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Abstract

In recent years, two distributed system technologies have emerged: Peer-to-Peer (P2P)
and cloud computing. For the former, the computers at the edge of networks share their
resources, i.e., computing power, data, and network bandwidth, and obtain resources from
other peers in the same community. Although this technology enables efficiency, scalability,
and availability at low cost of ownership and maintenance, peers defined as “like each
other” are not wholly controlled by one another or by the same authority. In addition,
resources and functionality in P2P systems depend on peer contribution, i.e., storing,
computing, routing, etc. These specific aspects raise security concerns and attacks that
many researchers try to address. Most solutions proposed by researchers rely on public-
key certificates from an external Certificate Authority (CA) or a centralized Public Key
Infrastructure (PKI). However, both CA and PKI are contradictory to fully decentralized
P2P systems that are self-organizing and infrastructureless.

To avoid this contradiction, this thesis concerns the provisioning of public-key certifi-
cates in P2P communities, which is a crucial foundation for securing P2P functionalities
and applications. We create a framework, named the Self-Organizing and Self-Healing
CA group (SOHCG), that can provide certificates without a centralized Trusted Third
Party (TTP). In our framework, a CA group is initialized in a Content Addressable Net-
work (CAN) by trusted bootstrap nodes and then grows to a mature state by itself. Based
on our group management policies and predefined parameters, the membership in a CA
group is dynamic and has a uniform distribution over the P2P community; the size of
a CA group is kept to a level that balances performance and acceptable security. The
muticast group over an underlying CA group is constructed to reduce communication and
computation overhead from collaboration among CA members. To maintain the quality of
the CA group, the honest majority of members is maintained by a Byzantine agreement
algorithm, and all shares are refreshed gradually and continuously. Our CA framework
has been designed to meet all design goals, being self-organizing, self-healing, scalable,
resilient, and efficient. A security analysis shows that the framework enables key regis-
tration and certificate issue with resistance to external attacks, i.e., node impersonation,
man-in-the-middle (MITM), Sybil, and a specific form of DoS, as well as internal attacks,
i.e., CA functionality interference and CA group subversion.

Cloud computing is the most recent evolution of distributed systems that enable shared
resources like P2P systems. Unlike P2P systems, cloud entities are asymmetric in roles
like client-server models, i.e., end-users collaborate with Cloud Service Providers (CSPs)
through Web interfaces or Web portals. Cloud computing is a combination of technolo-
gies, e.g., SOA services, virtualization, grid computing, clustering, P2P overlay networks,
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management automation, and the Internet, etc. With these technologies, cloud computing
can deliver services with specific properties: on-demand self-service, broad network access,
resource pooling, rapid elasticity, measured services. However, theses core technologies
have their own intrinsic vulnerabilities, so they induce specific attacks to cloud computing.
Furthermore, since public clouds are a form of outsourcing, the security of users’ resources
must rely on CSPs’ administration. This situation raises two crucial security concerns for
users: locking data into a single CSP and losing control of resources. Providing inter-
operations between Application Service Providers (ASPs) and untrusted cloud storage is
a countermeasure that can protect users from lock-in with a vendor and losing control of
their data.

To meet the above challenge, this thesis proposed a new authorization scheme, named
OAuth and ABE based authorization (AAuth), that is built on the OAuth standard
and leverages Ciphertext-Policy Attribute Based Encryption (CP-ABE) and ElGamal-like
masks to construct ABE-based tokens. The ABE-tokens can facilitate a user-centric ap-
proach, end-to-end encryption and end-to-end authorization in semi-trusted clouds. With
these facilities, owners can take control of their data resting in semi-untrusted clouds and
safely use services from unknown ASPs. To this end, our scheme divides the attribute
universe into two disjointed sets: confined attributes defined by owners to limit the life-
time and scope of tokens and descriptive attributes defined by authority(s) to certify the
characteristic of ASPs. Security analysis shows that AAuth maintains the same security
level as the original CP-ABE scheme and protects users from exposing their credentials
to ASP, as OAuth does. Moreover, AAuth can resist both external and internal attacks,
including untrusted cloud storage. Since most cryptographic functions are delegated from
owners to CSPs, AAuth gains computing power from clouds. In our extensive simulation,
AAuth’s greater overhead was balanced by greater security than OAuth’s. Furthermore,
our scheme works seamlessly with storage providers by retaining the providers’ APIs in
the usual way.
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Chapter 1

Introduction

Computing systems were originally initialized from a centralized system that encompassed
a single- or multiple- processor(s) unit, system software, and applications to form a single-
unit solution. Centralized systems usually impress users with their ease of management
and security. However, they are poor in terms of reliability, scalability, and economy.
These disadvantages are addressed by the emergence of the next generation of computing
systems, many distributed systems, in which components are located in computer networks
and coordinate their actions by passing messages. Although distributed systems impose
communication overhead and security weakness, their advantages (i.e., reliability, scalabil-
ity, and economy) compensate for the drawbacks. Currently, distributed systems can be
divided into three general models: client-server, peer-to-peer, and cloud computing.

In client-server models, computing systems partition tasks or workloads between the
providers of resources or services (called servers) and service requesters (called clients).
Since a server must support all requests from clients, the capacity of the server is a bottle-
neck and must be dimensioned in such a way that it can support all requests from clients
at any time. Moreover, a single server lacks the robustness of a redundant configuration.
If a critical server fails, no client requests can be fulfilled. Similar to centralized systems,
the main advantages of client-server systems are their ease of management and security,
because most processes/information are dealt with/stored in the server side. Peer-to-peer
and cloud computing are recent distributed systems that gain efficiency, reliability, scal-
ability from extensively sharing resources. However, their technologies impose security
weakness. Therefore, this thesis addresses the security problems in P2P systems and cloud
computing.
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1.1 Peer-to-Peer (P2P)

A Peer-to-Peer (P2P) system is a distributed system formed by an overlay network consist-
ing of a collection of nodes and links between a node and its neighbors. The overlay network
is built on top of other underlying networks, such as IP networks, wireless networks, or
sensor networks. The links are created and maintained by middleware located between
the underlying network and application. The middleware can place nodes, called peers, on
an overlay network in two ways: structured and unstructured. In structured P2P systems,
peer IDs can be generated from random functions or deterministic functions taking other
persistent IDs, such as IP addresses, as input. Then these peer IDs are mapped tightly
to the topology of structured overlay networks, e.g., CAN [103], Chord [122], Pastry [4],
Viceroy [80], Kademlia [83], Tapestry [136], etc. Without structure from overlay networks,
unstructured P2P systems directly use network addresses for peers. P2P systems go beyond
client-server models by having symmetry in roles where a peer acts simultaneously as a
client and a server. This symmetry allows peers to leverage resources from multiple sharing
peers rather than a single server. In this way, P2P systems will scale up network bandwidth
and the number of sharing peers as network population increases. Consequently, P2P can
support resource sharing with fault-tolerance, load balance, self-organization, and massive
scalability. In addition to P2P construction (overlay networks and symmetric roles), P2P
systems must have four main self-organizing functions: peer discovery, enrollment, resource
indexing, and message routing, which are explained as follows.

(i) Peer discovery. Before joining a P2P system (i.e., becoming a peer), a node must
make a connection with one or more peers already present in the overlay network.
Thus, P2P systems must provide processes for new nodes to discover existing peers
in the network.

(ii) Enrollment. This is a registration process used when peers join or leave the overlay
network in order to initialize and update contract information, i.e., neighbor lists
(links), resource indicies, and routing tables. In some systems, new nodes must
obtain valid credentials before joining.

(iii) Resource indexing. Resource indices are the locations of resources in an overlay
network. There are two main ways to place resources in the network:

1 Randomly selecting live peers from the network;

2 Using a cryptographic hash function to map resource keys to live peers.
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The P2P applications on top of overlay networks will mainly use this indexing
for resource lookups.

(iv) Message routing. To reach (i.e., store or obtain) resources in sharing peers, overlay
networks must route request messages to peers according to resource indices. If the
indices are random, peers may get resource locations from a central server or use
broadcast messages in a limited scope to directly query resources. On the other
hand, peers can use local information (i.e., routing tables and neighbor lists) to
forward the messages toward the peer closest to the resource keys if indices are tight
to the structure of the overlay network.

In principle, all peers that form a P2P system should provide their resources to others
as well as request services from others, thus forming a fully decentralized P2P system. In
practice, P2P systems can have exceptions. For example, a hybrid decentralized P2P is a
system with a central server for some functions: peer discovery, enrollment, or resource
indexing, whereas a partially centralized P2P system has both client nodes, which generally
only request services, and peer nodes (called super nodes), which request/provide services
and/or self-organizing functions.

However all advantages (e.g., efficiency, reliability, and scalability) of P2P systems
come with security risks since resources in P2P systems rely on multiple trusted/untrusted
peers instead of a single trusted server as client-server models do. Without infrastructure,
messages in unstructured and structured P2P systems are broadcast/forwarded in the
overlay network via intermediate peers, which may be malicious. From these situations, we
can classify adversaries into three groups: external, internal, and provider. While external
adversaries are any nodes in the underlying networks, internal adversaries are any peers in
the overlay networks. Provider adversaries are peers serving required resources. All three
adversary groups can launch general network attacks, such as eavesdropping, Man-In-The-
Middle (MITM), etc., to disrupt P2P systems. Internal adversaries can launch specific
attacks, such as abuse bootstrapping, incorrect routing updates, Sybil, eclipse, identity
theft, etc., to subvert overlay network functionalities. Finally, provider adversaries may
launch attacks, such as free-riding, whitewashing, etc., related to the resources/contents of
P2P applications.

1.2 P2P Security

Although P2P systems gain many benefits from equality in roles, the symmetric roles
among P2P peers imposes security burdens because of the lack of hierarchical or central-
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ized trust authorities. In the following, we summarize possible attacks, such as abuse
bootstrapping, Sybil, eclipse, identity theft, free-riding, and data corruption.

(i) Abuse bootstrapping attacks. Before joining P2P systems, a new node must discover
existing nodes called bootstrap nodes in the overlay network. The bootstrap nodes
will help the new node to find other prospective neighbor nodes. In addition to
neighbor lists, this step will allow new structured P2P nodes to create a routing
table. Obviously, if bootstrap nodes are malicious or compromised, they can bring
the new node to parallel networks instead of real networks or launch other attacks,
such as eclipse or identity theft. In this scenario, the adversaries are bootstrap nodes
and launch abuse bootstrapping attacks.

(ii) Sybil attacks. During registration, P2P systems generate on-line identities, which
are random values or hash values of IP addresses, as P2P node IDs for new peers.
Thus, adversaries can exploit this vulnerability to generate a number of peer IDs
or harvest unused IP addresses for corresponding peer IDs. If the adversaries can
obtain enough peer IDs in P2P systems, they can gain advantages from presenting as
multiple peers, so call Sybil attacks, and thereby launch other attacks, such as eclipse
or identity theft.

(iii) Incorrect routing update attacks. In structured P2P systems, when a node joins/leaves
overlay networks, it or its neighbors must send a routing update to affected peers
in the overlay networks. To convince a target peer to add inappropriate nodes to
its routing table, adversaries may send incorrect routing updates to the target peer
or cause correct peers around the target peer to fail. Adversaries manipulating a
routing table in the wrong direction in incorrect routing update attacks can lead to
other attacks, such as eclipse or identity theft.

(iv) Eclipse attacks. In overlay networks, peers connect to the networks and commu-
nicate with other peers through the links with their neighbor peers. Therefore, if
adversaries can control a majority of the linkages of a target node, they can control
both the inbound and outbound traffic of that node, in so-called eclipse attacks. To
launch eclipse attacks in structured P2P systems, adversaries can exploit incorrect
routing update attacks to manipulate a large fraction of entries in routing tables in
order to control most linkages. Another way to launch eclipse attacks is exploiting
Sybil attacks to present as the victim’s neighbor peers. After adversaries succeed in
launching eclipse attacks, they can censor, replay, or drop the victims’ messages as
well as disable all services to or from the victims.
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(v) Identity theft attack. To reach resources, P2P systems must provide one of three main
resource discovery approaches: centralized indexing, limited-scope broadcasting and
key-based routing (KBR). Centralized indexing is a simple technique used by hybrid
decentralized P2P systems, but it is poor in scalability and reliability. Broadcasting
in a limited scope is a common method for unstructured P2P systems, which is more
reliable but worse in scalability and efficiency. Key-based routing is the most efficient,
reliable and scalable discovery method in P2P systems and is used for structured P2P
systems. KBR usually uses a hash function (e.g., SHA-1) to map both peer IDs and
resource IDs (keys) into the same large address space (e.g., 160 bits), then places a
resource on the live peer (called the key’s root node) closest to the resource’s key.
In the same way, when peers request a resource, the KBR will route to the root
node where the resource was stored before. Because the requester does has not have
enough information to find the root node by itself, the KBR relies on intermediate
nodes recursively querying step-by-step to the root node, then reports to the requester
which node is the key’s root node. Therefore, for any request to a key, an adversary
on the routing path can claim that it is the root node, in so-called identity theft
attacks.

(vi) Free-riding attacks. Although P2P systems can support routing and resource discov-
ery, the quality of service in P2P systems will be disrupted if most peers use P2P
services but do not contribute to routing, storing content, and uploading files, etc.,
for other peers at an acceptable level. Such selfish behavior, called free-riding, can
degrade P2P performance significantly, until it becomes non-functional if the fraction
of selfish peers is large enough.

(vii) Data corruption attacks. Aside from the quality of service, adversaries may try to
corrupt data. If P2P systems lack persistent IDs, authentication and authorization,
an adversary can create data with the same key as the existing data and try to store
the data in the same root. Without a digital signature to verify data origination,
adversaries can still inject faked copies with the same key. Both misbehaviors are
called data corruption attacks.

1.3 Cloud Computing

Cloud computing is another novel computing system that positions itself between two mod-
els: centralized and distributed, in such a way that cloud users see cloud service providers
(CSPs) as centralized providers with unlimited pooling resources. Based on distributed and
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virtualization technologies, cloud computing can provide scalable and on-demand comput-
ing services similar to traditional public utilities, such as electricity, water, natural gas,
or telephone networks. With Web technologies and the Internet, cloud computing is a
broadly accessible system for client devices and users.

Thus, cloud users can convert capital expenses (e.g., servers, storage, software licenses,
etc.) and operational costs (e.g., installation, maintenance, upgrades, retraining, etc.) to
on-demand payment (e.g., billed per CPU time, storage space, I/O transactions, units
of data transmission, etc.). Without the operation tasks, companies can focus on their
business logics as well as quickly and flexibly react to market conditions. For the economies
of scale, CSPs pool IT infrastructure together, i.e., hardware, software, and supporting
facilities, then provide them to users through the Internet as the following services.

(i) Infrastructure as a Service (IaaS). Generally, cloud hardware is a pool of comput-
ing units, storage, and network devices in some forms of distributed system, such
as computer clusters, P2P systems, grid computing, distributed storage, key-value
storage, load balancing, etc. In multi-tenant models, cloud hardware is virtualized
and delivered as services called Infrastructure as a Service (IaaS) to IT teams or indi-
vidual users. Usually, CSPs allow users to manually configure their virtual-hardware
capacity via web portals or APIs, while some CSPs automatically provide resizing of
capacity based on exhibited load.

(ii) Platform as a Service (PaaS). For cloud software, CSPs can provide services to tar-
get users on two levels: development platforms and applications. The development
platforms, composed of development tools, computer languages, APIs, and runtime
environments, are delivered to application developers as services in a model called
Platform as a Service (PaaS).

(iii) Software as a Service (SaaS). CSPs may develop applications by themselves and act as
Application Service Providers (ASPs) to offer already-created software for end-users.
This service model is called Software as a Service (SaaS).

To sum up, cloud computing can provide three services models, i.e., SaaS, PaaS, and
IaaS, which are abbreviated to SPI model. The cloud computing systems that are operated
by vendors and sold to customers are called public clouds. On the other hand, private
clouds are cloud computing systems solely managed and used by a single organization.
Public clouds and private clouds can be bound together in so-called hybrid clouds for load
balancing or bursting peak load from private clouds to public clouds.
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Similar to P2P systems, cloud adversaries can be classified into three groups: ex-
ternal, internal and provider. While external adversaries mean Internet users; internal
adversaries mean cloud users who share the same multi-tenant environment. Provider ad-
versaries mean Cloud Service Providers (CSPs) themselves. Both external and internal
adversaries can launch general network attacks, such as eavesdropping, Denial of Service
(DoS), MITM, etc., in cloud computing through the Internet and internal networks, respec-
tively. In contrast, internal adversaries can exploit vulnerabilities from core technologies
or state-of-the-art cloud computing to launch specific or prevalent attacks, such as web
interface, cache/memory interference, malicious/illegal images, etc., in cloud computing.
Furthermore, CSPs can subvert data security and privacy, i.e., confidentiality, integrity,
authentication, authorization, and auditing, because owners lose control of their resources.

1.4 Cloud Computing Security

Despite many promising benefits, users have been quite reluctant to adopt cloud comput-
ing for sensitive data and applications due to fear of security threats, privacy risks, and
loss of control. Therefore, to make cloud computing use more widespread, we need to
understand the vulnerabilities in and possible attacks to clouds. Here, we summarize only
the specific attacks that are related to the core technologies or prevalent developments of
cloud computing.

(i) Web application and service technologies. All kinds of services in clouds, such as soft-
ware applications, software development tools, and web portal services, are based on
web applications and service technologies. Thus, web vulnerabilities can be exploited
by both external and internal adversaries to launch many attacks, such as session rid-
ing/hijacking, bogus XML signature wrapping, same origin policy violating, browser
authentication replaying/hijacking, etc., so called web interface attacks.

(ii) Virtualization. In addition to web technologies, virtualization is another cloud tech-
nology that has intrinsic vulnerabilities: weak isolation and image sanity. For the
former, internal adversaries can exploit weak isolation to launch attacks. First, inter-
nal adversaries sharing a last-level-cache (LLC) with victims can launch DoS attacks
to disable the victims’ services, or side channel attacks to eavesdrop on sensitive
information (e.g., secret keys) from a victims’ memory. Second, internal adversaries
may try to cross-access data belonging to other tenants in the same network storage.
For the latter, since cloud images, i.e., Virtual Machine (VM) templates (or imple-
mentation modules), are the initial states and security foundations of instances (or
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applications), internal adversaries can analyze versions, patches, configuration, his-
tories of OSs (or applications) by renting the same images (or modules) that a target
does. Furthermore, if adversaries can bundle malware in cloud images (or modules)
and then deploy it in marketplaces, the malware will be mounted on instances (or
applications) when victims run such malicious images (or develop applications from
such malicious modules). Third, instead of malware, adversaries may deploy illegal
images, i.e., unlicensed or expired-license software, marketplaces, which can bring
law-violation changes to either image retrievers or repository administrators.

(iii) IAAA. Generally, Identity management, Authentication, Authorization, and Audit-
ing (IAAA) and identity federation are the main technologies of access control in a
single trusted domain. The existing IAAA standards (e.g., OpenID, OAuth, etc.)
provide automated user-enrollment, access control, and single sign-on (SSO), as well
as outsource processes or data to partners. However, these standards can deploy only
in a single trust domain in which the trust boundary, which encompasses systems,
networks and applications, is hosted in a private data center and managed by an IT
team. Unfortunately, with the adopting of public or hybrid clouds, the trust bound-
ary will become dynamic and beyond the control of an IT team because it extends
into a single or multiple CSP domains. This loss of control introduces three crucial
open problems, i.e., trust governance, access control, and inter-operation in cloud
computing. Thus, cloud computing may not adopt these technologies to provide the
same benefits if they are untrusted/semi-trusted clouds because the trust boundary
splits into two or more domains and neither of them trusts each other. Consequently,
the evolution of IAAA technology that can deploy in untrusted/semi-trusted envi-
ronments is a crucial step for rapid adoption of cloud services. However, these IAAA
standards and implementations still have vulnerabilities, such as weak authentication
credentials, weak credential-reset mechanisms, and coarse authorization controls, that
adversaries may exploit to launch attacks in clouds.

1.5 Motivation

In order to study security in fully decentralized P2P systems and untrusted cloud comput-
ing, we first show that they have some common properties in trust and security models.

In terms of trust models, fully decentralized P2P systems have individual trust domains,
while both cloud users and cloud service providers have their own trust domains. Thus,
neither case has a single shared trust domain.
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In terms of security models, adversaries in both systems can be classified into three
groups: external, internal, providers.

(i) External adversaries, which are not members of distributed systems (i.e., overlay
networks or clouds) can launch only general network attacks from external networks
(i.e., underlying networks or the Internet) with limited impact.

(ii) Internal adversaries, which are member of distributed systems, have more impact
because they can exploit the intrinsic vulnerabilities of distributed systems to launch
specific attacks, including attacks external adversaries can carry out.

(ii) Provider adversaries, such as sharing peers and CSPs, control processes or data in the
distributed systems, so they can manipulate processes or data that owners delegate
to or store on them. Thus, systems have to cope with the misbehaviors of providers
after the owners lose control of their processes or data.

From the summary of trust and security models, it is obvious that we should emphasize
the security problems only from internal and provider adversaries and must cope with
unshared trust domain problems. Thus, this thesis proposes two contributions that address
open security problems in fully decentralized P2P systems and untrusted cloud computing.

For fully decentralized P2P systems, the discussion of P2P applications in Section 2.2
shows that unstructured P2P systems tentatively migrate to structured P2P systems in
order to gain more efficiency and scalability. However, structured P2P systems intrinsically
have vulnerabilities that impose specific attacks, described in Section 2.6. Previous studies
have shown that public-key certificate binding with a node ID and/or an IP address is a
necessary security tool for dealing with these attacks. Unfortunately, a traditional Trusted
Third Party (TTP), such as a Certificate Authority (CA) or a Public Key Infrastructure
(PKI), for certificate issue is not suitable for fully decentralized P2P systems, which are self-
organizing and infrastructureless. Therefore, solving unshared trust domain problems and
automating public-key certificates issue in P2P systems for peer enrolment (registration)
are challenging security issues in P2P systems.

In untrusted cloud computing, the cloud architecture, as described in Section 2.7.4)
points out that IAAA is the core-technology leveraged by CSPs for access control, oper-
ational security (e.g., enforcement of compliance requirements and assignment of limited
privileges), and inter-operation. However, the vulnerabilities studied in Section 2.10 show
that current IAAA technology has vulnerabilities in both authentication and authorization
steps that adversaries can exploit to launch specific attacks, as presented in Section 2.11.
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Moreover, three existing standards, i.e., Kerberos, OpenID, and OAuth, described in Sub-
sections 3.2.2, 3.2.3, and 3.2.4, are based on a single trusted domain. Therefore, an autho-
rization scheme for multi-trusted domains and semi-trusted clouds is still an open problem
for inter-operation in cloud computing.

1.6 Thesis overview

This thesis presents two contributions for the security in distributed systems.

1.6.1 Self-Organizing and Self-Healing CA Group (SOHCG)

As noted in the survey of P2P systems in Section 4.1, public-key certificates for P2P
systems are managed in three main approaches: centralized/hierarchical (CA or PKI),
distributed (PGP), and individual. For a PGP model, Takeda et al. [125] proposed a
Hash-based Distributed Authentication Method (HDAM), which uses a Distributed Hash
Table (DHT) to maintain a certificate database in P2P systems, and uses a PGP model
to create trust relations from mutual authentication between two nodes along the lookup
path in a P2P network. Usually a certificate can be looked up and endorsed in O(log2N)
steps. The main drawback of this system is that only one malicious peer on a route
path can subvert a trusted relation in PGP models. For an individual model, V. Pathak
and L. Iftode [96] proposed Byzantine fault tolerant public-key authentication, which can
prove the possession of a private key under an honest majority. This approach does not
require TTPs, and the authentication is correct if no more than bn−1

3
c of the n parties in

individual trust groups are malicious or faulty. The main drawback is that the trust group
and the proof of private-key possession are under only an individual peer’s scope. Hence,
trust relations cannot be transferred to other peers in the P2P system, thereby causing
burden load for every peer in the system. For PKI models, Avramidis et al. [9] proposed
Chord-PKI, which is a distributed PKI embedded into the Chord overlay network in order
to provide certificates without external PKI. The main idea is to partition the Chord
network into multiple areas and empower some trusted nodes in each area for certification
functionalities, and to employ a (t, n) threshold signature to sign the certificate by the
coalition of the trusted nodes from each area. However, since the members and number of
a trusted group are static, the trusted nodes are targets for adversaries wishing to subvert
this distributed PKI. Lesueur et al. proposed another distributed PKI system based on
the trusting of t% of nodes in a P2P system. Thus, a certificate must be signed by the
collaboration of t% of nodes. To maintain the ratio of t% of nodes in a collaboration, the
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number of secret shares must increase according to the increase of the number of nodes in
a P2P network.

Although the previous works try to provide public-key certificates in P2P systems, none
of them can achieve our three design goals:

(i) Self-organizing approach. A framework should be able to delegate a trusted group to
manage public-key certificates without an external CA. After a bootstrapping phase,
the trusted group should be able to maintain its size and membership by itself. In
the running phase, the trusted group should automatically identify a node ID and
verify private-key possession before issuing certificates to new nodes.

(ii) Self-Healing approach. The trust group itself must be able to detect misbehavior of
its members to maintain an honest majority in a trusted group. Each member should
have a limited lifetime to join the trust group. The trust group must automatically
refresh or update secret shares.

(iii) Scalability approach. The framework must not cause significant load for large scale
networks like the Internet.

Therefore, we propose the Self-Organizing and Self-Healing CA Group (SOHCG), which
can achieve our design goals. A detailed design of the framework is describe in Chapter 4.

1.6.2 OAuth and ABE Based Authorization (AAuth)

The survey of previous works in Section 5.1 shows that researchers first focused on secure
and authentic distributed file systems in order to outsource storage for some specific data,
such as archive files, backup files, or scientific data, etc. Next, the researchers proposed
key management systems for public clouds in such a way that the owners encrypt and
sign their data before the data is stored in cloud storage, and encrypt the keys used to
decrypt data with users’ public keys. To retrieve data, users first use their private keys
to authenticate themselves to and decrypt the keys from the key management system.
Then users use such keys from the key management system to decrypt the data stored
in cloud storage. In other words, previous works use public-key certificates as credentials
for access control of key management systems. To our knowledge, there is no generic
scheme or standard that supports data owners and Application Service Providers (ASPs)
in performing inter-operations with untrusted cloud storage without losing control of their
data.
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Our solution is to extend the OAuth standard by using ABE-tokens to establish an
abstract layer that separates authentication from authorization without restrictions to
any user credentials and delegates both authentication and authorization from owners to
consumers with end-to-end approaches. Our scheme puts no key management systems in
CSPs, rather it constructs ABE-tokens from the cooperation of existing cloud entities and
owners with user-centric approaches and the distribution of key knowledge to minimize
risks in semi-trusted cloud environments. Thus, our scheme is more abstract and generic
than others. The details of our AAuth authorization scheme are described in Chapter 5.

The remainder of this thesis is organized as follows. Chapter 2 is divided into two parts:
P2P systems and cloud computing. The former gives the basic concept, applications, and
threats to P2P systems. The latter gives the basic concept, definition, vulnerabilities, and
threats to cloud computing. Chapter 3 gives the background and definition of security
technologies used in this thesis. In Chapter 4, we describe our security framework (SO-
HCG) for P2P systems. First, we summarize previous work related to security in P2P
systems. Second, we present system and security models of SOHCG. Third, we describe
SOHCG construction and its protocols. Last but not least, we analyze the security of
the SOHCG framework. In Chapter 5, we describe our authorization scheme (AAuth)
in cloud computing. First, we present previous work related to cloud storage and access
control. Second, we introduce the AAuth system and adversary models. Third, we give
the definition and notation of AAuth construction. Fourth, we describe AAuth procedures
and protocols. Fifth, we analyze the security of the AAuth scheme. Last but not least,
we evaluate the AAuth scheme by simulation. Finally, we conclude the thesis and identify
areas for future work in Chapter 6.
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Chapter 2

Preliminary

2.1 Basic Concept and Applications of Peer-to-Peer

(P2P) Systems

The Peer-to-Peer (P2P) system was initially developed from a content-distribution applica-
tion, music file sharing, that had no security provisions. In the middle of 1999, Napster [86]
was introduced, and there were about 50 million users by December 2000. Although Nap-
ster uses peer-to-peer communication for actual file transfer, it needs a central server to
store the index of files in the Napster community. Consequently, its centralized index
is a single point of failure and a limitation for scalability. The following generation of
P2P systems, e.g., Freenet [26], Gnutella [107], and Kazaa [72], are unstructured and de-
centralized mesh networks. These P2P systems flood request messages within a certain
scope. As a result, they are not scalable and may fail to find a required file. The third
generation, a structured P2P system is much more scalable, reliable and efficient than
its ancestors because it uses a structured manner to route messages and place objects.
Therefore, a structured P2P system can support much more complex applications, such as
storage management, service discovery, application-level multi-cast, data objects location
(web caches), publish/subscribe and decentralized spam-filtering. Based on their rapid
developments and dramatic increase in the number of users, we believe that the new ap-
plications and communications leveraging of these P2P systems will necessitate effective
security measures, i.e., access control, authentication, data integrity and non-repudiation.
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2.2 P2P Applications

With the revolution of client-server applications, P2P applications have evolved from file
sharing and instant messaging applications into many Internet applications. The key rea-
sons for using P2P architecture instead of client-server architecture are to achieve reliability,
efficiency, and scalability. Commonly, P2P applications enable users to share computing
power, data and network bandwidth (i.e., using many nodes for transferring data). There-
fore, many P2P applications, e.g., collaborative work, Voice over IP (VoIP), video stream-
ing, and distributed file systems, etc., have emerged. Although many companies, such as
Sun, Microsoft, Intel, IBM, etc., are researching their own standards, no single accept-
able standard for P2P applications has been established. In the following subsections, we
present some common P2P applications by giving popular examples and relevant research
work.

2.2.1 P2P File Sharing

The most popular P2P file sharing applications [64] are Guntella, FastTrack, eDonkey and
BitTorrent.

Guntella: was developed by Justin Frankel and Tom Pepper from Nullsoft in 2000 [107] [82].
Gnutella is a purely decentralized and unstructured P2P file sharing application that be-
came well known during Napster’s legal troubles in 2001. A new node joins the network
via a bootstrap node whose IP address is published in the pre-configured list of client
software or a public server, i.e., a web server, a UDP host, an IRC server, etc. When a
new node participates in the network, the new node discovers more existing nodes until
the number of neighbors reaches a predefined threshold. To query a target file, a query
message is propagated to the Gnutella network within a limited number of hops. A later
version (Guntella v2) was implemented in a partially centralized architecture that consists
of super nodes and leaving nodes.

FastTrack: was introduced by Niklas Zennstrom, Janus Friis and Jaan Tallinn in 2001 [75].
There are two worthwhile features in FastTrack. First, it uses super nodes to improve scal-
ability. Second, FastTrack employs UUHash, the 160-bit hash function that concatenates
128-bit and 32-bit hash values from a file together. The 128-bit part is generated by using
a MD5 hash function for the first 300 kilobytes of a file, and the other 32-bit part is gener-
ated by applying a small hash function to 300 KB blocks at file offsets 2n MB with integer
n incremented from 0 until the offset reaches the end of the file, This technique can find
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identical files in multiple locations, so it enable one to download a file from multiple nodes
simultaneously.

eDonkey: was developed by Meta Machine Inc. in 2000 [52]. eDonkey is a hybrid
decentralized P2P system like Napster. Therefore, the eDonkey server functions has a
communication hub with index files and an address directory for clients. A later version,
eDonkey v2, was implemented in a partially centralized architecture that uses the Kademlia
overlay network (see Appendix A.4) to overcome the problems of overloading and security
attacks.

BitTorrent: was developed by Bram Cohen in 2002 [100]. To share a file through a
BitTorrent network, the Torrent file, which consists of tracker information and the hash of
a file block, is published on a web server, a forum, a BBS board, etc. When a client wants
to retrieve a file, it first obtains the Torrent file, then extracts the tracker(s) to obtain a
list of nodes sharing the file. BitTorrent has three beneficial features that make it popular
for file sharing. First, it employs Tit-for-Tat and optimized unchoking strategies to defend
against free-Riding attacks. Second, the hash of a file block in a Torrent file can protect
against pollution attacks. Third, splitting a file into blocks and sharing a file block on the
basis of rarest locality can utilize bandwidth effectively.

2.2.2 P2P Communication and Collaboration

This category of applications includes systems that provide infrastructures for facilitating
direct and real time applications and collaboration between computer peers. We can
classify this category into three main groups as follows.

Instant Messaging (IM): emerging in the early stages of the Internet, is based on pure
client-server architecture, such as IRC [66] [67]. Currently, Instant message applications,
such as AOL [5], ICQ [58], Yahoo [131], MSN [85] and Jabber [61], are implemented by a
hybrid decentralized P2P system that uses a server or distributed servers to be a broker of
user information and presence. However, to support millions of users in the Internet scale,
researchers seek to integrate user presence and communication within their own application.
Therefore, the system operates as a purely decentralized P2P system, thereby eliminating
all infrastructures. To accomplish this goal, in 2007, Ravi and Sandeep proposed P2P-
IM [105] based on a lightweight presence system. The foundation of the P2P-IM presence
system is a user’s personal identity, which is a locally-generated public/private key pair
associated with a self-signed certificate. In addition, each P2P-IM user maintains a trusted
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contact list, which is a list of personal identities of other trusted users. To immediately
obtain presence information when other users come online, P2P-IM lookup must operate in
real time and be authenticated to avoid attacks. This lookup and authentication use P2P
SDK, which is based on a name resolution protocol and a special Distributed Hash Table
(DHT). Moreover, P2P-IM supports standard features like a traditional IM application,
such as Multi Point of Presence (MPOP) and presence status (On-line, Busy, Away, etc.).

Collaborative work: is an application that helps a team work together dynamically
and efficiently. This collaboration can support a team that works remotely, off-line or from
different organizations. In the early stage of collaborative software, it was implemented by
an Internet portal and a collaborative server. However, updating information with portals
is not always possible, for instance, in off-line and ad hoc operations. Therefore, the
next generation of this application uses a P2P system that can break this barrier. A P2P
collaborative software should provide user and role based security, persistence storage, fault
tolerance and user presence awareness, thereby supporting across a large number of users.
For example, Groove acquired by Microsoft in April 2005 is software with P2P capabilities
for document collaboration and instant messaging, and includes video conferencing.

Skype: was developed by Nikle Zennstrom and Janus Friis, then acquired by Microsoft
in May 2010. Instead of using standard protocols (SIP and H.263), Skype [64] uses a
proprietary protocol (based on Kazaa) and a partially centralized P2P system that consists
of super nodes and clients. Skype has three main features that differ from those of other
typical VoIPs and P2Ps. First, it can detect the existence of a firewall/NAT to ensure
that the Skype connection can be established either directly or indirectly. Second, it
automatically checks the resources (e.g., CPU, memory, network bandwidth) of Skype
nodes. Third, it uses the public-key cryptographic functions for call authentication and
Advanced Encryption Standard (AES)for call confidentiality. The powerful and directly
connected (i.e., not behind NATs or firewalls) nodes are promoted to be super nodes that
perform user directory services and relays traffic for computers behind the firewall/NAT.

