
Dynamic path following controllers

for planar mobile robots

by

Adeel Akhtar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011© Adeel Akhtar 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In the field of mobile robotics, many applications require feedback control laws that
provide perfect path following. Previous work has shown that transverse feedback lineariza-
tion is an effective approach to designing path following controllers that achieve perfect
path following and path invariance. This thesis uses transverse feedback linearization and
augments it with dynamic extension to present a framework for designing path following
controllers for certain kinematic models of mobile robots. This approach can be used to
design path following controllers for a large class of paths. While transverse feedback lin-
earization makes the desired path attractive and invariant, dynamic extension allows the
closed-loop system to achieve the desired motion along the path. In particular, dynamic
extension can be used to make the mobile robot track a desired velocity or acceleration
profile while moving along a path.

iii

Acknowledgements

I would like extend my thanks first and foremost to my supervisor, Dr. Christopher Nielsen
for all of his support, suggestions, our many insightful conversations, and the amazing
opportunity I have had to work with him and be a part of the Control System Group
at the University of Waterloo. I could not have asked for a better arrangement. I am
grateful to all the people who helped me in my research, specially Dr. David Wang, Dr.
Daniel Miller, Dr. Dana Kulic, Dr. John Thistle and the rest of the Control faculty. I
sincerely appreciate all the guidance of Dr. Julie Vale and Darrell Gaudette. Furthermore
I appreciate the love, patience, and support of my family and my parents, especially my
brother. I would be remiss if I did not also acknowledge my friends Sajid Saleem, Abdul
Rehman and Devin Cass for their help and support in completing this thesis.

iv

Dedication

To the four pillars of my life: Almighty Allah, my parents, my siblings and my friends.
Without you, my life would fall apart.

I might not know where the lifes road will take me, but I believe Allah has guided me
to the right path, in the right direction, and has given me strength to overcome all the
difficulties that I have faced.

To my parents, you have given me so much, thank you for your faith in me and for
teaching me that I should never surrender.

To my siblings, without your love and support I would not be able to make it.

To my friends, Sajid Saleem, Abdul Rehman, and Devin Cass you have given me
motivation when I needed it the most.

We made it!

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review . 3

1.2.1 Path Following Using Frenet-Serret Frames 5

1.2.2 Differential Flatness . 6

1.2.3 Chain Form . 7

1.2.4 Feedback Linearization and Partial Feedback Linearization 7

1.3 Problem Formulation . 9

1.4 Organization and Contribution . 10

2 Path Following Controllers: Unicycle 11

2.1 Transverse Feedback Linearization of a Unicycle Following a Circular Path 11

2.1.1 Simulation Results . 18

2.2 DTFL of Unicycle Following a Circular Path 18

2.3 Comparison to Other Control Techniques 26

2.3.1 Trajectory Tracking Controller . 26

2.3.2 Path Following Using Sliding Mode Control Theory 29

vi

3 Path Following Controllers: Car-like Robot 32

3.1 Model of a Car-like Robot . 33

3.2 Dynamic Extension . 34

3.3 Path Following Control Design . 36

3.3.1 Transversal and Tangential Controller Design 41

3.4 Implementation Issues . 41

3.4.1 Computation of Transversal States 42

3.4.2 Computation of Tangential States 42

3.4.3 Experimental Implementation . 45

3.5 Simulation Results . 46

3.5.1 Simulation I . 47

3.5.2 Simulation II . 49

3.6 Robustness of the Proposed Controller . 50

4 Approximate Feedback Linearization 56

4.1 Model of the Standard 1-trailer System . 57

4.2 Review of Approximate Feedback Linearization 57

4.3 Approximate Transverse Feedback Linearization 59

4.3.1 Simulation Results . 63

4.4 Approximate Dynamic Transverse Feedback Linearization 65

4.4.1 Simulation Results . 66

4.5 Conclusion . 69

5 Curve Approximation 70

5.1 Introduction . 70

5.2 General Problem . 71

5.3 Special Cases of the General Problem . 71

5.3.1 Proposed Solution . 72

5.4 Solution to the General Problem . 77

5.4.1 Implicitization . 78

5.4.2 Sylvester Matrix Elimination Method 78

vii

6 Conclusion and Future Work 85

APPENDICES 86

A Basic Concepts 87

A.1 Review of Algebra, Analysis and Differential Geometry 87

A.1.1 Vector fields and their Derivatives 89

A.2 Nonlinear Control Systems . 90

A.2.1 Feedback Linearization . 91

A.3 Curve Approximation . 96

B Matlab Codes 99

B.1 Transverse Feedback Linearization: code 99

B.2 Dynamic Transverse Feedback Linearization: code 100

Bibliography 107

viii

List of Tables

5.1 Approximation results of curve (5.8) with ε = 0.25. 75

5.2 Approximation results of curve (5.8) with ε = 0.05. 76

5.3 Approximation results of curve (5.9) with ε = 0.45. 76

5.4 Approximation results of curve (5.9) with ε = 0.15. 77

5.5 ε = 0.25 . 83

5.6 ε = 0.25 . 83

5.7 Approximation results of the curve (5.22) 83

5.8 ε = 0.25 . 84

5.9 ε = 0.25 . 84

5.10 Approximation results of the curve (5.22) 84

ix

List of Figures

1.1 Flow Chart for Motion Control . 3

1.2 Frenet-Serret Frames . 5

2.1 The kinematic model of Unicycle. 12

2.2 Lift of γ to R3. 13

2.3 Path Following Manifold, Γ? ⊂ Γ. 15

2.4 Unicycle (2.4) following a circular path . 18

2.5 Unicycle (2.4) following non closed paths 19

2.6 DTFL of Unicycle robot (2.1) . 24

2.7 Unicycle robot (2.13) following a circular path 25

2.8 Block diagram of Feedback Linearization 26

2.9 Comparison between path following and trajectory tracking 28

2.10 Comparison to sliding mode control . 30

3.1 The kinematic model of the car-like robot. 33

3.2 Argument that minimizes the distance from the curve. 37

3.3 Representation of vector σ′(λ?) orthogonal to Rπ
2
ds>h(x?). 38

3.4 Feedback control system of car-like robot with equation references. 42

3.5 Car-like robot (3.6) following sinusoidal curve and tracking profile (3.26). . 48

3.6 Car-like robot (3.6) following sinusoidal curve and tracking profile (3.27). . 49

3.7 Car-like robot (3.6) following sinusoidal curve and tracking profile (3.28). . 50

3.8 Car-like robot 3.6 following the curve (3.4.1) and tracking ηref2 = 0.5. . . . 51

3.9 Robustness test of car-like robot. 55

x

4.1 The kinematic model of standard 1-trailer system. 58

4.2 1-trailer system (4.5) initialized at x01. 64

4.3 1-trailer system (4.5) initialized at x02 . 65

4.4 Entries of Decoupling Matrix (4.18) . 67

4.5 Determinant of decoupling matrix (4.18). 68

4.6 1-trailer system (4.15) initialized at x01 . 68

4.7 1-trailer system (4.15) initialized at x02 . 69

5.1 Approximation of curve (5.8) with ε = 0.25. 75

5.2 Approximation of curve (5.8) with ε = 0.05. 76

5.3 Approximation of curve (5.9) with ε = 0.45. 76

5.4 Approximation of curve (5.9) with ε = 0.15. 77

5.5 Approximation of curve (5.22) . 82

5.6 Approximation of curve (5.23) . 83

xi

Chapter 1

Introduction

In this thesis, we study the path following problem for mobile robots. Informally, the
path following problem in control theory entails designing control laws to make a system’s
output approach and move along a pre-specified path with no a priori timing law, and to
do so starting from initial conditions in a neighborhood of the path.

The problem of maintaining accurate motion along a specified path is one of the major
control specifications in the field of mobile robotics and can be roughly classified as either (i)
a path following problem or (ii) a reference tracking problem. In a path following problem,
the main task of the controller is to follow a path with no a priori time parameterization.
In a reference tracking problem, the task of the controller is to follow a path with a pre-
specified timing law associated with the motion. Thus, tracking can be thought of as a
special case of path following. One obvious advantage of path following is that cases exist
where the trajectory tracking problem is unsolvable; yet the associated path following
problem has a solution [41]. However, the main advantage of adopting the path following
approach is that the resulting feedback guarantees the invariance of path. This means that,
if the mobile robot is initialized on the path with the appropriate orientation, invariance of
path guarantees that it will never leave the path. A trajectory tracking controller cannot
ensure path invariance and thus cannot guarantee that the mobile robot will never leave
the path [20]. This thesis examines the path following problem for a unicycle, a car-like
robot, and a trailer system driven by a car-like robot.

1.1 Motivation

Precise path following is especially desirable when multiple robots must perform a task in
tight spatial conditions without colliding, such as small robots moving within a room, or
autonomous underwater vehicles moving together from one point in the ocean to another or

1

even unmanned aerial vehicles working around each other in space. In each of these cases,
if there exists defined spatial paths for each of the mobile robots such that the paths do not
intersect, then by simply following those paths the robots can be navigated to the intended
positions without collision. Precise path following is desirable not only in the use of multiple
robots but also for obstacle avoidance using a single robot. More generally, path following
is also useful in robotic welding, cutting, drawing, and indoor and outdoor navigation. To
further motivate the study of path following, consider the following application examples
which illustrate situations where path following is preferable to trajectory tracking.

Example: Car on Road

Consider the application of a path following controller to a car traveling along a road. A
roof-mounted camera provides information about the approaching road from which the
mathematical representation of a segment of road, such as a spline, can be extracted. This
is called the desired path. As discussed above, a tracking controller does not guarantee
invariance of the desired path, thus making a tight turn, a tracking controller may lead
to unacceptable deviations from the road. The spline determined by the camera can be
defined in such that the initial position of the car is on one end of the spline. Since the car
is initialized on the path, invariance of the path ensures that the car will never leave the
road. In other words, the result is accurate following of the road ahead.

Suppose there is a path defined from a person’s home to their office. Suppose the
problem is setup as a trajectory tracking problem i.e, we want to follow a virtual reference
point that moves along the path and its evolution along the path is a function of time.
Suppose that for some reason, such as a road block, the person has to stop on the way to
the office. Since the virtual target is parameterized by time it will not stop and it will move
with its predefined timing law. If the vehicle does stop, then once the road becomes clear
the virtual target will be far ahead and the car will need to either use a shortcut to catch
the virtual target or speed up. An available shortcut may not be available and increasing
speed may exceed the speed limit which is undesirable. If a path following controller were
designed for this application, the path would have been invariant, meaning the car will
stay on the path. Secondly by following a speed profile bounded by the speed limit of the
road, a speeding ticket can be easily avoided. The car may not reach the office as early as
expected, but speeding rules will not be broken.

Example: Computer Numeric Controlled Machines

Consider the application of a path following controller to the automation industry. In
computer numeric controlled (CNC) machines like cutting machines, drawing machines,
and welding machines the task of the tool is to first approach the desired path and then

2

cut or weld the job accurately. If the boundary of the part is considered as a path then
cutting or welding the part can be considered as a path following problem. If the path can
be made invariant, this ensures that once the tool is on the path it will always remain on
that path even if it encounters a burr or rough spot that may cause it to slow down.

The above discussion illustrates the suitability of path following for mobile robots and
other application areas. There are many more examples where path following controllers
are appropriate for mechanical or robotic system when compared to trajectory tracking
controllers. These examples include robotic deburring, walking robots, exercise and re-
habilitation machines, teleoperations, obstacle avoidance, human robot interaction and
robotic manipulators [25].

1.2 Literature Review

Motion Control

Point Stabilization Path Following Trajectory Tracking

Virtual Target Tracking Set stabilization

Feedback Linearization

Approach

Passivity based

Approach

Sliding Mode

Control

Control Lyapunov

Function

Integral Back-

stepping

Figure 1.1: Flow Chart for Motion Control

In the last two decades there has been considerable attention paid to the motion control
problem, especially in the field of mobile robotics. The problem of the motion control can
be classified into three main groups (i) point stabilization (ii) path following (iii) trajectory
tracking; see Figure 1.1.

3

Point stabilization or equilibrium stabilization has been studied extensively for non-
holonomic systems. A nonholonomic system is a system with nonholonomic constraint.
For example, a unicycle or a car-like robot has a nonholonomic constraint because the
robot cannot moves sideways as the wheel rotates only in forward or backward direction
but cannot move sideways without slipping. Brockett presents necessary conditions that
show that no time-invariant, continuous, feedback stabilizer exists for these systems [11].
The most common approaches used for equilibrium stabilization are discontinuous con-
trol and hybrid feedback control [36]. Aicardi et al. [36] showed that, for a unicycle type
robot, Brockett’s necessary condition can be avoided if a different state space representa-
tion is used instead of Cartesian coordinates. There can be an infinite number of different
state space representations of a system. A few commonly used in the literature for mobile
robots are polar coordinates and Frenet-Serret coordinates representations [32]. Bushnell
et al. [13] presented an open loop control law to solve the point stabilization problem for
nonholonomic systems.

In this thesis, we study the path following problem. It is important to understand the
difference between path following and trajectory tracking. Aguiar et al. [2] highlighted the
fundamental difference between path following and reference tracking, i.e in path following,
the control objective is to follow a geometric path without a timing law assigned to it. Path
following can even be used when a system has unstable zero dynamics. In the case of path
following for a linear system with unstable zero dynamics, better performance can be
achieved when compared to tracking [2].

A large number of path following control laws are available in the literature that use the
concept of control Lyapunov functions [54]. The main disadvantage of using the Lyapunov
based controller is that the process is ad hoc. This means that any change in the system
or path requires finding a new Lyapunov function which can be very difficult. Sliding
mode controllers are another way of solving the path following problem. Sliding mode
controller design involves finding a sliding surface on which the system exhibits desirable
behavior. Once a sliding surface is identified the designers seek a feedback controller so
that the system trajectories converges to the sliding surface in finite time. A comparison
between the path following controller designed in this thesis is compared with other existing
controllers is presented in Section 2.3. Dagci et al. [17] proposes a controller for the
unicycle using sliding mode control theory. One of the main advantages of sliding mode
control is that it is robust to modeling errors. The sliding mode controller consists of a
discontinuous feedback control that switches on the desired path. Ideally, the switching
of control occurs at an infinitely high frequency to eliminate deviations from the path. In
practice, the frequency cannot be infinitely fast and so it induces high frequency oscillations,
also called chattering, in the control signal. Such control chattering is undesirable since
it can damage actuators. Sliding mode path following controllers do not guarantee path
invariance. Another approach for path following is passivity based path following technique

4

using a set stabilization approach. El-Hawwary and Maggiore [20] almost globally solved
the problem of path following for the unicycle along the circle using a passivity based
control law. Similar to the Lyapunov based techniques, generalizing this method to other
systems and arbitrary paths can be very difficult.

Another approach for path following is to express the system in a simpler state space
form that suggest easy design of control law. We give a brief overview of some of the
interesting coordinate transformation techniques.

1.2.1 Path Following Using Frenet-Serret Frames

Many path following problems in the literature are analyzed under the setting of Frenet-
Serret frames (FS frames). The most common approach is to convert the system from
Cartesian coordinates to FS coordinates. The Frenet-Serret formulas describe a particle
which moves along a differentiable path in three dimensional space. The formulas describe
the derivatives of the so called tangent, normal, and binormal unit vectors in terms of each
other. A FS frame is an orthonormal basis {T,N,B} of R3 which moves along the path,
see Figure 1.2. Here T is the unit vector tangent to the curve, pointing in the direction
of motion, N is the derivative of T with respect to the arc length parameter of the curve,
divided by its length and B is the cross product of T and N. The evolution of a FS frame

B

T
N

x

y

z

Figure 1.2: Frenet-Serret Frames

is completely determined by the curvature and torsion of the path via the FS formulas.
Interested readers are referred to [45]. One drawback in representing a nonholonomic
system like the unicycle in FS coordinates (e.g., Micaelli et al. [1],) is that the coordinate
transformation is not global and singularities are introduced in the model. Singularities
arise when the position of the virtual vehicle is defined simply by projecting the position
of the actual vehicle to the closest point on the path. In other words, a singularity occurs
when the vehicle is located at the center of curvature of the path. In this situation, the

5

closest point from the vehicle to the path is not unique. The approach followed in this thesis
suffers from a similar limitation. Lapierre et al. [32] shows that by explicitly controlling
the rate of progression of a virtual target to be tracked along the path and treating it as
a new control input, a singularity can be avoided. Lapierre et al. gives a Lyapunov based
control law for path following for the unicycle. In general, it is not easy to find candidate
Lyapunov functions for generic paths and for general nonholonomic system or systems with
multiple inputs.

1.2.2 Differential Flatness

A useful property of nonlinear system specifically from the point of view of path following
is flatness. Fliess et al. [21] introduced the notion of differential flatness. A large class of
nonlinear systems fall in this category. Roughly speaking, a nonlinear system is differen-
tially flat if there exist a set of outputs (equal to the number of the inputs) such that all
states and inputs can be uniquely determined from the desired output. More precisely, if
the system has states x ∈ Rn, and the inputs u ∈ Rm then the system is flat if we can
find outputs y ∈ R

m of the form,

y = y(x, u, u̇, · · · , u(p)) (1.1)

such that,
x = x(y, ẏ, · · · , u(q))

u = (y, ẏ, · · · , u(q))

where y(i) := diy(t)
dti

and u(i) := diu(t)
dti

. Differentially flat systems were first introduced in [21]
using differential algebra and later described using a Lie-Bäcklund transformation [22].
In [59] differential flatness was introduced under the setting of differential geometry. Find-
ing a flat output involves finding a function that satisfies the conditions given in [47]. The
search for a flat output can be simplified by noting that they often have strong geomet-
ric interpretations [55]. For example in case of unicycle and car-like robot, presented in
the following chapters, we use outputs that are physically meaningful and the outputs
turnout to be differentially flat. From a trajectory tracking point of view, differentially
flat systems are useful. Since the behavior of the flat system and its inputs are completely
determined by the flat outputs, trajectories can be planned in the output space, and can
then be mapped to appropriate inputs. It is shown in the literature that the standard
n-trailer system, discussed in Chapter 4, pulled by a car-like robot, is a differentially flat
system [47]. The procedure to find a flat output for a general system is still unknown.
Murray et al. has shown that every system which is feedback linearizable via dynamic
extension is differentially flat [40].

6

1.2.3 Chain Form

Bushnell et al. [13] give sufficient conditions for converting multiple input systems to a
simpler chain form, through a local coordinate transformation. For a drift free1 control
system of the form

ξ̇ = g0(ξ)u0 + g1(ξ)u1 + · · ·+ gm(ξ)um, (1.2)

where, ξ ∈ Rn are the states, u(ξ, t) ∈ Rm are the inputs and gi are the smooth linearly
independent vector fields, Walsh et al. gave necessary and sufficient conditions under which
the system (1.2) can be transformed into chain form [61]. In chain form (1.2) reads,

ẋ00 = v0, ẋ01 = v1, ẋ02 = v2, · · · , ẋ0m = vm,

ẋ110 = x01v0, ẋ120 = x02v0, · · · , ẋ1m0 = x0mv0,
...

...
. . .

...

ẋn1

10 = xn1−1
10 v0, ẋn2

20 = xn2−1
20 v0, · · · , ẋnm

m0 = xnm−1
m0 v0,

the chain form provides some advantages in analysis as the system becomes less compli-
cated as compared to the original form. In [13] the authors give sufficient conditions for
transforming a three-input driftless system into a chain form via a coordinate transfor-
mation and state feedback. In the chain form the system was shown to be completely
controllable. The control law proposed in [13] is an open-loop control law that is not ro-
bust to plant modeling uncertainties. The authors in [35] propose the integration of path
planning and feedback control design. The procedure to convert a general system to chain
form is an unsolved problem.

1.2.4 Feedback Linearization and Partial Feedback Linearization

A lot of work has been done in the field on nonlinear control using the concept of feedback
linearization. We consider feedback linearization from the point of view of path following.
Skjetne et al. [53] proposed a method for path following for a class of general nonlinear
systems. The authors in [53] divide the path following problem into two tasks: a geometric
task and a dynamic task. The geometric task forces the system to converge to the desired
path while the dynamic task involves objectives such as tracking speed or velocity profiles.
One of the drawbacks in the work [53] is that the system must be feedback linearizable.
Since most mobile robots are not fully feedback linearizable, this work is not directly
applicable to mobile robots.

When feasible, exact feedback linearization allows us to represent a given nonlinear
system as a fully linear system using a coordinate and feedback transformation. Necessary

1Informally, a drift free system stops when all the control inputs are set to zero.

7

and sufficient conditions for a system to be feedback linearizable can be found in [29], [51].
It is not always possible to fully feedback linearize a given nonlinear system. If the system
is not fully feedback linearizable, it may still be possible to partially feedback linearize the
system. An interesting approach to solve path following problem is by using transverse
feedback linearization. Banaszuk and Hauser [9] use the notion of transverse feedback
linearization to linearize the dynamics of a system transverse to a closed orbit in the state
space. They provide necessary and sufficient conditions for generating a coordinate and
feedback transformation to accomplish this. The authors in [9] propose an autonomous
feedback control providing exponential stability for periodic orbits. Altafini [5] casts the
path following problem as an output regulation problem. In [5] a general n-trailer system is
considered and it is shown that the trailer system is input-output feedback linearizable. It
was further shown that the path following problem can be solved on the partially linearized
system.

An interesting approach for path following based on the work in [9] is via transverse
feedback linearization. In [43], the authors showed that in many cases it possible to make
a desired path invariant via transverse feedback linearization. An invariant path means
that when the system starts on the path, with velocity tangent to the path, the system
will remain on the path for all future time. The authors in [42] provide necessary and
sufficient conditions for the linearization of dynamics transverse to the the curve. In [14],
the authors consider the path following problem for the planar vertical takeoff and landing
of aircraft. A path following controller was designed that follows a class of smooth Jordan
curves. The proposed controller enjoys the property of path invariance. It in interesting
to note that it was shown using the approach outlined in [14] that the controller works for
nonminimum phase systems. In [42], it was shown by the authors that using transverse
feedback linearization path following can be achieved for a maglev positioning system. This
thesis extends the approach proposed by the authors in [42]. The controller is designed
in two steps. First, a transversal controller is designed and then a tangential controller.
The transversal controller drives the output of the system to the path, while the tangential
controller meets the application specific requirements on the path. Path following controller
design for a mechanical systems is discussed in [27]. In this paper, the authors show that
using a coordinate transformation and feedback, a mechanical system can be represented in
a convenient form that simplifies controller design. An input-output feedback linearization
approach is applied to a planar five-bar linkage robot and an underactuated five-bar robot
with a flexible link. In this thesis, we will follow the technique of [42] for specific class of
systems and arbitrary path. A detailed review of this approach is elaborated in Chapter 2.
Moreover, in Section 2.3 we compare our controller with few other existing controllers.

8

1.3 Problem Formulation

In this thesis, we design path following controllers for kinematic models of a unicycle, a car-
like robot and a car with trailers. Some of the terminologies used is defined in Appendix A.
A nonlinear system with m inputs and p outputs can be modeled as,

ẋ = f(x) +

m∑

i=1

gi(x)u := f(x) + g(x)u, (1.3)

where f : Rn → Rn, gi : R
n → Rn, i ∈ {1, . . . , m}, are smooth functions2. The output3

of (1.3), with p = 2 is modeled by an equation of the form

y = h(x) (1.4)

with h : Rn → R2 smooth. Suppose we are given a path to follow in the output space R2

of (1.3) as a regular parameterized curve

σ : D → R
2

λ 7→

[
σ1(λ)

σ2(λ)

]
,

(1.5)

where D is either S if the curve is closed or R if the curve is not closed4, and σ ∈ Cr is
sufficiently smooth. Since σ is regular, without loss of generality, we can assume that it
has a unit-speed parameterization, i.e.,

(∀ λ ∈ D) ‖σ′(λ)‖ = 1.

