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Abstract 

In memory, encoding and retrieval are often conceived of as two separate 

processes. However, there is substantial evidence to suggest that this view is 

wrong—that they are instead highly interdependent processes. One recent 

example is from Jacoby, Shimizu, Daniels, and Rhodes (2005a), who showed 

that new words presented as foils among a list of old words that had been 

deeply encoded were themselves subsequently better recognized than were new 

words presented as foils among a list of old words that had been shallowly 

encoded. This paradigm, referred to as memory-for-foils, not only demonstrates 

a link between encoding and retrieval, but also has led to a proposal about 

what form this interaction is taking in this task. Jacoby et al. (2005a) proposed 

that people put in place a retrieval mode that leads to a reprocessing of the 

original encoding state, which is incidentally applied across both old and new 

items within the context of a recognition memory test. Such a constrained-

retrieval account suggests an intimate relation between encoding and retrieval 

processes that allows for memories to be highly integrated. 

The goal of this thesis is to provide a better understanding of the 

generalizability and limitations of this memory-for-foils phenomenon and, 

ultimately, to provide more direct evidence for the interaction of these 

processes. Experiments 1 and 2 began by replicating the memory-for-foils 

phenomenon as well as an experiment by Marsh et al. (2009b) which confirmed 

that the phenomenon does not result simply from strength of encoding 

differences. Experiment 3 then substituted a deep vs shallow imagery 

manipulation for the levels-of-processing manipulation, demonstrating that the 

effect is robust and that it generalizes, also occurring with a different type of 

encoding.  Experiment 4 extended the generalizability of the task to factual 

phrases. Experiment 5 then moved on to testing the encoding/retrieval 

interactions by once again employing the imagery encoding manipulation with 

an additional quality judgment in the final recognition memory test. Using the 

remember/know paradigm (Gardiner, 1988; Tulving, 1985) demonstrated that 

more highly-detailed memories were associated with foils from the test of deep 

items than with foils from the test of shallow items. 
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From there, response time was used to infer processing speed in 

Experiment 6a, in a test of whether foils tested among deep items incur an 

advantage independent of the manipulation undergone by those items. When a 

lexical decision test replaced the final recognition test, there was no evidence of 

a memory advantage for ―deep‖ foils over ―shallow‖ foils. Finally, Experiment 6b 

provided compelling evidence for context-related encoding during tests of deeply 

encoded words, showing enhanced priming for foils presented among deeply 

encoded targets when participants made the same deep encoding judgments on 

those items as were made on the targets during study.   

Taken together, these findings provide support for the source-

constrained retrieval hypothesis and for the idea of a retrieval mode.  New 

information—information that we may not even be intending to remember— is 

influenced by how surrounding items are encoded and retrieved, as long as the 

surrounding items recruit a coherent mode of processing. This demonstrates a 

clear need to consider encoding and retrieval as highly interactive processes 

and to avoid conceptualizing them as entirely separate entities. This is a crucial 

part of increasing our understanding of the fundamental processes in memory.  
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CHAPTER 1: INTRODUCTION 

 ―…the art of remembering is the art of thinking; and by 

adding… that, when we wish to fix a new thing in either our 

own mind or a pupil's, our conscious effort should not be so 

much to impress and retain it as to connect it with something 

else already there. The connecting is the thinking; and, if we 

attend clearly to the connection, the connected thing will 

certainly be likely to remain within recall.‖   

William James, Talks to Teachers, 1890 

1.1 Background 

Since the earliest research on human memory, investigators 

(Ebbinghaus, 1885) and theoreticians (James, 1890), have sought to categorize 

memory processes into modular subsystems. Breaking processes into their 

subcomponents can make the processes simpler to study and understand. 

However, doing so also leads to a decreased emphasis on how various processes 

work together and may even create illusions of distinctions that do not actually 

exist. One potential false distinction is that between encoding (the laying down 

of new memories) and retrieval (the bringing of past experiences to mind) 

processes. As Hintzman (2011) rightly notes in criticizing how we have studied 

memory, there has been a substantial emphasis on the dissociation between 

these two memory-based processes as being utterly separable when it is clear 

that they are not.  

Evidence for the separability of encoding and retrieval systems comes 

largely from neuroimaging work (e.g., Gabrieli, Brewer, Desmond, & Glover, 

1997; Lepage, Habib, & Tulving, 1998). Early work by Gabrieli et al. (1997) used 

fMRI to compare the patterns of activation for words of previously viewed 

outlines of objects and ones that had not been seen previously. They found a 

region in the anterior medial temporal lobe (i.e., the subiculum portion of the 

hippocampus) to be related to the retrieval of old items, whereas a posterior 

portion of the medial temporal lobe (i.e., the parahippocampal gyrus) to be more 

related to encoding of new words. Based on similar findings using positron 
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emission tomography (PET), Lepage and colleagues (1998) termed this pattern 

of activation the HIPER model (hippocampal encoding/retrieval model). Other 

work focusing on more anterior portions of the brain lead to the conclusion of a 

lateralization of encoding and retrieval processes (Tulving, Kapur, Craik, 

Moscovitch, & Houle, 1994). Based on this research, Tulving et al. (1994) 

postulated the HERA model of memory (hemispheric encoding/retrieval 

asymmetry), in which the left prefrontal cortex (PFC) was associated with 

encoding while the right PFC was associated with retrieval (see also Desgranges, 

Baron, & Eustache, 1998; Düzel, Cabeza, Picton, Yonelinas, Scheich,  Heinze, & 

Tulving, 1999). These theories were built from the conceptualization that 

encoding and retrieval are separate processes. However, modularity cannot be 

assumed based on evidence of separate brain regions for each ―task‖; indeed, 

the regions could work within a network at differing levels for each task where 

one region may play a larger role than the other in their respective tasks but 

both are still necessary. The sheer number of requirements of the brain would, 

perhaps, necessitate all process overlap that is possible, given the limited 

number of structures available. Therefore, it seems unlikely that, since they 

require access to much of the same information that encoding and retrieval 

processes would not overlap. 

Researchers investigating amnesia or aging effects on memory often cite 

either encoding or retrieval as being the principle underlying cause of the 

memory impairments (e.g., Cipolotti, & Bird, 2006; Dannhauser, Shergill, 

Stevens, Lee, Seal, Walker, & Walker, 2008; Mark & Rugg, 1998; Van Damme, 

& d'Ydewalle 2009; Ward 2003). One example of this comes from a 

neuroimaging study in which Ward (2003) was able to demonstrate some 

encoding difficulties in patients with frontal lobe damage by looking at new 

information acquired since injury as compared to information from before the 

injury. Thus, linking a separate encoding mechanism with the frontal lobe. In 

contrast, deficits in Korsakoff‘s syndrome and mild cognitive impairment 

(thought to be a precursor to Alzheimer‘s Disease) have been linked to problems 

in retrieval processes (Van Damme & d'Ydewalle, 2009; Bai, Zhang, Watson, Yu, 

Shi, Yuan, Zang, Zhu, & Qian, 2009). A study focusing instead on encoding and 

retrieval during normal aging using ERP suggested a slowing in neural 
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responses during retrieval (Mark & Rugg, 1998) whereas others point to deficits 

in encoding processes (Cansino, Trejo-Morales, & Hernández-Ramos, 2010). 

While these studies suggest separate encoding and retrieval processes, it is 

impossible to find tasks that isolate a single process (see Jacoby, 1991). The 

‗remaining‘ process is still likely affected in some way, even if it may be hard to 

measure.   

It is important not to investigate encoding and retrieval with the 

conception that they are independent, despite the fact that they can appear to 

be at times. There are hints of their interaction within something as intuitively 

simple as the levels-of-processing framework, in which deeply encoded 

information (i.e., semantically encoded information) is more successfully 

retrieved on a subsequent test than is shallowly encoded information (i.e., 

perceptually-based encoding; Craik & Lockhart, 1972). Semantic encoding, by 

its very nature, requires that information be integrated into personal concepts, 

which requires retrieval and re-storing of past information to succeed (i.e., Is 

the item pleasant or unpleasant?). In contrast, shallow, surface-based, 

encoding requires no such links and allows for only very weak and short-lasting 

memories of the items (i.e., Is there a letter ‗a‘ in the word or not?). If this 

concept is pushed even further by encoding items in a self-referential way, they 

are even better remembered later on—having been completely integrated into 

the pre-existing framework of memory (Rogers, Kuiper, & Kirker, 1977).  

While this analysis provides only a hint of how intertwined encoding and 

retrieval processes are, the transfer appropriate processing principle clearly 

demonstrates their intimate connection (see Morris, Bransford, & Franks, 1977; 

Roediger, 1990).  This principle states that memory retrieval will be best when 

the processes invoked during retrieval match those undergone during encoding. 

In transfer appropriate processing, even items undergoing poorer encoding 

manipulations are advantaged when a similar task is used at retrieval (Morris et 

al., 1977). Clearly, then, the encoding and retrieval processes are highly 

interdependent. 

This is especially ―front and centre‖ in the proceduralist perspective 

proposed by Kolers (Kolers, 1973; Kolers & Roediger, 1984; for a recent review, 

see Roediger, Gallo, & Geraci, 2002). Kolers argued that distinguishing 
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encoding from retrieval is not really meaningful because every encoding event is 

a retrieval event and every retrieval event is an encoding event. The operations 

applied during a nominal study event, or first encounter with a stimulus 

situation, are reapplied during a nominal retrieval event, or subsequent 

encounter with—or remembering of—that situation.  

Consider a simple everyday illustration. If we are at a grocery store trying 

to recall a grocery list, along with items from the actual list we also retrieve 

other information, such as what we plan to cook for dinner. We are also 

concurrently encoding new information, such as the layout of the store or what 

is on sale. Later on, realizing that we forgot to buy something, we remember 

being at the store, and imagine the aisle where the forgotten item was located. It 

would be unreasonable to label these episodes as purely encoding events or 

purely retrieval events.  Both involve encoding and retrieval. Encoding is simply 

a convenient shorthand for the first processing of an event; retrieval is the 

shorthand for that event‘s subsequent processing. We clearly need to 

understand how encoding and retrieval align as opposed to focusing only on 

how they differ from one another.  This goal is at the core of this thesis. 

1.2 The basic design 

 Building a better conceptualization of how these processes work 

together, has, however, been difficult until recently. Six years ago, though, 

Jacoby, Shimizu, Daniels, and Rhodes (2005a) reported the development of a 

clever method for examining this very issue (see also Jacoby, Shimizu, 

Velanova, & Rhodes, 2005b; Marsh, Thadeus Meeks, Cook, Clark-Foos, Hicks, 

& Brewer, 2009b). In their study, Jacoby et al. had participants study one set of 

words deeply by judging the pleasantness of each and another set of words 

shallowly by determining whether each word contained a particular letter. In 

the test phase that followed, there were separate recognition tests for these 

deeply and shallowly encoded items, with each set of studied targets mixed with 

a set of unstudied foils. So far, apart from blocking the study and test of the 

deeply and shallowly encoded words, this was essentially a standard levels-of-

processing procedure. The novel part was the addition of a second recognition 
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test phase. Here, the foils from the first recognition test phase became the 

targets, intermixed with a new set of foils. 

