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Abstract: Current additive rapid prototyping technologies fail to efficiently produce 

objects greater than 0.5m³ due to restrictions in build size and build time. Conversely 

large hot-wire cutting machines, able to cut large objects, often lack the ability to 

create surfaces with complex geometrical features. Therefore there is a need to 

develop rapid prototyping and manufacturing technologies capable of producing large 

objects in a rapid manner directly from CAD data. Large sized freeform objects made 

of soft materials, such as polystyrene foam, have numerous uses including; conceptual 

design of commercial products, automotive design, aerodynamic and hydrodynamic 

testing, advertising, film making, medical supports, sporting equipment and props for 

the entertainment industry.  Plastic foam cutting rapid prototyping is a relatively new 

technology capable of producing large plastic foam objects directly from CAD data. 

This paper will describe nine such technologies that have been developed or are 

currently being developed at institutions around the world. 

 

Introduction 

Large sized freeform objects made from soft materials have numerous uses including; 

conceptual design of commercial products, automotive design, aerodynamic and 

hydrodynamic testing, advertising, film making, medical supports, sporting equipment 

and the entertainment industry. One such soft material is polystyrene foam which 

exists in two basic forms; Expanded Polystyrene (EPS) and Extruded Polystyrene 

(XPS). 

 

There are a number of well recognised manufacturing technologies capable of rapidly 

producing complex objects or large objects but there are few that can do both with 

low cost. Conventional additive rapid prototyping (RP) technologies are continuing to 

improve in speed and accuracy, however the ability to produce large (> 0.5m³) 

prototypes, moulds or parts is still expensive, time consuming and often impossible 

[1]. CNC machining facilities are also used to machine objects with complex 

geometries, however for most applications the cost of a large CNC machine may be 

prohibitive. Also depending on the machine certain features (such as undercuts) may 

require multiple setups or specialist tooling. Computer controlled foam cutting 

machines have many attributes suited to large scale rapid prototyping and 

manufacturing (RP & M) such as fast build times and low material costs [2]. 

However, the geometrical features able to be created on conventional foam cutting 

machines are severely limited by the use of straight hot-wire cutting tools. 

 

Foam cutting RP machines have been developed which enable the manufacture of 

large and complex objects with low cost, they bridge the gap between conventional 

RP machines and conventional foam cutting machines as is shown in figure 1. 

Development of foam cutting machines for rapid prototyping and manufacturing (RP 

& M) purposes began shortly after the first rapid prototyping machines became 

commercialised in the late 1980s. However few RP foam cutting machines have been 

commercialised to-date leaving significant opportunities for research and 

development in this area. The following paper will describe novel foam cutting RP 
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machines that have been developed or are currently being developed at institutions 

around the world. 

 

 

Figure 1. Comparison between conventional RP machines, foam cutting machines and foam 

cutting RP machines in terms of part complexity and part size. 

 

 

Foam Cutting RP Machines 

Foam cutting RP machines use a range of methods to produce plastic foam objects 

from CAD data. The criteria used to categorize foam cutting RP systems in this paper 

are as follows: 

 

 The build material must be a plastic foam such as expanded or extruded 

polystyrene. 

 The tool path and machining strategy should be determined directly from a 3D 

digital representation of the prototype. 

 The system should be able to create complex freeform shapes. 

 The system should have a software based user interface for efficient transfer of 

information between the operator and the RP system.  

 

The following sections describe different foam cutting RP machines developed or 

currently under development around the world. The most common method of 

fabrication is layered manufacturing, in which the part is built up by assembling 

individual layers, however direct sculpting and heat ablation methods also exist. 

 

Freeform Automated Sculpting Technology (FAST) 

FAST is a system currently under development within the Department of Mechanical 

Engineering, University of Canterbury, New Zealand and is the motivation for this 

paper. The system currently consists of: 

 A laser scanner for obtaining digital surface information. 
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 CAD/CAM software to prepare 3D models and produce cutting paths for the 

robot. 

 A six axis Kuka KR6 industrial robot used to manipulate the cutting tool along 

the cutting paths. 

 An electrically heated cutting tool used to cut the plastic foam. 

This system is a form of robotic machining similar to that developed by Tangelder 

[1]. The main difference is the use of a hot-ribbon as the cutting tool and the method 

of producing the cutting paths. 

