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Abstract

Quantum key-distribution (QKD) is a scheme for establishing shared secret key between
remote parties. In such a scheme, quantum preparation and measurement devices (sources
and detectors) are used. In existing theoretical treatments of QKD, the device models
used do not capture all the imperfections which might occur in realistic devices. This
creates a gap between the practical implementations and theoretical descriptions of QKD.
In the present work, we contribute in bridging this gap by three methods: 1) Advancing the
study of squashing models of measurement devices, 2) Devising an alternative to squashing
models using statistical estimation in optical QKD, and 3) Modifying the security proof
formalism of QKD to account for imperfect devices.
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Introduction

Quantum cryptography is a field which has been growing in importance over the last two
decades. It is one of the two most important applications (the other being quantum com-
puting) of the science of quantum information, which has seen unprecedented developments
during this period. Within the realm of quantum cryptography, an important branch is the
study of quantum key-distribution (QKD). The seed of QKD was planted by the landmark
work of Bennett and Brassard in 1984 [1]. Since then, the field has made leaps and bounds.
One aspect of growth has been the emergence of various new QKD schemes ([2, 3, 4] etc.).
Secondly, there has been much improvement in the understanding of information-theoretic
security, first in the context of specific QKD schemes and limiting assumptions ([5, 6, 7, 8]
etc.) and later in more general settings ([9, 10, 11, 12] etc.). Finally, there have been
many practical implementations ([13, 14, 15, 16, 17] etc.) and development of the the-
ory from an abstract context to a form which applies to these practical implementations
([18, 19, 20, 21, 22] etc.).

Our concern in the present work is with this third important branch, namely bridging
the gap between the abstract theoretical framework of security proofs and the realistic world
of practical implementations. Before discussing the specific problems which we address,
let us first give a brief background. For a detailed discussion of QKD and its practical
implementations, we refer to [23].

Broadly, QKD is any technique designed for two remote honest parties, Alice and Bob,
to establish a shared secret key in the possible presence of an adversarial eavesdropper, Eve.
For use in this task, Alice and Bob are given access to an insecure quantum channel and an
authenticated but public classical channel. The first step of most QKD schemes consists of
Alice preparing some quantum systems in some state and sending them over the insecure
quantum channel to Bob. In the theoretical formulation and security proof formalism of
most QKD schemes, these quantum systems are simple abstractions such as qubits. On
the other hand, in all existing practical implementations of QKD, the quantum systems are
optical modes, which are much more complex in their structure than simple systems such as
qubits. Another aspect in which implementations deviate from the theoretical description
is that the devices used in QKD — Alice’s source and Bob’s measurement device — do not
in practice behave in the manner in which they are modelled in theory. The real devices
differ from their abstract theoretical models in three important aspects:

1. Fundamental structure: The model might be fundamentally simpler than the real
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device. For example, while the real device emits or detects optical states, the model
might work on qubits.

2. Efficiency: The real device might not always be in functioning condition. For exam-
ple, detectors might sometimes not register received signals, either because of limited
efficiency or other reasons, such as not having recovered sufficiently from previous
activity. Another example is that signal strength might be lost by dissipation along
the channel, by coupling loss, and by other means.

3. Precision: Even if a model be made complex enough to account for the added struc-
ture of the real device, and even if inefficiencies be addressed, there remains the
possibility that the real device even in its functional state does not behave as mod-
elled. For example, a source might not prepare the exact states which it is modelled
to, and a detector might not execute exactly a measurement as it is mathematically
described.

The endeavour of overcoming these limitations of the theory has been started by others
much before the present work. The accomplishments thus far are mainly in addressing the
first two of the above-mentioned points. In order to successfully tackle the problem on the
source (Alice) side, the technique of decoy states [24, 25], supplemented by the concept
of tagging, has been developed. On the detector (Bob) side, the mathematical tool of
squashing models [26, 27] has been devised, which can bridge the gaps in the security
proof without requiring any modification to the practical scheme. Squashing models are
mathematical constructions which simplify high-dimensional descriptions of measurements
by replacing them by equivalent low-dimensional models.

However, squashing models are not always straightforward to find, and in some cases,
they don’t exist. The first part (Chapter 1) of the present work is a study aimed at
advancing the theory of squashing models. Specifically, the important role of classical
post-processing of measurement statistics is addressed. Through this work, we have been
able to find that the existence of a squashing model may be denied by certain post-
processing schemes while admitted by certain others, whereas in some cases a meaningful
post-processing scheme might not exist at all. The theory thus developed is applied to a
specific example of practical significance: the detection setup used in the so-called phase-
encoded BB84 (PEBB84) QKD scheme.

As we mentioned before, squashing models do not always exist. An alternative has been
proposed by Fung et al. in [28], which is based on finding some bounds based on observed
statistics. In Chapter 2, we present another alternative, based similarly on statistically-
inferred bounds, through the examples of BB84 and PEBB84.

Finally, in Chapter 3, we address the third of the points raised above — the possibility
of devices functioning differently from their models. Previous work [29, 30] on this aspect
is limited to the special case of BB84. While Mayers and Yao [29] have presented a
method to test sources for proper functioning for BB84, Gottesman et al. [30] address the

2



case of specific faults such as basis-dependent imperfections, again in the case of BB84.
We consider the general formalism of QKD as presented in Renato Renner’s PhD Thesis
[12], which can be applied to any QKD protocol, and develop a heuristic formalism for
incorporating imperfect devices under a limited model of imperfections.

We hope that these efforts provide a starting point and motivation for further advance-
ment in the mission of realizing QKD for practical applications. At the end of the thesis,
we discuss the state at which the present work leaves this mission, and what important
problems remain open.
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Chapter 1

Squashing models and classical
post-processing

1.1 Introduction

Measurements are an essential part of quantum information-processing (QIP). Many tasks
which employ QIP are performed in adversarial situations. One such example is quantum
key-distribution (QKD), where two mutually-trustful parties intend to establish a shared
secret key using the common resource of a public quantum channel and a public, but
authenticated, classical channel. In a QKD scheme, quantum states are exchanged over
the public quantum channel and later measured to extract classical information. Typical
proofs for the security of QKD protocols work with simplifying assumptions about the
dimensions of the Hilbert space on which the measured states are supported. However, an
adversary has complete access and control over the channel, and in principle the legitimate
parties have no handle over what quantum states are received by their measurement devices.
In a practical implementation, for instance with optical signals, the canvas of Hilbert space
available to an adversary is potentially unbounded — an infinite-dimensional Fock space
of an optical mode, for example.

In the realm of quantum optics experiments, we are used to the idea of approximating
these infinite-dimensional systems easily by lower-dimensional descriptions, e.g. describing
parametric downconversion experiments only on the level of vacuum and single-photon
pairs. We can do that, because we can handle the approximations well on a theoretical
level such that theoretical predictions and experimental verifications coincide with high
precision. But in cryptographic situations, such as QKD or quantum coin-tossing [1, 31],
this is not good enough. Here we have to be able to bound exactly our error in any
prediction, because, for example, experimental verification of third-party information about
some measurement data is not possible.

One possible recourse is of course to carry out detailed calculations in the infinite-
dimensional Hilbert spaces [19, 32]. Often this is technically challenging. The other pos-
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sibility then is to truncate to finite-dimensional subspaces. This has to be done not only
in the form of approximations, but as truncations that hold also under adversarial con-
ditions. There are two approaches here. The traditional way would be to provide exact
bounds on the effects of truncations and to extend the theoretical finite-dimensional anal-
ysis to accommodate the effects of the truncation. This approach has been followed, for
example, in [33] in the context of a specific application, while a more general framework
of this approach has recently been formulated by [28], and in another part of our work
(Chapter 2). The tool of squashing models affords a second way, postulated already in [30]
(where the term ‘squashing’ has been coined), which performs a truncation of the Hilbert
space in such a way that provides a direct link between the optical implementation and the
abstract low-dimensional protocol, without the necessity to amend the theoretical analy-
sis. To take a concrete example from QKD, this approach means that for a generic QKD
protocol with a BB84 [1] polarization encoding we can assume without loss of generality
that single photons enter the detection device of the receiver.

In the present discussion, we concern ourselves with this latter approach, namely the use
of squashing models. Squashing models effect a truncation of a high-dimensional Hilbert
space to some low-dimensional target space which holds also under adversarial conditions
that occur in cryptographic contexts. We build on earlier work by Beaudry et al. [27], that
gave a well-defined notion of a squashing map. Note that Tsurumaru and Tamaki [26, 34]
have independently investigated squashing models.

The matter presented in § 1.2 is already contained in previous work [27]. The SDP
formulation of squashing problems, presented in § 1.4, has been carried out in the past
by Moroder, Beaudry and others as part of the work going into [35, 27]. However, we
find it useful to include it in the present work, because it has not been summarized in an
accessible form anywhere in the Literature.

A rough idea of what a squashing model does is represented in Fig. 1.1. A physical mea-
surement device B corresponds to some basic distinguishable events, which are associated
with a POVM FB. These basic events may be subjected to (classical) post-processing to a
different definition of events. This post-processing might be, for instance, coarse-graining,
where any of several basic outcomes is treated as the occurrence of one post-processed out-
come. The post-processing might also be probabilistic, wherein each basic event triggers
some probabilistic assignment of post-processed outcomes. In general, the post-processing
is a stochastic map from the set of basic outcomes to some other set of defined outcomes.
We refer to the combination of basic events and post-processing as the full measurement,
and denote the effective POVM by FM . This classical post-processing will be an essential
tool in making squashing models work, as we shall see.

Consider another POVM, called FQ, which distinguishes the same number of outcomes
as FM , but acts on a smaller Hilbert space. The role of a squashing model is to con-
nect a measurement like FM with one like FQ: a squashing model consists of an abstract
map (which describes a process which is, in principle, physically allowed within the frame-
work of quantum mechanics), such that a device consisting of the map followed by FQ is
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Figure 1.1: The full measurement FM (above) has a general optical input ρin, which is
first measured by a receiver’s measurement device B, followed by classical post-processing.
The squashed measurement (below) has the same general optical input ρin, which is then
squashed by a map Λ to a smaller Hilbert space, followed by a fixed physical measurement
FQ. It is required that both of these measurements produce the same output statistics for
all ρin.

equivalent to one effecting the POVM FM , i.e. the two situations depicted in Fig. 1.1 are
indistinguishable for every input.

Given the exact mathematical equivalence of the two situations depicted in Fig. 1.1, we
can perform all calculations pertaining to the respective application1 assuming the second
model (Fig. 1.1, bottom), i.e. the one with the squashing map followed by FQ. In fact,
by basing all our calculations on a device model where the device consists only of the
measurement FQ and where any input whatsoever in the input space of FQ can enter such
a device, we naturally account for the particular case where those inputs are the result of
applying the squashing map on some pre-inputs.

This is the case, for example, if the device is part of a cryptographic scheme and if
we formulate a security proof for the scheme under the assumption of an FQ device. The
security proof would then cover for all kinds of input to FQ, in particular ones produced by
the squashing map. Since the real situation (Fig. 1.1, top) is equivalent to the one where
the squashing map precedes FQ (Fig. 1.1, bottom), we can assume this latter situation

1These calculations might constitute, for instance, the formulation of a security proof if the application
is a cryptographic protocol.
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and, further, concede the squashing part to the channel, retaining only FQ in the device.
Even if the channel is under adversarial control, we do not compromise on security, since
our calculations are valid for any input whatsoever to FQ.

