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Abstract 

 

Glioblastoma multiforme (GBM) is one of the most common and aggressive 

primary brain tumours, with a median patient survival time of 6-12 months in adults. 

It has been recently suggested that a typically small sub-population of brain tumour 

cells, in possession of certain defining properties of stem cells, is responsible for 

initiating and maintaining the tumour. More recent experiments have studied the 

interactions between this subpopulation of brain cancer cells and tumour 

microenvironmental factors such as hypoxia and high acidity. In this thesis a 

computational approach (based on Gillespie’s algorithm and cellular automata) is 

proposed to investigate the tumour heterogeneities that develop when exposed to 

various microenvironmental conditions of the cancerous tissue.  The results suggest 

that microenvironmental conditions highly affect the characterization of cancer cells, 

including the self-renewal, differentiation and dedifferentiation properties of cancer 

cells.   
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1. Introduction 

 

 

In spite of considerable improvements in medical technology, cancer prognosis 

and treatment remain some of the main challenges of modern medicine. Cancer is 

a disease characterized by uncontrolled replication of cells as a result of the 

accumulation of multiple genetic mutations. Despite widespread and significant 

studies on cancer, conventional treatments remain problematic, survival time is 

often quiet short and cancer metastasis and reoccurrence are frequently lethal.  

Central nervous system cancers (aka brain) cancers are growing neoplasms inside 

the cranium or in the central spinal canal. The critical role of the central nervous 

system, the short survival time, deadly invasiveness, and reoccurrence of cancers 

highlight the critical importance of the appropriate selection of brain cancer 

treatments. 

In-depth studies of cancer cell physiology reveal heterogeneities inside tumours 

and consequently, the results of studies conducted in the early 60s proposed that 

the physiological and functional heterogeneities inside the tumour may be 

explained by considering distinct subpopulations of cancer cells. These 

considerations lie at the heart of the cancer stem cell hypothesis.  

According to the cancer stem cell hypothesis, there is a subpopulation of cancer 

cells capable of tumour initiation, tumour maintenance, as well as differentiation 

into other progenitor cells, that play a critical role in invasion and metastasis 

[Reya et al. 2001, Singh et al. 2004, Dirks 2008]. The annotation of cancer stem 
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cells is due to their physiological and functional similarities to normal stem cells. 

Just like normal stem cells, cancer stem cells are capable of colony formation. 

Furthermore, normal and cancer stem cells may express similar cell surface 

markers. For instance, brain cancer and normal neural stem cells both express CD 

133+ on their membrane [Singh et al. 2004, 2003]. Similar to normal stem cells, 

cancer stem cells undergo three alternative division pathways: self-renewal, 

symmetric or asymmetric differentiations. The cells produced through self-

renewal inherit all the capabilities of their stem-like parent while differentiated 

children are more mature cells with a lower potential for proliferation.   

Recent studies have reported that the tumour microenvironment closely interacts 

with cancer cells. Hanahan and Weinberg [Hanahan and Weinberg 2000, Hanahan 

and Weinberg 2011] characterized all cancer cells by introducing six common 

features: proliferation inhibitors avoidance, apoptosis escape, self-sufficiency in 

proliferation, unlimited replication, promotion of angiogenesis, invasion and 

metastasis. All cancer cells possess most of the aforementioned capabilities.  In a 

most recent paper [Hanahan and Weinberg 2011], they discuss the central role 

played by the tumour microenvironment in promoting the cancerous properties of 

these cells. The peculiar properties of the tumour microenvironment (that are 

partially the result of the tangled and dysfunctional vascular network inside the 

tumour as well as the metabolic abnormalities of cancer cells) include hypoxia, 

elevated acidity, and high interstitial fluid pressure. 

Hypoxia and acidity, common features of the tumour microenvironment, can play 

a significant role in the progression of tumour malignancies through the 

upregulation of proliferation and the promotion of the cancer stem cell phenotype 

[McLendon and Rich 2011]. Recent studies have reported the observation of 

CD133+, brain cancer stem cell surface marker expression in cancer stem cell-

depleted cultures exposed to hypoxia and acidity [Seidel et al. 2010, Heddleston 

et al. 2009, Hjelmeland et al. 2011]. Thus, in investigating the dynamics of 

tumour heterogeneities and tumour progression, it seems that microenvironmental 

factors play a key role.  
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The diverse tumour microenvironment and varieties of cancer cells form a 

complex system of multi-variables. The interaction of cancer cells and the tumour 

microenvironment complicates the problem further. The study of such a complex 

system requires powerful tools that can handle multiple variables with ease and 

can be tuned to satisfy biological considerations. Mathematical and 

computational models grounded on experimental studies have proved invaluable 

in studying complicated biological systems of many variables in order to provide 

a better understanding of the whole system. In addition, they can often capture 

the complex interaction of the variables, and thus provide the means for an in-

depth study of a particular part of the system. Mathematical and computational 

models are also proving to be increasingly useful in predicting the behaviour of 

biological systems, in making hypotheses and in designing appropriate biological 

experiments to test these hypotheses.  

In this thesis, we propose a mathematical model and use computational 

methodologies in order to investigate tumour heterogeneities, with an emphasis 

on the interaction of tumour microenvironmental factors, hypoxia and acidity, 

with cancer stem and non-stem cells. The model attempts to capture the dynamics 

of a heterogeneous population of cancer cells by including the self-renewal, 

symmetric or asymmetric differentiation of cancer stem cells and the division or 

dedifferentiation of non-stem cancer cells on exposure to various levels of 

hypoxia and acidity.  Chapter 2 briefly reviews the biological background 

knowledge of cancers, brain cancers, the tumour microenvironment, cancer cell 

heterogeneities, and the interactions between cancer cells and the tumour 

microenvironment. In chapter 2, we also cover the relevant issues and biological 

prerequisites necessary to set up the mathematical model. The first section of this 

chapter is devoted to introducing the general concept of cancer, characteristics of 

cancer cells, and different types of cancer with a focus on brain cancer and the 

special case of glioblastoma multiforme.  In the second section, we provide an 

overall picture of the tumour microenvironment. Starting with abnormal and 

sustained tumour angiogenesis, one of the basic reasons for tumour 
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microenvironment abnormalities, we discuss the phenomenon of hypoxia, 

mechanisms underlying the cancer cell response to hypoxic conditions and 

consequences promoted by the hypoxic environment. The low pH levels 

characteristic of the tumour microenvironment is reviewed, followed by a brief 

discussion of cancer cell metabolisms and the effects of different metabolic 

pathways on microenvironmental acidity. Finally, the high interstitial pressure of 

tumour tissues is considered. The second section of chapter 2 is devoted to a 

discussion of the cancer stem cell hypothesis. As biological prerequisites of the 

model construction, the current method of identification of brain cancer stem 

cells through the expression of CD133+ is discussed along with a discussion of 

the interaction of cancer stem cell with tumour vascular niches, hypoxia and high 

acidity. The third chapter starts with a brief review of mathematical cancer 

growth models. This consists of model categorization and a review of previous 

work on tumour growth dynamics. The fundamental construction of the model 

and assumptions is preceded by a discussion of possible division pathways of 

cancer stem and non-stem cells. In the second section of chapter 3, the 

preliminary model of cancer cell division pathways is expanded to encompass the 

suggested phenotypic pattern of cancer cells. After developing the mathematical 

framework of the model, we construct the master equation governing transition 

(division) pathways of cancer cells, in section 3.  We use a stochastic approach to 

gain a better understanding of the cellular heterogeneities inside the tumour. 

Thereafter, we use two steps of filtration of transition rates (out of a brute force 

process) to provide matching results with biological data, segregated into 

different microenvironmental conditions (including hypoxic, acidic, acidic-

hypoxic and normal conditions). In the first step, realizations are aimed to 

reproduce the same fraction of cancer stem cells as reported in biological 

experiments and in the second part, the ability of the system to form neurospheres 

is taken into account. The initial conditions and constraints for the simulations are 

tuned to match the initial conditions of the relevant biological experiments. 

Finally, the results are presented and discussed. We also draw conclusion about 
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the effects of hypoxia and acidity as well as the simultaneous exposure of acidity 

and hypoxia on the transition rates of cancer cells and consequently on the 

tumour heterogeneities. The last chapter demonstrates the result of the 

implementation of the obtained transition rates under specific tumour 

microenvironmental conditions in the proposed cellular automata model that can 

mimic the behaviour of cancer cells in tumour tissue. The cellular automata 

model is equipped with a pushing mechanism that under specific circumstances 

enables the central cells to proliferate. The tumour microenvironmental 

conditions, including oxygen and glucose distribution, metabolic recruitment 

pattern of the tumour tissue and subsequent pH distribution, are added to the 

model and interact with the cellular automata. The distribution map of different 

cell phenotypes are provided along with the corresponding nutrient distribution, 

in the results section. At the end of the chapter 4, the same results as the third 

section of chapter 3 are confirmed through the realizations of the cellular 

automata model. These are discussed in the conclusion section.  
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2. Biological Background 

2.1. Introduction to cancer 

Cancer is a large family of diseases, over 100 different types [Hanahan and 

Weinberg 2000], characterized by uncontrolled division of abnormal cells, which 

are capable of invading surrounding tissues. Cancer cells may also spread to 

other organs of the body through blood and lymph vessels (metastasis). One may 

consider a tumour as an abnormal organ initiated by cancerous cells that through 

the accumulation of multiple mutations, have gained the ability of unbounded 

replication.  

A large body of ongoing cancer research has been dedicated to identifying the 

dynamics of genetic changes that lead to cancer [Hanahan and Weinberg 2000]. 

Although these findings are large steps in recognizing relevant molecular and 

biochemical pathways, the incompatibility of experimental model cells, such as 

fibroblasts or cell lines, with actual tumour cells has left us with only a rough 

approximation of the fate of cells affected by such mutations [Reya et al. 2001].   
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2.1.1. Features of cancer cells 

Cancer cells are cells affected by a series of mutations, which makes them gain 

cancerous properties. The multi-step, multi-site process of genetic alteration in 

the genome leads to the transformation of normal cells to cancerous cells 

[Hanahan and Weinberg 2000, Kinzler and Vogelstein 1996]. Even in “in vitro” 

experiments on rodent cells in culture, the transformation of cells to tumourigenic 

cells happens in at least two steps while the transformation of human cells 

requires more steps than rodents’ [Hahn et al. 1999]. In spite of the vast diversity 

in cancer sites and types, and uncertainty about the trail of mutations leading to 

tumourigenesis, Hanahan and Weinberg [Hanahan and Weinberg 2000, Hanahan 

and Weinberg 2011] have proposed six necessary changes in cell physiology to 

make the cells capable of forming malignancies: self-sufficient signalling for 

growth, insensitivity to antigrowth signals, apoptosis evasion, potency to 

unlimited replication, sustained angiogenesis, metastasis and invasion into other 

tissues. Gaining any of these features is due to the destruction of the 

corresponding opposing counterpart mechanism in cells. For instance, the 

transition of normal cells from quiescent to proliferative state is dependent on the 

existence of mitogenic growth signals. The signal receivers are a group of 

transmembrane receptors that bind to diffusive growth factors, extracellular 

matrix component, and cell-cell adhesion/interaction molecules acting as 

signalling molecules. Cancer cells are strongly independent of exogenous growth 
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stimulations and are able to generate many of the essential signals for their 

proliferation. A large body of early-discovered oncogene regulates growth 

signalling autonomy [Hanahan and Weinberg 2000].  In glioblastoma multiforme, 

one of the most malignant and common brain tumours, and sarcoma, a cancer 

initiated by mesodermal cells, the production of platelet-derived growth factor 

(PDGF) and tumour growth factor-α (TGF-A), respectively, are enablers of the 

aforementioned growth signalling autonomy [Fedi et al. 1997].  

Likewise, the cellular quiescence and tissue homeostasis in normal cells is 

maintained by several anti-growth signals such as soluble growth inhibitors and 

immobilized inhibitors in the extracellular matrix and on the surfaces of 

neighbouring cells. This anti-growth signalling can block the cell proliferation in 

two ways: first, temporally, where the cells are silent (G0 in cell cycle) till the 

extracellular matrix signalling allows them to proliferate in the future or second, 

permanently, where the cells are forced to enter the postmitotic state, that is, they 

are unable to proliferate anymore [Hanahan and Weinberg 2000]. Cancer cells are 

rendered insensitive to antigrowth signals by the disruption of retinoblastoma 

protein (pRb) and its two relatives, the p107 and p130 pathways.  In the 

hypophosphorylated state, pRb seizes and modifies the function of E2F 

transcription factors that control the expression of vital genes for the transition 

from the G1 to S phase [Hanahan and Weinberg 2000,Weinberg 1995]. Thus the 

liberation of E2F transcription factors due to pRb disruption allows the cells to 

proliferate and makes them insensitive to antigrowth signalling [Hanahan and 

Weinberg 2000, Hanahan and Weinberg 2011].  



 9 

The life duration of cells is determined by apoptotic machinery and ruled by 

controlling the extra/intracellular (ab)normality checks that are the sensory part 

of the machinery. The effector part of apoptotic machinery consists of cell surface 

receptors that bind to death or survival factors. For example, P53 tumour 

suppressor protein is a component of apoptosis circuitry and its inactivation 

results in the formation of tumours that rarely contain apoptotic cells [Symonds et 

al. 1994, Hanahan and Weinberg 2000, Hanahan and Weinberg 2011].   

Although the three capabilities of growth self-sufficiency, insensitivity to 

antigrowth signalling and apoptosis evasion seem to be sufficient for a rapidly 

growing tumour, defunctionalisation of the cell-autonomous program that 

restricts the amount of cell replication is crucial in the formation of an aggressive 

tumour. Many studies support the observation that the majority of cancer cells 

propagated in culture have the ability of unbounded replication, suggesting that 

the tumour cells acquire this capability during the multi-step process of 

tumourigenesis and that the immortalization of cells is an essential feature of 

cancer cells [Hayflick 1997, Hanahan and Weinberg 2000, Hanahan and 

Weinberg 2011].    

During organ formation in normal conditions, the indispensible oxygen and 

nutrient requirements of cells promotes the well-coordinated growth of vessels 

(angiogenesis) and parenchyma. While cancer cells do not have the ability to 

shape the essential angiogenic bed in a normal fashion, they must undergo 

angiogenesis to be able to grow to a large size [Bouck et al. 1996, Hanahan and 

Folkman 1996, Folkman 1997]. The normal tissue encourages or blocks the 
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angiogenesis by counterbalancing positive or negative angiogenic signalling 

whereas tumour tissue is not capable of balancing positive and negative signals.  

In order to promote angiogenesis, tumour cells can relatively increase the 

angiogenesis inducing factors relative to the inhibitors [Hanahan and Folkman 

1996]. For instance, cancer cells alter gene expression to amplify the expression 

of vascular endothelial growth factors (VEGF) and/or fibroblast growth factors 

(FGF) or they may downregulate the expression of endogenous inhibitors such as 

thrombospondin-1 or beta-interferon. The upregulation of pro-angiogenic factors 

and the downregulation of anti-angiogenic ones may occur simultaneously, hence 

compounding the effect [Singh et al. 1995, Volpert et al. 1997].  

There are several proteins responsible for the adhesion of cells to their 

surroundings. These proteins (that consist of cell-cell adhesion molecules and 

link the cells to extracellular matrix substrates) are functionally altered in tumour 

tissue. For example, defunctionalisation or interference in functionality of E-

cadherin, a homotypic cell-cell interaction molecule expressed on epithelial cells, 

leads to the enhancement of invasion and metastasis [Christofori and Semb 

1995].  The pathways that normal cells take to obtain the abilities necessary to 

form malignancies are variable. The acquisition of different features of cancer 

cells may not occur in the same chronological order from one cancer to another. 

Independent of the taken steps in genetic alteration taken in order to become 

cancerous, Hanahan and Weinberg [Hanahan and Weinberg 2000] believe that 

almost all types of tumour cells share the aforementioned six features, and have 

coined these as the hallmark capabilities of cancers. 
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2.1.2. Different types of cancers 

 

Cancers are classified into five major categories: carcinomas, sarcomas, leukemias, 

lymphomas and central nervous system (CNS) cancers. The intensity of cancers is 

denoted by four grades which are associated with the level of severity of tumour 

malignancy where Grade I is a benign, slow-growing tumour while cancers grouped 

in Grade IV are the most malignant. 

 

 
2.1.3. Brain cancers, different types and stages 

CNS cancers (aka brain cancers) are growing neoplasms inside the cranium or in the 

central spinal canal. Brain cancers are classified according to the exact site of the 

tumour, the type of tissue involved, whether they are noncancerous (benign) or 

cancerous (malignant). But the most important classification for brain cancers is 

associated with the origin of the preliminary cancerous cells. In the majority of brain 

cancers, tumour initiating cells are originally parts of the CNS but in some cases the 

initiating cells originate from a non-adjacent tissue or organ that causes cancer after 

invasion and metastasis into the brain. Such metastatic cancers are known as 

secondary cancers as opposed to primary cancers that have the same origin and site 

for initiating cells and tumour formation. For example, breast cancer is known to be 

a metastatic disease and often results in secondary cancers in bone, liver, lung and 
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brain [Lacroix 2006].  

