showing that Ū is unimodular.

Algorithm WeakToPopov is shown in Figure 4.1. By [6, Theorem 2.4], M is computed
in O(nω B(d)) field operations from K. We obtain the following result.

Theorem 24. Algorithm WeakToPopov is correct. The cost of the algorithm is O(nω B(d)+
mnω−1M(d)) field operations from K.

16

WeakToPopov(W,n,m, d)
Input: A weak Popov form W ∈ K[x]n×m of rank n and degree d.
Output: P , the Popov form of W .

1. [Extract pivot columns and scale]
Let B be the submatrix of W comprised of the columns containing pivot entries
and ci be the degree of the pivot element in column i of B.
X := Diag(xd−c1 , xd−c2 , . . . , xd−cn);

2. [Minimal approximant basis computation]

G :=
[
BX −In

]T ∈ K[x]2n×n;
δ := (0, . . . , 0), of length 2n;
M := PM-Basis(G, 3d+ 1, δ);

3. [Recover the Popov form of W]
Let A =

[
U R

]
be the matrix consisting of the rows of M that have degree

bounded by d, where both U and R consist of n columns.
T := LC(R)−1U ;
P := TW ;
Permute rows of P so that (iii) of Def. 6 holds;
return P

Figure 4.1: Algorithm WeakToPopov

17

Chapter 5

Unimodular transformation for row
reduced decomposition

In this chapter, we describe a method to compute the unimodular transformation U =
AR−1 given a full rank matrix A ∈ K[x]n×n of degree d and a row reduced matrix R left
equivalent to it. We know that, for the most general case when R is not row reduced,
computing U could be quite costly as the elements in R−1 and U can have degrees as high
as O(nd).

Example 25. Consider the following two degree one matrices are left equivalent to each
other over K[x], where K = Z/(97).

A =


92x+ 44 95x+ 5 32 + 83x

37x+ 68 26 x+ 95 76 + 29x

33x+ 17 51 x+ 55 76 + 71x

 , R =


38x+ 91 70 x+ 66 31 + 11x

52x+ 11 18 x+ 62 96 + 70x

2x+ 48 48x+ 66 66 + 50x

 .
The unimodular transformation matrix U = AR−1 has a degree of 3.

U =


(59x3 + 80x2 + 9x+ 64) (38x3 + 68x2 + 46x+ 41) (25x3 + 57x2 + 41x+ 46)

(51x3 + 6x2 + 35x+ 75) (46x3 + 20x2 + 17x+ 31) (66x3 + 10x2 + 16x+ 34)

(68x3 + 66x2 + 40x+ 32) (29x3 + x2 + 57x+ 25) (88x3 + 96x2 + 60x+ 35)


When R is row reduced, the predictable-degree property (Lemma 7) will ensure that

degU ≤ d as UR = A and degA ≤ d. Furthermore, we know that the leading coefficient
matrix of R will be nonsingular. We use these two properties of R to design an efficient
method for computing U .

18

UnimodularFactor(A,R, n,m, d)
Input: A full row rank matrix A ∈ K[x]n×m with d = degA and a row reduced form
R of A.
Output: The unimodular matrix U = AR−1.

if n = m then
P = In

elif R is in weak Popov form then
P is the permutation such that RP has all the pivot columns of R as its first n

columns.
else
∗, ∗, P := ModifiedFastLUP(LC(R), n,m)

fi;
Let

• [A′|∗] = AP−1,

• [R′|∗] = RP−1, and

• X := Diag(xc1 , . . . , xcn) ,

where A′, R′ ∈ K[x]n×n and ci = deg Row(R′, i).
B := (X−1R′) |x=1/y;
D := ydA′ |x=1/y;
B′ := LimitedPrecisionInverse(B, y, n, d+ 1);
U := y−dDB′(X |x=y);
return U |y=1/x

Figure 5.1: Algorithm UnimodularFactor

Using Lemma 15, part (ii), we can say that U = AR−1 can be computed by just focusing

19

on the matrices A′ and R′. Thus we have:

U = A′R′−1

= A′(X−1R′)−1X−1

=
(
y−dydA′ |x=1/y ((X−1R′) |x=1/y)

−1(X |x=1/y)
−1) |y=1/x

=

y−d D︷ ︸︸ ︷
ydA′ |x=1/y(

B︷ ︸︸ ︷
(X−1R′) |x=1/y)

−1(X |x=y)

 |y=1/x .

Example 26. The following matrices are left equivalent to each other over K[x], where
K = Z/(97).

