
Mechanisms for Dynamic Setting
with Restricted Allocations

by

Yuxin Yu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2011

c© Yuxin Yu 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144145358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Dynamic mechanism design is an important area of multiagent systems, and commonly
used in resource allocation where the resources are time related or the agents exist dynam-
ically. We focus on a multiagent model within which the agents stay, and the resources
arrive and depart. The resources are interpreted as work or jobs and are called tasks. The
allocation outcome space has a special restriction that every agent can only work on one
resource at a time, because every agent has a finite computational capability in reality.

We propose a dynamic mechanism and analyze its incentive properties; we show that
the mechanism is incentive compatible. Empirically, our dynamic mechanism performs well
and is able to achieve high economic efficiency, even outperforming standard approaches if
the agents are concerned about future tasks. We also introduce a static mechanism under
the setting of a restricted outcome space; it is proved that the static mechanism is incentive
compatible, and its computational complexity is much less than that of the standard VCG
mechanism.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Kate Larson. This
thesis would not possibly exist without her supervision. Professor Pascal Poupart and
Professor Daniel Lizotte are my thesis readers, I would like to give my appreciation to
them for reading and helping with the final version. I would like to thank my colleagues
and my friends who make this possible as well.

iv

Dedication

This is dedicated to my parents and to my grandma.

v

Table of Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution and Results . 3

2 Preliminaries 5

2.1 Mechanism . 5

2.2 Several Properties of Mechanisms . 6

2.3 Groves Mechanism Family . 8

2.3.2 The VCG Mechanism . 9

2.4 A Matching Algorithm for Multiple Items 9

2.5 The MDP . 11

3 Models Where Agents are Allocated At Most One Item at a Time 12

3.1 The Static Model and Solutions . 12

3.1.1 The VCG Mechanism . 13

3.1.5 NaiveGreedy Mechanism . 15

3.1.9 A Strategy-proof Multi-round Mechanism 17

vi

3.2 The Dynamic Model and Solutions . 24

3.2.1 Service Providing Agents . 25

3.2.2 Tasks . 25

3.2.3 The Auctioneer . 26

3.2.4 Algorithms for Allocation Schemes 26

3.2.7 The Dynamic Mechanisms . 33

4 Implementation and Evaluation 36

4.1 Evaluation of the Multi-round Static Mechanism 36

4.2 Evaluation of the Patience-based VCG Mechanism 40

4.2.1 Implementation of Agents . 41

4.2.2 Implementation of the Auctioneer and the Mechanisms 41

4.2.3 Evaluation Results . 42

5 Related Work 50

5.1 Dynamic VCG Mechanisms and Models with Restrictions 50

5.2 Dynamic Mechanisms without Payment Policy 53

5.3 Double Dynamical Auction . 54

5.4 Dynamic Mechanisms for Interdependent Agents 55

5.5 Summary . 56

6 Conclusion and Future Work 57

6.1 Conclusion . 57

6.2 Future Work . 58

Bibliography 59

vii

List of Figures

1.1 Allocating in an example of dynamic scenario 2

3.1 An example within the restricted outcome space 24

3.2 An appending graph for the kth new bid 27

3.3 A bipartite graph generated from the allocation problem 29

3.4 A bipartite graph for one bid . 31

3.5 A bipartite graph for three bids . 32

4.1 Allocation efficiency of the static mechanisms 38

4.2 Runtime of the static mechanisms . 38

4.3 Allocation size of the static mechanisms 39

4.4 Average cost of an allocated task . 39

4.5 A dynamical allocation problem . 40

4.6 Allocation efficiency of the multiple agent sizes 43

4.7 Number of completed tasks of the multiple agent sizes 43

4.8 Patience of the agents on average . 44

4.9 Allocation efficiency of the multiple time horizons 45

4.10 Number of completed tasks of the multiple time horizons 45

4.11 Patience of the agents of the multiple time horizons 46

4.12 Allocation efficiency with future tasks of the multiple agent sizes 46

4.13 Number of Completed Tasks of the multiple agent sizes 47

viii

4.14 Patience of agents when there are future tasks 47

4.15 Allocation efficiency with future tasks . 48

4.16 Number of Completed Tasks of the multiple time horizons 49

4.17 Patience of agents when there are future tasks 49

ix

List of Tables

3.1 Value matrices for the NaiveGreedy allocation scheme 17

3.2 A value matrix for the Multi-round mechanism 20

3.3 Four circumstances where an agent i is possible to submit false values to
obtain a different task j . 21

3.4 A value matrix for the second lowest price payment 23

3.5 A value matrix for the transformation algorithm 28

x

Chapter 1

Introduction

In a system of multiple agents, agents compete for resources. One important problem
when allocating resources is whether there is a fair competitive environment. For example,
one might desire that the agent with the highest priority obtains the resource or that an
agent pays a reasonable price for the resource allocated to it. A real example is an auction.
Different bidders submit their bids for a single item. There exists a mechanism that ensures
the agent with the highest bid wins, and that asks the winner for a payment, so that the
winner would have a non-negative utility and the other agents would not submit fake bids
to compete.

Dynamic mechanism design is a subarea where agents and resources arrive in and depart
from the market. Dynamic mechanisms introduce new concerns, such as the timing of the
allocation and how to estimate the utility of the agents. In this thesis we study allocation
problems where the arrival and departure of resources are an important feature, and look
at computational issues which can arise in such settings.

1.1 Motivation

Suppose there are multiple tasks that arrive dynamically and any of them can be accom-
plished by any of several working teams. For example, several magazine offices share a
single printing factory. The magazine offices have new magazines to be printed at some
time; and there are different types of printers in the printing factory. If a printer starts
printing one copy of a magazine, it is better for this printer to complete all copies of the
magazine; and it is obvious that every printer can only print one magazine at a time.

1

The tasks for the printing factory are printing different magazines for the offices. Be-
cause magazines can be thin or thick, black and white or colored, high or low pixel quality
and so on, the printers need different amounts of time to complete the tasks and also have
different cost values for the tasks. As the magazines have time constraints on printing
since they need to be transported to the readers, the printers should complete the printing
by a specific time, which usually can be predicted. Therefore, the factory would like to
dispatch the printers to print as many magazines as possible, with a reasonable total cost.
Every waiting magazine only exists in the market for a specific time duration, and would
be removed if it is not dispatched to a printer by the last possible time period.

This example can be abstracted into the scenario in Figure 1.1. The magazines waiting
to be printed are the tasks, the printers are the teams, and the factory is the dispatcher
who decides which printer to work on which magazine. There are five teams in total, and
seven tasks have arrived; the dispatcher has already decided the printers for the first four
tasks. The dispatcher should continually decide which of the {5,6,7} tasks is delivered to
the free team 2; or the dispatcher can choose not to dispatch any task now but wait for a
future free team, if the expected total cost is lower than dispatching.

Task Dispatcher
Task 5, Task 6, Task 7 . . .

Team 1

Team 5

Team 2

Team 3

Team 4

Task 1

Task 2

Task 3

Task 4

Figure 1.1: Allocating in an example of dynamic scenario

2

There are other similar situations that can be modeled by the scenario in Figure 1.1.
In cloud computing, one service can be called to perform different tasks plenty of times;
there are a number of servers to process the tasks. A server could gain some utility by
accomplishing a task, so the dispatcher would like to choose a decision that maximizes the
teams’ values.

In the examples previously discussed, a common assumption was made. It was assumed
that a team or agent was capable of processing a single task at a time. Using this assump-
tion, we investigate dynamic models and mechanisms. We argue that this assumption
is realistic since it explicitly captures the notion that the agents or teams must accom-
plish some tasks, and may be restricted in their capabilities. We note that while other
researchers have looked at dynamic mechanisms, many have not explicitly included this
observation, potentially limiting the applicability of their models.

We start by analyzing this assumption first in a static environment, and a simple con-
sequence is that every agent can only obtain at most one task. In a dynamic environment,
an agent could only be allocated a new task after it completes its previous allocations, or
if the new task arrives after the current tasks have been completed.

Our mechanisms are extensions of the class of classic Groves mechanisms, known to be
the only family of truthful social-welfare maximizing mechanisms for allocation problems.
However, we explicitly take into account the computational complexity of the mechanisms
we design, which is often overlooked when directly applying Groves mechanisms (in par-
ticular the Vickrey-Clarke-Groves mechanism) to problems.

1.2 Contribution and Results

We first study a static setting where agents can only be allocated a single task at a time.
We propose a Multi-round mechanism that is truthful and individually rational. We note
that the computational complexity of the Multi-round mechanism is O(n2) in the worst
case compared to O(n4) of the Vickrey-Clarke-Groves(VCG) mechanism in this setting.

The Multi-round mechanism is empirically evaluated. The results show that the worst
case of runtime is rare, and the runtime does not change too much as the number of agents
and the number of tasks increase. Compared to the VCG mechanism, we do note a loss
in social welfare, but argue that this is not a significant issue and additionally that our
mechanism appears to be fair in that the tasks it does allocate tend to be balanced in
terms of average value.

3

We then look at a dynamic setting where tasks can arrive and depart and agents can
submit bids for the tasks throughout the entire time. We propose a dynamic mechanism
for this setting which is truthful. We develop three algorithms for the allocation policy
of the mechanism and show that two of our algorithms are polynomial in the number of
agents. We also empirically evaluate our dynamic mechanism. The proposed Patience-
based VCG mechanism’s performance on efficiency is almost the same as the performance
of the dynamic VCG mechanism.

This thesis is organized in the following way. First some basic concepts are explained
in Chapter 2: Preliminaries ; then the model on the assumption and the mechanisms
are presented in Chapter 3: Models Where Agents are Allocated At Most One Item at a
Time. We empirically evaluate our proposed mechanisms in Chapter 4: Implementation
and Evaluation. Some related work is reviewed in Chapter 5: Related Work ; and finally
we conclude with Chapter 6: Conclusion and Future Work.

4

Chapter 2

Preliminaries

This chapter presents the basic definitions and concepts used in this thesis. The Groves
mechanism family and the VCG mechanism are the cornerstones of our developed mecha-
nisms. Some essential properties in analyzing mechanisms are also introduced. There is a
matching algorithm used in our mechanisms’ allocation schemes.

2.1 Mechanism

A mechanism is defined based on the Bayesian game setting.

Definition 2.1.1. A Bayesian game is a tuple (N,O,Θ,p,u), where

• N is a finite set of agents;

• O is a set of outcomes;

• Θ = Θ1 × · · · ×Θn is a set of possible joint agents’ type vectors;

• p is a (common-prior) probability distribution on Θ; and

• u = (u1 . . . un), where ui: O 7→ < is the utility function for each agent i.

Assume the agents are self-interested, that every agent is only concerned with the utility
that it could obtain from any possible outcome. We assume that agents interact with each
other through a mechanism.

5

Definition 2.1.2. A mechanism on (N,O,Θ,p,u) is a pair (A,M), where

• A = A1 × · · · × An, where Ai is the set of actions available to agent i ∈ N;

• M : A 7→
∏

(O) maps each action profile to a distribution over outcomes.

An agent i could choose an action from Ai, and the joint action space of other agents
is denoted as A−i. The self-interested agent i would like to play an action that maximizes
its utility. We assume that agents have quasi-linear utility functions.

Definition 2.1.3. Agents have quasi-linear utility functions (or quasi-linear prefer-
ences) in an n-player Bayesian game when the set of outcomes is O = X ×<n for a finite
set X, and the utility of an agent i given a joint type θ is given by ui(o, θ) = ui(x, θ)−fi(pi),
where o = (x, p) is an element of O, ui:X×Θ 7→ < is an arbitrary function and fi : < 7→ <
is a strictly monotonically increasing function.

We will be particularly interested in direct mechanisms in this thesis.

Definition 2.1.4. A direct mechanism allows a single action to every agent, which is
revealing the private information, so Θ = A in the mechanism.

The definition of a mechanism is very general, but one common example of a mechanism
is an auction. The actions available to agents in an auction are determined by the bidding
rules, and the outcome function describes who should win the item or items given the bids.
Bidders also have quasi-linear utilities since their utility depends on their value for winning
an item and the payment they must make in exchange.

2.2 Several Properties of Mechanisms

The self-interested agents would like to obtain non-negative utility, and an auctioneer
prefers to satisfy this need because agents can negotiate to refuse an allocation bringing
negative utility in a real auction. Some auctioneers want to achieve fairness and learn
the real private information about the agents’ preferences through the agents’ reports or
bids, so that an agent with real need can obtain its desired resource. Some auctioneers
also prefer to improve the social welfare, where the agents and the auctioneer care for the
utility of the whole group.

