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Abstract

The quantum properties of electromagnetic radiation at single photon level promise to

offer what are classically inaccessible. Single photon sources and detectors are therefore on

demand for exploiting these properties in practical applications, including but not limited

to quantum information processing and communication. In this thesis, I advance Super-

conducting Nanowire Single Photon Detectors (SNSPD) both in terms of models describ-

ing their operation, and their performance. I report on characterization, semi-empirical

modeling, quantum-optical modeling and detector tomography. The results provide more

accurate methods and formulations to characterize and mathematically describe the detec-

tors, valuable findings from both application and device points of views. I also introduce

the concept of Gated SNSPDs, show how to implement and how to characterize them.

Through series of theoretical and experimental investigations, I show performance advan-

tages of Gated SNSPDs in terms of dead time and dark count rate, important figures

for many applications like quantum key distribution. The ultimate limitations of gated

operation are also explored by physical modeling and simulation steps.
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Chapter 1

Introduction

Superconducting Nanowire Single Photon Detectors (SNSPDs) are the most practical cryo-

genic single photon detectors, because they provide outstanding performance in a small,

easy to operate cryocooler [1]. When a superconducting nanowire is biased close to its

critical current, photo-creation of a resistive hotspot followed by perturbation of the bias

current, results in a short macroscopic voltage pulse that signals the detection of a single

photon [2]. Quantum efficiencies up to 57% at 1550nm [3] and dark count rates well below

1Hz [4] have been reported. The timing jitter is extremely small [5] due to ultrafast photo-

response of the materials involved [6]. Furthermore, it is possible to resolve the number of

photons by spatially multiplexing many nanowires in different configurations [7, 8]. The

detectors are usually operated at 4.2K, although for the best performance they are often

cooled down to about 2.0K.

This thesis is twofold. First, we develop a semi-empirical model for SNSPDs. The

modeling is done based on the intuition that relies both on the present physical models

and the experimental results. We show the model can successfully translate the raw char-

acterization results into few parameters. The model is then evolved into a quantum-optical

version that gives the form of the Positive Operator-Valued Measure (POVM) of a SNSPD.

We show the resulting analytic POVM has a form that can explain the observed nonlin-

earities of a SNSPD under special operation conditions. The POVM is also tied to the

modern concept of detector tomography (DT), both to solidify its correctness and to show
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detector tomography performs well for single Photon Detectors (SPD) that significantly

deviate from ideally linear response. Provided the generality of the analytic POVM and

DT algorithm, the results are expected to be useful not only for the SNSPDs but also for

single photon detection in general.

In the second part, we introduce the concept of gated mode SNSPDs (GM-SNSPD) as

an approach to increase the maximum count rate without compromising most of the other

desirable features of performance, such as quantum efficiency. SNSPDs are conventionally

operated in free-running mode in which the detector should self-reset to superconducting

state following a photo-detection event. The dynamics of this self-reset process imposes

severe limitation on how fast the detector can be efficiently operated [9, 10]. The gated

operation can be used to speed up the SNSPDs in all applications that involve pulsed optical

sources while preserving the quantum efficiency and reducing the dark count rate achieved

with the free-running SNSPDs. We implement the concept and develop the methods

needed to characterize GM operation. The ultimate limitations of gated operation are also

explored by combination of experiments, physical modeling and numerical simulations.

Before describing the models and performance improvement, it is essential to review

SPDs, their performance features, and also the operation of SNSPDs. The reminder of this

chapter is devoted to these topics.

1.1 Overview of Single Photon Detectors

Photons are rarely at rest. From deep space to the earth, from the electrons around

nuclei to the eyes of animals and from a data center to our laptops, the photons are

rapidly moving to carry information. But they still offer more. Single photons are a

promising candidate for quantum information communication and processing [11]. These

are the technologies that can potentially lead to radical changes in the concepts of secure

communication and fast data processing. Although a classical communication channel

together with a one-time pad encryption algorithm can provide perfect secrecy, no secured

classical communication channel can be made for distributing the pad itself. The solution

is the quantum key distribution (QKD) and single photons are naturally the best choice for
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carrying the quantum information over large distances. The photons can also be exploited

to improve the performance of free space communication systems [12]. Decreasing the

carrier wavelength from microwaves to optical domain can lead to the realization of smaller

and lighter interplanetary or intersatellite links with increased data rates. The photons

carry useful information for debugging ever-changing high speed digital integrated circuits

[13, 14] . The MOSFETs of a VLSI chip emit faint optical pulses that are synchronous

with their switching events. The Pico-second Imaging Circuit Analysis (PICA) technique

uses the time resolved microscopic images of operating VLSI circuits to extract invaluable

debugging information. Fluorescence microscopy uses the photons to study the kinetics of

luminescence process in various objects ranging from quantum dots to single molecules [15].

These studies can potentially lead to the realization of true single photon and entangled

photon sources. A common point between all of the mentioned systems is the presence of

a SPD that offers the ultimate limit in detection sensitivity. Therefore, any development

in SPD technologies can benefit many fields of research and applications.

1.1.1 Performance Parameters

The performance of an ordinary optical detector is usually expressed in terms of its internal

and external quantum efficiencies, responsivity, noise equivalent power and some spectral

and speed related parameters. These parameters enable one to calculate the shape of the

electric response of the detector by knowing the temporal profile of the optical input to

the detector. But as the intensity of the input is set to smaller values, the output signal

will fade into the noise sooner or later. The unique character of an SPD is that even at

the smallest possible intensity - which is nothing more than the arrival of a quantum of

light - it keeps its electric response discriminable from the noise. This quantum counting

character makes it necessary to define new set of parameters that are suitable to describe

the operation of an SPD. The typical parameters are 1:

• Quantum Efficiency (QE) which is a wavelength and polarization dependant param-

eter. It specifies how efficiently the detector converts the incoming single photons to

1While the definitions here are rather conventional, they are by no means nor the only definition nor
the most accurate one.
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discriminated electric pulses. It is often defined as the ratio of the output photon

count rate to the input photon rate.

• Dark Count Rate (DCR) is the measure of the noise performance of an SPD. It is

the rate of the spontaneous electric pulses that is generated by a SPD in absolute

darkness.

• After Pulsing Probability. Some SPDs tend to make fault electric pulses for a short

period after a photodetection event. This is called after pulsing and it is described

in terms of its probability.

• Maximum Count Rate specifies how small the period between successive single pho-

ton detection events can be while the SPD is still keeping the events statistically

independent. Sometimes the maximum count rate is indirectly specified by defining

a dead time or by using rise and fall times of the electric response of the detec-

tor. However, the best criteria would be based on the statistical independence of

successive detection events.

• Timing Jitter is the measure of the timing resolution of the detector. It is determined

by measuring the full width at half of the maximum (FWHM) of the histogram of

delay between a sharp photo-excitation and photo-registration events.

There are also some broad categories that can help labeling SPDs. The simple SPDs

can only differentiate between the presence and absence of the photons. Photon number

resolved (PNR) SPDs can provide information about the number of photons that excite

the detector as well. In the same way, the energy resolved and polarization state resolved

SPDs can provide information about the energy and polarization state of the exciting single

photons. Free-running mode SPDs (FM-SPD) detect photons irrespective of their arrival

time. However, gated mode SPDs (GM-SPD) can only detect photons that arrive with in

pre-specified time slots.

In addition to the intrinsic performance of SPDs, there are other criteria that may

extremely enhance or deteriorate selection of a SPD for a certain application. The operation

temperature is perhaps the most important one. It is ranging from sub Kelvin to room
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temperatures for the present SPDs. The size of the active area of the detector, the size

and weight of the whole detection system, its power consumption, the complexity of the

readout circuits, the capability of being implemented in array form to provide imaging,

fragility of the detector and the cost are among the other important considerations.

1.1.2 Different Technologies

Apart from the eyes of animals, photomultiplier tubes (PMTs) have the longest history

of single photon detection [16]. They have been industrially produced for half a century

and they are now commercially available. H10330 is a thermoelectric cooled near infrared

(NIR) module from Hamamatsu [17]. It has quantum efficiency of 2% at 950 − 1700nm

and dark count rate equal to about 200KHz. Its timing jitter is 300ps FWHM and 4ns

is the sum of its rise and fall times. Micro channel plates (MCPs) are the other single

photon detectors that like PMTs use the photoelectric effect to convert the photons to

electric current. They consist of millions of conductive glass capillaries to perform electron

multiplication. Depending on the type of the photocathode used, their quantum efficiency

can reach 40% in 400−850nm but like PMTs they lose their efficiency at longer wavelengths

[18].

Single photon avalanche photodiodes (APDs) are the semiconductor based SPDs. They

are operated in digital or Geiger mode in which application of a bias well above their break-

down voltage makes them sensitive enough to detect single photons. The current in the

Geiger mode APD must be limited and the device should be reset after a detection event.

Advanced methods to achieve this include using an integrated active quenching and active

reset circuit [19]. These functions protect the APD from over current, over illumination

and also minimize the after pulsing probability. APDs are commonly fabricated using ei-

ther silicon or InGaAs/InP. Silicon APDs have their sensitivity restricted by the silicon

band gap and as the result are useful for wavelengths from visible to about 1µm. This is

while InGaAs/InP APDs can operate up to about 1700nm. Mentioning some independent

numerical values as the best figure of merits of present APDs is meaningless. This is be-

cause of the tight connection between the APD and its supporting circuits and also the

trade-offs that exist. We use two of the commercially available APD modules to provide
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some typical numerical values.

id100-20 is an actively quenched, thermoelectric cooled silicon APD module from

idQuantique [20]. It operates as a FM-SPD. The diameter of the active area of the de-

tector is equal to 20µm. Its quantum efficiency is 35% at 500nm and 4% at 900nm. The

DCR of ultra low noise grade is about 1Hz while the standard grade has a DCR equal to

60Hz. Typical values of timing jitter and dead time are 40ps FWHM and 45ns respectively.

This is while for having the motioned timing accuracy and also for avoiding excessive after

pulsing the time between successive detection events shouldn’t be less than about 1µs.

This limits the maximum count rate to about 1MHz although it can be increased to about

20MHz at the expense of more after pulses.

id210 is another product from idQuantique [20]. It is an actively quenched, thermo-

electric cooled InGaAs/InP APD module that can both operate as a FM or GM-SPD. For

FM operation, quantum efficiency is about 10% at 1200 − 1600nm while DCR ≈ 3KHz

and dead time ≈ 50µs. For GM operation with maximum 100MHz gating frequency and

1ns gate width, quantum efficiency is about 20% at 1200 − 1600nm while DCR ≈ 5KHz

and dead time ≈ 20µs. The timing jitter of the detector is about 200ps FWHM. The large

dead time needed to avoid excessive after pulses limits the maximum count rate to about

1MHz although the electronic circuitry allows 10MHz adjustment.

In addition to commercial products, there are research activities on APDs especially

in NIR in which the performance is poorer and telecom applications demand much better

SPDs. Germanium APDs have been studied to obtain better NIR performance at higher

gate frequencies [21]. Ge-Si APDs use Germanium as NIR photoabsorption region and

Silicon as the electron multiplier [22, 23]. NIR sensitivity and low after pulsing effect

is expected because of Germanium and Silicon respectively. InGaAs/InP APDs and their

supporting system are under research [24, 25, 26, 23]. Integrating Si SAPDs with their sup-

porting circuits using standard CMOS technology toward the goal of low cost SPD arrays

is under development [27, 28]. Integrating an optical amplifier with APD can potentially

lead to single photon sensitivity while the APD is operating in linear mode [29]. The

structure is hoped to provide sub nanosecond response with little after pulsing. HgCdTe

and InAlAs/InGaAs APD structures are under study to perhaps provide single photon

sensitivity in NIR while operating in analog mode [30]. Gating methods and circuits are
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also under investigation [31, 32, 33, 34].

The last available category of single photon detectors exploits superconductors as

the photo-detection element. These are called superconducting single photon detectors

(SSPDs). They fall into three main types: transition edge sensors (TESs), superconducting

tunnel junctions (STJs) and superconducting nanowire single photon detectors (SNSPDs2).

Kelvin or sub Kelvin operation temperature requirement is their main drawback compared

to PMTs and APDs. But their superior performance makes them attractive for specific

applications.

A transition edge sensor consists of a micrometer sized superconducting thin film which

is voltage biased close to its critical temperature. The absorption event leads to a change

in the current of the device by momentarily changing its temperature. The small change

in the current can then be sensed by using a chain of SQUID amplifiers. One of the most

successful demonstration of TESs is for a device made from 20nm thick Tungsten film

placed inside a resonant cavity [35, 36]. Its active area is 25µm×25µm and the operation

temperature is 125mK. The quantum efficiency is equal to 85-90% at 1550nm while the

DCR is negligibly small (about 1mHz). The device has photon number resolution up to

fifteen 0.8eV photons and also provides 0.12eV energy resolution. The main disadvantage

of it is its slow rise and fall times (100ns and 15µs respectively) that limit the maximum

count rate to about 20KHz. The timing jitter of a similar detector is reported to be 72ns

FWHM [37]. Using other materials including Titanium has lead to improved count rate

up to about 1MHz [38, 39].

In a typical superconducting tunnel junction the absorption of a photon changes the

current in a voltage biased junction by changing the concentration of quasiparticles in the

absorbing film. The integral of the current would be proportional to the number and energy

of the absorbed photons. STJs are mainly X-ray detectors but they can also be used in

visible and infrared range. Nb/Al STJs that operate at 370mK has been shown to have

quantum efficiency equal to 50% at 200 − 500nm [40]. Ta/Al STJ array with operation

temperature of 300mK provide QE equal to 50-70% at 330 − 800nm [41]. The energy

resolution of both of these devices is about 0.2eV at 500nm. However their maximum

2In some literatures SNSPDs are abbreviated as SSPD.
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count rate is not better than 10KHz.

The photodetection element of a superconducting nanowire single photon detector con-

sists of a meandering superconducting nanowire carrying a constant bias current close to

its critical current. A single photon deposits enough heat to create a hotspot that is not

superconducting. With the help of the bias current this can initiate a resistive bridge

across the nanowire with some probability. The resulting voltage spike signals the detec-

tion of a single photon. At operation temperature of 2.0K and for the devices that have

10µm×10µm, the quantum efficiency can be 25% at 1550nm while DCR is kept below

1Hz [3, 42]. The maximum count rate of the same devices is usually reported to be some

hundreds of MHz, but the numbers highly depend on the definition used. Maximum count

rate is also known to deteriorate with increasing active area. The timing jitter of SNSPDs

has been shown to be 29ps FWHM [5]. In spite of the attempts to show photon number

resolution and energy resolution of these detectors [43, 44], no significant accomplishment

has yet been reported for single element devices.

Although it is generally incorrect to write down some independent numbers to compare

the performance of different SPDs, but tables that can be found in literature help doing a

non-accurate but fast comparison [45, 46, 47]. It is usually true to say: nothing other than

necessity can weaken the preference of using an SPD with higher operation temperature.

The typical operation temperature of SNSPDs is 1 − 2 orders of magnitude higher than

TES and STJ detectors and 1 − 2 orders of magnitude less than PMT, MCP and APD

ones. Considering all of the mentioned points about the different SPDs; higher maximum

count rate, lower timing jitter, lower dark count rate and higher quantum efficiency at

NRI are among the points that can force selecting SNSPDs instead of higher temperature

alternatives. This is while preferring TESs to SNSPDs can be due to their intrinsic photon

number resolution, energy resolution and higher quantum efficiency at NIR. Except slightly

higher operation temperature, STJs don’t provide any advantage over TESs and SNSPDs,

so their application as a visible or infrared single photon detector doesn’t seem to be so

probable.
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1.2 Superconducting Nanowire Single Photon Detec-

tors (SNSPDs)

Fig. 1.1 (a) shows an image of a typical SNSPD. The ultrathin superconducting film is

patterned to form narrow strips. Many strips are serially connected to cover a larger active

area. The device is cooled down to temperatures well below the critical temperature of the

superconducting film and a bias current close to the critical current is applied to the device.

The absorption of the photons by the superconductor may lead to a voltage pulse on the

device terminal. The pulse after 40dB of amplification by a room temperature amplifier

is shown on Fig. 1.1 (b). In this section we try to use the results of the previous research

activities to construct a systematic view of SNSPDs. This perspective will be the basis of

our work in the next chapter.

In this view, a three step sequential process is responsible for generating the response

pulse. The first is the mechanism that governs the absorption of the single photons by the

superconducting strips. The absorbed photons can lead to a photoregistration event (rising

edge of the response pulse) by initiating a photodetection mechanism. A rest mechanism is

also responsible for the disappearance of the generated pulse (falling edge of the response

pulse).

