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Abstract 

Capital renewal is an essential decision in sustaining the serviceability of infrastructure. 

Effectively allocating limited renewal funds amongst numerous asset components represents 

a large-scale combinatorial optimization problem that is difficult to solve. While various 

mathematical optimization techniques have been presented in the published literature, they 

are not very effective in handling the complexities and huge calculations related to large 

scale problems. More recently new evolutionary-based techniques, such as genetic 

algorithms (GA) have been introduced for finding near-optimum solutions to large-scale 

problems. Experimenting with this technique for asset renewal problems has revealed that 

GAs performance rapidly degrades with problem size. For instance, a previous research by 

Hegazy and Elhakeem (2010), could improve fund allocation for only a portion of total 

existing components (maximum of 8000 asset components) with degradation in optimization 

performance by increasing number of components. To address larger scale problems, this 

research investigates both evolutionary and advanced mathematical optimization techniques 

and seeks a goal of handling models consist of at least 50,000 asset components.  

To enhance the performance of GAs for large-scale optimization problems, three aspects 

were considered: (1) examining different problem formulations such as integer, on-shot-

binary, and step-wise binary formulation; (2) experimenting with commercial GA-based 

tools; and (3) introducing an innovative segmentation method to handle groups of smaller 

size problems, and then integrating the results. To identify the best segmentation method, 

similarity-based segmentation is compared to random segmentation and was found to have 
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superior performance. Based on the results of numerous experiments with different problem 

sizes and comparison with previous results obtained by Hegazy and Elhakeem (2010) from 

the same prototype used in this study, the GAs + Segmentation approach is found to handle a 

problem size of 50,000 components, with better solution quality (improved optimum 

solution), and no noticeable degradation of optimization performance by increasing the 

problems size.  

In addition to evolutionary algorithms, performance of one of the advanced mathematical 

programming tools (GAMS), and its powerful optimization engine (CPLEX), are 

investigated. For the mathematical representation of the asset renewal problem, best 

formulation is selected with regard to the definitions of easy-to-solve integer programming 

(IP) formulations.  To reduce internal calculations, the GAMS mathematical model is coded 

to interact with original spreadsheet data by using GAMS data exchange (GDX) files. Based 

on experimentations, using advanced mathematical tools with strong (easy-to-solve) IP 

formulations, improved the solution quality even further in compare to GA + Segmentation. 

In conclusion, this research investigated both evolutionary and advanced mathematical 

optimization techniques in handling very large-scale asset renewal problems, and introduced 

effective models for solving such problems. The developed models represent a major 

innovative step towards achieving large cost savings, optimizing decisions, and justifying 

fund allocation decisions for infrastructure asset management. While the focus of this 

research is on educational buildings, the developed optimization models can be adapted to 

various large-scale asset management problems. 
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Chapter 1 

Introduction 

 

1.1. General 

In modern societies, reliable and efficient public infrastructure is central to achieving high 

quality of life and prosperous economy. Sustaining the serviceability of infrastructure is a 

challenging task due to continuous asset deterioration over time, and the lack of renewal 

funding. Asset management systems (AMSs) have been developed to help decision makers 

when and how to repair the existing infrastructure cost-effectively. 

Asset management systems have been proposed as tools helping asset managers to reduce the 

maintenance‎ costs‎ and‎ improve‎ serviceability‎ of‎ public‎ assets.‎Report‎ cards‎ for‎America‟s‎

infrastructure estimated the investment needs of $2.2 trillion in 2009, which had increased 

from $1.6 trillion in 2005 (ASCE 2009; ASCE 2005) (Figure 1.1). In Canada, the municipal 

infrastructure deficit was estimated to be $120 billion in 2007, which is doubled since 2003. 

These large backlogs of maintenance needs are accumulated from previous years and are 

compounded by the demands for new facilities to serve the population growth (Federation of 

Canadian Municipalities (FCM) 2007). In addition, most of‎ Canada‟s‎ infrastructure has 

passed 50% of their useful service lives. Therefore, a large number of aged facilities exist 

that requires urgent renewal actions (Statistics‎ Canada‎ 2009).‎ Figure‎ 1.2‎ shows‎ Canada‟s‎

municipal deficit profile for infrastructure. Accordingly, huge investment demands with 
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municipal infrastructure deficits will result in limited available repair funds for large network 

of deteriorated assets.  

 

Figure ‎1.1: Report cards for U.S. infrastructure (ASCE 2009; ASCE 2005) 

 

 

Figure ‎1.2: Municipal deficit and the age of existing infrastructure in Canada (Statistics 

Canada 2009; FCM 2007) 

Waste Management 
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To manage a large network of assets and their diverse components, an asset management 

system integrates four functions: 1) condition assessment, 2) deterioration modeling, 3) 

repair modeling, and 4) life cycle cost analysis (LCCA) (Elhakeem and Hegazy 2010). Each 

of these components plays an important role in developing an effective AMS. Asset 

inspection and condition assessment provides data on the current condition of the asset 

inventory. In addition, deterioration modeling predicts the behavior of an asset and the future 

conditions of individual components along the planning horizon (Hegazy et al 2004; 

Elhakeem and Hegazy 2010). Repair modeling is essential to make decisions about suitable 

repair strategies for each asset. With efficient mechanisms for condition assessment, 

deterioration modeling, and repair modeling, an AMS must integrate these functions with a 

detailed life cycle cost analysis. LCCA considers each sub-decision within the planning 

horizon related to which, when, and how to repair each component cost-effectively. To 

answer these basic questions and to find the optimum solution to an asset renewal problem, 

an optimization model needs to be created and solved for all of the components. However, 

due to the diversity of components in most civil infrastructure systems and the complexity of 

their deteriorating behaviors and repair needs, it is extremely difficult to handle this large-

scale and complex optimization problem.  

Optimization is an operation research technique (ORT) used to enhance decision making and 

to foster effectiveness in solving problems. While different optimization techniques have 

been published in the literature, few have focused on methods that solve real-world, large-
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scale asset renewal optimization problems. With deteriorating infrastructure and stringent 

repair funds development practical methods to handle asset renewal problems is necessary.  

 

1.2. Research Motivation 

This research has three main motivations: the importance of capital asset renewal; the lack of 

decision support tools; and the need for practical approaches to optimize renewal decisions 

for large scale networks of asset. These are briefly described as follows: 

 

Capital Asset Renewal is a Key Infrastructure Management Function 

Asset managers have two main functions in caring for their asset inventory:  

preventive/reactive maintenance, and capital asset renewal (Figure 1.3) (Elhakeem and 

Hegazy 2010). While day-to-day asset operation is supported by the maintenance function, 

capital asset renewal upgrades the assets to enhance functionality and/or keep the asset in 

good shape for long-term uninterrupted use. Although capital asset renewal does not involve 

daily maintenance activities, it has great significance in asset management. A study by 

Vainer (2001) indicates the importance of capital asset renewal by demonstrating that the 

expenditure on capital renewal is almost equal to expenditure on maintenance and repair in 

U.S. and Canada (Table 1.1).   
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Figure ‎1.3: Asset management dimensions 

 

Table‎1.1: Maintenance, Repair, and Capital Renewal in Canada and U.S. (Vainer 2001) 

 

 

Lack of Asset Renewal Decision Support Tools (DSTs) 

While capital asset renewal is a key function in asset management, few tools have been 

developed to support capital renewal decisions, as compared to maintenance decisions. A 

survey among commercial municipal asset management systems (Halfway et al. 2005) 

revealed that the majority of such systems focus on supporting day-to-day activities (i.e., 
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maintenance), and only a few offer limited support for long-term renewal planning. 

Furthermore, most of these systems do not support many fundamental asset management 

functions such as deterioration and repair modeling or repair prioritization. While existing 

decision support tools are very limited in scope and involve only partial solutions, there is a 

huge demand in the industry for an integrated life cycle cost analysis that considers both 

repair-type decisions and repair-timing decisions within an optimization framework (Kyle et 

al. 2002; Zhang 2006; Elhakeem and Hegazy 2010).  

 

The Need to Address Very Large-Scale Asset Renewal Problems 

Asset renewal decisions are mostly considered in the category of combinatorial optimization 

problems, and are extremely difficult to solve (Csiszar 2007). These types of optimization 

problems exhibit exponential complexity as the number of variables increase. For instance, 

consider the case of a small asset renewal optimization problem, such as a school board that 

owns 100 schools (assets). If each school has a list of 100 components (HVAC, boilers, 

windows, etc.), and even a small number of the building components (say 0.5%) requires 

renewal actions along a planning horizon (e.g. five years), by having six repair alternatives 

(no repair, or repair in one of the five years), the possible combination of renewal actions (i.e. 

solution-space size) becomes                           , which is an extremely large 

and prohibitive . Finding an optimum or near optimum by trial and error becomes complex 

and time consuming. For instance, a recent research on asset renewal optimization by Hegazy 

and Elhakeem (2010), showed degradation in optimization performance by increasing 



 

 7 

number of components that caused an optimization failure after reaching 8000 components. 

Since most of the optimization techniques suffer from such performance degradation by 

increasing the problem size (Csiszar 2007), it is necessary to develop practical mechanisms 

to address large and complex asset renewal problems. 

 

1.3. Research Goal and Objectives 

The preliminary goal of this research is to investigate practical approaches in dealing with 

very large-scale asset renewal optimization problems, involving at least 50,000 components. 

The research investigates both mathematical and evolutionary optimization methods and the 

conditions under which they can be applied to large-scale asset renewal optimization 

problems. Objectives to achieve the research goal are: 

 

 Investigate the performance of different optimization formulations such as integer, 

one-shot-binary, and step-wise-binary formulations in dealing with large-scale asset 

renewal optimization problems by using evolutionary algorithms, in particular, 

genetic algorithms (GAs). 

 Investigate the improvements of optimal solutions obtained from evolutionary-based 

optimization, caused by problem segmentation approaches.  

 Develop an automated mechanism for segmenting asset renewal optimization and test 

this on different sized real-life problems.   
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 Experiment with advanced mathematical optimization tools, such as GAMS/CPLEX 

solver, and investigate the performance of integer programming (IP) formulation of 

asset renewal involving tens of thousands of components.  

 Compare and discuss the results of both evolutionary and mathematical optimization 

approaches. 

 

1.4. Research Methodology 

The methodology to achieve the aforementioned objectives is illustrated schematically in 

Figure 1.4. The following are brief descriptions of each step: 

1. Literature Review: An extensive literature review on existing AMSs to support 

capital asset renewal is conducted. The LCCA function of existing AMSs and their 

optimization models are surveyed for asset renewal planning. Based on the literature 

review, limitations of current optimization models and suggestions for improving 

their efficiency are identified. The evaluation of existing optimization models is then 

used to define the best way of modeling the asset renewal problem.  

 

2. Modeling the Asset Renewal Problem: After identifying the practical aspects of 

LCCA function of existing AMSs, a bilevel optimization model is utilized to support 

decisions regarding educational facilities (i.e., school buildings network). Different 

parameters such as objective function, budget limits, repair alternatives, decision 

variables, and planning horizon are defined based on preferences of the decision 
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makers. After modeling the asset renewal problem, evolutionary-based optimization 

techniques, mathematical optimization methods, and the conditions under which they 

can be applied to large-scale asset renewal problems are investigated.  

 

3. Evolutionary Algorithms (EAs): After modeling the asset renewal problem a non-

traditional evolutionary-based algorithm, i.e. genetic algorithm (GA), which is one of 

the most common algorithms to solve large-scale and combinatorial problems 

(Goldberg 1991; Tong et al. 2001; Elbeltagi et al. 2005; Hegazy and Elhakeem 2010), 

is investigated. Different formulations and several optimization tools are examined to 

identify the best formulation and optimization tool to handle the large-scale asset 

renewal problem. Afterward, a problem segmentation method is introduced and 

investigated with genetic algorithm to improve the optimization efficiency for very 

large-scale capital asset renewal problems. 

 

4. Mathematical Programming (MP): In addition to EAs, performance of analytical 

optimization algorithms (i.e., mathematical optimization) is also investigated. The 

asset renewal problem is formulated as integer programming (IP) and problems of 

varying sizes are optimized within GAMS (General Algebraic Modeling System) 

platform. A powerful optimization engine, GAMS/CPLEX solver, is also used to 

handle very large-scale asset renewal problems.  
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5. Testing, Validation, and Conclusions: The renewal model for a network of school 

buildings administrated by Toronto District School Board (TDSB) is selected for the 

case study. An automated mechanism developed for handling the large-scale asset 

renewal problems is then tested on different size problems. For validating the final 

solutions, performances of both evolutionary-based and mathematical optimization 

techniques are investigated and results are compared with each other and also with 

previous optimization results obtained from the same prototype by Elhakeem and 

Hegazy (2010).  
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Figure ‎1.4: Schematic Diagram for Research Methodology 
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1.5. Thesis Organization 

Chapter 2 presents a literature review of asset management systems, traditional and most 

recent methods of asset prioritization and repair fund allocation, and recent optimization 

techniques for handling asset renewal problems. 