 

The cutting elements used to date are 1/8” × 0.018” Nichrome ribbons which can be 

pre-bent into any desired profile. In practice a jig is used to form blades with known 

dimensions. Blades with large profiles are used for roughing while blades with 

smaller profiles are used for detailed features and surfaces with high curvature. This 

combination of tools greatly reduces cutting times when compared to standard milling 

operations. A pneumatic gripper is used for automated tool changes, allowing many 

different blade profiles to be used in a short time. Hot-wires can also be used for 

profile cuts and objects with ruled surfaces. 

 

A method for producing the robot control program was developed by Posthuma et al 

[3, 4] in fulfilment of a Masters degree at the University of Canterbury. The process 

starts with an IGES model which is loaded into CAM software MasterCAM™. 

MasterCAM™ is then used to create roughing and finishing tool paths which are 

processed using a modified generic 5-axis post processor. The tool path data is then 

exported into an Excel spreadsheet where it is transformed into x y z A B C 

coordinates which can be read by another proprietary software package called 

RobotWorks™. RobotWorks™ is used to simulate the robot motion and carry out 

collision and joint limit checks. RobotWorks™ then converts the tool path data into 

Kuka language. The control program is then loaded into the robot PC and the program 

is executed. Figure 2 summarises the FAST Process. 

 

 

Figure 2. Rapid manufacture of a neck support for radiation therapy using the FAST system. 

 

1. Scanning 

3. Sculpting 4. Finished neck support 5. Final Use 

2. Data Processing 



The FAST system has successfully sculpted a number of arbitrarily chosen freeform 

surfaces out of EPS and XPS as well as custom fit supports trialled for medical 

purposes. Figures 3 & 4 show some examples of parts sculpted with the FAST system 

and relevant CAD models. 

 

Figure 3. IGES model of neck support created from scanned data and the sculpted part ready for 

use. 

The IGES model shown below was generated by lofting between 5 arbitrary profiles. 

These profiles were spaced 50mm apart to generate a surface with both concave and 

convex features. Generating and processing the roughing and finishing tool paths took 

approximately 40 minutes. The size of the foam blank was 160mm x 190mm x 50mm. 

The roughing pass was carried out using a 25mm wide square profile Nichrome 

cutting blade in 1.7 minutes. The finishing pass was carried out using an 8mm wide 

flat ended Nichrome blade in 2.2 minutes. The total process time required to make the 

part was 49 minutes. 

 

 

Figure 4. IGES model and part sculpted from EPS showing complex 3D surfaces produced with 

the FAST system. 

 

Like many of the other systems included in this review research on the FAST project 

is still ongoing and a number of improvements are envisaged for the future which will 

dramatically increase the size, speed and accuracy of the system. These are expected 

to include; streamlined data processing and robot code generation, optimised cutting 

tool accuracy and tool path strategies and multi-axis workpiece manipulation. A 
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number of papers have been published by Aitchison et al investigation plastic foam 

cutting mechanics with the purpose of increasing the speed, accuracy and surface 

texture of cutting plastic foams with hot wires/ribbons [5-8]. 

 

True Surface System (Trusurf) 

Trusurf is a layered manufacturing method developed by Hope et al at the Department 

of Mechanical Engineering, University of Queensland, Australia [9]. The system was 

developed primarily to produce large (> 1 m
3
) free-form models out of polystyrene 

foam. It uses a high-pressure, 5–axis water-jet cutter to cut the model‟s cross-sections 

from layers of polystyrene (10, 20 and 30 mm stock sizes). The 5–axis cutter cuts the 

cross-sections with sloping edges (as opposed to vertical cuts) to eliminate the stepped 

surface finish common to many LOM systems (see figure 5). 

 

 

Figure 5. Stepped versus ruled cuts. 

 

Once the thick cross-sections have been cut, they are assembled and bonded by hand 

to produce the finished model. The advantage of the Trusurf system lies in the fact 

that it can produce models with relatively thick layers as the linearly approximated 

sides reduce the number of layers required for a given model. 

 

The Trusurf system generates B-splines directly from CAD models (as opposed to 

.STL files which are approximations of the CAD model surface) so the splines are 

exact, hence the name Trusurf. 

 

Figure 6 below shows two objects made with the Trusurf system. Because the water 

cutter only produces linear approximations the surface finish is not ideal and 

discontinuities are visible between the layers. The errors can be minimised by 

decreasing the layer thicknesses although this also increases the build time. 