Unsurprisingly, the standard levels-of-processing memory benefit of 

deeply encoded items over shallowly encoded items was obtained on the first 

recognition test phase. The focus of the study was what happened on the new 

second recognition test. Intriguingly, the novel (foil) items from the test of 

deeply encoded items were better recognized than their shallow foil 

counterparts. Put simply, there was a levels-of-processing effect on these former 

foils, just as if they had been studied under different orienting tasks. This 

memory benefit was apparent despite the fact that, during the first recognition 

phase, the type of judgment made on those items (i.e., old or new?) was 

equivalent to the type of judgment made on those that did not reveal a 

subsequent memory boost (i.e., the ―shallow‖ foils). Therefore, it could not have 

been the judgment that was directly applied to those items that led to the 

memory enhancement; instead, it must have been a difference in how that 

judgment was made for foils in the test of deep items as compared to those 

within the test of shallow items.  

When one set of items essentially comprises the fillers and that set is 

only there to permit a test of the others—the targets—we should be able to 

easily dismiss them. However, that clearly does not happen, at least not in this 

task. It appears from this task that, during the attempted retrieval of previously 

encountered information, the context of that information is also accessed in 

association with any newly encountered information. To explain this, Jacoby et 

al. (2005a) proposed that, during the initial recognition test, the participants 

constrained their retrieval such that both old and new items were consequently 

processed in the same fashion as the old items had been during their encoding. 

Therefore, in attempting to retrieve information from the past, contextual 

information is used to draw out that information and new information about 

the current retrieval context is concurrently added to the information being 

retrieved. That same contextual information is also being added to the new 

items during encoding. This results in new items from the test of deep items 

also being more deeply processed on the first test and hence being more easily 

recognized during the final memory test than are new items from the test of 
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shallow items. Consequently, retrieval is another occurrence of encoding and, in 

the process, that encoding is linked to information retrieved from the past. 

Does this make sense? Why would an apparently ―extra‖ process be 

performed in addition to the one that is required by a particular task? The 

answer is likely that both the retrieval of old information and the encoding and 

integration of new information are routinely performed together. That is, when 

information is in a retrieval state, it is susceptible and undergoes an updated 

encoding (Hupbach, Gomez, Hardt, & Nadel, 2007). During a recognition 

judgment, it appears that old information is being retrieved and new 

information is being integrated concurrently so that all information being 

judged is then intimately linked and made more easily accessible (within the 

same or a similar context) on subsequent occasions. If participants are able to 

constrain retrieval based on an encoding task (or context) that relates incoming 

information, whether old or new, to the original encoding context, then any item 

recently processed in the same way could more easily be judged as being 

familiar. Additionally, new items should receive that same benefit by being 

processed in the same manner as the old items. This is in line with a study by 

Hupbach, Gomez, and Nadel (2009), which demonstrated that not only are old 

items susceptible during a new encoding event, but it is specifically the memory 

related to their context (i.e., their source) that is reinstated and thus easily 

altered. Of course, this can also cause memory intrusions: When old 

information is available during a new encoding event, that old information can 

be contextually integrated and later misremembered (Hupbach et al., 2007)! 

Therefore, these examples illustrate a ‗flaw‘ in our system that is highly 

suggestive of there being heavily intertwined encoding/retrieval processes.  

It is appropriate at this juncture to introduce the concept of a retrieval 

mode, an idea that Jacoby et al. (2005a) favoured, and that has been suggested 

in the past (e.g., Karpicke & Zaromb, 2010; Koriat, 2000; Nyberg et al., 1995; 

Tulving, 1998).  This is the process of actually going back in time to think of the 

encoding context or to try to reinitiate it somehow. This process is all in an 

effort to reconstruct past information, and this reconstruction is more accurate 

when a specific processing context can be used. Bartlett (1932) showed the 

importance of context in his study of ―The war of the ghosts‖. After reading a 
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passage, participants were asked to recall the passage as accurately as 

possible. He found that recall was not only more coherent but also fit better 

with the participant‘s perspective than the folk tale otherwise would. This study 

clearly demonstrated that (1) memory is a reconstructive process and (2) that 

the participant‘s schema (their personal past) was strongly reflected in the 

resulting memories. It is during the reconstruction of old information that 

memories are most susceptible to encoding new contextual information. Within 

the Jacoby et al. (2005a) paradigm, the idea would be that, during a test, 

participants invoke a type of processing that corresponds to that used during 

study. This fits well with the concept of constrained retrieval and is consistent 

with the proceduralist perspective that encoding and retrieval ordinarily go 

hand in hand. The term ―retrieval mode‖ will be used throughout this thesis. 

1.3 Conceptual Framework 

As already outlined, this thesis grew out of an interest in the idea that 

encoding occurs as a normal component of a retrieval attempt during a 

retention test. The particular focus is on the procedure developed by Jacoby 

and his colleagues (2005a; Marsh et al., 2009b, Jacoby et al., 2005b), which 

will be referred to as the ―memory-for-foils‖ paradigm. Because this paradigm 

appears to establish such encoding during retrieval, albeit indirectly, it is 

potentially an important finding (see Hintzman, 2011). As a result, the question 

of its generalizability and its limitations provided the initial motivation for the 

research reported here.  As this work proceeded, emphasis moved to 

demonstrating that the benefit shown by distractors initially tested among 

deeply processed targets was in fact the result of applying the same processing 

to those distracters as was applied to the targets.  This would confirm that 

encoding was occurring during retrieval on the initial test, and fit with the idea 

of a retrieval mode being in place. 

This thesis began with a careful replication of Jacoby‘s paradigm.  The 

phenomenon, although not large, proved to be robust.  It did appear that a 

retrieval mode was engaged during initial testing, and that instituting this mode 

had observable consequences for new items that occurred in its presence.  Put 
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simply, the retrieval mode also provided a corresponding encoding context, one 

whose influence was readily detectable on a subsequent recognition test. 

But could the observed benefit be due to something other than a retrieval 

mode?  One possibility (also considered by Marsh et al., 2009b) is that the 

stronger items—those that had been deeply processed during study—were 

easier to recognize on the test than were the weaker items, leaving more 

resources to be applied to the distracters during the test of the deeply processed 

items.  The first new experiment tested the possibility that the benefit was 

simply a by-product of having been among strongly encoded items on the initial 

test. Because the levels-of-processing encoding manipulation essentially 

confounds strength and mode of retrieval, either or both could be leading to the 

memory-for-foils benefit found by Jacoby et al. (2005a). To disentangle these 

contributions, instead of using a levels-of-processing encoding manipulation, 

some items were repeated during study to create a ―strong‖ encoding condition 

and these were contrasted with non-repeated study items that constituted a 

―weak‖ encoding condition (see also Marsh et al., 2009b).  

This procedure allowed for strength of encoding to be manipulated in the 

absence of any type of retrieval mode that could be re-entered: It seems 

implausible that repetition alone could establish a mode that could be re-

entered.  Without re-entering and thereby reapplying the initial study 

manipulation to distractors on the initial test, there should be no differential 

memory for foils from the test of strongly encoded items—if constrained 

retrieval indeed underlies the effect. 

Alternatively, if greater strength of the target items at test is enough to 

provide an advantage to the accompanying foils, then foils from the test of 

strong items should show the same benefit as those in the levels-of-processing 

version of the task. In line with the constrained retrieval hypothesis, the 

prediction was that the common benefit of repetition at study would be 

observed, but without any benefit on the final recognition test for distractors 

that had been grouped with stronger items during the initial test. Essentially, 

there would be no mode to re-enter. 

Building from this foundation, the next step was to ascertain the 

generalizability of the memory-for-foils phenomenon. This required changing 
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the initial encoding manipulation to create a different type of mode (or context) 

that could be re-entered during the recognition test. The manipulation chosen 

had previously been used successfully by Hourihan (2008; Hourihan & 

MacLeod, 2011).  It required participants to perform either deep or shallow 

imagery on sets of words. Deep imagery refers to the standard pictorial imagery 

task in which participants form mental images of the referents of words (see 

Paivio, 1971).  The novel task is shallow imagery, where participants form 

mental images of the printed lower case letters in their upper case form. 

Hourihan (2008) demonstrated that this manipulation results in differential 

encoding; for the purpose of this thesis, this manipulation also appeared likely 

to provide modes that could be re-entered. Such re-entry offers the opportunity 

for the original encoding context to be applied to the foils at test, thereby 

leading to a boost in their memory on a subsequent test. The expectation was 

that, if the memory for foils effect is not very narrowly connected only to the 

levels of processing encoding situation, this imagery manipulation should 

provide another demonstration of the memory-for-foils phenomenon. 

A second way of exploring the generalizability of the memory-for-foils 

effect would be to vary not the task but the materials. It is possible that the 

effect is specific to the type of materials used in the test rather than to the 

memory process itself. In this thesis, this was tested by substituting more 

complex stimuli—fact-based statements—for the single words in the original 

experimental method. It is possible that while the effect is found using a 

simplified laboratory-based test of words, it does not translate to more complex 

stimuli such as complete sentences; if so, this would certainly limit its 

generalizability (again, see Hintzman, 2011, for concerns about studying 

memory phenomena using only isolated words). If the effect does hold for 

sentences, however, then it is more likely to have implications for everyday 

memory processes. The expectation was that the retrieval mode benefit would 

be observed even with these more complex materials, thereby supporting the 

hypothesis that the memory-for-foils effect is related to the memory process and 

not restricted to a specific type of materials. 

The fundamental question still remaining about this phenomenon is 

whether direct evidence for mode reinstatement could be found.  Thus far, the 
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findings do not demonstrate that it was in fact the original mode being re-

enacted that was responsible for the benefit.  The thesis addresses this question 

in two ways.  The first way is to assess the quality of memories being attributed 

to the foils from the tests of deeply and shallowly encoded items. That is, is 

there any evidence that a greater quality of memory is associated with the 

―deep‖ foils in a way that would parallel the items that were actually deeply 

encoded? To do so, the imagery-based design was expanded to include 

additional assessments of memory for the foils in the final recognition test. In 

particular, participants were asked to evaluate the perceived quality of the 

memories and to indicate whether each memory was one that was associated 

with additional episodic details (―remember‖), whether the memory had no such 

additional details (―know‖), or finally, whether the item was new (Gardiner, 

1988; Rajaram, 1993; Tulving, 1985; for a similar design in the context of the 

memory-for foils paradigm, see Marsh et al., 2009b). 

If the benefits to the foils from the test of deeply encoded words stem 

from constrained retrieval operations during that initial test, in which 

participants re-enter and therefore reapply the original encoding to all items, 

―deep‖ foils should undergo deep processing and, possibly, ―shallow‖ foils 

should undergo shallow processing on that initial test. The memories for those 

items undergoing a type of incidental ―deep‖ processing should then also be 

associated with additional details related to the encoding question (i.e., the 

pictorial image formed). It is unlikely that any added efficiency can be gained 

through the use of constrained retrieval for the shallowly encoded items. 