Chapter 3 introduces the asset management framework and the life cycle cost analysis 

model used for TDSB problem and also discusses the previous optimization results obtained 

by using genetic algorithms. This chapter explores the methodology for expanding to very 

large-scale real life problems. 

Chapter 4 presents three formulations for the asset renewal problem and investigates the 

performance of each to determine the best possible formulation. Also, two GA-based 

optimization tools, Evolver and Risk Solver Platform, are tested and compared to select the 

best tool for larger size optimizations. Chapter 4 introduces segmentation and investigates its 

effectiveness of GA-based optimization with segmentation in handling very large-scale asset 

renewal problems. 

Chapter 5 investigates the performance of advanced mathematical tools, such as GAMS and 

IBM ILOG optimizer, and compares the results obtained by mathematical approach with 

segmented GA-based optimization. 

Chapter 6 presents conclusions and future works. 
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Chapter 2 

Literature Review 

 

2.1. Introduction 

Assets management systems (AMSs) are tools to support manager, organization owners, and 

governments to cost-effectively operate their assets at the highest possible level of 

performance and level of service. In this chapter a detailed review of the asset management 

systems, asset prioritization and repair fund allocation, and asset renewal optimization 

techniques is presented. 

 

2.2. Asset Management Systems 

In essence, asset management systems are systematic approaches to achieve the highest level 

of benefit and satisfaction from operating faculties by their owners and users respectively. 

These benefits can be fiscal and/or functional. Based on Transportation Association of 

Canada‎ (TAC),‎ asset‎ management‎ is‎ defined‎ as‎ “a comprehensive business strategy 

employing people, information and technology to effectively allocate available funds 

amongst‎valid‎and‎competing‎asset‎needs”‎(TAC‎1999). 

Asset management systems also integrate different areas of science such as engineering, 

economy, mathematics, business, and computer science. In a more detailed description of 

asset management, Federal Highway Administration (FHWA 1999) defines AMS as “a 
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systematic process of maintaining, upgrading and operating physical assets cost effectively. 

It combines engineering and mathematical analysis with sound business practice and 

economic theory. Asset management systems are goal driven and like the traditional planning 

process, include components for data collection, strategy evaluation, program selection, and 

feedback. The asset management model explicitly addresses integration of decisions made 

across‎all‎program‎areas”.  

Base on FHWA definition of AMS, an asset management process involves different systems 

that are integrating within an asset management framework (Figure 2.1). In this AMS 

framework based on the organizational goals and policies, serviceability expectations, 

available budgets and resources, and feasible alternatives are developed by using the 

information obtained from asset inventory, condition assessment, and performance 

prediction. Next, alternative fund allocation scenarios are evaluated based on their impact on 

system performance and with regards to financial and serviceability constraints that are 

defined by the organizational policies and goals. This information is used by asset managers 

to prepare short-term plans, i.e., day-to-day operations and routine maintenance, and/or long-

term plans, i.e., capital asset renewal. After implementing the plans, the performance of the 

individual assets in monitored and the data from performance monitoring is used as feedback 

to verify the assumptions, assessment methods, and predictions made at the planning stage 

(FHWA 1999; Flintsch and Chen 2004). 
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2.3. Asset Prioritization and Repair Fund Allocation 

Handling the scarcity of financial resources is a great challenge for managers and decision 

makers. Accumulated backlog of past maintenance and rehabilitation and the construction of 

new facilities result in steadily fund deficit problems for federal governments (Hudson et al 

1997, Federation of Canadian Municipalities 2007). An ideal infrastructure management 

system will use all available funds optimally while maximizing the performance of the 

system (Hudson et al 1997). Accordingly, maintaining the serviceability of the asset and 

maximizing the benefit over cost ratio (B/C) for complex and large-scale asset renewal 

problems are big challenges for asset managers (AL-Battaineh et al. 2005). Different 

techniques have been introduced in literature to support infrastructure management functions, 

Figure 2.1: Generic asset management framework based on FHWA (Flintsch and Chen 

2004) 
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such as condition assessment, performance analysis, need analysis, prioritization, and 

optimization. Advanced artificial intelligence (AI) techniques such as fuzzy logic, neural 

networks, and genetic algorithms are some of these techniques that are widely used to 

support asset management (Halfway 2008; Hegazy 2004; Tong et al. 2001). A summary of 

AI techniques used for different asset management functions is shown in Table 2.1. Based on 

this table, the predominant method of optimization for tradeoff analysis is Genetic Algorithm 

(GA), which is used in different published literatures such as Fwa et al. (1996), Liu et al. 

(1997), Pilson et al. (1999), and Shekaharan (2000). Also few people worked on developing 

effective techniques for treatment selection or asset prioritization such as Grivas and Shen 

(1995), or Martinelli et al. (1995).  

To prioritize assets, different methods from simple ranking procedures to complex 

optimization mechanisms can be used (Elkhakeem and Hegazy 2010). All of the asset 

prioritization methods seek answers to three main questions related to MR&R strategies, 

“which,‎when,‎and‎what”,‎during‎the‎planning‎horizon‎(Hudson‎et‎al.‎1997). 

Ranking methods such as simple subjective ranking, parameter based ranking, or 

parameter/economic based ranking, are simple heuristic approaches used frequently by asset 

managers, but are not providing good results in terms of optimality due to the subjective 

assessment of data. In the process of ranking, various scoring criteria, such as 

condition/structural integrity, expected lifetime of existing infrastructure, consequence of 

delay, environmental factors, and/or resource allocation factors are considered for the 

prioritizing assets (Hudson et al. 1997). 
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Table 2.1: Summary of advanced AI tools used for different asset management functions 
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Figure ‎2.2: Effect of repair strategy on asset performance (Hudson et al. 1997) 

 

More complex approaches, such as near-optimization and optimization methods, which are 

able to have better quality solutions, are finding more and more applications in practice 

(Cheung et al., 2002: Hegazy 2004; Tong et al. 2001). In addition, near-optimization methods 

that are mostly based on a marginal cost-effective approach, are finding considerable 

applications in the road and pavements (Haas 1994). Most of the near-optimum methods 

select the best repair scenario based on the effective ness of various repairs by calculating the 

area under the performance curve (Figure2.2) (Hudson et al. 1997). Although ranking and 

near optimization approaches are practical in some cases, for problems with high level of 

complexity and importance, optimization is the most promising method. Optimization 

methods are quantitative techniques of operation research that can enhance the process of 

decision making by satisfying a specific objective function, such as minimizing cost or 

maximizing the performance. Optimization methods are used in different areas of 

 34

which repair strategy for each component) (Hegazy et al. 2004). Accordingly, the decisions regarding 

which components to repair, the repair strategy, and the repair timing represent key decisions that 

need structured formulation to provide best solutions. Due to the large size of building networks, this 

problem becomes a combinatorial optimization problem in which the solution space is extremely 

large. The quality of the solution, therefore, will depend on how the optimization problem is 

formulated and on the optimization tool used. 

In the literature, various models have been developed to support either network-level or project-level 

decisions individually, and to a less extent to support both of them. With optimization requiring a 

suitable objective function, the majority of researchers have proposed the use of total life-cycle cost 

to be minimized (e.g., Hegazy et al. 2004). The Life-Cycle-Cost (LCC) is the total discounted cost of 

owning, operating, maintaining, repairing, and disposing of the asset or the system over a period of 

time. The main benefit of considering LCCs is the fact that decisions are made considering the benefit 

gained along the whole planning horizon. 

The models that consider life-cycle cost analysis can be classified into two categories: near 

optimization; and optimization, as follows:   

Near-Optimization Methods: Near optimization, based on a marginal cost-effectiveness method, 

has found considerable application in the roads and pavements area (Hass 1994), and could be applied 

in many other infrastructure areas. The approach calculates the effectiveness (E) of various repair 

decisions by adding the areas under the performance curve, weighted by the usage or length, etc. 

(Figure 2.11), Hudson et al. (1997). 

 

 

 

 

 

 

 

 

 

Figure 2.11: Effect of the repair strategy on the performance 

Minimum Acceptable Level 

Time (Years) 

C
o

n
d

it
io

n
 

Critical 

Excellent 

Condition 

improvement 

due to certain 
repair type 

Service Life without Repair 

Repair 

with 
cost $ 



 

 20 

infrastructure management such as sewer networks, bridges management, and portfolio 

management (Halfway 2008; Hegazy 2004; Tong et al. 2001).  

A big challenge in optimum allocation of renewal funds is to find the optimum solution 

amongst numerous feasible solutions. For instance, consider a school board administrates 

about 100 schools (assets). Even if a small number of the assets requiring renewal actions 

(say 0.5% of all building components) within 5 years, the number of components for the 

school board is 100   100   0.005 = 50. Now, considering each component having six 

options (no repair, or repair in any of the five years), and assuming three possible techniques 

to do each repair, then the solution-space size becomes                           , 

which is extremely large and prohibitive. In fact, real-size problems are even much larger due 

to the fact that many assets are getting older and many components require renewal. As such, 

optimization size represents a key challenge for life cycle cost analysis and it is necessary to 

develop optimization mechanisms for handling large-scale problems. The following sections 

describe the common optimization techniques used in the area of asset management. 

 

2.4. Optimization Techniques 

Optimization, in general, tries to maximize or minimize an objective function (a goal) by 

determining the optimum values (quantities) for a set of decision variables respecting a set of 

constraints. Mathematical and evolutionary-based optimization techniques are two of the 

most common optimization methods. 
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2.4.1. Mathematical Optimization  

Mathematical optimization has three main components: objective function, decision 

variables, and constraints. An optimization model can be disrobed with regard to the form of 

decision variables, linearity of objective function or constraint equations, and the amount of 

uncertainty associated with the data presented in the model. A model can be „static‎model‟‎in 

which the variables are not changes during the optimization process, or‎a‎„dynamic‎model‟,‎

which the decision variables change over a multiple period of time during the optimization 

process. Also, linearity or nonlinearity of a model is based on the way that objective function 

and constraints (model equations) are defined. Based on the linearity of equations involve in 

the optimization problem linear programming (LP) or nonlinear programming (NLP) 

algorithms are used to solves the problem. If one or more variable is in the form of an integer 

then the model in an integer model. Being all variables equal to integer values results in a 

pure integer programming problem (IP) and being part of variables equal to integer values 

results in a mixed integer programming (MIP). In term of certainty, a model can be 

„deterministic‟,‎ which‎ means‎ all‎ values‎ for‎ objective‎ function‎ and‎ decision‎ variables‎ are‎

known‎ with‎ certainty,‎ or‎ it‎ can‎ be‎ „stochastic‟,‎ which‎ there‎ is‎ an‎ amount‎ of‎ uncertainty‎

involved in the process of optimization (Thanedar, B.P. 1995; Cook et al. 1997).  

One of the most difficult types of optimization problems is the combinatorial optimization 

problem. These types of problems involve variables with discrete options seeking 

combinations of these options until an optimum combination is obtained. These problems are 

very hard to solve because they exhibit exponential complexity as the problem size and the 



 

 22 

number of variables increase (Csiszar 2007; Elhakeem and Hegazy 2010). Evolutionary 

Algorithms (EAs) are optimization techniques apply advance search methods to solve 

combinatorial problems (El Elbeltagi et al. 2005; Hegazy 2004; Tong et al 2001).  

 

2.4.2. Evolutionary Algorithms 

Evolutionary algorithms are naturally inspired stochastic search methods developed for 

searching near-optimum solutions to large-scale combinatorial optimization problems 

(Goldberg 1989). Evolutionary optimization approaches usually mimic the process of 

biological evolution or the social behavior of species (Elbeltagi et al. 2005). Enhancements in 

artificial intelligence (AI) lead to development of different evolutionary algorithms, such as 

genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), 

and shuffled frog leaping algorithm (SFLA), which are proved to be promising optimization 

approaches in handling complex engineering problems (Elbeltagi et al. 2005). As discussed 

in Table 2.1, Genetic Algorithm (GA) is one of the evolutionary-based optimization methods 

finding different applications in asset management (Hegazy 2004; Tong et al. 2001).   