The most common types of primary brain tumours are gliomas. Gliomas originate in 

glial cells, which are non-neuronal cells that provide support and protection for the 

brain neurons. Different types of glioma are named based on the histological 

similarities to specific cells, although they may not originate from that type of cell, 

for example: 

• Astrocytomas (cancer cells similar to astrocytes) 

• Oligodendroglioma (cancer cells similar to oligodendrocytes) 

• Ependymomas (cancer cells similar to ependymal cells) 

• Mixed Glioma (contain a combination of cells similar to different types of 

glial cells) 

 

 

2.1.4. Particular case of GBM  

According to the World health organization (WHO) in 2007, malignant gliomas 

were classified among the most fatal brain tumours [louis et al. 2007]. Astrocytomas 

are the most common type of gliomas that develop from, star-shaped glial cells, 

astrocytes. Grade IV astrocytoma, Glioblastoma Multiforme (GBM), is one of the 

most frequent, aggressive and chemoresistant primary brain tumours, with a median 

patient survival time of 6-12 months in adults and a bleak prognosis where tumour 

recurrence is likely after surgery [Eramo et al. 2006]. Therefore, GBM has attracted 

significant media attention due to its low long-term survival rate, prevalence, 

malignancy and resistance to different therapies. This also makes it an important 

target for current research.  
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2.2. Abnormal tumour microenvironment 

Augmented and unlimited replication of cancer cells in a tissue that is not designed 

to host them normally promotes the heterogeneity of the tumour microenvironment 

and causes it to differ from the normal interstitium. In a reciprocal fashion, the 

tumour microenvironment has a profound effect on cancer cells. Some previous 

studies point to the close interaction of cell and matrix as well as cell- cell 

interactions that should be taken into account in determining cancer cell response to 

internal and external stimuli [Hill et al. 2009]. Such interactions are not restricted to 

tumorigenic tissues, but play an important and functional role in normal 

environments as well [Hill et al. 2009].  

The tumour microenvironment affects cancer cells through the endocrine, paracrine 

and autocrine signalling pathways, by means of chemicals, chemicals and physical 

forces from neighbouring cells and positive feedback signalling loops generated by 

the cancer cells themselves [Fedi et al. 1997]. Cell responses to such conditions 

include: alteration in signalling, division, differentiation, apoptosis, adhesion and 

migration.  

Among all the features of the tumour pathophysiologic microenvironment, hypoxia, 

low pH and nutrient deprivation appear to have the strongest effects on spatial and 

temporal heterogeneity within the tumour microenvironment [Vaupel and Mayer 

2007].  
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2.2.1. Angiogenesis 

As the mass of solid cancer cells grows larger, the density of pre-existing normal 

vessels inside the tumour decreases. To obtain sufficient oxygen and other nutrients 

the cells must be at most 100 µm away from a blood vessel [Hanahan and Weinberg 

2000]. In normal organogenesis this distance is not exceeded since the vessels grow 

in a well-organized manner so that the necessary closeness of cells and blood vessels 

is insured. Normal cells regulate the process of new vessel formation, angiogenesis, 

inside the organ and maintain the coordinated vessel network. Cancer cells are 

initially unable to regulate a proper vessel network to keep up with the increasing 

demand of oxygen and other nutrients inside a tumour [Bouck et al. 1996, Hanahan 

and Folkman 1996, Folkman 1997]. The inability of cancer cells to generate a 

thriving mass of cells covered by coordinated vessels is due to the imbalance of 

pro/anti angiogenic factors. VEGF is the dominant growth factor involved in 

triggering angiogenesis inside the tumour. VEGF upholds the survival and 

proliferation of endothelial cells that form the inner lining of vessels. In normal 

tissues, the effect of VEGF is counterbalanced by anti-angiogenic factors such as 

thrombospondin so that new normal vessels in processes like wound healing are 

formed under a fine balance of proangiogenic and antiangiogenic growth factors.  

When VEGF signalling is upregulated abnormally, as in tumour tissues, the elevated 

amounts cause the vessels to become more permeable than normal. The aberrant 

leaky vessels have disfunctionally oversized pores and do not have the regular and 

efficient coverage for the cells they support [Jain 2008]. These deficiencies increase 

the interstitial fluid pressure (IFP) in tumour tissues. Hence, the challenges for 

tumour cells are not only oxygen and nutrient deprivation but also high pressure 
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inside the tumour due to the vessel leakage and the accumulation of tissue waste 

products.  

On one hand, the lack of sufficient oxygen content in tumours, hypoxia, and on the 

other hand, the accumulation of wastes products from defective cancer cells, 

destabilize the microenvironmental homeostasis. The tumour microenvironment is 

considerably acidic since first, in the absence of oxygen, hypoxia causes the cancer 

cells to switch to a glycolytic metabolism than the normal aerobic metabolism of 

respiration; second, the malfunctioning blood vessel network and lymph system are 

not able to clean the tumour microenvironment; and thirdly, cancer cells abnormally 

tend to utilize other metabolisms than respiration even in the presence of sufficient 

oxygen.      

The formation of new blood vessels is a result of either the pre-existing vessels 

sprouting into the tumour, generally known as angiogenesis, or vessel assembly 

from endothelial precursors, vasculogenesis. Although vasculogenesis was 

considered to be restricted to embryonic development for a long time, recent studies 

have demonstrated that some of the endothelial cells inside the tumour are more 

similar to tumour cells than to pre-existing endothelial cells in terms of somatic 

mutations [Wang et al. 2010, Ricci-Vitiani et al. 2010].  In GBM, one of the most 

angiogenic malignancies, a subpopulation of cancer cells strongly promotes 

angiogenesis through the release of VEGF and stromal-derived factor1. These minor 

but functionally dominant cancer cells have the same genomic alteration as 20-90% 

(mean 60.7%) of tumour endothelial cells [Ricci-Vitiani et al. 2010]. This finding 

suggests that typically more than half of the GBM endothelial cells have their origin 

in the neoplasm.    

Atypical blood and lymph circulation is the golden link in the chain of tumour 

microenvironment abnormalities. Except for the innate tendency of cancer cells to 
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switch to other metabolisms than respiration, all other key features of the tumour 

microenvironment, such as high IFP, hypoxia and acidity are clear results of the 

tangle of dysfunctional vessels.  

In spite of many antiangiogenic methods that cause the destruction of the 

vasculature inside the tumour, some methods aim to normalize them instead. In 

these methods the delivery of chemotherapeutic agents is the final goal and is 

achieved by balancing anti and proangiogenic factors that lost their equilibrium 

during the growth of the tumour [Jain 2005, Jain 2008].                                                                                                                           

 

 

2.2.2. Hypoxia 

The state of low levels of oxygen, hypoxia, is perhaps the most important feature of 

the tumour microenvironment. The fluctuation of oxygen concentration in the 

tumour microenvironment is the outcome of irregular blood flow, poor oxygen 

diffusion across the tumour and the chaotic vascular network within the tumour 

[Heddleston et al. 2010]. Severe hypoxia may result in upregulation of pro-apoptotic 

pathways and consequently cell death; genotoxic effects are the outcome of 

prolonged hypoxia and are caused by the induction of reactive oxygen species 

(ROS) [Heddleston et al. 2010]. The commonly observed necrotic tumour core is the 

mass of dead cells that could not survive the hypoxic conditions. Hypoxia may also 

have other extensive transcriptional effects, for instance the activation of pro-

angiogenic pathways.  

Persistence of the hypoxic condition inside the tumour tissue leads to the induction 

of hypoxia inducible factors (HIFs). The activity of HIF proteins boosts the tumour 

progression through the upregulation of angiogenesis, alteration of cellular 
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metabolism and invasion [Hill et al. 2009, Heddleston et al. 2010, Keith and Simon 

2007, Seidel et al. 2010, Bao et al. 2009,  Heddleston et al. 2009, McCord et al. 

2009, Li and Rich 2010].  

HIF transcription factors are generally categorized into two subunits, α and β, each 

having three members (HIF-1α, HIF-2α, HIF-3α, and HIF-1β, HIF-2β, HIF-3β). The 

constantly expressed beta subunits are insensitive to oxygen and act as receptors for 

their α counterparts [Liao and Johnson 2007]. In normoxic conditions, the activity of 

HIF-α is decreased by prolyl hydroxylases (PHDs) that bind to Von Hippel Lindau 

proteins for final degradation of HIF-α via ubiquitin-proteasome pathways [Hill et 

al. 2009, Berra et al. 2003, Semenza 2004]. In the absence of an adequate level of 

oxygen, the reduction of oxygen-dependent activity of PHDs increases the 

unsuppressed expression of HIF-α [Semenza 2004]. 

Hypoxia inside the tumour varies spatially and temporarily [Heddleston et al. 2010]. 

Due to the aberrant blood flow and abnormal vascular structure, hypoxic cycles are 

more considerable in microvasculature regions [Kimura et al. 1996]. The fluctuation 

of oxygen content causes the alteration of HIF activity. The importance of 

identifying hypoxic regions is not only limited to the prominent effect of hypoxia in 

promoting angiogenesis, proliferation and tumour invasion but also extends to the 

radio-resistance of hypoxic regions [Moeller et al. 2004, Dewhirst et al. 2008].  

HIFα is a key regulator that triggers angiogenesis through direct activation of 

vascular endothelial growth factors [Forsythe et al. 1996, Olsson et al. 2006]. 

Therefore, HIFα plays a critical role in tumour angiogenesis since the tumour 

vascular network is known to be strongly dependent on VEGF-recruiting pathways. 

VEGFs are cell surface bound proteins that promote proliferation, migration and 

survival of endothelial cells by binding to the specific high affinity transmembrane 

proteins on endothelial cells [Bao et al. 2006]. In order to form new vasculature 
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inside the tumour, VEGF promotes the activity of endothelial precursors. 

Besides the probable promoted genetic mutations, the upregulation of HIF under 

low oxygen tension can also affect cell differentiation. In some cancer studies, the 

origin of the majority of endothelial cells has been shown to be cancer cells. These 

studies demonstrate that the differentiation of non-endothelial CD133+ cancer cells 

to endothelial cells is highly positive-correlated with the intensity of hypoxia in a 

tumour [Wang et al. 2010, Ricci-Vitiani et al. 2010]. Some other studies have 

demonstrated that hypoxic conditions enhance genetic mutations, which elevate the 

pluripotency of cancer cells and lead to more malignant tumours [Seidel et al. 2010, 

Bao et al. 2009, Heddleston et al. 2009, McCord et al. 2009, Li and Rich 2010, 

McLendon and Rich 2011]. 

 

2.2.3. Acidity 

The acidity of the tumour microenvironment is a result of abnormalities in the 

microenvironment and cancer cell characteristics. Hypoxia, as a common feature of 

the tumour microenvironment, blocks the process of respiration for cells. Although 

respiration, as the first potential choice of normal cells, is the most efficient cell 

metabolism to satisfy cell energy requirements (ATP), cancer cells may switch to 

other metabolisms such as glycolysis and glutaminolysis to survive in hypoxic 

conditions. Cancer cells may preferentially select a glycolytic metabolism even in 

the presence of sufficient oxygen for respiration. In this situation, called the Warburg 

effect or aerobic glycolysis, the produced ATP is one eighteenth of the energy 

provided by the oxidation of one molecule of glucose in the respiration reaction. 

Grüning and Ralser [Grüning NM, Ralser M. 2011] have very recently proposed that 

the reason behind the tendency of cancer cells to glycolysis rather than respiration is 

to avoid the accumulation of reactive oxygen species that cause oxidative damage. 
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Hence, the uptake of glucose to generate the energy through glycolysis is more than 

the amount of glucose uptake in respiration. However, the main problem of having 

glycolysis rather than respiration in cancer tissues is the accumulation of products of 

glycolysis reaction such as hydrogen ions. Impairments in the glycolytic pathway 

result in cancer cells switching to a glutaminolytic metabolism [Helmlinger et al. 

2002]. In healthy tissues, neutrality is maintained through the balanced contributions 

of vascular and lymphatic systems in supplying nutrient and collecting waste and 

also the involvement of the natural buffering systems. The most prominent buffering 

reaction is the interconvertion of bicarbonate and carbon dioxide. However, the 

aberrant structure of the vasculature and lymph inside the tumour tissue, and the 

excess accumulation of waste products, especially hydrogen ions, makes the tumour 

microenvironment acidic. 

Similar to hypoxia, high acidity of the tumour microenvironment has been observed 

to affect cancer cell reprogramming and worsen tumour malignancies [Hjelmeland 

et al. 2011]. The immune system, as the first natural guard against abnormal cancer 

cells that survive the internal protection paths, is paralyzed in an acidic 

microenvironment. The situation is even worse, since hypoxia and acidity are both 

ubiquitous in cancer tumours. Although the spatiotemporal profiles of hypoxia and 

acidity are not fully correlated [Helmlinger et al. 1997], they are both critical 

features of the tumour microenvironment and play dominant roles in the progression 

of tumour malignancies.     

The partial pressure of oxygen, which is inversely related to the level of hypoxia, 

strongly correlates with pH in tumour microenvironment on average. However the 

heterogeneities between partial pressure of oxygen (pO2) and interstitial pH profiles 

and incompatible relation between local pO2 and pH profile have been reported in 

some “in vivo” experiments [Helmlinger et al. 1997].  

In spite of the aforementioned relationship between of pH and hypoxia, these two 
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prominent microenvironmental factors seem to act independently to promote 

vascular endothelial growth factors [Fukumura et al. 2001]. In vivo experiments 

done by Fukumura et al. support the autonomous role of acidity and hypoxia in 

VEGF up-regulation [Fukumura et al. 2001]. Their study, focused on brain cancers, 

proposing that although the effect of acidity and hypoxia are not correlated on 

VEGF promotion, there is no additive effect of both in regions exposed to hypoxia 

and acidity simultaneously. An explanation for this non-additive effect may be the 

fatal consequences of the coincidence of hypoxia and acidity that causes apoptosis 

[Fukumura et al. 2001]. Casciari et al. in their 1992 experiments have confirmed the 

results of Fukumura et al. [Casciari et al. 1992]. Their experiment investigated cell 

growth rates and metabolism under different oxygen and glucose concentrations and 

extracellular pH. They state that cell growth rates in regions exposed to hypoxia and 

acidity simultaneously is less than that when exposed to only one of hypoxia or high 

acidity.   

 

 
2.2.4. High interstitial fluid pressure 

Mainly due to abnormal angiogenesis, IFP is highly elevated in solid tumours. Other 

factors involved in elevation of IFP are lymph vessel abnormalities, interstitial 

fibrosis and the contraction of the interstitial matrix mediated by stromal fibroblasts 

[Heldin et al. 2004].  The elevated level of IFP in tumours opposes the transcapillary 

oxygen and nutrient transport and waste collection that makes the situation bleak for 

cancer cells. However, a major concern about high IFP is the resulting decreased 

efficiency in therapeutic agent uptake. Some methods have been introduced in order 

to improve therapeutic agent uptake, for instance, Heldin et al. proposed the usage 

of signal-transduction antagonists to lower IFP [Heldin et al. 2004]. However, 
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considering the chaotic and dysfunctional vasculature inside the tumour, it is hard to 

maintain the IFP at normal levels. 

 

2.3. Brain cancer stem cell hypothesis 

2.3.1. Stem cells and cancer stem cells hypothesis 

 

There are many different types of standard treatments designed to stop tumour 

growth, but the overwhelmingly frequent failures of these conventional procedures 

have revealed that the current knowledge (about tumour growth dynamics, the 

interaction of cancer cells with the tumour microenvironment and the disruptive 

mechanism of therapeutic agents) is not comprehensive enough. One source of the 

complexity of tumour development and growth is tumour heterogeneity. These 

heterogeneities are the result of on-going mutagenesis and/or the differentiation of 

cancer cells [Reya et al. 2001]. The expression of some differentiation markers by 

tumour tissues supports the cancer cell differentiation argument [Reya et al. 2001]. 

The diverse clusters of cancer cells inside the heterogeneous tumour do not only 

differ in phenotype and differentiation state, but also in proliferative potential and 

ability to increase tumour progression. For the first time, some evidence in 

leukaemia and more recently in solid tumours, such as breast cancers, supports the 

distinct functionality of different subpopulations of cancer cells [Singh et al. 2004]. 

This evidence suggests that there may be a small subpopulation of cancer cells 

capable of tumour initiation, tumour maintenance, and differentiation to some other 

progenies [Reya et al. 2001, Singh et al. 2003, Singh et al. 2004, Dirks 2008]. The 

existence of such a subpopulation of cancer cells is proposed in the “cancer stem cell 

hypothesis”. According to the cancer stem cell hypothesis, although this 

subpopulation is a small fraction of tumour cells, it is the dominant factor in the 
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progression of a tumour malignancy and is known to be both necessary and 

sufficient to maintain tumours. Due to the four basic similarities they share with 

normal stem cells [Fuchs and Segre 2000, Weissman 2000, Reya et al. 2001], they 

are known as “cancer stem cells”. In analogy with normal stem cells, cancer stem 

cells (CSC) are able to differentiate to other cell types, they can self renew through 

symmetric division, they are capable of forming colonies, and they express the same 

surface markers as normal stem cells. They are also comparable with normal stem 

cells in the size of the population, as many studies have reported that the population 

of cancer stem cells is 5-15% of the bulk of tumour cells [Dirks 2008, Chaffer et al. 

2011].  

 

2.3.2. CD133  

Beside the functional similarities between normal and cancer stem cells, they also 

have some physiological resemblances; for instance, some of the well-known 

biomarkers to target normal neural stem cells are also expressed by neural cancer 

stem cells. Nestin, a cytoplasmic intermediate filament protein, is expressed by 

normal and cancerous stem cells [Hockfield and McKay 1985, Lendahl et al. 1990, 

Gates et al. 1995]. But nestin is not a perfect marker for normal or cancer stem cells 

since the neural progenitors do express nestin as well. Therefore, in spite of the 

similar identity of normal and cancer stem cells biomarkers, the absence of reliable 

biomarkers for normal neural stem cells clouds the issue of identification of neural 

cancer stem cells. 

Lately, direct isolation of normal neural stem cells from human foetal brain 

suggested that the cell surface marker CD133 (AC 133, prominin1) could be a good 

candidate to target normal and cancerous neural stem cells [Singh et al. 2004, Singh 

et al. 2003]. Singh et al. (2003) reported that after fractionation and purification of 

brain cancer cells which CD133+ expression, they found that like normal stem cells, 

this minor subtype of neural cancer cells are capable of proliferation, differentiation 
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and self renewal. Despite these analogous functional characteristics, normal and 

cancer neural stem cells express nestin and CD133+, while none of them express the 

neural differentiation markers [Singh et al. 2003, Singh et al. 2004].   