Definition 2.2.1. The social welfare of an outcome o is
∑

i ui(o), ∀i ∈ N.

6

Two important related properties of mechanisms that we try to achieve are truthfulness
and incentive compatibility.

Definition 2.2.2. A mechanism (χ, ℘) is truthful if and only if, ∀i ∈ A, ∀v̂i ∈ Vi, and
∀v̂−i ∈ V−i, vi−℘i(χ(vi, v̂−i)) ≥ vi−℘i(χ(v̂i, v̂−i)) , where A is the set of agents, vi is the
agent i’s true type and Vi and V−i are the strategy spaces for the agent i and other agents
in A.

Definition 2.2.3. A mechanism (χ, ℘) is incentive compatible if and only if, ∀i ∈ A,
∀v̂i ∈ Vi, vi − ℘i(χ(vi, v−i)) ≥ vi − ℘i(χ(v̂i, v−i)) , where A is the set of agents, vi is the
true type of an agent i, v−i is the real information of the other agents in A and Vi is the
strategy space for the agent i.

If a mechanism is truthful, every agent likes to reveal its true type to the auctioneer,
no matter whether other agents submit their true types or not; if a mechanism is incentive
compatible, every agent would like to submit its true type when all other agents submit
their true types. The truthfulness is also called dominant-strategy incentive compatible;
and it is obvious that the truthfulness is stronger than the incentive compatibility.

It is a very essential property in mechanism design that agents’ true private information
is revealed to the auctioneer. If every agent’s utility is maximal when the agents submitting
their true information, truth telling is a dominant strategy. In such a scenario, the agents
do not have incentives to find another strategy to improve their utilities.

Because an agent receives a payment along with an allocation, the agent’s utility can
be negative if the payment is larger than the value. Therefore the auctioneer would like
to compute the allocations with payments smaller than the agents’ actual values for the
items being allocated. This constraint is called individual rationality.

Definition 2.2.4. A mechanism satisfies individual rationality(IR) if and only if ui =
vi(χ(v̂))− ℘i(χ(v̂)) ≥ 0, for any agent i.

Nevertheless, another property no-deficit is about whether the sum of the agents’ util-
ities is negative or not.

Definition 2.2.5. A mechanism (χ, ℘) has no-deficit if
∑
i

vi(χ(v̂))−
∑
i

℘i(χ(v̂)) ≥ 0.

Note that IR is stricter than no-deficit, because the sum of all agents’ utilities is non-
negative when every agent’s utility is non-negative. There is a similar property in the
quasi-linear mechanism from the auctioneer’s aspect, which is the budget balanced.

7

Definition 2.2.6. A quasi-linear mechanism is budget balanced when
∑

i ℘i(s(v)) = 0,
where s is the equilibrium strategy profile.

This is a very strict property; the mechanism would return the whole amount of values
back to the agents after collecting those values, whatever the agents’ types are. This
property is suitable for an auctioneer who does not need any utility. There is a relaxed
property weak budget balanced, which is

∑
i ℘i(s(v)) ≥ 0.

Finally, in the previous section we introduced the idea of a direct mechanism. In
this thesis we will sometimes restrict ourselves to direct mechanisms. This is without
loss of generality since the Revelation Principle[22] states that if you can achieve some
outcome through a mechanism then you can also achieve the same outcome through a direct
mechanism. The revelation principle provides an important reason for direct mechanisms’
convenience to the agents.

Theorem 2.2.7. Revelation principle If there exists a mechanism that selects an out-
come such that the agents have dominant strategies, then there is a direct mechanism which
selects the same outcome and the agents have dominant strategies.

The revelation principle implies that we only need to consider direct mechanisms when
looking at mechanisms. However, it ignores the fact that running the mechanism involves
computation and thus the computational complexity of the mechanism is important.

2.3 Groves Mechanism Family

The Groves mechanisms are a family of efficient(i.e. they maximize social welfare) mecha-
nisms for agents with quasi-linear utilities.

Definition 2.3.1. Groves mechanisms are direct mechanisms (χ, ℘), and the agents
submit their types v̂ to the auctioneer; χ is the decision policy and ℘i is the payment policy
to an agent i;

χ(v̂) = arg max
x

∑
i

v̂i(x),

℘i(v̂) = hi(v̂−i)−
∑
j 6=i

v̂j(χ(v̂)).

8

hi(v̂−i) is an arbitrary function that does not depend on the agent i’s type. Under
this family of mechanisms, the auctioneer chooses an outcome o that maximizes the sum
of every agent’s reported value. The payment to an agent i is the difference between the
value of the h function and the sum of other agents’ reported values. It has been shown
that any mechanism that maximizes the social welfare (i.e. is efficient) when agents have
quasi-linear utilities must be a Groves mechanism[22].

2.3.2 The VCG Mechanism

While there are many ways to instantiate the h function in the Groves mechanisms, one
of the most well known instantiations is the Vickrey-Clarke-Groves (VCG) mechanism.

Definition 2.3.3. The VCG mechanism is a mechanism (χ, ℘) inside the Groves mech-
anism family, for which

χ(v̂) = argmax
x

∑
i

v̂i(x),

℘i(v̂) =
∑
j 6=i

v̂j(χ(v̂−i))−
∑
j 6=i

v̂j(χ(v̂)).

The VCG mechanism uses
∑
j 6=i
v̂j(χ(v̂−i)) as the hi(v̂−i) function, thus hi(v̂−i) is the

maximal social welfare that can be achieved by other agents if agent i did not exist. In the
VCG mechanism, the utility of an agent i is ui(v̂) =

∑
j

v̂j(χ(v̂))−
∑
j 6=i
v̂j(χ(v̂−i)), so every

winning agent’s utility is the marginal contribution. The VCG mechanism also satisfies ex
post individual rationality.

The VCG mechanism chooses an allocation outcome that maximizes the social welfare,
which is the optimal allocation. However the computation of the optimal allocation can
be NP-hard, which can make the mechanism impractical.

2.4 A Matching Algorithm for Multiple Items

While there are various methods for a mechanism to select an allocation outcome, one
method is using a matching. For example, an allocation can be seen as a matching between
buyers and sellers in an auction. We provide some background on the matching algorithms
used in our mechanisms.

9

The Hungarian Algorithm 2.4.1 by Kuhn and Munkres[13, 16] can compute the maxi-
mum weighted matching in a bipartite graph with O(|V |3) runtime, |V | is the number of
the vertices in the graph. The algorithm maintains a labeling function l for the vertices,
l : v 7→ N. The weight w(a, b) of an edge linking two vertices a and b is greater than 0,
and l(a) + l(b) ≥ w(a, b), ∀a, b ∈ V .

Algorithm 2.4.1 Hungarian Algorithm

∀x ∈ X, l(x)← 0
∀y ∈ Y, l(y)← max

x
w(x, y)

M ← ∅

while |M | 6= |V |/2 do
S ← u, X ← X − u, T ← ∅, NL← ∅
∀v ∈ S and y with l(v) + l(y) = w(v, y), NL← NL ∪ y

a← 0
repeat

if NL = T then
α← minx∈S,y/∈T l(x) + l(y)− w(x, y)
∀v ∈ S, l(v)← l(v)− α
∀v ∈ T, l(v)← l(v) + α

end if

∃y, y ∈ NL− T
if y /∈ Y then
∃z, (z, y) ∈M
S ← S ∪ z, T ← T ∪ y

else
M ←M ∪ (u, y), X ← X − u, Y ← Y − y
a← 1

end if
until a = 1

end while

A different scenario frequently seen is a buyer can be matched to several items, which is
a one-to-multiple matching instead of a one-to-one matching. But it is possible to transform

10

a one-to-multiple matching problem into a one-to-one matching problem. We describe the
transformation algorithms in the dynamic model section later in this thesis.

11

Chapter 3

Models Where Agents are Allocated
At Most One Item at a Time

In this chapter we focus on an allocation model with one auctioneer and two types of
agents, service providing agents and task agents. A service providing agent has a private
value for any interested task agent; the task agents would arrive and depart in the setting.
To simplify the following analysis, the service providing agents are called agents and the
task agents are called tasks.

In the printing example in section 1.1, the agents are the printers and the tasks are the
magazines to be printed. Since each printer can only work on a single magazine at a time,
a restriction on the agents is emphasized in the model that an agent can be allocated to
at most one existing task, which has arrived and not departed yet. We focus on a static
model before analyzing the dynamic model. In this chapter we describe the agents, the
tasks, the auctioneer and the mechanisms for the static setting and the dynamic setting
respectively.

3.1 The Static Model and Solutions

We start by analyzing a static problem; in particular we assume that the tasks do not
depart. The mechanism for this static circumstance is the same as an auction except we
enforce a restriction on the allocation outcomes. The assumptions of the allocation problem
under the static setting are:

12

1. An agent has a private cost for any interested task for completing that task by the
agent; and an agent has its cost as 0 for a task which the agent is uninterested in.

2. An agent’s private information contains the cost for its interested tasks.

3. A self-interested agent prefers a payment not smaller than the cost.

4. The auctioneer prefers to allocate a task to an agent with a small cost value.

5. The auctioneer would allocate at most one task to an agent. For example, since a
printer can print one magazine at a time, the printing factory would assign at most
a single magazine to a printer in the static setting.

Example 3.1.0.1. Here is a static allocation problem of two agents and three tasks. Let
a bid of an agent is a pair of (task, value) for an interested task. The bids known by the
auctioneer are {A1 (T1, 3), (T2, 5)}, {A2 (T1, 2), (T3, 4)}.

An allocation outcome is that the task T1 is allocated to the agent A1, the task T3 is
allocated to the agent A2 and the task T2 is not allocated. Another outcome is that the
task T2 is allocated to the agent A1, the task T3 is allocated to the agent A2 and the task
T1 is not allocated. The first outcome is better than the second one because the total cost
is 7 in the first outcome while that of the second one is 9.

3.1.1 The VCG Mechanism

The auctioneer would like to compute the outcome with the maximal efficiency under the
assumptions in the VCG mechanism. Let A be the set of all agents and O be the outcome
space. Let ci be the cost information of an agent i. As the auctioneer prefers small cost,
the allocation efficiency should not be defined as max

o∈O

∑
i∈A c

i(o); the efficiency cannot

be defined as min
o∈O

∑
i∈A c

i(o) as well, because none of the tasks allocated is the optimal

outcome under that definition.

Furthermore, in most cases the agents would like to obtain the tasks because there
is a non-negative benefit for them. For example, the printing factory could receive some
benefit from the magazine offices besides the cost, although the printers cannot receive any
benefit. To apply the VCG mechanism, we assume an agent also has a positive benefit
value besides the cost for every interested task, and the benefit value is the same for every
task. Since the standard VCG mechanism uses an optimal algorithm that maximizes the
social welfare, we substitute the cost with a virtual value that is the result of the positive

13

benefit minus the cost. The virtual value for a cost cij is vij = cM − cij where cM is the
positive benefit and is larger than all cost; then the social welfare in the VCG mechanism
is computed as max

o∈O

∑
i∈A v

i(o).

Definition 3.1.2. The VCG mechanism (χ, ℘) under the model with a restricted outcome
space includes an allocation policy χ and a payment policy ℘ for the agents A where v is
the virtual value with v = cM − c, c is the agent private cost for tasks.

The allocation policy is χ(ĉ) = arg max
χ

∑
i∈A v

i(χ(ĉ)), |χi(ĉ)| ≤ 1; |χi(ĉ)| is the number

of tasks allocated to the agent i. The payment policy for an agent i satisfies that ℘i(ĉ) =
cM − (

∑
j∈A,j 6=i v

j(χ(ĉ−i))−
∑

j∈A,j 6=i v
j(χ(ĉ))).

Lemma 3.1.3. As every cost is smaller than cM ,
∑

j∈A,j 6=i v
j(χ(ĉ−i))−

∑
j∈A,j 6=i v

j(χ(ĉ))
< cM for an optimal allocation policy χ.

Proof. Let us assume in some cases that, for an agent i,
∑

j∈A,j 6=i v
j(χ(ĉ−i))−

∑
j∈A,j 6=i

vj(χ(ĉ)) ≥ cM . Then∑
j∈A,j 6=i

vj(χ(ĉ−i))− (
∑

j∈A,j 6=i

vj(χ(ĉ)) + vi(χ(ĉ)))

=
∑

j∈A,j 6=i

vj(χ(ĉ−i))−
∑
j∈A

vj(χ(ĉ))

≥ cM − vi(χ(ĉ)) > 0.