2.2.3 P2P-SIP

IETF’s Session Initiation Protocol (SIP) is a standard protocol for Internet telephony
client-server architecture. Since this model needs maintenance, configuration and a dedi-
cated server, people have proposed a P2P architecture for SIP-based telephony systems to
overcome these drawbacks. There are two approaches to combine SIP and P2P. First, the
SIP-P2P approach is implemented by replacing the SIP user registration and lookup with
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an existing P2P lookup. Second, the P2P-SIP approach implements the P2P lookup proto-
col with standard SIP messaging. In 2005, Sing and Schulzrinne [116] proposed a P2P-SIP
system that is based on the second approach and Chord (see Appendix A.1) as the under-
lying DHT. The main characteristic for their P2P-SIP is a purely decentralized model that
increases robustness, cooperation with existing infrastructures (e.g., DNS, SIP-voice mail
service, SIP-PSTN gateway, etc.), and independence from external P2P networks. The
P2P-SIP now depends on a DHT structure. Hence, this P2P-SIP needs security provisions
that can protect the DHT structure.

2.2.4 P2P Streaming

The basic solution for video streaming over the Internet is a client-server architecture
and its variant, Content Delivery Network (CDN). In a CDN solution, a video server
pushes video stream to a set of CDN servers that are placed across the whole network
strategically. Clients directly download from a nearby CDN server instead of the video
server. Thus, the CDN servers can shorten delays and reduce the amount of traffic in
the network. For example, Youtube employs CDN servers to stream video to end users.
However, the bandwidth at a video server and CDN servers must grow proportionally
with the client population. The alternative solution is an IP-level multi-cast, which is an
effective way to stream audio or video in the Internet. Unfortunately, IP-level multi-cast
is rarely deployed on the Internet because its routing overhead and complexity of traffic
control are too high. In contrast, a simple multi-cast function can be implemented at the
application-level efficiently and economically. Therefore, video streaming over a multi-cast
overlay network [76] is a new paradigm for this application.

In P2P streaming, every node is encouraged to act as both a client and a server, namely a
peer. Therefore, a peer not only downloads video stream from a network but also uploads
the video stream to other peers in the network. This uploading bandwidth from peers
replaces the required bandwidth at video and CDN servers. The P2P streaming system
can be classified into two categories based on the overlay network structure: tree-based
and mesh-based.

The tree-based structure progressively pushes video stream from parent peers (note that
a root peer is a video server) to child peers. A simple solution is to form a single tree whose
root is a video server at the application-level, namely a single-tree structure. For instance,
Overcast and ESM P2P streaming are based on a single tree structure. The disadvantage
of a single tree structure is that all leaf nodes do not contribute their uploading bandwidth.
Since the number of leaf nodes constitutes a large portion of the peers in the system, the
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bandwidth utilization is downgraded significantly. To address this drawback, a multi-tree
structure is proposed to upgrade the bandwidth utilization. In a multi-tree structure, a
video server divides the stream into m sub-streams, which then are pushed into m sub-
trees, one for each sub-stream. Each peer may be placed on an internal node of one sub-tree
and on a leaf node of other sub-trees. By this strategy, the uploading bandwidth of a peer
is proportional to the number of sub-trees in which the peer is an internal node.

However, the tree-based structures have only one parent in a single-tree structure or
a sub-tree of a multi-tree structure. This constraint is a single point of failure if the
system faces a high churning rate. Therefore, many P2P streaming systems adopt a mesh-
based structure, with a dynamic topology. Each peer in a mesh-based structure maintains
connections with multiple peers based on the content and bandwidth availabilities on the
other peers. Hence, video content is simultaneously downloaded from multiple peers who
have already obtained the content. A mesh-based structure is robust against peer churns.
However, the dynamic topology causes the video distribution rate to be unpredictable.
Consequently, the system may suffer from long delays, freezing and low quality playback.

2.2.5 P2P Distributed File Systems

Although a file system provided by a central storage system is efficient for basic data
operations (insert, delete and query), experience shows that a distributed approach is
better for achieving reliability. In initial efforts, a client-server architecture is employed
for caching, replication and availability. As the Internet grows, a distributed file system
needs new criteria, such as availability, fault tolerance, security, robustness and locality.
Inherently, P2P architecture can reduce storage and bandwidth costs and allow cost sharing
by existing infrastructures from different nodes. Based on the aspects of P2P systems,
a P2P file system [53] can provide many beneficial properties, such as load balancing,
scalability, anonymity and persistence of information. However, a practical P2P file system
that conforms to all of the previous properties rarely exists. We present some of these
systems as follows.

FreeNet: [26] is an adaptive P2P file system that operates as a location-independent
distributed file system across many individual computers and allows files to be operated
anonymously. FreeNet uses probabilistic routing to publish, replicate, and retrieve infor-
mation, meanwhile preserving the anonymity of the author, reader and data location. The
design goals of FreeNet are anonymity, deny-ability, dynamic storage, dynamic routing,
resistance to third-party access, and decentralized policies.
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Cooperative File System (CFS): [30] is a P2P file system developed at MIT with
design goals of provably guaranteeing efficiency, robustness, load balancing, and scalability.
CFS divides a file into constituent blocks that are stored in different nodes over the Chord
(see Appendix A.1) overlay network, which maintains lookup and query management.
However, CFS is a read-only system for a user. A publisher can update information by
using a key-based authentication.

PAST: [109] is a large scale P2P persistent storage management system based on the
Pastry (see Appendix A.2) overlay network. PAST is composed of storage nodes, which
query files in a cooperative manner and perform replica storage and caching. In PAST, a
file ID is a SHA-1 hash value of the file name and the public key of the client. Hence, Files
in PAST are immutable, that is, multiple files cannot have the same file ID.

OceanStore: [70] provides a persistent storage for nomadic data in a uniform global scale
that is based on the Tapestry (see Appendix A.5) overlay network. OceanStore is designed
for a scenario in which providers form agreement and resource sharing, and consumers pay
fees to access the persistent storage. To accomplish these goals, OceanStore caches data
in the network with encryption, uses ACLs for restricting write access to data while using
keys for read access and, uses a Byzantine agreement algorithms between primary and
replica nodes for updating data.

Farsite: [2] is a symbiotic, symmetric, and distributed file system; which works coop-
eratively but does not trust other nodes completely. It was designed to provide highly
available, reliable and secure file storage, and resistance to Byzantine threats. Farsite en-
crypts contents to prevent unauthorized reading and digitally signs contents to prevent
unauthorized writing. Moreover, it has a collection of Byzantine-fault-tolerant replica
groups arranged in a tree-based structure of the file name space to resist arbitrary faults.

2.2.6 Summary

From the preceding of survey on P2P applications, we can conclude that many Internet ap-
plications are moving from a client-server model to a P2P model. Meanwhile, both hybrid
decentralized and unstructured P2P systems are migrating to either partially centralized
or purely decentralized structured P2P systems.
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Figure 2.1: The abstract layers of P2P overlay network architecture

2.3 Structured Peer-to-Peer Systems

A P2P network uses a distributed algorithm that takes responsibility for locating content
and nodes. This algorithm is implemented in an application layer separated from the rout-
ing mechanisms in a network layer. Therefore, a P2P network is an overlay network that
runs and spreads on existing communication systems, e.g., the Internet, wireless networks,
etc. Intuitively, a P2P network is a decentralized and self-organized system that provides
many positive attributes: availability, reliability, load-balance, fault-tolerance, scalability
and efficient data management. The abstract layers of P2P overlay architecture taken
from [78] is shown in Figure 2.1, which are described below.

Application-level: consists of tools, applications and services that are implemented on
top of P2P infrastructures.

Service-specific: provides task/service scheduling, content/service management, messag-
ing, and meta-data.

Features management: facilitates security, reliability, fault resiliency, and resource man-
agement.

Overlay nodes management: conducts routing, lookup, locating, and resource discov-
ery.
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Network communication: consists of Internet, wireless, an-hoc, or sensor networks.

P2P systems can be classified into two types: structured and unstructured overlay
networks. In a structured P2P system, content is placed on the topology of the overlay
network tightly, whereas the content is placed randomly in an unstructured P2P system.
Both structured and unstructured P2P systems use a Global Unique Identifier (GUID)
in a single identifier space to identify a node object and a content object. We define the
identifier of a node object as a node ID and the identifier of a content object as a key.
Moreover, we can classify P2P systems according to ascending degree of decentralization:
hybrid decentralized, partially centralized and purely decentralized P2P systems. A hybrid
decentralized P2P system has a central server maintaining an index of location information.
A partially centralized P2P system uses a group of super nodes to provide services or to
maintain an index. In a purely decentralized P2P system, every node, called a servent,
both requests and provides services with other nodes. The taxonomy of P2P systems
according to the degree of structure and distribution are shown in Figure 2.2.

In general, a structured P2P system employs a Distributed Hash Table (DHT) to
map a content object (key) to a particular location (node) of an overlay network. Based
on localized information and a progressive manner, each node maintains a routing table
whose entry consists of a neighbor’s node ID and its IP address, and uses this routing table
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to route a message to the next closest node node-by-node until the message reaches the
destination node. As a result, a structured P2P system can guarantee that any content
objects will be operated, i.e., put, get and delete, in the upper bound of a route path
length. All of these functions are provided by Application Programming Interfaces (APIs)
for application-level independence. The APIs are developed from the emergence of the
middle-ware layer on the global scale of P2P systems, as shown in Figure 2.3. For the
example of file sharing systems, a file name is input to a hash function which outputs a
key, then the file (value) is stored at the key location, i.e., the node whose ID is closest to
the key. This step is achieved by the API put(key, value) that routes to the appropriate
node for storing this file, then stores the key and value in that node. When other nodes need
to obtain this file, they hash the file name to be the key and then use the API get(key) to
obtain the value associated with the key from an appropriate node. Similarly, this file can
be removed from the designated node by the API delete(key). Although structured P2P
systems efficiently locate any content objects, they incur significant overheads to maintain
their routing tables and structures. Furthermore, the lower number of hops on overlay
networks cannot guarantee lower lookup latency because the underlying networks can be
significantly different from the overlay networks.

Without topology relations, unstructured P2P nodes join and leave the overlay network
subject to only loose rules. To insert, retrieve and remove content objects, a node uses
a flooding mechanism with a limited scope to send query messages across the overlay
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network. Although a flooding technique is effective for locating highly replicated items,
and resilient to node joining and leaving, the performance of flooding techniques is poor
for locating rare items. Moreover, an unstructured P2P system is not scalable and cannot
guarantee the upper bound of route path length to access a content object. Even though
both structured and unstructured P2P systems are robust, they still suffer from many
possible attacks.

In the following sections, we discuss the Content Addressable Network (CAN) structure,
which is related to this thesis. Furthermore, we review other significant structured P2P
systems: Chord, Tapestry, Pastry, Viceroy and Kademlia.

2.4 Content Addressable Network

A Content Addressable Network (CAN) [103] is a distributed, Internet-scale, hash table
overlay network. CAN’s identifier space comprises the points in a d-dimensional Cartesian
coordinate space on a d-torus. This space is dynamically partitioned into n areas called
zones, where n is the number of all current nodes in a CAN. Each zone is split from an
existing zone and assigned to a new node when it joins a CAN. When an existing node
leaves, its zone is handed over to its neighbor node. Therefore, there is no unassigned
zone in the system, and each node maintains the identifier space covered by its zone. The
coordinates of a zone are used to route to the node occupying the zone associated with
the key by a greedy routing strategy. In other words, each node maintains a coordinate
routing table of zones adjoining its own zone and uses this table to route to arbitrary
points in the CAN by forwarding to the immediate zone closest to the destination point
until it reaches the zone on which the point lies. As a result, the d-dimensional CAN must
maintain 2d entries of the coordinate routing to guarantee that the average path length
is O(d · n1/d), where n is the number of nodes participating in an overlay network. For
example, for a 2-dimensional CAN, Figure 2.4 shows node 1’s neighbor nodes, {2, 3, 4, 5, 6}
and the routing path from node 1 to a point (x, y). After node 7 joins, Figure 2.5 shows
that the zone of node 1 is split: in this case, node 1’s neighbor nodes are {2, 3, 4, 7}, and
node 7’s neighbor nodes are {1, 2, 5, 6}.

To look up the content, the content identifier is converted to a key (point) via a hash
function and used as the destination point for routing to the node keeping the (key, value)
pair. The new (key, value) pair of the content can be stored in the node occupying the
zone on which the point (key) lies by API put(key, value). Moreover, an existing value can
be obtained by API get(key). To join a CAN, a new node p looks up the CAN domain in
DNS, which returns a bootstrap node’s IP address. The bootstrap nodes, which maintain
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a partial list of CAN nodes, randomly choose a node a from the list and provide the node p
the IP address of node a. Then, node p selects a random point α, and sends a join message
though node a. The join message is routed to the node b occupying the zone on which the
point α lies. Next, node b splits its zone, maintains a half and hands over the other half
to node p. In order that the split zone can be merged as the same, splitting is done by
a certain ordering of dimension, e.g., for a 2-dimension CAN, starting from X-dimension,
then Y-dimension and so on. In addition to splitting a zone, a half of (key, value) pairs
held by node b are handed over to node p as well. Node p must learn the IP address of its
neighbors from node b’s routing table, and node b itself must update its routing table also.

When a node q leaves a CAN, node q will select its immediate zone occupied by node
c, then hand over its zone and (key, value) pairs to node c. Then, node c will merge its
zone with node q’s zone. Generally, a CAN’s average path length increases as the number
of nodes ascends and as the number of dimensions descends. Moreover, a CAN has two
main strong points: a) durability under node churning, i.e., only 2d nodes are affected by
joining or leaving a node, b) scalability, i.e., the size of a routing table is independent of the
current number of nodes in the CAN system and fixed at 2d entries. Many techniques have
been proposed to improve CAN’s properties: gaining performance and reliability, reducing
path length and lookup latency, and increasing routing tolerance and data replication.
However, these improvements are traded off with the increasing sizes of the routing table
and peer list in each node. Some variants of CAN, i.e., multi realities, overloading zones
and multiple hash functions, can provide data replication in CAN.
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2.5 CAN-Based Multi-Cast

CAN-based multi-cast [104] is an application-level multi-cast group over the CAN overlay
network. If all nodes of a multi-cast group form a CAN overlay network, multi-casting a
message is achieved by flooding the message over the reforming CAN network. In other
words, multi-casting a message over the CAN network is performed by two steps: forming
a “mini” CAN over the underlying CAN, followed by flooding the message over the mini-
CAN. Assuming that there is a subset of nodes in an underlying CAN that wish to join a
multi-cast group, the members of the multi-cast group g then form a mini-CAN Cg over
an underlying CAN C. To form a mini-CAN Cg, the multi-cast name of ‘G’ is hashed
by a known hash function to a point β, which is the multi-cast address of G. Hence, the
node b holding the point β serves as a bootstrap node of the mini-CAN Cg. Now, joining
a multi-cast group G is reduced to joining a mini-CAN Cg, which is done by the original
CAN construction process. Flooding over the CAN structure can be efficiently done by
exploiting the coordinate space structure of d-dimensional CAN, as shown in Figure 2.6
and described in the following steps:

1. The source node forwards a message to all its neighbors.

2. A node receiving a message from its neighbor in dimension i forwards the message
in both forward and reverse directions for dimensions 1, . . . , (i − 1), and in only a
forward direction for dimensions i, . . . , d.

3. In each particular dimension, a node does not forward a message after the message has
already traversed at least half-way along the dimension from the source coordinate.
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4. Each node caches the sequence number of messages it has received and does not
forward a message that it has already received.

This flooding algorithm ensures that no node has a duplicated message under a perfectly
partitioned coordinate in which every node occupies an equal-sized zone. However, for
imperfectly partitioned space, it is easy to avoid a duplicated message because every CAN
node knows the coordinates of its neighbors. For example, in Figure 2.6, if node Q abuts
node P in the forward direction of dimension 1 and the corner CQ of node Q that abuts
node P along dimension 1 is the lowest coordinates of all other dimensions, then only
node P forwards the message to node Q, but node R does not forward. That is, we can
apply certain deterministic rules with the knowledge of the coordinates space to eliminate
duplicates that arise with flooding along the first dimension. Although only all duplicates
in the first dimension can be eliminated, most flooding occurs in the first dimension, so
most duplicates are eliminated from multi-casting. In this way, a CAN can support an
application-level multi-cast service efficiently without the need to compute spanning trees
for every source of a multi-cast group.

2.6 Threats to Structured Peer-to-Peer Systems

Commonly, a structured P2P system is built by a DHT structure, which is maintained
by the cooperation of nodes in such a system. The benefits from this DHT structure
are that nodes in a structured P2P system can look up keys, provide persistent storage,
and support multi-cast services efficiently. Therefore, many network applications based
on a structured P2P system can obtain these benefits if nodes work together correctly
and honestly. Unfortunately, most P2P systems are developed over untrusted underlying
networks such as the Internet, in which nodes may be malicious. These malicious nodes
may attack P2P systems to gain their advantages, thereby incurring many attacks in P2P
systems. Some attacks are general network attacks, such as Man-In-the-Middle(MITM),
DoS, Sybil, etc. The other attacks are only launched in P2P systems, such as free-riding,
whitewashing, abuse bootstrapping, incorrect routing updates, eclipse, ID theft, etc. The
following subsections focus on the main attacks that try to disrupt or subvert structured
P2P systems.
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2.6.1 Abuse Bootstrapping Attacks

To participate in a structured P2P system, a new node must first contact an existing node,
named a bootstrap node. If a bootstrap node is malicious or compromised, a new node
will connect to the malicious node in a joining procedure, thereby causing traffic censoring
and denial of service. Sit and Morris [118] described how a new node is vulnerable to
partitioning into a parallel network. Suppose that a set of malicious nodes colludes to form
a parallel network running the same protocol as the legitimate network runs. One of the
malicious nodes is a bootstrap node and cross-registered between a legitimate network and
a parallel network. If a new node accidentally joins such a bootstrap node, the new node
may be diverted to the parallel network instead of the real network. Hence, the malicious
node can deny the services or learn the behavior of a victim. Sit and Morris also proposed
a solution in which each node maintains a set of other nodes that it previously succeeded
in connecting with, and then randomly queries via the nodes in this set. The comparison
between the present and previous query can verify whether the view of the network is
consistent. However, this solution is not suitable for high churning P2P networks and
networks in which nodes’ IP address are assigned via DHCP. The final suggestion is to use
a certificate with a node ID and a public key to safely join the system.

2.6.2 Incorrect Routing Update Attacks

In a structured P2P system, nodes must update their routing tables and neighbor lists
because of churning. When a node joins/leaves the network or discovers other nodes
joining/leaving the network, that node must notify its neighbors to update their routing
tables and neighbor lists. Then the notified nodes must add a new node to their routing
tables or replace the leaving node with a neighbor of such a leaving node. However, an
attacker can abuse this process in two ways. Firstly, an attacker can send out an incorrect
routing update to attract other peers to add an inappropriate node or a non-existing node.
Secondly, an attacker can cause a target node to fail, thereby convincing other nodes to
select an inappropriate node to be an intermediate node.

To cope with this attack, Sit and Morris [118] suggested that routing entries in P2P
systems should have certain requirements that are able to verify the correctness of update
information. For instance, Pastry (see Appendix A.2) updates require that each table
entry has a correct prefix, each CAN routing table entry is a neighbor in each dimension,
and each routing table entry of Chord (see Appendix A.1) is close to a specific point.
Furthermore, the IETF network working group [79] suggests that the notified nodes should
detect incorrect routing updates by contacting the reported leaving node. If the routing
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updates originate from the leaving node itself, the notified nodes must verify the node ID of
the notifier to ensure that the message is not forged. Additionally, update messages should
have integrity protection to prevent being replayed and modified. Thus, the solution for
addressing this attack is to use constrained routing tables and a digital signature to
sign the routing updates.

2.6.3 Sybil Attacks

Typically, identity assignment in P2P systems has two approaches: firstly, a new node ran-
domly choses its own identity in a P2P address space, such as, Pastry (see Appendix A.2)
and CAN (see Section 2.4), etc. Secondly, an identity is assigned by a cryptographic hash of
a node’s IP address, such as in Chord, Tapestry, etc. (see Appendix A.1 A.5). Therefore, a
small number of malicious nodes may counterfeit a large number of identities by arbitrarily
choosing multiple node IDs or spoofing IP addresses that hash to target node IDs. In this
way, an attacker can obtain multiple identities and join a P2P system as multiple nodes
thereby launching a Sybil attack in the P2P system. In 2002, Douceur [38] argued that
without a logically trusted identification authority to vouch for one-to-one correspondence
between an entity and an identity, it is practically impossible to prevent an entity from
presenting as more than one identity.

To address this attack, Castro et al. [21] proposed two solutions. In the first solution, an
identity registration with Certificate Authority (CA) must be used to generate a public-key
certificates binding to a node ID and/or IP address. For doing so, the registration must be
controlled tightly by checking for forged node IDs or spoofed IP addresses. Unfortunately,
the CAs present a single point of failure and contradict the idea of purely decentralized P2P
systems. Another solution is that an identity-generation process forces nodes requesting
new identities to compute difficult tasks, such as solving cryptographic puzzles, thereby no
requirement for a centralized CA. However, the cost of solving puzzles must be acceptable
for legitimate nodes and hard enough to slow down attackers. In addition, if an attacker
has enough resources and time, it can still obtain multiple identities. Finally, a long-term
identity, such as a certificate binding a node ID to a public-key, may be considered as a
security foundation to provides message authentication and integrity and to allow a new
nodes to joint the system safely.
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2.6.4 Eclipse Attacks

Each node in an overlay network must maintain an overlay link to a set of intermediate
nodes for forming an overlay network and routing to the destination. The operations over
overlay networks rely on the assumption that correct nodes must forward messages to
appropriate nodes along overlay links. If attackers can control a large fraction of links to
a correct node, they can eclipse (i.e., censor, replay, or drop messages, etc.) the correct
node and prevent correct overlay operations (i.e., deny services). Moreover, the attacker
can simulate an outside view to shadow the honest node without that node noticing that
it is under attack.

To launch eclipse attacks, an attacker may use a Sybil attack to create a large number of
distinct node IDs to populate the neighbor nodes of a correct node. Without controlling a
large fraction of nodes, attackers may target a particular victim by forging node IDs which
are close to that of the victim or launching incorrect routing updates to control most entries
in the victim’s routing table and neighbor list. In other words, a small number of malicious
nodes colluding to control all inbound and outbound links of an honest node can launch
eclipse attacks successfully. Thus, the effective defense against a Sybil attack may not be
able to prevent an Eclipse attack.

Singh et al. [115] [117] proposed a defense against the Eclipse attack by establishing
a bound on the degree, i.e., both inbound and outbound, of nodes in an overlay network
and an assumption that a node that has more links than the average may be mounting
an Eclipse attack. To implement this defense, each node must maintain a list of other
nodes that point back to it, named a backpointer set. Then each node periodically uses an
anonymous challenge mechanism to audit neighbor nodes to ensure the compliance with
the degree bound. Moreover, to ensure that responses are fresh and authentic, the auditee
includes a nonce and digitally signs the response. This digital signature ensures that the
auditee is not being impersonated and that the response has not been modified.

2.6.5 False Claim Resource ID Attacks

To retrieve a resource by means of a key, an overlay network routes the retrieving message
to the key’s root node which is the node ID closest to the key. This retrieving operation
relies on intermediate nodes along the routing path because any intermediate nodes can
respond and claim that it owns the key’s resource or that the resource does not exist. For
storing a resource, a malicious node on the routing path may discard the resource, while
replying with a successful response. The impact of this attack includes denial of service,
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fake responses, or data modification. This attack is called Identity Theft because an
attacker steals the node ID (identity) of a true root node.

Ganesh and Zhao [43] proposed a solution in which each node periodically signs proof-
of-life certificates (which are used to prove the existence of the node) and distributes them
to the random proof managers in the P2P network. When a client stores or retrieves data,
the client can verify that a node claims to be the key’s root node by requesting the proof
for the existence of the node whose ID is closer to the key than the ID of the claimed
root node. For the example of Tapestry (see Appendix A.5) with L-digit address space,
a unique public/private key pair is assigned for each prefix group, which is a group of
nodes that share the same prefix address of length l < L. For example, a node ABCD
would receive public/private key pairs for itself, ABCD, and for all its prefix groups,
A,AB,ABC. Firstly, each node signs each prefix’s existence proof with the private key
of the prefix group. Second, the node ABCD publishes each prefix’s existence proof to a
set of proof managers corresponding to the prefix. The prefix’s proof managers are nodes
whose IDs are derived from the SHA-1 hash value of the prefix value together with several
salt values, e.g., 1, 2, 3. When a query node receives a response, it can use the space density
from its routing table to investigate whether a responding node is suspicious. If the query
node suspects the responder, the query node will request existence proofs of the matching
prefixes that are longer than the matching prefixes of the responder. If a better matching
designated node exists, it means that the responder is mounting an identity attack. This
solution require an off-line CA that has to generate and distribute a public/private key
pair to all peers in each unique prefix group. Mao et al. [79] proposed another light-
workload solution in which each node must register for a public-key certificate binding
to its node ID. Thus, every signed request and response can verify the sender and data
integrity. Next, a client retrieves data by sending the request message via different routes.
In general, the more routes it tries, the higher the likelihood that at least one route will
return the correct response.

Commonly, applications in a structured P2P system employ redundancy, lookup func-
tions (i.e., put, get, ) and routing algorithms that are based on a DHT structure. Thus,
threats to the DHT structure can subvert all of these P2P applications as well. From the
survey on threats to structured P2P systems, most solutions for addressing or mitigating at-
tacks on operations of a DHT structure are based on certificate-based cryptography. Hence,
a Public Key Infrastructure (PKI) or a Certificate Authority (CA) is a basic infrastructure
for providing long-term identities and security in a structured P2P system. Additionally,
the requirements of public-key certificates for security provision occur frequently in both
the application-level and the DHT structure-level of P2P applications.
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2.7 Basic Concepts and Definitions of Cloud Comput-

ing

Cloud computing is a new computing paradigm based on a change from computing resource
investment to pay-per-use services like other utilities, e.g., electricity and hydro, in order to
convert from capital expenditure to operation cost. Therefore, this computing paradigm is
being evolved, disseminated, and adopted by IT communities rapidly. However, because of
the variety of technologies in a cloud, its definitions, characteristics, services, and architec-
tures are divergent and confusing. This situation encourages discussion and consolidation
as interested parties work to achieve consistent ideas about cloud computing.

To my knowledge, cloud computing can be defined from both business and engineering
perspectives. For example, Gartner, a market research firm [98], considers it to be “a style
of computing where massively scalable IT-related capabilities are provided ‘as a service’
using Internet technologies for multiple external customers.”

On the other hand, the U.S.’s National Institute of Standards and Technology (NIST) [84]
says that “Cloud computing is a model for enabling convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction. This cloud model promotes availability and
is composed of five essential characteristics, three service models, and four deployment
models”, which are defined in the following subsections.

2.7.1 Cloud Characteristics

The five essential characteristics of Cloud Computing Services (CCSs) are presented as
follows:

On-demand self-service: Cloud users can request and manage resource capability, e.g.,
computing time, storage space, and network bandwidth, etc., on demand with minimal
management effort or human interaction with cloud service providers, e.g., web portals
and management interfaces, etc.

Broad network access: Cloud resources are accessible via cloud networks (e.g., the
Internet) by standard protocols (HTTP, REST, SOAP, SMTP, SSH, etc.) to provide broad
accessibility. In addition, the clouds should support a variety of devices (e.g., laptops,
PDAs, smart phones, etc.) and client models (i.e., thick and thin clients).
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Resource pooling: In multi-tenant models, resources used to provide services must be
pooled and dynamically assigned and reassigned to many cloud users in order to gain more
economic and efficient utilization. Furthermore, the physical resources, i.e., processing,
storage, network bandwidth, etc., are located and replicated in distinct geographical areas
for resilient services and disaster recovery. Generally, these resource and location manage-
ments are opaque for cloud users by implementing virtuaization, such as virtual machines,
virtual storages, load balancers, virtual networks (e.g., the Internet), etc. However, cloud
users may be able to specify location at the course-grained levels, e.g., country, state, or
data center, etc.

Rapid elasticity: In some cases, services can quickly scale up or down according to
user configuration, or automatically scale to the right size of real loads. Therefore, in a
user’s view, cloud computing can provide unlimited resources without upfront costs for
peak loads.

Measured service: Resource usage must be monitored and metered in order to control
and optimize the resource utilization and stabilization. Moreover, usage reports must be
accounted for in the billing system in pay-per-use business models.

In addition to the essential characteristics, Hoefer and Karagiannis [55] proposed two
more groups of characteristics, i.e., common and specific, to allow more distinctions to be
made between CCSs. We here briefly recap the common characteristics as follows:

License type: Most Cloud Service Providers (CSPs) use proprietary software (e.g., mod-
ified open-source or in-house development) or licensing software (i.e., commercial products).
For example, Amazon EC2 [3] is the proprietary system developed from Xen technolo-
gies [129]; the Google App Engine [6] is a proprietary platform built around the open-
source Python programming language [99]. Microsoft Azure [10] uses its own software.
Meanwhile, small CSPs are using open-source cloud-monitoring software because of their
lack of power and influence to develop and push their own software into the market.

Intended user groups: Most IaaS and PaaS models are intended to offer services for
business, although they are not limited to supporting individual users, whereas SaaS offer
services for both corporate and private users. Tentatively, mobile users are another user
group for CSPs.

Security and privacy: When sensitive information is kept on cloud servers, encryption
and authentication should be leveraged for confidentiality, integrity, and privacy. Both

32



encryption and authentication used in CSPs depend on the service models. For example,
IaaS users have the most control, i.e., they can independently select and manage their
own security methods and keys. PaaS can craft the security methods provided by CSPs,
whereas SaaS users have to use CSPs’ security methods. Commonly, CSPs use Hyper
Text Transfer Protocol (HTTP) to establish connections with users’ web browsers. Hence,
Secure Socket Layer/Transport Layer Security (SSL/TLS) can enable encryption channels
and server authentications. Users’ credentials for authentication can be implemented by
user/password, public keys, X.509 certificates, etc. For hybrid clouds, Virtual Private
Networks (VPNs) are used to provide secure and authentic links between private clouds
and public clouds.

Payment system: Usually the pricing model of CCSs is pay-per-use, in which the units
or units per time of resources are associated with a fixed price value. Another model is
dynamic or variable pricing, in which the price relies on demand-supply, such as auctions
and negotiations. Some CCSs are free of charge or free for basic services.

Standardization: Currently cloud users are locked in a vendor and switching costs are
high because of no defined standards for CCSs. The lock-in vendor is the biggest problem
that impedes enterprises from adopting CCSs and prevents multiple CSPs from inter-
operations. Currently, several organizations are attempting to create standards for inter-
actions between clouds, such as the Open Cloud Consortium [91], DMTF Cloud Computing
Incubator [36], and Cloud Computing Interoperability Forum [27].

Formal agreement: Commonly, the formal agreements between CSPs and cloud users
are Service Level Agreements (SLAs), which defines the level of service that cloud users or
customers expect from CSPs and the compensation that providers owe to the customers if
the SLA cannot be satisfied.

2.7.2 Cloud Service Models

Based on the NIST definition and the survey of Rimal and Choi [106], Cloud Computing
Services (CCSs) can be classified into three categories, according to the capability that
they can offer to target customers.
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Software as a Service (SaaS)

Already-created applications running on cloud infrastructures are directly provided to end-
users through thin user agents, i.e., web browsers. In this model, cloud users cannot control
applications, platforms, and infrastructure, except through limited application preferences
at the user-level. For providers, this model simplifies their work in installation, patching,
updating, upgrading, testing, and protecting their intellectual property. As for end-users,
the main advantage of SaaS is pay-per-use service without hardware investment, software
licensing and maintenance cost. Although the idea of SaaS existed before the emergence of
cloud computing, there are many successful cases of SaaS in cloud computing. For example,
Yahoo [130] provides web-based email. Google Apps [47] collaborative software provides
web-based services: email, calendar, contact, and chat. The Google Doc [48] package pro-
vides web-based applications for documents, spreadsheets, and presentations. Box.net [19]
provides on-line file sharing and backup. SmugMug [120] provides video and photo sharing
over underlying Amazon S3. SalesForce [111] provides Customer Relations Management
(CRM) software. SuccessFactors [123] provides Human Resources (HR) software. This
service model is the most economic way of cloud computing; however, cloud users lose all
control of applications, developments, and infrastructure.

Platform as a Service (PaaS)

Application development tools and runtime environments are provided as services for soft-
ware developers. The platforms typically include development tools, middle ware, database
systems, programing languages and APIs. Hence, customers develop, deploy, and man-
age their own applications, which rely on the platform from the providers. In this way,
customers pay as they go with the development platform, instead of having to license,
update/upgrade and maintain development tools and runtime software. Furthermore, de-
velopers benefit from the cloud programming environment (e.g., automatic scaling, load
balancing) and cloud development tools (e.g., Hadoop [51], map reduce [81], Pig [97]). For
well-known examples, the Google App Engine [6] supports Java and Python frameworks.
Microsoft Azure [10] supports C#, .Net library, IIS, and SQL server. SalesForce [111] offers
its own proprietary language, Apex, allowing companies to develop Customer Relationship
Management (CRM) applications. For PaaS, organizations can control and customize ap-
plications, regardless of platform and hardware investment. In contrast, resource and cost
sharing are not as efficient as with SaaS because organizations must pay for application
development and development tools.
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Infrastructure as a Service (IaaS)

Provisioning from providers involves fundamental resources, e.g., computing, storage, net-
works, etc., in virtualization models. These virtualizations allow IT managers to deploy or
control their own operating systems or applications over the virtual resources, i.e., virtual
machines, virtual storage, virtual networks, etc. Thus, customers rent the virtual resources
and pay as they go, instead of having to invest and set up servers, software and data centers
themselves. The advantage is that customers can quickly scale up and down the resources
according to the demand and market. Real examples are Amazon Web Services (EC2,
S3, EBS, VPC, and elastic load balancing) from Amazon [3], Cloud hosting and Hybrid
hosting from GoGrid [46], Cloudservers and cloudfiles from Rackspace [102], IBM Smart
Cloud [57], Oracle Public Cloud [94]. In this service model, organizations have indepen-
dence to customize applications and select platforms. Meanwhile, the total expenditure
is higher because organizations must invest in both development tools and application
development.

2.7.3 Cloud Deployment Models

In addition to the service models, cloud computing also can be classified by usage, man-
agement and deployment as follows:

Private cloud: This cloud is exclusively used by a single organization and typically is
hosted and managed by the organization’s IT department. In some cases, it is hosted
off premise, managed by a third party, but is still used for only one organization.

Community cloud: Similar to a private cloud, this cloud can be hosted and managed
by an organization or a third party. Unlike a private cloud, it is exclusively used by
several organizations in the same community that share a mission, requirements, or
policies, etc.

Public cloud: Service providers solely own, host, and manage this cloud for selling ser-
vices to public customers. Meanwhile, the customers benefit from sharing resources,
i.e., having more flexibility and scalability as well as paying less cost and manage-
ment.