Regardless, since the shallow imagery task involves the imaging of a limited 

number of letters, the memory for these items is unlikely to be associated with 

additional details. Therefore, the prediction is that participants should respond 

with a greater proportion of ―remember‖ responses to deep foils as compared to 

shallow foils. Since more ―remember‖ responses mean more detail-based 

memories for those items, and since the memory judgments for the tests of deep 

and shallow items were the same, it is likely that those memory details result 

from processing of items within the original encoding context. This finding 

would thus provide a stronger bridge between source-constrained retrieval and 

the memory-for-foils phenomenon. 
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Evidence for a benefit in the number of ―remember‖ responses when 

encoding and retrieval context match has been previously shown (Gardiner, 

1988; Java, Gregg & Gardiner, 1997; Macken, 2002; Dewhurst & Brandt, 

2007). For example, Macken (2002) demonstrated that when context at retrieval 

(in this case, colour and location of words) was consistent with encoding, the 

number of ―remember‖ responses increased. This was explained as having 

occurred due to a cueing of recollection of item-context associations previously 

formed during encoding (though, see Mulligan & Lozito, 2006). This finding held 

even for a powerful encoding manipulation such as generation (as compared to 

reading words): ―Remember‖ responses were increased when generation is used 

at retrieval (Dewhurst & Brandt, 2007). However, the same was not true for 

read items, possibly indicating that this effect is only maintained with effortful 

processing (and therefore not with the ―shallow‖ condition used in this thesis).  

Consequently, because ―remember‖ responses are increased by using the same 

encoding and retrieval processes, this lends more credence to the suggestion of 

reinstatement of encoding processes (for constrained retrieval) that results in 

the memory-for-foils phenomenon.  

Whether re-enacting the original mode underlies the memory-for-foils 

benefit (i.e., source-constrained retrieval) may be revealed even more clearly 

through examination of response time data.  It is possible that deeply encoded 

items receive preferential processing over their shallow counterparts in a way 

that benefits new items associated with them, such as through speeded 

response times for those new items. Therefore, the second way we tested for a 

direct connection between the reinstatement of the original encoding 

manipulation and the deep foil advantage began by attempting to discount the 

possibility that there is a unilateral benefit to ―deep‖ foils in terms of response 

times.  Toward this end, the final recognition test was replaced with a lexical 

decision task that included both types of foils as well as novel items (nonwords). 

No difference was expected in the speed of performing the lexical decision task 

for the ―deep‖ foils as compared to the ―shallow‖ foils given that lexical decision 

was unrelated to how those items were initially encoded—in fact, both sets of 

items should be similarly primed by their prior exposure. 
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This leads directly to the critical final experiment.  The lexical decision 

task was unrelated to the original depth of processing task at encoding.  If the 

final task was instead closely related to the encoding task used in processing of 

the original items, then according to the retrieval mode account differential 

speed of processing should be observed on that final test. What could be more 

similar to the original encoding task than that very task itself?  As such, in the 

last experiment of this thesis, the final test was altered to be another 

instantiation of the original encoding orientation (i.e., ―Is the item 

pleasant/unpleasant?‖ and ―Does the word contain an ‗a‘/no ‗a‘?‖). These final 

orienting tasks were limited to words that had not received the orienting 

questions originally—the ―deep‖ and ―shallow‖ foils from the recognition test, 

mixed with new items. 

If, indeed, during the initial test, the distractors undergo the same 

processing as was applied to the targets during study as an aid to retrieval (i.e., 

source-constrained retrieval), then participants should be primed to perform 

the same orienting task on the foils more quickly than on the new items 

because the previously processed foils have in essence undergone this task 

before.  Therefore, if participants are faster to respond to the questions 

originally posed concerning targets during the study phase when they are 

applied to the foils during the final test (in particular those from the test of deep 

items), this would provide convincing evidence that these items had previously 

undergone that specific type of processing during their first encounter (i.e., on 

the initial test).  This would constitute strong support for source-constrained 

retrieval underlying the memory-for-foils effect.  

Together, these experiments demonstrate how dramatically retrieval can 

influence encoding, contradicting a purely separate conceptualization of 

encoding and retrieval processes. The principal approach used in this thesis 

involved variations on the experimental design originally created by Jacoby and 

colleagues (2005a), one that cleverly demonstrated an advantage for foils 

initially tested among deeply encoded items as compared to those tested among 

shallow items when they were subsequently tested. Despite only being 

instructed to retrieve old items from memory, participants concurrently (and 

incidentally) encoded new items within the same context as those items being 
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retrieved.  This clearly points to highly integrated encoding and retrieval 

processes.  The interaction between these processes is maintained over a 

variety of situations and with different stimuli, making it likely that this type of 

interaction is one that would be found beyond laboratory settings. 

In terms of an efficient memory system, this encoding-retrieval 

partnership makes a great deal of sense. It is unlikely that one would come 

across new but completely irrelevant information in the context of another set of 

old information. Automatically linking any new information to pre-existing 

information by using the relevant context would make future attempts to access 

that once new information easier. Without such links, all new information 

would potentially be new and difficult to access—―islands‖ of information within 

memory.  Indeed, there is some evidence relating to autobiographical memories 

in amnesics that this may occur (Medved, & Hirst, 2006). Encoding while 

retrieving prevents this isolation. 
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CHAPTER 2: REPLICATIONS 

2.1 Experiment 1:  Replication of Jacoby et al. (2005a) 

Before beginning to address the specific questions about the central 

finding in the Jacoby, Shimizu, Daniels, and Rhodes (2005a) study, a faithful 

replication was carried out of their Experiment 1, in which the memory-for-foils 

effect was first reported. Jacoby, Shimizu, Velanova, and Rhodes (2005b) had 

previously replicated the phenomenon, as had Marsh et al. (2009b) 

independently, but it was deemed important to be certain that the same basic 

pattern was obtained at the outset in this series of studies.  

2.1.1 Method 

Participants. A total of 24 undergraduate students (20 female, 4 male) 

from the University of Waterloo participated for credit or remuneration ($5). 

Their mean age was 20.9 years (SD=1.5). 

Materials. The stimuli consisted of 247 words, 5–8 letters long, taken 

from the MRC Psycholinguistic online database (www.psy.uwa.edu.au/ 

MRCDataBase/uwa_mrc.htm). The words had an average length of 5.3 letters 

and an average frequency of 37 occurrences per million (Kučera & Francis, 

1967). Words were randomly assigned to six lists of 36 words each, such that 

each participant had a unique assignment of items. Each phase began and 

ended with an additional three-word buffer; these ―buffer‖ words were not 

included in any analyses. In all phases, the words were presented in lowercase 

letters. Two raters rated approximately half (53%) of the items as being 

pleasant. Of course, due to the subjective nature of such a rating task, there 

likely would be high variability in such ratings. Half of the items contained an 

―a,‖ and the remaining half of the items did not. 

http://www.psy.uwa.edu.au/
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Procedure. A schematic of the experimental procedure is displayed in 

Figure 2.1. All three phases were participant-paced and were identical to those 

of Jacoby et al. (2005a). All stimuli were displayed in white lowercase font on a  

black computer screen. Participants were tested individually and completed the 

entire experiment in approximately 30 min.  

 

Figure 2.1. Experiment 1: Schematic of the procedure. Every participant 

performed the two study sessions, then the two corresponding components of 

Test 1, and then Test 2. 

In the study phase, participants performed two encoding tasks, with 

their order counterbalanced across participants. In the deep encoding task, 36 

words were presented one at a time and participants were to indicate, for each, 

whether it represented something that was pleasant or unpleasant for them. In 

the shallow encoding task, participants viewed a different 36-word list and were 

to indicate whether each contained the letter ―a‖, by pressing 1 for ―a‖, 0 for no 

―a‖ on the keypad. Following the participant‘s keypad response to each word, a 

fixation cross was then presented for 500 ms.  

Next came the first recognition phase, Test 1. On two separate 72-item 

subtests, the 36 deeply encoded words were intermingled with 36 new words, 

and the 36 shallowly encoded words were intermingled with 36 additional new 

words. The order of the two subtests was counterbalanced across participants, 
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who were explicitly informed which list the old items were drawn from (e.g., ―All 

old words are from the list for which you made pleasant/unpleasant decisions‖).  

Participants were asked to press 1 for an old item (target) or 0 for a new item 

(foil) on the numeric keypad. 

Finally, there was the second recognition phase, Test 2. Here, the targets 

were all of the former foils from the first recognition phase—from both the deep 

encoding and shallow encoding recognition tests (i.e., no deeply or shallowly 

encoded items from the study phase were included on Test 2). Intermixed with 

these newly defined targets was a completely new set of previously unseen 

words, such that there were 72 old words (36 ―deep‖ foils and 36 ―shallow‖ foils) 

and 72 new words. Participants were asked to respond either ―old‖ or ―new‖ by 

pressing 1 and 0 on the keyboard, respectively.  

2.1.2 Results and Discussion 

Recognition Test 1.  Participants readily distinguished between old and 

new items from both the deep and shallow encoding tasks (overall hits = .71, 

overall false alarms = .23). A paired-samples t-test was used to compare the 

recognition scores (hits minus false alarms) for words that had been categorized 

deeply versus shallowly during study. A typically robust levels-of-processing  

effect was found, t(23) = 4.24, p <.001. Figure 2.2a presents the hit and false 

alarm rates. Separate paired-sample t-tests for hits and false alarms revealed a 

difference only for the hits, t(23) = 3.76, p = .001 (deep > shallow), and not for 

the false alarms, t(23) = 1.06, p > .20. Clearly, participants were effectively 

using the different encoding techniques during study. 

 Recognition Test 2.  To determine whether there was a levels-of-

processing effect for the foils from Test 1 when they became the targets on Test 

2, a paired-samples t-test was carried out comparing proportions of correct 

responses across word types. As shown in Figure 2.2b, memory was superior 

for foils that had initially been tested among deeply encoded words than for foils 

that had initially been tested among shallowly encoded words, t(23) = 2.48, p < 

.05, providing a clear replication of the pattern reported by Jacoby et al. 

(2005a). 
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Figure 2.2. Experiment 1: Replication of memory-for-foils effect. (a) Recognition 

performance on Test 1, demonstrating the levels-of-processing effect. (b) 

Recognition performance for “old” responses on Test 2, demonstrating the 

memory-for-foils effect. Together, these data provide a complete replication of 

Jacoby, Shimizu, Daniels, and Rhodes (2005, Experiment 1). Error bars represent 

the standard errors of the corresponding means. 

 

 

Jacoby et al. hypothesized that this memory-for-foils phenomenon was a 

product of constrained memory searches based on the study context. However, 

in the original experiment design, the encoding manipulation confounded 

strength of encoding with mode of encoding, leaving the possibility that the 

phenomenon could result from the differential strength of encoding of the items. 

Therefore, the second replication addressed this potential issue. 

2.2 Experiment 2: Replication of Marsh et al. (2009b, 

Experiment 3) 

 Marsh et al. (2009b, Experiment 3) examined whether the memory-for-

foils effect was a by-product of testing words that had been strongly versus 

weakly encoded during the study phase. In their study phase, words in one list 

had been studied only once each, whereas those in the other list had been 

studied three times each. Repetition is well established as influencing strength 

of encoding (e.g., Hintzman, 1976). Yet it is difficult to imagine how participants 
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could reinstate the number of study presentations as a mode that would 

constrain retrieval, which means that the memory-for-foils effect should not 

occur. That is precisely what Marsh et al. observed. Although done 

independently without knowledge of their experiment, I conducted almost 

exactly the same experiment, and with the same outcome. 