Therefore
∑

j∈A,j 6=i v
j(χ(ĉ−i)) >

∑
j∈A v

j(χ(ĉ)); this is impossible because χ is an opti-

mal policy. So in any case,
∑

j∈A,j 6=i v
j(χ(ĉ−i))−

∑
j∈A,j 6=i v

j(χ(ĉ)) < cM .

Theorem 3.1.4. The VCG mechanism is truthful for agents in the static model.

Proof. Because every agent can only obtain one task, ci(χ(ĉ)) < cM ; and as ℘i(ĉ) < cM
as well, an agent i’s utility by the VCG mechanism (χ, ℘) is ui(ĉ) = ℘i(ĉ) − ci(χ(ĉ)) =
(cM − ci(χ(ĉ)))− (cM − ℘i(ĉ)) = vi(χ(ĉ))− (cM − ℘i(ĉ)).

According to the definition of the VCG’s payment scheme, ui(ĉ) = vi(χ(ĉ))− (
∑

j∈A,j 6=i
vj(χ(ĉ−i))−

∑
j∈A,j 6=i v

j(χ(ĉ))) = vi(χ(ĉ)) +
∑

j∈A,j 6=i v
j(χ(ĉ))− h(−i) =

∑
j∈A v

j(χ(ĉ))−

14

h(−i), with h(−i) =
∑

j∈A,j 6=i v
j(χ(ĉ−i)), h(−i) is irrelative to the agent i’s value or the

agent’s announced value.

ci is the agent i’s true cost. Let cia be an alternative report of ci; the self-interested
agent i would submit cia to the auctioneer for a larger utility. There are two outcomes
o1 and o2, o1 = χ(c−i, ci) and o2 = χ(c−i, cia). The utilities based on the value reports
ci and cia are ui(o1) = vi(o1) +

∑
j∈A,j 6=i v

j(o1) − h(−i) =
∑

j∈A v
j(o1) − h(−i), ui(o2) =

vi(o2) +
∑

j∈A,j 6=i v
j(o2)− h(−i) =

∑
j∈A v

j(o2)− h(−i).

Because χ is an optimal allocation policy and the algorithm’s result is o1 when the
agent i submit its true cost,

∑
j∈A v

j(o1) ≥
∑

j∈A v
j(o2); then ui(o1) ≥ ui(o2). Therefore

no matter what c−i is, reporting the true cost is the dominant strategy for the agent i.

The allocation policy is an optimal algorithm, and since every agent obtains no more
than one task, the allocation policy can be implemented by a matching algorithm, such as
Algorithm 2.4.1. There always exists a bipartite graph, where the nodes on one side are
for the agents and the others are for the tasks; suppose vij is the agent i’s virtual value
for a task j, the corresponding edge’s weight equals to vij. Algorithm 2.4.1 can compute
an optimal matching with the computational complexity O((m+ n)3), m is the number of
agents and n is the number of tasks. Then the computational complexity of the allocation
policy is also O((m+ n)3).

An optimal allocation among the agents A/i for every agent i is needed to be computed
through the payment policy. So the computational complexity of the payment policy is
O(m× (m+ n)3).

3.1.5 NaiveGreedy Mechanism

We would like to discover a mechanism with lower computational complexity in the static
environment. The mechanisms we propose later are directly based on the cost, so the value
in following mechanism means the cost. The auctioneer can construct a value matrix that
contains the values from all agents to compute the social welfare more conveniently. Then
a very simple allocation scheme χ allocates from the lowest bid, as Algorithm 3.1.2 shows;
the value matrix is recomputed after every allocation. Let vmin be the minimum of the
values except the winning value in that round, the payment for the winning agent is vmin.
So the NaiveGreedy mechanism’s payment policy at a round r is simply ℘r = min

i,j
vij with

j 6= χir(v̂).

15

Definition 3.1.6. The value matrix V is a m × n matrix, assuming there are m agents
and n tasks in the market; and vij is the value of the agent i for the task j.

V =

v11 · · · v1n
v21 · · · v2n

...
vm1 · · · vmn

 , where vij =

{
v, v > 0;

0, if the agent i is uninterested in the task j.

Example 3.1.6.1. There are three agents and three tasks. The agents’ bids are {A1 (T1,
3), (T2, 5)}, {A2 (T1, 2), (T3, 4)}, {A3 (T1, 3), (T2, 6), (T2, 3)}. So the value matrix
is

V =

3 5 0
2 0 4
3 6 3

Algorithm 3.1.2 NaiveGreedy allocation scheme(pseudocode)

i← size of agents, j ← size of tasks
v ← value matrix
while i ! = 0 && j ! = 0 do

1) m,n← argmin
m,n

vmn , and break ties randomly

2) allocate task n to agent m
3) remove mth row and nth column from v
4) i← i− 1, j ← j − 1

end while

The mechanism has multiple rounds. Because at least one task is allocated at a round,
the computational cost of the mechanism is m×n+(m−1)×(n−1)+ · · · = O(mn(m+n))
= O(m2n + mn2) in the worst case, m is the number of agents and n is the number of
tasks. The NaiveGreedy mechanism’s computational complexity is better than that of the
VCG mechanism.

Example 3.1.6.2. Here is an example of applying the NaiveGreedy mechanism. The first
table in 3.1 is a value matrix of four agents {A,B,C,D} and three tasks {1,2,3}. The
allocation is as following.

• First round: The auctioneer finds the value of agent B on task 1 is the lowest, so it
allocates the task 1 to agent B. The payment for agent B is 1. Then the value matrix
is reduced to the second table in 3.1.

16

1 2 3
A 5 6 3
B 1 1 2
C 3 2 1
D 4 5 7

2 3
A 6 3
C 2 1
D 5 7

2
A 6
D 5

(1) (2) (3)

Table 3.1: Value matrices for the NaiveGreedy allocation scheme

• Second round: the auctioneer finds the value of agent C on task 3 is the lowest and
allocates task 3 to agent C. The payment for agent C is 2, and the value matrix
changes into third table in 3.1.

• Third round: Agent D obtains the task 2 because it has the lowest value in the matrix,
and the payment for agent D is 6.

We now prove some properties for the mechanism.

Proposition 3.1.7. The NaiveGreedy mechanism is individually rational.

The allocation algorithm would let the auctioneer choose the bid with smallest value
vij among the remaining bids, so any value from another agent in the value matrix would
not be larger the the bid’s value chosen; so the payment is not smaller than the value.

Proposition 3.1.8. The NaiveGreedy mechanism is not strategy-proof.

In the example above, the agent B can submit its cost values as 2 for both task 1
and task 2, then it would obtain the task 1 with the payment as 2. Its original utility is
1− 1 = 0, but the utility afterwards is 2− 1 = 1; so the agent B can obtain a larger utility
by submitting fake private information.

This mechanism does not always maximize the social welfare as well. Example 3.1.6.2
is also a counterexample, because the optimal allocation is (Agent A ↔ task 3, Agent B
↔ task 1, Agent C ↔ task 2).

3.1.9 A Strategy-proof Multi-round Mechanism

The NaiveGreedy mechanism is not strategy proof, but using the multiple rounds can re-
duce the computational complexity compared to the standard VCG mechanism. In this

17

section we propose a new mechanism which is more complicated than the NaiveGreedy
mechanism, but is incentive compatible while keeping the computational complexity re-
duced.

The Multi-round mechanism would complete all allocations in multiple rounds. At
every round r, the allocation scheme χ and the payment scheme ℘ for any remaining agent
and any remaining task is shown in Algorithm 3.1.3.

Algorithm 3.1.3 The Multi-round mechanism(pseudocode)

Input: The value matrix v
Output: The allocation result χ and the payment ℘

m← size of agents, n← size of tasks
χ← {χ1 . . . χm}, χi ← NULL, ∀i = 1 . . .m
℘← {℘1 . . . ℘m}, ℘i ← NULL, ∀i = 1 . . .m
h← {h1 . . . hn}, hi ← NULL, ∀i = 1 . . . n

allocateagents← 0, allocatetasks← 0
while allocateagents ! = m && allocatetasks ! = n do
allocate← {allocate1 . . . allocatem}, allocatei ← NULL ∀i = 1 . . .m
payment← {payment1 . . . paymentm}, paymenti ← NULL ∀i = 1 . . .m

for t = 1 → n do
if χht ! = t then
winagent← argmina,χa==NULL {vat }
paymentemp← mina6=winagent, χa==NULL {vat }
if ht ! = NULL then
temphp← ℘ht − vhtχht

+ vhtt
if paymentemp < temphp then
paymentemp← temphp

end if
end if
if allocatewinagent ! = NULL then
u1 ← paymentwinagent − vwinagentallocatewinagent

u2 ← paymentemp− vwinagentt

if u2 > u1 then
allocatewinagent ← t
paymentwinagent ← paymentemp

18

end if
else
allocatewinagent ← t
paymentwinagent ← paymentemp

end if
ht ← winagent

end if
end for

for i = 1 → m do
if allocatewinagent ! = NULL && paymentwinagent ≥ vwinagentallocatewinagent

then
χwinagent ← allocatewinagent, ℘winagent ← paymentwingent
allocateagents← allocateagents+ 1, allocatetasks← allocatetasks+ 1

end if
end for

end while

return χ, ℘

According to the allocation scheme, the auctioneer chooses an agent with the lowest
cost for every task. The payment for the winners in the first round is the second lowest
value; in other words, the payment for an agent i winning the task t is ℘it = min

a
vat with

a 6= i and χa = ∅. After the first round, every remaining task j is allocated to a remaining
agent i with the smallest cost value, and the utility of the agent winning a task in the
previous round would be an upper bound of the winner’s utility in the current round. The
mechanism breaks ties randomly; and the allocated items and winning agents are removed
after allocating. If an agent has the smallest values for multiple remaining tasks, a self-
interested agent is assumed to choose the task with the largest profit; the agent would
choose a task (tj, paymentj) from {(t1, payment1), (t2, payment2) ... (tn, paymentn)},
with paymentj − costj ≥ paymentk − costk for ∀k 6= j. The auctioneer checks if there are
unallocated tasks and available agents, and moves to next round if there are at least one
agent and one task left in the market.

Example 3.1.9.1. Here is an example in Table 3.2 using the mechanism to allocate four
tasks to four agents.

In the first round, the auctioneer finds that the agent B wins on task 1 and task 2, with
payment 3 for task 1 and payment 2 for task 2; and also the agents C wins task 3 and task

19

1 2 3 4
A 5 2 6 4
B 1 1 2 3
C 3 2 1 2
D 4 5 7 3

Table 3.2: A value matrix for the Multi-round mechanism

4, with payment 2 for task 3 and payment 3 for task 4. The auctioneer asks agent B with
the two tasks and their payments, and similarly asks the agent C. The agent B prefers task
1 and the agent C prefers task 3. Then the auctioneer allocates task 1 to the agent B with
payment 3, task 2 to the agent A with payment 3, task 3 to the agent C with payment 2,
and task 4 to the agent D with payment 4.

3.1.9.1 Analysis of the Multi-round Mechanism

Lemma 3.1.10. If an agent k obtains two tasks n and j in some round r1 and chooses the
task j, the task n is allocated to an agent m in a later round r2, with r2 > r1, then the
agent k’s utility is not smaller than that of the agent m, i.e. uk ≥ um.

Proof. The agent m wins a task in a round r > 1, so its payment is ℘m = ℘k − vkj + vkn.
Then agent m’s utility

um = ℘m − vmn ≤ ℘k − vkj + vkn − vmn
= ℘k − vkj − (vmn − vkn)

≤ ℘k − vkj (as vmn ≥ vkn)

= uk.

Theorem 3.1.11. The Multi-round mechanism is incentive compatible.

Proof. First, we prove that a winning agent cannot submit fake information to obtain the
same task at a later round for a larger utility.

Let an agent i win multiple items and choose an item n with the largest utility at the
round r1, when i submit its true type to the auctioneer. The agent i may try to submit
false values to obtain n at a later round r2; and consequently n would be allocated to an

20

agent m with a larger cost at r1. The agent m does not choose n at r1 so that n is left
after the round r1.