Hybrid cloud: An organization may bind a private/community cloud and a public cloud
together for a single purpose. This binding can take advantages from both clouds.
For example, a ‘cloudbursting’ uses a private cloud to run a steady-state workload,
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Figure 2.7: Cloud computing architecture

while moving any spikes in workload into a public cloud. To gain a security level,
some providers also provide Virtual Private Networks (VPNs) to connect customers’
data centers to the public cloud.

2.7.4 Cloud Architecture

In 2008, Youseff et al. [132] established the ontology of cloud computing by using compos-
ability methodology. We use this methodology and the NIST definition to classify cloud
components as a stack of layers in two plans: service and management. The service plan
consists of four horizontal layers: application, development platform, virtual infrastructure,
and hardware/facilities. Each layer is composed of components that provide the same ser-
vice model for the same target user group. By the order of a stack from the highest layer
(application layer) to the lowest layer (hardware/facilities layer), the higher layer composes
the services from the underlying layers and so on. Vertically, the management plan consists
of two layers: the IAAA mechanism and management interface. We add a client layer and
an Internet layer to show the untrusted network between end-users and CSPs. Figure 2.7
shows the relation among layers. In the following, the components, technologies, services,
and target users of a cloud stack as well as the relation among cloud layers are explained.
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Client layer: The client layer is composed of hardware and software for client devices
that are used to access services deployed over clouds. The hardware can be laptops, PDAs,
smart phones, thin clients, or any constrained devices. The software includes Web browsers,
Secure Shells (SSHs), remote desktops, etc. Thus, there are no accessibility limits in cloud
computing.

Application layer: This layer is the key to delivering the SaaS model based on web ap-
plications and services. Application software on the server side leverages cloud computing
to take almost all the work load of applications, thereby exporting computation cost from
the client side to CSPs. This situation also alleviates the burden of software maintenance
and installation in the client side by moving all IT workload to CSPs. Hence, this layer
provides already-created software services to end users.

Development platform layer: In this layer, the application development framework
that consists of languages, APIs (e.g., Java, Python, Ruby, etc.) inter-operations services
(e.g., Web services, database services, queue services, etc.) is provided for facilitating and
accelerating application development. This layer also provides a runtime environment for
deploying the applications developed from the platform. Clearly, the users of this layer
are application developer, and PaaS is the name coined for the services delivered from this
layer.

Virtual infrastructure layer: With virtualization technologies, this cloud layer di-
rectly provides virtual resources as a service called IaaS to IT departments/individuals, or
supports other CSPs to establish the upper cloud layers (i.e., software platform and ap-
plication) for PaaS and SaaS services delivery. However, the upper layers may bypass this
layer and then directly build their services atop the hardware/facilities layer. Although this
bypass can enhance efficiency, it increases the development cost. The virtual infrastructure
layer consists of four sublayers:

• Virtual machine sublayer. Virtual machines (VMs) are the most common technology
for providing computational resources in virtualization environments. With virtual
machines, users have flexibilities to configure and customize their own VMs because
users get full privilege to do so. Currently, hardware technologies, such as multi-
core CPUs and advance chipsets are designed for hardware-assisted virtualization in
order to enhance efficiency, for example, Intel VT-x processors and Intel VT-d/VT-c
chipsets [59].
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• Virtual storage sublayer. Virtual storage is data storage that allows users to remotely
store and access their data anytime from any place (e.g., from any on-premise sites,
CSPs, or Internet-connected devices). These systems are expected to support rig-
orous requirements for maintaining user data, for example, reliability, replication,
consistency, confidentiality, integrity, privacy, etc.

• Virtual network sublayer. Because of the necessity of Internet connections with users
and among virtual resources, cloud users also need communication capability that
is flexible for configuration, scheduling, Quality of Service (QoS), and security. To
this end, CSPs must provide virtual networks that can support traffic isolation, dedi-
cated bandwidth, encryption channels, network monitoring, Virtual Private Networks
(VPNs), etc.

• Software kernel. This sublayer facilitates the virtualization and management envi-
ronment on top of the physical resource in the underlying hardware/facilities layer.
Software in this sublayer is composed of OS kernel, hypervisor, virtual machine mon-
itor, clustering middle-ware, P2P middle-ware, etc.

Hardware/facilities layer: The bottom layer of the cloud stack consists of physical
hardware and facilities that form the data center for cloud service providers. This hard-
ware includes severs, physical storage, switches, load balancers, firewalls, etc. Moreover,
operating the hardware requires support from other facilities: on-premise space, shelters,
electricity supply, cooling systems, and Internet connections.

Management interface layer: The rapid elasticity characteristic of cloud computing
necessitates this interface to allow cloud users to control and manage instance or application
deployment. This layer also facilitates cloud users’ ability to rapidly scale up and down
the cloud resources according to demand.

IAAA mechanisms layer: Since both service plans and management plans have to be
protected from unauthorized access, CSPs must provide an Identity management, Authen-
tication, Authorization, and Auditing (IAAA) layer as the fundamental service to facili-
tate the access control mechanisms in both plans. CSPs that support IAAA and identity
federation for customers can extend and accelerate migration of traditional applications
from local data centers to CSPs. On the other hand, cloud users can use IAAA facili-
ties to accelerate software developments, control their resource/data access, and provide
inter-operations with federated entities. For example, sales and support staffs access Sale-
force.com with corporate identities. CSPs allow IT administrators to access PaaS/IaaS
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Figure 2.8: Target users and trade-off in cloud service model

management consoles with corporate identities. Developers create accounts in PaaS for
part-time programmers. End-users share files/objects in Amazom S3 with other users
within/outside Amazon’s domain. Applications in clouds access other cloud storage.

In conclusion, cloud providers can deliver services in three models (i.e., SaaS, PaaS, and
IaaS) from the cloud layers (i.e., application, development platform, and virtual infrastruc-
ture) for target users (i.e., end-users, developers, and IT teams) respectively. According
to the service delivered in each layer from top to bottom, flexibility and controllability
of services increase. Meanwhile efficiency and economy of resource utilization decreases.
Therefore, organizations should assess these factors when selecting a suitable services from
cloud computing. Figure 2.8 pictorially shows all of these relations and trade-offs.

More and more individuals and organizations are being placed in cloud computing en-
vironments, even while concerns are increasing about the security and privacy in clouds.
Thus, before we accept and adopt cloud computing in our businesses or individuals, we
should study and understand the security issues, adversaries, vulnerabilities and possi-
ble threats in cloud computing. The next section explains the security issues in cloud
computing.

2.8 Security Issues in Cloud Computing

Cloud computing users often have more concerns about security and privacy than users
of other types of distributed systems, e.g., client-server, grid computing, or P2P systems.
For example, the sensitive codes and data in client-server systems are processed in under-
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control servers, while untrusted clients process insensitive data or codes. Grid computing
may process sensitive scientific data that are often isolated and not valuable. P2P systems,
in which every node is equivalent to the others, are rarely matched to business applications
that are hierarchical models. Therefore, prospective cloud users must understand and
accept the following security awareness before going ahead with clouds.

A 1: Be willing to run sensitive applications and data under control of third parties.

A 2: Trust in the isolations of instances (running codes in visualized machines) and storage
in multi-tenant environments managed by cloud providers.

A 3: Clearly understand a boundary of security function between cloud users and providers–
how clouds provide security functions and which ones are left to cloud users.

Until now, businesses and individuals have adopted cloud computing on the basis of
trustworthiness in clouds’ administration like in their own; however, cloud computing still
imposes challenges as follows.

C 1: How cloud users and providers cooperate to protect instances and data from external
adversaries.

C 2: How cloud providers ensure isolation among the instances in the same base systems
(i.e., infrastructures, platforms, or applications) to protect against internal adver-
saries exploiting leakages of information to launch covert or side channel attacks.

C 3: How to ensure Confidentiality, Integrity, and Availability (CIA) of services and data
in clouds.

C 4: How to maintain assurance in security and privacy from clouds when providers are
untrusted.

Motivation from the previous awareness and challenges leads to the next section, which
discusses the adversaries in cloud environments.

2.9 Adversaries in Cloud Computing

Adversaries in clouds are classified according to adversary locations because damage levels
depend on where the adversaries are placed. Thus, we classify the threats into three levels
as follows.
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External threats: As with clients and local servers, if services in clouds are exposed to
the Internet, the services will face traditional attacks from adversaries outside the cloud’s
premise. For instance, adversaries may launch network attacks, such as spoofing, eaves-
dropping, Man In The Middle (MITM), Denial of Service (DoS), etc. Additionally, adver-
saries may mount malware, such as viruses, worms, Trojan horses, rootkits, spyware, etc.,
on instances/data in clouds or images in marketplaces.

Internal threats: Similarly, internal adversaries, who are also members of the same
cloud services, can launch the same types of attacks as external adversaries can. In addition
to these attacks, if internal adversaries can intentionally deploy instances or access data in
the same physical resources (i.e., CPU cores, disks or I/O channels) as the ones in which
victims do, the adversaries may exploit multi-tenant environments to launch other attacks,
such as covert or side channel attacks. Moreover, adversaries can gain knowledge of a
target’s systems and platforms that are shared in the same CSP.

Provider threats: If CSPs are not trustworthy, they can take charge of users’ data and
processes and manipulate them as they own assets. For instance, the providers may modify,
fabricate, eavesdrop on, the data or processes. Additionally, the providers may perform
unauthorized data analysis (e.g., data mining), or the data may be locked into proprietary
formats of the providers. These threats inhibit organizations and individuals from adopting
cloud computing. Therefore, to promote more widespread use of cloud computing in the
future, new security innovations to address these threats are necessary.

Generally, external threats against cloud computing can cope with current security tools
(e.g., X509 certificate and SSL/TSL). Thus, we emphasize only specific cloud vulnerabilities
in the next section.

2.10 Cloud Computing Vulnerabilities

This section recaps the specific cloud computing vulnerabilities from the survey of Grobauer
et al. [50]. The vulnerabilities are divided into two groups according to the root causes:
core technology and state-of-the-art of cloud computing. Before presenting the cloud vul-
nerabilities, we first briefly recall the definition of vulnerability from ISO 27005 [60]: “Vul-
nerability is the probability that an asset will be unable to resist the actions of a threat
agent. Vulnerability exists when there is a different between the force being applied by the
threat agent, and an object’s ability to resist that force.”
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To provide IT services on an economic scale, cloud computing combines many tech-
nologies in the new setting. Unfortunately, each technology has vulnerabilities that are
intrinsic to itself or prevalent in its state-of-the-art, as follows.

Web applications and services: SaaS typically is implemented as Web applications,
while PaaS commonly provides a development platform and runtime environment for web
applications and services. Commonly, IaaS provides management interfaces through Web
portals. To sum up, all cloud service models absolutely rely on Web technologies. Unfor-
tunately, Web technologies are based on the HTTP protocol, which is a stateless protocol,
whereas Web applications have to maintain the state of sessions. Thus, many session-
handling techniques have been developed to solve this problem; however, some techniques
suffer from session riding/hijacking. Furthermore, Web developers tentatively increase us-
ing techniques based on browser-based computing, such as Java script, Java, Flash, and
Silverlight. Therefore, Web application security also relies on browser components running
within a user’s browsers, and the isolation mechanism of Web browsers.

Virtualization: Primarily virtualization techniques are the heart for establishing virtual
environments in IaaS. In addition, both SaaS and PaaS are usually built on top of IaaS
infrastructures or based on their own techniques to establish virtualization. Thus, virtual-
ization is technology crucial to cloud computing; however, this technology comes with the
following intrinsic vulnerabilities:

• Virtual isolation: Attackers may successfully escape from a virtualized environment.
For example, attackers may launch side-channel attacks against the virtual machines
sitting in the same physical resource. Virtual storage may be prone to cross-tenant
data access. Adversaries may eavesdrop on information that leaks from the shared
communication.

• Image sanity: virtual machine templates (called images) cause OS and platform
vulnerabilities because attackers can analyze configurations, patches, and codes in
the image by renting virtual machines from the IaaS. Moreover, some IaaSs, such as
Amazon EC2, allow cloud users to get images from the marketplace of virtual images.
These images may be illegal in terms of software licenses, or malicious in that they
bundle of malware into the image or provide a back-door for attacks.
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IAAA: All cloud-service and cloud-management interfaces, including authorized end-
user accesses, must be protected from unauthorized access and attackers by using the mech-
anisms from Identity management, Authentication, Authorization, and Auditing (IAAA).
Hence, all vulnerabilities associated with IAAA must be regarded as cloud vulnerabilities.
For example,

• Weak authentication credentials: Login/password authentication may be weak be-
cause users choose weak passwords, use the same passwords for many authenticators,
or reveal passwords when delegating authorization. One-factor authentications have
inherent limitations. Authentication protocols may be intercepted and replayed as
user credentials. Unfortunately, web access controls employ these weak authentica-
tion methods, thereby incurring cloud computing vulnerabilities.

• Denial of service by account lockout: Attackers can exploit security controls that
lock out accounts having received several consecutive unsuccessful login processes to
disable any user accounts.

• Weak credential-reset mechanisms: If CSPs manage theirs own authentication system
rather than use federal authentications, such as OpenID, etc., then the CSPs must
provide their own credential-reset mechanisms, which are used when users forget or
lose their credentials. The weak credential-reset mechanisms may be exploited to
steal accounts.

• Coarse authorization control: Cloud management interfaces require authorization
control according to the user duties in order to provide users with only the privileges
they are supposed to have. Currently, most CSPs only provide coarse-grained access
control.

Cryptography: Presently, cryptography techniques are the main technologies that can
meet the security requirements of cloud computing. Since new cryptanalysis advances can
break some encryptions and forge some signatures, cloud computing must be aware of
insecure or obsolete cryptography algorithms. Some of these algorithms are based on the
random numbers from the OS kernel or hardware shared in multi-tenant models. With this
situation, attackers may trap the random number, or exhaust the entropy of the random
number by exploiting multiple virtual machines in the same host.

Meanwhile, all the above cloud vulnerabilities are based on cloud users trusting in their
CSPs. Another cloud vulnerability is cloud service providers themselves because users
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lose control of their own IT infrastructure and data. Therefore, untrusted-provider
vulnerability is the greatest challenge that impedes the adoption of cloud computing. Next,
we present some attacks that exploit the above vulnerabilities to attack cloud computing.

2.11 Threats to Cloud Computing

Although many types of attacks are possible in cloud computing, some are also common
attacks in local servers. Hence, this section describes only specific attacks to cloud com-
puting.

2.11.1 Web Interface Attacks

A Web interface is a common tool that clouds use to provide services, i.e., SaaS, PaaS, and
IaaS. For example, both thick and thin clients use Web browsers to access applications.
For PaaS services, developers develop application code based on Web APIs (e.g., HTTP,
SOAP, XML, etc.). Most IaaS services provide Web portals for storage access and instance
deployment. Therefore, security in clouds relies on Web technologies. Jensen et al. [63]
summarize the major flaws and solutions of Web technologies that affect cloud computing
as follows.

XML signature element wrapping: Using any security flaws in XML signatures,
adversaries exploit wrapping technique to hide the original SOAP body and insert a faked
body with a bogus request in eavesdropped packets, so the adversaries can deploy any
arbitrary requests on behalf of legitimate users. For example, Amazon EC2 was vulnerable
to this attack.

Legacy same origin policies: Typically, script languages for Web browsers (e.g., JavaScript,
VBScript, etc.) get access rights to read/write contents from the same origin as the scripts
do. This policy is named a ‘Same Origin Policy’, and the origin is defined in the context
of the tuple (domainname, protocol, port). Unfortunately, Domain Name System (DNS)
caches can easily be poisoned, and so such policies can be exploited by attackers.

Unsecured browser authentication: Commonly, Web browsers lack cryptographic
credentials for authentication, and so use login/password authentication. If application
servers do not maintain a login database themselves, they must redirect authentication re-
quests to an authentication server. The authentication server generates a token associated
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with a login/password entered by the user, and then redirects the token to the application
servers. Due to a lack of binding between the browser and the token, adversaries may
eavesdrop on the token and use it to access all services on behalf of legitimate users. For
example, Windows Azure uses Passport server and REST protocol to authenticate and
deliver tokens.

Although based on the Transport Layer Security (TLS) protocol, there are many ad-
hoc solutions, such as TLS Federation, SAML 2.0 Holder-of-key Assertion Profile, Strong
Locked Same Origin Policy, and TLS session binding. The final solution to cope with
Web interface attacks is the security improvement in both Web browsers and Web service
frameworks, such as extending Web browser with XML encryption and signature APIs.

2.11.2 Illegal or Malicious Image Attacks

Another cloud responsibility is to maintain the security and integrity of cloud images (i.e.,
Virtual Machine (VM) images for IaaS and implementation modules for PaaS). because
cloud images determine the initial running and security states of the running machines and
applications. In other words, cloud images’ security and integrity form the foundation of
cloud security. Wei et al. [128] described the security risks from illegal or malicious image
attacks according to the parties’ roles, as follows.

Publisher’s risk: Publishers may release sensitive information unintentionally; for ex-
ample, configuration, password or history files may be published with the image. Moreover,
publishers may want to share her images with a limited group of users.

Retriever’s risk: Running malicious images is equal to bringing adversaries into a pro-
tected zone, thereby bypassing any firewalls. In addition, because of running the malicious
images, some malware may be mounted on the victims’ VMs . Furthermore, retrievers also
take the risk of running illegal software, i.e., unlicensed or expired-license software.

Repository administrator’s risk: Images in a repository are dormant but not static.
That is, published images are initially secure but exploitable later. Software licenses is
valid initially but is expired later. Therefore, repository administrators risk hosting and
distributing malicious or illegal images.

Unfortunately, the access control and encryption techniques for cloud storages are not
adequate for cloud images. For instance, VM images are not static objects that include
their initial states (in the case of a snapshot), patches, and transformation. To cope with
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the previously mentioned risks, Wei also proposed an image management system, called
Mirage, which provides the following features: 1) an access control that regulates the
sharing of VM images; 2) image filters that are applied to an image when publishing and
retrieving images in order to remove unwanted information in the images; 3) a provenance
tracking mechanism that tracks the histories of derivation, modification, and operation
that are applied to images, and also provides accountability and auditing; 4) repository
maintenance services, such as compliance checking, virus scanning, patching, etc.

2.11.3 Cache Interference Attacks

In multi-tenant environments, multiple instances of Virtual Machines share the same phys-
ical resources, so it is the responsibility of cloud providers to isolate an instance from other
instances in terms of both performance and security. Typically, virtualization is used to en-
capsulate instances inside virtual machines for virtual isolation, ease of service deployment,
and flexible migration. However, virtual isolation is weaker than physical isolation because
some physical resources, such as Last Level Caches (LLCs) and memory bandwidth, in
the multi-core environments are implicitly shared among instances. These implicit shares
present opportunities for security or performance interference. Due to the prevalence of
multi-core environments in clouds, malicious instances can exploit cache interference to
launch Dos, side/covert channel attacks on other instances. To cope with these cache
interferences, a hypervisor (i.e., a VM manager in a virtualization system) may use re-
source (e.g., memory/cache) management to isolate memory/cache used by each instance.
Two well-known techniques for coping with cache interferences in cloud computing are
summarized by J. Wei, et al. [128] as follows.

Cache-hierarchy-aware core assignment: Currently multi-core systems are config-
ured with a multiple-package structure in which all cores share the same LLC. This struc-
ture provides cache isolation between each package thereby presenting an opportunity to
exclude cache sharing. In this technique, if services require cache isolation, the hypervisor
tries to choose a core in a package currently assigned to the same instance or an empty
package. Without cache isolation requirement, any cores in any shared packages can be
assigned. Although this technique is easy to implement, it causes under utilization in cloud
infrastructures.

Page-coloring-based cache partitioning: Typically, most Operating Systems use pag-
ing techniques for virtual memory. Hence, the hypervior can leverage a page-coloring
technique, which is a software method of mapping between physical memory and cache
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hardware. Using page-coloring technique, both physical memory and cache hardware are
partitioned into multiple groups called colors. In virtualization, a hypervisor, who takes
control of memory paging and cache paging for VM, can utilize page coloring for cache
isolation. If services require cache isolation, the hypervisor assigns a distinct set of col-
ors to individual instances in the same shared LLC (i.e., belonging to the same package),
otherwise any set of colors. This technique has an advantage over the former technique in
that it does not cause under utilization of cores. However, some memory in a color page
may not be used if an amount of required memory is not multiples of the color-page size.

2.11.4 A New Form of Denial of Service Attacks

Generally, network resource in a data center are grossly under-provisioned. For local
data centers, the typical network designs are under-provisioned by a factor of 2.5:1 to
8:1 (meaning that network-interfaces can support only 1/8 of the maximum or some pat-
terns of communication loads). Since IT teams have the full control of infrastructures,
this under-provisioning problems can be mitigated or addressed by redesigning network
infrastructures, tracking down offending applications, and putting countermeasures in the
systems. Unlike in local data centers, the under-provisioning in cloud computing lead to
a new form of Denial of Service (DoS) attacks because 1) the under-provisioning in clouds
is dramatic, at a factor of 45:1 or more, 2) cloud data centers are shared by multiple or-
ganizations thereby presenting opportunities for adversaries to attack others applications
in the same cloud data center, 3) application owners have limited or no control over the
underlying networks in cloud data centers.

H. Lui [77] presents a feasible DoS attack that exploits the gross under-provisioning of
routers’ up-link bandwidth. To launch this attack, 1) adversaries launch a set of instances
in cloud data centers. 2) Then these adversaries can learn the network topologies of
clouds by using a common network tool, ‘Traceroute’, or exploiting probing techniques
based on the multiplexing nature of routers to learn clouds’ network topologies. 3) For
accuracy of learning topologies, adversaries may use general network capacity estimation
tools to estimate the required number of instances for learning, and exploit the knowledge
about instance assignment algorithms to optimize the required number of instances. 4)
Once adversaries have a large enough number of appropriate instances and have knowledge
about network topologies, they can send traffic (UDP packets) through upstream routers to
saturate the target router’s up-link, thereby launching a new form of DoS attacks, i.e., by
disabling router up-links. Since the adversaries do not send traffic to the target application,
so traditional DoS or Distributed DoS (DDoS) countermeasure tools cannot track this new
from of DoS. Lui also proposed a DoS avoidance mechanism using monitor agents on the
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premises of the service owners or other CSPs to monitor bandwidth starvation. Then the
monitor agents will activate standby instances or launch new instances in different subnets
or clouds if the main instances are attacked.

2.11.5 Miscellaneous Attacks

Injection: This type of attack manipulates services or applications by inputing com-
mands or scripts such that parts of them are interpreted or executed in the wrong way,
i.e., against the programmers’ intentions. For example, SQL injection causes erroneous
executions in back-end databases, command injection causes erroneous executions via OS,
cross-site scripting is Java Scripts erroneously executed by Web browsers, etc.

Media sanitization: In addition to data recovery, media sanitization, such as data
destruction policies at the end-of-life cycle, is hard or impossible to implement in the cloud
environment. For example, physical media cannot be destroyed if other tenants still use
those media. While cryptography is usually used to encrypt data in those media, cloud
users must be aware of obsolete cryptographic tools and poor key management systems.
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Chapter 3

Security Models and Definitions

3.1 Security Associations for Peer-to-Peer Systems

3.1.1 Public-Key Infrastructures

Generally, security functions are based on trust relationships among different entities. How-
ever, trust relations cannot be established from thin air and instead depend on existing
relationships. Therefore, a security function requires an infrastructure to support trust
relationships. This infrastructure can provide an on-line or off-line service according to
whether or not an entity needs to interact with the infrastructure when a security func-
tion is executed. For certificate-based cryptography, a certificate, which is signed with
the private key of a Certificate Authority (CA), binds a public key with the identity of
its owner. In this scenario, if every entity trusts the CA and recognizes the CA’s public
key, a public-key certificate is a crucial tool for converting a multiple peers-to-CA trust
relation to an individual peer-to-peer trust relation [24]. In addition to an identifier and
a public key, the certificate is comprised of a limited lifetime, an issuer (the CA’s name)
and other information, all of which are indicated in signed contents. Because users can
individually verify these contents with a CA’s public key, a certificate can be distributed
via an unsecured communication channel and cached in untrusted storage. To achieve
this functionality, the simplified architecture of Public Key Infrastructure (PKI), shown in
Figure 3.1, consists of the following parties:

End entity: A user of a PKI certificate or subject of a certificate,
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Figure 3.1: The architecture model of PKI

CA: A certificate authority,

RA: A registration authority (optional),

Repository: A system that stores certificates or CRLs for serving to end entities.

To obtain a certificate, an end entity must generate a public/private key pair herself and
keeps the private key secret. Then she generates a certificate request message based on the
PCK 10 standard [88] from her identifier and private key and signs the certificate request
with her private key before sending the certificate request to a CA. The CA validates the
request by verifying her identifier and public key according to the CA’s policies. If the
verification is valid, the CA creates a public-key certificate associated with the certificate
request, then sends it back to the requester.

After a certificate is issued, it is expected to be used for its entire lifetime. However,
many circumstances can cause a certificate to be revoked prior to the expiry time, for
example, change of name, change of association between subject and CA (e.g., change of
a job position or employment termination), and key compromise. The X.509 standard
defines a method for certificate revocation by which a CA issues a signed data structure
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called a Certificate Revocation List (CRL) and publishes it in a public repository. To verify
the validity of a certificate, an end entity not only checks the validity time of a certificate
but also queries the certificate ID in the CRL.

The data structure and procedure for a certificate and a CRL are defined by the X.509
standard, which uses ASN.1 syntax and Distinguished Encoding Rule (DER) encoding.
This standard was first published in 1988, then revised in 1993 and 1996, (Versions 1, 2
and 3, respectively). The main extensions were developed in Version 3 [56], which adds
information for subject identification, key attributes, key/usage policies, certificate path
constraints and private usage. Similar to a certificate, a CRL can be distributed via an
unsecured communication channel and stored on an untrusted server. However, a CRL
has a time delay, e.g., one hour, one day, or one week, which counts the time from when a
certificate revocation is reported until the next periodic CRL is issued.

3.1.2 Byzantine Agreement (BA) Algorithm

In our thesis, the main purpose of an agreement on digitally signed messages is to detect a
malicious node in a decision group. Therefore, we must guarantee that every honest node
reaches the same decision so that the majority of nodes in a decision group can reject a
malicious node in the system. Before we describe this detection algorithm in Section 4.4.3,
we present the original idea of a Byzantine Agreement Algorithm.

In general, a reliable system is implemented by using several different input components
(input nodes) to compute the same result and then perform a decision function, e.g.,
majority, maximum, median, minimum, etc., on their results to obtain a single value. If
every decision node obtains consistent input(s), the non-faulty node will produce the same
output. (Note that the decision may be performed within the system, so a node in the
system may function as both an input node and a decision node). However, the source of
a single data may come from a faulty node (e.g., a faulty processor, a faulty sensor, etc.)
that gives different values to different nodes. Therefore, an agreement algorithm requires
the following conditions to hold for every non-faulty node [45]:

• All non-faulty nodes must use the same input vector,
−→
V = (v1, v2, ..., vn), where vi is

the input value from the ith process.

• If the input unit (ith node) is non-faulty, then all non-faulty nodes use the value V [i]
of their vector as the input value of the ith process.
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These are the interactive consistency conditions whose goal is to agree on the vector of
a value proposed by n nodes P1, P2, ..., Pn.

In 1982, Lamport et al. [71] proposed the idea that the Interactive Consistency (IC)
problem can be reduced to a general problem, called the Byzantine General (BG) Problem,
in which only one node (a commander) proposes its value in the system, and the other
nodes (lieutenants) try to reach an agreement on the commander’s value. In other words,
this BG problem can be extended to an IC problem by running BG n times, once for
each node acting as a commander. As a result the solution and boundary of BG problems
can apply to the original IC problem. Moreover, the authors proposed two algorithms to
cope with the BG problem: Oral Message and Digitally Signed Message solutions. The
definition of an oral message (or a digital unsigned message) is based on the following
assumptions:

A1: Every message sent by a non-faulty node is delivered correctly by a direct commu-
nication between a sender and a receiver. Therefore, a non-faulty node cannot be
interfered with in the communication.

A2: A node can determine the originator of any message it receives, meaning that no
faulty nodes can impersonate a non-faulty node.

A3: The absence of a message as well as an omission failure can be detected. The solution
for this assumption is a time-out convention that requires two more assumptions:

• There is a fixed maximum processing and transmission time for a message.

• The time drift between sender and receiver clocks has a lower bound.

Based on assumptions A1, A2 and A3, if the number of nodes n ≥ 3f + 1, (where
f is the number of faulty nodes), then a BG problem can be solved with the lower
bound of f + 1 rounds and O(nf+1) oral messages. For a digitally signed message
solution, if all messages are signed, we can omit assumption A2, but we must add
another assumption A4:

A4: A non-faulty node is able to sign its messages in such a way that no faulty nodes can
forge its signature, and any other nodes can verify the authenticity of this signature.
Note that the signatures of faulty nodes can be forged by other faulty nodes, thereby
launching a collusion attack on the system.
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Table 3.1: The BA matrix of a message with digital unsigned messages

Round P1 received P2 received P3 received P4 received
1st Pi sent [1, 2, w, 4] [1, 2, x, 4] [1, 2, y, 4] [1, 2, z, 4]
2nd P1 sent [1, 2, w, 4] [1, 2, w, 4] [1, 2, w, 4] [1, 2, w, 4]

P2 sent [1, 2, x, 4] [1, 2, x, 4] [1, 2, x, 4] [1, 2, x, 4]
P3 sent [a, b, c, d] [e, f, g, h] [i, j, k, l] [m,n, o, p]
P4 sent [1, 2, z, 4] [1, 2, z, 4] [1, 2, z, 4] [1, 2, z, 4]

majority(·) [1, 2,⊥, 4] [1, 2,⊥, 4] [1, 2,⊥, 4]

Based on assumptions A1, A3 and A4, if the number of nodes n ≥ f + 1, then a BG
problem can be solved with a lower bound of f + 1 rounds and O(nf+1) digitally signed
messages.

To illustrate how the solution for BG problems works, we use a small group of four
nodes P1, P2, P3, and P4 that propose values of 1, 2, 3, and 4, respectively. Node P3 is a
faulty node that lies consistently. Additionally, a simple algorithm consists of two rounds
and one decision step:

Round-1: Each node sends its own value to other nodes;

Round-2: Each node forwards received values to others;

Decision: Each node locally votes on each element of its own vectors by a majority func-
tion.

Table 3.1 shows the matrices of information that each node received in the first and
second round, and the output of a majority function from the oral message algorithm.
Table 3.2 shows the matrices and the output from the digitally signed message algorithm.
Note that we denote ⊥ as an undefined value, and for a digitally signed message solution,
a sender signs every message. As one can see in the matrix of both oral and digitally
signed message solutions, the local output of each node has an agreement, but the value
of node P3 is an undefined value. Therefore, we can detect that P3 is a faulty node if P3

lies consistently until a majority of the received values are corrupt.

Some techniques can be used to optimize the number of rounds and messages of the
Byzantine agreement algorithm. For example, in 1983, Dolev and Strong [37] proposed
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Table 3.2: The BA matrix of message with digitally signed messages

Round P1 received P2 received P3 received P4 received
1st Pi sent [1, 2, w, 4] [1, 2, x, 4] [1, 2, y, 4] [1, 2, z, 4]
2nd P1 sent [1, 2, w, 4] [1, 2, w, 4] [1, 2, w, 4] [1, 2, w, 4]

P2 sent [1, 2, x, 4] [1, 2, x, 4] [1, 2, x, 4] [1, 2, x, 4]
P3 sent [1, 2, a, 4] [1, 2, b, 4] [1, 2, c, 4] [1, 2, d, 4]
P4 sent [1, 2, z, 4] [1, 2, z, 4] [1, 2, z, 4] [1, 2, z, 4]

majority(·) [1, 2,⊥, 4] [1, 2,⊥, 4] [1, 2,⊥, 4]

a variant of BG using digitally signed messages, based on eliminating duplicated signed
messages that a non-faulty node is not able to forge. In 1983, Rabin [101] proposed a
Randomized Byzantine General Algorithm for a probabilistic solution in which a number
of messages and rounds is lower than the lower bound of deterministic algorithms. Although
the complexity of the variants of the Byzantine agreement algorithm is less than that of
Lamport’s Byzantine algorithm, these variants come with reduced accuracy as well as
reduced redundancy.

3.1.3 Threshold Signature

In 1979, Shamir [114] proposed a (t, n) threshold scheme that is suited to applications in
which a group of mutually suspicious individuals with conflicting interests must cooperate
in order to protect a key, d. In this scheme, d is divided into n pieces, i.e., d1, . . . , dn, such
that knowledge of any t or more pieces of di makes d easily computable, but knowledge
of any t − 1 or fewer pieces of di leaves d completely undetermined. To achieve these
properties, this scheme uses a polynomial interpolation (i.e., Lagrange interpolation):

• t distinct points (x1, y1), . . . , (xt, yt), where there is only one polynomial f(x) of degree
t− 1 such that yi = f(xi) for all i

• f(x) =
∑t

i=1 f(xi) · li(x), where the Lagrange polynomial at x,

li(x) =
t∏

j=1,j 6=i

(x− xj)(xi − xj)−1
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and at x = 0

li(0) =
t∏

j=1,j 6=i

xj
xj − xi

From [31], a dealer distributes n shares of key d among n nodes (shareholders) P1, . . . , Pn
as follows:

• Choose a prime p > max(d, n).

• Pick a degree t− 1 polynomial f(x) = a0 + a1x+ . . . , at−1x
t−1 such that a0 = d and

a1, . . . , at−1 ∈ {0, . . . , p− 1} at random.

• Divide d into n pieces d1, . . . , dn, such that d1 = f(x1), . . . , dn = f(xn).

• Distribute (xi, di) to the peers Pi, i = 1, 2, . . . , n

• Compute the key d = a0 = f(0) =
∑t

i=1 f(xi) · li(0) (mod p) by any group of t or
more shareholders.

The (t, n) threshold scheme achieves a balance between service availability and key
compromise. An adversary has to break t shareholders to compromise the key and must
destroy (n − t) + 1 shareholders to breach the service. Two extreme cases are compared
as follows: i) t = 1 is equal to a centralized solution (suffers from a single point of key
compromise and failure); and ii) t = n provides maximal security (the key is compromised
only if all shareholder are broken) but minimal fault tolerance (the system fails from only
one broken shareholder). By choosing 1 < t < n, we can avoid both single point of key
compromise and failure.

