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Abstract

In order to provide a novel perspective for videography of high speed sporting events, a
highly capable trajectory tracking control methodology is developed for a custom designed
Kadet Senior Unmanned Aerial Vehicle (UAV). The accompanying high fidelity system
identification ensures that accurate flight models are used to design the control laws. A
parallel vision based target tracking technique is also demonstrated and implemented on a
Graphical Processing Unit (GPU), to assist in real-time tracking of the target.

Nonlinear control techniques like feedback linearization require a detailed and accurate
system model. This thesis discusses techniques used for estimating these models using
data collected during planned test flights. A class of methods known as the Output Error
Methods are discussed with extensions for dealing with wind turbulence. Implementation
of these methods, including data acquisition details, on the Kadet Senior are also discussed.
Results for this UAV are provided. For comparison, additional results using data from a
BAC-221 simulation are also provided as well as typical results from the work done at the
Dryden Flight Research Center.

The proposed controller combines feedback linearization with linear tracking control
using the internal model approach, and relies on a trajectory generating exosystem. Three
different aircraft models are presented each with increasing levels of complexity, in an
effort to identify the simplest controller that yields acceptable performance. The dynamic
inversion and linear tracking control laws are derived for each model, and simulation results
are presented for tracking of elliptical and periodic trajectories on the Kadet Senior.
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Chapter 1

Introduction

The quest for an optimal viewing angle for a sporting event or a movie has always led to
huge capital expenditures. The Romans built the Colosseum for breathtaking views of the
live action directly below, unhindered by the crowds in front and behind. The modern day
equivalent includes cameras, televisions and cleverly placed jigs all around the stadium
or the film set. Skiing events during the Winter Olympics, for example, are filmed using
extensive cable and track systems and manned helicopters. Movies as diverse as Top Gun,
Beautiful Mind and 007 The World is Not Enough all have scenes that were shot using
manned and remotely piloted airplanes and helicopters.

Third person perspective, a view located directly behind and above the target, remains
difficult to achieve due to the high speed of the action, the rapid changes in direction and the
resulting safety concerns that arise from tracking at close range, particularly with manned
aircraft. In recent years, there has been a significant surge in the use of remotely piloted
helicopters with stabilized cameras in the production of movies, not only for high speed
chases, but for precise aerial shots that would be difficult to achieve otherwise. Currently
only a handful of pilots can remotely control a vehicle precisely enough to achieve these
objectives. The use of small autonomous Unmanned Aerial Vehicles (UAVs), on the other
hand, may open an affordable door to such a perspective for sports networks and movie
directors.

In addition to the requirement of agility and high speed, there is a fundamental need
to ensure safety during high speed operations. Transport Canada strictly regulates the use
of any unmanned vehicles, whether remotely piloted or autonomous, for commercial use.
With more and more movies being shot in Canada, Transport Canada has devised a set of
rules that govern the operation of the vehicles in crowded areas. For an autonomous vehicle
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to replace a skilled ground pilot, the autopilot system has to be exceptionally safe, with
very low chances of an error or a software hiccup. Two conclusions can be drawn, first,
the autonomous vehicle must be highly maneuverable, able to track required trajectories
without human input, and second, it must do so without compromising the safety of the
crew or the target.

A complete UAV system that can aggressively follow a target at close range is not
known to exist. Such a system would include a robust computer vision tracker that detects
and tracks aggressive high speed ground targets. This tracker would provide reference
trajectories to a highly capable autopilot that would keep the aircraft stable under extreme
maneuvers. Recent advances in computing power, vision algorithms and control techniques
have brought such a system closer to existence.

In 2003, Saripalli et. al. [49] successfully landed a helicopter on a marked target using
vision based algorithms. The target was stationery but the research demonstrated success-
ful use of small cameras and off the shelf computing power to collectively approach a target.
In 2007, Edwards et. al. [12] demonstrate a fixed wing UAV that can land autonomously
on a truck bed that is painted red. They show cases where the truck is stationary and
where it is moving steadily forward at 10 to 15 mph. The vision system is implemented
on an FPGA running two 400MHz CPU cores. The algorithm uses color based segmen-
tation followed by a connected component algorithm where they find the target’s center
of mass. They use an off-the-shelf autopilot from Procerus Technologies. Also in 2007,
Campbell et. al. [5][60], use a military Scan Eagle UAV with an onboard camera gimbal
developed by the Insitu Group. They use a square root, sigma point information filter
and validate results for cooperative and non-cooperative ground targets. They show large
errors in tracking during sharp corners or changes in velocity. In 2008, Theodorakopoulos
and Lacroix [55] develop high level kinematic controllers that rely on a low level autopilot.
They limit the aircraft roll angle and its lateral velocity. It results in the aircraft circling
the target in concentric circles that converge towards the target. The strategy was demon-
strated to work well for stationary or slow moving targets. The authors assert that evasive
and aggressive targets are an area of future work. This year, Teuliere et. al. [54], tracked
a remote control car with a quadrotor using visual information. Their vision system uses
color-based tracking with particle filtering. Their flight controller uses linear proportional
gains on position error to successfully track the car in controlled steady motions.

This thesis presents work done towards achieving the goal of autonomous tracking of an
aggressively moving ground target. It includes detailed aerodynamic models of the vehicle,
system identification, vision based tracking, a controller capable of tracking aggressive
trajectories, its hardware implementation on custom designed electronics and a QNX based
real-time autopilot software architecture.

2



Figure 1.1: An overview of the proposed methodology and thesis contributions. Note, the
high level planner is not part of this research.
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A high fidelity system identification procedure is described and performed on the custom
designed Kadet Senior UAV. Nonlinear control techniques are then applied to these models
in simulation. Linear controls are implemented on the UAV to test various systems on the
autopilot. A high speed robust vision tracking solution is also developed. These pieces will
eventually be linked using a high level planner which is an active area of research at the
Waterloo Autonomous Vehicles Lab (WAVE). Such a system, would extract information
from the high speed video tracking, and predict the motion of the target. It would then
plan an aircraft trajectory using a bank of ‘motion primitives’ that are designed in this
thesis. Motion primitives are basic predetermined trajectories that the aircraft can follow.
With sufficient motion primitives, the high level planner will be able to keep the aircraft
on the appropriate trajectory to chase the target. This idea is shown in Figure (1.1).

1.1 Contributions

The main contributions of this thesis and the accompnying research project are the follow-
ing:

• GPU based robust vision tracker, capable of tracking multiple targets simultaneously.

• Comparison of two different aircraft models for system identification of Kadet Senior,
suitable for feedback linearization.

• A method to produce high fidelity simulation for BAC-221 using wind tunnel data.

• Application of feedback linearization to 3 progressively complex aircraft models,
based on BAC-221 data.

• Simulation of the nonlinear control techniques applied to the Kadet Senior.

• QNX based autopilot, with long range communications, remote in-flight debugging,
custom fast boot bios, real time characterization for crucial timing verification.

1.2 Outline of the Thesis

The thesis begins with a description of the vision tracking algorithm and implementation
in Chapter 2. System identification methods and results are presented in Chapter 3 for the

4



Kadet Senior platform. Chapter 4 shows the design, simulation and results of a nonlinear
controller which uses target trajectories from Chapter 2 and aerodynamic models from
Chapter 3 to control the fixed wing Kadet Senior Unmanned Aerial Vehicle (UAV). Lastly,
the main contributions are summarized and avenues for future work to complete the main
goals of the project are outlined.
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Chapter 2

GPU Based Vision Tracking

2.1 Motivation

The goal of this chapter is to implement an algorithm that would utilize the parallel
processing capabilities of a Graphical Processing Unit (GPU) to achieve robust vision
based tracking of a target. The information from the target can be used to generate
reference trajectories by a high level planner, which are followed by the aircraft tracking
controllers developed in the subsequent chapters.

This chapter proceeds as follows. Section (2.2) provides an overview of the current
research in GPU based vision systems. OpenCL is introduced and a brief introduction
to GPU programming is provided in Section (2.3). A state of the art vision based target
tracking algorithm is discussed in Section (2.4) and its parallel implementation is described
in Section (2.5). Lastly, tracking results and discussion of future work is presented.

2.2 Current Work in GPU Based Computer Vision

GPUs were originally meant to convert numbers into graphics for digital screens. Standards
like Open Graphics Library (OpenGL) were used with languages like C for Graphics (Cg)
to produce 2D and 3D computer graphics. OpenGL was developed by Silicon Graphics
Inc. (SGI) in 1992 and is mainly used for displaying graphics in CAD packages, scientific
simulations, and video games.

In recent years there has been a significant surge in the performance of GPUs, outpacing
even Moore’s Law [8]. The latest 6 core Intel i7-980X CPU performs at roughly 107
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GFLOPS1 [57] and costs almost $1000, compared to the latest AMD HD5870 GPU that
performs at 544 GFLOPS [8] and costs less than $400.

These advances have allowed a certain set of GPU users to go in reverse, i.e. graphics
to numbers, opening the way to a new field known as General Purpose GPU computing or
GPGPU for short. The use of GPGPU for vision processing has been steadily increasing
in the last few years. It started and still continues with the use of OpenGL and Cg. Here,
the programmer “fools” the GPU into thinking that it is in fact producing graphics.

In 2005, Fung, Mann and Aimone [31] demonstrated the use of OpenGL and Cg, to
build an open source parallel computer vision library, known as OpenVIDIA, that ran on
NVIDIA GPUs. They implemented Canny edge detection, filtering, image feature handling
and image registration amongst others. GPU-KLT, a very popular parallel implementation
of Kanade-Lucas-Tomasi Feature Tracker (KLT) [42] [50] was programmed using OpenGL
and Cg as well by Sinha et. al. [52] in 2006. The authors showed a 20 times improvement
over CPU in tracking about one thousand features at 30Hz on a 1024x768 resolution
video. They also showed a 10Hz GPU based Scale Invariant Feature Transform (SIFT) [41]
implementation with a 10 times improvement over an optimized CPU. Another significant
effort came in 2006, with Farrugia et. al. developing GPUCV [14], a GPU library that
used primitives from OpenCV and was designed to be familiar to its current users.

In 2007 Lalonde et. al. [38] used the OpenVIDIA library, which by this time had a SIFT
implementation of its own, to build an eye blink detector. They were able to achieve a 10
times speedup from a CPU, and hence performed it in real time at about 25 Hz on a 640x480
pixel image. In 2008, another GPU based vision library surfaced called MinGPU [4]. This
one differed from OpenVIDIA in being usable on ATI and NVIDIA hardware alike and
claimed to be easier to use than OpenVIDIA. The authors implemented image derivatives,
pyramid operations and 3D homography transformations between two views.

OpenVIDIA, GPUCV, MinGPU and other parallel vision libraries were developed using
low level knowledge and dependence of the graphics pipeline. Compute Unified Device
Architecture (CUDA) [9] was made public in 2007 by NVIDIA and changed the landscape
of GPGPU programming. It allowed programmers to write C programs without the low
level knowledge of thread execution. It also allowed programmers control over memory
access while shielding the intricacies of low level memory handling.

CUDA is a proprietary framework and hence only works on NVIDIA GPUs. It is now
widely supported in the scientific community, including its use by the Matlab’s Paral-
lel Processing Toolbox. Fung and Mann have also included CUDA in their OpenVIDIA

1Floating Point Operations per Second. These numbers are for double precision. For single precision
the GPUs can achieve up to 2.72 TFPLOS[8]
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framework [18]. Huang et. al. [24] made use of CUDA for implementing a robust motion
tracking algorithm known as Vector Coherence Mapping (VCM). VCM was introduced
by Quek and Bryll [48] in 1997 as a method to extract optical flow fields from image se-
quences. By parallelizing it, Huang et. al. show that the GPU accelerated the algorithm
by 41 times when compared to the then state-of-the-art desktop CPUs. Luo and Du-
raiswami [43] implemented the popular Canny edge detector [6] from 1986 and showed an
improvement of over 3 times for a 2048x2048 image when compared to OpenCV. They also
contend, as hinted earlier, that the Canny implementations in OpenVIDIA and GPUCV
are now considered obsolete. The CUDA implementation on the other hand promises to
last longer since it uses a purpose built GPGPU framework that will be supported for many
years by NVIDIA. In 2009, Kim, Hwangbo and Kanade implemented the KLT algorithm
in CUDA [37]. They also merge rotation information from an Inertial Measurement Unit
(IMU) to make the algorithm immune to rotations around the camera focal point. This
fusion was previously not possible because of the increased complexity of the algorithm.
The authors also mention advantages of a hybrid framework where some information is
processed on a CPU. Amongst others, Li and Xiao [40] demonstrate a mean shift tracking
algorithm using CUDA, implemented on a NVIDIA GeForce 8800 GTS.