 

Genetic Algorithm (GA): As an effective optimization algorithm with high efficiency in 

solving different types of problems, GA has been used in different areas of asset management 

and civil engineering, such as the site-layout optimization of facilities (Cheung et al., 2002; 

Li and Love, 2000, and Osama et al., 2003), cost optimization and cost trade off problems 

(Hegazy 1999a), and in resource levelling in construction (Leu et al., 2000; Hegazy, 1999b). 
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The common conclusion among all the previous researches was the efficiency of 

implementing GA in solving large-scale and complex problems and arriving at near-optimum 

solutions. Genetic algorithm was first introduced by Holland in 1975. This type of 

evolutionary‎algorithms‎mimics‎the‎process‎of‎natural‎selection‎based‎on‎Darwin‟s‎theory‎of‎

“survival‎ of‎ the‎ fittest”.‎ Solution‎ to‎ a‎ given‎ problem‎ is‎ represented‎ in‎ the‎ form‎ of‎ strings‎

called‎ „chromosomes‟‎ and‎ each‎ chromosome‎ consists‎ of‎ a‎ set‎ of‎ elements‎ called‎ „genes‟‎

represent decision variables. Evolution process starts by generating a random population of 

solutions, i.e., parent chromosomes, and evaluating them based on a fitness function, which 

is usually defined with respect to objective function. Subsequently, best parent chromosomes 

exchange‎ their‎ information‎ through‎ the‎ process‎ of‎ “crossover”‎ or‎ “mutation”‎ and‎ create‎

offspring chromosomes. Each offspring chromosome is evaluated based on its fitness value 

and the fittest chromosomes are selected to repeat the process of evolution until maximizing 

the fitness function (Goldberg et al 1991).  Producing offspring chromosomes based on 

crossover among parent chromosomes is a natural process of biological evolution, i.e., 

optimization. Crossover exchanges genes among parent chromosomes in an attempt to 

produce a fitter offspring (Figure 2.3a). Crossover rate is a number between 0 and 1 that 

represents the percentage of the selected genes that usually has a range from 0.6 to 1.0. The 

process of selection is typically based on a uniform crossover routine, which randomly 

selects a set of elements from an organism (i.e., the chromosome), or a single-point crossover 

that splits the organism in two parts at a random point (Figure 2.3b).  Mutation process 

resembles sudden changes to a chromosome. A mutation rate from 0 to 1 is usually selected 
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as the percentage of genes to mutate. This can be done by assigning a random number to each 

variable (say 0.07), and mutating all variables with the number less than or equal to mutation 

rate (Figure 2.4). Accordingly, by a mutation rate of 1 a completely different solution is 

generated with changing all variables. Mutation is a rare but useful or even vital process that 

introduces new genetic materials to the evolutionary process. In optimization, mutation is 

perhaps the best tool to avoid local optima by randomly searching the solution-space 

(Figure2.4). The best way of using mutation is by defining a small value for mutation rate in 

the beginning of optimization and increasing it when there is no improvement for optimal 

solution (Elbeltagi et al. 2005). 

The main parameters that affect the performance of GAs are population size, number of 

generations, crossover rate, and mutation rate. Increasing the number of population or the 

number of generations can improve the solution quality but substantially increase processing 

time. One of the main difficulties in the prioritization of assets involve in an infrastructure 

network is the large number of components in which optimization performance decreases 

dramatically by increasing the number of components (Ekhakeem and Hegazy 2010). 

Accordingly, one of the main objectives of this research is to improve the performance of 

optimization under such conditions. Following is a pseudo code presented for a GA 

procedure (Elbeltagi et al. 2005): 
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Figure ‎2.3: a) Crossover procedure; b) Single point and uniform crossover (Elbeltagi et 

al. 2005) 

 

Figure ‎2.4: Avoiding local optima by using mutation (Evolver Guide 2010) 
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A pseudo code for applying a GA can be written as follow (Elbeltagi et al. 2005): 

 

 

 

2.5. Summary and Conclusions 

In this chapter, a review of asset management systems, asset prioritization and repair fund 

allocation methods, and asset renewal optimization methods has been presented. The main 

challenge in the process of asset prioritization is actually how to handle the problem with 

scarce available budgets such that the satisfactory level of performance is achieved during 

the planning horizon.  This leads to an asset renewal optimization problem that is usually 

large-scale and complex in real-life practices. To handle a large-scale combinatorial problem 
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different optimization techniques can be used. Genetic Algorithm (GA) is one of the common 

tools for dealing with such problems. Also performance of advanced mathematical tools 

introduced recently requires more investigation in large-scale environments.  

The present research focuses on the development of mechanisms for improving the 

performance of GA-based optimization methods in handling very large-scale asset renewal 

problems and also investigates the performance of recent advanced mathematical 

optimization tools on such problems and comparing it with GA-based approach.   
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Chapter 3 

Asset Renewal Model for Large-Scale Problems 

 

3.1. Introduction 

This chapter illustrates the life cycle cost analysis (LCCA) model introduced by Elhakeem 

and Hegazy (2010), which is the basis for the new developments discussed in chapter 4 to 

extend the optimization capabilities to larger size problems. Once the basic model is 

described, the proposed methodology to expand it to large scale problems is highlighted. This 

methodology is then followed in chapter 4 and 5. 

 

3.2. Asset Management Framework   

This section presents a brief description of the asset management framework used by 

Elhakeem and Hegazy (2010). To model an asset renewal problem, different functions of 

AMS, such as condition assessment, deterioration modeling, repair modeling and LCCA 

should integrate properly (Figure 3.1) (Hudson et al 1997; Elhakeem and Hegazy 2010). 

Current conditions of individual asset components are measured by inspecting assets using 

inspection techniques, such as visual inspection, photographic inspection, non-destructive 

evaluation, or smart sensors. Evaluating the condition of asset components can be based on a 

distress survey or direct condition rating (Uzasrki 2002). Also, different scales and linguistic 

representations can be used for condition evaluation. Some of these condition scales and the 
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corresponding linguistic representation are shown in Table 3.1. A visual direct inspection 

method using condition scale of 0 to 100 is used for condition assessment of school building 

networks related to Toronto District school Board (Hegazy 2005). After evaluating the 

current condition of the asset components, next functions are integrated within a bilevel life 

cycle optimization. A bilevel or multilevel optimization involves a hierarchy where outer 

optimization problem is subjected to outcome of several enclosed problems. In the case of 

bilevel life cycle optimization for TDSB, first level is the component-level that seeks the 

bests repair scenario for each component. Next level is the network-level that best repair 

scenarios obtained from component level are used to prioritize assets and allocate available 

budget to them through a large-scale optimization framework (Figure 3.2).  In this chapter, 

the process of bilevel optimization and current research results using this framework are 

discussed and the methodology for expanding to larger scale problems is introduced. 

 

Table ‎3.1: Condition scales and corresponding linguistic representations 
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in the example of Figure 2.4 (used by BUILDER, Uzarski and Burley 1997). Some other condition 

scales and corresponding linguistic representations are shown in Table 2.4. 

 

 

 

 

 

 

 

Figure 2.4: Condition scale and linguistic representation 

 

 

Table 2.4: Rating Scales and Linguistic Representations 

Reference 
Asset 

Type 

Condition 

Scale 
Linguistic Representation 

Lee and Aktan 1997 Buildings 1 - 4 Deterioration: (1= no; 2 = slight; 3 = moderate; and 4 = 

severe).  

Elhakeem  and Hegazy 2005a Buildings 0 - 100 Deterioration: (0-20) = no; (20-40) = slight; (40-60) = 

moderate; (60-80) = sever; and (80-100) = critical. 

Greimann et al. 1997 Locks and 

Dams 

0 - 100 Maintenance need: (0-39) = only after further 

investigation; (40-69) = only if economically feasible; 

and (70-100) = no action is required. 

Pontis 1995 Bridges 1 - 5 Deterioration Process: (1 = protected; 2 = exposed; 3 = 

vulnerable; 4 = attacked; and 5 = damaged). 

Lounis et al. 1998 Any Asset 1-7 Condition category: (1 = Failed; 2 = V. Poor; 3 = Poor; 4 

= Fair; 5 = Good; 6 = V. Good; and 7= Excellent). 

 

 

3. Inspection and Data Collection: Evaluating the condition for building components using 

a distress survey requires full knowledge about the deficiencies that the component can suffer 

from. To detect these distresses and measure its severities, a systematic approach for field 

inspection becomes crucial. The mission of the inspection process is to obtain or get the 

   Condition   Linguistic    
          Scale   Representation
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Figure ‎3.1: Functions of an asset management system (Elhakeem and Hegazy 2010) 

 

 

 

Figure ‎3.2: Bilevel integrated life cycle optimization (Elhakeem and Hegazy 2010) 
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3.3. Component Level: LCC Model for Building Components 

In component level analysis, given a 5-year planning horizon, each individual component is 

investigated separately to determine the best repair scenario (highest benefit over cost (B/C) 

ratio) for that component. To do so, first, future deterioration of building components is 

determined; next, the optimum repair scenario is selected within an optimization process by 

maximizing the B/C ratio in each year during the planning horizon.  

 

Future Deteriorations: In order to determine future deteriorations, deterministic models, 

such as straight-line extrapolation (linear deterioration modeling), or stochastic methods, 

such as Markovian deterioration modeling can be used. Linear deterioration modeling is a 

simple approach and not so accurate in determining future conditions (Hegazy 2005) (Figure 

3.3). On the other hand, stochastic Markovian models predict the future behavior based on 

Markov Decision Process (MDP). Deterioration index for each instance with   number of 

deficiencies is calculated based on the inspected severities (    and weights of various 

deficiencies (    as follow: 

                                                
∑      

 
   

   
                                                      

For the purpose of deterioration modeling of TDSB school buildings network, the optimized 

Markov chain process (Hegazy 2005) is used. Optimized Markov chain determines the future 

conditions of individual components by using the transition probability matrix (TPM) of 

components and generating a deterioration curve that best corresponds to previously 

inspected conditions (Figure 3.4).  
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Figure ‎3.3: Linear deterioration modeling 

 

Figure ‎3.4: Optimized Markov chain deterioration modeling process (Elhakeem and 

Hegazy 2010) 
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Determining the Best Repair Scenarios: After calculating deficiencies for each instance 

during the planning horizon, a repair scenario (RS) is defined as a combination of actions 

toward repairing these deficiencies. For instance, if a component has four deficiencies [D1, 

D2, D3, and D4], one possible repair scenario is represented in the binary form as (1, 1, 0, 1), 

which implies repairing deficiencies 1, 2, and 4 and keeping repair 3 with no repair. Repair 

cost for each repair scenario is calculated as a percentage of replacement cost, based on two 

assumptions: 

 

1. Repair cost for a deficiency is proportional to the weight of that deficiency; and 

2. Repairing one deficiency individually costs 25% more than its share of replacement. 

Based on these assumptions the total cost (TC) of any repair scenario is calculated by 

summing the cost of all deficiencies as follow: 

 

                                         ∑           

 

   

                                              

To convert total repair cost to dollars, following formula is used:  

 

                                                                                                    

 

where      is the instance repair cost in dollars,    is the total repair cost,   is the instance 

relative size, e.g., 20% of roof area, and      is the total replacement cost for an instance.  
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In addition to estimating the repair cost, it is possible to determine the after repair 

deterioration index (ARDI) by assigning 0 serveries to repaired deficiencies. Following 

formula is used for calculating after repair conditions: 

 

                             
∑                 

 
   

   
                                             

 

To determine the best repair scenario an optimization for each year to maximize the B/C 

ratio. The objective function is to minimize the repair cost while after repair deterioration is 

more that the acceptable level. In this way the cheapest repair that meets the minimum 

acceptable level of service constraint is selected as the best repair scenario. Figure 3.5 shows 

the optimization model for determining the best repair scenario. 

 

 

Figure ‎3.5: Optimization model to determine the best repair scenario (Elhakeem and 

Hegazy 2010) 
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3.4. Network Level: Prioritization and Repair Fund Allocation 

The pool of best repair scenarios provided by small component-level optimizations is used as 

an input of a network-level large-scale optimization to determine the best year to repair each 

instance. The objective function in this level of optimization is to minimize the network 

deterioration index (   ) subjected to yearly budget limits and one time visit during the 

planning horizon. Network deterioration on a scale from 0 to 100 is calculated by the 

following formula: 

 

                   
(∑         (    )           ∑ (         )           )

∑      
                 

               ,                          

where      is the expected performance of asset j repaired in year k,      is the expected 

performance of asset j with no repair,      is the relative importance factor of asset j, and     

is the renewal decision for asset j in year k (1 for repair and 0 for no repair). 

Instance expected performance is the average of deterioration indices for an instance when 

the instance is repaired in each of five years. Expected performance is a measure of repair 

impact over the planning horizon (Figure 3.6).  
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Figure ‎3.6: Expected impact of repair over the planning horizon (Elhakeem and Hegazy 

2010) 

 

The difference between the expected performance in any year over the planning horizon   and 

    can be defined as the improvement effect of repairing asset j in year k (     : 

 

                                                                                                                                                  

 

Accordingly, the optimization model for network level is defined as follow: 

 

Objective function: minimization 

                     
(∑         (    )           ∑               )

∑      
                                 

               ,                          

 

Subjected to (s.t.): 

∑      
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To check the quality of solutions (optimality), results of simple ranking is used as a reference 

point. It is expected to have better quality solutions by using optimization in compare to 

simple ranking (Section 2.3), however, the quality of optimization solutions can be 

dramatically decrease by increasing the problem size (Figure 3.7). 