 

 

2.4. Cancer stem cells and tumour microenvironment 

The condition of the tumour microenvironment that is determined by the level of 

hypoxia, acidity, IFP, nutrient concentration, and generally extracellular matrix 

composition, accompanied by the distribution of different cell types in the 

heterogeneous tumour strongly affect the stem cell fate to self-renew or to 

differentiate [Moore and Lemishka 2006]. The dependence of cancer stem cells’ fate 

(self renewal or differentiation) to tumour microenvironmental factors is even higher 

than normal stem cells since the intrinsic and extrinsic cellular mechanisms are all 

exaggerated inside the aberrant structure of tumours. Therefore, based on the 

specific constellation of microenvironmental factors, the tumour region is 

partitioned into sub-regions which each upregulates specific features of cancer cells; 

one may promote the self- renewal of cancer cells while others may suppress it 

[Calabrese et al. 2007, Gilbertson and Rich 2007, Jandial et al. 2008]. 

 

 

2.4.1. Cancer stem cells and vascular niches 

Normal stem cells quiescence, self-renewal and differentiation are controlled by 

microenvironmental factors. Protective niches that normal stem cells lie in, suppress 

the excessive proliferation and differentiation of stem cells and keep them quiescent 

[Calabrese et al. 2007, Moore and Lemishka 2006]. Nonetheless, inside tumour 

tissues, the critically abnormal microenvironment and mature types of neighbouring 
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cells are not able to suppress the cancer stem cells’ self-renewal. The perivascular 

niches are known to be one of the self-renewal promoting niches for BCSCs 

[Calabrese et al. 2007]. The endothelial cells are well recognized to dominantly 

affect BCSCs and secrete factors that promote self-renewal rather than quiescence or 

differentiation. Endothelial cells that closely interact with cancer stem cells 

encourage self-renewal through the secretion of supporting factors [Calabrese et al. 

2007]. On the other hand, cancer stem cells upregulate the process of angiogenesis 

through the secretion and recruitment of pro-angiogenic factors such as VEGF, 

VEGFR2, angiopoietin 2, and stromal derived factor 1 [Bao et al. 2006, Calabrese et 

al. 2007, Gilbertson and Rich 2007, Folkins et al. 2009, Lathia et al. 2010]. This 

reciprocal interaction of cancer stem cells and the tumour microenvironment results 

in the formation of perivascular niches to host cancer stem cells that seem to mimic 

normal stem cell niches in healthy tissues [Calabrese et al. 2007, Gilbertson and 

Rich 2007, Jandial et al. 2008].  

The effectiveness of anti-angiogenic therapies for GBM patients suggests that 

angiogenesis and a vascular bed are indispensible features to maintain GBM 

[Aghajanian et al. 2011,Batchelor et al. 2007]. The interesting fact is the use of anti-

angiogenic therapies does not affect the proliferation and survival of nonstem cancer 

cells and the improvements are due to blocking the growth of the tumour via 

depleting the vasculature from the cancer stem cells niches [Gilbertson and Rich 

2007].    

In spite of the ability of GBM cancer stem cells to upregulate angiogenesis, recent 

studies have revealed the contribution of vasculogenesis in GBM tumours [Wang et 

al. 2010,Ricci-Vitiani et al. 2010]. According to Vitiani et al. and Wang et al. (2010), 

phenotypic similarities between cancer stem cells and almost half of tumour 

endothelial cells suggest the cancerous origin of endothelial cells. They have 
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suggested that together with vasculature formation by sprouting of pre-existing 

vessels through angiogenesis, the differentiation of cancer stem cells to endothelial 

cells produces a large proportion of the GBM vascular network [Wang et al. 2010, 

Ricci-Vitiani et al. 2010]. The ratio of endothelial cells that have the same genomic 

alteration as the GBM cancer stem cells is reported to vary from 20% to 90% (Mean 

60%) of total endothelial cells inside the tumour [Ricci-Vitiani et al. 2010].  

The vital importance of cancer stem cells existence in tumour maintenance, the 

reciprocal impact of vasculature network on cancer stem cells and the partial 

effectiveness of anti-angiogenic therapies in malignancies such as GBM highlights 

the necessity of more research in this field.  

 
2.4.2. Cancer stem cells and hypoxia 

The spatiotemporal fluctuation of oxygen inside the tumour causes transcriptional 

activity of hypoxia inducible factors that respond to hypoxia through pro-angiogenic 

or pro-glycolytic pathways [Heddleston et al. 2010]. Hypoxia increases the number 

of cells expressing CD133, known as a marker for BCSC, in gliomas [Platet et al. 

2007].  

In contrast with HIF-1α that is a hypoxia inducible factor expressed by stem and 

non-stem cancer cells, HIF- 2α is only expressed by cancer stem cells [Bao et al. 

2009]. The poor survival of GBM patients is negatively correlated with the 

expression of HIF-2α inside the tumour. The mechanism that HIF-2α uses to 

provoke angiogenesis, the same as HIF-1α, is through the increase of the expression 

of VEGF [Bao et al. 2009, Bao et al. 2006]. However, the increase in VEGF 

expression has been shown to occur in a cell-specific manner so that the VEGF 

expression induced by hypoxia in BCSCs is higher than the level of VEGF 

expressed in non-stem cancer cells exposed to the same level of hypoxia [Bao et al. 

2009]. 
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In a related study, Heddleston et al. (2009) proposed that hypoxia promotes the self-

renewing capacity of cancer stem cells and upregulates the reprogramming of non-

stem cancer cells toward a stem-like phenotype [Heddleston et al. 2009]. The 

promotion of stem-like phenotypes by hypoxia functionally leads to increased 

neurosphere formation and biologically results in the upregulation of stem cell 

factors such as OCT4, NANOG and c-MYC [Heddleston et al. 2009].  

Seidel and colleagues reported the same results with a focus on the role of HIF-2α 

[Seidel et al. 2010]. First, they hypothesized that HIF-2α plays a significant role in 

inducing the stem-like phenotype in the hypoxic region of GBM tumours. To test 

this hypothesis, they knocked down HIF-2α and observed the reduced inducement of 

the stem-like phenotype due to hypoxia [Seidel et al. 2010].     

Another difference between HIF-1α and HIF-2α is their sensitivity to hypoxia. HIF-

1α, which is associated to both stem and non-stem cancer cells, is only activated in 

severe hypoxic condition (when the oxygen level is less than 1%); whereas HIF-2α 

associated with stem cells, is expressed in less severe levels of hypoxia (when the 

oxygen concentration is 2% to 5%) [Bao et al. 2009]. The relevance of such an 

affiliation of hypoxia inducible factors has been confirmed by some other studies 

[Seidel et al. 2010].   

Suggesting the necessity of the presence of at least one cancer stem cell for active 

metastatic growth, Hill et al. (2009) have provided a more detailed view of the effect 

of hypoxia on metastasis [Hill et al. 2009]. Under hypoxic conditions, cancer stem 

cells start to respond to the oxygen shortage through the transcriptional factors, HIF-

1α and HIF-2α which each has a different role in tumour progression. HIF-1α 

promotes the undifferentiated state of cancer stem cells through the upregulation of 

Notch signalling. HIF-1α is also known to upregulate motility, invasion and 

metastasis through the elevation of CXCR4 (specific receptor for stromal derived 

factor-1), MMPs (matrix metalloproteinases), uPAR (urokinase receptor), and 

VEGF. Equally important, HIF-2α controls the cancer stem cell maintenance 

through the induction of Oct-4 (octamer-binding transcription factor 4) and also 

increases cancer stem cell proliferation by activating c-MYC [Hill et al. 2009].  
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Hence, hypoxia generally influences cancer stem cells in proliferation, self-renewal, 

differentiation, motility, invasion and metastasis and affects the tumour 

microenvironment by the promotion of angiogenesis and vasculogenesis.  

 

 

2.4.3. Cancer stem cells and acidity 

The tumour microenvironment acidity is due to abnormalities in the 

microenvironment and the characteristics of cancer cells. Hypoxia, as a common 

feature of the tumour microenvironment, inhibits the process of respiration for cells 

and also upregulates the glycolytic pathways. Accompanied by the abnormal 

tendency of cancer cells to switch to glycolysis rather than respiration (Warburg 

effect), the inefficiency of the natural buffering system in responding to the 

accumulated amount of hydrogen ions due to the aberrant vascular and lymphatic 

systems, results in an acidic microenvironment inside solid tumours.  

Despite the prominent effect of high acidity on cancer cells, cancer stem cells are 

also reciprocally influenced by the high acidity of the tumour microenvironment. In 

their recent study, Hjelmeland et al.  (2011) have proposed that the exposure to low 

pH of glioma cells leads to the enhancement of stem-like biological and functional 

properties of the cancer cells. Independent of hypoxia, acidity promotes the 

expression of pluripotency markers that are normally expressed by neural stem cells 

such as Olig2, Oct4 and Nanog. The increase in expression of these markers in the 

low pH range is from six to eight fold higher than under normal pH conditions. On 

the other hand, the expression of differentiation markers under acidic conditions is 

noticeably decreased. In addition to the biological effect, low pH promotes 

neurosphere formation and tumorigenic capacity of glioma stem cells. Neurospheres 

are non-adherent and free floating spherical structures generated by neural stem 

cells. 

Moreover, high acidity upregulates angiogenesis through the increased induction of 
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VEGF. The expression of HIF-2α, as a hypoxia-inducible factor associated with 

cancer stem cells, is increased noticeably, while there is no significant change in the 

expression levels of HIF-1α under the exposure of low pH [Hjelmeland et al. 2011].  

 

 

2.5. Summary  

Cancer stem cells are believed to be the predominant factors driving tumour 

progression and strongly correlate with tumour malignancies. Therefore, the 

dependence of cancer stem cell behaviour on the microenvironment highlights the 

importance of developing both a comprehensive spatiotemporal map of the tumour 

microenvironmental factors (nutrients concentration, pH and IFP) and a deeper 

understanding of the dynamics of cancer stem cell behaviour.  
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3. Modeling Cancer Stem Cell 

 
 

 

GBM is the most common brain tumour found in adults. GBM is also the most 

aggressive type of primary brain tumour with a very poor prognosis and low long-

term survival rates. Regardless of their age, most patients with GBM die in less than 

one year. The dominant role of GBM cancer stem cells to boost neurosphere 

formation, cancer invasion and metastasis, beside their prominence as a potential 

source of vasculogenesis along with angiogenesis in tumour tangled vascularisation 

highlights the importance of in-depth studies about BCSC dynamics. 

Tumour microenvironmental factors such as hypoxia, acidity, and the abnormal 

vascular network highly influence the fate of stem and non-stem cancer cells to 

become quiescent, proliferating, differentiating or reprogramming toward a stem-

like phenotype. In addition, the efficiency of the therapy is highly dependent on the 

tumour microenvironmental conditions and the state of BCSC.  

The interaction of cancer cells and tumour microenvironmental factors is highly 

complex and not well investigated. On the other hand, animal or in vitro studies are 

not accurate enough and suffer from lack of correlation with human data. Along with 
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aforementioned issues, the low survival rates and the excessive cost of using 

ineffective therapies necessitate the development of mathematical models and 

computer simulations to model tumour growth.   

The advantages of in silico modeling of cancer growth is that one can control 

variables such as different types of cancer cells and the various microenvironmental 

factors simultaneously to simplify the complex interaction map between the 

involved variables. Also, the order of importance among the affecting factors can be 

revealed through systematic approaches utilizing the mathematical and 

computational models. This is analogous to biological experiments with various 

genetically modified mice. Moreover, the merit of mathematical and statistical tools 

to analyze biological data and make testable hypotheses must not be underestimated 

[Kam et al. 2012].  

    

 

 

3.1. General models for cancer growth 

The proposed models for tumour growth, invasion and metastasis can be divided 

into three broad categories: continuum, discrete and hybrid models. In continuum 

models, a cancer tumour is considered to be a continuous porous solid comprised of 

cancer cells where the pores are filled with interstitial fluid. In contrast, discrete 

models are focused on the individual cancer cell and its contributions towards` 

tumour survival and progression. These agent-based (cell-based) models are 

conventionally classified with respect to the incorporation of cell structure details in 

the model; the model may consider the cells as nuclei-centered species or 

deformable structures [Preziosi  2003, Araujo and McElwain 2004, Anderson et al. 

2007, Byrne and Drasdo 2009, Lowengrub et al. 2010, , Rejniak and McCawley 

2010, Rejniak et al 2010, Rejniak and Anderson 2011].  

The complex interactions between cancer cells and the tumour microenvironment 
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over different time and space scales necessitate the combination of continuum and 

discrete models. Hybrid models, mixtures of continuum and discrete models, can 

provide insights which can not be obtained using either method alone. Hybrid 

models benefit from the agent-based setup of discrete models to model the cell-cell, 

cell-ECM interactions and take advantage of continuous methods to model the 

integrated tumour tissue [Rejniak and Anderson 2010].   

 

 
3.1.1. Previous work 

Tumour proliferative growth and invasion have been widely studied through 

theoretical and computational modeling [Perumpanani and Sherratt 1996, Sherratt 

and Nowak 1992, Tracqui 1995]. Duchting and Vogelsaenger were among of the 

pioneers of computational-mathematical modeling of tumour proliferation. They 

proposed a three-dimensional cellular automaton on a cubic lattice to model the 

growth of small tumours. The model considered the cells’ requirements for nutrition 

but not cell-cell interaction or other microenvironmental factors [Duchting and 

Vogelsaenger 1985].   

Afterwards, Qi and colleagues (1993) reproduced Gompertzian results for tumour 

proliferation. They used a two-dimensional cellular automaton where only those 

cells with empty neighbours were able to divide. The inability of cancer cells to 

push aside neighbouring cells in order to make space for their division weakened the 

ability of their model to satisfy biological constraints and restricted the simulated 

tumour size to very small size. They also considered the dissolution of dead cells as 

a result the models could not generate the necrotic cores of tumours. The transition 

switches from quiescent to proliferative states were chosen stochastically however, 

as considered in Duchting and Vogelsaenger’s model, the role of nutrition to turn on 

and off the division cycles is not negligible [Duchting and Vogelsaenger 1985, Qi et 

al. 1993].   
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The concepts of cancer cell migration and macroscopic behaviour patterns of cancer 

cells affected by growth factors have been introduced more recently by Smolle and 

Stettner [Smolle and Stettner 1993]. Duchting and Vogelsaenger, they considered a 

cubic lattice. Although the cubic or square lattices simplify the study of automata 

organization, the resultant asymmetric and other artificial lattice effects are not 

desired [Duchting and Vogelsaenger 1985].  

For example, modeling of macroscopic tumour growth can be found in the work of 

Wasserman and colleagues (1996). They applied the finite element technique to 

model the macroscopic behaviour of cancer tumour. Chaplain and Sleeman also 

used an analogous methodology to construct a model governed by a strain-energy 

function according to nonlinear elasticity theory [Chaplain and Sleeman 1993].  

Gompertz models have also been used extensively in tumour growth modeling. 

These models describe the evolution of tumour volume over time. The tumour 

growth rate is considered to be exponential at first and gets saturated at large times 

[Steel 1997].  These models have been criticized for the fact that tumours may 

contain a number of clones with different growth rates and different nutritional 

needs, but the Gompertz model cannot incorporate these diversities [Duchting and 

Vogelsaenger 1985].  

To add the competitive effect of multi-clonal tumours, Cruywagen and colleagues 

proposed the Jansson-Revesz equation. This equation assumes logistic growth 

(Lotka-Volterra equation) of tumours equipped with the possibility of conversion of 

one species to another. They also added a diffusive term to each Jansson-Revesz 

equation to compensate for the biological passive cellular motion [Cruywagen et al. 

1995]. In spite of the ability of these models to describe the general size of the 

tumour, the lack of cellular motility and inability to expand the modeling to multiple 

populations beyond two, is a severe limitation [Marusic et al. 1994].    

To model the growth of the tumour necrotic core, the continuum mechanics 

approach has been widely used. In such models, spatiotemporal differential 

equations are used to describe the necrosis growth. For instance, Adam (1986) used 

an ordinary differential equation and a reaction-diffusion equation to reflect the mass 
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conservation of tumour cells and nutrient diffusion respectively [Adam 1986]. A 

comparable approach was used by Ward and King (1997). They formed a system of 

nonlinear partial differential equations to describe the growth of an avascular tumour 

and nutrients diffusion within the tumour [Ward and King 1997]. More recently, 

Byrne and Chaplain (1998) improved Ward and King’s model by adding the explicit 

effects of apoptosis and necrosis [Byrne and Chaplain 1998].  

The selection of the type and intensity of therapy to treat the cancer has a major 

effect on the growth trends of tumours. There are some notable models that consider 

the impact of therapy on tumour growth, among these, work done by Tracqui and 

colleagues (1995) and Woodward and colleagues (1996) are noteworthy [Tracqui et 

al. 1995, Woodward et al. 1996].  

 

 

3.1.2. Stem cell growth models 

 Cancer stem cells, like their normal counterparts, are able to divide symmetrically 

or asymmetrically. Through the symmetrical process, cancer stem cells divide into 

two progenitors (full-differentiation) or two cancer stem cells (full-self-renewal). 

The asymmetric process ends in the birth of one cancerous progenitor and one 

cancer stem cell. These can be summarized as below: 

 

 

S→S+S

S→S+P

S→ P+P

 

 

Where S denotes a cancer stem cell and P is a progenitor. Progenitors are more 

mature cells with the potential for a restricted number of divisions as opposed to the 

limitless capability of cancer stem cells for symmetric and asymmetric divisions. 

The recent mathematical model of Boman and colleagues supports the hypothesis 

that the self-renewal of cancer stem cells is largely responsible for the  formation of 
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the overpopulated cancerous clones found in colorectal cancer [Boman et al. 1997]. 

Wichmann and Loeffler have proposed a cancer stem cells hierarchical model for the 

hematopoietic system [Wichmann and Loeffler 1985].  Michor and colleagues have 

added treatment analysis to the hierarchical model of cancer stem cells as have 

Johnson et al. for chronic myeloid leukemia and colorectal cancer respectively 

[Michor et al. 2005, Johnston et al. 2007]. In the case of gliomas, the proposed 

continuous models by Swanson and colleagues [Swanson et al. 2008] and Stein et al. 