A =


(25x3 + 65x2 + 44x+ 55) (93x3 + 12x2 + 34x+ 19) (29x3 + 78x2 + 63x+ 40)

(19x3 + 68x2 + 95x+ 50) (90x3 + 57x2 + 3x+ 50) (87x3 + 28x2 + 93x+ 49)

(46x3 + 91x2 + 77x+ 10) (32x3 + 27x2 + 87x+ 37) (72x3 + 76x2 + 27x+ 89)



R =


(66x2 + 60x+ 90) (42 x2 + 38x+ 20) (54 x2 + 75x+ 96)

(68x2 + 64x+ 6) (16x2 + 39x+ 92) (69 x2 + 77x+ 48)

(20x2 + 30x+ 53) (80x2 + 5x+ 69) (86x2 + 55x+ 78)

 .
Additionally R is also row reduced, thus we can find the unimodular transformation matrix
U = AR−1 as follows.

When the given matrices are square, we can skip the computation of A′ and R′. The
matrix D = ydA |x=1/y, where d = 3, can be constructed by appropriately shifting the
coefficients of the polynomials that comprise the elements of A.

D =


(55 y3 + 44 y2 + 65 y + 25) (19 y3 + 34 y2 + 12 y + 93) (63 y3 + 29 y2 + 78 y + 40)

(50 y3 + 95 y2 + 68 y + 19) (50 y3 + 3 y2 + 57 y + 90) (49 y3 + 93 y2 + 28 y + 87)

(10 y3 + 77 y2 + 91 y + 46) (37 y3 + 87 y2 + 27 y + 32) (89 y3 + 27 y2 + 76 y + 72)


We can also construct B = (X−1R) |x=1/y, where X := Diag(x2, x2, x2), by appropriately

shifting the coefficients of the polynomials that comprise the elements of R.

B =


(90 y2 + 60 y + 66) (20 y2 + 38 y + 42) (96 y2 + 75 y + 54)

(6 y2 + 64 y + 68) (92 y2 + 39 y + 16) (48 y2 + 77 y + 69)

(53 y2 + 30 y + 20) (69 y2 + 5 y + 80) (78 y2 + 55 y + 86)


20

Thus,

U = (y−dDB−1(X |x=y)) |y=1/x=


84x+ 8 67x+ 82 54 x+ 77

35x+ 35 9x+ 39 44x+ 89

15x+ 42 52 x+ 60 67 x+ 63

 .
As noted in the above example, the matrices B,D ∈ K[y]n×n can be constructed by

appropriately shifting the coefficients of the polynomials that comprise the elements of R
and A. The leading coefficient matrix of R will now be the matrix B0 := Rem(B, y) and
thus it will be nonsingular. Since degU ≤ d, the degree of y−dDB−1(X |x=y) must be at
most zero and at least −d. Furthermore, since D is a polynomial matrix of degree d, we can
write y−dD = D0+O(y−1) with D0 ∈ Km×m. So, we only need to compute B−1 up to a pre-
cision of yd+1 for calculating U . We do it by using the routine LimitedPrecisionInverse.
Since degD ≤ d, calculating U = (y−d Rem(DB′(X |x=y), y

d+1)) |y=1/x will entail a cost of
O(nωM(d)). Thus using Lemma 13, we will get an overall complexity of O(mnω−1M(d)).
We conclude with the following lemma.

Lemma 27. Algorithm UnimodularFactor is correct and it uses O(mnω−1M(d)) opera-
tions from the field K.

21

Chapter 6

Popov decomposition of nonsingular
matrices

Let A ∈ K[x]n×n be nonsingular of degree d. In this chapter we put together the results
of the previous chapters and give a deterministic algorithm to produce the decomposition
A = UP where P is the Popov form of A and U is unimodular. Algorithm RowReduce

NonsingularPopovDecomp(A, n, d)
Input: A nonsingular matrix A ∈ K[x]n×n of degree d.
Output: P,U ∈ K[x]n×n, with P the Popov form of A and U = AP−1.