2.2.1 Method 

Participants. A total of 24 undergraduate students from the University 

of Waterloo (13 female, 11 male) participated for credit or remuneration ($5). 

Their mean age was 21.0 years (SD=3.2).  

Materials. The stimulus words were the same as in Experiment 1. 

 Procedure. All three of the phases were participant-paced. Again, words 

were randomly assigned to six lists of 36 words each, with different 

randomizations for each individually tested participant. Three-word primacy 

and recency buffers were, again, not included in any analyses.   

In the study phase, participants studied two 36-word lists—one in which 

items were each presented once, and one in which items were each presented 

three times. For the latter, the entire list was randomized three times, with an 

untested filler word inserted after each of the first two completely randomized 

list presentations to prevent the unlikely possibility of repeating a word on 

consecutive trials. For both lists, each word was presented for 1,500 ms, 

followed by a fixation cross for 500 ms, with no response required. The order of 

studying the two lists was counterbalanced across participants.  

Next came the first recognition phase, Test 1, conducted precisely as in 

Experiment 1, including instructions to participants concerning the source of 

the items (e.g., ―All old items are from the list in which you saw each item only 

one time‖).  

The second recognition phase, Test 2, also was identical to that of 

Experiment 1, with targets again consisting of all of the former foils from the 

first recognition phase—from both the ―triple‖ and the ―single‖ recognition 

tests—among an equal number of new items. Responding was done as on the 

first recognition test. 
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2.2.2 Results and Discussion 

 Recognition Test 1.  Participants readily distinguished old from new 

items for both repeated- and single-presentation lists (overall hits = .74, overall 

false alarms = .08). The data appear in Figure 2.3a. A paired-samples t-test was 

used to compare the recognition scores (hits – false alarms) for words that had 

been studied either once or three times. In line with the extensive repetition 

literature (e.g., Bentin & Moscovitch, 1988; Murnane & Shiffrin, 1991; Ratcliff, 

Clark, & Shiffrin, 1990; Stretch & Wixted, 1998), participants recognized items 

that had been studied three times significantly better than items studied only 

once, t(23) = 5.76, p < .001. Separate t-tests demonstrated that there were (1) 

more hits, t(23) = 5.59, p < .001, and (2) fewer false alarms, t(23) = 2.19, p < 

.05, for words presented three times than for words presented once.   

 Recognition Test 2.  This time, because repetition appeared unlikely to 

be a processing mode that could be reinstated, the prediction was that the 

memory-for-foils effect would not be observed. As shown in Figure 2.3b, there 

was, in fact, no difference in recognition of former foil words as a function of 

whether they were encountered on Test 1 among targets presented once or 

among targets presented three times, t(23) = 0.84, p > .20. Further, the effect 

sizes for this test had quite adequate power to correctly reject the null 

hypothesis (power = .87). This absence of a memory-for-foils effect provides a 

clear replication of the Marsh et al. (2009b, Experiment 3) pattern and is 

consistent with the idea that, for new items to be encoded with the same 

memory benefits as their old counterparts, there must be a coherent mode 

during the initial encoding session that can then be reapplied to items during a 

subsequent retrieval session.  
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Figure 2.3. Experiment 2: Manipulating strength via repetition at encoding. (a) 

Recognition performance on Test 1, demonstrating enhanced recognition for 

words studied three times as opposed to once. (b) Recognition performance for 

“old” responses on Test 2, showing no evidence of a memory-for-foils effect. 

Together, these data provide a complete replication of Marsh et al. (2009b, 

Experiment 3). Error bars represent the standard errors of the corresponding 

means. 
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CHAPTER 3: EXTENSION AND GENERALIZATION 

3.1 Experiment 3:  Imagery 

The next experiment was conducted to test the generality of the memory-

for-foils effect by substituting a different encoding-retrieval mode for levels-of-

processing. To accomplish this, I turned to the venerable encoding task of 

visual imagery (see Paivio, 1971, 1995, 2007) and to a variant used by 

Hourihan (2008) in her dissertation. The goal was to create two distinct imagery 

modes. The first was the standard pictorial imagery task, where participants are 

instructed to form a mental picture of the word‘s referent object; this will be 

referred to as ―deep imagery.‖  The second was a case imagery task, where 

participants are instructed to imagine the presented lower case word all in 

upper case; this will be referred to as ―shallow imagery.‖  Naturally, deep 

imagery should result in better memory than shallow imagery, as indeed it did 

in Hourihan‘s dissertation (2008). 

It was expected that these two encoding tasks would form coherent 

processing modes readily invoked again on the separate subtests forming Test 

1.  Consequently, the memory-for-foils pattern observed by Jacoby et al. 

(2005a) and replicated here in Experiment 1 should reappear.  This experiment 

should therefore confirm the robustness and generalizability of the ‗memory-for-

foils‖ phenomenon, specifically testing whether levels-of-processing tasks are 

required during encoding or whether any coherent, reproducible processing 

mode can also produce the effect. 

3.1.1 Method 

Participants. Twenty-four undergraduate students from the University 

of Waterloo (13 female) participated for credit or remuneration ($5). The mean 

age was 20.28 (SD = 1.5). 

Materials.  The stimuli consisted of 247 words 5–8 letters in length 

obtained from the Thorndike and Lorge (1944) norms. The words had an 

average length of 5.7 letters and an average frequency of 22.1 per million. (Note 

that these stimuli were from the MRC database, which provided the additional 

information of word imageability.) All words had moderate to high imageability 
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ratings between 550 and 800. In all phases, the words were presented in 

lowercase letters. Words were randomly assigned to six lists of 36 words each, 

with unique randomizations for each participant. In addition, each phase began 

and ended with three-word ―buffers‖ to discount primacy and recency; these 

words were not included in any analyses. 

Procedure.  Participants were tested individually and completed the task 

in approximately 30 minutes. Apart from the changes in encoding tasks and 

encoding instructions, all procedures were identical to those of Experiment 1. 

In the Study Phase, participants performed a different imagery-based 

categorization task on each of the two study lists. In the ‗deep‘ imagery task, 

participants were asked to form a mental picture representing each item. In the 

‗shallow‘ imagery task, participants were asked to form a mental image of each 

word in capital letters (e.g., for cake: CAKE; Figure 3.1, Panel A). Once a 

participant had created an image, they pressed a key; following this, a fixation 

cross was presented for 500 ms. The order of performance of the imagery tasks 

was counterbalanced across participants.  

Next came the first recognition phase, Test 1, which was nearly identical 

to Experiment 1. On two separate 72-item subtests, the 36 deeply imaged 

words were intermingled with 36 new words, and the 36 shallowly imaged 

words were intermingled with 36 other new words. The order of the two 

subtests was counterbalanced across participants, who were explicitly informed 

which list the old items were drawn from (e.g., ―All old words are from the list 

for which you formed images in your head related to the words‖).  Participants 

were asked to press 1 for an old item (target) or 0 for a new item (foil) on the 

numeric keypad. 

Finally, there was the second recognition phase, Test 2. Here, the targets 

were all of the former foils from the first recognition phase—from both the deep 

imagery and shallow imagery recognition tests (i.e., no deeply or shallowly 

encoded items from the study phase were included on Test 2). Intermixed with 

these newly defined targets was a completely new set of previously unseen 

words, such that there were 72 old words (36 deep-imagery foils and 36 

shallow-imagery foils) and 72 new words. Participants were asked to press 1 for 

an old item (target) or 0 for a new item (foil) on the numeric keypad.  
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3.1.2 Results and Discussion 

Recognition Test 1. Participants were able to recognize the study lists 

very well across imagery condition (overall Hits = 0.77, False alarms = 0.08), as 

shown in Figure 3.1, Panel A. A paired-samples t-test was conducted to 

compare recognition for words that had been imaged pictorially and those that 

had been imaged in capitals. Participants had better memory for pictorially 

imaged as compared to capital-imaged words, t(23) = 4.31, p < 0.001. This was 

true for hits, t(23) = 4.45, p < 0.001, and showed a corresponding trend for false 

alarms—a greater number of false alarms for capital-imaged words than for 

pictorially-imaged words, t(23) = 2.01, p = 0.06 (Figure 3.1, Panel B). Therefore, 

participants were effectively using the different encoding techniques, resulting 

in better encoding for words imaged as pictures than for words imaged in upper 

case.  

Recognition Test 2.  A paired-samples t-test demonstrated an effect of 

type of processing, with better memory for old ―pictorial‖ foils than for old 

―capital‖ foils, t(23) = 3.48, p < 0.005. In line with the levels of processing 

finding in Jacoby et al. (2005a) and in  Experiment 1 reported here, there were 

more hits for foils that had been initially viewed during the test for words 

imaged pictorially than for foils that had been initially viewed during the test for 

words imaged as capitals (Figure 3.1, Panel C).  

Thus, a different encoding task than the only one that has previously 

been used also produced the ‗memory for foils‘ effect.  Participants 

demonstrated enhanced subsequent recognition for new words tested among 

words that had been imaged pictorially as compared to new words tested among 

words that had been imaged in upper case. This deep/shallow imagery 

manipulation is therefore quite analogous to the deep/shallow levels of 

processing manipulation.  These data demonstrate that using an imagery-based 

encoding technique provides the same pattern of results as seen in a typical 

levels of processing study. Clearly, what is important is that the mode of 

encoding is sufficiently coherent that it can be re-enacted at the time of 

retrieval. This mode at retrieval then ―spills over‖ onto the foils, producing an 

encoding benefit for those accompanying items deeply encoded in the preceding 
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Figure 3.1. Experiment 3: Manipulating type of imagery at encoding. (a) Outline of 

the procedure. (b) Recognition data from Test 1, demonstrating enhanced memory 

following pictorial imagery as compared to capital letter imagery. (c) Recognition 

performance for Test 1 foils on Test 2, demonstrating a clear memory-for-foils 

effect. Error bars represent the standard errors of the corresponding means. 

 

study phase. This finding supports the source-constrained retrieval hypothesis 

of Jacoby et al., demonstrating its generalizability. 
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3.2 Experiment 4:  Phrases 

The preceding experiment generalized the memory-for-foils paradigm to a 

different encoding task. To further investigate the generalizability of the 

paradigm, the materials were altered: Phrases were substituted for the words of 

the standard Jacoby et al. (2005a) paradigm. This also permitted a test of 

whether the phenomenon would hold for more complex stimuli and therefore be 

more applicable beyond the laboratory setting.  

3.2.1 Method 

Participants. A total of 24 undergraduate students from the University 

of Waterloo (18 female, 6 male) participated for credit or remuneration ($5). 

Their mean age was 20.8 years (SD = 2.4). 

Materials. The 247 stimulus phrases were gathered from various 

sources, being selected from internet sources to be similar to those of Gopie and 

Macleod (2009). The phrases ranged from 3 to 13 words in length. All phrases 

contained unusual facts. See appendix A for examples. 

Procedure. Phrases were randomly assigned to six lists of 36 phrases 

each, with different randomizations for each individually tested participant. 

Again, three-phrase primacy and recency buffers were not included in any 

analyses. Participants were tested individually and completed the entire 

experiment in approximately 30 min. 

