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Abstract

Under the assumption of mass-action kinetics, systems of chemical reactions can give
rise to a wide variety of dynamical behaviour, including stability of a unique equilibrium
concentration, multistability, periodic behaviour, chaotic behaviour, switching behaviour,
and many others. In the canonical papers [25,30,33], M. Feinberg, F. Horn and R. Jackson
developed so-called Chemical Reaction Network theory which drew a strong connection
between the topological structure of the reaction graph and the dynamical behaviour of
mass-action systems. A significant amount of work since that time has been conducted ex-
panding upon this connection and fleshing out the theoretical underpinnings of the theory.

In this thesis, I focus on three topics within the scope of Chemical Reaction Network
theory:

1. Linearization: It is known that complex balanced systems possess within each invari-
ant space of the system a unique positive equilibrium concentration and that that
concentration is locally asymptotically stable. F. Horn and R. Jackson determined
this through the use of an entropy-like Lyapunov function [33]. In Chapter 4, I ap-
proach this problem through the alternative approach of linearizing the mass-action
system about its equilibrium points. I show that this approach reproduces the re-
sults of F. Horn and R. Jackson and has the advantage of being able to give explicit
exponential bounds on the convergence near equilibria.

2. Persistence: A well-known limitation of the theory introduced in [33] is that the
stabilities of the positive equilibrium concentrations guaranteed by the theory are
locally limited. The conjecture that the equilibrium concentrations of complex bal-
anced systems are global attractors of their respective invariant spaces has become
known as the Global Attractor Conjecture and has received significant attention re-
cently. This theory has been significantly aided by the realization that trajectories
not tending toward the set of positive equilibria must tend toward the boundary of
the positive orthant; consequently, persistence is a sufficient condition to affirm the
conjecture. In Chapter 5, I present my contributions to this problem.

3. Linear Conjugacy : It is known that under the mass-action assumption two reaction
networks with disparate topological structure may give rise to the same set of dif-
ferential equations and therefore exhibit the same qualitative dynamical behaviour.
In Chapter 6, I expand the scope of networks which exhibit the same behaviour to
include ones which are related by a non-trivial linear mapping. I have called this
theory Linear Conjugacy theory. I also show how networks exhibiting a linear con-
jugacy can be found using the mixed integer linear programming (MILP) framework
introduced by G. Szederkényi [58].
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Chapter 1

Introduction

The study of chemical kinetics—that is to say, the rate at which chemical reactions occur—

has a long and fruitful history. Even when the formulation of each individual reaction’s

kinetics is well-understood, the amalgam of many such reactions into a network can lead

to surprising and unpredictable dynamical results. The study of such networks has found

application in such disciplines as industrial chemistry [9, 50], systems biology [48, 49, 56],

enzyme kinetics [16, 52], gene regulatory networks [51], and many others.

One of the most powerful contributions to the theory of chemical kinetics is the law of

mass action for interacting species, which was proposed in 1864 by C. M. Guldberg and

P. Waage [27]. This ‘law’ says that the rate of a reaction is proportional to the product

of the reactant concentrations, that is to say, the rate of a reaction catalysed by two

species A and B would be given by k[A][B] where k > 0 is some proportionality constant.

This formulation has been found to be a very accurate estimator of empirical data for

many reaction systems. Mass-action kinetics remains the most commonly used kinetics

scheme to date although several other dynamics, such as Michaelis-Menten kinetics for

1



enzyme reactions [43] and Hill kinetics [29], are also widely used, especially in biological

applications.

Under several simplifying assumptions, such as spatial homogeneity and a sufficiently

large number of interacting molecules, the concentrations of the species can be modeled

mathematically under the assumption of mass-action kinetics by a set of autonomous,

polynomial ordinary differential equations. Although the models are simple, they cannot

generally be solved analytically due to the non-linearity in the right-hand side, and the

potential behaviours are surprisingly robust—they can exhibit periodic behaviour, chaotic

behaviour, oscillatory behaviour, multistability, unboundedness, etc. [4, 14, 15, 21]. These

difficulties have led to a number of alternative approaches, including separation of time

scales and asymptotic analysis.

These mass-action systems have also given rise to a significant body of theoretical work.

One particularly vibrant field of research has been the so-called Chemical Reaction Network

theory developed by F. Horn, M. Feinberg, and R. Jackson in 1972 in the papers [25,30,33].

In these papers, the authors present a strong association between the topological structure

of a network’s reaction graph and such dynamical properties as the number and stability of

equilibrium concentrations, and the possibility of periodic or chaotic behaviour. Perhaps

most surprising of all is that their results depend on the structure of the graph alone and

not on the associated network parameters, the reaction rate constants.

These papers also raised significant new problems. Key among these has been the ques-

tion of global stability of a particular class of equilibrium concentrations. In [33] it is proved

that for a class of chemical reaction networks called complex balanced networks there is

exactly one equilibrium concentration within the interior of a particular class of invariant

space of the system and that this concentration is locally asymptotically stable relative

2



to that invariant space; however, the authors were unable to prove that trajectories could

not tend toward the boundary. Extending this stability to apply globally throughout the

invariant space has been termed the Global Attractor Conjecture [13, 24] and has received

significant attention recently [1, 3, 5, 19, 52, 54, 55]. I will present my contribution to this

research problem in Chapter 5.

Another important problem which has begun to receive attention in the literature has

been determining conditions under which two reaction networks with disparate network

structure can give rise to the same set of differential equations and, more recently, when

the flows of one network are linearly conjugate to another [18, 36]. Importantly, these

theories allow us to transfer important dynamical properties (e.g. number and stability of

positive equilibria, dimension of invariant spaces, etc.) from one network to another. This

is particularly useful when one network has dynamical properties which are known from

the reaction graph alone (e.g. complex balanced systems) while the conjugate network

does not.

Approaches to this problem have been varied and largely self-contained. In their seminal

paper [33], F. Horn and R. Jackson introduced an example of a complex balanced network

for which the network topology could be altered without affecting the dynamics. In [6]

and [7], E. Averbukh considered the case of networks which behave like reversible networks

despite not having reversible network structure. Former University of Waterloo graduate

student D. MacLean also considered the problem extensively in her Master’s thesis [42] and

unpublished research notes. The related problem of how potentially dimension-reducing

transformations affect many key qualitative aspects of the dynamics of chemical reaction

networks has also been studied extensively, and has been termed ‘lumping’ of chemical

reaction networks [22,41,62,64].

3



The most comprehensive approach to this problem, however, was taken by G. Craciun

and C. Pantea in [18] where they give necessary and sufficient conditions for networks

to give rise to the same dynamics (although a small oversight was corrected later by G.

Szederkényi in [57]). This has given rise to several subsequent lines of research. In the

papers [58], [59], [60] and [61], G. Szederkényi and his collaborators introduce mixed-

integer linear programming (MILP) algorithms capable of determining complex balanced

and weakly reversible alternative realizations (networks which give rise to the same dy-

namics) which have the greatest and fewest number of reactions given certain fixed system

parameters. In [17] and [20], the authors introduce a maximum likelihood approach for

determining an appropriate network structure given several candidate networks which gen-

erate the same dynamics. In [36] the authors introduce the concept of linear conjugacy,

which contains the concept of realizations as a special case, and encompasses many new

systems as well. I will present my contributions to this research problem, which includes

the concept of linear conjugacy, in Chapter 6.

A side project of mine has been approaching the stability of the complex balanced

equilibrium concentrations introduced in [33] from a linearization point of view rather than

taking a Lyapunov function approach. This has not been attempted before and, while it

produces no qualitative results which were not previously known, it is a comprehensive

and theoretically interesting approach. Linearization also allows an exponential rate of

convergence to be determined. I will present these results in Chapter 4.
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Chapter 2

Background

In this chapter, the notation and important background information about chemical reac-

tion networks which will be used throughout this thesis are introduced. In particular, the

notions of the reaction graph of a chemical reaction network and mass-action kinetics—

which underlie all the work contained herein—will be presented.

Due to disparity in application within the chemical kinetics literature—as well as within

this thesis—it will often be necessary to represent concepts in multiple ways and with

multiple notations. Throughout this thesis, we will see the central system of mass-action

induced differential equations presented with not one, or two, but four distinct notations

(one is reaction-oriented (2.3), one is complex-oriented (2.4), and two are linear-algebra-

oriented (4.18) (5.10)). While this is a frequent source of confusion, effort will be put

forth to explain why the disparities exist and which approaches are suitable for which

applications.
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2.1 Chemical Reaction Networks

In this section, the background necessary to define a chemical reaction network is intro-

duced. We will familiarize ourselves with the concepts of chemical species, complexes and

reactions. Two notations for representing and indexing chemical reaction networks will be

introduced (the reaction-oriented notation of (2.1) and the complex -oriented notation of

(2.2)). We will be careful throughout this thesis to note which scheme is being used.

The central quantities of consideration in the study of chemical kinetics are the chemical

species.

Definition 2.1.1. The chemical species (alternatively, chemical reactants/products)

of a chemical reaction mechanism are the most basic elements capable of undergoing chem-

ical change. We will denote the set of chemical species by S = {Ai, i = 1, . . . ,m} where

∣S∣ =m is the number of distinct chemical species in the mechanism.

Depending on the application, the nature and composition of the chemical species may

very greatly. For the electrolysis of water, given by the overall equation

2H2O Ð→ 2H2 +O2,

we are interested in the simple molecules water (A1 =H2O), hydrogen (A2=H2), and oxygen

(A3 =O2). For other examples, the molecular composition of the species may be too com-

plicated (or irrelevant) to be kept track of in such a manner. Many biochemical reactions

fall into this category. For example, in the popular Michaelis-Menten enzyme reaction

given by the equation

S +E ⇆ SE Ð→ P +E
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the chemical species of interest are the substrate (A1=S), the enzyme (A2=E), the substrate-

enzyme complex (A3=SE), and the product (A4=P); for practical reasons, we are not in-

terested in the molecular composition of these species [43]. It is also common to extend

this notation to non-chemical applications, in which case we will just speak of the involved

agents as species. For example, the famous Lotka-Volterra predator prey model is often

represented as the reaction system

X +Y Ð→ 2Y

X Ð→ 2X

Y Ð→ O

where X is the prey (A1=X), Y is the predator (A2=Y), and O is the null specie. The first

‘reaction’ represents predators eating prey, the second ‘reaction’ represents the growth of

the prey in the absense of predation, and the final ‘reaction’ represents the decay of the

predator in the absence of prey. In this example, it obviously makes no sense to speak

of the chemical composition of the species; nevertheless, it is still sensible to think of the

behaviour in terms of reactions (the predator and prey meeting constitutes a reaction!).

In building our mathematical model, we will be primarily interested in the effects of

the mechanism on the chemical species. For example, in our electrolysis of water example

above, we would be interested in the evolution of the concentrations of the three chemical

species (x1 = [H2O], x2 = [H2], and x3 = [O2]) as a result of the mechanism. We will derive

reasonable equations for the rate of growth and decay of these species in a later section.

The chemical species of a system interact according to elementary reactions.

Definition 2.1.2. An elementary reaction of a chemical reaction mechanism consists
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of a set of chemical reactants combining at a prescribed rate to form some set of chemical

products. The set of elementary reactions will be denoted R = {Ri, i = 1, . . . , r} where Ri

indexes the reactant set, product set and rate constant of the ith reaction, and ∣R∣ = r is the

number of elementary reactions in the mechanism.

It is worth noting that our definition of an elementary chemical reaction differs from the

definition typically understood by chemists. Our definition is based on the most elementary

component of the mathematical model and is not meant to imply that more elementary

reaction processes do not underlie the system. For instance, the electrolysis example given

above is known to have intermediate steps involving the species H+, HO− and e− (free

electrons). Whether we include these species, or the reactions involving them, depends on

their relevance to the mathematical model we are using.

Schematically, the set of elementary reactions of a mechanism can be represented as

Rj ∶
m

∑
i=1

zjiAi Ð→
m

∑
i=1

z′jiAi, for j = 1, . . . , r (2.1)

where the terms zji and z′ji are nonnegative integers called the stoichiometric coefficients.

The vectors zj = [zj1 zj2 ⋯ zjm]T and z′j = [z′j1 z′j2 ⋯ z′jm]T are called the stoichiometric

vectors. We can see that the three reaction systems given earlier in this section fit this

reaction scheme.

The linear combination of species to the left and right of each of the reaction arrows in

(2.1) are of central importance throughout the rest of this thesis.

Definition 2.1.3. The set of species, together with their stoichiometric coefficients, on

the reactant or product side of an elementary reaction are called complexes. The set of
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stoichiometrically distinct complexes will be denoted C = {Ci, i = 1, . . . , n} where ∣C∣ = n is

the number of stoichiometrically distinct complexes of the mechanism.

In general, complexes may appear multiple times in the elementary reaction set (2.1).

This observation has led many researchers to view reaction mechanisms not as a list of ele-

mentary reactions but as interactions between the n stoichiometrically distinct complexes

of the system. In this setting, (2.1) is instead represented by

Rij ∶ Ci Ð→ Cj, for i, j = 1, . . . , n, (2.2)

where Ci = ∑m
j=1 zijAj, i = 1, . . . , n are the stoichiometrically distinct complexes of the mech-

anism (see [33]). We are now prepared to formally define a chemical reaction network.

Definition 2.1.4. A chemical reaction network (alternatively, a chemical reaction

mechanism) is given by the triplet N = (S,C,R).

Throughout most of this thesis, we will not be concerned with whether a chemical

reaction network under consideration corresponds to known chemical reactions. In many

cases, we will not even be concerned with whether they could correspond to sensible chem-

ical reactions. As such, we should get used to thinking of chemical reaction networks as

abstract mathematical constructs.

2.2 Reaction Graphs

According to (2.1), reactions are depicted as a list of simultaneously but independently

occurring events, whereas according to (2.2) they are thought of as interactions between
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stoichiometrically distinct complexes. Depending on the application, it may be more con-

venient to view reactions in one framework as opposed to the other. It is also worth noting

that other graphical representations of chemical reaction networks exist (see [14,15,53]).

In this thesis, we will be primarily interested in the complex-oriented notation of (2.2).

In this setting, we can represent chemical reaction networks as directed graphs with com-

plexes as nodes and reactions as edges, according to the following definition.

Definition 2.2.1. The reaction graph of a chemical reaction network, G(N), is given

by the directed graph G(V,E) with vertex set V = C and the directed edge set E = R.

Example 2.2.1. Consider the chemical reaction network N given in the form of (2.1) as

A1 Ð→ A2

A2 Ð→ A3 +A4

A3 +A4 Ð→ A1

2A1 Ð→ 2A3

2A3 Ð→ 2A1.

We can see that the network has four species and five reactions so that m = 4 and r = 5. To

each reaction, we associate a reactant complex (e.g. C3 = A3 + A4) and a product complex

(e.g. C′3 = A1).

We notice, however, that some of the complexes in the mechanism are repeated. For

example, C′1 = A2 and C2 = A2 are stoichiometrically identical. In fact, the mechanism

only has five stoichiometrically distinct complexes so that n = 5. Setting C1 = A1, C2 = A2,

C3 = A3 + A4, C4 = 2A1, and C5 = 2A3, we can represent the system according to the

10



complex-centred reaction graph G(N) according to Definition 2.2.1 as

A1 Ð→ A2

↖ ↙

A3 +A4

2A1 ⇆ 2A3.

In this setting, the network is represented as a directed graph with the distinct complexes

as nodes and the reactions as directed edges. It is worth noting that C1 = A1 and C4 = 2A1

are distinct complexes.

Not surprisingly, the graph theoretical properties of reaction graphs have been exploited

to produce results regarding the dynamical behaviour of chemical reaction networks [14,

15,25,30,33]. We state here a few important concepts of graphs as they apply to chemical

reaction networks. For a more complete introduction to directed graphs, see [11] and [12].

Definition 2.2.2. We say Cν0 is connected to Cνk if there exists a sequence of indices

(νi−1, νi), i = 1, . . . , k, such that

Cν0 ←→ Cν1 ←→ ⋯ ←→ Cνk−1 ←→ Cνk

where by Ci ←→ Cj we mean that either

Ci Ð→ Cj or Cj Ð→ Ci.

Definition 2.2.3. We say there is a path from Cν0 to Cνk if there exists a sequence of
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indices (νi−1, νi), i = 1, . . . , k, such that

Cν0 Ð→ Cν1 Ð→ ⋯ Ð→ Cνk−1 Ð→ Cνk .

Definition 2.2.4. A connected component or linkage class of a reaction graph is

a maximal set of complexes {Cµ1 , . . . ,Cµk} such that Cµi and Cµj are connected for i, j =

1, . . . , k. We will let ` denote the number of distinct linkage classes L1, . . . ,L` of the reaction

mechanism.

Definition 2.2.5. A strongly connected component of a reaction graph is a maximal

set of complexes {Cµ1 , . . . ,Cµk} such that there is a path from Cµi to Cµj for all i, j = 1, . . . , k,

i /= j.

Since each complex is distinct, it follows that the complex set C of any chemical reaction

network can be partitioned into distinct linkage classes L1, . . . ,L` such that

Li ∩ Lj = ∅, i, j = 1, . . . , `, i /= j

and

C =
`

⋃
i=1

Li.

We can now define two other particularly important classes of chemical reaction net-

works. In [25,30,33], the authors relate these concepts to properties of the equilibrium set

of a mass-action system. These results will be discussed in Chapter 3.

Definition 2.2.6. We say a chemical reaction network is reversible if for every reaction

from Ci to Cj, there exists a reaction from Cj to Ci.
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Definition 2.2.7. We say a chemical reaction network is weakly reversible if for every

path from Ci to Cj, there exists a path from Cj to Ci.

It is clear by this definition that for reversible and weakly reversible networks, the

strongly connected components and linkage classes coincide. In general, this need not be

the case, as can be seen by the following example.

Example 2.2.2. Consider the network given by

C2 ⇄ C3

↗

C1 Ð→ C4 ⇄ C5.

It is clear that every complex is connected so that all of the complexes belong to the same

linkage class, say, L = {C1,C2,C3,C4,C5}. We cannot, however, construct a path from every

complex within this set to every other complex so the strongly connected components clearly

constitute a further partitioning of the complexes. In this case, we have three strongly

connected components, corresponding to the sets {C1}, {C2,C3} and {C4,C5}.

So far we have only considered the properties of the reaction network which result from

the interactions between complexes. We have given no consideration to how the species are

embedded within the complexes. The following concepts will prove to be very important

characteristics of chemical reaction networks.

Definition 2.2.8. The stoichiometric subspace for a chemical reaction network (2.1)

13



is the linear subspace S ⊂ Rm such that

S = span{(z′i − zi) ∣ i = 1, . . . , r} , or

S = span{(zj − zi) ∣ (i, j) ∈ R} .

The dimension of the stoichiometric subspace will be denoted by ∣S∣ = s.

Definition 2.2.9. The deficiency of a network is defined as

δ = n − ` − s

where n is the number of distinct complexes, ` is the number of linkage classes, and s is

the dimension of the stoichiometric space.

The stoichiometric subspace is crucially important in determining how the dynamics of

a chemical reaction network may evolve (see Section 2.4). The deficiency is a nonnegative

parameter which can often be used to restrict the behaviour of chemical reaction networks.

It is worth noting that all of the components required to determine the deficiency (n, `,

and s) can be determined by analysis of the reaction graph alone.

Example 2.2.3. Reconsider the network given in Example 2.2.1:

A1 Ð→ A2

↖ ↙ (S1)

A3 +A4

2A1 ⇄ 2A3 (S2)
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As before, we make the associations C1 = A1, C2 = A2, C3 = A3+A4, C4 = 2A1, and C5 = 2A3.

We can clearly see that the system is partitioned into two distinct sets of connected

complexes, corresponding to those complexes in (S1) and those in (S2). Consequently, the

system has two linkage classes given by L1 = {C1,C2,C3} and L2 = {C4,C5}. As expected,

the complex set C is completely partitioned into non-overlapping linkage classes so that

C = L1 ∪ L2 where L1 ∩ L2 = ∅.

We now consider the reversibility of the systems (S1) and (S2). It is clear that system

(S1) is not a reversible system since none of the reactions contained in the mechanism have

a reverse step. We can see, however, that given any path from one complex to another

(e.g. C1 to C2) there exists a path leading to the original complex (e.g. C2 to C3 to C1).

Consequently, the system (S1) is weakly reversible.

We can clearly see that the system (S2) is reversible. Since every reversible mechanism

is also trivially weakly reversible, the entire mechanism (S1) and (S2) is weakly reversible

(but not reversible, since (S1) is not).

It remains to determine the deficiency of the mechanism. The quantities we need are

the number of distinct complexes (n), the dimension of the stoichiometric subspace (s),

and the number of linkage classes (`). We have that n = 5 and ` = 2 from before, so it only
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remains to determine s. We have

S = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

−1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

0

2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

0

−2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

0

2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We can clearly see that s =dim(S) = 3 so that the deficiency is given by

δ = n − ` − s = 5 − 2 − 3 = 0.

In other words, the mechanism is a weakly reversible zero deficiency system. Such systems

will be considered extensively in Section 3.4.

2.3 Mass-Action Kinetics

We are primarily interested in the time evolution of the concentrations of the chemical

species as a result of a given reaction network.

In order to accomplish this, we need to derive a reasonable set of laws governing the

rate of growth and depletion of the chemical species. This has been handled in various ways

in the mathematical literature. Depending on the intended practical application, different

16



assumptions on the nature of the system are needed, which leads to different mathematical

models.

In this thesis, unless otherwise stated, we will make the following model assumptions:

1. Constant External Conditions: The rate of a chemical reaction depends sensi-

tively on such system properties as temperature, volume and pressure. Many enzy-

matic reactions, for instance, only occur within a certain temperature range and with

varying efficacies within that range. We will assume throughout this thesis that the

variation in these quantities is negligible throughout the course of the reactions.

2. Continuous Mixing: The rate of a chemical reaction depends on the spatial domain

of the reaction. If pockets of higher concentration of one species or another are

allowed, the rate of reaction will vary according to these spatial differences. We

will assume that all of the chemical concentrations are spatially homogeneous so

that we may ignore diffusive and other spatial effects. (In laboratory and industrial

applications, this can be approximated by continuously stirring the mixture.)

3. Law of Mass Action: We still need to formulate some law by which concentrations

evolve. The law of mass action is the most widely used in general chemistry. This

‘law’ states that the rate of a chemical reaction is proportional to the product of

the reactant concentrations. This is a rough approximation of the idealization that

a reaction’s occurrence is proportional to the probability of the reactants occupying

the same point in space (i.e. colliding). If the proportionality constant is taken to

be k > 0 then, for a reaction catalyzed by A1 and A2, for instance, we have [rate of

reaction] = k[A1][A2].
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We will let xi = [Ai] denote the concentration of the ith species and denote by x =

[x1 x2 ⋯ xm]T ∈ Rm the concentration vector.

Under these model assumptions, the reasonable system of differential equations govern-

ing the time evolution of the concentrations can be derived from (2.1). In general, for each

reaction in a mass-action system there are three features which influence the dynamics:

the monomial mass-action term, the proportionality constant ki, and the net stoichiometric

effect of each instance of the reaction of each species. Consequently, the governing system

of differential equations is given by

dx

dt
= f(x) =

r

∑
i=1

ki (z′i − zi) xzi (2.3)

where xzi = ∏m
j=1 x

zij
j . The vectors {(z′i − zi) ∣ i = 1, . . . , r} are called the reaction vectors and

also factor into the stoichiometric subspace (see Definition 2.2.8). They keep track of how

each species is affected by every instance of each reaction. The proportionality constants

ki > 0, i = 1, . . . , r, are called rate constants. We will denote by k = [k1 k2 ⋯ kr]T ∈ Rr
>0 the

rate constant vector.

Chemical reaction networks endowed with mass-action kinetics (2.3) will be called mass-

action systems and will be denoted by (S,C,R,k). Since mass-action kinetics is the only

form of kinetics considered in this thesis, we will use N interchangeably to denote both

the reaction network (S,C,R) and the mass-action system (S,C,R,k).

As mentioned in the introduction of this chapter, there are multiple ways of representing

the governing system of differential equations (2.3). For most of the applications in this

thesis, (2.3) will not be the preferred representation. Rather, we will typically choose

to index the mechanism according to the complex-centred notation of (2.2). With this
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notation, the system of differential equations governing the time evolution of concentrations

is given by

dx

dt
= f(x) = ∑

(i,j)∈R

k(i, j)(zj − zi)xzi (2.4)

where xzi = ∏m
j=1 x

zij
j . The reaction vectors are now given by the set

{(zj − zi) ∣ (i, j) ∈ R} where

R = {(i, j) ∣ k(i, j) > 0, i, j = 1, . . . , n} .

Under these simplifying assumptions, we can represent the reaction graphs (2.1) and

(2.2) respectively as the weighted reaction graphs

Ri ∶ Ci
kiÐ→ C′i, for i = 1, . . . , r (2.5)

and

Rij ∶ Ci
k(i,j)Ð→ Cj, for i, j = 1, . . . , n. (2.6)

There are two alternative ways of representing the system which will be needed in

specific sections of this thesis. We will, however, refrain from introducing the relevant

notations until those sections. It is also worth noting that many different assumptions on

the kinetics of chemical reaction networks exist within the literature, including Michaelis-

Menten kinetics [43], Hill kinetics [29], κ-variable mass-action kinetics [2, 19], S-system

kinetics [48,49], and more general kinetics [10,56]. The reader is referred to the respective

papers for a more complete introduction to these kinetics schemes.

19



Example 2.3.1. Consider the reaction

2A1
kÐ→ A2.

By our model assumptions, we may assume that the rate of the reaction depends only upon

the reactant concentrations and the constant k > 0. By the law of mass action, we have

[rate of reaction] = k[A1][A1] = k[A1]2.

We have yet to consider how each instance of the reaction occurring impacts the indi-

vidual species. We can readily see that each time the reaction occurs, we lose two molecules

of A1 and gain one molecule of A2. We can account for this in the differential equations

by adding the coefficients −2 and 1 to the individual equations.

The system is therefore governed by the system of ordinary differential equations

dx1

dt
= −2kx2

1

dx2

dt
= kx2

1.

The system is simple enough that we can integrate directly to arrive at the solution

x1(t) =
x10

2kx10t + 1
x2(t) =

x10

2
[ 2kx10t

2kx10t + 1
] + x20

where x10 = x1(0) and x20 = x2(0). We can see immediately that as t→∞ we have x1(t) → 0

and x2(t) → x10/2+x20. In other words, all of the mass gets transferred from A1 to A2, as

we might expect.
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2.4 Stoichiometric Compatibility Classes

Even without the benefit of specific examples, several fundamental and unique properties of

mass action-systems can be readily discerned from the structure of (2.3) and (2.4). We can

immediately see that concentrations evolve according to a system of autonomous non-linear,

polynomial ordinary differential equations. There is a significant amount of literature

on such systems [21]. Chemical reaction systems have the additional restriction that no

monomial with a negative coefficient may appear in the rate equation for a concentration

which does not appear in the monomial; this corresponds to the physical observation that

a chemical species may not be depleted by a reaction for which it was not a reactant.

This characteristic is sometimes referred to as a lack of negative cross-effects or the kinetic

property of mass-action systems [21,22,28].

Beyond the simplest of examples, however, mass-action systems cannot be solved ana-

lytically as was done in Example 2.3.1. Consequently, a variety of analysis methods have

been proposed in the literature, including quasi-steady-state approximations [45], lineariza-

tion about equilibrium concentrations [56], and Lyapunov function methods [33,42,63].

On a more basic level, we can restrict the behaviour of trajectories by careful observation

of the reaction vectors in (2.3) and (2.4). In particular, it is clear that solutions are not

able to wander around freely in Rm. The following concepts help clarify where solutions

may lie. (Also see Definition 2.2.8 for the definition of the stoichiometric subspace S.)

Definition 2.4.1. The kinetic subspace for a mass-action system (2.3) is the smallest

linear subspace S∗ ⊂ Rm such that

im (f(x)) ⊆ S∗.
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The dimension of the kinetic subspace will be denoted by ∣S∗∣ = s∗.

Definition 2.4.2. The positive stoichiometric compatibility class containing the ini-

tial composition x0 ∈ Rm
>0 is the set Cx0 = (x0 + S) ∩Rm

>0.

Definition 2.4.3. The positive kinetic compatibility class containing the initial com-

position x0 ∈ Rm
>0 is the set C∗x0

= (x0 + S∗) ∩Rm
>0.

While the stoichiometric and kinetic subspaces are related, they need not coincide, in

which case we have the strict inclusion S∗ ⊂ S. It is clear given the way the reaction

vectors factor into (2.3) and (2.4) that we have f(x) ∈ S∗ and f(x) ∈ S where f(x) is the

right-hand side of (2.3) or (2.4). The following result clarifies the relationship between the

kinetic and stoichiometric subspaces and allows us to restrict attention to Cx0 for weakly

reversible networks.

Lemma 2.4.1 (Corollary 1, [32]). For weakly reversible mass-action systems the stoichio-

metric and kinetic subspaces coincide.

The following result restricts the behaviour of solutions of (2.3) and (2.4). It can be

found in [33] and [63]. A comparable result exists for kinetic compatibility classes C∗x0
;

however, since we will be primarily concerned with weakly reversible networks in this

thesis we will restrict our attention to Cx0 .

Proposition 2.4.1. Let x(t) be the solution to (2.3) with x(0) = x0 ∈ Rm
>0. Then x(t) ∈ Cx0

for t ≥ 0.

Proof. We will prove separately that x(t) ∈ (x0 + S) for t ≥ 0 and that x(t) ∈ Rm
>0 for t ≥ 0.
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Consider (2.3). The system is autonomous, so we can integrate from s = 0 to s = t to

get

∫
t

0

dx(s)
ds

ds =
r

∑
i=1

ki(z′i − zi)∫
t

0
x(s)zi ds

which implies

x(t) = x0 +
r

∑
i=1

ki(z′i − zi)∫
t

0
x(s)zi ds.

Regardless of what the integral on the right-hand side evaluates to, the sum is in the span

of the reaction vectors z′i − zi. It follows that x(t) ∈ x0 + S for t ≥ 0 and the first claim is

proved.

We now prove x(t) ∈ Rm
>0 for t ≥ 0. We will consider the concentration of the species xj,

j = 1, . . . ,m, individually. We define the following index sets:

Rj1 = {Ri ∣ zij > 0}

Rj2 = {Ri ∣ zij = 0} .

We can rewrite the jth component of (2.3) with respect to these sets as

dxj
dt

= f1(x) ⋅ xj + f2(x) (2.7)

where

f1(x) =
1

xj

r

∑
i=1

Ri∈R
j
1

ki(z′ij − zij)xzi

f2(x) =
r

∑
i=1

Ri∈R
j
2

ki(z′ij − zij)xzi .
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Two things are worth noting about the functions f1(x) and f2(x):

1. Since zij > 0 for Ri ∈ Rj1 and zij is an integer, the quantity (1/xj)⋅xzi is a nonnegative,

finite value.

2. Since zij = 0 for Ri ∈ Rj2, it follows that z′ij −zij ≥ 0, and consequently that f2(x) ≥ 0.

(This is a consequence of the physical observation that a species may only be depleted

as a result of a reaction if the species itself is one of the reactants.)

We can now use the integrating factor µ(t) = exp{−∫
t

0 f1(x(s)) ds} on (2.7) to get

dxj(t)
dt

− f1(x(t)) ⋅ xj(t) = f2(x(t))

Ô⇒ d

dt
[e−∫ t0 f1(x(s)) dsxj(t)] = e−∫

t
0 f1(x(s)) dsf2(x(t))

Ô⇒ xj(t) = e∫
t
0 f1(x(s)) dsxj(0) + ∫

t

0
e−∫

s
0 f1(x(r)) drf2(x(s)) ds.

By assumption, we have xj(0) > 0 and we have already observed that f1(x) is well-defined

and f2(x) is nonnegative. Since the exponential is always positive, and integrating over a

nonnegative region yields a nonnegative value, we have that xj(t) > 0 for all t ≥ 0. Since

the concentration xj was chosen arbitrarily, we have x(t) ∈ Rm
>0 for all t ≥ 0, and we are

done.

Another important class of subspace relevant to mass-action systems is the conservation

subspace.

Definition 2.4.4. The conservation subspace is given by

S⊥ = {v ∈ Rm ∣ ⟨v,z′i − zi⟩ = 0, i = 1, . . . , r} .
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Definition 2.4.5. A chemical reaction network is said to be conservative if there exists

a v ∈ Rm
>0 such that v ∈ S⊥.

For many applications, the conservation vectors v ∈ S⊥ play a significant role in simpli-

fying analysis of (2.3). The reason is that, since ẋ(t) ∈ S for all t ≥ 0, it follows that

⟨v, dx(t)
dt

⟩ = 0

for all v ∈ S⊥. This gives rise to the conservation law

⟨v,x(t) − x0⟩ = 0. (2.8)

In general, each linearly independent conservation law (2.8) allows one variable to be

removed from (2.3), since any single concentration in (2.8) can by solved for as a linear

combination of the others.

In many applications, this notion of a conservation law corresponds to the physical

notion of conservation of mass. This is most readily seen for conservative systems. In

broad strokes, reactants in a physically closed system may not appear from, or disappear

into, nothing so that systems are partitioned by how much initial matter is present. While

this is a convenient interpretation, however, we note that our notion of a conservation law

is more general than this and can be applied to many systems where no such physical

interpretation is available.

Example 2.4.1. Reconsider the reaction from Example 2.3.1 made reversible, so that we

have

2A1

k1⇄
k2
A2.
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According to (2.3), the governing system of differential equations is given by

dx1

dt
= −2k1x

2
1 + 2k2x2

dx2

dt
= k1x

2
1 − k2x2.

(2.9)

This system can no longer easily be integrated so that we are relegated to alternative

methods to analyse the behaviour of the chemical concentrations. For this example, we make

two crucial observations. Firstly, by Proposition 2.4.1 we have that solutions are restricted

to their respective stoichiometric compatibility classes Cx0. These are translations of S,

which is given by

S = span

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

2

−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Consequently, Cx0 is a one-dimensional subset of R2
>0.

We also notice that the equilibrium conditions coincide for the two expressions in (2.9).

Specifically, we have

dx1

dt
= dx2

dt
= 0 iff x2 =

k1

k2

x2
1.

This is a one-dimensional curve in R2
>0. More importantly, each compatibility class Cx0

intersects this curve at exactly one point. In other words, there is precisely one equilibrium

point in each compatibility class. It can be easily observed from (2.9) that trajectories

above the equilibrium curve are forced downward while trajectories below the curve are

forced upward so that the equilibrium point in each compatibility class is asymptotically

stable (see Figure 2.1).

We can also analyze the system by consideration of the conservation laws. For this
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Figure 2.1: Vector field plot of (2.9) with k1 = k2 = 1. Each stoichiometric compatibility
class (the translations of x2 = −1

2x1) intersects the equilibrium set (the parabola x2 = x2
1)

precisely once.

system, we have

Γ = span

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

1

2

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= S⊥.

By (2.8), we have

x1(t) + 2x2(t) = x10 + 2x20 Ô⇒ x2(t) =
1

2
(x10 − x1(t)) + x20.

This can be substituted into (2.9) to give

dx1(t)
dt

= −2k1x1(t)2 − k2x1(t) + k2x10 + 2k2x20

x2(t) =
1

2
(x10 − x1(t)) + x20.

As expected, the single conservation law has removed a single differential equation from
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the system. The solution may now be obtained by solving for x1(t) from the remaining

differential equation and applying the linear conservation law to solve for x2(t).

It is worth noting that a solution x(t) of (2.3) with x(0) = x0 ∈ Rm
>0 may exist only on

a finite interval 0 ≤ t < T . This can happen if there is an unbalanced input of a species

(i.e. creation of a species with no depletion) into the system. In this case we only have

x(t) ∈ Cx0 for 0 ≤ t < T .

Example 2.4.2. Consider the system

O k1Ð→ 2A k2Ð→ 4A.

According to (2.3), the system is governed by the differential equation

dx

dt
= 2k1 + 2k2x

2

which can easily be integrated to yield

x(t) =
√

k1

k2

tan
⎛
⎝

2
√
k1k2t + arctan

⎛
⎝

√
k2

k1

x0

⎞
⎠
⎞
⎠
.

This solution goes to infinity as

t→ T = 1

2
√
k1k2

⎛
⎝
π

2
− arctan

⎛
⎝

√
k2

k1

x0

⎞
⎠
⎞
⎠
.

We can see that, since
√
k2/k1x0 > 0, we have arctan(

√
k2/k1x0) ∈ (0, π/2) so that T is

always a finite, positive value. Since x(t) → ∞ in finite time, the solution only exists for

0 ≤ t < T .
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It might be tempting to suppose that all systems with unbalanced inputs have solutions

which cease to exist at some point, but this is not necessarily the case. For example, the

simple system

O kÐ→ A

is governed by

dx

dt
= k Ô⇒ x(t) = kt + x0.

While the solution grows unbounded, it does not blow up to infinity in finite time, so that

the solution exists for all t ≥ 0.
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Chapter 3

Locally Stable Systems

Since mass-action systems can rarely be solved explicitly, alternative methods of analysis

are frequently necessary. In this chapter, we introduce one particular type of behaviour—

called locally stable dynamics—which is guaranteed under several well-studied conditions.

We introduce and discuss two classifications of systems which are known to exhibit locally

stable dynamics: detailed balanced systems and complex balanced systems.

The concept of complex-balancing of chemical reaction mechanisms was first introduced

in 1972 by M. Feinberg, F. Horn and R. Jackson and has been particularly influential over

the past nearly forty years (see [25, 30, 33]). As such, we will devote a significant amount

of time to deriving and analyzing the results of these papers. Our considerations of the

detailed balanced systems analyzed by A. Volpert in [63] will be significantly briefer.

We start by defining the type of behaviour in which we are interested.

Definition 3.0.6. A mass-action system is said to have locally stable dynamics if there

exists within each positive kinetic compatibility class precisely one equilibrium concentration

and that concentration is locally asymptotically stable.
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We note that for the case of the weakly reversible networks considered extensively in this

thesis, the kinetic and stoichiometric compatibility classes coincide by Lemma 2.4.1 so

that locally stable kinetics can be redefined according to the stoichiometric compatibility

classes.

Locally stable dynamics is, in some senses, the “nicest” kind of behaviour one could

want. It guarantees that, regardless of our initial concentrations, the associated compatibil-

ity class has a single equilibrium point and that if we start close enough to that equilibrium

point, we converge toward it.

It is important to note, however, that locally stable dynamics does not prohibit the

existence of—or convergence of trajectories toward—an equilibrium concentration on the

boundary of the positive compatibility class (i.e. an equilibrium where at least one con-

centration xj is zero). Systems for which all trajectories starting within a compatibility

class converge toward the positive equilibrium are said to have globally stable dynamics.

They will be the main topic of consideration in Chapter 5.

In the following subsections, I introduce two classifications of mass-action systems which

are known to exhibit locally stable dynamics: detailed balanced and complex balanced sys-

tems. Detailed balanced systems are a special case of complex balanced systems; however,

due to their historical prominence and relatively easy formulation, I will include a full

analysis of detailed balanced systems as a stepping-stone toward understanding complex

balanced systems.

The Lyapunov function used to analyse both classes of systems is given by

L(x) =
m

∑
i=1

xi(ln(xi) − ln(x∗i ) − 1) + x∗i (3.1)
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where x∗ ∈ Rm
>0 is an arbitrary equilibrium concentration. The concentration x∗ will be

called the centre of the Lyapunov function.

The following result corresponds to Lemma 4A and Lemma 4B in [33].

Lemma 3.0.2. The function L(x) given by (3.1) assumes a unique minimum in the relative

interior of each Cx0. Furthermore, at this minimum value we have ∇L(x) ∈ S⊥.

Proof. We first consider the properties of L(x) on Rm
>0. We can see that the Hessian of

L(x) is given by

∇2L(x) = ∇(∇L(x))

= ∇(ln(x) − ln(x∗))

= diag{ 1

xi
}
m

i=1

.

Since the Hessian of L(x) is strictly positive definite for x ∈ Rm
>0, it follows that L(x) is

strictly convex. Furthermore, since Cx0 is a convex subset of Rm
>0, it follows that L(x) is

strictly convex on Cx0 .

It may still be possible that the minimum relative to Cx0 is obtained along the boundary

of Cx0 . We can see that

lim
∥x∥→∞

L(x) = ∞ (3.2)

so that L(x) may not approach the minimum value at infinity. It may still approach the

minimum somewhere on ∂Rm
>0. To rule this possibility out, we approach the boundary
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along an arbitrary straight line. Given x1 ∈ Rm
>0 and x2 ∈ ∂Rm

>0, we have that

lim
λ→1

d

dλ
L(x1 + λ(x2 − x1)) = lim

λ→1
∇L(x1 + λ(x2 − x1)) ⋅ (x2 − x1)

=
m

∑
i=1

lim
λ→1

(ln(x1
i + λ(x2

i − x1
i )) − ln(x∗i ))(x2

i − x1
i ).

Since x2 ∈ ∂Rm
>0, there is at least one i0 ∈ {1, . . . ,m} such that x2

i0
= 0. For this component

lim
λ→1

(ln(x1
i0 + λ(x2

i0 − x1
i0)) − ln(x∗i0))(x2

i0 − x1
i0)

= lim
λ→1

(ln(x1
i0 − λx1

i0) − ln(x∗i0))(−x1
i0) = ∞.

Since the rest of the elements in the sum are finite, it follows that

lim
λ→1

d

dλ
L(x1 + λ(x2 − x1)) = ∞.

In other words, if we approach ∂Rm
>0 along any straight line from the interior, the derivative

explodes. It follows that the minimum of L(x) cannot be obtained on the boundary, so

that the minimum must be restricted to the relative interior of the set Cx0 .

The fact that ∇L(x) ∈ S⊥ follows from the observation that ∇L(x) remains stationary

with respect to changes within Cx0 . In other words, for every (y − x), y ∈ Cx0 , y /= x, we

have ∇L(x) ⋅ (y − x) = 0 since (y − x) ∈ S. This is equivalent to ∇L(x) ∈ S⊥.

We will need the following two lemmas in our analysis of detailed balanced and complex

balanced systems.

Lemma 3.0.3. For every a, b > 0 we have

(b − a)(ln(a) − ln(b)) ≤ 0
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with equality if and only if a = b.

Proof. We have three cases to consider.

1. If a > b then ln(a) − ln(b) > 0 so that (b − a)(ln(a) − ln(b)) < 0.

2. If a < b then ln(a) − ln(b) < 0 so that (b − a)(ln(a) − ln(b)) < 0.

3. If a = b then ln(a) − ln(b) = 0 so that (b − a)(ln(a) − ln(b)) = 0.

The result follows.

The following result can be found in Appendix 3 of [33]. While the result holds for any

monotonically increasing function, we state it here for ln(x).

Lemma 3.0.4. For every set {α1, α2, . . . , αn} satisfying αi > 0 for i = 1, . . . , n, n ≥ 2, we

have
n

∑
j=1

αj(ln(αj+1) − ln(αj)) ≤ 0

where αn+1 = α1, with equality holding if and only if

α1 = ⋯ = αn.

Proof. The proof is an induction on n, the number of elements in the set.

Base case: Consider the case where n = 2. We have that

2

∑
j=1

αj(ln(αj+1) − ln(αj)))

= α1(ln(α2) − ln(α1)) + α2(ln(α1) − ln(α2))

= (α1 − α2)(ln(α2) − ln(α1)).
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It follows from Lemma 3.0.3 with a = α2 and b = α1 that this quantity is negative and equal

to zero if and only if α1 = α2.

Inductive case: Assume that for every set {α1, α2 . . . , αn} with αi > 0, i = 1, . . . , n, we

have
n

∑
j=1

αj(ln(αj+1) − ln(αj)) ≤ 0 (3.3)

where αn+1 = α1, with equality if and only if

α1 = α2 = ⋯ = αn.

Now consider the set {α1, . . . , αn, αn+1} with αi > 0, i = 1, . . . , n + 1. Since we have

assumed (3.3) holds for any family of n elements, we can choose αn+1 to be the largest

element in the set {α1, . . . , αn+1} and the inductive hypothesis (3.3) to hold on the family

{α1, . . . , αn}. Consider the following sum:

n+1

∑
j=1

αj(ln(αj+1) − ln(αj))

=
n−1

∑
j=1

[αj(ln(αj+1) − ln(αj))] + αn(ln(αn+1) − ln(αn))

+ αn+1(ln(α1) − ln(αn+1)).
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We add and subtract αn(ln(α1) − ln(αn+1)) from the right-hand side to get

n+1

∑
j=1

αj(ln(αj+1) − ln(αj))

=
n−1

∑
j=1

[αj(ln(αj+1) − ln(αj))] + αn(ln(α1) − ln(αn))

+ (αn+1 − αn)(ln(α1) − ln(αn+1))

=
n

∑
j=1

[αj(ln(αj+1) − ln(αj))] + (αn+1 − αn)(ln(α1) − ln(αn+1)).