Open Computing Language (OpenCL) was developed by Apple and released in 2008.
It is the most recent and promises to be the most powerful of all GPGPU frameworks. It is
an open standard framework maintained by the Khronos Group and is supported by AMD
and NVIDIA alike. Its contributors include AMD, Intel and NVIDIA, amongst others.
Similar to CUDA, OpenCL provides a C based SDK that abstracts the low level opera-
tions from the user. Unlike CUDA, not only does OpenCL run on GPUs made by both ATI
and NVIDIA, it also runs on multi-core CPUs and cell processors. This is known as het-
erogeneous computing where the algorithm is divided into sections which are best for CPU
and GPU. AMD has recently announced their Fusion platform, which is a heterogeneous
computing platform that includes both a CPU and a GPU. It is also more generally known
as an Accelerated Processing Unit, or APU for short. The Fusion platform is targeted for
OpenCL based parallel applications that can take advantage of its CPU/GPU architec-
ture. OpenCL’s strengths are its practicality, flexibility and retargetability [28]. However,
OpenCL is new and in preliminary stages of development, with only early adopters using
it for GPGPU applications.

At this time vision based algorithms implemented on OpenCL are very rare. This
is mainly due to the inertia that the CUDA based vision community has picked up as
described above. GPGPU applications for other research have however started to surface
recently. In 2010, Shimobaba et. al. [51] showed the use of an AMD HD5000 with OpenCL
to produce 3D holograms at twice the speed of an equivalent CUDA based NVIDIA GPU.
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Figure 2.1: Future of Heterogenous Systems [1].

This is partly confirmed by [22], where Harvey and Fabritiis provide a tool to convert CUDA
programs into OpenCL for cross platform portability as well as almost 50% improvement
in performance.

In addition, documents from AMD show a promising future and support for OpenCL.
Figure (2.1) shows the trend that AMD is projecting, pegging the Fusion class of processors
as the direct descendants of GPUs and CPUs.

Figure (2.2) shows another reason why heterogeneous computing will eventually dom-
inate. A GPGPU capable GPU on the same chipset as the CPU has a much faster data
transfer rate to the on board memory, which is crucial for real time image analysis. Pre-
vious offerings by vendors have included Integrated Graphics Processors (IGP) on the
motherboards, which use off chip system memory and slow transfer rates that bottle neck
their performance. OpenCL, which supports such platforms is the only choice to adopt.

This, together with the fact that the new AMD Fusion platform is a very light weight
and flyable piece of hardware, was the reason why OpenCL was selected as the basis for a
vision based tracking solution for this research.
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Figure 2.2: Bandwidth constraints in IGP chipsets vs an APU [1].

2.3 OpenCL Framework

As mentioned earlier, OpenCL can be used just as well over multiple cores of a CPU as
it can over multiple cores in a GPU. OpenCL classifies these as compute devices. Each
compute device consists of compute units and processing elements. A GPU compute device
would include more processing elements than a CPU. Each processing element in a GPU
however, is much weaker than a single processing element in a CPU [8]. The improved
performance mentioned earlier, is achieved by a larger number of processing elements in
the GPU. The latest AMD GPUs consist of stream cores which are essentially Single
Instruction Multiple Data (SIMD) engines. A SIMD engine performs the same operation
on multiple data simultaneously. This classification is shown in Figure (2.3).

For the purpose of this research, the latest AMD GPU at the time, HD5870, was cho-
sen. This GPU consists of 20 compute units, each with 16 stream cores, each of which in
turn have 5 processing elements as seen in Figure (2.4). This is a total of 1600 processing
elements. Each processing element can execute single-precision floating point or integer
operations. One of the 5 processing elements can also perform special operations like sine,
cosine and logarithms. Double precision floating point operations are performed by con-
necting two or four of the processing elements [2]. All stream cores within a compute unit
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Figure 2.3: Computed devices, compute units and processing elements [2].

execute the same instruction, different compute units can execute different instructions.
The instructions are programmed using stream kernels, or simply kernels. A kernel is a
small, user-developed program that is run repeatedly on a stream of data. It is a parallel
function that operates on every element of input streams. The GPU maps each execu-
tion of the kernel onto compute units. Arrays of input data waiting to be processed are
stored in memory and are accessible by the compute units. Each instance of the kernel
running within a compute unit is called a work-item. The work-items are mapped to an
n-dimensional index space known as NDRange, and subdivided into workgroups. The GPU
schedules the work-items on the stream cores until all have been processed. Subsequent
kernels are then executed until the application completes.

Groups of work-items executed in lock-step inside a compute unit are called wavefronts.
The number of work-items within a wavefront is specific to the GPU hardware. For the
HD5870, up-to four work-items are pipelined to each stream core and are processed for four
cycles. This is done to abstract out the low level memory latency and processing element
operations from the user. With 16 stream cores per compute unit this implies a wavefront
size of 64 work-items. Figure (2.5) shows a summary of this classification. The intermediate
classification of wavefronts within workgroups is meant for memory management and for
more control over their execution.

The NDRange can be a grid of one, two, or three dimensions. This selection is depen-
dent on the user, and is usually dictated by the size of the output. For example, for a W
x H pixel intensity image input, with a Canny edge detection kernel, the output will also
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Figure 2.4: Block diagram of an AMD GPU compute device [2].
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Figure 2.5: NDRange, Work-Group, and Work-Items [2].
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Figure 2.6: OpenCL Memory Structure [27].

be a W x H pixel image. W x H intensity values translate to a float or double matrix of
size W x H. This can be represented by either a one dimensional array of size 1 x WH
or a two dimensional array of size W x H. The choice depends on the user, and will be
the size and dimension of NDRange. The number of workgroups, and hence work-items
per workgroup can also be selected by the user or left for the GPU to decide. The choice
should result to maximize the use of compute units. For example, a good choice would
be one that results in 64 work-items per wavefront, because this ensures that the entire
compute unit is utilized.

Figure (2.6) shows the classification of memory in OpenCL. Private memory is specific
to a work-item. It is not visible to other work-items. Local memory is specific to a
work-group, accessible by work-items belonging to that work-group. Global memory is a
read/write memory that is accessible to all work-items in a context. Constant memory is
a read-only region for memory items that are passed from the host and are not changed
during the kernel’s execution (for example, the input image for Canny edge detection
above). Host memory is the CPU accessible memory for an application’s data structures
and program data.

For the HD5870, accessing the 32 kB of local memory (8 bytes/cycle) per compute unit
is an order of magnitude faster then accessing the 1 GB of global memory (0.6 bytes/-
cycle) [2]. Private memory is fastest at 48 bytes/cycle. However, private memory, which
is physically stored in hardware General Purpose Registers (GPR) is limited to 256 kB
per compute unit. This translates to 5120 kB per GPU. When executing 64 kernels per
compute unit this implies 4kB of memory that can be manipulated within a kernel. In

14



the event that the GPR fills up, private memory is mapped to a speacial region known as
“scratch”, which has the same performance as global memory.

This is one of the main design considerations when programming kernels. If values can
be hard coded, they should be, if loops can be unrolled to save the memory required for a
counter, they should be [2]. This can be problematic in research applications where image
sizes or other variables need to be changed for experimentation.

The kernel is compiled at runtime by the OpenCL compiler every time the host program
is executed. During execution, memory from the host (for example, an image intensity
matrix) is transferred through a buffer and into the appropriate memory of the GPU. At
the end of each kernel, the appropriate result is mapped to the corresponding location on
an output array. Once all the kernels are finished executing the output array is passed
through the buffer and to the host memory for the CPU.

A simple example for vector addition can demonstrate these concepts. vec add CPU
is a program that would normally be used to add two 1-d vectors, a and b, with the result
being written to vector c. When the vector size, n, is small the CPU is fairly efficient at
looping through each element, adding and assigning the results.

1 void vec add CPU ( int n , const f loat ∗a , const f loat ∗b , f loat ∗c )
2 {
3 int i ;
4 for ( i =0; i<n ; i+−)
5 c [ i ]=a [ i ]+b [ i ] ;
6 }

However, when n becomes large, say 128,000 elements, a parallel execution method is
more justified. This is shown in vec add GPU. This is the kernel. Before the kernel is
executed, the a and b matrices are passed into the constant section of the global memory.
Output array c is also passed to the global memory, but not as a constant, since it needs
to be written to. The NDRange is one dimensional with a size of 1 x 128, 000 work-items
(the size of output vector c). The kernel is compiled and also transferred to the GPU.

Each instance of the kernel’s execution (work-item) will call get global id(0) which
will let it discover its position in the NDRange and hence its position in the output vector
c. It will perform the addition of two corresponding elements from vectors, b and c, and
return the result to the appropriate position in vector c, as shown in Figure (2.7). Once all
work-items are done, the vector c will be full, and will be passed through the output buffer
and into the host memory, where the host application on the CPU will read and display
the result.
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Figure 2.7: Parallel vector addition kernel.

1 ke rne l void vec add GPU ( g l o b a l const f loat ∗a ,
2 g l o b a l const f loat ∗b ,
3 g l o b a l f loat ∗c )
4 {
5 int g id= g e t g l o b a l i d (0 ) ;
6 c [ g id ]=a [ g id ]+b [ g id ] ;
7 }

There are no loops required in this implementation. 40 workgroups can be chosen with
a workgroup size of 3200 work-items. This results in 50 wavefronts per workgroup with the
optimum 64 work-items per wave-front. With 20 compute units, this results in 50∗ 40

20
= 100

sequential computations vs 128,000 as in the case for a CPU.

2.4 Target Tracking Algorithm

Vision based target tracking is the technique of finding regions corresponding to given
objects in a sequence of image frames. The objects can move, change their pose, occlude
for a portion of time, merge with each other or display other erratic behavior from frame
to frame.

Covariance based tracking was developed at Mitsubishi Electric Research Laboratories
by Porikli and Tuzel [47]. They use a covariance matrix to group a number of image
features together. They claim that the covariance matrix is an efficient descriptor of
features because it is enough to match the region in different views and poses and is
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low dimensional compared to other descriptors. They are also scale invariant and are
mostly immune to ordering and inherit a certain rotation invariance [58]. To locate the
target, a predetermined covariance matrix is compared against the covariance matrices of
all prospect regions within a frame.

The algorithm can be used to track multiple targets from a single non-stationary cam-
era. The camera can be monochrome, color or hyper-spectral. It has been shown to
be better than mean-shift, template matching and sub-window methods [58]. However,
the computation power required has so far limited its applications in real-time tracking,
necessary for robotics applications.

Until now, most attempts around optimizing this algorithm were focused on novel
search methods, limited search regions, target motion models and Kalman filters [46].
While helpful, each attempt at optimizing tried to reduce the series computation load on
a CPU. However, what was needed and what could prove to be a much higher return on
investment, is the implementation of this algorithm on a GPU. This thesis shows such an
implementation for the very first time using the AMD HD5870 GPU, which was described
in the previous section.

Porikli et al. [47] show that a 320 x 240 image can track a target at roughly 600
msec/frame when the algorithm is implemented on a 3.2 GHz Pentium CPU. They show
the complexity to be O(320 x 240 x d2+320 x 240 x d3). In 2006 Porikli [46] suggested that
this algorithm could benefit greatly from a parallel implementation on an FPGA, DSP or
a GPU.

2.5 Algorithm Description and Implementation

An adaptation of the covariance tracking algorithm is described below together with its
parallel implementation on a GPU. For the purpose of this thesis, consider an image,
defined by a W x H sized intensity matrix, Iv ∈ RWXH 2. This matrix includes the intensity
values from a W x H pixel, monochrome image frame, acquired from a small camera.
Features of interest within this matrix can include intensity values, image gradients, edge
magnitude, edge orientation, multi-spectral intensity values (like from infrared cameras)
and filter responses. A W x H x d feature matrix F v can be extracted from Iv where d is
the number of features per pixel.

F v(xv, yv) = φv(Iv, xv, yv) (2.1)

2The use of the v superscript here and elsewhere on variables is meant to differentiate them from similar
variables used in aircraft models and controllers in later chapters.
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where (xv, yv) are the coordinates of a single pixel, and φ : RWXH → RWXHXd is a function
that maps the pixel location to its features. The target to be tracked is an unknown region
within the image, Iv, that is defined as a collection of these specific features. It can be
defined at the start of the video input, by drawing a rectangle around something of interest,
like a car on the highway. The video input can be a stream coming from an airborne camera.
The target is confined or can be sufficiently described inside a m x n region around the
pixel coordinates (xvt , y

v
t ).