Under this assumption, the curve σ is parameterized by its arc length. For Jordan curves
with finite length L this means that D = RmodL and σ is L-periodic, i.e., for any λ ∈ D,
σ(λ+ L) = σ(L). When the curve is not closed D = R. We impose geometric restrictions
on the class of curves considered [26].

Assumption 1. The path, σ(D), is an embedded submanifold of R2 with dimension 1.

Assumption 2. There exists a smooth map s : R2 → R1 such that 0 is a regular value of
s and σ(D) = s−1(0). Let γ := s−1(0).

2Informally, functions that have derivatives of all orders are called smooth
3We restrict p = 2 in this thesis as we are dealing with planer mobile robots.
4The notation S means RmodL, meaning the curve is periodic with a period of L. Thus S has the

geometric structure of a circle.

9

Assumption 1 imposes that the path has no self intersections, no “corners”, and does
not approach itself asymptotically. Assumption 2 asks that the entire path be represented
as the zero level set of the function s in the output space of system (1.3). This is always
possible, locally, if Assumption 1 holds. We seek a smooth control law such that the
closed-loop system satisfies,

PF1 For each initial condition in the neighborhood, the output (1.4) along solutions of the
closed-system (1.3) asymptotically approaches the path, i.e., y(t) → σ(D) as t→ ∞.

PF2 The level set s(y) is output invariant, i.e., if the system is initialized on the path with
the velocity vector tangent to the curve, the system remain on the path σ(D) for all
t ≥ 0.

PF3 On the path, the mobile robot tracks a desired velocity or acceleration profile.

1.4 Organization and Contribution

The organization of this thesis is as follows. In Chapter 2 the path following problem for
the unicycle is analyzed. A brief overview of the approach from [42] is presented. Trans-
verse feedback linearization for path following is reviewed for the unicycle and a circular
path. We then introduce the procedure for transverse feedback linearization with dynamic
extension (henceforth dynamic transverse feedback linearization). In Chapter 3, the path
following problem is solved for the car-like robot using dynamic transverse feedback lin-
earization for a large class of embedded curves. Chapter 4 investigates the trailer system
driven by a car-like robot. An overview of non-regular systems is given. The 1-trailer
system is an example of such a system. We show, largely by simulations, that the re-
sults of transverse feedback linearization and dynamic transverse feedback linearization
are applicable to non-regular systems. In Chapter 5 a procedure is proposed for finding
an implicit representation of a given parametric curve. Certain nonlinear control applica-
tions, for example, dynamic transverse feedback linearization, require a parametric as well
as an implicit representation of the given path. A solution to the implicitization problem
is proposed based on Weierstrass approximation theorem and elimination theory.

The main contribution of this thesis is that it gives a solution to path following problem
for a large class of curves for the systems such as unicycle and car-like robot via dynamic
extension. Moreover, a procedure is outlined to implicitize a given parameterized curve.

10

Chapter 2

Path Following Controllers: Unicycle

In this chapter we present a solution to the path following problem for the kinematic uni-
cycle. The path following problem is formulated as a special case of a set stabilization
problem, where stabilizing an appropriate set in the state space of the mobile robot causes
the output of the system to lie on the desired path. In [41], [43] authors stabilize the de-
sired path using transverse feedback linearization. Using a special coordinate and feedback
transformation, the authors show that the problem of forcing the system’s output to ap-
proach the desired path is equivalent to stabilizing a linear time-invariant (LTI) subsystem.
When feasible, this approach is attractive because it simplifies control design. However,
as we will show in this chapter, one of the limitations of that approach is that it is not
possible to control the motion of the unicycle along the path. We outline the deficiency of
that approach and then present a procedure to overcome the deficiency with the help of
dynamic extension.

2.1 Transverse Feedback Linearization of a Unicycle

Following a Circular Path

In [41], [43] the authors propose a path following controller that satisfies objectives PF1

and PF2 for the class of curves introduced in Section 1.3. One of the limitations of that
controller is that the speed of the robot is fixed along the path. Our work is an extension
of [41] that overcomes this limitation. We begin with an illustrative example of a unicycle
robot following a circular path of unit radius. We show that the aforementioned limitation
is caused by fixing the speed of the unicycle. Later in this chapter we provide a procedure
to overcome this limitation. The following example is based on the work in [41].

11

Consider the kinematic model of a unicycle mobile robot, see Figure 2.1,

ẋ =

cosx3 0

sin x3 0

0 1

[
v

ω

]
, (2.1)

where x ∈ R3 is the state, the input v ∈ R is the translational speed and ω ∈ R is the
angular velocity of the steering angle. We take the unicycle’s position in the plane as the
output of (2.1)

y = h(x) =
[
x1 x2

]>
. (2.2)

Remark 2.1.1. We only consider kinematic models in this thesis. A dynamic model of the
unicycle robot can be found in many places including [38]. We argue that, from the point of
view of controller design, all theoretical issues arise at the kinematic level. Of course, when
implementing a control law on a physical system, a dynamic model is necessary. However,
since the relationship between a kinematic and dynamic model is essentially an integrator,
any controller that works on the kinematic model can be implemented on the dynamic model
using, for instance, backstepping [31]. Furthermore, since kinematic models are generally
simpler then dynamical models, this choice simplifies the exposition. For these reasons, in
this thesis we consider only kinematic models of the mobile robots.

y1 = x1

y2 = x2

x3

Figure 2.1: The kinematic model of Unicycle.

12

In this example, the desired path is a unit circle and is given as a regular parameterized
curve. It is interesting to note that the path in parameterized by a path parameter λ not
specifically time t.

σ : S → R
2

λ 7→

[
cosλ

sinλ

]
,

(2.3)

The path is a regular unit-speed curve,

(∀ λ ∈ S) ‖σ′(λ)‖ =
√

cos2 λ+ sin2 λ = 1.

This curve satisfies Assumption 2 and so there exists a smooth map s : R2 → R1 such that
0 is a regular value of s and σ(D) = s−1(0). Let γ := s−1(0). The map h : R3 → R

2 is
transversal [23] to γ and therefore the lift of γ to R3

Γ := (s ◦ h)−1 (0) =
{
x ∈ R

3 : s(h(x)) = 0
}

is a submanifold of R3 having the shape of a cylinder, as shown in Figure 2.2. Define

x1

x3

x2

y1

y2

γ

Γ

Figure 2.2: Lift of γ to R3.

α(x) := s ◦ h(x) = x21 + x22 − 1. Intuitively, making x→ Γ is equivalent to making y → γ.
In [41] the path following problem is solved by fixing the translational speed v 6= 0. Let
the input u := ω. The system (2.1) can be written as,

ẋ =

v cos x3

v sin x3

0

+

0

0

1

 u. (2.4)

13

Define

f(x) :=

v cosx3

v sin x3

0

 , g(x) :=

0

0

1

 ,

so that (2.4) can be written compactly as ẋ = f(x) + g(x)u. We start differentiating the
function α with respect to time

α̇ =
∂α(x)

∂x
ẋ

=
∂α(x)

∂x
f(x) +

∂α(x)

∂x
g(x)u

= Lfα(x) + Lgα(x)u,

where,
Lfα(x) = 2v (x1 cos x3 + x2 sin x3) ,

Lgα(x) = 0.

Differentiating the function α̇(x) with respect to time

α̈ =
∂α̇(x)

∂x
ẋ

=
∂Lfα(x)

∂x
f(x) +

∂Lfα(x)

∂x
g(x)u

= L2
fα(x) + LgLfα(x)u,

where
L2
fα(x) = 2v2,

LgLfα(x) = 2v(x2 cosx3 − x1 sin x3).

By assumption v 6= 0 and so the function LgLfα(x) equals zero if and only if

tan (x3) =
x2
x1
.

Physically, this condition means that the unicycle is oriented along a line passing through
the origin of the output space. In other words, the unicycle is normal to the desired path.
We claim that this condition cannot occur on the set

Γ? = {x ∈ R
3 : α(x) = α̇(x) = 0}

= {x ∈ R
3 : x21 + x22 − 1 = x1 cosx3 + x2 sin x3 = 0}.

14

Suppose, by way of contradiction, that the function LgLfα(x) = 0 on Γ?. Then, since
α̇(x) = 0, we have that

[
cos (x3) sin (x3)

− sin (x3) cos (x3)

][
x1

x2

]
= 0.

The above 2 × 2 matrix is nonsingular so the only way that this equation holds is if
x1 = x2 = 0. This is not possible since x21+x

2
2−1 = 0 on Γ?. This shows that the function

α(x) yields a well defined relative degree of 2 at each point on the set Γ?. The set Γ? is the
path following manifold for this particular example. It is the largest controlled invariant
subset of the set Γ. In this case, Γ? can be visualized as a spring wrapped around a cylinder
as shown in Figure 2.3.

x1

x3

x2

Γ?

Γ

Figure 2.3: Path Following Manifold, Γ? ⊂ Γ.

We will use the function α to stabilize the circle. The output (2.2) of the system (2.4)
can be made to converge to the path by making α(x) and α̇(x) converge to zero. Thus
path following is essentially a output-zeroing problem, a well know problem in control [51].

The function α and its derivative α̇ can be used to partially define a local coordinate
transformation for the unicycle. To complete the coordinate transformation, we need a
third function. For circular paths one possible choice is [42], [26],

π(x) := tan−1

(
x2
x1

)
. (2.5)

In order to show that these functions determine a local diffeomorphism, we use the inverse
function theorem.

Theorem 2.1.2. (Inverse Function Theorem [46]) Let U be an open subset of Rn and
f : U → Rn, a C∞ mapping. If the Jacobian, dfx?, is nonsingular at some x? in U , then
there exists an open neighborhood V of x? in U such that W = f(U) is open in Rn and
f |V is a diffeomorphism onto W .

15

Corollary 2.1.3. Let x? ∈ Γ?. There exists a neighbourhood U ⊂ R3 containing x? such
that the mapping T : U ⊂ R3 → T (U) ⊂ R3, defined by

η1

ξ1

ξ2

 = T (x) =

π(x)

α(x)

Lfα(x)

 , (2.6)

is a diffeomorphism onto its image.

Proof. Let x? ∈ Γ. By direct calculations the Jacobian dTx? := ∂T
∂x

∣∣
x=x? is given by

dTx? =

∂η1
∂x1

∂η1
∂x2

∂η1
∂x3

∂ξ1
∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ2
∂x1

∂ξ2
∂x2

∂ξ2
∂x3

 =

−x2 x1 0

2v cosx3 2v sin x3 2v(x2 cos x3 − x1 sin x3)

2x1 2x2 0

 . (2.7)

The determinant of (2.7) is given by,

det (dTx?) = −4v(x2 cos x3 − x1 sin x3).

As we have already shown, on Γ? this determinant equals zero if and only if v = 0. Since
we assume that v 6= 0, dTx? is nonsingular. By Theorem (2.1.2), T is diffeomorphism onto
its image.

Using the coordinate transformation T from Corollary 2.1.3, in the neighborhood of
any point x? ∈ Γ?, the system (2.4) in (η, ξ)-coordinates reads

η̇1 = f 0(η, ξ)

ξ̇1 = ξ2

ξ̇2 = L2
fα + LgLfαu

∣∣
x=T−1(η,ξ)

.

(2.8)

When ξ = 0, i.e., when α(x) = α̇(x) = 0, the system is restricted to evolve on the path
following manifold. Thus stabilizing the ξ-states is equivalent to getting the unicycle on
the desired path with heading velocity tangent to the path. This motivates us to call the
ξ-subsystem the transversal subsystem and the ξ-states the transversal states. When the
robot is on the path following manifold, i.e., ξ = 0 then η1 determines the position of the
robot on the path. The dynamics of η1 restricted to the path following manifold are given
by

η̇1|Γ? = f 0(η, 0) = −
v(x2 cosx3 − x1 sin x3)

x21 + x22

∣∣∣∣
x=T−1(η,0)

.

Note that on Γ?

16

(i) x21 + x22 = 1

(ii) x1 cos (x3) = −x2 sin (x3).

Solving (i) and (ii) for x1 and x2 yields two valid solutions
[
x1

x2

]
=

[
− sin (x3)

cos (x3)

]

or [
x1

x2

]
=

[
sin (x3)

− cos (x3)

]
.

Substituting these solutions into the expression for η̇1 yields

η̇1 = ±v. (2.9)

In either case, the dynamics restricted to the path are unstable. In this application, this
is desirable because it means that the unicycle will traverse the entire circle. On the
other hand, since v is constant, we cannot affect the motion of the vehicle on the circle.
The minus and plus signs correspond to, respectively, clockwise and counterclockwise path
traversal.

Next consider the regular feedback transformation

u =
1

LgLfα
(−Lfα

2 + vt), (2.10)

where vt is an auxiliary control inputs. The controller is well defined in a neighborhood
of x? ∈ Γ? because LgLfα(x) 6= 0 there. In a neighbourhood of x? the closed-loop system
becomes

η̇1 = f 0(η, ξ)

ξ̇1 = ξ2

ξ̇2 = vt
(2.11)

We refer to the control input vt as the transversal input because it can be used to control
the transversal subsystem. The transversal subsystem is LTI and controllable so there are
many possible design techniques that can be used to stabilize ξ = 0. This simplest choice
for the transversal controller is

vt(ξ) = k1ξ1 + k2ξ2, (2.12)

with ki < 0, i ∈ {1, 2}. This controller exponentially stabilizes the transversal states.
Physically, since ξ = 0 is an equilibrium of the closed-loop transversal subsystem, if the
robot is initialized on the path with the initial velocity tangent to the path, then it will
remain on the path for all future time.

17

2.1.1 Simulation Results

In this section we present simulation results of the unicycle, (2.4), following both closed and
non closed paths. We set v = 1 throughout. In Figure 2.4(a), the unicycle is following a
circular path starting from different initial conditions. Each initial condition is represented
by a solid dot. As seen above, the controller (2.10), (2.12), has the limitation that the speed
of the robot is fixed. The speed of the unicycle while following circular path is represented
in Figure 2.4(b). As expected, the dynamics of the unicycle on the path are given by (2.9)
and this is illustrated in Figure 2.4(b).

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Unicycle Following unit circle with different initial conditions

x
1

x 2

(a) Unicycle starting from various initial conditions.

0 5 10 15 20
1

1.05

1.1

1.15

1.2

1.25
Speed of unicycle along the path

t (sec)

η 2

(b) Speed of unicycle along the curve

Figure 2.4: Unicycle (2.4) following a circular path.

Although we discussed the circle example in Section 2.1, the results in [43], [41] can
also be applied to any path that satisfies Assumptions 1 and 2. This includes non closed
curves. Here we present simulation results of the unicycle following some non closed curves.
Figure 2.5(a) shows simulation results for the case when the unicycle is following a straight
line. The experiment is repeated with different initial conditions as can be seen in the
aforementioned figure. The next example of a non closed curve is that of a sinusoidal path.
Figure 2.5(b) shows the reference path followed by the robot with various initial conditions.

2.2 Dynamic Transverse Feedback Linearization of Uni-

cycle Following a Circular Path

In this thesis, one of our objective is to overcome the limitation of constant speed of the
robot along the path. That means satisfying PF3 defined in Section 1.3. As discussed in

18

−2 0 2 4 6 8 10 12 14 16
−2

0

2

4

6

8

10

12

14

16
Unicycle Following straignt line with different initial conditions

x
1

x 2

(a) Unicycle following a straight line.

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1
Unicycle Following cosine curve with different initial conditions

x
1

x 2

(b) Unicycle following a cosine curve

Figure 2.5: Unicycle (2.4) following non closed paths.

the last section, the solution proposed in [43] does not satisfy PF3. In particular, since v
is fixed the motion on the path is fixed. A natural way to overcome this limitation is not
to fix the translational velocity of the robot and use both inputs to design the controller.
The main issue with this approach is that it affects the relative degree of the system and
the analysis from the previous section is no longer applicable.

Consider the model of the unicycle robot (2.1) with both the inputs and the circular
path (2.3). Following the procedure of the previous section, we take the derivative of the
curve until the control input appears,

α̇ = 2x1(ẋ1) + 2x2(ẋ2)

= 2x1(v cosx3) + 2x2(v sin x3).

The control input appears in the first derivative and the equation

2x1(v cosx3) + 2x2(v sin x3) = 0

can easily be solved by setting v = 0. Hence the zero dynamics algorithm [29] terminates
and the largest controlled invariant subset of Γ is given by Γ itself. Clearly the control
v = 0 is not very useful for a mobile robot.

Observe that only one control input, translational speed, of the unicycle appears in the
first derivative. The steering input has not yet appeared. Intuitively, without the steering
input we cannot control the steering angle of the robot. In order to control both the speed
and direction of the robot we would like to have both inputs appear in the derivatives of α.
In other words, both inputs should appear at the same derivative of the path α(x). One
way to force both inputs appear at the same derivative is to “delay” the appearance of one

19

of the input v. We do this by controlling the derivative of v rather than v itself. It is clear
that the second derivative of α(x) contains the term ẋ3 = ω. Let v = v+u, where v > 0 is
constant and u will be treated as as a new state. Instead of controlling v we will instead
control the derivative of u. This procedure is referred to as dynamic extension [29]. As it
is easy to see, in this case, for both the inputs to appear at the same time we need to add
only one state. Let x4 := u and choose u1 := ẋ4 and u2 := ω. With these definitions, the
system (2.1) takes the form

ẋ = f(x) + g1(x)u1 + g2(x)u2

=

(v + x4) cosx3

(v + x4) sinx3

0

0

+

0

0

0

1

u1 +

0

0

1

0

u2.

(2.13)

Now our objective is to design the control law u = (u1, u2) to solve the the path following
problem defined in Section 1.3. Similar to Section 2.1, the lift of γ to R4

Γ := (s ◦ h)−1 (0) =
{
x ∈ R

4 : s(h(x)) = α(x) = 0
}
.

As discussed above, following the procedure from Section 2.1, both inputs appear in the
second derivative of α. In this case the path following manifold is given by

Γ? =
{
x ∈ R

4 : α(x) = α̇(x) = 0
}
.

We define a “virtual” output function [25].

ŷ =

[
π(x)

α(x)

]
(2.14)

where π(x) is defined in (2.5).

We now show that as long as the unicycle does not have zero translational speed, then
this output yields a well defined relative degree on the path.

Lemma 2.2.1. The dynamic extension of the unicycle robot (2.13) with output (2.14)
yields a well defined vector relative degree of {2, 2} at each point on Γ? where x4 6= −v.

Proof. Let x? ∈ Γ be arbitrary. By definition of Γ the output h(x?) is on the path γ. Let
λ? ∈ S be such that h(x?) = σ(λ?). By the definition of vector relative degree we must
show that

Lg1π(x) = Lg2π(x) = Lg1α(x) = Lg2α(x) = 0

20

in a neighbourhood of x? and that the decoupling matrix

D(x?) =

[
Lg1Lfπ(x

?) Lg2Lfπ(x
?)

Lg1Lfα(x
?) Lg2Lfα(x

?)

]
(2.15)

is nonsingular. Since
∂π(x)

∂xi
=
∂α(x)

∂xi
≡ 0

for i ∈ {3, 4}, it is easy to check that Lg1π(x) = Lg2π(x) = Lg1α(x) = Lg2α(x) = 0.

To show that the decoupling matrix is full rank, it suffices to show that the determinant
of D(x?) is not zero. Direct calculations yield

Lg1Lfα = 2(v + x4)(x2 cosx3 − x1 sin x3)

Lg2Lfα = 2x1 cos x3 + 2x2 sin x3

Lg1Lfπ = (v + x4)(x1 cosx3 + x2 sin x3)

Lg2L
2
fπ = −(x2 cosx3 − x1 sin x3)

(2.16)

Hence
det (D(x)) = 2(v + x4). (2.17)

The only way for this determinant to vanish is if v = −x4. Thus D(x) is nonsingular at
each x? ∈ Γ? where x4 6= 0. Since Γ? ⊂ Γ, the lemma is proved.

An immediate consequence of Lemma 2.2.1 is that it allows us to define a local diffeo-
morphism using the function π(x) and α(x) and their iterated Lie derivatives along the
vector field f(x).

Corollary 2.2.2. Let x? ∈ Γ\{x ∈ R4 : x4+v = 0}. There exists a neighbourhood U ⊂ R4

containing x? such that the mapping T : U ⊂ R4 → T (U) ⊂ R4, defined by

η1

η2

ξ1

ξ2

= T (x) =

π(x)

Lfπ(x)

α(x)

Lfα(x)

(2.18)

is a diffeomorphism.

Proof. Let x? ∈ Γ\{x ∈ R4 : x4+v = 0}. By Lemma 2.2.1 system (2.13) with output (2.14)
yields a well defined vector relative degree of {2, 2} at x?.By direct calculations the jacobian,
∂T
∂x

:= dTx? is given by,

21

dTx? =

∂η1
∂x1

∂η1
∂x2

∂η1
∂x3

∂η1
∂x4

∂η2
∂x1

∂η2
∂x2

∂η2
∂x3

∂η2
∂x4

∂ξ1
∂x1

∂ξ2
∂x2

∂ξ1
∂x3

∂ξ1
∂x4

∂ξ2
∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ2
∂x4

=

∂η1
∂x1

∂η1
∂x2

0 0
∂η2
∂x1

∂η2
∂x2

∂η2
∂x3

∂η2
∂x4

2x1 2x2 0 0
∂ξ2
∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ2
∂x4

. (2.19)

where

∂η1
∂x1

= −
x2

x21 + x22
,

∂η1
∂x2

=
x1

x21 + x22
,

∂η2
∂x1

=
(v + x4)(−x

2
1 sin x3 + 2x1x2 cos x3 + x22 sin x3)

(x21 + x22)
2

,

∂η2
∂x2

= −
(v + x4)(x

2
1 cosx3 + 2x1x2 sin x3 − x22 cosx3)

(x21 + x22)
2

,

∂η2
∂x3

=
(v + x4)(x1 cos x3 + x2 sin x3)

x21 + x22
,

∂η2
∂x4

= −
x2 cosx3 − x1 sin x3

x21 + x22
,

∂ξ2
∂x1

= 2(v + x4) cosx3,

∂ξ2
∂x2

= 2(v + x4) sin x3,

∂ξ2
∂x3

= 2(v + x4)(x2 cosx3 − x1 sin x3),

∂ξ2
∂x4

= 2(x1 cosx3 + x2 sin x3).

The determinant of (2.19) is given by

det (D(x) = 4(v + x4). (2.20)

22

The determinant goes to zero only if x4 = −v for all x? ∈ Γ\{x ∈ R4 : x4 + v = 0}. By
Theorem 2.1.2 T is diffeomorphism onto its image.

Using the coordinate transformation T from Corollary 2.2.2, in a neighbourhood of any
point x? ∈ Γ the system (2.13) in (η, ξ) coordinates reads

η̇1 = η2

η̇2 = L2
fπ + Lg1Lfπu1 + Lg2Lfπu2

∣∣
x=T−1(η,ξ)

ξ̇1 = ξ2

ξ̇2 = L2
fα + Lg1Lfαu1 + Lg2Lfαu2

∣∣
x=T−1(η,ξ)

.

(2.21)

Similar to Section 2.1 ξ-subsystem is called transversal subsystem and the states ξ the
transversal states. We call the η-subsystem the tangential subsystem and states η the
tangential states.