Let svrn denote the second lowest value for a task n at any round r. At the round
r1, u

m = min{ukn, svr1n − vmn }, k is the winner of n before r1. Because the agent i
is still in the market, its value v̂i(n) for task n revealed to the auctioneer should satisfy
v̂i(n) ≥ svr1n . In a later round r2 where i wins the item n, i’s payment would be ℘in ≤ umn =
min{ukn, svr1n − vmn }, so ℘in ≤ v̂in− vmn ; then ûin = ℘in− v̂in ≤ v̂in− vmn − v̂in < 0 at the round
r2. The agent i cannot obtain the item n according to the allocate scheme. Therefore
the agent i would not lie, otherwise either the agent cannot obtain the item again, or the
utility of obtaining the same item in a later round would be smaller, according to Lemma
3.1.10.

We now prove that an agent i would not submit false values to obtain a different task.
Suppose an agent i has a bid for the task j, but the task j is supposed to be allocated
to the agent m. There are four possible circumstances where the agent i is looking for a
strategy to obtain the task j.

Agent i m
Allocated Task n j

Agent i m k
Allocated Task n j q

case 1 case 2

Agent i m
Allocated Task ∅ j

Agent i m k
Allocated Task ∅ j q

case 3 case 4

Table 3.3: Four circumstances where an agent i is possible to submit false values to obtain
a different task j

1. In the case 1, the agent i is supposed to obtain the task n, but since uij > uin, the
agent i may submit false information to obtain the task j. The task j is supposed to
be allocated to the agent m.

As the agent m should obtain the task j when all agents submit true values, vmj ≤ vij.
Thus the agent i should submit a value v̂ij < vmj to win. Then the payment for v̂ij
is vmj , and the agent i’s utility of the task j is changed to be uij = vmj − vij < 0.
Therefore, the agent i cannot obtain a larger utility by submitting false values.

2. In the case 2, the agent i prefers the item j than its allocation n. The last winner of
the task j before m is the agent k; and the agent k is supposed to obtain the task

21

q. So the agent i should submit a false value v̂ij < vmj to win. Because the payment
scheme would choose the smaller value from ℘kq − vkq + vkj and vmj , the agent i would
receive the payment ℘ij ≤ vmj . Its utility would be negative; so the agent i cannot
obtain a larger utility by submitting false values.

3. In the case 3 and 4, the agent i does not receive any allocation if it submits true
values. For any desired item j, the agent i should submit a smaller value than vmj to
win, and then receives a payment that is smaller than agent i’s cost value for task
j. Therefore, the utility of the agent i is always negative if the agent makes a false
declaration for winning a task.

Therefore, an agent without any allocation would not submit false information to obtain
an allocation, and an agent with an allocation also would not submit false values to switch
for another allocation.

Proposition 3.1.12. The Multi-round mechanism is individually rational.

Since the allocate scheme would allocate an item with the payment larger than the
cost, the payment given to the agent would always be larger than the winner’s cost value.
The IR property of this mechanism is straight forward.

Proposition 3.1.13. The Multi-round mechanism is not group strategy-proof.

A counterexample for the proposition is a game with an auctioneer and two agents.
When there are only two agents, they can always cheat in a group as the payment to an
agent depends on the other agent’s cost. The VCG mechanism is not strategy-proof as
well, because the payment of an agent depends on the other agents’ values and all agents
can form a group to improve their payments. When all agents in the game would like to
form a coalition, they can cheat as the payment depends on the others’ cost values.

Proposition 3.1.14. If an agent has the lowest or second lowest cost value for a task and
is not in any group, the allocation of that task would not be affected by any non-truthful
groups.

Proof. But when an agent with the lowest cost for a task is not in any group and submits
its true information, other agents cannot make a lower offer for this task which would
decrease their utility to be non-positive; other agents would not submit fake values higher

22

than their true values for this task as the fake values do not make them obtain the task.
Therefore, the allocation and the payment are not changed by any non-truthful agents in
this case.

When an agent with the second lowest cost for a task is not in any group and submits
its true information, the payment of that task would not be changed by fake reports; this
is because that the group which the winning agent belongs to cannot provide a higher
payment. The allocation would not be changed as well, because the agents with higher
cost would not lie to receive a payment lower than their cost. Therefore, if an agent has
the lowest or second lowest cost value for a task, and it is not in any group, the allocation
of that task would not be affected by any non-truthful groups.

The payment scheme is important for the mechanism’s incentive compatibility. If the
payment scheme changes to the second lowest value, the mechanism is no longer strategy-
proof, even if there is a bonus payment. In such a case, if an agent i wins a task j in
the first round, the payment of i is ℘ij = mina6=iv

a
j ; and if agent i wins in a round later,

the payment is ℘ij = mina6=i v
a
j + 1. Although the agents cannot obtain an allocation

by submitting false information, an agent can obtain some additional payment by being
non-truthful.

Suppose there are four tasks 1 − 4 and four agents A − D with the value matrix in
Table 3.4. Each of the agents B and C has the right to choose its allocation from two
tasks. Let tasks 1 and 4 are chosen by agent B and C. Then the agent A obtains task 3
with payment 3. But the agent A could submit its cost value to be 3 for task 1, such that
it would receive a larger payment 4. This circumstance violates the truthful property that
agents would obtain the best payment by submitting their true information.

1 2 3 4
A 5 3 2 6
B 4 2 4 7
C 6 3 1 3
D 6 4 4 5

Table 3.4: A value matrix for the second lowest price payment

Let m be the number of agents and n be the number of tasks. The computational
complexity of the allocation scheme is O(m) in every round, and the payment scheme’s
computational complexity is O(1). There is at least one allocation in every round, so the
number of rounds is O(n). Thus the Multi-round mechanism’s computational complexity
is O(mn).

23

3.2 The Dynamic Model and Solutions

In the previous section, we looked at a setting where agents and tasks are all in the market
at the same time. In this section we look at a dynamic setting where tasks arrive and
depart. We also assume that when allocating a task, the winning agent must process the
task which takes a finite amount of time. During this processing period, the agent is not
available to take on new tasks.

The allocation problem has the assumptions:

1. If an agent is processing a task, it cannot be assigned any other task until the allocated
task is completed, i.e. the number of uncompleted tasks for an agent is ≤ 1.

2. The private information of agents includes the value and the processing time.

3. The auctioneer prefers that the winning agents have the maximum values, and the
agents would like to receive the payment that is not larger than the value.

Example 3.2.0.1. Here is an example for the model within three time periods in Figure 3.1.
There are an auctioneer, two agents A1, A2 and five tasks T1− T5.

A1 {T1, value 3, 2}, {T2, value 4, 3}
A2 {T1, value 5, 2}allocated,processing

T1 [0, 5)
T2 [0, 3)

Time period 0

A1 {T2, value 4, 3}, {T3, value 6, 3}allocated,processing
A2 {T1, value 5, 2}allocated,processing

T1 [0, 5)
T2 [0, 3)
T3 [1, 4)

Time period 1

A1 {T2, value 4, 3}, {T3, value 6, 3}allocated,processing
A2 {T1, value 5, 2}completed, {T5, value 2, 1}

T2 [0, 3)
T3 [1, 4)
T4 [2, 6)
T5 [2, 4)

Time period 2

Figure 3.1: An example within the restricted outcome space

In the time period 0, tasks T1 and T2 arrive. The agent A1 submits value 3 and
processing time 2 for T1, which means its value of T1 is 3 and its processing time of T1 is

24

two periods; A1 also announces that its value of T2 is 4 and its processing time of T2 is
3. The agent A2 submits its value of T1 is 5 and the processing time is 2. T1 will depart
at the time period 5, so if it is allocated, it should be completed before the time period 5.
T2 will depart at the time period 3, so any winning agent need to complete T2 at the time
period 2 at the latest. In the example, T1 is allocated to A2, and A2 begins to process T1
from period 0.

In the next period, task T3 arrives, and it will depart at period 4. A1 submits its value
and processing time for T3; and the auctioneer allocates T3 to A1. The agent A2 continues
to process T1 at this time period, and does not know the new task.

In the time period 2, tasks T4 and T5 arrive. Because T1 is completed, the agent A2
submits its value and processing time for T5, while agent A1 continues to process T3.

3.2.1 Service Providing Agents

The agents stay in the auction market for the whole time horizon, and bid for any interested
available task. Besides the value, an agent has a processing time in its private information
for a task. When the agent obtains a task, it begins to process the task. During the
processing, it is assumed that the agent would not submit new bids to the auctioneer.
After the processing time periods have passed, the agent returns to the market.

Because the tasks in the dynamic environment arrive at different time periods, the
agents would like to maximize their total expected utility. An assumption, made when
analyzing the dynamic environment, is that every agent can only obtain one task in a time
period, and only after the specified departure time period, the agent can have a chance to
obtain a task again. Every agent knows the number of time periods for processing a task,
but the agents do not have preferences on which specific time periods to obtain a task.

As the static case, an agent’s type is its private information, which includes the values
and the processing time. A bid bij of an agent i contains i’s value on j, and i’s processing
time on j. An agent has a set of bids, including the previous allocated bids, the currently
processing bid and other bids for tasks that have not departed.

3.2.2 Tasks

The tasks arrive and depart at some specific time periods. A task’s type includes the time
period it arrives and the time period it departs. The task exists from the arrival time
period and expires at the departure time period. A task should be finished before the

25

departure time period when it is allocated to an agent. We consider two cases of new tasks
to the auctioneer and the agents; in the first case, the auctioneer and agents do not know
the arrival and departure time of any future task; the auctioneer and the agents do know
some future tasks in the second case.

3.2.3 The Auctioneer

The auctioneer knows which agents are busy and when the busy agents will be available
again. At every time period, the auctioneer only collects bids from the accessible agents.
New tasks are revealed to agents by the auctioneer. Then the accessible agents submit
their values and processing time periods for those tasks to the auctioneer.

The auctioneer also has all tasks’ information. Since there are two cases of the tasks,
the tasks arrived before the agents submit bids for them in the first case; in the second
case, the tasks known by the auctioneer can be divided into the arrived tasks and other
tasks that are not available but will arrive at a future time period.

3.2.4 Algorithms for Allocation Schemes

We first look at optimal algorithms for allocation that the auctioneer could use. Complete
mechanisms are presented later.

As an agent could have bids for different time periods, some tasks can be allocated
to the same agent if they exist in different time durations. Besides, a task can only be
allocated to a single agent. The tasks which can not be allocated to the same agent are
considered to be in conflict; and tasks that can be allocated to a single agent are considered
to be non-conflicts.

We look at the bipartite graph again, which includes two sides of nodes and weighted
edges. In a bipartite graph for the allocation problem, every node on one side is for an
agent and every node on the other side is for a task; an edge linking two nodes a and b
represents the private information of an agent for a task; and the weight of an edge is the
value of an agent to a task. The matching in the bipartite graph is a set of edges where the
edges do not share neither of their vertices, and these edges are considered non-conflicts.

Lemma 3.2.5. An allocation problem could be transformed into a matching problem in the
bipartite graph, if in every agent bids’ set, either the bids do not conflict with each other, or
every bid conflict with the other bids. In the graph, the nodes at one side represent agents
and the other side’s nodes represent tasks, and the weight of an edge is the value of a bid.

26

(1) (2)

new edge(dash line), when

overlapping with all k − 1 bids

new edges(dash line), when

overlapping with no previous bids

agent nodes

task nodes

Figure 3.2: An appending graph for the kth new bid

Proof. A bid is transformed into an edge of the graph in the following recursive way. Let
k be the size of bids’ set for an agent i at a time period.

Case 1 k = 1: A node in the bipartite graph represents the agent i, and there is an edge
from this node to a node representing a task. The task is allocated to the agent i in
the optimum allocation whenever the edge is in the optimal matching.

Case 2 k > 1: Suppose the k − 1 bids of the agent i have been transformed into the
bipartite graph. Then there are two situations. New edges for the kth bid can be
added into the graph as Figure 3.2 shows.

situation 1 The kth bid overlaps with all of the other k− 1 bids on time. Then the
new edges for the bid are those that link every node representing the agent to
the task node, because a matching should not contain edges for both of the kth

bid and any of the other k−1 bids, and the matching should not select multiple
edges for the kth bid as well. So whenever any of the kth bid’s edges is in the
optimal matching, the kth bid is in the optimal allocation.

situation 2 The kth bid does not overlap with any of the other k − 1 bids on time.
Then a new node is added, with an edge to the task node; and this node is
added into the set of nodes that represent the agent i. So whenever the new
edge is in the optimal matching, the kth bid is in the optimal allocation.