In 1990, Desmedt and Frankel [33] proposed a threshold public-key scheme based on
Shamir’s threshold scheme and ElGamal’s cryptographic scheme [40]. In this scheme, a
dealer randomly selects a primitive generater g over a finite field Fp, picks a private key 0 <
d < Q and publishes a public key e = gd (mod Q), where Q = ord(g) = p− 1. Then the
dealer generates n shares di = f(xi), for i = 1 . . . n, from the secret d according to Shamir’s
threshold scheme. After the dealer distributes all tuples (xi, di) to every shareholder, the
dealer can delete the secret d and polynomial f(x) and disappears forever. Each shareholder
secretly keeps the share and uses it to compute a partial result. To encrypt a message M , a
sender selects a random number 0 < k < Q , such that gcd(k,Q) = 1, computes the cipher
text C = Mek, and then sends a tuple (gk, C) to a receiver. To decrypt a cipher text, the
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receiver selects a coalition of t shareholders and asks for decryption by sending them gk.
Each shareholder modifies each share di to be a modified share (i.e., ai = dili(0) (mod p)),
computes a partial result g′i = g−kai , and then sends g′i to the receiver (where li(0) is the
value of the Lagrange polynomial at point 0, i.e., li(0) =

∏t
j=1,j 6=i xj(xj − xi)

−1). The

receiver computes a complete result (i.e., g−dk =
∏t

i−1 g
′
i) and computes the plaint text

(i.e., M = Cg−dk). To make this algorithm truly non-interactive between shareholders,
each shareholder computes and sends a tuple (gkdi , xi) to the receiver and the receiver
computes each modified share ai by itself. In addition, this scheme can be applied to
digital signature and verification as well as other cryptographic systems based on discrete
logarithms.

In 1992, Desmedt and Frankel [34] extended their scheme to the RSA cryptographic
system [108], namely threshold RSA signatures. In this scheme, they use a modified RSA
that replaces the Totient function φ(·) by the Carmichael function λ(·) and a modified
Lagrange interpolation that calculates over the integers and modulus p′q′ as follows:

• A dealer picks a degree t− 1 polynomial f(x) such that f(0) = d− 1 (mod λ(n)).

• A dealer picks all xi’s to be odd and all f(xi)’s to be even, i = 1, 2, . . ..

• The interpolation is processed without knowledge of λ(n), as follows:

– (t, n) threshold, a shareholder set A with |A| = t, and a threshold B with
|B| = n.

– f(x) =
∑

i∈B diqi(x) (mod 2p′q′), where
qi(x) =

∏
j∈B,j∈A(xi − xj)

∏
j∈B,j 6=i(x− xj).

– A dealer calculates one share di = f(xi)/2
[
∏
j∈A,j 6=i(xi−xj)]/2

(mod p′q′) for each share-

holder and sends it to that shareholder.

• Each shareholder calculates a modified share ai = diqi(0) such that
d− 1 ≡

∑
i∈B ai (mod λ(n)).

The modified RSA algorithm is operated as follows:

• Pick p′ and q′ to be primes, p = 2p′ + 1, q = 2q′ + 1, and n = pq;

• Compute the Carmichael function: λ(n) = λ(pq) = lcm(2p′, 2q′) = 2p′q′;

• Randomly choose a private key d such that gcd(d, λ(n)) = 1;
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• Publish a public key e ≡ d−1 (mod λ(n));

• Generate a partial signature Si ≡Mai (mod n), where M is a message;

• Reconstruct a complete signature

S ≡M
∏
i∈B

Si ≡MM
∑
i∈B ai ≡MMd−1 ≡M (mod n).

In [69], Kong et al. proposed a threshold RSA scheme that uses the original RSA
functions and the original Lagrange interpolation of Shamir’s (k, n) threshold scheme.
Although the sum of partial keys in the Lagrange interpolation is not equal to the corre-
sponding private key, i.e.,

∑k
i=1 dili(0) (mod n) = tn+ d 6= d, each dili(0) (mod n) is a

value between 0 and n− 1 due to the modulus arithmetic. Thus t satisfies the inequality
0 < t < k. The authors use the upper bound and an algorithm, named the K-bound
Coalition Offsetting, to find the correct signature that is proved by the corresponding
private key. This method is simple and suitable for a small group of shareholders, such as
in ad-hoc networks.

The standardization organization IEEE has already listed the threshold digital signa-
ture technology to issue a signature without using a trusted center and secret communica-
tion for the future work and research in IEEE P1363 [124].

3.2 Security Associations for Cloud Computing

3.2.1 Attribute-Based Encryption (ABE)

In 2005, Sahai and Waters [110] proposed a variant of Identity-Based Encryption (IBE)
named “Fuzzy Identity-Based Encryption” that enables encryption using biometric inputs
as an identity. Their work also introduced a new application called “Attribute-Based
Encryption” (ABE), in which both a private key and a public key are sets labelled with
a set of descriptive attributes. A user with a private-key set ω can decrypt a ciphertext
encrypted with a public key ω′ if and only if there is enough matching between key sets ω
and ω′. In 2006, Goyal et al. [49] originated a fine-grained ABE called “Key-Policy ABE”
(KP-ABE) in which the access policy is associated with a private key. In a KP-ABE, a
ciphertext is simply encrypted with a public-key set, but a private-key set is bundled into
an access structure that controls which ciphertext a private-key set can decrypt. In 2007,
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Bethencourt et al. [14] proposed a new ABE scheme, called “Ciphertext-Policy ABE” (CP-
ABE), realizing access control on encrypted data. Unlike a KP-ABE, this scheme bundles
the access policy with the ciphertext. Since its development, ABE has been divided into two
types: key-policy and ciphertext-policy. Regardless of where an access policy is associated
with, such a policy is specified in term of access structure over a set of attributes, as
detailed in the next subsection.

In our proposed authorization scheme, we will improve the security feature of the OAuth
authorization standard [89],[90] using ciphertext-policy attribute based encryption in [14].
However, in order to adapt the CP-ABE to the scenario of the OAuth, we need to make
some modifications on the CP-ABE, which will be introduced in Section 5.3.5 of Chapter 5.

Access Trees

First we recap the definition of a monotone access structure from [127] as follows:

Definition 1 (Access Structure [11]) Let {P1, P2, . . . , Pn} be a set of parties. A collec-
tion A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A. An access
structure (respectively, monotone access structure) is a collection (respectively, monotone
collection) A of non-empty subsets of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The
sets in A are called the authorized sets, and the sets not in A are called the unauthorized
sets.

In this context, the role of parties is taken by attributes. Thus, the access structure A
will contain the authorized set of attributes. Here we restrict our attention to monotone
access structures. Note that it is possible to have a non-monotone access structure, i.e.,
one having a negative attribute, by using the technique in [95], although it may not be
efficient.

Definition 2 (Linear Secret-Sharing (LSS) Schemes [11]) A secret-sharing scheme
Π over a set of parties P is called linear (over Zp) if there exists a matrix E with l rows
and n columns, called the share generating matrix, such that the following are satisfied.

1. For i = 1, . . . , l, we define the function ρ as a labeling function such that ρ(i) corre-
sponds to one party with the share that is a linear combination of the elements in the
i-th row of E.
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2. When we consider a column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be
shared, and r2, . . . , rn ∈ Zp are randomly chosen, then E · v is the vector of l shares
of the secret s according to Π. The share (E · v)i belongs to party ρ(i).

It is shown in [11] that each linear secret-sharing scheme according to the above defi-
nition also has a linear reconstruction property, which is defined as follows: Suppose that
Π is an LSS scheme for an access structure A. Let S ∈ A be any authorization set and
I ⊂ {1, 2, . . . , l} be defined as I = {i : ρ(i) ∈ S}. Then there exist constants {ωi ∈ Zp}i∈I
such that if {λi} are valid shares of any secret s according to Π, then

∑
i∈I ωiλi = s.

Furthermore, it is shown in [11] that these constants {ωi} can be found in polynomial time
in the size of the share generation matrix E.

In practice, an access policy A can be represented by a tree structure (called an access
tree τ) for which each non-leaf node of the tree is a (t, n) threshold gate, which is described
by its n child nodes and the threshold value t of a (t − 1)-degree polynomial. Hence,
each non-leaf node can represent an “AND” or “OR” gate in an access policy by using an
(n, n) or (1, n) threshold gate, respectively. Meanwhile, each leaf-node associates with an
attribute in the access policy. Figure 3.2 shows the three primitive constructions of non-
leaf nodes in a tree structure: a 1-of-3 threshold gate (aka an OR gate), a 2-of-3 threshold
gate, and a 3-of-3 threshold gate (aka an AND gate).
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3.2.2 Kerberos

A Kerberos [68] consists of four roles, i.e., a client, an Authentication Server (AS), a Ticket
Granting Server (TGS) and a Resource Server (RS). Kerberos’s secret keys are shared and
used between a client/resource server and Kerberos servers, i.e., an AS and a TGS. While
a client’s key is used to authenticate the client to an AS, a server’s key is used to encrypt
a ticket for the intended server, i.e., a TGS or RS. Moreover, a temporary session key is
used for authentication and encryption in each session. The basic authentication protocol
performs as follows:

1. A client sends a token request consisting of a client identity IDCLI , a ticket granting
server identity IDTGS, and lifetime LT to AS.

2. An owner must expose his credentials to a client for decrypting a response from an
AS, in order to get a session key SKTGS and a Ticket Granting Ticket TGT that is
encrypted with the TGS key KTGS and composed of the TGS ID and the session key
SKTGS.

3. The client uses the TGT and the SKTGS to authenticate himself to a TGS.

4. If the authentication is successful, the TGS will issue the client another session key
SKRS encrypted with the previous session key SKTGS, and a Service Ticket ST that
is encrypted with the RS key KRS and composed of the RS ID and the session key
SKRS.

5. The client uses the ST and the SKRS to authenticate himself to the RS for granting
access to the objects (i.e., protected resources).

6. The RS provides resource to the client if the an authentication is successful.

To achieve a single sign-on authentication, a Kerberos issues a TGT that does not
define a resource and allows a client to reuse the TGT for multiple resource requests until
the TGT is expired. Figure 3.3 provides a pictorial explanation of the protocol flows in
the Kerberos system.

3.2.3 OpenID Standard

To resolve the user-password authentication problem in the Internet, an open-standard
authentication for consumers, named OpenID [93], provides a way to consolidate digital
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Figure 3.3: Kerberos protocol flows

IDs. Thus, web-application providers (also called the Relying Parties (RPs)) can verify a
user’s ID with an interactive protocol from an OpenID Provider (OIDP) without exposing
a user’s password to the web-application providers. In other words, an OIDP provides a
single digital ID that is shared by many RPs but verified only by the OIDP. Moreover,
OpenID is decentralized in the sense that no centralized authority must approve or register
OIDPs or RPs, and a user freely chooses which OIDP to join and can preserve his ID if he
switches to other OIDPs. Although OpenID mandates the protocol for an authentication,
the standard allows the use of any authentication credentials, e.g., a password, a smart
card, a client certificate, a biometric characteristic, an information card, etc. Figure 3.4
shows the protocol flows of OpenID as follows:

1. A user initiates an authentication by presenting a user-supplied ID, i.e., an ID pre-
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Figure 3.4: OpenID protocol flows

sented by a user to an RP.

2. The RP normalizes the user-supplied ID or a claimed ID, i.e., an ID that a user
claims to own, and then discovers an OIDP-endpoint URL, i.e., a URL accepting an
OpenID protocol.

3. The RP and the OIDP share a secret key, which is used for signing the message
between the OIDP and the RP, by using a Diffie-Hellman key exchange (Optional).

4. The RP redirects the user’s browser, termed a user-agent, to the OIDP by an au-
thentication request.

5. The OIDP directly authenticates the user.

6. The OIDP redirects the user-agent back to the RP with an assertion, i.e., an accept
or a reject. Finally, the RP verifies the assertion message with the shared key and
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checks the redirection URL.

In addition, with a simple cookie and Remember Me checkbox, an OIDP can act as an
SSO solution for someone who uses multiple OpenID applications.

3.2.4 OAuth Standard

An IETF working group is exploring a standard called the OAuth [89] [90] authorization
protocol that allows one service provider (aka a third-party client), who is not an owner,
to access the resources from another service provider (aka a resource server) on behalf of
the owner without exposing the owner’s secret credentials to the third-party client. To this
end, the OAuth uses HTTP redirections and tokens to introduce an authorization layer,
which separates an owner’s role from a third-party client and provides a secure way for an
owner to allow one provider to access his/her resources that are hosted by other providers.
Exploiting a token not only protects an owner from sharing his credentials with a client
but also limits the scope and lifetime of an access permission. In terms of technologies,
OAuth is only based on the standard HTTP requests and responses, so it do not require
any specific software except a common browser.

To demonstrate how OAuth works, we assume that every third-party client (called a
client for short) is registered with an authorization server for client credentials (i.e., a client
ID and password/shared-key) and an optional redirection URI, which are used to identify
and authenticate the client itself. Figure 3.5 presents the protocol flows among its four
roles, i.e., a resource-owner/user-agent, a third-party client, an authorization server (aka
an OAuth Provider (OAP)), and a Resource Server (RS). The protocol consists of the
following steps:

1. A client initiates the authorization by redirecting the user agent of a resource owner
(called an owner for short) to an OAP, and bundles a client ID and redirection URI
in the request.

2. The OAP directly authenticates the owner and obtains an authorization decision
from the owner via the user agent.

3. If the owner grants access, the OAP issues an authorization code and adds it in the
query that redirects the user agent back to the earlier redirection URI.

4. The client requests an access token from the OAP by using the client credentials, the
authorization code, and the redirection URI from the previous steps.
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5. If all of the parameters in the request are valid, the OAP responds with an access
token, a scope, and a lifetime.

6. The client can present the access token to the RS in order to obtain a protected
resource.

7. If the access token is valid, the RS will provide the resource according to the scope.

As a result, OAuth is able to delegate an authorization grant from an owner to a client
via an authorization server, in the form of a token that is used by a resource server to
enforce an access policy. Exploiting a token not only protects an owner from sharing his
credentials with a client but also limits the scope and lifetime of an access permission.

In terms of technologies, OpenID and OAthu are only based on standard HTTP requests
and responses, so they do not require any specific software except a common browser.
Moreover, to reinforce security in both standards, user agents are forbidden to use cookies
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or scripts from third-party clients. Thus, a web browser and HTTP protocol function as a
trust platform and act in a user-centric fashion. While OpenID focuses on authentication
for HTTP-service providers, OAuth focuses on authorization for sharing resources among
HTTP-service providers. However, there exists cooperation between openID and OAuth.
For instance, an OAuth provider can request authentication from an OpenID provider.
Note that these existing standards cannot prevent unauthorized access in some hostile
environments of public clouds.
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Chapter 4

A Framework Toward a
Self-Organizing and Self-Healing
Certificate Authority Group

A public-key certificate is an effective way to solve various security problems in many P2P
systems (see Section 2.6). The certificate is an electronic document that binds a public
key to a set of identity information (e.g., name, organization, host name, domain name
and node ID) by using a digital signature. To guarantee that the identity in a certificate
is the owner of the corresponding public key, the certificate issuer (trusted agent) must
verify the identity and the private-key possession before issuing the certificate. Centralized
Trusted Third Parties (TTP) and Webs of Trust/PGP [137] are two common ways of issuing
certificates. The centralized-TTP method, i.e., a Certification Authority (CA), is more
efficient and scalable than the method that uses Webs of Trust. However, the centralized
TTP can be a single point of failure, and its existence contradicts the nature of purely
decentralized P2P models, which present no centralized TTP. In these P2P application
models, each node is equivalent in terms of functionalities (i.e., can simultaneously be
both a client and a server) and trustworthiness (i.e., has neither a security hierarchy nor a
centralized TTP). Meanwhile, P2P applications are expected to gain reliability, efficiency,
and performance from resources sharing among nodes in the same application community.
The trust equality among nodes hinders security provision of authentication, integrity,
non-repudiation, etc. This situation necessitates a self-organizing and self-healing security
system without a centralized TTP for P2P applications.

Thus, we propose a new framework for the self-organizing and self-healing CA
group (SOHCG) in CAN. Our framework leverages a CAN overlay network with over-
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loading zone, an (n, n) threshold signature scheme [114], the homomorphic property of
cryptographic functions, and distributed algorithms to construct a CA group. The CAN-
based structure facilitates cooperation in the trusted group for certificate issue, and the
overloading zone of CAN replicates the key shares of the (n, n) threshold signature scheme
to address the lack of fault tolerance in this signature scheme. In our framework, the CA
group is a single trusted group and issues certificates for every P2P node. To realize self-
organizing and self-healing functionalities, the CA group itself maintains its CAN structure
in a dynamic fashion by predefined group management policies, and eliminates malicious
nodes from the CA group by a Byzantine Agreement (BA) protocol. To prove an identity
and private-key possession, the CA group constructs another CAN overlay network (mul-
ticast group) on top of itself, to optimize the communication cost of our protocol. The
multicast members, which come from distinct locations on the overlay network, cooperate
to prove a network identity and private-key possession with challenge-response messages
over disjointed paths. Theses proofs are weighted under a threshold value to resist both
internal and external attacks before a certificate is issued.

This framework is composed of a CA Group (a trust group), group management policies,
a bootstrapping phase, protocols in the running phase, a certificate revocation protocol,
and a key share rendering protocol, all of which will be described in this chapter. The
rest of this chapter is organized as follows. Section 4.1 introduces the related work about
security in P2P systems according to cryptographic approaches. Section 4.2 describes the
model of networks and adversaries, as well as the notations used in the protocol descrip-
tion. Section 4.3 presents the structures used to create a trust group and a multicast group,
defines management policies to control the quality and quantity of the trust group, and
describes a bootstrapping procedure for initiating a trust group. Section 4.4 describes a
suite of protocols to prove node ID and private-key possession, including issuing a certifi-
cate. Section 4.5 shows a protocol for key share refreshment in a trust group. Section 4.6
presents a protocol for certificate revocation. Section 4.7 analyzes our framework from
two perspectives: attacks and protocols. Finally, Section 4.8 summarizes the result of our
framework.

4.1 Related Work on Securing P2P Systems

In the early stages of P2P research, most work focused on making P2P systems feasi-
ble in terms of services, reliability and performance. Therefore, both unstructured and
structured P2P networks explained in Section 2.3 have security provisions. When P2P
networks became widely used on the Internet, P2P users suffered from various kinds of at-
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tacks, e.g., viruses, Trojan horses, fake contents, etc. Some researchers have used classical
security schemes based on a centralized Trusted Third Party (TTP) to distribute long-term
keys for node or content objects. These long-term keys are necessary materials in both
symmetric-key and asymmetric-key cryptography, including Certificate Based Cryptogra-
phy (CBC) and Identity Based Cryptography (IBC), to provide security functions. Hence,
a centralized TTP can cope with the lack of security properties in partially centralized and
hybrid decentralized P2P systems that have a centralized server or super nodes. However,
purely decentralized P2P systems, in which all nodes are equivalent, self-organized and
self-maintained, cannot rely on a centralized TTP. As a result, a purely decentralized P2P
node lacks a long-term key, which is the basic material for security functionalities. Con-
sequently, researchers have proposed fully decentralized security schemes that are suitable
for purely decentralized P2P systems. This section briefly describes some relevant work
and points out advantages and disadvantages.

4.1.1 Symmetric-key Cryptography Approach

The preshared key (PSK) is a long-term key commonly used for symmetric-key cryptogra-
phy because of its simplicity. Its main drawbacks are that every node in the same domain
of a P2P system shares the same key, so this key is meant for a domain, not for an indi-
vidual node. Moreover, if one node is compromised, the whole system is breached. The
solution for these drawbacks is to use one distinct PSK for each possible pair of nodes
in the system. Hence, the number of keys in n P2P nodes are equal to N(N − 1) keys;
this large number of keys is burdensome for key distribution. A Key Distribution Center
(KDC), such as a Kerberos [121] server, can distribute symmetric keys in order to provide
this solution for partially decentralized or hybrid decentralized P2P systems.

In[7], Arora and Shyamasundar proposed PGSP, a P2P authentication protocol using
Tamper Proof Hardware (THP) to distribute a unique user ID for each user and a shared
Group Access Code (GAC) that is the same for all users participating in the same P2P
network. The THP also bundles generate and verify functions for MAC, which is used in
key exchange. Users can carry the THP and plug into any nodes joined to a P2P network.
Each node will generate a pair of RSA public keys by itself and perform an authentication
and a key exchange by using the MAC, which is then generated and verified by the THP.
After a public-key exchange, a sender generates a DES key and transmits to a receiver for
secure communication.

Although this work can use a pre-shared key (GAC) and ID kept securely in a THP to
achieve mutual entity authentication, it needs specific hardware tokens and is based on the
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assumption that no one can forge these tokens. Because of the requirement of a THP, this
work is limited to use only by federated P2P networks, and the assumption that the THP
is unforgeable might not be a realistic assumption. In addition, this solution still needs a
centralized administration to initialize the THP before a new node joins the network, and
if the GCA shared by all nodes is compromised, the whole network is breached.

4.1.2 Asymmetric-key Cryptography Approach

A public/private key pair is a pair of long-term keys that perform the security function
in asymmetric-key cryptography: a private key is concealed, but a public key is revealed,
so the authenticity of a public key is the crucial aspect for its security functionality. Two
methods are used to maintain the authenticity of public keys: certificate-based and identity-
based cryptography. For certificate-based cryptography, the remarkable functions are cer-
tification, revocation and renewal of public keys associated with an identity, time and
private-key possession. Two traditional approaches are used to achieve these functions: a
centralized TTP, i.e., certificate authority (CA), and PGP [137].

Certificate Based Cryptography (CBC) Approach

PGP is an approach that can be deployed instinctively in the purely decentralized archi-
tecture of P2P. This approach does not require central servers and uses trusted chains, i.e.,
trusted relations from node to node for obtaining a required public key. This trusted chain
depends on the trustworthiness of the nodes in P2P systems, the human evaluation of key
ownership and the difficulty of finding the required public key because a routing map for
finding the node holding a required public key does not exist. These problems prevent its
large-scale use in P2P systems. In[125] Takeda et al. proposed a Hash-based Distributed
Authentication Method (HDAM), which deploys PGP: Web of Trust and a Distributed
Hash Table (DHT) for mutual authentication between two nodes in a P2P network. This
idea is used to provide a decentralized database that depends on trusted relations between
peers. The DHT is a routing map for finding the location of the required public key in a
distributed database. From the cooperation between the Web of Trust and the DHT, a
node can retrieve a required public key by iteratively searching its authentic nodes, i.e.,
other nodes that it knows their public keys, and so on, until it arrives at the node holding
the required public key. In this work, the authors use Chord structure (a hash-ring over-
lay network), which requires O(log2N) storage per node for maintaining public keys and
O(log2N) messages for communication, to retrieve the public key. When node A requests
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an authentication from node B, B requires A’s public key for this authentication. There-
fore, B has to search for A’s public key with O(log2N)-maximum steps. In each step,
B has to authenticate the next node until it arrives at the node holding A’s public key.
For self-organization, when a new node p joins the network, it has to find a neighbor and
provide physical proof to that neighbor, before p obtains the public key of its successor
S from the neighbor. Next, p obtains the public keys of its other further successors from
S. Finally, S tells its predecessors to update their finger tables. When an existing node
needs to leave the network, its must tell its predecessors to update their finger tables. As
a result, O(log2N) communication messages are required for a new node to join and leave
the network.

This approach works more efficiently than a conventional Web of Trust, whose max-
imum requirements are O(N) storages for cashing or O(N) communication messages for
searching. However, this work still depends on the physical proof of a single node in joining
into the network, and if one node in a trusted chain is malicious, this trusted relation will
be breached. The authors propose that public keys should be updated periodically with
O(log2N)-maximum messages to compensate for the lack of malicious node detection and
certificate revocation.

In[96] V. Pathak and L. Iftode proposed Byzantine fault tolerant public key authen-
tication that can prove the possession of a private key under an honest majority. This
approach does not require a trusted third party, and the authentication is correct if no
more than bn−1

3
c of the n parties are malicious or faulty. This work consists of three main

parts: a key authentication protocol, membership control protocol and Byzantine agree-
ment protocol. After a bootstrapping procedure, a trusted group is initiated, and each
node maintains its own list of probationary, trusted and untrusted groups. When node A
sends an authentication request message to node B, B puts A in the list of B’s probation-
ary group and forwards this request message to B’s trusted peers. The trusted peers use
challenge-response (C-R) messages to prove A’s private-key possession, and then return the
proofs to B. B can determine A’s private-key possession from the validity of C-R pairs.
The validations of C-R pairs may not have consensus because A or some trusted peers may
be malicious. In this case, B requests C-R pairs from A to prove A’s honesty and uses
the Byzantine agreement to detect a malicious node in the trusted peers. Moreover, they
use a membership control protocol to control the consistency and the size of groups. For
example, the validity of key authentication will promote node A from the probationary
group to the trusted group. In contrast, malicious behaviors will demote trusted peers
from the trusted group to the untrusted group.

The main drawback is that proof of private-key possession creates a trust relation for
individual peers’ view. Hence, trust relations are not reusable or transitive to other peers
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in the P2P system.

In [23] Chen et al. proposed an improvement on the Byzantine fault tolerant public-
key authentication proposed by V. Pathak and L. Iftode. In this work, they replace the
classical challenge-response with sign chaining that optimizes the number of messages in the
Byzantine agreement step. The evaluation shows that the number of messages decreases
significantly, but the authors provide no security evaluation.

Identity Based Cryptography (IBC) Approach

IBC is another method for maintaining the authenticity of public keys by using an existing
known identity as a public key, so the system does not have to maintain certificates.
From this characteristic, IBC is called a certificateless scheme. However, IBC requires a
centralized TTP, named a Key Generation Center (KGC), for generating private keys, so
IBC is not suitable for purely centralized P2P.

In[87], Nguyen proposed a P2P authentication and key exchange protocol that uses the
Diffie-Hellman protocol for its session key exchange and IBC for its pairwise shared key
distribution. This IBC is based on Weil pairing using two functions:

• Localizing function L(Qi, s), which a KGC uses to generate a peer’s private key
di = L(Qi, s) from the KGC’s private key s and the peer’s public key Qi ( i.e.,
hashed from its identity IDi to a point of an additive group on an elliptic curve ).

• Mating function M(di, Qj) = M(dj, Qi) = ê(Qi, Qj)
s, which is used to compute the

pairwise shared key Kij = M(di, Qj) = M(dj, Qi) between peer i and peer j.

After each peer is preloaded with a private key generated from functionL by a KGC,
each peer can compute a pairwise shared key by using the function M. This pairwise key is
used as a long-term key to authenticate each entity mutually by using a challenge-response
message exchange and Message Authentication Code (MAC). The Diffie-Hellman algorithm
is used to generate a session key and is combined with MAC to protect against man in
the middle (MITM) attacks. In addition, this scheme can extend authentication from a
single domain to multiple domains by chaining authentication from one IBC domain to
another IBC domain and so on. This chaining authentication is performed by a Trusted
Authentication Gateway (TAG), which is a node belonging to two or more IBC domains.
This chaining is not a hierarchical system like PKI; therefore, this system can be distributed
in any topologies and achieves redundancy load balancing by employing multiple TAGs per
IBC domain.
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This work can provide efficient and scalable authentication and key exchange in P2P
systems; however, KGC is not applicable to purely decentralized P2P, and TAG is equiva-
lent to a centralized TTP (CA) in PKI for each domain; therefore, if a TAG is malicious,
it can masquerade as the entity that it authenticates, then deploy MITM attacks.

4.1.3 Decentralized TTP Approach

A TTP is a single entity that holds key material for generating a long-term key, i.e.,
a CA holds a signature-key for issuing certificates, and a KGC holds a master private
key for generating the private keys of peers. This TTP is a single point of failure and
key compromise. If the TTP has to serve the entire system, it causes a limitation of
scalability in the system. In addition, it is not applicable for purely decentralized and
self-organized P2P (a node of the system dynamically joins and leaves) because every
node is equivalent and its availability is volatile. Even though some systems can deploy a
hierarchical approach for each sub domain, the TTP is a single point of vulnerability in
each sub domain. Because of the previous stated facts, it is crucial to devise a decentralized
TTP, i.e., CA or KGC, for a purely decentralized P2P system. Threshold secret share or
secret share is a common cryptographic system used to achieve this goal.

In[69], Kong et al. proposed certificate-related security services for ad-hoc wireless
networks that have no infrastructure. This scheme distributes CA functionality to each
neighbor node by using the threshold share scheme. A coalition of k neighbors jointly
provides a certificate for a requesting node. In the bootstrapping phase, k or more initial
nodes are preloaded with share keys SKi of a CA’s signature key SK. In the running
phase, a self-initialization protocol handles dynamic node membership, i.e., a new joining
node can obtain a CA’s secret share from the coalition of k neighbors before becoming
a qualified share holder to provide a certificate to a requester without revealing SKi to
the requester. Each shareholder generates and sends a partial certificate signed by its
SKi to the requester. The requester combines all partial certificates to create a complete
certificate signed by SK. This work uses RSA cryptography and Lagrange interpolation;
therefore, a new certificate X signed by a share key SKi becomes a partial certificate XSKi .
Combining all partial certificates is the product of partial certificates (XSK1 · XSK2 . . . ·
XSKk = XSK1+SK2+...+SKk = XSK) and the k-bounded coalition offsetting algorithm. For
self-initialization, a new share key SKn of a new node k is the summation of partial
share keys SKi(n) (SKn =

∑k
j=1 SKi(n) =

∑k
j=1 f(xi) · li(n), where li(n) is the Lagrange

coefficient in the k-coalition at value n.

Even though this work can provide a decentralized CA, in terms of computing and
communication load, it take k times more load than traditional CA. The certificate issue
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in this work requires physical proof from the neighbors of a new node, and the Certificate
revocation is provided by flooding Certificate Revocation Lists over the network. Moreover,
periodic updating of all share keys is required to resist comprising of the CA’s signature
key by k or more collaborative intruders (collusion attack).

In[32], Deng et al. proposed a distributed key management and authentication scheme
for ad hoc networks that deploys identity-based cryptography and a threshold scheme.
This work is based on the assumption that all keys are generated and maintained in a
self-organized way, and an IP address or an identity is unique and unchangeable during
the lifetime of a network. In this work, the KGC’s public key is well know in the whole
network, and the KGC’s private key is distributed by a (k, n) threshold scheme. Therefore,
a coalition of k or more shareholders form a KGC to generate a peer’s private key according
to that peer’s public key QID.

In the bootstrapping phase, every initial node selects a secret value xi, a polynomial
fi(x) of degree k− 1 such that fi(0) = xi. Each initial node also generates the KGC’s sub-
share of private keys sij for all initial nodes j = 1, . . . , n and sends them to all other initial
nodes j 6= i. After each initial node j collects n sub-shares sij for i = 1, . . . , n, the initial
node j can compute KGC’s private-key share sj =

∑n
i=1 sij =

∑n
i=1 fi(j) and broadcasts a

KGC’s public-key share sjP , where P is a common parameter of IBC. Consequently, every
node can compute KGC’s public key by using

∑n
i=1 siP . In the running phase, a coalition

of k nodes can generate peer’s private-keys share ski = siQID, where QID is a peer’s
public key according to ID and i = 1, . . . , k. The requester collects all k peer’s private-key
shares and computes a peer’s private key sk =

∑k
i=1 siQID. For self-organization, when

a new node p joins the network, it finds a coalition of k neighbor nodes and requests
them new KGC’s sub-shares sin = si · li(n) for p. p computes its KGC’s private-key share
sn =

∑k
i=1 sin by combining all new KGC’s sub-shares.

The idea behind this work is similar to Kong’s work except for the change in cryptogra-
phy from CBC to IBC; therefore, the computing load and communication load are k times
more than a single KGC’s load. The authors also propose a solution to initiate KGC’s
private-key shares in the bootstrapping phase. Similarly, a collusion attack can compro-
mise a KGC’s private key if k or more adversaries collaborate together before the key share
updating is finished. However, in private-key generation, an identity verification requires
physical proof just as centralized KGC does, and no solution is provided for concealing a
private-key share being conducted to a requester.

In[9] Avramidis et al. proposed Chord-PKI, a distributed PKI embedded into the
Chord overlay network. A Chord-PKI provides a certificate to the Chord nodes themselves
without external PKI. The main idea is to partition the Chord network into multiple areas
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and empower some nodes in each area with certification functionality, making them into
certification nodes. Thereafter, each certification node serves a single area in order to limit
the consequences if a certification node is compromised. By employing a (t, n) threshold
cryptography, the coalition of the certification nodes in each area can provide the resilience
of key compromises and the load-balance of cryptographic functions. The certificate and
CRL repository exploit the distributed storage and data management of the Chord network.
Thus, storage cost and data manipulation are balanced among the Chord nodes. To obtain
a certificate from a Chord-PKI, a Chord node must send a certificate request to one of
the certification nodes in the same area. This certification node serves as the combiner
of threshold signatures. However, the authors did not provide a mechanism for finding
and selecting a certification node and generating a key share for each certification node.
A CRL is requested on accusations from a number of certificated nodes, then the CRL is
generated by a coalition of certification nodes in the same manner as a certificate.

In this work, the number of certification nodes is static and may be compromised. Al-
though the partitions of Chord address spaces are sized equally, the density of Chord nodes
may not be balanced, so the load and security effect of certification and revocation may
not be balanced either. There is a trade-off between certificate management and security
resilience because with increased security resilience, the number of areas and public-key
certificates must increase.

In[73] Lesueur et al. proposed a fully distributed certification mechanism based on
the trusting of t% of nodes. A certificate must be signed by the collaboration of t% of
nodes. To achieve this goal, they used the homomorphic property of RSA functions to
combine the partial signatures by multiplication. To maintain the ratio t% of nodes in
a collaboration, the number of secret shares must increase according to the increase of
the number of nodes in a P2P network. Each share is uniquely identified by a ShareID,
which is a binary prefix of a Node ID, i.e., NodeID = ∗ShareID. These ShareIDs are
used to form a logical tree structure for searching all t% combinations of the secret shares
that can combine to be a complete signature key. When a new node needs a certificate, it
generates a certificate request and sends it to every leaf node on the tree by traversing in
an depth-first search. The last leaf node signs the certificate request and sends it back to
the previous leaf node, which combines the received partial signature and its own partial
signature to create a more complete partial signature, and so on. Finally the new node can
combine the received partial signature with its own partial signature for a fully complete
signature, i.e., a complete certificate. With this mechanism, if one node in the tree is
malicious, the combination of certificates is not successful. To cope with this problem, the
authors proposed that each step of the tree traverse should be repeated.

Fully distributed and self-organized characteristics are the strong points of this work.
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However, to maintain the security level while a network grows up, the computing load,
communication bandwidth and latency time for certification must be increased. As a
result, this scheme may not be scalable to an Internet scale.

In this section, we have reviewed certain work, related to three approaches on secur-
ing P2P systems or applicable for P2P systems: symmetric key-based, certificate-based
and identity-based. Most of these papers work on assumptions that are unsuitable for
purely decentralized P2P systems on an Internet scale. The decentralized TTP approaches
presented in Subsection 4.1.3 are summarized in Table 4.1.