(a) (b)

8.0 (ns)

10 (µm) 1 (µm)
Gold

N
bN

10.0 (mV)

Figure 1.1: (a) Image of a typical SNSPD chip. 4nm of NbN is deposited on Sapphire and

then patterned in a meander line form to make a 10µm×10µm active area. (b) Measured

transient response of an SNSPD after 40dB amplification by a room temperature amplifier.
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1.2.1 Photoabsorption Mechanism

The absorption mechanism is important because the photons can be reflected or trans-

mitted instead of being absorbed by the superconducting strips. This limits the ultimate

quantum efficiency of the detector. The absorption efficiency can be calculated based on

electromagnetic simulations. Yan et al. [48] and Semenov et al. [44] have used HFSS

and FEKO respectively to calculate the absorption efficiency. The goal was justification

of the measured reduction in quantum efficiency at higher wavelengths. Anant et al. [49]

have conducted a more rigorous research. Doing the electromagnetic based simulations

with COMSOL and directly measuring the reflected and transmitted optical powers by the

superconducting strips in some different configurations, they were able to directly compare

the results of simulations with the results of measurements. They confirmed the correctness

of the simulations at a single wavelength equal to 1550nm. The present good agreement

between the theory and practice suggests a complete understanding of the photoabsorption

mechanism has been achieved. This understanding has been exploited to design SNSPDs

integrated with cavities [3], optical antennas [50] and waveguides [51]. These detectors can

potentially have higher quantum efficiency, lower dark count rate, higher speed and even

spectral resolution [52].

1.2.2 Photodetection Mechanism

The photodetection element of a SNSPD is made from a superconducting material which

has the remarkable property of having absolutely zero resistivity below a critical temper-

ature (TC). This happens because below TC the current is carried by pairs of electrons

called Cooper pairs. The Cooper pairs which are formed because of the presence of a

phonon mediated attractive force between the pairs of electrons, are able to conserve their

kinetic energy. This justifies the presence of persistent current in superconductors and

also explains why current carrying superconducting wires can store energy not only in the

magnetic form, but also in the form of the kinetic energy of their current carriers (the latter

is electrically modeled by defining a kinetic inductance). Compared to a normal metal, the

other feature that the Cooper pairs bring to a superconductor, is the presence of a non zero

minimum energy that is required to excite a Cooper pair and break it into two non-coupled
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electrons, so called normal electrons or quasiparticles. This means that there is an energy

gap for exciting carriers of current to quasiparticles. The gap which happens to be so small

(on the order on some meV) makes the superconductors a reasonable material choice for

making sensitive infrared detectors.

Fig. 1.2 illustrates the photodetection mechanism of SNSPDs. The absorption of a

single photon makes an energetic quasiparticle by breaking a Cooper pair. The generated

quasiparticle is considered energetic, because the energy of a visible to infrared photon is on

the order of eV, while the pairing energy of the Coopers pairs is on the order of meV. This

energetic quasiparticle can itself break further Cooper pairs and thus increase the local

concentration of quasiparticles. The increased local concentration leads to the diffusion of

the excess quasiparticles to the outer areas. The excess quasiparticles can also lose their

energy by the cold substrate. Putting all of these together, the equation to describe the

temporal and spatial concentration of quasiparticles would be [6, 53]:

∂C(r, t)

∂t
= D∇2C(r, t)− C(r, t)− C0

τ
+

1

M(t)

∂M(t)

∂t
C(r, t) (1.1)

where C(r, t) is the concentration of quasiparticles, D is the diffusivity of the normal

electrons, τ is the quasiparticle to substrate relaxation time, C0 is the quasiparticle con-

centration for non-excited superconducting film at a temperature equal to the substrate

temperature and M(t) is a multiplication factor that describes the Cooper pair breaking

by energetic quasiparticles. Solving the equation for a 2D film and assuming supercon-

ducting film is a normal metal wherever C(r, t) is equal to C0 at the critical temperature,

the diameter of a normal circle (so called hotspot) can be calculated. The hotspot has an

initial growth and a later annihilation. Because the current prefers to pass through the

superconducting parts, the presence of the hotspot increases the current density on the

sidewalks, see Fig. 1.2 (b). Assuming the current is uniformly and instantly redistributed

in the superconducting areas around a hotspot, it is easy to calculate the current density

in the sidewalks. If at any moment this current density become greater than the critical

current density of the superconducting film at temperature equal to the substrate temper-

ature, a resistive barrier will be formed across the superconducting strip. This can lead to

a voltage pulse and justifies the photodetection mechanism of the SNSPDs.
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Figure 1.2: Simulation of creation, growth and annihilation of a hotspot based on Eq. (1.1).

All the material parameters are from [6]. The arrows show the density of super current.

The times are measured from the photon absorption.

The photodetection mechanism as described above was first formulated by Semenov

et al. [6] in 2001 to predict the possibility of using superconducting nanowires to make

single photon detectors. It was right after that when the first SNSPD was experimentally

demonstrated by the same group [54]. However the later characterization results often lead

to contradictory results.

At a fixed wavelength and temperature, the calculations suggest 100% of photodetection

probability for the bias currents above a threshold value and no chance of photodetection

for biases less than the threshold. Fig. 1.3 shows a typical measurement of quantum

efficiency versus bias current. The similarity between the prediction and measurement is
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Figure 1.3: Measured quantum efficiency and dark count rate versus bias current normal-

ized to the critical current [55]. The detector is made from 4nm NbN film deposited on

sapphire and patterned in the form of 120nm wide strips. The system quantum efficiency

is defined later in Eq. (2.21).

not perfect. At a fixed bias current and temperature, the calculations suggest 100% of

photodetection probability for the wavelengths less than a threshold value and no chance

of photodetection for wavelengths higher than the threshold. This is because the maximum

hotspot diameter decreases with the wavelength. However, typical measurements (see [42]

for example) show this is not the case.

Fig. 1.4 shows the calculation of the diameter of hotspot versus time at different tem-

peratures for a 1eV incident photon. It predicts a reduction in the maximum diameter of

hotspots as the temperature goes down. This suggests the quantum efficiency should be

higher at a higher temperature. But the measurement results [42] show the dependency of

quantum efficiency on the temperature is exactly the reverse of this. Referring to Fig. 1.4,

the maximum hotspot diameter for a 1eV photon is about 11nm at 2K. This means a de-

tector made from 120nm wide strips shouldn’t have any sensitivity to the 1eV photons for
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Figure 1.4: Calculation of the hotspot diameter versus time for different substrate tem-

peratures based on Eq. (1.1). All the material parameters are from [6] which is for NbN on

Sapphire. The thickness of superconducting film was assumed to be 4.0nm and the energy

of the photon was 1eV.

bias currents less than (120− 11)/120 = 91%. This is while the measurements of Fig. 1.3

show significant response for biases less than 91%. In the same way one can conclude the

detector shouldn’t be sensitive to 5µm photons. This clearly contradicts the measurements

of [56].

An alternative photoresponse description also exists and is regarded as a refinement

of the hotspot picture [57]. Equation (1.1) is assumed to be valid. The number of quasi-

particles in a slab with the length equal to the coherence length is calculated with the

knowledge of spatial and temporal distribution of quasiparticles. Having the number of

quasiparticles in the slab, the number of Cooper pairs in the same volume is determined.

With the knowledge of applied current and the number of Cooper pairs the average veloc-
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ity of Cooper pairs can be calculated. If this velocity exceeds the critical velocity at the

substrate temperature then the superconducting slab will switch to the normal state and

a voltage pulse will appear on the device terminal. However, this refined hotspot model

can also only provide some qualitative agreements with the results of experiments [57].

In spite of the contradictions, the mentioned qualitative descriptions of the photore-

sponse mechanism has remained the most common way to explain the operation principle of

SNSPDs since 2001 [58, 59, 4, 60, 61, 62, 42, 45]. This is while the presence of contradictions

is well understood and accepted. ”At present there is no comprehensive model describing

the resistive response of the thin and narrow superconducting strip to the absorbed pho-

ton although in our previous papers we already discussed a simple model describing SSPD

Photoresponse.” Golt’sman wrote in 2005 [60].

The presented models and contradictions clarifies that in contrast to the photoabsorp-

tion mechanism a good understanding of the photodetection mechanism of SNSPDs has

not yet been achieved. This is while photodetection is the most important feature of any

photodetector and its understanding should be regarded as a fundamental requirement for

making engineered SNSPDs. This has been our initial motivation of our semi-empirical

modeling work in chapter 2.

1.2.3 Reset Mechanism

Since the initial proposal of SNSPDs till 2006, it was believed that the maximum count

rate of SNSPDs is at least on the order of some GHz. This was because the timing

values in the hotspot model are all on the order of tens of picoseconds (see the times in

Fig. 1.2). There were also some supporting experiments [63]. But Kerman et al. have

rigorously proved in 2006 that because of the presence of a reset mechanism the typical

maximum count rate of SNSPDs is much lower [64]. Using two faint optical pulses with

a variable delay between them, they measured the probability of detecting both of the

pulses versus pulse separation. The results confirmed for keeping the quantum efficiency

constant, depending on the total length of the superconducting strips, the typical count

rate shouldn’t be higher than a few hundreds of MHz. They also modeled a SNSPD as

an inductor with kinetic origin placed in series with the parallel connection of a switch

15



0 10 20 30 40 50
time (ns)

10 -9

-8

10 -7

10 -6

10
-5

10Q
ua

nt
um

 E
�

ci
en

cy
 (a

.u
.)

RL
LK

H
ot

sp
ot

DC

Nanowire

(a) (b)

Figure 1.5: (a) Electrical model of a SNSPD as described in [64]. (b) Momentary reduction

in quantum efficiency following a photodetection event. The circles are measured points

at different bias currents (from top to bottom 13.28, 14.25 and 15.23µA) and the curves

are calculations based on the model. (We have used autocorrelation methods as will be

discussed for Fig. 4.3 (a), to measure this.)

(hotspot) and a normal state resistor (see Fig. 1.5). The photodetection event would be

equivalent to a temporary opening of the switch. When the switch is open the current

through the SNSPD is decreased and at the same time the voltage on the load resistor

is increased with a time constant of τr = Lk/(Rn + 50) (Assuming the load resistance is

a standard microwave load of 50Ω). The closure of the switch reverses the direction of

the change of the mentioned current and voltage, and the new time constant would be

τr = Lk/(50). This simple model is very successful in predicting the pulse shape of the

detector (Fig. 1.1 (b)). It justifies why the fall time is much longer than the rise time.

Also it explains the variation of count rate versus optical pulse separation as the result of

variation of current through the superconducting strips at the moment of second optical
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pulse arrival (see Fig. 1.5 (b)).

The fall time of voltage pulse from the detector or equivalently the rise time of the

current through SNSPD can be decreased to increase the maximum count rate by increasing

the 50Ω microwave load resistor. However, Yang et al. in 2007 proposed a thermo-electrical

model to conclude the maximum count rate cannot be increased a lot by increasing the

termination resistor [65]. The electrical model is something similar to the one in Fig. 1.5

(a), and the thermal part is a typical 1D heat transfer model. After a photodetection

event a resistive barrier is created across the superconducting strip. The current that

passes through the strip dissipates electrical energy in the resistive section. This expands

the length of the resistive section. At the same time the current through the strip drops.

The combined action of the increased size of resistive section and decreased current may

lead to a return to the superconducting state or a latching in the resistive state. The

simulation shows the latching occurs for larger termination resistors. So the maximum

count rate cannot be increased a lot in this way because the device will latch. This has

also been experimentally confirmed [65]. Also later investigations provided more insight

into this phenomena [9, 10].

Although more accurate models can also be developed, the limitation on the maximum

count rate seems to be generally accepted. Improving this limitation has been our moti-

vation for proposing and experimentally demonstrating gated mode operation of SNSPDs.

We’ll show in gated mode the maximum count rate can be higher by more than one order

of magnitude compared to free-running operation. This will be described in more detail in

chapter 4.

17





Chapter 2

Semi-empirical modeling of SNSPDs

Different models for justification of the characters of SNSPDs were mentioned in the pre-

vious chapter. Coming from different underlying physics and also justifying the operation

of the device at different moments after the arrival of photons, there is naturally little

interrelationship between these models. But can the photodetection mechanisms be stud-

ied separately from the other ones? The fact is all of these physical phenomena have a

collaborative effect in occurrence of the measurable response of the device. For instance,

dark count, photoresponse and the kinetic inductance have very different physical origins.

But the photoresponse at time t is dependent on a dark count event at time t − ∆t and

the degree of dependence is determined by the speed of the device which itself is a function

of kinetic inductance. So for correctly interpreting the results of measurements, a unified

model for the operation of SNSPDs is required.

Here we present the results of our mathematical approach to model a SNSPD as a

unique entity with photons as its input and the electrical pulses as its output. The chapter

starts with developing the model and derivation of different useful relations. It will continue

to an explanation of the supporting experiments and discussions. Much of this work has

been published in [66, 55, 67].
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2.1 Model Development

Modeling the photodetection mechanism is the first step to construct our mathematical

structure. The photons that are absorbed by the strips of superconductor make a perturba-

tion that can lead to formation of a resistive barrier. The exact physics of the perturbation

is still unknown. It may be in the form of a hotspot as explained in the hotspot model

[6]. This is while the large jitter and average time delay between photon absorption and

electric pulse generation [68] suggest the process of conversion of an absorbed photon to

an electric pulse should be viewed as a random process. A method to describe such a

process is to assume the absorbed photon initiates a resistive barrier generation rate func-

tion GR(t). Thus GR(t)∆t would be the probability of a resistive barrier generation in

the time interval ∆t and the integral of GR(t)∆t over the total operational time would be

the intrinsic quantum efficiency of the detector. Working with GR(t) through all of the

modeling steps seems to be tedious. So we do an approximation by defining an average

perturbation life time τh and a constant resistive barrier generation rate GR such that

GR τh would be equal to the integral of GR(t)∆t over the total detection time interval.

We call τh the average hotspot life time to be consistent with the previous models. But

it is generally describing the life time of the perturbation that can potentially lead to an

electric pulse on the terminals of the device.

Being equipped with the concepts of τh and GR, we can now start adding other exper-

imentally observed features of the SNSPDs to the model. When the device is in absolute

darkness, no photo-induced perturbation exists on the superconducting strips. In this case

the rate of electric pulse generation can be modeled by defining a rate G0 which describes

the Dark Count Rate of the device. When exactly one photo-induced perturbation exists

somewhere on the superconducting strip, the total rate of electric pulse generation by the

device will be enhanced to a value more than G0. This enhancement in the total GR can be

included in the model by defining G1 such that G0 +G1 will be the total GR of the device

in such a condition. Adding another perturbation on the strip should enhance the total

GR to a value at least equal to G0 + 2G1. But the experiments suggest the enhancement

can be even more because of the nonlinearities of SNSPDs [58]. This can also be modeled

by defining G2 such that G0 + 2G1 + G2 will be the new total GR. Continuing the same
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line of reasoning it is possible to write

GR(nh) =

nh∑
m=0

(
nh
m

)
Gm (2.1)

where GR(nh) is the GR of a device with exactly nh photo-induced perturbations on

its superconducting strips, G0 is the GR when no photo-induced perturbation exists and

other Gm values describe the enhancement in total GR when the number of simultaneously

present perturbations increases from m − 1 to m. Because for large values of m there is

negligible difference between m− 1 and m, it can also be safely assumed

Gm = 0 : m ≥M (2.2)

where M is the number of Gm values that have significant effect on determining the total

GR.

The number of photo-induced perturbations can be determined by assuming the optical

source is a laser that generates photons with Poisson distribution and also by considering

all of the losses between the source and absorbed photons as stationary ergodic random

processes that are independent of the past times. Under these conditions the nh at time t

can be described by a Poisson distribution with a mean equal to

nh(t) = 10
(α1+α2+α3)

10

∫ t

t−τh

PS(t− τd)
hυ

dt (2.3)

where α1 is the loss1 that is added manually for characterization purposes, α2 is the coupling

loss between the input of the detector system and the small active area of the SNSPD, α3

is the loss due to limited absorption of the photons by the superconducting strips, PS is the

power emitted by the source, τd is the average time delay between the emission of photons

by the source and their absorption by the strips and τh as defined previously is the hotspot

life time. Here it is implicitly assumed that the life time of different processes that are

described by different Gm values are all the same. The total resistive barrier generation

rate at time t can now be written as

GRt(t) =
∞∑

nh=0

GR(nh)
[nh(t)]

nh × e−nh(t)

nh!
(2.4)

1The losses in this chapter are specified in dB.
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Combining Eq. (2.1), Eq. (2.2) and Eq. (2.4) one can find:

GRt(t) =
∞∑

nh=0

nh∑
m=0

(
nh
m

)
Gm

[nh(t)]
nh × e−nh(t)

nh!
=

M−1∑
m=0

Gm
[nh(t)]

m

m!
(2.5)

Equation (2.5) gives the total generation rate of the detector at time t but this is not

the value that can be measured directly from the device terminal. The SNSPDs like any

other kind of SPD has a dead time during which the device after a detection event has

smaller probability of detecting another incoming photon. For the present detectors this

has been shown to be due to the kinetic inductance of the nanostrips [64]. We model this

effect by defining an average dead time τdt during which the detector has no probability of

detecting another photon. So the total measurable count rate of the device would be

CRt(t) = GRt(t)

(
1−

∫ t

t−τdt
CRt(t)dt

)
(2.6)

The equations (2.3), (2.5) and (2.6) can be used to calculate the measurable count

rate of SNSPDs for any arbitrary input laser power.