The kth bid can be combined into the bipartite graph when previous k − 1 bids are
transformed. In the transforming, no extra task nodes are added. Thus the bids of other
agents can adopt the same task nodes. According to the above method, any bid from an

27

task:1 2 3
agent:a 5 3 4

b 4 6 ∅
c ∅ 5 2

Table 3.5: A value matrix for the transformation algorithm

agent is able to be represented in a bipartite graph; and the agents and tasks are on the
different sides.

Let a, b be two edges in the graph and i, j be the corresponding bids.

If an allocation mechanism should not allocate i and j at the same time, then either i
and j are bids for the same task from different agents, or i and j are from the same agent
and overlap on time. When i and j are bids from the same task, edges a and b share the
same task vertex; so a and b cannot be in the same matching. When i and j are from the
same agent but overlap on time, all bids from that agent conflict, as the situation 1 defines.
Thus a and b share a single agent node; they cannot be in the same matching as well. So
if two bids conflict, the corresponding edges cannot be in a matching at the same time.

When two edges a and b are not able to be in the same matching, they share a node in
the graph. If the edges share a task node, the bids are from different agents for the same
task; if the edges share an agent node, the bids overlap on time and are from the same
agent. So, if two edges cannot be in the same matching, the corresponding bids conflict.

Therefore, any set of bids, where the bids can be allocated at the same time, can be
transformed into a matching in the constructed bipartite graph. The problem of computing
the optimal allocation is transformed to an optimal matching problem.

Example 3.2.5.1. Here is an example of applying the transformation algorithm. There
are three tasks {1, 2, 3} and three agents {a, b, c}, and the value matrix is in Table 3.5.

The transformation algorithm produces a bipartite graph G in Figure 3.3; the optimal
matching is {(a, 3), (b, 2), (c, 1)}.

The transformation algorithm could simply transfer an allocation problem when the
agents do not submit a bid overlapping with a part of the other bids. It could be used in
the situation where the agents do not know any task arriving in the future.

When the agents do not know the information of future tasks, this transformation
algorithm constructs a bipartite graph with 2×max(m,n) nodes for an allocation problem
where there are m agents and n tasks. Let k be the number of the agents’ bids and ki be the

28

a 1

b 2

c 3

5

3

4

4

6

0

5

2

Figure 3.3: A bipartite graph generated from the allocation problem

number of an agent i’s bids. The computational cost of appending a bid for an agent i is the
number of the previously appended bids at most, so the computational cost of constructing
the agent i’s graph part is T (ki) = T (ki − 1) + ki = O(k2i). Then constructing a graph for
the allocation problem costs O(k21 + k22 + · · ·+ k2m) = O(k2), where k1 + k2 + ...+ km = k.
The transformation algorithm’s computational complexity is O(k2). As k = O(mn), the
computational complexity is also O(m2n2). Because solving the optimal matching problem
costs O((m + n)3), the computational complexity of computing the optimal allocation is
O((m+ n)3 +m2n2).

There is another transformation algorithm that can convert any allocation problem at a
single time period to a matching problem in a bipartite graph, if the bipartite graph exists.
This second transformation algorithm does not require that every agent cannot submit a
bid not overlapping with the other bids of the same agent; the allocation problem with
overlapping bids from the same agent can also be transformed.

The second transformation algorithm constructs a bipartite graph where the nodes do
not represent agents or tasks any more and an edge includes the information of a bid’s
value from an agent to a task and which agent submitting the value for which task for
the bid. Let i, j be two bids, li, lj are the vertices of i, j on the left side and ri, rj are
the vertices of i, j on the right side. The conflict between i, j can be transformed into the
condition that the edges share a vertex; li = lj ∧ ri = rj if i conflicts with j. If two bids
do not conflict, their edges do not share a vertex; li 6= lj & ri 6= rj if i does not conflict
with j.

Theorem 3.2.6. An allocation problem in a time period can be transformed into the op-
timal matching problem in a bipartite graph, if there exists a bipartite graph where every

29

matching corresponds to an allocation outcome.

Proof. Suppose there are k bids at a time period t.

If k = 1, the allocation problem could be transformed into a graph in Figure 3.4. There
is an edge [1, 1] with value v to represent the bid. If an allocation scheme chooses this bid,
the matching result would be {[1, 1], [2, 2]}; and if the allocation scheme does not choose
the bid, the matching result is {[1, 2], [2, 1]}.

If k > 1, we first assume that previous k−1 bids have been transformed into a bipartite
graph with nodes’ size less than an integer s. So each vertex of the edge for the kth bid is
in the set N = 1, 2 . . . s+ 1. The previous k − 1 bids can be divided into two groups: S1
and S2. S1 contains the bids which conflict with the kth bid, and S2 contains the others
which do not conflict with the kth bid.

Then the vertices le, re of the kth bid’s edge e are chosen according to the two conditions:

• ∀j ∈ S1, either lj = le or rj = re, but e and j cannot have both of their vertices be
the same.

• ∀j ∈ S2, lj 6= le and rj 6= re.

A new edge [le, re] with the weight equivalent to the kth bid’s value is added into the
graph, where le, re satisfy the two conditions and the edge [le, re] does not already exist in
the graph for previous bids.

No matter whether the k − 1 bids conflict with the kth bid, the allocation scheme can
exclude the kth bid. Therefore after all bids are transformed into edges, a mask edge with
no value is added for every vertex v so that there can be a matching containing an edge
not related to any bid for this vertex. As a mask edge should only conflict with the edges
on the vertex v, the other vertex of the mask edge should be a new node with this single
mask edge.

In the matching result, la 6= la and ra 6= ra for any edge a and b, so the two conditions
make sure that the edges in any matching are derived from a set of non-conflicting bids.
Any matching can be a valid allocation outcome.

A valid allocation outcome allocates all bids in the set U , which is a subset of the set S
that consists of all bids. An edges’ set E is constructed as ∀i ∈ U , adding the edge [le, re]
to E, and ∀j ∈ S\U , adding the mask edge for j to E. Because the bids for the allocation
should not conflict, and a mask edge does not conflict with any of the other bids’ edges,
every edge [a, b] ∈ E should have la 6= lb and ra 6= rb. Therefore, the set E is a matching

30

1 2

1 2

v 0
0 0

Figure 3.4: A bipartite graph for one bid

in the graph. As there is only one edge in the graph representing a bid, any matching
containing E is equivalent to the allocation outcome.

Example 3.2.6.1. This is an example of the second transformation algorithm. There are
three bids b1, b2 and b3 at a time period; b1 conflicts with b2 and b3, b2 conflicts with b1, b3
conflicts with b1. Then the allocation problem for the three bids could be transformed into
the graph in Figure 3.5. The real lines are the edges for the bids, and the broken lines are
the mask edges. The edges [1, 1] and [1, 2] share a vertex because b1 conflicts with b2; and
the edges [1, 1] and [2, 1] share a vertex because b1 conflicts with b3.

If the agents have information for any future time period, the bids from the same agent
may not conflict. The second transformation algorithm constructs a graph so that every
possible allocation can be a matching. The algorithm can construct a graph with at most
4k nodes, k is the number of agents’ bids in total. Let m be the number of agents and n
be the number of tasks, the number of nodes in the transformed graph is O(4k) = O(mn).

This transformation algorithm finds a pair (le, re) among O(k2) alternatives, and for
every alternative, the algorithm checks the conflict status with the previous k − 1 edges.
The computational complexity of the transformation algorithm is O(k3) = O(m3n3). Be-
cause computing the optimal matching in the graph costs O(m3n3), the computational
complexity of the algorithm is O(m3n3).

The bipartite graph does not always exist. For a bid i, it is possible that there is no
le, re satisfying the two conditions. For example, there are four bids {1, 2, 3, 4}. The bid 4

31

1 2 3 4

1 2 3 4

v1
v2

v3

Figure 3.5: A bipartite graph for three bids

conflicts with all other bids, and the bids 1, 2, 3 do not conflict with each other. According
to the conditions,

l1 6= l2, l1 6= l3, l2 6= l3, r1 6= r2, r1 6= r3, r2 6= l3 (3.1)

and
(l4 = l1 ∧ r4 = r1) & (l4 = l2 ∧ r4 = r2) & (l4 = l3 ∧ r4 = r3). (3.2)

Because of Equation 3.1, the vertices of bids 1, 2, 3 are set as l1 = r1 = 1, l2 = r2 =
2, l3 = r3 = 3; then Equation 3.2 changes to

(l4 = 1 ∧ r4 = 1) & (l4 = 2 ∧ r4 = 2) & (l4 = 3 ∧ r4 = 3). (3.3)

There do not exist l4 and r4 satisfying Equation 3.3.

We looked at allocation algorithms since we want to incorporate them into a mechanism.
There is another optimal algorithm besides the algorithms above using the bipartite optimal
matching.

Because the allocation scheme should be optimal if we want to use the VCG mechanism,
we would look at the space of the possible optimal allocations. For any bid i, the other
bids could be divided into two sets S1 and S2. S1 contains the bids that conflict with the
bid i, and S2 contains the remaining bids. So we could compute the optimal allocation
in S1 and S2 respectively, then add the value of the bid i to S2’s result. The maximal
social welfare is the larger one of S1’s result and S2’s result; and the optimal allocation
is obtained at the same time. Algorithm 3.2.4 computes the optimal allocation at a time
period without traversing all possible allocations. The computational complexity of the

32

algorithm with k bids is C(k) = C(k − 1) + C(S2) ≤ 2C(k − 1), so the computational
complexity is O(2k×(k−1)/2).

Algorithm 3.2.4 The third optimal allocation algorithm for one time period

Input: A set of bids S
Output: The optimal allocation(OA) in S and the maximal social welfare W
i← S[0], S ← S\i
S2← ∅
for all j ∈ S do

if j does not conflict with i then
S2 = S2

⋃
j

end if
end for
OA1 = OA(S), W1 = W (S)
OA2 = OA(S2), W2 = W (S2)
OA2← OA2

⋃
i, W2← W2 + value(i)

if W1 > W2 then
return {OA1, W1}

end if
return {OA2, W2}

3.2.7 The Dynamic Mechanisms

In the dynamic setting, the auctioneer computes the expected values for agents to compete
in the mechanisms. Suppose an agent i has a value vij for a task j at a time period t. If
the task j exists, the expected value of allocating it is evij = vij; if the task j is supposed
to arrive at a future time period te, the expected value is evij = γte−tvij, γ is a discount
factor. The allocation’s uncertainty about future tasks can be transferred into the fixed
expected values, and the optimal allocation could be computed using the expected values.

Using the expected values, an agent i would like to maximize its own utility that is∑∞
t=t′ evi(χ(êv))− ℘i(χ(êv)), where (χ, ℘) is the mechanism used by the auctioneer. The

social welfare at a time period t′ is
∑∞

t=t′
∑

i∈A êvi(χ(êv)), A is the set of agents. Using
algorithms in last section, the expected optimal allocation for every time period can be
computed. We present the dynamic VCG mechanism.

Definition 3.2.8. The dynamic VCG mechanism(χ, ℘) for the agents A under the

33

model is

χ(v̂) = arg max
χ

∞∑
t=t′

∑
i∈A

êvi(χ(êv));

the payment scheme is

℘i(v̂) =
∞∑
t=t′

∑
j∈A−i

êvj(χ(êv−i))−
∞∑
t=t′

∑
j∈A−i

êvj(χ(êv)).

Theorem 3.2.9. The dynamic VCG mechanism is truthful for agents.

Proof. At every time period, the allocation scheme checks the available agents and con-
structs a bipartite graph. Then it computes the optimal allocation using the graph. The
allocation scheme considers every existing task no matter when it would be allocated. So
the allocation result maximizes the total utility from the current time period; and the mech-
anism is the optimal solution for the class of mechanisms maximizing ex ante efficiency.
The agents cannot lie as the mechanism maximizes their declared utilities.

The auctioneer can also consider waiting for tasks such that a larger social welfare may
be achieved, especially when there is a task brings a large value to its winner while other
tasks bring much smaller values to agents. Then the social welfare may be improved by
keeping the other tasks for next period. Waiting may also help the auctioneer allocate
more tasks in the same amount of time.

Agents turn to consider how long to wait for better tasks, we call it the agent patience.
Agents can have different patience for tasks, which is the agents’ expectation about how
long a better task may arrive. If the current time period passed the patience, an agent
does not wait any longer. Let pi denote the patience information of an agent i. In our
setting, pi is a percentage value so that an agent would like to spend pi of the available
time duration to wait.