1.2 Mathematical preliminaries

Here we give the necessary mathematical definitions of the relevant notions, including
mainly that of a squashing map.

We denote as HM the high-dimensional (often infinite-dimensional) Hilbert space on
which the basic measurement POVM FB and also the full measurement FM are described.
Recall from the previous section (see Fig. 1.1) that FB denotes the unprocessed action of
a physical measurement device, while FM denotes the post-processed full measurement.
Further, we denote by HQ the low-dimensional Hilbert space of the target POVM FQ. The
elements of the POVM, one for each measurement outcome, are denoted respectively by F (i)

X

for X ∈ {B,M,Q}, and the index i runs over the set of outcomes for the corresponding mea-
surement (which are necessarily of the same number for Q and M). Quantum-mechanical
states are described by density matrices ρ, which are non-negative Hermitian operators
with unit trace. We denote by ρM a generic state on HM . The probability distribution of
measurement results is then given by Born’s rule, namely Pr

(i)
X [ρ] = Tr [F (i)

X ρ].

Before moving on to the formal definition of a squashing map, we need to state precisely
what constitutes valid classical post-processing. Classical post-processing is applied to the
measurement outcomes and allows, for example, the combination of different outcomes
into one (coarse-graining). It plays an important role in developing squashing models. One
thing it achieves is to create a full measurement FM out of the basic measurement events FB
such that the POVM FM contains the same number of elements as the target measurement
FQ. Otherwise, obviously, no squashing model can exist. Formally, post-processing can
be described as a stochastic matrix P which acts on the vector of probabilities of the
measurement outcomes. The entries Pij = Pr [i∣j] of the matrix are given by the conditional
probabilities which describe the redistribution of outcomes of the POVM FB with index j
into events of the full measurement POVM FM with index i.

Definition 1.2.1. (Classical post-processing) Let p⃗bas be the vector of the outcome prob-
abilities of the basic measurement B (for some input state). Any classical post-processing
scheme which can be applied to p⃗bas is described by a stochastic matrix P and results in
some new outcome probability distribution p⃗′ such that

p⃗′ = P p⃗bas,

∀j, ∑
i

Pij = ∑
i

Pr [i∣j] = 1. (1.1)

Since taking the trace of an operator is a linear operation, post-processing can be seen
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as a linear transformation on the POVM elements, resulting in a new POVM:

F
(i)
M = ∑

j

PijF
(j)
B . (1.2)

Similarly, the target POVM can also be a post-processed version of a more basic mea-
surement. But in the typical problems encountered in squashing, it is sufficient to consider
one fixed target POVM, so that even if it be post-processed, we don’t have to consider
variations in the post-processing.

Definition 1.2.2. (Squashing model) Let (FQ, FB) denote a measurement apparatus, as-
sociated with a complete target POVM with elements F (i)

Q , i = 1, . . . ,NQ, and a basic
unprocessed full POVM with elements F (j)

B , j = 1, . . . ,NB, also complete. Denote by
F

(i)
M , i = 1, . . . ,NM the full measurement POVM elements for some fixed classical post-

processing P of the basic events that assures that NQ = NM .

We say that there exists a squashing model for (FQ, FB,P) iff there exists a map ΛS

such that

1. For any state ρM
Tr [F (i)

M ρM] = Tr [F (i)
Q ΛS [ρM]] ,∀i, (1.3)

where F (i)
M = ∑

j
PijF

(j)
B ;

2. ΛS is a completely-positive (CP) trace-preserving (TP) map, denoted CPTP for short.

Remark 1.2.3. We introduce the adjoint map Λ†
S to find that Eq. (1.3) implies that

Tr [F (i)
M ρM] = Tr [Λ†

S [F
(i)
Q ]ρM] ,∀i (1.4)

has to hold for any state ρM . Therefore

Λ†
S [F

(i)
Q ] = F

(i)
M ∀i = 1, . . . ,NQ. (1.5)

Since FQ and FM are both complete POVMs, the adjoint map has to satisfy

Λ†
S [1Q] = 1M , (1.6)

which, together with the CP requirement, entails that Λ†
S be CP and unital, or equivalently,

that ΛS be CP and trace-preserving (CPTP).

The reason we treat the target and full POVMs as two components of one device is
that, in typical situations where squashing models are sought, the target POVM is the
restriction of the action of a detection setup to some subspace of inputs (for example,
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restriction to single-photon inputs to a linear-optic detection device), while the full POVM
is the unrestricted version of the same.

The definition of the squashing model consists of two essential parts. In order to provide
a squashing model for a given measurement apparatus (FQ, FB), one first has to agree on
a meaningful post-processing, as defined in Eq. (1.2). The classical post-processing can be
seen as a freedom in searching for a squashing model. That is, the post-processing fixes
the full measurement and influences the linear constraints (1.3), which have to be fulfilled
by the squashing map ΛS. The squashing map ΛS has to be a CPTP map. Its existence,
given the constraints, can therefore be investigated by exploiting the Choi-Jamiołkowski
isomorphism [36]. Note that variations of squashing models that require only positive, but
not completely-positive, maps have been investigated and utilized in [35].

We conclude this section by summarizing that by the existence of a squashing map,
we mean that for a given measurement device with basic measurement events described by
POVM FB and a fixed post-processing P resulting in full measurements FM , and a target
measurement described by the POVM FQ, there exists a CPTP map ΛS such that the full
measurement FM can be thought of as the composition of the squashing map ΛS followed
by the target measurement FQ.

1.3 The role of classical post-processing

In this section, we shall zoom in on one important aspect of the squashing problem, namely
the role that classical post-processing plays. We shall see that much of the structure of a
typical squashing problem is decided by this aspect, and that it is useful to consider this
aspect independently before considering the whole squashing problem.

As per the previous section, the central question addressed in the context of squashing
models is whether a squashing map exists when the target and post-processed full POVMs,
FQ and FM , are completely specified. This question itself comes after first fixing some
post-processing scheme P . In a typical situation where squashing models are invoked,
there is no a priori clear definition or directive principle to fix a particular P . So in fact,
the complete question is not just the one we posed before, but also whether there exists a
valid P, which is also meaningful (in a sense we will discuss later), such that that question
can be answered in the affirmative.

1.3.1 Constraints from linear relations

Given a certain measurement device (FB, FQ) which carries out basic full measurement
FB and a target POVM FQ, we can already find some constraints on the allowed post-
processing schemes, as follows. Recall that we seek a linear CP map Λ†

S taking the target
POVM elements to the corresponding post-processed full POVM elements. The linearity
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property implies that any linear relations2 between elements of the map’s domain must be
obeyed by their images under the map. That is,

NQ

∑
i=1

αiF
(i)
Q = 0⇒

NQ

∑
i=1

αiF
(i)
M = 0

⇔∑
i,j

αiPijF
(j)
B = 0. (1.7)

We can restate the foregoing in a more useful way. If we denote by NQ the null-space
of the FQ over the reals, i.e. the subspace of RNQ such that

α ∈ NQ⇔

NQ

∑
i=1

αiF
(i)
Q = 0, (1.8)

and likewise by NB the null-space of the FB over the reals, i.e. the subspace of RNB such
that

β ∈ NB⇔
NB

∑
i=1

βiF
(i)
B = 0, (1.9)

then a constraint (equivalent to (1.7)) on the choice of P is that

∀α ∈ NQ,P
Tα ∈ NB. (1.10)

Another equivalent condition, which is the most useful form in practical situations (e.g.
in numerical investigations), is as follows. If we denote by NQ a matrix whose columns
comprise an orthonormal basis spanning NQ, and by RB a matrix whose rows comprise an
orthonormal basis spanning the subspace of RNB orthogonal to NB, then we require that

RBP
TNQ = 0. (1.11)

The constraint in the above form can be used, for instance, as one of the linear constraints
when the squashing problem is formulated numerically using semidefinite programming
(SDP) (see §1.4).

1.3.2 Meaningful post-processing: “No-mixing” constraint

In addition to the basic linear constraint on the post-processing which is necessitated by
the very mathematics of the problem (discussed in the preceding subsection), another class
of linear constraints arises from practical considerations. Usually, as mentioned before, the
target measurement is a special case of the full measurement restricted to a certain subspace
of inputs. The statistics gathered from this measurement carries information relevant to

2Throughout this work, when we use the term “linear relations”, we mean homogeneous linear relations,
i.e. those not involving nonzero additive constants.
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the particular application, e.g. QKD. Since the post-processing applies also when the
actual measurement occurring might happen to be the target measurement (since it is
a special case of the full measurement), or even in other cases when the measurement
outcome contains important information, the post-processing scheme must be such that
it does not disturb the relevant information contained in the measurement outcomes. In
order to motivate the constraints that arise from this, let us consider the following.

It is easy to see that there always exists a family of trivial post-processing schemes
which each admit a squashing map, namely one which assigns target events with the same
distribution for any full measurement event whatsoever; a valid squashing map for such
a post-processing scheme is a constant map whose image is a state on the target space
whose outcome statistics under the target measurement matches the one which the post-
processing scheme produces. It is obvious that such a squashing map would obliterate the
practicality of any application because it would require us to simulate some fixed statistics
which carries none of the actual information relevant to the application.

For example, in the six-state QKD protocol with active basis-choice3, the appropriate
target measurement would be a polarization measurement on one photon, with active
switching between three mutually-unbiased bases. For an input state with more than
one photon, there are three possible outcomes for each basis choice: a click in either
detector (0 or 1 in the respective basis), or clicks in both detectors. While some post-
processing scheme is required so that the statistics of these outcomes can be reduced to
statistics on a two-outcome event space, it must be chosen judiciously so that the useful
information in the single clicks is retained as much as possible. One (unwise) way to find
a squashing map from many photons to a single photon would be to ignore the input
and always produce uniformly-random outcomes in each basis. Obviously this would kill
all information essential for key-extraction, which is contained in single-click outcomes
from single-photon as well as multiple-photon inputs. It is only double-click outcomes
which don’t provide meaningful information, and therefore it would be counterproductive
to introduce randomness in single-click outcomes.

The above examples, though extreme cases, demonstrate nevertheless that some post-
processing schemes can destroy useful information. Therefore, in general, in addition to
the constraints discussed in the preceding subsection, we impose certain other linear con-
straints, specific to the particular application in consideration, which are motivated by the
intention to prevent useful information from getting disturbed. We refer to this class of
constraints by the term “no-mixing”, since it is a requirement that meaningful informa-
tion not get mixed up. Since the usual “meaningful” outcomes are single clicks in most
applications, the no-mixing constraint usually amounts to requiring the post-processing
scheme to map single-click events deterministically to the corresponding target single-click

3The term “passive basis-choice” refers to a situation where the basis-choice is executed using a passive
linear-optic element, i.e. a beam-splitter whose output branches contain measurements in different bases.
“Active basis-choice” is a situation where the choice is made using a mechanism which is external to the
linear optics.
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events. This notion will become clear in §1.5 where we shall discuss the example of the
phase-encoded BB84 detection setup.

1.4 Semidefinite programming in squashing models

The theory of semidefinite problems and semidefinite programming (SDP) plays an im-
portant role in the field of quantum information. Many important problems in the field
turn out to have alternative formulations in terms of SDPs. This affords an advantage in
numerical computations, because many efficient computational applications are available
for solving SDPs numerically. The problem of finding squashing models can also be for-
mulated in terms of SDPs. This allows us to employ numerical computation using SDPs
as an aid, supplementing or guiding analytical methods.