For any m x n region, R⊂Iv, a total of m ∗n, feature vectors can be extracted. For the
target tracker used in this work, the following seven features are selected:

fk =
[
xv yv Iv(xv, yv) Ivx(xv, yv) Ivy (xv, yv) Ivxx(x

v, yv) Ivyy(x
v, yv)

]
(2.2)

where k = 1 . . .mn and

Ivx =
dIv(xv, yv)

dxv
, Ivy =

dIv(xv, yv)

dyv
, Ivxx =

d2Iv(xv, yv)

d(xv)2
, Ivyy =

d2Iv(xv, yv)

d(yv)2
. (2.3)

Each of these features can be found numerically using central difference approximation.
The mean of these features for all the pixels is

µR =
1

mn

mn∑
k=1

fk (2.4)

where mn is the total number of pixels in R. A d x d feature covariance matrix for R can
now be defined in the usual manner,

CR =
1

mn

mn∑
k=1

(fk − µR)(fk − µR)T . (2.5)

Within the matrix, Iv, two distinct types of region R can be defined: ones that are being
searched for the target features and the one that best describes the target features. These
can be represented as Rp and Rt respectively, where p stands for a prospect region and
t stands for target region. Feature covariance matrices can be found for both Rp and Rt

using Equations (2.2) to (2.5).

The matrix, Iv, includes (W−m) x (H−n) regions classified as Rp. One of these regions
is the location of the target, provided that the target is in the frame. If a comparison can be
made between the feature covariance for every Rp to the predetermined feature covariance
of the target then it should be possible to identify the location of that target.
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Despite all their aforementioned advantages, covariance matrices are not elements of the
Euclidean space, and therefore require special methods to compare and evaluate. Forstner
and Moonen [15] presented proofs of an optimal distance metric, that can be used to com-
pare covariance matrices of arbitrary dimensions. The authors show that their proposed
distance, d, between two covariance matrices, Av and Bv, is

• invariant with respect to affine transformations of the coordinate system,

• invariant with respect to an inversion of the matrices,

• indeed a metric by proving positivity: d(Av, Bv) ≥ 0, and d(Av, Bv) = 0 only if
Av = Bv, symmetry: d(Av, Bv) = d(Bv, Av) and the triangle inequality: d(Av, Bv) +
d(Av, Cv) ≥ d(Bv, Cv), where Cv is another covariance matrix.

Their distance metric is defined as

d(Av, Bv) =

√√√√ d∑
i=1

ln2 λi(Av, Bv) (2.6)

where d is the dimension of the covariance matrices and λi(A
v, Bv) is the ith eigenvalue

found by solving a generalized eigenvalue problem

det(λBv − Av) = 0. (2.7)

The smaller the value for d, the “closer” the two covariance matrices are to each other.
In other words, this metric is a good way to compare whether a prospect region, Rp, in
the image is similar to the target region, Rt. Proofs of these claims can found in [15].

The most computationally intensive calculation involves a Cholesky decomposition and
a Jacobi cyclic method implementation, required to solve the generalized eigenvalue prob-
lem in Equation (2.7). This computation is repeated for every pair of Rp and Rt. In
the intensity matrix, Iv, there are (W −m) x (H − n) pairs, if the entire image is being
searched. These calculations need to be repeated for every frame. A typical 640 x 480
camera, with 20 x 20 sized Rp regions, would result in 285,200 search pairs. For real-time
tracking, this will need to be done live for every received frame.

In order to parallelize this algorithm, certain calculations are best run on the CPU,
while the rest are best run on the GPU. The GPU, while consisting of a massive number of
cores, also has lower computation capabilities per core when compared to a CPU. Hence,
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a calculation that only needs to happen once per frame should remain on a CPU while the
frequently repeated calculations can be transferred to the GPU.

For finding the target within the intensity matrix, Iv, the NDRange is set as (W −m)
x (H − n), the dimensions of the output as described above. This way, every m x n sized
region, Rp, can be assigned to a work-item, where the common instruction set would be
to solve the generalized eigenvalue problem and find the metric d to Rt. The size of the
workgroup can be chosen based on the discussion above. For a 640 x 480 image, with 20
x 20 regions, a one dimensional NDRange is 1 x 285,200. A workgroup size of 2560 work-
items will result in 112 workgroups, with an optimum 64 work-items per wavefront. The
last workgroup will have (112 ∗ 2560) − 285, 200 = 1520 idle work-items. For 20 compute
units, this results in 40 ∗ 112

20
= 224 sequential computations.

The distance of each, Rp, Rt, pair can be sent back to the host memory (Figure (2.6))
where the smallest d is assigned the most probable location of the target.

The generalized eigenvalue problem from Equation (2.7) is solved by first reducing it
to the standard eigenvalue problem and then using the Jacobi-Cyclic method. It can be
re-expressed as

Avv = λBvv, (2.8)

where v is an eigenvector that corresponds to an eigenvalue λ. Bv can be decomposed
into a product of an upper triangular matrix, U, and its transpose by using a Choleski
decomposition,

Bv = UTU. (2.9)

Substituting in Equation (2.8),

Avv = λ(UTU)v (2.10)

and multiplying both sides with (UT )−1,

(UT )−1Avv = λUv =⇒ (UT )−1AvU−1v = λv (2.11)

and then substituting, D = (UT )−1AvU−1, gives the standard eigenvalue problem,

Dv = λv. (2.12)

This problem can now be solved using the Jacobi Cyclic method [19] to give eigenvalues.
The Jacobi Cyclic method is a well known iterative method for finding eigenvalues and
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Figure 2.8: A brief overview of the calculations on the host, and transfer of required
matrices to the GPU. Once the GPU finishes its computations, the host is also responsible
for reading back the result and evaluating the position of the target.

eigenvectors of real symmetric matrices. If Bv is assigned the covariance matrix of Rt

then the Choleski decomposition and the required matrix inverse can be performed once
on the CPU. This gives the d x d covariance feature matrix defining the target, as well as
the intermediate matrices (U−1 and (UT )−1) required for calculating the eigenvalues. The
matrix Av is assigned the covariance matrix of one of the Rp regions, depending on which
instance of the kernel it is called from. The matrix multiplication in Equation (2.11) and
the Jacobi Cyclic method (not shown here) is repeated for every Rp within the kernel.

A simplified block diagram of these operations is shown in Figures (2.8) and (2.9).
Each instance of the kernel has access to the matrices that are computed on the host
CPU through the GPU constant memory. These include, dI, the main image intensity
matrix, Ix, Iy, Ixx and Iyy, which are the outputs of appropriate feature operations on
the intensity matrix (from Equation (2.3)) and U−1 and (UT )−1 which are outputs from the
above calculations. The feature operations are performed on the CPU because algorithms
for those already work in real-time. If done in parallel on the GPU, the work-item barriers
required to synchronize their intermediate steps would slow down the main kernel [2]. The
constant memory allows accessible fast read-only memory so there are limited memory
issues on accessing the multiple input matrices.
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Figure 2.9: A brief overview of the calculations on the kernel, and the transfer of results
to the host. This set of calculations is repeated for every work-item.

Once all the individual comparison results are calculated, they are transfered to the
host memory (Figure (2.6) where the smallest distance is picked as the most likely target
location.

2.6 Results

Screen shots from the results can be seen in Figures (2.11) and (2.10).

The first example tracks a set of keys on a key-chain through rotations and trans-
formations. Part of the set is selected as a target, with no particular identifying color
or structure. The algorithm maintains real-time tracking even when the keys have been
picked and shuffled. It also differentiates the key set from a shoe that looks very similar in
color and arrangement. The key is also obscured and then made visible again, the tracker
automatically reacquires the target.

The second example tracks a high speed aircraft while it is flying at over 80 km/h, with
aggressive maneuvers and sharp turns. The aircraft also comes very and then flies off far,
with the vision system maintaining tracking at all times through the scale changes.

Porikli et al. [47] implied that for a 640 x 480 image, the computational load on the
CPU would cause it to run at 1,200 msec/frame. The GPU implementation described here
performs at roughly 100 msec/frame - an improvement of over 10 times.
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Figure 2.10: Keychain Tracking - real-time and showing robustness through deformations.

Figure 2.11: High Speed Aircraft Tracking - real-time and showing robustness through
rotations and scale changes.

With a monochrome image, and the resulting intensity matrix, color information is
ignored. When implemented like this, cluttered background can result in erroneous track-
ing. However, when color is used, the performance of the tracker is improved significantly.
Porikli [46] shows the algorithm to work through cluttered environments, grainy video and
complete occlusion. However, the GPU implementation of color video streams is left for
future work, and may require significant optimization of the kernel algorithm to still run
at 100 msec/frame.

In the future, adding advanced search methods, limiting the number of prospect regions
searched for the target, and adding a motion model for the target would bring even more
significant improvements (all these enhancements have been done before on CPU based
implementations).

The target information acquired can be passed to a high level planner which derives
its relative position to the aircraft. This information is then transferred to the tracking
controllers developed in the subsequent chapters to follow a live target.
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Chapter 3

System Identification

3.1 Introduction

The vision tracking system, defined in Chapter 2, gives the real-time location of a high
speed moving target on the ground. The aircraft now needs to be able to follow the target
through a trajectory tracking controller that can maintain the stability of the aircraft
during high speed aggressive turns. Such a controller can be realized using nonlinear
control techniques like feedback linearization and backstepping. Both of these methods
rely on canceling the nonlinearities in the system using inverse terms calculated using
precise knowledge of the system.

This chapter presents a method to obtain such knowledge for a small scale Unmanned
Aerial Vehicle (UAV). It relies on tried and tested methods of system identification to
extract stability and control derivatives from the flight data. The flight data is obtained
through a series of carefully planned flights with custom designed on-board sensors to
record airspeed, wind flow angles, attitude and control inputs. The flight is coordinated
through a series of ground links making it possible to conduct multiple experiments without
landing.

Early work on the development of these methods was conducted at the Dryden Flight
Research Center in the 1960’s [26]. At the time, the estimated flight parameters like
control derivatives and inertia were used to verify wind tunnel predictions and evaluate
aircraft performance. They were also used to improve aircraft simulators and basic flight
control systems. In the last couple decades these methods have been used to expand
flight envelopes, generate high-fidelity aerodynamic derivatives and develop controllers for
unstable aircraft.
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There are now two main classes of methods for aircraft system identification: online and
offline. Online methods process the aircraft measurements as they become available until
the parameters converge. Offline methods require a complete time history of measured
data and the method is iterated over the data until the parameters converge.

The maximum likelihood method is one of the most popular offline methods. It is based
on a probabilistic analysis of the parameters and takes measurement noise into account. In
a 1987 lecture, Ilif [25] demonstrated the usefulness of the maximum likelihood estimate,
also known as the Output Error Method, and showed 3D graphs of the cost functions.
He also showed results from NASA’s work on the F-14, HiMAT and the Space Shuttle
using this method. In 1988, Jategaonkar and Plaetchke [33] showed the use of an EKF to
estimate parameters. They applied this to the maximum likelihood method, the resulting
method was called the Filter Error Method. In 1998 Hamel and Jategaonkar [21], show
that these class of methods had reached a maturity level. Their applications had widened
from general linear use to nonlinear, high fidelity and unstable aircraft. More recently,
Naruoka et al. showed that these methods are still superior than the more recent methods
based on the Unscented Kalman Filter [45].

With the recent advances in computational power online methods have gained popular-
ity. In 2010, Meng et. al. [44] show an online method that uses a recursive technique with
an EKF. Also, in 2010, Chowdhary and Jategaonkar [7] showed that the online recursive
methods using an EKF were just as good as the UKF methods, and were computationally
less expensive.

The algorithms presented in this chapter are based on the offline maximum likelihood
method and require large amounts of processing time, on the scale of half a day to a
few days. For data recorded at 100Hz for a period of just 10s, the total number of data
points is 130,000 (9 outputs and 4 control inputs). Small sampling times are necessary for
developing models that will be useful for nonlinear controllers. The work at Dryden was
usually done at 25 to 30 Hz but this has increased significantly over the years with new
applications, improved sensors and the rise in computing power.

This chapter proceeds as follows. Section (3.2) describes the general 9 state aircraft
model with aerodynamic derivatives and their respective parameters. Section (3.3) goes
through the most popular system identification technique, namely, the Output Error
Method. Effects of wind turbulence are dealt with in Section (3.4). Proof of concept
results using a nonlinear simulation of the BAC-221 jet are shown in Section (3.5). Sec-
tions (3.6) and (3.7) show the implementation and flight test results using a Kadet Senior
small scale UAV.
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Figure 3.1: Flight path climb angle and the angle of attack.