After every allocation, the patience of the winning agents are updated, according
to wasting time percentage of the obtained allocation. We combine the patience in-
formation into the expected value and then the allocation result is influenced by the
agents’ patience. An agent i with a patience pi has the patience-combined expected value
evij = γ(expirej−arrivej)∗p

i
j+(arrivej−t)vij, at the time period t for a task j. A major difference

between our mechanism and the dynamic VCG mechanism is that the expected value turns
to consider the patience information besides the time.

34

Definition 3.2.10. A dynamic Patience-based VCG mechanism(χ, ℘) for agents A
and tasks T at a time period t′ under the model is

χ(v̂) = arg max
χ

∞∑
t=t′

∑
i∈A

evi(χ(v̂));

the payment for an agent i is

℘i(v̂) =
∞∑
t=t′

∑
j 6=i

êvj(χ(v̂−i))−
∞∑
t=t′

∑
j 6=i

êvj(χ(v̂));

where the expected value of an agent i to a task j is evij = γ(expirej−arrivej)∗p
i
j+(arrivej−t′)vij.

Theorem 3.2.11. The dynamic Patience-based VCG mechanism is truthful for the pa-
tience combined expected values.

Proof. For any agent i, its utility on winning a task is evi−℘i = evi− (
∑

j 6=i êvj(χ(v̂−i))−∑
j 6=i êvj(χ(v̂))) = evi +

∑
j 6=i êvj(χ(v̂))-

∑
j 6=i êvj(χ(v̂−i)) = evi +

∑
j 6=i êvj(χ(v̂))− h(−i),

where h(−i) is
∑

j 6=i êvj(χ(v̂−i)) and is irrelative to the agent i’s reported value.

The mechanism chooses an outcome that maximizes
∑

i∈A
∑

t′∈T evi(t
′, t)χt(i, t

′) = êvi+∑
j 6=i êvj(χ(v̂)), so the outcome generated by the mechanism when the agent i submit its

true information would be the dominant strategy. In other words, it is a dominant strategy
for the agent i that the processsing time is truthfully reported as well as the value, because
the processing time is combined in evi and the outcome based on the true processing time
and the true value would provide the maximal evi +

∑
j 6=i êvj(χ(v̂)). Therefore, any agent

would submit its true information for tasks to maximize its expected utility, no matter
whether other agents submit their true information.

35

Chapter 4

Implementation and Evaluation

The mechanisms introduced in the chapter 3 are compared with other mechanisms. In the
static setting, the VCG mechanism is compared to the Multi-round mechanism; and in the
dynamic setting, the dynamic VCG mechanism and the Patience-based VCG mechanism
are implemented and compared.

4.1 Evaluation of the Multi-round Static Mechanism

We choose to compare our Multi-round mechanism to the VCG mechanism. Both of the
mechanisms’ implementations first compute the cost value matrix. For the Multi-round
mechanism, its implementation does the following things.

1. For every available task t, compute a list Lt of agents with lowest cost value; and
℘(t) = min{℘(t), the second lowest value}, ℘(t) = MAXIMUM initially;

2. For every agent a, compute the task t such that a is the winner and t = argmaxt(
℘(t)− vat), then update the payment upper bounds of a’s refused tasks; and remove
the winning agents and the allocated tasks from the market;

3. If there is a new allocation after the steps 1 and 2, go back to step 1; otherwise,
return the result.

In the experiments, the number of agents M can vary from 3 to 102 and the number
of tasks is in the range [1, 2M + 1). There can be more agents than the tasks, and there

36

also can be more tasks than the agents. These numbers are generated randomly in every
experiment. The cost value vit of the agent i to a task t is generated from a normal
distribution N (h, r2), where h ∼ N (3, 0.52) and r = Math.random()× agentSize.

Additionally in the VCG mechanism, we compute a virtual value for every bid which is
200− vij. 200 is larger than the maximal cost generated in our experiments. The optimal
allocation scheme using the virtual value is implemented by Algorithm 2.4.1. The VCG
mechanism matches a task or none to every agent, which would be the optimal matching.
Before applying the algorithm, the method of constructing the bipartite graph is introduced
in the subsection 3.2.4, and the construction uses the first transformation algorithm.

The experiment involves 100 different instances of agents and tasks; and it is repeated
300 times. Because the efficiency is relative to the tasks’ size as well as the agents’ size,
the Agent Size in the figures is the sum of the number of agents and the number of tasks.
The experimental results of the same Agent Size are averaged.

First we present the allocation efficiency results. As the standard optimal efficiency
would be the maximum, we use the virtual values to compare. Figure 4.1 shows the
experimental allocation efficiency results. The VCG mechanism always allocates a task to
an agent; then the social efficiency increases along with the agents’ size. As the utility is
applied as an upper bound of following rounds’ allocation in the Multi-round mechanism,
not every agent could obtain a task. So the Multi-round mechanism performs worse than
the VCG mechanism on efficiency as the agents’ size increases.

We evaluate the mechanisms on the runtime besides efficiency. The experimental result
for the runtime is in Figure 4.2; the runtime of the Multi-round mechanism can be almost
ignored compared to the VCG mechanism’s runtime, although the theoretic computational
complexity of the Multi-round mechanism is O(n2) in the worst case and the VCG mech-
anism’s computational complexity is O(n4). Empirically, the Multi-round mechanism’s
runtime is so small that it appears as though the worst case is rare.

37

Figure 4.1: Allocation efficiency of the static mechanisms

Figure 4.2: Runtime of the static mechanisms

38

Figure 4.3: Allocation size of the static mechanisms

Figure 4.4: Average cost of an allocated task

39

The experimental result on the average cost per allocation is in Figure 4.4; and Fig-
ure 4.3 shows how many allocations are committed on average by both mechanisms. These
empirical results tell that the Multi-round mechanism always allocates less tasks than the
VCG mechanism, and the difference between them is enlarged by increasing the agents’
size. However, the average cost of an allocation is not the same way. The Multi-round
mechanism achieves a smaller average cost for allocations. The Multi-round mechanism
cannot achieve a better efficiency than the VCG mechanism because the allocation scheme
is not optimal; but the Multi-round mechanism can improve the average allocation cost.

4.2 Evaluation of the Patience-based VCG Mecha-

nism

There is an auctioneer, multiple agents and multiple tasks in the dynamic setting. We
use a discount factor for the time horizon. The auctioneer and agents always exist; and
there are new tasks generated at every time period. Figure 4.5 is a brief description of the
allocation’s implementation.

A Task The Auctioneer An Agent

generated

→

expire

remove the expired tasks

new tasks arrive

ask for new bids ←
compute the decision and

the payment

compute the agents’ utility ←

remove the expired bids

update the new tasks

submit new bids

→ receive the allocation

Figure 4.5: A dynamical allocation problem

A new task is generated with a start time and a depart time. We implement two
variation of the dynamic setting. In the first setting, the auctioneer knows the new tasks
as soon as they arrive. In the second setting, new tasks known by the auctioneer are

40

set with their arriving periods randomly generated from [t, t + 5) at every period t; the
departing period is then determined by the arriving period and the existing duration. A
task exists from 1 to 10 time periods. Then the auctioneer can know some future tasks,
but cannot predict all tasks within the nearest five periods. The number of new tasks in a
period is a random integer from [0, n/2), n is the number of agents.

4.2.1 Implementation of Agents

An agent consists of the bids which are submitted to the auctioneer and the information
for its allocated tasks. An agent i has a value and a processing period for every interested
task; the value vij for a task j is a random integer from [1,10), the processing period is also
at most 9.

The information of an agent’s allocation includes an array of completed tasks and the
payments for the completed tasks, a variable stating whether the agent is processing a
task, the current processing task and the value and payment of the agent for that task,
the starting time period and completing time period for that task. When the auctioneer
knows some future tasks, the auctioneer can allocate a task to an agent before the task
arrives; so the agent also includes an array of the waiting allocations. As the Patience-
based mechanism considers the agent’s patience, a variable for the patience is also included
in the agent’s information.

A bid of an agent expires when the agent cannot finish processing the task before the
task departs. At every time period, an agent removes its expired bids first, and then
receives the new tasks from the auctioneer. If the agent is not busy with computing a
task, it generates the values and the processing periods for the new tasks and submits this
information to the auctioneer.

The auctioneer notifies an agent if the agent obtains a new allocation. The winning
agent then removes the relevant bid and starts computing. If the auctioneer knows the
future tasks, there is another situation about the allocation. An agent cannot start com-
puting when it obtains a task which will arrive in the future; so the agent stores the
allocation in an array, and checks that array at every time period to begin the computing
as soon as the task arrives.

4.2.2 Implementation of the Auctioneer and the Mechanisms

The auctioneer has a list of tasks which are not expired and not allocated, and the auc-
tioneer collects values and processing time periods from the agents for the tasks. Because

41

an agent may not submit bids for all existing tasks, the auctioneer sets a unique index for
every task. The task’s index is used in the multiple agents’ competition for the same task,
and in specifying which task an agent’s bid is for.

We implement the Patience-based VCG mechanism and the dynamic VCG mechanism.
The auctioneer applies two mechanisms on the same agents and tasks, and the Patience-
based VCG mechanism is evaluated by the comparison to the dynamic VCG mechanism.
The major difference between the two mechanisms is the Patience-based VCG mechanism
adopts the patience variable to compute the expected value. The initial patience of every
agent is set as 0, which means the agents prefer to obtain an allocation when a task arrives;
the discount factor of expected values is set as 0.8.

In the case that the agents simply care for the arrived tasks, the auctioneer does not
need to know the future tasks. All tasks for an agent’s bids have arrived and have not
departed, so the bids of the agent conflict with each other. The allocation scheme employs
the first transformation algorithm in Lemma 3.2.5 to construct a bipartite graph and
computes the optimal allocation of the current period by this graph.

In the case that the agents know the information of some future arriving tasks, an
agent’s bid does not conflict with the bids for the current existing tasks when the future
task arrives after the current tasks expired. A width-first traversing algorithm 3.2.4 is
implemented to compute the optimal allocation. The allocation of the future tasks are
delivered to the agents before the tasks arrives, but the agents wait until the first time
period of the future task to start processing.

4.2.3 Evaluation Results

We evaluate the performance of the Patience-based VCG mechanism and the dynamic VCG
mechanism on the efficiency and the number of completed tasks. Both of the mechanisms
compute the outcome maximizing the expected social welfare from every time period t,
which is

∑∞
t

∑
i∈A v

i(χ(v̂)); they might not maximize the social welfare already achieved,

which is
∑t

0

∑
i∈A v

i(χ(v̂)), assuming the time horizon starts at 0. An optimal algorithm

for dynamical allocation indeed maximizes
∑t

0

∑
i∈A v

i(χ(v̂)) at a time period t. But since
we do not have such an algorithm, we use the dynamic VCG mechanism to evaluate our
Patience-based mechanism.

Figure 4.6 is the experimental result on efficiency when the auctioneer does not know
any future task; and Figure 4.7 shows the result of the completed tasks by the mechanisms.

42

Figure 4.6: Allocation efficiency of the multiple agent sizes

Figure 4.7: Number of completed tasks of the multiple agent sizes

43

Figure 4.8: Patience of the agents on average

The experiment tests multiple allocation problems with an increasing agent size. The
agent size varies from 4 to 62. There are 20 time periods for every allocation problem as
the time horizon. The efficiency is the sum of agents’ values on allocated task after the
last period. This experiment has been repeated for 300 times.

We also compute the average agents’ patience of both mechanisms. Although the
dynamic VCG mechanism does not care for the patience, a task may not be allocated to
an agent immediately when the task arrives. Figure 4.8 is the experimental result of the
average patience value for all agents at the final time period. The agents wait longer in
the Patience-based VCG mechanism than in the dynamic VCG mechanism.

The experimental results show that the Patience-based mechanism’s efficiency is almost
the same as the dynamic VCG mechanism; but it completes slightly fewer tasks if there
are more than 40 agents. The ratio of the Patience-based VCG mechanism to the dynamic
VCG mechanism is 0.9997 on the efficiency; and the ratio on the number of completed
tasks is 0.9963.