Consider the regular feedback transformation
[
u1

u2

]
:= D−1(x)

([
−L2

fπ

−L2
fα

]
+

[
v‖

vt

])
, (2.22)

where (v‖, vt) ∈ R2 are auxiliary control inputs. By Lemma 2.2.1 this controller is well
defined in a neighbourhood of every x? ∈ Γ\{x ∈ R4 : x4+v = 0}. Thus in a neighbourhood
of x?, the closed-loop system becomes

η̇1 = η2

η̇2 = v‖

ξ̇1 = ξ2

ξ̇2 = vt.

(2.23)

We have effectively feedback linearized the extended system using an output that is physi-
cally meaningful for path following. The specifications PF1, PF2, and PF3 can be easily
expressed in terms of the state variables (η, ξ). Meeting these specifications is also simpli-
fied because both the transversal and tangential subsystems are LTI and controllable. The
virtual output (2.14) is an example of a differentially flat output. Note that for general
system there is no guarantee that this type of dynamic extension will yield a fully feedback
linearizable system.

Transversal and Tangential Controller Design

To exponentially stabilize ξ = 0 the controller (2.12) is used as presented in Section 2.1.
This controller makes the closed-loop system meet specifications PF1 and PF2. We have

23

not made a specific choice for PF3, but for the purposes of illustration, suppose we want
to track a velocity profile along the curve. A simple proportional controller is used in order
to achieve PF3

v‖(η) = k3(η2 − ηref2), (2.24)

k3 < 0. The parameter ηref2 is a desired reference velocity profile. The overall control
scheme is presented in Figure 2.6.

Tangential
Control

(2.24)
v‖

Transversal
Control

(2.12)

ηref2

vt

Feedback

Transformation

(2.22)

u

Kinematic Model

of Unicycle

(2.1)

x1

x3

Diffeomorphism
T (x)

(2.18)

ξ

η

x4∫

Extended model of Unicycle (2.13)

Figure 2.6: Dynamic Transverse Feedback Linearization of Unicycle robot (2.1) with equa-
tion references.

Simulation

Simulation results of the unicycle (2.13) with the feedback law (2.22), (2.12), (2.24) is
presented in Figure 2.7. For these simulations v = 1. In Figure 2.7(a) the unicycle follows
the desired circular path. The unicycle is initialized at x(0) = (0.8, 0.8, π

4
, 0) ∈ R4. The

robot converges to the path and then traverses the path with the desired speed and in the
desired direction. Figure 2.7(b) shows the ξ-states converging to zero. While the unicycle
traverses the path we make the unicycle follow the velocity profile given by

ηref2 =

{
−0.5 0 ≤ t < 10s

−1.5 t ≥ 10s.

Figure 2.7(c) shows the unicycle following the desired velocity profile. The path parameter
η1 is shown in Figure 2.7(d). As the curve is closed the path parameter is bounded.

24

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Unicycle Following circle with different initial conditions

x
1

x 2

(a) Unicycle following a circular path.

0 5 10 15 20
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

ξ
1
,ξ

2
 versus time

t(sec)

po
si

tio
n

on
 th

e
se

t Γ
*

ξ

1

ξ
2

(b) ξ-states converging to 0.

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

t(sec)

η 2

speed (η
2
) of unicycle along the curve with respect to time

(c) Unicycle following a desired velocity profile.

0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Position (η
1
) of unicycle along the curve with respect to time

t(sec)

η 1

(d) Path parameter.

Figure 2.7: Unicycle robot (2.13) following a circular path.

It is important to note that in this example we have assumed that both parametric
and implicit forms of the curves are available. In Chapter 5, we provide a procedure to
implicitize a given parametric curve. In this example it is also assumed that the given
curve is closed and parameterized by its arc length. In Chapter 3, we give a procedure to
deal with non closed and non unit-speed parameterized curves. The approach for solving
the path following problem can be summarized in the following steps,

Step 1 Fix the translational velocity of the mobile robot and use the steering input to find
the path following manifold Γ? using the lift of the path α(x).

Step 2 Perform dynamic extension of the given system such that the steering and velocity
inputs appear in the same derivative of α.

25

Step 3 If possible, feedback linearize the extended system. It is important to once again
point out that in general the η-subsystem will be nonlinear. In the example of the
unicycle, the system is differentially flat1 and the virtual output we used is a flat
output. A block diagram of the dynamically feedback linearized system is shown in
Figure 2.8.

Step 4 Design a transversal feedback controller vt(ξ) stabilizing the origin of the transversal
subsystem. Stabilizing the transversal subsystem is equivalent to stabilizing the path
following manifold Γ?. This corresponds to forcing the output of the system to the
path.

Step 5 Design a tangential feedback controller v‖(η, ξ) such that, when ξ = 0, the tangential
subsystem meets the goal PF3.

Transversal System Tangential System

vt ξ̇ = Aξ +Bu1 η̇ = A‖η +B‖v‖

ξ

η

v‖

Figure 2.8: Block diagram of Feedback Linearization

2.3 Comparison to Other Control Techniques

In this section we compare the path following technique described earlier in this chapter
to a few other existing trajectory tracking and path following techniques.

2.3.1 Trajectory Tracking Controller

One of the common techniques used in the literate to execute a desired motion is to follow
a trajectory defined in the output space of the mobile robot. We present an example based
on the work presented by the authors in [7]. Consider the kinematic model of the unicycle

1Flat systems are discussed further in subsequent chapters. For further details readers are referred
to [21], [22].

26

type robot (2.1) represented using slightly different notation just for ease of explaining the
tracking procedure

ẋ(t) = v(t) cos θ(t),

ẏ(t) = v(t) sin θ(t),

θ̇ = ω(t).

(2.25)

Here x and y denote the robot’s position and θ represents the orientation of the unicycle.
The translational and rotational velocities of the unicycle are represented by v and ω
respectively. The control objective in this tracking example is to track a time-varying
reference trajectory specified by [xr(t) yr(t) θr(t)]

>. The reference position (xr(t), yr(t))
satisfies the dynamics,

ẋr(t) = vr(t) cos θr(t),

ẏr(t) = vr(t) sin θr(t).
(2.26)

The reference orientation θr(t), translational velocity vr(t),and rotational velocity ωr(t) are
defined in terms of the velocities ẋr(t), ẏr(t) and accelerations ẍr(t), ÿr(t) as follows [7]

θr(t) = tan−1

(
ẏr(t)

ẋr(t)

)
,

vr(t) =
√
ẋ2r(t) + ẏ2r(t),

ωr(t) =
ẋr(t)ÿr(t)− ẍr(t)ẏr(t)

ẋ2r(t) + ẏ2r(t)
.

(2.27)

A common way to solve a trajectory tracking problem is to first define error coordinates.
The rotated version of the tracking error as defined in [7] is given by

xe(t)

ye(t)

θe(t)

 =

cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1

xr(t)− x(t)

yr(t)− y(t)

θr(t)− θ(t)

 . (2.28)

The tracking error dynamics can be derived using (2.25), (2.26) and (2.27),

ẋe(t) = ω(t)ye(t) + vr(t) cos θe(t)− v(t),

ẏe(t) = −ω(t)xe(t) + vr(t) sin θe(t),

θ̇e(t) = ωr(t)− ω(t).

(2.29)

The trajectory tracking controller proposed in [30] is given by

v̇(t) = vr(t) + c2xe(t)− c3ωr(t)ye(t),

ω̇(t) = ωr(t) + c1 sin θe(t).
(2.30)

27

Interested readers are referred to [30] for further details and the proof of exponential
stability of the origin of the error system (2.29).

We now compare the results of the above mentioned trajectory tracking controller (2.30)
with our path following controller (2.22), (2.12) and (2.24). See Figure 2.9.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

Unicycle following circular trajectory

(a) Unicycle tracking a circular trajectory.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Unicycle Following circle with different initial conditions

x
1

x 2

(b) Unicycle Following a circular path.

0 10 20 30 40 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

time(sec)

E
rr

or

Error Comparison

Tracking Error
PF Error

(c) Comparison between path following error and
tracking error.

15 20 25 30 35 40 45 50
−5

0

5

10
x 10

−3

time(sec)

E
rr

or

Error Comparison

Tracking Error
PF Error

(d) Zoomed in comparison between path following
error and tracking error.

Figure 2.9: Comparison between path following and trajectory tracking.

Figure 2.9(a) shows the unicycle tracking a circular trajectory (xr(t), yr(t)) = (cos(t), sin(t)).
The unicycle is initialized at x(0) = 0, y(0) = 1.2. As shown in Figure 2.9(a), the unicycle
converges to the trajectory and tries to track the trajectory. Note that while tracking the
trajectory there is some error. This is because the unicycle tries to follow a virtual target
that moves along the trajectory. The virtual target (xr(t), yr(t)) is parameterized by time
and the controller forces the unicycle to reach to the virtual target. If the target moves
too fast the unicycle may leave the trajectory.

28

In Figure 2.9(b) we apply the path follwing controller (2.22), (2.12) and (2.24) to
the unicycle and the circular path γ = {(x1, x2) : x21 − x22 − 1 = 0}. The path is not
parameterized by time. This means there is no requirement to achieve a desired position
along that path at a desired time. The primary objective is to follow the desired path.
Moreover, our proposed path following controller guarantees the invariance of path. That
means once the robot is on the path it will remain on the path for all future time. In
Figure 2.9(c) a comparison between path following error and tracking error is shown.
These errors are point to set distance. The tracking error is shown with the solid line,
while the path following error is shown with the dotted line. Clearly path following error is
less than the trajectory tracking error. It is interesting to observe in Figure 2.9(d), which
is the zoomed in view of the graph shown at the left, that the path following controller
allows the robot to traverse through the path with zero steady state error, this is not the
case for the trajectory tracking case. Note that the tracking error could likely be improved
by adding integral action to the tracking control law.

2.3.2 Path Following Using Sliding Mode Control Theory

In this example we compare our path following controller to another path following con-
troller proposed by the authors [17] using sliding mode control theory. Consider again the
kinematic model of unicycle (2.1). The state x3 represents the orientation θ of the unicy-
cle. In [17] a simple sliding mode controller is designed by identifying a sliding manifold.
Since θ̇ = ω a simple sliding mode controller without first or higher order dynamics can
be designed, as a result the following sliding manifold is designed in order to make the
orientation angle of the mobile robot converge to the desired orientation angle

S = {(x1, x2, θ) ∈ R
3 : sθ = θ − θref = 0}, (2.31)

where, θref = θref(x1, x2).

If sθṡθ < 0, then the set (2.31) becomes attractive and the desired dynamics are
achieved.

ṡθ = θ̇ − θ̇ref .

Since the steering control input ω appears in θ̇, we can assign the sθ dynamics however
we want and in particular we can stabilize the sliding surface sθ = 0. As is customary in
sliding mode, we stabilize sθ = 0 in finite-time using the control law

ω = −Msgn(sθ).

With this controller we can stabilize the sliding surface S

ṡθ = −Msgn(sθ)− θ̇ref (2.32)

29

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

x
1

x 2

Unicycle following a sinusoid

(a) Path following by sliding mode controller.

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1
Unicycle Following a sinusoid

x
1

x 2

(b) Path following by transverse Feedback lin-
earization.

0 10 20 30 40 50
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time(sec)

E
rr

or

Error Comparison

(c) Error comparison.

27.6 27.8 28 28.2 28.4 28.6 28.8 29 29.2

−1.05

−1

−0.95

−0.9

−0.85

x
1

x 2

Unicycle Following a sinusoid

(d) Zoomed in comparison of path following errors.

Figure 2.10: Comparison of path following controller designed using sliding mode control
theory and the one proposed in this thesis.

and if M dominates θ̇ref , i.e., M > |θ̇ref |, then sθṡθ < 0 is satisfied and sθ reaches zero in
a finite amount of time.

In Figure 2.10 we present the results of path following of a unicycle robot following
a sinusoidal curve. The sliding mode controller is implemented for comparison purposes
based on the work presented by the authors in [17]. In Figure 2.10(a) unicycle is following
a sinusoidal curve. The initial position of the unicycle is represented as a solid dot in
the figure. The desired curve is represented as a dotted line while the traversed path is
represented by a solid line in Figure 2.10(a) and Figure 2.10(b) for sliding mode controller
and the controller proposed in Section 2.1. In both cases unicycle is initialized at the same
point. In Figure 2.10(c) path following error is compared. The solid line represent path

30

following error of sliding mode control, while the dotted line represent path following error
of our proposed controller. Clearly, the proposed controller has better error performance,
this is because the proposed controller makes the desired path invariant and results in
perfect path following. However, using sliding mode controller perfect path following is
not possible. Figure 2.10(d) gives a zoomed in view of a part of the curve followed using
sliding mode controller and the controller designed earlier in this chapter. One of the
reasons for the comparatively large path following error is that the sliding mode controller
is discontinues. This results in chattering that may result in comparatively larger path
following errors.

31

Chapter 3

Path Following Controllers: Car-like

Robot

In Chapter 2, a path following controller was reviewed based on the work done by au-
thors [42] for a single input kinematic model of unicycle. In Section 2.2, the kinematic
model of the two input unicycle was considered and a dynamic controller was designed for
a circular path to make the unicycle follow the unit circle with the desired speed. In the
last chapter, the procedure given was not for general curves. Moreover, the discussion on
dynamic extension of the unicycle was intuitive, because the model was relatively simple.
In this chapter, we provide a procedure to deal with a large class of general curves and we
work with a more complicated model of a mobile robot, the car-like robot. Specifically,
in this chapter a path following controller for the two input kinematic model of a car-like
robot is presented. A dynamic feedback control law is designed to make the position of
the car to follow a large class of curves with the desired speed in the desired direction.
The controller is designed by characterizing the path following manifold when one of the
inputs is fixed. Once the path following manifold is found we apply dynamic extension to
increase its dimension. We refer to this process as tangential dynamic extension. We then
find a physically meaningful differentially flat output for the extended system which allows
us to easily solve the path following problem.

32

3.1 Model of a Car-like Robot

Consider the kinematic model of a car-like robot, Figure 3.1,

ẋ =

cosx3 0

sin x3 0
1
`
tanx4 0

0 1

[
v

ω

]
(3.1)

where x ∈ R
4 is the state, the input v ∈ R is the translational speed and ω ∈ R is the

angular velocity of the steering angle. We take the car’s position in the plane as the output
of (3.1)

y = h(x) =
[
x1 x2

]>
. (3.2)

Suppose we are given a regular parameterized path (1.5) satisfying Assumptions 1 and 2.

x2

x1

`

x4

x3

Figure 3.1: The kinematic model of the car-like robot.

As discussed in Chapter 1, Assumption 2 means that the entire path can be represented as
the zero level set of the function s in the output space of system (3.1). As Assumption 1
holds this is always possible, at least locally. Since the output (3.2) satisfies rank (dhx) = 2
for all x ∈ R4, the map h : R4 → R2 is transversal [23] to γ and therefore, if Assumption 1
holds, the lift of γ to R

4

Γ := (s ◦ h)−1 (0) =
{
x ∈ R

4 : s(h(x)) = 0
}

is a three dimensional submanifold. Define α(x) := s ◦ h(x).

33

Given a curve σ(D) satisfying Assumptions 1 and 2, we seek a smooth control law of
the form

ζ̇ = a(x, ζ) + b(x, ζ)u
[
v

ω

]
= c(x, ζ) + d(x, ζ)u.

(3.3)

with ζ ∈ R
q and u = (u1, u2) ∈ R

2 and an open subset of initial conditions U×V ⊂ R
4×R

q

such that γ ⊂ h(U) and such that the closed-loop system satisfies PF1, PF2 and PF3.
The dimension q of the controller state ζ is not fixed a priori. It will be determined based
on analysis of the path following manifold which we discuss in the next section.

3.2 Dynamic Extension

The path following manifold, denoted Γ?, associated with the curve γ is the maximal
controlled invariant subset of the lift Γ. Physically it consists of all those motions of the
car-like robot (3.1) for which the output signal (3.2) can be made to remain on the curve
γ by suitable choice of control signal [42]. The path following manifold is the key object
that allows one to treat the path following problem as a set stabilization problem. If the
path following manifold can be made attractive and controlled invariant, then PF1 and
PF2 will be satisfied.

When we apply the above definition to the car-like robot, or more generally to any
drift-less system, it is immediate that Γ? = Γ. This is because one can trivially make the
entire set Γ controlled invariant by setting the translational speed v to zero. Specifically,
in the case of the car, the equation

(∂x1
α cosx3 + ∂x2

α sin x3) v = 0

can always be solved by choosing v = 0. Where, ∂x1
α and ∂x2

α represent partial derivatives
of α with respect to x1 and x2 respectively. From the point of view of mobile robots, this
is not a useful characterization because such a controller causes the system to stop and
hence not traverse the curve.

On the other hand, when v 6= 0 is fixed, the path following manifold can be character-
ized [43] using the steering input ω. In fact, in [43], it was shown that for the system (3.1)
with v fixed, the function α = s ◦ h yields a well defined relative degree of 3 at each point
on the path. This fact was used to apply transverse feedback linearization to stabilize
the path following manifold and thereby solve the path following problem. As discussed
in Chapter 2, the main deficiency with the solution presented in [43] is that PF3 cannot
be satisfied. In particular, since v is fixed, the motion on the path is fixed. Similar to
Section 2.2, we provide a solution that removes this deficiency for the car-like robot.

34

The reason that the solution presented in Section 2.1 exhibits the above deficiency is
because the path following manifold Γ? is one dimensional, i.e., a curve in the state space
of (3.1). Since motion on Γ? corresponds to motion along the path in the output space,
when Γ? is one dimensional, and v is fixed, there are no degrees of freedom to alter the
motion along the path. Here we use dynamic extension to increase the dimension of the
path following manifold in order to control the motion along the path.

Consider once again the model of a car like robot (3.1). The control objective is to
make the output y approach and traverse the curve γ. Making y → γ is equivalent to
making the state x of (3.1) approach the set Γ. Let v = v > 0 be fixed. In [43] it was
shown that for system (3.1), a path satisfying Assumptions 1 and 2, the path following
manifold is given by

Γ? =

{
x ∈ R

4 : x =

(
σ(λ), ϕ(λ), arctan

(
`

v
ϕ̇(λ)

))
, λ ∈ D

}
(3.4)

where ϕ(λ) = arg (σ′
1 + jσ′

2) is the angle σ′(λ) makes with the y1 axis. Another way to
characterize the largest controlled invariant set Γ? ⊂ Γ is to take the function α = s ◦ h as
the output of system (3.1) and check that this function yields a well defined relative degree
of three.

Let n? := dim (Γ?). In this case n? = 1 and its co-dimension is n − n? = 3. Let
r? = 1 denote the derivative of α at which the control input v appears. We use dynamic
extension to generate a controller of the form (3.3) and thereby increase the dimension of
the closed-loop system so that the dimension and co-dimension of Γ? are equal. In other
words, we delay the appearance of the input v in the derivatives of α so that ω and the
delayed version of v appear in the same derivative. This effectively increases the dimension
of the path following manifold; we call this approach tangential dynamic extension. This
goal can be achieved if we increase the dimension of Γ? by two which suggest we pick
q = n− n? − r? = 2 in (3.3) so that the control law has two states ζ = (ζ1, ζ2).

Let v = v+ ζ1, where ζ1 is the first state of our dynamics controller. In general [29] we
are free to choose any dynamics for ζ̇1 but we take the simplest possible structure for the
control law (3.3) and let ζ̇1 = ζ2. In order to finish defining the control law we let ζ̇2 = u1
where u1 is a new, auxiliary input that we will use to indirectly change the translational
velocity v. The structure of the control law so far is

ζ̇1 = ζ2

ζ̇2 = u1

v = v + ζ1

ω = u2.

(3.5)

35

For the extended system the path following manifold is given by

Γ? =

{
(x, ζ) ∈ R

4 × R
2 : x =

(
σ(λ), ϕ(λ), arctan

(
`

v
ϕ̇(λ)

))
, λ ∈ D

}

To simplify notation we will no longer distinguish between states of the system (x1, x2, x3, x4)
and states of the controller (ζ1, ζ2). Let x5 := ζ1, x6 := ζ2. Therefore the system we study
is given by

ẋ = f(x) + g1(x)u1 + g2(x)u2

=

(v + x5) cosx3

(v + x5) sin x3
(v+x5)

`
tanx4

0

x6

0

+

0

0

0

0

0

1

u1 +

0

0

0

1

0

0

u2
(3.6)

Our objective is to now design the control law u = (u1, u2) to solve the the path following
problem. Stabilizing the path following manifold in extended coordinates remains the key
way to accomplish PF1 and PF2. As observed in Section 2.2 that since v is not fixed and
because the path following manifold has dimension three, we expect to able to control the
motion along the path in order to satisfy PF3.

3.3 Path Following Control Design

We treat path following problem as a set stabilization problem and we follow the general
approach of [42] for designing path following controllers, see also [26]. In order to satisfy
PF1 and PF2, we first stabilize the path following manifold Γ?. Once the path following
manifold has been stabilized we use any remaining freedom in the control law to impose
desired dynamics on the path.

We find a particular “virtual” output function for the system (3.6) and show that it
yields a well defined relative degree. The benefit of using this physically meaningful output
is that it facilitates control design. In this case the output yields a well defined relative
degree of {3, 3} and hence system (3.6) is feedback linearizable.

Before implementing the above program we must introduce a projection operator in
the output space of the car. This operator associates to each point y in the output space
of (3.1) sufficiently close to the path γ a number in D. Let γε ⊂ R2 denote a tubular
neighbourhood of the curve γ. The tubular neighbourhood has the property that if y ∈ γε

36

then there exists a y? ∈ γ that is closest to y. The tubular neighbourhood allows us to
define the function

$:γε → D

y 7→ arg inf
λ∈D

‖y − σ(λ)‖.
(3.7)

It can be shown in Figure 3.2. This function is as smooth as σ which we assume to be at

h(x)

σ(λ)

π(x)

Figure 3.2: Argument that minimizes the distance from the curve.

least C3. Using the above map we define the “virtual” output function

ŷ =

[
π(x)

α(x)

]
=

[
$ ◦ h(x)

s ◦ h(x)

]
. (3.8)

We now show that as long as the car does not have zero translational speed, then this
output yields a well defined relative degree along the path.

Lemma 3.3.1. The dynamic extension of the car-like robot (3.6) with output (3.8) yields
a well defined vector relative degree of {3, 3} at each point on Γ? where x5 = ζ1 6= −v.

Proof. Let x? ∈ Γ be arbitrary. By definition of Γ the output h(x?) is on the path γ. Let
λ? ∈ D be such that h(x?) = σ(λ?). By the definition of vector relative degree we must
show that

Lg1L
i
fπ(x) = Lg2L

i
fπ(x) = Lg1L

i
fα(x) = Lg2L

i
fα(x) = 0

for i ∈ {0, 1} in a neighbourhood of x? and that the decoupling matrix

D(x?) =

[
Lg1L

2
fπ(x

?) Lg2L
2
fπ(x

?)

Lg1L
2
fα(x

?) Lg2L
2
fα(x

?)

]
(3.9)

is nonsingular. Since
∂π(x)

∂xi
=
∂α(x)

∂xi
≡ 0

for i ∈ {3, 4, 5, 6}, it is easy to check that LgjL
i
fπ(x) = LgjL

i
fα(x) = 0 for i ∈ {0, 1},

j ∈ {1, 2}.