We have abused the sum notation in the final line so that αn+1 = α1. This sum satisfies

our inductive assumption on the set {α1, . . . , αn}. The remaining element on the right-hand

side is non-positive since we have chosen αn+1 to be the largest element in the set. Since

both the sum and the remaining term is non-positive, we can only have equality with zero

if both terms are zero. By assumption, this only happens for the first term if α1 = ⋯ = αn.

The second term is zero if and only if αn+1 = α1 or αn+1 = αn, either of which is sufficient

to imply α1 = α2 = ⋯ = αn = αn+1. This completes the proof.

3.1 Equilibrium Conditions

For many mass-action systems, the behaviour of solutions can be predictably determined by

the nature of the set of permissible equilibrium concentrations. Consequently, significant

effort has been expended determining conditions on the equilibrium set of a system under

which dynamic behaviour is qualitatively predictable. In this section, we will introduce

two of the classifications of equilibrium concentrations of (2.4) which have proven useful
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in the literature: detailed balanced and complex balanced equilibrium concentrations.

We start by considering a general equilibrium concentration.

Definition 3.1.1. The concentration x∗ ∈ Rm
>0 is said to be an equilibrium concentra-

tion of (2.4) if

f(x∗) = ∑
(i,j)∈R

k(i, j)(zj − zi)(x∗)zi = 0. (3.4)

We now shift our focus to the two classes of equilibrium concentrations which will be

of the most interest to us in this thesis. The formulation of detailed balanced systems

presented here can be found in [63] while our formulation of complex balanced systems can

be found in [33].

Definition 3.1.2. The concentration x∗ ∈ Rm
>0 is said to be a detailed balanced equi-

librium concentration of (2.4) if

k(i, j)(x∗)zi = k(j, i)(x∗)zj (3.5)

for all i, j = 1, . . . , n. A mass-action system is said to be detailed balanced for a given

set of rate constants k(i, j) if every positive equilibrium concentration of (2.4) is detailed

balanced.

Definition 3.1.3. The concentration x∗ ∈ Rm
>0 is said to be a complex balanced equi-

librium concentration of (2.4) if

n

∑
j=1

k(j, i)(x∗)zj = (x∗)zi
n

∑
j=1

k(i, j) (3.6)

for all i = 1, . . . , n. A mass-action system is said to be complex balanced for a given

37



set of rate constants k(i, j) if every positive equilibrium concentration of (2.4) is complex

balanced.

The set of detailed balanced equilibrium concentrations of a mechanism will be denoted

D while the set of complex balanced equilibrium concentrations will be denoted C. The

set of equilibrium concentrations will be denoted E.

More intuitively, an equilibrium concentration is detailed balanced if the rate of every

reaction exactly equals the rate of an opposite reaction. Similarly, an equilibrium con-

centration is complex balanced if, for every complex, the rate of every reaction leading

into the complex exactly equals the rate leading out. Notice that all three classifications

of equilibrium concentrations presented so far have represented some manner of balanc-

ing of reaction rates. For detailed balanced equilibria, we have balancing of rates across

reactions; for complex balanced equilibria, we have balancing of rates across complexes;

and, of course, for general equilibrium concentrations we have balancing of the rates across

species.

It is also clear that the notions of detailed and complex balancing of equilibrium con-

centrations carry implications for the reaction graph of the system. In particular, the

following results can be shown.

Lemma 3.1.1 (Lemma 2A, [30]). If a mass-action system admits a detailed balanced

equilibrium, then the system is reversible.

Proof. Suppose (3.5) is satisfied and Ci → Cj is a reaction in the system. This implies

k(i, j) > 0. Since (3.5) holds for all i, j = 1, . . . , n, and (x∗)zi > 0, it follows that

k(i, j)(x∗)zi = k(j, i)(x∗)zj > 0. (3.7)
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The only way (3.7) can be satisfied is if k(j, i) > 0. This implies Cj → Ci is a reaction in

the system. It follows from Definition 2.2.6 that the system is reversible.

Lemma 3.1.2. If a mass-action system admits a complex balanced equilibrium, then the

system is weakly reversible.

Proof. Suppose (3.6) is satisfied and the reaction graph contains a path from Ca to Cb, that

is to say, there are complex indices {ν0, ν1, . . . , νl} such that

Cνk−1 Ð→ Cνk , for k = 1, . . . , l

where ν0 = a and νl = b.

Suppose that there does not exist a path from Cb to Ca. We now define the index set Σ

as follows

Σ = {k ∈ {1, . . . , n} ∣ there exists a path from Cb to Ck} ∪ {b} .

From this definition, it is obvious that our assumption implies a /∈ Σ.

Furthermore, we notice that all paths originating at a Ck, k ∈ Σ, must necessarily lead

to a Ck̃, k̃ ∈ Σ. It follows that (3.6) can be written

∑
j∈Σ

k(j, i)(x∗)zj +∑
j/∈Σ

k(j, i)(x∗)zj = (x∗)zi∑
j∈Σ

k(i, j)

for all i ∈ Σ. Taking the sum over i ∈ Σ, we have

∑
j∈Σ

(x∗)zj∑
i∈Σ

k(j, i) +∑
i∈Σ

∑
j/∈Σ

k(j, i)(x∗)zj = ∑
i∈Σ

(x∗)zi∑
j∈Σ

k(i, j)
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which implies

∑
i∈Σ

∑
j/∈Σ

k(j, i)(x∗)zj = 0. (3.8)

Since k(j, i)(x∗)zj ≥ 0 for all i, j = 1, . . . , n, the only way (3.8) can be satisfied is if

k(i, j) = 0 for all i /∈ Σ and j ∈ Σ. In other words, the mechanism does not permit a

reaction from a complex Ci, i /∈ Σ, to a complex Cj, j ∈ Σ. However, by assumption there

is a path from Ca, a /∈ Σ, to Cb, b ∈ Σ. In order for such a path to exist, there must exist

a reaction from a complex Ci, i /∈ Σ, to a complex Cj, j ∈ Σ. This is a contradiction.

Consequently, our assumption that there was not a path from Cb to Ca must have been in

error. Since the path chosen was arbitrary, it follows that the system is weakly reversible

by Definition 2.2.7.

It is obvious that if x∗ ∈ Rm
>0 satisfies (3.6) then x∗ satisfies (3.5), and that if x∗ ∈ Rm

>0

satisfies either (3.6) or (3.5) then x∗ satisfies (3.4). In other words

D ⊆ C ⊆ E.

In order to see that these inclusions can be strict, consider the following examples.

Example 3.1.1. Consider the system

A1
αÐ→ A2

2A2
βÐ→ 2A1.

(3.9)

40



The system is governed by the system of differential equations

dx1

dt
= −αx1 + 2βx2

2

dx2

dt
= αx1 − 2βx2

2

which has the equilibrium set

E = {(x1, x2) ∈ R2
>0 ∣ αx1 = 2βx2

2} .

However, we can clearly see that the reaction graph (3.9) is neither reversible nor weakly

reversible. Consequently, by Lemma 3.1.1 and Lemma 3.1.2, no equilibrium concentration

permitted by the system may be detailed or complex balanced.

Example 3.1.2. Consider the system

A1
αÐ→ A2

γ ↖ ↙β

A3.

(3.10)

The system is governed by the system of differential equations

dx1

dt
= −αx1 + γx3

dx2

dt
= αx1 − βx2

dx3

dt
= βx2 − γx3
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which has the equilibrium set

E = {(x1, x2, x3) ∈ R3
>0 ∣ αx1 = βx2 = γx3} .

This is exactly the condition required of complex balancing by Definition 3.1.3 so that

C = E. We can see, however, that the system is only weakly reversible and not strictly re-

versible, so that no detailed balanced equilibrium concentrations can be permitted by Lemma

3.1.1. Consequently, the mechanism permits complex balanced equilibrium concentrations

but not detailed balanced.

We may at this point surmise that the converse implications of Lemma 3.1.1 and Lemma

3.1.2 hold, that is to say, that reversibility and weak reversibility imply detailed and com-

plex balancing of equilibrium concentrations, respectively. The following example shows

that we must be careful with such intuition.

Example 3.1.3. Consider the system

2A1
αÐ→ 2A2

γ ↖ ↙β

A1 +A2.

(3.11)

with α = 3/8, β = 1, and γ = 1. The system is governed by the system of differential

equations

dx1

dt
= −3

4
x2

1 + x2
2 + x1x2

dx2

dt
= 3

4
x2

1 − x2
2 − x1x2.
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We can see that

−3

4
x2

1 + x2
2 + x1x2 = (x2 −

1

2
x1)(x2 +

3

2
x1)

so that

E = {(x1, x2) ∈ R2
>0 ∣ x2 =

1

2
x1} = {[t, 1

2
t] , t > 0} .

The system is not reversible so that no detailed balanced equilibrium concentrations are

permitted by Lemma 3.1.1. The system is weakly reversible which suggests complex balanc-

ing of equilibrium concentrations is permissible; however, in order to verify the existence

of such equilibria, we still need to verify

α(x∗)z1 = β(x∗)z2 = γ(x∗)z3

according to (3.6).

We can see that

α(x∗)z1 = 3

8
(x∗1)2 = 3

8
t2

β(x∗)z2 = (x∗2)2 = 1

4
t2

γ(x∗)z3 = (x∗1)(x∗2) =
1

2
t2

so that—somewhat surprisingly—we have

α(x∗)z1 /= β(x∗)z2 /= γ(x∗)z3 .

It follows that the system permits no complex balanced equilibrium concentrations, even

though the system is weakly reversible. This phenomenon will be considered in more detail
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in Section 3.3 when we will reconsider this example.

3.2 Detailed Balanced Systems

In this section, we use the classification of detailed balanced equilibrium concentrations

given by Definition 3.1.2 to determine properties of the system (2.4). Specifically, we prove

that detailed balanced systems exhibit locally stable dynamics.

Firstly, we notice that it follows from Lemma 3.1.1 that if (i, j) ∈ R then (j, i) ∈ R.

Consequently, the reaction set R can be broken down into index pairs {(i, j), (j, i)}. We

will let R̃ denote an arbitrary subset of R which contains only one of the index pairs from

each set {(i, j), (j, i)}.

The following result corresponds to Lemma 16 of [13]. It is also implicit in the results

of [63].

Lemma 3.2.1. Consider a mass-action system with a detailed balanced equilibrium x∗.

Then there exist κij > 0, (i, j) ∈ R̃, such that (2.4) can be written

dx

dt
= ∑

(i,j)∈R̃

κij(zj − zi) [(
x

x∗
)
zi

− ( x

x∗
)
zj

] . (3.12)

Proof. Consider an arbitrary detailed balanced equilibrium x∗. By Definition 3.1.2, for

each pair {(i, j), (j, i)} there exists a constant κij > 0 such that

k(i, j)(x∗)zi = k(j, i)(x∗)zj = κij. (3.13)
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It follows that

k(i, j) = κij
(x∗)zi and k(j, i) = κij

(x∗)zj . (3.14)

From (2.4) we have

dx

dt
= ∑

(i,j)∈R

k(i, j)(zj − zi)xzi .

Since R can be broken down into reaction pairs {(i, j), (j, i)}, we momentarily restrict our

attention to just the indices i and j. Using (3.14), we have

k(i, j)(zj − zi)xzi + k(j, i)(zi − zj)xzj

= κij(zj − zi) (
x

x∗
)
zi

+ κij(zi − zj) (
x

x∗
)
zj

= κij(zj − zi) [(
x

x∗
)
zi

− ( x

x∗
)
zj

] .

Since R can be broken down into these pairs, we need only consider one of the indices (i, j)

or (j, i) in order to recover the original system of differential equations. In other words, it

is sufficient to consider the sum over (i, j) ∈ R̃. By the symmetry of the above result, it

does not matter which of the indices (i, j) or (j, i) we choose in R̃. Consequently, we have

dx

dt
= ∑

(i,j)∈R̃

κij(zj − zi) [(
x

x∗
)
zi

− ( x

x∗
)
zj

]

as desired, and we are done.

An immediate consequence of Lemma 3.2.1 is the following.

Lemma 3.2.2. Consider a mass-action system with a detailed balanced equilibrium x∗.
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Then, for the function L(x) given by (3.1), we have

∇L(x) ⋅ dx
dt

≤ 0

with equality if and only if

( x

x∗
)
zi

= ( x

x∗
)
zj

for all (i, j) ∈ R.

Proof. We can readily see that, for the function L(x) given by (3.1),

∇L(x) = ln(x) − ln(x∗) = ln( x

x∗
)

and by Lemma 3.2.1, (2.4) can be written

dx

dt
= ∑

(i,j)∈R̃

κij(zj − zi) [(
x

x∗
)
zi

− ( x

x∗
)
zj

] .

Together we have

∇L(x) ⋅ dx
dt

= ln( x

x∗
) ∑

(i,j)∈R̃

κij(zj − zi) [(
x

x∗
)
zi

− ( x

x∗
)
zj

]

= ∑
(i,j)∈R̃

κij ln( x

x∗
)
zj−zi

[( x

x∗
)
zi

− ( x

x∗
)
zj

] .
(3.15)

If we make the substitutions aij = (x/x∗)zj and bij = (x/x∗)zi , (3.15) can be rewritten

∇L(x) ⋅ dx
dt

= ∑
(i,j)∈R̃

κij(bij − aij)(ln(aij) − ln(bij)).

Each element in the sum fits the form required of Lemma 3.0.3. Since κij > 0, it follows
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that

∇L(x) ⋅ dx
dt

≤ 0.

Furthermore, since equality with zero can only be attained by having each term in the sum

equal to zero, we have that

∇L(x) ⋅ dx
dt

= 0 iff ( x

x∗
)
zi

= ( x

x∗
)
zj

for all (i, j) ∈ R

and we are done.

A multitude of properties of detailed balanced systems can be derived from Lemma

3.2.2. We will consider them as a single comprehensive result.

Theorem 3.2.1. Consider a system with a detailed balanced equilibrium x∗. Then the

system has the following properties:

1. The set of positive equilibrium concentrations is given by

E = {x ∈ Rm
>0 ∣ (ln(x) − ln(x∗)) ∈ S⊥} . (3.16)

2. Every positive equilibrium concentration permitted by the system is a detailed balanced

equilibrium concentration.

3. There is a unique positive detailed balanced equilibrium concentration within each

positive stoichiometric compatibility class Cx0.

4. That equilibrium concentration is locally asymptotically stable relative to Cx0.

Proof. We will prove the claims in the order they are presented.
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Proof (1): Consider an equilibrium concentration x. This implies that there is a

solution of (2.4) such that x(t) ≡ x, t ≥ 0. Along this solution, we have

dL(x(t))
dt

= ∇L(x(t)) ⋅ dx(t)
dt

= 0

for all t ≥ 0 since
dx(t)
dt

= 0. By Lemma 3.2.2, this can happen if and only if

( x

x∗
)
zi

= ( x

x∗
)
zj

for all (i, j) ∈ R.

Taking the natural logarithm of both sides and collecting terms yields

(zi − zj) ⋅ ln( x

x∗
) = (zi − zj) ⋅ (ln(x) − ln(x∗)) = 0

for all (i, j) ∈ R. Since (i, j) ∈ R implies zi − zj ∈ S, it follows that ln(x) − ln(x∗) ∈ S⊥, and

consequently x ∈ E.

Now suppose x ∈ E. This implies that (zi − zj) ⋅ (ln(x) − ln(x∗)) = 0 for all (i, j) ∈ R.

This can be rearranged to the form

( x

x∗
)
zi

= ( x

x∗
)
zj

.

It follows from the form of (2.4) obtained in Lemma 3.2.1 that x is an equilibrium concen-

tration, which completes the proof of Claim (1).

Proof (2): Consider an equilibrium concentration x ∈ Rm
>0. By Claim (1), this implies

x ∈ E where E is given by (3.16). This implies (zi−zj)⋅(ln(x)−ln(x∗)) = 0 for all (i, j) ∈ R,
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and consequently

(zi − zj) ⋅ ln(x) = (zi − zj) ⋅ ln(x∗) (3.17)

for all (i, j) ∈ R.

Since x∗ is a detailed balanced equilibrium concentration, by Definition 3.1.2 we have

k(i, j)(x∗)zi = k(j, i)(x∗)zj for all (i, j) ∈ R, from which it follows that

(zi − zj) ⋅ ln(x∗) = ln(k(j, i)
k(i, j)) (3.18)

for all (i, j) ∈ R. Combining (3.17) and (3.18), we have

(zi − zj) ⋅ ln(x) = ln(k(j, i)
k(i, j))

for all (i, j) ∈ R. It follows that k(i, j)xzi = k(j, i)xzj for all (i, j) ∈ R and consequently

x ∈ Rm
>0 is a detailed balanced equilibrium concentration. Since x ∈ E was chosen arbitrarily,

Claim (2) follows.

Proof (3): From Claims (1) and (2) we have that the set of positive equilibrium points

is given by

E = {x ∈ Rm
>0 ∣ (ln(x) − ln(x∗)) ∈ S⊥}

and every equilibrium point is detailed balanced.

Now consider the function L(x) given by (3.1). From Lemma 3.0.2 we have that L(x)

takes a unique minimum value relative to each positive stoichiometric compatibility class

and that at this value ∇L(x) = (ln(x) − ln(x∗)) ∈ S⊥. It follows immediately from the

nature of E that the point x ∈ Cx0 at which this minimum attained is an equilibrium

point of (2.4). Also, we can see that any other point y ∈ Cx0 lying in E would satisfy
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∇L(y) = ln(y) − ln(x∗) ∈ S⊥ and therefore also be a minimal value of L(y) relative to

Cx0 according to Lemma 3.0.2. This contradicts the uniqueness of the minimum value.

It follows that there is a unique detailed balanced equilibrium concentration within each

positive stoichiometric compatibility class, and Claim (3) is proven.

Proof (4): By Proposition 2.4.1, for any x0 ∈ Rm
>0 we have x(t) ∈ Cx0 for all t ≥ 0 so

that we may restrict our attention to the relative topology of Cx0 .

By Claim (3), there is a unique positive detailed balanced equilibrium concentration x

relative to Cx0 and this equilibrium occurs at the minimum of L(x) in the interior of the

relative topology of Cx0 . We will let

Lε(x) = {y ∈ Cx0 ∣ L(x) ≤  L(y) ≤ L(x) + ε} .

Since x is in the relative interior of Cx0 and L(x) is strictly convex, we can choose ε > 0

sufficiently small so that Lε(x) ∩ ∂Cx0 = ∅.

Now consider an arbitrary solution x(t) of (2.4) with x(0) = x0 ∈ Lε(x). We will show

that for all δ > 0 satisfying ε > δ, there is a T > 0 such that x(t) ∈ Lδ(x) for all t ≥ T .

We make the observation first of all that along the solution x(t), by Lemma 3.2.2 we

have

dL(x(t))
dt

= ∇L(x(t)) ⋅ dx(t)
dt

≤ 0.

This implies that, for any ε > 0, if there exists a T > 0 such that x(T ) ∈ Lε(x), then

x(t) ∈ Lε(x) for all t ≥ T .

We will now suppose that there does not exist a δ > 0 satisfying the above conjecture.

By the previous observation, this implies that x(t) ∈ Lε(x) ∖ Lδ(x) for all t ≥ 0. Since
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this region is bound away from x, which is the only equilibrium concentration in the

compatibility class Cx0 , we have by Lemma 3.2.2 that there exists an M > 0 such that

dL(x(t))
dt

= ∇L(x(t)) ⋅ dx(t)
dt

< −M < 0

for all t ≥ 0. It follows by integrating from 0 to T that

L(x(T )) < L(x(0)) −MT.

However, if we take the limit as T → ∞ we have L(x(T )) → −∞. This contradicts the

fact that L(x(t)) is bounded from below. Consequently, our supposition must have been

in error, and it follows that for all δ > 0 satisfying ε > δ, there is a T > 0 such that

x(t) ∈ Lδ(x) for all t ≥ T . Since L(x) is continuous and strictly convex on Cx0 , it follows

that x(t) converges asymptotically to x as t→∞, which proves Claim (4).

Example 3.2.1. Consider the chemical reaction mechanism

A1

k(1,2)
⇄

k(2,1)
A2 +A3

k(2,3)
⇄

k(3,2)
2A3.

If we set x1 = [A1], x2 = [A2] and x3 = [A3], according to (2.4) the system is governed by

the system of differential equations

dx1

dt
= −k(1,2)x1 + k(2,1)x2x3

dx2

dt
= k(1,2)x1 − k(2,1)x2x3 − k(2,3)x2x3 + k(3,2)x2

3

dx3

dt
= k(1,2)x1 − k(2,1)x2x3 + k(2,3)x2x3 − k(3,2)x2

3.

(3.19)
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In order to apply Theorem 3.2.1, we need to check that there is a detailed balanced

equilibrium x∗ ∈ R3
>0. From the first equation, we have

dx1

dt
= 0 iff k(1,2)x1 = k(2,1)x2x3.

Substituting this into the second and third equations, we have

dx2

dt
= 0 and

dx3

dt
= 0 iff k(2,3)x2x3 = k(3,2)x2

3.

These are exactly the detailed balanced conditions expected of Definition 3.1.2 so that every

positive equilibrium concentration permitted by the mechanism is detailed balanced. Con-

sequently, we can apply Lemma 3.2.2 and Theorem 3.2.1.

It is difficult to verify directly—and in full generality—that the equilibrium set E inter-

sects each positive stoichiometric compatibility class Cx0 = (x0+S)∩Rm
>0 exactly once. It is

also difficult to directly visualize the dynamics. To make these tasks more manageable, we

select k(1,2) = k(2,1) = k(2,3) = k(3,2) = 1 and x10 = x20 = x30 = 1/4. It is important to

notice, however, that, since the arguments for the existence of detailed balanced equilibrium

apply regardless of the rate constants and initial concentrations, all the results of Theorem

3.2.1 can be applied for different choices of values.

In order to check that the compatibility class corresponding to x10 = x20 = x30 = 1/4

intersects E only once, we parametrize E and check for points of intersection with (x0+S).

For our system, we have

S = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
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and for our choice of rate constants, we can parametrize E as

E = {[k2, k, k]T , k > 0} .

We now solve the system of equations

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x10

x20

x30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k2

k

k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

to get the lone admissible solution t = 0, s = −3/4 +
√

3/2 and k = −1/2 +
√

3/2. The

corresponding equilibrium value x∗ is

x∗ = [k2, k, k]T = [1 −
√

3

2
,−1

2
+

√
3

2
,−1

2
+

√
3

2
]
T

. (3.20)

We now consider the dynamics of (3.19) given by Figure 3.1. As expected, we see that

x(t) converges asymptotically to the equilibrium value x∗ given by (3.20). It is also worth

noting the role that the conservation law ⟨v,x(t) − x0⟩ = 0, v ∈ S⊥, plays in this analysis.

We have x10 = x20 = x30 = 1/4 and can take v = [2,1,1]T so that

⟨v,x0⟩ = 2x10 + x20 + x30 = 1.

The solution x(t) must converge to a solution satisfying the same conservation law, and

indeed, at the equilibrium value x∗ given by (3.20) we have

⟨v,x∗⟩ = 2x∗1 + x∗2 + x∗3 = 2(1 −
√

3

2
) + (−1

2
+

√
3

2
) + (−1

2
+

√
3

2
) = 1.
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Figure 3.1: The solution x(t) to (3.19) for k(1,2) = k(2,1) = k(2,3) = k(3,2) = 1, x10 =
x20 = x30 = 1/4. The solution converges to the equilibrium value given by (3.20).

We have given no consideration in this section or this example as to how to determine

whether a detailed balanced equilibrium concentrations exists beyond directly checking.

Further discussion of this point will be given in Section 3.4 when considering complex

balanced equilibrium concentrations. Since the results contained there directly generalize

to the case of detailed balancing, we do not repeat them here.

3.3 Complex Balanced Systems

In this section, we use the classification of complex balanced equilibrium concentrations

given by Definition 3.1.3 to determine properties of the system (2.4). Specifically, we prove

that complex balanced systems exhibit locally stable dynamics.

The methodology used in this section will be very similar to that presented in Section
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3.2. Since complex balanced systems are significantly more general than detailed balanced

systems, however, we will need to do more manipulation of (2.4) under the assumption of

complex balancing in order to obtain a more manageable form.

In this section, we will follow closely the analysis performed in [25, 30, 33]. In [33],

the authors show that a general complex balanced system can be decomposed into the

direct sum of subsystems which are easier to handle, and that these subsystems—cyclic

complex balanced systems—exhibit locally stable dynamics. We will omit their discussion

of quasi-thermodynamic systems. We will then complete the connection between complex

balancing and the reaction graph of the system derived in [25, 30]. This will culminate in

the Deficiency Zero Theorem (Theorem 3.4.2).

3.3.1 Cyclic Complex Balanced Systems

In this subsection, we introduce and analyze a particular subset of complex balanced

systems called cyclic complex balanced systems. The results contained herein will be

made applicable to general complex balanced systems in Section 3.3.2.

We begin by defining a reaction cycle. Our definitions here are drawn from [33].

Definition 3.3.1. A family of complex indices {ν0, ν1, . . . , νl}, l ≥ 2, will be called a cycle

if

ν0 = νl (3.21)

but all other members of the family are distinct, and if

k(νj−1, νj) > 0, j = 1,2, . . . , l
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where l is the length of the cycle. The reaction cycle associated with {ν0, ν1, . . . , νl} is

defined to be the corresponding set of elementary reactions

Cνj−1 Ð→ Cνj , j = 1,2, . . . , l. (3.22)

Definition 3.3.2. We will say that a mass-action system is cyclic if the system consists

of a single reaction cycle. For such a system, it will be understood that l = n.

Throughout this section, we will only consider cyclic mass-action systems according to

Definition 3.3.2. It is convenient, therefore, to index the system in consideration according

to the natural ordering of the cycle, so that

Cj−1 Ð→ Cj, for j = 1, . . . , n (3.23)

where C0 = Cn.

Under the assumption of complex balancing of equilibrium concentrations, the following

rearrangements of (2.4) can be obtained. These correspond to equations (5-10) and (5-11)

of [33], respectively.

Lemma 3.3.1. Consider a cyclic mass-action system with a complex balanced equilibrium

x∗ ∈ Rm
>0. Then there exists a κ > 0 such that (2.4) can be written as either

dx

dt
= κ

n

∑
i=1

(zi+1 − zi) (
x

x∗
)
zi

(3.24)

or

dx

dt
= κ

n

∑
i=1

zi+1 [(
x

x∗
)
zi

− ( x

x∗
)
zi+1

] (3.25)
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where zn+1 = z1.

Proof. Consider an arbitrary complex balanced equilibrium x∗. Since the system is cyclic,

each complex is catalyzed by and produced as the result of exactly one reaction. In order

to be complex balanced by Definition 3.1.3, therefore, according to the indexing (3.23) we

have

k(i − 1, i)(x∗)zi−1 = k(i, i + 1)(x∗)zi , for all i = 1, . . . , n

where k(0,1) = k(n,1) and z0 = zn. This can only be satisfied if there exists a κ > 0 such

that

k(1,2)(x∗)z1 = ⋯ = k(n,1)(x∗)zn = κ > 0.

It follows immediately that

k(i, i + 1) = κ

(x∗)zi , for i = 1, . . . , n.

Since the system is cyclic, from (2.4) and (3.23) we have

dx

dt
=

n

∑
i=1

k(i, i + 1)(zi+1 − zi)xzi

= κ
n

∑
i=1

(zi+1 − zi) (
x

x∗
)
zi

which is sufficient to prove (3.24).
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We can also rearrange (3.24) to get

dx

dt
= κ

n

∑
i=1

(zi+1 − zi) (
x

x∗
)
zi

= κ [
n

∑
i=1

zi+1 (
x

x∗
)
zi

−
n

∑
i=1

zi (
x

x∗
)
zi

]

= κ [
n

∑
i=1

zi+1 (
x

x∗
)
zi

−
n

∑
i=1

zi+1 (
x

x∗
)
zi+1

]

= κ
n

∑
i=1

zi+1 [(
x

x∗
)
zi

− ( x

x∗
)
zi+1

]

which is sufficient to prove (3.25).

An immediate consequence of (3.24) is the following.

Lemma 3.3.2. Consider a cyclic mass-action system with a complex balanced equilibrium

x∗. Then, for the function L(x) given by (3.1), we have

∇L(x) ⋅ dx
dt

≤ 0

with equality if and only if

( x

x∗
)
zi

= ( x

x∗
)
zj

for all i, j = 1, . . . , n.

Proof. Consider an arbitrary complex balanced equilibrium x∗. By (3.24) of Lemma 3.2.1,

we have

∇L(x) ⋅ dx
dt

= κ ⋅ ln( x

x∗
)

n

∑
i=1

(zi+1 − zi) (
x

x∗
)
zi

= κ
n

∑
i=1

( x

x∗
)
zi

[ln( x

x∗
)
zi+1

− ln( x

x∗
)
zi

] .
(3.26)
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If we make the substitutions αi = (x/x∗)zi , i = 1, . . . , n, (3.26) can be written

∇L(x) ⋅ dx
dt

= κ
n

∑
i=1

αi [ln(αi+1) − ln(αi)] .

Each element in the sum fits the form required of Lemma 3.0.4. Since κ > 0, it follows that

∇L(x) ⋅ dx
dt

≤ 0.

Furthermore, since equality with zero can only be attained by having each term in the sum

equal to zero, we have that

∇L(x) ⋅ dx
dt

= 0 iff ( x

x∗
)
zi

= ( x

x∗
)
zj

for all i, j = 1, . . . , n, and we are done.

Since the results of the following section will encompass any further results we could

derive here, we will cease our consideration of cyclic complex balanced systems at this

point.

3.3.2 General Complex Balanced Systems

In this section, we apply the results of Section 3.3.1 to general complex balanced systems.

The following result combines Lemma 6B, Lemma 6C, and Lemma 6D of [33]. This

result shows that a general complex balanced system can be decomposed into a direct finite

sum of cyclic complex balanced systems satisfying appropriate conditions. This allows us

to rewrite (2.4) in a form which will allow us to apply Lemma 3.3.2.
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Lemma 3.3.3. Consider a mass-action system which is complex balanced at x∗ ∈ Rm
>0.

Then there exists a δ ∈ Z>0 and a set κi > 0, i = 1,2, . . . , δ, such that

dx

dt
= κ1X1 + κ2X2 +⋯ + κδXδ (3.27)

where

Xi =
li

∑
j=1

(z
ν
(i)
j+1

− z
ν
(i)
j

)( x

x∗
)
z
ν
(i)
j (3.28)

where the set {ν(i)
1 , ν

(i)
2 , . . . , ν

(i)
li
, ν

(i)
li+1} is a cycle according to Definition 3.3.1.

Proof. The proof will proceed in the following steps. We will prove firstly that every

system with a complex balanced equilibrium concentration contains a reaction cycle. This

corresponds to Lemma 6B of [33].

We will then show that this reaction cycle can be “removed” from the system in such a

way that the remaining system is complex balanced at x∗ and has a reduced reaction set.

This corresponds to Lemma 6C of [33].

We will finally show that the system (2.4) can be decomposed into a direct finite sum of

cyclic complex balanced systems of the form (3.27). This correspond to Lemma 6D of [33].

Consider a mass-action system which is complex balanced at x∗. By Definition 3.1.3,

we have
n

∑
j=1

k(j, i)(x∗)zj = (x∗)zi
n

∑
j=1

k(i, j)

for all i, j = 1, . . . , n. By Lemma 3.1.2, we know that the reaction graph of the system is

weakly reversible. Consequently, for an arbitrary path from Ci to Cj for some i, j = 1, . . . , n,

there is a path from Cj to Ci. We know a path exists since the reaction set R is non-empty,

so that a path from Ci to Cj to Ci exists for some i, j = 1, . . . , n. There may, however be
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repeated complexes along this path. If this is the case, we consider the path bound between

the first two instances of a complex Ck where Ck is the first complex to appear twice. This

path is a reaction cycle according to Definition 3.3.1.

We will let this cycle be indexed {ν1, ν2, . . . , νl, νl+1} where ν1 = νl+1. It is clear that

the rate terms k(νi, νi+1)(x∗)zνi , i = 1, . . . , l, need not be identical along the cycle since the

system is not cyclic. Since all the rate terms are positive, however, we can define

κ1 = min
i=1,...,l

k(νi, νi+1)(x∗)zνi > 0. (3.29)

We now define two new sets of rate constants as

k1(i, j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

κ1

(x∗)zi , for (i, j) in the cycle

0, otherwise

(3.30)

and

k′(i, j) = k(i, j) − k1(i, j), for i, j = 1, . . . , n. (3.31)

To the set of rate constants k1(i, j) and k′(i, j), i, j = 1, . . . , n, we can associate the reaction

sets R1 = {(i, j) ∣ k1(i, j) > 0} and R′ = {(i, j) ∣ k′(i, j) > 0}. We notice that for at least one

index, we have κ1/(x∗)zνi = k(νi, νi+1) by (3.29) so that there is at least one pair (νi, νi+1)

for which k′(νi, νi+1) = 0 but k(νi, νi+1) > 0. This implies that ∣R′∣ < ∣R∣. In other words,

after removing our reaction cycle R1, the remaining system has fewer reactions than the

original system.

It remains to consider the properties of the systems corresponding to R1 and R′. It

follows from the definition of k1(i, j) and the fact that the reaction graph of R1 is a reaction

cycle that R1 corresponds to a cyclic system which is complex balanced at x∗.
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Now consider R′. Since R and R1 are complex balanced at x∗, we have that

n

∑
j=1

k′(j, i)(x∗)zj =
n

∑
j=1

k(j, i)(x∗)zj −
n

∑
j=1

k1(j, i)(x∗)zj

= (x∗)zi
n

∑
j=1

k(i, j) − (x∗)zj
n

∑
j=1

k1(i, j)

= (x∗)zi
n

∑
j=1

k′(i, j).

This is sufficient to prove R′ is complex balanced at x∗ according to Definition 3.1.3.

To recap, we have that a general complex balanced system can be decomposed into

two subsystems—one a cyclic complex balanced system, and the other a general complex

balanced system with a smaller set of reactions. Clearly, since the remaining system (R′

from the preceding argument) is complex balanced, we can apply the preceding argument

on it to yield another cyclic complex balanced system (say, R2) and yet another general

complex balanced system. Since the number of reactions in the remaining set is reduced

by each iteration of this procedure, this process must terminate after a finite number of

applications.

We are left with k(i, j) = k1(i, j)+k2(i, j)+ ⋅ ⋅ ⋅ +kδ(i, j), δ ∈ Z>0, i, j = 1, . . . , n. Each set

of rate constants kq(i, j), i, j = 1, . . . , n, corresponds to a cyclic system which is complex

balanced at x∗. Since the rate constants enter (2.4) linearly, we have

dx

dt
= Y1 +Y2 +⋯ +Yδ

where

Yq = ∑
(i,j)∈Rq

kq(i, j)(zj − zi)xzi

for q = 1, . . . , δ.
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Since each Yq corresponds to a cyclic mass-action system which is complex balanced

at x∗, by Lemma 3.3.1 the system can be written

dx

dt
= κ1X1 + κ2X2 +⋯ + κδXδ

where

Xi =
li

∑
j=1

(z
ν
(i)
j+1

− z
ν
(i)
j

)( x

x∗
)
z
ν
(i)
j

for i = 1, . . . , δ, and we are done.

Example 3.3.1. Consider the mechanism

A1
1Ð→ A2

1 ↑ ε� ε ↓ 1

A4 ←Ð
1
A3

(3.32)

where 0 < ε < 1. We will let Ci = Ai, i = 1, . . . ,4. We have made the associations k(1,2) = 1,

k(2,3) = 1, k(3,4) = 1, k(4,1) = 1, k(4,2) = ε and k(2,4) = ε.

The system is governed by the system of differential equations

dx1

dt
= −x1 + x4

dx2

dt
= x1 − x2 + εx4 − εx2

dx3

dt
= x2 − x3

dx4

dt
= x3 − x4 − εx4 + εx2.

(3.33)

The equilibrium condition for each species exactly corresponds to the complex balancing

condition so that each equilibrium concentration is trivially complex balanced. It can be
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easily determined that any equilibrium concentration satisfies x∗1 = x∗2 = x∗3 = x∗4.

To follow the methodology of Lemma 3.3.3, we look for a cycle within the reaction graph

(3.32). One choice is A1 → A2 → A4 → A1, corresponding to the cycle {1,2,4,1}. This

choice is not unique, a consideration which will be expounded upon later.

Along this cycle we have the flux terms x∗1, εx∗2, and x∗4. Clearly, for 0 < ε < 1 the flux

terms are not equal so that the cycle itself is not complex balanced. Instead, we choose

κ1 = min{x∗1, εx∗2, x∗3} = εx∗2

where evaluation of the the minimum follows from the equilibrium condition x∗1 = x∗2 = x∗3 =

x∗4. It follows from the construction in Lemma 3.3.3 that

k1(1,2) = ε k1(2,3) = 0

k1(2,4) = ε k1(3,4) = 0

k1(4,1) = ε k1(4,2) = 0

.

We are now prepared to make our first decomposition of the system. This decomposition

with yield two subsystems: R1, which is the cyclic system, and R′, which is the remainder

upon removing R1 from our original system R. We have

A1
εÐ→ A2 A1

1−εÐ→ A2

R1 ∶ ε ↑ ↙ε R′ ∶ 1−ε ↑ ↗ε ↓1

A4 A4 ←Ð
1
A3.

We can see that, as expected, our original system (3.32) can be recovered by directly sum-

ming the reactions of R1 and R′ together. A similar decomposition of (3.33) can be made
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since the reaction rates enter the differential equations linearly. For brevity, we will not

write out the mass-action systems corresponding to R1 and R′ here.

Our next task is to decompose the system R′ according to the same procedure outlined

so far. We will leave the details as an exercise. It can be readily seen that the mass-

action system corresponding to R′ is complex balanced at x∗1 = x∗2 = x∗3 = x∗4 and that

A2 → A3 → A4 → A2 is a cycle with minimal flow rate κ2 = εx∗3. After appropriate

partitioning of the rate constants, we have that R′ can be decomposed into

A2 A1
1−εÐ→ A2

R2 ∶ ε ↗ ↓ ε R3 ∶ 1−ε ↑ ↓ 1−ε

A4 ←Ð
ε
A3 A4 ←Ð

1−ε
A3.

We can see that both R2 and R3 are cyclic systems, and it can be verified directly that

they are both complex balanced along x∗1 = x∗2 = x∗3 = x∗4. As expected, the procedure has

terminated after a finite number of iterations—two in this case—and yielded three cyclic

systems which are complex balanced at the same equilibrium concentration. To make this
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more explicit, we notice that we can write (3.33) as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx1

dt
dx2

dt
dx3

dt
dx4

dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x3 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ (1 − ε)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x3 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Each of the three bracketted expressions corresponds to one of the cyclic subsystems, R1,

R2 and R3.

It is worth noting that decomposition procedure is not unique. It is entirely possible

that a different cycle could be chosen at each iteration of the procedure, leading to entirely

different systems in the decomposition (although each must be cyclic and complex balanced

at the same equilibrium concentration). It is even possible for a different number of cycles

to result from a distinct decomposition.

For example, consider the decomposition of R into

A1
1Ð→ A2 A2

R1 ∶ 1 ↑ ↓ 1 R2 ∶ ε� ε

A4 ←Ð
1
A3 A4

This is a complex decomposition which yields two subsystems instead of three! We notice,
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however, that no matter how we perform the decomposition, the end result is always a set

of cyclic systems, all of which are complex balanced at the same equilibrium concentrations.

It is also worth noting that the decomposition depends sensitively on the rate constants,

since the rate constants play an instrumental role in determining the minimal flow rates.

Choosing ε = 1 or ε > 1—let alone fully general rate constants for each reaction—leads to

dramatically different decompositions.

We will need the following two results. The first generalizes Lemma 3.3.2 to general

complex balanced systems. The second allows us to grasp the resulting vector quantities.

Lemma 3.3.4. Consider a mass-action system with a complex balanced equilibrium x∗.

Then, for the function L(x) given by (3.1), we have

∇L(x) ⋅ dx
dt

≤ 0

with equality if and only if, for every linkage class Li, i = 1, . . . , `,

( x

x∗
)
z
ν
(i)
j

= ( x

x∗
)
z
ν
(i)
k

for all C
ν
(i)
j
,C
ν
(i)
k

∈ Li.

Proof. Since the system is complex balanced at x∗ it follows by Lemma 3.3.3 that the

system can be decomposed into cyclic subsystems, each of which is complex balanced at

x∗. By (3.27) we have

∇L(x) ⋅ dx
dt

= κ1∇L(x) ⋅X1 +⋯ + κδ∇L(x) ⋅Xδ.
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Since each Xi, i = 1, . . . , δ, corresponds to a cyclic system Ri which is complex balanced at

x∗, it follows by Lemma 3.3.2 that, for all i = 1, . . . , δ,

∇L(x) ⋅Xi ≤ 0

with equality if and only if

( x

x∗
)
z
ν
(i)
j = ( x

x∗
)
z
ν
(i)
k (3.34)

for all ν
(i)
j , ν

(i)
k ∈ Ri. It follows that

∇L(x) ⋅ dx
dt

≤ 0. (3.35)

In order to have equality with zero, we need (3.34) to be satisfied for each cyclic

subsystem Ri, i = 1, . . . , `; however, we can readily see that (3.34) can be extended to

linkage classes since every cycle within a linkage class can be linked to every other (if they

could not, they would not be in the same linkage class). It follows that equality with zero

in (3.35) can only be attained if, for every i = 1, . . . , `,

( x

x∗
)
z
ν
(i)
j

= ( x

x∗
)
z
ν
(i)
k

for all C
ν
(i)
j
,C
ν
(i)
k

∈ Li, and we are done.

Lemma 3.3.5. Let Li, i = 1, . . . , `, be the linkage classes of a chemical reaction network.

Then the set of vectors

{z
ν
(i)
j
− z

ν
(i)
k

∣ C
ν
(i)
j
,C
ν
(i)
k

∈ Li, i = 1, . . . , `} (3.36)
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span the stoichiometric subspace S.

Proof. It is clear that every reaction vector zi − zj, (i, j) ∈ R, is contained in the set (3.36)

since Ci and Cj necessarily belong to the same linkage class so we have freedom to choose

these indices. It remains to show that the set (3.36) may not exceed the span of S.

Consider an arbitrary vector z
ν
(i)
j
− z

ν
(i)
k

, C
ν
(i)
j
,C
ν
(i)
k

∈ Li, i = 1, . . . , `. Since C
ν
(i)
j

and C
ν
(i)
k

belong to the same linkage class, it follows that there exists a chain of reactions connecting

C
ν
(i)
j

and C
ν
(i)
k

of the form

C
ν
(i)
k

= Cµ0 ←→ Cµ1 ←→ ⋯ ←→ Cµp−1 ←→ Cµp = Cν(i)j

where by “←→” we mean one of a forward or backward reaction. For each forward reaction,

we consider the reaction vector (zµi+1−zµi) ∈ S and for each backward reaction, we consider

the negative reaction vector −(zµi − zµi+1) = (zµi+1 − zµi) ∈ S. It follows that

z
ν
(i)
j
− z

ν
(i)
k

= (zµ1 − zµ0) + (zµ2 − zµ1) +⋯

+ (zµp−1 − zµp−2) + (zµp − zµp−1) ∈ S.

This completes the proof.

We are now prepared to prove the analogous result to Theorem 3.2.1 for complex

balanced systems. We will omit details of the proof where obvious similarities arise.

Theorem 3.3.1. Consider a system with a complex balanced equilibrium x∗. Then the

system has the following properties:
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1. The set of positive equilibrium concentrations is given by

E = {x ∈ Rm
>0 ∣ (ln(x) − ln(x∗)) ∈ S⊥} . (3.37)

2. Every positive equilibrium concentration permitted by the system is a complex balanced

equilibrium concentration.

3. There is a unique positive complex balanced equilibrium concentration within each

positive stoichiometric compatibility class Cx0.

4. That equilibrium concentration is locally asymptotically stable relative to Cx0.

Proof. We will prove the claims in the order they are presented.