 

Simple Ranking: Simple ranking or scoring is a subjective mechanism used by owners to 

prioritize their projects. Scoring projects based on their importance or benefit-to-cost (B/C) 

ratio and allocating resources to projects with higher scores is a simple approach for 

prioritizing and allocating funds. In the case of TDSB asset renewal problem, instances can 

be ranked based on the initial deterioration indices (   ) weighted by relative importance 

factor (    ) of each individual component. Assuming a $10 million yearly budget limit, by 

using simple ranking the overall network deterioration index improved from 54.33 to 44.89. 

Results of simple ranking is then used to compare and to evaluate the optimization solutions.  
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GA-Based Optimization Performance on Large-scale Networks: Experimentation on 

different size models by Elhakeem and Hegazy (2010) proved that optimization could lead to 

better solution quality in compare to simple ranking, but the performance of GA-based 

optimization approaches is degrading by enlarging the size of the asset renewal problem.  

Based on these experimentations the GA-based optimization approach is practical until 

reaching to 8000 instances. Figure 3.6 shows the trend of optimization performance on large-

scale asset networks. Comparison with simple ranking indicates 21% improvement on model 

with 800 instances. However, the improvement is decreased by increasing the scale of the 

problem and reached to around 10% for 5000 instances.  After reaching 8000 instances, the 

optimization is failed practically and simple ranking becomes the dominant solution.  

To improve the performance of optimization and to solve larger scale problems this research 

follows a methodology, which investigates both evolutionary-based optimization techniques 

and advanced mathematical optimization tools.  
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Figure ‎3.7: Optimization performance on large-scale networks (Hegazy and Elhakeem, 

2010) 

 

3.5. Methodology for Expanding to Very Large-Scale Problems 

Developing a mechanism for handling larger-scale asset renewal problems is necessary when 

real-life problem are usually consist of more than 8000 components. To expand to problems 

with large number of components, different problem formulations and optimization tools 

have been investigated to select the best formulation and tool. Also performance of both 

genetic algorithms and mathematical optimization approaches have been examined and 

compared to see under which conditions each approach is dominant. Figure 3.8 shows the 

methodology used for expanding to large-scale problems. 

Optimization Failure 
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Figure ‎3.8: Methodology for expanding to very large-scale problems 

 

3.5.1. GA-Based Optimization 

Examining Different Formulations: Different formulations have different solution space 

size and different number of variables that can affect the performance of optimization 

significantly (Csiszar 2007; Elhakeem and Hegay 2010). In this research, three different 

formulations, i.e., integer, one-shot-binary, and step-wise-binary, have been investigated to 

select the best formulation. Detailed description of each formulation and results of testing 

them on different size problems is discussed in chapter 4. 
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Examining GA-Based Optimization Tools: With optimization finding applications in 

almost every perceivable domain, particularly engineering (Maler and Arora 2004), different 

optimization tools become available to engineers. Evolutionary-based optimization tools are 

tool with optimization engines that use evolutionary algorithms, such as genetic algorithm, 

for solving optimization problems. Different evolutionary-based optimization tools have been 

introduced to engineers by developers, such as Microsoft, Frontline Systems Inc., etc. Table 

3.2 shows some of the common evolutionary-based optimization tools and a brief description 

of their solvers. Two of the commercial optimization software have been tested in this study: 

„Evolver‟‎by‎Palisade‎Corporation,‎and‎„Risk‎Solver‎Platform‟‎by‎Frontline‎Systems‎Inc.‎ 

 

Table ‎3.2: Some of the common commercial optimization tools 

Tool Developer Description 

Excel Solver  
Microsoft 

Corporation 

Easy-to-use mathematical optimization tool capable of 

handling simple LP and NLP problems 

Evolver 
Palisade 

Corporation 

GA-based optimization tool effective in optimizing complex 

and large-scale models 

Risk Solver Platform 
Frontline Systems 

Inc. 

Risk analysis, simulation, and optimization tool having GA-

based and Mathematical optimization engines 

Microsoft Solver 

Foundation 

Microsoft 

Corporation 

Mathematical optimization and modeling program supports 

LP, NLP, and MIP 

LINDO 12.0 
LINDO Systems 

Inc. 

Mathematical optimization software supports LP, NLP, and 

MIP 

What's Best 
LINDO Systems 

Inc. 

Excel add-in for LP, NLP, and MIP modeling and 

optimization 

AIMMS 
Paragon Decision 

Technology 
Optimization software for mathematical programming 

KNITRO for 

Mathematica 

Ziena Optimization 

LLC. 

A solver for linear and nonlinear mathematical optimization 

problems 

PPT - Strategic VEMAX 
Modeling and optimization software supports network-level 

optimization by linear programing 
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Using Segmentation with GA: Because the performance of evolutionary systems degrades 

rapidly with problem size, segmentation methods have been proposed to handle large-scale 

problems by decomposing them into smaller sub-problems with smaller solution space size. 

To generate sub-problems, different segmentation techniques have been proposed and tested 

in chapter 4. Random segmentation that creates segments with randomly sorted input data, or 

similarity-based segmentation methods, which generate segments with regard to the 

similarity measures between input data. Segmentation methods are discussed in detail in the 

next chapter and tested on different size problems to identify the most practical method for 

handling very large-scale problems. 

 

3.5.2. Mathematical Optimization 

Defining the Best IP Formulation: In mathematical programming, as it is discussed in 

chapter 5, the structure of the optimization model can influence the performance 

dramatically. The way that the optimization equations, decision variables, and their 

relationships are defined plays an important role in a large-scale problem. In chapter 5, it has 

been tried to formulate TDSB asset renewal problem with regard to specification of strong IP 

formulations (Wolsey 1989), to increase the efficiency and solution quality. 

 

Examining Advanced Mathematical Tools: Mathematical optimization tools are designed 

to support linear programing (LP), nonlinear programing (NLP), and integer programing (IP) 

problems (Winston and Venkataramanan 2003). Although mathematical optimization tool are 
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not considered to be effective in handling large-scale combinatorial problems (Elbeltagi 

2005; Hegazy et al 2004), recent advances in computer science and mathematical 

optimization algorithms increased the capabilities of mathematical optimization tools 

(Winston and Venkataramanan 2003). Table 3.3 shows some of the advanced mathematical 

tools and a brief description of each. In chapter 5, performance of these advanced tools, i.e., 

GAMS and IBM ILOG CPLEX solver, are investigated on large-scale problems. 

  

Table ‎3.3: Advanced mathematical tools 

Tool Developer Description 

IBM ILOG CPLEX IBM 

Powerful mathematical programming and optimization 

software also capable of conducting constraint programing 

(CP) 

Gurobi Optimizer Gurobi Optimization 
Mathematical optimization tool capable of solving LP. QP, 

MILP, and MIQP problems 

GAMS 

GAMS 

Development 

Corporation 

High-level modeling system for mathematical programing 

and optimization 

3.6. Summary and Conclusions 

In this chapter, first, the framework of asset management system used for supporting renewal 

action decisions related to TDSB is described. Next, the integrated bilevel life cycle cost 

optimization proposed by Hegazy and Elhakeem (2010), is introduced. The procedure for 

determining the best repair scenario at component-level and also the process of network-level 

optimization is described in detail. Based on previous optimization results, performance of 

evolutionary methods degrades by increasing the problem size. Accordingly, for improving 
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the optimization performance, this study proposed a methodology that investigates both GA-

based and mathematical optimization approaches.  
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Chapter 4 

Large-Scale Optimization Using GAs + Segmentation 

 

4.1. Introduction  

As discussed in chapter 3, the performance of existing models for building asset renewal is 

degraded dramatically with the problem size gets larger. As such, performance degradation 

basically irrationalizes the application of optimization since equally good solutions can be 

obtained from simpler approaches such as ranking. To improve optimization performance for 

larger scale problems, different aspects related to formulization of evolutionary-based 

optimization models are investigated in this chapter. First, different problem formulations are 

introduced and investigated to select the best formulation in further experiments. Next, 

different evolutionary-based tools are tested on limited size models to select the most 

practical one. Subsequently, segmentation methods for handling very large-scale problems 

are introduced and discussed. Finally, based on the results of various experiments a 

systematic procedure using segmentation is proposed to handle very large-scale asset renewal 

problems and its performance on TDSB prototype is compared to previous results.  

   

4.2. Problem Formulations 

Network-level optimization can be modeled and implemented in different ways each has a 

unique formulation and corresponding solution quality. Solutions are basically affected by 
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the chromosome size and the variety of genes produce by genetic algotithm (Section 2.4) 

(Elbeltagi et al. 2005). 

4.2.1. Integer Formulation 

Consider the case of asset renewal problem with a planning horizon of five years and six 

repair alternatives (no repair or repair in one of the five years). In this case, decision variables 

can be represented in the form of an integer number between 0 to 5 in which zero means no 

repair and the number 1 to 5 represents repair in year 1 to 5 (Figure 4.1a). If the asset renewal 

inventory consists of N instances, the solution-space size is equal to    by integer 

representation of the problem. A sample of a chromosome produced by genetic algorithm and 

an integer formulated optimization model are shown in Figure 4.1b and 4.2 respectively.  

 

 

Figure ‎4.1: a) Integer formulation; b) Sample chromosome 
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Figure ‎4.2: Integer formulated optimization model spreadsheet 

 

4.2.2. One-Shot-Binary Formulation  

Another possible way of modeling the network-level optimization is using a binary 

formulation. In this case, a value of 0 or 1 can be assigned to each decision variable. A set of 

six variables (no repair one repair in one of the five years) is defined for each instance that 

represents the renewal action along the planning horizon. Accordingly, total number of 

variables for an inventory with N instances is equal to    and the solution-space is equal 

to    . In compare to integer formulation, chromosomes produced by one-shot-binary 

Integer Decision Variables 

Objective Function 

    

Constraints 
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formulation are much longer in size, but the variety of genes is reduced from [0-5] to [0-1]. 

Figure 4.3 and 4.4 illustrate the one-shot-binary formulation and modeling.   

 

Figure ‎4.3: a) One-shot-binary formulation; b) Sample chromosome 

 

 

Figure ‎4.4: One-shot-binary formulated optimization model spreadsheet 

Decision Variables 

Objective Function 

Constraints 
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4.2.3. Step-Wise-Binary Formulation 

To reduce the solution-space size of a one-shot-binary formulation, a mechanism is defined 

to conduct a year-by-year optimization rather than optimizing all years at the same time (one-

sot). In this approach, each year is optimized separately with respect to objective function. 

After optimizing in the first year, repaired instances are excluded from the next year 

optimization and the process is iterated until the end of the planning horizon. Using step-

wise-binary formulation reduces the solution-space size to   , and produces smaller 

chromosomes in compare to integer or one-shot-binary formulation. Figure 4.5 and 4.6 

illustrate the step-wise-binary formulation, sample GA chromosomes, and its 

implementation. All three formulations are investigated more in detail in next section and 

compared with each other.  

 

 

Figure ‎4.5: a) Step-wise-formulation; b) Sample chromosome 
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Figure ‎4.6: Step-wise-binary formulated optimization model spreadsheet 

 

4.3. Experimenting with Different Evolutionary Tools 

In the previous chapter, different optimization tools have been introduced in both 

mathematical and evolutionary categories. In this section, performance of two of the 

evolutionary‎ tools,‎ „Evolver‟‎ by‎ Palisade‎ Corporation,‎ and‎ „Risk‎ Solver‎ Platform‟‎ by‎

Frontline Systems Inc., is examined.  

 

4.3.1. Evolver 

Evolver is a GA-based optimization tool working as an add-in to Microsoft Excel 

spreadsheet programs. User should design, formulate, and build the optimization model in an 

Excel spreadsheet and then call up Evolver for solving the problem. By using its GA-based 

Decision Variables Year1 

Objective Function 

Constraints 
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engine Evolver is capable of solving different types of optimization models and proved to be 

one of the effective tools in dealing with different types of problems (Hegazy 2005; Ehakeem 

and Hegazy 2010).  

 

Avoid Trapping in Local Optima: Simple solvers such as Excel Solver usually use a „hill‎

climbing‟‎ approach,‎ which‎ starts from a point in the feasible region and searches its 

neighborhood to find an optimum point. This method of finding optimum solutions can lead 

to trapping in local optima for problems with large solution space size (Figure 4.7a). Rather 

than using a hill climbing approach, Evolver is designed to surf the entire solution space by 

generating a pool of possible solutions and by comparing different local solutions at the same 

time it refines solutions. This leads to avoiding local optima by jumping from a local solution 

to other optimum points over the solution space and finding global or near-global answers to 

combinatorial optimization problem (Figure 4.7b). 