[Stein et al. 2007] are remarkable examples. Swanson et al. do not consider the 

cancer stem cell hypothesis but base their model on a microenvironmental 

heterogeneous bed for a homogenous population of brain cancer cells. Stein and 

colleagues, distinguished two subpopulations of brain cancer cells, are in the tumour 

core and the often more invasive cancer cells in tumour margins. Improving the 

Wichmann and Loeffler’s model, Ganguly and Puri [Ganguly and Puri 2006, 2007] 

pioneered the application of the cancer stem cell hypothesis to model gliomas.  

To illustrate the mechanisms behind brain tumour growth, our group has recently 

proposed a stochastic discrete model [Turner et al. 2009]. The assumed stochasticity 

not only matches the observed biological phenomena, but also makes the model 

applicable when working with small numbers of cells [Turner et al. 2009, Clayton et 

al. 2007]. This model aims to characterize brain tumours and predict the 

effectiveness of potential therapies. According to our previous model, the 

classification of cancer cells into stem and non-stem cancer cells is of major 

importance since the presence of cancer stem cells is the dominant factor in tumour 

growth and progression. Moreover, the incidence of self-renewal division rather than 

full-differentiation of cancer stem cells make the tumours more resistant to therapies 

and increase the survival rates of tumour [Turner et al. 2009].   

Recent studies of tumour microenvironmental factors and their interactions with 

cancer cells in tumour progression have revealed that non-stem cancer cells can 

dedifferentiate into stem-like cancer cells [Wang et al. 2010, Ricci-Vitiani et al. 

2010, Seidel et al. 2010, Bao et al. 2009, Heddleston et al. 2009, Hjelmeland et al. 

2011, Chaffer et al. 2011, Denysenko et al. 2010]. The new cells produced through 
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cell reprograming are able to form neurospheres and also express the biomarkers of 

normal stem cells. The functional and biological features of these stem-like cancer 

cells assert their abilities to form neurospheres as well as the expression of stem cell 

surface markers. This data proves compelling evidence that the tumour 

microenvironment can promote the stem cell even in the initial absence of cancer 

stem cells depleted culture.   

 

 

3.2. Model Foundation and assumptions 

The current model is based on the model proposed by Turner et al. [Turner et al. 

2009]. In the previous model, two basic subpopulations of cancer cells were 

assumed: cancer stem cells and progenitors. Hence the symmetric and asymmetric 

division of cancer stem cells and progenitors can be summarized as below:     

 

S→ S+S

S→ S+P

S→ P+P

P→ P+P

P→S

 

  

the first three division pathways are cancer stem cells pathways and the last two are 

for progenitors. The first pathway denotes the symmetric division of cancer stem 

cells, self-renewal, and the third represents the symmetric full-differentiation. The 

second, asymmetric pathway of cancer stem cell division is known to have a slightly 

more of an effect on tumour malignancies compared with the first. The fourth 

pathway shows the division of a progenitor. As opposed to stem cells, progenitor 

replications are limited hence their division process will terminate at some point. 

While the last pathway denoting the progenitor dedifferentiation confers immortality 

to the bulk of cancer progenitor cells. The existence of the last pathway has been 
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reported by Chaffer et al. [Chaffer et al. 2011]. In their recent work, Weinberg and 

colleagues [Chaffer et al. 2011] have challenged the conventional hierarchical model 

of the cancer stem cells. Their experimental results go against the traditional view of 

unidirectional differentiation of cancer cells. Instead they have proposed a 

bidirectional interconversion between cancer stem cells and non-stem cancer cells. 

Focusing on the human mammary epithelial cells in breast cancer, they have also 

reported the spontaneous reprograming of more differentiated cell types, 

progenitors, to stem-like cancer cells. Hence, as mentioned in the last division 

pathway, progenitors may transform to stem cells or at least to a progenitor from a 

different phenotype explicitly rather than through division [Chaffer et al. 2011]. 

According to the reported gradual increase in fraction and saturation of cancer stem 

cells and progenitors in their model, we have assumed 8 different phenotypes of 

cancer cells from a stem cell phenotype as the first, and fully mature cancer cells 

that are enabled to replicate. Considering this assumption, division pathways for the 

first phenotype, a cancer stem cell, can be rewritten as below: 

 

                                                           S→S+S 

S→S+P1
 

S→ P1 +P1 

 

Herein, P1
 is a progenitor with the most similarities with cancer stem cells while the 

next generation of progenitors, P2, differs more from a cancer stem cell than a P1 

phenotype. The P1 division and dedifferentiation pathways are: 

 

P1 → P2 +P2
 

P1 → S 

Following the same procedure for other phenotypes of progenitors (we assumed we 

have seven different types of these) we form the following division and 

dedifferentiation pathways:  
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P2 → P3 +P3  

P2 → P1
 

P3 → P4 +P4 

P3 → P2  

P4 → P5 +P5
 

P4 → P3  

P5 → P6 +P6
 

P5 → P4  

P6 →M +M  

P6 → P5 

M → ∅  

 

where M denotes the most mature cell type inside the tumour. M cells are not able to 

replicate through division, but they may die in response to the tough and fatal 

conditions in the tumour microenvironment.   

The division format for progenitors, dictates their limited ability to replicate; each Pi 

divides into two progenitors Pi+1. Thus, through the introduced pathways we assume 

the replication ability of progenitors to be restricted to at most 6 times, of course 

except for the dedifferentiation detours of progenitors.  

Beside the assumption of sudden switching of progenitors to less differentiated 

phenotypes and gradual differentiation and dedifferentiation of cancer stem cells and 

progenitors respectively, we made another assumption on the rate of division and 

dedifferentiation pathways. Here after, we suppose that the division rates for all 

types of progenitors are the same. We assumed the same argument for the 

differentiation rate of progenitors so that the division rate of all Pi  (i=1:6) is 

identical (will be denoted by ρP
 afterwards) and so the dedifferentiation rate (will 

be represented by γ ).  

Following Turner et al. (2009), we also assumed that the death rate of an M cell is 
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zero. This is a valid assumption in short time scales (see the experimental data 

presented in the next section). However the possibility of each cancer stem cell 

division incidence as a determining factor of tumour survival is distinct from others. 

Hence the division rates are as follows: 

 

S
r
1

*ρ
S → S+S 

S
r2*ρS → S+P1

 

S
r3*ρS → P1 +P1

 

for i=1 to 6 

Pi
ρP → Pi+1 +Pi+1

 

Pi
γ → Pi−1

 

where P7
 is M and 

M Γ≈0 → ∅     

 

Our last assumption in constructing the model is that the cell divisions are 

stochastic. We considered that the selection of the self-renewal, division, 

differentiation and dedifferentiation of cancer cells has a random component. The 

existence of the random compartment is supported by the work of Till and 

McCulloch for hematopoietic stem cells [Till et al. 1964]. Till and colleagues [Till et 

al. 1964] and Clayton et al. [Clayton et al. 2007] have also assumed that the process 

of cancer cell division is a Markovian process. The Markovian property of a process 

states that the probability of being at state xn at time tn, given that the system is in xn-

1 at time tn-1, is independent of the state of the process at earlier time steps. This 

indicates that the Markovian process is a memoryless process. We assumed 

Markovian property for the stochastic process of cancer cell division in our model 

that lets us look at the state of cancer stem cells and non-stem cancer cells in a step-

wise manner so that only knowing the current state of the system lets us predict the 

next state. 
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In agreement with the recent work of Laslo and colleagues [Laslo et al. 2006], Till 

and McCulloch proposed that control mechanisms change the fate of hematopoietic 

cells through biasing the probability of each stochastic division incidence. Finally, 

we assumed that tumour microenvironmental factors are biasing and modifying the 

transition probabilities of the stochastic process of cancer cell divisions.  

 

 

3.2.1. Markov process 

For N(t), a time dependent discrete random variable, a Markov process is a 

stochastic process that satisfies: 

p(nk, tk nk−1,...,n1;tk−1,..., t1) = p(nk, tk nk−1, tk−1)
 (1)

 

where p(n) denotes the probability mass function and p(A B)  is the conditional 

probability of the event A occurring given that the event B occurred.  

According to our last assumption, the process of cell divisions is a stochastic process 

that in each time step the state of the system is determined based on the system state 

at most recent time step that is equivalent to have a (memory-less) independent 

system from far past or future states.  Such a description completely matches a 

Markov process where N(t)=n(t) is a vector representing the number of different 

types of cancer cells at time t.  

We assumed that the Markov process of cancer cell division is a time homogeneous 

process so that the transition probabilities are time-independent. However, we 

assumed that the transition probabilities depend tumour microenvironment factors.   
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3.2.2. Chapman-Kolmogorov equation 

According to the chain rule of probability for any arbitrary stochastic process N(t) 

the following argument is universally true: 

 

p(n1,n2,n3;t1, t2, t3) = p(n3;t3 |n2,n1;t2, t1)p(n2;t2 | n1;t1)p(n1;t1) 
 (2) 

 

where p(n1,n2,n3;t1,t2,t3) is the joint probability of N(t) to have 

 

(N1(t1),N2 (t2 ),N3(t3)) = (n1,n2,n3)  . 

 

Hence having p(n1;t1)and transition probabilities, one can form a master equation to 

describe the joint probability, p(n1,.n2,n3;t1,.t2, t3). 

Combining the chain rule of probability, equation (2), and the Markovian property of 

stochastic process N(t), equation (1), and assuming the time ordering t1 ≤ t2 ≤ t3we 

have:  

p(n1,...,nk;t1,..., tk ) = p(nk, tk nk−1, tk−1)...p(n2, t2 n1, t1)p(n1;t1)
 (3) 

 

Hence having p(n1;t1)and transition probabilities, one can form a master equation to 

describe the joint probability, p(n1,...,nk;t1,..., tk ). 

Seeking for the transition probabilities we return to equation (2) and sum it over all 

values of n2
 (as the middle stage of transition): 

p(n1,n3;t1, t3) = p(n1;t1) p(n3, t3 n2, t2 )
n2=−∞

∞

∑ p(n2, t2 n1, t1)

(4)

 

Although equation (4), the Chapman-Kolmogorov Equation, clarifies the relations 

between transition probabilities, it’s still hard to handle to find the general form of 

p(nk; tk).  
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Taking τ’=t3 – t2 in equation (4) and approaching τ’ to 0 we seek for p(n3; t3). Now, 

we define q(n,t;τ) as the probability of a transition occurs between t and t+τ for a 

system that is in state n at time t. Assume that q(n,t;τ) is equal to a(n,t)τ when τ 

approaches 0. For more than one transition between t and t+τ for infinitesimal small 

τ, the probability is o(τ) so that as o(τ)/τ approaches 0.  

We also define ω(n*|n,t) as the probability of transition from state n to n* at time t, 

in accordance with Gillespie’s procedure [Gillespie 1991]. Hence the probability 

that a system in state n at time t transits to state n* at time t* between t and t+τ is 

equal to a(n,t)τω(n*,n| t*). Considering the fact that the probability of no transition 

between t and t+τ is 1-a(n,t)τ so the probability of having the process at state n* at 

t+τ can be written as a Kronecker delta function:  

 

δi , j = 1

0

if

if

i = j

i ≠ j







 

 

so it is equal to 1 when n=n* and it’s 0 when n≠n*. Therefore the transition 

probability from state n at t to n* can be written as 

 

p(n*, t ** | n, t) = [1−a(n, t)τ ]δn*,n +a(n, t)τω(n* |n, t*)+o(τ )
 (5) 

 

where t* is between t and t** and τ=t**- t*.  

Assuming that ω(n*|n,t*) as a smooth function, we can substitute t* with t (that is 

infinitesimally close to t*) in equation(5). Hence we have: 

 

p(n*, t ** |n, t) = [1−a(n, t)τ ]δn*,n +a(n, t)τω(n* |n, t)+o(τ )  (6) 

 

Note that summing over all possible values for n* we have: 
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ω(n* |n, t) =1
n*=−∞

∞

∑   (7) 

In line with the notation used by Van Kampen [Van Kampen 2007], we define W as 

below: 

W(n* |n, t) = a(n, t)ω(n* |n, t)  (8) 

 

Combining equations (7) and (8), we have 

ω(n* |n, t) =
W(n* | n, t)

W(n* | n, t)
n*=−∞

∞

∑
   (9) 

now we use the definition of W, equation (8), to rearrange equation (6):  

 

 p(n*, t ** |n, t) = [1− W(n* |n, t)
n*=−∞

∞

∑ τ ]δn*,n +τW(n* |n, t)+o(τ )    (10) 

Following Van Kampen [Van Kampen 2007], we suppose this stochastic process to 

be a time homogenous Markov process. For a time homogenous Markov process the 

transition probability from one state to another is only based on states rather than 

time i.e. p(n*,t**|n,t)=p(n*|n). Thus, a(n,t)=a(n) and ω(n*|n,t*)= ω(n*|n). Also we 

define: 

a0 (n) = W(n* | n)
n*=−∞

∞

∑   (11) 

Hence, substituting in Equation (10) we have: 

 

p(n*, t ** |n, t) = (1−a0(n)τ )δn*,n +W(n* | n)τ +o(τ )     (12) 

 

Thus, for temporary homogenous Markov processes, the probability of the process 

to be in state n* at t** given that it is in state n at t only depends to the time 

difference between t and t**, τ. For more consistency to the notation used by Van 

Kampen, we designate this probability as Tτ= p(n*,t**|n,t). 

Now we return to the Chapman Kolmogorov Equation (4). Using Tτ instead of 
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p(n*,t**|n,t) in Equation (12 and taking ) and taking τ=t2-t1 and τ’=t3-t2 Van Kampen 

[Van Kampen 2007] proceeded as below to find the rate of change of p(n|t): 

 

Tτ +τ '(n3 |n1) = Tτ '(n3 |n2 )Tτ (n2 |n1)
n2=−∞

∞

∑

Tτ +τ '(n3 |n1) = [(1− a0 (n2 )τ ')δn3,n2
+W(n3 |n2 )τ '+o(τ ')]Tτ (n2 |n1)

n2=−∞

∞

∑

Tτ +τ '(n3 |n1) = [(1− a0 (n2 )τ ')δn3,n2
Tτ (n2 |n1)

n2=−∞

∞

∑ ]+τ ' W(n3 | n2 )Tτ (n2 |n1)
n2=−∞

∞

∑ +o(τ ') Tτ (n2 |n1)
n2=−∞

∞

∑

Tτ +τ '(n3 |n1) = (1−a0 (n3)τ ')Tτ (n3 |n1)+τ ' W(n3 | n2 )Tτ (n2 |n1)
n2=−∞

∞

∑ +o(τ ') Tτ (n2 |n1)
n2=−∞

∞

∑

 

(13) 

Remembering the definition of a0 : 

 

Tτ +τ '(n3 |n1)−Tτ (n2 |n1)

τ '
= −a0 (n3)Tτ (n2 |n1)+ W(n3 |n2 )Tτ (n2 |n1)

n2=−∞

∞

∑ +
o(τ ')

τ '
Tτ (n2 |n1)

n2=−∞

∞

∑

Tτ +τ '(n3 |n1)−Tτ (n2 |n1)

τ '
= − W(n2 |n3)

n2=−∞

∞

∑ Tτ (n3 | n1) + W(n3 |n2 )Tτ (n2 | n1)
n2=−∞

∞

∑ +
o(τ ')

τ '
Tτ (n2 |n1)

n2=−∞

∞

∑

Tτ +τ '(n3 |n1)−Tτ (n2 |n1)

τ '
= [−W(n2 |n3)
n2=−∞

∞

∑ Tτ (n3 |n1)+W(n3 |n2 )Tτ (n2 |n1)]+
o(τ ')

τ '
Tτ (n2 |n1)

n2=−∞

∞

∑

 

(14) 

and considering the fact that o(τ)/τ approaches to 0 for infinitesimal small values of 

τ, we have: 

d

dτ
p(n3, t3 | n2, t2 ) =

d

dτ
Tτ (n3 | n1) = [W(n3 | n2 )

n2=−∞

∞

∑ Tτ (n2 | n1)−W(n2 | n3)Tτ (n3 | n1)] 

(15) 

the above discussion to derive Equation (15) can be found in Turner’s work [Turner 

2009] in detail.  To form a master equation governing the heterogeneous population 

of cancer cells, we use Equation (15). 

 

3.3. Forming the master equation 
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Herein, incorporating the self-renewal, division, differentiation and dedifferentiation 

pathways of cancer cells we form the master equation governing the stochastic 

process of cancer stem cells dynamics, i.e. the population of each phenotype of 

cancer cells at time t, given that the system starts at:  

(NS(0),NP1(0),NP2(0),NP3(0),NP4(0),NP5(0),NP6(0),NM(0))= 

( nS
0
,nP1

0
,nP2

0
,nP3

0
,nP4

0
,nP5

0
,nP6

0
,nM

0
) 

where Nx(t) represents the number of cancer cells of phenotype x at time t. To use 

Equation (15) we first need to justify the assumptions we made to form Equation 

(15) for the stochastic process of division. 

 

 

3.3.1. Justification of assumptions 

First assumption: the stochastic process of cell division and reprograming is a 

Markov process. Till and colleagues [Till et al. 1964] and more recently Clayton and 

colleagues [Clayton et al. 2007] have used the Markovian property for stem cell 

divisions and were able to successfully reproduce the experimental results. On the 

other hand, mentioned division and reprograming pathways relate the population of 

each Pi to the population of Pi-1 or Pi+1 that is just one step forward or backward. We 

assume that the process of cell division is a memory-less process that only depends 

on the state of the system in short distances (one step forward or backward). That is 

equivalent to Markovian property of a stochastic process. 