3.2 General 9 State Aircraft Model

Three distinct coordinate frames are used to define the aircraft model in order to specify
forces and moments in a straightforward manner. Aerodynamic forces and moments are
defined in the wind frame Fw, i.e., vehicle carried axes aligned with the direction of the
oncoming free-stream velocity, or in a vehicle carried vertical frame Fv. The body frame,
Fb, is also needed to define angular rates as measured by the Inertial Measurement Unit
(IMU).

In the sense of Euler angles (3-2-1 convention), the frames Fw and Fb are related by
the rotation sequence (−β, α, 0) as seen in Figures (3.1) and (3.2). α and β denote the
aerodynamically important angles, angle of attack and sideslip, respectively. The 3-2-1
Euler angle sequence (ψ, γ, φ) gives the orientation of Fw relative to Fv. Here, γ denotes
the flight path angle of climb and ψ denotes the flight path heading. Angular velocities of
the Fb frame are represented by (p, q, r) whereas (pw, qw, rw) give the angular velocity of
the Fw frame.

In the following aircraft model, dynamics are included that link aircraft movements to
the individual control surfaces. More importantly, aerodynamic coefficients are included
that account for lift, drag and side force created by the airflow.
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Figure 3.2: Flight path heading angle and the side-slip angle.

Aerodynamic Moments

The moments in the Fb frame can be expressed as,

L = Cl
1

2
ρV 2sb

M = Cm
1

2
ρV 2sc

N = Cn
1

2
ρV 2sb

(3.1)

where L,M,N represent rolling, pitching and yawing moments respectively, ρ is the density
of air, V is the freestream velocity, s, the wing area, b the wing span and c the chord
length or characteristic length of the aircraft. Cl, Cm and Cn represent the nondimensional
coefficients which can be represented as,

Cl = fCl
(α, β, δR, δA)

Cm = fCm(α, δE)

Cn = fCn(α, β, δA, δR)

(3.2)

where δE, δA and δR are the aircraft elevator, aileron and rudder deflections respectively.
Note that the pitching moment is mainly affected by the elevators, where as the rolling
and yawing moments are affected mainly by the ailerons and the rudder.
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Aerodynamic Forces

Forces in the Fw frame are

L = CL
1

2
ρV 2s+ T sinα

D = CD
1

2
ρV 2s− T cosα cos β

S = −CS
1

2
ρV 2s+ T cosα sin β

(3.3)

where T is the thrust, L is the lift force, D is the drag force, S is the side force (as depicted
in Figures (3.1) and (3.2)) and CL, CD and CS are the corresponding nondimensional
aerodynamic coefficients. These depend on α and β as shown below,

CL = fCL
(α)

CD = fCD
(α) (3.4)

CS = fCS
(α, β)

where the lift and drag are functions of the angle of attack as expected, and the side force
is a function of both the angle of attack and sideslip angle. Note, the direct effects of
control surface deflection on the forces are neglected. The control surfaces mostly affect
the moments which in turn affect the forces. It can be shown that if the effects of control
surface deflection are directly included in the equations for forces, the nonlinear controllers
will request unnecessarily large amounts of control inputs that could lead to an unstable
system [39].

The thrust, T, can be approximated by

T = TmaxδT (3.5)

where δT is the throttle setting and Tmax is the maximum engine thrust. A more compli-
cated engine model can be used here without loss of generality (see, for example, Ducard
et al. [11]).

Equations of Motion

Ignoring the effects of Earth’s curvature (flat-earth approximation [13]) and using combined
wind and body frames for forces, angles and angular rates [39], the equations of motion
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for an aircraft can now be defined. These equations were developed by Etkin [13] and are
reproduced here for reference. The model consists of nine states and four inputs.

Kinematically important terms, airspeed, V , flight path climb angle, γ, and flight path
heading, ψ, can be defined in terms of forces and angular velocities

V̇ = −D
m
− g sin γ

γ̇ = qw cosφ− rw sinφ

ψ̇ = (qw sinφ+ rw cosφ) sec γ

(3.6)

where the angles and angular velocities are in the Fw frame.

The angle of attack, α, the side-slip angle, β and wind-axes roll, φ are functions of
angular velocities (in both Fb and Fw frames) and take the form

α̇ = q − qw sec β − p cosα tan β − r sinα tan β

β̇ = rw + p sinα− r cosα

φ̇ = pw + qw sinφ tan γ + rw cosφ tan γ.

(3.7)

The moment equations are best described in the Fb frame to simplify the relationship to
control inputs

ṗ =
1

Ix
(L+ Izx(ṙ + pq) + (Iy − Iz)qr)

q̇ =
1

Iy
(M+ Izx(r

2 − p2) + (Iz − Ix)rp) (3.8)

ṙ =
1

Iz
(N + Izx(ṗ− qr) + (Ix − Iy)pq)

where inertia, I, is given by

I =

 Ixx 0 −Izx
0 Iyy 0
−Izx 0 Izz

 (3.9)

In Equations (3.6) to (3.8), angular velocities in the Fw frame (pw, qw, rw) can be expressed
as functions of the system states (V, γ, ψ, α, β, φ, p, q, r) as

pw = p cosα cos β + (q − α̇) sin β + r sinα cos β

qw =
1

mV
(L−mg cos γ cosφ) (3.10)

rw = − 1

mV
(S −mg cos γ sinφ)
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Figure 3.3: Cl0 = k1α + k2β + k3αβ + k4

In summary, Equations (3.6) to (3.8) define the 9 states of the aircraft, driven by the
control inputs, δT , δE, δA and δR through the moment and force definitions of Equations
(3.1) to (3.5).

The non-dimensional coefficients defined above can be expanded into a series of un-
known parameters. Starting with the moment equations, relationships of the following
form can be derived [39],

Cl = Cl0 + ClδRδR + ClδAδA

Cm = Cm0 + CmδEδE (3.11)

Cn = Cn0 + CnδAδA+ CnδRδR

where each Cij, with i = l,m, n and j = δE, δA, δR, represents the derivative of Ci w.r.t j
(also known as control derivatives). Each of these can be approximated as general functions
of α and β as follows,

Cij = k1α + k2β + k3αβ + k4 (3.12)

where k1 . . . k4 ∈ R. As an example, the first term of Cl, Cl0, for a BAC-221 can be seen
in Figure (3.3).

Following a similar approach, appropriate relations for the force coefficients can be
formed. The resulting expressions are presented in the 1988 paper by Lane and Stengel [39]
and take the following form, with k = L,D, S,
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Ck =Ck1 + Ck2α + Ck3β + Ck4β
3 + Ck4α

3+

Ck5αβ
3 + Ck6α

3β + Ck7αβ
(3.13)

where Ck1 . . . Ck7 form the main force parameters. The parameters for moments are defined
above and with mass, m, and Inertia components in matrix, I, complete the parameters
required to characterize the aircraft for nonlinear control applications. For linear con-
trol systems designed around particular operating points, one or more of these general
parameters can be set to zero.

3.3 System Identification Using the Output Error Method

The Output Error Method is one of the most widely used system identification methods.
The Dryden Flight Research Center has been using this method on experimental and new
aircraft since the 1960’s [26]. Although initially only used to estimate small linear models,
the method can now be used for nonlinear models owing much of its success to increased
computing power.

3.3.1 System Setup

Figure (3.4) shows the main idea behind the Output Error Method. A general nonlinear
system with a time invariant vector of parameters, Θ, can be defined as

ẋ(t) = f(x(t), u(t),Θ)

y(t) = g(x(t), u(t),Θ) (3.14)

z(tk) = y(tk) + v(tk)

where x ∈ Rn is the state (n = 9 in this case: V , γ, ψ, α, β, φ, p, q, r), u ∈ Rm is the
input (m = 4 in this case: δT , δE, δA, δR), y ∈ Rny is the output (ny = 9 in this case:
same as the number of states) and z ∈ Rny is the measured response (also, ny = 9 in this
case: measuring all the states with independent sensors). v is then the measurement error
which is assumed to be distributed with zero mean and covariance matrix R given by

R = E([v(tk)].[v(tk)]
T ). (3.15)

where E() is the expected value or mean. Furthermore, u is assumed to be generated by
an exogenous system that is not affected by the system output and sufficiently excites a
broad spectrum of frequencies on the system.
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Figure 3.4: An adaptive system identification method that changes the model based on
the output error [32].

3.3.2 Defining the Cost Function

The likelihood function of z can be defined as,

P (z|Θ, R) =
N∏
k=1

P (zk|Θ, R) (3.16)

where zk is the measurement at tk and P (z|Θ, R) is the probability of z given Θ and R.
Maximizing this function with respect to Θ would result in parameter estimates within an
acceptable range of their true values. It is important to note that this likelihood function
represents the probability density of the observed variables and not of the parameters. The
maximum likelihood estimate of the parameters, ΘML, can therefore be defined as

ΘML = arg max
Θ

P (z|Θ, R) (3.17)

or equivalently, in its standard form as

ΘML = arg min
Θ

(lnP (z|Θ, R)). (3.18)

Solving this equation yields parameter estimates that are asymptotically unbiased and
normally distributed around their true value (see Wald, A. [59]). This can be expressed
by

lim
N→∞

E(ΘML) = Θ (3.19)
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where N is the total number of measurements (z1, z2, ..., zN).

Given the above system, it can be shown that

lnP (z|Θ, R) =
1

2

N∑
k=1

[v(tk)]
TR−1[v(tk)]

+
N

2
ln[det(R)] +

Nny
2

ln(2π).

(3.20)

A cost function, J , can now be defined as

J(Θ, R) = lnP (z|Θ, R) (3.21)

whose minimization can be performed using any of the common optimization methods.

3.3.3 Optimization Methods

J is minimized with respect to Θ when ∂J
∂Θ

is equal to zero. Using a Taylor series approxi-
mation, this can be represented as(

∂J

∂Θ

)
i+1

≈
(
∂J

∂Θ

)
i

+

(
∂2J

∂Θ2

)
i

∆Θ (3.22)

∆Θ ≈
[(

∂2J

∂Θ2

)
i

]−1(
∂J

∂Θ

)
i

(3.23)

Applying this to Equation (3.20) and deriving further results in (see Jategaonkar, R. [32]),

∂J

∂Θ
= −

N∑
k=1

[
∂y(tk)

∂Θ

]T
R−1v(tk) (3.24)

∂2J

∂Θ2
=

N∑
k=1

[
∂y(tk)

∂Θ

]T
R−1∂y(tk)

∂Θ
+

N∑
k=1

[
∂2y(tk)

∂Θ2

]T
R−1v(tk). (3.25)

Referring back to the initial assumption that the measurement noise is Gaussian with zero
mean, the second term in Equation (3.25) will disappear as N becomes large. The second
derivative can now be approximated as

∂2J

∂Θ2
≈

N∑
k=1

[
∂y(tk)

∂Θ

]T
R−1∂y(tk)

∂Θ
(3.26)
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and forms the basis for the modified Newton-Raphson method, also known as the Gauss-
Newton method. Once the ∆Θ is found it can be used to improve the parameter vector
for the next iteration. The R matrix is also recalculated at every iteration.

To gain further insight into the cost function, notice that the noise covariance in Equa-
tion (3.15) can be rewritten as

R =
1

N

N∑
k=1

[v(tk)][v(tk)]
T (3.27)

and substituted into Equation (3.20) to give

J(Θ) =
1

2
nyN +

N

2
ln[det(R)] +

Nny
2

ln(2π) (3.28)

where the first and third term on the right are constants and the cost function becomes
a function of the determinant of the covariance. This method is also sometimes known
as the Gauss-Newton method with determinant minimization and can be set up using the
built-in functions in Matlab.

Other optimization methods can also be used within the Output Error Method. The
choice would depend on the size of the model being estimated and on how much apriori
information is available. For example, the Gauss-Newton method described above performs
poorly and may never converge if a reasonable starting point is not given. The method
can be improved by adding Lagrange multipliers and slack variables to limit the value of
the parameters to a predefined range. This is known as the Constrained Gauss Newton
Method.

3.3.4 Algorithm Steps

Once the model and cost function are set up as above and an optimization method is
chosen, the following steps can be implemented to converge to suitable parameter values:

1. Input initial guesses on Θ and R.

2. Calculate predicted output, y, and find measurement errors (z − y).

3. Calculate R.

4. Minimize the cost function with respect to Θ.

5. Go back to 2 and iterate until Θ converges.
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Figure 3.5: Frequency Spectrum of Various Maneuvers [32].