R := RowReduce(A, n, d);
W := ReducedToWeakPopov(R, n, n, degR);
P := WeakToPopov(W,n, n, degW);
U := UnimodularFactor(A,P, n, n, d);
return P,U

Figure 6.1: Algorithm NonsingularPopovDecomp

is described in [7]. RowReduce is a deterministic variant of the Las Vegas randomized
algorithm for row reduction in [6] that, unlike the algorithm from [6], avoids the need
to know a priori or choose randomly an α ∈ K such that x − α does not divide detA.
By [7, Theorem 36], the cost of computing R in is O(nω(log n)2 B(d)) field operations from
K. Once the Popov form P has been computed in the third step, we can recover U as
U = AP−1 using Algorithm 5.1. From Lemma 27, we know that the cost for this step will
be O(nωM(d)). Thus, we obtain the following result as a corollary of Theorems 17 and 24.

Theorem 28. Algorithm NonsingularPopovDecomp is correct. The cost of the algorithm
is O(nω(log n)2 B(d)) field operations from K. This result assumes that B(t) ∈ O(tω−1).

22

ichapterRow reduced decomposition using randomized column reduction From Theo-
rem 24 and [7, Theorem 39], we know that the Popov form of a square nonsingular matrix
can be computed efficiently. In this chapter, we give a Las Vegas algorithm for computing
the Popov form of an arbitrary rectangular matrix with full row rank. We use the following
lemma in the design of this algorithm.

Lemma 29. Let A ∈ K[x]n×m be a matrix having full row rank and the elements of C ∈
{0, 1}m×n be chosen uniformly at random, then with probability at least 1

4
the following

holds:

1. Ā = AC is nonsingular.

2. If U is an unimodular matrix such that R̄ = UĀ is row reduced, then UA will also
be row reduced.

Proof. Let T ∈ K[x]n×n be a unimodular matrix such that R = TA is row reduced. Since
AC = Ā, we have:

TAC = TĀ

⇒ RC = TĀ

We say that C is good if LC(R)C if nonsingular. Note that if C is good then LC(TĀ) =
LC(R)C, and thus TĀ is row reduced and nonsingular (since LC(R) has full row rank).
This will imply that Ā itself will be nonsingular and thus Condition (1) is satisfied. Let us
write: U = U ′T , where U ′ is the unimodular transformation satisfying R̄ = U ′(TĀ). If C
is good then the row reduced matrices R and TĀ must have the same degree profile and
thus from Corollary 8 we can say that U ′R = UA is also row reduced.

Since LC(R) has full row rank, from [11, Corollary 16] the probability of C being
good is at least

∏n
i=1(1 −

1
2i

). This probability will be exact if K is a field of just two
elements [5, Part 2, chapter 1]. We can bound the probability from below as follows.

n∏
i=1

(1− 1

2i
) ≤

∞∏
i=1

(1− 1

2i
)

= 1 +
∞∑
k=1

(1)k+1(2−(k+1)(3k+2)/2 + 2−(k+1)(3k+4)/2)

≥ 1− 1

2
− 1

4
=

1

4

The second to last identity follows from [8, Theorem 358]. The last inequality uses the
observation that for odd k, the sum of the kth and (k+1)st term in the sum is positive.

23

In the first part of Algorithm FullRowRankPopov, we have to check whether Ā is singular
or not. We can do that while computing a row reduced form of that matrix, we just need
to use a slightly modified version of algorithm RowReduce in [7]. Note that in the very
first step, the algorithm tries to compute the x-Smith decomposition of the input matrix
using algorithm TriangularXSmithDecomposition (also described in [7]). Singularity of a
matrix can be detected in algorithm TriangularXSmithDecomposition as follows. At the
first step inside the while loop, every time a new U1 is computed check whether Rem(U1, x)
is singular. If yes, then we can stop and conclude that the input matrix was singular.
With this modification incorporated, let us refer to this modified version of [7, Algorithm
7] as ModifiedRowReduce. From [7, Theorem 39], we can check for singularity of Ā using
O(nω(log n)2M(d) + nω B(d)) operations from the field K.

ModifiedRowReduce(A, n, d)
Input: A ∈ K[x]n×n with d = degA.
Output: If A is nonsingular then returns a row reduced form of A, otherwise fails.

Figure 6.2: Algorithm ModifiedRowReduce

Since Ū is unimodular, U0 = Rem(Ū , y) must be non-singular. So we can use the routine
LimitedPrecisionInverse to compute U ′ = Rem(Ū−1, xd+1) with a cost ofO(nω log d). In
the next step we attempt to compute a row reduced basis of A by using the transformation
U ′. Since L(R) ⊆ L(A), if R is row reduced and has no zero rows then it must comprise
a row reduced basis of A. This check can be done in O(n2d) time since degR ≤ 2d. Thus
using Lemma 29, and Theorems 17 and 24 we can conclude the following Lemma.