Second assumption: the Markov process of cell division and reprograming is a time 

homogenous process. We use the identical set of rates for self-renewal, cancer stem 

cell asymmetric division, cancer stem cell symmetric differentiation, progenitor 

division, progenitor reprograming (dedifferentiation) and the death of totally mature 

cells (M phenotype) regardless to time. As mentioned in section 3.2, these fixed 

rates are denoted by ρS*r1, ρS*r2, ρS*r3, ρP, γ, and Γ respectively. Hence the 

assumption of temporally homogeneity of the process is logical.   
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One may criticise this time-homogeneity assumption stating that the division and 

reprograming rates are dominantly influenced by the tumour microenvironment so 

that for example, the dedifferentiation rate of progenitors in hypoxia or high acidity 

is higher than the rate in normal condition. We took into account this issue by 

considering different sets of transition rates for regions with diverse 

microenvironmental features. We will comprehensively explain the above-

mentioned categorization later in this chapter.  

 

3.3.2. Master equation 

We are interested to find the joint probability of NS(t)=S, NP1(t)=P1, …, NM(t)=M 

given that:  

(NS(0),NP1(0),NP2(0),NP3(0),NP4(0),NP5(0),NP6(0),NM(0))  

=(nS
0
,nP1

0
,nP2

0
,nP3

0
,nP4

0
,nP5

0
,nP6

0
,nM

0
) 

to make it easier to read, we used the notation p(A) as follows: 

 

p(S,P1,P2,P3,P4,P5P6,M;t |nS
0
,...,nM

0
;0) = p(A)  

 

Note that all probabilities are conditioned to initial state although we skip writing for 

simplification. Using Equation (15) and all possible transitions mentioned in section 

3.2 we have: 
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d

dt
p(A) = ρSr1[(S−1)p(S−1,P1,...,M )−Sp(S,P1,...,M )]

+ρSr2[Sp(S,P1 −1,...,M )−Sp(S,P1,...,M )]

+ρSr3[(S+1)p(S+1,P1 − 2,...,M )−Sp(S,P1,...,M )]

+ρP[(P1 +1)p(S,P1 +1,P2 − 2,...,M )−P1p(S,P1,...,M )]

+γ[(P1 +1)p(S−1,P1 +1,P2,...,M )−P1p(S,P1,...,M )]

+ρP[(P2 +1)p(S,P1,P2 +1,P3 − 2,...,M )−P2p(S,P1,...,M )]

+γ[(P2 +1)p(S,P1 −1,P2 +1,...,M )−P2p(S,P1,...,M )]

+ρP[(P3 +1)p(S,P1,P2,P3 +1,P4 − 2,...,M ) −P3p(S,P1,...,M )]

+γ[(P3 +1)p(S,P1,P2 −1,P3 +1,...,M )−P3p(S,P1,...,M )]

+ρP[(P4 +1)p(S,P1,P2,P3,P4 +1,P5 − 2,...,M )−P4p(S,P1,...,M )]

+γ[(P4 +1)p(S,P1,P2,P3 −1,P4 +1,...,M )−P4p(S,P1,...,M )]

+ρP[(P5 +1)p(S,P1,P2,P3,P4,P5 +1,P6 − 2,M )−P5p(S,P1,...,M )]

+γ[(P5 +1)p(S,P1,P2,P3,P4 −1,P5 +1,P6,M )−P5p(S,P1,...,M )]

+ρP[(P6 +1)p(S,P1,P2,P3,P4,P5,P6 +1,M − 2) −P6p(S,P1,...,M )]

+γ[(P6 +1)p(S,P1,P2,P3,P4,P5 −1,P6 +1,M ) −P6p(S,P1,...,M )]

+Γ[(M +1)p(S,P1,P2,P3,P4,P5,P6,M +1)−Mp(S,P1,...,M )]

 

(16) 
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Equation (16) considers all possible transitions to be at state (S, P1, P2, …, M) at 

time t. 

 
3.3.3. Averaging the master equation 

We simplified the interpretation of Equation (16) to the expected values of 

subpopulations. Recall that the definition of expected value for a discrete random 

variable X is: 

E[X] = xip(X = xi )
i=1

∞

∑  

To find the expected value of each population we multiplied Equation (16) by 

components of random variable. For instance, we multiplied Equation (16) by S as 

the first step to find the average of the cancer stem cell population. Next, summing 

over all possible states of the system, {A}, and taking the derivative out of the 

summation we have:  

S
d

dt
p(A) =

d

dt
Sp(A)

{A}

∑ =
d

dt
S =

d

dt
E[S]

{A}

∑    (18) 

where E[S] represent the expected value of cancer stem cells. In the following we 

explain the procedure in detail to find the average values of each subpopulation in 

detail. 

 

3.3.4. Average of cancer stem cell population 

Multiplying by S and summing over all possible values for states of the system we 

have:
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d

dt
Sp A( )

A{ }
∑ = ρSr1 S S−1( ) p S−1,P1,...,M( ) −S2p S,P1,...,M( ) 

A{ }
∑

+ρSr2 S2p S,P−1,...,M( ) −S2p S,P1,...,M( ) 
A{ }
∑

+ρSr3 S S+1( ) p S+1,P1 − 2,...,M( ) −S2p S,P1,...,M( ) 
A{ }
∑

+ρP S P1 +1( ) p P1 +1,P2 − 2,...,M( ) −SP1p S,P1,...,M( ) 
A{ }
∑

+γ S P1 +1( ) p S−1,P1 +1,P2,...,M( ) −SP1p S,P1,...,M( ) 
A{ }
∑

+ρP S P2 +1( ) p S,P1,P2 +1,P3 − 2,...,M( ) −SP2p S,P1,...,M( ) 
A{ }
∑

+γ S P2 +1( ) p S,P1 −1,P2 +1,...,M( ) −SP2p S,P1,...,M( ) 
A{ }
∑

+ρP S P3 +1( ) p S,P1,P2,P3 +1,P4 − 2,...,M( ) −SP3p S,P1,...,M( ) 
A{ }
∑

+γ S P3 +1( ) p S,P1,P2 −1,P3 +1,...,M( ) −SP3p S,P1,...,M( ) 
A{ }
∑

+ρP S P4 +1( ) p S,P1,P2,P3,P4 +1,P5 − 2,...,M( ) −SP4p S,P1,...,M( ) 
A{ }
∑

+γ S P4 +1( ) p S,P1,P2,P3 −1,P4 +1,...,M( ) −SP4p S,P1,...,M( ) 
A{ }
∑

+ρP S P5 +1( ) p S,P1,P2,P3,P4,P5 +1,P6 − 2,M( ) −SP5p S,P1,...,M( ) 
A{ }
∑

+γ S P5 +1( ) p S,P1,P2,P3,P4 −1,P5 +1,P6,M( ) −SP5p S,P1,...,M( ) 
A{ }
∑

+ρP S P6 +1( ) p S,P1,P2,P3,P4,P5,P6 +1,M − 2( ) −SP6p S,P1,...,M( ) 
A{ }
∑

+γ S P6 +1( ) p S,P1,P2,P3,P4,P5 −1,P6 +1,M( ) −SP6p S,P1,...,M( ) 
A{ }
∑

+Γ S M +1( ) p S,P1,P2,P3,P4,P5,P6,M +1( ) −SMp S,P1,...,M( ) 
A{ }
∑
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Now we change the labelling of state so that all conditional probabilities change to 

the probability of the system to be at the state (S, P1, P2, …, M). 

d

dt
S

{A}

∑ p(A) = ρSr1 [S(S+1)p(S,P1,...,M )−S2p(S,P1,...,M )]
{A}

∑

+ρSr2 [S2p(S,P1,...,M )−S2p(S,P1,...,M )]
{A}

∑

+ρSr3 [S(S−1)p(S,P1,...,M )−S2p(S,P1,...,M )]
{A}

∑

+ρP [S(P1)p(S,P1,P2,...,M ) −SP1p(S,P1,...,M )]
{A}

∑

+γ [(S+1)(P1)p(S,P1,P2,...,M ) −SP1p(S,P1,...,M )]
{A}

∑

+ρP [SP2p(S,P1,P2,P3,...,M )−SP2p(S,P1,...,M )]
{A}

∑

+γ [SP2p(S,P1,P2,...,M ) −SP2p(S,P1,...,M )]
{A}

∑

+ρP [SP3 + p(S,P1,P2,P3,P4,...,M ) −SP3p(S,P1,...,M )]
{A}

∑

+γ [SP3p(S,P1,P2,P3,...,M ) −SP3p(S,P1,...,M )]
{A}

∑

+ρP [SP4p(S,P1,P2,P3,P4,P5,...,M ) −SP4p(S,P1,...,M )]
{A}

∑

+γ [SP4p(S,P1,P2,P3,P4,...,M ) −SP4p(S,P1,...,M )]
{A}

∑

+ρP [SP5p(S,P1,P2,P3,P4,P5,P6,M ) −SP5p(S,P1,...,M )]
{A}

∑

+γ [SP5p(S,P1,P2,P3,P4,P5,P6,M )−SP5p(S,P1,...,M )]
{A}

∑

+ρP [SP6p(S,P1,P2,P3,P4,P5,P6,M ) −SP6p(S,P1,...,M )]
{A}

∑

+γ [SP6p(S,P1,P2,P3,P4,P5,P6,M )−SP6p(S,P1,...,M )]
{A}

∑

+Γ [SMp(S,P1,P2,P3,P4,P5,P6,M ) −SMp(S,P1,...,M )]
{A}

∑



 50 

After simplification and considering Equation (18) we form the derivative of the 

average population of cancer stem cell as follows: 

d

dt
S = ρSr1 S − ρSr3 S +γ P1

  (19) 

It is clear that changes in the population of cancer stem cells depend on the initial 

population and also on the population of P1 while the reprograming of P1 cells 

increases the S cells population.  

In addition r1, r2, and r3 are not independent. When a cancer stem cell encounters the 

proper conditions to go to the division cycle, it inevitably chooses one of self-

renewal, asymmetric division or symmetric differentiation. Hence r1+r2+ r3 =1. 

Now we define r := r1 - r3 . Knowing r, we can find r2 and for other cases, always r1-

r3 appears. Thus the expected value of the cancer stem cell population can be rewrite 

as: 

 

d

dt
S = ρSr S +γ P1

  (20) 

 

 

3.3.5. Average of the progenitors populations 

Following the same procedure as discussed in the pervious section, we form the 

equations to find the expected value for the population of first type of progenitors, 

P1. Note that, herein we have multiplied the original master Equation (16) by P1 and 

then summated over all possibilities for A. revising the labelling as we have done 

before, the master equation in this case reads as follows:            

                            



 51 

d

dt
P1p A( )

A{ }
∑ = ρSr1 P1Sp S,P1,...,M( ) −P1Sp S,P1,...,M( ) 

A{ }
∑

+ρSr2 ( P1 −1)Sp S,P1,...,M( ) −P1Sp S,P1,...,M( ) 
A{ }
∑

+ρSr3 (P1 + 2)Sp S,P1,...,M( ) −P1Sp S,P1,...,M( ) 
A{ }
∑

+ρP P1 P1 −1( ) p P1,P2,...,M( ) −P1

2p S,P1,...,M( ) 
A{ }
∑

+γ P1 P1 −1( ) p S,P1,P2,...,M( ) −P1

2p S,P1,...,M( ) 
A{ }
∑

+ρP P1P2p S,P1,P2,P3,...,M( ) −P1P2p S,P1,...,M( ) 
A{ }
∑

+γ (P1 +1)P2p S,P1,P2,...,M( ) −P1P2p S,P1,...,M( ) 
A{ }
∑

+ρP P1P3p S,P1,P2,P3,P4,...,M( ) −P1P3p S,P1,...,M( ) 
A{ }
∑

+γ P1P3p S,P1,P2,P3,...,M( ) −P1P3p S,P1,...,M( ) 
A{ }
∑

+ρP P1P4p S,P1,P2,P3,P4,P5,...,M( ) −P1P4p S,P1,...,M( ) 
A{ }
∑

+γ P1P4p S,P1,P2,P3,P4,...,M( ) −P1P4p S,P1,...,M( ) 
A{ }
∑

+ρP P1P5p S,P1,P2,P3,P4,P5,P6,M( ) −P1P5p S,P1,...,M( ) 
A{ }
∑

+γ P1P5p S,P1,P2,P3,P4,P5,P6,M( ) −P1P5p S,P1,...,M( ) 
A{ }
∑

+ρP P1P6p S,P1,P2,P3,P4,P5,P6,M( ) −P1P6p S,P1,...,M( ) 
A{ }
∑

+γ P1P6p S,P1,P2,P3,P4,P5,P6,M( ) −P1P6p S,P1,...,M( ) 
A{ }
∑

+Γ P1Mp S,P1,P2,P3,P4,P5,P6,M( ) −P1Mp S,P1,...,M( ) 
A{ }
∑

 

(21) 
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 Hence the average value of P1 cells is: 

 

d

dt
P1 = ρSr2 S + 2ρSr3 S − ρP P1 −γ( P1 − P2 )  (22) 

 

Revising in terms of r, Equation (22) changes to: 

 

d

dt
P1 = (1− r )ρS S − ρP P1 −γ ( P1 − P2 )    (23) 

 

Similar to the procedure used to derive the expected value for P1, the averages of 

other progenitors are as listed below. For convenience, the expected values of cancer 

stem cell population and P1 cells are also shown here: 

 

 

d

dt
S = ρSr S +γ P1

                                    (24) 

d

dt
P1 = (1− r )ρS S − ρP P1 −γ ( P1 − P2 )   (25) 

d

dt
P2 = ρP(2 P1 − P2 ) −γ ( P2 − P3 )         (26) 

d

dt
P3 = ρP(2 P2 − P3 ) −γ ( P3 − P4 )         (27) 

d

dt
P4 = ρP(2 P3 − P4 )−γ ( P4 − P5 )         (28) 

d

dt
P5 = ρP(2 P4 − P5 )−γ ( P5 − P6 )         (29) 

d

dt
P6 = ρP(2 P5 − P6 )−γ P6

                     (30) 

d

dt
M = 2ρP P6 − Γ M                                 (31)   
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Solving the above system of differential equations at the steady state, results in the 

answers in terms of one of the phenotypes, ρS, ρP, γ, and Γ. Although the results may 

seem to be useful, their dependence on the transition rates leaves them inapplicable. 

Hence, tuning the transition rates is the preliminary stage to solve the system. 

Recalling the dominant effect of the tumour microenvironment on tumour growth, 

cancer progression and specifically, cancer stem cell maintenance we classified the 

transition rates based on the affecting microenvironmental factors.  

Current work is focused on the effect of hypoxia and high acidity on transition rates 

and consequently tumour survival and growth.  

 

 

3.4. Tuning the transition rates  

To tune the transition rates, we used a deterministic filtration and next applied a 

stochastic procedure. Using an exhaustive key search on ρS, ρP, r, and γ, we first 

found the proper combinations of transition rates, which satisfy a deterministic test 

on capability of a system to produce a predetermined fraction of stem cells at steady 

state in accordance with biological data. Second, we used a stochastic approach to 

filter the results of the first part once more comparing the ability of the subsequent 

system to form neurospheres. Again, the results have been selected in accordance 

with the neurosphere essay experiments.   

 As mentioned before, the low accuracy of available neural stem cell biomarkers and 

the contradictory results of experiments done on non-stem cancer cells to show the 

properties of cancer stem cells convinced us to consider the first four phenotypes of 

the system as cancer stem cells and others as non-stem cancer cells. Thus we 

assumed that S, P1, P2, and P3 cells express CD133+ while P4, P5, P6, and M cells 

are CD133- cells.  
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3.4.1. Microenvironmental features categorization 

The oxygen concentration is known to have a profound effect on the cancer cells 

survival and progression. In addition to mediating survival and proliferation, oxygen 

levels in the brain affect the cell metabolism, cell signalling and gene expression 

[Heddleston et al. 2010, Keith and Simon 2007, Seidel et al. 2010, Heddleston et al. 

2009, Fukumura et al. 2001, Hjelmeland et al. 2011, Pouyssegur et al. 2006, Gordan 

and Simon 2007]. Many studies have reported that the reduction in oxygen 

concentration (from 20% t0 3-5%) promotes the stem-like properties of cancer cells 

[Ivanovic et al. 2004, Kovacevic-Filipovic et al. 2007, Studer et al. 2000, Zhang et 

al. 2006]. Although, Tofilon and colleagues claim that 20% of oxygen concentration 

considered in in vitro studies (atmospheric condition) is fairly high for culturing 

GBM cells, they demonstrated same argument that hypoxia upregulates the cancer 

stem cell phenotype [McCord et al. 2009]. Mentioning that oxygen level is 14% in 

alveolar [Guyton and Hall 2006], 5-10% in normal brain tissue [Evans et al. 2004, 

Dings et al. 1998], 0.1-10% in a GBM tumour tissue [Evans et al. 2004a, b, Dings et 

al. 1998], and 6-7% for majority of GBM cells [Evans et al. 2004] and comparing 

their experiments results under 7% of oxygen with other studies under normal 

culture condition of 20% of oxygen, Tofilon and colleagues demonstrated the 

promotion of self-renewal, differentiation potentials, and enhanced stem-like 

genomic and protein-expression of GBM tumour stem cell cultures under the 

hypoxic condition [McCord et al. 2009]. With an emphasis on recruitment of HIF2α 

in GBM cancer stem cell culture. Heddleston et al. [Heddleston et al. 2009] and 

Acker and colleagues [Seidel et al. 2010] have also reported the promoting effect of 

hypoxia on the cancer stem cell phenotype.  