37

To show that the decoupling matrix is full rank, it suffices to show that the determinant
of D(x?) is not zero. Direct calculations yield

Lg1L
2
fα = (v+x5)2

`
(∂x2

α cos x3 − ∂x1
α sin x3) sec

2 x4

Lg2L
2
fα = ∂x1

α cosx3 + ∂x2
α sin x3

Lg1L
2
fπ =

(v + x5)
2

`
(1 + tan2 x4)(σ

′
2 cos x3 − σ′

1 sin x3)

Lg2L
2
fπ = σ′

1 cosx3 + σ′
2 sin x3

(3.10)

where σ′
i =

∂σi

∂λ

∣∣
λ=λ? , i ∈ {1, 2}. Hence

det (D(x)) =
(v + x5)

2

` cos2 x4
[σ′

1∂x2
α− σ′

2∂x1
α] . (3.11)

The only way for this determinant to vanish is if either (i) v = −x5 or (ii) σ
′
1∂x2

α−σ′
2∂x1

α =
0. We argue that condition (ii) never occurs on the path because the vectors col(∂x1

α, ∂x2
α)

and σ′ are orthogonal.

x1

x2

Rπ
2
ds>h(x?)

σ′(λ?)

x3

Figure 3.3: Representation of vector σ′(λ?) orthogonal to Rπ
2
ds>h(x?).

By the chain rule and the form of the output map (3.2)

[
∂x1

α

∂x2
α

]

x=x?

=

[
∂y1s

∂y2s

]

y=h(x?)

= ds>h(x?).

By Assumption 2 the differential dsy is non zero when y ∈ γ. Thus the vector ds>h(x?) is

a non zero gradient vector and is orthogonal to the path at h(x?). On the other hand
the vector σ′(λ?) is non zero because σ is regular and also tangent to the curve. Hence

38

dsh(x?)σ
′(λ?) = 0. If we rotate the vector ds>h(x?) by π/2 radians then the rotated vector

and σ′ will be linearly dependent. Let Rπ
2
be a rotation by π/2. Then

Rπ
2
ds>h(x?) = k(σ(λ?))σ′(λ?)

for some smooth, scalar valued, non zero function k : R2 → R. The function k is never
equal to zero because the vector ds>h(x?) is never zero.

Returning to the expression for det (D(x)), we have that

σ′
1∂x2

α− σ′
2∂x1

α =
(
Rπ

2
ds>h(x?)

)>
σ′(λ?)

= (k(σ(λ?))σ′(λ?))
>
σ′(λ?)

= k(σ(λ?))‖σ′(λ?)‖2

= k(σ(λ?).

We have shown for any x? ∈ Γ with x5 6= −v that det (D(x?)) 6= 0. Since Γ? ⊂ Γ, the
lemma is proved.

An immediate consequence of Lemma 3.3.1 is that it allows us to define a local diffeo-
morphism using the function π(x) and α(x) and their iterated Lie derivatives along the
vector field f(x).

Corollary 3.3.2. Let x? ∈ Γ\{x ∈ R
6 : x5+v = 0}. There exists a neighbourhood U ⊂ R

6

containing x? such that the mapping T : U ⊂ R6 → T (U) ⊂ R6, defined by

η1

η2

η3

ξ1

ξ2

ξ3

= T (x) =

π(x)

Lfπ(x)

L2
fπ(x)

α(x)

Lfα(x)

L2
fα(x)

(3.12)

is a diffeomorphism onto its image.

Proof. Let x? ∈ Γ\{x ∈ R6 : x5 + v = 0}. By Lemma 3.3.1 system (3.6) with output (3.8)
yields a well defined vector relative degree of {3, 3} at x?. By[29, Lemma 5.2.1] the row
vectors

dα(x?), dLfα(x
?), dL2

fα(x
?)

dπ(x?), dLfπ(x
?), dL2

fπ(x
?)

(3.13)

are linearly independent. These are the rows of the Jacobian matrix dTx? which implies
that dTx? is nonsingular. By the inverse function theorem 2.1.2, T is a diffeomorphism
onto its image.

39

Using the coordinate transformation T from Corollary 3.3.2, in a neighbourhood of any
point x? ∈ Γ, the system (3.6) in (η, ξ) coordinates reads

η̇1 = η2

η̇2 = η3

η̇3 = L3
fπ + Lg1L

2
fπu1 + Lg2L

2
fπu2

∣∣
x=T−1(η,ξ)

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = L3
fα + Lg1L

2
fαu1 + Lg2L

2
fαu2

∣∣
x=T−1(η,ξ)

(3.14)

The structure of the system in the new coordinates is similar to the structure of unicycle
in the transformed coordinates formulated in Section 2.2. Similarly, stabilizing ξ = 0 cause
α(x), α̇(x) and α̈(x) to converge to zero. This is equivalent to getting the car on the desired
path with heading velocity tangent to the path. On the path following manifold the motion
of the car-like robot on the path is governed by the η-dynamics. When the robot is on the
path following manifold, i.e., ξ = 0 then η1 determines the position of the robot on the
path, η2 represent velocity of the robot along the path and η3 represent acceleration of the
robot along the path.

Consider the regular feedback transformation similar to 2.22,

[
u1

u2

]
:= D−1(x)

([
−L3

fπ

−L3
fα

]
+

[
v‖

vt

]
,

)
(3.15)

where (v‖, vt) ∈ R2 are auxiliary control inputs. By Lemma 3.3.1, this controller is well
defined in a neighbourhood of every x? ∈ Γ\{x ∈ R6 : x5+v = 0}. Thus in a neighbourhood
of x?, the closed-loop system becomes

η̇1 = η2

η̇2 = η3

η̇3 = v‖

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = vt

(3.16)

Where vt and v‖ are the transversal and tangential input. The control law (3.15) has
decoupled the transversal and tangential subsystems which makes designing (v‖, vt) to
solve the path following problem particularly easy. In summary, dynamic extension and

40

transverse feedback linearization allows us to represent the system as a linear time-invariant
system (LTI) and use LTI controller design techniques to design the controller for system
(3.16). Another way to state this is to say that the output (3.8) is a differentially flat
output for the car-like robot (3.1) [59, 37]. However, in our case we choose a geometrically
meaningful output function. This gives us the physical intuition of the system and the
path. In Chapter 4 we show that this procedure cannot always be applied in a straight
forward manner to every differentially flat mobile robot.

3.3.1 Transversal and Tangential Controller Design

For the transversal subsystem, we use the controller similar to the one we used for the case
of unicycle in chapter 2,

vt(ξ) = k1ξ1 + k2ξ2 + k3ξ3, (3.17)

with ki < 0, i ∈ {1, 2, 3}. It is easy to observe that the controller (3.17) exponentially
stabilizes the LTI transversal subsystem and forces all the ξ-states go to zero. Physically,
since ξ = 0 is an equilibrium of the closed-loop transversal subsystem, if the robot is
initialized on the path with the initial velocity tangent to the path, then it will remain on
the path for all future time. Hence, the property of path invariance is achieved.

In order to achieve the goal of controlling the speed of the robot on the curve, we use
a controller similar to (2.24) used in the last chapter,

v‖(η) = k4(η1 − ηref1) + k5(η2 − ηref2) + k6η3, (3.18)

where ki < 0, i ∈ {4, 5, 6}. The parameter ηref1 is the desired reference position on the
path and ηref2 is a desired reference velocity profile. Note however that whenever x5 = −v,
the robot has no translational velocity. In that case, the decoupling matrix loses rank and
the control law (3.15) is not well defined. Hence, we cannot stabilize a particular point on
the curve using this control law and henceforth we set k4 = 0. The overall control scheme
is presented in Figure 3.4.

3.4 Implementation Issues

In order to implement the controller described in Section 3.3, we must compute the coordi-
nate transformation (x1, x2, x3, x4, x5, x6) 7→ (ξ1, ξ2, ξ3, η1, η2, η3) defined in (3.12), the feed-
back (3.15) with D(x) defined in (3.9) and the transversal and tangential controllers (3.17),
(3.18).

41

Tangential
Control

(3.18)
v‖

Transversal
Control

(3.17)

ηref2

vt

Feedback

Transformation

(3.15)

u

Kinematic model

of Car-like robot

(3.1)

x1

Diffeomorphism
T (x)

(3.12)

ξ

η

x4 x5 x6∫∫

Extended model of Car-like robot (3.6)

Figure 3.4: Feedback control system of car-like robot with equation references.

3.4.1 Computation of Transversal States

We assume1 that we have a zero level set representation of the curve γ. Hence we know
the function α(x) = s ◦ h(x) and therefore ξ1, ξ2 and ξ3 can be computed symbolically.
Similarly the terms L3

fα, Lg1L
2
fα and Lg2L

2
fα can be computed easily to at least partially

define the feedback (3.15).

3.4.2 Computation of Tangential States

The states η1, η2 and η3 are slightly more complicated to compute. We have assumed,
without loss of generality, that the given parameterized curve is unit-speed. The utility
of the tangential controller is very much related to the unit-speed parameterization of the
curve σ. For if σ is not a unit-speed curve then it is difficult to give physical intuition to
the parameter ηref2 in (3.18). In particular, if σ is not unit-speed, then setting ηref2 to a
constant value will not lead to uniform speed along the path and may cause the velocity
of the vehicle to grow and become unbounded.

Example 3.4.1. Suppose a regular curve is given in parametric form σ : R → R2,
λ 7→ col (λ4 − λ+ 1, λ3 + λ+ 1). This curve has implicit representation γ = s−1(0) with

s(y) = −y42 + y31 + 7y32 + 4y1y
2
2 − 5y21 − 22y22 − 13y1y2 + 18y1 + 34y2 − 23.

It can be shown that Lemma 3.3.1 and Corollary 3.3.2 hold even though σ is not unit-
speed. Now suppose that we put the system into the form (3.16) and apply the control

1In Chapter 5 we give a procedure to obtain a zero level representation of a given parameterized curve.

42

laws (3.17), (3.18). If we set ηref2 = k for some constant k 6= 0, then the velocity of the car
becomes unbounded as the vehicle moves along the path. This is because, for points on the
curve far away from σ(0) = (1, 1), small changes in the parameter λ result in very large
changes in position along the path. A controller that maintains a constant η2 will cause
η1, the path parameter, to track a ramp and will require the translational velocity x5 + v
to become unbounded. Thus, while theoretically a non unit-speed parameterized curve poses
no obstacle, a unit-speed curve greatly simplifies tangential controller design.

In general a regular parameterized curve is not given with unit-speed parameterization
and finding a closed form expression for the unit-speed parameterization may be difficult or
even impossible. Let σ̃ : R → R

2 be the given Cr, r ≥ 3 curve that satisfies assumptions 1
and 2. We do not assume that σ̃ has unit-speed parameterization. If σ̃ models a closed
curve then for some T > 0 it is true that for all λ ∈ R σ̃(λ + T) = σ̃(λ), i.e., the curve is
T periodic.

Let V ⊆ R2 be a neighbourhood of R2 such that V ∩ γ contains a single connected
component of γ. Since γ is a one dimensional manifold, such a V exists. If γ is a closed
curve then we can take V such that γ ⊂ V .

If γ is a non closed curve let I := (λs, λe) ⊂ R be an interval of the real line such that
γ ∩ V = σ̃ (I). Since we can always reparameterize σ̃, without loss of generality we let
λs = 0. If γ is closed we take I = [0, T). Let L denote the length of the portion of the
curve in V . Now introduce a projection operator,

λ? = $̃(y) = arg inf
λ∈I

‖y − σ̃(λ)‖ (3.19)

defined in γε. To calculate the first tangential state we must find the unit length parameter
so we let

η1 = g(λ?) :=

∫ λ?

0

∥∥∥∥
dσ

dλ

∥∥∥∥ du (3.20)

so that η1 = g ◦ $̃ ◦ h(x). To calculate η2 we note

η2 =
∂(g ◦ $̃ ◦ h)

∂x

dx

dt

=

(
∂g

∂λ

)∣∣∣∣
λ=λ?

(
∂$̃

∂y

)∣∣∣∣
y=h(x)

[
(v + x5) cos (x3)

(v + x5) sin (x3)

]
.

Simple geometric arguments, similar to those used in the proof of Lemma 3.3.1, show that
∂$̃
∂y

∣∣∣
y
is given by

∂$̃

∂y
=

(σ′(λ?))>

‖σ′(λ?)‖2
.

43

Differentiating (3.20) one obtains

∂g

∂λ

∣∣∣∣
λ=λ?

= ‖σ′(λ?)‖

and so

η2 =
(σ′(λ?))>

‖σ′(λ?)‖

[
(v + x5) cos (x3)

(v + x5) sin (x3)

]
. (3.21)

To simplify notation let

∆(x) :=
(σ′(λ?))>

‖σ′(λ?)‖
, Ω :=

[
(v + x5) cos (x3)

(v + x5) sin (x3)

]
.

To find η3 we differentiate (3.21), η̇2 = ∆̇Ω + ∆Ω̇. The term Ω̇ is easy to compute using
the system dynamics (3.6).

Ω̇ =
∂Ω

∂x
ẋ = LfΩ =

[
− (v+x5)2

`
sin (x3) tan (x4)

(v+x5)2

`
cos (x3) tan (x4)

]
(3.22)

The term ∆̇ = ∆′λ̇ can be found by noting that

∆′ :=
∂∆

∂λ
=

(σ′′)> ‖σ′‖2 − (σ′)>
∑2

i=1 σ
′
iσi

‖σ′‖3
(3.23)

and, using (3.20) and the chain rule,

λ̇ =
1

‖σ′‖2
η2. (3.24)

This shows that the tangential state η3 can be computed effectively using (3.4.2), (3.23), (3.24),
Ω and Ω̇. Finally, in order to implement the feedback transformation (3.15) we must find
expressions for L3

fπ and the first row of the decoupling matrix (3.9). The entries of the
decoupling matrix are given by (3.10). Taking the time derivatives of η3, tedious, yet easy,
calculations give

η̇3 = ∆′Ω̇
η2
‖σ′‖

+
η̇2
‖σ′‖

∆′Ω+
η2
‖σ′‖

d∆′

dt
Ω + η2∆

′Ω

∑2
i=1 σ

′
iσ

′′
i

‖σ′‖3
λ̇+ ∆̇Ω̇ + ∆Ω̈,

where
d∆′

dt
= ∆′′λ̇ = ∆′′ η2

‖σ′‖
,

44

and

∆′′ =
1

‖σ′‖6

[
‖σ′‖3

{
(σ′′′)

>
‖σ′‖+ (σ′′)

>

(
2∑

i=1

σ′
iσ

′′
i

)
− (σ′)

>
2∑

i=1

(
σ′′2
i + σ′

iσ
′′′
i

)
}]

−
3

‖σ′‖6

[
‖σ′‖2

(
2∑

i=1

σ′
iσ

′′
i

){
(σ′′)

>
‖σ′‖ − (σ′)

>

(
2∑

i=1

σ′
iσ

′′
i

)}]
,

Ω̈ is given by
Ω̈ := Ω1 + Ω2

where

Ω1 :=

[
−1

l
sin x3(1 + tan2 x4)(v + x5)

2u1 + cosx3u2
1
l
cosx3(1 + tan2 x4)(v + x5)

2u1 + sin x3u2

]

and,

Ω2 :=

[
−ẋ3

1
l
cosx3 tanx4(v + x5)

2 − ẋ3x6 sin x3

−ẋ3
1
l
sin x3 tanx4(v + x5)

2 − ẋ3x6 cos x3

]
+

[
−2ẋ5

1
l
sin x3 tan x4(v + x5)

2ẋ5
1
l
cosx3 tanx4(v + x5)

]
.

L3
fπ =

η2
‖σ′‖

(
∆′Ω̇ + ∆′Ω +

d∆′

dt
Ω +

η2
∑2

i=1 σ
′
iσi

‖σ′‖3
∆′Ω

)

+ ∆̇Ω̇ + ∆Ω2.

(3.25)

Implementation of controller and the regular feedback (3.15) is summarized by Algorithm 1.

3.4.3 Experimental Implementation

In this thesis, the proposed controller was not tested on a real robot. In Section 3.5, we
show that the controller works in simulation. In order to implement this controller on an
experimental setup, full state feedback is needed. In the case of an indoor car-like robot,
the position (x1, x2) of the robot can be determined using a camera placed on the ceiling.
A marker can be placed on the top of the robot and the orientation x3 of the robot can
be determined with the help of the image. The camera will then feed the image data to
a computer that will send the localization data to the mobile robot. The steering angle
x4 can be determined by adding a potentiometer or optical encoder at the steering wheel.
Theses sensors directly give the angle of the steering wheel. Once we determine position,
orientation and steering angle we have all the states of the system. Due to unmodeled

45

input : σ(λ) : R → R2

σ(D) = {y ∈ R : s(y) = 0}
System model (3.6)
Current state x ∈ R6

output: (u1, u2)

for each do
Using (3.19) numerically calculate λ?.
Calculate σ′(λ?), σ′′(λ?), σ′′′(λ?), ‖σ′(λ?)‖.
Numerically calculate η1 using (3.20).
Calculate η2 using (3.21).
Calculate η3 using (3.4.2), (3.23), (3.24), Ω and Ω̇. Calculate L3

fπ using
expression (3.25).
Calculate ξ1, ξ2, ξ3, L

3
fα.

Compute decoupling matrix D(x) using (3.10) Compute (u1u2) given
by (3.15), (3.17), (3.18) using the above expressions.

end

Algorithm 1: Control Algorithm

parameters like friction of tires and error in accurate estimation of robot position and
orientation we may expect some discrepancies between experimental and simulated results.
It is important to note that since high gains were used to stabilize the ξ-states, in practice
it could saturate motor voltages. That means, practically we cannot make the convergence
to the desired path too fast. Placing the camera on the ceiling is quite restrictive, this
approach cannot be used for outdoor path following purposes. Moreover, for indoor path
following the path cannot be followed beyond the field of view of the robot. To estimate
the position of the car-like robot, a GPS can be used. However, there are limitation on the
accuracy of the GPS. There are methods available in the literature where GPS is used in
conjunction with inertial navigation system (consisting of gyroscopes and accelerometers)
to get better estimation of position. Another approach could be to install the camera at
the top of the robot. In this case, the estimation of robot position and orientation would be
difficult. There are techniques available in the literature for indoor and outdoor navigation,
like simultaneous localization and mapping.

3.5 Simulation Results

In this section, simulation results of a car-like robot following curves are presented.

46

3.5.1 Simulation I

We simulate the car-like robot (3.1) with dynamic controller (3.5) and feedback law (3.15), (3.17),
(3.18) where (η,ξ) are defined in (3.12). The controller in these simulations is implemented
using Algorithm 1. Consider the curve σ : R → R2, λ 7→ col(λ, cos (λ)) with implicit
representation γ = {y ∈ R2 : s(y) = y2 − cos (y1) = 0}. It is important to note that along
with PF1 and PF2, PF3 is also satisfied in these path following simulations. We desire
to track the velocity profile along the curve given by

ηref2 =

{
−0.5 0 ≤ t < 10s

−1 t ≥ 10s.
(3.26)

Simulation results of the car-like robot tracking velocity profile (3.26) are shown in Fig-
ure 3.5. Position and orientation of the closed-loop system versus time is shown in Fig-
ure 3.5(a). The position of the robot is represented by a triangle while the initial position
is represented with a dot at the base of the triangle. The solid curve represents the desired
path, dashed line represents the output trajectory of the closed-loop system. By choosing
the transversal gains {k1, k2, k3} much larger than the tangential gains {k5, k6} we ensure
that the exponential convergence of ξ to zero is much faster than the convergence of η2
along the desired velocity profile. The convergence of all the ξ-states ensures that the
robot is on the path. Figure 3.5(b) shows all the ξ-states converging to zero. It can be
observed from Figure 3.5(c) that the robot follows the desired speed profile hence PF3 is
satisfied. Figure 3.5(d) shows the evolution of path parameter with respect to time. As
we are dealing with a sinusoidal curve, the path parameter is unbounded.

The control design procedure is divided into two separate steps, transversal controller
design and tangential controller design. It is important to note that the choice of the
velocity profile does not affect the transversal controller design. If we want follow a different
velocity profile the transversal controller remains the same. We just need to redesign the
tangential controller. Figure 3.6 shows the car-like robot following the same sinusoidal
curve but tracks a velocity profile given by,

ηref2 = −
1

5

(
e−0.1t × 0.6 sin(t−

π

3
) + 2

)
. (3.27)

Figure 3.6(b) shows that the robot follows the desired speed profile. Since the curve is not
a closed curve, the path parameter η1 is unbounded. Figure 3.6(c) represents the variation
of η1 with respect to time. It is interesting to observe that a trajectory similar to (3.27)
can be defined in terms of path parameter η1 instead of time. As we are dealing with path
following problem and we want underscore the distinction from tracking problem. It is
possible to assign a speed profile according to the complexity of the path because we can
track a velocity profile that is a parameter of path not a parameter of time. That means,

47

−2 0 2 4 6 8
−2

−1

0

1

2

3

4

x
1

x 2

(a) Car-like robot following the sinusoidal curve.

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t(sec)

ξ 1,ξ
2,ξ

3

ξ

1

ξ
2

ξ
3

(b) Exponential stabilization of the transversal
states ξ1, ξ2, ξ3.

0 5 10 15 20
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

t(sec)

η 2

η
2
ref

η
2

(c) Velocity (η2) along the path.

0 5 10 15 20
2

3

4

5

6

7

8

9

10

t(sec)

η 1

(d) Path parameter, η1.

Figure 3.5: Car-like robot (3.6) following the sinusoidal curve σ : R → R2, λ 7→
col(λ, cos (λ)) while tracking velocity profile (3.26).

around sharp corners of the path the speed of the robot can be decreased and for straight
portion of the path the speed can be increased. Since the speed profile (3.27) is defined
in terms of time but it is still interesting to observe the change of η2 with respect to η1
because, in this case, η1 is a monotone function just like time. The result is shown in
Figure 3.6(d). Consider a trajectory defined in terms of path parameter η1.

ηref2 =
1

5
sin η1 + 2. (3.28)

In this case, we show that the car-like robot (3.6) is following the sinusoidal path and
tracking the desired speed profile (3.28) shown in Figure 3.7. The speed profile (3.28) is
not a function of time but a function of path parameter.

48

−2 0 2 4 6 8
−2

−1

0

1

2

3

4

x
1

x 2

(a) Car-like robot following the sinusoidal curve.

0 5 10 15 20
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

t(sec)

η 2

η
2
ref

η
2

(b) Velocity, η2, along the path.

0 5 10 15 20
1

2

3

4

5

6

7

8

t(sec)

η 1

(c) Path parameter, η1.

1 2 3 4 5 6 7 8
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

η
1

η 2

(d) Velocity (η2) along the path Vs path parameter
η1.

Figure 3.6: Car-like robot (3.6) following the sinusoidal curve σ : R → R2, λ 7→
col(λ, cos (λ)) while tracking velocity profile (3.27).

3.5.2 Simulation II

Finally we show the path following results for the curve in Example 3.4.1. The curve
given in Example 3.4.1 is an example of a non closed curve, whose parametric and implicit
representation is known and the curve is not a unit-speed curve. Using the procedure
outlined in Algorithm 1 a controller is tested in simulation for the path given in (3.4.1)The
desired speed along the curve is ηref2 = 0.5. Figure 3.8(a) shows the resulting motion in
the output space. The robot is initialized off the path, but the exponentially stabilized
ξ-states force the vehicle to converge to the path. The speed of the car-like robot is shown
in Figure 3.8(b). It is observed that the robot follows the desired speed very closely. The

49

−2 0 2 4 6 8
−2

−1

0

1

2

3

4

x
1

x 2

(a) Car-like robot following the sinusoidal curve.

−5 0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

η
1

η 2

η
2
ref

η
2

(b) Velocity, η2, along the path.

Figure 3.7: Car-like robot (3.6) following the sinusoidal curve σ : R → R
2, λ 7→

col(λ, cos (λ)) while tracking velocity profile (3.28).

speed of the car like robot is following the desired velocity profile, ηref2 = 0.5. Figure 3.8(c)
represents the change of path parameter with respect to time. Since the path is not closed
the path parameter η1 is unbounded. The velocity of car-like robot is plotted against the
path parameter η1 in Figure 3.8(d). As discussed in the last simulation a desired speed
profile can be defined in terms of path parameter and made to follow in the similar way.