A semidefinite program (SDP) is an optimization problem over an inner-product space.
There exist several equivalent standard descriptions of SDPs. We use the following, which
fits well into our present purpose:

min
x∈Rn

cTx

subject to H0 +
n

∑
i=1

xiHi ≥ 0, (1.12)

where c ∈ Rn is a constant, and the Hi are constant Hermitian matrices of some dimension.
Note that the “≥” above refers to the notion of semidefinite order of Hermitian matrices.

In order to state the problem of finding a squashing model for a certain device4 (FQ, FB)
and post-processing scheme P in the form of an SDP, we first make the following convenient
constructions. Let {∣i⟩} be an orthonormal basis spanning the Hilbert space HQ of the
target. Consider the following linear map which executes a “vectorization” of operators5:

VQ ∶L [HQ] → HQ ⊗HQ

∀i, j VQ [∣i⟩⟨j∣] = ∣i⟩ ⊗ ∣j⟩. (1.13)

Some inspection shows that this vectorization is a basis-independent operation. We can
therefore use the abbreviated notation VQ [AQ] ≡ ∣AQ⟫, where AQ is any operator in L[HQ].
We can define a similar map on the full measurement space HM , with the abbreviated
notation VM [AM] ≡ ∣AM⟫. We naturally extend this notation to the corresponding bras.

4The notions (FQ, FB ,P) and other mathematical notations are introduced in §1.2.
5For two Hilbert spaces H1 and H2, we use the notation L[H1,H2] for the set of all linear operators

mapping vectors in H2 to those in H1. Further, keeping with convention, we condense L[H,H] to L[H].
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Now consider the linear “rearrangement” map defined by

R ∶ L[HM ⊗HQ] → L[(HM)⊗2, (HQ)
⊗2]

∀AM ∈L [HM] ,BQ ∈ L [HQ] R[AM ⊗BQ] = ∣AM⟫⟪BQ∣. (1.14)

For any linear map Λ ∶ L [HQ] → L[HM], the Choi matrix

MΛ ∶= (Λ⊗ id) [∑
i,j

∣i⟩⟨j∣ ⊗ ∣i⟩⟨j∣] (1.15)

of Λ has the property that

∀AQ ∈ L [HQ] , (R[MΛ]) ∣AQ⟫ = ∣Λ [AQ]⟫. (1.16)

Therefore, for a given detection setup and post-processing (FQ, FB,P), if we construct
the vectorizations ∣F

(i)
Q ⟫ and ∣F

(i)
M ⟫ (recall that P defines FM uniquely) of the target and

full POVM elements, then we can write the linear constraints (1.5) on the squashing map
ΛS as

∀i, (R[MΛ†
S
]) ∣F

(i)
Q ⟫ = ∣F

(i)
M ⟫. (1.17)

Therefore, we can state the squashing problem as an SDP:

min
M∈L[HM⊗HQ],λ∈R

λ

subject to (R[M]) ∣F
(i)
Q ⟫ = ∣F

(i)
M ⟫,

M + λ1M⊗Q ≥ 0. (1.18)

The squashing problem thus stated has a solution (i.e. a squashing model exists) iff the
minimum value of the objective function is nonpositive (which implies that the Choi matrix
is positive-semidefinite).

This can be reduced to the standard form (1.12) as follows:

1. Parametrize the variable M in terms of an appropriate number of real parameters,
and consider these along with λ as the variable x.

2. Decompose each equality constraint into a pair of “sandwich” semidefiniteness con-
straints. For example, if there is an equality constraint A = B between two matrices,
replace it by A ≥ B and B ≥ A.

3. Bunch all constraints into one matrix semidefiniteness constraint on a direct-sum
space.

The resulting problem statement is seen to be in the form (1.12) because the constraint
is a matrix semidefiniteness linear in the variable vector, and also the objective function

13



is linear in the variable vector. We can see that even the more general problem of finding
first an appropriate post-processing scheme P , and then a squashing model under that
scheme, can be formulated as an SDP, since the constraints on P are all linear. However,
including the post-processing scheme as a variable greatly increases the complexity of the
computation, and therefore might not be feasible in practice. For example, in the case
of the phase-encoded BB84 detection setup (§1.5), the number of outcomes in the basic
measurement is 126, making the number of open parameters in P considerably large. Our
attempts to run a numerical SDP for this case failed.

Notwithstanding their limitations, the SDP statements of squashing problems are fre-
quently employed in numerical computations which serve to aid analytical methods, as for
instance in the work leading to the results presented in §1.5.

1.5 Squashing model for the phase-encoded BB84 de-
tection setup

In this section, we report our investigation, and results thereof, on a squashing model for
a certain linear-optic detection device used in a particular QKD implementation. The
pertinent QKD scheme is a variation of the Bennett–Brassard 1984 (BB84) protocol [1]
which uses as the logical degree of freedom the relative optical phase6 between two coherent
light pulses, instead of the polarization of a single pulse as in the original form of BB84. We
call this implementation phase-encoded BB84 (PEBB84). We introduce here the details
of the detection setup we are concerned with, without discussing the other aspects of the
PEBB84 scheme, which are irrelevant in the context of squashing.

1.5.1 Model of the measurement device in PEBB84 and its im-
perfections

The measurement device (Fig. 1.2) used in PEBB84 is a Mach-Zehnder interferometer
which accepts two time-separated optical modes u1 and u2. These modes go through a
50-50 beam-splitter, resulting in several modes on the two arms of the interferometer. The
modes in the longer arm are influenced by a phase-modulator, and then allowed to interfere
with those from the shorter arm through a second 50-50 beam-splitter. The path difference
between the longer and shorter arms is exactly equal to that between the two input modes.

Depending on the initial phase difference between u1 and u2, and on the receiver’s
active choice of the phase in the phase-modulator, the modes propagating through the
interferometer interfere differently on the output-port beam-splitter, producing six output
modes w, spread over three time windows. These output modes are then detected by two

6Hereafter, whenever we use the term “phase” in this thesis, we mean the optical phase and not the
quantum-mechanical phase.
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Figure 1.2: Linear-optic model of the PEBB84 detection device.

threshold detectors. As one can deduce from Fig. 1.2, the relevant phase information is
carried by the modes in the second time window, because it is only the output modes
occurring in this time window that result from interference between the two input modes.

In the ideal model which does not account for any imperfections, the detection setup is
lossless, the two detectors are perfectly efficient, and there are no dark counts. We simplify
our model inasmuch as we disregard altogether the possibility of unequal efficiencies in the
two detectors, as well as the occurrence of dark counts. We also assume that the downtime
of the detectors is small enough that each of the three time windows described above can
be resolved. However, we do consider the other imperfections which occur in practice,
namely equal inefficiencies in the two detectors, and losses in the interferometer.

Fig. 1.3(a) shows the detection setup with all its imperfections (the loss in the phase-
modulator modelled by a beam-splitter before it). Fig. 1.3(b) shows the same detection
setup with the imperfections outsourced to the channel: equal inefficiencies η′ in the two
detectors, along with the overall loss in the interferometer’s arms due to the transmittance
η of the phase-modulator, are accounted-for by inserting a beam-splitter of transmittance
η′′ = η′/2ξ in the channel, where ξ = 1/ (1 + η). The relative loss between the longer and
shorter arms is then accounted-for by changing the transmittance of the first beam-splitter
from 0.5 to ξ.

Having thus modified the model, the global loss that is now before the measurement
device can be ascribed to the channel (which is controlled completely by the adversary
Eve), and the detection setup in consideration is then the rest of Fig. 1.3(b), with the u
modes as input instead of u′. Detailed calculations demonstrating that this model is indeed
equivalent to the one in Fig. 1.3(a) are presented in Appendix A. Note that the assumption
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(a) Model of detection setup with imperfections: Two input modes u pass through a Mach-Zehnder
interferometer with a (1 − η)-lossy phase-modulator in the longer arm, and finally give rise to 6
output w modes, detected by two threshold detectors of equal efficiency η′.

(b) Model of detection setup with imperfections moved to channel: The loss is removed from the
longer arm and the detectors replaced with perfectly-efficient ones; To compensate, a loss η′′ is
inserted in the channel and the first Mach-Zehnder beam-splitter transmittance is changed to ξ.

Figure 1.3: Model of the measurement device (a) with its imperfections and (b) after the
imperfections have been outsourced to the channel.
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of ascribing the detector losses to Eve is a simplification in the model. In the matter of
security, this is a safe simplification to make, since it amounts to assuming that some part
of Bob’s device (namely the lossy elements) is controlled entirely by the adversary Eve,
whereas in reality no part of the device is accessible by Eve. This means that in principle,
we formulate a security proof for the scenario where Eve may not even “use” these lossy
elements which have been “conceded” to her in the simplifying assumption, which is clearly
a more compromised situation than the one where she has no access to any part of Bob’s
device. As a consequence, the security proof formulated for the simplified model is also
valid in the actual situation where the device is not compromised. The principles used in
this argument are essentially along the same lines as those on Page 6.

With the detection setup described, we next move on to the investigation of squashing
models of the device. But before that, an important remark on the parameter ξ (i.e.
the modified ratio of the first beam-splitter): in general ξ lies between 0.5 and 1. The
value 0.5 corresponds to the case where the phase-modulator is lossless (η = 1). For this
particular value of ξ the mathematics (linear relations, etc.) of the squashing problem have
some peculiar properties which are not shared by the other cases (ξ > 0.5). However, the
squashing problem for the ξ = 0.5 case reduces to that of the usual polarization-encoded
BB84, where a squashing model has already been found [27]. On the other hand, ξ = 1
corresponds to a phase-modulator with zero transmittance (η = 0), so values of ξ close to 1
are not encountered in practice. Therefore, all our analysis in the present work is assumed
to be for a general value of ξ which is neither 0.5 nor very close to 1.

1.5.2 Target POVM

The target POVM which fits the purpose of the security proof of the PEBB84 QKD
scheme is a coarse-grained form of the action on single-photon inputs of the detection
setup discussed in the preceding subsection. Note that the phase setting of the phase-
modulator is actively chosen to be either 0 or π

2 . On a given single-photon input (i.e.
an input state which contains a single photon distributed over the two input modes), we
distinguish between five different events:

• A click in the upper detector in the second time window for each of the two settings
of the phase-modulator.

• A click in the lower detector in the second time window for each of the two settings
of the phase-modulator.

• A click in either detector in any of the other time windows, for either phase setting.
This event is a coarse-graining of 8 distinct basic events, which we call collectively
as outside clicks.

Since the input is restricted to contain a single photon, it is obvious that no events occur
with fewer or more clicks than one (in the two detectors over the three time intervals).
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All imperfections having been moved to the quantum channel, we can use the input-
output relations in Eq. (A.7) in order to write the target POVM elements on the single-
photon-input space:

F 0,φB
Q ∶=

1

2
w′†

2,φB
∣0⟩⟨0∣w′

2,φB
, φB ∈ {0,

π

2
} ;

F 1,φB
Q ∶=

1

2
w′†

5,φB
∣0⟩⟨0∣w′

5,φB
, φB ∈ {0,

π

2
} ;

FOut
Q ∶=

1

2
∑

i=1,3,4,6
φB=0,π

2

w′†
i,φB

∣0⟩⟨0∣w′
i,φB

, (1.19)

where ∣0⟩ is the vacuum, and the 1
2 is inserted as the probability of each basis choice7.