 

Handling Hard Constraints: Evolver implements hard constraints by using a backtracking 

mechanism. After generating parent chromosomes (section 2.4), all of the new offspring 

chromosomes are checked against the constraints and if an offspring violates any of the hard 

constraints defined by the user it will be backtracked toward its parents and will be changed 

until producing a valid offspring (Figure 4.8).  
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Figure ‎4.7: a) Hill climbing approach; b) Avoiding local solution by generating multiple 

scenarios (Evolver Guide 2010) 

 

 

Figure ‎4.8: Handling hard Constraints by Evolver (Evolver Guild 2010) 

 

Experimentation: Performance of Evolver is tested by using different size problems and 

different formulation. Samples with varying scales from 10 to 800 components are generated 

for this reason. Although these samples are so small in compare to the main goal of this 
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research (50,000 components), they can be used to evaluate the performance of Evolver and 

different formulations. Figure 4.9 shows Evolver‟s‎modeling‎interface‎and‎the‎corresponding 

optimization parameters, i.e., objective function, decision variables, and constraints. Using 

three formulations (integer, one-shot-binary, and step-wise-binary) discussed in previous 

section, Table 4.1 shows the performance of Evolver in minimizing the overall network 

deterioration index (   ). As it can be seen from Table 4.1 and Figure 4.10, there is a trend 

of performance degradation by increasing the problem size. After examining all 

formulations, one with less performance degradation and better optimum solutions is selected 

as the best formulation. 

 

 

Figure ‎4.9: Model definition in Evolver             
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                 Table ‎4.1: Optimization results using Evolver 

  
Evolver 

Sample Size One-shot-binary Step-wise-binary Integer  

1 10 29.931 29.537 28.559 

2 10 29.456 24.288 24.288 

3 20 31.865 21.368 23.136 

4 40 38.442 25.502 26.81 

5 50 26.687 20.935 20.55 

6 50 27.733 23.375 23.21 

7 100 34.048 27.309 27.47 

8 100 49.3 46.901 44.41 

9 200 

NE* 

32.617 30.3827 

10 300 35.535 32.93 

11 400 34.601 36.45 

12 500 37.833 40.3191 

13 800 39.079 41.6041 

                       * NE: Not Efficient = Not able to find an optimum solution within a reasonable amount of time 

 

 

Figure ‎4.10: Performance degradation of Evolver by increasing problem size 
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Solution Quality of Different Formulations: By comparing the results obtained from all 

three formulations, step-wise-binary formulation found to have better solution quality 

(smaller values for    ) and less performance degradation. With regard to description of 

step-wise-binary formulation (section 4.2), better performance of this formulation is expected 

to be a result of smaller solution-space and chromosome size in compare to the other 

formulations.  

 

Figure ‎4.11: Solution quality of different formulations using Evolver 

 

4.3.2. Risk Solver Platform 

Risk Solver Platform is an optimization tool with both mathematical and evolutionary-based 

optimization engines developed by Frontline Systems. As compared to Excel Solver, Risk 

Solver Platform is a more advanced optimization capable of conducting simulation and risk 

One-shot-binary 
Integer 

Step-wise-binary 
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analysis in addition to optimization. Table 4.2 presents the results obtained from Risk Solver 

Platform using the exact samples as used for testing Evolver and Figure 4.12 shows the 

performance of Risk Solver Platform with different problem formulations.  Based on Figure 

4.12, using Risk Solver Platform also indicates that the step-wise-binary is performing better 

than integer and one-shot-binary formulation.  

In this section two of the GA-based optimization tools are examined in terms of their 

performance in handling asset renewal models with number of components varies from 10 to 

800. A comparison between optimum solutions and the capability of solvers in handling 

problems with larger number of variables shows that Evolver is the dominant optimization 

tool. Also, step-wise-binary formulation proved to be the best formulation among the three 

proposed formulations with better quality results and less performance degradation in both 

Evolver and Risk Solver Platform. Based on the experimentations presented in this section, 

Evolver is selected as the optimization tool and step-wise-binary as the formulation for 

handing larger size problems through the rest of this chapter. 

Table ‎4.2: Optimization results using Risk Solver Platform 

  
Risk Solver Platform 

Sample Size One-shot-binary Step-wise-binary Integer 

1 10 28.559 28.45 28.559 

2 20 21.368 21.36 23.136 

3 40 28.025 25.5 27.5 

4 50 
 

TLTH* 

23.37 33.56 

5 100 27.3  NE** 

   * TLTH: Too Large To Handle (Not able to solve the problem due to the number of variables and/or constraints 
   ** NE: Not Efficient = Not able to find an optimum solution within a reasonable amount of time 
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Figure ‎4.12: Solution quality of different formulations using Risk Solver Platform 

 

4.4. Optimizing Large-Scale Problems Using Segmentation Methods 

After identifying the best optimization tool and formulation, this study proposes 

segmentation methods as mechanism for handling asset renewal problems with sizes beyond 

the limits of previous studies (section 3.4). The main idea of segmentation is to decompose a 

large-scale problem into more optimizable sub-problems with smaller solution-space size. To 

create sub-models, different segmentation approaches can be used:  

 Random Segmentation 

 Similarity-based segmentation methods: 

 Data Compression 

 Clustered Segmentation 

Step-wise-binary 
One-shot-binary 

Integer 
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 In the following sections, each of these methods are described and also tested on various size 

problems to measure the effectiveness of the method in handling large-scale problems. 

 

4.4.1. Optimization with Random Segmentation 

Random segmentation is a simple procedure for creating sub-models which can be used as a 

starting point to evaluate the effectiveness of using segmentation with GAs. In this approach, 

the optimization model is divided into segments with randomly selected internal data, which 

implies that the assets inside each segment do not have any specific similar characteristics 

such as same relative importance or initial condition. To distribute total yearly available 

budget among all segments, the budget for each segment is calculated by dividing the total 

yearly available budget by the number of created segments. For instance, if an optimization 

model is divided into four segments, 25% of total yearly available budget (TB) will be 

allocated to each segment. In the process of optimization each segment is optimized 

separately and results from each of the optimized segments are merged to resemble the final 

solution. This can be easily achieved by inserting the final solutions for each segment into the 

base model. Figure 4.13 shows the procedure of optimization with random segmentation. 

Based on a pairwise comparison between solution points obtained by random segmentation 

and GA optimization without segmentation, random segmentation found to be effective in 

terms of improving the solutions; however, it still suffers from performance degradation by 

increasing the problem size (Figure 4.14). As an attempt toward increasing the effectiveness 
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of segmentation in handling large-scale problems, similarity-based segmentation methods are 

introduced and investigated in the next sections.  

 

Figure ‎4.13: Optimization with random segmentation  

 

 

Figure ‎4.14: Using random segmentation vs. optimization without segmentation 

Random Segmentation 

No Segmentation 
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4.4.2. Optimization with Similarity-Based Segmentation Methods 

Basically, the concept of segmentation based on similarity is derived from clustering 

techniques. Data clustering methods are techniques used to classify datasets or observations 

into groups (clusters). Clustering is mainly based on pattern recognition and similarities 

between datasets with regard to different parameters (Steinbach et al. 2000). Considering 

similarity measures during the process of segmentation can result in creating segments with 

internal assets having close characteristics (very close or similar RIF, initial condition, 

deterioration behavior, etc.). Similarity-based segmentation methods can be used in different 

ways to handle large-scale problems as discussed in the following sections. 

 

4.4.2.1. Similarity/Distance Measures 

Similarity (distance) between sets of data can be calculated using different approaches 

(Steinbach et al. 2000). Pierson Correlation and Euclidian Distance are among common 

measures that consider correlation or distance as a similarity measure respectively. 

 

Pierson Correlation: The Pierson coloration for two sets of data,                and 

               is defined as: 
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where    is the mean of set x and    is the standard deviation of    values. Pearson 

correlation coefficient has a value between 1 and -1. A correlation equal to 1 means 

positively perfectly correlated sets, or in other words, identical datasets. Conversely, a 

correlation of -1 indicates negatively perfectly correlated set or perfectly opposite sets 

(Figure 4.15) (T.T Soong 2004).  

 

 

Figure ‎4.15: Perfect Pierson correlation (T.T Soong 2004) 

 

Euclidian Distance: Consider two sets of data,                and               , 

as two points in an n-dimensional Euclidian space. Using Euclidian distance, similarity 

between two datasets is defined as follow: 

 

                         √∑ (     )
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Similarity Matrix: Using Pierson Correlation or Euclidean Distance as a similarity measure 

for a dataset consists on N data element, similarity matrix is an N by N matrix shows a pair-

wise similarity comparison between all data elements. Level of similarity between data 

elements are usually indicated by different colors (Steinbach et al. 2000).  

 

4.4.2.2 Large-Scale Optimization Using Data Compression 

The process of data compression is starts with segmenting data related to a large asset 

inventory based on similarities between instances. Similarity can be defined using one of the 

aforementioned similarity measures (Eq. 4.1 or Eq. 4.2). Another way for determining 

similar asset is by grouping them based on the asset hierarchy (assets within the same 

building system, e.g., mechanical, electrical, architectural) and with regard to parameters that 

mostly affect the overall network condition, such as relative importance or initial conditions 

of assets. By applying this approach assets within the same system and with similar or very 

close importance and initial conditions are grouped in a segment.  Each segment will be 

replaced by only one instance as the representative of all of the instances within that segment. 

The compressed model contains only the representative instances, is then optimized instead 

of the initial large-scale model. After optimization is done, solutions obtained for each 

representative instance is reassigned to all instances in the segment that it represents (Figure 

4.16).  

Experimentation: A model with 800 instances from TDSB asset inventory is used for the 

purpose of experimentation. The inventory for school buildings consists of several elements 
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defined based on ATSM UNOFORMAT II as shown in Figure 4.17. Based on the previous 

description of data compression, segments should contain instances from same system, i.e., 

mechanical, electrical, or architectural. The initial model consists of 541 instances from 

architectural system, 210 instances from mechanical system, and 49 instances from electrical 

system. After grouping instances based on building systems, they are segmented with regard 

to similarity between importance and initial conditions of instances. Following this 

procedure, 29 segments are created for instances from architectural system, 22 segments for 

mechanical system, and 21 segments for electrical system.  

 

 

 

Figure ‎4.16: Optimization with data compression 
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Figure ‎4.17: TDSB school buildings network asset inventory 

 

Representative instance for each segment has the following characteristics: 

 Expected performance in each year is the average of expected performances of all 

instances in the segment, in that year. 

 Relative importance factor is the average of relative importance factor of instances in 

the segment. 

 Repair cost for representative instance is equal to sum of repair costs of all instances 

in the segment. 

After determining representative instances for all segments, the initial model with 800 

instances is compressed to a model with only 72 representative instances. The compressed 

model has the same objective function as the base model and also the same budget limits. 

After optimizing the compressed model and reassigning representative solution to 

corresponding instances a network deterioration index of 41.043 is obtained. In compare to 



 

 65 

solutions obtained by using genetic algorithm or GA + random segmentation for the same 

problem, data compression is found to have lower quality solution. Poor optimality can be 

attributed to not considering all instances in the process of optimization and only optimizing 

representative, which can exhibit approximation. Based on model compression experiment, it 

can be concluded that it is better to utilize segmentation in a way that all of the asset 

components are considered in the process of optimization since there could be an optimum 

combinations of variables that is not likely to happen by removing some of the assets from 

the optimization model. 

 

4.4.2.3. Optimization with Clustered Segments 

To achieve higher quality results and better performance, it has been tried to utilize the best 

aspects of previous methods and experiments in clustered segmentation method. The process 

of optimization with clustered segments has two phases, 1) segmentation, and 2) 

optimization. Figure 4.18 shows different steps involve in each phase.  

 

 

Figure ‎4.18: Optimization with clustered segments 



 

 66 

 

Similarity Analysis of Input Data: Similarity between instances is determined by using 

Euclidian distance measures with regard to deterioration behaviors (variations in DIs), and 

relative importance of individual assets as follow: 

 (                   )  √(       (   ) 
              )

 

 (         )
 
 

                                                                      [         ]                                              

 

where        (   ) 
 is the average of deterioration indices during the planning horizon for 

instance j, and      is the relative importance factor for instance j. Using Equation 4.3, 

similarity matrix of a 200-intance case is generated for with both randomly and similarity-

based segmentation (Figures 4.19 and 4.20). As it can be seen from similarity matrices, 

variations of similarity are much less in similarity-based segments.  Creating segments with 

similar assets makes it possible to characterize segments based on characteristics of their 

internal assets. For instance, if it is known that the relative importance factors of similar 

internal assets are low, the segment can be treated as a less important segment in compare to 

another segment having similar internal assets with high relative importance factors. 