2.1.1 Simplified Equations for CW Laser

The equations of the model can be solved easily when the light source is a CW laser. Under

this condition the following equations will relate the measured count rate to the power of

the laser.

nh =
PSτh
hυ

10
(α1+α2+α3)

10 (2.7)

GRt =
M−1∑
m=0

Gm
[nh]

m

m!
(2.8)

CRt =
GRt

1 +GRtτdt
(2.9)

At very high attenuations where the average of nh and as a result GRt τdt is so small,

CRt will be independent of τdt and equal to GRt. This is reasonable because when the
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device is excited at very low rates, the actual speed of it shouldn’t effect its measurable

count rate. Under the same condition and depending on the values of the different sum-

mation terms in Eq. (2.8), any of the Gm mechanisms can be the dominant photodetection

mechanism. That means simply setting PS to very small values doesn’t guarantee the

measured counts be the result of single photon detection. At very high optical intensities

where GRt τdt becomes much greater than one, the measured count rate of the device will

be equal to 1/τdt and independent of the intensity of the light source. This shows the dead

time limited operation of the detector. We also note that in the intermediate optical inten-

sities the limited speed of the detector affects the measured count rate. Do the nonlinear

changes of the count rate with optical intensity mean the efficiency of converting photons

to electric pulses is changing? No, the change is just because of the speed limitation of

the detector or maybe because of the presence of G2, G3 and etc. These points clarify

how the model which converts the results of independent measurements to a single set of

parameters can be important for correct interpretation of the results of experiments.

2.1.2 Simplified Equations for Wide Laser Pulses

We also tried to approximate the equations of the model for the pulsed excitation. De-

pending on the relative magnitudes of laser pulse duration and the hotspot life time, two

distinct cases as shown in Fig. 2.1 are considered. For the wide laser pulse case the dura-

tion of the laser pulse is much greater than the hotspot life time. So the time of optically

enhanced resistive barrier generation rate would be equal to the duration of laser pulse

itself. For the narrow laser pulse case this time would reduce to the minimum possible

value which is equal to hotspot life time. In this section equations for the wide pulses are

developed and the next section covers the narrow case.

When the light source is a pulsed laser with repetition rate FS and duration tS that

satisfies the following conditions, the equations of the model can be further simplified.{
τh << tS << τdt

FS <<
1
τdt

(2.10)

Approximating the laser pulse by a rectangular intensity profile with duration tS and
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Wide
Laser Pulse
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GRt ≠ G0 GRt ≠ G0

τh

Figure 2.1: For the wide laser pulse case the duration of the laser pulse is much greater

than the hotspot life time. So the time of optically enhanced resistive barrier generation

rate would be equal to tS. For the narrow laser pulse case this time would reduce to the

minimum possible value which is equal to hotspot life time.

neglecting τd which is not important for our present calculations, the Eq. (2.3) can be

approximated as:

nh(t) ∼=

{
nhp = Nsp

τh
tS

10
(α1+α2+α3)

10 0 ≤ t ≤ tS

0 Otherwise
(2.11)

where nhp is the average number of simultaneously active perturbations or hotspots during

the laser pulse and NSP is the average number of photons emitted by the laser per pulse.

Equations (2.11) and (2.5) can now be combined to yield

GRt(t) ∼=

{
GRtp =

∑M−1
m=0 Gm

[nhp]
m

m!
0 ≤ t ≤ tS

G0 Otherwise
(2.12)

where GRtp is the rate of resistive barrier generation during the times when the supercon-

ducting strips are excited by the laser pulses. Equation (2.6) can be solved for the recent
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GRt under the conditions that are written in Eq. (2.10). The result will be

CRt(t) ∼=

{
CRtp = GRtp exp(−GRtp t) 0 ≤ t ≤ tS

G0

1+G0τdt
Otherwise

(2.13)

where CRtp is the count rate of the device during the times when it is excited by the laser

pulses. The average of CRt(t) as written in Eq. (2.13) is equal to

CRt
∼=

G0

1 +G0τdt
+ Fs [1− exp (−GRtptS)] (2.14)

Equations (2.11), (2.12) and (2.14) can predict the outcome of an experiment under

the assumed conditions. High intensity of the source with proper Gm values can make

GRtptS much higher than one which according to the Eq. (2.14) leads to a total average

count rate that is saturated to the repetition rate of the laser. Faint laser pulses can make

GRtptS much less than one which leads to a linear relation between GRtp and CRt. The

rather complicated relation between NSP and CRt again shows why a model like the one

developed here is needed to acurately extract performance parameters of the device from

the measurements.

2.1.3 Simplified Equations for Narrow Laser Pulses

The general model can also be simplified for a light source that generates narrow laser

pulses (see Fig. 2.1) with the following conditions.{
tS << τh << τdt

FS <<
1
τdt

(2.15)

In this case the laser pulses can be viewed as impulses that include NSP photons on average.

Neglecting td the Eq.(2.3) is approximated as

nh(t) ∼=

{
nhp = Nsp 10

(α1+α2+α3)
10 0 ≤ t ≤ τh

0 Otherwise
(2.16)
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where nhp is the average number of simultaneously generated perturbations per laser. In

exactly the same way that we derived Eq. (2.13) for the case of wide laser pulses, it is

possible to find:

GRt(t) ∼=

{
GRtp =

∑M−1
m=0 Gm

[nhp]
m

m!
0 ≤ t ≤ τh

G0 Otherwise
(2.17)

CRt(t) ∼=

{
CRtp = GRtp exp(−GRtp t) 0 ≤ t ≤ τh

G0

1+G0τdt
Otherwise

(2.18)

where GRtp is the rate of resistive barrier generation during the time equal to th after the

laser excitation and CRtp is the corresponding total count rate. Finally the average total

count rate is found to be

CRt
∼=

G0

1 +G0 τdt
+ Fs [1− exp (−GRtpτh)] (2.19)

Equations (2.16), (2.17) and (2.19) can be used to calculate the result of an experiment

for the assumed conditions. Comparing Eq. (2.11) with Eq. (2.16) , it is possible to see

an enhancement in nhp equal to th/tS for the narrow laser pulse case. This can lead to

higher CRt which is reasonable because of the nonlinear behavior2 of the detector. We also

pay attention that both of the Eq. (2.14) and Eq. (2.19) approach the same value of CRt

for faint laser pulses and under the assumption that G1 is the dominant photodetection

mechanism. This is again rational because when just a single photon is present in the

system, the exact time that it excites the detector shouldn’t affect the total count rate.

2.1.4 Equation for Dark Count Rate

The dark count rate (DCR) is determined by measuring the total count rate of the device

when the intensity of the light source is set to zero. Under this condition, Eq. (2.4) gives

a fixed total resistive barrier generation rate equal to G0 and then Eq. (2.6) is used to find

DCR =
G0

1 +G0 τdt
(2.20)

2Such nonlinear effects are absent in the standard description of an ideally linear single photon detector.
However our model formulates these effects and discussions highlight the importance of considering them.
This would be discussed in more detail in the next chapter.
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The equations of CW laser case can also be used to calculate DCR. This gives a value

exactly the same as Eq. (2.20). If instead, equations of either of the pulsed laser cases be

used to calculate the DCR, the result would be the Eq. (2.20) plus an additional term.

These additional terms are all negligibly small. This is because a detector for being named

as a detector should have G0 τdt less than one. This fact together with Eq. (2.10) or

Eq. (2.15) ensures G0 tS << 1 and G0 τh << 1. This means the second term of Eq. (2.14)

and Eq. (2.19) can be approximated as FS G0 tS and FS G0 τh respectively, and both of

these expressions are much less than DCR. It is also worth mentioning that the value of

DCR is less than G0. This is simply because during the measurement there are some dead

times when the detector cannot make more electric pulses.

2.1.5 Equations for Quantum Efficiency

A widely accepted definition of quantum efficiency (QE) and system quantum efficiency

(SQE) of a SNSPD is based on the measurement of total count rate of the device on a long

period of time while the average optical power is kept constant. It is also common to do

the measurements under low intensity optical illumination. We therefore define QE and

SQE as

QE ≡ SQE

10(α2
10 )
≡ CRt −DCR

10(α1+α2
10 ) ∫ t

t−1
Ps(t)
hυ

dt
(2.21)

For CW laser and under low intensity condition where the GRt tdt is much less than

one, the equations (2.7)), (2.8), (2.9) and (2.21) can be used to find

QE = 10
α3
10

M−1∑
m=1

Gmτh
m!

[
PS τh
hυ

10(α1+α2+α3
10 )

]m−1

(2.22)

For wide laser pulses and under low intensity condition where the GRtp tS is much less

than one, the equations (2.11), (2.12), (2.14) and (2.21) are used to get

QE = 10
α3
10

M−1∑
m=1

Gmτh
m!

[
Nsp

τh
tS

10(α1+α2+α3
10 )

]m−1

(2.23)
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For narrow laser pulses and under low intensity condition where the GRtp th is much less

than one, the equations (2.16), (2.17), (2.19) and (2.21) are combined to yield

QE = 10
α3
10

M−1∑
m=1

Gmτh
m!

[
Nsp 10(α1+α2+α3

10 )
]m−1

(2.24)

There is a nice repeated pattern in equations (2.22) to (2.24). In all of them the

expression inside the bracket is equal to the average number of simultaneously active per-

turbations or so called hotspots during a time interval equal to the perturbation life time.

We also note that only the first term in the summation is always independent of the in-

tensity of the light source and this term may or may not be the dominant factor that

determines the QE as defined by Eq. (2.21).

QE is a useful parameter only if it is independent of the optical excitation. Equations

(2.22) to (2.24) show for nonlinear detectors QE is not sufficient and a new set of pa-

rameters are needed to describe their operation. This is addressed in our work in next

chapter.

2.1.6 Modeling the Intrinsic Timing Jitter

A very narrow laser pulse that excites the SNSPD at t = 0, can potentially lead to the

formation of a resistive barrier on the superconducting strip during a limited time after its

absorption. The probability distribution function of the times when the resistive barriers

are generated determines the intrinsic jitter profile of the detector.

The narrow laser pulse means equations (2.16) to (2.18) should be used in this case.

Equation (2.18) can be interpreted as the measurable jitter profile of the detector. As-

suming negligible DCR and faint laser pulses for which GRtp τh is much less than one,

Eq. (2.18) predicts a rectangular measurable jitter with duration equal to τh. This is while

the measurements show a Gaussian jitter shape. The source of this error is in the approxi-

mation that we did in the beginning of the modeling where GR(t)∆t was approximated by

GR τh. For the present case this simplifying approximation can be relaxed without losing

compatibility with the previous equations. Equation (2.17) is our starting point to apply
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the timing parameters to the model. It gives a rectangular total generation rate versus

time. We replace this equation by the following function.

GRt(t) ∼=

 GRtp(t) = G0 + τh(GRtp−G0)

τσ
√

2π
exp

[
−(t− τh2 )

2

2τ2
σ

]
0 ≤ t ≤ τh

G0 Otherwise
(2.25)

The choice of Gaussian function is because of the results of jitter measurements of this

type of detectors. It will be also shown that the measurements suggest τσ is much smaller

than τh. Exploiting this fact, we have chosen the normalizing factors such that the integral

of Eq (2.25) from zero to τh be equal to the same integral of Eq. (2.17). That means,

as physically expected, by replacing Eq. (2.17) with Eq. (2.25) the total probability of a

resistive barrier generation will not change. Equation (2.25) should now be inserted back

into Eq. (2.6) to find the CRt(t). The result is

CRt(t) ∼=

{
CRtp(t) = GRtp(t) exp

[
−
∫ t

0
GRtp(t)dt

]
0 ≤ t ≤ τh

G0

1+G0τdt
Otherwise

(2.26)

The integral of Eq. (2.26) from zero to τh gives the probability of generation of a resistive

barrier after a laser excitation. Carrying out the algebraic work, one obtains a value that

is equal to the coefficient of FS in Eq. (2.19). This ensures the previous equations for

narrow laser pulse are still valid and can be viewed as simplified but accurate replicas of

the present equations.

Equation. (2.26) is now the measurable jitter profile of the SNSPD. When GRtp τh is

much less than one, Eq. (2.26) predicts a perfectly Gaussian measurable timing jitter. As

GRtp τh is increased the measurable jitter profile will be squeezed from the right side and

the mean point will be shifted from τh/2 toward smaller values. Finally for very intense

lasers that GRtp τh is very large, the measurable jitter profile will approach an impulse near

t equal to zero. This is physically reasonable because the intense laser can start very large

number of random processes immediately after getting absorbed by the superconducting

strips. So the total chance of generating a resistive barrier during initial steps after the

photoexcitation increases which itself means lower jitter and lower average delay. We note

that the measurable timing jitter as can be seen from Eq. (2.26) is different from the
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intrinsic photodetection timing jitter of the detector as characterized by τσ in Eq. (2.25).

It is also worth mentioning that the measurable timing jitter as calculated here should be

regarded as the ultimate timing jitter that can be measured in an ideal setup. In a practical

setup other sources of jitter, specially the one that is associated with the noise and limited

rise time of the amplifiers, should also be considered for interpreting the measured results.

2.1.7 Calculation of the Average Time Delay

According to Eq. (2.25), the intrinsic average delay for generating a resistive barrier is

equal to τh/2. However the detector does not have a zero dead time and this fact affects

the average delay that can be measured from the device terminal. Noting CRtp(t).dt is the

probability of a click between t and t+ dt, the measurable average delay can be calculated

as

τdealy =

∫ τh
0
CRtp(t)tdt∫ τh

0
CRtp(t)dt

=

∫ τh
0
CRtp(t)tdt

1− exp (−GRtpτh)
(2.27)

where CRtp is given by Eq. (2.26) and GRtp is given by Eq. (2.17). For GRtp τh much

less than one, Eq. (2.27) will reduce to τh/2 as expected. For GRtp th much higher than

one, paying attention to the explanations following Eq. (2.26), it can be concluded that

the measurable average delay will approach to zero.

We have shown in the previous section that the Eq. (2.18) should not be trusted for

timing calculations. But here we want to use it to calculate the measurable average time

delay. This result that will be used just for comparison would be

τdelay ≈ τh

1
GRtpτh

−
(

1 + 1
GRtpτh

)
exp (−GRtpτh)

1− exp (−GRtpτh)
(2.28)

Figure 2.2 shows a plot of this equation. We pay attention that the behavior of the

curve is the same as what is explained above for Eq. (2.27). GRtp τh is in fact the average

number of resistive barriers that are expected to be generated along the nano strips of the

detector as the result of a laser pulse excitation. When this number is much less than

one, either one or zero random processes (resistive barrier generation) will be initiated by

a laser pulse. So the average delay would be equal to τh/2. But simultaneous initialization
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Figure 2.2: The average time delay normalized to the hotspot life time versus GRtp τh

calculated using Eq. (2.28).

of more random processes at higher GRtp τh leads to a reduction of the average delay.

The experimental confirmation of this mathematical conclusion can be used to verify the

correctness of the initial assumptions that the model was made on. This would be the

subject of the subsection 2.4.4 of this chapter.
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2.2 Experimental Setup

Figure 2.3 illustrates the block diagram of the setup we used to perform experimental

characterization of the SNSPD [66]. The active area of the SNSPDs used in this work is

made from 4nm thick NbN superconductor film patterned in meander line shape with a

120nm line width and a filling factor of 60%. The total active area is 10µm×10µm and the

substrate is Sapphire. The device which is fabricated by Scontel Co., Moscow, Russia is

shown in Fig. 1.1 (a). The SNSPD is installed in a fiber coupled cryogenic package as shown

in Fig. 2.4. A hole exists at the center of the base of the package, right below the active

area of the device. A microscope objective lens together with a CCD camera captures a

magnified image of the active area through the hole. An infrared LED is initially used to

find the right position of the center of the active area. Then the fiber is installed on the

cover of the package. Shining the fiber with a laser and by using the hole and imaging

system to observe the location of bright spot on the SNSPD, the position of the spot is

adjusted. The optical alignment is done when the bright spot overlaps with the active area

as far as possible.
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Figure 2.3: Schematics of the experimental characterization setup.
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A Packaged SNSPD

Electrical and Optical 
Connections

Optical Fiber

The image of 
the bright spotSNSPD

Figure 2.4: A packaged SNSPD, the internal structure of it and the bright spot seen under

a microscope for doing optical alignments [66].