3.6 Robustness of the Proposed Controller

In the last section it was shown by simulations that the proposed controller works rea-
sonably well for a large class of curves. The controller relies on cancelation of nonlinear
terms and a natural question that comes to mind is how well the controller performs in
the presence of modeling uncertainty. In practical applications there can be modeling in-
accuracies or errors in state estimations. We assume that we know all the sates of car-like
robot reasonably well. However, we analyze the performance of the proposed controller
when there are modeling errors. Consider the model of the car-like robot,

ẋ =

v cos x3

v sin x3
1
`
tanx4

0

+

0

0

0

1

u. (3.29)

For the ease of exposition we fix the translational velocity of the robot. We call this model
the nominal model. We will focus on the transverse feedback linearization of the nominal

50

0 2 4 6 8 10
−4

−2

0

2

4

6

8

x
1

x 2

(a) Car-like robot following the curve (3.4.1).

0 5 10 15 20

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

t(sec)

η 2

(b) Velocity, η2, along the path.

0 5 10 15 20
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

t(sec)

η 1

(c) Path parameter, η1.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

η
1

η 2

η
2
ref

η
2

(d) Velocity (η2) along the path Vs path parameter
η1.

Figure 3.8: Car-like robot 3.6 following the curve (3.4.1) starting from x(0) =
(6,−3, 3π

4
, 0, 0, 0) while tracking velocity profile ηref2 = 0.5.

model but note that similar comments apply for the full dynamic controller derived in this
chapter. Suppose, due to modeling errors, the length of the robot ` is not accurate. The
actual length of the car-like robot is `+ δ where δ is the modeling error. The actual model
of the car-like robot becomes

ẋ =

v cos x3

v sin x3
1

`+δ
tanx4

0

+

0

0

0

1

u. (3.30)

51

Following the procedure outlined in Section 2.1, we design a controller for the nominal
system. In that case the transversal subsystem is

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = L3
fα + LgL

2
fαu

∣∣
x=T−1(η,ξ)

.

(3.31)

and we can use,

u =
1

LgL2
fα

(−Lfα
3 − k1ξ1 − k2ξ2 − k3ξ3), (3.32)

where ki > 0 for i = 1, 2, 3 to exponentially stabilize ξ = 0. Using the feedback control law
(3.31) becomes,

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = −k1ξ1 − k2ξ2 − k3ξ3.

(3.33)

which is clearly exponentially stable. On the other hand, if we apply the control law (3.32)
designed based on the nominal model (3.29) to the actual mode (3.30), the closed-loop
transversal dynamics are given by

ξ̇1 = ξ2

ξ̇2 = ξ3 + ψ(x)

ξ̇3 = −k1ξ1 − k2ξ2 − k3ξ3 + ς(x)

(3.34)

where the smooth scalar functions ψ(x), ς(x) arise due to the modeling error. We can write

this system as a nominal system ξ̇ = Aξ with a perturbation p(x) =
[
0 ψ(x) ς(x)

]>

term

ξ̇ =

0 1 0

0 0 1

−k1 −k2 −k3

ξ1

ξ2

ξ3

+

0

ψ(x)

ς(x)

 . (3.35)

In this case, it can be shown that the functions ψ(x) and ς(x) are bounded near the path
following manifold, i.e, near ξ = 0. It can also be shown that these are nonvanishing
perturbations in the sense that ψ(x)|ξ=0 6= 0, ς(x)|ξ=0 6= 0. Consider the result 2 drawn
from [31],

2The Lemma presented here uses slightly different symbols.

52

Lemma 3.6.1 ([31]). Let ξ = 0 be an exponential stable equilibrium point of the nominal
system (3.34). Let V (ξ), be a Lyapunov function of the nominal system that satisfies the
following equations,

c1‖ξ‖
2 ≤ V (ξ) ≤ c2‖ξ‖

2,

∂V

∂ξ
Aξ ≤ −c3‖x‖

2,
∥∥∥∥
∂V

∂ξ

∥∥∥∥ ≤ c4‖ξ‖,

(3.36)

for all ξ ∈ D, for some positive constants c1, c2, c3 and c4, where D = {ξ ∈ R
n : ‖ξ‖ < r}.

Suppose the perturbation term p(ξ) satisfies,

‖p(ξ)‖ ≤ δ̃ <
c3
c4

√
c1
c2
θ̃r, (3.37)

for all t ≥ 0, all ξ ∈ D, some positive constant θ < 1 and δ̃ > 0. Then , for all
‖ξ(0)‖ <

√
c1/c2r, the solution ξ(t) of the perturbed system (3.35) satisfies,

‖ξ‖ ≤ k exp [−γ̃(t)] ‖ξ(0)‖, ∀ 0 ≤ t < T (3.38)

and
‖ξ(t)‖ ≤ b, ∀t > t0 + T (3.39)

for some finite T , where

k =

√
c2
c2
, γ̃ =

(1− θ̃)c3
2c2

, b =
c4
c3

√
c2
c1

δ̃

θ̃
. (3.40)

We now discuss how the above result can be applied to our problem without going
in the details of the formal proof. The system (3.35), can be viewed as a perturbation
of a nominal system ξ̇ = Aξ. A Lyapunov function V (ξ) = ξTPξ can be found where
P is calculated by solving the Lyapunov equation PA + ATP = −I, where I is 3 × 3
identity matrix. Since, ξ = 0 is an exponentially stable equilibrium point of the nominal
system (3.34) and it can be shown that the chosen Lyapunov function satisfies the set of
equations (3.36). Moreover, it can also be shown that the perturbed term p(x) is bounded
and satisfies (3.37). Therefore by Lemma 3.6.1, the perturbed system will stay close to the
path because ξ will stay close to zero for all time.

To show the robustness of the proposed controlled we show some simulation results, see
Figure 3.9. In these simulations the length of the car-like robot is assumed to be L = 1.
We assume that we have a modeling error δ, so that the measured length is L+ δ. We use
the word measured length to represent the real model for the car-like robot. However the
word actual length is used to represent the nominal model of car-like robot.

53

In Figure 3.9(a) we assume that there a small modeling error δ = 0.1. This error
is reasonably small compared to the actual length of the car-like robot which is L =
1. We expect our controller to overcome such small modeling error and as the results
show in Figure 3.9(a) the robot follows the path with very small path following error. In
Figure 3.9(b) we increase the modeling error to δ = 0.5. This is a large modeling error
as the measured length is half more than the length of the actual robot. However, the
simulation results show that the robot follows the path but a larger path following error is
observed compared to the previous case. In Figure 3.9(c) we increase the modeling error
to δ = 1. This is a very large modeling error as it means that the measured length is twice
as much as the length of the actual robot. The simulation results show that in this case
the path following error is very large but still the state of the system remains bounded.
Finally we suppose an unrealistic modeling error δ = 50. Figure 3.9(d) shows that the
phase curves of the system are no longer bounded. It is interesting to note that, since
the perturbation terms do not vanish on the path following manifold, the point ξ = 0
is no longer an equilibrium of the transversal dynamics. This fact means that the path
following manifold is no longer controlled invariant and as a result we cannot guarantee
path invariance. Nevertheless, these simulation results are encouraging and suggest that,
at least for errors in the parameter `, the proposed controller is fairly robust.

54

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Robustness test on car−like robot

x
1

x 2

(a) Very small modeling error δ = 0.1.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Robustness test on car−like robot

x
1

x 2

(b) Small modeling error δ = 0.5.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Robustness test on car−like robot

x
1

x 2

(c) Large modeling error δ = 1

−1 0 1 2 3 4 5 6
−7

−6

−5

−4

−3

−2

−1

0

1
Robustness test on car−like robot

x
1

x 2

(d) Unrealistically large modeling error δ = 50.

Figure 3.9: Simulation results showing the robustness of the controller.

55

Chapter 4

Approximate Feedback Linearization

In this chapter, we investigate systems that fail to have a well-defined relative degree. Such
systems are called non-regular systems. In [24] the authors give a procedure to deal with
non-regular SISO system. In this chapter we apply the procedure to a SISO standard
1-trailer system. Later on, we apply the result to MIMO standard 1-trailer system. We fix
the translational velocity of the front vehicle to some non-constant v 6= 0 and characterize
the path following manifold Γ?. We try to solve the path following problem, satisfying
PF1 and PF2 using solely the steering control input. We show that transverse feedback
linearization cannot be applied to the 1-trailer system because the system does not have a
well-defined relative degree. Moreover, we perform dynamic extension of the system and
show that by considering both the control inputs, dynamic transverse feedback linearization
cannot be applied to the 1-trailer system to solve the path following problem because the
system does not have a well defined vector relative degree. We give a procedure to deal
with such systems in Section 4.3.

There has been a great deal of interest in solving the path following and trajectory
tracking problem of systems consisting of wheeled mobile robots pulling trailers. Examples
of the works dealing with articulated vehicles or trailer systems include, [4], [5], [6], [8], [10],
[21], [33], [37], [40], [47]. The trailer system has now become a testbed for analyzing several
path following and trajectory generation problems in nonlinear control. In the literature
two types of trailer systems are found, the standard trailer system and the general trailer
system [4]. In the standard n-trailer system, each axle is hitched to the preceding trailer
by means of a rigid bar. That means there is no off axle hitching. It was shown by Fliess
et al. [21] that a standard n-trailer system is differentially flat and that the flat output
is the central axle point of the last trailer. In the general trailer system each trailer is
not attached directly at the middle of the preceding axle but at a positive distance from
the central axle. This means the general trailer system has off axle hitching. The authors
in [21] showed that the general 1-trailer system is also differentially flat. It was further

56

shown that the general n-trailer system is not differentially flat.

4.1 Model of the Standard 1-trailer System

In this chapter we consider the standard 1-trailer system modeled with a car-like robot as
the lead vehicle. The kinematic model of a standard one trailer system driven by a car-like
robot, shown in Figure 4.1, is

ẋ =

cosx3 0

sin x3 0
1
`
tanx4 0

0 1
1
d1
sin(x3 − x5) 0

[
v

ω

]
, (4.1)

where x ∈ R
5 is the state, the input v ∈ R is the translational speed and ω ∈ R is the

angular velocity of the steering angle. We take the position of the last trailer in the plane
as the output of (4.1),

y = h(x) =
[
x1 − d1 cos x5 x2 − d1 sin x5

]>
. (4.2)

Suppose we are given a path to follow in the output space R2 of (4.1). In this chapter we
use a similar framework we used in Chapter 2, that is, first we design a controller to satisfy
PF1 and PF2, defined in Chapter 1, using transverse feedback linearization. Then we
design a controller that satisfies PF1, PF2 and PF3, defined in Chapter 1, using dynamic
transverse feedback linearization. However we cannot apply the exact same procedure we
applied in Chapter 2 and 3 because this system does not have a well defined relative degree.
In [24] the authors outline a procedure of approximate feedback linearization to deal with
such systems. Before proceeding to the case of standard 1-trailer system, we give a brief
literature review of approximate feedback linearization.

4.2 Review of Approximate Feedback Linearization

In [24] the authors discuss the application of the theory of feedback linearization to the
ball and beam system. For some nonlinear systems, like the ball and beam system, the
conditions for feedback linearization fail but do so “slightly”. The regular procedure of
controller design via feedback linearization cannot be applicable. Consider the familiar

57

y1 x1

x2

y2

d1

`

x5

x3

x4

Figure 4.1: The kinematic model of standard 1-trailer system.

model of a ball and beam experiment found in many undergraduate control laboratories.
The model, taken from [24], is

ẋ =

x2

B(x1x
2
4 −G sin x3)

x4

0

+

0

0

0

1

u (4.3)

where, B := M/(Jb/R
2 +M), M and Jb are the mass and moment of inertia of the ball

respectively, R is the radius of the ball and G is the acceleration due to gravity. The state
variables are x = (x1, x2, x3, x4)

> := (r, ṙ, θ, θ̇)> where θ is the beam angle and r is the ball
position [24]. Take the beam angle as the output y = h(x) = x3 and define

f(x) :=

x2

B(x1x
2
4 −G sin x3)

x4

0

, g(x) :=

0

0

0

1

58

so that the ball and the beam system (4.3) can be written as

ẋ = f(x) + g(x)u

y = h(x).

Following the procedure from Chapter 2, but, instead of differentiation a curve defined in
the output space until the input appears, we differentiation the output y(x) directly until
the input appears [51],

y = h(x) = x1

ẏ = Lfh(x) = x2

ÿ = L2
fh(x) = Bx1x

2
4 − BG sin x3

y(3) = L3
fh(x) + LgL

2
fh(x)u =

[
Bx2x

2
4 − BGx4 cosx3

]
+ [2Bx1x4]u.

If the term LgL
2
fh(x) is non-zero at a point of interest, a control law of the form u =

(−L3
fh(x) + v)/LgL

2
fh(x) can be used as in Chapter 2. Unfortunately, the control term

LgL
2
fh(x) is zero whenever the beam angular velocity or ball position is zero. Therefore the

relative degree of the system is not well defined near x = 0. Thus input-output linearization
is not applicable to this problem at x = 0. The authors in [24] propose an approximation
procedure that is different from the Jacobian linearization. The system fails to have a
well defined relative degree because of the term LgL

2
fh(x) = 2Bx1x4. An approximation

is made by assuming that the term 2Bx1x4 is identically equal to zero. By neglecting
the term 2Bx1x4 an approximate system is obtained with a well defined relative degree.
The simulation results in [24] show that controllers designed using the approximate system
provide a good tracking on the original system. In [24, Theorem 4.4] it is shown that the
tracking error will remain bounded.

A single inverted pendulum is another example of a control system which fails to have
a well-defined relative degree at points in the state space which are of interest, the two
equilibrium points [3]. A car-like robot connected with a trailer is another example of a
system that fails to have a well-defined relative degree. We investigate the trailer system in
the next section. A mathematical argument can be made based on Definition 4.2, 4.3 and
Theorem 4.4 in [24] that explains why the control scheme works for the case of a trailer
system but due to the large expressions involved we do not perform it in this thesis.

4.3 Approximate Transverse Feedback Linearization

In [24] the discussion was restricted to approximate feedback linearization. We would like
to apply this idea to partially feedback linearizable systems. We apply the approximate

59

transverse feedback linearization and approximate dynamic transverse feedback lineariza-
tion to a 1-trailer system. We give a simulation based argument. We first design a path
following controller based on these approximations and then simulate the closed-loop sys-
tem using the original, non-approximated, system. Using these simulations, we argue that
our approximation appears to be valid.

Consider (4.1) and a circular path (2.3). The lift of γ to R
5 is given by

Γ := (s ◦ h)−1 (0) =
{
x ∈ R

5 : s(h(x)) = 0
}
,

is a two dimensional submanifold. Define

α(x) := s ◦ h(x) = (x1 − d1 cosx5)
2 + (x2 − d1 sin x5)

2 − 1. (4.4)

We know from Chapter 2 that making x → Γ is equivalent to making y → γ. Since we
also know from Chapter 2 and 3 that PF1 and PF2 can be satisfied by fixing the speed
of the robot to some non zero constant. Fix the speed of the trailer system v = v 6= 0. Let
u := ω. Under these conventions the system (4.1) can be written as

ẋ =

v cosx3

v sin x3
1
`
tanx4

0
v
d1
sin(x3 − x5)

+

0

0

0

1

0

u. (4.5)

Define

f(x) :=

v cosx3

v sin x3
1
`
tan x4

0
v
d1
sin(x3 − x5)

, g(x) :=

0

0

0

1

0

,

so (4.5) can be written as compactly as ẋ = f(x) + g(x)u. Following the usual procedure
we differentiate the function α(x) until the input u appears

α̇ =
∂α(x)

∂x
ẋ

=
∂α(x)

∂x
f(x) +

∂α(x)

∂x
g(x)u

= Lfα(x) + Lgα(x)u,

60

where,

Lfα(x) = 2v

(
x1 cos x3

2
+
x2 sin x3

2
− d1 cos(x3 − x5) +

x1 cos(x3 − 2x5)

2
+
x2 cos(x3 − 2x5)

2

)
,

Lgα(x) = 0.

Since no control input appears, we take the derivative again,

α̈ = L2
fα(x) + LgLfα(x)u,

where,
LgLfα(x) = 0.

and L2
fα(x) can be computed easily using any Maple or Matlab using symbolic math

toolbox.1 We take the derivative again,

α(3) = L3
fα(x) + LgL

2
fα(x)u, (4.6)

where,

LgL
2
fα(x) =

1

`
(v cosx3(2x2 − 2d1 sin x5 − v sin x3(2x1 − 2d1 cos x5)))+
(
v cos(x3 − x5)(2d1 sin x5)(x1 − d1 cosx5)− 2d1 cosx5(x2 − d1 sin x5)

`d1

)
.

and L3
fα(x) can be easily computed using a computer program. If the coefficient multiply-

ing the input u, LgL
2
fα(x), is nonzero at a point on the set

{
x ∈ R

5 : α(x) = Lfα(x) = L2
fα(x) = 0

}
(4.7)

then α(x) yields a well-defined relative degree. In that case we can use a control law of
the from,

u =
1

LgL2
fα

(−L3
fα + vt), (4.8)

to stabilize the set (4.7) and make the path attractive and invariant. Unfortunately, the
coefficient LgL

2
fα(x) is zero whenever x3 = x5 = 0. From the model of the standard

1-trailer system (4.1), we know that x3 represents the orientation of the car in the 1-
trailer system and x5 represents the position of the trailer in the 1-trailer system shown in

1A Matlab program is included in Appendix B that computes these expression.

61

Figure 4.1. The 1-trailer system can have any orientation of car and the attached trailer on
the path. That means the orientation x3 = x5 = 0 can occur on the given path. Therefore
the relative degree of the system is not well defined. We turn to the approximate feedback
linearization approach to control the system. Following [24] we assume that LgL

2
fα(x) is

identically equal to zero and continue taking derivatives of (4.6)

α(4) ≈ L4
fα(x) + LgL

3
fα(x)u,

where L4
fα(x) 6= 0 and LgL

3
fα(x) 6= 0 can be computed using Matlab. With this approx-

imation the path following manifold Γ? for the trailer system following a circular path is
approximately equal to

Γ? ≈
{
x ∈ R

5 : α(x) = Lfα(x) = L2
fα(x) = L3

fα(x) = 0
}
.

Note that, since,
{
x ∈ R

5 : α(x) = Lfα(x) = L2
fα(x) = L3

fα(x) = 0
}
⊂ Γ?

if we stabilize the approximation of Γ? we will cause the system output to approach the
desired path.

The four functions that approximate Γ? partially define a local coordinate transforma-
tion. As in Chapter 2 we use the angle of the output with respect to the origin to complete
the coordinate transformation

π(x) := tan−1

(
x2 − d1 sin x5
x1 − d1 cos x5

)
. (4.9)

Now consider the coordinate transformation

η1

ξ1

ξ2

ξ3

ξ4

= T (x) =

π(x)

α(x)

Lfα(x)

L2
fα(x)

L3
fα(x)

. (4.10)

In (η, ξ)-coordinates the system is modelled as

η̇1 = f(η, ξ, u)

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ξ4 + φ(η, ξ)u

ξ̇4 = L4
fα + LgL

3
fαu

∣∣
x=T−1(η,ξ)

(4.11)

62

where we neglect the term φ(η, ξ) = LgL
2
fα(x)

∣∣
x=T−1(η,ξ)

. It in interesting to note the

in [24] and [3] an exact approximate feedback linearization is performed, however, using
the similar procedure we performed partial approximate feedback linearization.

When ξ = 0 the system output converges to the path. Just like previous chapters
we call the ξ-subsystem the transversal subsystem and the states ξ the transversal states.
Consider the regular feedback transformation

u =
1

LgL
3
fα

(−L4
fα + vt), (4.12)

where vt is auxiliary control inputs. Since LgL
3
fα(x

?) 6= 0 therefore this controller is well-
defined in a neighbourhood of x?. Thus in a neighbourhood of x? the closed-loop system
becomes

η̇1 = f(η, ξ, u)

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ξ4 + φ(η, ξ)
1

LgL3
fα

(−L4
fα + vt)

∣∣∣∣∣
x=T−1(η,ξ)

ξ̇4 = vt.

(4.13)

We design a control law similar to the previous chapters to stabilize the transversal sub-
system.

vt(ξ) = k1ξ1 + k2ξ2 + k3ξ3 + k4ξ4, (4.14)

with ki < 0, i ∈ {1, 2, 3, 4}. We now show by way of simulation that this approach works.

4.3.1 Simulation Results

In the first simulation, we initialize the trailer system (4.5) at

x01 = (1.00, 0.10, 1.67, 0.10, 1.57),

i.e., sufficiently close to the curve see Figure 4.2. It can be seen in Figure 4.2(a) that the
1-trailer system follows the curve. However, it is interesting to analyze the behavior of the
ξ-states. It can be seen from Figure 4.2(b) that although all the ξ-states are not converging
to zero, unlike the case of unicycle and car-like robot shown in previous chapter, the ξ-
states are not blowing up. Figure 4.2 show that our approximation is a valid approximation
and we get bounded path following error if we initialize sufficiently closer to the curve.

63

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

(a) Trailer system (4.5) following circular curve.

0 5 10 15 20
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

t(sec)

po
si

tio
n

on
 th

e
se

t Γ
*

ξ

1

ξ
2

ξ
3

ξ4

(b) ξ-states

Figure 4.2: 1-trailer system initialized at x01.

In the second simulation Figure 4.3, we initialize the trailer system (4.5) at

x02 = (1.20, 0.10, 1.67, 0.10, 1.57),

i.e., slightly away from the curve. Figure 4.3(a) shows that the path following error is
quite large. This is because the neglected term LgL

2
fα(x) is zero when the system is on the

curve. The term is non-zero in a neighborhood of the curve and since we have neglected
the term, the error is large. Also the term is nonlinear so the error increases in nonlinear
fashion, i.e., a small changes in the initial conditions result in huge path following error. It
can be seen from Figure 4.3(b) that error in the ξ-state are significantly larger compared to
the previous simulation result. Since all the ξ-states are bounded, therefore, we managed
to follow the path but large error in ξ-states are the cause of large path following error.

It is shown by authors in [57], for non-regular system, better performance can be
achieved by switching trough singularities. In the case of fire truck system, following the
approach proposed in [57] two control laws can be designed; approximate control law and
exact control law. Approximate control law can be used in the neighborhood of the desired
path because the system loses relative degree. When the trailer system is away from the
path the system has a well defined relative degree therefore the exact control law can
be used. In [57] the authors propose a switching law that allows to switch between the
approximate and exact controller. Switching through singularities is not studied in this
thesis, however, it can be an interesting area to explore in future for such systems.

64

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

(a) Trailer system (4.5) following circular curve.

0 5 10 15 20
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t(sec)

po
si

tio
n

on
 th

e
se

t Γ
*

ξ

1

ξ
2

ξ
3

ξ4

(b) ξ-states

Figure 4.3: 1-trailer system initialized at x02.