Proof (1): Consider an equilibrium concentration x ∈ Rm
>0. As before, this implies

∇L(x) ⋅ dx
dt

= 0 which, by Lemma 3.3.4, can happen if and only if, for every linkage class

Li, i = 1, . . . , `,

( x

x∗
)
z
ν
(i)
j

= ( x

x∗
)
z
ν
(i)
k

for all C
ν
(i)
j
,C
ν
(i)
k

∈ Li. Taking the natural logarithm of both sides and collecting terms yields

(z
ν
(i)
j
− z

ν
(i)
k

) ⋅ (ln(x) − ln(x∗)) = 0.

Since the set of vectors (z
ν
(i)
j
−z

ν
(i)
k

) ∈ S taken over C
ν
(i)
j
,C
ν
(i)
k

∈ Li, and all i = 1, . . . , `, spans

S by Lemma 3.3.5, it follows that x ∈ E.

Now suppose x ∈ E. Since the system is complex balanced, by Lemma 3.3.3 the

mechanism can be decomposed into cyclic subsystems Ri, i = 1, . . . , δ, where the cycles are
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of the form {ν(i)
1 , ν

(i)
2 , . . . , ν

(i)
li
, ν

(i)
li+1}. It follows from x ∈ E that, for all i = 1, . . . , δ,

( x

x∗
)
z
ν
(i)
j+1 = ( x

x∗
)
z
ν
(i)
j

for all j = 1, . . . , li. Since each cyclic subsystem (3.28) from Lemma 3.3.3 can take the form

(3.25) obtained in Lemma 3.3.1, it follows that x is an equilibrium concentration of (2.4).

This completes the proof of Claim (1).

Proof (2): Consider an equilibrium concentration x ∈ Rm
>0. By Claim (1), this implies

x ∈ E where E is given by (3.37). Since the set of vectors (3.36) spans S, we have that, for

all i = 1, . . . , `, (z
ν
(i)
j
− z

ν
(i)
k

) ⋅ (ln(x) − ln(x∗)) = 0 for all C
ν
(i)
j
,C
ν
(i)
k

∈ Li, and consequently

( x

x∗
)
z
ν
(i)
j = ( x

x∗
)
z
ν
(i)
k (3.38)

under the same conditions.

Since x∗ is a complex balanced equilibrium concentration, by Definition 3.1.3 we have

n

∑
j=1

k(j, i)(x∗)zj = (x∗)zi
n

∑
j=1

k(i, j) (3.39)

for all i = 1, . . . , n. We notice, however, that in order for this condition to hold the analogous

condition needs to hold for the complexes of any given linkage class Li, i = 1, . . . , `. We will

consider that the ith linkage class Li consists of the complexes {C
ν
(i)
1
,C
ν
(i)
2
, . . . ,C

ν
(i)
ni

} where

ni is the number of complexes in Li. Then (3.39) holds if and only if, for every i = 1, . . . , `,

ni

∑
k=1

k(ν(i)
k , ν

(i)
j )(x∗)

z
ν
(i)
k = (x∗)

z
ν
(i)
j

ni

∑
k=1

k(ν(i)
j , ν

(i)
k ) (3.40)
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holds for all j = 1, . . . , ni. In other words, a mass-action system is complex balanced at x∗

if and only if every linkage class of the system is complex balanced at x∗.

Consider the ith linkage class Li. We know that the system is complex balanced if and

only if this linkage class is complex balanced according to (3.40). Consequently, we can

decompose the rate constants relevant to Li, k(ν(i)
j , ν

(i)
k ), according to (3.30) and (3.54)

of Lemma 3.3.3. We will let δi ∈ Z>0 be the number of cycles in the cyclic decomposition

of this subsystem and κj > 0, j = 1, . . . , δi, be the relevant constants derived via (3.30). It

follows that

k(ν(i)
j , ν

(i)
k ) =

δi

∑
l=1

kl(ν(i)
j , ν

(i)
k ) (3.41)

where

kl(ν(i)
j , ν

(i)
k ) = κl

(x∗)
z
ν
(i)
k

. (3.42)

for each l = 1, . . . , δi.

Together, we have

ni

∑
k=1

k(ν(i)
k , ν

(i)
j )(x)

z
ν
(i)
k =

ni

∑
k=1

δi

∑
l=1

kl(ν(i)
k , ν

(i)
j )(x)

z
ν
(i)
k (by 3.41)

=
ni

∑
k=1

δi

∑
l=1

κl (
x

x∗
)
z
ν
(i)
k (by 3.42)

= ( x

x∗
)
z
ν
(i)
j

ni

∑
k=1

δi

∑
l=1

κl (by 3.38)

= ( x

x∗
)
z
ν
(i)
j

ni

∑
k=1

δi

∑
l=1

kl(ν(i)
k , ν

(i)
j )(x∗)

z
ν
(i)
k (by 3.42)

= ( x

x∗
)
z
ν
(i)
j

ni

∑
k=1

k(ν(i)
k , ν

(i)
j )(x∗)

z
ν
(i)
k (by 3.41)

= (x)
z
ν
(i)
j

ni

∑
k=1

k(ν(i)
j , ν

(i)
k ) (by 3.39).

It follows by (3.40) that x is a complex balanced equilibrium concentration of the mecha-
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nism restricted to Li. Since this holds for all linkage classes Li, i = 1, . . . , `, it follows that

(3.39) is satisfied and consequently x is a complex balanced equilibrium concentration of

the entire mechanism. This proves Claim (2).

Proof (3): This follows identically to the proof of Claim (3) of Theorem 3.2.1.

Proof (4): This follows identically to the proof of Claim (4) of Theorem 3.2.1, with

the sole exception that ∇L(x(t)) ⋅ dx(t)
dt

≤ 0 for all t ≥ 0 follows from Lemma 3.3.4 rather

than Lemma 3.2.2.

Example 3.3.2. Reconsider the system (3.32) given in Example 3.3.1,

A1
1Ð→ A2

1 ↑ ε� ε ↓ 1

A4 ←Ð
1
A3

where 0 < ε < 1, which can be decomposed into the cyclic subsystems R1, R2 and R3

derived previously. The system is governed by (3.33) which has equilibria along the curve

x∗1 = x∗2 = x∗3 = x∗4.

In order to apply Theorem 3.3.1 we need to prove that the system has a complex balanced

equilibrium concentration according to Definition 3.1.3. More intuitively, we need the net

flow rate into each complex to balance the net flow rate out of each complex. This gives us

the system of equations

C1 ∶ x4 = x1

C2 ∶ x1 + εx4 = (1 + ε)x2

C3 ∶ x2 = x3

C4 ∶ x3 + εx2 = (1 + ε)x4.
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These conditions correspond exactly to the equilibrium conditions so that every equilibrium

concentration is complex balanced.

It can be trivially seen that each positive stoichiometric compatibility class given by

(x0 + S) ∩Rm
>0 where

S = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
intersects the equilibrium curve x∗1 = x∗2 = x∗3 = x∗4 exactly once.

x
1

x
3 x

4

x
2

Figure 3.2: The solution x(t) to (3.33) for ε = 1/2, x10 = 1, x20 = x30 = x40 = 0. The solution
converges to the equilibrium value x∗1 = x∗2 = x∗3 = x∗4 = 1/4.

Consider the compatibility class corresponding to the equilibrium concentration x∗1 =
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x∗2 = x∗3 = x∗4 = 1/4. According to the conservation law ⟨v,x − x0⟩ = 0 with v = [1,1,1,1]T ,

this corresponds to initial conditions x0 ∈ R4
>0 with x10 + x20 + x30 + x40 = 1. Numerically

integrating, we can see that the system evolves toward the expected equilibrium concentration

(see Figure 3.2).

3.4 Deficiency Zero Theorem

In our discussion of complex balanced systems so far, we have seen that the assumption of

complex balancing of equilibrium concentrations carries implications for the reaction graph

of the system. Specifically, we have seen that complex balanced systems are weakly re-

versible (Lemma 3.1.2), that they can be linearly decomposed into complex balanced cyclic

systems (Lemma 3.3.3), and that the complex balancing condition decomposes according

to the linkage classes (see the proof of Claim (2) or Theorem 3.3.1).

What is not immediately obvious is that properties of the reaction graph carry impli-

cations for if and when the complex balancing condition on equilibrium concentrations is

satisfied. In fact, in this section we will see that several easily checked conditions on the

reaction graph form sufficient conditions for the complex balancing of equilibrium concen-

trations. Incorporating the results of Section 3.3.2, this implies that for a large class of

systems we can determine the long-term dynamical properties of the system by considering

conditions on the structure of the reaction graph alone. This should come as a surprise—it

means we can say something about the equilibrium set of a system, and the local stability

of those concentrations, without determining the equilibrium concentrations or considering

the dynamics!

The results of this section are drawn primarily from the sources [13, 25, 30]. In [25]
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and [30], the authors prove that weak reversibility and a deficiency of zero are sufficient

conditions for the complex balancing of all equilibrium concentrations (Theorem 3.4.2).

Their approach depends on abstract elements from linear algebra which will not be needed

in this section. In [13], the authors relate the complex balancing condition to notions from

computational algebra. Importantly for our purposes is that they provide a constructive

method for determining several of the abstract quantities contained in [25] and [30]. I am

also indebted to the unpublished research notes of former University of Waterloo graduate

student D. MacLean who did terrific work expanding upon and clarifying the results of [25]

and [30].

While all of the results contained in this section are drawn from existing literature, to

the best of my knowledge the following results represent the most complete and constructive

analysis of the deficiency zero condition to date.

Our analysis starts with some consideration of relevant quantities from graph theory.

The definitions have been adapted according to their relevance to chemical kinetics, and in

particular the reaction graph given by (2.2) where complexes represent nodes and reactions

represent directed edges according to Definition 2.2.1. Whenever working with a subset of

the reaction set R′ ⊂ R, we will let C(R′) denote the set of complexes involved in reactions

from the set R′ either as a reactant or a product.

Definition 3.4.1. A subset of the reaction set T ⊂ R is said to be a reaction tree if, for

every pair of complexes Cν0 ,Cνk ∈ C(T ), there is exactly one sequence of indices (νi−1, νi) ∈ T

satisfying

Cν0 ←→ Cν1 ←→ ⋯ ←→ Cνk−1 ←→ Cνk

where each Cνi is distinct.
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It follows by this definition that the set C(T ) is connected by Definition 2.2.2 and

therefore all of the complexes in it belong to the same linkage class.

It should also be noted that this definition does not even permit cycles in the undi-

rected graph. Definition 3.4.1 is violated regardless of the direction in which the individual

reactions in the cyclic sequence flow.

Definition 3.4.2. A reaction tree T ⊂ R is said to span the linkage class Li if C(T ) =

Li.

This definition means that every complex in a linkage class is contained in the reaction

tree. It is clear that no tree may exceed the complexes contained within a single linkage

class. It is also clear that any reaction tree which spans a linkage class contains exactly li

complexes in it, where li is the number of complexes in the linkage class Li.

The following definitions make use of the directed nature of reaction trees.

Definition 3.4.3. Consider a reaction tree T ⊂ R. The complex Ci ∈ C(T ) is said to be a

sink of T if all reactions in T involving Ci involve Ci as a product.

Definition 3.4.4. Consider a reaction tree T ⊂ R and a given Ci ∈ C(T ). Then T is said

to be an i-reaction tree if Ci is the unique sink of T .

An important task will be identifying i-reaction trees which span linkage classes. We

will let Tj(i) denote the set of i-reaction trees which span the jth linkage class Lj. When

the system consists of only a single linkage class (i.e. j = 1), we will use the shorthand

Tj(i) = T (i). The following quantities will be required throughout the rest of this section:

κT = ∏
(i0,j0)∈T

k(i0, j0), (3.43)
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Ki = ∑
T ∈Tj(i)

κT . (3.44)

The quantities κT are the products of all the reaction rates associated with reactions in

the reaction tree T . The quantities Ki are the sum of all such products associated with

i-reaction trees which span the jth linkage class. It is not clear at this point why these

quantities are important to chemical kinetics, but we will show in this section that they

are intricately related to the complex balancing condition given by Definition 3.1.3.

Example 3.4.1. Consider the reaction system

C1

k1⇄
k7

C2

k4 �k6 ↘k5 ↓k2

C4 ←
k3

C3.

(3.45)

We have indexed the system according to (2.1) rather than (2.2). This is done for notational

simplicity and will make no difference in the analysis. This system contains only one

linkage class, but the proceding analysis can be easily generalized to multiple linkage classes.

We want to determine the quantities Ki, i = 1, . . . ,4. Our first point of order is to

determine all of the i-reaction trees which span the complexes, that is to say, to determine

the sets T (i) for i = 1, . . . ,4.

We start by considering i = 1. There are two 1-reaction trees which span the complexes,
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given by

C1 C2 C1 ←
k7

C2

T1 ∶ k4 ↑ ↓k2 T2 ∶ k4 ↑

C4 ←
k3

C3 C4 ←
k3

C3

We can now easily determine that κT1 = k2k3k4 and κT2 = k3k4k7 so that K1 = k2k3k4+k3k4k7.

The analysis for the other complexes follows similarly. It should be noted, however, that

while it is easy to verify that a particular reaction tree is in fact an i-reaction tree, it is not

necessarily easy to find them all. For systems with complicated reaction graphs, computer

assistance is often required.

For the other complexes, we have

K2 = k1k3k4

K3 = k1k2k4 + k2k4k5 + k4k5k7

K4 = k1k2k3 + k3k6k7 + k2k3k5 + k2k3k6 + k3k5k7.

The following result will be crucial to connecting reaction trees to complex balanced

reaction mechanisms.

Lemma 3.4.1. Consider an i-reaction tree Ti which spans a linkage class L. Consider the

reaction graph produced by adding the reaction Ci Ð→ Cj, Cj ∈ L, to Ti. It follows that:

1. There exists a k-reaction tree Tk such that adding the reaction

Ck Ð→ Ci, Ck ∈ L, to Tk produces the same reaction graph; and
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2. There exists a j-reaction tree Tj such that adding the reaction

Cj Ð→ Ck, Ck ∈ L, to Tj produces the same reaction graph.

Proof. Let Ti be an i-reaction tree which spans a linkage class L. Consider the reaction

Ci Ð→ Cj for some arbitrary Cj ∈ L. Since Ci is a sink it follows that this reaction is not in

Ti by definition. Since Ti spans L and Ci is the unique sink of Ti, it follows that there is a

sequence of complexes and reactions such that

Cj = Cν1 Ð→ Cν2 Ð→ ⋯ Ð→ Cνl−1 Ð→ Cνl = Ci. (3.46)

After adding the reaction Ci Ð→ Cj we see that our new system contains a reaction cycle

according to Definition 3.3.1

Consider removing the reaction Cνl−1 Ð→ Ci from this new system. It is easy to see that

the remaining system is still a tree which spans L, since this removal breaks the only cycle

and every complex in L is still connected to every other complex in L. Since any reaction

involving Cνl−1 as a reactant must ultimately lead to Ci, it follows from Ti being a tree that

Cνl−1 Ð→ Ci is the only reaction in Ti involving Cνl−1 as a reactant. It follows that Cνl−1 is a

sink of the new system. Furthermore, since all paths leading to Ci can now be extended to

lead to Cνl−1 , it follows that it is a unique sink. Making the association Cνl−1 = Ck, it follows

that this system is a k-reaction tree, and we have proved claim (1).

The proof of claim (2) follows by similar reasoning.

In other words, if we add a reaction to an i-reaction tree spanning a linkage class, we

can pick another reaction to remove which produces a j-reaction tree for i /= j.

We will also need the following result.
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Lemma 3.4.2. If a system is weakly reversible then for any Ci, i = 1, . . . , n, there exists at

least one i-reaction tree spanning the linkage class L satisfying Ci ∈ L.

Proof. Consider an arbitrary Ci, i = 1, . . . , n, and let L denote the linkage class such that

Ci ∈ L. We will prove the claim by construction. Consider an arbitrary path

Ci Ð→ Cν1 Ð→ ⋯ Ð→ Cνl1−1 Ð→ Cj Ð→ Cν1 Ð→ ⋯ Ð→ Cµl2−1 Ð→ Ci

for some Cj ∈ L. We know such a path exists because Ci and Cj belong to the same linkage

class and the system is weakly reversible.

If we remove the reaction Ci Ð→ Cν1 from the system, we have a reaction tree with the

unique sink Ci. Now consider a complex Cj ∈ L which is not contained in the above cycle.

We know that there is a path from Cj to Ci by weak reversibility. If we take the portion

of this path leading from Cj to the first complex appearing in the reaction tree we just

derived (possibly Ci itself), we again arrive at a reaction tree with Ci as its unique sink.

Since we can follow this procedure until we have exhausted every complex in the linkage

class, it follows that there exists an i-reaction tree spanning the linkage class containing

Ci.

These results will prove particularly useful in proving the following. This result should

be contrasted with Lemma 3A of [30] and Corollary 4 of [13]. Although our statement of

the result, and the proof, differ from either of these results, they in fact address the same

point. In particular, the vi > 0, i = 1, . . . , n, which were only guaranteed to exist by Lemma

3A of [30] can be explicitly solved for by the terms Ki introduced here as (3.44) and used

in Corollary 4 of [13].
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Theorem 3.4.1. A mass-action system is weakly reversible if and only if the set (K1, . . . ,Kn) ∈

Rn
>0 defined according to (3.44) satisfies

n

∑
j=1

k(j, i)Kj =Ki

n

∑
j=1

k(i, j) (3.47)

for all i = 1, . . . , n.

Proof. We will prove the ‘only if’ claim first. Similarly to the argument used in proving

Claim (2) of Theorem 3.3.1, we can partition condition (3.47) into conditions on each

linkage class Li, i = 1, . . . , `. Specifically, we have that (3.47) is satisfied if and only if, for

every i = 1, . . . , `,
ni

∑
k=1

k(ν(i)
k , ν

(i)
j )K

ν
(i)
k

=K
ν
(i)
j

ni

∑
k=1

k(ν(i)
j , ν

(i)
k ) (3.48)

for all j = 1, . . . , ni, where {C
ν
(i)
1
,C
ν
(i)
2
, . . . ,C

ν
(i)
ni

} is the set of complexes in the ith linkage

class and ni is the number of such complexes.

From Lemma 3.4.2, since the system is weakly reversible we know that corresponding

to every C
ν
(i)
j

∈ Li is at least one ν
(i)
j -reaction tree. Since the rate constants are positive, it

follows that K
ν
(i)
j

> 0 for every C
ν
(i)
j

∈ Li.

Consider an arbitrary ν
(i)
k -reaction tree corresponding to a term κT (ν(i)

k ) in the sum

forming K
ν
(i)
k

according to (3.44). In (3.48), these terms are multiplied by terms in the set

{k(ν(i)
k , ν

(i)
j )}

ni

k=1
. Consider an arbitrary element in this set, k(ν(i)

k , ν
(i)
j ), k = 1, . . . , ni, and

consider the product k(ν(i)
k , ν

(i)
j )κT (ν(i)

k ). This corresponds to adding a reaction C
ν
(i)
k

Ð→

C
ν
(i)
j

to the given ν
(i)
k -reaction tree. By Claim (2) of Lemma 3.4.1, it follows that there is a

ν
(i)
j -reaction tree which has the same reaction graph after adding a reaction C

ν
(i)
j
Ð→ C

ν
(i)
l

for some l = 1, . . . , ni. Since the terms on the right-hand side of (3.48) exhaust all ν
(i)
j -
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reaction trees and all rate constants originating at index ν
(i)
j , this term must lie somewhere

on the right-hand side of (3.48). Since ν
(i)
k and κT (ν(i)

k ) were chosen arbitrarily, it follows

that every term on the left-hand side of (3.48) necessarily lies on the right-hand side as

well. Since the linkage class was also chosen arbitrarily, we have that, for all i = 1, . . . , `,

ni

∑
k=1

k(ν(i)
k , ν

(i)
j )K

ν
(i)
k

≤K
ν
(i)
j

ni

∑
k=1

k(ν(i)
j , ν

(i)
k ) (3.49)

for all j = 1, . . . , ni.

The same argument can be applied starting with ν
(i)
j -reaction trees corresponding to

terms in K
ν
(i)
j

on the right-hand side of (3.48). Applying Claim (1) of Lemma 3.4.1, we

have that, for all i = 1, . . . , `,

ni

∑
k=1

k(ν(i)
k , ν

(i)
j )K

ν
(i)
k

≥K
ν
(i)
j

ni

∑
k=1

k(ν(i)
j , ν

(i)
k ) (3.50)

for all j = 1, . . . , ni. Combining (3.49) and (3.50), and reverting to our original indexing,

we have that
n

∑
j=1

k(j, i)Kj =Ki

n

∑
j=1

k(i, j)

for all i = 1, . . . , n.

The proof of the reverse implication is identical to the proof of Lemma 3.1.2.

The condition (3.48) looks very similar to the complex balancing condition (3.6). This

similarity is not superficial; however, before proceding we present some important proper-

ties which follows from (3.48). Due to significant similarities with the analogous proofs for

the complex balanced systems satisfying (3.6), many details of the proofs will be omitted.
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Lemma 3.4.3. If a mass-action system is weakly reversible, then for every (v1, . . . , vn) ∈

Rn
>0 there exist rate constants satisfying k(i, j) > 0 for (i, j) ∈ R and k(i, j) = 0 for (i, j) /∈ R

such that, for all i = 1, . . . , n,

n

∑
j=1

k(j, i)vj = vi
n

∑
j=1

k(i, j)

is satisfied.

Proof. We will find the rate constants explicitly.

Consider a weakly reversible mass-action system with arbitrary rate constants k(i, j).

By Theorem 3.4.1, the set (K1, . . . ,Kn) ∈ Rn
>0 satisfies

n

∑
j=1

k(j, i)Kj =Ki

n

∑
j=1

k(i, j)

for all i = 1, . . . , n.

Now consider an arbitrary (v1, . . . , vn) ∈ Rn
>0 and let k̃(i, j) = (Kj/vj) ⋅ k(i, j) for all

i, j = 1, . . . , n. It follows that, for all i = 1, . . . , n,

n

∑
j=1

k̃(j, i)vj = ∑
j=1

k(j, i)Kj =Ki

n

∑
j=1

k(i, j) = vi
n

∑
j=1

k̃(i, j).

Since (v1, . . . , vn) ∈ Rn
>0 was chosen arbitrarily and the k̃(i, j) satisfy the requirements, the

result follows.

Lemma 3.4.4. Consider a weakly reversible mass-action system and let (v1, . . . , vn) ∈ Rn
>0

satisfy
n

∑
j=1

k(j, i)vj = vi
n

∑
j=1

k(i, j). (3.51)
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Then there exist s(k) > 0, k = 1, . . . , `, such that vi = s(k)Ki for all i such that Ci ∈ Lk.

Proof. We will first consider what implications (3.47) and the assumption of weak re-

versibility have on the rate constants k(i, j). The following closely mirrors the proof of

Lemma 3.3.3, so some details will be glossed over.

Since the system is weakly reversible, we know that there is at least one chain of

reactions which constitutes a cycle according to Definition 3.3.1. We will index this cycle

{ν1, ν2, . . . , νl, νl+1} where l is the length of the cycle and define

κ1 = min
i=1,...,l

k(νi, νi+1)Kνi > 0. (3.52)

We now define two new sets of rate constants as

k1(i, j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

κ1

Ki

, for (i, j) in the cycle

0, otherwise

(3.53)

and

k′(i, j) = k(i, j) − k1(i, j), for i, j = 1, . . . , n. (3.54)

As in the argument for Lemma 3.3.3, we can make associations between the set of reaction

rates k1(i, j) and k′(i, j), i, j = 1, . . . , n, and the reaction sets R1 = {(i, j) ∣ k1(i, j) > 0} and

R′ = {(i, j) ∣ k′(i, j) > 0}. Also as before, we have ∣R′∣ < ∣R∣ so that the remaining system
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is smaller than the original system. From linearity, we have that, for every i = 1, . . . , n,

n

∑
j=1

k′(j, i)Kj =
n

∑
j=1

k(j, i)Kj −
n

∑
j=1

k1(j, i)Kj

=Ki

n

∑
j=1

k(i, j) −Ki

n

∑
j=1

k1(i, j)

=Ki

n

∑
j=1

k′(i, j).

By the analogous argument to Lemma 3.1.2, this is sufficient to prove the remaining system

is weakly reversible so that we can apply the same procedure to this quantity as we did to

(3.48). Since the set of reactions decreases with each iteration, this process must terminate

at some point, and by the above argument, each step must yield a condition of the form

(3.48) corresponding to a reaction cycle.

Substituting for the k(i, j) and moving everything to the left-hand side, we can write

(3.51) as the condition

n

∑
j=1

(
δ

∑
l=1

kl(j, i)) vj − vi
n

∑
j=1

(
δ

∑
l=1

kl(i, j)) = 0 (3.55)

for all i = 1, . . . , n, where the kl(i, j), l = 1, . . . , δ, are defined according to (3.53). We can

break the system into the cycles {ν(i)
1 , ν

(i)
2 , . . . , ν

(i)
li
, ν

(i)
li+1}, i = 1, . . . , δ, so that (3.55) can be

written as
δ

∑
i=1

ν
(i)
j =l

[ki(ν(i)
j−1, ν

(i)
j )v

ν
(i)
j−1

− ki(ν(i)
j , ν

(i)
j+1)vν(i)j ] = 0 (3.56)
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for l = 1, . . . , n. It follows from (3.53) that (3.56) can be written

δ

∑
i=1

ν
(i)
j =l

κi
⎛
⎜
⎝
v
(i)
νj−1

K
ν
(i)
j−1

−
v
(i)
νj

K
ν
(i)
j

⎞
⎟
⎠
= 0

for l = 1, . . . , n. Multiplying the lth condition by the term vl/Kl and summing over the

l = 1, . . . , n conditions gives

δ

∑
i=1

κi
li

∑
j=1

v
ν
(i)
j

K
ν
(i)
j

⎛
⎜
⎝

v
ν
(i)
j−1

K
ν
(i)
j−1

−
v
(i)
νj

K
ν
(i)
j

⎞
⎟
⎠
= −

δ

∑
i=1

κi
2

li

∑
j=1

⎛
⎜
⎝

v
ν
(i)
j−1

K
ν
(i)
j−1

−
v
ν
(i)
j

K
ν
(i)
j

⎞
⎟
⎠

2

= 0. (3.57)

Since each term in the sum in (3.57) is less than or equal to zero, it follows that equality

with zero in (3.57) can be obtained if and only if

v
ν
(i)
j−1

K
ν
(i)
j−1

=
v
ν
(i)
j

K
ν
(i)
j

for all i = 1, . . . , δ, j = 1, . . . , li. Since all cycles in the same linkage class are connected,

however, we can generalize this. If we let {µ(i)
1 , µ

(i)
2 , . . . , µ

(i)
ni } denote the indices of com-

plexes in the ith linkage class, where ni is the number of complexes in this linkage class,

we have that, for all i = 1, . . . , `,
v
µ
(i)
k

K
µ
(i)
k

=
v
µ
(i)
j

K
µ
(i)
j

for all j, k = 1, . . . , ni. It follows that any solution (v1, . . . , vn) ∈ Rn
>0 of

n

∑
j=1

k(j, i)vj = vi
n

∑
j=1

k(i, j)

must satisfy vi = s(k)Ki for all i such that Ci ∈ Lk, where s(k) > 0 is a unique constant
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relative to each linkage class, and we are done.

So far in this section, we have considered only the properties of general weakly reversible

systems. We know that complex balanced systems are weakly reversible, but we have said

nothing about when weakly reversible systems are complex balanced. The following two

results (Theorem 3.4.2 and Theorem 3.4.3) clarify this connection.

This result should be contrasted with Theorem 4A of [30], Theorem 4.1 of [25], and

Theorem 9 of [13].

Theorem 3.4.2 (Deficiency Zero Theorem). A mass-action system is complex balanced

for all sets of rate constants if and only if it is weakly reversible and has a deficiency of

zero (i.e. δ = n − ` − s = 0).

Proof. We will prove the ‘only if’ statement first. Consider a system with a complex

balanced equilibrium concentration x∗ ∈ Rm
>0. By Definition 3.1.3, this implies that

n

∑
j=1

k(j, i)(x∗)zj = (x∗)zi
n

∑
j=1

k(i, j)

for all i = 1, . . . , n. Since every complex balanced system is weakly reversible by Lemma

3.1.2, it follows by Lemma 3.4.4 that there are constants s(i) > 0, i = 1, . . . , `, such that

(x∗)zj = s(i)Kj (3.58)

for all j such that Cj ∈ Li. If we index the ith linkage class as {µ(i)
1 , µ

(i)
2 , . . . , µ

(i)
ni }, (3.58)

can be written

(x∗)
z
µ
(i)
j = s(i)K

µ
(i)
j
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for i = 1, . . . , `, j = 1, . . . , ni. It follows by taking s(i) = (x∗)
z
µ
(i)
ni /K

µ
(i)
ni

for all i = 1, . . . , ` that

(3.58) is satisfied if and only if

(z
µ
(i)
j
− z

µ
(i)
ni

)T ln(x∗) = ln
⎛
⎝

K
µ
(i)
j

K
µ
(i)
ni

⎞
⎠

(3.59)

for all i = 1, . . . , `, j = 1, . . . , ni − 1.

This is a set of ∑`
i=1(ni − 1) = n − ` conditions which are linear in ln(x). The terms

on the right-hand side of (3.59) depend on the rate constants; however, from Lemma 3.4.3

we know that the Ki > 0, i = 1, . . . , n can be made arbitrary by an appropriate choice of

rate constants. Consequently, each ln(K
µ
(i)
j
/K

µ
(i)
ni

) may assume an arbitrary value in R. It

follows by basic linear algebra that the system is satisfiable for all choices of rate constants

if and only if the rank of the matrix with rows (z
µ
(i)
j
− z

µ
(i)
ni

)T is equal to the number of

linear conditions, which is n − `. Since the vectors (z
µ
(i)
j
− z

µ
(i)
ni

)T span S, it follows that

the desired condition is dim(S) = n − `, which is equivalent to δ = n − ` − s = 0.

Since each step in the above argument holds in the reverse direction, the ‘if’ statement

follows, and we are finished.

This result may seem mundane at first glance, but its implications are vast. We saw

in Section 3.3.2 that complex balanced systems exhibit a type of simple and predictable

behaviour—all the positive compatibility classes Cx0 have a unique positive equilibrium

which is locally asymptotically stable relative to Cx0 . In this section, we have shown that

a system is complex balanced at all equilibrium values if and only if it is weakly reversible

system and has a deficiency of zero. In other words, we have simple conditions which negate

the need to check for complex balancing of equilibrium concentrations. More surprising,

these conditions have nothing to do with the dynamics of the system. They do not depend
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on the rate constants. They are conditions on the reaction graph alone.

We will see how powerful this result is through a few examples.

Example 3.4.2. Reconsider the mass-action system given previously in Example 2.2.1 and

Example 2.2.3,

A1

k(1,2)Ð→ A2

k(3,1) ↖ ↙k(2,3)

A3 +A4

2A1

k(4,5)
⇄

k(5,4)
2A3.

We established in Example 2.2.1 that this system is weakly reversible and in Example

2.2.3 that it has a deficiency of zero (n = 5, ` = 2, s = 3, and therefore δ = 0). It follows

immediately from Theorem 3.4.2 that every equilibrium concentration is a complex balanced

equilibrium concentration and, consequently, by Theorem 3.3.1 that the system exhibits

locally stable dynamics for all choices of rate constants.

The important—and surprising—point is that the Deficiency Zero Theorem gives us the

power to say this even though we have not found the equilibrium set or even bothered to

write down the governing set of differential equations, much less directly analyse them!

Example 3.4.3. Reconsider the mass-action system given previously in Example 3.3.1 and
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Example 3.3.2,

A1
1Ð→ A2

1 ↑ ε� ε ↓ 1

A4 ←Ð
1
A3

where 0 < ε < 1.

In Example 3.3.2, we determine by direct analysis that every equilibrium concentration

was complex balanced and, consequently, by Theorem 3.3.1, the system exhibits locally stable

dynamics. This results of this Section allow us to verify this result within significantly

less strain. We can see immediately that the system is weakly reversible, that it has four

complexes (n = 4), a single linkage class (` = 1), and the dimension of the stoichiometric

space S is three (s = 3). It follows that the deficiency is zero (δ = n−`−s = 0) and Theorem

3.4.2 may be applied.

It can rarely be expected, however, that conditions work out as favourably as they

are required to be for Theorem 3.4.2 to be applied. The following result allows us to say

something about weakly reversible systems for which the deficiency is not zero.

Theorem 3.4.3. If a mass-action system is weakly reversible, then the deficiency corre-

sponds to the number of conditions on the rate constants which need to be satisfied in order

for the system to be complex balanced.

Proof. In the proof of Theorem 3.4.2, we showed that the complex balancing condi-

tion (3.6) was equivalent to (3.59) holding for all i = 1, . . . , ` and j = 1, . . . , ni where

{C(i)ν1 ,C(i)ν2 , . . . ,C(i)νni} = Li.
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Suppose that the vectors (z
µ
(i)
j
− z

µ
(i)
ni

), i = 1, . . . , `, j = 1, . . . , ni, are linearly dependent.

This implies that there exist c
µ
(i)
j
∈ R, i = 1, . . . , `, j = 1, . . . , ni, such that

`

∑
i=1

ni

∑
j=1

c
µ
(i)
j
(z

µ
(i)
j
− z

µ
(i)
ni

)T ln(x∗) = 0. (3.60)

Combining this result with (3.59) gives us the condition

`

∏
i=1

ni

∏
j=1

⎛
⎝

K
µ
(i)
j

K
µ
(i)
ni

⎞
⎠

c
µ
(i)
j

= 1. (3.61)

Since the K
µ
(i)
j

depend on the rate constants, and can be chosen arbitrarily in accordance

with Lemma 3.4.3, we can see that this constitutes a condition on the rate constants.

Since (3.59) is linear, we know that the number of linearly independent sets c
µ
(i)
j
∈ R, i =

1, . . . , `, j = 1, . . . , ni, for which (3.60) holds corresponds to the dimension of the nullspace

of the matrix with rows (z
µ
(i)
j
−z

µ
(i)
ni

). This corresponds to the overall dimension minus the

dimension of the row span, which is

(n − `) − dim(S) = n − ` − s = δ.

It follows from basic linear algebra that there are δ linearly independent sets c
µ
(i)
j

∈ R,

i = 1, . . . , `, j = 1, . . . , ni, for which a condition of the form (3.61) must be satisfied in order

for the system to be complex balanced.

We can see immediately that Theorem 3.4.2 is in fact just an application of Theorem

3.4.3 taking δ = 0 since this corresponds to no conditions on the rate constants. Due to the

historical and applied importance of the Deficiency Zero Theorem, however, the result is
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typically stated separately.

We already saw in an example in Section 3.1 that, while complex balanced systems are

necessarily weakly reversible, not all weakly reversible systems are complex balanced. We

are now prepared to revisit this example.

Example 3.4.4. Reconsider Example 3.1.3 given by

2A1
αÐ→ 2A2

γ ↖ ↙β

A1 +A2.

We make the associations C1 = 2A1, C2 = 2A2, and C3 = A1 +A2.

When we previously considered this example, we assigned the numerical values α = 3/8,

β = 1 and γ = 1 to the rate constants and showed explicitly that the system was never

complex balanced. We now have some understanding of how this situation can arise: if a

weakly reversible system has a non-zero deficiency, then the system will only be complex

balanced under specific conditions on the rate constants. We are now prepared to carry out

the full analysis.

Our first step is to check the deficiency of the system. We can see that the number of

complexes is three (n = 3) and there is only one linkage class (` = 1). The stoichiometric

space is given by the span of the reaction vectors as follows

S = span

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

−2

2

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= span

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

We can see that s =dim(S) = 1 so that δ = n − ` − s = 1. It follows by Theorem 3.4.3 that a
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single condition on the rate constants α, β and γ suffices to guarantee complex balancing

of equilibrium concentrations.

We now seek to find this condition. For illustrative purposes, we will carry the argument

out from basic principles which carefully follows the methodology of the proof of Theorem

3.4.2.

Since the system is cyclic, the complex balancing condition on (x∗1, x∗2) ∈ R2
>0 is equivalent

to

α(x∗1)2 = β(x∗2)2 = γx∗1x∗2.

By appropriate rearranging and taking the natural logarithm, we see that this is equivalent

to the system

ln(x∗1) − ln(x∗2) = ln(γ
α
)

− ln(x∗1) + ln(x∗2) = ln(γ
β
) .

This is a linearly dependent system. Summing the equations, we arrive at the condition

ln( γ
2

αβ
) = 0 Ô⇒ γ2 = αβ.

We can now see why our attempt failed to be complex balanced. For the values α = 3/8,

β = 1 and γ = 1, the condition γ2 = αβ is violated, and consequently by Theorem 3.4.3 the

system is not complex balanced.

We can also arrive at this condition through consideration of the quantities K1, K2, K3
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defined according to (3.44). We have

K1 = βγ, K2 = αγ, and K3 = αβ.

The required condition from (3.61) is

`

∏
i=1

ni

∏
j=1

⎛
⎝

K
µ
(i)
j

K
µ
(i)
ni

⎞
⎠

c
µ
(i)
j

= 1.

For this example, we have ` = 1, ni = n = 3, and c1 = c2 = 1 since

c1(z1 − z3) + c2(z2 − z3) = (1)
⎡⎢⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦
+ (1)

⎡⎢⎢⎢⎢⎢⎢⎣

−1

1

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
.

It follows that the condition on the rate constants necessary and sufficient for complex

balancing is

(K1

K3

)(K2

K3

) = (βγ
αβ

)(αγ
αβ

) = 1 Ô⇒ γ2 = αβ

as we expected.

The natural next question is to ask how the dynamics changes when we let the rate

constants slip away from the curve γ2 = αβ. We know that for systems satisfying this rela-

tionship, we have an equilibrium set given by (3.37), that this set has a unique intersection

with each positive compatibility class, and that this intersection point is locally asymptot-

ically stable relative to the compatibility class. We do not know, however, how many of

these desirable properties—if any—are affected by perturbations in the rate constants.

95



We reconsider the dynamics of the system, given by

dx1

dt
= −2αx2

1 + βx2
2 + γx1x2

dx2

dt
= 2αx2

1 − βx2
2 − γx1x2.

(3.62)

The simultaneous equilibrium condition on ẋ1 and ẋ2 allows us to easily determine that the

equilibrium set is given by

x2 =
⎛
⎝
−γ ±

√
γ2 + 8αβ

2β

⎞
⎠
x1.

We can see that these correspond to two lines emanating from the origin, one with a positive

slope, and one with a negative slope. Only the one with positive slope intersects the positive

orthant, so we may ignore the one with negative slope.

Since the stoichiometric space S is one-dimensional and has a negative slope, it follows

that each positive compatibility class intersects the equilibrium set exactly once. Further-

more, since S⊥ is given by

S⊥ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
we can check that

ln(x1, x2) − ln(x∗1, x∗2) ∈ S⊥

by checking whether, for an arbitrary equilibrium concentration (x∗1, x∗2), we can set ln(x1, x2)−

ln(x∗1, x∗2) = k(1,1) for some k ∈ R. If we take the equilibrium concentration

x∗2 =
−γ +

√
γ2 + 8αβ

2β
x∗1
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we arrive at the conditions

x1 = ekx∗1 and x2 = ek
⎛
⎝
−γ +

√
γ2 + 8αβ

2β

⎞
⎠
x∗1

Ô⇒ x2 =
⎛
⎝
−γ +

√
γ2 + 8αβ

2β

⎞
⎠
x1.

This is exactly the equilibrium condition we just derived, so that the equilibrium set satisfies

E = {x ∈ Rm
>0 ∣ ln(x) − ln(x∗) ∈ S⊥} .

It is also easy to verify by factoring (3.62) that, for arbitrary α, β and γ, solutions above

the equilibrium curve converge down toward it, while solutions below rise to it, so that the

positive equilibrium concentration in each compatibility class is asymptotically stable. In

other words, for this example, all of the dynamical properties guaranteed of complex balanced

systems hold for this system even when complex balancing is violated! Whether this is a

general property will be addressed with a further example.

Example 3.4.5. Consider the system

2A1 +A2

k(1,2)Ð→ 3A1

k(4,1) ↑ ↓ k(2,3)

3A2 ←Ð
k(3,4)

A1 + 2A2

where we make the associations C1 = 2A1+A2, C2 = 3A1, C3 = 3A2, and C4 = A1+2A2. In [33],

F. Horn and R. Jackson considered this sytem with the conditions k(1,2) = k(3,4) = 1 and

k(2,3) = k(4,1) = ε for ε > 0. We will do a more general analysis here before reverting to
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these simplifying assumptions.

We can see that the system is weakly reversible, that there are four complexes (n = 4)

and that there is only one linkage class (` = 1). The stoichiometric space S is given by

S = span

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

−2

2

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

−1

1

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

2

−2

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= span

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

so that s =dim(S) = 1. It follows that δ = n − ` − s = 2.

From Theorem 3.4.3, it follows that there are two conditions on the rate constants which

must be satisfied in order for the system to be complex balanced. We have

z1 − z4 =
⎡⎢⎢⎢⎢⎢⎢⎣

2

−2

⎤⎥⎥⎥⎥⎥⎥⎦
, z2 − z4 =

⎡⎢⎢⎢⎢⎢⎢⎣

3

−3

⎤⎥⎥⎥⎥⎥⎥⎦
, z3 − z4 =

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦

and

K1 = k(2,3)k(3,4)k(4,1)

K2 = k(1,2)k(3,4)k(4,1)

K3 = k(1,2)k(2,3)k(4,1)

K4 = k(1,2)k(2,3)k(3,4).

It follows that the linearly independent sets c1 = 1, c2 = 0, c3 = −2, and c1 = 0, c2 = 1, c3 = −3

satisfy (3.60) so that the conditions are

(K1

K4

)(K3

K4

)
−2

= 1 and (K2

K4

)(K3

K4

)
−3

= 1.
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These can be easily simplified to

k(3,4)2 = k(1,2)k(4,1) and k(3,4)3 = k(2,3)k(4,1)2.

We know what happens when these conditions are satisfied since this is when the system

is complex balanced, but we do not know what happens away from this set. To make this

task easier, we use the conditions k(1,2) = k(3,4) = 1 and k(2,3) = k(4,1) = ε for ε > 0.

With these restrictions, the two complex balancing conditions simplify to ε = 1. For all

other values, the system is not complex balanced.

The system is governed by the differential equations

dx1

dt
= x2

1x2 − 2εx3
1 − x1x

2
2 + 2εx3

2

dx2

dt
= −x2

1x2 + 2εx3
1 + x1x

2
2 − 2εx3

2

(3.63)

Following the analysis in [33], the equilibrium condition is x2
1x2 − 2εx3

1 − x1x2
2 + 2εx3

2 =

(x2 − x1)(2εx2
1 + (2ε − 1)x1x2 + 2εx2

2) = 0. The first bracket produces the equilibrium set

x2 = x1, which is valid for all values of ε. The second bracket produces no real-valued

equilibria over the range ε > 1/6, the single degenerate curve x2 = x1 for ε = 1/6, and two

lines of equilibria over the range 0 < ε < 1/6 given by the relation

x2 = ((1 − 2ε) ±
√
−12ε2 − 4ε + 1

4ε
)x1.

We will not perform the full analysis of the dynamics here, but the results are worth

summarizing. We can clearly see that, regardless of the choice of ε > 0, the positive com-

patibility classes intersect any curve of equilibria exactly once. Further analysis shows that,
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while the system is only complex balanced for ε = 1, it exhibits all the locally stable properties

expected of complex balanced systems in the range ε > 1/6. In the range 0 < ε < 1/6, each

compatibility class has three equilibrium concentrations, two of which are stable, and one

of which is unstable. Of particular interest is the fact that the equilibrium concentration

along the curve x2 = x1 bifurcates from asymptotically stable to unstable as we decreased

ε across ε = 1/6 (see Figure 3.3). It is clear that weakly reversible systems which are not

complex balanced can exhibit a wide variety of behaviour!

The limiting case ε → 0 will also be of interest in Section 5 where global stability is

discussed. In this limit, trajectories begin to approach the boundary of R2
>0 rather than

any positive equilibrium concentration. It is worth noting, also, that the system loses the

property of weak reversibility in this limit as well.

Figure 3.3: Phase portrait of the system (3.63) with ε = 1/2 (left) and ε = 1/10 (right).
The line of equilibria x2 = x1 bifurcates as ε decreases through ε = 1/6 from asymptotically
stable to unstable as two new lines of equilibria emerge.
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Chapter 4

Linearization of Complex Balanced

Systems

In this chapter, I apply the theory of linearization of nonlinear differential equations about

equilibrium values to complex balanced systems introduced in Section 3.3. In addition

to demonstrating the local asymptotic stability of complex balanced equilibria (Theo-

rem 3.3.1), the results presented here are sufficient to demonstrate the local exponential

convergence of solutions towards equilibrium concentrations of complex balanced systems

(Theorem 4.3.6). I also complete the analysis presented in Section 2 of [9] to explicitly

show the bounds of the exponential decay guaranteed by the first-order approximation of

the pseudo-Helmholtz function (Lemma 4.3.5). This analysis is conducted similarly in [56].