Note that the w′
i,φB

≡ w′
i,φB

[u1, u2] are not normalized annihilation operators, but unnor-
malized linear combinations of u1 and u2, which are themselves normalized field operators
corresponding to the input modes.

1.5.3 Full measurement: basic POVM and post-processing

For a general input state with an undetermined number of photons on the input modes, the
basic detection events are patterns of clicks on the two threshold detectors over the three
time bins. Since each detector in each of the three time slots can either click or not click, the
total number of distinct outcomes is 26 = 64. Because of the two possible basis choices, the
number doubles to 128. Further, because the POVM elements on the infinite-dimensional
Fock space of the two input modes are block-diagonal with respect to the eigenspaces of the
total photon number over the output modes (this can be easily verified), the action of this
POVM commutes with a quantum non-demolition (QND) measurement of the total photon
number over the output modes. Therefore such a photon-counting measurement over the
output modes would preserve all the quantum information which we are interested in. But
since our detector model is now lossless, and since we assume that no dark counts occur,
it follows that a QND photon-counting measurement collectively on the output modes is
equivalent to photon-counting collectively over the input modes. Therefore, we can assume
without loss of generality that each input state contains a specific number n of photons.
Since all losses and inefficiencies have been moved to the channel, the click pattern with
no clicks at all does not occur for either basis choice when n is nonzero. This reduces the
total number of basic outcomes for a general nonzero n to 126.

Therefore, each basic event can be characterized by a basis choice φB and a click pattern
C ∶= (c1, c2, c3, c4, c5, c6), where each ci is either 0 or 1 (no click or click) and the index i

7We can make a correspondence between measurement devices for phase- and polarization-encoded
protocols. Without loss of generality, we can choose the phase φB = 0 (φB = π/2) to correspond to the
measurement in the basis + (×). With this understanding, we use the term “basis choice” to refer to the
choice of phase setting.
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corresponds to the index of the output optical mode (see Fig. 1.3(b)). This combination
of indices provides an exact description of which detector has clicked and when.

Since we intend to squash to a target POVM with five events, the 126 basic full mea-
surement outcomes must be post-processed stochastically to 5 POVM elements. Recall
that the linear constraints on the post-processing scheme stem from two sources: linear
relations between the target POVM elements, and the no-mixing requirement. In the case
of PEBB84, the relevant information is in single-click events in the second (middle) time
interval. Therefore the no-mixing constraint is that among single-click events, single clicks
in the middle time slot must always be mapped to the corresponding target event in the
same basis, while no other single-click event must be mapped to any of these “meaningful”
single clicks.

As for linear relations between the target POVMs, in the present case there exists only
one, viz.

F 0,0
Q + F 1,0

Q = F
0,π

2

Q + F
1,π

2

Q . (1.20)

Using these constraints and running a numerical search, we were able to find some
candidates for valid post-processing schemes P . For each of these, we had to first look
for numerical evidence for a CP squashing map. To this end, our problem was greatly
simplified by the following properties of the target POVM, which are straightforward to
see from the definition (1.19) of the POVM elements:

2
√
ξ (1 − ξ)

(F 0,0
Q − F 1,0

Q ) = σX ,

2
√
ξ (1 − ξ)

(F
0,π

2

Q − F
1,π

2

Q ) = σY ,

1

2ξ − 1
(12 − 2FOut

Q ) = σZ , (1.21)

where the σ’s are the Pauli matrices. The Choi-Jamiołkowski isomorphism establishes that
for a linear map Λ from one C∗-algebra L(H1) to another, L(H2), complete positivity is
equivalent to positive-semidefiniteness of the so-called Choi operator constructed from the
map:

Λ CP⇐⇒ (Λ⊗ id) [∣ψ+⟩⟨ψ+∣] ≥ 0, (1.22)

where ∣ψ+⟩ is a state on H⊗2
1 maximally-entangled between the two factor copies of H1.

In the case of PEBB84, the target measurement is on the Hilbert space of a qubit. And
since the adjoint to the squashing map, Λ†

S, must be CP, we require that

(Λ†
S ⊗ id) [∣ψ+⟩⟨ψ+∣] ≥ 0, (1.23)

where ∣ψ+⟩ is a maximally-entangled state on two qubits. The two-qubit Bell state usually
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denoted by ∣ψ+⟩ can be decomposed in terms of the Pauli operators as

∣ψ+⟩⟨ψ+∣ =
1

4
(12 ⊗ 12 + σX ⊗ σX − σY ⊗ σY + σZ ⊗ σZ) . (1.24)

Since a particular P completely determines the action of Λ†
S on each target POVM

element, and since the identity operator on the qubit and the three Pauli operators can be
expressed in terms of the POVM elements (the former from the completeness of the POVM,
and the latter from (1.21)), it follows that the Choi operator is uniquely determined,
without any free parameters. This means that for any P , we have only to construct this
Choi matrix to verify the existence of a squashing map instead of having to run an SDP,
which would normally be the case in the presence of free parameters.

However, such a verification cannot be done numerically for every photon-number sub-
space, because there are infinitely-many such subspaces. Numerical tests serve only as an
aid or clue in this case.

Using these insights, we numerically (using SDP) looked for valid post-processing
schemes showing some evidence of the existence of a squashing map, and found such
evidence in the case of the following post-processing scheme.

Definition 1.5.1. Post-processing scheme for the PEBB84 detector, denoted PPE:

1. Single clicks in either of the detectors in the second time slot, for either basis choice,
i.e. events with C = (0,1,0,0,0,0) or C = (0,0,0,0,1,0), are always mapped to the
corresponding single-photon outcomes;

2. Simultaneous clicks in the two detectors in only the second time slot, for either basis
choice, i.e. events with C = (0,1,0,0,1,0), are mapped with equal probability to each
of the single-photon outcomes in the same basis;

3. All events with clicks only in the first and the third time slots (outside clicks) are
mapped onto the outside click event of the target measurement;

4. Any event with clicks in both the second and any of the outer time slots is mapped
with probability 0.5 onto the outside click event of the target measurement and with
probability 0.125 onto each of the four other events of the target measurement.

In order to write down the form of the post-processed full POVM elements under PPE,
it would be convenient to first define the following operators in the space of n-photon states
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on the two input modes:

P
0∣φB
M ∶=

1

n!
(w′†

2,φB
)
n
∣0⟩⟨0∣(w′

2,φB
)
n

,

P
1∣φB
M ∶=

1

n!
(w′†

5,φB
)
n
∣0⟩⟨0∣(w′

5,φB
)
n

,

POut
M ∶=

n

∑
r=0

ξr (1 − ξ)
n−r

∣r, n − r⟩⟨r, n − r∣,

P In
M ∶=

n

∑
r=0

ξn−r (1 − ξ)
r
∣r, n − r⟩⟨r, n − r∣, (1.25)

where φB ∈ {0, π2} and ∣r, n − r⟩ ∶= 1√
r!(n−r)!

(u†
1)
r
(u†

2)
n−r

∣0⟩.

We make the following observations:

1. P 0∣φB
M (respectively, P 1∣φB

M ) is the POVM element for a single click in detector 0
(respectively, 1) conditioned on the basis-choice φB.

2. POut
M is the POVM for all events with no click in the middle time interval (“outside-

only events”), independent of the basis-choice φB. This can be understood intuitively
by observing (see Fig. 1.3(b)) that outside-only events happen if and only if the ξ
beam-splitter sends all photons on the leading input mode u1 to the shorter arm and
all those on u2 to the longer arm, regardless of the basis-choice. Similar observations
can be used in understanding the next point.

3. P In
M is the collective POVM for all events with clicks only in the middle time interval

(“inside-only events”), independent of the basis-choice φB. Consequently, P 0∣φB
M and

P
1∣φB
M are some of the constituents in P In

M .

4. The POVM element for inside double-clicks conditioned on the basis-choice φB is
given by the part of P In

M other than single-clicks:

P
In,D∣φB
M = P In

M − P
0∣φB
M − P

1∣φB
M .
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5. The POVM element for events with simultaneous inside and outside clicks is given
by the complement of inside-only and outside-only events combined, for either basis-
choice:

P In,Out
M = 1M − P In

M − POut
M .

6. Since the basis-choice is made uniformly, the POVM element for the joint (as opposed
to conditional) occurrence of any type of event, say E, and the basis-choice φB, is

PE,φB
M = Pr[φB]P

E∣φB
M =

1

2
P

E∣φB
M .

The overall POVM element for a certain event type E is

PE
M = PE,0

M + P
E,π

2

M .

We now build the post-processed full POVM elements corresponding to the post-
processing scheme PPE described by Definition 1.5.1, first using only the basic definitions:

F 0,φB
M ∶= P 0,φB

M +
1

2
P In,D,φB
M +

1

8
P In,Out
M ,

F 1,φB
M ∶= P 1,φB

M +
1

2
P In,D,φB
M +

1

8
P In,Out
M ,

FOut
M ∶= POut

M +
1

2
P In,Out
M ,

φB ∈ {0,
π

2
} . (1.26)

Using the observations enumerated above, we can reduce these to

F 0,φB
M =

1

2
P

0∣φB
M +

1

4
(P In

M − P
0∣φB
M − P

1∣φB
M ) +

1

8
(1M − P In

M − POut
M ) ,

F 1,φB
M =

1

2
P

1∣φB
M +

1

4
(P In

M − P
0∣φB
M − P

1∣φB
M ) +

1

8
(1M − P In

M − POut
M ) ,

FOut
M = POut

M +
1

2
(1M − P In

M − POut
M ) ,

φB ∈ {0,
π

2
} . (1.27)

Recall that in order for a linear map to provide a valid squashing model, it must
satisfy two classes of constraints: the linear constraints (from linear relations among
the target POVMs and from no-mixing), and complete positivity (equivalent to positive-
semidefiniteness of the Choi matrix).

As for the linear constraints, we observe that the post-processing defined above satisfies
no-mixing, since the “meaningful” events, i.e. single clicks in the middle time slot, are
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mapped to the corresponding target events, and no noise is introduced at the single-photon
level. Furthermore, recalling that the only linear relation between the target POVMs is
(1.20), it is easy to see that this post-processing scheme preserves this linear relation. From
these observations, it follows that all relevant linear constraints are satisfied (which is not
surprising, since we found PPE by running a search subject to these very linear constraints).

In the following, we present a semi-analytical proof8 that the Choi operator defined by
the above post-processing (recall that in this case the post-processing completely deter-
mines the Choi matrix) is positive-semidefinite for a range of values of the characteristic
parameter ξ, and that therefore a squashing model exists for this range of parameter values.