Lemma 30. Algorithm FullRowRankPopov succeeds with probability at least 1
4

and it uses
O(nω B(d) +mnω−1(log n)2M(d)) operations from the field K. This cost estimate assumes
that ω > 2 and M(t) ∈ O(tω−1).

24

FullRowRankPopov(A, n,m, d)
Input: A ∈ K[x]n×m with d = degA,m ≥ n and rank(A) = n.
Output: P,U ∈ K[x]n×m, with P the Popov form of A and U = AP−1.
Note: The algorithm returns FAIL with probability < 3

4
.

1. [Randomized compression of A.]
Choose a matrix C ∈ {0, 1}m×n uniformly at random.
Ā := AC;
R̄ := ModifiedRowReduce(Ā, n, d);
If algorithm ModifiedRowReduce fails, then return FAIL;

2. [Calculate a row reduced form of A.]
Ū := UnimodularFactor(Ā, R̄, n, d);
U ′ := LimitedPrecisionInverse(Ū , x, n, d+ 1);
R := Rem(U ′A, xd+1);
If R is not row reduced or A 6= ŪR, then return FAIL;
W := ReducedToWeakPopov(R, n,m, d);
P := WeakToPopov(W,n,m, d);
U := UnimodularFactor(A,P, n, d);
return P,U

Figure 6.3: Algorithm FullRowRankPopov

25

Chapter 7

Conclusions and future work

Our algorithms for transforming from row reduced to weak Popov, and from weak Popov to
Popov, worked for rectangular input matrices of full row rank. Currently, our deterministic
algorithm for computing the Popov decomposition requires the input matrix to be square
and nonsingular. Randomization can be used to extend the algorithm to matrices of
arbitrary shape and rank, but our ultimate goal is to obtain a deterministic algorithm for
the general case.

26

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974. 4, 5, 11, 12

[2] B. Beckermann and G. Labahn. A uniform approach for the fast computation of
matrix–type Padé approximants. SIAM Journal on Matrix Analysis and Applications,
15(3):804–823, 1994. 4

[3] B. Beckermann, G. Labahn, and G. Villard. Shifted normal forms of polynomial matri-
ces. In S. Dooley, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC ’99, pages 189—-196. ACM Press, New York, 1999. 15

[4] B. Beckermann, G. Labahn, and G. Villard. Normal forms for general polynomial
matrices. Journal of Symbolic Computation, 41(6):708–737, 2006. 1, 3

[5] L. E. Dickson. Linear Groups with an Exposition of Galois Field Theory. Cosimo
Classics, Chicago, 1901. 23

[6] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix
computations. In R. Sendra, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC ’03, pages 135–142. ACM Press, New York, 2003. 1, 3, 4, 15,
16, 22

[7] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x-basis decomposi-
tions and derandomization of linear algebra algorithms over K[x]. Journal of Symbolic
Computation, October 2010. Festschrift for the 60th Birthday of Joachim von zur
Gathen. Accepted for publication. 22, 23, 24

[8] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, Oxford, 1979. 23

[9] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, N.J., 1980. 1, 3, 7

[10] T. Mulders and A. Storjohann. On lattice reduction for polynomial matrices. Journal
of Symbolic Computation, 35(4):377–401, 2003. 2, 3, 7, 14

27

[11] T. Mulders and A. Storjohann. Certified dense linear system solving. Journal of
Symbolic Computation, 37(4):485–510, 2004. 23

[12] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2nd edition, 2003. 5, 6

[13] A. Storjohann. Notes on computing minimal approximant bases. In W. Decker, M. De-
war, E. Kaltofen, and S. Watt, editors, Challenges in Symbolic Computation Software,
number 06271 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006. 3

[14] G. Villard. Computing Popov and Hermite forms of polynomial matrices. In Y. N.
Lakshman, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
’96, pages 251–258. ACM Press, New York, 1996. 3

[15] W. Zhou and G. Labahn. Efficient computation of order basis. In J. P. May, editor,
Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC ’09, pages 375–
384. ACM Press, New York, 2009. 3

28

	List of Figures
	Introduction
	Cost model
	Lower bound
	Inverse with limited precision

	Key ideas
	Row reduced to weak Popov form
	LUP decomposition with pivot selection bias
	Algorithm ReducedToWeakPopov

	Weak Popov to Popov
	Unimodular transformation for row reduced decomposition
	Popov decomposition of nonsingular matrices
	Conclusions and future work
	Bibliography