I then compare the estimates guaranteed by our approach (Theorem 4.3.6) and that of A.

Bamberger and E. Billette (Lemma 4.3.5) through an example.

This will be the only chapter of this thesis which will require the use of complex num-

bers. I will let Rm×n and Cm×n denote the set of m-times-n matrices over the real and
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complex field of numbers, respectively. For z ∈ C, I will let z̄ ∈ C denote the complex

conjugate and, for z ∈ Cn, I will let z̄ ∈ Cn denote the vector of complex conjugates.

The magnitude of a complex number z ∈ C will be denote ∣z∣ =
√

Re(z)2 + Im(z)2. For

A ∈ Cm×n, I will let A� ∈ Cn×m denote the conjugate transpose of A, i.e. the matrix with

entries a�ij = āji.

4.1 Theory of Linearization

When considering properties of a general system of autonomous differential equations of

the form
dx

dt
= f(x), one of the most crucial characteristics of the system is whether f(x)

is linear or nonlinear in the argument x = [x1 x2 . . . xn] ∈ Rn.

In the simplest terms, linear systems are easy to analyze while nonlinear systems are

hard to analyze. With a little understanding of integral calculus and linear algebra, linear

systems are guaranteed to have a well-behaved solution which can be solved for analytically

in terms of matrix exponentials—perhaps the easiest of possible solution forms—while even

some of the simplest nonlinear systems to formulate are known to have no explicit solution,

or to exhibit wildly complex or unpredictable behaviour. This has led to a wide range

of analysis techniques for nonlinear systems, including numerical methods, asymptotic

analysis, and perturbation theory, among others.

One of the most wide-spread approaches to analyzing nonlinear systems is to consider

the linear systems resulting from truncating the Taylor expansion of the nonlinear system

expanded about its equilibrium points. If we consider an equilibrium point x∗ of the

nonlinear system, given a suitable level of differentiability we have by Taylor’s Theorem
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that

f(x) =Df(x∗)(x − x∗) +O(∥x − x∗∥2).

So long as Df(x∗) is non-degenerate (i.e. has no zero eigenvalues), we expect that first

order term to dominate the dynamics near x∗. That is to say, near x∗ we expect the

nonlinear system to “behave like” a linear system. Many global properties about the

nonlinear system can be pieced together by combining these linear pictures.

This approach will be formalized in the rest of this section, although only the results

relevant to the linearization of complex balanced systems will be stated. I present the

results here without proof.

Consider a general nonlinear system

dx

dt
= f(x) (4.1)

where f ∶ Rn ↦ Rn is at least C2. The linear system corresponding to the linearization of

(4.1) about an equilibrium concentration x∗, f(x∗) = 0, is given by

dy

dt
= Ay (4.2)

where A =Df(x∗) and y = x−x∗. We will let Es, Eu, and Ec denote the stable, unstable,

and centre subspaces of (4.2), respectively.

In making the connection from the linear dynamics of (4.2) to the nonlinear dynamics

of (4.1), I use the following result, which has been adapted from The Center Manifold

Theorem on pg. 116 of [46] and Theorem 1.1.3 on page 21 of [65]. I also reference the

Stable Manifold Theorem on pg. 107 of [46].
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Theorem 4.1.1. Let f(x) ∈ Cr, r ≥ 2, and x∗ be an equilibrium of (4.1). Suppose Df(x∗)

has k eigenvalues with negative real part, j eigenvalues with positive real part, and m =

n − k − j eigenvalues with zero real part. Then there exists

1. an m-dimensional centre manifold W c
loc of class Cr tangent at x∗ to the centre sub-

space Ec of (4.2) at 0;

2. a k-dimensional stable manifold W s
loc of class Cr tangent at x∗ to the stable subspace

Es of (4.2) at 0; and

3. a j-dimensional unstable manifold W u
loc of class Cr tangent at x∗ to the unstable

subspace Eu of (4.2) at 0.

W c
loc, W

s
loc, and W u

loc are invariant under the flow φt of (4.1) and W s
loc and W u

loc have

the asymptotic properties of Es and Eu, respectively. That is to say, solutions to (4.1)

with initial conditions in W s
loc (respectively, W u

loc) sufficient close to x∗ approach x∗ at an

exponential rate asymptotically as t→ +∞ (respectively, t→ −∞).

4.2 Linear Algebra

In this section, we outline some basic linear algebra results which will be required in the

rest of this chapter. In Section 4.2.1, we give several results regarding the definiteness

of a matrix. In Section 4.2.2, we develop some important properties of the range and

nullspace of a matrix, in particular how they relate to the eigenspaces corresponding to

various eigenvalues. In Section 4.2.3, we introduce a particular kind of matrix, called a

Laplacian matrix, which is a cornerstone for the analysis conducted in following sections.
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4.2.1 Definite Matrices

In this section, I present several results regarding the definiteness of square matrices A ∈

Cn×n. Since all of the matrices considered in this chapter are real-valued matrices, I will

quickly introduce the general theory of definiteness before simplifying to the real-valued

case.

Central to the study of definiteness is the concept of a Hermitian matrix (for further

details, see [34] and [35]).

Definition 4.2.1. A square complex-valued matrix A ∈ Cn×n is called Hermitian if and

only if A = A�.

Hermitian matrices have the nice property that the quadratic form v�Av yields a real

number for all v ∈ Cn (see [34]). This allows us to define the following concepts for such

matrices.

Definition 4.2.2. A Hermitian matrix A ∈ Cn×n is called negative semidefinite if

v�Av ≤ 0, ∀ v ∈ Cn. (4.3)

Furthermore, the matrix A ∈ Cn×n is called negative definite if

v�Av < 0, ∀ v ∈ Cn,v /= 0. (4.4)

The concepts of negative semidefinite and definite matrices can be easily extended to

positive semidefinite and definite matrices by switching the sign of the respective inequality.
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As all the matrices considered in this chapter are real-valued, we consider symmetric

rather than Hermitian matrices (A ∈ Rn×n such that A = AT ). While the standard definition

of definiteness is restricted to Hermitian matrices, many properties of a general real-valued

matrix A ∈ Rn×n can be derived by considering the symmetric part of A given by Ã =
1
2(A +AT ) ∈ Rn×n.

When restricting attention to real-valued matrices A ∈ Rn×n, it is not necessary to

consider the quadratic form v�Av over v ∈ Cn as is normally required. We give the

following result for negative semidefinite matrices only; however, it can be easily extended

to the other definiteness cases.

Lemma 4.2.1. The symmetric part of a real-valued matrix A ∈ Rn×n is negative semidefi-

nite (i.e. satisfies (4.3)) if and only if

xTAx ≤ 0, ∀ x ∈ Rn. (4.5)

Moreover, equality with zero for v ∈ Cn in (4.3) is satisfied if and only if equality with zero

is satisfied in (4.5) for both x =Re(v) and x =Im(v).

Proof. We let v1 = Re(v) and v2 = Im(v) so that v = v1 + iv2. The quadratic form for the

symmetric part of A can be written

1

2
v�(A +AT )v = 1

2
(v1 − iv2)T (A +AT )(v1 + iv2)

= 1

2
[vT1 (A +AT )v1 + vT2 (A +AT )v2]

+ i
2
[vT1 (A +AT )v2 − vT2 (A +AT )v1]

= vT1 Av1 + vT2 Av2
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where we have used the fact that, for real-valued matrices A ∈ Rn×n and vectors x,y ∈ Rn,

xTAy = yTATx.

It is clear from this, since v1,v2 ∈ Rn, that xTAx ≤ 0 for x ∈ Rn implies v�(A+AT )v ≤ 0

for v ∈ Cn. Moreover, vT1 Av1 = 0 and vT2 Av2 = 0 is sufficient for v�(A+AT )v = 0. We have

proved the “if” statements.

We prove the “only if” conditions by contradiction. Suppose (4.5) is not satisfied, i.e.

there exists a x̃ ∈ Rn such that x̃TAx̃ > 0. Setting v1 = x̃ and v2 = 0 we have v�(A+AT )v > 0

which contradicts (4.3). This completes the equivalence of (4.3) and (4.5). Now suppose

equality with zero is attained for v ∈ Cn in (4.3) but is not attained for the real or imaginary

parts of v in (4.5). By the above expansion of the quadratic form, this can only happen

if vT1 Av1 + vT2 Av2 = 0 which by (4.5) can only happen if vT1 Av1 = vT2 Av2 = 0, and we are

done.

This result allows us to consider the simpler quadratic form xTAx, x ∈ Rn. It should

be noted that, for real-valued matrices A and x ∈ Rn, the quadratic forms for A and that

of the symmetric part Ã coincide.

The definiteness of a matrix is preserved under several operations. The following prop-

erties can be easily extended to each of the notions of definiteness presented in this section;

however, for our purposes it will be sufficient to consider only negative semidefinite matri-

ces.

Theorem 4.2.1. Let A,A1,A2 ∈ Rn×n be symmetric and negative semidefinite, P ∈ Rn×m,

and α > 0. Then the following properties hold:

1. Scalar multiplication: αA is negative semidefinite.
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2. Subadditivity: A1 +A2 is negative semidefinite.

3. Congruence: P TAP is negative semidefinite.

Proof. By Lemma 4.2.1, it is sufficient to consider the quadratic form over x ∈ Rn. We can

jointly prove properties 1 and 2 by considering A1,A2 ∈ Rn×n to be negative semidefinite

matrices and taking α1, α2 > 0. It follows that, for any x ∈ Rn,

xT (α1A1 + α2A2)x = α1x
TA1x + α2x

TA2x ≤ 0.

Property 3 follows from the observation that, for a negative semidefinite matrix A ∈ Rn×n

and any P ∈ Rn×m and x ∈ Rn,

xT (P TAP )x = (Px)TA(Px) = yTAy ≤ 0

where y = Px. This completes the proof.

4.2.2 Eigenspace Decomposition of Rn

In this section, we investigate the properties of the eigenvectors associated with various

eigenvalues, since they determine the behaviour of the stable, unstable, and centre man-

ifolds locally in the linearization of a nonlinear system of differential equations about an

equilibrium. Since we are only interested in solutions to (2.4) lying in Rn, we restrict our

consideration to real-valued eigenspaces.

We need to divide eigenvectors and generalized eigenvectors according to their eigen-

values: λ = 0, λ real and nonzero, and λ complex.
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Definition 4.2.3. Let A ∈ Rn×n and define

Λ0 = {λ ∣ det(A − λI) = 0, λ ∈ R, λ = 0}

Λr = {λ ∣ det(A − λI) = 0, λ ∈ R, λ /= 0}

Λc = {λ ∣ det(A − λI) = 0, λ /∈ R, λ ∈ C} .

We define the generalized zero eigenspace N0, generalized real eigenspace Nr,

and generalized complex eigenspace Nc to be

N0 = span{v ∈ Rn ∣ (A − λI)νv = 0, λ ∈ Λ0} (4.6)

Nr = span{v ∈ Rn ∣ (A − λI)νv = 0, λ ∈ Λr} (4.7)

Nc = span{Re(v), Im(v) ∈ Rn ∣ (A − λI)νv = 0, λ ∈ Λc} (4.8)

where ν is the algebraic multiplicity of a given eigenvalue λ.

The following is a consequence of the real Jordan Canonical Form Theorem and can be

found in [46].

Theorem 4.2.2. For any real-valued matrix A ∈ Rn×n,

Rn = N0 ⊕Nr ⊕Nc

where N0, Nr and Nc are mutually linearly independent sets.

The following is a key result used in the next section.

Lemma 4.2.2. Let A ∈ Rn×n. If the zero eigenvalue is nondeficient, then the generalized

eigenspaces of A given by (4.6)-(4.8) satisfy the following:

109



1. null(A) = N0,

2. range(A) = Nr ⊕Nc.

Proof. Any eigenvector v0 corresponding to λ0 ∈ Λ0 satisfies

Av0 = λ0v0 = 0. (4.9)

This implies v0 ∈ null(A). Conversely, any vector v0 satisfying (4.9) is an eigenvector of

A with a corresponding eigenvalue equal to zero, which implies v0 corresponds to a zero

eigenvalue if and only if it is in null(A). Since the zero eigenvalue is nondeficient, there

are no generalized eigenvectors to consider and the first property is proved.

Any regular eigenvector vr corresponding to λr ∈ Λr satisfies

Avr = λrvr.

This implies that

vr =
1

λr
(Avr) ∈ range(A). (4.10)

Now consider an eigenvector vc corresponding to λc ∈ Λc. There will also be a corre-

sponding eigenvalue λ̄c ∈ Λc with complex conjugate eigenvector v̄c. We want to show that

Re(vc) ∈ range(A) and Im(vc) ∈ range(A).

Consider the vectors

w1 =
1

∣λc∣2
Re(λ̄cvc) and w2 =

1

∣λc∣2
Im(λ̄cvc).
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We can see that w1,w2 ∈ Rn. Furthermore, we have

Aw1 = 1

2∣λc∣2
(λ̄cAvc + λcAv̄c)

= 1

2∣λc∣2
(λ̄cλcvc + λcλ̄cv̄c)

= 1

2
(vc + v̄c) = Re(vc)

Aw2 = 1

2i∣λc∣2
(λ̄cAvc − λcAv̄c)

= 1

2i∣λc∣2
(λ̄cλcvc − λcλ̄cv̄c)

= 1

2i
(vc − v̄c) = Im(vc).

This implies that Re(vc) ∈ range(A) and Im(vc) ∈ range(A). For nondeficient λr and λc,

we are done.

Now consider deficient λr and λc. We can suppose, without loss of generality, that v1

is a regular eigenvector from which a chain of generalized eigenvectors can be constructed.

The first such generalized eigenvector, v2, must satisfy

(A − λI)v2 = v1

where λ ∈ Λr or λ ∈ Λc depending on the case being considered. This implies

v2 =
1

λ
(Av2 − v1) (4.11)

which is defined since λ /= 0.
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For real eigenvalues λr, it readily follows that v2 ∈ range(A) since v1 satisfies v1 ∈

range(A) by (4.10) and Av2 ∈ range(A) by definition. This can be extended inductively

to any generalized real eigenvector in the chain, and we are done.

For complex eigenvalues λc, we need to consider the real and imaginary parts of v2.

We can readily see that (4.11) for complex λc implies

Re(v2) = 1

∣λc∣2
[Re(λc) (ARe(v2) −Re(v1))

+Im(λc) (−AIm(v2) + Im(v1))]

Im(v2) = 1

∣λc∣2
[Im(λc) (ARe(v2) −Re(v1))

+Re(λc) (AIm(v2) − Im(v1))] .

Since ARe(v2), AIm(v2), Re(v1), and Im(v1) are in range(A), it follows by similar reason-

ing to the real case that Re(v2) ∈ range(A) and Im(v2) ∈ range(A). This can be extended

inductively to any generalized complex eigenvector in the chain, and we are done.

We know from the Rank-Nullity Theorem that

dim(range(A)) + dim(null(A)) = dim(A) = n

and from Lemma 4.2.2 that Rn is decomposed into the linearly independent spaces N0, Nr

and Nc. It follows that Nc spans null(A) and Nr⊕Nc spans range(A) which completes the

proof.

We now present a few results demonstrating how the range and nullspace of a matrix

are changed under simple transformations.
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Lemma 4.2.3. Consider A ∈ Rm×n and B ∈ Rn×k. Then

range(AB) ⊆ range(A).

Furthermore, if rank(A) = rank(AB) then

range(AB) = range(A).

Proof. We make use of the fact that the range of a matrix is equal to its column span. We

will let [A]j denote the jth column of A. The jth column of AB is given by

[AB]j = bj1[A]1 + bj2[A]2 +⋯ + bjn[A]n ∈ range(A).

It follows that the span of the columns [AB]j is contained in range(A) which implies

range(AB) ⊆ range(A).

If we also have that rank(A) = rank(AB) then range(AB) and range(A) must span

the same space so range(AB) = range(A).

Lemma 4.2.4. Let A ∈ Rn×n be arbitrary and B ∈ Rn×n be an invertible matrix. Then

1. null(AB) = B−1null(A), and

2. range(AB)=range(A).

Proof. Consider x ∈ null(AB). This implies

ABx = 0. (4.12)
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Since B is invertible, it has only the trivial nullspace, and therefore (4.12) implies that

Bx ∈ null(A). This is equivalent to x ∈ B−1 null(A) since B is invertible, which shows

null(AB) ⊆ B−1 null(A). It is clear that the reverse implication holds, so that null(AB) =

B−1 null(A).

It follows from Lemma 4.2.3 that range(AB) ⊆ range(A), and since

rank(AB) = rank(A) by the invertibility of B, we have range(AB) = range(A). This

completes the proof.

4.2.3 Laplacian Matrices

In this section, I define the Laplacian matrix of a reaction graph. The notion of a Laplacian

matrix is based on that contained in [12].

I have, however, made several modifications from the standard definitions to make

them specific to chemical reaction networks. In particular, I have altered the standard

sign convention by assigning the degree matrix negative values and the adjacency matrix

positive values. It is also worth noting that the indexing for the adjacency matrix is

inverted from the order of the related reactions in the reaction graph. Consequently, the

Laplacian matrix is really the negative transpose of the Laplacian in standard graph theory.

For simplicity of terminology, we will simply refer to this matrix as the Laplacian. Several

important properties of this Laplacian matrix will be proved.

Definition 4.2.4. The degree matrix of a chemical reaction network is the matrix D ∈

Rn×n with entries

Dij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−outdeg(Ci), i = j

0, i /= j
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where outdeg(Ci) is the number of reactions for which Ci is the reactant complex.

Definition 4.2.5. The adjacency matrix of a chemical reaction network is the matrix

A ∈ Rn×n with entries

Aij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if Cj Ð→ Ci ∈ R

0, otherwise.

Definition 4.2.6. The Laplacian matrix of a chemical reaction network is the matrix

L ∈ Rn×n given by

L =D +A.

The following property of Laplacian matrices corresponding to reaction cycles (see

Definition 3.3.1) will be crucially important in Section 4.3.1.

Theorem 4.2.3. The symmetric part of the Laplacian matrix L ∈ Rn×n corresponding to

a reaction cycle is negative semidefinite. Moreover, v�L̃v = 0 if and only if v1 =Re(v) and

v2 =Im(v) satisfy

v1i = v1j and v2i = v2j ∀ i, j ∈ {ν0, ν1, . . . , νl} , (4.13)

where {ν0, ν1, . . . , νl} is the cycle corresponding to the reaction cycle.

Proof. Consider the cycle {ν0, . . . , νl} and let L ∈ Rn×n denote the Laplacian matrix corre-

sponding to the reaction cycle. Since Laplacian matrices are real-valued, by Lemma 4.2.1

it is sufficient to consider the properties of the real quadratic form xTLx, x ∈ Rn. We have

xTLx =
l

∑
j=1

(xνjxνj−1 − x2
νj
)

= −1

2

l

∑
j=1

(xνj − xνj−1)
2 ≤ 0

(4.14)
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where ν0 = νl. Clearly this is negative semidefinite and equality with zero can be satisfied

if and only if xν1 = xν2 = ⋯ = xνl , i.e. if the elements of x corresponding to indices of a

complexes in the associated cycle are identical.

By Lemma 4.2.1 it follows from (4.14) that L̃ is negative semidefinite and that equality

with zero is attained if and only if the real and imaginary parts of v satisfy (4.13). This

completes the proof.

Laplacian matrices corresponding to reaction cycles also share a connection with per-

mutation matrices (see [34]). Given a permutation matrix P ∈ Rn×n, the matrix L = P − I,

where I is the n-dimensional identity matrix, is a Laplacian matrix corresponding to a

reaction cycle (or possibly multiple disjoint reaction cycles). In [40] the authors show

that complex balanced systems can be decomposed in terms of permutation matrices using

Birkhoff’s Theorem (see pg. 527 of [34]). The decomposition contained in [40] is analogous

with that contained in Section 4.3.1 of this thesis, keeping in mind the relationship between

Laplacian and permutations matrices.

4.3 Dynamics of Complex Balanced Systems

In this section, I show that the asymptotic stability of complex balanced equilibrium points

guaranteed by F. Horn and R. Jackson in [33] through the Lyapunov function (3.1) can

also be demonstrated in the setting of linearization about equilibrium concentrations. More

specifically, I show that the local stable manifold about a complex balanced concentration

x∗ lies in the compatibility class Cx0 and that the local centre manifold about x∗ lies

tangent to the equilibrium set (3.16).
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In addition to guaranteeing asymptotic stability, the approach of linearization provides

information about the local rate of convergence of solutions to complex balanced equi-

librium concentrations; namely, that the convergence must be at least exponential near

x∗. This should be contrasted with the results obtained in [9], specifically Theorem 3,

Lemma 3.6, and the example contained in Section 4 of the same paper. The authors sug-

gest through their example that the convergence is at least exponential, which confirms

Theorem 3. In this Section 4.3.4, I provide confirmation that this is the case in general.

4.3.1 Linearization of Complex Balanced Systems

In this section, I will show how complex balanced systems (see Definition 3.1.3) can be

decomposed as the product of matrices of the type considered in Section 4.2.3 and what

the linearized form of this set of differential equations looks like.

In order to accomplish this, however, we will need to formulate the differential equations

governing the mass-action system (2.3) and (2.4) in a different (but equivalent) form. We

will first need to define the stoichiometric and kinetics (or Kirchoff ) matrices, and mass-

action vector for a chemical reaction network.

Definition 4.3.1. The stoichiometric matrix Y ∈ Zm×n is the matrix with entries

[Y ]ij = zji, i = 1, . . . ,m, j = 1, . . . , n. (4.15)

Definition 4.3.2. The kinetics (or Kirchoff) matrix Ak ∈ Rn×n is the matrix with entries

[Ak]ij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∑m
l=1,l/=i k(i, l), if i = j

k(j, i), if i /= j.
(4.16)
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Definition 4.3.3. The mass-action vector Ψ(x) ∈ Rn
≥0 is the vector with entries

Ψj(x) =
m

∏
i=1

x
[Y ]ij

i , j = 1, . . . , n. (4.17)

Assuming mass-action kinetics, the dynamics of the specie concentrations over time is

governed by the set of differential equations

dx

dt
= Y Ak Ψ(x). (4.18)

This formulation is equivalent to (2.3) and (2.4) and has the advantage of being amenable to

linear algebra analysis. It also clearly demonstrates the structure of the chemical reaction

network since the off-diagonal elements of Ak ([Ak]ij, i /= j) correspond to the reaction

weightings. This form of mass-action kinetics will also be used extensively in Chapter 6.

In Section 3.3.2, I showed how the rate constants for a complex balanced system could

be solved for in terms the complex balanced equilibrium value x∗ ∈ Rm
>0 and a positive

constant κi > 0 specific to each cycle in the cyclic decomposition of the network (Lemma

4.2.3). This result implies the following according to the dynamics (4.18).

Theorem 4.3.1. Consider a mass action system with kinetics matrix Ak that is complex

balanced at a point x∗ ∈ Rm
>0. Then there exists a δ ∈ Z>0 and κ1, . . . , κδ > 0 such that

Ak = (κ1L1 +⋯κδLδ)diag{Ψ(x∗)}−1
(4.19)

where Li, i = 1, . . . , δ, are Laplacian matrices corresponding to reaction cycles and Ψ(x∗)

is as defined in Definition 4.3.3.
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Proof. The result follows immediately from the arguments of Lemma 3.3.3 applied to the

kinetics matrix Ak according to Definition 4.3.2.

It remains to linearize f(x) about the complex balanced equilibrium concentration

x∗ ∈ Rm
>0. Since Y and Ak do not depend on x and (2.4) is linear, we have that

Df(x∗) = Y Ak DΨ(x∗) (4.20)

where Df(x∗) denotes the Jacobian of f(x) evaluated at the complex balanced equilibrium

concentrations x∗ (see [46]). The following result simplifies DΨ(x∗).

Lemma 4.3.1. The linearization of the mass-action vector about the equilibrium x∗ ∈ Rm
>0

satisfies

DΨ(x∗) = diag{Ψ(x∗)} Y T X (4.21)

where Ψ(x) is according to Definition 4.3.3, Y is according to Definition 4.3.1, and X =diag{[ 1
x∗i

]}.

Proof. We will first derive DΨ(x) then evaluate at the complex balanced equilibrium x∗.

We can see that

DΨ(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11(xz11−1
1 ⋯xz1mm ) ⋯ z1m(xz111 ⋯xz1m−1

m )

⋮ ⋱ ⋮

zn1(xzn1−1
1 ⋯xznmm ) ⋯ znm(xzn11 ⋯xznm−1

m )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xz1 0 ⋯ 0

0 xz2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ xzn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11 z12 ⋯ z1m

z21 z22 ⋯ z2m

⋮ ⋮ ⋱ ⋮

zn1 zn2 ⋯ znm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

x1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1

xm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Evaluating this at the equilibrium x∗ gives

DΨ(x∗) = diag{Ψ(x∗)} Y T X

where the terms are according to the statement of the Lemma, and we are done.

Combining (4.20) and (4.21) gives the general form

Df(x∗) = Y Ak diag{Ψ(x∗)} Y T X. (4.22)

It is worth noting that (4.22) holds for all mass-action systems and is not dependent on

the assumption of equilibrium concentrations being complex balanced.

So far in this section we have linearized Ψ(x) and used the assumption of complex

balancing to reduce the kinetics matrix Ak to eliminate the rate constants k(i, j). We can

now combine (4.22) and (4.19). We make the notational substitution

L∗ = κ1L1 +⋯ + κδLδ. (4.23)

The final linearized form of (2.4) is

Df(x∗) = Y L∗ Y T X. (4.24)
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4.3.2 Dynamics of Linearized System

In this section, we consider the properties of the linear system of the form (4.2) based on

the linearized form (4.24) derived in Section 4.3.1. This is given by

dy

dt
= Y L∗ Y T X y (4.25)

where Y ∈ Rm×n is as in Definition 4.3.1, L∗ is given by (4.23), and X =diag{[ 1
x∗i

]}.

It will be convenient in this section to partition the complexes according to their linkage

classes. We will let n1, . . . , n` denote the number of complexes contained in each linkage

class so that n1 + ⋯ + n` = n. We also note that, since cycles necessarily do not cross

linkage classes, we can associate to each Laplacian matrix Lj, j = 1, . . . , δ, in (4.23) a

specific linkage class Li, i = 1, . . . , `. We will let δ1, . . . , δ` denote the number of cycles

corresponding to each linkage class such that δ1 +⋯ + δ` = δ. We will let

Di = {j ∈ {1, . . . , δ} ∣ cycle corresponding to Lj

is contained in Li}
(4.26)

and note that ∣Di∣ = δi. We will also need to restrict L∗ to specific linkage classes, which

we will denote by

L(i) = ∑
j∈Di

κjLj (4.27)

from which it follows that L∗ = ∑`
i=1L

(i).

The analysis in this section follows from standard linear systems theory. We determine

the dimension and orientation of the stable, unstable, and centre subspaces Es, Eu, and Ec

through determination of the number of eigenvalues with positive, negative, and zero real
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part (counting algebraic multiplicity) and the properties of the generalized eigenvectors to

which these eigenvalues correspond. The results in this section rely heavily on the results

of Section 4.2.

Before we can proceed, however, we need the following preliminary results.

Lemma 4.3.2. The matrix L∗ given in (4.23) has the property that

null(L∗) = span{1(1), . . . ,1(`)} (4.28)

where 1(i) ∈ Rn is defined by

1
(i)
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if j ∈ Li

0, otherwise.
(4.29)

Proof. Since the linkage classes are decoupled and the rows of L1, . . . , Lδ in (4.23) sum to

zero, we can see that any vector of the form (4.29) satisfies (4.28). It remains to show that

we have captured all elements of null(L∗).

Suppose x ∈ null(L∗). This means that x satisfies

L∗x = 0

which implies

xTL∗x = 0.

This can be expanded to

κ1x
TL1x +⋯ + κδxTLδx = 0. (4.30)

Since xTLix ≤ 0 and κi > 0 for all i = 1, . . . , δ by Theorem 4.2.3, (4.30) implies xTLix = 0
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for i = 1, . . . , δ. Again by Theorem 4.2.3 we know that this can happen if and only if, for

the cycle {ν0, . . . , νli} associated with Li, we have xν1 = ⋅ ⋅ ⋅ = xνli , for i = 1, . . . , δ.

We now consider the restriction of (4.30) to linkage classes

xTL(j)x = 0, j = 1, . . . , ` (4.31)

where L(j) is as in (4.27). For whichever cycles compose this linkage class, for (4.31) to

be satisfied it is a necessary condition that all of the components of x corresponding to

elements in the cycles be identical. Since the indices of a cycle in a linkage class must

overlap the indices of at least one other cycle in the same linkage class, if there is one, we

must have that

xα = xβ for all α,β ∈ Lj.

We can apply this argument to each linkage class. Since the linkage classes are disjoint,

this is as far as we can go. We have shown that in order for

xTL∗x = 0

to be satisfied, we must have all components of x corresponding to indices within common

linkage classes be the same. This corresponds to the span of the 1(i) vectors given in (4.29),

and we are done.

We now move on to consideration of the eigenvalues of the linearization matrix Df(x∗)

given by (4.24). The following is a pivotal result in the study of the linearized complex

balanced system (4.25).
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Theorem 4.3.2. The eigenvalues of the linearization matrix Df(x∗) given by (4.24) have

nonpositive real part. Moreover, there do not exist any strictly complex eigenvalues of

Df(x∗).

Proof. Consider λ ∈ σ(Y L∗ Y T X). This implies that there exists a v ∈ Cm such that

Y L∗ Y T X v = λv.

It follows that

v� X Y L∗ Y T X v = λv�Xv. (4.32)

We can equate the real and imaginary parts of the left- and right-hand sides of (4.32),

noting that v�Xv is real-valued since X is symmetric, to get

Re(λ) = v� X Y L̃∗ Y T X v

v�Xv
(4.33)

and

Im(λ) = v� X Y L̄∗ Y T X v

v�Xv
(4.34)

where L̃∗ is the symmetric part of L and L̄∗ is the skew-symmetric part of L given by

L̄∗ = 1
2 (L∗ − (L∗)T ).

Since X is positive definite and v /= 0, we have v�Xv > 0. The numerator of (4.33) can

be written

v�(Y T X)T (κ1L̃1 +⋯ + κδL̃δ)(Y T X)v.

We know by Theorem 4.2.3 that the L̃i are negative semidefinite for i = 1, . . . , δ. It follows

immediately from the three properties of Theorem 4.2.1 that X Y L̃∗ Y T X is negative
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semidefinite. Since λ ∈ σ(Y L̃∗ Y T X) was chosen arbitrarily, this implies that

Re(λ) = v�X Y L̃∗ Y T Xv

v�Xv
≤ 0

for all eigenvalues of Df(x∗).

To show Df(x∗) does not have any strictly complex eigenvalues we prove that Re(λ) = 0

implies Im(λ) = 0. Consider λ ∈ σ(Y L∗ Y T X) such that Re(λ) = 0. This can happen if

and only if the numerator of (4.33) equals zero. Since X Y L̃∗ Y T X is real and symmetric,

by Lemma 4.2.1 this implies

vTi X Y L∗ Y T X vi = 0, i = 1,2,

where v1 = Re(v) and v2 = Im(v). This can be rewritten

(Y T X vi)TL∗(Y T X vi) = 0, i = 1,2,

and it follows from the proof of Lemma 4.3.2 that Y T X vi ∈ null(L∗). This implies that

vi ∈ null(X Y L∗ Y T X), i = 1,2.

Now consider Im(λ) given by (4.34). We can expand the numerator to give

v� X Y L̄∗ Y T X v = [vT1 X Y L∗ Y T X v2 − vT2 X Y L∗ Y T X v1] i.

Since vi ∈ null(X Y L∗ Y T X), i = 1,2, it follows immediately that Im(λ) = 0 and we are

done.

Since the eigenvalues of (4.24) have nonpositive real part, it follows that the unstable
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manifold Eu, is empty. The remainder of the state space is divided between the stable and

centre manifolds Es and Ec, which is consistent with our expectation, based on the [33],

that solutions approach complex balanced equilibrium concentrations x∗ asymptotically

relative to their compatibility classes Cx0 . In the rest of this section, we give more precise

results on the dimension and orientation of these invariant subspaces.

We are now prepared to take a first step towards understanding the relationship between

S and S⊥, and Es and Ec. The following result relates S and S⊥ to the range and nullspace

of Y L∗ Y T .

Theorem 4.3.3. The matrix Y L∗ Y T ∈ Rm×m satisfies

null(Y L∗ Y T ) = S⊥ (4.35)

and

range(Y L∗ Y T ) = S. (4.36)

Proof. We start by proving null(Y L∗ Y T ) = S⊥. Take v ∈ null(Y L∗ Y T ). This implies

that

Y L∗ Y T v = 0 (4.37)

which implies

vT Y L∗ Y T v = xT L∗ x = 0 (4.38)

where x = Y Tv. It follows from the argument presented in the proof of Lemma 4.3.2 that

this can happen if and only if Y Tv ∈ null(L∗) where null(L∗) = span {1(1), . . . ,1(`)} and

1(i) has the form given in (4.29). Now consider an arbitrary linkage class {µ1, . . . , µni} = Li,
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i = 1, . . . , `. By Definition 4.3.1 and (4.28), Y Tv ∈ null(L∗) implies that

zTµjv = si, j = 1, . . . , ni (4.39)

where si is a constant depending on the linkage class. With minor rearrangement, we can

change this into (ni − 1) equations of the form

(zµj − zµ1)Tv = 0, j = 2, . . . , ni. (4.40)

The vectors (zµj − zµ1) span the stoichiometric space S restricted to the ith linkage class.

This derivation holds for every linkage class i = 1, . . . , ` from which it follows that v lies or-

thogonal to a set spanning S. It follows that v ∈ S⊥. Conversely, if we take v ∈ S⊥ it follows

that (4.40) and (4.39) hold and therefore that Y Tv ∈ {1(1), . . . ,1(`)} = null(L∗). It immedi-

ately follows that v ∈ null(Y L∗ Y T ) which completes the proof that null(Y L∗ Y T ) = S⊥.

We now prove range(Y L∗ Y T ) = S. We start by considering range(Y L∗). Since the

range of a matrix is equivalent to the column span, we consider the form of the columns

of Y L∗, and denote by [Y L∗]i the ith column. We have

[Y L∗]i = ∑
(i,j)∈R

κ(i, j)(zj − zi)

where κ(i, j) is the flow rate constant of whichever cycle the reaction pair (i, j) is contained

in. In other words, [Y L∗]i is given by a linear combination of all of the reaction vectors

involving Ci as a reactant. It follows that [Y L∗]i ∈ S for all i = 1, . . . , n. Consequently

range(Y L∗) ⊆ S.
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Taking A = Y L∗ and B = Y T , it follows from Lemma 4.2.3 that

range(Y L∗ Y T ) ⊆ range(Y L∗) ⊆ S. (4.41)

From the Rank-Nullity Theorem, we know that

dim(range(A)) + dim(null(A)) = dim(A).

Taking A = Y L∗ Y T we have dim(A)=m and from (4.35) that

dim(null(A))=m − s. This implies dim(range(A))=s. It follows from Lemma 4.2.3 and

(4.41) that the columns of Y L∗ Y T must span S, so that

range(Y L∗ Y T ) = S

and we are done.

The following relates S and S⊥ to the range and nullspace of the Jacobian Df(x∗) given

by (4.24).

Lemma 4.3.3. The linearized matrix Df(x∗) = Y L∗ Y T X satisfies

range(Df(x∗)) = S (4.42)

and

null(Df(x∗)) =X−1S⊥ (4.43)

Proof. This result follows immediately from Lemma 4.2.4 and Theorem 4.3.3 taking A =
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Y L∗ Y T and B =X.

Lemma 4.3.4. The linearized matrix Df(x∗) = Y L∗ Y T X does not have a degenerate

zero eigenvalue.

Proof. Suppose A has a degenerate zero eigenvalue. This implies that there is a standard

eigenvector v1 satisfying

Av1 = 0 ⋅ v1 = 0

and a generalized eigenvector v2 satisfying

Av2 /= 0 and A2v2 = 0.

We know that w = Av2 ∈ range(A) = S from Theorem 4.3.3 and that Aw = 0 if and

only if w ∈ null(A) =X−1S⊥ from Theorem 4.3.3. We therefore have w ∈ S and w ∈X−1S⊥.

This implies that wTXw = 0 which can happen if and only if w = 0 since X is positive

definite. This contradicts w = Av2 /= 0 and it follows that Y L∗ Y T X cannot have a

degenerate zero eigenvalue.

We finally state the main result of this section. This result shows where the stable,

unstable, and centre subspaces of (4.25) lie.

Theorem 4.3.4. For the linearized complex balanced system (4.25) we have

1. Eu = {0}; and

2. Es = S; and

3. Ec =X−1S⊥.
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Proof. We know from Lemma 4.3.3 that range(Df(x∗)) = S and null(Df(x∗)) = X−1S⊥,

and from Lemma 4.3.4 that A does not have a degenerate zero eigenvalue. It follows by

Lemma 4.2.2 that

1. N0 =X−1S⊥; and

2. Nr ⊕Nc = S.

It remains to relate Es, Eu, and Ec to N0, Nr, and Nc. From Theorem 4.3.2 we know

that σ(Df(x∗)) does not contain any eigenvalues with positive real part. This immediately

implies that Eu = {0}.

We also know from Theorem 4.3.2 that σ(Df(x∗)) does not contain any strictly complex

eigenvalues. By definition, this implies that N0 = Ec which implies Ec = X−1S⊥. We can

also easily see that this implies the elements of Nr ⊕Nc have strictly negative real part,

which implies Es = Nr ⊕Nc = S, and we are done.

This result implies that solutions of the linear system starting in S tend exponentially

toward the origin. It is worth noting that the centre subspace Ec depends on the chosen

equilibrium concentration x∗ since X does. This will be explored more in the next section.

4.3.3 Extension to Nonlinear Dynamics

We are finally prepared to say something about the dynamics of the nonlinear system (2.4)

under the assumption of complex balancing.

Theorem 4.3.5. A complex balanced mass-action system according to Definition 3.1.3

satisfies the following properties about any positive equilibrium concentration x∗:
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1. the local stable manifold W s
loc coincides locally with Cx0; and

2. the local centre manifold W c
loc coincides locally with the tangent plane to the equilib-

rium set (3.16) at x∗.

Proof. We know from Lemma 3.2.1 that all equilibrium concentrations of a complex bal-

anced system are complex balanced equilibrium concentrations. We can therefore apply

our results to all equilibrium concentrations x∗ ∈ E where E is given by (3.16) by Lemma

3.2.2.

Theorem 4.1.1 and Theorem 4.3.4 imply that about any complex balanced concentration

x∗ of the nonlinear system (2.4) there exists

1. an s-dimensional stable manifold W s
loc of class C∞ which lies tangent to S; and

2. an (m−s)-dimensional centre manifold W c
loc of class C∞ which lies tangent to X−1S⊥;

and

3. a zero-dimensional unstable manifold W u
loc (i.e. W u

loc = {0}).

The third point implies that there is no unstable manifold locally about x∗. This is

what we expect from the results of F. Horn and R. Jackson [33].

The first point says that W s
loc about x∗ is locally tangent to S; however, by Proposition

2.4.1 we know the solution space Rm
>0 is partitioned into compatibility classes Cx0 , which are

affine spaces parallel to S. Since solutions may not leave Cx0 and the dimensions match,

the local stable manifold W s
loc about x∗ must coincide with Cx0 wherever it exists. We

therefore have that W s
loc about x∗ coincides with Cx0 .
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To analyse the second point, we return to consideration of the equilibrium set (3.16)

derived in [33]. We consider an arbitrary basis of S⊥, {s1, . . . , sm−s}. We can determine the

orientation of the tangent plane about an equilibrium concentration x∗ by parametrizing

the equilibrium set (3.16) as

(lnx(τ) − lnx∗) = τsi, τ ∈ R, i = 1, . . . ,m − s (4.44)

and taking the limit as τ → 0. Since the set E given by (3.16) is smooth, this will give a

basis for the tangent plane centered at x∗.

Considering the components independently, (4.44) can be rewritten as lnxj(τ)− lnx∗j =

τsij, j = 1, . . . ,m − s, i = 1, . . . ,m, where the sij’s are the components of si. This is

equivalent to xj(τ) = x∗j eτsij . We take the derivative with respect to τ and set τ = 0 to get

x′j(0) = x∗j sij. We can see that X−1sj, j = 1, . . . ,m − s forms a linearly independent basis

for the tangent space X−1S⊥. This shows the local centre manifold W c
loc coincides locally

to the tangent plane of the equilibrium set (3.16) at x∗, and we are done.

4.3.4 Optimal Exponential Bound

The following result represents the amalgamation of the linearization approach taken here

and the approach taken by F. Horn and R. Jackson in [33], and is the main result of this

chapter. Of particular importance, this theorem represents a tightening of the convergence

of complex balanced systems over the results discussed in [33] and [9].

Theorem 4.3.6. If a mass-action system is complex balanced, then there exists within

each positive compatibility class Cx0 a unique positive equilibrium point x∗ which is locally
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exponentially stable. More specifically, for any M > 0 satisfying

max{Re(λi) ∣ Re(λi) < 0} < −M < 0 (4.45)

where λi are the eigenvalues of Df(x∗), there exists a k ≥ 1 and an ε > 0 such that

∀ x0 ∈ Cx0 ∩Bε(x∗),

∥x(t) − x∗∥ ≤ ke−Mt∥x0 − x∗∥, ∀ t ≥ 0. (4.46)

Proof. Consider a complex balanced system according to Definition 3.1.3. The uniqueness

and stability of a positive equilibrium x∗ relative to each compatibility class Cx0 follows

from Theorem 3.3.1.

The exponential stability of a complex balanced equilibrium x∗ relative to Cx0 follows

from the linearization. We know from Theorem 4.3.5 that W s coincides with Cx0 locally

about x∗. Since exponential stability is guaranteed within a neighbourhood relative to W s

by Theorem 4.1.1, we have that x∗ is locally exponentially stable relative to Cx0 .

To obtain the estimate (4.53) for M we follow the proof of the Stable Manifold Theorem

and its Corollary on pages 107-115 of [46]. We note that while this result deals with systems

which can be decomposed about an equilibrium x∗ into stable and unstable subspaces, our

system is decomposed into stable and centre subspaces. We will show that the same method

can be applied.

Consider the system (4.18) written as

dx

dt
= A(x − x∗) +F(x) (4.47)

where A = Df(x∗) and F(x) is the nonlinear component of f(x). The system can be
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transformed into

dy

dt
= B(y − y∗) + P −1F(Py) (4.48)

through the transformation P −1x = y where P is the matrix with the real generalized

eigenvectors of A along the columns and B is the real Jordan block matrix guaranteed

under the real Jordan Canonical Form Theorem to satisfy A = PBP −1.

We order the eigenvectors composing P so that the first s × s block of B is the Jordan

canonical block corresponds to eigenvalues with negative real part. The rest of the eigen-

vectors correspond to the zero eigenvalue, which is nondeficient by Lemma 4.3.4. This

implies that the lower block of B is identically 0. We can partition the transformed system

into local stable and centre components so that we have

⎡⎢⎢⎢⎢⎢⎢⎣

ẏs

ẏc

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

Qs 0sc

0cs 0c

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

ys

yc

⎤⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎣

[P −1F(Py)]s
[P −1F(Py)]c

⎤⎥⎥⎥⎥⎥⎥⎦
(4.49)

where Qs is the real Jordan block of corresponding to eigenvalues with negative real part.

We can further reduce [P −1F(Py)]c. Since f(x) ∈ S and range(A) = S by Lemma 4.3.3,

we have that F(x) = f(x) −A(x − x∗) ∈ S. We know that P −1P = I. The lower (m − s) × s

block of I, which is identically zero, results from the multiplication of the final m− s rows

of P −1 and the first s columns of s. Since the first s columns of P span S by construction,

this implies that the rows of P −1 corresponding to the centre manifold map elements in S

to 0. This implies [P −1F(Py)]c = 0(m−s).

It follows from (4.49) that ẏc = 0(m−s) which implies yc(t) ≡ c, where c ∈ R(m−s) is a

constant vector determined by the final m − s components of the initial condition vector

y0 = P −1x0. These constants can be substituted into the equations for ys to give the
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reduced system

ẏs = Qsys + [P −1F(Py)]s (4.50)

where the final (m − s) components of y are constant.