Likewise the hypoxia, high acidity of the tumour microenvironment dominantly 

affects the maintenance of cancer stem cells. Recently, Rich and colleagues have 

reported the results of their experiment investigating the influence of high acidic 

stress in the tumour microenvironment on cancer cells [Hjelmeland et al. 2011]. 
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They state that initiating with cancer stem cell-depleted cultures, fraction of cancer 

cells expressing the CD133+ and colony formation ability increased under the acidic 

condition (pH=6.5), while the elevation of extracellular pH, from 6.5 to 7.5 reduces 

the expression of cancer stem cell marker, CD133, and neurosphere formation 

potentials [Hjelmeland et al. 2011]. Although the pH level inside the GBM tumour 

has been reported to be as low as 5.9, the differences of outcomes under normal 

(7.1-7.5 )[vaupel et al. 1989]) and acidic conditions differs considerably. Even 

before the popularity of the cancer stem cells hypothesis, Casciari and colleagues 

reported that the growth rate of tumour cells increases under acidic condition 

[Casciari et al. 1992]. Moreover, they compared the correlation of growth rate with 

oxygen concentration as well as glucose content. Additionally, they investigated the 

simultaneous effect of acidity and hypoxia on tumour growth. Their results showed 

that under hypoxic conditions the growth rate of a tumour decreases as the pH level 

decreases. This may appear to contradict the effect of hypoxia and acidity in 

promoting tumour progression, but the coincidence of both hypoxia and acidity may 

lethally modify the tumour microenvironment so that not only normal cells but also 

cancer cells can not survive. Jain’s group has reported results that do not support the 

additive effect of simultaneous hypoxia and acidity on tumour tissue [Fukumura et 

al. 2001]. In their study on upregulation of VEGF by hypoxia and acidity in brain 

tumours [Fukumura et al. 2001], they claim that, although the effect of hypoxia and 

acidity independently upregulate VEGF, the recruitment of VEGF under 

simultaneous hypoxia and acidity is less than the summation of the effect of each in 

separate experiments. Their justification to explain the sub-linear effect of hypoxia 

and acidity is the same as the reasoning of Casciari et al. (1992). 

Thus, focusing on hypoxia and acidity as dominant features of the GBM tumour 

microenvironment, we have divided the microenvironmental space into four 

different regions of, normal, hypoxic, acidic and hypoxic-acidic sub-regions (Table 

1).   
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Table 1: Microenvironmental heterogeneity inside cancer tumours. Oxygen 

concentration and acidity of tumour microenvironment as the dominant determiners 

of tumour progression divide the tumour microenvironment to four sub-region of 

hypoxic acidic, hypoxic non-acidic, normoxic acidic, and normal. 

 

 Acidic Non-acidic 

Hypoxic 
pH<6.5 and 

pO2<2% 
pH≈7.5 and 

pO2<2% 

Normoxic 
(non-hypoxic) 

pH<6.5 and pO2≈21% pH≈7.5 and pO2≈21% 

 

 

In the following sections, we demonstrate the deterministic and stochastic filtration 

of transition rates, in which we obtain separate sets of results for each sub-region 

mentioned above. Hence at the end of the filtration, four sets of transition rates for 

hypoxic, acidic, hypoxic-acidic, and normal regions are provided. 

 

 

3.4.2. Deterministic filtration  

The saturation of the fraction of stem cells [Turner 2009], including S cells, P1, P2, 

and P3 cells in current model, suggested to us that we should carry out the filtration 

based on the reported fraction of CD133+ cells in experiments. Table 2 explains the 

biological experiments done by different research groups on fraction of GBM cancer 

stem cells. In silico model assumptions are designed to match the conditions of the 

discussed biological experiments.  

In their experiment, Rich and colleagues [Heddleston et al. 2009] have cultured 

glioma non-stem cancer cells from a human patient specimen in 24 well plates at a 

density of 10 cells per well. Then they immediately subject the cultures to hypoxic 

condition (2% O2) or normoxic condition (21% O2) for 9 days (p<0.05) 

[Heddleston et al. 2009]. Experiments 1 and 2 in Table 2 represent a summary of 

their experiments. Acker’s group has reported comparable results from their 

experiment [Seidel et al. 2010]. To investigate the effect of an acidic 
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microenvironment on cancer stem cell fraction, Hjelmeland et al. [Hjelmeland et al. 

2011] have culture a glioma stem cell- depleted bulk of 5 cancer cells under pH level 

of 6.5 for 10 days. Their conditions and results are summarized in Table 2. 

To simulate the experimental conditions, we considered a random combination of 

non-stem cancer initiating cells so that ten initiating cells are randomly chosen from 

among P4, P5, P6, and M cells. Using a brute force method we have selected those 

combinations of transition rates that gave a proper fraction of cancer stem cells as 

reported in biological data. Brute force method (aka proof of exhaustion or proof by 

cases) checks the validity of the statement of the question for finite number of cases 

and selects those ones which the proposition in the question holds for.   

Note that fraction of cancer stem cells is the fraction of the summation of S, P1, P2, 

and P3 cells to the total number of cancer cells in the culture. Table 3 explains the 

simulation conditions used to match the biological data provided in Table 1.  
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The only region that is not covered in biological experiments in Table 2 and 

simulations in Table 3 is the hypoxic- acidic region. To the knowledge of the author, 

no one has tried to see the explicit effect of the coincidence of hypoxia and acidity 

on cancer stem cells. However, valuable studies of Jain and colleagues [Fukumura et 

al. 2001] and also Casciari’s group [Casciari et al. 1992] of the upregulation of 

VEGF and tumour growth rate respectively have shed light on the simultaneous 

effect of hypoxia and acidity. We predict that considering the lethal condition of an 

acidic and hypoxic extracellular condition, the fraction of cancer stem cells is not the 

summation of fractions of hypoxic and acidic regions, although the effect of hypoxia 

and acidity on VEGF is known to be independent in brain tumours [Fukumura et al. 

2001]. Hence, we formed a simulation as shown in Table 4, to find the matching 

combination of transition rates for the hypoxic and acidic region.  

 

 
3.4.3. Results of deterministic filtration 

Solving the system of differential equations (Equation 24 to 31), we picked those 

combinations of transition rates, which were able to generate the same fraction of 

cancer stem cells as reported in biological experiments (Table 2). Among different 

feasible combinations of transition rates we have filtered at most 630 combinations 

out of 50000 initial combinations. These results fed the second round of simulations 

and have been filtered again based on a stochastic criterion of the ability to form the 

neurospheres and colonies.  
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3.4.4. Gillespie’s algorithm and neurosphere essays 

In spite of a saturation state for the fraction of cancer stem cells, the number of 

cancer cells will not be saturated essentially. Thus, to solve the system of differential 

equations (Equation 24 to 31) the solution at steady state cannot be accepted.  

Gillespie’s algorithm is one of the alternatives to gain a suitable trajectory of the 

system and solution(s). Popularized by Dan Gillespie, Gillespie’s algorithm has been 

formed to simulate the time evolving behaviour of chemical or biological systems, 

which have small number of reactants [Gillespie 1977]. The method produces a 

good prediction of stochastic process based on the initial condition of reactants, 

reactions, and transition rate of each reaction. The first step to use the Gillespie’s 

algorithm is to form the matrix of reactions and vector of transition rates of 

reactions.  

Herein, we form the stoichiometry matrix (SM), the reaction matrix, for the 

proposed model. Recalling the transition pathways of cancer cells, we assign each 

transition pathway to be as a row in stoichiometry matrix. Considering each cell type 

as a reactant and assigning each to a column in stoichiometry matrix we form a 16*8 

matrix containing the information about the transition pathways and cell types so 

that SM (i, j) is equal to the number of cell type j increasing (+) or decreasing (-) 

through the transition i. Hence, for the proposed model the stoichiometry matrix is 

as follows in the next page.  

The transition rates for each state form the propensity vector. The size of the vector 

is equal to the number of reaction (transition pathways) and each element stores the 

transition rate for the corresponding transition so that the i-th element is the 

transition rate for i-th transition. Considering A= (S, P1, …, M) as the current  sate 

of the system, the propensity vector (VP) for the current model is as follows: 

 

VP= ρSr1 ρSr2 ρSr3 ρP γ ρP γ ρP γ ρP γ ρP γ ρP γ Γ



× ′A
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SM =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 2 0 0 0 0 0 0

0 −1 2 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 −1 2 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 0 −1 2 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 −1 2 0 0

0 0 0 1 −1 0 0 0

0 0 0 0 0 −1 2 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 −1 2

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 −1



















































 

 

Briefly, Gillespie’s algorithm randomly choses one of the rows of the stoichiometry 

matrix based on the assigned weight in the propensity matrix. Thus, although the 

selection of a transition pathway is random, rows corresponding to higher transition 

rates are more likely to be selected. The next step after selecting a reaction or 

transition is the revision of all reactants or cell types based on the selected reaction. 

This procedure will continue and move forward with random time steps till the 

maximum time is met.   

Neurosphere essay and colony formation is a functional property of cancer stem cell. 

Hence, beside the expression of CD133+ as a physiological property, the capability 

of cell cultures in forming neurospheres is a sign of the presence of cancer stem 

cells. Using Gillespie’s algorithm, we have formed a set of simulations to re-filter 

the transition rates resulted from deterministic filtration. Each simulation has been 

run for 1000 times and experimental conditions such as the combination of initiating 

cells and extracellular hypoxia or acidity were fixed according to corresponding 

biological data. The biological experiments and simulations are summarized in Table 

(5) and Table (6).  
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3.5. Results 

Double filtration of transition rates by deterministic criterion of the formed fraction 

of cancer stem cells and the stochastic norm of neurosphere formation potentials left 

us with a few combinations of rates that can be easily clustered and analysed.  

At the first step the transition rate value assignment by a brute force method resulted 

in 50000 sets of transition rates as input where ρS, ρP, γ, and r were changing.  

As mentioned before, Γ is assumed to be an infinitesimally small number (Γ≈ 0) in 

all simulations. Moreover r1, r2, and r3 are dependent values summing to 1. We 

considered r in the first set of deterministic simulations and then in the second round 

of stochastic ones, we expand it over different possibilities of r1, r2, and r3. Hence, 

the effect of different combinations of r1, r2, and r3 (for a fixed value of r) is also 

considered. Table 7-10 contain the final results for transition rates. The diversity of 

results ranges between 2 to 41 different sets of transition rates. The hypoxic region 

with 41 sets of results has the largest data size while hypoxic-acidic region, normal 

and acidic region data sizes are decreasing with 17, 9 and 2 sets of transition rates as 

results.  

Considering the diversity of results provokes the question of whether the results of 

each region are clustered into different groups. We first tried to figure out the 

clustering of results by a visual inspection of the graphs. Figures 1 to 4 illustrate the 

positions of results in each region. Note that values of ρS, and ρP are equal and the 

values of r1, r2, and r3 are dependent. These make it possible for us to investigate the 

correlation of different results in one region by considering the relationship between 

γ, r2, and r3. 

Figures 1 to 3 suggest that there may be different clusters of the results in each 

region, the position of results over all microenvironmental regions imply that the 

inter-region clustering can be neglected. Figure 4 simultaneously shows the results 

loci for all regions. 
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Table 7: &ormal region, resulted transition rates (9 sets) for normal regions. These 

results produce 15%(±1%) cancer stem cells in culture and form neurospheres in 

8.3% (±0.03%) of wells. The experimental conditions and simulations assumption 

can be found in Table 2-6. 

 

 Set ρS ρP r r1 r2 r3 γ 

1 0.6931 0.6931 -0.90 0.05 0.00 0.95 0.47 

2 0.6931 0.6931 -0.80 0.00 0.20 0.80 0.47 

3 0.6931 0.6931 -0.70 0.15 0.00 0.85 0.45 

4 0.6931 0.6931 -0.50 0.00 0.50 0.50 0.44 

5 0.6931 0.6931 -0.50 0.05 0.40 0.55 0.46 

6 0.6931 0.6931 -0.40 0.05 0.50 0.45 0.45 

7 0.6931 0.6931 -0.30 0.35 0.00 0.65 0.43 

8 0.6931 0.6931 -0.30 0.05 0.60 0.35 0.44 

9 0.6931 0.6931 -0.30 0.00 0.70 0.30 0.44 

 

 

 

 

 

Table 8: Acidic region, resulted transition rates (2 sets) for acidic region. These 

results produce 30%(±1%) cancer stem cells in culture and form neurospheres in 

20% (±0.03%) of wells. The experimental conditions and simulations assumption 

can be found in Table 2-6. 

 

Set ρS ρP r r1 r2 r3 γ 

1 0.6931 0.6931 -0.50 0.00 0.50 0.50 0.68 

2 0.6931 0.6931 -0.30 0.00 0.70 0.30 0.66 
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Table 9: Hypoxic region, resulted transition rates (17 sets) for hypoxic region. These 

results produce 45%(±1%) cancer stem cells in culture and form neurospheres in 

21% (±0.03%) of wells. The experimental conditions and simulations assumption 

can be found in Table 2-6. 

 

 Set ρS ρP r r1 r2 r3 γ 

1 0.6931 0.6931 -0.90 0.00 0.10 0.90 0.93 

2 0.6931 0.6931 -0.80 0.05 0.10 0.85 0.91 

3 0.6931 0.6931 -0.70 0.00 0.30 0.70 0.90 

4 0.6931 0.6931 -0.70 0.10 0.10 0.80 0.92 

5 0.6931 0.6931 -0.70 0.05 0.20 0.75 0.92 

6 0.6931 0.6931 -0.60 0.20 0.00 0.80 0.89 

7 0.6931 0.6931 -0.60 0.15 0.10 0.75 0.89 

8 0.6931 0.6931 -0.60 0.10 0.20 0.70 0.89 

9 0.6931 0.6931 -0.50 0.25 0.00 0.75 0.89 

10 0.6931 0.6931 -0.50 0.20 0.10 0.70 0.89 

11 0.6931 0.6931 -0.50 0.10 0.30 0.60 0.89 

12 0.6931 0.6931 -0.50 0.05 0.40 0.55 0.89 

13 0.6931 0.6931 -0.50 0.20 0.10 0.70 0.90 

14 0.6931 0.6931 -0.50 0.15 0.20 0.65 0.90 

15 0.6931 0.6931 -0.50 0.05 0.40 0.55 0.91 

16 0.6931 0.6931 -0.40 0.10 0.40 0.50 0.87 

17 0.6931 0.6931 -0.40 0.05 0.50 0.45 0.87 

18 0.6931 0.6931 -0.40 0.25 0.10 0.65 0.88 

19 0.6931 0.6931 -0.40 0.15 0.30 0.55 0.88 

20 0.6931 0.6931 -0.40 0.00 0.60 0.40 0.88 

21 0.6931 0.6931 -0.30 0.30 0.10 0.60 0.86 

22 0.6931 0.6931 -0.30 0.20 0.30 0.50 0.86 

23 0.6931 0.6931 -0.30 0.00 0.70 0.30 0.86 

24 0.6931 0.6931 -0.30 0.35 0.00 0.65 0.87 

25 0.6931 0.6931 -0.30 0.15 0.40 0.45 0.87 

26 0.6931 0.6931 -0.30 0.10 0.50 0.40 0.87 

27 0.6931 0.6931 -0.30 0.05 0.60 0.35 0.87 

28 0.6931 0.6931 -0.30 0.00 0.70 0.30 0.87 

29 0.6931 0.6931 -0.30 0.25 0.20 0.55 0.88 

30 0.6931 0.6931 -0.30 0.20 0.30 0.50 0.88 

31 0.6931 0.6931 -0.30 0.15 0.40 0.45 0.88 

32 0.6931 0.6931 -0.20 0.05 0.70 0.25 0.84 

33 0.6931 0.6931 -0.20 0.00 0.80 0.20 0.85 

34 0.6931 0.6931 -0.20 0.25 0.30 0.45 0.87 

35 0.6931 0.6931 -0.20 0.10 0.60 0.30 0.87 

36 0.6931 0.6931 -0.20 0.05 0.70 0.25 0.87 

37 0.6931 0.6931 -0.10 0.25 0.40 0.35 0.83 

38 0.6931 0.6931 -0.10 0.05 0.80 0.15 0.83 

39 0.6931 0.6931 -0.10 0.00 0.90 0.10 0.83 

40 0.6931 0.6931 0.00 0.05 0.90 0.05 0.83 

41 0.6931 0.6931 0.00 0.00 1.00 0.00 0.83 
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Table 10: Acidic-hypoxic region, resulted transition rates (17 sets) for acidic-

hypoxic region. These results produce 37.5%(±1%) cancer stem cells in culture and 

form neurospheres in 15% (±0.03%) of wells. The experimental conditions and 

simulations assumption can be found in Table 2-6. 

 

 

 

 
Set ρS ρP r r1 r2 r3 γ 

1 0.6931 0.6931 -0.10 0.25 0.40 0.35 0.72 

2 0.6931 0.6931 0.00 0.40 0.20 0.40 0.70 

3 0.6931 0.6931 0.00 0.30 0.40 0.30 0.70 

4 0.6931 0.6931 0.00 0.25 0.50 0.25 0.70 

5 0.6931 0.6931 0.00 0.40 0.20 0.40 0.71 

6 0.6931 0.6931 0.00 0.50 0.00 0.50 0.72 

7 0.6931 0.6931 0.00 0.45 0.10 0.45 0.72 

8 0.6931 0.6931 0.10 0.40 0.30 0.30 0.67 

9 0.6931 0.6931 0.10 0.50 0.10 0.40 0.68 

10 0.6931 0.6931 0.10 0.40 0.30 0.30 0.68 

11 0.6931 0.6931 0.10 0.30 0.50 0.20 0.68 

12 0.6931 0.6931 0.10 0.20 0.70 0.10 0.68 

13 0.6931 0.6931 0.10 0.15 0.80 0.05 0.68 

14 0.6931 0.6931 0.10 0.35 0.40 0.25 0.69 

15 0.6931 0.6931 0.10 0.30 0.50 0.20 0.69 

16 0.6931 0.6931 0.20 0.30 0.60 0.10 0.66 

17 0.6931 0.6931 0.20 0.25 0.70 0.05 0.66 
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Figure 1:  Transition rates for normal region. Each point represents one 

combination of resulted transition. Since ρS, and ρP are equal and fixed over all 

regions, the answer space can be defined by γ, r2, and r3. 