1.5.4 Proof of complete positivity

We begin the proof by constructing the Choi matrix explicitly for the map defined by
the post-processing in consideration. Recalling that Λ†

S [F
(i)
Q ] = F

(i)
M (where (i) stands for

any descriptive superscript), the decomposition (1.24) of the Bell state, and the properties
(1.21) of the target POVM, we compute

4 (Λ†
S ⊗ id) [∣ψ+⟩⟨ψ+∣] = (Λ†

S ⊗ id) [12 ⊗ 12 + σX ⊗ σX − σY ⊗ σY + σZ ⊗ σZ]

= (Λ†
S ⊗ id)

⎡
⎢
⎢
⎢
⎢
⎣

12 ⊗ 12 +
2

√
ξ (1 − ξ)

(F 0,0
Q − F 1,0

Q ) ⊗ σX

−
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√
ξ (1 − ξ)

(F
0,π

2

Q − F
1,π

2

Q ) ⊗ σY +
1

2ξ − 1
(12 − 2FOut
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⎤
⎥
⎥
⎥
⎥
⎦
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√
ξ (1 − ξ)

(F 0,0
M − F 1,0

M ) ⊗ σX

−
2

√
ξ (1 − ξ)

(F
0,π

2

M − F
1,π

2

M ) ⊗ σY +
1

2ξ − 1
(1M − 2FOut

M ) ⊗ σZ

=1M ⊗ 12 +
1

√
ξ (1 − ξ)

(P
0∣0
M − P

1∣0
M ) ⊗ σX

−
1

√
ξ (1 − ξ)

(P
0∣π

2

M − P
1∣π

2

M ) ⊗ σY +
1

2ξ − 1
(1M − 2FOut

M ) ⊗ σZ . (1.28)

From the definitions (1.25), it is evident that for either choice of φB, the operator
(P

0∣φB
M − P

1∣φB
M ) is of the form 1

2n (∣u⟩⟨u∣ − ∣v⟩⟨v∣) for some normalized vectors ∣u⟩ and ∣v⟩.
For two such normalized vectors with inner product ⟨u∣v⟩ = α, the traceless rank-2 operator
(∣u⟩⟨u∣ − ∣v⟩⟨v∣) has the eigenvalues ±

√
1 − ∣α∣2. In the case of (P

0∣φB
M − P

1∣φB
M ), for either

φB, ∣α∣2 = (2ξ − 1)
2n.

8By semi-analytical, we mean that part of the proof is based on numerical computations.
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Again from (1.25), along with the definition of FOut
M in (1.27), we see that

(1M − 2FOut
M ) =

n

∑
r=0

((1 − ξ)
r
ξn−r − ξr (1 − ξ)

n−r
) ∣r, n − r⟩⟨r, n − r∣. (1.29)

The eigenvalue spectrum of an operator A ⊗B in the form of a Kronecker product of
two operators is just the set of all products ab, where a is an eigenvalue of A and b one of
B. While the first term in our expression (1.28) for the Choi matrix (modulo the factor 4,
which does not affect the arguments regarding positive-semidefiniteness) is just the identity
operator, each of the other terms is the Kronecker product of a traceless Hermitian operator
on the M space and a Pauli operator on a qubit. Thus, it is straightforward to determine
the smallest (i.e. most negative) eigenvalue of each of the last three terms. Adding together
these smallest eigenvalues and augmenting their sum by 1 (the “smallest” eigenvalue of the
first term, i.e. the identity operator), we arrive at the following lower bound on the smallest
eigenvalue of the Choi matrix (for, the smallest eigenvalue of the sum of some operators
cannot be smaller than the sum of the respective smallest eigenvalues of the operators):

λmin[ξ, n] ≥
1

4

⎛
⎜
⎝

1 −
1

2n

¿
Á
ÁÀ1 − (2ξ − 1)

2n

ξ (1 − ξ)
−

1

2n

¿
Á
ÁÀ1 − (2ξ − 1)

2n

ξ (1 − ξ)
− (

ξn − (1 − ξ)
n

2ξ − 1
)
⎞
⎟
⎠

=
1

4

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 − 21−n

¿
Á
Á
Á
ÁÀ

2
2n

∑
r=1

(2ξ − 1)r−1

ξ
−

n

∑
k=1

ξn−k(1 − ξ)k−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=∶
1

4
(1 − g1[ξ, n] − g2[ξ, n]) . (1.30)

Now,

g1[ξ, n] = 21−n

¿
Á
Á
Á
ÁÀ

2
2n

∑
r=1

(2ξ − 1)r−1

ξ

≤ 22−n
√

n

ξ

=∶ f1[ξ, n], (1.31)
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where we used the fact that 0.5 ≤ ξ ≤ 1, so that 0 ≤ 2ξ − 1 ≤ 1. On the other hand,

g2[ξ, n] =
n

∑
r=1

ξn−r(1 − ξ)r−1

≤ nξn−1

=∶ f2[ξ, n], (1.32)

again using the fact that 0.5 ≤ ξ ≤ 1, whereby ξ ≥ 1 − ξ ≥ 0.

Therefore,

λmin[ξ, n] ≥
1

4
(1 − g1[ξ, n] − g2[ξ, n])

≥
1

4
(1 − f1[ξ, n] − f2[ξ, n])

=∶ f[ξ, n]. (1.33)

Further, ∀n ≥ 1 and ∀ξ ∈ [0.5,1], f1[ξ, n + 1] ≤ f1[ξ, n]. On the other hand, f2 has
the property that ∀n ≥ 1, f2[ξ, n + 1] ≤ f2[ξ, n] ∀ξ ≤

n
n+1 , i.e. whenever η ≥ 1

n (recall that
ξ = 1

1+η ). Therefore, for some n0 > 1, f[ξ, n] ≥ f[ξ, n0] ∀n ≥ n0 and ∀η ≥ 1
n0
. Choosing

n0 = 40, we get
λmin[ξ, n] ≥ f[ξ,40] ∀n ≥ 40,∀ξ ≥ 0.025. (1.34)

Fig. 1.4(a) shows a plot of this bound against the phase-modulator transmittance η for
0.1 ≤ η ≤ 1, showing that the bound is nonnegative over this range of η. This proves the
positive-semidefiniteness of the Choi matrix for n ≥ 40 and η ≥ 0.1. We have numerically
verified the positive-semidefiniteness for all n < 40 throughout the whole range of η. The
plots of the smallest eigenvalue for some selected values of n are presented in Fig. 1.4(b)
as a sample.

Thus, we have established the existence of a squashing model for the PEBB84 detection
setup under the present post-processing scheme for η ≥ 0.1. Note that our choice of the
cutoff n0 was arbitrary. By choosing a higher cutoff, we could in principle get the limit of
the range arbitrarily close to η = 0. However, the range η ≥ 0.1 covers the characteristic
values of phase-modulator transmissivity encountered in practical implementations, which
are usually around η ≈ 0.5 [37]. Therefore, for practical purposes, our squashing model
suffices.
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Figure 1.4: Plots accompanying the proof for the complete positivity of the PEBB84
squashing map.
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Chapter 2

Statistical estimation methods for linear
optics

2.1 Introduction

Linear optics is among the most promising platforms for implementing quantum computing
and quantum communication applications such as quantum key-distribution (QKD). In
many of these applications, control and / or knowledge of the number of photons in optical
signals is of critical importance [38]. In QKD, for example, mathematical proofs for the
information-theoretic security of a protocol typically rely on assumptions about the number
of photons emitted by a source as well as of those received by a detector. The state of the
art in detector and source technology does not yet provide feasible realizations of devices
with a handle on the number of photons emitted or detected. This necessitates some other
methods to monitor or estimate the photon-number statistics, or, if possible, to render
the mathematical proofs applicable to scenarios where the photon-number statistics is
unrestricted, uncharacterized or partially-characterized. Several such methods have been
successfully devised with varied applicability. On the source side, the method of the so-
called decoy states [24, 25] enables us to use a statistical characterization of a source to
track the flow of information through signals with specific numbers of photons. On the
detector side, squashing models [26, 27] enable us to treat all detection statistics as though
they were produced by the detection of only a restricted class of signals, for instance only
single-photon signals.

While squashing models afford an excellent solution where they can be found, there are
many important situations where finding such models is not straightforward. In such cases,
alternative methods must be found, which may vary depending on the application. In the
present discussion, we shall focus on the QKD application. In this context, as mentioned
before, the need for squashing models arises because security proofs are formulated on
restricted mathematical models of detection devices. Such a model does not cover the whole
extent of physical behaviour of the respective device. Specifically, it assumes a certain size
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of the Hilbert space on which the states entering the device are mathematically described.
A squashing model allows us to hold on to that assumption, effectively only being too
conservative in our defence against eavesdropping (by overestimating the eavesdropper’s
ability), which obviously does not threaten the security of a QKD scheme.

In the absence of a squashing model, alternate methods must be used to account for
these gaps between theory and implementation. Recently, Fung et al. [28] have devised
a method to use a universal squashing map to provide bounds on relevant security pa-
rameters. In the present work, we present another method, similar to [28] in its approach
inasmuch as it is based on statistical inferences to derive bounds.

Our method is based on the fact that in the absence of a squashing model, security can
still be salvaged at the cost of some performance, i.e. by extracting key at a smaller rate.
The question of what fraction of the key-rate must be sacrificed is closely related to that of
what fraction of detected signals satisfies the assumption in the model, regarding the size
of the Hilbert space. In the following we shall first state this connection mathematically,
subsequently describing the different methods we devised in particular contexts to estimate
the latter fraction. In the remainder, we refer to such methods, which are loosely connected
in their approach, collectively as “the estimation method”. While there has been previous
work on statistical inference in linear optics, e.g. Lütkenhaus [39] and Koashi et al. [40],
our contribution consists of systematizing the approach to statistical estimation, with clear
motivation from QKD. We also apply the method to the phase-encoded BB84 protocol,
which has not been done previously.

The chapter is structured as follows. In §2.2 we present the mathematical motiva-
tion, followed in §2.3 by a demonstration of the statistical estimation method on a simple
example, that of standard polarization-encoded optical BB84 (already presented in [39]).
In §2.4, we present the application of the estimation method in the phase-encoded BB84
protocol.

Note that the use of the estimation method does not require any change in the hardware
used in implementing a QKD scheme. It only requires some small calculations to be added
to the parameter-estimation step to calculate some bounds, which are later used to decide
the length of the final key. Operationally, these are simple modifications to the protocol.

2.2 Motivation for the estimation method

Consider a QKD scheme based on optical signals. It can be described as follows: two honest
parties, Alice and Bob, want to establish a shared secret key oblivious to an adversarial
eavesdropper, Eve. Alice prepares some optical signals and sends them to Eve. Eve
performs an attack of her choice on the signals, and sends (possibly different) signals to
Bob. We restrict to cases where the optical phase between signals in distinct rounds
of the protocol is irrelevant, although each round might consist of several optical modes
with mutual phase reference, for example in phase-encoded BB84 (§2.4). This allows us
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Figure 2.1: Schematic of an optical QKD protocol: a refers to signals sent by Alice, b to
those received by Bob’s device, and the subscripts denote photon numbers.

to assume without further loss of generality that different rounds are mutually phase-
randomized, and consequently, a QND measurement of the total photon number, both
at the source’s output and at the detector’s input for each round, would not disturb the
quantum information relevant to the protocol. Therefore, following the line of reasoning
employed in §1.5.3, we can assume that the signals in each round (those sent by Alice as
well as those received by Bob) consist of specific numbers of photons.

Figure 2.1 shows a schematic diagram of such a QKD protocol. In every round of
the protocol, Alice sends a signal to Eve, and Eve sends one to Bob (recall that each
“signal” may consist of several individual optical modes). In each round, Alice might send
a signal with either no photons (a0), with one photon (a1), or with multiple (more than
one) photons (aM) distributed over the modes constituting the signal. Similarly, in every
round, Bob’s device might receive no photons (b0), one photon (b1), or multiple photons
(bM).