We have reduced our original m-dimensional system to an s-dimensional system where

the entire space is a local stable manifold. We can apply the Corollary of the Stable

Manifold Theorem in [46] to ensure that for M > 0 satisfying

max{Re(λi) ∣ Re(λi) < 0} < −M < 0

there exists a k > 1 and an ε > 0 such that the estimate

∥x(t) − x∗∥ ≤ ke−Mt∥x0 − x∗∥

holds for x0 ∈ Bε(y∗) ∩ Cx0 , where the evolution of y(t) has been transformed back to the

original variables via the mapping x(t) = Py(t). This completes the proof of Theorem

4.3.6.

It should be noted that, while the transformation x(t) = Py(t) is similar to the transfor-

mation c(t) = c∗ +Tξ(t) used to reduce the system in [33], there are important differences.

The first s columns of the matrix T are permitted to be any orthonormal basis of S while

the remaining m − s columns are any orthonormal basis of S⊥. By contrast, the first s

columns of the matrix P , which are a basis for S, are neither required to be normalized

nor orthogonal to one another. The final m − s columns of P are a basis for X−1S⊥ rather

than S⊥. In both cases, however, the transformation reduces the dimension of the original

m-dimensional system to an s-dimensional one.
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This analysis also shares significant similarities with that carried out by A. Bamberger

and E. Billette in [8]. These authors consider the first-order approximation of the Lyapunov

function (3.1) considered by F. Horn and R. Jackson [33], which after adjusting notations

is given by

H(x) = (x − x∗)TX(x − x∗). (4.51)

They show that the time derivative of H(x(t)) for a complex balanced system is

d

dt
H(x(t)) = −

r

∑
i=1

kix
zi ((z′i − zi)TX(x − x∗))2 +O(x − x∗)3 (4.52)

which to second-order is negative semidefinite and equal to zero if and only if (x − x∗) ∈

X−1S⊥, which lies tangent to the equilibrium set (3.16) by Theorem 4.3.5. They then show

through a convexity argument that this implies the existence of a λ > 0 such that

0 ≤H(x(t)) ≤H(x(0))e−λt

for x0 such that x0 − x∗ ∈ S.

It is not hard to show that this can be rearranged into a form satisfying (4.46) which

is sufficient to prove the local exponential stability of x∗ relative to Cx0 . This does not,

however, give bounds on the decay parameter λ nor make any attempt to ascertain the

existence of a linearly stable manifold apart from the restriction of solutions guaranteed

by Proposition 2.4.1. At best, the approach taken here gives very general qualitative local

behaviour about the equilibrium concentration x∗.

Using the linear form (4.24), however, we can carry out the argument in fuller detail

to obtain the following.
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Lemma 4.3.5. Let x∗ be a complex balanced equilibrium concentration of a complex bal-

anced mass-action system. For any M > 0 satisfying

α < −M < 0 (4.53)

there exists an ε > 0 such that ∀ x0 ∈ Cx0 ∩Bε(x∗),

∥x(t) − x∗∥ ≤ ke−Mt∥x0 − x∗∥, ∀ t ≥ 0 (4.54)

where α = λmax(P )min{x∗i }, k =
√

max{x∗i }

min{x∗i }
, P = X Y L∗ Y T X, and λmax(P ) is the

smallest negative eigenvalue of P .

Proof. We use the function H(x) defined in (4.51). We can take the time derivative of

H(x(t)) along solutions, using the linearized form

f(x) = Y L∗ Y T X (x − x∗) +O(x − x∗)2,

to obtain

d

dt
H(x(t)) = 2(x − x∗)T X Y L̃∗ Y T X (x − x∗) +O(x − x∗)3. (4.55)

Note that we can use the symmetric form of L∗ since the quadratic form is the same for

real-valued vectors and matrices. We will substitute P =X Y L̃∗ Y T X.

We know that the quadratic form equals zero if and only if x − x∗ ∈ X−1S⊥; otherwise,

it is negative. If we take x − x∗ ∈ S and ∥x − x∗∥ sufficiently small, we can take the bound

d

dt
H(x(t)) ≤ (2λmax(P ) + δ)∥x − x∗∥2 (4.56)
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where λmax(P ) is the smallest negative eigenvalues of P and δ is the bound on the higher

order terms. Clearly we can take ∥x − x∗∥ small enough so that 2λmax(P ) + δ < 0.

We can also bound H(x) in the following way

1

max{x∗i }
∥x − x∗∥2 ≤H(x) ≤ 1

min{x∗i }
∥x − x∗∥2. (4.57)

Together, (4.56) and (4.57) imply that

d

dt
H(x(t)) ≤ (2λmax(P ) + δ)min{x∗i }H(x(t)).

Since H(x(t)) ≥ 0, we can integrate and apply (4.57) to obtain

∥x(t) − x∗∥ ≤
¿
ÁÁÀmax{x∗i }

min{x∗i }
e(λmax(P )+ 1

2
δ)min{x∗i }t∥x0 − x∗∥, ∀ t ≥ 0.

We can make δ arbitrarily small by taking ∥x − x∗∥ small, from which the estimate for M

follows, and we are done.

Example 4.3.1. Re-consider the network

2A1 +A2

k(1,2)Ð→ 3A1

k(4,1) ↑ ↓ k(2,3)

3A2 ←Ð
k(3,4)

A1 + 2A2

(4.58)

considered previously in Example 3.4.5. This network was first considered by F. Horn and

R. Jackson under the restriction that k(1,2) = k(3,4) = 1 and k(2,3) = k(4,1) = ε, in

which case the system is complex balanced if and only if ε = 1 [33]. Under less restrictive

138



conditions it can be shown that the general system (4.58) is complex balanced if and only if

k(1,2)2 = k(2,3)k(3,4)

and

k(1,2)k(3,4) = k(2,3)k(4,1).

This is clearly the case for k(1,2) = k(2,3) = k(3,4) = k(4,1) = 1; however, for the sake of

this example we will take k(1,2) = 1/2, k(2,3) = 1, k(3,4) = 1/4, k(4,1) = 1/8.

With these rate constants, system (4.58) is governed by the dynamics

ẋ1 = −ẋ2 = (x2 − 2x1) (
1

4
x2

2 +
1

4
x1x2 + x2

1) (4.59)

which has a line of positive equilibria along x2 = 2x1 (and these are the only real roots of

(4.59)). The stoichiometric subspace is given by span{[−1 1]T}. We could pick equilibrium

along x2 = 2x1 but for illustrative purposes we choose x∗1 = 1/2, x∗2 = 1. With this choice

of equilibria we can calculate the flow rate κ = 1/8; since system (4.58) consists of a single

cycle, this flow rate applies to every reaction. Using the linearized form (4.24)

Df(x∗) = Y L∗ Y T X

with

Y =
⎡⎢⎢⎢⎢⎢⎢⎣

2 3 1 0

1 0 2 3

⎤⎥⎥⎥⎥⎥⎥⎦
L∗ = κ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X =
⎡⎢⎢⎢⎢⎢⎢⎣

1
x∗1

0

0 1
x∗2

⎤⎥⎥⎥⎥⎥⎥⎦
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where κ = 1/8, x∗1 = 1/2, and x∗2 = 1. We can easily compute that

Df(x∗) =
⎡⎢⎢⎢⎢⎢⎢⎣

−5
4

5
8

5
4 −5

8

⎤⎥⎥⎥⎥⎥⎥⎦
. (4.60)

This can also be obtained by directly linearizing (4.59).

The linearized matrix (4.60) has the eigenvalue/eigenvector pairs λ1 = −15/8, v1 =

[−1 1]T , and λ2 = 0, v2 = [1 2]T . The first pair correspond to linear decay about x∗

in the direction of S, while the second pair correspond a local centre manifold where the

equilibrium set x2 = 2x1 cuts through the compatibility class Cx0 are x∗.

To test Theorem 4.3.6, we consider system (4.58) and look to satisfy (4.46) with the

values M = 1.85 and k = 1.25. The results are contained in Figure 4.1(a). For an initial

condition chosen sufficiently close to x∗, we can see that the correspondence between the

convergence of x(t) to x∗ and the upper bound given by (4.46) is nearly exact.

To test Lemma 4.3.5, I derive

P =X Y L∗ Y T X =
⎡⎢⎢⎢⎢⎢⎢⎣

−5
2

5
4

5
4 −5

8

⎤⎥⎥⎥⎥⎥⎥⎦
.

It follows that λmax(P ) = −25
8 , max{x∗i } = 1 and min{x∗i } = 1

2 . It follows from (4.54) that

k =
√

2 and α = −25
16 . The results are contained in Figure 4.1(b). Again, we can see that the

exponential convergence holds; however, it is clear that the estimates guaranteed by Lemma

4.3.5 are not as strong as those given by the linearization approach of Theorem 4.3.6. For

many examples, the estimates guaranteed by Lemma 4.3.5 are orders of magnitude apart

from the optimal values.
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In Figure 4.1(c), I plot ln(∥x(t) − x∗∥). Since (4.46) implies

ln(∥x(t) − x∗∥) ≤ −Mt + ln(k∥x0 − x∗∥) (4.61)

the slope of ln(∥x(t) − x∗∥) as t → ∞ gives a good approximation of the optimal value of

−M .

(a) (b) (c)

||x(t)-x*|| ||x(t)-x*||

ke-Mt||x0-x*|| ke-Mt||x0-x*||

Figure 4.1: System (4.58) with k1 = 1/2, k2 = 1, k3 = 1/4, k4 = 1/8, x∗1 = 1/2, x∗2 = 1, x1(0) =
0.25, and x2(0) = 1.25. In (a) and (b), we can see that the solution x(t) = (x1(t), x2(t))
converges toward x∗ = (1/2,1) at an exponential rate satisfying ∥x(t)−x∗∥ ≤ ke−Mt∥x0−x∗∥
with (a) k = 1.25, M = 1.85, and (b) k =

√
2, M = 1.5625. In (c), we can see that

h(t) = ln(∥x(t) − x∗∥) becomes more linear as t → ∞, as predicted by the form (5.11).
The approximate slope values closely approximate the value −M = −15/8 as t → ∞ (e.g.
h′(1) ≈ −1.800320000, h′(2) ≈ −1.866759667, h′(3) ≈ −1.878135333, etc.).
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Chapter 5

Global Stability of Complex

Balanced Systems

In this section, we present the latest research on what has come to be known as the

Global Attractor Conjecture (Conjecture 5.1.1) and, more generally, persistence of chemical

reaction networks. Of particular importance are Theorem 5.1.1 from Section 5.1.1 and

Theorem 5.1.2 from Section 5.1.2, which significantly restrict the set of possible behaviours

of trajectories violating the conjecture. Two approaches which have been taken in the

literature to establishing the conjecture are presented in Section 5.2.2 and Section 5.3.1.

Our original contributions to this line of research will be contained in the remainder

of the chapter. In Section 5.2, we extend the notion of dynamically non-emptiable semi-

locking sets introduced in [5] to weakly dynamically non-emptiable semi-locking sets [37].

In Section 5.3.2, we extend the notion of dividing the state space of a mass-action system

into strata from detailed balanced systems introduced in [13] to complex balanced systems

[54]. These generalizations, as well as a few technical changes and a novel use of Farkas’
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Lemma (Lemma 5.1.1 and, equivalently, Lemma 5.1.2), will allow us to broaden the scope

of chemical reaction networks satisfying the global attractor conjecture.

5.1 Background

In Section 3.3 we established that complex balanced systems exhibit locally stable dy-

namics (see Definition 3.0.6 and Theorem 3.3.1), which means that within each positive

compatibility class Cx0 there is exactly one positive equilibrium concentration x∗ and that

this concentration is locally asymptotically stable relative to Cx0 . In other words, there is

a neighbourhood of x∗ relative to Cx0 for which all trajectories originating in the neigh-

bourhood converge toward x∗.

Stated this way, an obvious question arises: what happens to trajectories originating

outside of this neighbourhood? Is it possible for some trajectories to approach some other

set? And, if so, what does this set look like? Or, alternatively, can the neighbourhood

of convergence for x∗ be extended to the entire compatibility class so that x∗ is a global

attractor for Cx0?

This is a question made more interesting by the nature of the Lyapunov function L(x)

given by (3.1). By Lemma 3.3.4, we have that, along trajectories x(t), d

dt
L(x(t)) < 0

everywhere in Cx0 unless x(t) is at the unique equilibrium concentration x∗. This clearly

implies that no periodic orbits or chaotic “strange attractors” may exist, and the limiting

behaviour of L(x) as ∥x∥ → ∞ implies that no trajectory may approach infinity by (3.2).

It is tempting to conclude that the unique equilibrium concentration x∗ in Cx0 is a

global attractor for Cx0 ; however, this conclusion is not warranted. The function L(x)

is not radially unbounded with respect to Cx0 and consequently we cannot rule out the
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possibility that trajectories tend toward the boundary of the set, ∂Cx0 . This is not an

obvious point. The allure of global stability is so strong, in fact, that in their original

papers on complex balanced systems, the authors Feinberg, Horn, and Jackson errantly

asserted that they had proved the global stability of x∗ relative to Cx0 [25, 30, 33]! It was

only later that they realized their result was in fact locally limited [31].

Nevertheless, in the nearly four decades since this work began, no example of a complex

balanced system with a trajectory approaching ∂Cx0 has been found. This has led many

to surmise that Claim (4) of Theorem 3.3.1 can in fact be extended globally to Cx0 . The

claim is stated most succinctly as follows (see [13, 31]).

Conjecture 5.1.1 (Global Attractor Conjecture). For any complex balanced system and

any starting point x0 ∈ Rm
>0, the associated complex balanced equilibrium point x∗ of Cx0 is

a global attractor of Cx0.

As of the writing of this thesis, no fully general proof of Conjecture 5.1.1 is known.

That is not to say, however, that no headway has been made on the problem; in fact, many

cases are known under which this result follows [2, 13, 19, 44, 52, 54, 55]. There are also

many restrictions which have been imposed upon trajectories deviating from x∗, should

such trajectories exist [1,5,55]. As might be expected from the preceding discussion, many

of these approaches involve consideration of behaviour near ∂Cx0 (or, more broadly, ∂Rm
>0)

since any trajectory not converging to x∗ must converge to the boundary (in a sense to be

clarified in Section 5.1.1).

In the remainder of this section, I will present the background concepts, terminology,

and known results relevant to the discussion of Conjecture 5.1.1. My own results regarding

Conjecture 5.1.1 will be stated in Section 5.2 and Section 5.3, which will rely heavily on
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the background introduced here [37,54].

Firstly, however, I present a few example illustrating how the concept of global stability

goes hand-in-hand with the behaviour of trajectories near boundary equilibrium concen-

trations.

Example 5.1.1. Consider the system

2A1 +A2

k+⇄
k−
A1 + 2A2.

It is easy to see that this system is weakly reversible and has a deficiency of zero. It

follows by Theorem 3.4.2 that, regardless of the rate constants, within each positive compati-

bility class there is exactly one positive equilibrium concentration and that this concentration

is locally asymptotically stable relative to its compatibility class.

Something more interesting happens with this example, however. If we consider the

governing dynamics

dx1

dt
= −k+x2

1x2 + k−x1x
2
2 = x1x2(−k+x1 + k−x2)

dx2

dt
= k+x2

1x2 − k−x1x
2
2 = x1x2(k+x1 − k−x2)

(5.1)

we see that there is a positive line of equilibria (x2 = (k+/k−)x1) and two lines of equilibria

on the boundary of the positive orthant (x1 = 0 and x2 = 0). Phase plane analysis shows

us that the boundary equilibria are unstable while the positive line of equilibria is stable

(see Figure 5.1). It is clear, therefore, that the conditions of Theorem 3.4.2 and Theorem

3.4.3 do not prohibit the existence of equilibria on the boundary of the positive compatibility

classes.
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It is particularly worth noting that, since all boundary equilibria are unstable, all tra-

jectories originating in a positive compatibility classes Cx0 converge to the unique positive

equilibrium concentration x∗ in Cx0 permitted by Claim 3 of Theorem 3.3.1. In other

words, the local stability of x∗ can be extended globally by consideration of behaviour near

the boundary ∂Rm
>0; x∗ is a global attractor for Cx0, and therefore satisfies Conjecture 5.1.1.

Figure 5.1: Phase portrait of the system (5.1) with k+ = k− = 1. The positive line of
equilibria, x2 = x1, is asymptotically stable relative to the compatibility classes (in red)
while the boundaries x1 = 0 and x2 = 0 are unstable.

Example 5.1.2. Reconsider the example given in Example 3.4.5,

2A1 +A2
1Ð→ 3A1

ε ↑ ↓ ε

3A2 ←Ð
1
A1 + 2A2

where ε > 0 [33]. In Section 3.4, we saw that this system was complex balanced for ε = 1,

exhibited locally stable dynamics but was not complex balanced for 1/6 ≤ ε < 1 and ε > 1,
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and had three lines of equilibria—two stable and one unstable—for 0 < ε < 1/6.

Now consider what happens when we take the limit ε → 0. This amounts to removing

the reactions corresponding to ε from the system. The remaining system is

2A1 +A2
1Ð→ 3A1

A1 + 2A2
1Ð→ 3A2

(5.2)

which under the assumption of mass-action kinetics is governed by the system of differential

equations

dx1

dt
= x2

1x2 − x1x
2
2 = x1x2(x1 − x2)

dx2

dt
= −x2

1x2 + x1x
2
2 = x1x2(x2 − x1).

(5.3)

We can see immediately that there are three lines of equilibria—x2 = x1, x1 = 0, and

x2 = 0—the latter two of which lie on the boundary of the positive orthant. The positive

compatibility classes cut perpendicular to the positive line of equilibria, from which it fol-

lows that each compatibility class has a single interior equilibrium concentration and two

boundary equilibrium concentrations. Furthermore, a simple analysis of (5.3) shows us

that the interior equilibrium concentration is unstable while the boundary equilibria are

both stable (see Figure 5.2).

This dynamical result is easy to understand in terms of the dynamical properties derived

in Example 3.4.5. As ε decreases through ε = 1/6, the positive line of equilibria undergoes a

pitchfork bifurcation, switching from stable to unstable and giving rise to two stable lines of

equilibria. As ε approaches zero, these lines approach the x1 and x2 axes. They maintain

their stability throughout the limit and thus, for ε = 0 the axes are asymptotically stable

147



Figure 5.2: Phase portrait of the system (5.3). The positive line of equilibria, x2 = x1,
is unstable relative to the compatibility classes (in red) while the boundaries x1 = 0 and
x2 = 0 are asymptotically stable.

relative to the positive compatibility classes.

5.1.1 ω-limit Set Theorem

In this section, we present one of the most restrictive results known for trajectories of

complex balanced systems not tending toward the positive equilibrium concentration [55].

We start by considering what exactly it means for a trajectory x(t) to “approach” or

“converge to” a point x∗ (or a set) as time goes to infinity. This is made explicit by the

following concept.

Definition 5.1.1. A point x ∈ Rm is said to be an ω-limit point of the trajectory x(t) if

there exists a sequence {tn}∞n=1 satisfying

lim
n→∞

tn = ∞
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such that

lim
n→∞

x(tn) = x.

Given an x0 ∈ Rm, the collection of all ω-limit points for the trajectory x(t) originating at

x(0) = x0 will be called the ω-limit set of x0. This set will be denoted ω(x0).

The concept of an ω-limit set is one of the foundational ones in all of dynamical systems

theory (that is to say, the study of continuous variable differential equations—as studied

here—and the study of discrete-step difference equations studied in many other applica-

tions). Since a multitude of examples can be found in virtually any textbook on dynamical

systems, I omit further elaboration here. (I recommend [46] and [65].)

Since we are primarily concerned with convergence toward the boundary of the positive

orthant ∂Rm
>0, the following concept is particularly useful.

Definition 5.1.2. A dynamical system with bounded trajectories is said to be persistent

if, for every x0 ∈ Rm
>0,

ω(x0) ∩ ∂Rm
>0 = ∅.

In other words, a system is persistent if no trajectory in which all variables are ini-

tially present may have any component tend toward zero (this tendency toward zero may

be asymptotic or oscillatory). The concept of persistence is particularly widely used in

biological modeling, where the elimination of a variable corresponds to the extinction of a

species. Species which do not tend toward extinction are said to “persist”. The restriction

to systems with bounded trajectories is made to avoid ambiguous limiting behaviour.

In the context of chemical reaction networks, persistence means that no chemical species

is exhausted as a result of the reaction system. Our primary interest in persistence is that,
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since trajectories are bounded and x∗ is the only potential strictly positive ω-limit point

for complex balanced systems, Conjecture 5.1.1 holds for complex balanced systems which

are persistent.

We now present a result which is of great use in the study of global stability of complex

balanced networks. The proof can be found in [55].

Theorem 5.1.1 (Theorem 3.2, [55]). Consider a complex balanced mass-action system.

Then, for any x0 ∈ Rm
>0, the ω-limit set ω(x0) consists either of complex balanced concen-

trations lying on ∂Rm
>0 or of a single positive point of complex balanced equilibrium.

Theorem 5.1.1 is an important result in that it formalizes the intuition offered at the

beginning of this chapter, namely, that trajectories of complex balanced systems either

approach the positive complex balanced concentration or the boundary of the positive

orthant. Consequently, for complex balanced systems, it is sufficient to prove that the

system is persistent in order to establish Conjecture 5.1.1 holds (see also Proposition 19

of [13] and the subsequent discussion). Furthermore, the ω-limit set must consist only of

complex balanced equilibrium concentrations.

5.1.2 Faces and Semi-Locking Sets

By Theorem 5.1.1 we know that trajectories of complex balanced systems may tend toward

one of two things: the unique positive equilibrium concentration in the relevant compati-

bility class, or some set of complex balanced equilibrium concentrations on the boundary.

It is clear, consequently, that the behaviour of trajectories near the boundary of the

positive orthant, ∂Rm
>0, plays a very important role in determining the global stability of
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x∗ relative to its compatibility class. In particular, since trajectories of complex balanced

mechanisms are bounded, it follows that persistence (see Definition 5.1.2) is a sufficient

condition for the global stability of x∗.

Another interesting question to ask if whether trajectories may tend to anywhere on

∂Rm
>0. Can we further restrict Theorem 5.1.1 to only a subset of ∂Rm

>0? And if so, what

would this new set look like? Several authors have worked on this problem and, in fact,

shown that ω-limit points may be restricted to an easily identifiable subset of ∂Rm
>0. In

this section, we summarize this work.

This line of work was begun in 2008 with the paper [5] by D. Angeli, P. DeLeenheer

and E. Sontag who used Petri Net theory to prove several persistence results (which could

be extended to global stability results for complex balanced systems). We, however, adopt

the notation and terminology of the later paper [1] by D. Anderson since it is specific to

chemical reaction networks.

In order to make the concept of persistence more manageable, we divide the boundaries

of Rm
>0 and Cx0 into faces. For technical reasons we will only be interested in the relative

interior of these faces, which we will define as follows. (These sets are defined similarly

in [1], [5], and [13]. In [3], LI is denoted ZI .)

Definition 5.1.3. Given a nonempty index set I ⊆ {1,2, . . . ,m}, we define the sets LI and

FI to be

LI = {x ∈ Rm
≥0 ∣ xi = 0 for i ∈ I and xi > 0 for i /∈ I}

FI = {x ∈ Cx0 ∣ xi = 0 for i ∈ I and xi > 0 for i /∈ I}

The set FI can also be given as FI = Cx0 ∩LI or FI = (x0 + S) ∩LI .

From the vantage point of chemical kinetics, it is important to notice that ∂Rm
>0 can be
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directly decomposed into the relative interior of faces. That is to say, each x ∈ ∂Rm
>0 can

be placed into the relative interior of exactly one face.

The following definitions are the central concept of interest in the papers [1] and [5].

Our terminology reflects [1]; in [5], semilocking sets are called siphons and locking sets are

called deadlocks.

Definition 5.1.4. Consider a nonempty set I ⊆ {1,2, . . . ,m}. The set I is said to be a

semilocking set if, for every reaction Cj Ð→ C′j, j = 1, . . . , r, which contains a species Ai,

i ∈ I, in the product complex C′j, there is a species Ai, i ∈ I, in the reactant complex Cj. A

semilocking set is said to be a locking set if every reactant complex contains a species Ai,

i ∈ I.

The terminology is easy to understand in light of what semilocking and locking sets

imply on the dynamics of mass-action systems given by (2.4). If all of the species of a

semilocking set are zero, then no species in the set may be produced under the assumption

of mass-action dynamics—consequently, the semilocking set is locked into place. If every

reactant complex contains an element from a semilocking, and all of those species are zero,

then no reaction in the entire system may procede—the entire system is locked into place.

This interpretation also gives us some hint as to how semilocking and locking sets are

related to faces, since these interpretations derive from behaviour on ∂Rm
>0.

Example 5.1.3. Consider the reaction system

A1
k1Ð→ A2

k2Ð→ A3.

First, let’s try to find all of the semilocking sets in the system. We start by considering

the product complexes and constructing our semilocking sets by working backwards.
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We can see that if we want to include the complex A3 in our set, we must include A2

by the second reaction; however, to include A2, we must include A1 by the first reaction.

It follows that I1 = {1,2,3} is a semilocking set.

This is not the only one, however. If we start with A2, we must include A1, but since

the final reaction contains neither of these species as a product, we may stop there. It

follows that I2 = {1,2} is also a semilocking set.

In fact, there is one more semilocking set. It may not seem obvious, but I3 = {1} is

also a semilocking set. Since no reaction contains A1 as a product, it trivially satisfies the

conditions necessary to be a semilocking set.

Now consider whether any of these sets are actually locking sets. In order to be a locking

set, each reactant complex must contain at least one element from a semilocking set. We

can see that this is satisfied for any of our sets containing A1 and A2 so that I1 and I2 are

locking sets but I3 is not. Indeed, we can see from the dynamics

dx1

dt
= −k1x1

dx2

dt
= k1x1 − k2x2

dx3

dt
= k2x2

that if x1(0) = x2(0) = x3(0) = 0 or x1(0) = x2(0) = 0, the entire system is locked into place,

but if only x1(0) = 0 then x1(t) = 0 for t ≥ 0 but x2(t) and x3(t) are free to evolve according

to the second reaction.

As might be expected from our introduction to this section, we can restrict the be-

haviour of trajectories near ∂Rm
>0 through consideration of faces and semilocking sets. The

following result makes this relationship explicit. It was originally proved as Proposition 1
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in [5] and later reproved as Theorem 2.5 in [1]. For completeness, we include the proof as

contained in [1].

It should be noted that this result holds for all mass-action systems, not just complex

balanced systems.

Theorem 5.1.2. Consider a nonempty set I ⊆ {1,2, . . . ,m}. If there exists a x0 ∈ Rm
>0

such that ω(x0) ∩LI /= ∅, then I is a semilocking set.

Proof. Suppose that there exists a x0 ∈ Rm
>0 such that ω(x0) ∩ LI /= ∅ but I is not a

semilocking set. We will let x(t) denote the trajectory satisfying x(0) = x0 and y ∈ Rm
≥0

denote a point satisfying y ∈ ω(x0) ∩LI .

Since I is not a semilocking set, that implies that there is some reaction such that

there is a species Si0 , i0 ∈ I, which appears in the product complex but no species Si,

i ∈ I, appears in the reactant complex. At the concentration y, this reaction produces an

influx of xi0 while no reaction depleting xi0 may proceed, so that fi0(y) > 0. It follows by

continuity that there are constants ε > 0 and k > 0 such that

dxi0
dt

= fi0(x) > k (5.4)

for all x ∈ Bε(y) ∩Rm
>0.

Consider how x(t) may approach y. Either there exists a time t̃ such that x(t) ∈

Bε(y) ∩Rm
>0 for all t > t̃ or x(t) enters and exits Bε(y) ∩Rm

>0 an infinite number of times.

To the first option, we notice that (5.4) implies that

xi0(t) > xi0(t̃) + (t − t̃)k.
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This clearly tends to infinity as t tends to infinity which violates the assumption that

y ∈ ω(x0).

It follows that x(t) must enter and exit Bε(y) ∩Rm
>0 an infinite number of times. Since

the trajectory approaches y, it follows that the trajectory must pass through the annulus

[Bε(y) ∖Bε̃(y)] ∩Rm
>0 an infinite number of times, where ε̃ is any value satisfying 0 < ε̃ < ε.

Take tε and tε̃ to be any two times such that

x(tε) ∈ ∂Bε(y) ∩Rm
>0

x(tε̃) ∈ ∂Bε̃(y) ∩Rm
>0

x(t) ∈ [Bε(y) ∖Bε̃(y)] ∩Rm
>0 for all t ∈ (tε, tε̃).

Since f(x) is continuous, it is bounded on the annulus so that

ε − ε̃ = ∥x(tε) − x(tε̃)∥ = ∥∫
tε̃

tε
f(x(s))ds∥ ≤ (tε̃ − tε)M

where M is the maximum of ∥f(x)∥ on the annulus. It follows that

tε̃ − tε ≥
ε − ε̃
M

. (5.5)

In other words, x(t) has a minimum dwell time of (ε − ε̃)/M when passing through the

annulus.
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Now consider the species Si0 . We have

xi0(tε̃) = xi0(tε) + ∫
tε̃

tε
fi0(x(s))ds

≥ xi0(tε) + (tε̃ − tε)k

≥ xi0(tε) + (ε − ε̃
M

)k

≥ (ε − ε̃
M

)k.

As x(t) approaches y, x(t) must pass through the annuluses where ε̃ → 0; however, it is

clear that

ε̃ < (ε − ε̃
M

)k ≤ xi0(tε̃)

for any ε̃ sufficiently close to zero. It follows that no trajectory x(t) may pass through the

annulus for sufficient small ε̃. This is a contradiction, and the result follows.

This result is particularly important for determining global stability of complex bal-

anced systems since it is no longer necessary to prove persistence of trajectories relative

to the entire boundary ∂Rm
>0. Since trajectories may not tend to the relative interior of

any face FI which does not correspond to a semilocking set I, and the boundary ∂Rm
>0 is

completely partitioned into faces, in order to have ω(x0) ∩ ∂Rm
>0 = ∅ it is sufficient to show

that ω(x0) ∩LI = ∅ for all faces FI where I is a semilocking set.

5.1.3 Linear Functionals

An important concept in the rest of this chapter are linear functionals of the form H(x) =

⟨α,x⟩ where α ∈ Rm
≤0 has support on the index set I. The importance of these functionals

is that they gauge how “close” trajectories are to a particular set LI .
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The following result will be required to prove the original results contained in Section

5.2 and Section 5.3. In essence, it says that so long as there is a linear functional “near”

every face corresponding to a semi-locking set, then the reaction network is persistent. It

is proved in [54].

When we say that U is a neighbourhood of K in Rm
≥0 we mean that U is an open covering

of K restricted to Rm
≥0.

Theorem 5.1.3. (Theorem 3.13, [54]) Consider a general mass-action system with bounded

solutions. Suppose that for every set LI corresponding to a semi-locking set I there exists

an αI ∈ Rm
≤0 satisfying

(αI)i < 0, for i ∈ I

(αI)i = 0, for i /∈ I
(5.6)

and the following property: for every compact subset K of LI , there exists a neighbourhood

U of K in Rm
≥0 such that

⟨αI , f(x)⟩ ≤ 0 for all x ∈ U. (5.7)

Then ω(x0) ∩ ∂Rm
>0 = ∅ for all x0 ∈ Rm

>0.

Proof. We will let ∣I ∣ denote the number of elements in the set I (i.e. the number of indices

i such that xi = 0 for x ∈ LI).

We will prove that ω(x0) ∩ ∂Rm
>0 = ∅ by showing that ω(x0) ∩ LI = ∅ for all I from

∣I ∣ = m to ∣I ∣ = 1. This induction corresponds to the dimension of LI going from 0 (the

origin) to m − 1. Since ∂Rm
>0 is completely partitioned into such sets, this is sufficient to

prove the claim.

Our inductive step will consist in showing that ω(x0) ∩LĨ /= ∅ for any semi-locking set
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Ĩ satisfying ∣Ĩ ∣ = k, 1 ≤ k < m, implies (ω(x0) ∩ LĨ) ∖ LĨ /= ∅. This is sufficient to violate

the inductive hypothesis that ω(x0) ∩LI = ∅ for all I such that ∣I ∣ > k.

We take x0 ∈ Rm
>0 to be arbitrary and fixed throughout the following induction.

Base case: Consider ∣I ∣ =m (i.e. I = S) and suppose that I = S is a semi-locking set.

We have LI = {0} for which K = {0} is trivially a compact subset. By assumption, there

exists an αI ∈ Rm
<0 such that ⟨αI , f(x)⟩ ≤ 0 for all x ∈ U where U is some neighbourhood

of K in Rm
≥0. It follows that x(t) ∈ {x ∈ Rm

>0 ∣ ⟨αI ,x⟩ < −δ} for all t > 0 and some δ > 0. In

other words, we can make a “cut” sufficiently close to the origin such that solutions do not

enter the cut out area. Consequently ω(x0) ∩LI = ∅ for I = S if I is a semi-locking set.

Since ω(x0) ∩ LI = ∅ for all I which are not semi-locking sets by Theorem 5.1.2, it

follows that ω(x0) ∩LI = ∅ for the base case ∣I ∣ =m.

Inductive case: Consider 1 ≤ k < m and assume that ω(x0) ∩ LI = ∅ for all ∣I ∣ > k.

We will prove that ω(x0) ∩LI = ∅ for all ∣I ∣ ≥ k.

Assume ω(x0) ∩ LĨ /= ∅ for some Ĩ such that ∣Ĩ ∣ = k and Ĩ is a semi-locking set. Since

every x ∈ LĨ ∖ LĨ satisfies x ∈ LI for some I such that ∣I ∣ > k, the inductive hypothesis

implies (ω(x0) ∩LĨ) ∖LĨ = ∅, which is equivalent to (ω(x0) ∩LĨ) ⊂ LĨ . In order to prove

the inductive step, we will show that assuming ω(x0) ∩LĨ /= ∅ violates (ω(x0) ∩LĨ) ⊂ LĨ .

Consider the set K = ω(x0) ∩LĨ . Since trajectories are bounded by assumption, ω(x0)

is bounded, and consequently K is a compact set. By the inductive hypothesis, this is a

subset of LĨ so that ⟨αI , f(x)⟩ ≤ 0 for all x ∈ U where U is some neighbourhood of K in

Rm
≥0.

Consider the linear functional H(x) = ⟨αI ,x⟩. By (5.6) and (5.7), H(x) satisfies:

1. H(x) = 0 if and only if x ∈ LĨ ,
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2. H(x) < 0 for x ∈ Rm
>0, and

3. d
dtH(x(t)) = ⟨αI , f(x(t))⟩ ≤ 0 for all t > 0 such that x(t) ∈ U .

Now consider an arbitrary y ∈ K. Since y ∈ ω(x0), U is a neighbourhood of y, and

H(x) is continuous, we can select a sequence {tk} ( lim
k→∞

tk = ∞) such that {x(tk)} ⊆ U ,

lim
k→∞

x(tk) = y, and lim
k→∞

H(x(tk)) =H(y) = 0.

By Property 3 of H(x(t)) given above, H(x(t)) may not increase while remaining in

U and, consequently, in order to approach y ∈ LĨ , x(t) must enter and exit U an infinite

number of times. Since U is relatively open in Rm
≥0 and x(t) ∈ Rm

>0 for all t ≥ 0 by Proposition

2.4.1, we can find a sequence {t̃k} corresponding to the entry points {x(t̃k)} ⊂ (Rm
≥0 ∖ U)

(i.e. x(t) ∈ U for t ∈ (t̃k, tk)). Because trajectories are bounded and R≥0 ∖ U is closed, the

sequence {x(t̃k)} has a convergent subsequence on R≥0 ∖U . We will denote this sequence

{x(t̃ki)} and let ỹ be the point such that lim
i→∞

x(t̃ki) = ỹ ∈ ω(x0). Since H(x(t)) may not

increase for t ∈ (t̃k, tk) and is bounded above by zero, we have 0 > H(x(t̃k)) ≥ H(x(tk)).

Since lim
k→∞

H(x(tk)) = 0, it follows that lim
k→∞

H(x(t̃k)) =H(ỹ) = 0, so that ỹ ∈ LĨ by Property

1 of H(x).

In total we have that ỹ ∈ ω(x0) ∩ LĨ ∩ (R≥0 ∖ U) = K ∩ (R≥0 ∖ U). We recall, however,

that U was a neighbourhood of K in Rm
≥0 so that K ∩ (R≥0 ∖ U) = ∅. It follows that our

original assumption must have been in error, so that ω(x0) ∩ LĨ = ∅ for all semi-locking

sets Ĩ satisfying ∣Ĩ ∣ = k.

Since ω(x0) ∩ LI = ∅ for all I which are not semi-locking sets by Theorem 5.1.2, it

follows that ω(x0) ∩LI = ∅ if ∣I ∣ = k, and our inductive step is shown.
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Since ∂Rm
>0 can be completely partitioned into sets LI , 1 ≤ ∣I ∣ ≤m, it follows that

ω(x0) ∩
⎡⎢⎢⎢⎢⎣
⋃

1≤∣I ∣≤m

LI

⎤⎥⎥⎥⎥⎦
= ω(x0) ∩ ∂Rm

>0 = ∅

and, since x0 ∈ Rm
>0 was chosen arbitrarily, the result follows.

It remains to find the vector α ∈ Rm
≤0 used in the functional H(x). An important

foundational result for finding these linear functionals in Section 5.2 and Section 5.3 is the

following classical result. We state two versions of the lemma as their application will be

subtly different in the two sections. (We prove only the first formulation. The proof can

be easily modified to capture the second formulation.)

Lemma 5.1.1 (Farkas’ Lemma (1), [23]). Consider A ∈ Rm×n. Then exactly one of the

following two conditions is true:

1. There exists a x ∈ Rn
≥0, x /= 0, such that Ax ≤ 0.

2. There exists a y ∈ Rm
>0 such that ATy > 0.

Lemma 5.1.2 (Farkas’ Lemma (2), [23]). Consider A ∈ Rm×n. Then exactly one of the

following two conditions is true:

1. There exists x ∈ Rn
≥0, x /∈ ker(A), such that Ax ≤ 0.

2. There exists y ∈ Rm
>0 such that ATy ≥ 0.
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Proof of version 1. Suppose both 1 and 2 are satisfied simultaneously. This implies that

there are x ∈ Rn
≥0 and y ∈ Rm

>0 such that

0 < (ATy)Tx = yT (Ax) ≤ 0

where the first inequality follows from ATy > 0 and the domain restriction on x, and the

second inequality follows from Ax ≤ 0 and the domain restriction on y. It follows that 1

and 2 may not be simultaneously satisfied.

Now suppose 1 is not satisfied. We will show that 2 is necessarily satisfied. We define

Ai to be the ith column of A and the closed and convex cone C(A) to be

C(A) = {v ∈ Rm ∣ v =
n

∑
i=1

xiAi, xi ≥ 0, i = 1, . . . , n} .

Since 1 is not satisfied, it follows that the cones C(A) and Rm
≤0 intersect at only the origin.

By the Hyperplane Separation Theorem, it follows that there exists a y ∈ Rm such that,

for every v ∈ C(A) ∖ {0} and c ∈ Rm
≤0 ∖ {0},

yTc < 0 < yTv.

Since the first inequality holds for all c ∈ Rm
≤0 ∖ {0}, it follows that yi > 0 for all i =

1, . . . ,m, and consequently y ∈ Rm
>0. Similarly, since the second inequality applies for all

v ∈ C(A) ∖ {0}, we have that for every x ∈ Rm
≥0 ∖ {0},

0 < yT (Ax) = (ATy)Tx.

It follows that (ATy)i > 0 for all i = 1, . . . , n so that ATy > 0. Consequently, 2 is satisfied
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if 1 is not.

It follows by the contrapositive that if 2 is not satisfied then 1 is satisfied. It follows

that at least one of the two conditions holds; however, since both may not be satisfied

simultaneous, we have that exactly one of the two propositions holds, and we are done.

5.2 Weakly Dynamically Non-Emptiable Sets

In the paper [5], D. Angeli, P. DeLeenheer and E. Sontag consider the persistence of

chemical reaction networks (see Definition 5.1.2). In this section, we summarize some of

their main results. We introduce their notion of dynamically non-emptiable semi-locking

sets and extend it by modifying the feasibility cone and introducing a kernel condition [54].

We also reformulate the conditions required for inclusion in the feasibility and criticality

cones as matrix conditions which will allow us to prove the main original result of this

section (Theorem 5.2.6).

5.2.1 Background

Many of the concepts required in previous sections and chapters will be required in this

section. In particular, the notion of a conservative chemical reaction network (Definition

2.4.4), a face of the positive orthant (Definition 5.1.3), and a semi-locking set (Definition

5.1.4) will be required.

In this section, we will require an alternative formulation of mass-action kinetics. Just

as (4.18) brought the complex-oriented indexing of (2.2) and (2.4) into the framework of

linear algebra, the following formulation brings the reaction-oriented indexing of (2.1) and
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(2.3) into the framework of linear algebra.

We define the matrix Γ ∈ Zm×r with entries

[Γ]ji = z′ij − zij (5.8)

for i = 1, . . . , r and j = 1, . . . ,m (notice the reversal of indices). We define the reaction

vector R(x) ∈ Rr
≥0 according to

Ri(x) = ki
m

∏
j=1

x
zij
j (5.9)

for i = 1, . . . , r. The terms Ri(x) correspond to the reaction rates of chemical reactions

under the assumption of mass-action kinetics.

Since [Γ]ji represents the net stoichiometric change in the jth species as a result of the

ith reaction and Ri(x) represents the rate of occurrence of the ith reaction, it follows that

[Γ]jiRi(x) is the rate of change of the jth species as a result of the ith reaction. It follows

that (2.1) is governed by the system of differential equations

dx

dt
= f(x) = ΓR(x). (5.10)

We will also need the following concept, which is related to the concept of a conservation

vector. (These are called P-semiflows in [5]. We introduce the term semi-conservation to

emphasize the connection with chemical kinetics.)

Definition 5.2.1. Consider a nonempty set I ⊆ {1,2, . . . ,m}. A chemical reaction network
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is said to be conservative with respect to I if there exists a c ∈ Rm
≥0 satisfying

ci > 0, i ∈ I

ci = 0, i /∈ I
(5.11)

so that

cTΓ = 0T . (5.12)

We will call any vector c ∈ Rm
≥0 satisfying (5.11) and (5.12) a semi-conservation vector.

A key consequence of (5.12) is that multiplying on the right by R(x) gives

cTΓR(x) = cT
dx

dt
= 0 Ô⇒ cTx(t) = cTx0 > 0 for x0 ∈ Rm

>0. (5.13)

In other words, the species indexed by the set I are conserved. It follows that LI0 ∩ω(x0) /=

∅ for any subset of the boundary LI0 ⊆ ∂Rm
>0 where I0 ⊆ S contains the support of a

semi-conservative vector (since (5.13) contradicts the requirement of LI0 ∩ ω(x0) /= ∅ that

cTx(tn) → 0 along a subsequence of times if I ⊆ I0).

In [5], the authors prove the following result. It should be noted that this applies to

networks with more general kinetics than mass-action, although we refer the reader to the

relevant paper for details.

Theorem 5.2.1 (Theorem 2, [5]). Consider a chemical reaction network satisfying the

following assumptions:

1. the system is conservative;

2. every semi-locking set contains the support of a semi-conservation vector.
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Then the system is persistent.

5.2.2 Dynamically Non-Emptiable Sets

The applicability of Theorem 5.2.1 is limited by the relative scarcity of reaction net-

works satisfying the condition that every semi-locking set contain the support of a semi-

conservation vector. Such semi-locking sets are classified according to the following.

Definition 5.2.2. A semi-locking set I is called critical if it does not contain the support

of a semi-conservation vector.

In Section 9 of [5], the authors introduce the concept of dynamical non-emptiability for

critical semi-locking sets. This notion is dependent on the three foundational concepts:

a special partial ordering on reaction rates, a structure called the feasibility cone, and a

structure called the criticality cone.

Definition 5.2.3. Consider the nonempty index set I ⊆ {1,2, . . . ,m}. For Ri,Rj ∈ R, we

will say that Ri ⋞I Rj if zik ≥ zjk for all k ∈ I and the inequality is strict for at least one

k ∈ I.

Intuitively, the partial ordering condition given in Definition 5.2.3 gives us an estimate

on the magnitudes of the reaction terms Ri(x) near a set LI . This is made explicit by the

following result.