Accordingly, if the internal assets of segments were not similar (randomly generated 

segments), it was not possible to assign specific characteristics, because assets with low 

relative importance factor and high relative importance factor can exist in the same segment 

(disturbed patterns: Figure 4.19). Creating similarity-based segments can be helpful in the 

process of segment ordering and budget allocation as described later in this section.  
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Figure ‎4.19: Segments with randomly sorted input data 

 

 

 

 

Figure ‎4.20: Segments with similarity-based sorted input data 
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Determining Segment Size: Segment size refers to the number of instances enters each 

segment. Determining segment size is based on the capability of optimization tools and 

model formulations to achieve solutions with high level of optimality (near-global or global 

optimum). Table 4.3 and Figure 4.21 show experimentation results using different segment 

sizes. Comparison among optimization solutions by different segment sizes shows that the 

segment size can affect the optimum solution. For instance, network deterioration index 

(   ) of 35.84 is achieved for the case of 4000-instance model with segment size equal to 

50. Increasing segment size to 400 resulted in     of 40.168 for the same model. Based on 

these experiments segments size of 50 to 100 is suggested to use for the TDSB asset renewal 

problem. 

 

 

Table ‎4.3: Optimization efficiency with different segment size 

 
Model Cases 

 
800 instances 2000 instances 4000 instances 6000 instances 

Segment 

Size 

No. of 

Seg. 

Time 

(min) 
CI 

No. of 

Seg. 

Time 

(min) 
CI 

No. of 

Seg. 

Time 

(min) 
CI 

No. of 

Seg. 

Time 

(min) 
CI 

50 16 80 35.559 40 200 35.02 80 400 35.843 120 600 37.999 

100 8 40 35.508 20 100 36.887 40 200 36.419 60 300 39.601 

200 4 20 39.05 10 50 39.002 20 100 39.24 30 150 42.585 

400 2 10 40.613 5 25 40.168 10 50 42.038 15 75 45.709 
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Figure ‎4.21: Optimal solutions using different segment size 

 

Segment Ordering: After creating clustered segments (similarity-based generated segments) 

and determining optimum segment size, an important characteristic of segments called 

Criticality is defined.  Criticality of a segment is the average of criticality indices of internal 

instances, which represents the effect of that segment on the overall network deterioration 

index. Segments with higher level of criticality have more negative impact on the overall 

network deterioration (increasing    ). Criticality index of an instance is calculated as 

follow: 

                
    

   
 

             
   

                            [         ]                  
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where      is the criticality index of instance i,      is the relative importance factor for 

instance i, and     is expected performance. Criticality index has a value from 0 to 1 by 

which 0 represents low criticality and 1 represents high criticality instances. Criticality of a 

segment is defined as the average of criticalities of its internal instances. 

                                                                    
∑     

  
   

   
                                                                       

where      is the Criticality of segment j and     is the segment size. To calculate the 

relative criticality (   ) of a segment following equation is used: 

                                                                   
    

∑     
  
   

                                                                        

                                                    NS = Number of Segments 

 

After defining the relative criticality of all segments, segments are ordered from low relative 

criticality to high relative criticality. Sorting segments based on relative criticality facilitates 

the process of budget redistribution as discussed in the following subsection. 

 

Budget Allocation and Redistribution: After ordering segments based on criticality values, 

available yearly budget is allocated to segments also based on their criticality. Budget 

allocation function based on segment relative criticality is defined as follow: 
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where     is allocated budget to segment j in year k, and     is the total available budget in 

year k, and     is the relative criticality of segment j. 

Experimenting with three samples of segments with low relative criticality and high relative 

criticality is shown in Figure 4.22. Experiments shows that increasing the available budget 

(B1) for high criticality segments can improve the optimum solution.  

 

 

FIGURE ‎4.22: Effect of increasing the available budget on network deterioration index 

for segments with high relative criticality 

 

After optimizing a segmented large-scale asset renewal problem, at each stage of 

optimization a small portion of the budget will be remained unallocated since the budget 

constraint cannot be met to the exact dollar. This remaining unallocated budget will 

Sample 1 

Sample 3 

Sample 2 
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accumulate from many segments and increased during the optimization process that becomes 

considerable amount of leftover money for a large-scale problem. Three ways are then 

possible to redistribute the remaining unallocated budget (Figure 4.23). In the first approach 

(Figure 4.23a) remaining budget from segment j will be added to available budget for 

segment j+1. Following this order during the process of optimization is resulted in more 

allocation of budget to segments with higher relative criticality since segments are ordered 

from low to high relative criticality. Combining sequential budget redistribution with budget 

allocation based on relative criticality leads to the following budget allocation function:  

 

                                                (                 )                                               

 

where         is the allocated budget to segment (j-1) in year k and           is segment (j-

1) repair cost in year k. 

In the second method of budget redistribution (Figure 4.23 b), all the leftover money from 

segments with low relative criticality is collected and then redistributed to segments with 

high relative criticality (e.g.        ).  

In the third approach, remaining budget is redistributed at the end of optimization process. 

After optimization is done, unallocated instances are separated from funded instances and all 

of the leftover money is used for them within a second optimization (Figure 4.23c).  
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Figure 4.23: Three methods of budget redistribution for in a segmented optimization process 
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In order to meet the purpose of budget redistribution, which is to allocate maximum amount 

of available budget effectively to repair instances, any of these methods can be used. In the 

process of optimization with clustered segments, since segments are optimized in a 

sequential manner, the first method is selected for budget redistribution. Figure 4.24 shows a 

comparison between optimization with budget redistribution and optimization with no 

redistribution of leftovers from each segment. As it can be seen from this figure, 

redistribution of unallocated budgets improves the overall network deterioration index. 

 

 

Figure ‎4.24: Effect of budget redistribution on network deterioration index 

 

Optimization Results using clustered segmentation: By applying the proposed 

optimization mechanism on TDSB life cycle cost analysis model, network deterioration 

Optimization with budget redistribution 

Optimization with no budget redistribution 
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index of 36.1 is achieved for model with 50000 instances. Results show a huge improvement 

in optimization performance in compare to previous studies on the same prototype that 

achieved     of 48.9 for model with only 8000 instances. In addition, applying this 

mechanism also solves the problem of performance degradation. Figure 4.25 shows the 

results obtained from optimization with clustered segments and a comparison with previous 

studies optimization. As it can be seen from these results, optimization performance is almost 

constant‎ by‎ increasing‎ the‎ model‟s‎ scales.‎ Figure‎ 4.26‎ shows‎ the‎ spreadsheet‎ program‎

developed for optimization with random segmentation.  

 

 

Figure ‎4.25: Performance of optimization with clustered segments 

Simple Ranking 

Optimization with clustered segments 

No Performance Degradation 

8000 50000 

Previous Results 
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Figure ‎4.26: Spreadsheet for optimization with clustered segments 

 

4.5. Comparison among Different Segmentation Approaches 

As discussed in this section, different segmentation methods can be used with genetic 

algorithms. These methods include: 1) random segmentation, which divides an optimization 

problem into several segments with random internal data and allocates budget based on 

segments size; 2) model compression that optimizes a compressed model contains 
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representative instances rather than the large-scale base model; and 3) clustered 

segmentation, which creates segments based on similarities while considering the best 

segment size, and allocates budget based on characteristics of segments and redistributes the 

remaining funds sequentially or at the end of the optimization process.  Following table 

shows a comparison between segmentation methods discussed in this study.   

 

Table ‎4.4: Comparison among segmentation methods 

   Similarity-Based  

  
Random  

Segmentation 

Model 

Compression 

Clustered  

Segmentation 

P
e
rf

o
rm

a
n

c
e

 

800-

instances 
39.05 41.043 35.508 

Other 

Cases 

 Better quality results as 

compared to no 

segmentation 

 

 Suffering from performance 

degradation in larger cases 

N/A 

 Best optimization results for 

large-scale cases 

 

 No performance degradation 

Comments 

 As a good starting point, 

highlights the effectiveness of 

segmentation approach 

 

 Not good enough for using in 

larger scale situations  

 

 Using the same segment size 

and budget allocation 

methods as used in clustered 

segmentation approach can 

improve results further 

 Better quality 

results as 

compared to 

simple ranking 

 

 Poor results as 

compared to other 

optimization 

methods and 

accordingly is not 

used for larger size 

problems 

 Selected as the best 

segmentation approach 

 

 Optimized 50,000-instances 

case with huge 

improvements 

 

 Applicable to larger size 

problems with no 

degradation in performance 
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4.6. Summary and Conclusions 

In this chapter, three possible formulations for a large-scale asset renewal problem are 

investigated. Also, performance of each formulation is tested on two GA-based optimization 

tools, Evolver and Risk Solver Platform, to determine the best formulation and tool to use for 

large-scale optimization. Based on experiments, Evolver was selected as the best tool and 

step-wise-binary formulation as the best formulation. Next, segmentation introduced as a 

mechanism for handling very large-scale problems. Two different segmentation methods, 

Random segmentation and Similarity-based segmentation were discussed in detail. Based on 

various experiment, clustered segmentation proposed as the best segmentation mechanism. 

Comparison between optimization results obtained from proposed optimization mechanism 

of this research and the previous results indicated a significant improvement in optimization 

performance. Network deterioration index of 36.1 achieved for 50000-instance case with no 

performance degradation by increasing problem size.  
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Chapter 5 

Large-Scale Optimization Using Advanced Mathematical Tools 

 

5.1. Introduction 

In this chapter, performance of an advanced mathematical modeling and optimization tool, 

„GAMS/CPLX‟, is investigated on large-scale asset renewal problems. Modeling the asset 

renewal problem and the optimization techniques are discussed in detail. In addition, the 

results of using GAMS/CPLEX are compared with the results obtained by using GA + 

segmentation as discussed in previous chapter.  

 

5.2. Mathematical Programming (MP): Advanced Tools 

Mathematical representation and modeling of a real-life problem can be used to study the 

behavior of a system and to find a solution that enables the system to best meets its goals 

(W.L. Winston & M. Venkataramanan 2003). Different mathematical optimization tools have 

therefore been developed to help engineers. Simple optimization tools such as excel-solver or 

other simple solvers are only capable of handling simple LP problems. Advanced tools such 

as GAMS or IBM ILOG optimizer are capable of modeling and solving more complex 

problems using their sophisticated solver engines. To optimize TDSB asset renewal problem, 

an advanced optimization tool, GAMS/CPLEX, is used in this chapter. Following is a brief 

description of this tool and its solver engine: 
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GAMS: The General Algebraic Modeling System (GAMS) is a high-level modeling system 

for mathematical programming and optimization. It consists of a language compiler and a 

stable of integrated high-performance solvers. GAMS is tailored for complex, large scale 

modeling applications, and allows users to build large maintainable models that can be 

adapted quickly to new situations (GAMS user guide 2010). GAMS was mainly motivated 

and developed to improve the optimization performance in solving large mathematical 

programming problems by: 

  

 Providing a high-level language for the compact representation of large and complex 

models  

 Allowing changes to be made in model specifications simply and safely  

 Allowing unambiguous statements of algebraic relationships 

 Permitting model descriptions that are independent of solution algorithms 

 

With the GAMS mathematical modeling tool, different solvers can be used. For large-scale 

asset renewal problems one of the powerful solvers called CPLEX is used.  

 

CPLEX: CPLEX optimizer is designed to solve large and difficult linear, quadratically 

constrained and mixed integer programming problems quickly and with minimal user 

intervention (CPLEX user guide 2007). CPLEX is also considered as a robust and reliable 
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optimization tool that delivers the power needed to solve very large-scale real world 

problems (CPLEX user guide 2007). In the next subsection detailed description of CPLEX 

optimization algorithm is discussed. 

 

5.2.1. How GAMS/CPLEX Works 

Integer programming (IP) problems require dramatically more amount of processing time 

and calculations in compare to LP or NLP problems (CPLEX12 User Guide). This fact is 

basically due to the methods used for solving this type of problems. CPLEX uses a branch-

and-bound method, which solves series of LP sub-problems to reach the final solution. Since 

even a small integer programming problem can generate lots of sub-problems, it requires 

huge amount of physical memory and calculations to solve the problem (Winston & M. 

Venkataramanan 2003; CPLEX12 User Guide).  

 

Branch and Bound Method: Most integer programming problems are solved by using 

branch-and-bound techniques. Branch-and-bound methods solve an IP problem by generating 

LP sub-problems (LP relaxation). If the solution obtained from a relaxed sub-problem is an 

integer solution, then it is a candidate for being the optimal solution to the problem (W.L. 

Winston & M. Venkataramanan 2003). Figure 5.1 shows the process of applying branch-and-

bound method to an IP problem. After solving all sub-problems, candidate solutions with 

integer results are compared and the optimal solution is obtained base on the direction of the 

optimization (minimization or maximization) (Figure 5.1.b).  
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One of the main reasons that IP problems are very tedious to solve is the huge amount of 

calculations required for large number of sub-problems. For that reason, modelers usually 

seek for a proper formulation, which requires less calculation and processing time (Wolsey. 