 

Stepped surface Linearly approximated surface 



 

Figure 6. Life size dolphin and revolved shape created with the Trusurf system. 

 

Shapemaker I & II 

Shapemaker I and II are layer based manufacturing systems developed by the 

Manufacturing Processes Laboratory at the University of Utah [10, 11]. Shapemaker I 

is a simple LOM based system in which section profiles are cut using a plotter and 

manually stacked using a construction table and registration pins. After each 

individual layer is stacked, the backing layer is peeled off, thus exposing the adhesive 

and providing a bonding surface for the next layer. Materials used are paper, plastic 

foam and vinyl sheet attached to a backing layer. Shapemaker I is now 

commercialised as JP System 5 Desktop Rapid Prototyping by Schroff Development 

Corporation, and is used primarily as an education tool introducing university students 

to RP technologies. Figure 7 shows the JP System 5 and some paper models made 

from it. 

 

 

Figure 7. The JP-5 system and parts. 

 

Shapemaker II (SMII) differs from its predecessor in that it is aimed at producing 

large (>1m³) full scale prototypes from polystyrene foam. The foam is cut using hot-

wires which are attached to two plotting heads. The plotting heads move 

independently to create linear approximations of each section surface similar to the 

Trusurf system (in fact both were developed around the same time in 1996-1997). 

Suggested applications of this technology include cores for large aerospace structures 

which would then be finished and covered in a composite material. SMII was 

successfully used to create a number of example objects including a wind turbine 

blade and a tail rudder. The turbine blade measured 1.2m x 0.18m x 2.1m and the 

fabrication time was approximately 11 hours excluding CAD modelling. 



There are a number of limitations associated with SMII including: 

 The cutting wire can not be tilted more than 45° limiting the accuracy for 

layers that require a larger slope. 

 Models that have features less than 1” can not be reproducing using the 

required 1” thick foam. 

 The individual layers have to be assembled by hand using registration holes 

and pins which could be cumbersome and time consuming. 

 

ModelAngelo 

This system was developed by the Department of Mechanical Engineering at the 

American University of Beirut in Lebanon [12]. It consists of unique foam cutting RP 

equipment and software collectively called “ModelAngelo”. ModelAngelo utilises a 

combination of linear and rotational axis to cut foam with a heated cutting tool. 

 

The foam blank is held in a lathe like fixture the motion of which is synchronised with 

the cutting tool.  Figure 8 shows the cutting tool, a part being sculpted and the 

available degrees of freedom (for clarity the foam holding fixtures have been 

emitted).  The „γ‟ axis is used to rotate the foam part through a possible 90° to allow 

the ends to be sculpted, however one end of the part must remain flat so it can be held 

with clamping pins. 

 

 

Figure 8. ModelAngelo apparatus. 

 

The tool consists of two short stainless steel wires, which are electrically heated above 

the melting point of the plastic foam used. The cutting tool is schematically illustrated 

in figure 9. The outer loop is used to cut the foam while the inner loop is used to 

manage the swarf. The inner loop is hotter than the outer loop because it does not 

contact the foam. This causes the foam nearest the inner loop to melt and contract 

curling the swarf upward. If the swarf is not removed from the cut surface it risks 

sticking back to the model and would then need to be removed by hand. 
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Figure 9. Electrically heated cutting tool. 

 

The authors suggest a number of applications such as art sculpting, prototypes for fit 

and form evaluation, and casting processes for biomedical and engineering 

applications. Several finished products sculpted by ModelAngelo are shown in figure 

10. 

 

Figure 10. Parts sculpted using ModelAngelo. 

 

Freeform Thick Layered Object Manufacturing (FF-TLOM) 

This process is currently under development within the Faculty of Design, Deft 

University of Technology in the Netherlands [2, 13-19]. The proposed system builds 

models from XPS foam using a layered manufacturing method similar to the Trusurf 

system. FF-TLOM utilises an electrically heated Nichrome blade to cut section 

profiles which are then assembled manually.  

 

The unique feature of this process is the flexible cutting tool which changes shape to 

provide high order approximations of the desired surface as shown in figure 11. By 

using higher order approximations it is possible to achieve far more accurate models 

while using thicker layers. The cutting tool is a flexible Nichrome ribbon which is 

held between two supports. The supports are accurately rotated with stepper motors to 

change the shape of the ribbon to match the surface geometry. The ribbon shape for 

any given support orientation is calculated using minimum strain energy theory.  