In the study phase, participants performed two encoding tasks, with 

their order counterbalanced across participants. In the deep encoding task, 36 

phrases were presented one at a time and participants were to indicate, for 

each, whether it was believable or unbelievable. In the shallow encoding task, 

participants viewed a different 36-phrase list and were to indicate whether each 

contained seven or fewer words or greater than seven words. Participants were 

given 2,500 ms in which to complete their responses.  

The next two phases were identical to Experiment 1 with the exception 

that, instead of words, phrases were used as stimuli. During the first 

recognition phase, Test 1, participants completed two separate 72-item 

subtests: one in which 36 deeply encoded phrases were intermingled with 36 

new phrases, and another in which 36 shallowly encoded phrases were 
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intermingled with 36 additional new phrases. The order of the two subtests was 

counterbalanced across participants, who were explicitly informed which list 

the old items were drawn from (e.g., ―All old words are from the list for which 

you made believability decisions‖).  Participants were asked to press 1 for an old 

item (target) or 0 for a new item (foil) on the numeric keypad. 

The final recognition phase, Test 2, was identical to that in Experiment 1 

with the substitution of phrases in place of words.  

3.2.2 Results and Discussion 

Recognition Test 1.  Participants readily distinguished between old and 

new items from both the deep and shallow encoding tasks (overall hits = .65, 

overall false alarms = .09). A paired-samples t-test was used to compare the 

recognition scores (hits minus false alarms) for phrases that had been 

categorized deeply versus those that had been categorized shallowly during 

study. A typically robust levels-of-processing effect was found, t(23) =  13.83, p 

< .001. Figure 3.2a presents the hit and false alarm rates. Separate paired-

sample t-tests for hits and false alarms revealed a difference for the hits, t(23) = 

12.42, p < .001, and also for the false alarms, t(23) = 2.88, p <.005. Clearly, 

participants were effectively using the different encoding techniques during 

study.  

Recognition Test 2. To determine whether there was a levels-of-

processing effect for the foils from Test 1 when they became the targets on Test 

2, a paired-samples t-test was conducted comparing proportions of correct 

responses across word types. As shown in Figure 3.2b, memory was superior 

for foils that had initially been tested among deeply encoded phrases than for 

foils initially tested among shallowly encoded phrases, t(23) = 4.38, p < .001.   

Thus, a different type of stimuli than those previously used also 

produced the memory-for-foils effect. Participants demonstrated enhanced 

subsequent recognition for new phrases tested among phrases that had been 

deeply encoded as compared to new phrases previously tested among shallowly 

encoded phrases. That the memory-for-foils effect is maintained with a more 

complex type of stimulus clearly demonstrates that the effect is quite robust 

despite the added complexity. When the stimuli are tested within the context of  
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Figure 3.2. Experiment 4:  Manipulating type of stimulus at encoding. (a) 

Recognition data from Test 1, demonstrating enhanced memory following deep 

encoding of phrases as compared to shallow encoding of phrases. (b) Recognition 

performance for Test 1 foils on Test 2, demonstrating a clear memory-for-foils 

effect. Error bars represent the standard errors of the corresponding means. 

 

deep or shallow encoding, the ―deep‖ foils again receive the benefits of the ―spill 

over‖ from the items that truly did experience a deep encoding. This finding 

supports the source-constrained retrieval hypothesis of Jacoby et al. (2005a), 

and additionally demonstrates and expands upon the generalizability of the 

phenomenon. Further, this provides a basis for potential applicability of this 

phenomenon. 
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CHAPTER 4: LINKING ENCODING AND RETRIEVAL 

4.1 Experiment 5: Imagery with “Remember/Know” 

Judgments 

After establishing the generalizability of the memory-for-foils effect, a 

fundamental question remained. Thus far, there has been no direct evidence for 

mode reinstatement in any of the reported studies (Jacoby et al., 2005a; Jacoby 

et al., 2005b; Marsh et al., 2009b) or in any of the previous studies in this 

thesis. Although better recognition of foils that accompany deeply processed 

targets is consistent with deeper processing of those foils, which in turn is 

consistent with a deeper mode of processing, that logic is indirect. Therefore, 

the following studies were designed to address this question.  

To start, Experiment 3 of the thesis was modified to include a quality of 

memory-for-foils so as to further link those memories with a constrained 

retrieval approach. Stemming from neuropsychological and imaging data (e.g., 

Aggleton, McMackin, Carpenter, Hornak, Kapur, Halpin, Wiles, Kamel, 

Brennan, Carton, & Gaffan, 2000; Curran, 2000; Düzel, Yonelinas, Mangun, 

Heinze, & Tulving, 1997, Yonelinas, Kroll, Dobbins, Lazzara, & Knight, 1998), 

recognition memory tests actually appear to draw from two separate sources of 

memory: one that is based on conscious recollection of the encoding event or 

aspects of it, and the other that is limited to a memory that contains only the 

familiarity of the old item (Gardiner, 1988). One way to obtain a subjective 

indication for whether each memory is recollective (i.e., detail-rich) or 

familiarity-based is through the use of the Remember/Know paradigm (Tulving, 

1985; for a review see Yonelinas, 2002).  In this paradigm, participants are 

asked, within the context of a recognition test, to reflect on the qualitative 

nature of their memories. For detail-rich, recollective memories, they are asked 

to provide a ―remember‖ response, and for detail-poor memories they are to 

provide a ―know‖ response.  

An analysis of the qualitative nature of the memory-for-foils effect can 

provide additional support for the constrained retrieval hypothesis. If the initial 

encoding manipulation is re-instituted on foils during the first recognition test, 
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more ―remember‖ responses would be linked to recognition associated with 

greater detail, which would be expected for foil words from the deep imagery 

test (similar to the findings of Marsh et al., 2009b, Experiment 1). For the 

detail-poor ―shallow‖ foils, there should be fewer ―remember‖ responses. This 

experiment represents a conceptual replication of Experiment 3 in which a 

remember/know judgment was included in the final recognition test.    

4.1.1 Method 

Participants. A total of 25 undergraduate students from the University 

of Waterloo (21 female, 4 male) participated for credit or remuneration ($5). 

After one female participant was removed for failing to comply with instructions 

on the final test, the mean age was 20.3 years (SD=3.3). 

Materials. The stimuli were identical to those in Experiment 1. 

Procedure. All three phases were participant-paced. Participants were 

tested individually and completed the entire experiment in approximately 30 

min. Testing parameters were identical to those in Experiment 3.  

The study phase and the first recognition phase, Test 1, were identical to 

Experiment 3. 

Finally, there was the second recognition phase, Test 2. Here, the targets 

were all of the former foils from the first recognition phase—from both the deep 

imagery and shallow imagery recognition tests (i.e., no deeply or shallowly 

encoded items from the study phase were included on Test 2). Intermixed with 

these newly defined targets was a completely new set of previously unseen 

words, such that there were 72 old words (36 deep-imagery foils and 36 

shallow-imagery foils) and 72 new words. Participants were asked to respond 

based on the quality of their memories, saying either ―remember.‖ ―know,‖ or 

―new.‖ They were given very careful instruction and practice on deciding 

whether the words were new, or were old and accompanied by detailed 

memories (i.e., ―remember‖ response), or were old and not accompanied by any 

detailed memories (i.e., ―know‖ response). The instructions closely followed 

those used by Gardiner (1988, p. 311), including use of the examples that they 

provided. 
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4.1.2 Results and Discussion 

Recognition Test 1.  Participants were able to recognize the study lists 

very well across imagery conditions (overall hits = .78, overall false alarms = 

.11), as is shown in Figure 4.1a. A paired-samples t-test demonstrated that 

participants had considerably better overall memory for pictorially imaged 

words than for words imaged in capitals, t(23) = 6.74, p < .001. This was true 

for hits, t(23) = 7.44, p < .001, and showed a complementary pattern for false 

alarms—more false alarms for capital-imaged than for pictorially imaged words, 

t(23) = 2.19, p < .05. Therefore, participants were effectively using the different 

encoding techniques, resulting in better encoding for words imaged as pictures 

than for words imaged in uppercase. 

 Recognition Test 2.  Most important, a paired-samples t-test 

demonstrated a significant effect of type of imagery, with better memory for old  

 

 

Figure 4.1.  Experiment 5. Manipulating type of encoding and inclusion of a 

quality of memory assessment. (a) Recognition data from Test 1, demonstrating 

enhanced memory following pictorial imagery as compared to capital-letter 

imagery. (b) Recognition performance for Test 1 foils on Test 2, demonstrating a 

clear memory-for-foils effect. Error bars represent the standard errors of the 

corresponding means. 

 

pictorial foils than for old capital foils, t(23) = 3.41, p < .005. Thus, the memory-

for-foils effect, as generalized to an entirely different form of encoding 
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manipulation, replicated. In line with the levels-of-processing finding in Jacoby 

et al. (2005a), there were more hits for foils that had initially been pictorially 

imaged during the first test than for foils that had initially been imaged as 

capitals (Figure 4.1b). The pattern perfectly replicated that of Experiment 3. 

The critical new data are the quality of memory judgments—―remember‖ 

vs ―know‖ response.  A two-way ANOVA of the ―remember‖ responses showed a 

significant interaction, F(1,23) = 12.55, MSE = .007, p < .005, η2
p = 0.353. There 

was a significant main effect of item depth of processing, F(1, 23) = 10.27, MSE 

= .004, p < .005, η2
p = .309, but no effect of response type, F(1,23) = 1.65, MSE 

= .053, p > .20, η2
p = .067. Subsequent tests demonstrated significantly more 

―remember‖ responses to words from the test of deeply imaged items as 

compared to shallowly imaged items, F(1, 23) = 31.36, MSE = .004, p < .001, η2
p 

= 0.577. In sharp contrast, there was no significant levels-of-processing effect 

for items given ―know‖ responses, F < 1. These remember/know data are shown 

in Table 4.1. When the independent remember/know procedure (Yonelinas, 

2002) was applied to the ―know‖ responses, the contribution of these responses 

was higher overall (.35 and .34 for ―deep‖ and ―shallow‖ foils, respectively), but 

did not differ across foil types.  

Therefore, Experiment 5 was able to build upon the previous findings 

that the memory-for-foils effect is robust and generalizable. In addition, this 

experiment confirmed that deep foils make up a higher proportion of 

―remember‖ responses than do shallow foils, consistent with Marsh et al. 

(2009b). This suggests that an increase in detail is associated with the foils 

from the test of deeply encoded words relative to those from the test of shallowly 

encoded words. This is further supported by research by Gallo, Meadow, 

Johnson, and Foster (2008), who demonstrated that typical levels-of-processing 

effects are based on recollective distinctiveness from the extra details that are 

available for items due to deep encoding. The present argument is that such 

detail is related to imagery of the items as a consequence of reentry into the 

picture imagery encoding mode. 
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Table 4.1. Proportions of hits assigned “Remember” and “Know” responses 

following imagery-based processing 

Response Type Deep Foils Shallow Foils 

―remember‖ .27 .17 

―know‖ .27 .29 
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4.2 Experiment 6a: Lexical Decision 

The results of Experiment 5 provide some convincing support for the 

source-constrained retrieval explanation of the memory-for-foils effect. But one 

might still ask whether foils on a test of deeply encoded items show an overall 

efficiency of processing that is simply a byproduct of more efficient processing 

of their deep counterparts. That is, could something about deep processing 

other than the creation of a mode that can be re-enacted be driving the 

memory-for-foils effect?  To ensure that some sort of general advantage is not 

the source of the benefit, Experiment 6a substituted a lexical decision task for 

the deep/shallow processing tasks in the final phase. 