Our experiments also test the mechanisms’ performances on multiple time horizons.
The agent size is fixed at 30 in this experiment and the time horizon increases from 20
periods to 79 periods. The results are in Figure 4.9 and Figure 4.10; and the average
agents’ patience result is in Figure 4.11. The ratio of the Patience-based VCG mechanism
to the dynamic VCG mechanism is 1.0005 on efficiency; and the ratio on the number of

44

completed tasks is 1.01. The Patience-based VCG mechanism achieves a slightly better
outcome and the agents’ waiting time before an allocation is longer than the dynamic VCG
mechanism.

Figure 4.9: Allocation efficiency of the multiple time horizons

Figure 4.10: Number of completed tasks of the multiple time horizons

45

Figure 4.11: Patience of the agents of the multiple time horizons

Figure 4.12: Allocation efficiency with future tasks of the multiple agent sizes

46

Figure 4.13: Number of Completed Tasks of the multiple agent sizes

Figure 4.14: Patience of agents when there are future tasks

The agents may obtain an allocation before the task arrives, if the auctioneer knows the
future tasks. The auctioneer can learn some tasks arriving within the nearest five periods

47

in the experiment. The Patience-based mechanism’s performance is evaluated in the same
way as there are no future tasks.

Figure 4.12 is the result for the allocation efficiency when the agent size increases from
4 to 18 and the time horizon’s length stays at 18 periods; Figure 4.13 shows the number of
completed tasks under the two mechanisms, and Figure 4.14 is the average patience value of
the agents. The ratio on the allocation efficiency is 1.003, so the Patience-based mechanism
performs slightly better in practical. But as the agent size increases, the Patience-based
mechanism does not always produce a better outcome as the figure 4.12 shows.

There is also an experiment for the increasing time horizon, when the auctioneer has
the information of some future tasks. In this experiment, the agent size is fixed at 12 and
the time horizon’s length ranges from 20 to 69. The experimental results are in Figure 4.15,
Figure 4.16 and Figure 4.17. The efficiency ratio of the Patience-based mechanism to the
dynamic VCG mechanism is 1.0026. When the auctioneer knows some tasks coming in the
near future, the efficiency achieved by the Patience-based mechanism is slightly better on
average.

Figure 4.15: Allocation efficiency with future tasks

48

Figure 4.16: Number of Completed Tasks of the multiple time horizons

Figure 4.17: Patience of agents when there are future tasks

49

Chapter 5

Related Work

Mechanisms in the dynamic setting have been widely studied in both the economics and
the computer science literature. In this chapter we discuss alternative mechanisms and the
problems they were designed to solve.

5.1 Dynamic VCG Mechanisms and Models with Re-

strictions

In Bergemann and Valimaki’s[2] work, only a single item exists for a dynamic auction; every
agent i does not know its exact value wi for the item. An agent would receive a signal about
wi if the agent wins in the current time period. Any agent could approximate its value for
the next auction using the signals received in history. A dynamic VCG mechanism for this
model is presented and is incentive compatible.

That model is for the single-unit allocation and describes a case where the agents are
restricted to compute the approximation of their true valuations. To ensure that the agents
would submit their true signals, the auctioneer is required to focus on the approximated
values instead of exploring the true values. In other words, the auctioneer need capture
the agents’ expected utilities from the approximation knowing the signals. In the analysis
of the paper, the authors ignore whether the agents could know their exact values after
the final allocation, and the agents make decisions only upon the expected values.

The concept flow marginal contribution is proposed. The flow marginal contribution
mi of an agent i is the agent i’s contribution for a single time period t, while its marginal

50

contribution Mi includes the contribution for the allocation period t and the contribution
on the allocations after the time period t. Mi = mi + σ(Mi(h

t, χi) −Mi(h
t, χk)), where

k is the agent that would win if i does not exist and σ is the discount factor. Under the
mechanism’s payment policy, an agent i’s utility at a time period t is exactly mt

i; thus
although the social welfare includes agents’ expected utilities of the future, the payment
only depends on the utility of the current time period. As an allocation helps the winning
agent obtain the signal of its valuation at a time period t, any allocation scheme depending
on agents’ signal history would be influenced by the winning agent at the next time periods.
The flow marginal contribution computes the agents’ contributions which is just for their
winning time periods. The flow marginal contribution is essential in the payment policy
and the mechanism’s truthfulness.

Cavallo[5] provides a further analysis of dynamic VCG Mechanisms. The type of agents
is modeled by an MDP without the requirement that the value of an agent is positive
or negative. According to the MDP model, the allocation scheme could not depend on
historical allocations. Cavallo[5] empirically discovered that only 10% to 20% of the social
welfare is distributed to the agents. A dynamic mechanism is proposed to redistribute the
social welfare through the payment policy and the mechanism makes a significant increase
of every agent’s utility.

Parkes and Duong[19] propose an ironing technique for dynamic mechanisms. The iron-
ing technique can improve any general stochastic optimal policy to be incentive compatible
and individually rational. The ironing technique is applicable where the agents have Single
Value Preferences(SVP)[1]. Every agent with SVP is restricted to submit a single value vi
for a set of outcomes, and the agent obtains the value vi for any outcome in that set. An
agent has a single value for its interesting outcomes. The paper gives an example where
the ironing technique is not used that, a bid does not win but decreasing the value can
let the same bid win; this example shows that an agent can lie to make profit in the SVP
setting.

A mechanism is strongly truthful and IR with no-early arrival and no-late departure
misreport if and only if the allocation policy is monotonic. The ironing technique can
remove all non-monotonic outcomes. Besides the value, the ironing can also be performed
on other aspects in the agents’ type, such as the arrival and departure time. This property
relaxes the condition on the agents’ time related features. In fact, the combination of the
ironing policy and a stochastic optimal policy would be a specific extension of dynamic VCG
mechanism within the restriction of SVP. While the ironing policy achieves the truthful and
IR property, it results in strong monotonic property. So it is possible that the ironing may
remove some decisions which could be retained. A further research[8] analyzes whether the
ironed space could be relaxed and the allocation efficiency would then be improved.

51

Hajiaghayi, Kleinberg, Mahdian and Parkes[12] look at the online truthful mechanism
design, where agents compete for a single re-usable resource in the finite time horizon.
No early arrival and no late departure reports are required. Their work classifies the
arrival and departure models into the asynchronous model and the synchronous model. In
the asynchronous model, the arrival and departure time are real numbers, and an early
allocation would be revoked when a better bid arrives.

The paper also analyzes the competitive ratio of the online mechanisms, which is the
ratio of its performance to that of the offline mechanism. It is proved that there exist
truthful online mechanisms with bounded competitive ratio; and those mechanisms can be
generalized with the same ratio bounds into the multiple re-usable resources environment.
The paper also analyzes the lower bound of the mechanisms’ revenue ratio contrast with
the VCG mechanism. A truthful online mechanism exists when any agent could ask for
the item with more than one unit, and its revenue ratio to VCG is relative to the length
of the units.

Cavallo and Parkes[6] propose a model where agents are uncertain about their final
values on the resources at the first time, and their researching processes for the values
are modeled by MDPs; the researching for an agent’s final value is utility costly. The
auctioneer computes an outcome for multiple MDPs which are privately reported. For an
MDP where an agent’s utility depends on the current state, a self-interested agent can
choose to perform a redetermining action for a larger final value. The redetermining action
is called deliberation.

The model uses the expected utility, and the auctioneer would like to achieve the max-
imum social welfare. Therefore, the dynamic VCG mechanism is applicable in this model.
Furthermore, under the uncertainly improvable values condition, which could be derived
from the assumption of the model, the agents’ MDPs can be reduced into Markov Chains.
Then the computation of the allocation scheme in the dynamic VCG mechanism is simpli-
fied through computing Gittins Index[10]. Therefore the allocation scheme’s computation
would be linear in the number of agents.

Seuken, Cavallo and Parkes[21] present a partially DEC-MDP for the agents’ strategies.
The agents have their private actions, values and states modeled as DEC-MDPs, and the
agents can be inaccessible to the auctioneer sometimes. The auctioneer keeps the agents’
last reports about their types and accessibleness. The authors analyzed the computational
complexity for this kind of models; in more details, they analyzed the computational
complexity of solving the DEC-MDPs where the time horizon is finite or not finite, and
where there is a limit on the agents’ inaccessible or not. It is proved that only when there
is limitation on the agents’ inaccessibility, that computational complexity is P-Complete.

52

Their work also proposes a dynamic Groves mechanism on partially DEC-MDP agents’
model; the payment scheme for the inaccessible agents would be discounted on how long
they have been inaccessible. The proposed mechanism is efficient and Bayes-Nash incentive
compatible.

Cavallo, Parkes and Singh[7] present an analysis for mechanisms in multiple dynamic
models. Their paper concerns about both the dynamic population of agents and the
dynamic types of agents. Agents can be periodically inaccessible; for any agent that is not
accessible in some time period, the auctioneer uses the Bayesian inference to compute a
belief about the agent’s state. The agents’ types are also modeled by the MDP and the
dynamic VCG mechanism is generalized for the model of dynamic agents’ types.

The paper proposes a concept within-period ex post incentive compatibility(wp-EPIC).
The dynamic VCG mechanism is proved to be wp-EPIC upon the conditional independency
on arrival property, which is that the types of the agents arriving at a period t do not
depend on those of the agents arrived earlier, but do depend on the auctioneer’s actions.
An online VCG mechanism is also presented for the agents’ model with dynamic population
and static types.

There is a class of mechanisms which is closely related to the VCG mechanism. This
class is called the VCG-based mechanism[18]. The mechanisms in this class replace the
optimal algorithm in the allocation scheme with another algorithm k, and keep the payment
scheme as the same. The algorithm k may be not optimal but should take much less
computational time, thus the VCG-based mechanisms are applicable when the computation
is hard and the optimal allocation is not strictly required.

There has been a lot of work on VCG-based mechanisms and on understanding when it
is possible to replace an optimal allocation algorithm with a non-optimal one. For example,
Nisan and Ronen[18] have showed that one required property for the allocation algorithm
is to be maximal-in-range, which means that the algorithm is optimal for a restricted
set of valuations. Other classes of mechanisms similar to VCG-based mechanisms such
as the second-chance mechanism[18] and affine-based mechanisms[14, 20] have also been
studied in order to understand how computational constraints can influence the mechanism
properties.

5.2 Dynamic Mechanisms without Payment Policy

In a situation where the auctioneer needs to know agents’ willingness but cannot provide
any payment to agents, the mechanism only contains the allocation policy.

53

Zou, Gujar and Parkes[23] propose a model and a scoring rule mechanism for this
circumstance. Their model uses the preferences of agents on resources to capture the
agents’ willingness. Every agent i’s type is defined as (αi, βi, φi), where αi is the agent’s
arrival time period, βi is the departure time period, and φi is the agent’s preference on all
interested items. The efficiency of a mechanism in the model is similar as fairness.

The authors proved that the online dictatorship is necessary for any deterministic,
strategy-proof, neutral and non-bossy online mechanism. The Arrival-Priority Serial Dic-
tatorship(APSD) mechanism assigns an item to an agent when the agent arrives, and
commits the allocation on that agent’s departure. The scoring rule mechanism computes
an outcome with a larger ex ante Pareto efficiency than the APSD mechanism if a part of
the agents are not rational; and the scoring rule mechanism would reduce to the APSD
mechanism when all the agents are strategic. Every agent cares for the resources existing
between its arrival time and its departure time. The agents would like to obtain the best
allocation at the departure time; and those mechanisms compute the outcomes maximizing
agents utility of the departure time period.

Gujar and Parkes[11] also analyzed a model without payment. The agents are divided
into two sides in their model; one side is dynamic, the other side is static and is always in
the market. Every agent on the static side has a strict preference on the other side’s agents.
A static agent j can be re-allocated to a better agent after it is matched with a dynamic
agent i, even if the agent i has left; and in that case the agent i would be matched to a
substitute of the agent j. Using the substitutes for the static agents is called the fall-back
option; this option can provide a dynamic side’s agent another matching which is equivalent
with its previous matching, although there is an additional cost for the auctioneer. The
paper proposed a mechanism that is strategy-proof for the static side’s agents.

5.3 Double Dynamical Auction

The resource-providing agents and resource-bidding agents can both dynamically involve
in an allocation problem, this is the Double Auction(DA). However, usually every agent
can be allocated once.