After doing the electrical connections and precise optical alignments, the finalized pack-

age is mounted inside a cryostat (Janis ST-500) as shown in Fig. 2.5. The bias is applied

to the device using a 10MHz to 6GHz room temperature bias-Tee and a custom-made

battery operated variable voltage source with about 4KΩ output resistance. The weak RF

signal from the bias-Tee is amplified using a 40dB fast pulse 10KHz to 1.5GHz battery

powered preamplifier. For monitoring purposes and doing timing measurements we used

a 50G sample per second with 16GHz analog bandwidth digital oscilloscope. Statistical

measurements of the output pulses form the SNSPD are done using a digitally adjustable

counter with a DC to 300MHz analogue input bandwidth. The light source is a fiber

coupled 1310nm distributed feedback laser diode with a 300ps pulse duration and 10MHz

pulse repetition rate. For attenuating the laser pulses to the desired levels we exploited a

digitally variable calibrated attenuator with maximum attenuation of 100dB. The single

mode fibers used in the setup were spatially fixed to avoid unwanted polarization changes

during measurements. During the experiment, the temperature of the package of SNSPD

was monitored to be about 4K. By careful selection of a set of shielding, filtering and

grounding techniques the whole setup was optimized to meet the required electromagnetic
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Figure 2.5: The cryostat installed on an optical table with its cryogen, optical and electrical

connections.

compatibility performance. Fig. 2.6 shows the picture of the total setup.

2.3 Measuring the Parameters

We start determining the parameters of the model from different optical losses. The range

of α1 which is the manually added optical loss is known from the specifications of the

variable optical attenuator to be between −1dB to −100dB. The coupling loss α2 for the

present setup can be experimentally determined. The value would be equal to −19dB as

reported in [66] for this setup. The loss due to limited absorption of superconducting strips

is known from electromagnetic simulations to be about −5dB at our wavelength of interest

[48]. The specifications of the laser can be used to calculate NSP equal to about 2 × 106

photons per pulse and tS equal to 300ps. We will always use a repetition rate equal to

10MHz in the measurements. As a crude approximation of the dead time, we take the
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Figure 2.6: The picture of the total experimental setup.

sum of rise and fall time of the detector. The detector response that is similar to what is

illustrated in Fig. 1.1 (b), gives this value equal to 13ns for our setup. To determine the

perturbation or hotspot lifetime τh, we refer to the experiment done by Zhang et al. [68].

The experiment in this work shows 65ps measured average delay between the absorption

of photons by the superconducting strips and the generation of electric pulses. Paying

attention to the discussion following Eq. (2.25), we conclude τh should be approximately

equal to twice of this value. Table 2.1 summarizes all of these parameters.

We determine the resistive barrier generation rates by using our experimental setup.

A set of average total count rates versus the attenuation of the variable attenuator at

different bias current ratios are measured. Having the measured points and also the model

parameters listed in table 2.1, we use a fitting algorithm to extract the unknown Gm values

from the measured points. The equations of the wide laser pulse were used in current
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Parameter Description Value

α1 Variable attenuation −100dB to −1dB

α2 Coupling loss −19dB

α3 Absorption loss −5dB

τh Hotspot life time 130ps

τdt Detector dead time 13ns

FS Laser frequency 10MHz

tS Laser pulse width 300ps

NSP Number of photons per laser pulse 2× 106

Table 2.1: The previously known parameters of the model. dB values are calculated as

10 log(αi).

calculations. Fig. 2.7 illustrates both of the measured points and the curves that are the

outcomes of the model. We pay attention that at higher bias currents and at high enough

optical intensities, there is a region where the slope of the curves are equal to one, i.e. a

linear relation between the average number of photons per laser pulse and the count rate

exists. This is reasonable because the average number of photons that excite the device

changes linearly with the attenuation and the detector as a SPD is sensitive to each of these

excitations. So the total count rate should also change linearly. This observation proves

the detector is truly a single photon detector. Table 2.2 is the list of extracted Gm values.

The last column shows the Root Mean Square Error (RMSE) of the fitting result. The

empty cells that are marked by a dash represent those Gm values that are at least 50dB

less than the corresponding Gm−1 value. The values of these cells cannot be determined

accurately because of their negligibly small effect on the total count rate of the device.

Paying attention to the reasoning that led to Eq. 2.2, the reduction in the effect of Gm is

expected and we can safely neglect the presence of these Gm values in the calculation of

the total count rate of the device.
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Figure 2.7: The points are the measured CRt values versus attenuation of the variable

attenuator at different bias current ratios. The curves are the results obtained with the

equations of the wide pulsed laser approximation of our model.

IB/IC(%) G0(dB) G1(dB) G2(dB) G3(dB) G4(dB) G5(dB) RMSE

98 34.8 82.2 71.2 - - - 0.18

90 18.6 76.7 56.6 - - - 0.1

80 15.8 66.6 46.2 23.6 - - 0.27

70 8.7 49.4 34.9 8.3 -19.1 - 0.17

60 -3.0 16.2 18.2 -0.5 -29.3 - 0.9

Table 2.2: The parameters of the model that were extracted from the measured points.

dB values are calculated as 10 log(Gm).
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2.4 Discussions

2.4.1 The Concept of Gm Set

G0 values are equal to the corresponding measured count rates at very high attenuations

which are essentially the values of dark count rates. This can be seen by comparing the

G0 values from table 2.2 with the count rates at −100dB that are illustrated in Fig. 2.7.

Paying attention to Eq. (2.20), we note that this is true in all of the present cases because

G0τdt values are always much less than one.

To further discuss about the concept of G1 we do a manual calculation on CRt for

our setup when α1 is set to −39dB and bias current ratio is set to 90%. The average

number of perturbations or hotspots generated per laser pulse can be calculated to be

2 × 106 × 10(−3.9−1.9−0.5) = 1. This shows each laser pulse makes one hotspot on the

meander line in average. Because each hotspot lasts for 130ps and the laser makes 107

pulses per second, we can calculate 130 × 10−12 × 107 = 1.3ms for the total time of one

hotspot presence on the meander line per second. Referring to table 2.2, we can conclude

in each one second period, for 1.3ms the SNSPD is generating pulses with a rate equal to

107.67 and for the rest of the time it is generating pulses with a rate equal to 101.86. The

total count rate can thus be calculated to be 1.3× 10−3× 107.67 = 47.8dB which is exactly

the value that can be read form Fig. 2.7. We note that the same numerical result can

be obtained by using equations (2.11), (2.12) and (2.14). Here we intentionally did the

calculations without using the developed formulas to emphasize on the physical concepts

of the parameters of the model.

Similar manual calculations can be done for all of the points of the CRt curves where

just one dominant detection mechanism exist. This is true even for the points where the

detector is in its nonlinear operation mode. For example at α1 = −10dB and when bias

current ratio is set to 60%, the slope of CRt versus attenuation curve suggests a dominant

triple photon detection mechanism. Under these conditions and using Eq. (2.11), the

average number of simultaneously active hotspots per laser pulse would be equal to 345.

There are 6784540 possible ways for selecting 3 hotspots out of 345 hotspots and according

to table 2.2, each selection has a resistive barrier generation rate equal to 10−0.05. On

38



the other hand the total time that the superconducting strips are excited by the laser

pulses per second is 300ps× 10MHz= 3ms. By multiplying all of these factors we get

CRt = 6784540× 10−0.05 × 3× 10−3 = 43dB which is again the measured value shown in

Fig. 2.7. The presented examples clarify how each of the Gm values characterizes a certain

photodetection mechanism of the superconducting strips.

2.4.2 Calculation of Quantum Efficiency

Equation (2.23) should be used to calculate the quantum efficiency. It gives a QE equal to

0.68% for 98% of bias current ratio and at a high attenuation of −60dB. For the present

case it is also possible to calculate QE by directly using the measured points of Fig. 2.7

and exploiting the definition of QE that is written in Eq. (2.21). It is also possible to do

this direct calculation for the highly nonlinear cases like when the bias current ratio is set

to 60%. But the result would be some value that is certainly not describing the linear

quantum efficiency of a single photon detector. By using the first term of the either of

the equations (2.22), (2.23) or (2.24), we can define the linear quantum efficiency of the

SNSPD as

QELinear ' 10
α3
10G1τh (2.29)

Equation (2.29) truly describes the single photon detection efficiency of the detector

even when most of the measurable counts are due to the other nonlinear processes. So the

G1 column of table 2.2 together with the knowledge of α3 and τh instantly gives the linear

quantum efficiency of the detector for all of the bias current ratios.

It is possible to increase the quantum efficiency by exploiting optical structures that

enhance the photoabsorption of the superconducting strips. In the same time, changing

the parameters like the superconducting material, the film thickness, the material of the

substrate and the operation temperature can potentially lead to a change in linear quantum

efficiency by changing G1 and τh.
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2.4.3 Photon Number Resolution

Because all of the Gm values are essentially different rates with the same unit, they can

be directly compared to each other. Fig. 2.8 is a plot of the measured Gm set versus bias

current ratios that provides immediate information of the relative performance of each

detection mechanism at different bias current ratios. When two simultaneous perturbations

or hotspots are present on the superconducting strips two different mechanisms of G1 and

G2 can generate resistive barriers. At high bias current where G1 is dominant, photon

number resolution can probably be achieved by the study of other parameters like pulse

amplitudes. On the other hand, at lower bias currents where G2 has the dominant effect,

the detector has little response to two spatially separated hotspots. Under this condition,

each pulse from the detector can be due to the presence of two spatially and temporally

close photons. We believe by operating properly designed detectors in suitable conditions,

this type of spatially resolved photon number counting can be achieved over a wider range

of photon numbers.
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Figure 2.8: The measured resistive barrier generation rates versus bias current ratios.
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2.4.4 Timing of the Detector

We use Eq. (2.28) to calculate the average delay of resistive barrier generation. The solid

and fine dashed lines in Fig. 2.9 show the results of calculation with the Gm set from

table 2.2 for 90% and 60% of bias current ratios. The measurement points reported in

[68] are also depicted on the same figure. As can be seen, for 90% bias current ratio the

agreement between the calculations and the measurements is good but this is not the case

for 60%. Referring to the CRt versus attenuation measurements reported for the same

device in [68], we noted that there is no significant effect of G3 and G4 for that device. In

an attempt to make Gm set of our SNSPD more similar to the one used in [68], we set

G3 and G4 to be zero. The result is the coarse dashed line in Fig. 2.9 which is in better

agreement with the measured points.

A systematic error between the model results and measured points can be seen at

higher number of incident photons per pulse per device area. Equation (2.27) can also be

used to do the same calculation with the recent Gm set. The result is the solid lines that
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Figure 2.9: The delay time between absorption of photons by meander line and electric

pulse generation. The points are the measurements reported in [68] and curves are the

calculations based on Eq. (2.28).
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Figure 2.10: The delay time between absorption of photons by meander line and electric

pulse generation. The points are the measurements reported in [68] and curves are the

calculations based on Eq. (2.27).

are illustrated in Fig. 2.10. We used τσ (τ 2
σ is the variance of the jitter profile as defined

in Eq. (2.25)) equal to 19ps for making the similarity between the measurements and the

calculations as close as possible. The resulting curves are so sensitive to the selected τσ and

even slight changes in it can change the general shape of the curves. Fig. 2.10 shows good

agreement between the measurements and calculations. To check whether mathematical

structure of Eq. (2.27) allows better fit with the measured points or not, we slightly changed

the used Gm set. The changes are written in the legend of Fig. 2.10 and the resulting curves

are the dashed lines on the same figure. A final conclusion requires more experimental data

over wider operating conditions. But we believe the results of Fig. 2.10 which shows the

capability of the model to justify a rather complicated mathematical curve, proves the

correctness of our modeling approach and its associated concepts.
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2.5 Conclusions

In summary, a model for superconducting nanowire single photon detectors has been pro-

posed. The model was developed and investigated by experiments, and a good agreement

with the measurements was found. With parameters that describe the statistical operation

of SNSPDs independent of the statistics of the light source, the model is able to quantify

both the linear and nonlinear operation of these devices. Furthermore, the model intro-

duces the concept of resistive barrier generation rates and provides a way to quantitatively

study the effect of the presence of perturbations or hotspots on the meander line and their

interactions. We also tried to justify the statistical photodetection concepts of the model

by comparing the measurements of the average time delay of resistive barrier generation

with the outcome of the model.
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Chapter 3

Nonlinearity in Single Photon

Detection and Detector Tomography

The semi-empirical model as presented in previous chapter was developed in the early stages

of this PhD work. It translates the results of experiments into some useful parameters.

The parameters are especially useful for quantifying nonlinearity in single photon detection.

The work could be continued from two different perspectives.

First, the connection of some of the parameters with physical parameters of the device

are unknown. Looking at the list of parameters and also paying attention to the materials

of the introductory section 1.2, we conclude all physical connections are at present known

except Generation Rates and timing parameters that are defined in Eq. (2.25). These are

all the parameters used to model photodetection mechanism and dark counts. Having such

connection would ideally be useful for designing SNSPDs with superior performance. This

is a complex and nice problem of physics. But we believe the final results wouldn’t be of

much importance from a practical point of view. That is because: the timing parameters

(τσ and τh) are already small enough for most of the applications; dark counts are small

and also function of details of fabrication and cryogenic operation; the most important

generation rate, i.e. G1, in the end translates to intrinsic efficiency of the detector and

from experiments it is known this efficiency is nearly at 100% for a high quality detector

operated appropriately [56]. Alternatively, the parameters can also be determined and
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optimized experimentally which is good because it will include all details of fabrication

and operation as well. These points suggest there is little practical motivation to work out

such hard problem.

Second, our semi-empirical model should have a connection to a quantum optical model,

i.e. something similar to what is shown on Fig. 3.1. This is a broadly used model to describe

linear single photon detectors. It models the quantum efficiency of a typical SPD as losses

of a fictitious beam splitter. The power of such model lies in its simplicity and generality.

It is simple because its only parameter, P1 can experimentally be determined by readily

available optical excitations like some coherent state probes from a laser. It is general

because it applies to all SPDs. Also, it is general because it gives the Positive Operator-

Valued Measure (POVM1) of the detector from which the response of the detector to

an arbitrary optical input state can be calculated. In fact, Fig. 3.1 sets a mathematical

standard the outcome of all the experiments should be compared with. These features help

such model to serve as an interface between both ”theory and experiment” and also between

”SPD development and SPD applications”. However, we couldn’t find a quantum optical

model that incorporates the possibility of having nonlinearity in single photon detection,

a feature that was included in our semi-empirical model.

In this chapter, we improve our previous model that was only valid for coherent state at

the input to a quantum optical version. A more comprehensive quantum optical model like

the one described above for linear SPDs come out of the results. We find the POVM that

this model describes and explore its correctness by comparing it with what is found from

a completely different approach, i.e. detector tomography. The most important results of

this work have been published in [69, 70]. This work has been done by collaboration with

Dr. Jeff Lundeen from National Research Council of Canada (NRC).

1An state can be represented by a density matrix ρ and a measurement by a set of operators (POVMs)
{Πi} in quantum physics. A measurement on state ρ would result in the jth output with the probability
Tr(ρΠi=j).

46



Bl
oc

k

in

vac

Ideal Single 
Photon Detector

Click / No-Click

1P

Figure 3.1: A broadly used quantum optical model for single photon detectors. The

quantum efficiency is modeled as losses of a fictitious beam splitter.

3.1 Quantum Optical version of the Semi-empirical

model - Narrow Pulses

Assume the optical input to our SNSPD is in a general state |Ψin〉 expressed in number

basis as

|Ψin〉 =
∞∑
n=1

Ψin(n) |n〉in · (3.1)

Also assume the photons are generated by a pulsed source and are such confined in time

that our conditions for narrow laser pulses, i.e Eq. (2.15) holds. The SNSPD that is

installed in a setup like what is shown in Fig. 2.3 can make a click upon this excitaion.

The question is what would be the click probability, Pclick(|Ψin〉) in a time interval equal

to τh after the optical excitation.