If foils from the test of deeply encoded items have a general processing 

advantage relative to those from the test of shallowly encoded items, then this 

should be apparent on almost any memory measure. In the case of lexical 

decision, then, word decisions should be faster for the deep foils as compared to 

the shallow foils. However, if deep foils were processed under the same 

encoding mode as their target counterparts, and it is re-entry into this mode 

that underlies the effect, then there should be no such benefit on the lexical 

decision task because it is unrelated to that deep encoding. 

4.2.1 Method 

Participants. A total of 26 undergraduate students from the University 

of Waterloo (17 female, 9 male) participated for credit. Their mean age was 20.1 

years (SD=1.67). Four of the participants were removed from all analyses due to 

performing in the final phase more than two standard deviations slower than 

the mean response time for that phase. 

Materials. The stimulus words were identical to those used in 

Experiment 1. Nonwords were compiled using the ARC nonword database 

(www.maccs.mq.edu.au/~nwdb/nwdb.html; Rastle, Harrington, & Coltheart, 

2002). Nonwords were 4–8 letters long and matched with the words on letter 

length frequency. 

Procedure. Participants were tested individually and completed the 

entire experiment in approximately 30min. Words were randomly assigned to 
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four new lists of 36 words each for each participant. Similarly, nonwords were 

randomly assigned to two lists of the same size. In addition, each task began 

and ended with an additional three words (or nonwords) to minimize primacy 

and recency effects; these buffer items were not included in any analyses. The 

order of the tasks within each of the phases was counterbalanced across 

participants. 

In the study phase, participants performed deep- and shallow-encoding 

tasks on separate word lists, identical to the procedure used in Experiment 1.  

In the recognition phase (Test 1), participants performed the test 

precisely as in Experiments 1. 

In the judgment phase (Test 2), participants performed a lexical decision 

task (i.e., ―Is the item a word?‖). The items on this test consisted of half of the 

foil items from each of the recognition test lists (18 from the test of deeply 

encoded items and 18 from the test of shallowly encoded items), intermingled 

with an equal number of nonwords (72 items in total). To parallel as closely as 

possible the procedure of Experiment 2, this task was repeated in exactly the 

same way, with the remaining words from the deep and shallow test lists and a 

new set of nonwords. Participants were instructed to respond as quickly and as 

accurately as they could by pressing 1 or 0 on the keyboard. Because there 

were no methodological differences between the two lexical decision blocks, the 

data were combined prior to analysis. 

4.2.2 Results and Discussion 

Recognition test. As before, participants performed well on the 

recognition test of the initially studied lists (overall hits = .76) and readily 

discriminated these studied words from new words (overall false alarms = .13). 

These results are displayed in Figure 4.2a. A paired-samples t-test showed that 

participants had better overall memory for deeply encoded as compared to 

shallowly encoded words, t(21) = 10.66, p < .001. This was true for hits, t(21) = 

12.60, p < .001, and showed a mirror effect for false alarms—a greater number 

of false alarms for shallowly than for deeply encoded words, t(21) = 2.71, p < 

.01. Therefore, participants were effectively using the two encoding techniques, 

resulting in the typical levels-of-processing effect reported by Jacoby et al. 
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(2005a) and by Marsh et al. (2009b), and seen in the previous experiments in 

this thesis. 

 

Figure 4.2.  Experiment 6a: Manipulating type of decision at test. (a) Recognition 

data from Test 1, demonstrating enhanced memory following deep encoding as 

compared to shallow encoding. (b) Reaction time data for Test1 foils on the lexical 

decision task, demonstrating no significant difference for “deep” and “shallow” 

foils. Error bars represent the standard errors of the corresponding means. 

 

Lexical decision judgment task. Following one-way ANOVAs, planned 

contrasts were conducted on the means of the participant median response 

times for the lexical decision task, which formed the final phase of the 

experiment. Two contrasts were performed, the first examining priming for the 

previously seen foils and the second examining whether priming differed 

between the two types of previously seen foils. There was a significant main 

effect across the three conditions—deep foils, shallow foils, and new nonwords, 

F(2, 42) = 11.80, MSE = 885.8, p < .001, η2
p = .360. The first contrast 

demonstrated the routine finding that old words were responded to more 

quickly than new nonwords, F(1, 21) = 12.77, MSE = 9,672.6, p < .01, η2
p = 

.378. As expected, the second planned contrast resulted in no difference 

between foils from the test of deeply encoded words and foils from the test of 

shallowly encoded words, F(1, 21) = 2.00, MSE = 318.9, p = .17, η2
p = .087; see 

Figure 4.2b. Indeed, the observed difference was in the wrong direction, with 

respect to the hypothesis that deep items should always outperform shallow 



 36 

items. Therefore, foils first encountered among deeply encoded words did not 

incur any benefit over those first encountered among shallowly encoded items 

on a measure unrelated to the retrieval mode under which they were thought to 

be processed.  

In sum, words that had been experienced as foils among target words 

that had been deeply processed at study were not responded to any faster on a 

subsequent judgment task that did not require the same deep processing. 

Evidently, if the processing is not the same as during the initial encounter with 

a word and on the final judgment task, deeply encoded items do not accrue a 

benefit. Therefore, there is no evidence for some form of general benefit for 

items processed within a deep context. Based on the constrained retrieval idea 

and the concept of response mode, the hypothesis offered here is that the 

benefit for the deep foils should be specific to the judgment that was during the 

study phase, entirely consistent with those foil items having been processed in 

the same way as their target counterparts. This was tested in the final 

experiment of the thesis.  

4.3 Experiment 6b: Speeded Judgment 

The final experiment was designed with the goal of providing a more 

direct index of processing mode reinstatement at the time of test. The reasoning 

was that having prior experience at processing an item in a particular way (or in 

a particular context) should promote faster processing of that same item within 

that same context as compared to within a different context. Such encoding 

specificity should, then, be evident only on a test that is highly related to the 

original mode of study. 

To test this idea, Experiment 6b returned to the typical levels-of-

processing study manipulation (i.e., pleasant/unpleasant and ―a‖/no ―a‖ 

decisions), for optimal connection to the previous literature. But critically, the 

final test was changed. In place of the usual recognition test of former foils—

Test 2—another speeded judgment test was substituted. This time, the 

judgment involved repetition of the initial encoding question from the study 

phase, but carried out now on the foil items from Test 1. Half of the foils from 

the test of deep items and half of the foils from the test of shallow items were 
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presented together with new items for a pleasantness judgment; the same was 

done for the letter ―a‖ judgment. The prediction was that if the foils that had 

accompanied deep targets had been processed deeply (i.e., for pleasantness), 

whereas the foils that had accompanied shallow targets had not been processed 

deeply, then only the deep foils would be faster for participants to judge on the 

pleasantness judgment task, because only they had effectively already been 

processed deeply in terms of their pleasantness. Participants were not informed 

that some test item on this pleasantness judgment task would be old and some 

would be new, so effectively this was an indirect test, unlike the direct 

recognition test previously used.  

If the memory-for-foils effect were a consequence simply of the former 

foils having been associated with deeply encoded items, it is unlikely that those 

items would be faster on a subsequent speeded performance test involving the 

original deep-encoding question. If, however, the deep foil items underwent 

processing within the same context as their old counterparts during Test 1, 

then these former foils should be faster to process with respect to pleasantness 

(the basis of the original deep judgment) than should the shallowly encoded 

items.  

I did not expect a complementary benefit on the shallow judgment task 

favoring foils that had accompanied shallowly encoded items on the first test 

because of their relatively weak encoding, and also because I suspected that 

shallow encoding would not have been sufficient to produce a unique encoding 

mode that could be successfully reinstated. Nevertheless, to test the alternative 

hypothesis that accompanying deeply processed items on a prior test always 

leads to improved memory for foils, I did examine this context by having half of 

the deep and shallow foils appear on a ―contains the letter a‖ judgment task.  

4.3.1 Method 

Participants. A total of 41 undergraduate students from the University 

of Waterloo (24 female, 17 male) participated for credit or remuneration ($5). 

The mean age was 20.8 years (SD = 3.3). The data of 3 participants were 

discarded from all analyses due to performing more than two standard 



 38 

deviations slower in the final phase than the mean response time performance 

for that phase. 

Materials. The stimulus words were identical to those used in 

Experiment 1.  

Procedure. Participants were tested individually and completed the 

entire experiment in approximately 30 min. Words were randomly assigned to 

six new lists of 36 words each for each participant. In addition, each task began 

and ended with an additional three words to minimize primacy and recency 

effects; these words were not included in any analyses. The order of the tasks 

within each of the phases was counterbalanced across participants. 

The study and recognition phases were identical to Experiment 1. 

In the judgment phase, there were two subtasks: pleasantness judgment 

and letter ―a‖ judgment, which were counterbalanced across participants. For 

pleasantness judgment, participants repeated the original deep-encoding 

question used at study (―Is the item pleasant or unpleasant?‖) for half of the foil 

items from each of the recognition test lists (18 from the test of deeply encoded 

items and 18 from the test of shallowly encoded items) intermingled with 36 

new items (72 words in total). The remaining deep and shallow foil items from 

the first recognition phase were mixed with another set of new items, and for 

these participants responded to the same shallow-encoding question used 

during study (―Does the word contain an ‗a‘ or no ‗a‘?‖). Thus, both ―deep‖ and 

―shallow‖ foils were tested with each judgment task such that half of the foils 

were aligned in terms of the context of their recognition judgment, and half 

were not. Additional instructions requested that participants respond as quickly 

as possible while performing as accurately as they could. As before, they 

responded by pressing 1 or 0 on the keyboard. Participants were never 

instructed as to the nature of the words; that is, they were never told that old 

words would be appearing among the items during these decision tasks. 

4.3.2 Results and Discussion 

Recognition test. Participants performed well on the recognition test of 

the initially studied lists (overall hits = .75) and readily discriminated these 

studied words from new words (overall false alarms = .21). These results are 
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displayed in Figure 4.3a. A paired-samples t-test showed that participants had 

better overall memory for deeply encoded as compared to shallowly encoded 

words, t(37) = 10.91, p < .001. This was true for hits, t(37) = 8.86, p < .001, and 

showed a mirror effect for false alarms—a greater number of false alarms for 

shallowly than for deeply encoded words, t(37) = 4.31, p < .001. Therefore, 

participants were effectively using the two encoding techniques, resulting in the 

typical levels-of-processing effect reported by Jacoby et al. (2005a) and by 

Marsh et al. (2009b), and also replicated Experiment 1 in this thesis. 

Judgment task. Following one-way ANOVAs, planned contrasts were 

conducted on the means of the participant median response times for each of 

the judgment tasks, which together formed the final phase of the experiment. 

For each judgment task, there were two contrasts, the first examining priming 

for the previously seen foils, and the second examining whether priming differed 

between the two types of previously seen foils.  