Usually, security proofs are devised for the case that Alice’s device emits a single photon
and Bob’s device receives a single photon. In order that the security analysis remain valid
for the realistic scenario where signals can contain multiple photons or vacua, we use a
conservative method called “tagging”. Tagging is the assumption that in any round where
either Alice’s or Bob’s signals contain multiple photons or vacua1, Eve knows everything
about the state of the signals, and therefore that no key must be extracted from these
rounds. Operationally, this amounts to additional shortening of the key during privacy-
amplification. In order to better understand tagging, let us briefly discuss the derivation of
the formula for the secure key-rate. The details of the terms appearing in the formula vary

1While this is the most general description of tagging, we usually work under the assumption that Bob’s
device does not click when the input is a vacuum (which includes the assumption that there are no dark
counts in Bob’s detectors).
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depending on the particular scheme in consideration, but the general philosophy remains
the same. For a more detailed and precise description, we refer to [12].

Denote the initial size of the raw key by N . This raw key consists of all the data
remaining after the initial quantum communication and measurement step of the QKD
scheme, and possibly sifting. It is convenient to think of N not as the absolute size but the
fraction of a total initial size, while assuming that the initial size is very large (statistically-
significant). The next step is parameter-estimation (PE), where some of the raw key is
publicly announced for the purpose of making some statistical inferences on the remaining
part. Assume that a portion m of the key is used up for PE. The size of the remaining
key is N −m =∶ n. The next step is error-correction (EC), where an amount denoted by
leakEC of information is leaked publicly. We shall have to subtract this amount from the
final length of the key. For our present purpose, N , m, n and leakEC are merely symbols
without much significance, because no photon-number-based filtration has been done yet.
The role of the estimation method is in the subsequent steps of the calculation (although
operationally it is part of the PE step).

Denote by f(a1, b1) the fraction of the remaining key n which comes from rounds with
the properties a1 and b1, i.e. where Alice’s device emitted one photon and Bob’s device
received one photon. Further, denote by ea1,b1 the error-rate in this part of the key. In
the next (and final) step of the QKD scheme, which is privacy-amplification (PA), the
remaining key must be further shortened by an amount dependent of these parameters.
Let s [ea1,b1] denote the fraction of shortening required on the part of the key that comes
from (a1, b1)-rounds2. This means that from every bit in this part, 1 − s [ea1,b1] bits of key
can be extracted. On the other hand, by our tagging assumption, no key can be extracted
from the remaining part. Therefore, recalling that we must subtract the amount leaked
during EC, the formula for the secure key-rate is

r = nf(a1, b1) (1 − s [ea1,b1]) − leakEC.

Since we assume that the size of the data is statistically-significant, and since none of the
steps before PA consisted of photon-number-based filtration, it follows that the statistical
quantities appearing in the above expression for the key-rate, f(a1, b1) and ea1,b1 , would be
identical in the test data used in PE and the rest of the data. Therefore, it would suffice
to find a way to determine these quantities on the test data.

As for a1, a technique using what are known as decoy states [24, 25] allows us to
calculate, in principle, any property of the statistics conditioned on specific numbers of
photons emitted by Alice’s device. It remains to find a way to calculate or estimate the
relevant quantities further conditioned on b1. To this end, there are different ways. If a
squashing model exists for Bob’s device, then for all practical purposes, we can assume
that all the data comes from b1-rounds (squashing models are discussed in Chapter 1).
But in the absence of such a model, the estimation method discussed here plays a role.

2Details of the calculation of s [ea1,b1] in terms of the Holevo quantity may be found in [12].
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Figure 2.2: Schematic diagram of the detection setup for optical polarization-encoded BB84
with active basis-choice.

Specifically, we aim to find a nonzero lower bound on f(a1, b1), so that the worst-case
key-rate can be calculated by an optimization over a range of values of f(a1, b1). In the
absence of a nonzero lower bound, the worst-case key-rate would trivially become zero.

The details of the optimization mentioned above (for example, the intricacies of opti-
mizing also over ea1,b1) are beyond the scope of the present discussion. It suffices to note
here that essentially, we seek a lower bound on the fraction of single-photon detection
events occurring at Bob’s device (or equivalently, an upper bound on the multi-photon
components). The subject of this chapter is how to find such bounds using the statistical
estimation method.

2.3 Example of the estimation method: BB84

(The results demonstrated in this section have originally been presented by Lütkenhaus in
his doctoral thesis [39].)

One of the simplest detection devices in optics-based QKD is the one used in the
standard Bennett–Brassard 1984 (BB84) QKD protocol with active basis-choice (Fig. 2.2).
It consists of a polarizer whose plane of polarization can be switched actively between two
mutually-unbiased settings, followed by a polarizing beam-splitter which separates two
orthogonally-polarized components and feeds them to two threshold detectors. We make
the following important simplifying assumptions:

1. The efficiencies of the two detectors are equal, so that the associated loss can be
outsourced to the channel.

2. There are no dark counts in either of the detectors.
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The security proof for the BB84 protocol is based on a mathematical description on
qubits. But an actual optical implementation would involve signals with more than one
photons (both on the source side and the detector side), whose quantum-mechanical states
would not be qubits, and therefore there is a need for a theoretical bridge. In this case,
such a fix has already been formulated: on the source side, decoy states and tagging can
be used, while on the detector side a squashing model has been found. However, we still
present here a statistical estimation method, which would be necessary only if there were
no squashing model, just as a demonstration of the method on a simple example. This
method can be used to estimate the relative weights of the single- and multiple-photon
components in the detected signals, so that the tagging arguments in §2.2 may be used to
compute a bound on the secure key-rate.

The basic philosophy of the method is as follows. For the detection setup in question,
for either choice of the measurement basis, any non-vacuum input results in one of three
outcomes: a click in one or the other of the two threshold detectors, or a simultaneous click
in both. We refer to the latter as double-click events, or simply double-clicks. Likewise,
we refer to the other detection events as single-clicks. It is intuitively evident that double-
clicks should be more frequent for input states with higher numbers of photons. Also,
we know that a single-photon input would never result in a double-click. This might
enable us to use the fraction of double-clicks among all detection events to estimate the
relative weights of single-photon and multi-photon components in the received signals. We
shall now make this intuition more precise mathematically, and then in §2.3.1 derive the
necessary parameters in order to apply it. We shall see, however, that our initial idea
doesn’t quite do the job we desire of it. In §2.3.2 we present a modification which fixes
this problem.

In order to understand the estimation method more precisely, let us introduce some
notation. We denote by the lowercase Latin s, d and e, respectively, single-clicks, double-
clicks and error events. In order to understand what we mean by an error event, we
must give some background about the BB84 protocol. In every round of communication
in optical polarization-encoded BB84, the sender (“Alice”) sends the receiver (“Bob”) an
optical signal polarized in a certain way. Alice chooses the direction of polarization based
on two random choices: a basis A ∈ {+,×} and a bit α ∈ {0,1}. Say the direction of
propagation of the signal is z in some reference frame. Then, for the choices (+,0) she
uses the x polarization, while for (+,1), (×,0) and (×,1) the y, the diagonal (x + y), and
the antidiagonal (x − y) polarizations, respectively. At his end, Bob randomly chooses a
measurement basis B ∈ {+,×} and gets either no click, a double-click, or a single-click
outcome β ∈ {0,1}. An error event, or simply “an error”, denoted by e, is one where Bob
gets a single click such that A = B but α ≠ β. Note that an e (error event) is always also
an s (single-click), by definition.

For any description i of a type of events, we denote by M i the POVM measure for that
class of events. For some input state ρ, we denote the probability for an event of type i to
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occur by Pr [i∣ρ]. That is to say, Pr [i∣ρ] = Tr [M iρ]. We see that

M s =M+,0 +M+,1 +M×,0 +M×,1,

Md = 1 −M s. (2.1)

Note that the latter only holds for non-vacuum input. As for the error events e, there is no
context-independent definition. Rather, the POVM for an error event depends on (A,α):

M e∣(A,α) =MA,α⊕1, (2.2)

where ⊕ denotes addition modulo 2.

For a particular run of BB84, consisting of a statistically-significant number of rounds,
we denote the relative frequency of events of type i by Fr [i]. Since the detection POVM
is block-diagonal in the number of photons at the input, we can assume without loss of
generality that every detection event is a detection of a state with a specific number of
photons. We denote the property of an event to have been triggered by an n-photon state by
the symbol pn. For example, Fr [p3] would denote the relative frequency of events triggered
by 3-photon states. With frequencies, as with probabilities, we use the established notation
for conditionals. For instance, Fr [s∣p5] would denote the relative frequency of single-clicks
among all events triggered by 5-photon states.

We denote a generic n-photon state for a general n by ρn. For an event type i, we
define

Prnmin[i] ∶= min
ρn

Pr [i∣ρn] ,

Pr≥nmin[i] ∶= min
m≥n

Prmmin[i]. (2.3)

Having defined the notation, let us look at the basic rationale of all the estimation
methods we shall present subsequently. Let i be some event type, possibly with additional
qualifiers. We judiciously choose properties i such that Pr0

min[i] = Pr1
min[i] = 0 (for instance,
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i could be d). The rest of the argument goes as follows:

Fr [i] =
∞
∑
n=0

Fr [pn]Fr [i∣pn]

≥
∞
∑
n=0

Fr [pn]Prnmin[i]

=
∞
∑
n=2

Fr [pn]Prnmin[i]

≥ Pr≥2
min[i]

∞
∑
n=2

Fr [pn] .

⇒
∞
∑
n=2

Fr [pn] ≤
Fr [i]

Pr≥2
min[i]

. (2.4)

In the chain of arguments above, we have used the definitions of Prnmin and Pr≥nmin, and the
assumptions made earlier, that Pr0

min[i] = Pr1
min[i] = 0.

Thus, by finding suitable event types i, we can derive upper bounds on the multiple-
photon components. Provided Pr≥2

min[i] can be calculated, we can directly compute the
bound, since Fr [i] is an observable. The only thing we must hope in addition to the
conditions already stated above is that Pr≥2

min[i] should be nonzero. For the above reasoning
to work, it is important that the sample from which the frequency distribution is drawn
be of a statistically-significant size.

2.3.1 Estimation from double-clicks

Our first guess at a suitable property i is i = d, i.e. double-clicks. From our assumption
that there are no dark counts, Fr [d∣p0] and Fr [d∣p1] are obviously zero, and therefore,
naturally, Pr0

min[d] = Pr1
min[d] = 0. In order to find Pr≥2

min[d], we can in principle compute
Prnmin[d] explicitly as a function of n. But we shall see shortly that this is unnecessary. We
first observe the following: for any positive operator M , min

ρ
Tr [Mρ] over all normalized

density matrices ρ on the pertinent Hilbert space is just the smallest eigenvalue of M .

Next, we consider the POVM operator associated with double-clicks on the 2-photon
subspace. If a†

1 is the creation operator of a photon in the X-polarized optical mode, a†
2

that for the Y -polarized mode, and ∣0⟩ denotes the vacuum state, then the POVM element
for double-clicks in the 2-photon subspace can be constructed as

Md
2 =

1

2
(a†

1a
†
2∣0⟩⟨0∣a1a2) +

1

2
((
a†

1 + a
†
2√

2
)(

a†
1 − a

†
2√

2
) ∣0⟩⟨0∣ (

a1 + a2
√

2
)(

a1 − a2
√

2
)) , (2.5)

where the 1
2 is the probability of each basis-choice. In the Fock basis {∣2,0⟩, ∣1,1⟩, ∣0,2⟩},

where the two quantum numbers denote the excitation numbers of the a1 and a2 modes
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respectively, this operator looks like

Md
2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
4 0 −1

4

0 1
2 0

−1
4 0 1

4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2.6)

It is clear that Md
2 is singular, and that therefore Prn=2

min[d] = 0. It follows that Pr≥2
min[d] = 0,

and so our first guess for the event type, i = d, turns out to be unsuitable for our purpose.