3.3.5 Flight Maneuvers

The quality of parameter estimates and the limits of their application to flight controls
depend directly on the maneuvers performed during the test flight. These methods are
the same as the ones used for estimating the flight envelope and performance parameters
of a new aircraft. Usually the test pilot is given a preflight briefing on the type of control
inputs required and their purpose. For stable aircraft, it is best if no closed loop control
aides are used during the test flight. This ensures that all the natural modes are captured
within the system model.

The estimation and optimization methods described above assume that the control
inputs excite a wide frequency range of the system. This would include maneuvers that
excite the basic aircraft modes including phugoid, short period and Dutch roll. These
modes can be achieved by applying pulse, step and multistep inputs on the control sur-
faces. Figure (3.5) shows the bandwidth of various control inputs where it is evident that
multistep inputs cover a much wider range of frequency than simple step inputs as shown
by Jategaonkar [32]. Optimal design of these control inputs is also possible where the
inputs cover the desired range. These can be programmed onto a flight computer for open
loop implementation.

A typical set of maneuvers used for system identification can be seen in Figure (3.6) [32].
Note, the 3-2-1-1 maneuvers are a modified form of the doublet and excite the largest
frequency range.

35



Figure 3.6: Maneuvers to excite different modes on an aircraft [32].

3.4 Atmospheric Turbulence

Before looking at the parameter estimation results for the Kadet Senior UAV, it is worth-
while to note the limitations of the above techniques. The Output Error Method, which
takes into account the measurement noise, doesn’t account for unmeasurable process noise,
or in the case of aircraft, atmospheric turbulence. Three main solutions exist for improving
the model fit:

Measure Wind Components

The obvious first solution would be to derive the unmeasurable disturbances using mea-
sured airspeed, wind flow angles (α, β), attitude and inertial acceleration. This assumes
that the effect of turbulence on these measured values is known which is usually not avail-
able for small scale UAVs.

Dryden Wind Gust Model

The Dryden Wind Gust model can be used in the method explained above where the
parameters of the gust are included as part of the overall parameter estimation problem.
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Shown in Figure (3.7) are results from the Dryden Flight Research Center’s work using
similar methods performed on flight data obtained during atmospheric turbulence [26].

Filter Error Method

The Filter Error Method falls under the general class of the Output Error Method described
above. The general scheme is shown in Figure (3.8). The main difference is the inclusion
of unmeasurable process noise. This method was initially developed for linear models,
using Kalman filters for improving the predicted state at every iteration. In the 1980’s
Jategaonkar and Plaetschke adapted this method using a mixed version of the Extended
Kalman Filter [34]. Here, the prediction step relies on numerically integrating the nonlinear
state equation using the previous state as its initial condition. The correction step, however,
still uses linearization about the current state to calculate the Kalman gain. This can be
written as,

State and Measurement Prediction:

x̃(tk) = x̂(tk−1) +

∫ tk+1

tk

f(x(t), u(tk),Θ)

ỹ(tk) = g(x̃(tk), u(tk),Θ) (3.29)

Correction:

x̂(tk) = x̃(tk) +K(z(tk)− ỹ(tk)) (3.30)

where x̃(tk) is the predicted state, ỹ(tk) is the predicted measurement, x̂(tk) is the corrected
belief over the state at time, tk, and K, the Kalman gain, is defined as:

K = PCTR−1 (3.31)

where P is the covariance matrix of the state prediction error calculated from a steady-state
form of the Ricatti equation and C is the observation matrix calculated using a first-order
approximation:

C =

[
∂g(x(t), u(t),Θ)

∂x

]
x(t)=x̃(tk)

(3.32)

Similar to the Output Error Method, the algorithm steps are:

1. Input initial guesses on Θ and R.
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Figure 3.7: Direct application of the output error method without accounting for atmo-
spheric turbulence on the left and accounting for turbulence using the Dryden Wind Gust
model on the right [26].

38



Figure 3.8: An adaptive system identification method that changes the model based on
the output error and accounts for process noise [32].

2. Estimate states using the modified EKF as above and calculate errors (z − ỹ).

3. Calculate R.

4. Minimize the cost function with respect to Θ.

5. Go back to 2 and iterate until Θ converges.

This method leads to an optimization problem that is nearly linear, has fewer local
minima and a faster convergence rate [33].

3.5 Results from BAC-221 Simulation

The BAC-221 was a British supersonic test fighter, developed in the 1970s as a precursor
to the Concorde. It had a wingspan of 26 ft, a Rolls-Royce Avon 200 jet engine that
produced 8000 lbf of thrust and a max speed of Mach 1.7. At the time, the Royal Aircraft
Establishment at Farnborough produced a set of aerodynamic data from various wind
tunnel tests ranging from Mach 0.2 to 0.955 [20]. This detailed data was used to define a
realistic full aerodynamic model for simulation purposes.

This data (valid for 0 < α < 24◦ and 0 < β < 8◦) can be used to generate nonlinear
functions for standard nondimensional coefficients that relate the moments and forces on
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Figure 3.9: Inputs to the BAC-221 nonlinear simulation.

an aircraft to the states and control inputs. These functions can then be used to form a
full aerodynamic model of the aircraft as discussed in section (3.2).

As a first test of the system identification methods described above, a full nonlinear
model of this aircraft was developed and simulated in Matlab with the required maneu-
vers. The “measurements” were sampled at a fixed time interval without any atmospheric
turbulence. The model included 32 unknown parameters (from the general forms in Equa-
tions (3.12) and (3.13)) with initial guesses of the same order of magnitude as the true
parameter values. The results of the Output Error Method using Gauss-Newton opti-
mization are shown in Figures (3.9) and (3.10). The predicted and measured states are
reasonably close. Notice the poor fit on V , which is mainly a result of no input on dT (in-
sufficient excitation). This demonstrates the need for designing appropriate control inputs.

3.6 Data Collection

The methods described above rely on in-flight data collection of the system outputs and
result in accurate estimation of parameters if the following guidelines by Jategaonkar [32]
are followed:
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Figure 3.10: Output Error Method fit on the BAC-221.
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1. The minimum sampling rate for data collection should be twice the frequency of
interest (also known as the Nyquist frequency).

2. Delays introduced in the data due to filtering (post or in-flight) should be kept as
consistent as possible across all measurements.

3. All outputs should be measured at the same sampling rate if possible. This is specially
true for attitude and wind data.

4. Ideally, all outputs should be measured and recorded at the same time instant.

5. The signal to noise ratio to should be limited to below 10:1 either in flight or during
post process filtering.

Required measurements for a reasonable system identification include all the 9 states
in the general nonlinear aircraft model described in Section (3.2) and can be termed as
system outputs. In addition, the control inputs to the throttle and the control surface
deflections of the elevator, aileron and rudder also need to be recorded on board the
aircraft. Implementation details of these on a remotely piloted Kadet Senior UAV are
provided below.

3.6.1 Attitude and Wind Sensors

Airspeed can be measured using pitot tubes and MEMS based differential pressure sensors.
They are mounted where the flow is considered “free-stream” and is affected minimally by
the propeller wash and wing-tip vortices.

α and β angles can be determined using either a multiport pitot tube or two rotary
vanes. Multiport pitot tubes require careful calibration and are less accurate than two
vanes connected to precision rotary encoders [45]. However, the vanes also induce more
drag than a multiport pitot tube. In addition, if the UAV has a pusher configuration the
multiport pitot tubes are a better choice because they can be mounted along the centerline
and are not affected by roll or yaw. Figure (3.11) shows the custom designed angle of
attack sensor and pitot tubes mounted on the Kadet Senior wing. The vanes use magnetic
absolute encoders that relay readings over an analog signal. A similar assembly is used on
the other half of the wing to measure the angle of sideslip and to balance the UAV.

Euler angles and angular rates in Fb are recorded using an IMU consisting of 3 gyros, 3
accelerometers and 3 magnetometers. These are converted to Fw using α and β measured
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Figure 3.11: Custom designed angle of attack vane mounted under the wing with pitot
tubes visible in the background. A similar angle of sideslip vane is also used.

above. This is done during post processing to minimize the effect of excessive calculations
on sampling time.

Lastly, the control inputs from the ground are recorded on board by tapping into the RC
receiver signals using an ATMEGA 2560 microcontroller, shown in Figure (3.12). Control
inputs can also be measured more precisely using rotary encoders. However, the reference
signals to the servo motors, which run an internal position control loop, are sufficient
indicators of surface deflections and throttle inputs.

The airspeed, angles, α and β, and control inputs, dT , dE, dA and dR are all recorded
using the ADC and PWM inputs on the microcontroller. The PWM inputs are programmed
to be interrupt driven on rising and falling edges and use a 250 kHz clock to time the
interval. The ADC inputs are also interrupt driven. All these inputs are packaged in a
string and transmitted over USB to be recorded by an onboard computer running a QNX
program utilizing the Termios API.

3.6.2 Ground Control and Monitoring

A good ground control station can serve multiple purposes and is vital for a successful
test flight. The custom designed Kadet Senior ground control station has the following
features:

• Matlab based live plots showing current control inputs, airspeed, angle of attack and
angle of sideslip.
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Figure 3.12: Atmega 2560 with 2 differential pressure sensors and inputs for alpha, beta
vanes as well as 4 PWM inputs from the RC receiver.

Figure 3.13: Low cost, custom designed communication stack for the UAV allowing multiple
channels through a single serial line.

• Telnet terminal with access to on-board QNX and the ability to start and stop
different recording programs mid-flight.

• In-flight remote debugging of new software.

• Mid-flight review of recorded data, by direct access to the text file.

• Other TCP/IP connections using the on-board BSD Socket library.

These features are all accessed through a single low cost (<$50) serial modem with a
10km line of sight range. Since serial ports only allow access to one program at a time a
TCP/IP layer is added to allow multiple connections. Matlab communicates with QNX
over sockets running on this layer. Similarly, the remote debugging and Telnet sessions
also require the TCP/IP layer. Figure (3.13) shows the communication stack.
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3.6.3 Real-time Thread Execution in QNX

The rate at which the data is recorded plays a pivotal role in identifying an accurate
model. Data that is collected at a lower and inconsistent rate is bound to only provide
a model that is useful for flight controls requiring low update rates. Since the intention
here is to eventually implement an aggressive nonlinear feedback linearizing controller, the
sampling rate needs to be reasonably fast and consistent. A NASA report on the practical
aspects of these system identification methods is detailed in [26]. The report shows how
the sampling rate affects the quality of estimated parameters. Notably, rapid excursions,
caused by rapid control inputs require a faster and consistent sampling rate, than say,
when estimating slower motions like phugoid modes. In addition, time and phase shifts
are also very important. When measurements are sampled sequentially, the time shift
between a measured sample at the beginning of the interval and a measured sample at
the end is crucial. With a low sampling rate and phase shifts, the initiation of a control
input might be missed, causing the vehicle to appear to respond before the control input.
The Output and Filter Error Methods discussed above, assume that all measurements are
sampled simultaneously and at adequate sampling rates.

These requirements can be implemented in QNX using either timer interrupt handlers or
pulses, with the high priority threads sitting in a pulse receive state. The pulses themselves
are generated by the kernel 1 using the real time clock and interrupts. The frequency of
these interrupts dictate the resolution of the timing achieved. The goal is to achieve the
best consistent update rate possible while keeping the system overheads low. For example,
a 1ms resolution clock will give a sampling rate of anywhere from 71.43Hz to 76.29Hz if
the desired frequency is 75Hz. This varying frequency will produce errors in parameter
estimates as discussed above. Increasing the clock resolution also increases the system load
and would delay thread execution. A clock resolution of 100us gives a frequency of 74.63Hz
to 75.19Hz which is reasonably acceptable. Moving further down to 10us improves this
even more but delays thread execution as most of the processing time is used to handle
interrupts. A pie chart showing this comparison is shown in Figure (3.14).

A multi-threaded program that extracts data from multiple sensors and records them
onto a harddrive is run on-board the aircraft. It features constant time intervals with hard
real-time constraints and synchronized data recording. Figure (3.15) shows the timing
trace of the program recorded in real-time over a period of about 180ms. The socket server
serving Matlab on the ground is also one of the threads (No. 6) but is run at a much

1The term, kernel, in this chapter refers to an Operating System kernel, which is different from the
OpenCL kernel in the previous chapter.
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Figure 3.14: CPU usage comparison at different clock resolutions. Notice the virtual
absence of Idle at 10us.

lower priority. This same architecture can later be used directly for nonlinear controls
implementation.

3.7 Results from Kadet Senior

A portion of the data collected during test flights and a model fit obtained using the Output
Error Method is shown in Figure (3.16). The fit is similar to the one seen in Figure (3.7).
It was obtained using multiple runs of the algorithm where the values from the first run
were used as the initial parameters for the next run but some were “kicked” to let the
solution escape local nonlinear minima.