Lemma 5.2.1 (Lemma 4, [5]). Consider a mass-action system and let I ⊆ {1,2, . . . ,m}

be a semi-locking set. Suppose that Ri ⋞I Rj. Then, for every ε > 0, and each compact

subset K of LI , there exists a neighbourhood U of K in Rm
>0 such that Ri(x) ≤ εRj(x) for

all x ∈ U .
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The concept of dynamical non-emptiability depends on two cones, the feasibility cone

and criticality cone, which are defined as follows.

Definition 5.2.4. The feasibility cone is defined to be

Fε(I) = {v ∈ Rr
≥0 ∣ vi ≤ εvj, ∀ Ri,Rj ∈ R such that Ri ⋞I Rj}

where ε > 0.

Definition 5.2.5. The criticality cone is defined to be

C(I) = {v ∈ Rr
≥0 ∣ [Γv]k ≤ 0, ∀ k ∈ I} .

We can now define dynamical non-emptiability, which is one of the major concepts

introduced in [5].

Definition 5.2.6. A critical semi-locking set is said to be dynamically non-emptiable

if there exists an ε > 0 such that

Fε(I) ∩ C(I) = {0} .

The following is the main result of Section 9 of [5]. We will extend this result in Section

5.2.5. (Two sets I1 and I2 are nested if I1 ⊂ I2 or I2 ⊂ I1.)

Theorem 5.2.2 (Theorem 4, [5]). Consider a conservative mass-action system satisfying

the following assumptions:

1. all of its critical semi-locking sets are dynamically non-emptiable;
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2. there are no nested distinct critical locking sets.

Then the system is persistent.

5.2.3 Weakly Dynamically Non-Emptiable Sets

In this section, we extend the notion of dynamically non-emptiable semi-locking sets to

weakly dynamically non-emptiable semi-locking sets. The definitions and results contained

here can be found in [37].

Our notion of dynamical non-emptiability depends on the selection of a set J ⊆ RI

where

RI = {(i, j) ∈ {1, . . . , r} × {1, . . . , r} ∣ Ri ⋞I Rj} . (5.14)

The key modification here is that we do not necessarily need to consider all pairs (i, j)

satisfyingRi ⋞I Rj; often it is sufficient to consider a strict subset of these pairs of reactions.

Through examples in Section 5.2.5 we will see that this modification allow us to encompass

more chemical kinetics systems than we would be able to otherwise.

We will need the following two concepts.

Definition 5.2.7. We define the feasibility cone relative to J to be

Fε(J) = {v ∈ Rr
≥0 ∣ vi ≤ εvj, for all (i, j) ∈ J}

where ε > 0.
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Definition 5.2.8. We define the kernel of I and J to be

ker(I, J, ε) = {v ∈ Rr
≥0 ∣ [Γv]k = 0, for all k ∈ I

and vi = εvj, for all (i, j) ∈ J}

where ε > 0.

The following notion of dynamical non-emptiability is our own. It is more general than

that contained in [5] in that it makes use of the freedom to select an appropriate J ⊆ RI

and broadens the inclusion principle to a kernel condition. (It is clear that the standard

notion of dynamical non-emptiability is included as a special case of the following by taking

J = RI and recognizing that {0} ⊆ ker(I, J, ε).)

Definition 5.2.9. A critical semi-locking set I is said to be weakly dynamically non-

emptiable if there exists an ε > 0 and a J satisfying (5.14) such that

C(I) ∩ Fε(J) ⊆ ker(I, J, ε).

In order to relate the above conditions to Farkas’ Lemma (Theorem 5.1.1) we restate

them as matrix conditions. We let nI = ∣I ∣ and nJ = ∣J ∣. We define ΓI ∈ RnI×r to be the

matrix Γ with the rows Γk⋅, k /∈ I, removed. We define ΓJ ∈ RnJ×r to be the matrix where

each row corresponds to a specific condition Ri ⋞I Rj, (i, j) ∈ J , so that in that row there

is a one in the ith column, a −ε in the jth column, and zeroes elsewhere. Lastly, we define

Γ̃ ∈ R(nI+nJ)×r to be

Γ̃ =
⎡⎢⎢⎢⎢⎢⎢⎣

ΓI

ΓJ

⎤⎥⎥⎥⎥⎥⎥⎦
.

The following result can be trivially seen.
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Lemma 5.2.2. The condition C(I) ∩ Fε(J) ⊆ ker(I, J, ε) is satisfied if and only if

Γ̃v ≤ 0 for v ∈ Rr
≥0 Ô⇒ v ∈ ker(Γ̃).

5.2.4 Connection to Facets and Non-Critical Semi-Locking Sets

In general, determining whether a semi-locking set I is weakly dynamically non-emptiable

can be tedious. To this end, in this section we show that there are classes of semi-locking

sets which are necessarily weakly dynamically nonemptiable: namely, semi-locking sets

corresponding to facets (i.e. sets FI of dimension s − 1) of a weakly reversible mechanism,

and semi-locking sets which are non-critical.

Facets are the central topic of consideration in [3], where the authors prove the following

result.

Theorem 5.2.3 (Theorem 3.4, [3]). Consider a weakly reversible mass-action system with

bounded trajectories. Suppose that every semi-locking set I is such that FI is a facet or

empty. Then the system is persistent.

The authors also connect the notion of a facet with the traditional notion of dynamical

non-emptiability (Corollary 3.5, [3]). Their result, however, overstates the implications of

FI being a facet. It can be shown that semi-locking sets I corresponding to facets FI may

fail to be dynamically non-emptiable if there is a reaction Ri such that: (1) Ri /⋞I Rj for

all Rj in the same linkage class (a connected portion of the reaction graph); and (2) Ri

produces no stoichiometric change in the species in I. (See Example 1 of Section 5.2.5.)

We now generalize this result by showing that there is no such exemption for weak

dynamical non-emptiability.
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Theorem 5.2.4 (Theorem 3.8, [37]). Consider a weakly reversible mass-action system

with a semi-locking set I ⊆ {1, . . . ,m}. If FI is a facet then I is weakly dynamically non-

emptiable.

Proof. We will follow closely the proofs of Theorem 3.2 and Corollary 3.5 contained in [3].

In their proof for Theorem 3.2, the authors show that there exist zj > 0, j ∈ I, and

γi ∈ R, i ∈ {1, . . . , r}, such that

γizj = βij − αij (5.15)

for all j ∈ I and i ∈ {1, . . . , r}. In other words, relative to the support of I, every reaction

vector (the columns of Γ) lies within the span of a single vector which is strictly positive

on the support of I. We will let z ∈ RnI
>0 denote the vector with the elements zj, j ∈ I,

indexed in order.

It follows immediately from (5.15) that every reaction in the system contributes either:

(1) a net gain to all species in I, (2) a net loss to all species in I, or (3) no stoichiometric

change to species in I. We can also divide the reactions according to the linkage classes Lk,

k = 1, . . . , `. By weak reversibility each linkage class is strongly connected. We will let R(k)

denote the reactions in the kth linkage class, and R
(k)
+ , R

(k)
− , and R

(k)
0 denote respectively

the reactions in the kth linkage class which contribute a net gain, a net loss, or no change

to all species in I. We notice that γi > 0 for i ∈ R(k)
+ , γi < 0 for i ∈ R(k)

− , and γi = 0 for

i ∈ R(k)
0 . Combined with (5.15), this division gives

ΓIv = z

⎡⎢⎢⎢⎢⎢⎣

`

∑
k=1

⎛
⎜
⎝
∑

i∈R
(k)
+

γivi − ∑
j∈R

(k)
−

∣γj ∣vj
⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
. (5.16)

We now proceed to construct our set J ⊆ RI according to (5.14). Since the system

170



is weakly reversible, it follows that the product complex of every reaction Ri is itself a

reactant complex for some other reaction (which we will denote Ri′) in the kth linkage

class. Since reactions may only produce simultaneous gain or loss to the species in I, it

follows that: (1) Ri′ ⋞I Ri if i ∈ R(k)
+ , (2) Ri ⋞I Ri′ if i ∈ R(k)

− , and (3) Ri′ /⋞I Ri and

Ri /⋞I Ri′ if i ∈ R(k)
0 . (Notice here that Ri′ /⋞I Ri and Ri /⋞I Ri′ for i ∈ R(k) implies αij = αi′j

for all j ∈ I, although this does not hold for general systems.)

Since the ordering relationship is transitive and can be extended throughout each link-

age class by weak reversibility, it follows that the set of reactions corresponding to each

linkage class Lk either: (1) contributes no stoichiometric change to the system (i.e. i ∈ R(k)
0

for all reactions Ri corresponding to reactions in Lk), or (2) contains a reaction Rik ,

ik ∈ R(k)
+ , such that Rj ⋞I Rik for all j ∈ R(k)

− . We will ignore linkage classes included in

case (1) since they do not affect (5.16).

We define the set

J =
`

⋃
k=1

j∈R
(k)
−

(j, ik).

Now assume that ΓJv ≤ 0. This implies that we have

ΓIv = z

⎡⎢⎢⎢⎢⎢⎣

`

∑
k=1

⎛
⎜
⎝

∑
i∈R

(k)
+ ∖ik

γivi + γikvik − ∑
j∈R

(k)
−

∣γj ∣vj
⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

≥ z

⎡⎢⎢⎢⎢⎢⎣

`

∑
k=1

⎛
⎜
⎝

∑
i∈R

(k)
+ ∖ik

γivi +
⎛
⎜
⎝
γik − ε ∑

j∈R
(k)
−

∣γj ∣
⎞
⎟
⎠
vik

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
.

Regardless of the values of γj, j ∈ R(k)
− , and γik > 0 for k = 1, . . . , `, we can pick an ε > 0

sufficient small so that ΓIv ≥ 0 for every v ∈ Rr
≥0. In order to satisfy ΓIv ≤ 0 for v ∈ Rr

≥0,

therefore, we require vi = 0 for all i ∈ R(k)
+ and i ∈ R(k)

− , k = 1, . . . , `. We notice that vi > 0 is
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permitted for i ∈ R(k)
0 ; however, neither ΓI nor ΓJ contain nonzero entries in their columns

corresponding to the elements in i ∈ R(k)
0 . It follows that Γ̃v ≤ 0 for v ∈ R≥0 entails v ∈

ker(Γ̃). Since this is a sufficient condition for the weak dynamical non-emptiability of I by

Lemma 5.2.2, we are done.

In [5], the authors divide semi-locking sets according to whether they are critical or not.

They first handle the case of non-critical semi-locking sets which culminates in Theorem

5.2.1. It is only in the discussion of critical semi-locking sets that they introduce the further

condition of dynamical nonemptiability. Here we simplify this discussion by showing that

every non-critical semi-locking set is weakly dynamically non-emptiable and therefore falls

within the scope of the discussion in Section 5.2.5.

Theorem 5.2.5 (Theorem 3.9, [37]). Consider a semi-locking set I ⊆ {1, . . . ,m}. If I is

non-critical then it is weakly dynamically non-emptiable.

Proof. Suppose a semi-locking set I ⊆ {1, . . . ,m} is non-critical. This means that I corre-

sponds to the support of a semi-conservation vector so that there exists a c ∈ Rm
≥0 satisfying

ci > 0, i ∈ I

ci = 0, i /∈ I

such that

cTΓ = 0T . (5.17)

It follows from (5.17) that there exists a y ∈ RnI
>0 such that

yTΓI = 0T .
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Since this implies condition 2 of Farkas’ Lemma (Lemma 5.1.2) is satisfied, it follows

that condition 1 must necessarily be violated. It follows that any v ∈ Rr
≥0 satisfying ΓIv ≤ 0

must be such that v ∈ ker(ΓI). By Lemma 5.2.2, however, this is the condition for weak

dynamical nonemptiability taking J = ∅ which is sufficient to prove the result.

5.2.5 Persistence

We are now prepared to present the main result of this section. The following is a general-

ization of Theorem 5.2.2 and includes Theorem 5.2.1 for mass-action kinetics by Theorem

5.2.5.

Theorem 5.2.6 (Theorem 3.10, [37]). Consider a mass-action system with bounded solu-

tions. Suppose that every semi-locking set is weakly dynamically non-emptiable. Then the

system is persistent.

Proof. We know by Theorem 5.1.3 that a system with bounded solutions is persistent if,

for every semi-locking set I, there is an α ∈ Rm
≤0 satisfying

αi < 0, for i ∈ I

αi = 0, for i /∈ I

so that, for every compact subset K of LI , there exists a neighbourhood U of K in Rm
≥0

such that ⟨α, f(x)⟩ ≤ 0 for all x ∈ U .

By assumption, every critical semi-locking set is weakly dynamically non-emptiable,

which means that there exists an ε > 0 and a J ⊆ RI such that C(I) ∩ Fε(J) ⊆ ker(I, J, ε).
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By Lemma 5.2.2, this implies that

Γ̃v ≤ 0, for v ∈ Rr
≥0 Ô⇒ v ∈ ker(Γ̃).

It follows that condition 1 of Lemma 5.1.2 is not satisfied. Consequently, in order to satisfy

condition 2, there must exist a c ∈ RnI+nJ
>0 such that cT Γ̃ ≥ 0T .

We partition c ∈ RnI+nJ
>0 so that

c =
⎡⎢⎢⎢⎢⎢⎢⎣

cI

cJ

⎤⎥⎥⎥⎥⎥⎥⎦
where cI ∈ RnI

>0 and cJ ∈ RnJ
>0 . From this it follows that

cT Γ̃ = cTI ΓI + cTJΓJ ≥ 0T . (5.18)

Multiplying through the right-hand side of (5.18) by R(x), we have

cTI ΓIR(x) + cTJΓJR(x) = −⟨α, f(x)⟩ + cTJΓJR(x) ≥ 0 (5.19)

where α ∈ Rm
≤0 is the vector −cI extended over the support I and has zeroes elsewhere.

Clearly α satisfies

αi < 0 for i ∈ I

αi = 0 for i /∈ I.

By Lemma 5.2.1, for every compact subset K of LI and every ε > 0, there exists a

neighbourhood U of K in Rm
≥0 such that ΓJR(x) ≤ 0. It follows from (5.19) that

⟨α, f(x)⟩ ≤ cTJΓJR(x) ≤ 0
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for all x ∈ U .

Since this holds for every semi-locking set I by assumption, it follows by Theorem 5.1.3

that the system is persistent.

There are several points worth emphasizing about Theorem 5.2.6 as it contrasts with

Theorem 5.2.2. In our result the requirement that the system be conservative has been

replaced by the more general assumption that solutions are bounded, and we do not re-

quire the assumption that there are no nested critical locking sets. Since a system being

conservative implies solutions are bounded, the first is not a significant change; however,

we have opened the result to non-conservative systems for which solutions can be bounded

by another method, as is the case with complex balanced systems (see Section 3.3).

We have removed the distinction between critical and non-critical semi-locking sets.

We do not need to make this distinction since every non-critical semi-locking set is weakly

dynamically nonemptiable by Theorem 5.2.5 and therefore trivially included in Theorem

5.2.6.

For complex balanced systems, we know that persistence is a sufficient condition for

global stability by Lemma 5.1.1. Consequently, we can use Theorem 5.2.6 to extend the

scope of the systems satisfying the global attractor conjecture.

First, however, we need the following result.

Lemma 5.2.3 (Lemma 3.12, [37]). Consider a chemical reaction network. Consider a set

I ⊆ {1, . . . ,m} and suppose that F̃I /= ∅ for some x̃0 ∈ Rm
>0. Then, for every x0 ∈ Rm

>0, either

dim(FI) =dim(F̃I) or FI = ∅. Furthermore, for every x ∈ LI , there exists x0 ∈ Rm
>0 such

that x ∈ FI .
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Proof. Consider the set L̃I = {x ∈ R ∣ xi = 0 if i ∈ I}. It is clear that LI is relatively interior

to L̃I , i.e. ∀ x ∈ LI , ∃ ε > 0 such that Bε(x) ∩ L̃I ⊆ LI . (Bε(x) is the standard Euclidean

ball of radius ε centered at x.) Now consider the affine space (x0 + S) ∩ L̃I and suppose

FI = (x0 + S) ∩ LI /= ∅. Then, ∀ x ∈ FI , ∃ ε > 0 such that Bε(x) ∩ [(x0 + S) ∩ L̃I] =

(x0 + S) ∩ [Bε(x) ∩ L̃I] ⊆ (x0 + S) ∩ LI = FI . Consequently, FI is relatively interior to

(x0 + S) ∩ L̃I . Since the dimension of (x0 + S) ∩ L̃I is the same for all x0 ∈ Rm
>0, it follows

that dim(FI) is the same for all x0 ∈ Rm
>0 so long as FI /= ∅. This proves the first claim.

Since F̃I /= ∅ by assumption, we can consider an arbitrary x̃ ∈ F̃I . By definition, we

have that (x̃0 − x̃)i > 0 for i ∈ I and x̃0 − x̃ ∈ S. Now choose an arbitrary x ∈ LI . It follows

from the definition of LI that x0 = x + ε(x̃0 − x̃) ∈ Rm
>0 for ε > 0 sufficiently small. Since

x ∈ FI for x0 ∈ Rm
>0 and x ∈ LI was chosen arbitrarily, the second claim follows.

This result guarantees that if F̃I is a facet (or vertex) for some x̃0 ∈ Rm
>0, then FI is a

facet (or vertex) for any x0 ∈ Rm
>0 so long as FI /= ∅. Furthermore, it guarantees that LI

can be completely partitioned into sets FI corresponding to facets (or vertices).

We are now prepared to prove the following application of Theorem 5.2.6 to complex

balanced systems. It should be noted that, while facets are weakly dynamically non-

emptiable by Theorem 5.2.4, no comparable result holds for vertices (consider the origin

in Example 5.2.2). Consequently, the following result cannot be attained as a simple

application of Theorem 5.2.6.

Corollary 5.2.1 (Corollary 3.13, [37]). Consider a complex balanced mass-action system.

Suppose that every set FI corresponding to a semi-locking set I is either a facet, a vertex,

or empty, or that I is weakly dynamically non-emptiable. Then the Global Attractor

Conjecture holds for this system.
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Proof. For complex balanced systems, ω(x0)∩FI = ∅ for every FI corresponding to a vertex

(Proposition 20 of [13]) or the empty set (trivially). Also, from Corollary 3.3 of [3], we have

that ω(x0) ∩ FI /= ∅ implies ω(x0) ∩ ∂FI /= ∅ for all FI corresponding to facets; however,

since ∂FI corresponds to some FĨ not corresponding to a facet, this is a contradiction. It

follows from Lemma 5.2.3 that ω(x0) ∩LI = ∅ for any semi-locking set I such that FI is a

facet or a vertex for some x0 ∈ Rm
>0. It remains to show that ω(x0) ∩ LI = ∅ for every LI

corresponding to a weakly dynamically non-emptiable semi-locking set I.

By Theorem 5.2.6 we know that for each semi-locking set I which is weakly dynamically

non-emptiable, there is an α satisfying

α =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αi < 0, for i ∈ I

αi = 0, for i /∈ I

so that, for every compact subset K of LI , there exists a neighbourhood U of K in Rm
≥0

such that ⟨α, f(x)⟩ ≤ 0 for all x ∈ U . Since complex balanced systems are bounded, we

are justified in using the inductive hypothesis of Theorem 5.1.3 from ∣I ∣ = m to ∣I ∣ = 1 to

conclude that, for all x0 ∈ Rm
>0, ω(x0) ∩ ∂Rm

>0 = ∅. It follows by Theorem 5.1.1 that the

Global Attractor Conjecture holds for trajectories of such a system, and we are done.

Example 5.2.1. Consider the mass-action system

A1
k1Ð→ 2A1 +A2

k3 ↖ ↙ k2

A1 +A2.
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For this system, we have

Γ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 −1 0

1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦
and R(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1x1

k2x2
1x2

k3x1x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the system is governed by ẋ = ΓR(x).

We notice first of all that the system is not conservative and therefore does not fall

within the scope of the systems considered in [5]. We might still be tempted to ask whether

the system has semi-locking sets which are dynamically non-emptiable, so we consider the

semi-locking set I = {1}. Relative to this set, we have R2 ⋞I R1 and R2 ⋞I R3 so that

Fε(I) ∩ C(I) = {0} corresponds to finding a v ∈ R3
≥0 such that v1 − v2 ≤ 0, v2 ≤ εv1,

and v2 ≤ εv3. This can clearly be satisfied for any v = [0 0 v3]T where v3 ≥ 0. Since

Fε(I) ∩ C(I) /= {0}, it follows that the system contains a critical semi-locking set which is

not dynamically non-emptiable.

We notice, however, that FI is a facet of Cx0 = R2
>0 since s = 2 and dim(FI) = 1. It

follows from Theorem 5.2.4 that I is weakly dynamically non-emptiable. Since the system

is complex balanced for all sets of rate constants and I is the only non-trivial semi-locking

set, the Global Attractor Conjecture holds for this system by Corollary 5.2.1. (This result

could also be attained by application of Theorem 4.6 of [3], although it should be pointed out

that FI is an example of a facet which is not dynamically non-emptiable in the traditional

sense so that Corollary 3.5 of the same paper cannot be applied.)
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Example 5.2.2. Consider the system

A1

k5⇆
k1

2A2

k4 ↑ ↓ k2
A2 +A3

k3← A1 +A2.

The system is governed by the dynamics ẋ = ΓR(x) where

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 1 1

2 −1 0 −1 −2

0 0 1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and R(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1x1

k2x2
2

k3x1x2

k4x2x3

k5x2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This example was first considered in [54], where the authors showed that the system is

non-conservative, complex balanced for all sets of rate constants, and has only the non-

trivial semi-locking set I = {1,2}. By the methodology presented in that paper, however,

they could not find an α corresponding to I satisfying (5.6) and (5.7). Since the system is

not conservative, the results of [5] cannot be applied, and since I is not a facet, the results

of [3] cannot be applied. Here we will show that such an α does in fact exist by showing

that I is weakly dynamically non-emptiable.

We have that

ΓI =
⎡⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 1 1

2 −1 0 −1 −2

⎤⎥⎥⎥⎥⎥⎥⎦
.
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We have R2 ⋞I R4, R3 ⋞I R1, R3 ⋞I R4, and R5 ⋞I R4 so that

RI = {(2,4), (3,1), (3,4), (5,4)} . (5.20)

We pick the subset J = {(3,4)} so that

ΓJ = [ 0 0 1 −ε 0 ] .

The condition Γ̃v ≤ 0 for v ∈ R5
≥0 is equivalent to the system −v1 + v2 − v3 + v4 + v5 ≤ 0,

2v1 − v2 − v4 − 2v5 ≤ 0, and v3 − εv4 ≤ 0 for vi ≥ 0, i = 1, . . . ,5. Taking a positive linear

combination of these conditions yields v2 + (1 − 2ε)v4 ≤ 0. For 0 < ε < 1/2, this can be

satisfied for v2 ≥ 0 and v4 ≥ 0 if and only if v2 = v4 = 0. It then follows from the third

condition that v3 = 0. The remaining conditions can be satisfied so long as v1 = v5 ≥ 0 so

that

v ∈ span{[ 1 0 0 0 1 ]
T

} ⊆ ker(Γ̃).

By Lemma 5.2.2, the semi-locking set I is weakly dynamically non-emptiable. Since trajec-

tories are bounded by virtue of the system being complex balanced, it follows from Theorem

5.2.6 that the system is persistent and from Corollary 5.2.1 that it satisfies Conjecture

5.1.1.

In order to illustrate how the machinery of this result really works, we will complete the

analysis for I up to the point of applying Theorem 5.1.3. From Lemma 5.1.2 we have that

there exists a c ∈ R3
>0 such that cT Γ̃ ≥ 0T ; in fact, we can find it explicitly. This is satisfied
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if we choose c1 = 2, c2 = 1, c3 = 2, and 0 < ε < 1, for which values we have

cT Γ̃R(x) = [ 2 1 2 ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 1 1

2 −1 0 −1 −2

0 0 1 −ε 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1x1

k2x2
2

k3x1x2

k4x2x3

k5x2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −αT ẋ + 2(k3x1x2 − εk4x2x3) ≥ 0

where α = [−2 − 1 0]T . It follows that αT ẋ ≤ 2(k3x1x2 − εk4x2x3) ≤ 0 in a neighbourhood

of any compact subset of FI since k3x1x2 ≤ εk4x2x3 under the same conditions by Lemma

5.2.1. This is exactly the condition which was expected for application of Theorem 5.1.3,

which completes the connection with Theorem 5.2.6.

It is worth reemphasizing that not all sets J satisfying (5.20) are sufficient to show that I

is weakly dynamically non-emptiable. For instance, if we had selected J̃ = {(2,4), (3,1), (3,4)},

we would have had

ΓJ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 −ε 0

−ε 0 1 0 0

0 0 1 −ε 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, we can satisfy Γ̃v ≤ 0 by choosing

v ∈ span{[ 1 0 0 0 1 ]
T

}

but ker(Γ̃) = {0}. Consequently, J̃ is insufficient to show that I is weakly dynamically

non-emptiable.
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It is also worth noting that J is not the only choice sufficient for showing I is weakly

dynamically non-emptiable. In fact, the maximal set J̃ = RI works with ker(Γ̃) = {0}. (In

other words, I is dynamically non-emptiable in the sense introduced in [5]! We remain

unable to use Theorem 4 of [5], however, because this system is not conservative.) We can

see also that it is easier to demonstrate weak dynamical non-emptiability with some choices

of J than with others, an advantage which would become even more pronounced for larger

systems.

Example 5.2.3. Now consider the system

A1 +A2
k1→ 3A1

k4 ↑ ↓ k2
2A2 ←

k3
2A1 +A3.

The system is governed by the dynamics ẋ = ΓR(x) where

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −2 1

−1 0 2 −1

0 1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and R(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1x1x2

k2x3
1

k3x2
1x3

k4x2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The system is non-conservative, complex balanced for all sets of rate constants, and has

only the non-trivial semi-locking set I = {1,2}. The system is not conservative, so the

results of [5] cannot be applied, and I is not a facet, so the results of [3] cannot be applied.

We consider whether I is weakly dynamically non-emptiable.
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We have only the condition R2 ⋞I R3 so that J ⊆ {(2,3)}. Choosing the maximal such

set we have

Γ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −2 1

−1 0 2 −1

0 1 −ε 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is clear that v = [0 0 1 2]T satisfies Γ̃v ≤ 0 but

v /∈ ker(Γ̃) = span{[−ε − ε − 1 − 2 + ε]T}

for any ε > 0. Since the condition Γ̃v ≤ 0 for v ∈ Rr
≥0 does not imply v ∈ ker(Γ̃) for the

trivial set J = ∅ either, it follows that I is not weakly dynamically non-emptiable and thus

the results of this section cannot be applied.

It is worth noting that persistence of this network can be demonstrated by the results

contained in [2], [19], and [44], since the network contains a single linkage class, three-

dimensional species space, and three-dimensional stoichiometric space, respectively.

5.3 Strata for Complex Balanced Systems

Another approach to the question of global stability can be found in [13]. In this paper,

the authors G. Craciun, A. Dickenstein, A. Shui and B. Sturmfels take the novel approach

of dividing the state space Rm
>0 into regions, called strata, and proving that trajectories

obey specific properties for as long as they remain within each strata.

In that paper, the authors considered only the behaviour of detailed balanced systems.

Consequently, their definitions and results depend heavily on Definition 3.1.2. In Section
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5.3.1 we will detail the results of [13]. In Section 5.3.2, we will generalize their concepts

and results to complex balanced systems [54].

5.3.1 Strata for Detailed Balanced Systems

We quickly recall some of the definitions and properties relevant to the consideration of

detailed balanced systems. From Lemma 3.1.1 we know that detailed balanced systems

are reversible, so that if (i, j) ∈ R then (j, i) ∈ R. We let R̃ denote an arbitrary subset of

R which contains only one of the index pairs from each set {(i, j), (j, i)}. We know from

Lemma 3.2.1 that any system with a detailed balanced equilibrium concentration x∗ ∈ Rm
>0

can be written in the form

dx

dt
= f(x) = ∑

(i,j)∈R̃

κij(zj − zi) [(
x

x∗
)
zi

− ( x

x∗
)
zj

] (5.21)

where κij > 0, ∀ (i, j) ∈ R̃.

We will need the following preliminary definition.

Definition 5.3.1. Consider a system with a detailed balanced equilibrium concentration

x∗ ∈ Rm
>0. We will say that the subsystem R̃ ⊂ R is an acyclic orientation if it contains

only one of the index pairs from {(i, j), (j, i)} and the graph of R̃ contains no cycles.

We now define the notion of a stratum as it pertains to detailed balanced systems.

Definition 5.3.2. Consider a system with a detailed balanced equilibrium concentration

x∗ ∈ Rm
>0. Consider an acyclic orientation R̃. Then the stratum associated with R̃ is defined

to be

S = {x ∈ Rm
>0 ∣ ( x

x∗
)
zi

> ( x

x∗
)
zj

for all (i, j) ∈ R̃} .
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It is clear why it is required that R̃ be acyclic, since if there was a cycle {ν1, ν2, . . . , νl, νl+i}

we would have some index i0 ∈ {1, . . . ,m} such that

( x

x∗
)
zi0

= ( x

x∗
)
zν1

> ( x

x∗
)
zν2

> ⋯ > ( x

x∗
)
zνl

> ( x

x∗
)
zνl+1

= ( x

x∗
)
zi0
.

Consequently, such a stratum would be empty. (It is also possible for a stratum to be

empty for acyclic orientations.)

The important observation to make is that each x ∈ Rm
>0 belongs to exactly one stratum.

That is to say, for each x ∈ Rm
>0, we can select a unique acyclic orientation R̃ so that the

stratum S associated with R̃ contains x. This is easy to see by considering that each

x ∈ Rm
>0 produces an absolute ordering on the quantities (x/x∗)zi for i = 1, . . . , n. The

relevant acyclic ordering R̃ is the one which satisfies this absolute ordering; furthermore,

it must by the only one satisfying this overall ordering, since switching a single index pair

in R̃ results in a change to this absolute ordering.

In [13], the authors are able to show that, within each stratum S, there is a linear

functional which propels trajectories away from any set LI adjacent to the stratum. The

following result is contained as Lemma 17 of [13]. We have changed the signs to be

consistent with a later result in Section 5.3.2.

Lemma 5.3.1. Consider a system with a detailed balanced equilibrium concentration x∗ ∈

Rm
>0 and fix an acyclic orientation R̃. If S ∩LI /= ∅ then there exists an α ∈ Rm

≤0 satisfying

αi < 0, for i ∈ I

αi = 0, for i /∈ I
(5.22)
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such that

⟨zi − zj, α⟩ ≥ 0 (5.23)

for all (i, j) ∈ R̃.

Proof. Suppose there is no α ∈ Rm
≤0 satisfying (5.22) and (5.23). By application of Lemma

5.1.1 on the index set I, this implies that there exists a

v = ∑
(i,j)∈R̃

λij(zi − zj), λij ≥ 0, ∀ (i, j) ∈ R̃ (5.24)

satisfying

vi ≥ 0, for all i ∈ I

vi0 > 0, for at least one i0 ∈ I.
(5.25)

By assumption we have S ∩LI /= ∅. This implies that there exists a sequence {xk} ⊂ S

such that xk → x ∈ LI as k → ∞. By consideration of the quantity (x/x∗)v separately for

x ∈ LI and the sequence {xk} we will produce a contradiction.

Consider x ∈ LI . This implies xi = 0 for i ∈ I. Since vi ≥ 0 for i ∈ I and there exists at

least one i0 ∈ I such that vi0 > 0, it follows that

( x

x∗
)
v

= 0. (5.26)

Now consider the sequence {xk} ⊂ S converging to x. We have

( xk

x∗
)
v

= ( xk

x∗
)
∑(i,j)∈R̃ λij(zi−zj)

= ∏
(i,j)∈R̃

[( xk

x∗
)
zi−zj

]
λij

.
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It follows from xk ∈ S and λij ≥ 0 that, for every (i, j) ∈ R̃,

[( xk

x∗
)
zi−zj

]
λi

> 1, which implies ( xk

x∗
)
v

> 1.

It remains to take the limit xk → x. The function (x/x∗)v is continuous on Rm
>0; further-

more, it is continuous at any x ∈ ∂Rm
>0 such that vi ≥ 0 if xi = 0. Since v satisfies this for

xk → x ∈ LI , we have

lim
k→∞

( xk

x∗
)
v

= ( x

x∗
)
v

≥ 1. (5.27)

This contradicts (5.39). It follows that no v satisfying (5.37) and (5.38) exists. However,

the existence of such a v was a direct consequence of the non-existence of an α satisfying

(5.22) and (5.23), so it follows that such an α must exist. This proves our claim.

This result allows us to prove the following, which corresponds to Corollary 18 of [13].

We have significantly modified the wording to make explicit ⟨α, f(x)⟩ ≤ 0 for all x ∈ S.

Lemma 5.3.2. Consider a detailed balanced reaction system. If S ∩ LI /= ∅ then there

exists an α ∈ Rm
≤0 satisfying

αi < 0, for i ∈ I

αi = 0, for i /∈ I

such that ⟨α, f(x)⟩ ≤ 0 for every x ∈ S.

Proof. Since S ∩LI /= ∅, we know by Lemma 5.3.1 that there exists an α ∈ Rm
≤0 satisfying

αi < 0, for i ∈ I

αi = 0, for i /∈ I
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such that

⟨zi − zj, α⟩ ≥ 0, for i = 1, . . . , n − 1. (5.28)

According to Lemma 3.2.1 we have

⟨α, f(x)⟩ = ⟨α, ∑
(i,j)∈R̃

κij(zj − zi) [(
x

x∗
)
zi

− ( x

x∗
)
zj

] ⟩

= − ∑
(i,j)∈R̃

κij [(
x

x∗
)
zi

− ( x

x∗
)
zj

] ⋅ ⟨zi − zj, α⟩.
(5.29)

By Definition 5.3.2 we have that, for every x ∈ S,

(( x

x∗
)
zi

− ( x

x∗
)
zj

) ≥ 0. (5.30)

It follows immediately from (5.28), (5.45), (5.30), and the fact that κij > 0 for every

(i, j) ∈ R̃ that ⟨α, f(x)⟩ ≤ 0 for all x ∈ S, and we are done.

Lemma 5.3.2 implies that, within any stratum S adjacent to a set LI , there is a linear

functional H(x) = ⟨α,x⟩ which pushes trajectories away, since H(x) takes its maximum

along LI , and we have

d

dt
H(x(t)) = ⟨α, d

dt
x(t)⟩ ≤ 0

so long as x(t) ∈ S.

Since this is true for every stratum and every set LI , it is tempting to conclude that no

trajectory may approach ∂Rm
>0, and therefore that the unique positive equilibrium concen-

tration permitted in each compatibility class is globally stable, but this is not warranted.

Since multiple strata may intersect a given face, and each stratum may have a different

188



linear functional, it is conceivable that a trajectory could still approach ∂Rm
>0 through cre-

ative maneouvring between the adjacent strata. More consideration of this point will be

conducted in Section 5.3.2.

Despite this limitation, the following global stability result has been proved and can be

found as Theorem 23 of [13]. We omit the proof.

Theorem 5.3.1. Consider a detailed balanced system with a two-dimensional stoichiomet-

ric subspace S and bounded positive compatibility classes Cx0. Then the unique positive

equilibrium concentration x∗ in Cx0 is a global attractor for Cx0.

Example 5.3.1. Consider the reaction system

O
k+1⇄
k−1

A1

k+2⇄
k−2

A2.

This system is governed by the dynamics

dx1

dt
= k+1 − (k−1 + k+2 )x1 + k−2x2

dx2

dt
= k+2x1 − k−2x2

(5.31)

from which it easily follows that the system is detailed balanced at the equilibrium concen-

tration

x∗1 =
k+1
k−1

x∗2 =
k+1k

+
2

k−1k
−
2

.

We want to determine what the strata for this system look like. In order to do this, we

find all possible acyclic orientations R̃. For this sytem, there is no way to choose a cyclic

orientation by choosing one reaction arrow from each of reaction pairs. It follows that we
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have four acyclic orientations, which are given by

R1 ∶ O Ð→ A1 Ð→ A2

R2 ∶ O Ð→ A1 ←Ð A2

R3 ∶ O ←Ð A1 Ð→ A2

R4 ∶ O ←Ð A1 ←Ð A2.

The four corresponding strata are given by

S1 = {x ∈ Rm
>0 ∣ 1 > (x1

x∗1
) > (x2

x∗2
)}

S2 = {x ∈ Rm
>0 ∣ 1 > (x1

x∗1
) and (x2

x∗2
) > (x1

x∗1
)}

S3 = {x ∈ Rm
>0 ∣ (x1

x∗1
) > 1 and (x1

x∗1
) > (x2

x∗2
)}

S4 = {x ∈ Rm
>0 ∣ (x2

x∗2
) > (x1

x∗1
) > 1} .

(5.32)

We can see how trajectories behave within these strata by considering a vector field plot

(see Figure 5.3).

It is clear that trajectories in each stratum adjacent to a face (S1, S2, and S3) are

repelled from these faces. (In fact, we know no ω-limit point exists on the boundary by

Theorem 5.1.2 since no face is a semilocking set. We carry out the following analysis for

illustrative purposes.) We would like to be a little more explicit—we would like to find the

linear functionals H(x) which succeed in repelling trajectories from the boundaries.

Since the α ∈ R2
≤0 has support on I, we can see that our options for H(x) are limited

for the strata intersecting the faces FI where I = {1} (S2) and I = {2} (S1 and S3). In fact,
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for I = {1}, our only choice is a positive scaling of

H(x) = ⟨α,x⟩ = [−1 0] ⋅ [x1 x2] = −x1

and for I = {2}, our only choice is a positive scaling of

H(x) = ⟨α,x⟩ = [0 − 1] ⋅ [x1 x2] = −x2.

It can be easily checked that
d

dt
H(x) ≤ 0 in the relevant advacent strata, but we will not

perform the analysis here.

Instead, consider the face FI corresponding to I = {1,2}. There are two adjacent strata,

S1 and S2. We notice, however, that the selection of a suitable α ∈ R2
≤0 is not trivial since

on the support of I we have multiple possible orientations (e.g. it may be possible that

α = [−1 − 1] works but α = [−1 − 10] does not).

In order to determine which α’s are admissible for the construction of our linear func-

tionals H(x) we consider Lemma 3.2.1. Specifically, when considering x ∈ S1, we rewrite

(2.4) as
⎡⎢⎢⎢⎢⎢⎢⎣

dx1

dt
dx2

dt

⎤⎥⎥⎥⎥⎥⎥⎦
= κ12

⎡⎢⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎥⎦
(1 − (x1

x∗1
)) + κ23

⎡⎢⎢⎢⎢⎢⎢⎣

−1

1

⎤⎥⎥⎥⎥⎥⎥⎦
((x1

x∗1
) − (x2

x∗2
)) (5.33)

and when considering x ∈ S2, we rewrite (2.4) as

⎡⎢⎢⎢⎢⎢⎢⎣

dx1

dt
dx2

dt

⎤⎥⎥⎥⎥⎥⎥⎦
= κ12

⎡⎢⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎥⎦
(1 − (x1

x∗1
)) + κ32

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦
((x2

x∗2
) − (x1

x∗1
)) (5.34)

where κ12 > 0, κ23 > 0, and κ32 > 0.
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It is clear that the bracketted terms are positive for x in the respective strata. In order

to determine an α ∈ Rm
≤0 with support on I = {1,2} such that ⟨α, f(x)⟩ ≤ 0, we therefore

need only consider the vector quantities in front of the brackets in (5.33) and (5.34). We

can see, in fact, that α = [−1 − 1] works for both (5.33) and (5.34). This implies that

H(x) = ⟨α,x⟩ = [−1 − 1] ⋅ [x1 x2] = −x1 − x2

is a suitable linear functional within both S1 and S2.

x*

S1

S2

S3

S4

Figure 5.3: Vector field plot of (5.31) with k−1 = k+1 = k−2 = k+2 = 1. The four strata (5.32)
have been overlaid.

5.3.2 General Strata

In this section, we generalize the notion of stratification to complex balanced systems.

While our notion of stratification is based on that presented in [13], some differences arise.

We consider a complete ordering of all the complexes in the system, rather than pairwise
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ordering as in Definition 5.3.2, and we do not require any conditions on the reaction graph.

We also keep the notion of stratification general by considering the state space Rm
>0 rather

than each Cx0 . The definitions and results contained in this section can be found in [54].

First of all, we will need to introduce the concept of a permutation operator.

Definition 5.3.3. Consider the set I = {1,2, . . . , n}. The operator µ ∶ I ↦ I is called a

permutation operator if it is bijective. Furthermore, we will say that the permutation

operator µ implies the ordering

µ(i) ≻ µ(i + 1), i = 1, . . . , n − 1

on the set {1,2, . . . , n}.

A permutation operator simply shuffles the elements of a set. To each such operator

we can define a stratum in the following way.

Definition 5.3.4. Given a permutation operator µ ∶ I ↦ I we define the stratum associ-

ated with µ to be

Sµ = {x ∈ Rm
>0 ∣ ( x

x∗
)
zµ(i)

> ( x

x∗
)
zµ(i+1)

for i = 1, . . . , n − 1}

where x∗ is an arbitrary positive equilibrium concentration permitted by the system.

This is a more general notion of strata than that given by Definition 5.3.2 (i.e. for some

systems, strata according to Definition 5.3.2 are further stratified by Definition 5.3.4);

however, it is natural for the analysis we undertake in the remainder of this section.

Strata defined in this way have some nice properties, most importantly, that each
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x ∈ Rm
>0 either belongs to a unique stratum Sµ or the boundary separating one or more

strata.

It is also worth noting that not every permutation generates a non-empty stratum. For

example, for a system containing the complexes C1 = O,C2 = A1, C3 = A2, and C4 = A1 +A2

there are no points satisfying

x2

x∗2
> x1

x∗1

x2

x∗2
> x1

x∗1
> 1

since the first and last conditions imply x∗1 > x1 and x1 > x∗1, respectively. That is to say,

for the permutation µ([1,2,3,4]) = [3,4,2,1] we have Sµ = ∅ (µ([1,2,3,4]) = [3,4,2,1]

will be our short-hand for µ(1) = 3, µ(2) = 4, µ(3) = 2, µ(4) = 1). In this section, we will

consider only those permutation operators µ which generate non-empty strata Sµ. (This is

related to, although not equivalent to, the condition that R̃ contain no cycles in Definition

5.3.2.)

Strata defined according to Definition 5.3.4 share important properties with those de-

fined according to Definition 5.3.2. In particular, Lemma 5.3.1 can be extended by the

following result.

Lemma 5.3.3 (Lemma 3.4, [54]). If Sµ ∩LI /= ∅ then there exists an α ∈ Rm satisfying

αi < 0, for i ∈ I

αi = 0, for i /∈ I
(5.35)

and

⟨zµ(i) − zµ(i+1), α⟩ ≥ 0, for i = 1, . . . , n − 1. (5.36)

Proof. Suppose there is no α ∈ Rm satisfying (5.35) and (5.36). By application of Farkas’

Lemma (Lemma 5.1.1) on the index set I, this implies that there exist λi ≥ 0, i = 1, . . . , n−1
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such that

v =
n−1

∑
i=1

λi(zµ(i) − zµ(i+1)) (5.37)

satisfies

vi ≥ 0, for all i ∈ I

vi0 > 0, for at least one i0 ∈ I.
(5.38)

By assumption we have Sµ∩LI /= ∅. This implies that there exists a sequence {xk} ⊂ Sµ

such that xk → x ∈ LI as k → ∞. By consideration of the quantity (x/x∗)v separately for

x ∈ LI and the sequence {xk} we will produce a contradiction.

Consider x ∈ LI . This implies xi = 0 for i ∈ I. Since vi ≥ 0 for i ∈ I and there exists at

least one i0 ∈ I such that vi0 > 0, it follows that

( x

x∗
)
v

= 0. (5.39)

Now consider the sequence {xk} ⊂ Sµ converging to x. We have

( xk

x∗
)
v

= ( xk

x∗
)
∑
n−1
i=1 λi(zµ(i)−zµ(i+1))

=
n−1

∏
i=1

[( xk

x∗
)
zµ(i)−zµ(i+1)

]
λi

.

It follows from xk ∈ Sµ and λi ≥ 0 that, for i = 1, . . . , n − 1,

[( xk

x∗
)
zµ(i)−zµ(i+1)

]
λi

> 1, which implies ( xk

x∗
)
v

> 1.