Table 4.1: The comparison of previous work for CBC in P2P systems
Model Technique Limitation Reference

Hardware uses Tamper Proof Hard-
ware (THP) to distribute
a unique user ID and a
domain-shared key

only for private network [7]

PGP uses PGP and DHT to cre-
ate a trusted chain

chain is breached if only one
node is malicious

[125]

Individual trust creates a trust relation by
proof of private-key pos-
session under an individual
trust group

trust relation cannot be
transitive

[96]

Chord PKI associates each Chord par-
tition with (t, n)-threshold
signature

certification node is static [9]

t% PKI certificate signatures based
on the trust of t% of nodes
in the system

not suitable for large scale
systems

[73][74]

4.2 System and Security Model

The SOHCG framework presented in this chapter is based on the following models and
assumptions.
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4.2.1 Structured P2P Network Model

We consider a P2P network as an application-level overlay network over the underlying
Internet without IP multicast services. The inter-communication among nodes is asyn-
chronous, which does not guarantee message delivery, reliability, and ordering. The P2P
network is composed of dynamic nodes that unpredictably join, leave, and fail. Each node
has a unique non-zero network ID mapping tightly to the overlay-network topology, namely
a structured P2P overlay network. The multicast and broadcast communication controlled
by a CAN-based flooding algorithm [104] can reduce duplicated messages but do not pro-
vide Reliable and Totally Ordered (RTO) delivery. For unicast traffic, we assume that
a node can be reached by different nodes with distinct paths over overlay networks. We
assume that timed services and access to hardware clocks allow time-out and retransmis-
sion to mask low level communication failures and provide timed asynchronous commu-
nication [29], which is practically implementable for distributed services and provides a
notification if an end-point does not exist.

4.2.2 Trusted Group Model

In our trust model, a node is trustworthy if it is trusted by a dynamic trust group, termed a
CA group, which acts like an internal TTP for a P2P community and forms the security
foundation. While none of the nodes trusts others, each node believes that the honest
majority of nodes in the trusted group are retained. Since a BA algorithm is used to
detect malicious nodes in a CA group, the CA group of size n is expected to have an
honest majority if at most bn−1

3
c malicious nodes exist. Thus, the trusted group can

guarantee the consistency of the mapping between a node ID and its corresponding public
key in a certificate. Note that we assume that an honest node can protect a private key well
and execute the protocols correctly, whereas a dishonest node may behave in any arbitrary
fashion.

4.2.3 Bootstrapping Model

Each bootstrap (BT) node has already registered a public key with an external TTP. Thus,
it can use cryptographic functions for confidentiality, integrity, and authentication. We
assume that all BT nodes can protect their private keys well, execute algorithms correctly,
and run cryptographic functions to establish secure and authentic communications among
the BT nodes. Moreover, the number of malicious BT nodes is not large enough to reveal
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any secret information. For instance, the RSA-key generator, proposed by Boneh and
Franklin [16], can prevent collusion attacks from bn−1

2
c out of n BT nodes to factor the

modulus N or to compromise the private key.

4.2.4 Adversary Model

An adversary may either omit to do what it is supposed to do or behave arbitrarily. More
specifically, an adversary can eavesdrop on, drop, forge, or man-in-the-middle (MITM)
messages. Moreover, we assume that an adversary has limited computational power to
break cryptographic functions, i.e., an adversary cannot counterfeit a digital signature and
invert an encryption function, but he/she can send any messages at any time. The impact
of an adversary also depends on the status of nodes. Thus, we classify adversaries into two
categories

External adversary: An adversary who participates in a user overlay network but is
not a member of a CA group. This adversary may eavesdrop on, drop, forge or MITM
traffic between users and a CA group.

Internal adversary: An adversary who participates in a user overlay network and is
a member of CA group. This adversary may drop/MITM traffic among CA nodes, omit
to follow the protocol, or launch inconsistent messages in the CA group (see detail in
Subsection 4.3.2).

4.2.5 Attack model

Our intention is to devise a CA group for structured P2P networks. Thus, we focus on
three main attacks to the CA group:

Node impersonation: An external adversary A′ tries to convince a CA group that
its public key PKA′ belongs to an honest node A. We assume that each P2P node will
be reached by different CA nodes through distinct communication paths. Therefore, if
adversaries MITM traffic from the CA group on more than a fraction α of paths, then the
adversaries can impersonate other nodes.
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CA functionality interference: An internal adversary, who has convinced a CA group
of his honesty and joined the CA group, may prevent the CA group from issuing certificates
to legitimate users by counterfeiting certificate requests, broadcasting invalid challenge
causing invalid (c, r) pairs, sending faked partial certificates, or omitting to send partial
certificates.

CA group subversion: An internal adversary may intentionally make false accusations
to eliminate honest nodes from a CA group, thereby subverting the honest majority of the
CA group.

External attacks: Nodes in the underlying network can launch general network attacks,
e.g., eavesdropping, Denial of Services (DoS), Sybil, etc.

4.2.6 CA Node Misbehavior Model

Although CA nodes are certified nodes and the messages among CA nodes are signed by
their private keys, these certified nodes may become a malicious nodes after they join a
CA group and perform bad behaviors in the CA group as follows.

Omission: A CA node may choose not to follow the specified steps in the protocol,
e.g., sending a challenge message, reporting a proof result, signing a partial certificate.
Omitting to send a challenge message or proof result can be detected by our modified BA
algorithm (see details in Subsection 4.4.3). To mitigate omission to sign partial certificates,
a coordinator will reestablish a decision group or a requester will resubmit the certificate
request (see detail in Subsection 4.4.2).

Message drop: A malicious node drops the messages that use it as an intermediate
router to the destination. To mitigate this problem, we use a modified CAN flooding algo-
rithm (see detail in Subsection 4.3.1) that can provide multi-path routing for broadcasting
over a CA group and a decision group.

CA interference: A CA node may prevent other CA nodes reaching an agreement
by sending forged CertReq messages, 2) invalid Challenge messages, or 3) forged partial
certificates. We need different techniques to cope with these interferences: First, BT
nodes sign CertReq messages before forwarding the messages to a CA group (see details in
Subsection 4.4.1). Second, our Malicious node Detection Protocol uses a BA algorithm to
detect invalid Challenge messages (see details in Subsection 4.4.3). Third, a coordinator
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will reestablish a decision group or a requester will resubmit the certificate request (see
details in Subsection 4.4.2).

Unlive node: It is a basic operation of the CAN overlay network (CA group) that every
node periodically sends refresh messages about its assigned zone to its neighbors and peers.
If peers or neighbor nodes do not receive refresh messages from a node in the assigned time,
such a node will be considered faulty. Thus, the peers and neighbor nodes will remove such
nodes from their peer lists or neighbor lists respectively (see details in Subsection 2.4).

4.2.7 Design Goals

The goal of our framework is to build up a CA group in semi-trusted P2P systems in
which P2P nodes do not trust others but believe that the majority of P2P communities is
trustworthy. This CA group is delegated by the P2P communities to verify the node ID
and public key of P2P nodes before issuing certificates. To this end, the CA group must
maintain the following properties:

Self-organizing: A CA group is initialized by BT nodes and then grows to a mature state
by itself, thereby requiring neither centralized nor external CA. The membership in
the CA group is dynamic and has a uniform distribution over the P2P community.

Self-healing: The honest majority of a CA group is maintained by the CA group itself. All
key shares of the CA group are refreshed gradually and continuously, and replicated
for key tolerance.

Scalability: The size and construction of a CA group is controlled by predefined param-
eters for trade-off between security and efficiency.

Resiliency: A CA group has capability to resist or mitigate both attacks from the mem-
bers of the CA group and the external attacks from nodes in P2P communities.

Efficiency: The computation and communication cost from being a volunteer CA node
does not interrupt the functionalities of general P2P applications.

To achieve these goals, we propose a framework for a self-organizing and self-healing
certificate authority (CA) in a Content Addressable Network (CAN) that consists of a CA
group structure, group management policies, bootstrapping and running phase protocols,
a share rendering protocol, and a certificate revocation protocol.
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4.2.8 Notation

The notations in Table 4.2 are used for the public-key cryptography, threshold scheme,
and message formats in the following protocol descriptions.

Table 4.2: Notation for protocol descriptions
Notation Description

rX A pseudo random number generated by entity X
SKX Private(Secret) key of entity X
PKX Public key of entity X
SKi

X The ith share associated with X’s private key
PKi

X The ith share associated with X’s public key
U1, U2, ..., Un A string generated from a concatenation of strings

U1||U2||...||Un
EPKX (U) The cypher text of a string U encrypted with

X’s public key
DSKX (U) The plain text of a string U decrypted with

X’s private key
SigSKX (U) A digital signature over a string U generated with

X’s private key
[U ]SKX A string U attached by digital signature SigSKX (U)

CertReqX A certificate request is a binding between
X’s identifier and public key, signed with its own
private key, i.e., CertReqX = [X,PKX ]SKX

CertX A public-key certificate is X’s CertReq, including
CA’s policies, signed with CA’s private key,
i.e., CertX = [CretReqX , T imeExp]SKCA

CertiX A partial certificate is X’s certificate request,
signed with the ith share of CA

� Unicast traffic flows over the underlying network
→ Unicast traffic flows over a user overlay network
↪→ Unicast traffic flows over a CA overlay network
# Unicast traffic flows over a decision overlay network
↪→ ∗ Broadcast traffic flows over a CA overlay network
# ∗ Multicast traffic flows over a decision overlay

network
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4.3 SOHCG Construction

In this section, we present the structure of a trusted group, termed a CA group and the
coalition of nodes from the CA group. A CA group is composed of certified nodes, termed
CA nodes, that are recruited from a P2P network. Hence, some of the CA nodes may be
malicious and try to violate the functionality and the honest majority of the CA group,
i.e., a CA node may lie or omit to do what it is supposed to do. Consequently, we must
define group management policies to control the quantity and quality of the CA group.

4.3.1 A CA Group Structure

The structure of a CA group is a d-dimensional Cartesian space (CAN structure) with
overloading zones [103], in which each zone of the CAN overlay network maintains a share
corresponding to the CA’s private key. Moreover, the CA group recruits certified nodes,
(CA nodes), from a user overlay network to form a CAN overlay network. To do so, we
must modify the original CAN-based structure and algorithms as follows. Note that nodes
sharing the same zone are termed peers.

A combination of an (n, n) threshold scheme and a CAN with overloading zones:
Duplicating a share with multiple peers and matching a share to a zone can provide fault
and key-compromise tolerances. That is, an adversary must disrupt all peers in one zone
to disable a CA group or compromise every share (at least one node in each zone) to reveal
the CA’s private key.

Flooding in a CAN with overloading zones (zone flooding): Two modifications
to the multi-path flooding algorithm proposed in [104] are required. First, to provide
multi-path routing, we allow CAN nodes to forward a message farther than half-way along
the dimension but not to forward a message whose sequence number has already been
received. Second, to prevent collusion attacks, all peers of the sender’s zone contribute in
generating a random CAN ID by using a distributed and synchronized scheme, such as the
protocol proposed by Benaloh [12] or Ben-or [13]. According to the distance in the CAN
structure, the next zone’s peer closest to the random ID is selected as a designated node
for each flooding step. Therefore, in each step and so on, a sender cannot intentionally
forwards messages to its conspirators. Here, for broadcasting and multicasting, the multi-
path flooding is used for non-overloading zones; meanwhile, the zone flooding is used for
overloading zones.
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Figure 4.1: Matching CA group to 2-dimensional CAN with overloading

We now involve two categories of P2P networks: one used for constructing a CA group
is termed a CA overlay network, and one run by users can be any structured P2P overlay
network and is termed a user overlay network. For the sake of simplicity and without
loss of generality, this paper assumes that the CA overlay network is constructed by a
2-dimensional CAN network, and the user overlay network is a Chord network. Figure 4.1
shows the related constructions of both CA and user overlay networks. Note that our
framework can extend to support multiple user overlay networks per CA group.

Hence, a CA node participating in both overlay networks must run the protocol stacks
of both CA and user overlay networks. Figure 4.2 shows protocol stacks in a user node, a
BT node and a CA node, including communication paths between each kind of node.

While the cooperation of CA nodes frequently generates multicast traffics, these traffics
can be controlled efficiently by a CAN-based multicast group, named a decision group.
This decision group is formed by a representative of each zone, named a decision node.
The decision group is a temporary coalition of CA nodes that proves private-key possession
and signs a certificate. Then the decision group disappears after the certificate issue process
is done (successful or failed).
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4.3.2 Group Management Policies

Since our proof of private-key possession is based on the assumption that paths from
different CA nodes to a P2P node are distinct, CA nodes must be selected from a user
overlay network uniformly. Moreover, to mitigate collusion and Sybil attacks [38], CA
nodes’ membership must be dynamic in order to limit the time, i.e., age rounds of certificate
issuing, that a malicious CA node can subvert the functionality and honest majority of a
CA group. To achieve the above two properties, we define the following two policies.

Peer Recruitment

When the number of peers in one zone is less than pmin, all peers in that zone cooperate
to generate a random ID with the same distributed scheme employed in zone flooding (See
Subsection 4.3.1). The peer closest to the random ID is selected as a coordinator. Thus,
all peers are equally likely to be selected, instead of a fixed coordinator per zone. Based
on a look-up service in the user overlay network, the coordinator selects the user node
associated with the random ID. The coordinator then verifies whether the selected node is
a certified node, neither a current CA node nor a revoked node, before inviting this node
to be a new CA node. If the verification fails, another random ID will be generated until
peers can find a satisfactory node. In the joining step, the coordinator hands over the
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parameters and share to the new CA node via a secure and authentic channel established
by the public-key scheme. These parameters and shares are also verified by compared to
the ones from other neighbor nodes. Unlike to the original CAN, in which a new node
requests to join CAN, our joining step is initiated from the cooperation of peers to select
a new node. As a result, every peer has control of and participation in peer recruitment.

Peer Retirement

In a CAN with overloading zones, every CAN node (or CA node) maintains a peer list and
a neighbor list (i.e., a list of peers in its adjacent zones). Usually an entry of these two lists
is composed of a node ID and its IP address. We add a Cert field (i.e., the certificate of
that node) and a CertCount field (i.e., a counter of the number of certificates issued by that
node) to the peer list. Additionally, we add only a Cert field to the neighbor list. When
a CA node P is selected to be a member of a decision group, every peer of P queries P ’s
entry in its peer list and decreases the value of P ’s CertCount field. If the CertCount field
is greater than zero, P is selected. Otherwise, P ’s peers consider P as an expired node,
remove P from their peer lists, and tell P ’s neighbors to remove P from their neighbor
lists as well. Hence, P is retired from the CA group. Moreover, in a CAN overlay network,
every node must periodically send refresh messages to its neighbors and peers. If P ’s peers
or neighbors do not receive the refresh messages within a limited time, they consider P an
unlive node and remove P from their peer lists or neighbor lists, respectively.

With certificate provision and group management policies, P2P nodes can be classified
according to their functionalities (i.e., user nodes, CA nodes, or decision nodes), behavior
(i.e., malicious or non-malicious), and certification status (i.e., certified or non-certified), as
shown in Figure 4.3. Nodes in each group may overlap those in other groups and migrate
from one group to others according to their certification procedures (i.e., certificate issuing
or revocation) and the group management policies (i.e., retirement or recruitment).

Although our peer retirement and peer recruitment policies cause nodes to continuously
join and leave the CA group (or the CAN overlay network) at a high churning rate, a CAN
overlay network can still operate well because only 2d zones are affected by the joining or
leaving of one node (where d is the dimension of a CAN overlay network). Before a CA
group is formed and maintained by a coalition of certified nodes, the CA group must be
initialized by BT nodes in the bootstrapping phase, as described in the next subsection.
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4.3.3 Bootstrapping Phase

At the beginning of this phase, the authority creates BT nodes to form a CA group and
to function as shareholders in a threshold signature scheme. Although a large number of
peers and zones in a CA group can increase fault tolerance and attack resistance, increasing
a CA group’s size trades efficiency for security. In other words, if the number of peers in
one zone increases, not only does fault tolerance increase but also the number of states
(neighbors and peers lists). Meanwhile, if the number of zones (shares) increases, not only
does the key-compromised tolerance increase but also the computing and communication
cost. To craft our scheme for a tradeoff between efficiency and security, we define the
following parameters to control CA group size.

pmin: the minimum number of peers before recruitment.

pmax: the maximum number of peers before splitting a zone, where pmax ≥ 2pmin + 2.

zmin: the minimum number of zones at the initial state.

zmax: the maximum number of zones at the mature state, where zmax ≥ 2zmin.

age: the maximum number of certificates each node can issue before retirement.

To initialize an (n, n) threshold signature scheme without a dealer and knowledge about
the corresponding private key and to establish a CA group according to the predefined
parameters, the bootstrapping phase consists of the following two steps.
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Zone and Share Initialization

The authority constructs a 2-dimensional CAN with zmin zones and at least zmax BT
nodes. Hence, an initial CA group, which starts with zmin zones (at least two BT nodes
per zone) and a (zmin, zmin) threshold scheme, has a suitable and practical size for a
start-up network. Then zmin BT nodes from different zones use Boneh and Franklin’s
algorithm [16] to select a public key PKCA and to generate a modulus N and shares SKi

for each zone. Both the modulus N and the public key PKCA are published on public
servers or embedded in software distributions, as happens in many operating systems and
web browsers. Additionally, the IP addresses of the BT nodes are published under the CA
domain name or in the extension field of the CA certificate [56]. The BT nodes then start
issuing certificates for P2P users and managing the CA group.

CA Group Initialization

Meanwhile, the BT nodes start recruiting certified nodes to the CA group and hand over
the shares and parameters through secure and authentic channels established by a public-
key scheme. When a zone consists of pmax peers, the BT nodes in that zone delete their
shares and fade out from the threshold signature scheme forever. The CA group now
arrives at the initial state, which can grows up by itself until arriving at the mature state.
However, the BT nodes are still permanent members of the CA group and function as
gateways for submitting certificate requests. Therefore, BT nodes maintain CA policies
and current peer-lists for certificate requests. Note that BT nodes now are not members of
user overlay networks, so they do not suffer from the attacks from user overlay networks.

Now the CA zone itself can grow up without BT nodes. Each zone continues recruiting
until the number of peers amounts to the upper bound pmax. Then the zone is split into
two halves, each of which contains half of its peers and BT nodes if applicable. To limit
the number of zones to zmax, the coordinator PZ0 of a split zone broadcasts a Zone Count
message to the CA group to get zone information from every zone before splitting, as shown
in Table 4.3. The coordinator then checks the completeness of the zone combinations in
the Cartesian space before counting the number of zones.

If the current number of zones is less than zmax, the recruiting and splitting are repeated
until the CA group consists of zmax zones and pmax peers in every zone. For example, if
a zone Z0 has to be split into two new zones Z00 and Z01, all peers in zone Z0 cooperate
to select a nonce r in the manner used in zone flooding (See Subsection 4.3.1). Next,
zone Z0 is split into two new zones Z00, Z01 with the new shares SKZ00

CA ≡ r (mod N)
and SKZ01

CA ≡ SKZ0
CA − r (mod N), respectively. Finally, zones Z00 and Z01 render their
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Table 4.3: Zone count protocol

Traffic Flow Message Format / Action (where i = 1, ..., n)
PZ0 ↪→ ∗: [PZ0, ∗, Zone Count]SKPZ0

{PZi} ↪→ PZ0 : [PZi , PZ0 , Zone Information, ZoneInfi]SKPZi
PZ0 : Combines zone areas and counts the number of zones

new shares with their neighbor zones. The details of the Share Rendering Protocol are
presented in Subsection 4.5.

Eventually, the CA group grows to a mature state with the number of peers and zones
bounded at pmax and zmax respectively. This mature state is the proper size for achieving a
suitable efficiency/security trade-off. In other words, if the number of key shares (zones) in
a CA group increases, the key compromised tolerance increases; meanwhile the computing
and traffic load of key combination processes increases. When the number of peers in one
zone increases, not only does the fault tolerance increase but also the number of states
(neighbors and peers) maintained by each node increases.

The following sections explain how the CA group can achieve two main functionalities
of a traditional CA, i.e., registration and certificate issuing. We assume that every node
in both a CA group and user overlay network knows the CA certificate and the BT nodes’
certificates. However, the members of the CA group know only the key shares associated
with their zones.

4.4 SOHCG Running Phase Protocols

4.4.1 Key-Registration Protocol

When a new node joins a user overlay network, it must request its certificate from a CA
group to upgrade from an uncertified node to a certified one. To this end, a CA group
first prepares its delegation, called a decision group, when receiving a certificate request.
The decision group performs the later protocols and multicast efficiently and employs a
challenge-response protocol to prove the network ID and the private-key possession. If the
verification succeed, the decision group will generate a certificate and send it to the new
node. This protocol consists of the following four steps.
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Step 1. Certificate Request

When node A needs a new certificate, A first generates a public/private key pair by itself
and constructs a certificate request CertReqA = [A,PKA]SKA under the PKCS 10 [88]
format, then submits the CertReqA to one of BT nodes. The BT node does not issue the
certificate by itself but forms a Forward Request FR message by attaching CA policies
(e.g., expiry time, etc.) to the CertReqA and signing with the BT node’s private key,
before randomly forwarding the FR message to one of the CA nodes P0. The message
flows and formats in this step are as follows.

Traffic Flow Message Format / Action
A: Generates CertReqA = [A,PKA]SKA

A� BT : [A,BT,Cert Request, CertReqA]SKA
BT ↪→ P0: FR = [BT, P0, Cert Request, CertReqA, ExpT ime]SKBT

Afterwards, the certificate request is submitted to the CA group for verification. The
decision group will be established to perform three main functions of a traditional CA: 1)
prove the network ID in the certificate request, 2) verify the possession of the private key
associated with the proposed public key, 3) sign the certificate in order to guarantee the
correspondence between the network ID and the public key, i.e., binding the network ID
and the public key in the certificate. These main functions will be performed in the later
steps.

Step 2. Decision Group Establishment

The first selected node P0 (assume that P0 is in zone 0) combines its node ID and certificate
with the FR message to form a Group Request message and then broadcasts the Group
Request message to a CA group with zone flooding algorithm. Hence, all nodes selected
through the zone flooding algorithm are the decision nodes. To form a decision group with
P0, each decision node responds to P0 with a Group Join message consisting of its zone
information and certificate, and stores the FR message for generating a partial certificate.
After forming a decision group, which is a CAN-based multicast group called a mini-CAN,
P0 must check the completeness of the Cartesian space by combining all zones’ information
from every Group Join message. Therefore, the number of nodes (or zones) in a decision
group is equal to the number of zones in a CA group. In other words, the decision group
has all the shares for reconstructing a complete certificate, as shown in Figure 4.4. Then
P0 learns the IDs and certificates of all decision nodes from the Group Join messages. To
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Figure 4.4: Forming a decision group over a CA group

confirm the completeness of the decision group, P0 multicasts all the information to the
decision group with a Group Confirmation message. Thus, each decision node knows the
others, forms a mini-CAN with P0 and is ready to prove A’s private-key possession. The
below diagram shows the message flows and formats in this step.

Traffic Flow Message Format / Action (where i = 1, ..., n)
P0 ↪→ ∗: [P0, ∗, Group Request, FR, (P0, CertP0)]SKP0

Pi: Records FR and forms a mini-CAN with P0

Pi ↪→ P0: [Pi, P0, Group Join, Pi, ZoneInfi, CertPi ]SKPi
P0: Checks the completeness of zone area

P0 # ∗: [P0, ∗, Group Confirmation, (P0, CertP0), . . . , (Pn, CertPn)]SKP0
Pi: Form a mini-CAN with P0

Step 3. Challenge-Response

Decision nodes, which are placed in distinct locations on a user overlay network, use
challenge-response messages to prove A’s network ID and private-key possession. Each
decision node Pi generates a nonce rPi and a challenge CPi = EPKA(rPi), which is the
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nonce encrypted with A’s public key, and then sends CPi to A. A decrypts the challenge
using its private key and sends the response RPi = DSKA(CPi) to Pi. A also stores these

challenge-response CPi,A, RA,Pi message pairs in a vector
−→
VA for the Malicious Node Detec-

tion Protocol, which is introduced in Subsection 4.4.3. The message flows and formats in
this step are shown in the diagram below:

Traffic Flow Message Format / Action (where i = 0, ..., n)
Pi: Generates a nonce rPi and a challenge CPi = EPKA(rPi)

Pi → A: CPi,A = [Pi, A, Challenge, CPi , CertPi ]SKPi
A: Generates a response RPi = DSKA(CPi)

A→ Pi: RA,Pi = [A,Pi, Response,RPi ]SKA
A: VA[i] = (CPi,A, RA,Pi)

In general, these challenge-response messages are sent over a P2P overlay network. Since
the network ID of a structured P2P network is tightly tied to the P2P node’s IP address
by a hash function, we may send the challenge-response messages over the underlying IP
network to prove network ID, while avoiding eclipse attacks in structured P2P networks.

Step 4. (C,R) Agreement

The proof of private-key possession is based on an agreement on the validity of (C,R)
pairs from every decision node. This agreement can be reached in three levels: consensus,
threshold, and none. The values of the validity and the agreement are defined below.

• The Validity of a (C,R) Pair: Denoted by val(C,R), if CPi = EPKA(RPi), then
val(C,R) = ture, otherwise val(C,R) = false.

• The Agreement on a Decision Vector
−→
V : The consensus function of

−→
V , denoted

by consensus(
−→
V ), and the threshold function of

−→
V , denoted by threshold(

−→
V ), are

defined as follows.

– If all V [i] have the same value v, then consensus(
−→
V ) = v, otherwise ⊥.

– If at least n−(bn−1
3
c+αn) of V [i] have the same value v, then threshold(

−→
V ) = v,

otherwise ⊥, where n is a number of nodes in the decision group and α < 1/3
is a fraction of paths is attacked by MITM.
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We denote a decision vector
−→
V = (v1, v2, ..., vn), where vi = val(Ci, Ri) ∈ {true, false}.

The three levels of agreement on
−→
V are defined as follows.

Definition 3 We define the following functions.

Consensus: consensus(
−→
V ) = v, threshold(

−→
V ) = v

Threshold: consensus(
−→
V ) = ⊥, threshold(

−→
V ) = v

None: consensus(
−→
V ) = ⊥, threshold(

−→
V ) = ⊥

Each decision node Pi must multicast its (CPi,A, RA,Pi) message pair to the others by a

(C,R) Distribute message. Each also saves all (CPi,A, RA,Pi) message pairs as a vector
−→
VPi .

If there is a true threshold on
−→
VPi , then Pi runs Certification Issue Protocol, which will be

presented in Subsection 4.4.2. If the threshold on
−→
VPi is false, then Pi sends an Authen Fault

message to P0. However, if there is no consensus on (C,R) pairs (consensus(
−→
V ) = ⊥), a

decision node runs the Malicious Node Detection Protocol (described in Subsection 4.4.3).
The diagram below shows all the message flows and formats in this step.

Traffic Flow Message Format / Action (where i = 0, ..., n)
Pi # ∗: [Pi, ∗, (C,R) Distribute, (CPi,A, RA,Pi)]SKPi

Pi: VPi [j] = (CPj ,A, RA,Pj)
For j from 1 to n
−→
V [j] = val(

−→
VPi [j])

Pi: If threshold(
−→
V ) = true

Runs Certificate Issue Protocol

ElseIf threshold(
−→
V ) = false

Pi # P0: [Pi, P0, Authen Fault]SKPi
If consensus(

−→
V ) = ⊥

Runs Malicious Node Detection Protocol

Generally, if either A or a decision node Pi lied or has been MITMed by an adversary
more than a threshold value, a decision group will not issue A’s certificate. If an agreement
on a decision vector does not have true consensus, either A or some decision nodes Pis are
malicious. Thus, our protocol has to run the Malicious Node Detection Protocol in order
to investigate who is a liar. Note that our protocol considers that a node lied or that its
messages have been MITMed by MITM attacks as the same misbehavior.
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4.4.2 Certificate Issue Protocol

Based on the threshold signature and the homomorphic property of a public-key cryp-
tographic function, each decision node computes a partial certificate in a distributed
fashion and sends it to a coordinator who combines all partial certificates and recon-
structs a complete certificate. In the following, we use the RSA scheme as an example
to explain the approach. Let public key PK be (e,N) and private (secret) key SK be
d. Note that for a message m, if d ≡ d0 + d1 + ... + dk (mod φ(N)), then we obtain

md ≡ m
∑k
i=0 di (mod N) ≡

∏k
i=0m

di (mod N). The Certification Issue Protocol consists
of the following two steps, of which the flows and formats are shown in Table 4.4. Figure 4.5
pictorially shown this protocol.

Step 1. Partial Certificate Generation

Once a decision node Pi has a true agreement on (C,R), i.e., consensus or threshold
level; Pi accepts that the proposed node ID and public key are valid. Hence, Pi signs the
CertReqA||ExpT ime with its share SKi

CA and sends the partial certificate CertiA to the
coordinator.

Step 2. Complete Certificate Construction

This step is run only when a decision node is a coordinator P0. To construct A’s complete
certificate, a coordinator P0 must gets all partial certificates with no Authen Fault message
from decision nodes. Then the coordinator verifies the CertA with the CA’s public key.
If the verification is successful, P0 sends the CertA to A. Otherwise, some CertiA might
be corrupted if some decision nodes are malicious or have compromised shares. Hence,
P0 repeats Decision Group Establishment Protocol (see Subsection 4.4.1) to select a new
decision group until the verification is successful or the number of runs exceeds a pre-
defined limit. When the limit is exceeded, P0 informs A by sending a Cert Fault message.
Although P0 is malicious and sends A a faulty certificate, A can detect that fault by using
CA’s public key to verify the certificate. In this case, A resubmits a certificate request to
change the coordinator P0 who may be malicious.

Since a CA group selected from a P2P community may consist of malicious nodes, we
need a detection protocol to detect malicious nodes in the CA group.
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Table 4.4: Certificate issue protocol

Step 1. Partial Certificate Generation

Traffic Flow Message Format / Action (where i = 0, ..., n)
Pi: Generates CertiA = [CertReqA, ExpT ime]SKi

CA

Pi # P0: [Pi, P0, Partial Cert, Cert
i
A]SKPi

Step 2. Complete Certificate Construction (only for a coordinator node)

Traffic Flow Message Format / Action
P0: If no Authen Fault

Reconstructs CertA =
∏n

i=0Cert
i
A (mod N)

Verifies CertA with PKCA

If verification is successful
P0 → A: [P0, A, Complete Cert, CertA]SKP0

Else-If limit is not exceeded
Runs Decision Group Establishment Protocol

Else
P0 → A: [P0, A, Cert Fault]SKP0

Else
P0 → A: [P0, A,Authen Fault]SKP0

4.4.3 Malicious Node Detection Protocol

However, our Key Registration Protocol does not consider who (either A or Pi) causes
invalid (C,R) pairs, and the honest decision nodes have already accepted the proposed
node ID and public key from A if the number of valid (C,R) pairs is more than the
threshold value. Our decision group still faces a message synchronization problem if Pi
sends a invalid challenge messages in the decision process. These invalid messages cannot
be detected by using signature schemes because the invalid messages are generated by the
private-key owners. Although the invalid messages cannot subvert the Key Registration
Protocol, our framework should have an algorithm to detect and eliminate malicious nodes
from a trust group in order to retain the honest majority of the trust group (CA group).

To maintain that honest majority in a CA group, the Malicious Node Detection Protocol
must investigate whether some decision nodes lie, send invalid challenge messages, or drop
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messages in order to eliminate such malicious nodes from the CA group. In addition,
this detection protocol should be executed only when some decision nodes show suspicious
behavior because running a BA algorithm is costly. Consequently, we divide this protocol
into the following two steps (see Table 4.5) to optimize computation and communication
cost.

Step 1. Proof Request

To avoid running a BA algorithm frequently, our protocol considers A as a witness, so each

decision node Pi requests the vector
−→
VA from A by sending a Proof Request message. Then

Pi compares the
−→
VA with its own vector

−→
VPi . Pi investigates the consistency of challenges

in VA[j] and VPi [j]: If there are inconsistent challenges from the decision node Pj, then Pj
is a liar in Pi’s view because no one can counterfeit the signed challenge from Pj. However,
other decision nodes cannot rely on Pi’s accusation because they have no knowledge about
what Pj said to Pi. Otherwise Pi could make a faulty accusation causing an honest node
to be eliminated. Hence, Pi must multicast a Byzantine Request message to activate a
BA algorithm, which creates useful information so that every honest decision node can
reach the same agreement on an accusation of the bad behavior (under the assumption
that the upper bound of the number of malicious nodes f ≤ bn−1

3
c, where n is the number
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of decision nodes). In other words the inconsistency of challenge messages, the invalidity
of (C,R) pairs results from Pi’s invalid challenge messages. That is, Pi is a liar, and our
protocol will request the BA algorithm.

Step 2. Byzantine Agreement

When a decision node receives the Byzantine Request message, it multicasts its own vector−→
VPi with a Byzantine Agree message. After receiving all Byzantine Agree messages, each
decision node runs the BA algorithm (see Subsection 3.1.2) to detect the decision node M
providing invalid messages. The adjacent decision nodes of M cooperate to eliminate the
malicious node M and to select a new CA node to replace it. Then the decision group
repeats the Key Registration Protocol from step 3: Challenge-Response.

Table 4.5: Malicious node detection protocol

Step 1. Proof Request

Traffic Flow Message Format / Action (where i = 1, ..., n)
Pi → A: [Pi, A, Proof Request]SKPi
A→ Pi: [A,Pi, P roof Response,

−→
VA]SKA

Pi: For j from 0 to n
If CPj ,A in VA[j] and VPi [j] is not consistent
Pi # ∗: [Pi, ∗, Byzantine Request]SKPi

Step 2. Byzantine Agreement

Traffic Flow Message Format / Action (where i = 1, ..., n)

Pi # ∗: [Pi, ∗, Byzantine Agree,
−→
VPi ]SKPi

Pi: Run BA algorithm on Challenge messages
M ′s peers: Eliminate M from the CA group

Reselect a new decision node to replace M
Pi: Go to Step 3 in Key Registration Protocol

Since we cannot distinguish between an omission node and a crash node. We can
consider both kinds of these faulty nodes are unlive nodes that must be rejected from a
CA group but that its certificate is not revoked. To detect an unlive node, each node will
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assign a specific value ∅ for challenge(s) that cannot be received before a defined timeout.
The BA algorithm then uses a majority function to detect any consistently unlive or lying
nodes.

Definition 4 The majority function of a set of n values is denoted by major(v1, ..., vn): if
there are more than dn+1

2
e of vi = v, then major(v1, ..., vn) = v, otherwise major(v1, ..., vn) =

⊥.

Therefore, if a majority value of challenge vales belongs to which decision node is ⊥,
then that node is a liar, or if the majority value is ∅, then that node is unlive. An example
of the decision arrays of a decision group with the number of nodes n = 4 and the number
of faulty nodes f = 1 when node 3 lies (Example 1) and node 3 omits (Example 2) are
shown in Table 4.6 and 4.7, respectively.