We can treat all the optical losses between incoming photons and the hotspots that

are generated on superconducting nanowires as η. This has the following relation with our

previous loss parameters defined in Eq. (2.3).
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η = 10

(
α2 + α3

10

)
(3.2)

We model η by a fictitious beam splitter as done in the standard model depicted in Fig. (3.1)

[71]. Writing down the math, the probability of having exactly nh hotspots generated on

the nanowires will be

P (nh) =
∞∑
p=0

|Ψin(nh + p)|2
(
nh + p

p

)
ηnh(1− η)p· (3.3)

Therefore, with a probability equal to P (nh), the resistive barrier generation rate during

a time interval equal to τh after photoabsorption will be GR(nh) as given by Eq. (2.1).

This generation rate is converted to a count rate according to Eq. (2.6) or its narrow pulse

equivalent Eq. (2.18), repeated here for convenience. 2

CRt(t, nh) =

 GR(nh) exp (−GR(nh) t) 0 ≤ t ≤ τh
G0

1 +G0τdt
Otherwise

(3.4)

The integral of this function over τh is the click probability if the number of hotspots is

equal to nh. This is in fact the coefficient of FS in Eq. (2.19).

Pclick(nh) = 1− exp (−GR(nh)τh) (3.5)

2We have found a mathematical issue in our semi-empirical formalism when trying to write down its
POVM. This is with in Eq. (2.5) in which we average all nonlinearities into a total generation rate function
and then the average undergoes another nonlinear transformation by Eq. (2.6). This is while the reverse
is correct, i.e. each generation rate that might happen with a certain probability should pass through the
nonlinearity of Eq. (2.6) and then the result should be averaged to yield a total count rate. The error
is only significant when the integral in Eq. (2.6) becomes significant compared to 1, or equivalently only
when the count rate is close to its saturation at high input photon intensities. Assuming we need to be
10dB apart from the saturation level for keeping the absolute validity of the semi-empirical model, and
also looking at the results of figures. 2.7 and 2.9; we conclude the results of previous chapter are still valid
for most of range of the curves. However, having the problem discovered, in this section we present the
corrected equations. This is why in contrast with Eq. (2.18), here CRt(t) is replaced by CRt(t, nh).
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Equation (3.5) is an important relation that when combined with Eq. (2.1) gives:

Pclick(nh) = 1− exp

(
−

M−1∑
m=0

(
nh
m

)
Gmτh

)
= 1−

M−1∏
m=0

(1− Pm)(
nh
m ), (3.6)

where Pm is defined by

Pm ≡ 1− exp (−Gmτh)· (3.7)

Having Pclick(nh) determined, we can write down the total click probability as

Pclick(|Ψin〉) =
∞∑

nh=0

P (nh)Pclick(nh) = 1−
∞∑

nh=0

P (nh)
M−1∏
m=0

(1− Pm)(
nh
m )· (3.8)

Finally, combining Eq. (3.8) and Eq. (3.3) yields


Pclick(|Ψin〉) = 1−

∞∑
nh=0

∞∑
p=0

|Ψin(nh + p)|2
(
nh + p

p

)
ηnh(1− η)p

M−1∏
m=0

(1− Pm)(
nh
m )

Pno click(|Ψin〉) = 1− Pclick(|Ψin〉)
(3.9)

This completes the mathematics for finding the click probability of our semi-empirical

model for a general state at the detector input. However we further develop the result for

two important quantum states at the input.

First, for the number state |Ψin〉 = |N〉. In this case plugging |Ψin| = δn,N into Eq. (3.9)

and doing the math, we get


Pclick(|N〉) = 1−

N∑
nh=0

(
N

nh

)
ηnh(1− η)N−nh

M−1∏
m=0

(1− Pm)(
nh
m )

Pno click(|N〉) = 1− Pclick(|N〉)
(3.10)
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Second, for coherent state |Ψin〉 = |α〉, i.e. when the input is in coherent state with the

mean number of photons 〈n〉 = |α|2. In this case plugging the Poissonian distribution into

Eq. (3.9) and doing the math, we get


Pclick(|α〉) = 1−

∞∑
nh=0

exp (−η|α|2)(η |α|)2nh

nh!

M−1∏
m=0

(1− Pm)(
nh
m )

Pno click(|α〉) = 1− Pclick(|α〉)
(3.11)

Although Eq. (3.7) determines the connection of Pm to our generation rates for the

special case of narrow pulses, the Pm set has a strong physical significance by itself. This

would be more clear in the next section.

3.2 Model for Nonlinear Single Photon Detectors

Single photon detectors (SPD) are binary detectors (‘Click’, or ‘No Click’), and thus any

non-zero number of detected photons will result in the same response: a Click. This

behaviour, first directly tested in Ref. [72], is now contained within the standard model for

the SPDs as shown in Fig. 3.1. This is a perfectly linear model and the positive operator-

valued measure (POVM) described by it is

 No Click : πSPD0 =
∞∑
n=0

(1− P1)
n |n〉 〈n|

Click : πSPD1 = 1− πSPD0

(3.12)

where P1 is the quantum efficiency, |n〉 is an n-photon state. This simple model neglects

the optical or electrical nonlinearities that likely exist, to some degree, in all SPDs. Indeed,

the form of the click probability suggested by Eq. (3.9) confirms for SNSPDs the POVM

of Eq. (3.12) is not generally applicable.

In this section, we try to find a form of POVM that is compatible with our findings in

previous section. The new POVM can replace that of Eq. (3.12) for SNSPDs and possibly

for other SPDs that include nonlinearities.
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Consider a binary detector that is only sensitive to n number of photons; any less and

the detector responds with No Click, any more and it still only outputs one Click. This is

the n-photon generalization of the SPD and, hence, we call it an n-photon detector (NPD).

If m > n photons impinge on the detector, there are m choose n ways for those m photons

to trigger the NPD. Consequently the generalization of Eq. (3.12) is:

 No Click : πNPD0 =
∞∑
m=0

(1− Pn)(
m
n) |m〉 〈m|

Click : πNPD1 = 1− πNPD0

(3.13)

where πNPD0 is the No Click operator, Pn is the n-photon detection efficiency and
(
m
n

)
is

the binomial coefficient (= 0 for n > m, = 1 for n = 0). This generalization works even

for a zero photon detector. We can identify P0 as what is commonly called the ‘dark count

probability’.

A nonlinear SPD can be modeled as concurrent NPDs. As shown in Fig. 3.2, the model

consists of a logical OR between M NPDs, where M represents the maximum number of

mechanisms that should be present in order to describe the response of the detector before

it saturates at high intensities. The associated POVM operators are:

 No Click : πNL0 =
∞∑
m=0

M−1∏
n=0

(1− Pn)(
m
n) |m〉 〈m|

Click : πNL1 = 1− πNL0

(3.14)

This is basically the same as one suggested by Eq. (3.9), but with η set to one.

The loss parameter η as defined by Eq. (3.2) has a well defined physical origin. It can

be added to the model described by Eq. (3.14) by adding a beam splitter in front of the

nonlinear SPD. However, the other option is keeping η embedded in the nonlinear SPD

that we are trying to describe. This changes the physical interpretation of the set of param-

eters {Pn}, but it keeps the simplicity and generality of Eq. (3.14). We’ll experimentally

investigate the effect of adding a loss η on the set {Pn} later in this chapter.
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Figure 3.2: The Nonlinear Single Photon Detector model. Each element represents an n-

Photon Detector. A broadly applicable model is created by logically ORing these elements.

Therefore, we now have Eq. (3.14) for the POVM of a nonlinear SPD. It is derived

with minimum assumptions about the working of the detector, so we expect it to be quite

general. However, there are two aspects that should be worked out.

First, we note that the only parameter of the standard SPD model, i.e. P1 can be

experimentally determined by measuring click probability of the detector to a highly at-

tenuated laser pulse. But this is not straight forward for nonlinear model that incorporates

many parameters. So a procedure for experimentally determining the model parameters

{Pn} should be developed. Second, the nonlinear model was both supported by the semi-

empirical model and by its minimal underlying assumptions. But the proof of its correct-

ness wouldn’t be complete without comparing its POVM with the actual POVM that can

be measured. We address both of these issues in the next two sections.

3.3 How to Measure the Parameters

Most of the characterization of SPDs are still done with coherent state probes due to widely

available lasers with different specifications. We also seek to determine the parameters of

or nonlinear model in Eq. (3.14) using some coherent state excitations.
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For the standard SPD that is described by Eq. (3.12) and excited with coherent states

|Ψin〉 = |α〉, the click probability would be Tr(|α〉 〈α|πSPD1 ), or equivalently the Q-function

of the click POVM operator, πSPD1 . Doing the math, this will have the following form,

QSPD(α) = 1− exp
(
−P1|α|2

)
, (3.15)

which approximates to P1|α|2 for highly attenuated lasers. So, one can measure the P1 with

a single click probability measurement using a highly attenuated laser. However, following

the same procedure for our generalized POVM of nonlinear SPDs in Eq. (3.14) we get the

following from for the click probability in response to |α〉

QNL(α) = 1−
∞∑
m=0

e−|α|
2 |α|2m

m!

M−1∏
n=0

(1− Pn)(
m
n). (3.16)

This incorporates many parameters, and thus contrary to the previous case, the parameters

can not be easily determined with a single point measurement.

To find {Pn}, we use coherent states with different amplitudes, α. We sequentially

send RT copies of this state into the SNSPD system and record the number of detector

Clicks, R1. This is repeated for a set of D states {| αi〉}, increasing α from α0 = 0 until the

detector response is unchanging at αD. i.e. ∂R1/∂α = 0. The estimated Click probability,

R1/RT , is equal to the Q-function of the Click POVM operator, Q (α). The measured

Q(α) is set equal to the theoretical one QNL(α), from which {Pn} should be determined.

To work out this mathematical problem, we rewire the Eq. (3.16) in matrix form as:

C = FΠ = F (E − exp (GH)) , (3.17)

where C (with dimensions D × 1), includes the D measured statistics, R1/RT ; Π (N × 1)

includes the diagonal elements of πNL1 ; F contains the D coherent state probes, Fi,j =

|αi|2jexp
(
−|αi|2

)
/j!; E is a matrix of ones; G is a matrix of binomial coefficients such that

Gi,j =
(
j−1
i−1

)
; and H (M × 1) is an unknown matrix which includes the unknown set {Pn},

Hi,1 = ln(1 − Pn=i−1). Note, since our detector lacks phase sensitivity, the off-diagonal
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= 

Figure 3.3: An schematics of the procedure for experimental determination of the set

{Pn}. The measured Q-function, Q (α), is the input to the problem and the optimization

results in the unknown set of parameters {Pn}, from which the POVMs can be determined.

elements of the click operator are zero. We thus have represented it as a vector Π which is

truncated at a number state N − 1 that is sufficiently high that Π(N) ≈ 1. Figure 3.3 is

an illustration of the different matrixes.

We estimate the matrix of unknowns, H by solving the following constrained nonlinear

multivariable optimization problem:

min

∥∥∥∥C − FE + F exp(GH)

C

∥∥∥∥
2

subject to H ≤ 0

(3.18)

The second norm of a matrix is defined as ‖A‖2 =
(∑

i,j |Ai,j|
2
)1/2

. Each element of the

expression is normalized to C to give equal weighting to all the points. The constraint of
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the problem ensures the optimization leads to a physical result for the set {Pn}. We note

the function exp(αx) is convex on R for any α ∈ R [73]. So our optimization problem is

also convex as it tries to minimize a linearly transformed convex function over a convex

subset of R. Therefore finding a local minimum is enough to conclude it is also the unique

global minimum.

We note one of the unknowns of in Eq. (3.18) is the number of unknown parameters,

M itself. This is equivalent to say the number of mechanisms needed to make the detector

POVMs is unknown. To solve this problem, we set M to an arbitrary but large value and

solve Eq. (3.18). From the estimated {Pn} we only keep those elements that change the

minimum of Eq. (3.18) by more than 1%.

3.4 Detector Tomography

We developed our model in Eq. (3.14) and established the methods needed for determining

its parameters in the previous two sections. Although we tried to do the modeling with

minimal assumptions, it is desirable to compare its POVM with the one determined from

a different method, i.e Detector Tomography, to further check its validity.

From the other perspective, Detector Tomography [74, 75] is an agnostic procedure to

determine the POVM of a detector. The detector is treated as a Black Box in that we

do not need to know its mechanism or make ancillary assumptions about it. Just recently

demonstrated in principle, Detector Tomography itself has yet to be applied to a detector

without an accepted model for its POVM. The SNSPD with its nonlinear behaviors at

lower bias currents seems to be a good candidate.

To perform tomography, we follow the same experiment that led to Eq. (3.17). The

detector is excited with many copies of a set of coherent state probes, {| αi〉} with properly

chosen amplitudes to measure the Q-function of the Click POVM operator, Q (α). The

results are put in matrix form C = FΠ, exactly like Eq. (3.17). However, contrary to

Eq. (3.17) where we used our model to write down the form of Π, Π is directly solved in

detector tomography. Figure 3.4 is an illustration of this. Using the mentioned matrix

form, one can write down the following convex quadratic optimization problem:
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Figure 3.4: An schematics of the procedure for detector tomography. The measured Q-

function, Q (α), is the input to the problem and the optimization directly results in the

unknown POVMs. As depicted because the used coherent state probes are spread over

many elements of a POVM, min ‖ C − FΠ‖2 by itself is an ill-conditioned problem. So

g(Π) is added to the problem to ensure smoothness of the resulting POVMs. Details of

this is well described in [76, 74].

min ‖ C − FΠ‖2 + g(Π)

subject to 0 ≤ Π ≤ 1
(3.19)

where g(Π) is a regulating function details of which was described in [76]. Of course the

POVMs obtained using our model and the ones calculated by tomography should be in

close agreement.

We note, the lack of ancillary assumptions and models in Detector Tomography make

it general and objective. At the same time, it provides a surplus of information (i.e. O (N)

parameters) that can be difficult to interpret. Tomography can hardly replace the natural

ease and intuition that is associated with a model, like our nonlinear SPD model.
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We are now in a position to experimentally study the SNSPD in light of our model and

also tomography. The next section is devoted to this.

3.5 Experiments and Discussions

The setup and SNSPD chip use used in this section is in general similar to the one already

used section 2.2 for experimental study of our semi-empirical model. However there are

some differences. Instead of using a continues flow cryostat as shown in Fig. 2.5, we

installed the fiber packaged SNSPD in a cryogenic dipstick probe to cool the the device to

4.2K by immersing the probe in liquid helium. The advantages include much less cryogen

consumption and more stable operation point. The mechanical details of this is reported

in [77]. Also, we exploited a computer both to control generation of the set of coherent

states {αi}, and record the number of detector clicks R1 automatically. Finally, we used a

20ns counting gate, triggered by the laser, to reduce the dark count contribution from the

times between input pulses. Figure 3.5 shows an schematic of the setup.

We set the number of copies per coherent state, RT , equal to 105, and measure Q-

function by the procedure described before Eq. (3.17). This is done at three bias currents,

25, 20 and 16µA. In Fig. 3.6, we plot the measured response for each of these (blue

circles). We expect a standard linear SPD response at 25µA since this is the normal

operation mode. Using Eq. (3.15) for ideally linear SPDs, we estimate P1 using a single

data point at Q(α) = R1/RT = 0.1. Indeed, using this P1, the resulting predicted response

(red line) agrees well with the measured response. Repeating this analysis for 20 and

16µA, we find that the estimated P1s, and thus, quantum efficiencies decrease as the bias

current decreases. More significantly, the disagreement between the shape of the predicted

and measured Click Probability distributions is substantial. Evidently, a SNSPD quickly

becomes nonlinear as the bias current is lowered.

We now solve Eq. (3.19) to find Π. However, our particular SNSPD setup have low

system quantum efficiency (0.2% or less at 1310nm at a maximum bias current of 25µA)

and thus the maximum photon number, N − 1, required to span its response was large.

This is different from the previous detector tomography reports on APDs in which the
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Figure 3.5: Schematics of the experimental setup. The set {αi} is generated by exploiting

a computer controlled variable optical attenuator and the click probabilities are measured

using a programmable counter controlled by the same computer. The laser is 1310nm and

produces 200ps pulses at 100KHz. The critical current of the SNSPD chip used in this

setup was measured to be 26.0± 0.5µA at 4.2K.

higher system quantum efficiency made N small [76]. Large N means the fitting algorithm

needs to find large number of unknowns (∼ 105 for 16µA) which is tedious. Instead of

using large matrices in the fitting, we scaled the inputs {| αi〉} by a factor k � 1. For each

bias current, k is chosen so that the Click Probability is 95% at an average photon number

〈n〉 = 30. This scaled data is shown in Fig. 3.7(a) (black circles). We plot Π determined

from it (i.e. the diagonal elements of the scaled Click POVM operator) in Fig. 3.7(b) (blue

circles). Using this Π, in Fig. 3.7(a) (blue line) we plot the predicted detector response to

coherent input states. This fits the scaled data well, confirming the fitting procedure.