L. 1989). 

 

Figure 5.1: a) Branching and creating sub-problems, b) Branch-and-bound tree (W.L. 

Winston & M. Venkataramanan 2003) 
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5.2.2. Characteristics of Easy-to-Solve Models (Called Strong IP Formulations) 

Generally, a strong integer programming formulation is a formulation that can lead to 

optimal solution with less computational effort. The way that an IP problem is formulated 

can significantly affect the optimization performance (Wolsey. L. 1989). There are different 

ways to identify an easy-to-solve formulation. Some of the key elements to a good IP 

formulation are as follow (Wolsey. L. 1989; Winston & M. Venkataramanan 2003): 

1. Linearity   

2. Decision Variables 

3. Simple Calculations and Relationships 

4. Strength of the LP Relaxation 

 

Linearity: Linearity of objective function and constraint equations enables IP solvers to use 

simpler and faster algorithms, such as simplex algorithm, to solve sub-problems (W.L. 

Winston & M. Venkataramanan 2003). In formulating IP problems, defining objective 

function and constraints as a linear function of decision variables proved to be effective in 

increasing optimization performance (Wolsey. L. 1989).  

 

Decision Variables: Using variables with minimum range of variations can be very helpful 

in solving IPs (W.L. Winston & M. Venkataramanan 2003).   In different applications of 

integer programming, such as minimum cost network flow problems (MCNFP) or facility 

location a problem, binary representation of variables (if possible), which is the simplest 
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form of an integer variable, proved to be very effective and is recommended to use in 

developing a good formulation (W.L. Winston & M. Venkataramanan 2003). 

 

Simple Calculations and Relationships: Relationships amongst input data, decision 

variables, and model equations (objective function, constraints, loops statements, and 

conditional statements) can significantly affect the process of solving an IP problem 

(CPLEX12 User Guide) and simplicity of interrelationships and calculations is another key to 

increase optimization performance (Wolsey. L. 1989). To simplify relationships and 

calculations one can try to terminate redundancies and complex relationships (if possible), or 

can use other software parallel to the optimization tool to do some part of calculation by 

exchanging data between both software. 

 

The strength of LP relaxation: The LP relaxation of an IP problem is obtained by relaxing 

the constraints from discrete to continuous values. For instance, in a binary integer 

programming (BIP) problem, a variable in the LP relaxation can take a real value between 

zero to 1 (      . In order to examine the strength of relaxation, the feasible region of 

the LP relaxation is compared to the convex hull of the problem (Figure 5.2). Given a set of 

feasible integer solutions (X), the corresponding convex hull (CH(X)) is the smallest 

polyhedron containing X. Considering   as the feasible region of the LP relaxation, IP 

formulation is strong when  the difference between P and CH is minimized (Wolsey. L. 

1989) (Figure 5.2).  
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Figure ‎5.2: Convex hull and feasible region for the LP relaxation 

 

5.3. Modeling the Asset Renewal Problem for GAMS/CPLEX 

Based on previous descriptions in chapter 4, same formulations used for GA-based 

optimization are also candidates for mathematical programming experimentation. Figure 5.3 

shows three formulations used before. 

 

 

Figure 5.3: Formulations used for modeling the asset renewal problem 
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All of these models share following characteristics (Section 5.2): 

 Static Model: Optimization for 5-year planning horizon (no multiple periods of time). 

 Linear Model: linear functions re used for defining constraints and objective function.  

 Integer Pogromming (IP): Decision variables are allowed to have discrete values. 

 Stochastic Model: The values for variables and objective function are also assumed to 

be known. It is important to note that although the future deterioration indices (DIs) 

are determined by using deterministic Markovian models, but the model itself 

assumed to be stochastic.  

Comparing these formulations with regard to characteristics of easy-to-solve IP formulation 

shows that all of them are reasonable formulations in terms of linearity. In terms of decision 

variables, binary formulations are better candidates since they are using the simplest form of 

a discrete variable (binary variable), which has the minimum level of variation. Between two 

binary formulations, the one-shot-binary formulation requires less internal calculations and 

can be coded using simple relationships, but the step-wise-binary formulation requires more 

complex statements, such as loop or conditional statements (Figure 5.3). Based on these 

comparisons one-shot-binary formulation is the best candidate among three suggested IP 

formulation, however, the amount of calculations and relationships for input data 

(deterioration indices, expected performance calculations, repair cost calculation) can still 

affect the optimization performance. To simplify calculations for a large-scale problem, the 

TDSB asset renewal model is coded in a way that exchanges data between both Microsoft 

Excel and GAMS/CPLEX as discussed in the next section. 
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5.3.1. Structure of the GAMS Model for the Asset Renewal Problem  

The main components of the implemented model in GAMS are as follow: 

1. Sets: In the GMS model, the 5-year planning horizon and the network of instances are 

represented by   and   set declarations respectively.  

2. Data: All of the main data including parameters, tables, and scalars are presented in 

the model by using GDX files and direct connection to the original spreadsheet file 

contain the base model. These data include: instance repair cost (IRC) for the best 

repair scenario, improvement effect (IE), initial condition (IC), and yearly budget 

limit. Calculations related to all input data are as discussed in chapter 3. 

3. Variables: Decision variable are in the form of binary as discussed before. 

4. Equations: Objective function and two constraints, yearly budget limit and one time 

visit during the planning horizon, are defined as equation declarations by same 

equations used in chapter 3. 

 

Since a huge database is used for large-scale problems, the model is defined in a way that 

extracts input data after calculations are done from the spreadsheet contain model 

information. Input data are linked to GAMS by using GAMS Data Exchange (GDX) files. As 

shown in Figure 5.4, in the process of optimization, the GAMS input spreadsheet file is 

generated from the original optimization model and calculated data (RIC, IE, and IC) are 

exported to GAMS by using GDX files. CPLEX is selected by GAMS as the solver engine 
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and after optimization is done, results are exported again to excel or saved as a separate text 

file by using GAMS put writing facility.  

 

 

Figure ‎5.4: Optimization process with GAMS/CPLEX 

 

Figure 5.5 shows the GAMS modeling environment and the optimization code for the asset 

renewal problem. Detailed coding is also presented in appendix A. Although the problem is 

in the form of IP, model is defined as MIP due to the CPLEX modeling regulations. After 

identifying that the model is pure integer CPLEX uses IP solution methods automatically. 

Although this model is dealing with huge amount of data and is very large-scale, it is 

compacted and simplified by using the interaction between GAMS and Microsoft Excel. 
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Figure ‎5.5: GAMS modeling environment 

 

5.4 Mathematical Optimization: Experimentations and Results  

As discussed in previous section, one-shot-binary formulation is used to test the performance 

of GAMS/CPLEX on different size problems. Models with wide variety of sizes, from 10-
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instances to 50000-instances case, are coded and optimized using GAMS/CPLEX. Detailed 

optimization results, model statistics and solution reports for all experiments are presented in 

appendix B. Table 5.1 also gives brief information about each experiment includes: model 

size, number of discrete variables, optimization time, number of iterations, and the objective 

value (network deterioration index). Figure 5.5 shows mathematical optimization results 

obtained from GAMS/CPLEX.  

 

Table ‎5.1: Optimization results using GAMS/CPLEX 

Model Size  

(Instances) 

Number of  

Discrete Variables 

Generation  

Time (sec) 

Execution 

Time (sec) 

Iteration 

Count 

Objective  

Value 

10 500 0.031 0.031 10 25.5 

20 1000 0.031 0.031 25 21.387 

40 2000 0.031 0.047 62 24.633 

50 2500 0.031 0.031 64 22.743 

100 5000 0.031 0.031 131 24.046 

200 10000 0.062 0.062 238 25.132 

400 20000 0.078 0.094 447 27.051 

500 25000 0.109 0.125 505 31.646 

800 40000 0.125 2.703 713 31.732 

8000 400000 1.062 1.408 6171 31.686 

16000 800000 2.135 2.938 12378 31.683 

32000 1600000 4.39 6.031 24737 31.681 

40000 2000000 5.672 7.704 31908 31.68 

48000 2400000 6.703 9.135 38275 31.68 

50000 2500000 6.75 9.281 41666 31.674 
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Figure ‎5.6: Mathematical Optimization Performance (vertical scale is very narrow) 

 

In compare to GA-based optimization with segmentation, as shown in Figure 5.7, 

mathematical approach is more promising.  Advanced tools and strong formulation are 

considered to be the main keys to the good optimization performance. Detailed investigation 

on the relaxation properties, convex hull and LP feasible region, can be done as an extension 

to this study (Chapter 6: Future Works) and is not discussed in this chapter. However, 

experiments with relaxed version of the TDSB problem revealed very close results to the 

integer programming results. Schematically, the expected CH and P for a simple two-

dimensional can be shown as Figure 5.8. Although mathematical approach results are better 

in compare to genetic algorithms, GA + segmentation approach is still very useful and 

practical, specifically in the case of more complex and nonlinear large-scale asset renewal 

problems. 
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Figure ‎5.7: Comparison between GAMS/CPLEX and GA + segmentation 

 

 

Figure ‎5.8: Convex hull and feasible region for a two-dimensional simple case 

Genetic Algorithm 
GA + Segmentation 

Simple Ranking 

GAMS/CPLEX 

Segmentation is used for larger size 
problems 
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5.5. Summary and Conclusions 

In this chapter, the performance of an advanced mathematical optimization tool 

(GAMS/CPLEX) discussed on large-scale asset renewal problems. The mathematical model 

is defined in a way that the initial spreadsheet contains asset inventory information, the 

mathematical modeling software (GAMS), and the optimization tool (CPLEX) collaborate to 

increase the efficiency of optimization.  

Solution quality of mathematical approached was better as compared to GA-based 

optimization. The promising results are attributed to high-level computational capabilities of 

the optimization tools and also to the simple and easy-to-solve IP formulation of the asset 

renewal problem. In the case of the TDSB school renewal program, the mathematical 

approach proved to be successful, however, GA-based optimization, particularly 

segmentation, is still an effective alternative to handle more complex and non-linear large-

scale problems.    
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Chapter 6 

Conclusions and Future Research 

 

6.1. Conclusions 

Reliable and efficient public infrastructure is indispensible for the existence of a prosperous 

and modern society. Preserving the serviceability of public infrastructure is a highly 

challenging task due to the deteriorations caused by aging and lack of asset renewal funding. 

Consequently, asset management systems (AMSs), involving four main functions: condition 

assessment, deterioration modeling, repair modeling, and life cycle cost analysis (LCCA), 

have been introduced to support decision makers in handling renewal actions cost-

effectively. During the life cycle cost analysis process all information provided by other 

functions are utilized to find the optimum solution of an asset renewal problem. One of the 

main difficulties of most AMSs is that they are not able to provide a good life cycle cost 

analysis for real-life problems due to the complexities and large number of components. 

Therefore, the main goal of this research was to investigate practical approaches in dealing 

with very large-scale asset renewal optimization problems involving at least 50,000 

components. 

An asset management framework developed by Hegazy and Elhakeem (2010) suggested an 

integrated bilevel life cycle optimization for handling the renewal planning problem related 

to Toronto District School Board (TDSB), which was able to optimize the problem for only 



 

 96 

8000 components. For expanding to larger size problems, this study proposed a methodology 

that investigates both evolutionary-based optimization techniques and also advanced 

mathematical tools.  

On the evolutionary side, three possible formulations of the asset renewal problem were 

investigated. In addition, performances of each formulation were tested on two GA-based 

optimization tools, Evolver and Risk Solver Platform, to determine the best formulation and 

suitable tools to use for large-scale optimization. Based on the experiments, Evolver with a 

step-wise-binary formulation was selected. Next, segmentation was introduced as a possible 

mechanism for handling very large-scale problems. Two different segmentation methods, 

Random segmentation and Similarity-based segmentation, were discussed in detail. Based on 

various experiments, the best segmentation approaches, effective budget redistribution 

mechanism, best segment size and segment ordering were selected and tested on problems of 

varying sizes. A comparison between optimization results obtained by the proposed 

segmentation methodology and previous results showed significant improvement in 

optimization results. A network deterioration index of 36.1 was achieved for the 50000-

instance case with no performance degradation. 

In addition to genetic algorithms, performance of an advanced mathematical optimization 

tool was discussed and investigated on large-scale asset renewal problems. The mathematical 

model was defined in a way that the initial spreadsheet contains asset inventory information, 

and the mathematical optimization tool (GAMS/CPLEX) collaborated to increase the 

efficiency of optimization. Based on the experimentations, mathematical optimization 
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approach leaded to better quality results as compared to GA-based optimization. Good 

performance of mathematical approach is attributable to the high-level computational ability 

of GAMS and to the simplicity of the IP formulation (easy-to-sole fotmulation). The study, in 

essence, achieved its objective of optimizing up to 50,000 assets simultaneously, using either 

the segmented GA approach or using the developed GAMS model.  