 

A prototype of the flexible cutting tool is shown in figure 12, reproduced from [20]. 

The device has three degrees of freedom, the linear distance between the connection 

points and the rotational orientation of the supports. The length of the ribbon between 

the connection points is constant. A six axis Manutec R15 industrial robot was used to 

manipulate the foam slab while the tool remained in a fixed position this is because 

the prototype tool is rather large and heavy. 

 

Cutting 

direction 



 

Figure 11. Effects of different order surface approximations. 

 

The finite width of the blade provides limitations to the maximum rate at which 

curvature can change. While the ribbon is most suited to tangential cutting, rapidly 

changing surface curvature will require the ribbon to move with a transverse 

component. Any transverse movement of the ribbon will greatly reduce the maximum 

cutting speed of the ribbon and may negatively impact surface finish. For this reason 

FF-TLOM is most suited for revolved shapes or objects with slow changes in 

curvature. 

 

 

Figure 12. Prototype FF-TLOM cutting tool. 

 

The prototype FF-TLOM system has been used to produce a number of multilayered 

examples with constant layer thicknesses. Figure 13 shows a Styrofoam sphere and a 

surface with convex and concave curves cut using FF-TLOM. 
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Figure 13. Examples of FF-TLOM multilayered stacked assemblies. 

 

Variable Lamination Manufacturing (VLM) 

This system is currently being developed by Ahn et al at the Department of 

Mechanical Engineering, Korean Advanced Institute of Science and Technology 

(KAIST) in Taejon, Korea for which a number of papers have been published [21-25]. 

The published work details a number of investigations into hot-wire plastic foam 

cutting mechanics based on both experimental and theoretical work. 

 

The VLM system uses a hot-wire to cut out „thick‟ EPS cross-sections, which are 

consequently bonded together to form the finished object. The hotwire cutter is 

controlled within a four axis machine to cut sections with sloped edges similar to 

Shapemaker II. 

 

The main advantages of VLM over the Shapemaker II system is the material handling 

process and the VLM can use foam layers of varying thicknesses. The process 

consists of the following three main steps: 

1. Material feeding and storing: EPS sheets (3.7-10 mm) are stored in a large roll 

and fed into the cutting area via several sets of rollers. Rollers act to both 

apply the bonding agent to the underside of the layer and to control the 

thickness of the layer by exerting pressure. Controlled suction part holders 

then hold the dimensionally accurate stock layer in place from above. 

2. Shape generation: The next step involves cutting out the required shapes. 

As can be seen from figure 14, the layers consist of several individual pieces 

or unit shape parts (USP), which are assembled together like a jigsaw. The 

joining edges in the feeding direction are cut with opposite 5º angles and are 

staggered like brickwork in the transverse direction to improve the strength of 

the finished object. 



 

Figure 14 - Multi-piece layer concept 

3. Stacking and bonding: Once the individual pieces have been cut out, they are 

stacked on a controllable x-y table. Once a layer has been assembled the table 

is moved below a pressing mechanism which is used to press the bonded 

layers in order to enhance the bonded strength of the finished model.  

 

The un-cut material is then cut off and removed by gravity and the steps are repeated 

until the object is fully built. Figure 15 shows an example of a VLM produced part 

and a reference part, built with laminated object manufacturing (LOM) technology, 

used to evaluate the process. 

 

 

Figure 15. CAD representation of a human head and comparison of the fabricated parts. 

 

The authors conducted a comparison between their system and a conventional LOM 

RP system using the human head shape. The following results, reproduced from [22], 

are shown in table 1 below. 

 
Table 1. Comparison between VLM and LOM. 

Process 

Building Time (min) 
Building Cost 

(USD) 

Dimensional Accuracy % 

Set-up Building Decubing Total 
In Plane 

(averaged) 
Z-dir 

LOM 80 2125 120 2325 720 0.7 1.8 

VLM - 35 5 40 8 0.8 1.1 

 

CAD model VLM part LOM part 

1
8
6
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m



The VLM process has been commercialised by Menix Engineering Co., Ltd under the 

Rapid Shaper product line. The VLM 300 produces parts using 3.7 mm thick A4 

sheets of EPS while the VLM 400 uses 3.7, 5 and 10 mm thick A3 EPS sheets. 

 

 

Figure 16. The Rapid Shaper range from Menix Engineering Co. Ltd based on technology 

developed by the Korea Advanced Institute of Science and Technology. 