Table 4.6: Example 1. The decision matrix when node 3 lies

Round P1 received P2 received P3 received P4 received
1st Pi sent [1, 2, w, 4] [1, 2, x, 4] [1, 2, 3, 4] [1, 2, z, 4]
2nd P1 sent [1, 2, w, 4] [1, 2, w, 4] [1, 2, w, 4] [1, 2, w, 4]

P2 sent [1, 2, x, 4] [1, 2, x, 4] [1, 2, x, 4] [1, 2, x, 4]
P3 sent [1, 2, a, 4] [1, 2, b, 4] [1, 2, c, 4] [1, 2, d, 4]
P4 sent [1, 2, z, 4] [1, 2, z, 4] [1, 2, z, 4] [1, 2, z, 4]

majority(·) [1, 2,⊥, 4] [1, 2,⊥, 4] [1, 2,⊥, 4]

Table 4.7: Example 2. The decision matrix when node 3 omits

Round P1 received P2 received P3 received P4 received
1st Pi sent [1, 2, ∅, 4] [1, 2, ∅, 4] [1, 2, 3, 4] [1, 2, ∅, 4]
2nd P1 sent [1, 2, ∅, 4] [1, 2, ∅, 4] [1, 2, ∅, 4] [1, 2, ∅, 4]

P2 sent [1, 2, ∅, 4] [1, 2, ∅, 4] [1, 2, ∅, 4] [1, 2, ∅, 4]
P3 sent [∅, ∅, ∅, ∅] [∅, ∅, ∅, ∅] [1, 2, 3, 4] [∅, ∅, ∅, ∅]
P4 sent [1, 2, ∅, 4] [1, 2, ∅, 4] [1, 2, ∅, 4] [1, 2, ∅, 4]

majority(·) [1, 2, ∅, 4] [1, 2, ∅, 4] [1, 2, ∅, 4]

In addition to the previous protocols used to achieve the main functionalities of CA, as
shown in Figure 4.6, our framework needs another protocol to maintain CA’s key shares
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in a proactive fashion because CA’s public key cannot be changed frequently, and the
membership of a CA group is dynamic. In the next subsection, we describe the protocol
used to refresh the key shares periodically and to replace the previous shares of eliminated
nodes.

4.5 Share Rendering Protocol

Although the peer retirement (see Subsection 4.3.2) and the Malicious Node Detection
protocols (see Subsection 4.4.3) provide the replacements for compromised or malicious
CA-nodes, doing so leaks the shares of eliminated nodes. Therefore, our scheme uses the
additive inverse property of an (n, n) threshold signature scheme and a shuffling scheme
to implement a Share Rendering Protocol, which gradually and randomly renders shares
according to the retirement, unlive and misbehavior of CA nodes. This protocol is activated
by eliminated CA nodes’ peers, who cooperate with their neighbor nodes in each dimension,
e.g., x- and y-axis for 2-dimensional CAN. Without loss of generality, we explain this
protocol in only one dimension and assume that a CA node M in zone 1 is eliminated
while holding a share SK1

CA. Therefore, the CA group must replace the share SK1
CA

by rendering it with its neighbor’s shares (i.e., SK0
CA, SK2

CA). The rendering process is
accomplished in the following four steps and graphically shown in Figure 4.7.

Step 1. Coordinator Selection: All peers in zone 1 generate a random number b
and select a coordinator C1, which is the node closest to the random number a, based
on the local information in their peer lists. Respectively, zone 0 and 2 generate random
numbers a and c, and select coordinators C0 and C2. Starting from the middle zone Z1,
the coordinator C1 learn the node IDs of coordinators C0, C2 from C1’s neighbors, then
introduces itself and C0, C2 to each other. Now each coordinator learns other coordinators
and their certificates by exchanging Coordinator Confirmation messages
[Ci, Cj, Coordinator Confirmation, CertCi ]SKCi .

Step 2. Nonce Exchange: According to the shuffling scheme, each coordinator C0, C1, C2

sends its nonce n = a, b, c to the pairwise coordinator C1, C2, C0, respectively, in such a
way that no coordinator knows all nonces. For confidentiality, such nonce is encrypted by
the receiver’s public key before attaching to a Nonce Exchange message
[Ci, Cj, Nonce Exchang,EPKCj (n)]SKCi and being sent to the pairwise coordinator.
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Step 3. Nonce Distribution: Each coordinator Ci computes the difference diffi be-
tween its nonce and the received nonce and sends the diffi encrypted by the receiver’s
public key to all its peers Peeri with Nonce Distribution messages
[Ci, P eeri, Nonce Distribution, EPKPeeri (diffi)]SKCi . To prevent the Share Rendering Pro-
tocol causing share inconsistency, every peer suspends new certificate requests until all
holding requests are finished and then acknowledges its coordinator with ACK1.

Step 4. Nonce Confirmation: When the coordinator receives ACK1 from all its peers,
it acknowledges itself and the other two coordinators with ACK2. Each coordinator will
broadcast a Nonce Confirmation message [Ci, P eeri, Nonce Confirmation]SKCi to all its
peers after receiving ACK2 from all three coordinators. Then every peer renders its share

(i.e., ŜK
0

CA = SK0
CA+a− c, ŜK

1

CA = SK1
CA+ b−a, ŜK

2

CA = SK2
CA+ c− b) and continues

the suspended processes.

In our scheme, a CA group gradually and randomly renders its shares in each particular
part of the CA group (i.e., that zone and its neighbor zones) so that the CA group can
continue working and rendering simultaneously. Moreover, adversaries cannot recover a CA
private key without holding all shares before any adjacent remainder-shares are rendered.

4.6 Certificate Revocation Protocol

For a certificate-based scheme, a process to revoke a certificate is as necessary as one to
issue a certificate. A Certificate Revocation List (CRL) is one method used to revoke a
certificate in the X.509 standard. In our framework, we consider using a CRL to revoke the
certificate of a malicious node in order to reject and prohibit attacks from the malicious
node. Moreover, we use a benefit of the structured P2P network to store the CRL on the
user overlay network by using certificates as a key to identify the storage location, e.g., for
Chord, the identity of a CRL is SHA(Cert).

Refer to the Malicious Node Detection Protocol, if a node M is accused of being a
malicious node during the byzantine agreement step (see Section 4.4.3), the malicious
node M should be eliminated from a CA group. To this end, the honest decision nodes
will cooperate in issuing and signing a revocation request RevReq by using the same
method they use to sign a certificate request. This RevReq is also used as evidence if M ’s
peers and neighbors are asked to eliminate M from the CA group (the CAN structure).

For the sake of simplicity, we assume that node M in zone Z1 has been identified as
a malicious node. Then a coalition of honest decision nodes generates and distributes a
RevReq as shown in Figure 4.8. This protocol is performed in the following five steps.
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Step 1. CA Node Selection: After the malicious node M is detected, the decision
node in M ’s neighbor zone will cooperate to select another CA node Q from M ’s zone by
using the same distributed scheme as is used in the zone flooding (see Subsection 4.3.2).
Node Q joins a decision group by replacing M and can cooperate in the threshold signature
scheme because it occupies the same share as M .

Step 2. Revocation Request: The coordinator P0 (or its neighbor if P0 itself is a
malicious node) creates a revocation request RevReq = [CertM , T rev]SKP0 , where CertM
is the certificate of the malicious node M and Trev is the time of revocation. Then, P0

broadcasts the RevReq over the decision group.

Step 3. Partial CRL: Each decision node generates a partial CRL CRLiM = [RevReqM ]SKi
CA

by signing a RevReq with CA’s key share SKi
CA and sends the partial CRL to P0.

Step 4. Complete CRL: P0 creates a complete CRL CRLM = [RevReq]SKCA by

producing its partial CRL CRLiM with the other partial CRLs, i.e., CRLM =
∏k

i=1CRL
i
M .

Step 5. CRL Distribution: P0 stores a CRL on the user overlay network (assume that
it is a Chord overlay network) by using a basic function of the structured overlay network,
e.g., the put(key, value) function and the value = get(key) function of the Chord overlay
network. For instance, a put(SHA(CertM), CRLM) is used to store M ’s (Cert, CRL)
pair and a get(SHA(CertM)) is used to retrieve the CRL of M , as shown in Figure 4.8.
Thus, the malicious node M cannot join the CA group until it can obtain a new certificate.
Moreover, P0 sends the complete CRL to all M ’s peers and neighbors to ask them to delete
M from their peer lists and neighbor lists. Thus, M is eliminated from the CA group, and
M ’s certificate is revoked by CRL.

Moreover, since nodes in a user overlay network might be malicious, we cope with this
problem by storing replicated CRLs in many locations on the user overlay network. This
replication can be achieved by using embedded feature of the overlay network or using
multiple hash functions to map CertM to many locations.

4.7 Security Analysis

This section analyzes the security of our framework in two approaches: attacks and pro-
tocols. First, three main attacks to the proposed framework, i.e., node impersonation, CA
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functionality interference, and CA group subversion, and then other possible attacks are
analyzed. Second, two main protocols, i.e., key registration and malicious node detection,
are analyzed under the boundary of a parameter and a BA algorithm.

4.7.1 Attack Analysis

Node Impersonation Attacks: In this attack, an external adversary, malicious node
A′ or a coalition of malicious nodes {A′i}i=1,...,n try to impersonate a legitimate node A in
two cases:

1. A malicious node A′ may propose a certificate request [A,PKA′ ]SKA′ to a CA group.
Because the majority of challenge messages from a CA group will reach A instead of
A′, most of the proofs of private-key possession will fail because the public/private
key pairs of A and A′ are different. Therefore, adversary A′ fails in impersonation.

2. A coalition of malicious nodes {A′i}i=1,...,n may launch MITM attacks to compromise
the Key Registration Protocol. {A′i}i=1,...,n collude to launch MITM attacks in order
to MITM and counterfeit A’s certificate request and challenge-response messages.
These messages are forged to convince the CA group that one of the adversaries is A
and possesses A’s private key. However, the collusion of {A′i}i=1,...,n cannot succeed
in impersonating A if they cannot MITM more than αn challenge-response messages.

CA Functionality Interference: We consider the case of internal adversaries (mali-
cious decision-nodes) that try to interfere three CA group functionalities: key registration,
key authentication and certificate issue as follows.

1. Key registration: When a new node sends a certificate request to a trusted gateway
(a BT node) known by all the decision nodes, the BT node signs both the user’s
certificate request and CA policies before forwarding them to all the decision nodes.
Hence, our framework can guarantee that every decision node receives the same pro-
posed public key and policies because no one can modify or fabricate the registration
information.

2. Key authentication: A malicious decision-node may distribute invalid challenges to
corrupt the challenge-response scheme and cause a legitimate user to fail in its key-
possession proof. Our protocol leverages the threshold value (n−bn−1

3
c−αn), which

includes the number (bn−1
3
c) of the internal adversary under the upper bound of the

104



BA algorithm. Therefore, our scheme can resist both internal and external adver-
saries under the upper bound.

3. Certificate issue: A malicious decision-node may omit a partial signature or create a
wrong one to interrupt certificate issuing. Although our framework cannot verify a
partial signature to detect the malicious decision node, re-establishing a new decision
group or re-submitting a certificate request can mitigate this attack.

CA Group Subversion: Without global view, a malicious decision-node may inten-
tionally make a false accusation causing a CA group to eliminate an honest decision-node.
The Malicious Detection Protocol deliberately uses signed message and the Byzantine algo-
rithm to discover which decision nodes cause challenge-response invalidity. This detection
is based on the knowledge built from messages between members in the decision group,
instead of individual knowledge; therefore, the adversary cannot convince a decision group
to believe false accusations against honest decision-nodes.

DoS Attacks: A malicious user-node A may send a decision group invalid responses to
activate the BA algorithm. To thwart the attacks, each decision node Pi compares the

challenges in its own vector
−→
VPi with the ones in A’s vector

−→
VA to confirm whether decision

nodes lie before activating the BA algorithm. Consequently, the adversary cannot exploit
the BA algorithm to disable the services of the CA group but may launch DoS attacks in
other scenarios.

Sybil Attacks: Although our framework cannot prohibit an adversary from acquiring
multiple IDs, it can limit the effect of Sybil attacks on the CA group. On the basis of a
CertCount field in a peer list, a Retirement policy and an age parameter, the framework
can limit the lifetime of a Sybil ID in the CA group. In addition, decision nodes are selected
randomly from the CA nodes, which are selected uniformly from a P2P community in a
distributed manner. Hence, the Sybil nodes cannot use their multiple IDs to subverting
the CA group’s honest majority.

Reveal the CA private key: Since eliminated or retired nodes still occupy their shares
after leaving from a CA group, the CA group disables such shares by using the share
rendering protocol. Hence, adversaries cannot gain more the knowledge of the CA private
key from the shares they occupied.
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4.7.2 Protocol Analysis

Registration Protocol

We give the security analysis of our protocols together with some examples to illustrate
the attacks and countermeasure.

1. Let A be MITMed by adversaries {A′1, . . . , A′αn}, where α denotes a fraction of
MITMed path, and n denotes the number of decision nodes or zones.

2. Hence, a decision group {P1, . . . , Pi} may get a certificate request CertReqA =
[IDA, PKA]SKA from A, or CertReq′A = [IDA, PKA′ ]SKA′ from A′. In the former
case, the response from A will be valid, but that from A′ will be invalid. The later
case, the response from A will be invalid, but that from A′ will be valid. However, un-
der the upper bound α, a decision group will accept the proposed certificate request
from A, but reject the one from A′.

3. The decision group proves the proposed node ID and private-key possession of the
requester in the name of A by using the proposed public key PK = PKA (or PKA′)
to generate challenges {C1, . . . , C4|Ci = EPK(ri)} (where ri is a random number
generated by Pi), which are sent to the requester node with destination node ID =
A, from each decision node in the district location on a P2P network.

4. Therefore, A will receive (1−α)n challenges from decision nodes, while {A′1 . . . A′αn},
which are intermediate nodes on the P2P-network path between A and the decision
nodes, can MITM α challenges from the decision nodes. Then A replies with re-
sponses Ri = DSKA(Ci), while {A′1 . . . A′αn} reply with responses Ri = DSKA′ (Ci).
That is, the responses must be generated by using the private key that A or A′ has.

Example 3. An example for illustrating step 4: Assume that n = 4, α = 1/4,
P2 is a dishonest decision node under Byzantine bound b4−1

3
c = 1, and P3 is an

MITMed decision node, i.e., a decision node who has been MITMed by A′ under
α · n = (1/4) · 4 = 1.

CA Node Challenge A′ Response A Response
P1 C1 → ← R1

P2 C ′2 → ← R2

P3 C3 → ← R′3
P4 C4 → ← R4
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Note that R′3 is generated with PKA′ not PKA

5. Each decision node must share its Challenge-Response (C,R) pair with the other
decision nodes by broadcasting its (C,R) pair over the decision group. Therefore,
every decision node will obtain all (C,R) pairs and maintain its own (C,R) vector
−−−−→
(C,R), in order to verify the node ID and the private-key possession in the succeeding
steps.

Example 4. An example for illustrating step 5: Assume that P2 is dishonest
by sending challenge C2 to P3 and invalid challenge C ′2 to P1, P4; each decision node

will get the
−−−−→
(C,R) as follows:

P1 received P2 received P3 received P4 received
P1 sent [C1, R1]11 [C1, R1]12 [C1, R1]13 [C1, R1]14
P2 sent [C ′2, R2]21 [C2, R2]22 [C2, R2]23 [C ′2, R2]24
P3 sent [C3, R

′
3]31 [C3, R

′
3]32 [C3, R

′
3]33 [C3, R

′
3]34

P4 sent [C4, R4]41 [C4, R4]42 [C4, R4]43 [C4, R4]44

Note that P2 can broadcast invalid challenges in the decision group because flooding
over a multicast CAN is not a totally ordered and reliable broadcast.

6. Each decision node computes the validity of a (C,R) pair, denoted by val(C,R), if
CPi = EPK(RPi), then val(C,R) = true, otherwise val(C,R) = false. Then each

decision node will get decision vector
−→
V = (v1, . . . , vn), where vi = val(C,R). For

simplicity, we will analyze only the case in which CertReq comes from A (PK =
PKA) in the later steps.

Example 5. An example for illustrating step 6: Assume that the certificate
request CertReqA = [IDA, PKA]SKA is proposed by A, namely PK = PKA. The
decision vector of each decision node is computed as follows:

−→
V P1 (

−→
V P2)

−→
V P3

−→
V P4

true − true true
false − true false
false − false false
true − true true
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Note that the decision vector
−→
V P2 cannot be determined because we assume that P2

is a malicious node.

7. The decision node will locally prove the node ID and the possession of the private-key
associated with the proposed public key PK by using his own decision vector and
threshold function. Moreover, the decision node also uses a consensus function to
detect misbehavior, in order to decide whether a malicious node detection protocol
should be run. Recall that the threshold function and the consensus function defined
in Definition 3.

Example 6. An example for illustrating step 7: The threshold value = 4 −
(1 + 1) = 2, so the proof of the proposed node ID and the private-key possession are
output as the following results:

−→
V P1 (

−→
V P2)

−→
V P3

−→
V P4

true − true true
false − true false
false − false false
true − true true

threshold(V) true − true true

In conclusion, except for the malicious node P2, all honest decision-nodes P1, P3, P4

accept the proposed node ID A and public key PK.

8. Each decision node can detect which response is improperly signed, and ignores the

val(C,R) of such responses from his decision vector
−→
V . In other words, the decision

node can detect which responses come from A or A′.

Example 7. An example for illustrating step 8: From the vector
−−−−→
(C,R) in

step 5 and vector
−→
V in step 6, if the signed response message R′3 is invalid, the pair

[C3, R
′
3] can be ignored. Hence, the vector

−−−−→
(C,R) and

−→
V are updated and shown in

the following table.
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P1 received →
−→
V P1 P2 received →

−→
V P2 P3 received →

−→
V P3 P4 received →

−→
V P4

[C1, R1]11 → true [−,−]12 → − [C1, R1]13 → true [C1, R1]14 → true
[C ′2, R2]21 → false [−,−]22 → − [C2, R2]23 → true [C ′2, R2]24 → false
[C3, R

′
3]31 → − [−,−]32 → − [C3, R

′
3]33 → − [C3, R

′
3]34 → −

[C4, R4]41 → true [−,−]42 → − [C4, R4]43 → true [C4, R4]44 → true
consensus(V) ⊥ − true ⊥

However, no consensus about the value of a decision vector means that either A or
some decision nodes are liars.

Malicious Node Detection Protocol

Although the decision nodes P1, P3, P4 can use the proposed public key to verify the signed
message from A, they still suffer from a message synchronization problem in the decision

group. For instant, the column vector
−−−−→
(C,R) of the table in Example 7 shows that honest

decision nodes P1, P4 still have an invalid [C ′2, R2] pair from P2. The question is who
causes this invalidity. The answer is whether A or P2 lies will cause the same invalidity,
and all challenges and responses are properly signed by the sources of messages. Thus, the
signature cannot detect who is a liar. To cope with this problem, the decision node must
investigate whether P2 lies, by the following steps:

1. Each decision node Pi can prove whether Pi lies by asking A to directly send vector−−−−→
(C,R)A to the decision node. If the challenges in

−−−−→
(C,R)A is equal to the ones’ in

−−−−→
(C,R)Pi , then Pi is not a liar (the invalidity is caused by the responses from A).
Hence, it is not necessary to run the detection protocol. Otherwise Pi lies and
necessitates running the Malicious Node Detection Protocol.

Example 8. An example for illustrating step 1: With the comparison between−−−−→
(C,R) of A and Pi, P2 and P4 realize that P2 is a liar because P2 sent C2 to A and P3,
but sent C ′2 to P1, P4. The following tables show the comparisons between column
vectors of Pi with the one from A.
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P1 received P2 received
[C1, R1]11 : [C1, R1]A [C1, R1]12 : [C1, R1]A
[C ′2, R2]21 : [C2, R2]A [C2, R2]22 : [C2, R2]A
[C3, R

′
3]31 : [C3, R

′
3]A′ [C3, R

′
3]32 : [C3, R

′
3]A′

[C4, R4]41 : [C4, R4]A [C4, R4]42 : [C4, R4]A

P3 received P4 received
[C1, R1]13 : [C1, R1]A [C1, R1]14 : [C1, R1]A
[C2, R2]23 : [C2, R2]A [C ′2, R2]24 : [C2, R2]A
[C3, R

′
3]33 : [C3, R

′
3]A′ [C3, R

′
3]34 : [C3, R

′
3]A′

[C4, R4]43 : [C4, R4]A [C4, R4]44 : [C4, R4]A

2. Since P2 is a malicious node, it may send any arbitrary challenge value to outvote
other honest decision nodes. Hence, the honest decision nodes must convince each
other and agree that P2 sent the invalid challenge C ′2. To do so, decision nodes P1, P4

broadcast Byzantine requests over the decision group to force every decision node to

broadcasts its own vector
−−−−→
(C,R). Note that detection protocol is interested in only

challenge Ci, not response Ri. Recall that the majority function and the consensus
function defined in Definition 4.

Example 9. An example for illustrating step 2 From the previous table,
P2 causes the decision node P3 to locally decides that P2 did not lie, but P1, P4

locally decide that P2 lies. Therefore, P1 and P4 broadcast Byzantine requests to
the decision group to force every decision node to broadcast its own (C,R) vector.
Under the majority value d4+1

2
e = 3, all honest decision nodes P1, P3, P4 can use a

majority function to detect the malicious node P2 as follows.
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P1 received
P1 sent [C1]111 [C ′2]211 [C3]311 [C4]411
P2 sent [W1]121 [W2]221 [W3]321 [W4]421
P3 sent [C1]131 [C2]231 [C3]331 [C4]431
P4 sent [C1]141 [C ′2]241 [C3]341 [C4]441

majority() C1 ⊥ C3 C4

P3 received
P1 sent [C1]113 [C ′2]213 [C3]313 [C4]413
P2 sent [Y1]123 [Y2]223 [Y3]323 [Y4]423
P3 sent [C1]133 [C2]233 [C3]333 [C4]433
P4 sent [C1]143 [C ′2]243 [C3]343 [C4]443

majority() C1 ⊥ C3 C4

P4 received
P1 sent [C1]114 [C ′2]214 [C3]314 [C4]414
P2 sent [Z1]124 [Z2]224 [Z3]324 [Z4]424
P3 sent [C1]134 [C2]234 [C3]334 [C4]434
P4 sent [C1]144 [C ′2]244 [C3]344 [C4]444

majority() C1 ⊥ C3 C4

From the above results, decision node P1, P3, P4 can locally decide that P2 is a liar
because they cannot get a majority value for P2’s challenge.

4.8 Summary

In this chapter, we proposed SOHCG, which is a fully self-organizing and self-healing
system based on a CAN overlay network. In our scheme, a CA group grows up under a
security/efficiency trade-off, maintains its membership in a dynamic fashion and employs a
challenge-response scheme to provide an automatic key registration and a certificate issue.
Meanwhile, a CAN with overloading zones compensates for the lack of fault tolerance in
an (n, n) threshold signature scheme, and a CAN-based multicast is used to optimize the
computation and communication cost of a BA algorithm. In addition, a BA algorithm with
sign messages is leveraged to maintain an honest majority with the avoidance of DoS attacks
in a CA group. Finally, all CA’s shares are refreshed in a gradually random fashion. The
security analysis shows that our scheme can prevent impersonation, collusion and MITM
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attacks as well as mitigate Dos and Sybil attacks. The time slot for an adversary to reveal
the CA private-key is equal to the period of a refreshment, according to the frequency of
certificate issues. Below we give s summary for the SOHCG consisting of all protocols and
steps in Table 4.8.

Table 4.8: The protocols and steps in SHOCG
SOHCG

Protocols Steps
Key registration 1. Certificate request

2. Decision group establishment
3. Challenge-response
4. (C,R) agreement

Certificate issue 1. Partial certificate generation
2. Complete certificate construction

Malicious node detection 1. Proof request
2. Byzantine agreement

Share rendering 1. Coordinator selection
2. Nonce exchange
3. Nonce distribution
4. Nonce confirmation

Certificate revocation 1. CA node detection
2. Revocation request
3. Partial CRL
4. Complete CRL
5. CRL distribution
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Chapter 5

OAuth and ABE based
Authorization (AAuth)

In computer security, access control is an essential component used to approve the access
privileges of consumers. Traditionally, a centralized access control system consists of only
two roles: 1) clients who act as consumers on behalf of resource owners, 2) a centralized
server which authenticates consumers and authorizes access to resources according to con-
sumers’ capabilities or resources’ Access Control Lists (ACLs). With the development of
Single Sign-On (SSO) systems like Kerberos [68], an authenticator and an authorizer cloud
can be separated from a centralized server, while the owner and consumer act in the same
client.

In Kerboros, an authenticator will issue a token to a client as an identity proof if the
authentication succeeds. Then the client can reuse the token to request access tokens from
an authorizer to achieve SSO, until the token expires. Finally, the access token is used to
request a protected resource from a resource server that enforces access policies.

Once web applications became ubiquitous on the Internet, sharing resources between
HTTP-service providers became an important requirement for both users and providers.
For example, Facebook applications use a subscriber’s Google address book to look for new
friends, or photo labs print a customer’s pictures from her Flickr. Although standards exist
for authentication and authorization, many applications in practice rely on the assumption
that users trust their service providers to keep and process their data. The assumption
is rational if we can assume that all parties are in the same trusted domain or owners
never expose their sensitive data outside their on-premise storage or data center. With the
emergence of cloud computing, however, this assumption may not be true. For example, IT
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infrastructures are outsourced to public clouds whose Cloud Service Providers (CSPs) may
be dishonest. In this hostile environment, users must trade control of data for flexibility,
scalability, and reduced expenses from clouds. Finally, users may decide to lock in a single
CSP since they believe it can mitigate concerns about data security. This belief impedes the
open-cloud concept, and no one can guarantee security because of the following problems:
1) an authorizer may arbitrarily grant access tokens to its conspirators. 2) resource servers
hosting sensitive information may reveal this information. 3) a resource server may refuse to
obey predefined capabilities or ACLs. 4) on large scale systems like the Internet, assuming
that all participants are in a single trusted domain is infeasible realistic situations.

To dispense with vendor lock-in or the need to hope that CSP is trustworthy, we
propose a novel authorization scheme, ABE-based Authorization (AAuth), based on
the OAuth authorization standard and Ciphetext-Policy Attribute Based Encryption (CP-
ABE). This new scheme has the following features.

1. AAuth employs a user-centric approach by using a web browser preloaded with CA
certificates as an HTTP trust-platform for owners. Using our modified CP-ABE
scheme adapted from Bethencourt [14], owners bundle an ACL, namely access struc-
tures, into protected data by using CP-ABE encryption.

2. Our scheme also replaces the traditional tokens with ABE-based tokens (termed
ABE-tokens), which are CP-ABE private keys. Therefore, the ACLs will be enforced
end-to-end when consumers try to decrypt the encrypted data with the private keys
in the ABE-tokens.

3. To achieve our user-centric approach, we allow owners to limit the lifetime and scope
of ABE-tokens by adding additional owner-controlled attributes, called confined at-
tributes. Moreover, we modify CP-ABE key generation so that an authority, an
authorizer, and an owner can contribute to the key generation.

4. Owners delegate their shares associated with a time slot to an authorizer who acts
as a time server. This delegation allows the authorizer to synchronize the time slot
attributes in encrypted files with light-weight and lazy re-encryption, thus gaining
efficiency from cloud servers and preventing owners from staying on-line to limit
token lifetime.

5. Our design also realizes that the requirement for public-key certificates is inapplicable
for Internet end-users, and a single trust-domain is inapplicable and non-scalable in
large-scale systems.
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With the modification and combination of OAuth, CP-ABE, ElGamal-like masking,
proxy re-encryption, and lazy re-encryption, our scheme can achieve user-centric and end-
to-end cryptographic functions that support the following functionalities.

1. Access grants are performed by the cooperation among owners, an authorizer, and
an authority(s).

2. Access policies are bundled into resources by owners, then enforced at the destination.

3. Data is encrypted when resting with a resource server, then decrypted at the desti-
nation.

4. In contrast to previous works that propose completely new designs, our scheme in-
tegrates existing standards and available Internet infrastructures for flexibility and
compatibility.

5. Moreover, our scheme is designed in a distributed fashion for scalability but can
merge related roles into the same entity for simplicity.

The rest of this chapter is organized of follows: Section 5.1 reviews previous work related
to cloud storage and access control. Section 5.2 discusses our models and assumptions.
Section 5.3 describes definitions and notations for our explaination. Section 5.4 presents
our construction, procedures and protocols. Section 5.5 analyses our scheme in term of
security from internal and external adversaries. Section 5.6 evaluates the performance of
our scheme by using a simulation and compares our scheme to existing standards. Finally,
Section 5.7 concludes the paper.

5.1 Related Work on Securing Cloud Computing

The taxonomy of cloud computing services goes by the acronym ‘SPI’, which stands
for Software-as-a-Service, Platform-as-a-Service, and Infrastructure-as-a-service. Recently,
many new cloud services have emerged; for a general introduction, see Chapters 2, 3. The
most primitive and significant one is Storage-as-a Service. Many researcher are exploring
this research area, starting from cryptographic storage to access control to cloud storage.
In 2003, Kallahalla et al. proposed Plutus, a cryptographic file system. This secure file
system exploits cryptographic and key management in a decentralized manner in which
all operations are performed by clients, and the server incurs very little cryptographic
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overhead. This behavior contradicts cloud-computing behavior in which servers have no
limited resources but clients may be restricted devices. Thus, clients may not have enough
power for the high complexity of key management in fine-grained access control.

In 2009, Bowers et al. [17] proposed the framework for a Proof of Retrievability (POR)
system that focuses on archival or backup files in cloud storage. Later, they also proposed
another POR work [18] that was implemented by a distributed cryptographic scheme and
launched on the multi-server of a distributed file system. Wang et al. [138] proposed
cryptographic-based access control for owner-write-users-read applications, which encrypts
every data block of cloud storage and adopts a key derivation method to reduce the number
of keys. Yun et al. [134] proposed a cryptographic network file system based on MAC
tree construction and universal-hash-based state-full MAC that can guarantee the data
confidentiality and integrity of files.

In 2010, Yu et al. [133] proposed fine-grained and scalable access control in cloud
computing that exploits KP-ABE to reduce complexity in key management and key dis-
tribution. They also use proxy re-encryption to off-load cryptographic operations to cloud
servers, and lazy re-encryption to reduce cryptographic cost on servers.

In 2011, Zarandioon et al. [135] proposed K2C, a scalable ABE-based access hierarchy
that can couple access control with the folder structure of file systems. By combining KP-
ABC and a key-updating scheme, K2C users can use new keys to decrypt data encrypted
with old keys in order to reduce re-encrypting cost on servers when access hierarchies
update keys. In addition, the combination of KP-ABE and a signature scheme allows
users to prove that others own keys that satisfy the policy in order to provide signing and
verification in K2C.

5.2 System and Adversary Models

Currently, access control for on-line transactions in clouds is performed in the form of a
token issued by an authorization server and enforced by a resource server with predefined
capabilities and/or ACLs. Therefore, all participants in the application domain must
trust that the authorizer issues a token only to legitimate consumers and that resource
servers honestly grant access according to the access policies of such tokens. This section
explains the model and assumptions of our scheme based on adversary models, and the
main objectives of our design.
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5.2.1 System Model

There are five main parties in the system as pictorially shown in Figure 5.1 and described
as follows:

Authority
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Figure 5.1: The entities and token management in AAuth

Data owners (O): (owners for short) entities, i.e., end-users or software applications,
who have resource ownerships and the right to grant access to protected data.

Cloud servers (S): (servers for short) cloud-storage or cloud-database providers that
host protected data and provide basic data-services, i.e., read, write, and delete.

Consumers(C): web or traditional-application providers that use owners’ data to provide
services to the owners.
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Authority(AA): trusted organizations or agencies who legitimately define descriptive
attributes to eligible consumers.

The authorizer(AZ): the server who runs the AAuth protocol, then issues ABE-based
tokens to eligible consumers.

In this system, owners store their sensitive data in cloud servers. When owners ask
consumers for services using the owner’s data, the owners must grant the authorization to
consumers. Unlike OAuth, in which owners, an authorizer, and servers are in the same
trusted domain, our model exploits a modified CP-ABE scheme for delegating authoriza-
tion in semi-trusted environments.

In this semi-trusted environment, owners trust an authorizer and an authority to gener-
ate ABE-tokens on the owners’ behalves but the owners still contribute to token generation.
In addition, the owners trust that cloud servers are honest enough to provide basic data
services (i.e., read, write, delete, etc.) but may be curious about owner data or disobey the
access policies. To protect data from unauthorized access in semi-trusted clouds, an owner
encrypts data with an access policy defined over an attribute set, then stores encrypted
data in a server. When a consumer wants to use data, the consumer asks the owner, the au-
thorizer, and the authority jointly to generate an ABE-token. Thus, only the consumer who
satisfies the policy can decrypt the encrypted data file. For simplicity, we assume that only
owners have read and write privilege on their data, while consumers can read only autho-
rized data. We also assume that without end-users’ certificates, the authentication systems,
e.g., user-password databases, Active Directory [1]/LDAP [112] [113] , or OpenID [93], are
available for authorizers to verify owners. Meanwhile, all service providers, i.e., authoriz-
ers, authorities, consumers, and servers, register for public-key certificates from Certificate
Authorities (CA) in order to support SSL/TLS [35] security channels.

5.2.2 Adversary Model

In this scenario, our semi-trusted environment means that although no entity trusts the
others, everyone trusts the protocol. That is, all entities will follow the proposed protocol
in general because protocol violation is easy to detect. However, each entity may exploit
some threats to attack the system as follows.

1. We assume that servers can be trusted to provide data-services properly but may be
curious about sensitive information and prone to reveal data to ineligible parties.
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2. The authorizer may disobey owners’ orders to issue tokens, or issue any arbitrary
tokens to its conspirators.

3. Consumers may try to get unauthorized files from honest servers by fabricating tokens
to obtain unauthorized accesses, resubmitting previous tokens (replay attacks).

4. Without user public-key certificates, owners may propose tokens on behalf of others.

5. Internet users may launch general network attacks on encrypted data or tokens.
However, we assume that the communications among CSPs are secure and authentic
under SSL/TLS secure channels. Adversaries do not have enough computing power
to break cryptographic primitives.

5.2.3 Design Principles

Our design principle is to improve the OAuth standard in order to support inter-operation
between servers and consumers in public-cloud environments in which the authorizer and
servers are semi-trusted servers. To achieve this goal, we comply with the following design
principles.

1. The design should be compatible with the original standard, so it can be implemented
as an extension standard.

2. The design should provide end-to-end authorization that does not rely on the policy
enforcement in servers.

3. The user-centric approach allows owners to take control of granting access permission,
while authorities prove the qualification of designated consumers.

4. The design must achieve data-security goals, i.e., confidentiality and integrity, in this
hostile environment by leveraging end-to-end encryption and signing/verification.

5. We also strive for simplicity, efficiency and scalability.

Although our design is defined for the authorization between data owners and applica-
tion service providers, AAuth is generic enough to apply to other use cases such as user-
to-user and provider-to-provider. Based on the above system model, adversary model, and
design goals, we present how to construct our scheme and how the protocols manipulate
our proposed scheme for the above requirements.
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5.3 Definitions and Notations

To construct AAuth, six main security associations (i.e., attributes, access policies, access
trees, meta-data, modified CP-ABE, and archive files) are required and described in the
following subsections.