3.7.1 Simplifying the Model and Reducing Identification Errors

Two ways to improve this fit would be to include the turbulence methods discussed earlier
and to improve the initial guesses on the parameters. The performance of the OEM is
heavily dependent on the initial parameter estimates due to the highly nonlinear nature
of the model, which results in many local minima. A good starting point for these would
be wind tunnel tests. Lacking those, one can look up the most common parameters for
other UAVs of similar scale and extrapolate to all required parameters. The Dryden Wind
Gust model can also improve the fit as discussed earlier. The OEM only accounts for
measurement noise, therefore disturbances from wind still need to be tackled.
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Figure 3.15: Timing diagram showing uniform and synchronized thread execution at 75Hz.

Another way to reduce wind disturbance errors is the Filter Error Method describe
earlier. This is left for future work.

Implementing nonlinear controls on a model of this size can be challenging. While exact
requirements for controls are held off until the next chapter, it is sufficient to say that a
smaller analytical model with a better fit would fare better when designing control laws.
The aerodynamic model resulting from the parameters in Equations (3.12) and (3.13) would
be usable for nonlinear controls when some of the general parameters are zero, and hence
simplifying the resulting control laws. The identification process was started with most of
the parameters fixed to zero and was incrementally increased to all available parameters.
The results, as shown in Figure (3.16), can be used for high fidelity simulations of the
Kadet Senior. However, for control law derivations, a simpler analytical model, that fits
equally as good, if not better, is required.

Consolidated Model: Replacing Polynomials with Sin and Cos

While using the same 9 state model from Equations (3.6) to (3.10), as described earlier, one
can replace the underlying aerodynamic forces and moments polynomials with trigonomet-
ric functions (akin to a Taylor series vs a Fourier series). The idea is to reduce the number
of parameters so that the resulting nonlinear controller equations are simpler and easy to
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Figure 3.16: Results from the Kadet Senior UAV, with a large number of underlying
aerodynamic parameters from (Equations (3.12) and (3.13)).
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compute on the flight computer. Isidori [29] proposes the following as an alternative to
Equations (3.1) to (3.3). LM

N

 = V

 a12r + a13p
a23q

a32r + a33p

+ V 2

 a11 sin β
a21 + a22 sinα
a31 sin β


+ V 2

 b11 cos β 0 b13 cos β
0 b22 cosα 0
0 0 b33 cos β

 δA
δE
δR

 (3.33)

 L
D
S

 = V 2

 c21 + c22 sin 2α
c11 + c12 cosα
c31 sin 2β

+ Tmax

 sinα
− cosα cos β
cosα cos β

 δT (3.34)

Just like in Equation (3.2), the rolling moments here are mainly affected by δR and
δA, the pitching moments are affected mainly by δE and the yawing moments are mainly
affected by δR. However, the inclusion of δA in the calculation of yawing moments is
missing. This correlation can be observed in Figure (3.17). Notice that the effect on yaw
rate, r, is only noticeable during large changes in δA movements. An extra parameter (b31)
is added to improve the model.

Furthermore, as discussed in Section (3.2), the inclusion of control surface deflections
in the force equations is still avoided here. However, due to a strong correlation (seen in
Figure (3.18)), and the need to simplify the model, a term with q is also added to the
main Lift equation. By including q, the affect of δE is still captured, but is delayed to the
next derivative, the advantage of doing this is evident when deriving feedback linearizing
control laws in Chapter (4). However, when simulating the nonlinear controller on the
Kadet Senior, this extra parameter is used in the plant but is explicitly excluded from the
control law.

The resulting forces and moments then look like, LM
N

 = V

 a12r + a13p
a23q

a32r + a33p

+ V 2

 a11 sin β
a21 + a22 sinα
a31 sin β


+ V 2

 b11 cos β 0 b13 cos β
0 b22 cosα 0

b31 cos β 0 b33 cos β

 δA
δE
δR

 (3.35)
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 L
D
S

 = V 2

 c21 + c22 sin 2α + c23q
c11 + c12 cosα
c31 sin 2β

+ Tmax

 sinα
− cosα cos β
cosα cos β

 δT (3.36)

This final model replaces Equations (3.1) to (3.5), where the overall model is drastically
simplified, and still has room to predict a broad envelope of flight data. After incorporating
into the main equations of motion, this model now has a total of 23 parameters, where
each parameter is lumped and (other than mass and inertia) has no physical meaning.

Better Results from Kadet Senior: Using an Improved Data Set and the Con-
solidated Model

Once the underlying aerodynamic model is improved, the other source of improvement
is the data itself. IMUs, as discussed earlier, consist of accelerometers, gyroscopes and
magnetometers. They come in various grades, with the best being based on laser systems,
that have virtually no drift. In fact, measurements from a laser ring gyro can be integrated
to find the position for navigation in GPS denied environments. The IMU used on the
Kadet Senior UAV is a MEMs based unit which is prone to noise and drift issues. To fix
the drift and noise, particularly in measuring p, q and r in the first data set, an Extended
Kalman Filter was designed with a constant acceleration motion model. This limits its use
to less aggressive maneuvers, but also smooths the data for system identification purposes.

Further improvements on the system include better messaging protocols between the
microcontroller and the QNX flight computer, proper calibration of the wind vanes and
control surfaces as well as precise measurements of the aircraft mass just before take-off.

A subset of the improved data can be seen in Figures (3.17) to (3.20). The final system
identification results are shown in Figure (3.21). Note that since the forces are reflected
in φ, γ and ψ and the moments are reflected in p, q and r, the final model accurately
predicts the aerodynamic moments and forces acting at any time on the Kadet Senior.
This information can now be estimated on-board the flight computers using this model,
and inputs from the control surface and wind sensors.

3.8 Conclusions

System identification methods using flight data have been studied extensively over the last
few decades. These methods, which were initially designed for linear models and large
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Figure 3.17: Data collected from the Kadet Senior UAV, showing strong correlation be-
tween ailerons, δA, and body axis yaw rate, r, (highlighted region). The rudder, δR, is
kept constant. Where the ailerons do not conform to the yaw rate, the effect of wind on
the tail is noticeable.
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Figure 3.18: Data collected from the Kadet Senior UAV, showing correlations between
elevator, δE, and body axis pitch rate, q and flight path climb angle, γ.
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Figure 3.19: Data collected from the Kadet Senior UAV, showing correlations between
elevator, δE, angle-of-attack, α and flight path climb angle, γ. α is measured using the
custom designed vane assembly discussed earlier.
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Figure 3.20: Data collected from the Kadet Senior UAV, showing how sudden changes in
yaw rate affects the sideslip angle, β, (highlighted regions). β is measured using a custom
designed vane assembly.
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Figure 3.21: Drastic improvements in the fit and with only 23 parameters: using an Ex-
tended Kalman Filter on the flight computer and the consolidated model.
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scale aircraft, can now be used for small scale Unmanned Aerial Vehicles. This has much
to do with the rise in on-board and off-board computing power as well as the recent advent
of light-weight MEMs based sensors.

A class of methods known as the Output Error Method are discussed in this chapter.
Extensions to the basic method can be used to account for atmospheric turbulence. Initial
results from the Kadet Senior UAV seemed promising and were improved by changing the
base aerodynamic model and improvements in the hardware and software system.

The parameters identified in this chapter can now be used to design linear and non-
linear controllers.
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Chapter 4

Nonlinear Controller

4.1 Introduction

The problem of tracking an arbitrary moving ground target from an aircraft can be broken
down into two main classes. In the first class, the target takes on a relatively steady
motion with small changes in speed and direction. In the second class the target starts
maneuvering in an aggressive fashion. Examples of this breakdown can be seen in car
races, where the first class includes all straight sections and the second, includes the sharp
turns. Another example can be observed during the coverage of a downhill ski event. Here,
the first class will include all steady downward motions, and the second, will include all
the challenging maneuvers.

With a known target position, steady motion can be tracked using linear control tech-
niques that have been developed in the past. The control techniques in this chapter focus
on the second class of tracking problems, where the aircraft is required to track aggressive
trajectories. A base set of such trajectories can be programmed into the flight computer
as motion primitives. The motion primitives can then be called from a high level planner
whenever it foresees the need for an aggressive maneuver based on the info from the vision
based target tracking discussed in Chapter (2). The high level planner will be responsible
for stitching a reference trajectory in real time which will include linear and nonlinear
portions. The nonlinear portions will be small segments of aggressive maneuvers where
the aircraft will move through a predictable path with timing constraints.

It is expected that tracking such targets will push the aircraft to the extremes of its
flight envelope, requiring investigation into nonlinear flight regimes where the aerodynamics
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and actuator limitations play a big role. The motion primitives can be developed with
predetermined reference trajectories that are generated using linear exosystems.

In addition to the models discussed in Section (3.2), two simpler models are presented
in this chapter. The motivation for developing control laws for each model stems from the
desire to ultimately implement the simplest controller that yields acceptable performance.
All models are demonstrated to be feedback linearizable, and a common linear tracking
control methodology is employed on each. The simplest model is a 3 degree of freedom
(DOF) model that is used to establish the possibility of using nonlinear techniques for
trajectory tracking, but the model does not capture, for example, nonlinearities in the
relationship between lift, drag and vehicle speed or angle of attack. The second follows
Hauser and Hindman [23], and describes a coordinated flight regime where the sideslip
angle is deliberately maintained at zero, restricting the possible trajectories of the aircraft,
but improving on the first model in terms of fidelity.

Since all the models are feedback linearizable, the tracking control approach used in-
volves first performing the feedback linearization and then applying linear tracking control
using the internal model principle of Francis and Wonham [16]. For this, linear exosystems
are defined which allow tracking of elliptical and oscillatory trajectories, combinations of
which can give a vast number of motion primitives. An alternative to this approach which
relaxes the need for feedback linearization would be to define nonlinear tracking controllers
per Isidori and Byrnes [30], however this method requires the solution of a partial differ-
ential equation for each trajectory under consideration. Khalil’s robust tracking control
could also be considered [35], however it relies on high-gain assumptions to ensure tracking
which is impractical to implement.

It should be noted that the particular control approach presented in this work relies on
the possibility of feedback linearization. This requirement has therefore led to the selection
of a particular subset of the available dynamic models for aircraft, and has resulted in the
omission of valid models [13, 56] which include coupling between forces and angles. The
result of such coupling, which does indeed exist in practice, is that the system becomes
non-minimum phase, as was demonstrated by Tomlin et al. [56], and therefore is no longer
feedback linearizable. For non-minimum phase systems Devasia, Chen and Paden [10]
presented a method for nonlinear tracking based on non-causal inversion. This aspect of
the modeling and controller design remains an area for future work.

This chapter proceeds as follows. Section (4.2) presents the two new aircraft models in
order of increasing complexity, and some representative linear target models are presented.
The tracking controllers to be used with these models and the ones from Section (3.2)
are defined in Section (4.3), and results are presented in Section (4.4). Finally, a brief
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discussion of future directions is included in the final Section.

4.2 Aircraft and Target Models

The coordinate frames and nomenclature here follows from Section (3.2). In addition, here
the aircraft position, x ∈ R3 is defined in an inertial frame I, with ẋ and ẍ being the
velocity and acceleration respectively.

4.2.1 Simple Flight Model

This model assumes that direct control over the rates of change of velocity and flight path
angles of climb and heading is possible. Let V := ‖ẋ‖ and treat V̇ , γ̇, ψ̇ as control inputs
where γ and ψ are the two flight path angles introduced above. Then the kinematics of
the simple flight model can be modeled as

ẋ =

 V cos(γ) cos(ψ)
V cos(γ) sin(ψ)
−V sin(γ)

 (4.1)

V̇ = u1

γ̇ = u2 (4.2)

ψ̇ = u3

y = x

where u1, u2 and u3 are control inputs and y is the output. This model entirely ignores,
among other things, the roll dynamics of the vehicle, as well as any coupling between the
three inputs.