 

Rapid Heat Ablation (RHA) 

The researchers at KAIST (Kim et al) have also published a number of papers 

describing a novel hot tool which is used to ablate plastic foams [26-28]. The process 

which the authors call rapid heat ablation (RHA), involves the use of a specially 

designed hot tool shaped similarly to a ball-end mill to create new surfaces by 

ablating foam. The process has been used for creating fine detail on VLM parts which 

can not be created with straight hot-wires. It can also be usedas a stand alone 

manufacturing method. Figure 17 provides a schematic of the tool. 

 

   

Figure 17. Schematic of RHA process. 

 

The geometry of the RHA tool allows the tool path to be generated using conventional 

CAM software for a ball-end mill. Also because the entire length of the tool can be 

used to „machine‟ the material it is possible to carry out the finishing cuts without the 

need for prior material removal. In a test carried out by the authors a large part was 

shaped in 55 minutes compared to 430 minutes by a commercial milling machine. 

This demonstrates a significant advantage can be gained by using RHA over 

conventional machining when shaping plastic foams. Other advantages include: 



 Little to no swarf. 

 Better surface finish and accuracy (Ra values 1/10
th

 that of equivalent 

machined parts). 

 Reduced machine time. 

 

Figure 18 shows the RHA tool in action and a part produced by it. 

 

   

Figure 18. RHA tool and part. 

 

Michelangelo 

Michelangelo is an eight axis foam sculpting system developed by Zhu et al from the 

Tokyo Institute of Technology [29, 30]. It is composed of a six axis Motoman 

industrial robot and a two axis worktable. It carves simplified EPS models that consist 

of large flat faces with a hot-wire cutting tool. 

 

A unique mesh simplification algorithm was created to reduce the complexity of the 

model by reducing the number of facets used to define the surface. Figure 19 shows 

an example of a model simplified using the mesh simplification algorithm. Once the 

mesh is simplified to the desired resolution a tool path generation algorithm is used to 

generate the tool path and a virtual reality simulation of the sculpting is run to ensure 

all faces can be cut without robot/work piece interference. 

 

 

Figure 19. Example of mesh simplification. 

 

Original model 
5804 triangles 

Simplified model 
500 triangles 



By utilising a work table with an extra two degrees of freedom Michelangelo can 

sculpt relatively large models with a small machine as reaching behind the part is not 

an issue. Also because a hot-wire is used as the cutting tool the cutting process is 

much faster than conventional machining practices. Figure 20 shows the robot and 

worktable setup and a test part (shoe) produced by it. 

 

 

Figure 20. 8 axis setup and a test part (shoe) produced by it. 

 

In summary Michelangelo is an effective sculpting system for the generation of rough 

objects. The unique mesh simplification algorithm and 8 axis robot system means 

large objects can be sculpted quickly and to a user specified accuracy. However, a 

number of disadvantages exist when applying this technology for more accurate 

models. The system cannot sculpt features with fine detail, double concave surfaces or 

pockets because of the straight hot-wire cutting tool. 

 

Stratoconcept HW Series 

The Stratoconcept HW series was developed through a collaborative effort between 

Croma, a French based manufacturer of hot-wire foam cutting systems, and Cirtes, the 

European centre of Rapid Prototyping and Tooling. This system uses a layer based 

manufacturing method to manufacture high volume parts at high speed. The foam 

parts include both interior and exterior details which allows for lightweight full scale 

prototypes [31]. 

 

Croma adapted a cutting machine for the rapid manufacturing of foam products so 

that it could implement Cirtes‟ software for layer based design and construction. 

Cirtes‟ adapted its patented software based Stratoconception® rapid prototyping and 

tooling process to be compatible with Croma‟s machine technology. The combined 

process operates as follows: 

1. A CAD model is imported in .STL or DXF 3DFace format and is decomposes 

into 3D layers. 

2. The system then automatically calculates the tool path for the 4 axis hot-wire 

cutter and the „strata‟ are cut out. The surface of the layers are linear 

approximations similar to that of the VLM process. 

3. The final prototype is then manually assembled by stacking the layers and 

aligning the inserts. 



Figure 21 demonstrates the Stratoconception® process associated with the 

Stratoconcept HWC and shows an example of an assembled full scale boat hull. 

 

 

Figure 21. Example of the Stratoconception® process for the Stratoconcept HWC. 