4.4 Approximate Dynamic Transverse Feedback Lin-

earization

From the discussion of previous chapters, we know that in order to satisfy PF3 we need
to consider both the inputs of the system. Moreover, we need to increase the dimension
of path following manifold. To achieve that we perform dynamic extension of the 1-trailer
sytem (4.1) by adopting a similar procedure to that discussed in Chapter 2 and Chapter 3.
The system after dynamic extension takes the form,

ẋ = f(x) + g1(x)u1 + g2(x)u2

=

(v + x6) cosx3

(v + x6) sin x3
(v+x6)

`
tanx4

0
v+x6

d1
sin(x3 − x5)

x7

0

+

0

0

0

0

0

0

1

u1 +

0

0

0

1

0

0

0

u2
(4.15)

Our objective is to now design the control law u = (u1, u2) to solve the the path following
problem. The controller design procedure for this system is different from the car-like robot
and unicycle because this system is a non-regular control system. We apply the procedure
outlined in [24] to our extended MIMO system. Again due to huge and complicated
expression of the decoupling matrix we argue on the basis of numerical graphs of the

65

entries of the decoupling matrix. Consider the virtual output function (4.16) defined in a
similar way in Chapters 2, 3.

ŷ =

[
π(x)

α(x)

]
. (4.16)

where, π(x) and α(x) is defined in (4.9) and (4.4) respectively. Following the procedure
used in the previous chapters we differentiate the virtual output until the inputs appears.
A Matlab program is written to symbolically differentiate the output. The program is
included in the appendix. By the definition of vector relative degree we must show that

Lg1L
i
fπ(x) = Lg2L

i
fπ(x) = Lg1L

i
fα(x) = Lg2L

i
fα(x) = 0 (4.17)

for i ∈ {0, 1} in a neighborhood of the path and that the decoupling matrix

D(x?) =

[
Lg1L

2
fπ(x) Lg2L

2
fπ(x)

Lg1L
2
fα(x) Lg2L

2
fα(x)

]
(4.18)

is non-singular. It can be seen from the Matlab program that the terms in (4.17) are all
zero. The graphs of the entries of the decoupling matrix are shown in Figure 4.4. As shown
in Figure 4.4(a) and 4.4(b), Lg1L

2
fπ(x),Lg2L

2
fπ(x) never goes to zero in a neighborhood of

the curve. However it in interesting to note from Figure 4.4(c) and 4.4(d) that Lg1L
2
fα(x)

and Lg2L
2
fα(x) are zero on the curve. Therefore the decoupling matrix (4.18) loses rank

on the curve. Hence the system does not have a well-defined vector relative degree.

To control the system we need to approximate the system vector field. Similar to the
non-regular single input case we neglect the terms, Lg1L

2
fα(x) and Lg2L

2
fα(x). Since by

neglecting the terms Lg1L
2
fα(x) and Lg2L

2
fα(x) the control inputs vanish, we need to take

derivative again. The decoupling matrix now becomes,

D(x?) =

[
Lg1L

2
fπ(x) Lg2L

2
fπ(x)

Lg1L
3
fα(x) Lg2L

3
fα(x)

]
(4.19)

The terms Lg1L
3
fα(x) and Lg2L

3
fα(x) are not equal to zero at the point of interest, so we

expect the decoupling matrix to be full rank. Figure 4.5 shows that the determinant of
the decoupling matrix is bounded away from zero. With this approximation we can design
transversal and tangential controllers as in Chapter 3.

4.4.1 Simulation Results

In this section we want to demonstrate that by approximate partial feedback linearization
we can satisfy PF1, PF2 and PF3. We desire to following the velocity profile

ηref2 =

{
−0.2 0 ≤ t < 20s

−0.4 t ≥ 20s.

66

0 5 10 15 20 25 30 35 40
−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

time(sec)

Lg
1Lf

2 π(
x)

(a) Lg1L
2

fπ(x).

0 5 10 15 20 25 30 35 40
0.9948

0.995

0.9952

0.9954

0.9956

0.9958

0.996

time(sec)

Lg
2Lf

2 π(
x)

(b) Lg2L
2

fπ(x).

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

time(sec)

Lg
1Lf

2 α(
x)

(c) Lg1L
2

fα(x).

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5
x 10

−3

time(sec)

Lg
2Lf

2 α(
x)

(d) Lg2L
2

fα(x).

Figure 4.4: Entries of decoupling matrix (4.18).

In the first simulation, Figure 4.6, we initialize the trailer system (4.15) at

x01 = (1.000, 0.1000, 1.6705, 0.1042, 1.5708, 0.1000, 0.0000).

As we initialize the system very close to the curve the approximation gives very small
path following error as shown in Figure 4.6(a). It is also interesting to note that the system
closely tracks the desired velocity profile as shown in figure 4.6(b).

Now we initialize the system slightly away from the path,

x02 = (1.100, 0.1000, 1.6705, 0.1042, 1.5708, 0.1000, 0.0000),

and track the same velocity profile. In this case, sine we initialize the system slightly away
from the curve, the approximation gives relatively large path following error as shown in

67

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14
Determinant of Decoupling Matrix

time(sec)

D
et

(D
)

Figure 4.5: Determinant of decoupling matrix (4.18).

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

x
1

x 2

(a) Trailer system (4.15) following circular curve.

0 5 10 15 20 25 30 35 40
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

time(sec)

η 2

(b) velocity of trailer system

Figure 4.6: 1-trailer system (4.15) initialized at x01.

68

Figure 4.7(a). However, it is important to note that the system still follows the path.
The approximation also effects the results of the velocity tracking error. As shown in
Figure 4.7(b), the velocity error is significantly higher compared to the case when the
trailer system is initialized close to the curve.

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Car with one trailer Following circular path

x
1

x 2

(a) Trailer system (4.15) following circular curve.

0 5 10 15 20 25 30 35 40
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1
tracking a velcity profile while following the curve

time(sec)

η 2

(b) velocity of trailer system

Figure 4.7: 1-trailer system initialized at x02.

4.5 Conclusion

In this chapter an application of the theory of feedback linearization to non-regular systems
was presented. Non-regular systems are systems that fail to have a well defined relative
degree. It was shown that the theory developed in Chapter 3 and Chapter 2 sometimes
need tweaks in order to apply to non-regular systems. It was shown using an example of the
standard 1-trailer system that for systems that fail to have a well defined relative degree
an approximate relative degree is achieved by approximating the system’s vector field.
Due to complicated expression involved in the analysis it was hard to give a mathematical
argument that the theory works, however, it was shown through simulations that the
approximation technique can be used where sufficiently large path following errors are
permissible.

69

Chapter 5

Curve Approximation

The control design technique discussed in this thesis relies on having both a parametric
and an implicit representation of the path to be followed. Given a smooth parametric
representation of a curve in R

2, in this chapter we provide a procedure for finding an
implicit representation of the image of the curve. The proposed solution involves two
steps. First, we approximate the given parametric curve as a rational parametric curve
using the Weierstrass approximation theorem. Second, relying on elimination theory, we
represent the image of the rational approximation of the curve as an implicit function.

5.1 Introduction

There are two basic representations for planar curves; parametric and implicit. In a para-
metric representation, points on the curve or surface are given as functions of a parameters.
In an implicit representation, also called a zero level set representation, the curve or surface
is defined to be the set of points that satisfy one or more equations. Implicitization is the
process of converting a parametrically defined curve into implicit form. The implicitization
of parametric curves relies on the theory of elimination. The general theory of elimination
is a somewhat lost art and very few references are available. The interested readers are
referred to [48],[49]. It is widely accepted that the parametric representation is best suited
for generating points along the curve while a zero level set representation is helpful for
determining whether a point lies on the curve or not [52].

Most general way of representing a curve is to express it in parametric form. In the
case of a unit circle both parametric, (cos(λ), sin(λ)), and implicit form, x21 + x22 − 1 = 0,
are well known. However for a general parametric curves, a solution to the implicitization
problem is not known. From Chapters 2, 3 and 4 we know that in order to solve the path
following problem, an implicit or zero level set representation of the parametric curve is

70

required. According the procedure we followed in Chapter 2, 3, 4 the first transversal state
is defined as the implicit form of the curve, i.e., ξ1 = α(x), where α(x), represents the lift
of the implicit form of the curve. For the case of the unicycle and the circle the implicit
representation is α(x) = x21 + x22 − 1 = 0. We have assumed in previous chapters that we
know the implicit representation, α(x), of the given parametric curve. However, the lack
of a general procedure to convert parametric curves to implicit form prevented their use
in many practical applications. We present a method to convert a general parameterized
curve to a zero level set. The method is based on the Weierstrass approximation theorem
and implicitization by Sylvester matrix.

5.2 General Problem

Suppose that a curve is given as a continuously differentiable parameterized path

σ : D → R
2

λ 7→

[
σ1(λ)

σ2(λ)

]
(5.1)

where D equals either S if the curve is closed or R if the curve is non-closed.

We want to find an implicit representation of the image of σ. Thus we are interested
in solving the following problem.

Problem 1. Given a curve (5.1) find, if possible, a continuously differentiable function
s : R2 → R such that

σ(D) = {y ∈ R
p : s(y) = 0}.

5.3 Special Cases of the General Problem

Consider the special case when the given parameterized curve (5.1) has domain R and
σ2(λ) = λ, i.e.,

σ : R → R
2

λ 7→

[
σ1(λ)

λ

]
.

(5.2)

Alternatively, suppose that σ1(λ) = λ, i.e.,

σ : R → R
2

λ 7→

[
λ

σ2(λ)

]
.

(5.3)

71

We first find implicit representations for these two special cases because the analysis will
suggest a method to apply to the general case. For these special cases it easy to see that
the implicitization is given by

s(y) = y2 − σ2(y1) = 0

or
s(y) = y1 − σ1(y2) = 0.

However, this approach does not generalize to arbitrary planar curves and so we present
an alternative approximation approach suitable for generalization. The special cases (5.2)
and (5.3) are similar and solving one immediately provides a solution to the other. Thus
we will focus on special case (5.2) from now on.

5.3.1 Proposed Solution

In order to find an implicit representation of the curve (5.2), we first approximate σ1(λ) as
a polynomial using Theorem A.3.5. In the first instance of this problem suppose that we
are given a fixed partition of an interval of the real line.

Problem 2. Let the parameterized curve (5.2), a real number ε > 0 and a finite set of real
numbers k0 < k1 < . . . , kq < kq+1 be given. Let Ii := [ki−1, ki], i ∈ {1, . . . , q + 1}. Find, if
possible, q + 1 polynomials pi(λ) : Ii −→ R, i ∈ {1, . . . , q + 1} such that

max
λ∈Ii

‖σ1(λ)− pi(λ)‖ < ε. (5.4)

Our solution to Problem 2 is based on the constructive proof of Theorem A.3.5 presented
in [18]. In that proof, given a continuous function f : [0, 1] −→ R, a Bernstein polynomial
Bf

n defined in (A.11) is shown to converge uniformly to f as the order of Bf
n gets sufficiently

large. Specifically, for any ε > 0, there exists an integer N > 0 such that

(∀n ≥ N) max
λ∈[0,1]

‖f(λ)− Bf
n(λ)‖ < ε. (5.5)

The order N of Bf
n for which (5.5) holds is lower bounded by

N ≥
M

δ2ε
(5.6)

where M = ‖f‖∞ and δ comes from the definition of uniform continuity, Definition A.3.1.
Note that by Theorem A.3.2, the function f is uniformly continuous on [0, 1]. Practically,
finding δ for arbitrary functions is not easy. This makes determining an a priori estimate

72

for the integer N difficult. Thus, although we do not know a priori the order of Bf
n for

which we get a good approximation, Theorem A.3.5 tells us that if we increase the order
of Bf

n we will eventually get a good estimate.

In the case of Problem 2, take the interval Ii, i ∈ {1, . . . , q+1}. On this interval, define
the function τi : [0, 1] −→ Ii as

τi(λ) = ki−1 + λ (ki − ki−1) .

This function is a homeomorphism between [0, 1] and Ii. We use it to define

fi(λ) := σ1 ◦ τi(λ). (5.7)

Using the Weierstrass Approximation Theorem and Bernstein polynomials for the func-
tion (5.7), we have that for any ε > 0, there exists an integer N > 0 such that (5.5)
holds.

Lemma 5.3.1. There exists a positive finite integer N such that Problem 2 is solved by
any

pi(λ) = Bfi
n (τ

−1
i (λ)), n ≥ N, i = 1, . . . , q + 1.

Proof. Fix i ∈ {1, . . . , q + 1}. In (5.6) we know only ε, which is the given, finite, error
tolerance. We need to know M and δ in order to find N . We will find Ni on each interval
Ii and then take N as the largest of the Ni.

Define Mi = supλ∈[ki,ki+1]
‖ σ1(λ) ‖ − infλ∈[ki,ki+1] ‖ σ1(λ) ‖. Clearly this Mi ≥ ‖fi‖∞.

Since the interval [ki, ki+1] is compact and σ1(λ) is continuous on Ii then by Theorem
(A.3.2), σ1(λ) is uniformly continuous.

By the definition of uniform continuity, (A.3.1), there exists some δ > 0. Thus the
qualities Mi, ε and δi are all finite. Let Ni be

Ni =
Mi

δ2i ε
.

Repeat this construction for each i ∈ {1, . . . , q + 1} and let

N = max{{N1, . . . , Nq+1}}.

The above proof relies on finding the numbers δi which is difficult in practice. Instead
of directly finding these δi we have proposed an algorithm that is independent of them.
The algorithm keeps on increasing the order of the polynomial and iteratively checking the
error. Hence Lemma (5.3.1) and Algorithm2, given below, solves the given problem.

73

input : σ : R → R2

ε > 0
N = 1; (start with the smallest possible order)
Ii = [ki−1, ki]

output: Pi(λ)

for each Ii do
while error > ε do

for k = 0 : N do
compute: ck := σ1(k/N)
compute: pi(λ) = ck

(
N

k

)
λk(1− λ)N−k

end

calculate error: maxλ∈Ii ‖σ1(λ)− pi(λ)‖
N=N+1

end

end

Algorithm 2: Curve Approximation

Implicitization

The special structure of the curve (5.2) suggests a rather easy way of implicitization. Using
the results of Lemma (5.3.1), curve (5.2) is represented in implicit form,

γi = {(y1, y2) ∈ R
2 : y1 − pi(y2) = 0}, i = 1, . . . , q + 1.

Hence the curve (5.2) is first approximated with polynomials and then converted to
implicit form. Each implicit curve γi covers a piece of the path.

Simulation Results

In this section we apply results of Lemma 5.3.1 and Algorithm 2 to few curves.

Simulation I In this simulation we consider a sinusoidal curve. The parametric repre-
sentation of the curve is given by,

σ : λ 7→

[
sin(λ)

λ

]
. (5.8)

The curve (5.8) is defined on the interval [0, 4π]. Furthermore, the interval [0, 4π] and is
divided into 2 equal partitions of length 2π. Given an error tolerance ε, we want to ap-
proximate the curve (5.8) with a sequence of polynomials pi(λ), such that maxλ∈Ii ‖σ1(λ)−

74

pi(λ)‖ < ε. In this case the given error tolerance is ε = 0.25. Figure 5.1 represents the
parameterized curve (5.8) approximated with a sequence of polynomials pi(λ). The origi-
nal curve is represented by a dashed line while the approximated curve is represented by
a solid line in Figure 5.1. Solid dots in the Figure 5.1 represent the partition points. The
simulation results are represented in Table 5.1.

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Approximation of a given path using polynomials

Partition point
Given Curve
approximated Curve

Figure 5.1: Approximation of curve (5.8) with
ε = 0.25.

i Partition ‖ σ1(λ)− pi(λ) ‖∞ N
1 [0, 2π] 0.2416 14
2 [2π, 4π] 0.2416 14

Table 5.1: Approximation results of
curve (5.8) with ε = 0.25.

Simulation II As it can be observed from the last simulation result that the approxi-
mation is not a good one because the the error ‖ σ1(λ) − pi(λ) ‖∞ is quite large. In this
simulation we desire to reduce the error so we decrease the error tolerance. Given the
curve (5.8) we want to approximate it such that the ‖ σ1(λ)− pi(λ) ‖∞< 0.05. Similar to
the previous simulation the curve is defined on the interval [0, 4π] and the interval [0, 4π]
is divided into 2 equal partitions of length 2π. As seen from Figure 5.2 the approximation
is better compared to the previous case. The reason for the better approximation is that
a strict error tolerance ε = 0.05 in this case. However, it is interesting to observe from
Table 5.2 that the order of the polynomial has increased significantly compared to the pre-
vious simulation. A conclusion can be drawn that the higher the order of the polynomial
the better would be the approximation.

Simulation III In this simulation we show how non-smooth curves can be approximated
using algorithm 2. Consider a non-smooth curve. The parametric representation of the
curve is given by,

σ : λ 7→

[
|λ|

λ

]
(5.9)

The curve (5.9) is defined on the interval [0, 4π]. Furthermore, the interval [0, 4π] is divided
into 2 equal partitions of length 2π. Given an error tolerance ε, we want to approximate

75

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y
Approximation of a given path using polynomials

Partition point
Given Curve
approximated Curve

Figure 5.2: Approximation of curve (5.8) with
ε = 0.05.

i Partition ‖ σ1(λ)− pi(λ) ‖∞ N
1 [0, 2π] 0.0497 77
2 [2π, 4π] 0.0497 77

Table 5.2: Approximation results of
curve (5.8) with ε = 0.05.

the curve (5.9) with a sequence of polynomials pi(λ), such that maxλ∈Ii ‖σ1(λ)−pi(λ)‖ < ε.
In this case the given error tolerance is ε = 0.45. Figure 5.3 represents the parameterized
curve (5.9) approximated with a sequence of polynomials pi(λ). The original curve is
represented by a dashed line while the approximated curve is represented by a solid line
in Figure 5.1. Solid dots in the Figure 5.3 represent the partition points. The simulation

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Approximation of a given path using polynomials

Figure 5.3: Approximation of curve (5.9) with
ε = 0.45.

i Partition ‖ σ1(λ)− pi(λ) ‖∞ N
1 [0, 2π] 0.4282 6
2 [2π, 4π] 0.00 1

Table 5.3: Approximation results of
curve (5.9) with ε = 0.45.

results are represented in Table 5.1. It is interesting to note that the non-smooth part of
the curve belongs to the partition [0, 2π] and is approximated by a polynomial of order
six, as seen form Table 5.1. The error is within the specified limit. However the part of
the curve is a straight line in the partition [2π, 2π] and it is trivially approximated by a
polynomial of degree 1, i.e., a straight line with the approximation error equal to zero.

76

Simulation IV As it can be observed from the last simulation that the error in the
approximation ‖ σ1(λ)− pi(λ) ‖∞ for the non-smooth partition is quite large. For certain
applications better approximation may be required, so we desire to reduce the error. Given
the curve (5.9), we want to approximate it such that the ‖ σ1(λ)−pi(λ) ‖∞< 0.15. Similar
to the previous simulation, the curve is defined on the interval [0, 4π] and the interval [0, 4π]
is divided into 2 equal partitions of length 2π. As seen from Figure 5.4 the approximation
is better compared to the previous case. The reason for the better approximation is that
a more strict error tolerance ε = 0.15 is used. However, it is interesting to observe from
Table 5.4 that the order of the polynomial in the partition [0, 2π] has increased significantly
compared to the previous simulation while the order of the polynomial remains the same
in the partition [2π, 4π]. This is because the curve to be approximated in the partition
[2π, 4π] is straight line and in is approximated with zero error with a straight line.

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Approximation of a given path using polynomials

Figure 5.4: Approximation of curve (5.9) with
ε = 0.15.

i Partition ‖ σ1(λ)− pi(λ) ‖∞ N
1 [0, 2π] 0.1470 51
2 [2π, 4π] 0.00 1

Table 5.4: Approximation results of
curve (5.9) with ε = 0.15.

5.4 Solution to the General Problem

The most general curves in R
2 can be represented as (5.1). We solved our special problems

in two parts; approximation and implicitization. The idea to solve the general problem is
that we consider σ1(λ) and σ2(λ) as two separate curves. We take σ1(λ) and treat it as
a special problem in order to approximate it with a polynomial. We then take σ2(λ) and
treat it again as a special problem and approximate it with a polynomial.The approximated
parameterized path can be represented as,

σ : R → R
2 (5.10)

λ 7→

[∑n

i=0 aiλ
n
a,i∑m

i=0 biλ
m
b,i.

]

77

Although (5.10) is not a zero level representation, rather it is a parameterized repre-
sentation. Its special structure allows us to convert it to a zero level set (implicit form).

5.4.1 Implicitization

Given a parametric curve of the form (5.10), we can represent (5.10) as a zero level set of
a function, or implicit form

σ(R) = {y ∈ R
p : s(y) = 0}, (5.11)

by the Sylvester matrix elimination method [52].

5.4.2 Sylvester Matrix Elimination Method

The Sylvester matrix elimination method is based on the concept of resultant of two poly-
nomials, see Definition A.3.10. The resultant of two polynomials can easily be derived
by thinking of polynomials as linear equations in powers of x. For ease of exposition,
we consider the case where p(x) is of second order polynomial and q(x) is of third order
polynomial. Once the basic idea has been grasped, it is straight forward to extend it to
polynomials of any orders. Consider,

p(x) = a2x
2 + a1x+ a0 = 0

q(x) = b3x
3 + b2x

2 + b1x+ b0 = 0
(5.12)

The above equation can be written in matrix form as

[
0 a2 a1 a0

b3 b2 b1 b0

]

x3

x2

x

1

=

0

0

0

0

. (5.13)

It was shown by the authors in [52], Theorem 1, that the above system can be written
as square matrix form by augmenting the system of equation p(x) and q(x) with new
equations of form xk−1p(x) = 0 or xl−1q(x) = 0, where k − 1 and l − 1 are the order of

78

polynomials q(x) and p(x) respectively. Now consider the system,

p(x) = 0

xp(x) = 0

x2p(x) = 0

q(x) = 0

xq(x) = 0

(5.14)

so the above system of equation can be written in the matrix form as,

0 0 a2 a1 a0

0 a2 a1 a0 0

a2 a1 a0 0 0

0 b3 b2 b1 b0

b3 b2 b1 b0 0

x4

x3

x2

x

1

=

0

0

0

0

0

. (5.15)

One important property of homogeneous matrix equations involving square matrix in that
they only have non-trivial solutions when the determinant of the matrix vanishes. The
system p(x) = 0, q(x) = 0 only has a solution when p and q have a common root. Hence
the determinant will vanish whenever p and q have a common root.

Now we can extend that method to any general integral polynomial. Consider, for
n,m ≥ 1

p(x) = anx
n + . . .+ a1x+ a0 = 0

q(x) = bmx
m + . . .+ b1x+ b0 = 0,

(5.16)

the system can be written in the matrix form as

0 · · · · · · 0 an · · · a1 a0

0 · · · 0 an · · · a1 a0 0

· ·

an · · · a1 a0 0 · · · · · · 0

0 · · · · · · 0 bm · · · b1 b0

0 · · · 0 bm · · · b1 b0 0

· ·

bm · · · b1 b0 0 · · · · · · 0

xn+m−1

xn+m−2

...

xn

...

xm

...

1

=

0

0

0

0

0

0

0

0

. (5.17)

79

In [63] the authors show that the resultant of the given two polynomials can be defined as
a Sylvester matrix. Similarly, the Sylvester matrix for the given polynomials (5.16) can be
written as,

S =

0 · · · · · · 0 an · · · a1 a0 − p

0 · · · 0 an · · · a1 a0 − p 0

· ·

an · · · a1 a0 − p 0 · · · · · · 0

0 · · · · · · 0 bm · · · b1 b0 − q

0 · · · 0 bm · · · b1 b0 − q 0

· ·

bm · · · b1 b0 − q 0 · · · · · · 0

. (5.18)

The resultant of the Sylvester matrix (5.18) can be computed using Maple or Matlab’s
symbolic tool box. It is shown in [63], [52] that the resultant, which is an equation involving
two variables x and y, represent the implicit form of the given rational parameterized curve
defined by equations (5.16).