 
 

Figure 2: Transition rates for hypoxic region. Each point represents one 

combination of resulted transition. Since ρS, and ρP are equal and fixed over all 

regions, the answer space can be defined by γ, r2, and r3. 
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Figure 3: Transition rates for acidic-hypoxic region. Each point represents one 

combination of resulted transition. Since ρS, and ρP are equal and fixed over all 

regions, the answer space can be defined by γ, r2, and r3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 72

Figure 4: Comparison of transition rates for different regions. Blue, green, red, and 

yellow represent the transition rates for normal, acidic, hypoxic, and acidic-hypoxic 

regions respectively. Although the rates for each region seem to be clustered in 

different groups, the distance among transition rates for different regions are large 

enough to make the intera-region differences negligible. Second graph shows the 

same information from another point of view. 
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3.6. Discussion 

As illustrated in Figures 1 to 3, our results for each region may belong to two or 

three different clusters. However, the overall comparison of all regions (Figure 4) 

suggests that the average of each set of results can properly represent and 

characterize the entire set. In addition to summarizing data for one combination of 

transition rates for each region, we also compare and interpret the 

microenvironmental effects on division, differentiation, and self-renewal of cancer 

stem cells as well as the modifications of non-stem cancer cells division and 

dedifferentiation.  

 

3.6.1. Hypoxia, dedifferentiation and symmetric 

differentiation 

Figure 5 shows the prominent promotion of dedifferentiation in the hypoxic region. 

Non-stem cancer cells located in the normal region have the lowest rate of 

reprograming. Although acidic and hypoxic-acidic regions clearly up regulate the 

dedifferentiation, the hypoxic region shows the largest proportion of non-stem 

cancer cell reprograming (0.8 to 0.9).   

We hypothesize that hypoxia up regulates the cancer stem cell phenotype through 

the promotion of dedifferentiation of non-stem cancer cells. On one hand, this 

hypothesis is supported by all biological experiments used in constructing the 

model, and on the other hand, it can be expanded to justify experimental results 

obtained by other research groups. For instance, Philips and colleagues [Chen et al. 

2010] have proposed a hierarchy of cancer cells that are able to initiate and maintain 

Gliomas.  According to their experiments (done in 3% oxygen), a subgroup of non-

stem cancer cells are at the top of hierarchy and are able to generate cancer stem 

cells as well as non-stem cancer cells. They have proposed that the capability of this 

subgroup of non-stem cancer cells to promote tumour progression is even higher that 
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those cancer stem cells marked by the neural stem cells marker, CD133+. Our model 

and resulting transition rates can explain their results. Since hypoxia prominently 

promotes dedifferentiation of non-stem cancer cells, tumour progression and cancer 

stem cells maintenance are dominantly affected by reprograming of non-stem cancer 

cells rather than the self-renewal of cancer stem cells. Thus in hypoxic regions, the 

population of less-mature non-stem cancer cells may be larger than other regions. 

Another identified characteristic of the transition rates in hypoxic region is the 

augmented transition rate for symmetric differentiation of cancer stem cells (r3). The 

variance is clearly apparent when compared to its counter part in normal regions.  

 

Figure 5: Distribution of results for four regions, normal(blue), Acidic (green), 

Hypoxic (red), and Acidic-hypoxci (yellow). The points are clearly devided based on 

the dedifferentiation and symmetric differentaition rates for each region (Except the 

acidic and acidic-hypoxic regions that seem to have similar dedifferentaition rates). 
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3.6.2. Acidity and dedifferentiation 

Figure 6 demonstrates the loci of each region results in γ, r1 plane. Although in 

Figure 5 the locus of acidic region results and acidic-hypoxic region seem to be 

merged, Figure 6 illustrates the clear differences between r1 values for the two 

results sets for acidic and acidic-hypoxic regions. Our simulation results also show a 

sharp decrease of r1 values in acidic region though the dedifferentiation of non-stem 

cancer cells has significantly increased compared to normal regions. 

 

Figure 6: Distribution of results for four regions, normal(blue), Acidic (green), 

Hypoxic (red), and Acidic-hypoxci (yellow). The points are clearly devided based on 

the dedifferentiation and self-renewal rates for each region). Although acidic and 

acidic-hypoxic regions equally affect the dedifferentiation, they differ considarably 

in promotion of self-renewal in cancer stem cells. 
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3.6.3. Acidic-hypoxic regions and self-renewal 

According to our simulation results the coincidence of hypoxia and acidity mostly 

promotes the self-renewal of cancer stem cells (Figure 7). The distribution of results 

for different regions in the r1, r3 plane illustrates that the self-renewal rate for cancer 

stem cells residing in acidic-hypoxic region is much higher than for those in regions 

under normal microenvironmental conditions. The transition rate for symmetric 

differentiation of cancer stem cells in acidic-hypoxic areas is also considerably less 

than for those in normal, acidic and hypoxic regions. In addition, the 

dedifferentiation of non-stem cancer cells in acidic hypoxic regions is almost the 

same as for those in acidic regions.  

Based on our simulation results we hypothesize that acidic-hypoxic regions promote 

tumour progression and cancer stem cell maintenance through the up regulation of 

cancer stem cell self-renewal. This hypothesis also justifies the experimental results 

reported by Fukumura et al. [Fukumura et al. 2001] about the non-additive effect of 

simultaneous hypoxia and acidity on tumour progression. Although the 

dedifferentiation rate in hypoxic areas is much higher than in acidic regions, the rate 

in acidic-hypoxic regions is equal to that in areas with high acidity. In addition, self-

renewal promotion in both hypoxic and acidic regions is considerably less than that 

in acidic-hypoxic regions. Thus, rather than having an average effect of independent 

exposure to hypoxia and acidity, we noticed an independent effect of simultaneous 

acidity and hypoxia that dominantly influences the self-renewal of cancer stem cells.   
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Figure 7: Distribution of results for four regions, normal(blue), Acidic (green), 

Hypoxic (red), and Acidic-hypoxci (yellow). The points are clearly devided based on 

the symmetric differentiation and self-renewal rates for each region. Acidic-hypoxic 

region shows the most domimnant effect on self-renewal, while the symmetric 

differentiation rate of this region is the lowest among all other areas. 
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3.6.4. Implications for cancer therapy 

As modern cancer therapies are improving to target specific cell types, the need for 

identifying which cell type(s) to target is becoming increasingly important. The 

aforementioned results can provide a hint as to which subpopulation(s) of cancer 

cells may be the critical group to target, based on the instantaneous state of the 

tumour.  

The self-renewal down-regulation of cancer stem cells and simultaneous 

dedifferentiation promotion in acidic regions necessitates the selection of a therapy 

that focuses on cancer progenitors. Likewise, since the dedifferentiation rate of 

cancer progenitors is highly augmented in hypoxic regions, selecting a therapy that 

primarily targets progenitors is more appropriate. However, the self-renewal of 

cancer stem cells is higher than normal regions. Thus, the therapy secondary target 

must be cancer stem cells. In an acidic-hypoxic region, the promotion of cancer stem 

cells is higher than in hypoxic and acidic regions; therefore a suitable therapy must 

focus on cancer stem cells while not neglecting cancer progenitors because of the 

high dedifferentiation rates observed in this region.  
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4. Simulated tumour growth 

In this chapter we use a cellular automaton model to investigate the growth dynamic 

of cancer cells under tumour microenvironment condition. We developed our model 

by considering the effect of the extracellular matrix inside the tumour tissue, cellular 

heterogeneity, division and dedifferentiation, and cell pushing. 

 

4.1. Cellular automata model 

Implication of cellular automata in cancer modeling has been pioneered by Düchting 

and Vogelsaenger to model the effect of radiotherapy on cancer tumours [Duchting 

and Vogelsaenger 1984] and has rapidly become popular  [Deutsch and Dormann 

2005]. Among more recent models, the model proposed by Ferreira et al. of tumour 

morphology [Ferreira et al. 2002], the model proposed by Patel et al. of cell 

metabolism and invasion with a focus on the glycolytic phenotype [Patel et al. 

2001], and Anderson’s model of tumour invasion [Anderson 2005], are current 

cellular automaton models of cancer growth. Ferreira’s model considered the 
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concentration of nutrients in the tumour microenvironment and formed a 

probabilistic model that generates matching nutrient consumption heterogeneities to 

available biological experiments [Ferreira et al. 2002]. Patel et al. emphasized the 

metabolic differences and heterogeneities affected by vessel density inside the 

tumour [Patel et al. 2001]. However, like Ferreira and colleagues’ work [Ferreira et 

al. 2002], they only considered one phenotype of cancer cells residing in a 

continuous field of chemicals in their hybrid cellular automaton model.  As an 

improvement, Anderson has added different phenotypes of cancer cells to his 

proposed model [Anderson 2005]. Although Anderson has considered the 

heterogeneity of cancer cells, the random assignment of cell phenotypes to new 

cancer cells disconnects the cellular automata from the tumour microenvironment. 

Kansal et al. [Kansal et al. 2000a, b] formed a three-dimensional cellular automaton 

model to investigate the growth of GBM. They have used a Voronoi representation 

rather than cubic representation. In the Voronoi representation, the grid sizes vary 

and consequently the formed tumour is geometrically more similar to biological 

observations. Following this, Mansury et al. [Mansury et al. 2006] have upgraded 

Kansal’ model by adding two different subpopulations of proliferative or migrating 

cancer cells and using game theory to investigate the system ‘pay-off’ for each 

subpopulation. The interaction of cancer cells and the tumour microenvironment 

was previously studied by the same group in and agent-based model of brain cancer 

growth [Mansury et al. 2002].  Gatenby and Vincent [Gatenby and Vincent 2003] 

have used game theory and continuous population dynamic approaches to identify 

essential conditions for tumour invasion. They have proposed that the failure of 

ordinary cytotoxic treatment is due to the adaptation of cancer cells to their new 

microenvironment.  

Herein, we introduce a two- dimensional cellular automaton model composed of 8 

different phenotypes of cancer cells all are residing in a 20µm-square lattice and 

each behaving distinctly from the others in response to microenvironmental 

conditions and its neighbouring cells. Cell phenotypes that are different agents in the 

model can affect the fate of other cells through nutrient consumption, blocking of 

proliferating cells, or pushing other cells to make space for their division.  
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4.1.1. Cell division 

The same division pathways used in the previous chapter are implemented in a 

square lattice of cellular automata to model the proliferation of cancer cells. Each 

cell can have three different states of proliferation, quiescence and death. We will 

extensively describe conditions that bring a cell to a proliferative, quiescent or dead 

cell in future section of this chapter. Regardless of the reasons that lead to each of 

above-mentioned states, the model runs a different algorithm for each. So that a 

dead cell is considered as a blocking obstacle for neighbouring cells’ proliferation 

and movement until the debris are all collected. A quiescent cell remains in a non-

proliferative state unless the conditions that caused quiescence change. Finally, a 

proliferative cell goes through division pathways unless it is an M cell that cannot 

proliferate anymore. We designed our cellular automata to be traceable so that for 

each present cell in the square lattice, the type of the cell and previous proliferation 

state are known and help to determine the current proliferation state and the type of 

daughter cell after division or dedifferentiation. The preliminary layout of the 

initiating cells is arbitrary, though in the presented simulations they are 

approximately located in the centre. The types of initiating cells are selected to 

match the conditions of neurosphere assay experiments. The placement of new cells 

after division are decided according to vacancy of four possible neighbouring 

positions of parent cells (up, down, left, and right), considering one of the daughter 

cells take the place of the parent cell. If there is more than one vacancy, a position is 

randomly picked. However, the occupancy of all positions does not necessarily lead 

the parent cell to a quiescent state; in this case cancer cells may try to push 

neighbouring cells to make some space for new daughters. The mechanisms to run 

the cell pushing is a complex combination of cell signalling and physical forces.  
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4.1.2. Pushing 

 

Each cell agent may be able to proliferate even if all its four neighbouring positions 

are occupied. We consider a fixed pushing radius for all cell types (equal to 5 cell) in 

our cellular automata model. A proliferating cell surrounded by other cells can push 

its neighbours to the closest vacant position at most 5 cells away. Hence, even a cell 

blocked at the center of 11 by 11 square lattice of cells may divide if other necessary 

conditions are satisfied.  

The pushing mechanism implemented in our model is as follows: a counter finds the 

vertically or horizontally closest vacant position in lattice. The counter cancels the 

process if it reaches an obstacle. The obstacle may be a dead cell or a vacant position 

with improper extracellular matrix condition where neither the required level of 

adhesion nor the acceptable ranges of pressure are satisfied. As the next step, the 

counter will be checked for the maximum radius of pushing allowed in the model 

(herein, we fixed it for 5). If it passes this step, the whole chain of cells from the 

parent cell to the vacant position will be moved to make empty the neighbouring 

position of proliferating cells. If the counter points to a position out of the allowed 

range, the proliferative cell is doomed to quiescence. Figure 9 shows the flowchart 

of the simulation and the certain step of Pushing process implementation.   

 

4.1.3. Implementation of extracellular matrix 

Cells viability and activities are closely dependent on an adequate level of adhesion 

to and proper range of pressure from the surrounding matrix. We simplified the 

effect of cell adhesion and surrounding pressure to a randomly assigned matrix. This 

matrix, which we call the ECM matrix hereafter, plays the role of the extracellular 



 83

matrix as well as the probable presence of normal cells inside the tumour tissue. As 

an improvement to the current model, the ECM matrix can be modified to better 

match the biological features of Extracellular matrix inside the tumour tissue.  

 

4.2. Cell metabolisms 

The tendency of cancer cells to switch to a glycolytic metabolism, even in the 

presence of adequate content of oxygen, known as Warburg effect, sheds light on the 

importance of both cell metabolisms in tumour progression and microenvironmental 

modifications. Hence, in tumour tissue (not only in hypoxic regions but also in 

normoxic regions) cancer cells may switch to glycolysis rather than respiration.  

Respiration :C
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+ 6O

2
→ 6CO

2
+6H
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Comparing the respiration and glycolysis reaction equations, the production of 

energy (ATP) for one molecule of glucose in respiration is 18 folds the amount 

produced by glycolysis. On the other hand, the presence of hydrogen ions among 

glycolysis metabolism products introduces the glycolysis acidic effect. Despite of 

the existence of a natural prominent buffering system in soft tissues, that is the 

interconversion of bicarbonate (HCO3
−) and carbon dioxide (CO2), increase of 

concentration of hydrogen ions (H
+
) causes an indispensible effect on interstitial pH. 

The interstitial buffering system is as follows: 

CO
2

+H
2
O↔ HCO

3

− +H +  

 

In addition to the enrolment of the glycolytic metabolism, the impairment of cancer 

cells may lead to recruitment of glutaminolysis [Helmlinger et al. 2002], as follows: 
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Glutaminolysis: C
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Therefore, similar to nutrient diffusion, cellular metabolism dominantly affects the 

tumour microenvironment as the concentration and consumption of oxygen and the 

interstitial pH levels inside the tumour depend on the prevalent metabolism.  

To model the distribution of nutrient, oxygen and acidity in tumour microenviron- 

ment, we adopted the model proposed by Molavian et al. [Molavian et al. 2009]. In 

their model, Molavian et al. used a mathematical approach to find the pH level as a 

function of distance from a blood vessel.  They reproduced the biological results of 

Helmlinger et al. [Helmlinger et al. 1997], and modeled the metabolic toggling of 

cancer cells between respiration and glycolysis. Their explanation of the metabolic 

spatial gradient can justify the observed plateau in pH graph (Figure 8). Their 

scenario is as follows: in the normoxic perivascular regions, respiration is the 

dominant employed metabolism while the recruitment of glycolysis increases as the 

distance from the vessel and the level of hypoxia increase. Thus at intermediate 

distances from blood vessels the cell metabolism is a combination of respiration and 

glycolysis and cells entirely switch to a glycolytic metabolism in anoxia (Figure 8) 

[Molavian et al. 2009].  

According to Michaelis-Menten kinetics, the consumption of oxygen and glucose 

satisfy the equations below: 

PO = rPG
CO

CO + kO
f1(CO) 

PG = rPG
CG

CG +kG
f2 (CO) 

Where PO and PG are the consumption of oxygen and glucose, r is the ratio of 

glucose consumption to oxygen consumption, kO and kG are the Michaelis-Menten 

constants, CO is the concentration of oxygen, and f1 and f2 are adjustment functions 

that control metabolism switching between respiration and glycolysis [Molavian et 

al. 2009].  
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Figure 8: Experimental and simulated plots for pH and pO2. The pH level decreases 

as the distance from the blood vessel increases. Similar to pH, the concentration of 

oxygen decreases as the distance from the vessel increases so that in 300 µm from 

the blood vessel the level of oxygen is almost zero. Inset graph shows the ratio of 

oxygen consumption to glucose consumption. The figure is adapted from Molavian 

et al 2009.   

 

 

The steady state solution of the partial differential equation determines the 

concentration of chemicals in interstitial space. The partial diffusion equation is as 

follows:  

∂Ci
∂t

−Di∇
2Ci = Pi    (32) 

and the steady state of Equation (32) reads for:  

Pi +Di∇
2Ci = 0    (33) 

where Ci is the concentration of chemical i, Di is the diffusion constant of chemical i, 

and Pi is the production or consumption of chemical i.  

We have expanded this model to match the layout of the current lattice of tumour 

cells so that there is a frame of vessels surrounding cancer cells (as boundary 

conditions in Equation 33) and chemicals diffuse into the tissue according to the 

discretized format of Equation (32). Hence at each time step of simulation the 
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discretized diffusion equation for each chemical reads for: 

Pi, j +D(
Ci, j+1 − 2Ci, j +Ci, j−1

∆x
+
Ci+1, j − 2Ci , j +Ci−1, j

∆y
) = 0      (34) 

where Ci,j and Pi,j respectively shoes the concentration and production (consumption) 

of species in position (i,j) of the lattice. The spatial layout of our square lattice 

model requires the equality of ∆x and ∆y. The diffusion constants of each species 

into the tissue and permeability constants of each species through the blood vessel 

are listed in Table (11). 

 

Table 11: Diffusion and permeability constants and intravenous concentration of 

chemicals. Regenerated from Molavian et al. [Molavian et al. 2009]. 