It remains to take the limit xk → x. The function (x/x∗)v is continuous on Rm
>0; further-

more, it is continuous at any x ∈ ∂Rm
>0 such that vi ≥ 0 if xi = 0. Since v satisfies this for
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xk → x ∈ LI , we have

lim
k→∞

( xk

x∗
)
v

= ( x

x∗
)
v

≥ 1. (5.40)

This contradicts (5.39). It follows that no v satisfying (5.37) and (5.38) exists. However,

the existence of such a v was a direct consequence of the non-existence of an α ∈ Rm
≤0

satisfying (5.35) and (5.36), so it follows that such an α must exist. This proves our claim.

5.3.3 Cyclic Complex Balanced Systems

In this section, we consider the properties of cyclic complex balanced systems (see Definition

3.3.1).

The following result allows us to rearrange the governing system of differential equations

given by (3.24) into a form which will be convenient in light of our conception of strata.

Since we are dealing with strata, we will need to recall the definition of a permutation

operator (Definition 5.3.3).

It is important to notice the difference between µ(j + 1) and µ(j) + 1: the increment

µ(j + 1) is made with respect to the implied ordering given by the permutation µ, while

the increment µ(j) + 1 is made with respect to the original ordering of the cycle.

Theorem 5.3.2 (Theorem 3.8, [54]). Given a cyclic complex balanced system and an

arbitrary permutation operator µ, the system (2.4) can be written

dx

dt
= κ

n−1

∑
i=1

[
i

∑
j=1

sµ(j)]((
x

x∗
)
zµ(j)

− ( x

x∗
)
zµ(j+1)

) (5.41)

where sµ(j) = zµ(j)+1 − zµ(j).
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Proof. We notice first of all that, since the system is cyclic, we have

n

∑
i=1

sµ(i) =
n

∑
i=1

si =
n

∑
i=1

(zi+1 − zi) = 0

which immediately implies κ
n

∑
i=1

sµ(i) (
x

x∗
)
zµ(n)

= 0.

Subtracting this from (3.24), which is the form of (2.3) justified by Lemma 3.3.1, we

have

dx

dt
= κ

n−1

∑
i=1

sµ(i) [(
x

x∗
)
zµ(i)

− ( x

x∗
)
zµ(n)

]

= κ
n−1

∑
i=1

sµ(i) [
n−1

∑
j=i

(( x

x∗
)
zµ(j)

− ( x

x∗
)
zµ(j+1)

)]

= κ
n−1

∑
i=1

[
i

∑
j=1

sµ(j)]((
x

x∗
)
zµ(i)

− ( x

x∗
)
zµ(i+1)

)

and the result is shown.

It is clear from (5.41) that the vectors ∑i
j=1 sµ(j), i = 1, . . . , n−1, play an intricate role in

determining the dynamics of a system within a given stratum. The following result allows

us to further understand the nature of these vectors.

Lemma 5.3.4 (Lemma 3.9, [54]). For every permutation operator µ and every k = 1,2, . . . , n−

1, there exist λj ∈ Z≤0, j = 1,2, . . . , n − 1, such that

k

∑
j=1

sµ(j) =
n−1

∑
j=1

λj (zµ(j) − zµ(j+1))

where sµ(j) = zµ(j)+1 − zµ(j).
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Proof. Consider a permutation operator µ and fix a k ∈ {1,2, . . . , n − 1}. Consider

sµ(k) = zµ(k)+1 − zµ(k).

Clearly, there exists a t1 ∈ {1,2, . . . , n} such that µ(k) + 1 = µ(t1). We need to consider

where µ(t1) lies in the ordering implied by µ relative to µ(k), in particular, whether (1)

µ(t1) ≻ µ(k), or (2) µ(t1) ≺ µ(k). We will use an iterative process on the vectors sµ(j),

j = 1, . . . , k, to show that the case µ(t1) ≻ µ(k) eventually leads us in a natural way to

consideration of an index ti0 satisfying µ(ti0) ≺ µ(k).

Case 1: If µ(t1) ≻ µ(k) then sµ(t1) is a term in the sum ∑k
j=1 sµ(j). It follows that

sµ(k) + sµ(t1) = (zµ(k)+1 − zµ(k)) + (zµ(t1)+1 − zµ(t1))

= zµ(t1)+1 − zµ(k)

(5.42)

since µ(k) + 1 = µ(t1). We now repeat this process. We know that there exists a t2 ∈

{1,2, . . . , n} such that µ(t1) + 1 = µ(t2) and, as before, either µ(t2) ≻ µ(k) or µ(t2) ≺ µ(k).

If µ(t2) ≻ µ(k), we add sµ(t2) to the cumulative sum (5.42). We can continue doing this

until we arrive at an index i0 for which µ(ti0−1) + 1 = µ(ti0) ≺ µ(k), yielding

sµ(k) +
i0−1

∑
i=1

sµ(ti) = zµ(ti0) − zµ(k). (5.43)

We know such a terminal index exists because the cyclic nature of the system guarantees

each index µ(ti − 1) + 1 = µ(ti) ≻ µ(k) is unique, so that a distinct vector sµ(ti) is chosen

during each iteration. Since k < n and the cycle is of length n, this process must reach an

index µ(ti0 − 1) + 1 = µ(ti0) ≺ µ(k) eventually.
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Case 2: If µ(ti0) ≺ µ(k), we can interpolate (5.43) as follows:

sµ(k) +
i0−1

∑
i=1

sµ(ti) = zµ(ti0) − zµ(k)

= (zµ(ti0) − zµ(ti0−1)) +⋯ + (zµ(k+1) − zµ(k))

= −(zµ(k) − zµ(k+1)) −⋯ − (zµ(ti0−1) − zµ(ti0)).

(5.44)

Notice that if our initial reindexing µ(k) + 1 = µ(t1) yielded µ(t1) ≺ µ(k), we can take

ti0 = t1 in the above argument. This amounts to interpolating sµ(k) = zµ(t1) − zµ(k) directly.

We return now to consideration of the entire sum ∑k
j=1 sµ(j). Since a distinct vector

sµ(ti) is chosen in each application of the argument for Case 1, we can divide this sum

into those elements sµ(j) considered in (5.44) and those not. For those elements not yet

considered, the same argument can be applied starting with the lowest remaining index,

which will yield another sum of the form (5.44). This will remove some of the remaining

vectors sµ(j) from the sum. Since there are a finite number of complexes, this process

must terminate at some point. Clearly, any sum of vectors of the form given in (5.44) has

non-positive integer coefficients for the terms zµ(j)−zµ(j+1), so that the existence of λj ∈ Z≤0

is guaranteed. Since µ and k ∈ {1,2, . . . , n − 1} were chosen arbitrarily, the result follows.

The results to this point are sufficient to prove the following result. This should be

contrasted with Corollary 18 of [13].

Lemma 5.3.5 (Lemma 3.10, [54]). Consider a cyclic complex balanced system and an
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arbitrary permutation operator µ. If Sµ ∩LI /= ∅ then there exists an α ∈ Rm
≤0 satisfying

αi < 0, for i ∈ I

αi = 0, for i /∈ I

such that ⟨α, f(x)⟩ ≤ 0 for every x ∈ Sµ.

Proof. Since Sµ ∩LI /= ∅, we know by Lemma 5.3.3 that there exists an α ∈ Rm
≤0 satisfying

αi < 0, for i ∈ I

αi = 0, for i /∈ I

such that

⟨zµ(i) − zµ(i+1), α⟩ ≥ 0, for i = 1, . . . , n − 1.

According to Theorem 5.3.2 we have

⟨α, f(x)⟩ = ⟨α,κ
n−1

∑
i=1

[
i

∑
j=1

sµ(j)]((
x

x∗
)
zµ(j)

− ( x

x∗
)
zµ(j+1)

)⟩

= κ
n−1

∑
i=1

(( x

x∗
)
zµ(j)

− ( x

x∗
)
zµ(j+1)

) ⋅ ⟨α,
i

∑
j=1

sµ(j)⟩.
(5.45)

For every x ∈ Sµ, by Definition 5.3.4 we have

(( x

x∗
)
zµ(j)

− ( x

x∗
)
zµ(j+1)

) ≥ 0. (5.46)

Now consider ⟨α,∑i
j=1 sµ(j)⟩. We know from Lemma 5.3.4 that there exist λj ∈ Z≤0,
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j = 1,2, . . . , n − 1, such that

i

∑
j=1

sµ(j) =
n−1

∑
j=1

λj(zµ(j) − zµ(j+1)).

We also know by Lemma 5.3.3 that ⟨zµ(j)−zµ(j+1), α⟩ ≥ 0. Together, these facts imply that

for every i = 1,2, . . . , n − 1,

⟨α,
i

∑
j=1

sµ(j)⟩ =
n−1

∑
j=1

λj⟨zµ(j) − zµ(j+1), α⟩ ≤ 0. (5.47)

It follows immediately from (5.45), (5.46), (5.47) and the fact that κ > 0 that ⟨α, f(x)⟩ ≤

0 for every x ∈ Sµ, and we are done.

5.3.4 General Complex Balanced Systems

In this section, we extend Lemma 5.3.5 to general complex balanced systems. We follow

the methodology employed by F. Horn and R. Jackson and reproduced in Section 3.3.2 in

generalizing from cyclic complex balanced systems to general complex balanced systems

[33].

Theorem 5.3.3 (Theorem 3.12, [54]). Consider a complex balanced system and an arbi-

trary permutation operator µ. If Sµ ∩LI /= ∅ then there exists an α ∈ Rm
≤0 satisying

αi < 0, for i ∈ I

αi = 0, for i /∈ I

such that ⟨α, f(x)⟩ ≤ 0 for every x ∈ Sµ.
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Proof. Consider a permutation operator µ satisfying Sµ ∩ LI /= ∅. By Lemma 5.3.3 there

exists an α ∈ Rm
≤0 satisfying

αi < 0, for i ∈ I

αi = 0, for i /∈ I
(5.48)

and

⟨zµ(i) − zµ(i+1), α⟩ ≥ 0, for i = 1, . . . , n − 1. (5.49)

The form of α from (5.48) is what we need for the theorem. We now want to use (5.49) to

determine the sign of ⟨α, f(x)⟩.

Since the system is complex balanced, by Lemma 3.3.3 we have

⟨α, f(x)⟩ = κ1⟨α,X1⟩ + ⋯ + κδ⟨α,Xδ⟩

where the κi are positive constants determined by the rate constants and the Xi have the

form (3.28). Each Xi corresponds to a cycle in the cyclic decomposition of the system

where the ith cycle is indexed {ν(i)
1 , ν

(i)
2 , . . . , ν

(i)
li
, ν

(i)
1 }. The overall ordering

µ(1) ≻ µ(2) ≻ ⋯ ≻ µ(n) (5.50)

implies an ordering on the complex indices {ν(i)
1 , . . . , ν

(i)
li

}. We can do this by simply remov-

ing the elements from (5.50) which do not correspond to indices in the set {ν(i)
1 , . . . , ν

(i)
li

}

whilst otherwise preserving the ordering.

Now consider a single term ⟨α,Xi⟩, i = 1, . . . , δ. Firstly, we reindex the complexes

so that the relevant cycle is {1,2, . . . , li,1}. We let µi denote the permutation operator

which preserves the ordering implied by µ on this reduced index set, after reindexing. (For
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example, consider a system with five complexes and the cycle {2,4,1,2}. Consider the

permutation operator µ([1,2,3,4,5]) = [2,5,3,1,4]. Then we reindex the cycle so that we

have {1,2,3,1} and µi([1,2,3]) = [1,3,2] since 2 ≻ 1 ≻ 4 in the original ordering implied

by µ.)

Since Xi is cyclic and complex balanced, we can apply all of the results used in the

proof of Lemma 5.3.5 to get

⟨α,Xi⟩ =
li−1

∑
i=1

(( x

x∗
)
zµi(j)

− ( x

x∗
)
zµi(j+1)

) ⋅ ⟨α,
i

∑
j=1

sµi(j)⟩ (5.51)

where sµi(j) = zµi(j)+1−zµi(j). Since the ordering of the complexes corresponding to elements

in the ith cycle satisfy (5.50), we have

(( x

x∗
)
zµi(j)

− ( x

x∗
)
zµi(j+1)

) ≥ 0

for all x ∈ Sµ. Similarly, we can apply Lemma 5.3.4 to show that

⟨α,
i

∑
j=1

sµi(j)⟩ =
li−1

∑
j=1

λj⟨zµi(j) − zµi(j+1), α⟩ ≤ 0 (5.52)

where λj ∈ Z≤0 for j = 1,2, . . . , li −1. This implies κi⟨α,Xi⟩ ≤ 0. Since we can carry out this

procedure for all i = 1, . . . , δ, we have

⟨α, f(x)⟩ = κ1⟨α,X1⟩ + ⋯ + κδ⟨α,Xδ⟩ ≤ 0

and we are done.
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5.3.5 Applications

Several global stability results follow immediately from Theorem 5.3.3. In particular, this

theorem is sufficient to guarantee solutions of (2.4) do not approach the boundary for

general complex balanced systems if they remain within a single stratum. This is clear

because, if we take T ≥ 0 to be the final time that a trajectory x(t) enters the relevant

stratum, the linear functional H(x(t)) = ⟨α,x(t)⟩, where α satisfies (5.35), must satisfy

H(x(t)) ≤ H(x(T )) < 0 for all t > T since d
dtH(x(t)) = ⟨α, f(x(t))⟩ ≤ 0 for all t > T by

Theorem 5.3.3. This contradicts the observation that, if x(t) converges to x∗ ∈ LI then

lim
t→∞

H(x(t)) =H(x∗) = 0.

If multiple strata Sµ intersect a given set LI , however, we cannot guarantee the existence

of a common α satisfying ⟨α, f(x)⟩ ≤ 0 simultaneously within all such strata. Consequently,

we cannot rule out the possibility that trajectories approach the boundary through creative

maneouvering between strata.

This difficulty, however, does not always arise. In cases where there is a common α

“near” each LI , trajectories are pushed away from the boundary according to Theorem

5.1.3. The following lemma relates this result to the methodology of Section 5.3.4.

Lemma 5.3.6 (Lemma 3.14, [54]). Let MI denote the set of permutation operators µ such

that Sµ ∩ LI /= ∅ for a fixed I. Then, for every compact subset K of LI , there exists a

neighbourhood U of K in Rm
≥0 such that

U ⊆ ⋃
µ∈MI

Sµ.
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Proof. Suppose there is a compact subset K of LI such that, for every neighbourhood U of

K in Rm
≥0, U ⊆ ∪µ∈MI

Sµ is violated. It follows that there exists a sequence {xk} ⊆ ∪µ/∈MI
Sµ

such that xk approaches LI as k →∞. Since K is compact, we may select the sequence so

that xk → x for some specific x ∈ LI .

Since there are finite strata, we can select a subsequence {xki} ⊆ Sµ for a fixed µ /∈MI ;

however, this implies lim
i→∞

xki = x ∈ Sµ ∩ LI . This contradicts µ /∈ MI . Consequently, our

assumption was in error, and U ⊆ ∪µ∈MI
Sµ for some neighbourhood U of K in Rm

≥0. The

result follows.

Given Lemma 5.3.6 and Theorem 5.1.3, we can see that (5.7) corresponds to the exis-

tence of a common αI existing in all strata adjacent to a given set LI , which is the desired

condition. In general, however, it is difficult to verify this condition directly. The following

result gives testable conditions from which (5.7) follows. It also answers the question of

global stability.

Corollary 5.3.1 (Corollary 3.15, [54]). Consider a complex balanced system. Let MI de-

note the set of permutation operators µ such that Sµ ∩ LI /= ∅ for a fixed I. Suppose that

for every fixed I, 1 ≤ ∣I ∣ < m, corresponding to a semi-locking set one of Condition 1 or

Condition 2 given below is satisfied. Then the unique positive complex balanced equilibrium

x∗ of Cx0 is a global attractor for Cx0.

Condition 1: We will say Condition 1 is satisfied if there exists an αI ∈ Rm
≤0 satisfying

(5.6) such that, for all i = 1,2, . . . , n − 1 and all µ ∈MI ,

⟨zµ(i) − zµ(i+1), αI⟩ ≥ 0.
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Condition 2: Consider the cycles {ν(i)
1 , ν

(i)
2 , . . . , ν

(i)
li
, ν

(i)
1 }, i = 1,2, . . . , δ, in the cyclic

decomposition of a complex balanced system according to Lemma 3.3.3. We will reindex

each cycle to {1,2, . . . , li,1} and let µi, i = 1, . . . , δ, denote the appropriately reindexed

permutation operator restricted to the complexes in the ith cycle. We will say Condition 2

is satisfied if there exists an αI ∈ Rm
≤0 satisfying (5.6) such that, for all i = 1,2, . . . , δ and

all µ ∈MI ,

⟨
k

∑
j=1

sµi(j), αI⟩ ≤ 0, for k = 1,2, . . . , li − 1,

where sµi(j) = zµi(j) − zµi(j)+1.

Proof. The proof will proceed in the following steps. We will prove firstly that Condition 1

or 2 is sufficient to show ⟨αI , f(x)⟩ ≤ 0 for all x ∈ ∪µ∈MI
Sµ. We then show by Lemma 5.3.6

that the such systems satisfy the hypotheses of Theorem 5.1.3 so that ω(x0)∩∂Rm
>0 = ∅. We

then show that for complex balanced systems this is enough to prove the global stability

of the positive equilibrium concentration in each positive compatibility class.

Consider a complex balanced system. We know that ω(x0) ∩ LI = ∅ for all sets LI

corresponding to non-semi-locking sets I by Lemma 5.3.3. We also know that for complex

balanced systems we have ω(x0)∩{0} = ∅ (see Proposition 20 of [13], for one proof). That

is to say, we need only consider sets LI corresponding to semi-locking sets I such that

1 ≤ ∣I ∣ <m.

It is clear by the proof of Theorem 5.3.3 that either Condition 1 (by (5.52)) or Condition

2 (by (5.51)) is sufficient to prove that ⟨αI , f(x)⟩ ≤ 0 for all x ∈ ∪µ∈MI
Sµ. This implies by

Lemma 5.3.6 that for every compact subset K of LI there is a neighbourhood U of K in
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Rm
≥0 such that ⟨αI , f(x)⟩ ≤ 0 for all x ∈ U . We know that solutions of (2.4) are bounded for

complex balanced systems since, for the function

L(x) =
m

∑
i=1

xi(ln(xi) − ln(x∗i ) − 1) + x∗i , (5.53)

we have d
dtL(x(t)) < 0 for all t ≥ 0 and x0 ∈ Rm

>0 [33]. It follows by Theorem 5.1.3 that

ω(x0) ∩ LI = ∅ for all such sets LI . Since we have considered all sets LI , it follows that

ω(x0) ∩ ∂Rm
>0 = ∅.

Since our system is complex balanced, it follows by Theorem 3.3.1 that there is precisely

one equilibrium concentration x∗ ∈ Rm
>0 in each positive stoichiometric compatibility class

Cx0 . Since there are no ω-limit points on the boundary of the positive orthant, by Theorem

5.1.1 it follows that the only ω-limit point is the positive equilibrium concentration. It

follows that x∗ is a global attractor for Cx0 and we are done.

Since Condition 1 implies Condition 2 by Lemma 5.3.4, but the converse does not

necessarily hold, it is typically preferable to check Condition 2. In the following section,

our approach will be to define a set P of vectors ∑k
j=1 sµi(j), i = 1, . . . , δ, k = 1, . . . , li − 1, and

check Condition 2 relative to this set.

The following result corresponds to Corollary 4.5 of [3]. It is a generalization of Theorem

23 of [13] (stated Theorem 5.3.1 here) to complex balanced systems.

Corollary 5.3.2 (Corollary 3.16, [54]). Consider a complex balanced mass-action system

whose stoichiometric subspace S is two-dimensional. Then the unique positive complex

balanced equilibrium x∗ of Cx0 is a global attractor for Cx0.

Proof. With application of Corollary 5.3.1, the proof follows identically to the proof of
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Theorem 23 contained in [13]. We also notice that since trajectories of any complex bal-

anced system are bounded by L(x(t)) ≤ L(x0) for all t ≥ 0, we may remove the assumption

of boundedness.

Example 5.3.2. The following example is given in [3] as an example of a three-dimensional

complex balanced system for which a general method of guaranteeing global stability is not

known. The system considered is

A1 ⇆ A2 ⇆ A1 +A2 ⇆ A1 +A3. (5.54)

We assign C1 = A1, C2 = A2, C3 = A1 +A2, and C4 = A1 +A3, and x1 = [A1], x2 = [A2], and

x3 = [A3]. The system is complex balanced at all equilibrium concentrations so we need

not consider the rate constants. The compatibility class Cx0 = R3
>0 is three-dimensional and

the only non-trivial semi-locking set is I = {1,2} so that we need only consider the set LI

corresponding to this index set.

We will show that all strata such that Sµ∩L{1,2} /= ∅ have a common αI ∈ Rm
≤0 satisfying

(5.6) and Condition 2 of Corollary 5.3.1. There are six µ such that Sµ ∩L{1,2} /= ∅:

(1) µ([1,2,3,4]) = [2,4,1,3] (4) µ([1,2,3,4]) = [2,1,4,3]

(2) µ([1,2,3,4]) = [4,2,1,3] (5) µ([1,2,3,4]) = [1,2,4,3]

(3) µ([1,2,3,4]) = [4,1,2,3] (6) µ([1,2,3,4]) = [1,4,2,3].

Since the vectors ∑k
j=1 sµi(j) are the vector coefficients of the bracketed strata terms in

(5.41), it is instructive to rewrite the system of differential equations (2.4) implied by the

network (5.54) according to Theorem 5.3.2. (This analysis is not, however, required to

determine the set of all admissible vectors ∑k
j=1 sµi(j).) We will carry out the analysis for
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one stratum and leave the rest as an exercise.

The first stratum is given by

Sµ = {x ∈ R3
>0 ∣ x2

x∗2
> x1

x∗1
⋅ x3

x∗3
> x1

x∗1
> x1

x∗1
⋅ x2

x∗2
} . (5.55)

Since the system can be decomposed into the cycles {1,2,1}, {2,3,2}, and {3,4,3}, accord-

ing to Lemma 3.27 and Theorem 5.3.2, the system (2.4) can be written

dx

dt
= κ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(x2

x∗2
− x1

x∗1
) + κ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(x2

x∗2
− x1

x∗1
⋅ x2

x∗2
)

+ κ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(x1

x∗1
⋅ x3

x∗3
− x1

x∗1
⋅ x2

x∗2
)

(5.56)

where x∗ = [x∗1, x∗2, x∗3]T is the unique positive complex balanced equilibrium point and κ1, κ2

and κ3 are positive constants determined by the rate constants. In Sµ the bracketed terms

of (5.56) are strictly positive so that the sign of ⟨αI , f(x)⟩ is determined by the vector terms

alone. Consider a vector αI ∈ R3
≤0 satisfying (5.6) for which

αI = λ1(−1,0,0) + λ2(−1,−1,0), λ1 ≥ 0, λ2 ≥ 0.

For any such αI we have ⟨αI , f(x)⟩ ≤ 0, which is sufficient to show the linear function

H(x(t)) = ⟨αI ,x(t)⟩ repels trajectories from the set L{1,2} in the first stratum.

A similar analysis can be carried out in the five other strata. Removing repetition, the
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set of admissible vectors ∑k
j=1 sµ(j) is

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Since αI = (−1,−1,0) satisfies ⟨αI ,v⟩ ≤ 0 for all v ∈ P , we have that ⟨αI , f(x)⟩ ≤ 0 for all

x ∈ Sµ where Sµ is such that Sµ∩L{1,2} /= ∅. It follows by Corollary 5.3.1 that x∗ is a global

attractor for Cx0 = R3
>0 and we are done.
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Chapter 6

Linear Conjugacy of Chemical

Reaction Networks

In this chapter we introduce the concept of linearly conjugate reaction networks. The

primary result of Section 6.2 is Theorem 6.2.3 which gives conditions under which two

networks are linearly conjugate [36]. In Section 6.3 we adapt the mixed-integer linear pro-

gramming framework introduced by G. Szederkényi in the series of papers [58–61] to con-

sider linear conjugate network and refine the procedure for determining weakly reversible

networks [38]. We illustrate the important points with examples.

6.1 Background

In the typical analysis of chemical reaction networks, we are given a network and asked to

analyse its qualitative behaviour based on some set of kinetic assumptions. We are also

often asked the inverse problem, that is to say, we are often given kinetic information and
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asked to determine the network structure.

This immediately gives rise to the following question: Is the network structure unique?

Or is it possible for two different networks to give rise to the same dynamics? Consider

the following example, which was originally given in the paper [18] by G. Craciun and C.

Pantea.

Example 6.1.1. Consider the networks

A1

2/9Ð→ A2 +A3

N ∶ A1

1/6Ð→ 2A2

A1

11/18Ð→ 2A4

(6.1)

and

A1

5/9Ð→ A2 +A4

N ′ ∶ A1

1/9Ð→ 2A3

A1

1/3Ð→ 2A4.

(6.2)

It can be easily checked that under the assumption of mass-action kinetics, both (6.1) and

(6.2) give rise to the following system of differential equations

dx1

dt
= −x1,

dx2

dt
= 5

9
x1,

dx3

dt
= 2

9
x1,

dx4

dt
= 11

9
x1 (6.3)

according to (2.3).

In other words, (6.1) and (6.2) give rise to exactly the same dynamics! If the only

information we were provided was kinetic information of the form (6.3) we would not
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be able to determine whether (6.1) or (6.2) was the correct network structure—even in

principle. Within the literature, this fact is sometimes referred to as the “fundamental

dogma of chemical kinetics” [20,58,59].

This realization has given rise to the following terms.

Definition 6.1.1. Two reaction networks N and N ′ are said to be dynamically equiv-

alent if they generate the same mass-action kinetics (2.3).

Definition 6.1.2. The reaction networks N will be called a realization of the kinetics

(2.3) if N gives rise to the system (2.3) under the assumption of mass-action kinetics. In

the case that two networks N and N ′ give rise to the same mass-action kinetics (2.3) (i.e.

they are dynamically equivalent) we will say that N ′ is an alternative realization of N , or

vice-versa.

The most comprehensive study of realizations has been conducted in [18] wherein G.

Craciun and C. Pantea consider conditions under which two networks can produce the

same dynamics. G. Craciun, C. Pantea and G. Rempala have followed up upon this work

by presenting results which attempt to quantify which networks with equivalent dynamics

are most likely to correspond to the physically realized network [20]. Other related work

can be found in E. Averbukh [6], F. Horn and R. Jackson [33], F. Krambeck [39], D.

MacLean [42], J. Tóth, G. Li, H. Rabitz and A. Tomlin [62], and J. Wei and J. Kuo [64].

An important aspect of the study of dynamically equivalent networks is that, if one

network has known dynamics and the other system does not, then the system with unknown

dynamics inherits the known dynamics of the first. This is particularly powerful when the

network with known dynamics has dynamics known from the reaction structure alone as

in networks satisfying the Deficiency Zero Theorem (Theorem 3.4.2).
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This also gives rise to the follow up question: Is it possible to relate the dynamics of two

networks when the kinetics differ from one another? That is to say, can we relate important

properties such as persistence, number and stability of equilibrium points, dimensions

of kinetic and stoichiometric subspaces, etc., between networks which do not generate

identical mass-action systems (2.3)?

This was the question which we posed in the paper [36], the results of which we summa-

rize in Section 6.2. In that paper, we attempted to bring these known results on realizations

together into a unified framework and language. We chose to borrow from dynamical sys-

tems theory in calling two networks which exhibit the same qualitative dynamics conjugate

networks [46, 65]. More specifically, we have called two networks conjugate if there is a

mapping which takes trajectories of one network into trajectories of the other. For net-

works where the governing differential equations for two networks are identical, the required

conjugacy mapping is the identity. We go further than the results of [18] with Theorem

6.2.3 by giving conditions on the network for which a non-trivial mapping is required to

demonstrate conjugacy.

Another important question is, given a specified network, can we actually find a network

which is conjugate to it? The papers [18] and [36] present conditions under which two

networks can be shown to be conjugate but they provide no mechanism by which a second

network with conjugate dynamics can be found. This is an important problem since, if a

network with unknown dynamics can be shown to be conjugate to a network with known

dynamics, the dynamical properties of the second network will apply to the first as well.

Consequently, for networks with unknown dynamics, if possible, we would like to be able

to find networks which are conjugate to it with known dynamics.

Significant headway on this problem has been made recently by G. Szederkényi. In [58],
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he proposed a mixed-integer linear programming (MILP) algorithm capable of determining

sparse and dense realizations of a given kinetics (i.e. networks with the fewest and greatest

number of reactions for a fixed complex set). This work has been continued in a series

of papers which address specific supplemental conditions which can be imposed upon the

networks. With K. Hangos and T. Péni, he considers the problem of determining when

networks have equivalent dynamics to a detailed or complex balanced network for specific

rate constant choices [59, 60], and with K. Hangos and Z. Tuza he considers conditions

which guarantee weak reversibility [61].

In Section 6.3, we summarize these results and present the results of our own collabo-

ration with G. Szederkényi [38]. In particular, we extend the MILP framework of his series

of papers to include the notion of linear conjugacy which we will present in Section 6.2.

We also show how weak reversibility can be formulated as a linear constraint within this

framework, which is an important improvement over the results of [61].

6.2 Linearly Conjugate Networks

In this section we introduce the a concept which guarantees that two mass-action systems

have the same qualitatively behaviour despite disparate reaction network structure. Our

approach to this problem is to show that there is a suitably nice mapping between the

flows of (2.3) for one network and another. In the standard theory of differential equations,

the notion of equivalence between trajectories is captured in the well-studied concept of

conjugacy (see [46, 65]).
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Consider two general systems of autonomous ordinary differential equations

dx(t)
dt

= f(x(t)), x(0) = x0 ∈ Rn (6.4)

dy(t)
dt

= g(y(t)), y(0) = y0 ∈ Rn (6.5)

and associate to them the flows Φ(x0, t) and Ψ(y0, t), respectively. We now introduce the

concepts relevant to the conjugacy of systems (6.4) and (6.5) (see [65]).

Definition 6.2.1. The function h ∶ Rn ↦ Rn is called a Ck-diffeomorphism if all partial

derivatives of h(x) and h−1(x) exist up to the kth order.

Definition 6.2.2. The systems (6.4) and (6.5) are said to be Ck-conjugate if there exists

a Ck-diffeomorphism h ∶ Rn ↦ Rn such that h(Φ(x0, t)) = Ψ(h(x0), t) for all x0 ∈ Rn and

t ≥ 0.

The notion of conjugacy is generally considered a strong condition in that it requires

the Ck-diffeomorphism h(x) to not only map orbits of one system into another but also

to exactly preserve the parametrization of time. Due to how stringent this requirement

typically is, researchers often use the weaker notion of equivalence, whereby orbits are again

mapped into orbits but only the orientation of time is preserved; the exact parametrization

of time is left undetermined. In our study of mass-action systems, however, we will be able

to satisfy the standard notion of conjugacy.

We now move the notion of Ck-conjugacy to the framework of chemical reaction net-

works. It should be noted that conjugacy is a special case of chemical lumping introduced

by J. Wei and J. Kuo in [64] and developed further by J. Tóth, G. Li, H. Rabitz and A.

Tomlin in [62]. In their notion of lumping, several species are grouped together to (poten-

tially) reduce the dimension of the kinetic system; conjugacy is implied in the case when
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the dimension is not reduced. The notion of linear conjugacy is specifically considered by

Gy. Farkas in [22], although our main result (Theorem 6.2.3) goes further in presenting

verifiable conditions under which conjugacy holds. Several other results also related to

conjugacy exist within the literature [6, 18, 39,42,58,59].

We define the reaction network N ′ = (S,C′,R′) as consisting of the reaction set

R′
i ∶

m

∑
j=1

z̃ijAj Ð→
m

∑
j=1

z̃′ijAj, i = 1, . . . , r̃ (6.6)

or, alternatively,

R′
i ∶ C̃i Ð→ C̃′i, i = 1, . . . , r̃. (6.7)

The associated mass-action system will be denoted (S,C′,R′,k′) where the rate constants

are given by k̃i > 0, i = 1, . . . , r̃. We will let Φ(x0, t) denote the flow associated with the

mass-action kinetics (2.3) for N and Ψ(y0, t) denote the flow associated with the mass-

action kinetics (2.3) for N ′. We will adopt the convention of referring to N as the original

network and N ′ as the target network.

Note that, while we follow the notation of [18] in denoting any second network by

N ′ = (S,C′,R′), we distinguish the relevant components of the second network using tildés

to avoid confusion with the vectors z′i from the first system. Also notice that the networks

N and N ′ are allowed to have not only different complexes and reactions, but different

numbers of complexes and reactions; the number of species ∣S∣ = m, however, is required

to be the same.

We are now prepared to define our notion of conjugacy of chemical reaction networks.

Definition 6.2.3. Consider two mass-action systems N and N ′. We will say N and N ′ are

Ck-conjugate if there exists a Ck-diffeomorphism h ∶ Rm
>0 ↦ Rm

>0 such that h(Φ(x0, t)) =
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Ψ(h(x0), t) for all x0 ∈ Rm
>0.

Definition 6.2.4. We will say N and N ′ are linearly conjugate if they are C∞-

conjugate and the diffeomorphism h ∶ Rm
>0 ↦ Rm

>0 is linear.

We will focus on the notion of linear conjugacy. Note that any linear diffeomorphism is

necessarily C∞ so that any linear conjugacy is a C∞-conjugacy. The following results clarify

the form the linear mapping h ∶ Rm
>0 ↦ Rm

>0 may take and the implications of conjugacy. It

should be contrasted with Lemma 1 and Theorem 1 of [22].

Lemma 6.2.1. A linear, bijective mapping h ∶ Rm
>0 ↦ Rm

>0 may consist of at most positively

scaling and reindexing of coordinates.

Proof. Consider a linear, bijective mapping h ∶ Rm
>0 ↦ Rm

>0. Since h(x) is linear, it can

be represented h(x) = Ax where A ∈ Rm×m and since h(x) is bijective, it has an inverse

h−1(x) = A−1x. Since the mappings are from Rm
>0 to Rm

>0, all entries in A and A−1 must be

non-negative and every row of A and A−1 must contain at least one non-zero entry.

Suppose there is a row of A with more than one non-zero entry. Since A and A−1

may contain no negative numbers, in order to satisfy A A−1 = I this implies that there

are at least two rows of A−1 which contain zeroes in the same m − 1 columns. Such an

A−1, however, would have a zero determinant and therefore be non-invertible, which is a

contradiction.

It follows that each row of A has precisely one positive entry. Since A is invertible it

follows that each column of A also has precisely one positive entry so that A is a positively

weighted permutation matrix. In terms of the transformation h(x) = Ax this means the

mapping may only positively scale and re-index the components of the vector x, which

completes the proof.
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Lemma 6.2.2. If a mass-action system N is linearly conjugate to a mass-action system

N ′ and N ′ exhibits locally stable dynamics, then N exhibits locally stable dynamics.

Proof. The result follows trivially from Lemma 6.2.1 and Definition 6.2.3.

It is worth noting that other qualitative properties of mass-action systems are also pre-

served by linear conjugacy (multistability, persistence, boundedness, etc.). Some aspects of

qualitative equivalence of N and N ′ can, however, fail for non-linear conjugacies (see [62]).

6.2.1 Known Results

In this section, we give a brief summary of the results which are, to the best of our

knowledge, the only attempts to demonstrate conjugacy of two mass-action systems.

For the first few results considered, conjugacy is demonstrated by showing an exact

equivalence between the governing differential equations (2.3) for N and N ′. This phe-

nomenon is called macro-equivalence in [33] and confoundability in [18]. In [58] and the

related literature, two networks with identical dynamics are called two realizations of the

same reaction kinetic differential equations (see Definition 6.19). We will also consider

the notion of lumping introduced in [64] and further developed in [62], which allows for

non-trivial conjugacies and also dimension reduction.

The most thorough study of realizations to date has been conducted by G. Craciun

and C. Pantea [18]. In that paper, the authors considered the problem of experimentally

assigning values to rate constants to systems with linearly dependent reactions flowing

from the same reactant complexes. The following is a corrected version of their main

result. We will let Creact denote the set of reactant complexes in either the complex set C

or the complex set C′.
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Theorem 6.2.1 (Theorem 4.4 (corrected), [18]). There exist rate constants choices such

that the mass-action systems N and N ′ are conjugate with h(x) = x if and only if CR(C0)∩

CR′(C0) /= ∅ for every complex C0 ∈ Creact, where

CR(C0) = {
r

∑
i=1

αi(z′i − zi) ∣ αi > 0 if zi = z0, αi = 0 otherwise} . (6.8)

This theorem gives necessary and sufficient conditions for two chemical reaction net-

works N and N ′ to admit rate constant vectors which generate the same set of governing

differential equations (2.3). It is clear that conjugacy follows according to Definition 6.2.3.

It should be noted, however, that conjugacy may only hold for specific choices of the rate

constants. (The original result in [18] overlooked the possibility that the net flow from

a reactant complex in either N or N ′ could equal zero. It was noted by G. Szederkényi

in [57] that conjugacy could hold for networks with different reactant complexes so long as

the corresponding outflows cancel in (2.3).)

Averbukh also considers conditions which relate the dynamics of an undetermined net-

work N to a network N ′ with known dynamics. In particular, he presents conditions under

which a general network has the same dynamics as a detailed balanced network (Theorem

2 of [6]). This is a powerful result since detailed balanced networks are known to exhibit

locally stable dynamics [33,63].

Conjugacy is also considered by F. Krambeck in Section 6 of [39] for detailed balanced

systems where it is referred to as non-uniqueness of the rate constants. F. Horn and R.
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Jackson briefly consider conjugate systems in [33]. Their primary example is the network

2A1 +A2
1Ð→ 3A1

N ∶ ε ↑ ↓ ε

3A2
1←Ð A1 + 2A2

where ε > 0. (This was previously considered as Example 3.4.5.) They show that the

network exhibits locally stable dynamics for ε ≥ 1/6 and that the network possesses the

same mass-action kinetics (2.3) as a complex balanced networkN ′ for ε ≥ 1/2. The Master’s

thesis of D. MacLean also contains specific examples of networks which are conjugate to

complex balanced systems [42]. This connection with complex balanced systems is made

more explicit in her unpublished research notes, to which much of the inspiration for the

idea of linear conjugacy is indebted.

Another related strain of research has been conducted on the concept of chemical lump-

ing. In [64], J. Wei and J. Kuo introduced the notion of lumping for monomolecular re-

actions. This was extended to general kinetics and transformations by J. Tóth, G. Li, H.

Rabitz and A. Tomlin in [62]. They give the following definition, which is based on the

following set-up.

Consider two general systems of autonomous ordinary differential equations

dx(t)
dt

= f(x(t)), x(0) = x0 ∈ Rn (6.9)

dy(t)
dt

= g(y(t)), y(0) = y0 ∈ Rm (6.10)

where m ≤ n and f ∶ Rn ↦ Rn and g ∶ Rm ↦ Rm are continuously differentiable. Associate

to these systems the flows Φ(x0, t) and Ψ(y0, t), respectively.
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Definition 6.2.5. Suppose there exist positive integers n and m such that m ≤ n, a C2

transformation h ∶ Rn ↦ Rm satisfying h(0) = 0, and a C1 transformation u ∶ Rn ↦ Rn−m.

Consider the transformation

ĥ(x) =
⎡⎢⎢⎢⎢⎢⎢⎣

h(x)

u(x)

⎤⎥⎥⎥⎥⎥⎥⎦
.

We will say that (6.9) is exactly lumpable into (6.10) via the transformation y = h(x)

if

1. h(Φ(x0, t)) = Ψ(h(x0), t) for all x0 ∈ Rn,

2. The Jacobian of ĥ(x) is nonsingular for all x ∈ Rn, and

3. lim
∥x∥→∞

∥ĥ∥ = ∞.

In other words, a system is lumpable into another system if there is a (potentially

dimension-reducing) transformation for which the kinetics of the second system depends

solely on the lumped variables of the transformation. In the case where m = n (i.e. the

dimension of the system is not reduced) the notions of lumping and conjugacy coincide

aside from small technical requirements (e.g. condition 3 above). The following result is

also provided in [62].

Theorem 6.2.2. The system (6.9) is exactly lumpable into the system (6.10) via the non-

degenerate transformation h(x) if and only if

g(h(x)) = h′(x)f(x)

for all x ∈ Rn.
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In [62], the authors prove that many dynamical properties of dynamical systems are

transferred to their corresponding lumped systems. The case where h(x) is linear is con-

sidered by Gy. Farkas in [22]. Our approach here will be different in focusing on how the

reaction graph is alterred for conjugate networks.

6.2.2 Original Results

In this section, we present our main original result regarding linear conjugacy of chemical

reaction networks. In Section 6.2.3, we show how Theorem 6.2.3 can broaden the scope of

weakly reversible networks theory through several illustrative examples.

Theorem 6.2.3 (Theorem 3.2, [36]). Consider two mass-action systems N and N ′. Sup-

pose that for the rate constants ki > 0, i = 1, . . . , r, there exist constants bi > 0, i = 1, . . . , r̃,

and cj > 0, j = 1, . . . ,m, such that, for every C0 ∈ Creact,

r

∑
i=1
Ci=C

0

ki(z′i − zi) = T
r̃

∑
i=1

C̃i=C
0

bi(z̃′i − z̃i) (6.11)

where T =diag{cj}mj=1. Then N is linearly conjugate to N ′ with rate constants

k̃i = bi
m

∏
j=1

c
z̃ij
j , i = 1, . . . r̃. (6.12)

It is important to note that the reactant complex set for C need not be the same as

that of C′. When C0 ∈ Creact is not an element of the reactant complex set of C, we will

consider the summation on the left-hand side of (6.11) to be empty, and similarly for the
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right-hand side of (6.11) when C0 is not an element of the reactant complex set of C′, i.e.

r

∑
i=1
Ci=C

0

ki(z′i − zi) = 0 and
r̃

∑
i=1

C̃i=C
0

bi(z̃′i − z̃i) = 0,

respectively. In order to satisfy (6.11), therefore, if one system contains a reactant complex

not contained in the other, it is necessary for the origin to lie in the cone generated by the

reaction vectors flowing from that reactant complex in the other system.

Proof. Let Φ(x0, t) correspond to the flow of the mass-action system (2.3) associated to

the reaction network N given by (2.1). Consider the linear mapping h(x) = T −1x where

T =diag{cj}mj=1. Now define Ψ(y0, t) = T −1Φ(x0, t) so that Φ(x0, t) = TΨ(y0, t).

Since Φ(x0, t) is a solution of (2.3) for the reaction set (2.1), we have

Ψ′(y0, t) = T −1Φ′(x0, t)

= T −1
r

∑
i=1

ki(z′i − zi) Φ(x0, t)zi

= T −1 ∑
C0∈Creact

r

∑
i=1
Ci=C

0

ki(z′i − zi) Φ(x0, t)z
0

= T −1 ∑
C0∈Creact

T
r̃

∑
i=1

C̃i=C
0

bi(z̃′i − z̃i)(T Ψ(y0, t))z
0

=
r̃

∑
i=1

(bi
m

∏
j=1

c
z̃ij
j )(z̃′i − z̃i) Ψ(y0, t)z̃i .

It is clear that Ψ(y0, t) is the flow of (2.3) for the reaction network (6.6) with rate constants

given by (6.12). We have that h(Φ(x0, t)) = Ψ(h(x0), t) for all x0 ∈ Rm
>0 and t ≥ 0 where

y0 = h(x0) since y0 = Ψ(y0,0) = T −1Φ(x0,0) = T −1x0. It follows that the networks N and

N ′ are linearly conjugate by Definition 6.2.4, and we are done.
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This result gives conditions under which two mass-action systems N and N ′ are linearly

conjugate. This is a particularly useful result when the qualitative properties of the original

network are obscure while the behaviour of the target network is well understood.

With the exception of the scaling matrix T , condition (6.11) is very similar to the cone

intersection condition in Theorem 6.2.1 where the constants ki > 0, i = 1, . . . , r, and bi > 0,

i = 1, . . . , r̃, correspond to the magnitudes of the cone generators (i.e. the reaction vectors).

If we allow ki and bi to vary we have

CR(C0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r

∑
i=1
Ci=C

0

ki(z′i − zi) ∣ ki > 0, i = 1, . . . , r

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

and

CR′(C0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r̃

∑
i=1

C̃i=C
0

bi(z̃′i − z̃i) ∣ bi > 0, i = 1, . . . , r̃

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

according to (6.8).

The following two results can be obtained from Theorem 6.2.3 by allowing the rate

constants of the original network N to vary. In these results we let T =diag{cj}mj=1 and

consider cj > 0, j = 1, . . . ,m, to be fixed.