Shallow judgment task. On the shallow judgment task, the three 

conditions—deep foils, shallow foils, and new words—did not differ from each 

other, F < 1. Not surprisingly, therefore, neither planned comparison was 

significant, both Fs < 1 (for shallow vs deep; Figure 4.3b). Therefore, priming 

did not occur either overall, for old versus new words, or differentially, for 

shallow versus deep test foils. I suspect that the processing carried out in 

judging whether words contain the letter ―a‖ is so limited that participants 

cannot benefit from reinstating the vowel-based shallow mode, if indeed there 

actually is such a mode. This condition was included just for completeness, as I 

did not expect any differential priming of items from the different test lists. 

Deep judgment task  The task of principal interest was the deep 

judgment task, since the findings of Jacoby et al. (2005a) and Marsh et al. 

(2009b) had suggested that this mode of processing can be reinstated. If the 

foils presented among deep targets on the recognition test were processed like 

the deep targets had been during study (i.e., for pleasantness), this should 

result in more priming of that same judgment for the deep foils relative to the 

shallow foils. There was a significant main effect across the three conditions—

deep foils, shallow foils, and new words, F(2, 74) = 7.46, MSE =1,666.4, p < 

.001, η2
p =.167. The first contrast showed an overall priming effect: Old words 
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were  

 

Figure 4.3. Experiment 6b: Manipulating type of decision at test. (a) Recognition 

data from Test 1, demonstrating enhanced memory following deep encoding as 

compared to shallow encoding. (b) Reaction time data for Test 1 foils on the 

shallow decision task demonstrating no significant difference for “deep” and 

“shallow” foils. (c) Reaction time data for Test 1 foils on the deep decision task, 

demonstrating a “deep” foil advantage over “shallow” foils. Error bars represent 

the standard errors of the corresponding means. 

 

responded to more quickly than new words, F(1, 37) = 13.0, MSE = 7,410.9, p < 

.001, η2
p =.260. The second planned contrast was the crucial test and did 
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indeed demonstrate that participants were faster at making the pleasantness 

judgment for the foils from the test of deeply encoded words than for the foils 

from the test of shallowly encoded words, F(1, 37) = 4.11, MSE = 4,195.2, p < 

.05, η2
p = .100; see Figure 4.3c.  

In sum, words that had been experienced as foils among target words 

that had been deeply processed at study benefited on a subsequent judgment 

task that required the same deep processing. This was not simply general 

priming from prior experience, because words experienced as foils among target 

words that had been shallowly processed at study showed reliably less priming. 

Contrasting Experiments 6a and 6b demonstrates that the benefit for the deep 

foils was specific, consistent with these items having been processed in the 

same way as their target counterparts. This provides direct evidence in support 

of the idea of source-constrained retrieval because, for such a benefit to occur, 

the words would have to have been associated with that relevant type of 

processing in a prior encounter—through re-entry into the encoding context 

during the prior recognition test. 
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CHAPTER 5: GENERAL DISCUSSION 

Encoding and retrieval processes are often conceptualized as being 

separate entities. However, transfer appropriate processing and, more recently, 

the memory-for-foils phenomenon, would suggest otherwise. Indeed, Hintzman 

(2011) dubs this ―process-pure‖ assumption with respect to encoding/retrieval 

one of the prevalent fallacies in the study of memory. The main tenet of this 

thesis is that these processes are, instead, part of one overarching process. 

While encoding may be about the laying down of new memories and retrieval 

about the recovery of old ones, it is inescapable that the encoding and retrieval 

of memories are intimately linked. For them to be linked, any encoding is done 

within the context of prior memories and is therefore another retrieval episode; 

any retrieval done within the context of new experiences is therefore another 

encoding episode. The purpose of this thesis is to demonstrate one way in 

which this occurs.   

5.1 Summary of research findings 

Jacoby et al. (2005a; see also Jacoby et al., 2005b; Marsh et al., 2009b; 

Shimizu & Jacoby, 2005) demonstrated that the way in which targets are 

processed on a recognition test can influence subsequent memory for the 

accompanying distractors.  Specifically, distractor words that had appeared 

among target words that had been semantically encoded during an initial study 

phase were subsequently better recognized than distractor words that had 

appeared among targets that had been encoded non-semantically during initial 

study.  Experiment 1 of this thesis reports a faithful replication of this basic 

finding. We also know from the work of Marsh et al. (2009b) that this effect is 

not simply the consequence of differential strength of encoding, as they showed 

by manipulating number of presentations in their Experiment 3.  Experiment 2 

reports a faithful replication of this finding as well.  Experiment 3 generalizes 

this memory-for-foils effect from the levels-of-processing manipulation used 

previously to a novel imagery encoding manipulation.  Words that people did 

not intend to learn nevertheless benefited on a later memory test when they 

were experienced among other, previously elaborated, words; we now know that 
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this occurs using two of the most widely studied modes of elaboration:  levels-

of-processing and imagery.   

Whereas the levels-of-processing mode is based on the degree of 

semantic—as opposed to perceptual—processing, the elaboration brought about 

by imagery as an encoding mode certainly appears to have a different basis.  

Imagery is not equivalent to semantic processing, invoking as it does perceptual 

elements of what is imaged (see Paivio, 1971, 1995, 2007).  But imagery is a 

coherent mode of processing in the same sense that deep semantic processing 

is:  Both are readily engaged—and re-engaged—ways of thinking about what is 

presented.  This is why I reasoned that deep versus shallow imagery should 

also be capable of inducing and re-inducing differential modes of processing.  

When this same study was extended, in Experiment 5, to include a 

judgment regarding the quality of the memories for the foils in the final 

recognition test, the results demonstrated that more detail-based memories 

accompanied ―deep‖ foils than ―shallow‖ foils during that test. This study was a 

stepping stone to providing direct evidence for the interaction between encoding 

and retrieval processes. Indeed, while participants were undergoing retrieval 

processing for old, deep items in the first test, new items were concurrently 

being encoded with more details than would be expected in the absence of a 

deep context associated during retrieval. Such detail-rich memories suggest a 

link between the depth of encoding of the old items and the way in which 

accompanying new items are encoded during the test. 

Experiment 6 fits the key piece to the puzzle, and as such is the 

centerpiece of the thesis.  Here, the question of whether it would be possible to 

obtain more direct behavioral evidence of re-entering the original encoding 

mode was addressed.  If, during Test 1, the foils are re-processed with respect 

to the original mode of processing of the accompanying targets, then that 

should be evident when the foils subsequently must be processed in terms of 

that original mode.  To test this hypothesis, Experiment 6b ended not with a 

recognition test but with the same judgment task that was used during study.  

By showing that people were faster to respond on a pleasantness judgment task 

to foils from the test of deeply encoded words, Experiment 6b demonstrated 

that these words were encoded within that same deep context.  Further, we 
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know from Experiment 6a that this benefit for ―deep‖ foils is not due to a 

general processing benefit for items associated with deeply encoded words but, 

instead, only occurs within the context of the original encoding task. Therefore, 

during retrieval, participants do appear to re-enact the encoding task.  

What seems to be essential to benefit memory for the foils is that 

encoding involves differentiable modes of processing being applied to the two 

sets of words during study, and that the reinstatement of these same modes of 

processing—separately—be accomplished at the time of the first recognition 

test.  If both conditions are met, and if encoding was initially done more 

elaborately, then the foils also receive more elaborative encoding—the same 

more elaborative encoding—and are better remembered.  In the framing of 

Jacoby et al. (2005a), the beneficial encoding mode is reinstated on the first 

recognition test, in accordance with the transfer appropriate processing 

principle (Morris et al., 1977; Roediger, 1990).  This is what Jacoby et al. 

referred to as ―source-constrained retrieval.‖ 

It appears, then, that we unintentionally process items on a second 

occasion in much the same way as we processed them on the first occasion, 

even without any explicit requirement to do so.  This is not surprising:  It is in 

accord with the idea of transfer appropriate processing (Morris et al., 1977), 

which shows that retrieval is best when the processes engaged during retrieval 

match those that were engaged during encoding. This phenomenon certainly 

meshes well with the proceduralist view of memory (Kolers, 1973; Kolers & 

Roediger, 1984) where memory is conceived more as a byproduct of processing 

during encoding and retrieval.  In this view, it is actually the process of how 

things are put into and taken out of ‗memory‘ that is most important rather 

than the intention to do so (see also Craik, 1983). 

It is worth noting, however, that the benefit of transfer appropriate 

processing stems from processing during study, whereas the benefit of source-

constrained retrieval results from reprocessing of items during test. Such 

processing reinstatement optimizes retrieval success when it provides a 

coherent encoding mode, ―spilling over‖ onto other items processed 

contiguously, even without any intention to learn them.  This highlights that 

there is indeed a mode of processing that is active across trials during retrieval.  
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This agrees with the proceduralist analysis that there is very substantial 

overlap of the processes involved in encoding and retrieval.  Instead of thinking 

of retrieval as separate and distinct from encoding, retrieval could more 

parsimoniously be regarded as another encoding event. 

Indeed, in Tulving and Thompson‘s (1973) concept of ―synergistic 

ecphory‖ as part of the encoding specificity principle, the type of retrieval cues 

that are specific to the encoded items are fundamental to the success of the 

memory retrieval. That is, there is more information available in memory at any 

given time than is accessible. Analogously to how forgetting can be caused by 

the lack of availability of appropriate cues, encoding can also benefit from the 

appropriate type of retrieval strategy. 

Even when more complex stimuli are used, as was the case in 

Experiment 4 using phrases, the memory-for-foils effect is still obtained. The 

amount of information contained within one sentence is compounded relative to 

words. It is rare that we have to remember words in isolation. Therefore, 

phrases are, therefore, complex stimuli that have increased applicability when 

considering the broader context of memory within our daily lives. Thus, 

encoding and retrieval processes do, in all likelihood, work together to aid in 

creating better, more highly associated memories outside of the context of the 

laboratory setting. Interestingly, the sentences in Experiment 4 were 

unrelated—the only link is that of the study manipulation (i.e., ―How believable 

is this statement?‖). Thus, even with a multitude of information, the way that it 

is stored (and therefore retrieved) has great consequences for new, incoming 

information.  

This thesis has demonstrated a link between encoding and retrieval 

processes:  The way that old items are retrieved has a direct and measurable 

influence on the success of encoding of new items.  The experiments have also 

shown that this influence is not restricted to a single mode of processing.  Re-

invoking the encoding processes (or modes) during retrieval permits all items on 

the recognition test (including the new items) to undergo that processing, with 

the same benefits to memory for the new items as were observed for the 

originally studied items.  The new items are thus encoded using a retrieval 

process that increases the likelihood of richer encoding, and produces 
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measurable facilitation in speed of subsequent processing.  Importantly, these 

results demonstrate that the mode of processing engaged during encoding, and 

reinstated during retrieval, has substantial effects on the encoding of new 

information, thereby helping to specify how encoding and retrieval are linked. 