If scaled by too large a factor the POVM will, at the very least, be unrepresentative of

the detector and, at worst, be physically impossible. Thus we test the estimated POVM

for validity by adding k loss back into the POVM (i.e. Πunscaled = L−1Πscaled, where L is

the binomial distribution matrix described in [76]) and predicting the detector response

to the original unscaled inputs, {| αi〉}. For all the bias currents, the difference between

the predicted click probability and the raw data (i.e. |R1/RT − Tr[|αi〉 〈αi|Πunscaled]|) is
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less than 0.15% on average and has a maximum of 1.4%. This indicates that we have

accurately estimated the SNSPD POVM using the scaling technique.

We now turn our attention to our nonlinear SPD model and solve Eq. (3.18) for scaled

input states. From the estimated {Pn} we only keep those elements that change the

minimum of Eq. (3.18) by more than 1% (25µA: {P0, P1}; 20µA: {P0, . . . , P4}; 16µA:

{P1, . . . , P4}). These parameters classify the operation of the scaled SNSPD, from a

standard SPD at 25µA to a composite of one, two, three, and four photon detectors at

16µA. From these {Pn} we calculate the nonlinear SPD Click POVM operator for the three

bias currents in Fig. 3.7(b) (black dotted line). They agree with the tomography POVMs

to within 1% for most of the elements of Π. For 25µA and 20µA the maximum difference is

y

Ibias=25 (μA) Ibias=20 (μA) Ibias=16 (μA)

08

1.0  

Cl
ic

k 
Pr

ob
ab

ili
ty

02

0.4  

0.6  

0.8

C

Mean Number of Photons Per Laser Pulse (103 Photons)
0 50 1000 10 20 300 1 20.0  

0.2

Figure 3.6: Click Probability at different bias currents. The critical current was measured

to be 26.0 ± 0.5µA. The blue circles are measured Click probabilities (not all points are

shown). The red lines are calculated using the linear model in Eq. (3.15) by calculating the

efficiency parameter P1 when the click probability is equal to 0.1. P1 equals 2.44e-3, 7.3e-5,

4.87e-6 for 25, 20, and 16µA, respectively. The black dotted lines are from the nonlinear

SPD Model in Eq. (3.16). {Pn} equals {7.30e-4, 2.49e-3}, {9.72e-6, 7.15e-5, 8.14e-9}, {0,

7.33e-8, 2.87e-10, 2.81e-14} for 25, 20, and 16µA, respectively. Zero values indicate they

change the minimum of Eq. (3.18) by less than 1%.

59



3% at Π (n = 1) and 6% at Π (n = 3) for 16µA. This excludes the large error at Π (n = 0),

which we attribute to insufficient measured statistics at extremely small mean photon

numbers. The Quantum Fidelity (see [76] for a definition) of the model and tomography

operators are above 99.8% for all three bias currents. Thus, the model successfully gives

the POVM of the SNSPDs including their nonlinearity, but with a dramatic reduction in

the number of parameters compared to tomography.

Contrary to tomography, the number of unknowns in the optimization problem of

Eq. (3.18) doesn’t increase for a detector with low quantum efficiency. Consequently, we

can directly solve the problem for the unscaled detector as well. In Fig. 3.6, we plot the

model’s predicted response to the coherent state inputs, with parameters from the unscaled

data (black dotted line). The difference with the measured statistics is less than 0.34% on

average (i.e the minimum found in Eq. (3.18) divided by the number of points).

We can attribute the SNSPD nonlinearity to the fact that at lower bias currents the

absorption of multiple photons in close proximity and within a short period of time can

inject enough energy to switch the wire to normal state more efficiently than indepen-

dent absorptions. This is indeed compatible with the early observations on SNSPDs [2].

Moreover, the capability of our nonlinear SPD model to reproduce the non-linearity of

measured curves in Fig. 3.6 with few parameters (only P2 at 20µA and P2, P3 at 16µA)

reconfirms the detector includes some NPDs as its basic detection elements. This rules out

the other possible justifications of the observed nonlinearities including heating effects at

higher input photon flux.

Unlike the standard SPD, where P1 → ηP1 under a preceding optical loss of η, there

is no analytic formulae for how {Pn} transform under loss. By inspection of the scaled

and non-scaled model fits (see Fig. 3.8), however, each element of {Pn} that is significant

approximately satisfies log(Pn( 1
k
))− log(Pn( 1

k
= 1)) = n log( 1

k
). Thus significant elements

of {Pn} scale as ηn. Consequently, removing any linear optical inefficiency from a nonlinear

photon counter makes it more nonlinear. We also note that, as expected, P0 of the scaled

detector is almost the same as the one for non-scaled detector. This is expected as the

dark count probability should is not dependent on the optical input as expected.
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Figure 3.7: (a) The Q-function (i.e. click probability for coherent state inputs) of the

scaled detector at different bias currents. The scaling factor (k) equals 0.025, 0.0015,

0.00037 for 25, 20, and 16µA, respectively. The raw scaled data (black circles) agrees well

with the tomographic POVM (blue line). (b) The corresponding Click POVM operator.

The operator found from tomography (blue circles) agrees with that from the nonlinear

SPD Model (black dotted line). In the latter, {Pn} equals {7.29e-4, 9.95e-2}, {1.08e-5,

4.76e-2, 3.74e-3, 1.13e-4}, {0, 1.97e-4, 2.01e-3, 4.87e-4, 5.07e-5} for 25, 20, and 16µA,

respectively. Zero values indicate they change the minimum of Eq. (3.18) by less than 1%.
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Figure 3.8: {Pn} at 16µA found under different scaling factors, k. ♦, ©, �, 5, 4, and

I represent Pn=0 to Pn=5 respectively. The corresponding dashed lines have slopes equal

to n on a log-log plot. The plot shows a linear optical loss of η scales Pn → ηnPn.

3.6 Conclusions

The almost identical outcome of Detector Tomography and the nonlinear SPD model

confirms both of them are reliable. This is a good example of how Detector Tomography

is particularly useful for characterizing detectors outside their normal operating regime,

where there is no model for their operation. Even though only classical optical pulses

were used as input states for the tomography, the resulting POVM allows one to predict

the detector response to any input, including non-classical states such as Fock states. We

expect the nonlinear SNSPD model to be useful for other nonlinear binary detectors such

as two-photon absorbing Avalanche Photodiodes and Electron Multiplying CCDs (thresh-

holded). It will also be useful for characterizing conventional SPDs and putting limits on

their nonlinearity.
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Chapter 4

Gated Mode Superconducting

Nanowire Single Photon Detectors

We have described our semi-empirical model, nonlinear SPD model and all related experi-

ments in the last two chapters. We now turn our attention to the second fold of this thesis,

i.e. gated mode SNSPDs (GM-SNSPD).

There are two timing modes of operation for single photon detectors in general. Free-

running mode (FM), refers to the detectors that can detect photons continuously, while

gated-mode (GM) describes detectors that are only single photon sensitive during discrete

time slots. Figure 4.1 is an illustration of this. FM-SPDs are more useful in applications

like measuring spontaneous emission life time of quantum dot emitters [78] in which the

exact arrival time of the photons are unknown or itself is under study. GM-SPDs can be

advantageous in applications like quantum key distribution [79] in which useful photons

arrive in pre-defined time slots, and thus can be efficiently detected by synchronizing the

photon source with the open time slots of the detector.

GM-SPDs can have better noise performance because they naturally reduce the effect

of the unsynchronized photons that hit the detector, i.e. the unwanted photons that might

originate from the environment, not from the source. The price would be more complex

electronics to synchronize and gate the detector. We also note that in applications that

GM-SPDs are more useful, there is a demand for having a higher count rate. This can
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Figure 4.1: (a) Illustration of a free-running SPD. Incoming photons are continually

detected and the result which is a random process, is put into time bins (with width ∆t)

labeled by p. (b) Illustration of a gated-mode SPD. Only the photons incident during the

gate width (GW ) are detected. The gates are labeled by q. We are assuming both ∆t

and GW are smaller than the detector dead time to ensure the output is a binary random

process, x ∈ {0, 1}, where 0 and 1 show No-Detection and Detection events.

translate itself into faster communication links or more accurate experimental results with

less acquisition time, significant advantages for different fields.

As implicitly mentioned in all experiments of this thesis till now, SNSPDs are conven-

tionally operated in free-running mode, i.e. biased by a constant current. Although they

provide high quantum efficiency, low dark counts and small jitter time [80], a prohibitive

latching effect severely limits the maximum count rate [9, 10]. Here we report the first oper-

ation of SNSPDs in a gated mode (GM) that exploits single photon triggered latching itself

to detect photons. We show operation of a large active area single element GM-SNSPD at

625MHz, more than one order of magnitude faster than its FM counterpart.

The chapter starts with an introduction to the concept of GM-SNSPD and its imple-

mentation. The necessary experiments are then explained to characterize both GM and

FM operations and to compare the performances. We also present series of modeling and

simulation steps, to show what limits the ultimate count rate of a GM-SNSPD and how it
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can be improved. An e-print of a journal article written on this work is available in [81].

4.1 The Concept and Implementation of GM-SNSPD

To date SNSPDs have been operated in free-running mode, for which an equivalent circuit

model is shown in Fig. 4.2 (a) [64]. In absence of photons, the superconducting wire shunts

current away from the load, leaving zero voltage across it. The absorption of a single

photon triggers an unstable resistive hotspot on the nanowire that momentarily pushes the

current out to the load resistance, RL, hence making a rising voltage. The hotspot then

cools down with a sub-nanosecond time constant τth for all the materials the SNSPDs have

been made from thus far [82]. Meanwhile, suppressed current of the nanowire rises again

to its initial value with an electrical time constant that is set by the kinetic inductance of

the superconductor, LK , and the load resistor, τe = Lk/RL. The SNSPD cannot efficiently

detect the next photon before the end of these transients [64]. That is because the quantum

efficiency of a SNSPD strongly depends on the current through it (see G1 in Fig. 2.8 for

instance). The large kinnetic inductance of a single long meandering nanowire that fills

the active area of a typical SNSPD, together with the standard microwave cable with

characteristic impedance equal to 50Ω, can make τe orders of magnitude larger than τth.

This severely limits the count rate of such FM-SNSPD to sub-tenth of GHz range [56, 83].

There have been different approaches to reduce τe. Kinetic inductance which is a

material dependant parameter, can be reduced by exploiting superconducting materials

with smaller London penetration depth [84, 85, 82]. It can also be reduced by changing

the geometry of the device from a single long nanowire to some shorter wires that are either

connected in parallel [86, 87, 88], operating as independent smaller pixels [7] or placed under

a nano-antennae [50]. Alternatively, RL can be increased by putting a resistor in series

with the nanowires [9].

However there is another limitation that doesn’t let τe to be pushed to much smaller val-

ues without a compromise on quantum efficiency: following a photo-detection the nanowire

would latch to a resistive state for ever if τe be too small for a fixed bias current. The

reason which has been well studied in [9, 10] recently, is in the dynamics of the self-rest
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Figure 4.2: Gated mode operation of SNSPDs. (a), Equivalent circuit model for a FM-

SNSPD. LK is the nanowire kinetic inductance and RL is the load seen by the nanowire.

(b), Schematic of the circuit showing the major elements. R1 is a 50Ω load resistor and

R2 is a 50Ω current sense resistor. We used a high electron mobility transistor (HEMT)

to both amplify the weak signal and to further isolate the Nanowire from reflected signals.

(c), A typical set of waveforms showing the detector latches at the current maxima, returns

to superconducting state at a smaller current and the difference signal jumps up as a result.

process when the current is derived back to a hot nanowire. In the following, we show for

the first time that in GM-SNSPDs this condition on τe can be relaxed. Thus GM-SNSPDs

can operate mush faster, at a count rate that is purely limited by τth.

To speed up the device in gated mode, we increase RL to decrease τe even bellow

the limit set by the reset dynamics. Such detector would obviously never self-reset after

a photo-detection or a dark count. However, it can periodically detect photons if an

alternating current with a positive DC offset be applied to the nanowire. At the peak

of the current, the SNSPD latches upon a photo-detection or a dark count. The latched

nanowire will then be forced to reset to superconducting state by the next minima of the

current. So in contrast to free running mode for which latching to resistive state is a
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forbidding effect, here we exploit single photon triggered latching itself to count photons.

Assuming the peak of biasing current in GM-SNSPD is equal to the DC biassing current

of the same chip but operating as a FM-SNSPD, we expect both of the detectors show the

same quantum efficiency to the photons arriving at the current peak. However, because in

GM-SNSPD current does not always run through the chip, we expect a smaller dark count

rate for it compared to FM-SNSPD.

We use the circuit shown in Fig. 4.2 (b) to implement a GM-SNSPD. A signal source

with adjustable DC level is made exploiting a bias-Tee, an RF sinusoidal source and an

adjustable DC voltage source (the figure just shows the resulting signal source). The

voltage from a signal source is split into two paths using a 3dB power splitter. One path

undergoes heavy attenuation and and then transmitted to cryogenic temperature by using

a coaxial cable and a termination resistor, R1 = 50Ω. This creates an alternating bias

current with a DC offset in the SNSPD by using a biasing resistor, RB. This current is

sensed by current sense resistor, R2 = 50Ω together with two amplifiers. The first amplifier

is a high electron mobility transistor (HEMT). Being placed just beside the SNSPD chip,

it amplifies the sensed signal on R2 and also isolates the SNSPD from unwanted reflected

signals, hence making the current through the SNSPD more predictable. The HEMT is

powered by a room temperature bias-Tee (not shown in the figure) placed before the second

amplifier which is an RF amplifier (Miteq, AFS3-00100200-10-CR-4) with 38dB of gain.

This generates the signal V1 which has information about detected photons embedded

inside. The other path only undergoes an adjustable delay and attenuation and serves as

a reference signal, V2.

The difference of the two signals, Vd = V2 − V1 would be small in absence of incoming

photons for an appropriately adjusted circuit. However, as illustrated in Fig. 4.2 (c), Vd

will jump up whenever the detector latches. We use discriminated Vd to count photons in

gated mode.

One difference with our setups in previous chapters (see Fig. 3.5 for instance) is higher

frequency of the signals such that our counter couldn’t be useful any more. Also, contrary

to FM mode, for GM-SNSPDs it was not known in the beginning how the resulting signal,

V1 should be post processed to yield detection events. So we managed to implement the
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processing part in a highly flexible way to allow trials for finding an appropriate read

out scheme. All the parts shown in the right dashed box in Fig. 4.2 (b) are digitally

implemented. The two signal pathes described above are connected to two channels of a

high speed oscilloscope (Tektronix DSA70000 series) that makes a digital representation

of the incoming analogue signals. This is transferred to Matlab installed on a remote PC

using a GPIB interface. The Matlab then mimics the schematic shown in the right dashed

box. It can also serve as a counter, as an autocorrelator and basically as all post-processing

tools we need to study GM-SNSPDs.

The study of GM-SNSPDs wouldn’t be complete without comparing them with FM-

SNSPDs. To make FM equivalent with minimal changes, we used DC signal source in the

same circuit of Fig. 4.2 (b) but R1 replaced with a large 100nF capacitor. Such circuit

delivers a DC voltage to R1 → 100nF and thus makes a DC current in the superconducting

nanowires. Writing the Norton equivalent of the circuit composed of 100nF capacitor,

RB, R2 and SNSPD at high frequency, one gets the same circuit of Fig. 4.2 (a) with

RL = RB +R2. So the changes make an FM-SNSPD in which the generated signal can be

read from the same chain of amplifiers and the same post processing hardware. However, we

used a different Matlab code to interpret the resulting signal as the output of an FM-SPD

(see Fig. 4.1 (a)) rather than a GM one (see Fig. 4.1 (b)).

Similar to Fig. 3.5, the cryogenic setup consists of the dipstick probe details of which

reported in [77]. Also similar to the setup of section 2.2, the photons are delivered to the

active area of the SNSPD using a fiber. However, we installed the fiber far away from the

SNSPD to make a large spot on the device. This degrades the system quantum efficiency

but it is good for our studies because it ensures the optical coupling doesn’t change a lot by

successive cooling down cycles. Finally, we have used similar SNSPD chips as the previous

chapters: 500µm long, 4nm thick, 120nm wide Niobium Nitride on Sapphire with an active

area of 10µm×10µm.

The highly flexible setup we implemented, allowed us to do variety of different analysis

on both FM and GM-SNSPDs. These are discussed in the next section.