2.3.2 Estimation from double-clicks and errors

From the previous calculation, we see that double-clicks alone cannot be used to detect all
photon-number components greater than 1, because in the two-photon subspace there exist
states which would never produce double-clicks. Our next guess for a suitable event type
is i = (d ∨ e), i.e. the property of being either a double-click or an error. Again, as before,
it is easy to see that Fr [d ∨ e∣p0] = 0. As for the single-photon subspace, we know that for
each (A,α) there exists a single-photon state ρ such that Pr [e∣ρ] = 0, and double-clicks
never occur anyway. Therefore, Pr1

min[d ∨ e] = 0.

In order to calculate Pr≥2
min[d∨e], we shall now directly compute Prnmin[d∨e] explicitly as

a function of n. For this, we must construct the associated POVM operator for a general n.
Recall that the definition of an error event is contextually dependent on (A,α). However,
we need calculate only in one of the four cases of (A,α). By symmetry, the same would
hold for each of the other three cases, and consequently also on an average overall.

Let us consider the choice (A,α) = (+,0) and some n ≠ 0. In this case, the only
outcomes which are not double-clicks or errors are single-clicks (+,1), (×,0) and (×,1).
Therefore the POVM element for d ∨ e is

M
(d∨e)∣(+,0)
n = 1 −

1

2
(∣n,0⟩++⟨n,0∣ + ∣n,0⟩××⟨n,0∣ + ∣0, n⟩××⟨0, n∣) . (2.7)

Further, because

+⟨n,0∣n,0⟩+ = ×⟨n,0∣n,0⟩× = ×⟨0, n∣0, n⟩× = 1,

×⟨n,0∣0, n⟩× = 0, and

×⟨n,0∣n,0⟩+ =×⟨0, n∣n,0⟩+ =
1

√
2n
, (2.8)
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we can choose a basis on the span of these three vectors such that

×⟨n,0∣ = [1 0 0] ,

×⟨0, n∣ = [0 1 0] , and

+⟨n,0∣ = [ 1√
2n

1√
2n

√

1 − 1
2n−1

] . (2.9)

In this basis, the POVM measure restricted to this subspace3 looks like

M
(d∨e)∣(+,0)
n =

⎛
⎜
⎜
⎜
⎝

1
2 (1 − 2−n) −2−1−n −

√
1−21−n

2
√

2
√

2−1+n

−2−1−n 1
2 (1 − 2−n) −

√
1−21−n

2
√

2
√

2−1+n

−
√

1−21−n

2
√

2
√

2−1+n
−

√
1−21−n

2
√

2
√

2−1+n
1
2 (1 + 21−n)

⎞
⎟
⎟
⎟
⎠

. (2.10)

Using Mathematica, we find the smallest eigenvalue of this operator to be 1
2 − 2−

n+1
2 .

This argument would hold for all the other choices of (A,a), and therefore, this would also
be the value of Prnmin[d ∨ e]. Furthermore, we can see that Pr2

min[d ∨ e] =
1
2 −

1
2
√

2
, and that

Prnmin[d ∨ e] ≥ Pr2
min[d ∨ e] ∀n ≥ 2, and therefore

Pr≥2
min[d ∨ e] =

1

2
−

1

2
√

2
. (2.11)

Thus, we see in this simple example that while the statistics of double-clicks alone is
insufficient in providing an estimate on multiple-photon components, the combined statis-
tics of double-clicks and errors does fit the purpose. As mentioned before, this estimation
method is not really necessary for polarization-encoded BB84, as there exists a squashing
model. But this example serves as a demonstration before we take up the more complex
example of phase-encoded BB84 in the next section.

2.4 Estimation method for phase-encoded BB84

Phase-encoded BB84 (PEBB84) is a QKD protocol modelled after BB84 (discussed in the
previous section), but using optical phase instead of polarization as the encoding degree
of freedom. The detection setup used in PEBB84 has already been introduced in §1.5
and Appendix A, while studying squashing models on this setup. Recall that a squashing
model was found for the practical range of values of the characteristic parameter η, but
not throughout the range of values that can occur in principle. Here we present a method

3Since the POVM operator on the entire space is block-diagonal with respect to this rank-3 subspace
and the orthogonal subspace, and since the restriction of the operator on the orthogonal subspace is just
the identity on that subspace, it follows that the eigenspace of the smallest eigenvalue is contained in this
rank-3 subspace.
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to bound the multiple-photon component in the detection statistics, which may be used in
cases where the existence of a squashing model is not proven.

Fig. 2.3 reproduces the model of the detection setup, presented already in §1.5. In this
case, the type of events whose statistics we use in our estimation are those with clicks in
both the second (“middle”) time slot and one (or both) of the outer time slots, regardless of
which detector clicks (possibly both). We refer to such events as “cross-clicks”, abbreviated
by c.

Figure 2.3: Linear-optic model of the PEBB84 detection device.

With regard to cross-click events, we make the following observations (Fig. 2.4 depicts
each of these observations pictorially):

1. The statistics of click patterns would be unaffected by performing QND photon-
counting measurements individually on the six w modes, because the POVM corre-
sponding to resolving the click patterns commutes with the projectors onto photon-
number subspaces on the modes, which are the Kraus operators realizing photon-
number counting (we used similar reasoning in §1.5.3).

2. Following the same line of reasoning, if we could only resolve the time bins of clicks
but not between the two threshold detectors, then the statistics of click patterns
(which would now be just patterns on three bins instead of six) would be unaffected
by photon-counting on the three time bins.

3. Counting photons on the three time bins at the w site is equivalent to performing
individual photon-counting on v3, the collective pair v1 and v4, and v2. Therefore
photon-counting on these three bins would not affect the statistics of time-bin click
patterns.

37



4. Since each of the modes v1 and v4 affects only the middle time bin, individual photon-
counting on these two would still leave the statistics unaffected. This means that
individual photon-counting on each of the v modes would not affect the statistics of
time-bin click patterns.

5. Since photon-counting on v1 is equivalent to that on v′1, and photon-counting on v2

is equivalent to that on v′2, the above reasoning can be carried over to v′1, v′2, v3 and
v4.

6. Since the more resolved measurement of individual photon-counting on the four
modes leaves the time-bin statistics unchanged, any less-resolved version of the mea-
surement would also preserve the statistics. Specifically, collective photon-counting
on v′1 and v3, and another collectively on v′2 and v4, would preserve the time-bin
statistics.

7. But joint photon-counting on v′1 and v3 has the same effect as photon-counting on
u1, and joint photon-counting on v′2 and v4 has the same effect as photon-counting on
u2. Therefore, photon-counting on each of the u modes does not affect the time-bin
click statistics.

8. This means that for any n-photon state4 ρn for any n, Pr [c∣ρn] would be unaffected
after such a measurement.

9. The above reasoning shows that Pr [c∣ρn] for any state ρn is just a convex combination
of those for the occupancy eigenstates ∣i, n− i⟩⟨i, n− i∣ on the two input modes. This
means that Prnmin[c] for any given n would be simply the least of the (n+1) quantities
Pr [c∣∣i, n − i⟩⟨i, n − i∣].

10. For a specific ∣i, n − i⟩, an inside-only event can occur only if all i photons in the
u1 mode are reflected and all (n − i) photons in u2 are transmitted by the ξ beam-
splitter. The probability of this is ξn−i(1−ξ)i. Similarly, an outside-only event occurs
with probability ξi(1− ξ)n−i. Since all events other than inside-only and outside-only
events are cross-clicks,

Pr [c∣∣i, n − i⟩⟨i, n − i∣] = 1 − ξn−i(1 − ξ)i − ξi(1 − ξ)n−i.

It is now straightforward to find the least of these quantities over the range of i,
whereupon we get

Prnmin[c] = 1 − ξn − (1 − ξ)n, (2.12)

where ξ = 1
1+η is the ratio of the first beam-splitter in the Mach-Zehnder interferometer

of our detector model.

4Since collective counting on the two input modes is only a coarse-graining of individual counting, we
can restrict consideration to input states with definite numbers of photons.
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(a) Photon-counting on each of the w modes. (b) Photon-counting on each of the w time
bins.

(c) Photon-counting on each of the v time
bins.

(d) Photon-counting on each of the v modes.

(e) Individual photon-counting on v′1, v
′

2, v3
and v4.

(f) Photon-counting on v′1+v3 collectively
and v′2+v4 collectively.

(g) Photon-counting on each of the u modes.

Figure 2.4: Photon-counting argument for the calculation of Prnmin[c].

Since 0.5 ≤ ξ ≤ 1, the expression derived above has the property

∀n ≥ 2,Prnmin[c] ≥ Pr2
min[c], (2.13)

and therefore, Pr≥2
min[c] = Pr2

min[c] = 2ξ(1 − ξ).
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Thus, we have derived a method of estimating multiple-photon components entering
the PEBB84 detection setup using the statistics of what we call cross-clicks.

2.5 Comparison of the estimation method with squash-
ing

Having described the estimation method, we would now like to address the question of how
this method performs in QKD compared to using a squashing model (where one exists).
The figure of merit we use in judging performance is the rate of key that can be extracted in
the QKD protocol. It might seem at first that it is always advantageous to use a squashing
model if one is available. However, we shall see that this is not true: there are some cases
where using the estimation method allows us to extract more key than using a squashing
model.

We illustrate this by considering the simple example of the BB84 protocol. We further
simplify the example by assuming that Alice uses a single-photon source, so that we do
not have to get into the details of decoy states etc. (at any rate, the role of the squashing
or estimation method is on Bob’s side). The expression for the key-rate for BB84 can be
derived in various ways, for example using the methods of [8] or [41]. Denote the total
number of protocol rounds (after sifting) by N and the size of the raw key by kN . In
the asymptotic limit (N →∞), we can ignore the loss of raw key in parameter-estimation.
Now, say the error-rate in the entire data is ek. Further, let k1N be the size of the part
of the data which comes from events where Bob’s device received single photons, and e1

the error-rate in this part of the data. Assuming that the error-correction (EC) is carried
out at peak efficiency (i.e. the Shannon limit), the cost in key-size due to EC is kNh[ek],
where h[x] ∶= −x log2 x − (1 − x) log2(1 − x) is the binary entropy function.

Moving on to the privacy-amplification (PA) step, the fractional shortening required to
be done on the k1N -sized single-photon part is given by h[e1], whereas the rest of the raw
key (the (k − k1)N -sized part coming from events other than single-photon ones) must be
completely discarded (“tagging”). Dividing the respective sizes by the number N of rounds,
the final secure key-rate is

r[k1, e1] = k (1 − h[ek]) − k1h[e1] − (k − k1)

= k1 (1 − h[e1]) − kh[ek]. (2.14)

We must now modify this formula for the situation where we don’t know k1 and e1

exactly but can only give some constraints on them based on observed data5, for example
by limiting their ranges. If K is the set of all the pairs of values (k1, e1) compatible with

5Of course, we always know k and ek exactly, since these are direct observables: k is the size of the
entire data and ek the rate of errors in it (which is exactly estimated by PE in the asymptotic limit).
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observations, then the secure key-rate is given by the worst-case value

rK = min
(k1,e1)∈K

r[k1, e1]. (2.15)

The squashing model for BB84, found in [27], uses a post-processing scheme where a
uniform random bit is assigned upon each double-click event. Consequently, this post-
processing would add to the errors already present in the single-click events an amount
which is half the number of double-clicks. Now, recalling the estimation method using
double-clicks and errors (§2.3.2), we imagine two toy situations:

1. There are no double-clicks, and the error-rate in the data is e. The two methods,
namely squashing and estimation, deal with this case as follows:

(a) Squashing: The size of the data is N . Since there are no double-clicks, the
post-processing would add no further errors. Since a squashing map exists, all
the available data can be assumed to come from single-photon events. Therefore
k1 = k = 1, e1 = e, and the key-rate is

rSq = 1 − 2h[e].