A CHAIN framework[4] is discovered to provide a truthful and IR dynamic mechanism
if agents have restricted staying duration. The CHAIN framework is defined by an admis-
sion policy, a substitutable matching rule for every time period and a price-out policy. The
admission policy is for new incoming bids; the price-out policy would reject some current
alive bids permanently; and the matching rule produces the paired winners from the exist-
ing non-price-out bids. Any dynamic DA is strong-truthful if and only if the payment for

54

a winner is independent and monotonic-increasing with time[12]. Therefore, the payment
policy can depend on the historical bids, or losing bids and their final status, and those
could be a reason for rejecting some bids.

As this is the framework, the social efficiency is hard to analyze. A concept well-
defined is used to correlate the matching rule and the dynamic mechanism by CHAIN. A
well-defined mechanism satisfies four requirements: truthful, IR, non-deficit and strong-
feasible. To ensure the well-defined property of the dynamic CHAINed mechanism, the
matching rule should be a well-defined static allocation mechanism.

Bredin and Parkes[3] focus on the online double auction, and they present a general
method to design the truthful and weak budget balanced mechanism. There are no arrival
misreports; the agents’ patience is bounded; and the allocations are committed at the
winners’ departure time and no false-name bids.

Myerson and Satterthwaite[17] proved that maximizing efficiency would not result in
a voluntary participation and a no-deficit mechanism. The no-deficit and truthfulness
properties can be achieved by decreasing the efficiency. The paper proposes a price schedule
policy fi(t, ri, v−i) to price out some agent i with fi(t, ri, v−i) > wi. The price schedule
should be implemented to check the agents’ dependence, as the payment scheme would be
rely on the price schedule function: p̃si(t) = maxτ∈di−k,...,t{fi(t, ri, v−i)}. (k is the patience
bound of the agent i.)

A practically designed mechanism also extends the static McAfee double auction Rule[15]
as the valid price schedule policy, which helps to achieve the no-deficit property. The mech-
anism using McAfee rules is proved to be truthful and no-deficit.

5.4 Dynamic Mechanisms for Interdependent Agents

The agents’ values could be dependent on other agents’ information. If that information
is public to all agents, the auctioneer can model every agent’s value by a specific function
Vi(si) from the agent’s private information si. But if an agent’s value depends on other
agents’ private information, the agents are interdependent. In the Interdependent Values
Model(IDV), the specific value function used by the auctioneer is modeled as vi(si, s−i).

There could be restrictions on the vi function for the incentive compatible mechanisms.
In an incentive compatible mechanism, vi should have the monotonicity property with si,
and the influence of si on vi is not smaller than that of any other agent and is also larger
than that of any other agent with the same signal value.

55

An MIP solution[9] is provided to maximize the allocation efficiency for a finite number
of agents with IDV. The solution extends the concepts of the unconditioned and conditioned
critical signal properties, which are used to analyze the agents’ strategies. The critical
signal is a value that is the smallest possible signal for an agent to win, and in the dynamic
model, the unconditioned critical signal property may not exist; while the conditioned
critical signal property is that an agent can find its critical signal and there would be an
item available at the agent’s departure time.

In a no arrival and departure misreport model, the agents’ arrival and departure time
can be modeled as Xi,1Xi,2 . . . Xi,i−1Xi,i+1 . . . Xi,n in the finite time horizon, where the total
number of agents is n, Xi,j means whether the agent i arrives before the agent j. Con-
sidering the continuity of an agent’s existence, some scenarios of the Xi,j can be removed.
A mechanism of this model is incentive compatible if and only if the agents submit true
signals. Therefore, with the unconditioned critical signal property, the incentive compati-
bility problem is to check the constraints on the critical signals and bid signals, which is
called inter-temporal incentive compatibility constrains(ITIC).

5.5 Summary

Our dynamic model for the allocation problem includes multiple agents and multiple re-
sources. Every agent has an individual value for a task; there is not an internal model
such as SVP that describes agents’ values on some set of the outcomes. Besides the value,
an agent also has the processing time in its private information, which is required by an
allocation problem where the allocation needs to be processed. There are models for dy-
namic agents and static resources, and models for dynamic agents and dynamic resources;
we assume the agents are static and the resources have dynamic duration. Our model is
assumed to be a no early arrival and no late departure model like some researchers’.

56

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We focus on a dynamic model where the allocation’s outcome space is restricted. The
outcome space is restricted because an agent cannot work on some tasks at the same time;
the restricted outcome space helps agents with different capabilities obtain the tasks more
fairly. The auctioneer chooses to collect private information from the available agents.

The static model with the same restricted outcome space is studied first. The VCG
mechanism in this model is presented and its computational cost is biquadratic in the
tasks’ size. A truthful and individually rational Multi-round mechanism is proposed for
this model, with quadratic computational complexity in the worst case. Empirically the
Multi-round mechanism achieves 67% of the VCG mechanism’s efficiency on average. But
on the allocation’s average cost, the cost of the Multi-round mechanism is 89.79% of that
of the VCG mechanism; the Multi-round mechanism reduces the average cost by about 10
percent.

We propose the dynamic VCG mechanism and a truthful Patience-based VCG mech-
anism for the dynamic model. The Patience-based mechanism allows agents to wait for
better tasks to arrive. The efficiency of the dynamic VCG mechanism and the Patience-
based mechanism is about the same empirically. When the future tasks are not considered
by agents, the Patience-based mechanism’s efficiency is 99.9% of the VCG mechanism’s
efficiency; when the future tasks are considered by agents, the ratio turns to 1.003. The
Patience-based mechanism performs slightly better in the experiments where future tasks
are considered by agents.

57

6.2 Future Work

Though the proposed mechanisms are truthful, there are some shortcuts in the mechanisms.
For example, the assumption that all agents can be allocated only one item at a time is quite
strict. We also note that the computational complexity of our Patience-based mechanism
is still quite high. We would like to do future work on these aspects.

1. To improve the allocation scheme of the Patience-based mechanism.

The computation of the allocation scheme would make the mechanism’s computa-
tional cost high. An alternative allocation scheme could be derived by ignoring some
bids if the agents are patient and would wait for better tasks, and computing the
optimal outcome as those bids did not exist.

The new allocation scheme would find the optimal allocation in a range where only
the bids for the agents that would not wait are considered. The outcome is certainly
different from the current allocation scheme’s outcome, because of the conflicts among
the agents’ bids. By reducing the information considered, the size of the current
allocation problem is reduced; thus the computational cost would be lower. But
whether there is a truthful mechanism with this allocation scheme and whether the
mechanism could improve the efficiency remain to be seen.

2. To study the auctioneer’s computational cost and the weak budget balanced property.

As we said in section 2.2, the auctioneer is not concerned whether it needs resources
to do computation and how much

∑
i vi(χ(v̂)) −

∑
i ℘i(χ(v̂)) should be. It may be

not fair to some agents that
∑

i vi(χ(v̂))−
∑

i ℘i(χ(v̂)) is very large and some agents’
utilities are very small; the mechanism’s computational cost can be a reference for
the value of

∑
i vi(χ(v̂)) −

∑
i ℘i(χ(v̂)). The weak budget balanced property is also

important because there would be no single agent’s effect in the VCG mechanism
when the VCG mechanism achieves the weak budget balanced property.

3. To improve the model for the case where the agents have different working abilities
and the tasks are different.

Since every agent can be different and every task can also be unique, an agent may
be able to work on two tasks at the same time. The agent would return to the
market when it can work on another task. Therefore, the agent’s private information
includes the values, the processing time and the maximal amount of tasks that it
can simultaneously process. The auctioneer needs to consider whether this extra
information would be truthfully declared by agents.

58

Bibliography

[1] M. Babaioff, R. Lavi, and E. Pavlov. Mechanism design for single-value domains. In
National Conference on Artificial Intelligence, pages 241–247, 2005.

[2] Dirk Bergemann and Juuso Valimaki. Efficient dynamic auctions. Cowles Foundation
Discussion Papers 1584, Cowles Foundation for Research in Economics, Yale Univer-
sity, October 2006.

[3] J. Bredin and D. C. Parkes. Models for truthful online double auctions. In Proceedings
of the 21st Conference on Uncertainty in Artificial Intelligence (UAI’05), pages 50–59,
2005.

[4] J Bredin, David C. Parkes, and Q Duong. Chain: A dynamic double auction frame-
work for matching patient agents. Journal of Artificial Intelligence Research, 30:133–
179, 2007.

[5] R. Cavallo. Efficiency and redistribution in dynamic mechanism design. In Proc. 9th
ACM Conf. on Electronic Commerce (EC’08), pages 220–229, Chicago, IL, 2008.

[6] R. Cavallo and David C. Parkes. Efficient metadeliberation auctions. In Proc. 23rd
AAAI Conference on Artificial Intelligence (AAAI’08), pages 50–56, Chicago, IL,
2008.

[7] R. Cavallo, David C. Parkes, and S. Singh. Efficient mechanisms with dynamic pop-
ulations and dynamic types. Technical report, Harvard University, 2010.

[8] F. Constantin and David C. Parkes. Self-Correcting Sampling-Based Dynamic Multi-
Unit Auctions. In 10th ACM Electronic Commerce Conference (EC’09), pages 89–98,
2009.

59

[9] Florin Constantin, Takayuki Ito, and David C. Parkes. Online auctions for bidders
with interdependent values. In Autonomous Agents & Multiagent Systems Agent The-
ories, Architectures, and Languages, 2007.

[10] J. C. Gittins. Multi-armed Bandit Allocation Indices. Wiley, Chichester, NY, 1989.

[11] S. Gujar and D. C. Parkes. Dynamic matching with a fall-back option. In Proceedings
of the 19th European Conference on Artificial Intelligence (ECAI’10), pages 263–268,
2010.

[12] M. T. Hajiaghayi, R. Kleinberg, M. Mahdian, and D. C. Parkes. Online auctions with
re-usable goods. In Proceedings of the 6th ACM Conference on Electronic Commerce
(EC), pages 165–174, 2005.

[13] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics, 2:83–97, 1955.

[14] R. Lavi, N. Nisan, and A. Mualem. Towards a characterization of truthful combina-
torial auctions. In Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, 2003.

[15] R. P. Mcafee. A dominant strategy double auction. Journal of Economic Theory,
56:434–450, 1992.

[16] James Munkres. Algorithms for the Assignment and Transportation Problems. Jour-
nal of the Society for Industrial and Applied Mathematics, 5:32–38, 1957.

[17] Roger B. Myerson and Mark A. Satterthwaite. Efficient mechanisms for bilateral
trading. Journal of Economic Theory, 29:265–281, 1983.

[18] N. Nisan and A. Ronen. Computationally feasible VCG mechanisms. In ACM Con-
ference on Electronic Commerce, pages 242–252, 2000.

[19] David C. Parkes and Q. Duong. An ironing-based approach to adaptive online mecha-
nism design in single-valued domains. In Proc. 22nd National Conference on Artificial
Intelligence (AAAI’07), pages 94–101, 2007.

[20] K. Roberts. The characterization of implementatable choise rules. Aggregation and
Revelation of Preferences, pages 321–349, 1979.

[21] S. Seuken, R. Cavallo, and D. C. Parkes. Partially synchronized DEC-MDPs in dy-
namic mechanism design. In AAAI’08, pages 162–169, 2008.

60

[22] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic,
and Logical Foundations. Cambridge University Press, 2009.

[23] J. Zou, S. Gujar, and D. C. Parkes. Tolerable Manipulability in Dynamic Assignment
without Money. In Proceedings of the 24th AAAI Conference on Artificial Intelligence
(AAAI’10), pages 947–952, 2010.

61

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution and Results

	Preliminaries
	Mechanism
	Several Properties of Mechanisms
	Groves Mechanism Family
	The VCG Mechanism

	A Matching Algorithm for Multiple Items
	The MDP

	Models Where Agents are Allocated At Most One Item at a Time
	The Static Model and Solutions
	The VCG Mechanism
	NaiveGreedy Mechanism
	A Strategy-proof Multi-round Mechanism

	The Dynamic Model and Solutions
	Service Providing Agents
	Tasks
	The Auctioneer
	Algorithms for Allocation Schemes
	The Dynamic Mechanisms

	Implementation and Evaluation
	Evaluation of the Multi-round Static Mechanism
	Evaluation of the Patience-based VCG Mechanism
	Implementation of Agents
	Implementation of the Auctioneer and the Mechanisms
	Evaluation Results

	Related Work
	Dynamic VCG Mechanisms and Models with Restrictions
	Dynamic Mechanisms without Payment Policy
	Double Dynamical Auction
	Dynamic Mechanisms for Interdependent Agents
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