68



4.2 Experimental Characterization

In this section, we only present the main results that are important for characterization of

a typical GM-SPD, rather independent of its internal workings. The quantitative under-

standing of the details of operation of our GM-SNSPD would not be possible without the

aid of smaller experimental and modeling activities. These details will be explained in the

methods section later in this chapter.

4.2.1 Performance in Time: Maximum Count Rate, Gate Shape

and After Pulsing

To measure speed, we excite both FM and GM detectors using an attenuated 1310nm CW

laser at a level that makes measured count rate linearly proportional to the laser intensity,

thus ensuring both single photon sensitivity [69], and being away from the saturation level

(see Eq. (2.9)). The recorded detection events gives a series of zeros and ones, and makes

a random process, x (see Fig. 4.1). We use Matlab to calculate unbiased autocorrelation

function on the x from both types of operations, a function that will be useful for maximum

count rate characterization.

For FM-SNSPD, x equals x(p∆t), where p is an integer and ∆t is a fine sampling interval

set on the analog to digital converters (see Fig. 4.1 (a)). The unbiased autocorrelation

function gives the joint probability of two click events during time intervals ∆t, separated

in time by n∆t

Γ(n∆t) = P (p∆t,∆t; (p+ n)∆t,∆t), (4.1)

where n is an integer. This reduces to

Γ(n∆t) =

{
R∆t SQE n = 0

R∆t SQE ×R∆t SQE(n∆t) n 6= 0
(4.2)
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where R is the rate of incident photons, SQE denotes the average system quantum effi-

ciency and SQE(n∆t) denotes the system quantum efficiency for a time slot that is n∆t

after a detection event. Therefore

Γ(n∆t)

Γ2(0)
=
SQE(n∆t)

SQE
n 6= 0· (4.3)

This should ideally be a flat line for n 6= 0 unless the limited speed of the detector makes

the click events at (p+ n)∆t and p∆t, non-independent.

For GM-SNSPD, x equals x(qT ), where q is an integer that labels successive gates and

T is the gating period (see Fig. 4.1 (b)). The unbiased autocorrelation function gives the

joint probability of two click events during two gates separated in time by nT

Γ(nT ) = P (qT ; (q + n)T )· (4.4)

This reduces to

Γ(nT ) =

{
DP n = 0

DP ×DP (nT ) n 6= 0
(4.5)

where DP denotes the average click probability per gate and DP (nT ) denotes the click

probability in a gate that is nT after a detection gate. Therefore

Γ(nT )

Γ2(0)
=
DP (nT )

DP
n 6= 0· (4.6)

This should ideally be a flat line for n 6= 0 unless the limited speed of the detector makes

the click events at gates (q + n) and q, non-independent.

Comparing Eq. (4.3) and Eq. (4.6), we note the same quantity, Γ(n) normalized to

Γ2(0), can be used for speed characterization of both FM and GM SNSPDs. Also for

large n values, we expect SQE(n∆t) → SQE and DP (nT ) → DP , and thus according

to Eq. (4.2) and Eq. (4.5), Γ2(0) is equal to Γ(∞). Therefore, we will use Γ(τ)/Γ(∞) to

measure the speed in both operation regimes, where τ = n∆t in FM and τ = nT in GM.
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Figure 4.3 (a) shows the measured normalized autocorrelations. For GM: RB is 650Ω,

the bias is 625MHz sinusoidal (see methods section 4.4.4 for detailed explanation of these

selections) with minima and maxima equal to−2µA and 90% of critical current respectively

(see methods sections 4.4.5 for details of the procedure used to experimentally set these

currents). For FM: we tried to choose RL for operation at maximum speed while avoiding

latching, we set RL equal to 100Ω (equivalent to RB = 50Ω, see methods section 4.4.3

for details of how we conclude this would result in the maximum operation speed), the

DC bias is 90% of critical current. The result shows for having Γ(τ) changed by less than

±10%, τ should be greater than about 22ns in FM and 1.6ns in GM, i.e. more than one

order of magnitude speed up in GM.

Exciting the GM-SNSPD with a faint CW laser and making a time histogram of the

detection events within a gate period, provides direct information on how the quantum

efficiency changes with in a gate period. Figure 4.3 (b) shows the measurement result on

the 625MHz GM-SNSPD described above. It shows the quantum efficiency changes less

than 5% for a time window equal to 57ps (equivalent to about 1/30th of the gating period,

T ). The curve shown on the same figure is obtained using

SQE(IDC + IACsin(2πt
T

))

SQE(IDC + IAC)
, (4.7)

where SQE represents system quantum efficiency whose functionality with biassing current

is known using SQE versus bias current measurement for FM-SNSPD as shown in Fig. 4.4

and will be discussed in the next subsection. The agreement between the curve and the

points confirm nothing unknown is taking place here and variation of SQE in a gating period

is only due to variation of the bias current. 57ps is already wide enough for detection of

picosecond wide optical pulses, however we note 1/30th of T would naturally increase if we

could use latest generation of high quality SNSPDs. That’s because for our poor SNSPD

chip, the curve of SQE is always ascending with bias current (see Fig. 4.4), while for a high

quality SNSPD the curve saturates at a high bias current (see quantum efficiency versus

bias current in [89] for instance). Therefore without any change in the gating methods we

used, we expect gates with wider width and flatter response at the peak for higher quality

SNSPD chips.
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Figure 4.3: Autocorrelation and gate shape measurements. (a), Normalized autocorrela-

tion for FM-SNSPD with RL equal to 100Ω (black circles) and our 625MHz GM-SNSPD

(red squares), both under CW laser illumination. Non-flat autocorrelations show depen-

dency of two detector clicks separated in time by τ . As can be seen GM-SNSPD operates

more than one order of magnetite faster than FM-SNSPD . (b), Normalized time histogram

of detection events within a gate period of our 625MHz GM-SNSPD under a CW laser.

The figure illustrates the gate shape of a GM-SNSPD. (c), Normalized autocorrelation

for 625MHz GM-SNSPD excited with a pulsed laser at 31.25MHz. It demonstrates the

GM-SNSPD does not suffer from large after pulsing effects.
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Convectional gated SPDs like IR-APDs tend to generate after pulses, i.e spontaneous

fake clicks in the gates following a gate with a real detection event. Consequently, com-

mercial IR-APDs (like the ones mentioned in chapter 1) come with adjustable dead-time

to avoid excessive after pulses. It is natural to study the same effect in GM-SNSPDs as

well. To this end, we keep the biasing of the above GM-SNSPD unchanged but excite it

with a 625/20 = 31.25MHz, 1310nm pulsed laser. Following Eq. (4.4), the autocorrelation

function in this case would ideally (i.e. in absence of after pulses) be

Γ(nT ) =



DP + 19DCP

20
n = 0

2DP ·DCP + 18DCP 2

20
n 6= 0 and n 6= 20N

DP 2 + 19DCP 2

20
n = 20N

(4.8)

where N is an integer, DP is detection probability per gate and DCP is the dark count

probability per gate. Assuming the GM-SNSPS is excited by laser pulses with sufficient

intensity that makes DP � DCP , Eq. 4.8 approximates to

Γ(nT ) ≈


0.05 DP n = 0

0.1 DP ·DCP n 6= 0 and n 6= 20N

0.05 DP 2 n = 20N

(4.9)

Therefore,

Γ(τ = nT )

Γ(0)
≈

{
2DCP n 6= 0 and n 6= 20N

DP n = 20N
(4.10)

This normalized autocorrelation is shown in Fig. 4.3 (c). As expected from Eq. (4.10), it

shows clear jumps each 20 gating periods and remains on a flat level determined by dark

count probability per gate. More interestingly, 2DCP as can be read from the flat level

is compatible with our dark count measurements as will be discussed in Fig. 4.4. This

is except for n=1 where DCP is enhanced by an after pulsing probability about 0.03%.

We attribute this to either unwanted oscillatory behavior in the biasing current following
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a photo-detection or temperature rise in the corresponding gate. While both of these

possibilities will be seen in the simulations of the next section, the final conclusion on the

physical origin of this needs more experimental investigations.

4.2.2 Quantum Efficiency and Dark Count Rate

We have shown in the previous subsection that the maximum count rate of GM-SNSPD is

more than one order of magnitude higher than its FM counterpart. However, the improve-

ment in speed should not be at the cost of degradation in Quantum Efficiency (QE) or

Dark Count Rate (DCR). In this subsection we explore QE and DCR of our GM-SNSPD

compared to the FM one.

QE and DCR of both of the operation modes are compared in Fig. 4.4. For GM we

apply 100MHz bias and lock a 200ps pulsed laser to the bias maxima. For FM we used

an attenuated CW laser with the same wavelength. Quantum efficiency for GM and FM

shows good agreement, proofing the GM operation doesn’t degrade the efficiency of the

detector. However, as the GM-SNSPD is not always on, its dark count rate is smaller than

that of FM-SNSPD by about one order of magnitude.

To quantitatively work out the reduction in GM-DCR, we note the experimental FM-

DCR in Fig. 4.4 has an exponential dependance with the bias current. So it can be

expressed as

DCRFM = exp
(
α(IB − I0)

)
(4.11)

where IB is the DC bias current, and α and I0 are two fitting parameters. We follow a

similar reasoning that lead to Eq. 2.6 of our semi-empirical model: DCRGM at time t

in a gate period equals DCRFM provided the detector has not been perversely latched.

Therefore

DCRGM(t) = DCRFM

(
IDC − IAC cos(

2πt

T
)
)[

1−
∫ t

0

DCRGM(t) dt

]
, (4.12)
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Figure 4.4: Quantum Efficiency and Dark Count measurements. Black squares are for

FM-SNSPD and red circles are for 100MHz GM-SNSPD. The current shown is the DC

biasing current or the peak of current for FM and GM respectively. For GM efficiency

measurement, a 200ps pulsed laser was locked to the peaks of the current through the

SNSPD. Note for GM-SNSPD dark count rate saturates at the gating frequency at higher

currents.

from which we get

DCP =

∫ T

0

DCRGM(t) dt = 1−exp
(
−
∫ T

0

DCRFM

(
IDC − IAC cos(

2πt

T
)
)
dt

)
, (4.13)

where DCP is the dark count probability per gate in GM operation. The average dark

count rate in GM mode can thus be calculated by DCP/T . In Fig. 4.4 the solid line under

measured DCRGM is calculated from DCRFM by this method. The good agreement

suggests nothing but a sinusoidally shaped current is making DCR in gated mode less

than free-running mode. A significant feature of Eq. (4.13) becomes clear when trying to
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Figure 4.5: Average quantum efficiency and dark count rate measurements of a GM-

SNSPD at 100MHz (◦) and 625MHz (×). In this plot, the current for 625MHz operation is

manually reduced by 3.5% with respect to what we actually adjusted during the experiment.

This is just to show both of the curves of efficiency and dark counts agree at two distant

frequencies. We attribute 3.5% to the error of our methods for adjusting high frequency

current (see methods section 4.4.5).

simplify the math for DCP � 1. Under this condition and assuming αIAC � 1 (which is

the case for our SNSPD), Eq. (4.13) approximates to

DCRGM =
DCP

T
≈ DCRFM(IDC + IAC)√

2παIAC
· (4.14)

This indicates in gated mode dark count probability per gate is inversely proportional to

gating frequency and thus dark count rate is independent of biasing frequency. Indeed,

we measured DCRGM of a GM-SNSPD at 100MHz and 625MHz. The result is shown in

Fig. 4.5 which experimentally proves the correctness of Eq. (4.14).

We couldn’t synchronize our laser to the bias current at higher frequencies to measure

quantum efficiency with the same method as Fig. 4.4. However, following the same method
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that lead to Eq. (4.13) and using the same functionality of quantum efficiency with biasing

current that was suggested by Eq. (4.7) and experimentally proved to be correct by Fig. 4.3

(b), we can write down

DP = 1− exp
(
−
∫ T

0

SQE
(
IDC − IAC cos(

2πt

T
)
)
R dt

)
, (4.15)

where DP is detection probability be gate, R is the rate of incident photons and T is the

gating period. For small enough laser intensities where DP < 0.1, Eq. (4.15) approximates

to

DP

R T
≈
∫ 1

0

SQE
(
IDC + IAC sin(2πx)

)
dx, (4.16)

where we have replaced t→ Tx. The message of Eq. (4.17) is clear: for a CW laser exited

GM-SNSPD, the average quantum efficiency, i.e. detection probability per gate divided

by the average number of incident photons per gate period, should be independent of the

gating frequency. Indeed, the experimental result shown in Fig. 4.5 confirms this.

Therefore, with all the calculations and experiments of this subsection we showed: our

GM-SNSPD works with the same efficiency of FM-SNSPD, dark count probability per gate

is inversely proportional to gating frequency and the dark count rate is much smaller than

FM-SNSPD.

4.3 The Ultimate Limits and Simulations

We have experimentally explored different features of gated mode operation of SNSPDs in

the last section. The main advantage is increased maximum count rate and reduced dark

count rate. A natural question that rises is that of the ultimate limits of GM operation.

In this section we try to exploit physical modeling and numerical simulations to find the

answer. Following the same convention of this chapter up to now, we postpone some rather

independent tasks to the methods section.
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The simulations we are looking for are Electro-Thermal. Electric part accounts for

the dynamics of voltages and currents in the circuit built around the superconducting

nanowire, namely the circuit of Fig. 4.2 (b). The thermal part on the other hand, captures

the thermal process that goes on within the nanowires. Therefore we need two models for

simulating the system: a thermal one and an electrical one.

To date, the electrical model shown in Fig. 4.2 (a) has been the basis for doing electro-

thermal simulations on the SNSPDs [65, 64, 90]. However, the high frequency content of

the driving signal that we use in GM-SNSPDs together with increased RB, makes this

model not appropriate for for our case. So we developed a more suitable electrical model

of our SNSPD as shown in Fig. 4.6 (a) (see methods section 4.4.1 for details). We could

do our simulations based on this rather accurate model. But, large number of components

would make interpretation of the results difficult. Instead, we approximate this model into

a simplified version shown in Fig. 4.6 (b) (see methods section 4.4.2 for details). This

will be used in all our simulations. Although, compared to the previous model shown in

Fig. 4.2 (a), the change is a single component, CP , but this will be proved to be the most

restricting factor for the maximum count rate of our GM-SNSPD.

The thermal model for our simulation is the same as the one reported by Yang et.al.

[65]. It is basically a 1D heat transfer equation for describing the dynamics of a hotspot

on the superconducting nanowire. The equation has the form

ρJ2 + k
∂2T

∂x2
− α

d
(T − Tsub) =

∂cT

∂t
, (4.17)

where x, T (x, t), J(t), ρ(T (x, t)), k(T (x, t)), α(T (x, t)), d and c(T (x, t)) are coordinate,

temperature, current density, electrical resistivity, thermal conductivity, thermal boundary

conductivity, nanowire thickness and specific heat, respectively. We use the same nonlinear

temperature and phase dependencies of the parameters as in [65]. The thermal model is

coupled to the electrical model through the voltage and current on the hotspot shown

in Fig. 4.6 (b). We assume the nanowire is long enough that the hotspot never reaches

the two ends of it, and thus the two ends can always be assumed to be at the substrate

temperature. Also we assume the hotspot has an initial length of about 10nm with a peak

temperature slightly above superconducting transition temperature.
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Figure 4.6: (a), Electrical circuit model for our GM-SNSPD (see methods section 4.4.1).

(b), A simplified version that was used to do electro-thermal simulations (see methods

section 4.4.2). (c), Simulated peaks of current in the gates following a photo-detection

normalized to 95% of the critical current for RP = 725Ω (equivalent to RB = 650Ω),

CP = 0.57pf and LK = 490nH. Also shown is the maximum temperature on the surface of

the Nanowire at the first gate following a photo-detection normalized to 4.2K for a critically

damped circuit with CP = 0.01pf and LK equal to 6nH, 60nH, 600nH and 6000nH.

We simulate the peaks of current in the gates following a photo-detection in our GM-

SNSPD, i.e. we put a hotspot on the nanowire at a peak of current to make it latch and

then we look at the current through the nanowire after it was forced to reset by the current

minima. The peaks of this current should ideally return to its original value for having the

detection efficiency and dark counts intact in the succeeding gates. The simulation result

is shown in Fig. 4.6 (c) for RP equal to 725Ω (equivalent to RB = 650Ω). It shows our

GM-SNSPD is far from the ideal case: only at gating frequencies less than about 300MHz

or at about 600MHz the peaks don’t change significantly. Indeed, this is how we have

selected the gating frequencies in the experiments described. Therefore, the oscillatory

response of an under-damped RLC circuit puts a purely electrical limitation on the gating

frequency of our GM-SNSPD.