4.2.2 Coordinated Flight Model

The second model depends on the assumption that the aircraft is restricted to coordinated
flight, which requires that β, the sideslip angle, be zero for all time. In practice, coordinated
flight is possible by implementing regulation of sideslip using the aircraft rudder. Let
vw ∈ R3 and aw ∈ R3 denote, respectively, the aircraft velocity and acceleration expressed
in the wind frame Fw. The rotation from Fw to the inertial frame is defined by R ∈ SO(3).
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The rotation rates in wind axes are ω = (pw, qw, rw) ∈ R3 and the evolution of R in time
is described by the classical equation

Ṙ = Rω̂ (4.3)

where

ω̂ =

 0 −rw qw
rw 0 −pw
−qw pw 0

 .
The assumption of coordinated flight can be imposed with the constraint

ẋ = V Re1 (4.4)

where e1 = (1, 0, 0)>. The control inputs are taken as the aircraft forward acceleration
av1, the upward acceleration av3 and the roll rate pw. Let gw = R>g be the gravity vector
g = (0, 0, g3)> rotated into Fw. Then, differentiating Equation (4.4), we obtain

ẍ = g +Raw (4.5)

where aw = (aw1 , 0, a
w
3 ) and the control inputs are u = (u1, u2, u3) = (pw, a

w
1 , a

w
3 ). The

coordinated flight constraint imposes conditions on the evolution of the rotation rates in
Fw

qw = −a
w
3 + gw3
V

rw =
gw2
V
.

(4.6)

In summary, the coordinated flight model is given by Equations (4.3) to (4.5) with states
(x1, x2, x3, ẋ1, ẋ2, ẋ3, R). The state space dimension is 7 instead of 9 because the coordi-
nated flight requirement imposes additional constraints on the motion of R [23].

4.2.3 Full Aerodynamic Model

This model is the same as described in Section ( 3.2). The kinematic model in Equa-
tion (4.1) can be used to generate the aircraft trajectory for the 9 state system.

4.2.4 Target Models

The internal model approach to tracking requires a reference trajectory generator that is
given by a linear time-invariant (LTI) system. This trajectory generating system is called
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an exosystem. These exosystems create the reference trajectories for the motion primitives
discussed above.

Three such exosystems are defined below. The first one generates a fixed altitude
elliptical trajectory which can find many uses in aerial reconnaissance or auto racing ap-
plications. The second, a periodic trajectory generator, can be used to chase targets up or
downhill along a oscillatory path. The third, can be used to generate a variety of aggressive
maneuvers by manipulating the rotation rates p, q and r.

Elliptical Trajectory

The desired elliptical trajectory is given by

x1ref = 100 cos(t)

x2ref = 50 sin(t) (4.7)

x3ref = 5

where x1ref , x2ref and x3ref represent the desired aircraft position in inertial coordinates.
This trajectory can be generated by the following system

ẇ1 = w2

ẇ2 = −w1

ẇ3 = w4 (4.8)

ẇ4 = −w3

ẇ5 = 0

with initial conditions w1(0) = 100, w2(0) = 0, w3(0) = 0, w4(0) = 50 and w5(0) = 5 and
with w1 = x1ref , w3 = x2ref , and w5 = x3ref .

Basic Ski Slope

A simple ski slope trajectory can be generated using a combination of periodic functions for
Vref , γref , ψref and βref . Setting Vref , γref as constants and βref to zero gives a trajectory
with a constant climb angle that maintains zero sideslip through aggressive turns. These
turns can be formulated using any dynamically feasible time varying functions for ψref as
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follows
Vref = 150

γref = 5

ψref = 5 cos

(
t

10

)
βref = 0

(4.9)

The reference trajectories from Equation (4.9) can be generated by the exosystem

ẇ1 = ẇ2 = ẇ5 = 0

ẇ3 = w4

ẇ4 = − 1

100
w3

(4.10)

where w1(0) = 150, w2(0) = 5, w3(0) = 5, w4(0) = 0, w5(0) = 0 and w1 = Vref , w2 = γref ,
w3 = ψref , and w5 = βref . This exosystem provides a simple example of how downhill
ski slope trajectories can be represented by a linear exosystem, which can be extended to
more complex reference trajectories as needed.

Aggressive Turns

The basic form is given by

pref = 0.08 cos

(
t

10

)
qref = 0.04 cos

(
t

10

)
(4.11)

rref = 0.05

This trajectory can be generated by the following system

ẇ1 = w2

ẇ2 = −(1/100)w1

ẇ3 = w4 (4.12)

ẇ4 = −(1/100)w3

ẇ5 = 0

with initial conditions w1(0) = 0.08, w2(0) = 0, w3(0) = 0.04, w4(0) = 0 and w5(0) = 0.05
and with w1 = pref , w3 = qref , and w5 = rref .
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4.3 Tracking Controllers

4.3.1 Inverse Dynamics and Output Tracking

Consider a system of the form

ẋ = f(x) +
m∑
i=1

gi(x)ui

y1 = h1(x) (4.13)

...

ym = hm(x)

where f(x), g1(x), . . . , gm(x) are smooth vector fields and h1(x), . . . , hm(x) are smooth real-
valued functions defined in a domain D ⊂ Rn. By definition, the system in Equation (4.13)
with output y = (y1, . . . , ym) has a vector relative degree of {r1, . . . , rm} at x0 ∈ D if

LgjL
k
fhi(x) = 0

∀j ∈ {1, . . . ,m}, ∀k < ri − 1, ∀i ∈ {1, . . . ,m}
(4.14)

for all x in a neighborhood of x0 and the matrix

B∗(x) =


Lg1L

r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) . . . LgmL

r2−1
f h2(x)

...
...

...
Lg1L

rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)

 (4.15)

is nonsingular at x = x0 [29], [36].

Differentiating each component, yi, of the output ri times and using the output and its
derivatives to partially define a coordinate transformation in a neighborhood of x0 yields
a system of the form

ξ̇i1 = ξi2
...

ξ̇iri−1 = ξiri (4.16)

ξ̇iri = Lrif hi(x) +
m∑
j=1

LgjL
ri−1
f hi(x)uj
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for all i ∈ {1, . . . ,m}. If
∑m

i=1 ri = n, then the output y and its derivatives completely spec-
ify a coordinate transformation ξ = T (x) where, in transformed coordinates, the system
has the form as in Equation (4.16). However, in the case where

∑
i ri < n, the coordinate

transformation T (x) is only partially defined by y and its derivatives. In order to complete
the coordinate transformation we must find n −

∑
i ri additional functions and augment

them to the output and its derivatives. In doing so we can obtain a valid coordinate trans-
formation (η, ξ) = T (x) defined in a neighborhood of x0. In general one cannot impose
any particular structure to the additional states η and their evolution will be described by
a general equation of the form

η̇ = q(ξ, η) + p(ξ, η)u. (4.17)

Setting η = 0 and u = 0 yields η̇ = q(ξ, 0) which are the zero dynamics of the system in
Equation (4.13). The system in Equation (4.13) is minimum phase if these zero dynamics
have an asymptotically stable equilibrium point in the domain of interest.

When the output y yields a vector relative degree {r1, . . . , rm} with
∑

i ri < n, then
one can appeal to differential flatness or dynamic feedback linearization to obtain a system
that is linear in transformed coordinates via the use of dynamic feedback. Specifically, in
dynamic feedback linearization, sometimes called dynamic extension, state variables are
introduced in the controller that correspond to a chain of integrators in order to obtain a
relative degree

m∑
i=1

r̃i = n+ v (4.18)

where r̃i, i ∈ {1, . . . ,m} is the number of derivatives of yi that must be taken before
a control input appears and v is the number of additional states introduced in by the
controller. In other words, by adding integrators in the controller, the appearance of the
control input in the derivatives of y is delayed until the desired relative degree is obtained.

In either the static case when
∑

i ri = n, or the dynamic case when
∑

i r̃i = n + v, it
is possible to define a regular feedback transformation that when applied to the system in
Equation (4.16) yields a controllable linear system with m chains of integrators ξ1, . . . , ξn.
The highest order derivatives from the system can be grouped together to obtain[

˙ξ1
r1

˙ξ2
r2

. . . ˙ξm
rm

]T
= A∗(x) +B∗(x)u (4.19)

where B∗(x) (also known as the decoupling matrix) is as defined in Equation (4.15) and

A∗(x) =

 Lr1f h1(x)
...

Lrmf hm(x)

 . (4.20)
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Since B∗ is nonsingular near x0, the feedback law

u = B∗(x)−1(v − A∗(x)), (4.21)

where v ∈ Rm is an auxiliary control input, is well-defined in a neighborhood of x0. When
the controller in Equation (4.21) is applied to Equation (4.13) a controllable linear system
is obtained

ξ̇ =



ξ̇1
1
...

ξ̇1
r1
...

ξ̇m1
...

ξ̇mrm


= A1ξ +B1v. (4.22)

Using the internal model approach by Wonham and Francis [16], controllers can now be
designed that will track trajectories generated by LTI exosystems like those presented in
Equations (4.8) and (4.10). To this end, this system is augmented by

ẇ = A2w

e = D1ξ +D2w (4.23)

where ξ is the state of the system in Equation (4.22), w is the state of the exosystem
and e is the tracking error. The problem is solvable if and only if A2 has only unstable
eigenvalues, (A1, B1) is stabilizable and there exist matrices X and U such that

D1X +D2 = 0

A1X −XA2 +B1U = 0 (4.24)

Once X and U are found, the resulting controller takes the form

v = F1q + F2w (4.25)

where F1 is chosen such that A1 +B1F1 is Hurwitz and F2 = U − F1X.
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4.3.2 Simple Flight Model

The kinematic aircraft model from Section (4.2.1) has a well defined vector relative degree
of {2, 2, 2} at each point in the regions of interest for our application. To see this, note
that the decoupling matrix B∗ is given by

B∗ =

 cos γ cosψ −V cosψ sin γ −V cos γ sinψ
cos γ sinψ −V sin γ sinψ V cos γ cosψ
− sin γ −V cos γ 0

 . (4.26)

This matrix is singular if and only if V 2 cos γ = 0, which corresponds to either a zero veloc-
ity or a climb angle of γ = π

2
. The decoupling matrix is therefore invertible during normal

flight conditions. We conclude that the output y = x yields a well-defined relative degree
almost everywhere and

∑3
i=1 ri = 6 which implies that the system is feedback lineariz-

able via a static controller. The corresponding coordinate transformation, as discussed in
section (4.3.1), is given by 

ξ1
1

ξ1
2

ξ2
1

ξ2
2

ξ3
1

ξ3
2

 =


x1

ẋ1

x2

ẋ2

x3

ẋ3

 (4.27)

and is valid in a neighborhood of any point at which V 6= 0 and γ 6= π
2
. The static feedback

linearizing control law is given by
u = B∗−1v (4.28)

because A∗ = 0 in this case. The auxiliary control input v can be designed for tracking an
elliptical trajectory. The exosystem in Equation (4.8) results in a tracking error

e =
[
w1 − ξ1

1 w3 − ξ2
1 w5 − ξ3

1

]>
. (4.29)

By appropriately defining D1 and D2 based on Equation (4.29), the matrices X and U can
be found by solving Equation (4.24). Furthermore, F1, can be suitably picked depending
on the magnitude of gains required for minimizing e and v can then be computed using
Equation (4.25).
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4.3.3 Coordinated Flight Model

The coordinated flight model with 7 states (x1, x2, x3, ẋ1, ẋ2, ẋ3, R) and output y = (x1, x2, x3)
as described in Section (4.2) has a well defined vector relative degree of {2, 2, 2} but∑3

i=1 ri = 6 < 7 and therefore static feedback cannot be used to feedback linearize this
system. In order to obtain a fully linear system in transformed coordinates, two new
states need to be added to the system by adding integrators on two of the inputs. The
resulting system will have 9 states (x, ẋ, R, aw1 , a

w
3 ) with a well defined vector relative de-

gree of {r̃1, r̃2, r̃3} = {3, 3, 3}. The system can equivalently be expressed in coordinates
(x1, ẋ1, ẍ1, x2, ẋ2, ẍ2, x3, ẋ3, ẍ3) as shown in [23]. The new control inputs are given by

u = R

 ȧv1
pw
ȧv3

 . (4.30)

The A∗ and B∗ matrices can be formed using Equations (4.20) and (4.15) respectively
which results in

A∗ = R

 qwa
v
3

rwa
v
1

−qwav1

 , B∗ = R

 1 0 0
0 −av3 0
0 0 1

 (4.31)

Finally, a feedback linearizing control law is generated using Equation (4.21) and (4.30).
A linear tracking controller can now be designed for v as before. The tracking error, e, for
the elliptical exosystem is also given by Equation (4.29).

4.3.4 Full Aerodynamic Model

Taking y = (y1, . . . , y4) = (V, γ, ψ, β) as the output we get r1 = r2 = r3 = r4 = 1.
The sum of these relative degrees is less than the number of states (9) in the system
which is a direct result of the throttle input (δT ) appearing in the force terms, L,D and
S. Using the previous discussion on zero dynamics, this implies 5 uncontrollable and
potentially unobservable internal states. Extending the system with two additional states
and replacing δT with δ̈T as the new control input ensures differential flatness by delaying
the appearance of the control inputs in the output derivatives. The new control input is

u =
[
δ̈T δE δA δR

]>
. (4.32)
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With these re-defined control inputs, the decoupling matrix is given by

B∗ =


...
V δ̈T

...
V δE

...
V δA

...
V δR...