 

The Stratoconcept HWC series RP systems are ideally suited for manufacturing full 

scale large prototypes from polystyrene foams. The largest machine in the series is 

capable of producing parts with cross sections up to 5 m wide and 2.5 m tall with an 

infinite length. The prototypes can be made hollow for lightweight manufacturing. 

Inserts are used to align and strengthen the prototypes to withstand handling. 

Disadvantages of the system include: 

 The final prototype must be assembled manually and glued. 

 Detail in the z direction must be larger than the standard thickness of the foam 

stock. 

 The surface is a linear approximation of the input model meaning some post 

processing may be required. 

 Some „expert‟ knowledge is required in placing the inserts and choosing the 

„strata‟ orientation to maximise the strength of the prototype. 

 

Summary of Foam cutting RP Machines 

Nine different foam cutting RP machines were reviewed in order to provide a state-of-

the-art overview of recent technological advances in large scale foam cutting rapid 

1. Sliced model 

3. Stratoconcept HWC 4. Final Prototype 

2. Section profile and tool path 



prototyping technologies. The majority of modern foam cutting RP systems use 

layered manufacturing to progressively build models from layers cut with hot-wires. 

Other manufacturing methods include water jet cutting, hot-ribbon cutting and rapid 

heat ablation. A small number of systems have been commercialised including the 

VLM Rapid Shaper series by Menix Engineering Co. Ltd, and the Stratoconcept HW 

series by Croma. 

 

Figure 22 summarizes the difference in potential model size and model complexity 

between the nine reviewed systems. The Stratoconcept HWC system has the largest 

build volume with its largest machine capable of producing parts with a cross-section 

of up to 6m² [32]. The VLM series machines are capable of producing the most 

complex and accurate parts with dimensional errors up to 1.1% in the build direction 

[22].  
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Figure 22. Qualitative comparison of complexity and size of parts made with nine foam cutting 

RP machines. 

Table 2 summarizes the different build strategies, cutting tools and relative build 

times of the nine reviewed systems. It should be noted that the qualitative descriptions 

given are relative to the foam cutting RP machines reviewed and not to RP processes 

in general and only take into account the information presented in the referenced 

papers. Also the build speed does not include assembly time for layer based methods. 

 

 

 



Table 2. Comparison of foam cutting RP machines. 

System 
Property 

Cutting Tool Build Strategy Build Speed 

FAST Hot-ribbon Direct sculpting 0 

Trusurf Water jet Layer based 0 

SM II Hot-wire Layer based 0 

ModelAngelo Hot-wire Direct sculpting - - 

FF-TLOM Hot-ribbon Layer based DATUM 

VLM Hot-wire Layer based + 

RHA Hot tool Direct sculpting - 

Stratoconcept Hot-wire Layer based 0 

Michelangelo Hot-wire Direct sculpting + + 

 

 

 

 

Recommendations and Conclusions 

All of the reviewed systems have proven themselves to be technically feasible; 

however few have been developed to the commercial stage. This is partly due to 

economic considerations and partly because many of the systems are still in the 

developmental phase. To-date the most successful build strategy is to cut and 

assemble individual layers, however with current advances in robotic machining this 

may change. Direct sculpting with robots offers increased complexity and reduced 

post-assembly of layers.  

A number of unique ideas found in this review were deemed by the authors to be of 

special importance to the development of future foam cutting RP systems and are 

therefore listed here. These include: 

 For systems that use direct sculpting, the use of a two axis turntable to tilt and 

rotate the work piece allows much greater reach-ability of the robot. This 

would greatly increase the potential build volume of the system. 

 The innovative swarf management technique developed by Hamade et al with 

ModelAngelo. This would prevent swarf produced by cutting with hot-

wires/hot-ribbons from rejoining the work piece. 

 The layer based manufacturing method adopted by most of the systems could 

also be used to increase the size of parts built using the direct sculpting build 

strategy. 

 The direct sculpting method could be applied to individual layers in the layer 

based systems to avoid the need for surface approximations. 

 Many of the systems exhibited a high level of automation. In particular the 

automatic generation of tool paths directly from the CAD model was common 

among the systems. The automation of data creation (tool paths, control 

programs etc.) is very important if the fast, reliable and automated production 

of sculpted objects is to be realised. 

Key: 0 = Same as Datum 

- = Less than Datum 

+ = Greater than Datum 
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