This link is also starting to emerge in neuroimaging studies. While no 

neuroimaging results are presented here, my findings can be tied with recent 

evidence that some of the regions that are activated during encoding are re-

activated again at retrieval (Danker & Anderson, 2010; Nyberg, Habib, 

McIntosh, & Tulving, 2000; Nyberg, Petersson, Nilsson, Sandblom, Aberg, & 

Ingvar, 2001; Wheeler & Buckner, 2003; Woodruff, Johnson, Uncapher, & 

Rugg, 2005). Nyberg and colleagues (2000) associated words with sounds 

during encoding using PET. At retrieval, although only the words were 

presented, auditory brain regions were also active, suggesting that all aspects of 

the encoding experience were retrieved. Using fMRI, Skinner, Grady, & 

Fernandes (2010), also found reactivation during retrieval, this time in face-

related regions (i.e., the fusiform gyrus), for words that had been studied along 

side faces as compared to those that had not. Although this area needs further 

investigation, these studies support a strong link between encoding and 

retrieval processes.  

5.2 Potential Criticisms 

One might argue that these conclusions all derive from the context of a 

relatively specific set of parameters and a single paradigm, and consequently 

might not hold in a different context. However, changing the type of stimuli (i.e., 

words to phrases) and the type of study manipulation (i.e., semantic elaboration 

to imagery) provides support for the phenomenon‘s generalizability. But the 

question still might arise as to the role that this effect plays in everyday life.  

The argument in this thesis is that it is likely that there is a strong role for this 

type of interaction between encoding and retrieval in common memory 

problems. In addition to my earlier example of remembering a grocery list, we 

often use the context of encoding during attempts at retrieval, even for 

something as banal as remembering an actor‘s name: We first may go through 
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the movies in which they have appeared, in an effort to spur the memory for 

their name. 

With unintentional memories, encoding and retrieval are still likely to co-

operate such that incoming information is immediately linked to pre-existing 

information in memory. The ―butcher on the bus‖ phenomenon provides a 

salient example of this. This phenomenon (often credited to Mandler, 1980, but 

perhaps first broached by Osgood, 1953, p. 550), shows how encountering 

someone in an unexpected context results in difficulty recognizing that person, 

who otherwise would be easily recognized. Unintentionally encoded information 

(e.g., the butcher shop) is truly necessary to retrieve the memory of who the 

person is. This shows how important the context of encoding is to retrieval; 

retrieval is seriously impeded if its context does not align with the encoding 

context.  

Another potential criticism is the lack of finding of a shallow processing 

advantage in experiment 6b.  When words that had been in the shallow 

recognition test and words that had been in the deep recognition test both 

appeared on a shallow judgment task—the same one used during initial study—

the words from the shallow recognition test were not processed faster than 

those from the deep test. There are several potential explanations for this. One 

is that it is possible that the effect was smaller and harder to obtain with that 

task because the differences between items is much smaller (all drawn from a 

finite set of letters). Another possible reason is that when the encoding mode is 

not strong enough, retrieval plays a much smaller role during encoding; for 

items within a weak context, there may be an associated broader context (i.e., 

the lab session) but not something more specific (i.e., shallow processing).  My 

preferred explanation is simply that judging whether a word contains a 

particular letter is not an analysis likely to be replayed during subsequent 

testing—this task does not constitute a retrieval mode that can be re-enacted.  

A further criticism might pertain to the likelihood of the phenomenon of 

retrieval mode occurring within the context of everyday memories. I discuss this 

idea further below but, essentially, I argue that the more relevant question 

would be when it would not occur in the context of our everyday memories.   
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5.3 Future Directions 

One remaining question pertains to the expansion upon the question of 

applicability of the memory-for-foils effect. Are people likely to use it as a matter 

of course in their everyday lives? Is the context of retrieved items automatically 

associated with novel ones? For example, on multiple choice tasks used by so 

many university classes, are students actually integrating the novel (i.e., false) 

information when they have studied for the test using deep encoding 

techniques? If so, it seems that we are actually causing harm as well as good to 

the best students by increasing the amount of false information being 

incorporated into their memories of the course material. This would suggest 

that we should move away from this type of testing.  Indeed, there is some 

evidence in the literature on the testing effect—the benefits of testing—for 

exactly this sort of cost (see, e.g., Butler & Roediger, 2008; Roedgier & Marsh, 

2005; Marsh, Agarwal, & Roediger, 2009a). 

An important piece of the puzzle that still needs further investigation is 

that of neuroimaging evidence of an overlap between encoding and retrieval 

processes. As noted earlier, it is within this realm that the evidence for the 

separability of these processes has been emphasized. While there is some 

emerging evidence for such an overlap (Danker & Anderson, 2010; Nyberg et 

al., 2000; Nyberg et al., 2001; Wheeler & Buckner, 2003; Woodruff et al., 2005), 

I believe that, in the context of neuroimaging, the memory-for-foils paradigm 

could be a very suitable tool for addressing this question. If, for example, we 

were to find the same areas to be activated during the original encoding session 

as for the foils within the first test, it would be convincing evidence for a role for 

both processes occurring during the test, especially because the study 

manipulation and the test place very different requirements on the participants. 

In particular, activation would be expected in areas involved in visual imagery 

(i.e., the prefrontal cortex, parahippocampal cortex and occipital regions; 

Johnson & Rugg, 2007). In addition to the use of the memory-for-foils 

paradigm, it is important to use newer analyses that allow us not only to 

investigate singular areas of activation, but also to discover areas that work 

together within the network, thereby providing a possible missing link. Prior 

research has faced difficulty in designing a study that would offer such a clear 
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overlap between retrieval and encoding, which has made drawing any 

conclusions about their interactive nature more difficult.  

Another question that remains is whether the depth of encoding needs to 

be associated with the study items directly or whether that depth—that mode—

could somehow be induced during the test, if that would provide the same 

benefits as seen with the memory-for-foils paradigm. For example, if all study 

items could be categorized in a way that would not be obvious during study, if 

that categorization was then provided prior to the test, would the new foils still 

be linked? Other contextual dimensions such as physical location and mood for 

the separate lists could also speak to the issue of what type of context plays a 

role.  

As with many other memory phenomena (for example, see McConkie & 

Currie, 1996; Simons & Chabris, 1999), attention is likely a necessary 

component. We know that the relation between encoding and retrieval on a 

levels-of-processing task can be interrupted when attention is divided, 

especially during encoding (Craik, Govoni, Naveh-Benjamin, & Anderson, 1996; 

Naveh-Benjamin, Craik, Gavrilescu, & Anderson, 2000). Division of attention 

during the memory-for-foils paradigm has yet to be tested, but this would make 

an interesting next step, particularly were attention to be divided during the 

first recognition test, potentially preventing the implementation of a retrieval 

mode during the test, and thereby reducing or eliminating the memory-for-foils 

effect.  

Within the studies reported here, I have demonstrated a powerful—and 

very specific—influence of retrieval on encoding processing. An important next 

step would be to expand upon the converse effect—the effect of encoding on 

retrieval. In addition to transfer-appropriate processing, there is some evidence 

that this influence does occurs, given that the way in which we encode things 

has a powerful effect on how well items are later retrieved (e.g., levels of 

processing, Craik & Lockhart, 1972; and remember/know; Gardiner, 1988; 

Rajaram, 1993). Moreover, the generation effect—where items that are 

generated from clues are better remembered than those that are simply read 

(Slamecka & Graf, 1978; Bertsch, Pesta, Wiscott, & McDaniel, 2007)—suggests 

a strong role for retrieval in successful encoding.  It also could likely be shown 
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that retrieval is impaired based on a conflicting encoding manipulation, 

supporting the notion that the two processes work together.  

5.4 Conclusions 

Within the context of the memory-for-foils paradigm, the empirical work 

in this thesis has demonstrated a very intimate link between encoding and 

retrieval processes. The existence of this link argues for a fundamental shift in 

the way that the processes are conceived and studied, as Hintzman (2011) has 

recently convincingly contended, writing that there are ―two implicit 

assumptions that are false:  that retrieval does not occur during the study 

phase, and that encoding does not occur during the test phase‖ (p. 256). 

Creating artificial divisions between encoding and retrieval leads to less than 

ideal perceptions of the processes. To truly understand memory as a whole, the 

way in which these sub-processes function together is, I believe, the more 

fundamental question. As part of one larger process, encoding and retrieval 

work together to build an efficient and effective memory system—one in which 

memories are well organized and, thus, easily accessible. We know that 

memories are never perfect replicas of past events, but rather, are 

reconstructed or recreated (Bartlett, 1932). Therefore, it is part of the 

fundamental process that new memories are integrated well not only with the 

appropriate external context, but also into our existing personal memories. This 

integration acts to strengthen the memories and increase their value because 

they can provide some extra context and meaning. Without this, nothing would 

be linked and learning would be very difficult indeed.  

In considering the usefulness of encoding/retrieval interactions, there 

appears to be a very powerful and useful mnemonic that is not commonly 

suggested but that could perhaps benefit people were they encouraged to use it. 

If people are instructed directly to try to retrieve each item by repeating the 

study manipulation on them, this would benefit not only memory for those 

items, but additionally memory for the co-occurring novel items. This is only 

one potential positive outcome for this link between encoding and retrieval but, 

regardless, this link could have many important ramifications with respect to 

the way that we conceptualize memory and study it.  
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Memory processes hold a great deal of fascination for many researchers 

with the goal of understanding human cognition, myself included. But much of 

society gives these processes little thought until they fail to function. There is so 

much complexity when thinking about how we encode and retrieve memories 

within behavioural studies of cognition alone, without even brushing the edges 

of the neuroscientific realm. Every new piece of the puzzle continues to bring 

with it more questions. Despite the common colloquialisms about memory that 

refer to encoding and retrieval as separate, they clearly are not.  It is the 

personal integration of events across our present and our past that makes the 

processes that underlie our understanding of the world truly fascinating—and 

extremely elusive.  The principal argument in this thesis is that we can only 

understand our own memory processes if we view them as interdependent, and 

stop treating them as isolated from each other.  To learn is to remember; to 

remember is to learn. 
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APPENDIX A 

The most stolen car in Canada is the 2000 Honda Civic. 

Spermology is the study or collection of trivia. 

Coffee is the world's most popular beverage. 

The hottest chili in the world is the habanero. 

A cluster of bananas is called a hand. 

Bats are the only mammal that can fly. 

The average life span of a mosquito is two weeks. 

Ants do not sleep. 

Amelia Earhart was the second person to fly solo across the Atlantic. 

The opposite of a "vacuum" is a "plenum." 

Naples is the place of origin of pizza, guitars and mandolins. 

Adding milk to tea negates its health effects. 

VHS stands for Video Home System. 

The Hope Diamond was mined in India. 

The Silk Road runs from China to Turkey. 

India ink is not from India - it's from China and Egypt. 

There are 1,792 steps in the Eiffel Tower. 

Cloudy apple juice is healthier than clear juice. 

A prairie oyster is actually a calf's testicle. 

Racism is a crime in Brazil. 

Some roaches can fly. 

An octopus has three hearts. 

A firefly is not a fly; it's a beetle. 

Paper products make up approximately 40 percent of all trash. 

Sony started as the maker of rice cookers. 

Matthew means "Gift from God." 

People of Monaco are called Monegasques. 

The average NFL career lasts about 3½ years. 

A house mouse feeds 15 to 20 times per day. 

Dom Perignon was a Benedictine monk. 

Whales have no vocal cords, but they can sing. 

The Latin words for apple and evil are the same: malus. 

There are more pyramids in Sudan than in Egypt. 

A leapling is a person born on February 29th. 