Implicitization of Parametric Curve

It is easy to implicitize a planar curve using elimination theory, and in fact the problem was
addressed specifically in [52], [48], [49]. To illustrate the procedure consider the following
example. Given a parameterized curve of form (5.10)

σ : R → R
2 (5.19)

λ 7→

[
a2λ

2 + a1λ+ a0

b2λ
2 + b1λ+ b0.

]

In particular (5.19) can be written as,

a2λ
2 + a1λ+ (a0 − x),

b2λ
2 + b1λ+ (b0 − y),

(5.20)

the resultant of these two polynomials, which represent the implicit form of 5.19, is then
defined by Sylvester matrix

S =

a2 a1 a0 − x 0

0 a2 a1 a0 − x

b2 b1 b0 − y 0

0 b2 b1 b0 − y

. (5.21)

80

Since the resultant expresses the relationship which must exist among the coefficients in
order for there to exist a λ which simultaneously satisfies both equations, the resultant
itself is the implicit form of the curve [52]. The determinant of (5.21) is given by,

|S| = b22x
2 − 2a2b2xy + a22y

2

+ (2a2b2b0 + a1b1b2 − a2b
2
1 − a0b

2
2)x

+ (a2b1a1 + 2a2b2a0 − 2a22b0 − a21b2)y

+ (a2b0 − a0b2)
2 + (a1b2 − a2b1)

× (a1b0 − a0b1) = 0.

Using this method we can convert parametric equation (5.1)to implicit form which can
be represented as a function of zero level set. Hence the general problem is solved. The
general problem is solved in two steps i) A parameterized curve is converted to a rational
parameterized form. ii) The rational parameterized curve is converted to implicit form
relying relying on elimination theory. If the given curve is a rational parametric curve
then the procedure discussed above implicitize the curve with zero error. Since, a general
curve may not be a rational parametric curve, therefore, by using algorithm 2, we first
approximate the given general parametric curve to a rational parametric curve and then
we use the procedure discussed above to convert the approximated curve to implicit form.
It is interesting to note that the implicitization error is equal to the approximation error
because in the procedure of implicitization approximation occurs only at the first step.
There is no approximation involve in step two discussed in Section 5.4.2.

Simulation Results

In this section, we apply the results of Section 5.4.2 and Algorithm 2 to few examples.

Simulation I and II In this simulation, we consider the following parametric curve,

σ : R → R
2 (5.22)

λ 7→

[
2 cos(λ) + cos(8λ)

2 sin(λ) + sin(8λ)

]
.

The curve is defined on the interval [0, 2π]. Furthermore, the interval [0, 2π] is divided into
8 equal partitions. Given an error tolerance ε, we want to approximate the curve (5.22) with
a sequence of polynomials pi(λ), such that maxλ∈Ii ‖σ(λ)−pi(λ)‖ < ε. In the first case, the
given error tolerance is ε = 0.25. Figure 5.5(a) represents the parameterized curve (5.22)
approximated with a sequence of polynomials pi(λ) for ε = 0.25. In the second case, the
same curve is approximated with a sequence of polynomials for ε = 0.05 and the results

81

are shown in Figure 5.5(b). The original curve is represented by a dashed line while the
approximated curve is represented by a solid line in Figure 5.5(a) and Figure 5.5(a). Solid
dots in Figure 5.5(a) and Figure 5.5(a) represent the partition points. It is observed from
the Figure 5.5 that the order of the polynomial increases as a small approximation error
is when a smaller value of ε is used.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

Approximation of a given path using polynomials

(a) ε = 0.25.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

Approximation of a given path using polynomials

(b) ε = 0.05

Figure 5.5: Approximation of curve (5.22).

The simulation parameter corresponding to Figure 5.5(a) are shown in Table 5.5 while
the simulation parameters corresponding to Figure 5.5(a) are shown in Table 5.6. It in
interesting to note from the Table 5.7 that the order of the approximated polynomial
increases as we decrease the error tolerance. By approximating the curve (5.22) with poly-
nomials means the curve (5.22) is represented by eight implicit rational parametric curves
each defined on their corresponding intervals. By following the procedure of Sylvester ma-
trix discussed in Section 5.4.2 the approximated rational parametric curve can be easily
written as in the form of Sylvester matrix (5.18) and further converted to implicit by taking
the determinant of the the sylvester matrix. The determinant can be easily computed by
using Matlab or Maple symbolic tool box.

Simulation III and IV In this simulation we consider the following parametric curve,

σ : R → R
2 (5.23)

λ 7→

√
M
2
cos(λ)√

M
2
sin(λ),

 .

The curve is called Cassinian Oval, where,

M = 2a2 cos(2λ) + 2
√

(−a4 + b4) + a4(cos(2λ))2.

82

i ‖ σ(λ)− pi(λ) ‖∞ N
1 0.2199 3
2 0.2199 2
3 0.2199 2
4 0.2199 3
5 0.2199 3
6 0.2199 2
7 0.2199 2
8 0.2199 3

Table 5.5: ε = 0.25

i ‖ σ(λ)− pi(λ) ‖∞ N
1 0.0496 94
2 0.0496 96
3 0.0496 98
4 0.0496 100
5 0.0496 100
6 0.0496 98
7 0.0496 96
8 0.0496 94

Table 5.6: ε = 0.25

Table 5.7: Approximation results of the curve (5.22)

Similar to the Simulation III and IV, the curve is defined on the interval [0, 2π]. Fur-
thermore, the interval [0, 2π] is divided into 8 equal partitions. For a given error tolerance
ε, we want to approximate the curve (5.23) with a sequence of polynomials pi(λ), such
that maxλ∈Ii ‖σ(λ) − pi(λ)‖ < ε. In the first case the given error tolerance is ε = 0.25.
Figure 5.6(a) represents the parameterized curve (5.23) approximated with a sequence of
polynomials pi(λ) for ε = 0.25. In the second case the same curve is approximated with a
sequence of polynomials for ε = 0.05 and the results are shown in Figure 5.6(b). The origi-
nal curve is represented by a dashed line while the approximated curve is represented by a
solid line in Figure 5.5(a) and Figure 5.5(a). Solid dots in Figure 5.5(a) and Figure 5.5(a)
represent the partition points. It is observed from the Figure 5.5 that the order of the
polynomial increases as a small approximation error is when a smaller value of ε is used.

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Approximation of a given path using polynomials

(a) ε = 0.25.

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Approximation of a given path using polynomials

(b) ε = 0.05

Figure 5.6: Approximation of curve (5.23).

83

The simulation parameter corresponding to Figure 5.6(a) are shown in Table 5.8 while
the simulation parameters corresponding to Figure 5.6(b) are shown in Table 5.9. It in
interesting to note from the Table 5.10 that the order of the approximated polynomial
increases as we decrease the error tolerance. Once the curve (5.23) is approximated by
polynomials, i.e., the curve is converted to rational parameteric form by following the pro-
cedure of Sylvester matrix discussed in Section 5.4.2 the approximated rational parametric
curve can be easily written as in the form of Sylvester matrix (5.18) and further converted
to implicit form using Matlab or Maple symbolic tool box.

i ‖ σ(λ)− pi(λ) ‖∞ N
1 0.2199 3
2 0.2199 2
3 0.2199 2
4 0.2199 3
5 0.2199 3
6 0.2199 2
7 0.2199 2
8 0.2199 3

Table 5.8: ε = 0.25

i ‖ σ(λ)− pi(λ) ‖∞ N
1 0.0480 15
2 0.0480 9
3 0.0480 9
4 0.0480 15
5 0.0480 15
6 0.0480 9
7 0.0480 9
8 0.0480 15

Table 5.9: ε = 0.25

Table 5.10: Approximation results of the curve (5.22)

84

Chapter 6

Conclusion and Future Work

In the field of mobile robotics trajectory tracking and path following are the most funda-
mental tasks of practical interest. Path following is desirable in many situations because
the invariance of path can be achieved by casting the problem of path following as a set
stabilization problem.

In this thesis, the path following problem was investigated using feedback linearization
for unicycle robot, car-like robot and the standard car-like robot attached with trailer
systems. In Chapter 2, the problem is analyzed for the unicycle and it was proved that the
path following controller works for a unit circle path. In Chapter 3, it was shown that the
approach can be used for a large class of general curves. It was shown that, by dynamic
extension, certain path following objectives can be achieved. The main drawback was that
the procedure was not applicable for a large class of general nonlinear systems. However,
the procedure is proposed for a large class of general curves. In this thesis mobile robots
that fall in the category of differentially flat systems were considered. Instead of analyzing
the problem from the point of view of differential flatness and using the differential flat
outputs, physically meaningful outputs were used. It would be interesting in the future
to use outputs or systems that are not differentially flat and design a controller using the
proposed procedure.

In Chapter 4, a 1-trailer system attached with car-like robot was investigated. Although
the system is differentially flat, the system is a non-regular system. Thus, the procedure
designed in Chapter 2 and 3 cannot be used because the system does not have a well
defined relative degree. By considering a circular curve, it was shown by simulation that
the procedure can be used for such a system by approximating the vector fields of the
original system. However, due to vastly complicated expressions a formal mathematical
proof was not provided and a suggestion for future research is to prove results for the
standard 1-trailer system. It is already proved that the general n-trailer system is not

85

differentially flat. Therefore, the application of the proposed technique to such systems
would be of interest.

The procedure of dynamic transverse feedback linearization requires both zero level
set or an implicit representation and a parametric representation of the curve. A lack of
general procedure of implicitization restricts the generalization of the procedure for the
general curves. In surveyed literature the path following or tracking problems are solved
for specific systems and specific curves, and these methods lack the general procedure,
one such example is the controller design by Lyapunov technique. One of our objectives
in this thesis was to solve the path following problem for specific systems but also for
a large class of general curves. This motivates representing general curves in a similar
setting. In Chapter 5 a procedure is provided to approximate any given parametric curve
with a rational parametric curve. It was shown based on elimination theory that the
rational parametric curves can be converted to implicit form. One drawback of the proposed
technique was that the order of the approximated rational parametric curve becomes very
large as the approximation error becomes small. This results in the procedure being not
well suited for applications where computation power is limited.

One of the future research directions in which the work can be extended include ro-
bustification of the controller and hybrid controller that switches through singularities. In
this thesis one of the assumptions was that the curves are not self intersecting. It would
be interesting in the future to prove results for self intersecting curves. A practical con-
tribution could be to apply the results proven in this thesis to a practical robot. Another
interesting future research work can be to prove result for a large class of general nonlinear
system. The controller design approach used in this thesis was applied to few specific cases
of mobile robots. The extension of this approach to other robotic systems in specific and
other non-robotic systems in general would be quite interesting.

86

Appendix A

Basic Concepts

This Appendix reviews some of the basic concepts used in this thesis. We review very
briefly some definitions from algebra, analysis and differential geometry. We discuss few
definitions and important results of control system theory and feedback transformation
that is used periodically in this book. Finally we give a brief overview of elimination
theory and curve approximation. The purpose of this appendix is to give an informal and
intuitive review of some of the basic tools used in this thesis. These concepts are taken
from [29], [31], [51], [46], [60], [41], [25], [45].

A.1 Review of Algebra, Analysis and Differential Ge-

ometry

Informally a map is an operator taking elements from its domain, and generating elements
in its co-domain. Let U and V be open subsets of Rn and Rm respectively. A function f
is sometimes called a mapping, and we say that f maps a domain element a ∈ U to its
codomain element b ∈ V , sometimes called the image of a. In symbols, we might write
f : U → V and f : a 7→ b. Surjective, injective and bijective maps are the basis properties
of maps.

Definition A.1.1. A map f : U ⊆ R
n → V ⊆ R

m is surjective or onto if for each y ∈ V
there exist at least one x ∈ U such that f(x) = y.

Definition A.1.2. A map f : U ⊆ R
n → V ⊆ R

m is injective or one-to-one if, x1, x2 ∈
U, f(x1) = f(x2) implies x1 = x2.

Definition A.1.3. A map f : U ⊆ R
n → V ⊆ R

m is bijective if it is both injective and
surjective.

87

Definition A.1.4. A group G is a set with a binary operation (.) : G×G 7→ G, such that
the following properties are satisfied:

1. associativity: (a.b).c = a.(b.c) for all a, b, c ∈ G

2. ∃ an identity element e such that e.a = a.e = a for all a ∈ G

3. ∀a ∈ G there exists an inverse a−1 such that a.a−1 = a−1.a = e

Definition A.1.5. A homomorphism between groups, φ : G 7→ H, is a map which preserves
the group operation

φ(a.b) = φ(a).φ(b).

Definition A.1.6. An isomomorphism is a homomorphism that is bijective.

Smooth Manifold and Smooth Maps Roughly speaking, manifold are ,locally, vector
spaces but are globally curved spaces. For example the surface of earth is “locally flat” but
globally curved and globally the surface of earth is not a vector field. Although manifolds
resemble Euclidean spaces near each point (”locally”), the global structure of a manifold
may be more complicated. For example, any point on the usual two-dimensional surface
of a sphere is surrounded by a circular region that can be flattened to a circular region of
the plane, as in a geographical map. However, the sphere differs from the plane.

Let U and V be open subsets of Rn and Rm respectively. A mapping f : U 7→ V
is called smooth if f is differentiable and the derivative of the map ∂f/∂x is continuous.
In this case the function f is of class C1. If f is rth order differentiable and ∂rf/∂x is
continuous then we say f is of class Cr. If f is smooth for all finite r then we say f is
smooth or of class C∞

Definition A.1.7. A map f : U ⊂ Rn → V ⊂ Rm is diffeomorphism if f is a homeomor-
phism (i.e., a one-to-one or injective continuous map with continuous inverse) and if both
f and f−1 are smooth.

Definition A.1.8. A subset M ⊂ Rk is called a smooth manifold of dimension m if for
each x ∈M there is a neighborhood W ∩M , where W ⊂ Rk, that is a diffeomorphic to an
open subset U ⊂ Rm

A submanifold is simply a smaller manifold inside a larger manifold.

88

A.1.1 Vector fields and their Derivatives

A vector field is an assignment of a vector to each point in a subset of Euclidean space. A
vector field in the plane for instance can be visualized as an arrow, with a given magnitude
and direction, attached to each point in the plane. Vector fields are often used to model
speed and direction of a moving objects throughout space, for example speed and direction
of a mobile robot. The following demonstrates the notion of vector field,

f(x) =

x23
x2

1 + x21

 =

∂x23
∂x1

+
∂x2
∂x2

+
∂(1 + x21)

∂x3
. (A.1)

The Lie derivative also called the direction derivative evaluates the change of a vector
field along the flow of another vector field. This change is coordinate invariant and therefore
the Lie derivative is defined on any differentiable manifold.

Definition A.1.9. Consider a vector field f and a real valued function,

λ : U ⊆ R
n → R, (A.2)

the derivative of λ along f is a function Lfλ : U → R defined as

Lfλ(x) := 〈dλ(x), f(x)〉 =
∂λ

∂x
f(x) =

n∑

i=1

∂λ

∂xi
fi(x), (A.3)

which is also called the Lie derivative or directional derivative of λ along f , where 〈., .〉 is
the Euclidean inner product.

Repeated use of this operator is possible and the following notation can be used,

LgLfλ(x) :=
∂Lfλ(x)

∂x
g(x) =

n∑

i=1

∂Lfλ

∂xi
gi(x). (A.4)

The operation can be recursively defined, such that taking the k derivatives of λ along f
would be denoted by Lk

f where,

Lk
fλ(x) :=

∂Lk−1
f λ(x)

∂x
f(x) =

n∑

i=1

∂Lk−1
f λ

∂xi
fi(x). (A.5)

89

A.2 Nonlinear Control Systems

Consider a time-invariant, finite-dimensional, deterministic control-affine system with m
inputs, u := [u1 · · ·um]

> ∈ Rm and p outputs and f : Rn → Rn, gi : Rn → Rn and
h : Rn → R

p are smooth Cr maps.

ẋ = f(x) +
m∑

i=1

gi(x)ui := f(x) + g(x)u, (A.6)

(A.7)

and consider a function,

y = h(x) =

h1(x)
...

hp(x)

 , ∀y ∈ R

p, (A.8)

which is the output of the system. The relative degree is the key concept in solving feedback
linearization problem.

Definition A.2.1. Consider system (A.6) with u ∈ R and with output function (A.8) with
m = p = 1 i.e., y = h(x), y ∈ R. The system has a relative degree of r at a point x0 if

1. LgL
k
fh(x) = 0, ∀x ∈ a neighborhood of x0 and ∀k < r − 1,

2. LgL
r−1
f h(x0) 6= 0.

The relative degree of a single input single output (SISO) system in the number of
times we need to differentiate the output before the control input appears. A notion,
called the vector relative degree can be defined for the multiple-input multiple-output
(MIMO) systems.

Definition A.2.2. Consider system A.6 with m = p. We define an m×m matrix,

A(x) :=

Lg1L
r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmL

r2−1
f h2(x)

...
. . .

...

Lg1L
rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)

. (A.9)

The system has a vector relative degree of {r1, . . . rm} at a point x0 if

90

1. LgjL
k
fhi(x) = 0, ∀1 ≤ j ≤ m for all k < ri − 1 for all 1 ≤ i ≤ m and for all x in a

neighborhood of x0.

2. The matrix A(x) is nonsingular at x = x0,

A.2.1 Feedback Linearization

Feedback linearization is a way of transforming the original nonlinear system model into
equivalent model of simpler form. The central idea of feedback linearization is to alge-
braically transform nonlinear systems dynamics into (fully or partly) linear ones, so that
linear control techniques can be applied. This differs entirely from conventional (Jacobian)
linearization, because feedback linearization is achieved by exact state transformation and
feedback, rather than by linear approximations of the dynamics.

SISO Input-Output Feedback Linearization

A control technique where the output of the dynamic system is differentiated until the
physical input appears in the derivative of the output. Consider (A.6) with m = p = 1. If
the output of the system yields a well defined relative degree it can be transformed into a
linear input-output map via a coordinate and feedback transformation. By applying the
local change of coordinates

T : U → T (U)

x 7→ (η, ξ),

where,

T =

ϕ1(x)
...

ϕn−r(x)

h(x)

Lfh(x)
...

Lr−1
f h(x)

,

and,

η := ϕ(x) =
[
ϕ1(x) ϕ2(x) · · · ϕn−r(x)

]>
,

and
ξ :=

[
h(x) Lfh(x) · · · Lr−1

f h(x)
]>
.

91

Proposition 4.1.3 in Isidori [29] shows the possibility of finding n− r more functions ϕ(x)
such that the coordinate transformation T is diffeomorphism, at least locally in the neigh-
borhood of x0. The system can be described in the new coordinates reads,

η̇ =
dϕ(x(t))

dt

=
∂ϕ(x)

∂x
ẋ

=
∂ϕ(x)

∂x
(f(x) + g(x)u)

∣∣∣∣
x=T−1(η,ξ)

=
∂ϕ(x)

∂x
f(x)

∣∣∣∣
x=T−1(η,ξ)

+
∂ϕ(x)

∂x
g(x)u

∣∣∣∣
x=T−1(η,ξ)

= p(η, ξ) +
m∑

i=1

qi(η, ξ)ui

:= p(η, ξ) + q(η, ξ)u,

and

ξ̇1 = ξ2
...

ξ̇r−1 = ξr

ξ̇r = Lr
fh(x)

∣∣
x=T−1(η,ξ)

+ LgL
r−1
f h(x)u

∣∣
x=T−1(η,ξ)

:= b(η, ξ) + a(η, ξ)u.

If a(η, ξ) is bounded away from zero for all x in the neighborhood of x0, then we can choose
a smooth, regular, static feedback

u =
1

a(η, ξ)
(−b(η, ξ) + υ).

Hence, by partial input-output feedback linearization the system can be represented in the
following partial linear form.

92

η̇ = p(η, ξ)

ξ̇1 = ξ2

...

ξ̇r−1 = ξr

ξ̇r = υ.

MIMO Input-Output Feedback Linearization

The concept of MIMO system is analogus to to SISO sytem. If the output of the system
yields a well defined vector relative degree it can be transformed into a linear input-
output form via a coordinate and feedback transformation. By applying the local change
of coordinates

T : U → T (U)

x 7→ (η, ξ),

such that

93

T (x) =

ϕ1(x)

ϕ2(x)
...

ϕ
n−

m∑
i=1

ri(x)
(x)

h1(x)

Lfh1(x)
...

Lr1−1
f h1(x)

h2(x)

Lfh2(x)
...

Lr2−1
f h2(x)

...

Lrm−1
f hm(x)

,

where {r1 · · · rm} is the vector relative degree of the system. we define,

η := ϕ(x) =

[
ϕ1(x) ϕ2(x) · · · ϕ

n−
m∑
i=1

ri(x)

]>
,

and

ξ :=
[
h1(x) Lfh1(x) · · · Lr1−1

f h1(x) · · ·hm(x) Lfhm(x) · · · Lrm−1
f hm(x)

]>
,

by ξij we mean jth derivative of the ith input. The η-dynamics in MIMO case is similar
to SISO case. However, ξ-dynamics for the multiple inputs are

ξ̇i1 = ξi2

ξ̇i2 = ξi3
...

ξ̇iri−1 = ξiri

ξ̇ri = bi(η, ξ) +
m∑

k=1

aik(η, ξ)uk,

94

with i ∈ {1, · · · , m} and where,

aik(η, ξ) = LgkL
ri−1
f hi(x)

∣∣
x=T−1(η,ξ)

, k ∈ {1, · · · , m},

bi(η, ξ) = Lri
f hi(x)

∣∣
x=T−1(η,ξ)

,

where gk denotes the kth column of g. From Lemma 5.1.1 and Proposition 5.1.2 in
Isidori [29] shows that it is always possible to choose n − r more functions ϕ(x) such
that T is diffeomorphism, in the neighborhood of x0. We define,

β(η, ξ) :=

−b1(η, ξ)

−b2(η, ξ)
...

−bm(η, ξ)

,

and

α(η, ξ) :=

a11(η, ξ) a12(η, ξ) · · · a1m(η, ξ)

a21(η, ξ) a22(η, ξ) · · · a2m(η, ξ)
...

...
. . .

...

am1(η, ξ) am2(η, ξ) · · · amm(η, ξ)

−1

.

This suggests a control law

u = α(η, ξ)(β(η, ξ) + υ),

where υ ∈ Rm. This feedback transforms the system (A.6) into a partial linear input-output
system,

η̇ = p(η, ξ) + q(η, ξ)υ

ξ̇i1 = ξi2
...

ξ̇iri−1 = ξiri

ξ̇iri = υi.

95

A.3 Curve Approximation

The controller design proposed in this thesis relies on parameterized as well as implicit
representation of curves. The curve approximation and implicitization procedure in the
thesis rely on these mathematical concepts drawn from [60], [46], [18], [16], [12].

Definition A.3.1. Let U and V be open sets of Rn and Rm respectively. A function
f : U −→ V is uniformly continuous if

(∀ε > 0) (∃δ > 0) (∀x, y ∈ U) ‖x− y‖ < δ ⇒ ‖f(x)− f(y)‖ < ε.

Unlike ordinary continuity, for uniform continuity δ can not depend on x ∈ U . Uniform
continuity is a stronger condition than continuity at a point. Uniform continuity implies
continuity but the converse is not true.

Theorem A.3.2 ([46] Theorem 44). Every continuous function defined on a compact set
is uniformly continuous.

Definition A.3.3. Let fn be a sequence of real valued functions. The function fn converges
uniformly to f on I if for each ε > 0 there exits N such that for every n > N the inequality
|fn(x)− f(x)| < ε holds for all x ∈ I.