γ
δ̈T

...
γ δE

...
γ δA

...
γ δR...

ψ δ̈T

...
ψ δE

...
ψ δA

...
ψ δR

0 0 β̈δA β̈δR

 (4.33)

where each entry is expressed using partial derivatives of
...
V ,

...
γ ,

...
ψ and β̈ with respect to

each control input.

These higher order derivatives are extremely complex and their length prohibits them
from being reproduced here with clarity. An analytical check of the singularity conditions
for the matrix in Equation (4.33) is therefore close to impossible. The matrix was however
checked numerically to be nonsingular in the region of interest when tracking the basic ski
slope reference trajectories from Section (4.2.4). This implies that the system yields a well
defined vector relative degree of {r̃1, r̃2, r̃3, r̃4} = {3, 3, 3, 2}. Using Equation (4.21), and
an appropriate A∗ term (not shown here for brevity), a feedback linearizing controller is
formed. For tracking control, the error can be defined as

e =
[
w1 − ξ1

1 w2 − ξ2
1 w3 − ξ3

1 w5 − ξ4
1

]T
(4.34)

where ξ1
1 , ξ2

1 , ξ3
1 and ξ4

1 refer to V , γ, ψ and β respectively. The controller can then be
completed, with results for a BAC-221 high performance aircraft shown in the next section.

4.3.5 Subset of the Consolidated Model

A subset of the 9 state consolidated model from Section (3.7.1) can also be used to control
the rotation rates of the aircraft and produce additional motion primitives. With a selection
of 3 states (p, q, r), output y = (p, q, r) and input u = (δE, δA, δR), the model has a well
defined vector relative degree of {1, 1, 1} and

∑3
i=1 ri = 3. This implies that a static

feedback linearization is sufficient and can be used with the model identified for the Kadet
Senior. This selection of states assumes that a low level linear controller maintains V ,
which can be easily accomplished as the only inputs required here are δE, δA and δR,
leaving δT decoupled for velocity control. V does not need to be actively changed and can
be maintained at a constant level. α and β can be kept in check by subtracting or adding
to δR and δA. This may not be necessary in calm weather due to the stability provided
by the tail and the inherent stability of the platform.

The A∗ and B∗ matrices can be formed using Equations (4.20) and (4.15) respectively
which results in
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A∗ =

 a11 sin βV 2 + (a13p+ a12r)V + qr(Iyy − Izz)
(a21 + a22 sinα)V 2 + a23qV − pr(Ixx − Izz)
a31 sin βV 2 + (a33p+ a32r)V + pq(Ixx − Iyy)

 (4.35)

B∗ =

 0 V 2b11 cos β V 2b13 cos β
V 2b22 cosα 0 0

0 V 2b31 cos β V 2b33 cos β

 (4.36)

The tracking error is the same as Equation (4.29) and applies just as well to Equation
(4.12). The results of this simple yet powerful controller as applied to the Kadet Senior
UAV can be seen in the next section.

4.4 Results

Simulation results for trajectory tracking control of the simple flight model are shown in
Figure (4.1). The aircraft position achieves perfect tracking of the elliptical exosystem
described in section (4.2.4), and also rejects errors in initial conditions smoothly. To
implement this controller, the aircraft is assumed to have a low level autopilot which
would provide the required V , γ and ψ to track the trajectory. The scale of the reference
ellipse and the time to traverse it can be adjusted based on the performance limitations of
the aircraft.

Simulation result for the coordinated flight model with the elliptical exosystem is shown
in Figure (4.2). The aircraft rapidly reduces the initial errors and achieves perfect tracking.
As with the simple flight model, this controller can be used where an autopilot is already
present that can command the required forward and vertical acceleration and the required
roll rate av1, a

v
3, pw, respectively. Since the model doesn’t account for aircraft limitations,

these control outputs can be adjusted by altering the flight path as required. As an
example, an autopilot could be developed that would regulate the sideslip to zero at all
times through rudder deflection, δR. Similarly, av1 and av3 can be generated through throttle
control, δT , and elevator deflection, δE, respectively. pw can be produced by actuating the
ailerons δA.

The BAC-221 aerodynamic model (developed in Section 3.5) can also be tested with the
proposed control strategy and the basic ski model exosystem. The final trajectory result
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Figure 4.1: Simulation Results for the Simple Flight Model.

Figure 4.2: Simulation Results for the Coordinated Flight Model.
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Figure 4.3: Aircraft trajectory over a basic ski-slope simulated using the BAC-221 fully
aerodynamic model and the proposed controller.

is shown in Figure (4.3), which very precisely tracks the reference trajectory. The sideslip
angle can be seen in Figure 4.4. Here the controller is trying to maintain coordinated flight
by actively regulating the angle to zero through a combined effort of rudder and aileron
deflection. Note that during the sharp turns, peaks can be seen which implies that some
sideslip (< 0.001◦) does inevitably occur.

One drawback in the proposed controller, when applied to the full aerodynamic model,
is that it is not robust to small deviations from the reference. This implies a small domain
of attraction around the trajectory. Hence, this approach maybe difficult to implement
in practice, but could be addressed by adding a robust control component to the linear
controller.

The best results are achieved when the controller is applied to the subset of the consoli-
dated model. This scheme is a compromise. The overtly complex A∗ and B∗ matrices from
the full 9 state model capture the entire aircraft model but are too rigid to accommodate
deviations from initial conditions and require measurements of higher order derivatives,
which are very difficult to determine accurately from MEMs based sensors. The very sim-
ple controllers from Sections (4.3.2) and (4.3.3) depend on complex low level autopilots
that will have to meet demands for acceleration, velocity and attitude angles as the aircraft
progresses through the reference trajectory. The subset model on the other hand connects
with the control surfaces directly, and is still able to perform with a very simple low level
autopilot whose demands don’t change over time. This controller was applied to the Kadet
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Figure 4.4: β being regulated to zero for the BAC-221.

Senior model that was identified using real flight data. Results with small variations in the
exosystem from Equation (4.12) can be seen in Figures (4.5) to (4.7).

The Kadet Senior UAV was test flown with linear controllers only. This was mainly to
verify the custom designed autopilot hardware, the onboard QNX system, long range radio
links, ground station, remote debugging and safety takeover systems. The UAV itself is
not structurally sound to perform aggressive maneuvers. Results from the linear autopilot
tests are shown in Figures (4.8) to (4.10).

4.5 Conclusions

In this work, a nonlinear controller is designed which achieves trajectory tracking for three
progressively complex models of an aircraft. Each of these models can be used to design
autopilots provided that an underlying low level controller is already present that ensures
that the input requirements are met. The controllers for the basic and coordinated flight
models can be scaled up or down based on the type of aircraft being used. For a small
scale UAV, where the thrust to weight ratio is usually more than one, fairly aggressive
trajectories should be within reach. The controller for the full aerodynamic model needs
to be built ground up for the specific aircraft after a thorough system identification. It may
also require the inclusion of a robust control component to achieve tracking in non-ideal
conditions. However, this controller would only require a simple underlying controller
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Figure 4.5: Motion primitive 1. Nonlinear controller applied to the Kadet Senior model:
fully controlled downward spiral. Note, for illustrative purposes z is positive up here.

Figure 4.6: Motion primitive 2. Nonlinear controller applied to the Kadet Senior model:
undergoing an aggressive eight pattern. Note, for illustrative purposes z is positive up.
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Figure 4.7: Motion primitive 3. Nonlinear controller applied to the Kadet Senior model: a
displacement roll, usually used during dog fighting maneuvers, can be used in this applica-
tion to chase agile targets susceptible to frequent changes in direction. Note, for illustrative
purposes z is positive up.
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Figure 4.8: Flight test results: using a decoupled linear controller to level the aircraft and
achieve a desired heading. The linear controllers used were Proportional-Derivative (PD),
whose gains were tuned midflight to control the attitude states.

Figure 4.9: Kadet Senior taxiing at the flying field.
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Figure 4.10: Kadet Senior airborne and in autopilot mode. A higher altitude is required
for safe operation: in case of an autopilot failure, the ground pilot can resume control and
recover the vehicle before a crash landing.
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to meet control surface deflections as opposed to the other two models which require
controllers for flight path angles and accelerations. The controller for the subset of the
consolidated model is relatively simple and does not need robust control components. It
only requires a simple low level autopilot.

Future work in this area involves flight tests using all aircraft models implemented on
the Kadet Senior UAV after sufficient structural enhancements. New tracking controls,
with less computationally intensive control laws will also be considered. One of these
includes the output tracking method developed by Devasia, Chen and Paden [10], where
the inverse is solved numerically. The high level system, which stiches these trajectories
for meaningful real-time tracking is also an area of active research within the WAVE Lab.
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Chapter 5

Conclusion

This thesis presents three crucial components towards real-time tracking of high speed,
aggressive targets using an Unmanned Aerial Vehicle.

The vision system employs the latest in off-the-shelf parallel computing technology to
achieve robust real-time target tracking. It uses the new OpenCL GPGPU framework, and
AMD’s new line of stream computing GPUs and Fusion processors. This processor, with
a GPU and CPU on a single silicon die, provides a lightweight and low power computing
solution for vision based avionics. With its large number of parallel cores, it rivals the com-
puting power of high-end desktop based CPUs. Algorithms that are slow performers on a
CPU, but hold the potential to be parallelized can be ported over to such units. A state-of-
the-art vision tracking algorithm is described, together with implementation details using
OpenCL and a HD5870 GPU. The results convert a once offline-only technique, to online
real-time tracking. Object tracking is performed under rotation, scale changes and occlu-
sion. The system is tested on a key-chain target undergoing rotations and transformations
and subsequently on an aerial video stream of a high speed RC aircraft.

System identification is performed using the well-established Maximum Likelihood
method, also known as the Output Error Method, to develop a wide envelope and high-
fidelity model for the Kadet Senior. The techniques are first tested using wind tunnel
data from a 1970’s British jet aircraft known as the BAC-221. The data is used to create
mathematical models of the jet, which are in turn used to simulate and extract appropri-
ate data for performing system identification. The result of the identification procedure is
compared with the original wind-tunnel based model to prove its effectiveness. A Kadet
Senior model aircraft is outfitted with custom sensors and avionics running the latest QNX
real-time operating system to acquire clean and reliable flight data. Control inputs are de-
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signed to capture the different flight modes and are flown by a ground pilot. A ground
station monitors the progress while the pilot is flying. All maneuvers are completed in
one flight without the need to land. The data is processed offline over a 9 state model,
with different underlying aerodynamic assumptions. The best set of parameters results in
a relatively simple model that is usable for feedback linearization.

This model forms the basis for nonlinear controls techniques which are shown to be
effective for generating aggressive motion primitives. The control law uses feedback lin-
earization to cancel the known nonlinearities from the high fidelity system identification.
Linear tracking control using the internal model approach is then applied to the resulting
linear system, to direct the aircraft on a prescribed trajectory. The control laws are sim-
ulated on two general aircraft kinematic models, on the BAC-221 model and then finally
on the Kadet Senior model identified earlier. A motion primitive bank is created, with
examples of aggressive trajectories shown.

Linear autopilot controls are implemented on the Kadet Senior using the same custom
designed avionics, showcasing the autonomous UAV and providing a safe platform for
future controls development.

The vision system can be improved by using advanced search methods and incorporating
predictive motion models on the target. Its adaptation to an AMD Fusion APU will allow
the tracking algorithm to be flown onboard the aircraft. Cameras can be mounted on a
two axis gimbal to consistently track the target even when repositioning of the aircraft is
not possible.

The nonlinear controller can be improved by adding robust control techniques to main-
tain tracking during atmospheric disturbances. The proposed exosystems allow a wide
variety of trajectories to be generated by changing the initial conditions. This approach
works because motion primitives can be generated ahead of time and have the advantage
of being fine tuned during experimental flights.

Future research will focus on integrating the components developed here into a complete
aggressive maneuver tracking UAV solution. A high level planner will need to be devised to
maintain target visibility during the tracking mission. This planner would use the provided
motion primitives to abstract out the controls required during aggressive maneuvers and
meet the demands created by the vision system. In a farther future, the system will be
reliable enough to be accepted as a mainstream tool for covering live action sports, shooting
high speed car chases and providing autonomous pursuit solutions for law enforcement.
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