The physical origin of CP as shown in Fig. 4.6 (a) suggests CP can be reduced to about

0.01pf if RB be integrated to the SNSPD chip. Therefore, with CP = 0.01pf, we repeat the

simulation for values of LK ranging 6nH to 6µH. For each LK , we choose RB such that it
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Figure 4.7: Re-latching effect in GM-SNSPDs. At a high gating frequency the nanowire

doesn’t have enough time to completely cool down to substrate temperature before the

arrival of the next current peak. Therefore it latches again and a sequence of hotspots

appears that stops the detector from correct operation.

makes a critically-damped RLC circuit both to avoid oscillatory behaviors and to have the

circuit return to its steady state as fast as possible. With a procedure similar to the previous

simulation, we simulate for the maximum temperature of the nanowire at the center of the

gate following a detection gate. The results are shown in Fig. 4.6 (c). The curves are up

to the frequency at which the detector re-latches in the next maxima of the current due

to elevated nanowire temperature. We also checked that the currents of Fig. 4.6 (c) are

horizontally flat for this case, confirming the fast enough electrical response. Figure. 4.7

illustrates the re-latching of the GM-SNSPD by showing the temperature distribution,

T (x, t), along the nanowire when it is driven with at a high gating frequency.

Therefore, we showed for GM-SNSPDs the maximum count rate can be purely limited

by thermal response of the SNSPD. This is in contrast with FM operation that an electro-

thermal process restricts higher count rates at a much lower rate. Another significant

finding is that for GM-SNSPDs, increasing LK over three orders of magnitude from 6nH

to 6µH, decreases maximum gating frequency for just about 33%. So unlike FM operation

in which for having higher speed, the LK and as a result the active area of the detector

should be reduced [9, 10], for GM operation both high speed and large active area can be

80



achieved simultaneously, a significant feature for making SPDs that are both high speed

and highly efficient.

4.4 Methods

In the previous sections we presented the concept and implementation of GM-SNSPDs

together with our major results showing the performance, limitations and advantages of

GM operation. However, running a GM-SNSPD would have not been possible without the

support of models that help quantitative understanding of different aspects of GM opera-

tion. In this section we presents the details of these supportive works that are frequently

referred to throughout the chapter.

4.4.1 SNSPD Electrical Model

In this subsection we present the details for derivation of our SNSPD electrical model in

Fig. 4.6 (a). We decomposed the device into Gold pads and NbN nanowires as shown

in Fig. 4.8 (a) and (b), respectively. High frequency electromagnetic simulation software,

SONNET, is then used to solve for the S-parameters of the two structures separately.

Perfect conductor on top of a loss-less substrate with relative permittivity equal to 11.35

[91, 92] was assumed to simulate for the Gold pads. Surface inductance equal to 90pH

(equivalent to London Penetration depth equal to 532nm [64] at thickness of 4nm) was

used to simulate the superconducting meandering nanowires. In each case we simulated

for the phase and amplitude of the S-parameters up to 5GHz. These results are then

converted to the circuit model by using our intuition and the functions available in Agilent

Advanced Design System (ADS). The 0.14pf capacitor in Fig. 4.6 (a) is obtained with the

same methods for a small pad on a printed circuit board where the SNSPD was wire-bonded

to.

To test the validity of the resulting model, we put the SNSPD chip in the circuit shown

in Fig. 4.2 (b) with R1 = ∞, R2 = RB = 50Ω and the HEMT amplifier disconnected.

We measured the input reflection coefficient, Γin, using a vector network analyzer (VNA)
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Gold

Figure 4.8: Drawing of the Gold pads and NbN nanowires of our SNSPD in SONNET.

The S-parameters was simulated by SONNET and the results were converted to the circuit

model of Fig. 4.6 (a) by ADS.

calibrated at the cryogenic end of the coax while the device was cooled down to 27K and

4.2K. We calculate the input impedance of our system seen from the end of the coax cable

using the measured Γin. Alternatively, we used ADS to simulate for the input impedance

using the model of Fig. 4.6 (a) 1. Both of the results are shown in Fig. 4.9. The impedance

is inductive up to a resonant peak and then the capacitive effect dominates. The agreement

between the measurement and what we could simulate in ADS using the developed circuit

model confirmed the model is fairly accurate at least up to 2GHz. The most significant

deviation between the results is in the phase of input impedance from 2GHz to 5GHz. This

might be due to our rather poor VNA calibration at higher frequencies.

127K is above the critical temperature of our superconducting nanowires (TC ≈ 11K). So for ADS
simulation, we replaced LK by a resistor equal to 2.3MΩ equivalent to our measured resistance of SNSPD
at 27K. Also, as will be discussed in section 4.4.5, the measured high frequency model of our actual
50Ω resistors is an ideal 50Ω resistor in series with a 0.9nH inductor. We have considered this in these
simulations.
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Figure 4.9: Comparing the input impedance of a test setup that our SNSPD sits in,

and the simulation of the same circuit using the SNSPD model of Fig. 4.6 (a) at two

superconducting (4.2K) and non-superconducting (27K) phases. The agreement proves

the accuracy of the model up to about 2GHz.

4.4.2 Electrical Model Approximation

All the components of our electrical mode developed in the last subsection, have tight

physical connections. However, we were looking for something simpler to make the inter-

pretation of our electro-thermal simulations more straight forward. Therefore, looking at

Fig. 4.6 (a), we followed the following steps to make an approximate version:

• Replace RFin with a voltage source in series with a 25Ω output impedance.

• Write down the Norton equivalent of the voltage source and RB + 25Ω.

• Identify Z1 ≡ (RB + 25) ‖ (0.14pf+0.38pf), Z2 ≡ LK ‖ (6.3ff+44ff) and Z3 ≡ R1 ‖
2.68pf.

• Write down Thevenin equivalent of the ”Norton current source” and Z1.

• Note in a large frequency range (0.1GHz to 10GHz), |Z1 + Z2| � |Z3| and therefore

Z3 can be approximated by zero.
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• Z3 ≈ 0 readily gives circuit of Fig. 4.6 (b) with: CP = 0.14pf+0.38pf+44ff+6.3ff and

RP = RB + 25.

• We add R1 = 50Ω to RP for reducing the error of above approximation at DC. So

RP = RB + 25 + 50.

• We note Z3 ≈ 0 works for RB up to about 2KΩ.

This approximate version is shown in Fig. 4.6 (b). The message is that our SNSPD

is a parallel RLC circuit rather than a Parallel RL circuit, and thus it is susceptible to

unwanted oscillatory behaviors. To experimentally verify the presence of such oscillations,

we used the setup of Fig. 4.2 (b) with RB = 5KΩ to capture output signals. The result

is shown in Fig. 4.10 with the same signal labels previously defined in Fig. 4.2 (b). A

clear damped oscillation on the difference signal, Vd, can be observed. Shown on the same

figure is the step response of the simplified model of Fig. 4.6 (b) with RP = 5.075KΩ (An

arbitrary step amplitude and delay was used). These observations prove the existence of

the oscillations and also satisfactory description of it by our modeling approach.

4.4.3 Maximum speed in Free-running Mode

A crucial step in demonstration of the advantages of GM-SNSPDs is comparing GM max-

imum count rate with that of FM operation. As the model of Fig. 4.2 (a) suggests, the

maximum FM count rate should be proportional to the load resistance seen by the SNSPD,

i.e. RL. Therefore, we experimentally measured the maximum allowable RL while main-

taining the quantum efficiency at its maximum by adapting the same method reported in

[9].

For different RL values, starting from a high bias current that results in a stable latched

state, we measured the current at which the nanowire returns to superconducting state

while sweeping the bias voltage downwards. The resulting IV curves are shown in Fig. 4.11.

We observe the peak of the currents, i.e. the maximum currents that the SNSPD can be

biased in, start to decrease for RL greater than about 150Ω. This with LK = 490nH (see

Fig. 4.6) (a) gives an electrical time constant τe = 3.3ns. This is approximately consistent
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Figure 4.10: A typical set of waveforms for the circuit of Fig. 4.2 (b) with RB = 5KΩ.

V1 is coming from the SNSPD, V2 is the reference sinusoidal, Vd = V2 − V1 and Vs is the

simulated step response of the approximate model in Fig. 4.6 (b).

with the results reported in [9] and [10]. Note, we used RL = 100Ω in the result of Fig. 4.2

(a) to further avoid latching at higher bias currents.

4.4.4 Selecting RB and Gating Frequency

We had two unknowns for the operation of our GM-SNSPD, biasing resistor RB and

gating frequency. For determining the maximum frequency in which our SNSPD chip can

operate, we did the same electro-thermal simulations as the previous section, but with

RP = RB + 25 + 50 set to different values. The peak of alternating biasing current was

set to 95% of the critical current and we simulate for the peak of current in the first gate

following a photo-detection or dark count event. The result is shown in Fig. 4.12.

As can be seen, for a specific RP the simulated current peak returns to its original value

for a range of lower frequencies and also for a single higher frequency, fH . Initial increase

85



 

0.0 1.0 2.0 3.0 4.0 5.0
Voltage (mV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 C
ur

re
nt

R = 33Ω R = 84Ω

R = 183Ω

R = 283Ω

Figure 4.11: Backward Current-Voltage curves of our FM-SNSPD with different RL values

at 4.2K. The RL values were determined from the slope of IV curve where the nanowires

are superconducting.

of RP from small values, increases fH but further increase beyond about 750Ω degrades

fH from about 600MHz to lower values. This is how we set RB = 650Ω for our 625MHz

GM-SNSPD. Indeed, the simulation of the other peaks shown in Fig. 4.6 (c) suggests at

this particular gating frequency all the currents would be about their original value during

the gates succeeding a detection gate.

4.4.5 Adjusting the high frequency current

One of the difficulties of operation in gated mode is accurately applying a high frequency

biasing current with a DC offset to a device operating at cryogenic temperature. Using

a VNA, we characterized the components of our electrical setup including biasing coaxial

cable and all individual electronic components used. The resulting information was con-
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Figure 4.12: The normalized peak of the alternating bais current of our GM-SNSPD

during the first gate after a detection event for different parallel resistor values, RP .

verted to suitable electrical models be using Agilent ADS. This together with our previous

SNSPD model shown in Fig. 4.6 (a), were put together to result in a circuit model that is

shown in Fig. 4.13 (a).

We simulated for frequency dependence of Transconductance between the input voltage

generated by the signal source and the current that flows in the Nanowires. The resulting

curve is shown in Fig. 4.13 (b). This was used to adjust the minima and maxima of the

biasing current throughout the experiments. It is better to set the minima of current

to zero to ensure the Nanowire always returns to superconducting state following by a

latching. We chose a slightly negative value (−2µA) for the minima to allow more room

for the effect of noises and also errors in determining Transconductance.
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Figure 4.13: (a) Electrical circuit model for our GM-SNSPD setup. (b) Simulated

transconductance between the current in the SNSPD and the input voltage, Vin. This

was used to calculate the voltage needed to apply at room temperature Vin to make a

specific current in the SNSPD held at a cryogenic temperature.

4.5 Conclusions

To conclude, SNSPDs can be operated in gated mode at the same quantum efficiency that

they have in free-running mode, but with an enhanced maximum count rate and reduced

dark counts. Using a differencing read out technique, we implemented a gated setup and

characterized different features of it. We have shown how irrespective of the value of the

kinetic inductance, the maximum gating frequency can be pushed to GHz range where

a purely thermal limitation doesn’t let faster operation. The work will add a degree of

freedom for designing high speed SNSPDs for applications like quantum key distribution.
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Chapter 5

Conclusions and Outlook

I have started from a general introduction to single photon detectors and a more in depth

introduction about superconducting nanowire single photon detectors. Taking a semi-

empirical approach a model for SNSPDs was developed, different features of it was investi-

gated and finally it was tested with experiments in chapter 2. I have derived the quantum

optical version of this model for a special case in chapter 3, and showed how the from of

its POVM guided us to generalize the standard model for a SPD’s POVM to a nonlinear

model. I presented this nonlinear model, worked out different related problems and tested

it by comparing it with detector tomography. The focus was then turned from modeling

the present devices to developing new detectors. I introduced the concept of gated SNSPDs

as an approach to speed up the detector in chapter 4. A sample was implemented and

different features of it was explored both experimentally and theoretically. A list of my

publications during the PhD years is:

• Gated Mode Superconducting Nanowire Single Photon Detectors

M. K. Akhlaghi and A. H. Majedi

arXiv: quant-ph: 1111.0588 (will appear in Optics Express)

• Nonlinearity in Single Photon Detection: Modeling and Quantum Tomog-

raphy

89

http://arxiv.org/abs/1111.0588


M. K. Akhlaghi, A. H. Majedi and J. S. Lundeen

Optics Express, Vol. 19, Issue 22, pp. 21305-21312 (2011)

• Controlling Superconducting Nanowire Single-Photon Detector Using Tai-

lored Bright Illumination

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar and V. Makarov

New J. Phys. 13, 113042 (2011)

• Semiempirical Modeling of Dark Count Rate and Quantum Efficiency of

Superconducting Nanowire Single-Photon Detectors

M. K. Akhlaghi and A. H. Majedi

IEEE Transaction on Applied Superconductivity, Vol. 19, Issue 3, pp. 361-366 (2009)

• Optoelectronic Characterization of a Superconducting Quantum Detector

M. K. Akhlaghi and A. Hamed Majedi

Proceeding of the 21st Annual Meeting of the IEEE LEOS, pp. 234-5 (2008)

• Optoelectronic Characterization of a Fiber-Coupled NbN Superconduct-

ing Nanowire Single Photon Detector

Z. Yan, M. K. Akhlaghi, JL. Orgiazzi and A. H. Majedi

Journal of Modern Optics, Vol. 56, Issue. 2-3, pp. 380-384 (2008)

While all of the results and discussions have their own importance, I believe there are

two high impact results. Firstly, the nonlinear model for SPD’s POVM is an important

result because it can play the same general role of the standard model whenever needed.

Published recently, the work has started showing its impact on diverse fields (e.g. see [93]

on security proof of quantum key distribution, and [94] on development of nano-SPDs).

Provided the existence of a trend for making SPDs from nano-structures, some of the

future SPDs seem to be good candidates for observing nonlinear effects. The nonlinear

model can serve as a tool for calibration purposes, as a gauge to compare the experimental

results with, as a method for finding the POVM of SPDs in presence of nonlinearities, and
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etc. For the nonlinear effects in SNSPDs, the life time of the nonlinear process, its relation

with operation and excitation conditions and incorporation of the coherent effects into our

nonlinear SPDs model are among the open questions. The results will pave the way of

these effects for applications like photon number detection and correlation measurements.

Secondly, I believe the concept of gated SNSPDs is of particular importance. The

SNSPDs have been intensively researched over the past decade, during which time variety

of SNSPD designs have been developed. Throughout, SNSPDs have been Mono-stable

systems: photon detection drives the system out of its equilibrium (signaling a detection

event), and then the system returns to its only stable state by itself. However, for the first

time, our gated SNSPD introduces the application of a Bistable superconducting nanowire

system as a SPD. Such system integrates a memory effect (Bistability) with all good figures

of present SNSPDs. A detector that exploits this phenomenon would not only detect the

photons, but also would save the detection result and thus there would be lots of flexibility

in detector design and readout.

I have used the Bistability to implement a gated SNSPD that operates much faster

at a lower noise, significant advantages for many applications in different fields. I expect

the gated operation will become a dual operation mode for all types of SNSPDs, be single

element, multi-element, photon number resolving, or integrated with optical structures.

However, the present gating scheme is a synchronous one, which is advantages for some

applications because it eliminates the background photons that hit the detector out of the

gates. But, it is also possible to design asynchronously gated SNSPDs as well. The result

would be a free-running SPD that have the advantages of present SNSPDs but operates

much faster.

In addition, the unique features of single photon triggered Bistability in superconduct-

ing nanowires allow a more flexible design, and therefore emergence of a new category of

SPDs that work based on the same principle is expected. For instance, it can be exploited

to make photon-number-resolving and imaging SPDs: many independent pixels detect the

photons and store the results, the electronic probes then read the pixels and reset the

device (This is reminiscent of the working of widely used CCD imaging sensors, however

instead of charge, a thermal effect stores the information). High quantum efficiency, small

dark counts, high timing accuracy and fast operation are expected because of the photon
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detection features of SNSPDs. Also the large number of small pixels while keeping the

readout scheme simple is expected because of the memory effect. We have started the

fabrication of pixels in the form of short superconducting nanowires and have good initial

characterization results. However, lots of fabrication and readout challenges have to be

addressed before emergence of the first new SPDs.
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