5.3.1 Attributes

Our scheme divides the attribute universe into two disjointed sets: a confined set and a
descriptive set. To restrict the scope and limit the lifetime of tokens, the confined attributes
are mandatory and issued by an authorizer on behalf of owners. The syntax and semantics
of confined attributes are defined according to token restrictions, and reserved to disjoin
them from descriptive attributes, defined below. Hence, an authorizer publishes the syntax
as 〈attribute〉 = 〈value〉 and the semantics as follows:

FILE-LOC = URI: a file identifier consisting of URL/absolute path/filename;

OWNER = ownerId: the identifier of a file owner;

PERMIS = 〈r|w〉: file permissions, where ‘r’ is read only and ‘w’ is write;

SEC-CLASS = 〈1− 5〉: a security class of a file, defined in ascending order; and

TIMESLOT = yyyy/mm/dd/hh/nn: the digits of year, month, date, hour, and minute
in the time slot.

Since our ABE-tokens are a set of private keys, rather than issue a token for each file,
it is more flexible and efficient to issue a token for multiple files or time slots when the
other attributes are shared in common. Furthermore, the granularity of a time slot can
be adjusted by masking the fine-grained components with * in ascending order. However,
every token of the same file must have the same granularity level. Note that for some cloud
storage, FILE-LOC attributes are not physical locations, for instance, objects in a bucket
of Amazon S3.

On the other hand, descriptive attributes, which describe consumer characteristics, are
defined by authority(s) who monitor and control the consumer. We define the syntax of
descriptive attributes as 〈attribute〉@〈url〉 = 〈value〉, where 〈url〉 is a URL of the authority
issuing the attribute. However, authorities freely define the semantics of attributes under
their control, then publish them in any public servers.
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5.3.2 Access Policies

To encrypt protected data with access policies, we first define the policy in a boolean
algebraic expression that combines confined and descriptive attributes together at the root
node. Therefore the algebra is constructed by AND each confined-attribute term and the
whole set of descriptive-attribute terms is as follows:

Policy A =[FILE-LOC] AND [OWNER] AND

[SEC-CLASS] AND [PERMIS] AND

[TIMESLOT] AND

[(OWNER@AUTHZ) OR

(Descriptive Boolean Algebra)].

To ignore the descriptive term when an owner accesses his/her own data, a special
attribute ‘OWNER@AUTHZ’ will be OR with the descriptive term. Hence, an owner
must request ‘OWNER@AUTHZ’ from an authorizer when the owner wants a token that
does not depend on descriptive attributes.

5.3.3 Access Tree

Basically, in a top-down manner, we can construct an access tree according to a monotonic
access policy as in the following algorithm.

1. Staring with the root node, to create tR-degree polynomial qR(·), an algorithm sets
the point at zero qR(0) = s for a secret value s ∈ Zp and randomly chooses other
(tR − 1) points.

2. For other nodes x, the algorithm sets qx(0) = qparent(x)(index(x)) and randomly
chooses other (tx − 1) points to define tx-degree polynomial qx(·).

3. At each leaf node x, an associated attribute att(x) is assigned to node x.

Here parent(x) denotes the parent node of node x, att(x) denotes the attribute associated
with node x if x is a leaf node, index(x) denotes an index number associated with node x,
and the index number is assigned uniquely and ascendantly along the tree from the root
node (index = 0) to the last leaf nodes. As a result, the access policy A, consisting of both
confined and descriptive attributes, will convert to an access tree τ , as shown in Figure 5.2.
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Figure 5.2: Top level of an AAuth access tree

5.3.4 Meta-Data

For user and file management, our scheme maintains meta-data in a user-directory and
file-directory that are hosted by an authorizer. A user-directory is the owner list of which
IDs and credentials can be maintained by a local database or external identity manage-
ment center, e.g., LDAP, Active Directory, or OpenID. A file-directory is a repository
that an authorizer uses to maintain the last-authorized time slot, last share qTS(0) of the
TIMESLOT node, and granularity in each file. This file information is used for time slot
synchronization (discussed in Subsection 5.4.7).

5.3.5 Modified CP-ABE

Bethecour et al.[14] proposed a CP-ABE construction based on a bilinear map e : G1 ×
G1 → G2, a Linear Secret-Sharing (LSS) scheme for access-tree construction, and a hash
function H : {0, 1}∗ → G1 that maps any attribute binary-string to a random element in
G1. For adopting their scheme in our distributed scheme, we modify the original scheme
in the following five algorithms:

Setup(k). According to a security parameter k, the algorithm chooses a bilinear map
e : G1 ×G1 → G2 of prime order p with generator g of group G1 and a hash function H :
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{0, 1}∗ → G1. The authorizer chooses a random exponent β for a Master Private(Secret)
Key MSK = 〈β〉 and publishes a Master Public Key

MPK = 〈G1, g, h = gβ, f = g1/β〉.

Meanwhile, each owner chooses a random exponent α for an Owner Private(Secret) Key
OSK = 〈gα〉 and publishes an Owner Public Key

OPK = 〈e(g, g)α〉.

in the user-directory of the authorizer.

Encrypt(MPK,OPK,m,A). This algorithm encrypts a message m under the access tree
τ . An owner first chooses a random value s ∈ Zp, then constructs an access tree τ according
to qR(0) = s and an access policy A. Let Y be the set of leaf nodes in τ . Then a ciphertext
CT is computed by

CT = 〈τ, C̃ = m · e(g, g)αs, C = hs,∀y ∈ Y : Cy = gqy(0), C ′y = H(att(y))qy(0)〉.

KeyGen(MSK,OSK,ω). The algorithm will take as input a set ω of attributes. The
authorizer chooses a random value r ∈ Zp and random values ri ∈ Zp for each confined
attribute i ∈ ω′; an authority chooses random values rj ∈ Zp for each descriptive attribute
j ∈ ω′′; and an owner chooses a random value a.

Let ω = ω′ ∪ ω′′ denotes the attribute set and k ∈ ω denotes each attribute. With
an ElGamal-like mask, the authority, the authority, and the owner jointly compute a user
Private(Secret) Key SK without the revealing their own private keys to each other as
follows:

SK = 〈D = g(α+ra)/β, ∀k ∈ ω : Dk = graH(k)rk , D′k = grk〉.

Delegate(SK, ω̃). The algorithm takes as input a private key SK, which is for an attribute
set ω and another attribute set ω̃ ⊇ ω. The algorithm first chooses a random value r̃ and
{r̃l | ∀l ∈ ω̃}. Then it creates a new private key S̃K for an attribute set ω̃ as

S̃K = 〈D̃ = D · f r̃,∀l ∈ ω̃ : D̃l = Dl · gr̃ ·H(l)r̃l , D̃′l = D′l · gr̃l〉.
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Decrypt(CT, SK) This algorithm is a recursive algorithm over the access tree τ for a
ciphertext CT . Let DecryptNode(CT, SK, x) denotes a node algorithm, which takes as
input a ciphertext CT , a private key SK, and a node x in τ ; and let k = att(x). If x is a
leaf node and k ∈ ω, then

DecryptNode(CT, SK, x) =
e(Dk, Cx)

e(D′k, C
′
x)

=
e(gra ·H(k)rk , gqx(0))

e(grk , H(k)qx(0))
= e(g, g)raqx(0).

Otherwise, we define DecryptNode(CT, SK, x) =⊥.

When x is a non-leaf node, the node algorithm proceeds in a recursive fashion as follows:
for each child node z of x, z calls DecryptNode(CT, SK, z) and stores the output as Fz.
Let ωx be an arbitrary tx-sized set of x’s child nodes such that Fz 6=⊥ and tx is the threshold
value of the threshold gate at node x. If there exits such a set, then let k = index(z),
ω̂x = {index(z) | z ∈ ωx}, and compute

Fx = DecryptNode(CT, SK, x)

=
∏
z∈ωx

F
4k,ω̂x (0)
z

=
∏
z∈ωx

(e(g, g)raqz(0))4k,ω̂x (0)

=
∏
z∈ωx

((e(g, g)raqparent(z)(index(z))))4k,ω̂x (0) (by construction)

=
∏
z∈ωx

((e(g, g)raqx(k)4k,ω̂x (0)

= e(g, g)raqx(0) (by interpolation).

Otherwise, we define DecryptNode(CT, SK, x) =⊥.

From the node algorithm, Decrypt(CT, SK) can be computed by calling the node
algorithm from the root node R of the access tree τ . If the access tree τ is satisfied by ω,
then we have

A = DecryptNode(CT, SK,R) = e(g, g)raqR(0) = e(g, g)ras (by interpolation).

Now the decryption can be computed by

Decrypt(CT, SK) = C̃/(e(C,D)/A) = C̃/(e(hs, g(α+ra)/β)/e(g, g)ras) = m.
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5.3.6 Archive File

Although we can directly use an ABE scheme to encrypt protected data, our scheme sep-
arates encryption into two levels: header encryption and data encryption. This separation
can improve efficiency because 1) asymmetric-key encryption itself is not as efficient as
symmetric-key encryption, 2) our policy change and time slot synchronization do not ne-
cessitate data re-encryption, so it can be delayed until the data is changed. To this end,
we encapsulate protected data in an archive file consisting of a header encrypted with an
ABE key and the protected data encrypted with a symmetric encryption.

〈Archive〉 = {〈Header〉}ABE ‖ {〈Data〉}KE ‖ 〈A〉 ‖ 〈IntegTag〉,

Next, we define the parameters in a header as follows:

〈Header〉 = 〈FileDesc〉 ‖ 〈EncryMeth〉 ‖ 〈IntegMeth〉 ‖ 〈KE〉 ‖ 〈KV 〉 ‖ 〈A〉

〈FileDesc〉: the description of protected-file content.

〈EncryMeth〉: a symmetric-key algorithm is used to encrypt protected data, such as AES-
128, AES-192, RSA-1024, RSA-2048, etc.

〈IntegMeth〉: a set of algorithms is used to generate an integrity tag, such as RSA-MD5,
RSA-SHA1, DSA-MD5, DSA-SHA1, etc.

〈KE〉: a symmetric key is used to encrypt protected data.

〈KV 〉: an asymmetric key is used to verify an integrity tag.

〈A〉: an access policy is recorded in plaintext form.

〈IntegTag〉: an integrity tag is generated from clear 〈Header〉 and encrypted data.

5.3.7 Notation

Note that the notation introduced in this section and shown in Table 5.1 is used throughout
this chapter. In addition to all components in this section, our scheme requires procedures
and protocols described in the next section to provide security in semi-trusted clouds.
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Table 5.1: Notation used in AAuth
Notation Description

MPK,MSK System public and private keys of an authorizer
OPK,OSK System public and private keys of owners
Attx, PKx Attribute x, user public key for PKx

SK User private key consisting of two parts: common D and
{part1 Dx, part2 D′x} for each Attx

Di, D
′
i Part1 and part2 key components for confined Atti

Dj, D
′
j Part1 and part2 key components for descriptive Attj

D̂i, D̂j The partial part1 of confined and descriptive key components Di, Dj

{U}X The cyphertext of a string U encrypted with X’s public key
[U ]X A string U attached with digital signature over a string U

generated with X’s private key

5.4 AAuth Procedures and Protocols

Our scheme extends OAuth to a cryptographic token system in which its ABE-token is
a private key associated with a set of attributes, and its protected resource (data file) is
encrypted with an access policy constructed from an access structure over a public key.
Due to limitations of lifetime and scope in tokens and the necessity of multi authorities,
our scheme divides the attribute universe in two disjointed sets: confined attributes defined
by owners to limit the lifetime and scope of tokens, and descriptive attributes defined by
authority(s) to certify the characteristics of consumers. To allow owners to contribute to
token generation, we separate the master key of CP-ABE into two parts: gα for owners
and β for a authorizer, then add another level of ElGamal-like masks to conceal the master
keys from each other during key generation.

AAuth mainly requires three off-line procedures: setup, file encapsulation, and file
decapsulation, and four on-line protocols: service request, token request, file access, and
time slot synchronization. Optionally, AAuth can provide key delegation, policy changes,
and data updates. This section explains these procedures and protocols. Note that resource
servers have no affiliation in authorization but provide basic data-services: read, write,
delete.
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5.4.1 Setup Procedure

Before AAuth starts to provide inter-operations, an authorizer and owners must initialize
the system parameters in Procedure 1.

Procedure 1. Setup phase

1. An authorizer chooses a security parameter k and runs the CP-ABE algorithm
Setup(k) that outputs a bilinear group G1,G2, a bilinear map e, a generator g of
G1, and a hash function H. All outputs in this step are published in a public server.

2. The authorizer chooses a random value β ∈ Zp and keeps it secretly, then generates
a master public key MPK = 〈G1, g, h = gβ, f = g1/β〉 and publishes it in a public
server.

3. Each owner contributes to key generation by randomly selecting α ∈ Zp, generates
an owner public key OPK = e(g, g)α that is published in a user-directory of the
authorizer (not really published), then keeps an owner private keyOSK = gα secretly.

Our explanation for the scheme is based on the following example from the OAuth
standard:

Example 1. Jane (an owner) has recently uploaded some private photos (protected re-
sources) to her sharing site ‘photos.com’ (a server). She would like to use the ‘printer.com’
website (a consumer) that is certified by a trusted authority (authority.org), to print her
photos. Jane does not have a public-key certificate and does not wish to share her identity
and credentials with ‘print.com’. However, she has registered with a trusted mail provider
(mail.net) that also provides OAuth services for its subscribers.

5.4.2 File Encapsulation Procedure

Before uploading files to a cloud server, an owner encrypts and encapsulates data files into
archive files by using Procedure 2.

Procedure 2. File encapsulation phase

1. Define an access policy A from both confined and descriptive attributes as follows:

127



# Confined attributes

[FILE-LOC=http://photos.com/2010/brunce/pic-1]

AND [OWNER=Jane@photos.net]

AND [SEC-CLASS=3]

AND [PERMIS=r]

AND [TIMESLOT=2011/06/27/13/**]

AND # Descriptive attributes

[(OWNERe@mail.net=Jane@mail.net) OR

[(NAME@authority.org=printer.com) AND

(SERVICE@authority.org = print) AND

(LOCAT@authority.org = canada) OR

(TRUST-LEV@authority.org = 3)]].

Then convert A to an access tree τ by using the algorithm in Subsection 5.3.3.

2. Randomly choose an encryption key KE, and generate signature key KS and verifi-
cation key KV , then define all parameters in the header H according to the format
in Subsection 5.3.6.

3. Encrypt a data file with the keyKE, and generate an integrity tag from the encrypted
data-file and the clear header with the key KS.

4. Encrypt the header H by choosing a random value s, then using the CP-ABE algo-
rithm Encrypt(MSK,m, τ) to compute a ciphertext CT .

5. Construct an archive file from the encrypted header and encrypted data file, the
access policy, and the integrity tag in the format described in Subsection 5.3.6. Then
the owner stores the archive file in the cloud server using a regular API.

Note that we compute an integrity tag from an unencrypted header to avoid the effect of
time slot synchronization (described in Subsection 5.4.7). We have now finished describing
how to create and store ciphertext; next we show how to obtain an ABE token and how
to retrieve and decrypt the ciphertext.

5.4.3 Service Request Protocol

In this scenario, owners first ask consumers for services that require the owners’ data. Be-
fore a consumer can access data, it must ask an authorizer for ABE-tokens issued on behalf
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of owners. Then the consumer uses a private key in a token to prove the authorization by
performing a challenge-response protocol with a cloud server. If the verification succeeds,
the server will provide the archive file according to the token. So our scheme starts from
an owner asking a service (e.g., to print photos) that require the owner’s data files from a
consumer, as described in Protocol 1 and shown in Figure 5.3. Note that owners registered
with an authorizer and consumers registered with an authority are beyond the scope of
this work.

Server (S) Consumer (C) Owner (O)

1. REQ-PRT
←−−−−−−−−−−−−−−−−

2. REQ-POL
←−−−−−−−−−−−−−−−−

3. [A]S−−−−−−−−−−−→
4. RED−−−−−−−−−−−−→

Figure 5.3: The message flow of protocol 1: service request

Protocol 1. Service request phase

1. O → C: First an owner sends a command REQ-PRT to request a printing service
from the consumer ‘printer.com’.

2. C → S: Since the service requires the owner’s data, the consumer sends a server
a file location with a command REQ-POL(FileLoc) to request the required file’s
access policy from the server ‘photos.com’.

3. S → C: The server extracts the access policy ‘A’ from the archive file and signs A.
Then the signed access-policy [A]S is replied to the consumer.

4. C → O: To initiate a token request, the consumer sends the owner an HTTPS-
redirect command RED to redirect the owner’s user-agent to the authorization page
‘https://authorizer.net/authorize’ on an authorizer. To this end, the consumer ID
and a redirection URI (https : //printer.com/ready) signed by the consumer
[IDC , RED-URI]C and [A]S received earlier are included in the command as
RED([IDC , RED-URI]C , [A]S).

5.4.4 Token Request Protocol

Once an owner’s user-agent is redirected to an authorizer, the authorizer first verifies the
owner’s ID and credentials. If the authentication succeeds, the owner and the authorizer
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cooperate to issue an ABE-token for the consumer, as described in Protocol 2 and shown
in Figure 5.4.

C O AZ AA

1. RED−−−−−−−−−−−−→
2. HTTP Form←−−−−−−−−−−−−−−−−−−−

3. Login/password
−−−−−−−−−−−−−−−−−−−−−→

allowed Att−−−−−−−−−−−−−−−→
4. REQ-DES1

−−−−−−−−−−−−−−−−−→
5. [{D̂j}]AA←−−−−−−−−−−−−−−−

6. {D̂i}, [{D′
i}]AZ , [{D̂j}]AA, gr←−−−−−−−−−−−−−−−−−−−−−−−
7. g(α+ra)

−−−−−−−−−−−−−−→
8.RED←−−−−−−−−−−−− 8.RED←−−−−−−−−−−−−

9. {Di}, [{D′
i}]AZ , {Dj}←−−−−−−−−−−−−−−−−−

10. REQ-DES2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

11. {D′
j}←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5.4: The message flow of protocol 2: token request

Protocol 2. Token request phase

1. O → AZ: From the redirect command, an owner’s browser will pass
[IDC , RED-URI]C , [A]S to an authorizer.

2. AZ → O: The authorizer thus uses HTTP form pages to authenticate the owner and
receive the owner’s decision, i.e, allowed confined attributes.

3. O → AZ: The owner sends her ID and credentials to authenticate herself to the
authorizer. Then the owner also defines confined attributes that she allows and
sends these attributes to the authorizer: For example,

FILE-LOC=http://photos.com/2010/brunce/pic-1,

FILE-LOC=http://photos.com/2010/brunce/pic-2,

OWNER=Jane@mail.net, PERMIT=r, SEC-CLASS=3;

/* current time slot */

TIMESLOT=2011$|$06$|$27$|$13$|$**,

/* future time slot(s)*/

TIMESLOT=2011$|$06$|$27$|$14$|$**.
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4. AZ → AA: If the authentication succeeds, the authorizer generates an authorization
code Autz-code (a nonce) and sends the authority a command
REQ-DES1(IDC , Authz-Code) to request descriptive components.

5. AA→ AZ: The authority will retrieve the consumer’s attributes; for example,

NAME@attribute.org = printer.com

SERVICE@attribute.org = print,

LOCAT@attribute.org = canada,

TRUST-LEV@attribute.org = 2.

Then the authority generates and signs the partial part-1 [{D̂j} = {H(j)rj}]AA of
descriptive components, and replies it to the authorizer, while the part-2 {D′j} =
{grj} will be directly sent to the consumer in the file access protocol (described in
Subsection 5.4.5).

6. AZ → O: The authorizer generates the partial part-1 {D̂i} = {H(i)ri} and part-2
{D′i} = {gri} according to the owner’s decision, and randomly selects r ∈ Zp. Then

the partial part-1 {D̂i} and the part-2 [{D′i}]AZ which are signed by the authorizer,
gr, and the descriptive part-1 [{D̂j}]AA received earlier are sent to the owner.

7. O → AZ: The owner verifies whether the confined components are associated with

the attributes by computing bilinear pairing e(D̂i, g)
?
= e(D′i, H(i)). If the verification

succeeds, the owner randomly chooses a, computes gα+ra from gr, a and her private
key OSK = gα, then replies the result gα+ra to the authorizer.

8. AZ → O: Now the authorizer is ready to generate the common part D from the
MSK β and gα+ra received earlier. In this cooperation with ElGamal-like masking,
the authorizer only knows g(α+ra), and the owner only knows gra. The authorizer
encrypts the common part D = g(α+ra)/β and the authorization code Authz-code with
the consumer’s public key and signs with the authorizer’s private key, before sending
the owner a redirect command RED([{g(α+ra)/β, Authz-Code}C ]AA) to redirect the
user-agent back to the consumer at the redirection URI endpoint.

9. O → C: The owner binds both the partial part-1 {D̂i}, {D̂j} of confined and descrip-
tive components by multiplying them with gra and sends all keys {Di = graH(i)ri},
[{gri}]AZ , {D′j = graH(j)rj} to the consumer.

10. C → AA: The consumer sends the authority a commandREQ-DES2(IDC , Authz-Code)
to authenticate itself and to request the descriptive part-2.
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11. AA → C: If the authentication succeeds, the authority will reply to the consumer
with the part-2 {D′j = grj} of the descriptive components.

Now the consumer holds an ABE token and is ready to access data files, which will be
illustrated in the next subsection.

5.4.5 File Access Protocol

After a consumer obtains an ABE token, the consumer must prove private-key possession
by performing a challenge-response with a cloud server as describe in Protocol 3 and shown
in Figure 5.5.

Server (S) Consumer (C)

1. REQ-FILE
←−−−−−−−−−−−−−−−−−

2. Chall−−−−−−−−−−−−→
3. Resp

←−−−−−−−−−−−−
4. Archive−−−−−−−−−−−−−−→

Figure 5.5: The message flow of protocol 3: file access

Protocol 3. File access phase

1. C → S: First a consumer sends a server a command REQ-FILE(FileLoc) that
includes a file location to request a challenge from the server.

2. S → C: The server generates a challenge value chall = Encrypt(MPK,OPK, nonce,A\
AttTS) from a nonce encrypted by CP-ABE encryption with the access policy, ex-
cluding the time slot attribute, then sends the challenge to the consumer.

3. C → S: The consumer now has a complete ABE private key that satisfies the access
policy. Hence, the consumer can generate a response Resp = Decrypt(Chall, SK) by
using the ABE decryption algorithm and replies the server with the response Resp.

4. S → C: The server verifies the challenge-response by Resp
?
= nonce. If it succeeds,

the server replies the consumer with the archive-file Archive.

Now the consumer has both the archive file and the ABE private key, so the next step
is data verification and decryption of an archive file.
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5.4.6 File Decapsulation Procedure

Before file decryption, a consumer verifies the integrity of the archive file. Thus, a consumer
performs decapsulation of an archive file as in Procedure 3.

Procedure 3. File decapsulation phase

1. To extract all parameters from the header, the consumer decrypts the header by
using the CP-ABE algorithm Decrypt(CT, SK).

2. The data integrity of the decrypted header and encrypted data must be checked by
the algorithm and key, which are defined in IntegMeth and KV . Then the consumer
moves to the next step if the integrity is valid.

3. The FDesc and A parameters are used to check whether the archive file is the correct
one.

4. The encrypted data file is decrypted by the algorithm and key, which are defined in
CrypMeth and KE.

Using all the above procedures, the consumer can access the plaintext of a data file.
In addition, he can verify the integrity and correctness of the data. In the remaining
subsections, we present other procedures that facilitate our scheme.

5.4.7 Time Slot Synchronization Protocol

In AAuth, the access permission in each time slot is granted by matching between the key
component Dts = grH(ts)rts in SK and the ciphertext component H(ts)qTS(0) in the access
tree (see Subsection 5.3.3) of a ciphertext. Hence, AAuth controls the lifetime of tokens by
defining the key component(s) of the time slot attribute in a token, and automatically re-
encrypting the header of a file with the current time slot attribute. As a result, a consumer
can access a file only in the time slot(s) defined in the token.

To this end, an owner (encrypter) must send the share qTS(0) of the time slot attribute
to an authorizer when performing file encapsulation. For each time slot, the authorizer
will maintain the last time slot share qTS(0) of each file in its file directory in order to
compute two ciphertext components Cy, C

′
y and two update values hs̃, e(g, g)αs̃. These

components and values will be sent to a cloud server to update ciphertext components and
re-mask the header. Thus, the previous mask e(g, g)αs which other consumers (decrypters)
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have already occupied will be disabled. Note that re-masking a header does not affect
an integrity tag because the tag is computed from the unencrypted header. Updating
ciphertext components and re-masking a header must be performed by cooperation between
an authorizer and a server in Protocol 4 in real-time.

Protocol 4. Time slot synchronization phase

1. In each time slot t, an authorizer chooses a new random value s̃(t), computes a new
share qTS(0, t) = qTS(0, t− 1) + s̃(t) of a TIMESLOT node, then saves the new share
as the last share in the file directory.

2. New ciphertext components for a new time slot can be computed by CTS(t) =
gqTS(0,t), C ′TS(t) = H(AttTS(t))qTS(0,t), where AttTS(t) is the string of t-th time slot.

3. Two update values hs̃(t) and e(g, g)αs̃(t) are computed from MPK = gβ, OPK =
e(g, g)α.

4. Then the ciphertext components and update values are sent to a server.

5. The server replaces two ciphertext components CTS, C
′
TS with the received compo-

nents according to the current time slot.

6. The server also updates the value C(t) = C(t − 1) · hs̃(t) = hs(t−1)+s̃(t) and re-masks
the header C̃(t) = C̃(t− 1) · e(g, g)αs̃(t) = m · e(g, g)α(s(t−1)+s̃(t)) in a ciphertext.

In the above procedure, we obviously retain the consistency between the TIMESLOT
share in the access tree and the secret value masking the header. That is, in each time slot
t, its share qTS(0, t) can be combined with the other shares to construct the corresponding
secret value s(t). This fact results from the root node in our access tree being an AND
gate, i.e., an (n, n) threshold gate, which causes s = qFL(0) + qOW (0) + qSC(0) + qPM(0) +
qTS(0) + qDA(0) (see Figure 5.2). Then the protocol adds two sides of the equation with
a new random value s̃(t). Note that the TIMESLOT attribute in a header and a tail is a
time stamp when the protected file was encapsulated, not the time slot that encrypted the
header. Figure 5.6 shows the propagation of TIMESLOT shares, ciphertext components,
and associated secret masks, according to each time slot.

Note that the above real-time synchronization has a tight time synchronization similar
to that of the Kerberos system. Next, we propose loose synchronization that can cope
with such a problem and optimize both computation and communication costs in two
approaches: sender-push and receiver-pull [39].
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Timeslot 0 1 · · · n− 1 n
Random value, s̃ s̃(0) s̃(1) · · · s̃(n− 1) s̃(n)
Share, qTS(0) qTS(0, 0) qTS(0, 1) = qTS(0, 0) + s̃(1) · · · qTS(0, n− 1) qTS(0, n) = qTS(0, n− 1) + s̃(n)

Component,CST CST (0) CST (1) = gqTS(0,1) · · · CST (n− 1) CST (n) = gqTS(0,n)

Component,C′
ST CST (0) C′

ST (1) = H(AttST (1))
qTS(0,1) · · · CST (n− 1) C′

ST (n) = H(AttST (n))
qTS(0,n)

Component,C C(0) C(1) = C(0) · hs̃(1) · · · C(n− 1) C(n) = C(n− 1) · hs̃(n)
Component, C̃ C̃(0) C̃(1) = C̃(0) · e(g, g)αs̃(1) · · · C̃(n− 1) C̃(n) = C̃(n− 1) · e(g, g)αs̃(n)
Secret mask, s s(0) s(1) = s(0) + s̃(1) · · · s(n− 1) s(n) = s(n− 1) + s̃(n)

Figure 5.6: Ciphertext components propagation according to time slot changes

Sender-Push Mode

In this mode, an authorizer completely controls what synchronization data is delivered
and when it is delivered, while a cloud server replaces and computes what it receives.
Since an authorizer participates in token issues, the authorizer knows which time slots are
authorized for each file. With this knowledge, the authorizer will not continue synchro-
nization if no other authorization occurs. For example, if TIMESLOT=2011|06|27|13|**
and TIMESLOT=2011|06|27|14|** are authorized, then only the synchronization data, i.e.,
ciphertext components and update values of time slot 2011|06|27|13|**, 2011|06|27|14|**,
and 2011|06|27|15|** must be sent out. Furthermore, the authorizer can deliver multiple
time slots at the same time by combining the components and values of all time slots into
one message sent to a cloud server. On the other side, the cloud server can reduce the
computing cost by caching the synchronization data received from the authorizer until a
file access occurs. From the synchronization data in the cache, the server can aggregate
update values by multiplying all update values and selecting the last received components
for time slot synchronization.

As a consequence, both the authorizer and a cloud server can optimize both com-
putation and communication cost by leveraging two cryptographic primitives: proxy re-
encryption [15] and lazy re-encryption [65]. Another advantage is that the authorizer has
no responsibility to store and manage such synchronization data until a cloud server is
ready to receive them. The disadvantage is that a cloud server must maintain unused
synchronization data until it expires.
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Receiver-Pull Mode

Another optimization approach is for a cloud server to pull synchronization data from
the authorizer when a data file is requested. In this way, the computation and commu-
nication cost is minimal because the work load occurs only when a consumer requests a
file. Moreover, the authorizer can consolidate synchronization data, i.e., by multiplying
update values and selecting the last components, before sending the data to a cloud server.
Unfortunately, these optimizations impose two disadvantages. One is that the authorizer
cannot control when time synchronization is performed, and the other is that it has to
store and maintain ciphertext components and update values until they expire or a cloud
server requests them. This model also causes more latency time due to waits for authorizer
responses.

In summary, all three approaches, i.e., tight synchronization, sender-push, and receiver-
pull, require trade offs between performance and security levels.

5.4.8 Token Delegation Procedure

In some situations, a consumer may ask another provider to process a data file for which
authorization already exists. For example, the web site ‘printer.example.com’ has already
obtained a token with two time slots and two files, e.g.,

FILE-LOC=http://photos.com/2010/brunce/pic-1,

FILE-LOC=http://photos.com/2010/brunce/pic-2,

SEC-CLASS=3, PERMIS=r,

/* current time slot */

TIMESLOT=2011$|$06$|$27$|$13$|$**,

/* future time slot(s)*/

TIMESLOT=2011$|$06$|$27$|$14$|$**.

Using the key delegation algorithm of CP-ABE, the web site ‘printer.com’ can ask the
website ‘poster.com’ to print a poster for a file ‘pic-1’ in the time slot ‘2011|06|27|13|**’
by generating a new private-key set associated with

FILE-LOC=http://photos.com/2010/brunce/pic-1,

SEC-CLASS=3, PERMIS=r,

/* current time slot */

TIMESLOT=2011$|$06$|$27$|$13$|$**.
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5.4.9 Policy Changing Procedure

Another reason that we re-encrypt the header of an archive file is to change the access
policy. Regardless of confined or descriptive attributes, a naive way is that an owner
rebuilds a new access policy, re-encrypts a header, recomputes an integrity tag, and then
asks a server to replace all the headers and tails in the archive file. An advantage we can
obtain is that there is no need to re-encrypt the protected data.

5.4.10 Data Updating Procedure

Updating data is a straightforward procedure. An owner re-encrypts protected data with
the encryption key KE in the header of an archive file, recomputes an integrity tag, and
then asks a server to replace the encrypted data and the integrity tag. If both the data and
access policy are changed, an owner repeats all steps to rebuilt a new archive file and stores
it in a server. However, it is obvious that we can provide write permission to consumers
by separating a header into two parts: read and write. The read part is retained in the
same format, while the write part includes a signing key and is encrypted by CP-ABE
encryption with a write policy.

5.5 Security Analysis

We analyze our scheme from two perspectives: internal and external adversaries. For
internal adversaries, all entities in the system are considered as semi-trusted entities, in
the sense that they can exploit threats to subvert authorization control and data security,
but still honestly follow the protocol. For external adversaries, they may not run the
protocol but instead try to launch general attacks to violate data security. To analyze
security from internal attacks, we consider the following attacks on AAuth protocol that
each entity can launch in the system.

5.5.1 Action of Cloud Server

We consider that cloud servers host sensitive information and are curious about the data
or may reveal information to unauthorized consumers. As the data is stored in ciphertext
with an integrity tag, neither cloud servers nor unauthorized consumers can decrypt the
data without decryption keys or fabricate/modify the data without signature keys. Thus,
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data confidentiality and integrity are secure even if the cloud server is compromised. Our
authorization is performed in an end-to-end manner, i.e., an access policy is bundled into
a ciphertext by an owner and a consumer must then use a key that satisfies the access
policy to decrypt. Hence, the access policy is enforced by the decryption algorithm, not
by cloud servers, thereby achieving data confidentiality and integrity.

5.5.2 Action of an Authorizer

In the original Kerberos and OAuth, as well as in cloud servers, an authorizer is another
dominating entity since it can issue tokens to anyone without owners’ permission. This
situation is rational if an authorizer is on an owner’s premises, not in a public cloud. Our
scheme enables secure authorization in public clouds by allowing owners to contribute to
token generation and assign confined attributes. Thus, an authorizer alone cannot generate
the common part of SK (D = g(α+ra)/β) for unauthorized consumers because the authorizer
has no knowledge about the owner’s SK (OSK = gα). In addition, an authorizer cannot
arbitrarily generate an ABE token because a confined SK proposed by an owner can be
verified by the owner.

5.5.3 Action of Owners

Although an owner is unlikely to counterfeit the tokens she proposes, she may ask an au-
thority to generate a token with ‘OWNER’ attributed in other people’s name to access
files not belonging to her. In other words, the owner pretends to be someone else. In this
case, an authorizer can easily detect this misbehavior since the owner must be authenti-
cated to an authorizer. Also an owner may fabricate the part-1 of confined or descriptive
components (H(i)ri , H(j)rj) and combine it with her combining term gra. In our scheme,
the part-2 of confined component gri is signed by an authorizer, and an authority directly
sends the part-2 of confined component grj to a consumer. Thus, the owner must compute
ri or rj from gri or grj respectively. This problem can be reduced to a Discrete Logarithm
Problem (DLP), and so fabrication is unsuccessful.

5.5.4 Action of Consumers

Consumers may modify their own tokens; for example, they may change the time slot
components in their own tokens. Hence, consumers must try to select the confined compo-
nents graH(i)ri , gri for the time slot attribute that can satisfy the policy as the correct key
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components, this problem can be reduced to a pairing inversion problem thereby failing on
modification. Our scheme can also resist collusion attacks as does the original CP-ABE
scheme because in each authorization, an authority and an owner randomly choose new
random values r, a respectively to combine confined and descriptive components. There-
fore, one consumer cannot combine her keys to create more powerful keys, and multiple
consumers cannot collude in combining the different keys to create a new key.

5.5.5 Resistance to Other Attacks

In addition, we consider general attacks from external adversaries, such as eavesdropping,
Man-In-The-Middle (MITM), and Denial-of-Service (DoS), etc.

Eavesdropping and active attacks: Data files are encrypted and signed by owners,
then verified and decrypted by consumers, thereby performing all cryptographic operations
end-to-end. Therefore, eavesdropping on data files cannot disclose data confidentiality, and
active attacks cannot corrupt data integrity. Since the header parameters can be verified
from the tag, these parameters can be trusted to check the properties, i.e., owner, location,
and security class of the data file to verify the correctness of data properties.