  

Compound D (cm2/s) μ (cm/s) Intravenous Concentration (mM) 

O2 
1.46 e−5 

[Nicholas MG and Foster 1994] 
3.0 e−5  [Crone and Levitt 1963] 6.5 e−2  [Molavian et al. 2009] 

Glucose 1.10 e−6  [Casciari et al. 1988] 3.0 e−5  [Crone and Levitt 1963] 7.5 e−1  [Molavian et al. 2009] 

CO2 8.9 e−7    [Molavian et al. 2009] 3.0 e−5  [Crone and Levitt 1963] 1.7          [Molavian et al. 2009] 

Glutamine 1.1e−6       [casciari et al. 1992] 3.0 e−5  [Crone and Levitt 1963] 3.98 e−5 [Molavian et al. 2009] 

Bicarbonate − 2.2 e−7    [Molavian et al. 2009] 1.7 e−5            [Chan et al. 1983] 15           [Molavian et al. 2009] 

Lactate − 1.9 e−6       [casciari et al. 1992] 1.2 e−4  [Crone and Levitt 1963]         2             [Bell et al. 1968] 

H + 1.9 e−6            [Fatt et al. 1998] 1.2 e−4  [Crone and Levitt 1963] 3.98 e−5       [Bell et al. 1968] 

Cl − 2.26 e−7   [casciari et al. 1992] 1.2 e−4  [Crone and Levitt 1963] 1.05 e+2       [Bell et al. 1968] 

Na+ 3.14 e−7   [casciari et al. 1992] 1.2 e−4  [Crone and Levitt 1963] 1.22 e+2      [Bell et al. 1968] 
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4.3. Implementation of cell division, pushing 

algorithm and cellular metabolisms in cellular 

automata model 

Following flowchart demonstrates the implementation of cell division, and Pushing 

algorithm as described before. The type of the cells, distribution of the nutrients and 

pH, and previous state of the cell step in during different parts of the algorithm and 

strongly affect the fate of the cell (Figure 9). 

 

4.3.1. The effect of ECM on tumour growth of single-

type cells 

The following figure (Figure 10), illustrates the effect of ECM absence on our 

simulated tumour. In order to clarify the Impact of the ECM, the distribution of 

nutrients and pH as well as the pushing mechanism are neglected. The tumour is 

assumed to contain a single type of cells in following results. Therefore, cancer cells 

are dividing according to their initial states and availability of vacancies in 

neighbouring positions.  The layout of the generated tumour completely matches the 

prediction. Since the initiating cells are located in the centre of the lattice and the 

division algorithm selects the vacancies either horizontally or vertically the tumour 

is almost a diamond concentric with the lattice.  
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Figure 9: The flow chart of simulation algorithm. 
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Figure 10: Tumour growth without considering the effect of ECM, nutrients and pH 

distribution, and Pushing algorithm. The vacancies selection in a horizontal or 

vertical manner caused the diamond-like shape of the generated tumour.  

 

 

 



 90

The presence of ECM modifies the tumour 2-D layout to a more circular shape. 

Moreover, the restrictions on the pressure and adhesion levels lead to the appearance 

of empty spots inside the tumour where the ECM is not in a proper range, hence the 

cells can not locate in those positions due to the high levels of pressure or inadequate 

adhesion. Following figure (Figure 11) shows the simulated tumour of single type of 

cancer cells in a lattice with randomly assigned ECM. The asymmetric layout is due 

to the stochastisity of the simulation. To illustrate the effect of the ECM, the pushing 

algorithm is inactivated and nutrients and pH distributions are neglected.  

 

Figure 11: Tumour growth affected by ECM. Pushing algorithm is inactivated as 

well as the effect of nutrient and pH distribution. 
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4.3.2. The effect of pushing on single-type cell tumour 

growth  

The pushing algorithm enables the surrounded cell to proliferate. Hence in a 

simulation with activated pushing algorithm more proliferating cells are dividing 

simultaneously. Thus the apparent prediction is that the colony size of a pushing-

activated tumour is larger than an inactivated-pushing tumour during the same time 

scale. Comparison of Figure (12) with Figure (11) supports this prediction. In this 

figure the simulation is run for a pushing-activated tumour. The effect of ECM, and 

nutrient, and pH distribution are neglected. The empty spots will be filled if we run 

the simulation for a longer period.  

 

Figure 12: Tumour growth affected by pushing algorithm. ECM is inactivated as 

well as the effect of nutrient and pH distribution. Comparison of this result with 

figure 11 illustrates the promoting effect of pushing algorithm on colony size of the 

tumour. 
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4.3.3. The effect of nutrients and pH distribution on 

single-type cell tumour growth 

The distribution of nutrients and pH affects the cancer cell division, differentiation, 

death, and metabolism. Considering the type of residing cell, the concentration of 

oxygen and acidity at each grid of lattice determines the probabilities of possible 

transitions. However, in the early stages the viability, quiescence or proliferation of a 

cell is determined by hypoxia and acidity intensity of the tumour microenvironment. 

The following figures (Figure 13) show growth of tumours under conditions of 

symmetric and asymmetric distribution of nutrients. Apparently, under the 

asymmetric distribution of nutrients the tumour is skewed to the vessel that is rich in 

nutrients whereas the low concentration of nutrients in other parts results in the 

quiescence of residing cells.  

 

 

4.3.4. Implementation of different phenotypes of cancer 

cells into the cellular automata model 

In the presented 2D cellular automata model, we implemented tumour 

heterogeneities by introducing two basic groups of cancer cells: cancer stem cells 

that express CD 133+ in biological experiments and non-stem cancer cells that are 

recognized as CD133- cancer cells in biological experiments. According to the 

aforementioned transition pathways, the first four phenotype of cancer cells, S, P1, 

P2, and P3, are assigned to cancer stem cells whereas P4, P5, P6, and M cells are 

signed to presents the non-stem cancer cells. To bring the double species-cellular 

automata model close enough to the aforementioned 8 species model of cancer cells, 

we add another characterization of age to the cancer cells so that a cancer cells with 

age of 1 represent a P1 cell and a cancer cell with age of 7 represents a M cell. Age 0 

is assigned to S cells. Figure 14 shows the results of implementing two types of 
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cancer cells in cellular automata model.  

 

Figure 13: Tumour growth under symmetric (first) and asymmetric (second) 

distribution of nutrients. The tumour growth is skewed from the vessels with 

nutrients concentration less than minimum requirements of proliferating cells. Both 

tumours are generated from single-type of cancer cells located at the centre of the 

lattice. The concentration of oxygen and glucose are 6.5*10-2 mM and 7.5*10-1 mM  

in vascular frame for the first image. The concentration of oxygen is different in four 

vessels of the second image and is 8.5*10-2 mM, 5.5*10-2 mM, 5.5*10-2 mM, 5.5*10-2 

mM  for upper, lower, left and right vessels respectively. The concentration of 

Glucose is equal in all vessels and it is 7.5*10
-1

mM. 
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Figure 14: Implementation of different phenotypes of cancer cells in 2D cellular 

automata model. Red, blue and green squares are representing non-stem cancer 

cells, Cancer stem cells and empty spots respectively. The transition rates for this 

specific realization are 0.05, 0.15, 0.1, 0.4, 0.5, 0.1for ρS, ρP, r1, r2, r3, and γ 

respectively. 

 

 

4.4. Results and Discussion 

Recalling the results for transition pathways for each microenvironmental region, 

herein, the implementation procedure and the obtained realization are presented in a 

forward model and discussed.  
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4.4.1. Summarizing the transition rates for each 

microenvironmental region  

Table (12) summarizes result sets of transition rates in different microenvironmental 

regions. Presented values are the average of transition rates presented in Tables (7-

10) over each region. Considerable distance among loci of results for different 

regions (Figures 4-7) suggests that even the average of each set can characterize the 

whole set distinctly. We have implemented the following values as the transition 

rates in the 2D cellular automata model.  

 

Table 12: The transition rate for different microenvironmental regions.  

 

Average Hypoxic Region Acidic Region Hypoxic-acidic Region Normal Region 

ρS 0.693147 0.693147 0.693147 0.693147 

ρP 0.693147 0.693147 0.693147 0.693147 

r -0.382927 -0.400000 0.064706 -0.522222 

r1 0.115854 0.000000 0.335294 0.077778 

r2 0.385366 0.600000 0.394118 0.322222 

r3 0.498780 0.400000 0.270588 0.600000 

γ 0.876098 0.670000 0.690588 0.450000 

 

 

4.4.2. Results 

We implemented the above-mentioned transition rates into the cellular automata 

model. The cellular automata also consider a randomly assigned extracellular 

matrix. The function of this matrix in the model is as discussed before; each grid in 

the cellular lattice is able to reside a cell if the relevant value of ECM matrix for this 

grid is in appropriate ranges to provide necessary adhesion while keeping the 

pressure low enough. The values of ECM grids are checked during cell division and 
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pushing mechanisms.  

In addition to the ECM and cellular heterogeneities, the distribution of nutrient and 

pH affect the tumour growth. A cancer cell is forced to quiescent state or death if the 

concentration of nutrients is not enough for proliferation or survival. Therefore, 

asymmetric distribution of nutrients forms the morphological alterations in tumour 

growth. As demonstrated in the previous section, inadequate level of oxygen 

concentration in one side of the lattice frame, for example, causes the tumour to 

skew to the direction that can provide sufficient level of nutrient for cell survival and 

growth. Herein, the realizations of the tumour growth exposed to simulated tumour 

microenvironment are presented. The results confirm the prediction of previous 

chapter.  

Figure (15) shows the distribution of pH and oxygen and the consumption of 

glucose and oxygen by tumour cells. In this realization the concentrations of 

nutrients in vascular frame are asymmetric so that the tumour lattice is exposed to 

normal, acidic and hypoxic-acidic conditions in the same lattice.  The distribution of 

pH (up left), oxygen (up Right) and the consumption of glucose (down left) and 

oxygen (down right) are resented in Figure (15). Due to the Impact of cellular 

metabolism on pH distribution, the tumour is visible in the lattice representing the 

pH distribution (up left).   

Figure (16) and (17) show the produced tumour exposed to the microenvironmental 

conditions illustrated in Figure (15).  

The color code for the lattice presented in Figure (16) is aimed to highlight the 

tumour heterogeneities regards to the seven introduced phenotypes of cancer 

progenitor cells, P1, P2, P3, P4, P5, P6, and M cells. As demonstrated by colors in 

figure (16), maturity of cancer cells is more likely in normal regions than hypoxic-

acidic or acidic parts. On the other hand, the acidic region promotes the stem-like 

phenotype of less mature progenitors, P1, P2, P3, through differentiation of cancer 

stem cells, while acidic-hypoxic region up regulates the self-renewal of S cell. Table 

(12), summarized results of previous chapter, supports the produced results.  
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Figure 15: The distribution of pH (up left), oxygen (up Right) and the consumption 

of glucose (down left) and oxygen (down right). In this realization the lattice 

includes are three microenvironmental regions of hypoxic-acidic (right quarter of 

lattice), acidic (upper quarter), and normal (almost left and lower quarter). Due to 

the Impact of cellular metabolism on pH distribution, the tumour is visible in the 

lattice representing the pH distribution (up left).  
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Figure 16: Tumour heterogeneities due to the microenvironmental conditions. 

Presented lattice is the tumour grown under the microenvironmental conditions 

shown in Figure (15). Lower and left quarters of the tumour are exposed to the 

normal conditions while right and upper quarters are exposed to acidic-hypoxic and 

acidic microenvironmental conditions respectively. Values of grids that interpreted 

as colors show the residing cell phenotype so that value 1 associates with P1 cells 

and 7 represent an M cell. As demonstrated by colors, the maturity of cancer cells is 

more likely in normal regions. Furthermore, The acidic region promotes the stem-

like phenotype of less mature progenitors, P1, P2, P3, through dedifferentiation of 

cancer cells, while acidic-hypoxic region up regulates the self-renewal of S cell.    

 

 

 

Figure (17) focuses on the S cells in cancer cell population. S cells as the only 

phenotype that is able to self-renew, symmetrically and asymmetrically differentiate 

is different from other stem-like phenotypes presented in the model. Normal regions 

host smaller population of S cells than acidic or acidic-hypoxic regions. This figure 

supports the argument concluded from recent experimental observations that acidic 

conditions of tumour microenvironment promotes the stem-like phenotype in cancer 

cells. 
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Figure 17: The heterogeneity in tumour exposed to microenvironmental conditions 

presented in Figure (15). S phenotype of cancer cells (denoted in red) is promoted in 

acidic and acidic-hypoxic regions. 

 

 

 

 

 

Figures (18-20) sow the results for another realization with the same constrains on 

nutrient and pH concentration. In this realization, we studied the tumour growth for 

a longer period. As demonstrated in Figures (18-20), the results of this realization 

confirm the conclusions of the aforementioned realization. However, longer period 

of time highlighted the tumour heterogeneities in different microenvironmental 

conditions.  
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Figure 18: The distribution of pH (up left), oxygen (up Right) and the consumption 

of glucose (down left) and oxygen (down right). In this realization the lattice 

includes are three microenvironmental regions of hypoxic-acidic (right quarter of 

lattice), acidic (upper quarter), and normal (almost left and lower quarter). Due to 

the Impact of cellular metabolism on pH distribution, the tumour is visible in the 

lattice representing the pH distribution (up left). Longer period of realization time, 

allowed the tumour to grow all over the lattice.  
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Using a color code for the tumour growth under conditions presented in Figure (18), 

Figure (19) highlights the tumour heterogeneities regards to the seven introduced 

phenotypes of cancer progenitor cells, P1, P2, P3, P4, P5, P6, and M cells. As 

demonstrated by colors in Figure (19), maturity of cancer cells is more likely in 

normal regions than hypoxic-acidic or acidic parts. Similar to presented results in 

Figure (16), the acidic region promotes the stem-like phenotype of less mature 

progenitors, P1, P2, P3, through differentiation of cancer stem cells, while acidic-

hypoxic region up regulates the self-renewal of S cell. Table (12), summarized 

results of previous chapter, supports the produced results. 

Figure 19: Tumour heterogeneities due to the microenvironmental conditions. 

Presented lattice is the tumour grown under the microenvironmental conditions 

shown in Figure (18). Lower and left quarters of the tumour are exposed to the 

normal conditions while right and upper quarters are exposed to acidic-hypoxic and 

acidic microenvironmental conditions respectively. Values of grids that interpreted 

as colors show the residing cell phenotype so that value 1 associates with P1 cells 

and 7 represent an M cell. As demonstrated by colors, the maturity of cancer cells is 

more likely in normal regions. Furthermore, The acidic region promotes the stem-

like phenotype of less mature progenitors, P1, P2, P3, through dedifferentiation of 

cancer cells, while acidic-hypoxic region up regulates the self-renewal of S cell. 

Longer period of realization time, allowed the tumour to grow all over the lattice. 
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Figure (20) focuses on the S cells in cancer cell population for this realization. As 

demonstrated in Figure (20), normal region hosts smaller population of S cells than 

acidic or acidic-hypoxic regions. This figure supports the argument concluded from 

the results of the recent experimental observations that suggest the promotion of 

stem-like phenotype under acidic and hypoxic conditions of tumour 

microenvironment. 

 

 

Figure 20: The heterogeneity in tumour exposed to microenvironmental conditions 

presented in Figure (18). S phenotype of cancer cells (denoted in red) is promoted in 

acidic and acidic-hypoxic regions. 
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4.5. Discussion 

In spite of the ever-increasing attempts to treat cancers, it’s still one of the main 

challenges of modern medicine. Proposing the tumour heterogeneities and the 

dominant role of some subpopulations of tumour cells to promote the tumour 

progression along with the lethal damage of normal cells in tumour vicinity from the 

cancer therapies, suggest the importance of cell targeting to design a successful 

cancer treatment.   

In presented model, we proposed that the tumour microenvironmental condition 

plays a critical role in forming tumour heterogeneities. Assuming eight distinct 

phenotype of cell in cancer cell population, we studied the effect of hypoxia, acidity 

and the coincidence of hypoxia and acidity on different division pathways of cancer 

cells. We built a cellular automata model equipped with a pushing mechanism under 

the distribution of nutrient and pH and extracellular condition. This forward model 

visualizes the effect of microenvironmental factors on tumour growth and 

heterogeneities. The results can provide a hint on which subpopulation(s) of cancer 

cells may be the critical group to target based on instantaneous state of the tumour. 

The promotion of cancer stem cell phenotype in acidic region through the promotion 

of dedifferentiation of progenitors and asymmetric differentiation of S cells leads in 

the increased population of cancer stem cells from P1, P2, and P3 phenotypes. The 

predicted down regulation of self-renewal of S cells results in the suppression of this 

phenotype in acidic regions.  

Similar to acidity, hypoxia upregulates the stem-like phenotypes among cancer cell 

population. However, the self-renewal of S cells in hypoxic regions is more likely 

than acidic areas. The promotion of dedifferentiation rate of progenitors in hypoxia 

is relatively higher than other microenvironmental regions.  

The self-renewal of S cells seems to be maximally promoted in acidic-hypoxic 

regions. On the other hand, the dedifferentiation rate of cancer progenitors is also 

upregulated n this region. Consequently, the majority of S phenotype subpopulation 
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is residing in acidic-hypoxic region.  

Further biological experiments are needed to validate the predictions of our model 

about the dynamics of tumour heterogeneities. Such experiments may investigate the 

synergistic effect of hypoxia and acidity on cancer cells. Using an accurate cell 

sorting method to distinct cancer cells based on the expression of stem cell markers 

such as CD133+ and pluripotency potentials may be useful.    

One potential direction of extension of the model is to consider different rates of 

transitions for cancer progenitors. The differentiation of P3 cells, as the most mature 

phenotype of cancer stem cells, to P4 cells, as the least mature phenotype of non-

stem cancer cells is of special interest. Certainly, a larger scale of cellular automata 

modeling can obtains better prediction of reality.  

In a larger scale, the model can be improved by considering the effect of cancer 

therapies such as anti-angiogenic therapies or treatments to normalize the 

vasculature inside the tumour as well as proposed therapies to lower the acidity of 

the tumour microenvironment by introducing a auxiliary buffering system 

[Molavian et al. 2009]. The effect of chemo and radiotherapy of cancer cells with an 

emphasis on targeting specific subpopulations of cancer cells can be added to 

improve the model.  
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