Corollary 6.2.1 (Corollary 3.1, [36]). Consider two mass-action systems N and N ′. Then

there exist rate constant vectors k ∈ Rr
>0 and k′ ∈ Rr̃

>0 such that N and N ′ are conjugate

with h(x) = T −1x if and only if for every C0 ∈ Creact we have CR(C0) ∩ [T CR′(C0)] /= ∅.

Corollary 6.2.2 (Corollary 3.2, [36]). Consider two mass-action systems N and N ′. Then

for every rate constant vector k ∈ Rr
>0 there exists a rate constant vector k′ ∈ Rr̃

>0 such

that N is conjugate to N ′ with h(x) = T −1x if and only if for every C0 ∈ Creact we have
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CR(C0) ⊆ [T CR′(C0)].

Proof. The forward implications follow directly from Theorem 6.2.3.

To prove the only if portions of the results, notice that the assumption of conjugacy

with h(x) = T −1x implies that

Ψ′(y0, t) = ∑
C0∈Creact

r

∑
i=1
Ci=C

0

T −1 (ki
m

∏
j=1

c
zij
j )(z′i − zi) Ψ(y0, t)z0 (6.13)

while we have

Ψ′(y0, t) = ∑
C0∈Creact

r̃

∑
i=1
Ci=C

0

k̃i(z̃′i − z̃i) Ψ(y0, t)z0 (6.14)

from (2.3). In order to have equality between (6.13) and (6.14) we require that

r

∑
i=1
Ci=C

0

(ki
r

∏
j=1

c
zij
j )(z′i − zi) = T

r̃

∑
i=1
Ci=C

0

k̃i(z̃′i − z̃i)

for every C0 ∈ Creact. The desired cone conditions follow immediately from the conditions

on the rate constants vectors k ∈ Rr
>0 and k′ ∈ Rr̃

>0.

6.2.3 Examples

In Section 6.2.2, the results depended on having two given networks N and N ′ to compare.

In standard practice, however, we have only a single network N whose dynamics are

unknown and we need to find the target network N ′ whose dynamics are understood.

In this section, we will consider a particularly broad and well-understood class of such

target networks in weakly reversible networks. Since it is known that weakly reversible
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systems are complex balanced for at least some values of the rate constants (Theorem

3.4.3), and therefore exhibit locally stable dynamics for those rate constants values, it is

a reasonable starting point when considering a network N which seems to exhibit locally

stable dynamics to search for weakly reversible target networks N ′ to which it could be

conjugate.

In practice, however, there are many sensitivities which can arise in choosing a suitable

target network N ′ which is weakly reversible. We will illustrate the applicability, and lim-

itations, of Theorem 6.2.3 to such cases through four examples. The first is an example

where linear conjugacy to a weakly reversible network which exhibits locally stable dynam-

ics can be universally shown. The second is an example where linear conjugacy to a weakly

reversible network can only be shown for certain choices of the rate vector k ∈ Rr
>0. This is

also an example where S∗ and S do not always coincide for the original network N . The

third is an example where linear conjugacy to a weakly reversible network holds univer-

sally but conditions on k ∈ Rr
>0 are still required to guarantee locally stable dynamics. This

example also demonstrates how these conditions can be reduced by creatively “splitting” a

reaction in the target network N ′. The fourth is an example where a “phantom” reactant

complex is used to demonstrate linear conjugacy to a weakly reversible network.

Our general technique in this section will be to search for weakly reversible target net-

works N ′ which involve the same reactant complexes as the original network N .

Example 6.2.1. Consider the chemical reaction network N given by

N ∶
A1 + 2A2

k1Ð→ A1 + 3A2
k2Ð→ A1 +A2

k3Ð→ 3A1

2A1
k4Ð→ A2.
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A quick analysis of (2.3) reveals that N appears to exhibit locally stable dynamics which

suggests the network may be conjugate to a complex balanced network. We want to find

a weakly reversible network N ′ such that we can apply Theorem 6.2.3. To start, we can

consider networks with reactions flowing between the complexes in the reactant set of N ,

which is

{A1 + 2A2,A1 + 3A2,A1 +A2,2A1} .

Many such networks can be eliminated for failing to be weakly reversible, leaving a relatively

small set of possibilities. One such possibility is the network N ′ given by

N ′ ∶
A1 + 2A2

k̃1⇄̃
k2

A1 + 3A2

A1 +A2

k̃3⇄̃
k4

2A1.

In order for N and N ′ to be conjugate, we need to find bi > 0, cj > 0, i = 1, . . . ,4, j = 1,2,

such that

k1

⎡⎢⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎥⎦
= b1

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎥⎦

k2

⎡⎢⎢⎢⎢⎢⎢⎣

0

−2

⎤⎥⎥⎥⎥⎥⎥⎦
= b2

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0

−1

⎤⎥⎥⎥⎥⎥⎥⎦

k3

⎡⎢⎢⎢⎢⎢⎢⎣

2

−1

⎤⎥⎥⎥⎥⎥⎥⎦
= b3

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦

k4

⎡⎢⎢⎢⎢⎢⎢⎣

−2

1

⎤⎥⎥⎥⎥⎥⎥⎦
= b4

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

−1

1

⎤⎥⎥⎥⎥⎥⎥⎦
.
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It can be easily found that b1 = k1, b2 = 2k2, b3 = k3, b4 = k4, c1 = 2, c2 = 1 works.

It follows from (6.12) that N is conjugate to N ′ with rate constants given by k̃1 = 2k1,

k̃2 = 4k2, k̃3 = 2k3 and k̃4 = 4k4. We know that the network N ′ is deficiency zero which

implies by Theorem 3.4.2 and Theorem 3.3.1 that it exhibits locally stable dynamics for

every set of rate constants k̃i, i = 1, . . . ,4. It follows that the original network N exhibits

locally stable dynamics for all sets of rate constants ki, i = 1, . . . ,4. It could also be noted

that CR(C0) = T CR′(C0) for every C0 ∈ Creact so that N and N ′ satisfy the hypotheses of

Corollary 6.2.2 and therefore conjugacy holds unconditionally.

Example 6.2.2. Consider the chemical reaction network N given by

N ∶ A2
k1←Ð A1

k2←Ð 2A2
k3Ð→ 3A1.

The only weakly reversible target network involving the same reactant complex set as N

is

N ′ ∶ A1

k̃1⇄̃
k2

2A2.

In order to satisfy (6.11), we need to find b1 > 0, b2 > 0, c1 > 0, and c2 > 0 such that

k1

⎡⎢⎢⎢⎢⎢⎢⎣

−1

1

⎤⎥⎥⎥⎥⎥⎥⎦
= b1

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

−1

2

⎤⎥⎥⎥⎥⎥⎥⎦

k2

⎡⎢⎢⎢⎢⎢⎢⎣

1

−2

⎤⎥⎥⎥⎥⎥⎥⎦
+ k3

⎡⎢⎢⎢⎢⎢⎢⎣

3

−2

⎤⎥⎥⎥⎥⎥⎥⎦
= b2

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1

−2

⎤⎥⎥⎥⎥⎥⎥⎦

(6.15)
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while satisfying (6.12) requires

k̃1 = b1c1, and k̃2 = b2c
2
2. (6.16)

The system (6.15) corresponds to satisfying k1 = b1c1, k1 = 2b1c2, k2 + 3k3 = b2c1, and

k2 + k3 = b2c2. From the first two equations, we have c1/c2 = 2 while from the last two we

have c1/c2 = (k2+3k3)/(k2+k3), which implies (6.15) can be satisfied if and only if k2 = k3.

With this restriction, the system can be satisfied for b1 = k1, b2 = 2k2 = 2k3, c1 = 2, c2 = 1.

It follows from (6.16) that k̃1 = 2k1 and k̃2 = 2k2 = 2k3.

It is known that N ′ is complex balanced, and therefore exhibits locally stable dynamics,

for all values of k̃1 > 0 and k̃2 > 0; however, because we required a condition on the rate

constants of N in order for condition (6.15) to be satisfied, N does not exhibit locally stable

dynamics unconditionally. In fact, it exhibits locally stable dynamics only for k2 = k3.

For k2 > k3, all trajectories tend to the origin, while for k3 > k2 all trajectories become

unbounded.

It is worth noting that the kinetic subspace S∗ is two-dimensional for N for all rate

constants values except k2 = k3 when it collapses to a single dimension and we have the

strict inclusion S∗ ⊂ S. Since N ′ is weakly reversible, we always have S∗ = S for N ′ by

Lemma 2.4.1 and we notice that this is always one-dimensional. The systems will only

be conjugate when the dimensions of the kinetics compatibility classes match, which only

occurs when k2 = k3.

It could also be noted that CR(C0) ∩ [T CR′(C0)] /= ∅ for every C0 ∈ Creact but CR(C0) /⊆

[T CR′(C0)] for C0 = 2A2 ∈ Creact. Consequently, the networks N and N ′ satisfy the hy-

potheses of Corollary 6.2.1 but not Corollary 6.2.2; linear conjugacy with h(x) = T −1x
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cannot therefore be guaranteed for all rate constant vectors k ∈ R3
>0.

Example 6.2.3. Consider the chemical reaction network N given by

A1 + 2A2
εÐ→ A1

N ∶ 2A1 +A2
1Ð→ 3A2

A1 + 3A2
1Ð→ A1 +A2

1Ð→ 3A1 +A2

for ε > 0.

We search for target networks N ′ with reactions flowing between the complexes in the

reactant set of N , which is

{A1 + 2A2,2A1 +A2,A1 + 3A2,A1 +A2} .

Many such networks can be eliminated for failing to be weakly reversible, leaving a relatively

small set of possibilities. We will choose the network N ′ given by

N ′ ∶

A1 + 2A2
k̃1Ð→ A1 +A2

k̃4 ↑ k̃5 ↗ ↓k̃2
A1 + 3A2 ←Ð

k̃3

2A1 +A2

where we have chosen to “split” the reaction flowing from the reactant complex A1 + 3A2

into two weighted reactions. The utility of this technique will become apparent momentarily.

In order to satisfy (6.11) we need to find constants bi > 0, cj > 0, i = 1, . . . ,5, j = 1,2,
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such that

ε

⎡⎢⎢⎢⎢⎢⎢⎣

0

−2

⎤⎥⎥⎥⎥⎥⎥⎦
= b1

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0

−1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

2

0

⎤⎥⎥⎥⎥⎥⎥⎦
= b2

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

−2

2

⎤⎥⎥⎥⎥⎥⎥⎦
= b3

⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

−1

2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

0

−2

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

c1 0

0 c2

⎤⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜
⎝
b4

⎡⎢⎢⎢⎢⎢⎢⎣

0

−1

⎤⎥⎥⎥⎥⎥⎥⎦
+ b5

⎡⎢⎢⎢⎢⎢⎢⎣

0

−2

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
.

We will choose the solution set b1 = 2ε, b2 = b3 = 1, b4 = 2(1 − t), b5 = t, c1 = 2, c2 = 1

where 0 ≤ t < 1 is a weighting constant. This gives rise to the rate constants k̃1 = 4ε, k̃2 = 2,

k̃3 = 4, k̃4 = 4(1 − t) and k̃5 = 2t according to (6.12).

There is one condition on the rate constants of N ′ in order for the mass-action system

to be complex balanced. That condition is

ε = 1 − t√
2 − t

.

Each 0 ≤ t < 1 corresponds to specific network N ′ which is conjugate to N . Consequently,

we can guarantee that N is conjugate to a complex balanced system, and therefore exhibits

locally stable dynamics, for the range of values 0 < ε ≤ 1/
√

2. Notice that if we had not

split the reaction flowing from the complex A1 + 3A2 and instead had all of the weight

represented in k̃4, we would have only been able to show that N exhibits locally stable

dynamics for ε = 1/
√

2.
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It can be checked empirically that locally stable dynamics appears to be exhibited for

N for all values ε > 0. There is a unique positive equilibrium concentration given by

(x∗1, x∗2) = (1,−ε/2 +
√

(ε/2)2 + 1) which is locally asymptotically stable for all ε > 0 ac-

cording to standard linearization theory. It is not our claim, therefore, that this theory

represents a complete classification of locally stable dynamics, even for networks which ex-

hibit locally stable dynamics for some values of the rate constants.

Example 6.2.4. Consider the chemical reaction network N given by

A1
k1Ð→ 2A1 + 2A2

k2Ð→ A2
k3Ð→ A1 +A2.

A quick analysis (2.3) reveals that N appears to exhibit locally stable dynamics which

suggests that the network may be lienarly conjugate to a complex balanced network; however,

there is no weakly reversible network N ′ involving the same reactant complexes as N which

serves as an obvious candidate to satisfy the requirements of Theorem 6.2.3.

We recall, though, that Theorem 6.2.3 did not require the target network N ′ to use

the same reactant complexes as N . We can have a reactant complex C0 from the reactant

complex set of C′ which is not in the reactant complex set of C so long as

r̃

∑
i=1

C̃i=C
0

bi(z̃′i − z̃i) = 0.

One possible target network N ′ which makes use of such a “phantom” reactant complex is
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given by

N ′ ∶

A1 +A2

k̃3⇆̃
k6

A2

k̃4 ↓ k̃5 ↘ ↑k̃2

A1 Ð→
k̃1

2A1 + 2A2.

(6.17)

Since the reactions corresponding to k̃1, k̃2 and k̃3 in N are the same as those for k1, k2,

and k3 in N , we set c1 = c2 = 1, b1 = k1, b2 = k2, and b3 = k3. Since the complex A1 +A2 is

not a reactant complex in C, in order to satisfy (6.11) it is required that

k̃4

⎡⎢⎢⎢⎢⎢⎢⎣

0

−1

⎤⎥⎥⎥⎥⎥⎥⎦
+ k̃5

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎥⎥⎦
+ k̃6

⎡⎢⎢⎢⎢⎢⎢⎣

−1

0

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
.

This can be satisfied if k̃4 = k̃5 = k̃6 = t for any t > 0.

The network N ′ is weakly reversible and has a deficiency of one (δ = n−`−s = 4−1−2 = 1).

According to Theorem 3.4.3 there is one condition on the rate constants required for the

network to be complex balanced. That condition in terms of the rate constants of N is

6t3 = k1k2k3.

Since every value of t > 0 corresponds to a valid conjugate network N ′, this is no restriction

at all. It follows that the original network N is conjugate to a complex balanced system for

all choices of rate constants and therefore universally exhibits locally stable dynamics.

In other words, we are able to demonstrate the network N is universally conjugate to a

complex balanced network N ′, and therefore possesses very predictable dynamics, by adding

a “phantom” reactant complex which contributes no dynamical information to the mass-
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action kinetics (2.3). It should be noted, however, that in order for the target network

N ′ satisfying (6.11) to be weakly reversible it is necessary that any such phantom reactant

complex at least appear in the set of product reactants of N . (This example is further

considered in Example 6.3.5 where the use of a “phantom” reactant is not required.)

6.3 Dynamical Equivalence as an Optimization Prob-

lem

Theorem 6.2.3 is powerful in that it gives verifiable conditions under which two networks

are linearly conjugate and therefore exhibit the same qualitative dynamics. This is useful

when two networks are specified. In all of the examples in Section 6.2.3, however, the target

networks N ′ were carefully selected to illustrate how the dynamics of a known system can

be transferred to a system with unknown dynamics. No intuition for finding such a suitably

well-behaved target network N ′ was provided.

An immediate question is raised: In the case where only one reaction network is speci-

fied, is there a general mechanism by which we can find conjugate networks? In particular,

can we find a target network within a broader class of networks with well-known and suit-

ably well-behaved dynamics (e.g. complex balanced networks, weakly reversible networks,

etc.)?

The related problem of determining alternate realizations of a given dynamics has

been attempted from within an optimization framework by G. Szederkényi. In [58] he

gives a mixed-integer linear programming (MILP) algorithm for finding sparse and dense

realizations (i.e. realizations with the fewest and greatest number of reactions). In [59]
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and [60], together with K. Hangos and T. Pena he extends the algorithm to determine

sparse and dense detailed and complex balanced realizations. In [61], together with K.

Hangos and Z. Tzusa he gives an algorithm for determining weakly reversible realizations.

In this section, I summarize the results of these papers. I then show this approach can

be extended to linear conjugacy. Finally, I show how weak reversibility can be introduced

as a linear constraint [38].

Throughout this section, I will use the complex-oriented notation of (2.2) and the

complex-oriented mass-action kinetics schemes (2.4) and (4.18).

6.3.1 Sparse and Dense Realizations

The problem of algorithmically determining alternate realizations of a given kinetics was

first addressed by G. Szederkényi in [58]. He considers the problem of determining realiza-

tions satisfying the following definitions.

Definition 6.3.1. A realization N = (S,C,R) of a given kinetics scheme (4.18) is called

sparse if ∣R∣ ≤ ∣R′∣ for all other realizations N ′ = (S,C,R′).

Definition 6.3.2. A realization N = (S,C,R) of a given kinetics scheme (4.18) is called

dense if ∣R∣ ≥ ∣R′∣ for all other realizations N ′ = (S,C,R′).

That is to say, a realization is sparse if it contains the minimum number of reactions

required to generate the kinetics (4.18) for a fixed complex set while a realization is dense

if it contains the maximal number of reactions for a fixed complex set.

That the complex set must be fixed is necessary for both theoretical and applied reasons.

In terms of application, we must search for realizations over the set of available complexes,
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and if this is not a bounded set this process will never terminate. More interestingly,

however, is the observation that for some networks there is no upper limit for the number

of complexes involved in a realization and hence no well-defined dense realization. Consider

the following example.

Example 6.3.1. Consider the reaction network

N ∶ O kÐ→ A.

Under the assumption of mass-action kinetics, this network gives rise to the dynamics

dx

dt
= k (6.18)

according to (4.18).

Now consider the networks of the form

N ′ ∶ O k/(i⋅n)Ð→ iA, i = 1, . . . , n,

for n ≥ 1. It is easy to check that this set of networks generates the kinetics scheme (4.18)

for all n ≥ 1 so that they are dynamically equivalent. We can see that as n grows, however,

the number of complexes and the number of reactions grows with n so that realizations of

(6.18) exist involving an arbitrary number of complexes and reactions. It follows that no

dense realization is defined.

Consequently, for any algorithm searching for realizations of a particular kinetics, and

in particular dense realizations, it is important to specify the complex set. This raises the
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question of which complexes from the original network N should be included in the search

for a suitable target network N ′.

In [58], G. Szederkényi fixed the stoichiometric matrix Y ∈ Zm×n≥0 to contain only the

(source or product) complexes contained in the network N ′. Since fixing Y also fixes the

mass-action vector Ψ(x), the only variables remain in the kinetics matrix Ak, so that the

problem of finding an alternative realization N of N ′ then becomes one of finding a kinetics

matrix Ak such that

Y ⋅Ak ⋅Ψ(x) = Y ⋅A′
k ⋅Ψ(x).

If we set M = Y ⋅A′
k and impose that Ak be a kinetics matrix, dynamical equivalence can

be guaranteed by the conditions

(DE)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y ⋅Ak =M
n

∑
i=1

[Ak]ij = 0, j = 1, . . . , n

[Ak]ij ≥ 0, i, j = 1, . . . , n, i /= j

[Ak]ii ≤ 0, i = 1, . . . , n.

(6.19)

A sparse (respectively, dense) realization is given by a matrix Ak satisfying (6.19)

with the most (respectively, least) off-diagonal entries which are zeroes. A correspondence

between the non-zero off-diagonal entries in Ak and a positive integer value can be made

by considering the binary variables δij ∈ {0,1} which will keep track of whether a reaction

is ‘on’ or ‘off’, i.e. we have

δij = 1↔ [Ak]ij > ε, i, j = 1, . . . , n, i /= j

238



for some sufficient small 0 < ε ≪ 1, where the symbol ‘↔’ denotes the logical relation

‘if and only if’. This proposition logic constraint for the structure of a network can be

accomplished with the constraint

0 ≤ εδij ≤ [Ak]ij ≤ uijδij, i, j = 1, . . . , n, i /= j (6.20)

where uij > 0 for i, j = 1, . . . , n, i /= j. These constraints (6.20) can be reformulated as the

following linear mixed-integer constraints (see, for example, [47]):

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ [Ak]ij − εδij, i, j = 1, . . . , n, i /= j

0 ≤ −[Ak]ij + uijδij, i, j = 1, . . . , n, i /= j

δij ∈ {0,1} , i, j = 1, . . . , n, i /= j.

(6.21)

The number of reactions present in the network corresponding to Ak is then given by

the sum of the δij’s so that the problem of determining a sparse network corresponds to

satisfying the objective function

(Sparse)

⎧⎪⎪⎨⎪⎪⎩
minimize

n

∑
i,j=1,i/=j

δij (6.22)

over the constraint sets (6.19) and (6.21). Finding a dense network corresponds to maxi-

mizing the same function, which can also be stated as a minimization problem as

(Dense)

⎧⎪⎪⎨⎪⎪⎩
minimize

n

∑
i,j=1,i/=j

−δij. (6.23)
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Example 6.3.2. Consider the reaction network

N ∶ 2A1
1Ð→ 2A2

1Ð→ A1 +A2.

According to (4.18) this generates the kinetics

dx1

dt
= −2x2

1 + x2
2

dx2

dt
= 2x2

1 − x2
2.

(6.24)

We want to find the sparse and dense realizations capable of generating (6.24). We

have the matrices

M =
⎡⎢⎢⎢⎢⎢⎢⎣

−2 1 0

2 −1 0

⎤⎥⎥⎥⎥⎥⎥⎦
, Y =

⎡⎢⎢⎢⎢⎢⎢⎣

2 0 1

0 2 1

⎤⎥⎥⎥⎥⎥⎥⎦
so the relevant constraint set is

2[Ak]11 + [Ak]31 = −2 0 ≤ [Ak]12 − εδ12 0 ≤ −[Ak]12 + u12δ12

2[Ak]12 + [Ak]32 = 0 0 ≤ [Ak]13 − εδ13 0 ≤ −[Ak]13 + u13δ13

2[Ak]13 + [Ak]33 = 1 0 ≤ [Ak]21 − εδ21 0 ≤ −[Ak]21 + u21δ21

2[Ak]21 + [Ak]31 = 0 0 ≤ [Ak]23 − εδ23 0 ≤ −[Ak]23 + u23δ23

2[Ak]22 + [Ak]32 = 2 0 ≤ [Ak]31 − εδ31 0 ≤ −[Ak]31 + u31δ31

2[Ak]23 + [Ak]33 = 1 0 ≤ [Ak]32 − εδ32 0 ≤ −[Ak]31 + u31δ31

[Ak]11 + [Ak]21 + [Ak]31 = 0

[Ak]12 + [Ak]22 + [Ak]32 = 0

[Ak]13 + [Ak]32 + [Ak]33 = 0

(6.25)
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over the decision variables

[Ak]12, [Ak]13, [Ak]21, [Ak]23, [Ak]31, [Ak]32 ≥ 0

[Ak]11, [Ak]22, [Ak]33 ≤ 0

δ12, δ13, δ21, δ23, δ31, δ32 ∈ {0,1} .

Running the MILP optimization problem with the optimization package GLPK with

bounds ε = 0.1 and uij = 10, i, j = 1, . . . , n, yields the sparse and dense realizations given

in Figure 6.1. We can see that any network involving the complex set 2A1, A1 + A2 and

2A2 must involve at least two reactions and can contain up to six. It is interesting to

note that the original network also contained only two reactions and therefore also qualifies

as a sparse network. This illustrates the fact that the structure of sparse networks is not

necessarily unique.

2A1 2A2

A1+A2

0.10.1

0.1

1.8 0.1

0.45

2A1 2A2

1

0.5

(a) (b)

Figure 6.1: Sparse (a) and dense (b) networks which generate the kinetics scheme (6.24).
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6.3.2 Generating Realizations

It is often useful to generate realizations N from polynomial systems of the form

fi(x) =
ri

∑
j=1

mij

n

∏
k=1

x
bjk
k , i = 1, . . . ,m (6.26)

where ri is the number of polynomials in the ith expression. That is to say, given a

polynomial system (6.26), we are often interested in algorithmically producing a reaction

network N which could be responsible for the given kinetic output, if one exists. Such a

network could then be used as the starting point for subsequent network and dynamical

analysis.

Such an algorithm is presented in [28] and reproduced in [59]. In the algorithm which

follows, we let ei denote the ith standard basis vector in Rm.

Algorithm 1 (from [28], reproduced in Section 2.3 of [59]): For each i = 1, . . . , n and

for each j = 1, . . . , ri do

1. Cj = Bj+sign(mij) ⋅ ei

2. Add the following reaction to the graph of the realization

n

∑
k=1

bjkAk Ð→
n

∑
k=1

cjkAk

with reaction rate coefficient ∣mij ∣, where Cj = [cj1 ⋯ cjn].

Algorithm 1 essentially dictates that, for each monomial in the set of differential equa-

tions (6.26) we add a reaction corresponding to either an increase or decrease in the ith
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species, depending on the sign of the coefficient, and then assign the reaction its rate ac-

cording to the magnitude of that coefficient. It is easy to see that a reaction network

generated in this fashion, if one exists, generates a polynomial system (6.26) according to

the mass-action assumption (4.18)

There is no reason to believe that the reaction network produced by Algorithm 1 will be

well-structured or physically sensible, but the algorithm is guaranteed to produce a reaction

network if the system was indeed generated by a chemical reaction network operating under

the assumption of mass-action kinetics. Such networks have the restriction over general

polynomial differential equations that there may be no negative cross-effects [28] (i.e. no

equation fi(x) may have a negative coefficient corresponding to a term which does not

contain xi since this would correspond to a reaction “using up” a species which did not

appear as a reactant for the given reaction).

Example 6.3.3. Consider the set of polynomial differential equations

ẋ1 = x1x
2
2 − 2x2

1 + x1x
2
3

ẋ2 = −x2
1x

2
2 + x1x

2
3

ẋ3 = x2
1 − 3x1x

2
3

(6.27)

considered in [38]. We want to find a reaction network N which generates the dynamics

(6.27) according to Algorithm 1. We will systematically consider the monomials in order.

Consider the monomial x1x2
2 which has a coefficient of 1. Since the coefficient is positive,

has magnitude 1, and the term appears in the expression for x1, we add an A1 to the complex

A1 + 2A2 to get the reaction

A1 + 2A2
1Ð→ 2A1 + 2A2.
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Now consider the monomial −x2
1x

2
2 which has a coefficient of −1. Since the coefficient

is negative, has magnitude 1, and the term appears in the expression for x2, we subtract

an A2 from the complex 2A1 + 2A2 to get the reaction

2A1 + 2A2
1Ð→ 2A1 +A2.

The rest of the monomials can be analyzed similarly. The end result of the algorithm

is the network

A1 + 2A2
1Ð→ 2A1 + 2A2

1Ð→ 2A1 +A2

A1
2←Ð 2A1

1Ð→ 2A1 +A3

2A1 + 2A3
1←Ð A1 + 2A3

1Ð→ A1 +A2 + 2A3

↓3

A1 +A3.

It is easy to see that this network generates the kinetics (6.27) under the assumption of

mass-action kinetics (4.18).

6.3.3 Complex Balancing as a Linear Constraint

We are typically interested in more important information than simply whether there is

or is not an alternative realization of a kinetics scheme (4.18). Ideally we would like

the realization we find to tell us dynamical information about the original network, e.g.

whether the system is persistent, how many equilibria there are, what their stabilities are,

etc. Consequently, it is useful to restrict our search space to classes of networks which are

known to exhibit the behaviour we suspect the original network to exhibit.

Since complex balanced networks exhibit locally stable dynamics (see Definition 3.0.6
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and Theorem 3.3.1), for networks which appear to exhibit locally stable dynamics it is

often desirable to restrict our search space to complex balanced networks. This requires a

reformulation of our complex balancing condition (3.6). In matrix form, and considering

the mass-action kinetic form (4.18), we have that a system is complex balanced at x∗ ∈ Rm
>0

if and only if

Ak Ψ(x∗) = 0. (6.28)

We can now formulate the complex balancing condition as a linear constraint. If we let

x∗ ∈ Rm
>0 be an equilibrium concentration of the original network, we can impose complex

balancing by introducing the set of constraints

(CB) {
m

∑
j=1

[Ak]ijΨj(x∗) = 0, i = 1, . . . , n. (6.29)

Example 6.3.4. Reconsider the network given in Example 6.3.2. We determined a sparse

and dense realization involving the complexes 2A1, A1 + A2, and 2A2 (see Figure 6.1).

It is easy to check that the sparse network is complex balanced. From the differential

equations (6.24) we have that the equilibrium set is given by x∗2 =
√

2x∗1 so that we have

Ψ1(x∗) = (x∗1)2, Ψ2(x∗) = (x∗2)2 = 2(x∗1)2 and Ψ3(x∗) = (x∗1)(x∗2) =
√

2(x∗1)2. Complex

balancing follows by (6.28) because

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0.5 0

1 −0.5 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x∗1)2

2(x∗1)2

√
2(x∗1)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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For the dense network given in Figure 6.1(b) we can see that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.9 0.45 0.1

0.1 −0.55 0.1

1.8 0.1 −0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x∗1)2

2(x∗1)2

√
2(x∗1)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so that the network is not complex balanced. We can impose that the realizations be complex

balanced by imposing the conditions

[Ak]11 + 2[Ak]12 +
√

2[Ak]13 = 0

[Ak]21 + 2[Ak]22 +
√

2[Ak]23 = 0

[Ak]31 + 2[Ak]32 +
√

2[Ak]33 = 0

according to (6.29) (the (x∗1)2’s factor out if they are included). Appending these constraints

to (6.25) yields the network given in Figure 6.2). It can be verified that the network is

complex balanced, and therefore satisfies all of the properties given in Theorem 3.3.1, by

checking that
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.05 0.45 3
40

√
2

0.95 −0.55 3
40

√
2

0.1 0.1 − 3
20

√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x∗1)2

2(x∗1)2

√
2(x∗1)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

6.3.4 Weak Reversibility as a Linear Constraint

We know from Theorem 3.4.3 that weakly reversible networks always possess the capacity

for locally stable dynamics (see Definition 3.0.6). Consequently, it is very desireable to be

able to restrict our attention to networks which are weakly reversible.
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2A1 2A2

A1+A2

3

0.95

0.1

0.1

0.45

40
2

3

40
2

Figure 6.2: A complex balanced dense realization of the kinetics scheme (6.24).

In [61] the authors introduce an algorithm for determining dense weakly reversible

realizations of a given kinetics. The algorithm is based on the fact that there are no cycles

involving elements in different strongly connected components of a reaction network [11],

and that for a fixed complex set the structure of the dense realization of a network is unique

and contains the structures of all other possible realizations as sub-graphs (Theorem 3.1

of [60]). Omitting technical details, the algorithm can be summarized as:

1. Define the matrices Y and M and initialize K = {∅}.

2. Force the edges in K to be excluded and compute a dense realization Ak.

3. Check whether Ak is weakly reversible (if so, end algorithm and return Ak).

4. Find all edges in Ak which lead from one strongly connected component to another

and add them to K.

5. Check whether these edges may be removed (if so, repeat steps (2)-(4); if not, end

algorithm and return Ak = 0).
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The algorithm has the drawbacks that it can only compute dense realizations and not

sparse ones, and that it requires potentially multiple MILP optimizations which are known

to be NP-hard. In this section we show that the requirement of weak reversibility can be

formulated as a linear constraint.

We require the following classical result about weakly reversible networks, which is

modified from Theorem 3.1 of [26] and Proposition 4.1 of [24]:

Theorem 6.3.1. Let Ak be a kinetics matrix and let Λi, i = 1, . . . , `, denote the support of

the ith linkage class. Then the reaction graph corresponding to Ak is weakly reversible if

and only if there is a basis of ker(Ak), {b(1), . . . ,b(`)}, such that, for i = 1, . . . , `,

b(i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b
(i)
j > 0, j ∈ Λi

b
(i)
j = 0, j /∈ Λi.

An immediate consequence of Theorem 6.3.1 is that there is a vector b ∈ Rm
>0 ∩ ker(Ak)

if and only if the reaction graph corresponding to Ak is weakly reversible. In other words,

we can guarantee weak reversibility by imposing the condition

Ak ⋅ b = 0 (6.30)

for some b ∈ Rn
>0. This, however, is a nonlinear constraint in the kij’s and bj’s. In order to

make it linear, we consider the matrix Ãk with entries

[Ãk]ij = [Ak]ij ⋅ bj. (6.31)

It is clear from (6.31) that Ãk encodes a kinetics matrix and that 1 ∈ Rm (the m-dimensional
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vector containing only ones) lies in ker(Ãk). Moreover, it is easy to see that Ãk encodes

a weakly reversible network if and only if Ak corresponds to a weakly reversible network.

We can therefore check weak reversibility of the chemical reaction network corresponding

to Ak with the linear conditions

(WR’)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

∑
i=1

[Ãk]ij = 0, j = 1, . . . , n

n

∑
i=1

[Ãk]ji = 0, j = 1, . . . , n

[Ãk]ij ≥ 0, i, j = 1, . . . , n, i /= j

[Ãk]ii ≤ 0, i = 1, . . . , n.

(6.32)

By solving for the diagonal elements of Ãk, the set of constraints (6.32) can be simplified

to

(WR)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n

∑
i=1,i/=j

[Ãk]ij =
n

∑
i=1,i/=j

[Ãk]ji, j = 1, . . . , n

[Ãk]ij ≥ 0, i, j = 1, . . . , n, i /= j.
(6.33)

No condition comparable to Y ⋅Ak =M exists for the matrix Ãk so that we are left to

optimize with respect to the internal entries of both Ak and Ãk. Given appropriate choices

of 0 < ε≪ 1 and uij > 0, i, j = 1, . . . , n, i /= j, we can impose

(WR-S)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ≤ [Ãk]ij − εδij, i, j = 1, . . . , n, i /= j

0 ≤ −[Ãk]ij + uijδij, i, j = 1, . . . , n, i /= j
(6.34)

as well as (6.21) to ensure that both Ak and Ãk contain zero and non-zero entries in the

same places so that they correspond to reaction graphs with the same structure.
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Example 6.3.5. Reconsider the network N given by

A1
1Ð→ 2A1 + 2A2

1Ð→ A2
1Ð→ A1 +A2 (6.35)

which was originally considered in Example 6.2.4.

It is clear that no realization could contain fewer than three reactions since there are

three source complexes. Consequently this is an example of a sparse realization. It is not,

however, a weakly reversible network. We saw that the weakly reversible network given

in (6.17) was linearly conjugate to N with conjugacy constants c1 = c2 = 1 (i.e. they

are alternative realizations of one another) but we might still wonder if there is a weakly

reversible realizations with fewer than six reactions.

Solving for the sparse weakly reversible realization in GLPK with the constraints (6.19),

(6.21), (6.33) and (6.34) gives the network in Figure 6.3. We can see that the sparse weakly

reversible realizations in fact contains four reactions.

A1 2A1+2A2

A2

1

1
3

1

3

1

Figure 6.3: Sparse weakly reversible network which generates the same mass-action kinetics
as (6.35).
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6.3.5 Linear Conjugacy as a Linear Constraint

In Section 6.2 we were introduced to the concept of linear conjugacy of chemical reaction

networks. In this section we will extend the MILP optimization framework introduced

so far in Section 6.3 to include the possibility of networks related by a non-trivial linear

conjugacy.

The notation we will use in this section will be different than that used in Section 6.2.

As a result, we will prove agian the main result of that section, Theorem 6.2.3, with this

new notation.

Theorem 6.3.2. Consider two mass-action systems N = (S,C,R) and N ′ = (S,C′,R′)

and let Y be the stoichiometric matrix corresponding to the complexes in either network.

Consider a kinetics matrix Ak corresponding to N and suppose that there is a kinetics

matrix Ab with the same structure as N ′ and a vector c ∈ Rm
>0 such that

Y ⋅Ak = T ⋅ Y ⋅Ab (6.36)

where T =diag{c}. Then N is linearly conjugate to N ′ with kinetics matrix

A′
k = Ab ⋅ diag{Ψ(c)} . (6.37)

Proof. Let Φ(x0, t) correspond to the flow of (4.18) associated to the reaction network

N . Consider the linear mapping h(x) = T −1 ⋅ x where T =diag{c}. Now define Φ̃(y0, t) =

T −1 ⋅Φ(x0, t) so that Φ(x0, t) = T ⋅ Φ̃(y0, t).
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Since Φ(x0, t) is a solution of (4.18) we have

Φ̃′(y0, t) = T −1 ⋅Φ′(x0, t)

= T −1 ⋅ Y ⋅Ak ⋅Ψ(Φ(x0, t))

= T −1 ⋅ T ⋅ Y ⋅Ab ⋅Ψ(T ⋅ Φ̃(y0, t))

= Y ⋅Ab ⋅ diag{Ψ(c)} ⋅Ψ(Φ̃(y0, t)).

It is clear that Φ̃(y0, t) is the flow of (4.18) corresponding to the reaction network N ′ with

the kinetics matrix given by (6.37). We have that h(Φ(x0, t)) = Φ̃(h(x0), t) for all x0 ∈ Rn
>0

and t ≥ 0 where y0 = h(x0) since y0 = Φ̃(y0,0) = T −1 ⋅Φ(x0,0) = T −1 ⋅x0. It follows that the

networks N and N ′ are linearly conjugate and we are done.

This result give conditions for two networks to be linearly conjugate, and therefore

exhibit the same qualitative dynamics, but says nothing as far as how to find a linearly

conjugate network when only a single network is provided.

However, we can easily extend the MILP framework to include linear conjugacy. This

can be accomplished by replacing the set of constraints (6.19) with

(LC)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y ⋅Ab = T −1 ⋅M
n

∑
i=1

[Ab]ij = 0, j = 1, . . . , n

[Ab]ij ≥ 0, i, j = 1, . . . , n, i /= j

[Ab]ii ≤ 0, i = 1, . . . , n

ε ≤ cj ≤ 1/ε, j = 1, . . . ,m

(6.38)
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where M = Y ⋅Ak, T =diag{c}, and 0 < ε≪ 1, and replacing the set of constraints (6.21) by

(LC-S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ [Ab]ij − εδij, i, j = 1, . . . , n, i /= j

0 ≤ −[Ab]ij + uijδij, i, j = 1, . . . , n, i /= j

δij ∈ {0,1} , i, j = 1, . . . , n, i /= j,

(6.39)

where uij > 0 for i, j = 1, . . . , n, i /= j.

Ab has the same structure as the kinetics matrix A′
k corresponding to the conjugate

network, and this matrix has the same structure as the matrix Ãk given by (6.31) (replacing

Ak by A′
k). Consequently, the problem of determining a sparse or dense weakly reversible

network which is linearly conjugate to a given kinetics can be given by optimizing either

(6.22) or (6.23), respectively, over the constraint sets (6.38), (6.39), (6.33), and (6.34). The

kinetics matrix A′
k for the linearly conjugate network is given by (6.37).

Example 6.3.6. Reconsider the kinetics scheme

ẋ1 = x1x
2
2 − 2x2

1 + x1x
2
3

ẋ2 = −x2
1x

2
2 + x1x

2
3

ẋ3 = x2
1 − 3x1x

2
3

(6.40)

given in Example 6.3.3. Using the algorithm given in Section 6.3.2 (see also [28] and [59]),

we determined a kinetic realization involving the complexes

C1 = A1 + 2A2,C2 = 2A1 + 2A2,C3 = 2A1 +A2,

C4 = 2A1,C5 = A1,C6 = 2A1 +A3,C7 = A1 + 2A3

C8 = 2A1 + 2A3,C9 = A1 +A2 + 2A3,C10 = A1 +A3.
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With this fixed complex set, we can carry out the MILP optimization procedure out-

lined in this section to find sparse and dense weakly reversible networks which are linearly

conjugate to a network with kinetics (6.40). We have

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 2 1 2 1 2 1 1

2 2 1 0 0 0 0 0 1 0

0 0 0 0 0 1 2 2 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −2 0 0 1 0 0 0

0 −1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 −3 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With the bounds ε = 1/20 and uij = 20 for i, j = 1, . . . ,10, i /= j, the algorithm gives us

the sparse network given in Figure 6.4(a) (conjugacy constants c1 = 20, c2 = 2, and c3 = 5)

and the dense network given in Figure 6.4(b) (conjugacy constants c1 = 20/3, c2 = 20/33,

and c3 = 5/3). It is interesting to note that the sparse and dense networks utilize different

complexes and that the ratio of conjugacy constants differ between the sparse and dense

networks. It is worth noting that the sparse realization is also deficiency zero so that

the Deficiency Zero Theorem (Theorem 3.4.2) can be applied [25, 30, 33]. Consequently,

solutions of (6.40) satisfy all of the stringent dynamical restrictions typically reserved for

complex balanced systems.
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A1+2A2 2A1+2A2

2A1A1+2A3

4

400

25

40
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A1+2A2 2A1+2A2

2A1A1+2A3
2A1+A2

0.367

13.9
0.926 13.1

1.35
0.816

13.3 1.35

0.926

0.926

(a) (b)

Figure 6.4: Weakly reversible networks which are linearly conjugate to a network with
the kinetics (6.3.6). The network in (a) is sparse while the network in (b) is dense. The
parameter values in (b) have been rounded to three significant figures.
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Chapter 7

Conclusions and Future Work

In this thesis, I have presented a number of original results on topics pertaining to chemical

reaction network theory.

In Chapter 4, a number of results were demonstrated using the method of linearization

about equilibrium points. Theorem 4.3.5 shows that the results of F. Horn and R. Jackson

contained in [33] can be reproduced in the setting of linearization about equilibrium values.

In particular, it was shown that the local stable manifold about a complex balanced equi-

librium concentration corresponds to the relevant stoichiometric compatibility class, and

the centre manifold corresponds to the tangent plane to the equilibrium curve as it meets

that compatibility class. Theorem 4.3.6 shows that the convergence toward a complex

balanced equilibrium concentration is exponential in nature and the decay constant can be

taken to be arbitrarily close to the slowest converging subspace of the corresponding linear

problem.

In Chapter 5, the question of persistence of chemical reaction networks was investigated.

Theorem 5.2.6 shows that a chemical reaction network for which all sets I corresponding
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to semi-locking sets are weakly dynamically non-emptiable is persistent. This is a general-

ization of Theorem 4 of [5]. It was shown that weak dynamical non-emptiability captures

more persistent chemical reaction networks than the notion introduced in that paper. The-

orem 5.3.3 shows that any stratum which intersects a boundary of the positive orthant Rm
>0

has a linear functional which pushes trajectories away from that portion of the bound-

ary while trajectories remain within the stratum. Supplemental conditions were provided

which guarantee persistence (Corollary 5.3.1).

In Chapter 6, the concept of two chemical reaction networks being linearly conjugate

was introduced (Definition 6.2.4 and Theorem 6.2.3). Importantly, linearly conjugate net-

works exhibit the same qualitative dynamics even if their network structures differ signifi-

cantly. The linear constraint set (6.38) was added to the mixed-integer linear programming

procedure introduced by G. Szederkényi in [59] to allow the algorithm to search for linearly

conjugate networks instead of simply dynamically equivalent ones. Additionally, the linear

constraint sets (6.33) and (6.34) were introduced. These constraints provide a single step

procedure for determining weakly reversible chemical reaction networks which are linearly

conjugate to a given network. They represent a significant improvement in computational

efficiency over the algorithm introduced in [61].

There are a number of open problems within the scope of these topics which would be

ideal grounds for future work.

1. Linearization (Chapter 4)

� It is worth noting that the linearized form (4.20) does not depend on the cor-

responding chemical reaction network being complex balanced. Expanding this

approach to networks which are not complex balanced could potentially be very
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insightful.

� We have only considered linearization about strictly positive equilibrium concen-

trations. Applying this approach to equilibrium concentrations lying on ∂Rm
>0

would give us information about the dynamical behaviour on faces, and also

information about how trajectories behave near the boundary.

2. Global Stability and Persistence (Chapter 5)

� Significant work has been conducted recently on the Global Attractor Conjecture

(Conjecture 5.1.1). It is now known to hold, for instance, when the reaction

network contains only one linkage class [2], when there are only three species [19],

and when the stoichiometric compatibility classes are three-dimensional [44].

The general case, however, remains unproved.

3. Linear Conjugacy (Chapter 6)

� We have only considered linear conjugacies and mass-action kinetics. Adapt-

ing the methodology outlined here to nonlinear conjugacies and kinetic schemes

other than mass-action (e.g. Michaelis-Menten or Hill kinetics) could yield po-

tentially powerful results.

� The computational procedure outlined for determining linearly conjugate net-

works depended on the rate constants for the original network being specified.

Consequently, we may be overlooking behaviours admitted by the network as a

result of poor rate constant selection. Expanding the algorithm to search over

the rate constant values of the original network as well as those of the target

network would be an insightful step forward.
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