Definition A.3.4. Let x ∈ R and for each n ∈ N, k ∈ {0, . . . , n}, consider the polynomial

pkn(x) :=

(
n

k

)
xk(1− x)n−k, (A.10)

where
(
n

k

)
is the binomial coefficient n!/k!(n− k)!. The polynomial pkn(x) is called a basic

Bernstein polynomial of degree n.

For each fixed n, there are n+1 basic Bernstein polynomials of degree n corresponding
to k ∈ {0, . . . , n}. These basic polynomials form a basis for the finite-dimensional vector
space of polynomials of degree n.

Let [a, b] ⊂ R denote a compact interval of the real line with end points a < b. Let
C0([a, b],R) denote the set of continuous real-valued functions with compact domain [a, b].
Our interest in the basic Bernstein polynomials comes from the fact that they can be used
to prove the following theorem.

Theorem A.3.5 (Weierstrass Approximation Theorem). The set of polynomials is dense
in C0([a, b],R).

96

Density means that for each f ∈ C0([a, b],R) and each ε > 0 there exists a polynomial
function p(x) such that for all x ∈ [a, b],

|f(x)− p(x)| < ε.

There are various proofs of Theorem A.3.5 in the literature but we rely on the constructive
proof presented in 1912 by S.N. Bernstein. For the complete proof the readers are referred
to [18].

Given a continuous function f : [a, b] −→ R, there is no loss of generality to assume
that the interval [a, b] is [0, 1]. Bernstein’s proof of Theorem A.3.5 uses the basic polyno-
mials (A.10) and the function f : [0, 1] −→ R to define a sequence of polynomials

Bf
n(x) :=

n∑

k=0

ckp
k
n(x), (A.11)

where
ck := f (k/n) .

The polynomial Bf
n(x) is a polynomial of degree at most n and is called a Bernstein

polynomial. The nth Bernstein polynomial Bf
n(x) converge uniformly to f as n→ ∞ [46].

Definition A.3.6. Let k be a field. A polynomial f ∈ k[x1, · · · , xn] is irreducible over k if
it is nonconstant and is not the product of two nonconstant polynomials in k[x1, · · · , xn].

This leads to the following result.

Proposition A.3.7. Every nonconstant polynomial f ∈ k[x1, · · · , xn] can be written as a
product of polynomials which are irreducible over k.

Proposition A.3.8. Let f ∈ k[x1, · · · , xn] be irreducible over k and suppose that f divides
the product gh, for g, h ∈ k[x1, · · · , xn]. Then f divides either g or h.

Proposition A.3.9. Let f, g ∈ k[x] be polynomials of degree l > 0 and m > 0, respectively.
Then f and g have a common factor if and only if there are polynomials A,B ∈ k[x] such
that

1. A and B are not both zero,

2. A has degree at most m− 1 and B has degree at most l − 1,

3. Af +Bg = 0.

97

Definition A.3.10. Given polynomials f, g ∈ k[x] of positive degree, write them in the
form

f = a0x
l + · · ·+ al, a0 6= 0,

g = b0x
m + · · ·+ bm, b0 6= 0.

Then the Sylvester matrix of f and g with respect to x is the coefficient matrix of the system
of equation given above. The Sylvester matrix is the following (l +m)× (l +m) matrix:

Syl(f, g, x) :=

a0 0 · · · 0 b0 0 · · · 0

a1 a0
. . .

... b1 b0
. . .

...

a2 a1
. . . 0 b2 b1

. . . 0
...

. . . a0
...

. . . b0
... a1

... b1

al−1 bm−1

al al−1
... bm bm−1

...

0 al
. . . 0 bm

. . .

...
. . .

. . . al−1
...

. . .
. . . bm−1

0 · · · 0 al 0 · · · 0 bm

. (A.12)

The resultant of f and g with respect to x, denoted by Res(f, g, x) is the determinant of
the Sylvester matrix,

Res(f, g, x) = det(Syl(f, g, x)).

Proposition A.3.11. Given f, g ∈ k[x] of positive degree, the resultant Res(f, g, x) ∈ k is
a polynomial in the coefficients of f and g. Furthermore, f and g have a common factor
in k[x] if and only if Res(f, g, x) = 0.

Proposition A.3.12. Given f, g ∈ k[x] of positive degree, there are polynomials A,B ∈
k[x] such that

Af +Bg = Res(f, g, x).

Furthermore, the coefficients of A and B are integer polynomials in the coefficients of f
and g.

98

Appendix B

Matlab Codes

B.1 Transverse Feedback Linearization: code

Following is the code that computes all the η-states for the car-like robot attached with
one trailer system.

1 %%%%%%%%% car−like robot with constant speed %%%
2 clc
3 clear all
4 close all
5 syms x1 x2 x3 x4 x5 v L u d1
6 syms a0 a1 a2 a3 k1 k2
7

8 %% System
9 fx=[v * cos(x3);v * sin(x3);(v/L) * tan(x4);0;(v/d1) * sin(x3 −x5)];

10 gx=[0;0;0;1;0];
11 %% Path
12 %S=x2−cos(x1); %% Sinusoidal path
13 S=(x1 −d1* cos(x5))ˆ2+(x2 −d1* sin(x5))ˆ2 −1;
14 %% First Lie Derivative
15 pd=[diff(S,x1) diff(S,x2) diff(S,x3) diff(S,x4) diff(S, x5)];
16 LfS=pd * fx;
17 LgS=pd* gx * u
18 S dot=LfS+LgS
19 S dot simplify=simplify(S dot);
20 pretty(S dot simplify);
21

22 %% Second Lie derivative
23 pd=[diff(S dot,x1) diff(S dot,x2) diff(S dot,x3) diff(S dot,x4) ...

diff(S dot,x5)];

99

24 Lf2S=pd * fx;
25 LgLfS=pd * gx * u
26 S ddot=simplify(Lf2S+LgLfS)
27 % % %
28 %% Third Derivative
29 pd=[diff(S ddot,x1) diff(S ddot,x2) diff(S ddot,x3) diff(S ddot,x4) ...

diff(S ddot,x5)];
30 Lf3S=pd * fx
31 LgLf2S=pd * gx
32 LgLf2S =0;
33 %u=(−Lf3S −k1* S−k1 * LfS −k2* Lf2S)/(LgLf2S)
34 S d3dot=simplify(Lf3S+LgLf2S * u);
35

36 %% Forth Derivative
37 pd=[diff(S d3dot,x1) diff(S d3dot,x2) diff(S d3dot,x3) ...

diff(S d3dot,x4) diff(S d3dot,x5)];
38 Lf4S=pd * fx
39 LgLf3S=pd * gx
40

41 u=(−Lf4S −k1* S−k1* LfS −k2 * Lf2S −k1 * Lf3S)/(LgLf3S)

B.2 Dynamic Transverse Feedback Linearization: code

Following is the code that computes all the η and ξ-states for the car-like robot attached
with one trailer system.

1 %%%%%%%%% car−like robot attached with one trailer system %%%
2 clc
3 clear all
4 close all
5 syms x1 x2 x3 x4 x5 x6 x7 v L u d1
6 syms a0 a1 a2 a3 k1 k2
7 X=[x1 x2 x3 x4 x5 x6 x7];
8

9 %% System
10 fx=[(v+x6) * cos(x3);(v+x6) * sin(x3); ...
11 (v+x6)/L) * tan(x4);0;((v+x6)/d1) * sin(x3 −x5);x7;0];
12 g1x=[0;0;0;1;0;0;0];
13 g2x=[0;0;0;0;0;0;1];
14 %% Path: Circular Path
15 S=(x1 −L* cos(x5))ˆ2+(x2 −L* sin(x5))ˆ2 −1
16 %% First Lie Derivative
17 pd=[diff(S,x1) diff(S,x2) diff(S,x3) diff(S,x4) diff(S, x5) diff(S,x6) ...

diff(S,x7)];

100

18 LfS=pd * fx;
19 Lg1S=pd * g1x * u
20 Lg2S=pd * g2x * u
21 S dot=LfS+Lg1S+Lg2S
22 S dot simplify=simplify(S dot)
23 pretty(S dot simplify);
24 %% Second Lie derivative
25 pd=[diff(S dot,x1) diff(S dot,x2) diff(S dot,x3) diff(S dot,x4) ...

diff(S dot,x5) diff(S dot,x6) diff(S dot,x7)];
26 Lf2S=pd * fx;
27 Lg1LfS=pd * g1x * u
28 Lg2LfS=pd * g2x * u
29 S ddot=simplify(Lf2S+Lg1LfS+Lg2LfS)
30 % % %
31 %% Third Lie Derivative
32

33 pd=[diff(S ddot,x1) diff(S ddot,x2) diff(S ddot,x3) diff(S ddot,x4) ...
diff(S ddot,x5) diff(S ddot,x6) diff(S ddot,x7)];

34 Lf3S=pd * fx
35 Lg1Lf2S=pd * g1x
36 Lg2Lf2S=pd * g2x
37 S d3dot=simplify(Lf3S);
38

39 %% Forth Derivative
40 pd=[diff(S d3dot,x1) diff(S d3dot,x2) diff(S d3dot,x3) ...

diff(S d3dot,x4) diff(S d3dot,x5) diff(S d3dot,x6) diff(S d3dot,x7)];
41 Lf4S=pd * fx
42 Lg1Lf3S=pd * g1x
43 Lg2Lf3S=pd * g2x
44

45 %% Eta states
46 P=atan((x2 −L* sin(x5)) / (x1 −L* cos(x5)));
47 %% First Lie Derivative
48 pd=jacobian(P,X)
49 LfP=pd * fx
50 Lg1P=pd * g1x
51 Lg2P=pd * g2x
52 P dot=simplify(LfP+Lg1P+Lg2P);
53 eta2=P dot;
54 %% Second Lie derivative
55 pd=jacobian(P dot,X)
56 Lf2P=pd * fx
57 Lg1LfP=pd * g1x
58 Lg2LfP=pd * g2x
59 P ddot=simplify(Lf2P+Lg1LfP+Lg2LfP);
60 eta3=P ddot;
61 %% Third Derivative
62 pd=jacobian(P ddot,X);

101

63 Lf3P=pd * fx
64 Lg1Lf2P=simplify(pd * g1x)
65 Lg2Lf2P=simplify(pd * g2x)
66 P d3dot=simplify(Lf3S)
67

68 %% Fourth Derivative Derivative
69 pd=jacobian(P d3dot,X);
70 Lf4P=pd * fx
71 Lg1Lf3P=simplify(pd * g1x)
72 Lg2Lf3P=simplify(pd * g2x)
73

74 d21=Lg1Lf2P;
75 d22=Lg2Lf2P;
76 d11=Lg1Lf3S;
77 d12=Lg2Lf3S;
78

79

80 D=[d21 d22;d11 d12]
81 M=inv(D);

102

Bibliography

[1] C. Samson A. Micaelli. Trajectory tracking for unicycle-type and two-steering-wheels
mobile robots. Technical report, Institut National De Recherche En Informatique Et
En Automatique, 1993.

[2] A. P. Aguiar, J. P. Hespanha, and P. V. Kokotović. Performance limitations in ref-
erence tracking and path following for nonlinear systems. Automatica, 44(3):598–610,
2008.

[3] C. Aguilar. Approximate feedback linearization and sliding mode control for the single
inverted pendulum. Technical report, Queen’s University, 2002.

[4] C. Altafini. Some properties of the general n-trailer. International Journal of Control,
74:409–424, 2001.

[5] C. Altafini. Following a path of varying curvature as an output regulation problem.
Automatic Control, IEEE Transactions on, 47(9):1551 – 1556, sep 2002.

[6] C. Altafini. Path following with reduced off-tracking for multibody wheeled vehicles.
Control Systems Technology, IEEE Transactions on, 11(4):598 – 605, july 2003.

[7] A. Alvarez-Aguirre, N. V. D. Wouw., T. Oguchi., K. Kojima, and H. Nijmeijer. Remote
tracking control of unicycle robots with network-induced delays, volume 89 LNEE of
Lecture Notes in Electrical Engineering. 2011.

[8] A. Astolfi, P. Bolzern, and A. Locatelli. Path-tracking of a tractor-trailer vehicle along
rectilinear and circular paths: a lyapunov-based approach. Robotics and Automation,
IEEE Transactions on, 20(1):154 – 160, feb. 2004.

[9] A. Banaszuk and J. Hauser. Feedback linearization of transverse dynamics for periodic
orbits. Systems and Control Letters, 26(2):95 – 105, 1995.

[10] P. Bolzern, R. M. DeSantis, A. Locatelli, and D. Masciocchi. Path-tracking for articu-
lated vehicles with off-axle hitching. Control Systems Technology, IEEE Transactions
on, 6(4):515 –523, jul 1998.

103

[11] R. W. Brockett. Asymptotic stability and feedback stabilization. Differential Geo-
metric Control Theory, 27:181–191, 1983.

[12] C. Bruun. Vigre computational algebraic geometry junior seminar. University Lecture,
2008.

[13] L.G. Bushnell, D.M. Tilbury, and S.S. Sastry. Steering three-input nonholonomic
systems: the fire truck example. Int. J. Rob. Res., 14(4):366–381, 1995.

[14] L. Consolini, M. Maggiore, C. Nielsen, and M. Tosques. Path following for the pvtol
aircraft. Automatica, 46:1284–1296, August 2010.

[15] L. Consolini, A. Piazzi, and M. Tosques. Path following of car-like vehicles using
dynamic inversion. International Journal of Control, pages 1724–1738, 2003.

[16] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer, Aug 13 1998.

[17] O. H. Dağci, Ü. Y. Ogras, and Ü. Özguner. Path following controller design using
sliding mode control theory. In American Control Conference, 2003. Proceedings of
the 2003, volume 1, pages 903 – 908 vol.1, june 2003.

[18] K. R. Davidson and A.P. Donsig. Real Analysis with Real Applications. Pearson, 2002.

[19] V. Deligiannis, G. Davrazos, S. Manesis, and T. Arampatzis. Flatness conservation in
the n-trailer system equipped with a sliding kingpin mechanism. Journal of Intelligent
& Robotic Systems, 46:151–162, 2006.

[20] M. I. El-Hawwary and M. Maggiore. Global path following for the unicycle and other
results. In American Control Conference, 2008, pages 3500 –3505, june 2008.

[21] M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. On differentially flat nonlinear
systems. Proceedings. IFAC-Symposium NOLCOS’92 Bordeaux, pages 408–412, 1992.

[22] M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. A lie-backlund approach to equiv-
alence and flatness of nonlinear systems. Automatic Control, IEEE Transactions on,
44(5):922 –937, May 1999.

[23] V. Guillemin and A. Pollack. Differential Topology. Prentice-Hall, Englewood Cliffs
NJ, 1974.

[24] J. Hauser, S. Sastry, and P. Kokotovic. Nonlinear control via approximate input-
output linearization: the ball and beam example. In Proceedings of the 28th IEEE
Conference on Decision and Control, 1989.

104

[25] A. Hladio. Path following for mechanical systems applied to robotic manipulators.
Master’s thesis, Department of Electrical and Computer Engineering University of
Waterloo, 2010.

[26] A. Hladio, C. Nielsen, and D. Wang. Path following controller design for a class
of mechanical systems. In 18th World Congress of the International Federation of
Automatic Control, Milano, Italy, August 2011. Accepted.

[27] A. Hladio, C. Nielsen, and D. Wang. Path following for mechanical systems: Experi-
ments and examples. In American Control Conference, June 2011. Accepted.

[28] G. Indiveri and M. L. Corradini. Switching linear path following for bounded curva-
ture car-like vehicles. In 5th IFAC/EURON Symposium on Intelligent Autonomous
Vehicles, july 2004.

[29] A. Isidori. Nonlinear Control Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
U.S.A, 1995.

[30] J. Jakubiak, E. Lefeber, K. Tchon, and H. Nijmeijer. Two observer-based tracking
algorithms for a unicycle mobile robot. Int. Journal of Applied Math. and Comp.
Science, 12(4):513–522, 2002.

[31] H. K. Khalil. Nonlinear systems. Prentice Hall, 2002.

[32] L. Lapierre, R. Zapata, and P. Lepinay. Combined path-following and obstacle avoid-
ance control of a wheeled robot. Int. J. Rob. Res., 26(4):361–375, 2007.

[33] K. Lee, D. Kim, W. Chung, H. W. Chang, and P. Yoon. Car parking control using a
trajectory tracking controller. In 2006 SICE-ICASE International Joint Conference,
pages 2058–2063, 2006.

[34] Q. Lu, Y. Sun, and S. Mei. Nonlinear Control Systems and Power System Dynamics.
Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[35] A. D. Luca, G. Oriolo, and C. Samso. Feedback control of a nonholonomic car-like
robot. In J. Laumond, editor, Robot Motion Planning and Control, volume 229 of
Lecture Notes in Control and Information Sciences, pages 171–253. Springer Berlin,
1998.

[36] M.Aicardi, G.Casalino, A. Bicchi, and A.Balestrino. Closed loop steering of unicycle
like vehicles via lyapunov techniques. Robotics Automation Magazine, IEEE, 2(1):27
–35, mar 1995.

105

[37] P. Martin and P. Rouchon. Feedback linearization and driftless systems. Mathematics
of Control, Signals, and Systems, 7:235–254, 1994.

[38] F. N. Martins, M. Sarcinelli-Filho, T. F. Bastos, and R. Carelli. Dynamic modeling
and adaptive dynamic compensation for unicycle-like mobile robots. In Advanced
Robotics, 2009. ICAR 2009. International Conference on, pages 1 –6, june 2009.

[39] D. E. Miller and R. H. Middleton. On limitations to the achievable path tracking
performance for linear multivariable plants. IEEE Transactions on Automatic Control,
52(11):2586–2601, 2008.

[40] R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness of mechanical control
systems: A catalog of prototype systems. In Proceedings of the 1995 ASME Interna-
tional Congress and Exposition, 1995.

[41] C. Nielsen. Maneuver regulation, transverse feedback linearization and zero dynamics.
Master’s thesis, Department of Electrical and Computer Engineering University of
Toronto, 2004.

[42] C. Nielsen, C. Fulford, and M. Maggiore. Path following using transverse feedback
linearization: Application to a maglev positioning system. Automatica, 46:585–590,
March 2010.

[43] C. Nielsen and M. Maggiore. Maneuver regulation via transverse feedback lineariza-
tion: Theory and examples. Symposium on Nonlinear Control Systems (NOLCOS),
September 2004.

[44] C. Nielsen and M. Maggiore. On local transverse feedback linearization. SIAM J.
Control Optim., 47(5):2227–2250, 2008.

[45] A. Pressley. Elementry Differential Geometry. Springer, New York, 2000.

[46] C. C. Pugh. Real mathematical analysis. Springer, New York, 2002.

[47] P. Rouchon, M. Fliess, J. Lvine, and P.Martin. Flatness, motion planning and trailer
systems. In In: Proceedings. Conf. on Decision and Control, pages 2700–2705, 1993.

[48] J.E. Rowe. A new method of finding the equation of a rational planer curve form its
parametric equaions. Math Society, pages 338–340, 1916.

[49] J.E. Rowe. The equation of rational planer curve derived form its parametic equaitons
(second paper). Math Society, pages 304–307, 1917.

[50] C. Samson. Time-varying feedback stabilization of car-like wheeled mobile robots.
Int. J. Rob. Res., 12:55–64, February 1993.

106

[51] S. Sastry. Nonlinear systems: analysis, stability, and control. Springer, New York,
1999.

[52] T. W. Sederberg, D. C. Anderson, and R. N. Goldman. Implicit representation of
parametric curves and surfaces.

[53] R. Skjetne, T. I. Fossen, and P. V. Kokotovié. Robust output maneuvering for a class
of nonlinear systems. Automatica, 40(3):373 – 383, 2004.

[54] D. Soetanto, L. Lapierre, and A. Pascoal. Adaptive, non-singular path-following con-
trol of dynamic wheeled robots. In Decision and Control, 2003. Proceedings. 42nd
IEEE Conference on, volume 2, pages 1765 – 1770 Vol.2, dec. 2003.

[55] O. J. Sørdalen. Conversion of the kinematics of a car with n trailers into a chained
form. In ICRA (1), pages 382–387, 1993.

[56] A. Tayebi, M. Tadjine, and A. Rachid. Stabilization of nonholonomic systems in
chained form: Application to a car-like mobile robot. In IEEE Conference on Control
Applications - Proceedings, pages 195–200, 1997.

[57] C. J. Tomlin and S. S. Sastry. Switching through singularities. In Decision and
Control, 1997., Proceedings of the 36th IEEE Conference on, volume 1, pages 1 –6
vol.1, dec 1997.

[58] V. Utkin. Sliding Mode Control in Electro-Mechanical System. CRC Press., 1999.

[59] M. van Nieuwstadt, M. Rathinam, and R. M. Murray. Differential flatness and ab-
solute equivalence of nonlinear control systems. SIAM J. Control and Optimization.,
36:1225–1239, July 1998.

[60] R. J. Walker. Algebraic Curves. Dover publications, Inc., 180 Varick Street, N.Y.,
USA, 1949.

[61] G. C. Walsh and L. G. Bushnell. Stabilization of multiple input chained form control
systems. Systems and Control Letters, 25(3):227 – 234, 1995.

[62] D. Wang and G. Xu. Full-state tracking and internal dynamics of nonholonomic
wheeled mobile robots. IEEE/ASME Transactions on Mechatronics, 8(2):203–214,
2003.

[63] H. Yalcin, M. Unel, and W. Wolovich. Implicitization of parametric curves by matrix
annihilation. Int. J. Comput. Vision, 54:105–115, August 2003.

107

	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Literature Review
	1.2.1 Path Following Using Frenet-Serret Frames
	1.2.2 Differential Flatness
	1.2.3 Chain Form
	1.2.4 Feedback Linearization and Partial Feedback Linearization

	1.3 Problem Formulation
	1.4 Organization and Contribution

	2 Path Following Controllers: Unicycle
	2.1 Transverse Feedback Linearization of a Unicycle Following a Circular Path
	2.1.1 Simulation Results

	2.2 DTFL of Unicycle Following a Circular Path
	2.3 Comparison to Other Control Techniques
	2.3.1 Trajectory Tracking Controller
	2.3.2 Path Following Using Sliding Mode Control Theory

	3 Path Following Controllers: Car-like Robot
	3.1 Model of a Car-like Robot
	3.2 Dynamic Extension
	3.3 Path Following Control Design
	3.3.1 Transversal and Tangential Controller Design

	3.4 Implementation Issues
	3.4.1 Computation of Transversal States
	3.4.2 Computation of Tangential States
	3.4.3 Experimental Implementation

	3.5 Simulation Results
	3.5.1 Simulation I
	3.5.2 Simulation II

	3.6 Robustness of the Proposed Controller

	4 Approximate Feedback Linearization
	4.1 Model of the Standard 1-trailer System
	4.2 Review of Approximate Feedback Linearization
	4.3 Approximate Transverse Feedback Linearization
	4.3.1 Simulation Results

	4.4 Approximate Dynamic Transverse Feedback Linearization
	4.4.1 Simulation Results

	4.5 Conclusion

	5 Curve Approximation
	5.1 Introduction
	5.2 General Problem
	5.3 Special Cases of the General Problem
	5.3.1 Proposed Solution

	5.4 Solution to the General Problem
	5.4.1 Implicitization
	5.4.2 Sylvester Matrix Elimination Method

	6 Conclusion and Future Work
	APPENDICES
	A Basic Concepts
	A.1 Review of Algebra, Analysis and Differential Geometry
	A.1.1 Vector fields and their Derivatives

	A.2 Nonlinear Control Systems
	A.2.1 Feedback Linearization

	A.3 Curve Approximation

	B Matlab Codes
	B.1 Transverse Feedback Linearization: code
	B.2 Dynamic Transverse Feedback Linearization: code

	Bibliography