MITM attacks: All service providers and authorities in the system register with CA
for public-key certificates. Hence, the communication in our scheme can be protected by
SSL/TLS channels. Therefore, our scheme can resist MITM attacks. Moreover, the part-
2 of confined and descriptive SK (D′i, D

′
j) originate from an authorizer and authority(s)

respectively. These two parts are sent over different SSL/TLS channels and combined by
a consumer, so an adversary must intercept two SSL/TLS sessions at the same time to
obtain a complete SK; this situation rarely happens in practice.

Off-line attacks: Our authorization is divided into two levels: token request and file
access. In token request, a consumer must get permission from an owner and qualify with
respect to the policy in order to get a satisfactory ABE-token. The consumer then uses
the ABE-token to generate a response value for file access. To obtain data files from a
cloud server, a consumer must prove his/her authorization by sending a response value
satisfying the challenge value. Thus, adversaries cannot obtain ciphertext if they have no
authorization, so our scheme can protect encrypted data from off-line attacks.

Credential protection: Like OAuth, an owner can grant assess permission to a con-
sumer, even though the owner does not expose her credential, i.e., password, certificate,
Information Card, etc., to the consumer.
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Certified entities: An authority is a certifier who describes consumers according to their
characteristics by issuing descriptive attributes for eligible consumers. Thus, consumers
cannot declare forged characteristics to obtain protected data.

PRE primitive: In timeslot re-encryption, although a master authority must send two
ciphertext components C̃TS, C̃

′
TS and two update values hs̃, e(g, g)αs̃ to a server, all of them

are new random values used to replace or multiply (mask) the existing values, so the server
cannot gain any advantages to break cryptographic functions. Note that our model is still
based on the same assumption that a server can be trusted to do data operations, i.e.,
storing and multiplication.

5.6 Performance Evaluation and Simulations

In this section, we evaluate the cost of three off-line procedures (i.e., setup, file encapsula-
tion, and file decausulation) and four on-line protocols (i.e., service request, token request,
file access, and time slot synchronization) in terms of communication and computation
cost. Then we show the performance by simulations.

5.6.1 Evaluation

Setup procedures: This procedure can be divided into two parts: First an authorizer
defines underlying bilinear groups and a hash function, then computes MSK and MPK
with two exponentiations on G1. The second part is individually performed by each owner
who computes OSK and OPK with one exponentiation on G1.

File encapsulation: An owner performs this procedure before uploading files to cloud
servers. The computation cost in this procedure results from a symmetric-key encryption
for data files, a signature, and a CP-ABE encryption for the header. The first encryption
depends on the size of data files, and the signature load is fixed by the signature algorithm,
while the CP-ABE encryption causes 2|L| + 2 exponentiations on G1, where L denotes a
set of leaf nodes in an access tree.

File decapsulation: After obtaining an archive file, a consumer decrypts the header
with CP-ABE, verifies a signature, and decrypts the data file. The CP-ABE decryption
cost is dominated by 2|I

⋂
L| + 1 pairing operations, where I denotes the number of
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attributes in the ABE token. The verification load is also fixed by the verify algorithm.
The symmetric-key decryption load also depends on the size of the data file.

Next we analyze on-line protocols in both cryptographic cost and message rounds when
compared to the OAuth standard, as follows.

Service request: This protocol requires two more messages between consumers and
servers, and one sign operation at a server.

Token request: The computation of CP-ABE key generation causes 2|I|+ 1 exponenti-
ations. In our scheme, this computing cost is distributed to an authorizer and an authority
according to the number of confined and descriptive components. Also there are three sign-
ings (two at an authorizer, one at an authority) and three verifications (one at an owner,
two at a consumer). In addition, an owner computes five pairing operations (based on our
construction) to verify confined attributes she proposes. For message rounds, this proto-
col requires six more messages: two authorizer-authority messages, one owner-authorizer
message, one consumer-owner message, and two consumer-authority messages.

File access: Unlike OAuth, our protocol has no extended message. However, for a
challenge message, the cryptographic cost paid by a server is CP-ABE encryption (2|L|+2
exponentiations); and for a response message, the computation cost paid by a consumer is
CP-ABE decryption (2|I

⋂
L|+ 1 pairing operations).

Time slot synchronization: An authorizer updates the time slot of each file until
the last authorized time slot (on-demand), and a server can delay re-encryption until
the file is requested (lazy re-encryption). Its computation and communication cost are
four exponentiations at an authorizer, two writes and two multiplications at a server,
and only one message between them. In comparison with CP-ABE encryption (2|L| + 2
exponentiations), the cost of time slot re-encryption is much lighter.

5.6.2 Simulations

Based on the number of attributes, leaf nodes, and our construction (five confined at-
tributes), we summarize the computation cost of on-line protocols of each entity for an
ABE-token in Table 5.2.

Table 5.2 shows that the number of users and the size of the attribute universe do not
affect computation cost per token. Most computation cost is expended by a consumer
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Table 5.2: On-line cryptographic cost
Signing Verify Exponent Pairing

Owner 1 1 5
Consumer 2 2(|I

⋂
L|) + 1

Authorizer 2 11
Authority 1 2|I − 5|
Server 1 2|L|+ 2

(ASP). Some cost is expended by a cloud server, an authorizer, and an authority. Mean-
while, an owner and a authorizer pay fixed costs, and other entities’ costs depend on the
number of the attributes in a token or a policy.

Moreover, our protocol trades eight additional messages for stronger security: user-
centric property, 2-level authentication, and end-to-end encryption/authorization. To eval-
uate this trade off, we compare communication cost between our scheme (AAuth) and the
original standard (OAuth) without the cryptographic cost.

To this end, we have built the prototype of AAuth and OAuth protocols on the frame-
work of OMNet++ network simulation 4.1 [92]. The simulation conditions are defined as
follows: the cloud network has a bandwidth of 400 packets/second, each owner contin-
uously requests services in exponential distribution, each service request transfers three
256 KB-files as a dummy load, the number of owners (users) ranges between 100 to 700.
Figure 5.7 shows the latency time from the protocol and the dummy load.

Figure 5.7 shows the the latency time of both OAuth and AAuth and the difference of
the latency time between both. The diagram shows that both the latency time and the
difference increase as the number of owners increases from 100 to 700 nodes. The former
observation is a general behavior of a limited-bandwidth network. The latter exhibits that
the difference has no significance if the number of owners is less than 300 nodes, and the
difference increases from 5 to 12 seconds after 300 nodes. The increase occurs because we
limit the network bandwidth to 400 packet/seconds in our simulation model. Compared to
OAuth, AAuth strikes an acceptable balance between increased network cost and improved
security.

Note that we simulate OAuth and AAuth with state-full models that are closest to real
implementation, so the result from simulations can represent real applications. Unfortu-
nately, the state-full models have limitations in their number of nodes (owners). Therefore,
the simulation should also be performed in stateless models that are not close to the real
implementation, but the number of owners can enlarge to the size of real world situation.
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Figure 5.7: The latency time from protocol and dummy loads without cryptographic load

5.7 Summary

In this chapter, we have proposed a new authorization scheme that combats untrusted
cloud servers by adopting CA-ABE, ElGamal-like masking, proxy re-encryption, and lazy
re-encryption to achieve user-centric and end-to-end security. The main benefit of this
scheme is that it allows users to securely share resources across providers in semi-trusted
cloud environments. To achieve this end, our scheme provides 1) an ABE-token for each
authorization grant, 2) a user-centric system in which an owner controls the authorization
system to protect her resources, 3) end-to-end encryption and authorization from an owner
to a consumer, 4) a light-weight encryption for time slot synchronization. The results of
performance evaluation show that our scheme has no significant computation cost for
users and is independent from the number of users in the system. Simulation results show
an acceptable cost increase compensated for by better security than the current OAuth.
Security analysis shows that our modified CP-ABE is as secure as the original scheme,
and our protocols can resist both internal and external adversaries. Below (Table 5.3) we
summarize the AAuth, showing all procedures and protocols.
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Table 5.3: The procedures and protocols in AAuth
AAuth

Procedures/Protocols Outputs
Setup procedure 1. A bilinear group G1,G2; a bilinear map e; a

generator g of G1

2. A hash function H
3. System public & private keys MPK,MSK;
Owner public & private keys OPK,OSK

File encapsulation procedure 1. An access policy A from both confined and
descriptive attributes
2. An access tree τ
3. An archive file

Service request protocol An access policy A
Token request protocol An ABE-token
File access protocol An archive file
File decapsulation procedure 1. A header in plaintext form

2. An integrity tag
3. A data file in plaintext form

Time slot synchronization protocol 1. Two ciphertext components
2. Two update values
3. A new time slot header
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Chapter 6

Conclusion and Future Research

This chapter summarizes our research contributions to the security of P2P systems and
cloud computing, and gives recommendations for future research.

6.1 Summary of Contributions

The contributions of this thesis apply to two distributed systems: fully decentralized Peer-
to-Peer systems and cloud computing. Although these two systems differ in their struc-
tures, they share one fundamental security vulnerability: lack of a shared trusted domain.
Therefore, our contributions try to construct shared trust domains for these two environ-
ments. The first contribution is a PKI framework for P2P systems, whereas the second
one is an authorization scheme for semi-trusted cloud computing.

In fully decentralized Peer-to-Peer systems, without external TTPs, no peer trusts
others. In other words, each one trusts only itself. Using cryptographic tools is a common
way to build security characteristics, such as confidentiality, integrity, and non-repudiation
in P2P systems. However, the cryptographic tools require secret keys or public keys that
are generated from trusted agencies, and fully decentralized P2P systems are naturally self-
organized. Therefore, to cope with the lack of shared trust agencies in these systems, we
have to create a trust framework that can work in a self-organizing fashion and is accepted
by every peer in a system. Additionally, since arbitrary peers can be malicious or faulty,
the trust framework must have self-healing characteristics to retain trustworthiness and
resist attacks from both external and internal adversaries. Finally, this trust framework
must have enough scalability to be deployed in the Internet. To achieve these goals, we
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propose SOHCG, a distributed PKI framework that is self-organizing, self-healing, and
scalable. SOHCG leverages CAN structure, threshold signature schemes, and the RSA
homomorhic property to construct a trust group (CA group).

A CA group is a CA overlay network that automates PKI infrastructures for P2P
communities but does not bundle into or depend on P2P systems. With the self-organizing
structure of CAN, the defined parameters, and the group management policies, a CA group
is self-organizing, dynamic, and scalable. After a bootstrapping phase, a CA group will
grow up to the predefined size at the balance point (zmax, pmax), which can achieve a trade-
off between efficiency and security. At the same time, membership is dynamic because
of recruitment and retirement policies that enforce CA members joining and leaving the
CA group. By the redundancy of CAN overloading zones, the key share of each zone is
replicated by multiple peers in each zone to compensate for the lack of key tolerance in
a (n, n) threshold signature scheme. Since the size of the CA group and the redundancy
of key shares trade communication and computation overhead for security, a CA group
copes with this potential problem by performing most protocols and coordination under a
multicast group (decision group), thereby limiting communication cost and the number of
participants.

To automate certificate issuing to new nodes, a CA group must form a decision group in
order to verify the node ID and private-key procession of new nodes by a challenge-response
scheme from uniform random locations in the overlay network. In the decision group, all
decision nodes exchange their proofs with those of others, then vote on all the proof results
under the threshold value (bn−1

3
c + αn), which considers the effects of both external and

internal adversaries. Therefore, a new node must get endorsement (i.e., certificates signed
with decision nodes’ shares) from all decision nodes to construct a complete certificate
by leveraging the homomorphic property of the RSA signature scheme. In this way, the
SOHCG can achieve its main CA functionality.

Obviously the node ID and private-key verification rely on the honest majority of a
CA group. Thus, a decision group must detect its malicious members when the proof has
no consensus. Because of the high communication and computation cost of the detection
algorithm (a Byzantine agreement algorithm), we avoid running it frequently. To this end,
we use a new node (requester) as a witness to detect whether decision nodes are suspicious
before running the malicious node detection protocol.

If a decision node is malicious or a CA node’s membership is expired, such a node
will be eliminated from the CA group. This action can retain the honest majority and
mitigate Sybil attacks. Unfortunately, this solution imposes a new security flaw because
the eliminated CA nodes occupy key shares of a CA group. To strengthen the security
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level of the CA group, a decision group uses the key share rendering protocol to disable the
key shares known by the eliminated nodes. To achieve this, the share rendering leverages
the group additive property of the (n, n) threshold scheme in each dimension of the CAN
structure. Finally, to revoke the certificate of malicious nodes, SOHCG uses the same
method as the certificate issuing procedure to generate CRLs and leverages P2P networks
themselves as a distributed repository for storing CRLs.

Security analysis shows that SOHCG can thwart both external and internal adversaries
as follows.

1. Node impersonation attacks. These attacks can be launched by an adversary issuing
faked certificate requests or a coalition of adversaries launching MITM attacks. In
the former case, an adversary fails to convince a CA group to accept a fake cer-
tificate request because he/she cannot receive challenge messages from the decision
group. In the latter case, a coalition of adversaries fails to convince a CA group to
issue a certificate if they cannot intercept more than α fraction of challenge-response
messages.

2. DoS attacks. Adversaries fail to convince a decision group to run unnecessary Byzan-
tine agreement algorithms because the decision group uses a new node as a witness
to detect these attacks.

3. Sybil attacks. SOHCG leverages the Retirement policy and the age parameter to
limit the membership period of CA nodes, thereby mitigating Sybil attacks.

4. CA functionality interference attacks. In these attacks, adversaries are decision nodes
and try to attack two protocols: key registration, and certificate issuing. In the
key registration protocol, adversaries fail to modify the certificate requests because
the faked certificates can be detected by verifying the bootstrap node’s signature.
Adversaries fail to disrupt challenge-response voting by broadcasting invalid challenge
messages in a decision group since the maximum number (bn−1

3
c) of possible malicious

nodes in a decision group is included in threshold value (bn−1
3
c+αn). In the certificate

issuing protocol, if adversaries omit to issue certificates or issue incorrect certificates,
SOHCG can establish a new decision group or a new node can resubmit a certificate
request.

Our second contribution is in semi-trusted cloud computing. The lack of a shared
trusted domain between data owners and CSPs as well as the loss of control of data are
the main barriers to the adoption of clouds by businesses or individuals. For the former,
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CAs or PKIs can transfer trust between owners and CSPs with public-key certificates.
However, very few users (owners) have public-key certificates. Meanwhile, every user has
already one or more on-line identities from ASPs or CSPs. In addition, authentication
processes depend on the security level of information that users try to access. For ex-
ample, academic information requires a login/password, and health information records
require two-factor authentication. For the latter, cryptography technologies are typical
approaches used to meet these requirements, but they impose key management problems.
Currently, there are two well-known IAAA standards, i.e., OpenID and OAuth, for web ap-
plication development. However neither can work in unshared trust domain environments
like untrusted clouds. Thus, we cope with these problems by leveraging tokens to separate
authentication layers from authorization layers and bundle access policies with ciphertext
for authorization by using the modified CP-ABE. In order to retain control of data, we use
ElGamel-like masks to allow data owners to contribute to token generation. As a result, we
have created a distributed authorization scheme, named AAuth, to allow owners to store
data in untrusted clouds and delegate authorization to consumers for accessing the owners’
data. AAuth achieves the above goals by exploiting user-centric approaches, end-to-end
encryption, and end-to-end authorization.

To store sensitive data in untrusted cloud storage, owners first encrypt and sign the
data with symmetric keys and signature keys. Secondly, the owners encrypt the symmetric
keys and verification keys by using the ABE encryption algorithm with access policies.
Finally, the owners create archive files for which the headers come from the second step
and the bodies come from the first step, then store the archive files in the cloud storage.
Since the data is encrypted and signed by owners and the policies are bundled in ciphertext
during the header encryption, untrusted cloud storage cannot subvert the confidentiality
and integrity of the stored data.

When an owner requests a service from a consumer, an owner, an authorizer, and an
authority must collaborate on token generation. To this end, we define two disjointed at-
tribute sets, where a confined set is used to limit the scope and lifetime of a token, and a
descriptive set is used to describe the characteristics of a consumer. The authorizer gener-
ates the confined-key components defined by the owner, and the authority itself defines and
generates the descriptive-key components. Next, the owner and the authorizer collaborate
to generate a common-key component. Finally, all key components, i.e., common, confined,
and descriptive, are combined to form a complete token by the consumer. In this way, end
users (owners) can authenticate themselves to an authorizer with any credentials based
on security requirements and do not lose control of their data. In addition, descriptive
attributes can certify the qualification of ASPs (consumers).

After obtaining tokens, consumers must prove that their tokens can satisfy the policies
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in the required archive files. To this end, cloud storage generates challenges with the policies
in the archive files then verifies the responses in order to guarantee that the consumers
possess satisfactory tokens. The cloud storage will transfer archive files to the consumers
only if the verification succeeds. After obtaining the archive files, the consumers use ABE
keys from the ABE tokens to decrypt the headers to get symmetric keys and verification
keys. Then they use the verification keys to verify the integrity of the archive files and
use the symmetric keys to decrypt the ciphertext in the bodies. Thus, at the destinations
(consumers), policies are enforced when the headers are decrypted, so AAuth can achieve
end-to-end encryption and authorization.

Security analysis shows that AAuth can be securely performed in untrusted clouds and
is able to prevent attacks both by external and internal adversaries. We first briefly analyze
the situation for external attacks:

1. Eavesdropping and active attacks. Adversaries fail to launch these attacks since data
is encrypted and signed in an end-to-end fashion.

2. MITM attacks. Since three key parts, i.e., common, confined, and descriptive parts,
are sent to consumers through different SSL/TLS channels, adversaries have to si-
multaneously intercept all channels to launch MITM attacks, which is impossible in
real world situations.

3. Off-line attacks. Without satisfactory tokens, adversaries cannot obtain archive files
for these attacks.

Next, AAuth’s participants that are semi-trusted entities are considered to be internal
adversaries and analyzed as follows.

1. Cloud servers. We assume that cloud servers are curious about sensitive information
they host. However, they cannot break the confidentiality or corrupt the integrity of
data because the data is encrypted and signed when stored with them. Moreover, in
time slot synchronization, cloud servers cannot learn any knowledge about CP-ABE
keys because all components and update values that they receive are new random
values with no relation to the keys.

2. The Authorizer. Without knowledge about an owner private key (OSK), the autho-
rizer itself cannot generate tokens. In addition, the authorizer fails to fake confined
keys because owners can verify the confined keys they receive.
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3. Owners. Since the authorizer must authenticate owners before generating confined
keys, owners fail to ask the authorizer to generate tokens in other people’s names.
In addition, if owners try to modify a confined key, they need to solve the discrete
logarithm problems, thereby failing in the fabrication.

4. Consumers. If consumers try to modify key components associated with attributes
they want, they need to solve pairing inversion problems, thereby failing in the mod-
ification.

For performance analysis, we analyze the cryptographic load of AAuth, which consists
of three off-line procedures and four on-line protocols. First, the off-line procedures are
analyzed as follows.

1. Setup. The authorizer computes MSK and MPK with two exponentiations, and each
owner computes OSK and OPK with one exponentiation.

2. File encryption. An owner needs one symmetric encryption, one signature, and
2|L|+ 2 exponentiations for one file encryption.

3. File Decryption. A consumer requires one symmetric decryption, one verification,
and 2|I ∩ L|+ 1 pairing operations for one file decryption.

For on-line protocols, the cryptographic load that each AAuth participant must expend
for one token is shown in Table 5.2. The results show that this load does not depend on the
number of users and the size of the attribute universe. We also noticed the AAuth requires
an additional eight messages, when compared to OAuth, as shown in Table 6.1. To show
the effect of the additional messages in AAuth, we simulate AAuth by using OMNet++
network simulation 4.1. The simulation results in Figure 5.7 show that AAuth achieves an
acceptable balance between increased network cost and improved security, when compared
to OAuth.

6.2 Future Work

The security problems in P2P systems and cloud computing are a broad research area.
This thesis proposes only some solutions in this area. Thus, we next present some possible
enhancements and extensions of our work and give an overview of interesting issues that
can be pursued in future work.
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Table 6.1: The number of messages that AAuth requires more than OAuth
Protocol Additional messages Message flow

Service request 2 C → S
Token request 2 AZ → AA

1 O → AZ
1 C → O
2 C → AA

File access —

P2P Systems. As noted in the summary of threats to P2P system in Section 2.6, most
internal attacks, such as incorrect routing updates, Sybil, eclipse, identity theft, etc., in
P2P systems can be solved with certificates that bind between node IDs with public keys.
Although SOHCG can build public-key certificates to cope with these internal attacks,
P2P systems still have other open problems, such as free riding and data corruption, that
are beyond the scope of this thesis.

1. Free riding. In P2P systems, lack of enhancing contribution methods may induce
P2P communities to selfish behaviors. For example, some peers may retrieve re-
sources from the system but not be willing to contribute to routing messages, storing
content, computing jobs, or providing data/services to other peers. This situation
can dramatical degrade the quality of services or disable services if a large fraction of
peers engage in these misbehaviors. Currently, researchers have proposed many solu-
tions that can be categorized into three main approaches: monetary, reciprocity, and
reputation. For efficiency and reliability, these solutions require centralized agents
to monitor balances and transactions, or to manage and consolidate reputation in-
formation. In addition, persistent identifiers are required for storing and managing
long-term balances, maintaining the histories of peers, and preventing whitewashing
attacks. The SOHCG framework can support long-term identifiers for monetary or
reputation by adding supporting information, such as account information or appli-
cation information in certificates. For decentralization, we have to distribute the
information of balance and reputation in P2P systems themselves. The public keys
from SOHCG may protect this sensitive information in hostile environments.

2. Data corruption. Adversaries may try to remove or modify information stored in
systems as well as issue faked contents into systems. Without data identifiers and
data authentication, adversaries can generate data with the same name as the original
and try to replace the existing data by using normal P2P procedures. Adversaries
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may also exploit P2P replication to deploy multiple faked versions in systems, thereby
destroying data consistency. To address this concern, P2P systems must provide
authentication and authorization that allow peers to verify the write permissions of
requesters. To this end, the certificates from SOHCG may be used as credentials for
access control in P2P systems.

Cloud computing. Data security in clouds still has many security concerns that are
challenging researchers in this area. Although AAuth succeeds in authentication, autho-
rization, data confidentiality and data integrity for semi-trusted clouds, we are interested
in improving AAuth in terms of security, reliability, efficiency, and capability. In order to
accelerate cloud adoption, we outline some possible extensions of AAuth and interesting
issues in cloud computing as follows:

1. AAuth can control write permission by separating a header into two parts, i.e. read
and write, and bundling a signing key into the write header encrypted by using
a CP-ABE scheme with a write policy. However, this solution can achieve write
permission control but cannot prevent cloud storage from corrupting data it hosts.
To my knowledge, only data replication providing persistence and reliability can solve
this problem.

2. Typically, ABE-tokens are indirectly revoked by the time slot synchronization pro-
tocol. However, if ABE-tokens are assigned with a long time slot or multiple time
slots, the tokens become longterm credentials. This situation may necessitate token
revocation in AAuth. There are ABE schemes that can be applied for direct key
revocation, such as Attrapadung’s ABE scheme [8] that is based on a conjunction
between a broadcast encryption and an ABE.

3. AAuth was mainly designed for access control and inter-operation between ASPs and
cloud storage. It is obvious that we can extend AAuth to support transaction-based
applications like database applications by providing index or keyword searching for
the meta data of records. For privacy, the index or keyword search may be imple-
mented by cryptographic techniques, such as encryption searching or order preserving
encryption.

4. In real world circumstances, it may be necessary for consumers to be certified by
multiple authorities. AAuth can directly achieve this requirement with more latency
time and communication overhead; therefore, we may seek for more efficient solutions.
To strengthen AAuth’s security and reliability, multi authorizer approaches may be
implemented by multi-authority ABE schemes, such as Chase’s ABE scheme [22].
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Appendix A

Miscellaneous Structured P2P
Systems

A.1 Chord

Chord [122] uses one m-bit identifier space that is shared between a node ID and a key,
and uses a DHT to partition the identifier space for each node and to map between a key
and the node holding the key. The nodes form the ring topology of an overlay network by
converting a node’s address (IP address) to a node ID via a hash function, i.e., SHA-1, m
= 160, and then the node IDs are ordered in an identifier circle modulo 2160 (numbering
from 0 to 2160 − 1). Thus, each node maintains the identifiers of its successor to connect
each node into the ring. A content ID is converted to a key k via the same hash function.
This key k is used to determine the node whose ID equals or follows k in the identifier
space, named the successor node of k. The pair of the key k and its value is stored in the
successor node of k. Chord can find the successor node of k in a ring topology by routing
in one direction, e.g., clockwise, until it reaches the destination node. Figure A.1 shows
an identifier circle with m =4 consisting of four nodes (1, 4, 11, and 12) and holding five
keys (1, 2, 6, 9, and 14).

Knowing of a successor, although Chord can retrieve a (key, value) pair of a content
by passing around the ring via one successor to another successor until it reaches the key’s
successor node, this solution is inefficient because it may require traversing all nodes in the
ring to reach the node holding the (key, value) pair. To accelerate this process, each node
x in Chord maintains m-entries of a routing table, named the finger table, whose entry
i contain the node ID f i that succeeds x at least 2i−1, where 1 6 i 6 m. This node f i is
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Chord with m = 4
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Figure A.2: The Finger Table and
Key Location in the Ring Topology of
Chord

called the ith finger node of x. That is, each node stores pointers to the node at ring ways
(1, 2, 4, . . . 2m−1) from x. Consequently, each node knows more about the nodes close to it
than the nodes further away, and when a node x does not have enough information to find
the node holding a key k, x asks its finger node closest to the key for a closer node and
repeats this process until x can find the appropriate node. Finally, Chord can guarantee
all lookup via O(logN) messages, where N is the number of nodes participating in the
overlay network by maintaining m entries in its finger table. Figure A.2 shows the finger
table and key location in the Chord ring with nodes (1, 4, 11, and 12) and five keys (1, 2,
6, 9, and 14).

A new node x joins the Chord network by finding one exiting node and asking this
node to find the successor node of node ID x. Next, the new node loads the successor list
and the finger table from its successor and uses them to find the correct values for its own
list and table. Finally, the new node must direct the successor nodes and other related
nodes to add the new node into their finger tables. To simplify and achieve this goal, each
node in Chord maintains a predecessor list, which point to the nodes that refer to it. This
predecessor list is used to find the nodes that need to add the new node into their finger
tables. When a node y voluntarily or involuntarily leaves Chord, nodes whose finger table
include y must replace y with y’s successor. To achieve this, each node must maintain r
successors, i.e., a list of its next r successors. The nodes in this successor list can also
provide replicated data. When a node joins or leaves the system, Chord requires O(log2N)
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Figure A.3: The Finger Tables of
Chord after Node ’8’ Joins
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Figure A.4: The Finger Tables of
Chord after Node ’11’ Leaves

messages to correct finger tables. The finger tables of Chord after node 6 joins and node
1 leaves are shown in Figure A.3 and Figure A.4, respectively.

A.2 Pastry

Pastry [4] uses a 128-bit identifier space for locating the position of a node ID in ring
topology, whose GUID is based on a hash function that ranges from 0 to 2128− 1. When a
new node joins the Pastry network, a node ID is randomly assigned to the new node with
uniform distribution. Pastry routes messages to the node whose node ID numerically is
closest to the given key, known as a prefix routing. In each routing hop, a message is
forwarded to the node that shares one more digit than the current node ID. If appropriate
entry in the routing table is unavailable, or available but not alive, the message is forwarded
to the numerically closest node in the leaf set L of the current node. The leaf set L is a
set of nodes with |L|/2 closest nodes numerically larger than the current node and |L|/2
closest nodes numerically smaller than the current node. These larger and smaller sets of
the closest nodes are similar to the successor and predecessor list in the Chord network,
respectively. To guarantee reaching a destination node in O(logB N) (where B is base, N is
the number of nodes participating in the overlay network), each Pastry node must maintain
a routing table (similar to the finger table in Chord) consisting of d rows and B−1 entries
per row (d = logB 128 is the number of digit). Each entry in row n refers to a node whose

157



-0xxxxx

4-0xxxx

43-0xxx

431-0xx

4316-0x

43160-0

Routing Table (Node ID = 431605)

Small Large Neighbor

571206

706354

650731

347621

417625

024657

157406

251763

431607

431612

431624

431637

431645

431650

431657

431702

431512

431520

431525

431534

431544

431563

431567

431600

-1xxxxx

4-1xxxx

43-1xxx

431-1xx

4316-1x

43160-1

-2xxxxx

4-2xxxx

43-2xxx

431-2xx

4316-2x

43160-2

-3xxxxx

4-3xxxx

43-3xxx

431-3xx

4316-3x

43160-3

-4xxxxx

4-4xxxx

43-4xxx

431-4xx

4316-4x

43160-4

-5xxxxx

4-5xxxx

43-5xxx

431-5xx

4316-5x

43160-5

-6xxxxx

4-6xxxx

43-6xxx

431-6xx

4316-6x

43160-6

-7xxxxx

4-7xxxx

43-7xxx

431-7xx

4316-7x

43160-7

Figure A.5: The Routing Table, Neighbor Set, and Leaf Set in the Pastry Node ’431605’
(Notation of each Entry: common prefix - rest of ID)

ID shares the first n digits with the current node, but the node’s n+ 1th digit is different.
Although the typical value of B is 16, the choice of B is a trade-off between the size of a
routing table d× (B − 1) and the maximum number of hops O(logB N). Although prefix
routing can guarantee that an intermediate node is numerically closer in each step, the real
path length of an underly network may be extremely different. Pastry uses a proximity
metric of the underly network, such as a hop count or round trip latency measurement,
to select the appropriate node when setting up the routing table. Consequently, in each
routing step, a message is forwarded to a relative proximity node with a node ID that
shares more numerical prefix digits with the key.

Moreover, a Pastry node maintains another set of nodes, i.e., a neighborhood set.
The neighborhood set M is the set of |M | nodes closest to the local node, according
to the proximity metric. This set is used to maintain the locality of Pastry. To find a
proximity node, Pastry includes an algorithm recursively measuring the round-trip delay
by periodically sending a probe message to each member of the leaf set of the currently
known node. Typically, the value of |M | and |L| are B or 2 × B. Figure A.5 shows the
routing table, neighborhood set and leaf set of the Pastry node ’431605’ with base B = 8,
and d = 6 digits.
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A.3 Viceroy

Viceroy [80] is an overlay network that provides features common to other overlay networks,
but also has two special ones, i.e., constant-degree and random routing. These two features
facilitate three advantages: no congestion, limited join and leave cost, and short lookup
path length. The constant-degree network limits the number of nodes changing their states
and the load incurred in joining and leaving the system. The random routing balances load
across all of the active nodes in the system. Although Viceroy employs a constant-degree
network, it preserves a logarithmic path length for lookup processes. Like Chord, Viceroy
maps a node object (node ID) and content object (key) on the same ring identifier space,
but this ring is a unit ring [0...1) and is split into logN levels. A (key, value) pair is mapped
to the closest node to the key (successor node). Unlike Chord, which uses m entry in a
finger table to route efficiently, Viceroy uses links between successors and predecessors on
the same ring level for short distance routes and uses links between levels for long distance
routes. These long distance routes are chosen randomly, with a particular bias toward
closer points. From these improvements on the single-level ring of Chord, Viceroy forms an
approximate butterfly network. Viceroy is formalized and proves that the routing process
requires only O(logN) with nearly optimized congestion. A routing table size is logN
entries. From a node joining or leaving the system, there are only O(1) nodes changing
their states, and the routing table is completely updated within O(logN) messages.

A.4 Kademlia

Kademlia [83] is a P2P overlay network that shares a 160-bit key space for both a node ID
and a key, and a (key, value) pair is stored on the node’s ID closest to the key. Kademlia
uses an XOR metric for the distance between points a and b in the ID space, i.e., d(a, b) =
a
⊕

b. The XOR metric is symmetric, i.e., d(a, b) = d(b, a) = a
⊕

b, so it precisely
balances load in routing and allows parallel routing to select the lowest latency path. XOR
is unidirectional, i.e., for any point x and distance d > 0, there is an exact point y such
that d(x, y) = d, so all lookups for the same key converge in the same direction. Each node
maintains a routing table called a k bucket. This routing table consists of the (IP Address,
UDP Port, Node ID) triples of nodes in which 2i to 2i+1 is far away from itself, for each
0 < i < 160, and these triples are sorted by time, i.e., the least recently accessed node is
stored at the head, and the most recently accessed node is stored at the tail. Kademlia
uses PING, STORE, FIND NODE, and FIND VALUE messages for its routing. To locate
the k closest nodes to a given node ID, node a ping n nodes from its closest k-bucket, then
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parallel sends FIND NODEs to the n nodes to find a node closer than the n nodes. To get
a (key, value) pair, a node sends FIND VALUEs to n nodes whose ID is closest to the key.

A.5 Tapestry

Tapestry [136] provides Decentralized Object Location and Routing (DOLR), which focus
on routing to mobile or replicated objects in the presence of instability in the underlying
network. In order to achieve this goal, objects are named by identifiers that are encoded
without knowledge of physical locations, and message routing uses only localized knowl-
edge. While other P2P systems, such as, CAN and Chord, fix the number and location of
contents and replicas by a DHT, Tapestry allows an application to place location pointers
of a replica throughout the network to facilitate efficient routing to the associated con-
tent. Tapestry’s identifier space is 160 bits with a hexadecimal digit (40-digit hexadecimal
identifier) by using SHA-1. Similar to Pastry, both node and content share the same Glob-
ally Unique Identifiers (GUID) and the prefix routing algorithm is used for routing. To
reach the destination in O(logbN), Tapestry routes to destination ID by forwarding to
the next node whose ID is progressively closer to the destination ID digit by digit, i.e.,
4 ∗ ∗∗ ⇒ 42 ∗ ∗ ⇒ 42A∗ ⇒ 42AD, where * denotes a wild-card.

To publish content in Tapestry, a server s, which stores content with GUID o, periodi-
cally publishes its content by routing a publish message to the root node or of content o.
Each node along the publication path stores a location pointer (o, s). If there are multi-
ple servers storing the same content o, each server must publish individually. The nodes
along the overlap publishing path of multiple servers maintain multiple location pointers
for replication. Figure A.6 shows the process by which two copies of content ’450383’ are
published to their root node ’45038-1’ by two servers ’45-4126’ and ’654218’.

Each node queries content o by routing a lookup message to root node or of the content.
Each node along the querying path looks for its local mapping point for content o. If the
mapping point of o is found, the lookup message will be redirected to the server directly.
Otherwise, the lookup message will be forwarded until it reaches the root node of o. With
this method, the requesting nodes closer to the path will cross the publishing path sooner,
and they will reach the content faster. Consequently, Tapestry can look up content more
efficiently. Figure A.7 shows several nodes sending lookup messages for content ’450383’.
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[73] F. Lesueur, L. Ḿe and V. V. T. Tong, “A Distributed Certification System for Struc-
tured P2P Networks”, IFIP International Federation for Information Processing
2008, Resilient Networks and Services, Springer-Verlag, D. Hausheer and J. Schon-
walder (Eds.), LNCS 5127, pp. 40-52, 2008.
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