Based on the current experiments and results, this research contributes the following: 

 

 Developed a mechanism for handling very large-scale real-life asset renewal 

problems using GA with segmentation: By applying the GA-based optimization 

mechanism introduced in this research, asset managers are able to use optimization 

for even very large-scale problems and allocate the available budget more cost-

effectively in comparison to using ranking methods, which are common for large size 

problems. 

 

 Introduced an effective optimization model using an advanced mathematical tool 

for handling large-scale problems: By investigating advanced mathematical tools, 

this research demonstrated that utilizing appropriate mathematical tools and strong 

formulations can lead to high quality results even for large-scale asset renewal 

problems. 
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 Better understanding of problem formulations: This research investigated various 

problem formulations through numerous experiments on several optimization tools 

and problems. These experiments and results provided a clearer insight and better 

understanding of good formulation for solving large-scale problems. 

 

6.2. Future Research 

Future extensions of this research could cover various improvements related to asset 

management and life cycle cost, including: 

 Experiment with larger sized problems involving mixed assets, larger planning 

horizons, and more complex situations which model more than a single visit to each 

asset; 

 Examine alternative evolutionary algorithms and test their performance with 

segmentation; 

 Investigate further the potential benefits of using clustering techniques during the 

segmentation process; 

 Study in detail the mathematical optimization approaches used by advanced solvers 

and relaxation properties of the model; 

 Use the proposed optimization methodologies in other large-scale asset renewal 

problems, such as bridge management, sewer networks, or pipe line systems; 

 Develop a post-optimization module for checking the acceptability of final solutions 

with regard to variation of acceptability levels; 
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 Link the optimization results to other systems for day-to-day maintenance planning; 

 Investigate parallel computing methods and cloud computing tools that could speed 

the optimization process.   
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Appendix A 

GAMS Model for TDSB Asset Renewal Problem 

Following is the GAMS code for the TDSB asset renewal problem. Model is coded in such 

way that integrates with excel spreadsheets contain the original model used in chapter 4 with 

GA-based optimization process, and also the GAMS input data spreadsheet (BM10.xls). 

Using GDX files leads to create more compact and efficient mathematical model. As 

discussed in chapter 5, model has four main components including: 1) sets, 2) data, 3) 

variables, and 4) equations. 

 

$title TDSB Asset Renewal Optimization Model (800 instances) 

* using GAMS/CPLEX as the solver 

option MIP = CPLEX ; 

 

Set i instances /1*800/ ; 

Set j year number /1,2,3,4,5/ ; 

 

* input data imported from BM10.xls (GAMS input spreadsheet) 

Parameter IRC(i,j) Instance Repair Cost ; 

$call "gdxxrw i=BM10.xls o=IRC.gdx par=IRC rng=gamsinput!A11:F811" 

$gdxin IRC.gdx 

$load IRC 

display IRC; 

 

Parameter IE(i,j) Improvement Effect ; 

$call "gdxxrw i=BM10.xls o=IE.gdx par=IE rng=gamsinput!M11:R811" 

$gdxin IE.gdx 

$load IE 

display IE; 

 

Parameter RIF(i,j) Repair Cost ; 

$call "gdxxrw i=BM10.xls o=RIF.gdx par=RIF rng=gamsinput!S11:X811" 

$gdxin RIF.gdx 

$load RIF 
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display RIF; 

 

Parameter CI0(i) initial conditon Index ; 

$call "gdxxrw i=BM10.xls o=CI0.gdx par=CI0 rng=gamsinput!Y12:Z811 

rdim=1" 

$gdxin CI0.gdx 

$load CI0 

display CI0; 

 

Parameter B(j) Yearly Budget Limit ; 

$call "gdxxrw i=BM10.xls o=B.gdx par=B rng=gamsinput!AA3:AB7 rdim=1" 

$gdxin B.gdx 

$load B 

display B; 

 

Scalar z ; 

   z = sum(i,CI0(i)); 

Scalar m ; 

   m = (sum((i,j), RIF(i,j)))/5; 

 

* binary decision variables (BIP formulation) 

Variable x(i,j) Decision Variable for Renewal Action ; 

Binary variable x ; 

 

Variable DIN Network Deterioration Index ; 

 

* objective and constraints 

Equations 

        cost(j)      total cost in year j 

        SRC(i)       one time visit during the planning horizon 

        Condition    objective function ; 

 

  cost(j)..       sum(i, x(i,j)*IRC(i,j)) =l= B(j) ; 

  SRC(i)..        sum(j, x(i,j)) =l= 1  ; 

  Condition.. DIN =e= (z + sum((i,j), x(i,j)*IE(i,j)*RIF(i,j)))/m ; 

 

* solving asset renewal model using GAMS/CPLEX 

Model TDSB /all/ ; 

 

solve TDSB using mip minimizing DIN ; 
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Display x.l, DIN.l ; 

 

solve TDSB using mip minimizing DIN ; 

execute_unload "result.gdx" x.l 

execute 'gdxxrw.exe result.gdx o=BM10.xls var=x.l rng=gamsresult!' 

 

file results /results.txt/ ; 

put results; 

loop((i,j), put x.l(i,j)/); 
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Appendix B 

GAMS/CPLEX Optimization Output Data 

 

Using GAMS modeling software and its powerful CPLEX solver following results are 

obtained for different size problems. Due to the large scale of the models, complete GAMS 

output is not presented here. Instead, the solution reports and model statistics for cases from 

800 to 50000 instances are presented here: 

 

800-instances: 

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS           3     SINGLE EQUATIONS          806 

BLOCKS OF VARIABLES           2     SINGLE VARIABLES        4,001 

NON ZERO ELEMENTS        11,861     DISCRETE VARIABLES      4,000 

 

 

GENERATION TIME      =        0.125 SECONDS      5 Mb   

EXECUTION TIME       =        0.156 SECONDS      5 Mb  

 

 

Solution Report     SOLVE TDSB Using MIP From line 65 

 

 

               S O L V E      S U M M A R Y 

 

     MODEL   TDSB                OBJECTIVE  NCI 

     TYPE    MIP                 DIRECTION  MINIMIZE 

     SOLVER  CPLEX               FROM LINE  65 
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**** SOLVER STATUS     1 Normal Completion          

**** MODEL STATUS      8 Integer Solution           

**** OBJECTIVE VALUE               31.7319 

 

 RESOURCE USAGE, LIMIT          0.306      1000.000 

 ITERATION COUNT, LIMIT       713    2000000000 

 

 

8000-instances: 

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS           3     SINGLE EQUATIONS        8,006 

BLOCKS OF VARIABLES           2     SINGLE VARIABLES       40,001 

NON ZERO ELEMENTS       118,601     DISCRETE VARIABLES     40,000 

 

 

GENERATION TIME      =        1.062 SECONDS     18 Mb  

EXECUTION TIME       =        1.468 SECONDS     18 Mb  

 

 

Solution Report     SOLVE TDSB Using MIP From line 65 

 

 

               S O L V E      S U M M A R Y 

 

     MODEL   TDSB                OBJECTIVE  NCI 

     TYPE    MIP                 DIRECTION  MINIMIZE 

     SOLVER  CPLEX               FROM LINE  65 

 

 

**** SOLVER STATUS     1 Normal Completion          
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**** MODEL STATUS      8 Integer Solution          

**** OBJECTIVE VALUE               31.6861 

 

 

 RESOURCE USAGE, LIMIT          2.013      1000.000 

 ITERATION COUNT, LIMIT      6171    2000000000 

 

 

 

 

16000-instances: 

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS           3     SINGLE EQUATIONS       16,006 

BLOCKS OF VARIABLES           2     SINGLE VARIABLES       80,001 

NON ZERO ELEMENTS       237,201     DISCRETE VARIABLES     80,000 

 

 

GENERATION TIME      =        2.125 SECONDS     33 Mb  

EXECUTION TIME       =        2.938 SECONDS     33 Mb  

 

  

Solution Report     SOLVE TDSB Using MIP From line 66 

 

 

               S O L V E      S U M M A R Y 

 

     MODEL   TDSB                OBJECTIVE  NCI 

     TYPE    MIP                 DIRECTION  MINIMIZE 

     SOLVER  CPLEX               FROM LINE  66 

 

**** SOLVER STATUS     1 Normal Completion          

**** MODEL STATUS      8 Integer Solution           

**** OBJECTIVE VALUE               31.6829 
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 RESOURCE USAGE, LIMIT          5.228      1000.000 

 ITERATION COUNT, LIMIT     12378    2000000000 

 

 

32000-instances: 

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS           3     SINGLE EQUATIONS       32,006 

BLOCKS OF VARIABLES           2     SINGLE VARIABLES      160,001 

NON ZERO ELEMENTS       474,401     DISCRETE VARIABLES    160,000 

 

 

GENERATION TIME      =        4.390 SECONDS     61 Mb  

EXECUTION TIME       =        6.031 SECONDS     61 Mb   

 

 

Solution Report     SOLVE TDSB Using MIP From line 66 

 

 

               S O L V E      S U M M A R Y 

 

     MODEL   TDSB                OBJECTIVE  NCI 

     TYPE    MIP                 DIRECTION  MINIMIZE 

     SOLVER  CPLEX               FROM LINE  66 

 

 

**** SOLVER STATUS     1 Normal Completion          

**** MODEL STATUS      8 Integer Solution           

**** OBJECTIVE VALUE               31.6811 

 

 

 RESOURCE USAGE, LIMIT         16.865      1000.000 
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 ITERATION COUNT, LIMIT     24737    2000000000 

 

 

40000-instances: 

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS           3     SINGLE EQUATIONS       40,006 

BLOCKS OF VARIABLES           2     SINGLE VARIABLES      200,001 

NON ZERO ELEMENTS       593,001     DISCRETE VARIABLES    200,000 

 

 

GENERATION TIME      =        5.672 SECONDS     75 Mb  

EXECUTION TIME       =        7.734 SECONDS     75 Mb  

 

 

Solution Report     SOLVE TDSB Using MIP From line 66 

 

 

               S O L V E      S U M M A R Y 

 

     MODEL   TDSB                OBJECTIVE  NCI 

     TYPE    MIP                 DIRECTION  MINIMIZE 

     SOLVER  CPLEX               FROM LINE  66 

 

 

**** SOLVER STATUS     1 Normal Completion          

**** MODEL STATUS      8 Integer Solution           

**** OBJECTIVE VALUE               31.6801 

 

 

 RESOURCE USAGE, LIMIT         27.772      1000.000 

 ITERATION COUNT, LIMIT     31908    2000000000 
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48000-instances: 

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS           3     SINGLE EQUATIONS       48,006 

BLOCKS OF VARIABLES           2     SINGLE VARIABLES      240,001 

NON ZERO ELEMENTS       711,601     DISCRETE VARIABLES    240,000 

 

 

GENERATION TIME      =        6.703 SECONDS     90 Mb   

EXECUTION TIME       =        9.125 SECONDS     90 Mb   

 

 

Solution Report     SOLVE TDSB Using MIP From line 66 

 

               S O L V E      S U M M A R Y 

 

     MODEL   TDSB                OBJECTIVE  NCI 

     TYPE    MIP                 DIRECTION  MINIMIZE 

     SOLVER  CPLEX               FROM LINE  66 

 

 

**** SOLVER STATUS     1 Normal Completion          

**** MODEL STATUS      8 Integer Solution           

**** OBJECTIVE VALUE               31.6798 

 

 

 RESOURCE USAGE, LIMIT         37.666      1000.000 

 ITERATION COUNT, LIMIT     38277    2000000000 
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50000-instances: 

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS           3     SINGLE EQUATIONS       50,006 

BLOCKS OF VARIABLES           2     SINGLE VARIABLES      250,001 

NON ZERO ELEMENTS       741,243     DISCRETE VARIABLES    250,000 

 

 

GENERATION TIME      =        6.750 SECONDS     93 Mb   

EXECUTION TIME       =        9.281 SECONDS     93 Mb   

 

 

Solution Report     SOLVE TDSB Using MIP From line 66 

 

               S O L V E      S U M M A R Y 

 

     MODEL   TDSB                OBJECTIVE  NCI 

     TYPE    MIP                 DIRECTION  MINIMIZE 

     SOLVER  CPLEX               FROM LINE  66 

 

 

**** SOLVER STATUS     1 Normal Completion          

**** MODEL STATUS      8 Integer Solution           

**** OBJECTIVE VALUE               31.6740 

 

 RESOURCE USAGE, LIMIT         35.271      1000.000 

 ITERATION COUNT, LIMIT     41666    2000000000 
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