(b) Estimation: Since there are no double-clicks, the size of the data is N , and the
bound from the estimation method is trivial: k1 = k = 1. Consequently, e1 = e,
and the key-rate is the same as in the squashing case,

rEs = 1 − 2h[e].

2. As a fraction of N , the rate of double-clicks is fD, while there are no errors in the
single-click events. In this situation, the two methods perform as follows:

(a) Squashing: The size of the data is N , since double-clicks are post-processed into
key bits. The error-rate is ek = 0.5fD, as discussed before. Since a squashing
map exists, all the available data can be assumed to come from single-photon
events. Therefore k1 = k = 1, e1 = 0.5fD, and the key-rate is

rSq = 1 − 2h [
fD
2

] .

(b) Estimation: Since double-clicks do not contribute to the raw key, the size of the
data is N(1 − fD). There are no errors at all, and therefore ek = e1 = 0. The
estimation method gives the bound

k1 ≥ 1 −
fD

1
2 −

1
2
√

2

=∶ k0[fD].
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Figure 2.5: Comparison between the key-rates using squashing and estimation for BB84
with no single-click errors.

Therefore, the key-rate is

rEs = min
k0[fD]≤k1≤1

k1 = 1 −
fD

1
2 −

1
2
√

2

.

Figure 2.5 shows a plot of the key-rate vs. the rate fD of double-clicks for the two
methods, in the second case, i.e. when there are no errors in the single-click events. We
can see that there is a range of values of fD for which the estimation method performs
better. In the absence of double-clicks, both methods perform equally-well.

This simple example, though using contrived statistics, illustrates that the choice be-
tween the squashing and estimation methods must be made carefully, based on how they
compare in the particular situation in consideration.
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Chapter 3

Quantum key-distribution with
imperfect devices

3.1 Introduction

The existing formalism of quantum key-distribution (QKD) works with the assumption
of well-characterized preparation and measurement devices (sources and detectors). The
actions of these devices used in QKD are assumed to be described precisely. But in prac-
tice, the devices do not behave as described by these precise models. Practical devices
always deviate from the ideal descriptions. In the present work, we seek to build a math-
ematical formalism to treat imperfections in the functioning of sources and detectors and
to incorporate the effects of such imperfections on the security and performance of QKD
implementations. We have been able to build a limited formalism which can account for a
restricted class of imperfections, which is modelled in terms of a distance measure between
measurement operations. We hope that this is the first step towards more generally-
applicable models. Previously, Gottesman et al. [30] have addressed the problem of QKD
with imperfect devices, but in the limited case of the BB84 scheme [1] and certain specific
types of imperfections. Mayers and Yao [29] have also addressed this issue, but again in
the special case of BB84.

In developing our formalism, we use as the substrate the security-proof framework
developed by Renato Renner in his doctoral thesis [12], and build on it. In §3.2 we review
the formalism presented in Renner’s thesis (we sometimes refer to the work using the phrase
“the Thesis”). Then in §3.3 we present our refinements.

3.2 Renner security formalism

Let us here outline the Renner formalism. Here, we follow Renner’s thesis, but avoiding
the de Finetti argument for the generalization from collective to coherent attacks, we
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employ Christandl, König and Renner’s postselection technique [42]. First we describe the
formalism in words, and thereafter present the essential mathematical steps.

3.2.1 Operational description

In this formalism, a QKD scheme (assumed to satisfy the criteria for invariance under
permutations) consists of the following steps:

1. Quantum communication: In practice, usually Alice prepares quantum states and
sends them to Bob, who makes measurements on whatever he receives. But in the
mathematical treatment, we can consider a mathematically-equivalent picture which
differs in its details from the actual implementation in two aspects, viz. 1) Eve pre-
pares states for Alice and Bob and Alice’s preparation is modelled by a measurement
on her “state” (which is just fictional), and 2) Alice and Bob’s measurements are
made in later steps (parameter-estimation and blockwise information-processing). In
the Renner formalism, the first step consists of states being shared by Alice, Bob
and Eve, where in principle Eve can prepare any state she wants1. This state lives
on a composite physical system consisting of many identical subsystems, each having
sub-parts in Alice, Bob and Eve’s possession.

2. Parameter-estimation: In this step, Alice and Bob perform some measurement on a
fraction of the identical subsystems in order to estimate some statistical properties of
the rest. Based on the statistics observed in this step, they deterministically either
continue the QKD scheme or abort.

3. Blockwise information-processing: On the remaining subsystems, Alice and Bob per-
form blockwise local measurements, reducing them to classical strings on some al-
phabet.

4. Information-reconciliation: Some error-correcting code is used to reconcile Alice and
Bob’s classical strings.

5. Privacy-amplification: Based on the statistics observed in the parameter-estimation
step, and on chosen performance parameters, Alice and Bob (mathematically) con-
struct a set of density matrices compatible with their observations. They then calcu-
late the minimum over that set of an entropic quantity related to security. Based on
the value of this minimum, they choose a final key-length and use hashing to shorten
their strings to that length.

1The fact that in reality Alice prepares the states can be used to impose a constraint on the set of states
considered in the entropy calculations, viz. that Alice’s marginal state is constrained to be a constant,
independent of Eve’s attack.
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The postselection technique of [42] necessitates two modifications over and above the
framework in Renner’s thesis: 1) the performance parameters must be chosen polynomi-
ally tighter than the desired ones, and 2) the output of the hashing must be shortened
polynomially more than the amount ordained by calculations along the lines of the The-
sis. In other words, in order to incorporate the postselection technique, all we have to do
is to follow the methods in Section 6.5.3 of Renner’s thesis, except for choosing the ε of
inequality 6.7 to be zero, and choosing all the other epsilons tighter than our target by the
polynomial factor computed in [42].

The exact form of these polynomial-sized parameters are not relevant in our present
discussion. Also, while the Thesis works with a convex combination of “almost-iid” states,
with the “almostness” parametrized by a certain r, the postselection technique allows us to
work with r = 0, i.e. a convex combination of iid states. In the following, however, we stick
to the older, de-Finetti method (Section 6.5.3 of the Thesis), which may be modified easily
to fit into the postselection framework, as discussed above. The arguments pertaining to
device imperfections, which are the subject of the present study, are not affected. We shall
use a notation which can be modified quite easily to suit either case.

3.2.2 Mathematical details

As mentioned, we shall follow closely along the lines of Section 6.5.3 of Renner’s thesis,
sometimes changing the notation to suit our purpose. Before we start, we must state some
definitions.

Definition 3.2.1. (Definition 4.1.1 of [12]) The symmetric subspace Sym[H⊗n] of a Hilbert
spaceH⊗n is defined as the subspace consisting of all those vectors which are invariant under
arbitrary permutations of the n factor spaces H:

Sym [H⊗n] := {∣ψ⟩ ∈ H⊗n ∶ π∣ψ⟩ = ∣ψ⟩∀π ∈ Sn}, (3.1)

where the permutations act as unitary transformations in a natural way.

Definition 3.2.2. (Definition 4.1.4 of [12]) Definition of the symmetric subspace along a
product state: First, for any ∣θ⟩ ∈ H we define the subset (which is not a vector space)

V [H⊗n, ∣θ⟩⊗m] := {π(∣θ⟩⊗m ⊗ ∣ψ⟩) ∶ π ∈ Sn, ∣ψ⟩ ∈ H
⊗(n−m)}. (3.2)

Then, for any ∣θ⟩ ∈ H, the symmetric subspace of H⊗n along ∣θ⟩⊗m is defined as

Sym [H⊗n, ∣θ⟩⊗m] := Sym [H⊗n] ∩ spanV [H⊗n, ∣θ⟩⊗m] . (3.3)

Let us suppose that at the end of the quantum communication step (and possibly after
performing random permutations on their subsystems and discarding some, depending on
what method is used to generalize to security against coherent attacks), Alice, Bob and
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Eve share a state ρ(ABE)bn+m on (HA ⊗HB ⊗HE)
⊗(bn+m), where b, n and m are integers.

Since the best Eve can do is to possess purifications of Alice and Bob’s states, it suffices
to consider HE ≅ HA ⊗HB. First we write, in our modified notation, inequality 6.7 of the
Thesis, which states that ρ(ABE)bn+m is close to a convex combination of almost-iid states:

∥ρ(ABE)bn+m − ∫
S1
ρ
∣θ⟩
(ABE)bn+mν[∣θ⟩]∥

1

≤ ε0. (3.4)

Here we denote by ε0 any trace distance remaining at this stage of the protocol, which might
be the one stemming from the de Finetti theorem, or zero if the postselection method is
used, or any other value that might appear as per the details of the protocol. Likewise,
ρ
∣θ⟩
(ABE)bn+m might be iid or almost-iid, depending on those details. “Almost-iid” means the

following:
ρ
∣θ⟩
(ABE)bn+m ∈ S [Sym [(HA ⊗HB ⊗HE)

⊗(bn+m), ∣θ⟩⊗(bn+m−r)]] (3.5)

for some small r ≤ bn +m.

As in the Thesis, the integral runs over the set S1 of all normalized vectors ∣θ⟩ ∈

HA ⊗ HB ⊗ HE. So far, both the terms appearing in the trace distance expression are
normalized density matrices (ν is a normalized measure over S1). However, the next step,
parameter-estimation (PE), involves post-selection. This step is described by a CP trace-
nonincreasing linear map2

E
M0

PE ∶ S [(HA ⊗HB)
⊗m] → [0,1] (3.6)

acting on m of the (bn +m) subsystems in Alice and Bob’s possession, nothing done on
the rest of their subsystems or on any of Eve’s.

The action of EM0

PE is to map a density matrix to either 0 or 1 depending on whether the
state described by the matrix gets rejected or accepted by the PE routine. In other words,
it maps a density matrix to the probability of its state getting accepted. The operation
of this step is as follows: a POVM M0 is performed on each of Alice and Bob’s m test
subsystems. If the distribution of the observed outcomes, Q, is contained in a certain set
Q of distributions, the state is accepted and the protocol continues. If not, the state is

2We denote by P[H] the set of all positive-semidefinite linear operators on a Hilbert space H, and by
S[H] the set of all normalized states, i.e. positive-semidefinite linear operators of unit trace, on H. Where
we describe a linear map as taking elements in the S of one space to those in the S of another, we don’t
mean that the action of the map is not defined on other positive operators (or, indeed, other Hermitian
operators; for of course, the action of the map is defined, by its linearity, on all Hermitian operators),
but only that it is trace-preserving. Likewise, the action of a map taking elements in the P of one space
to those in the P of another is defined by linearity on other Hermitian operators, but is so described to
emphasize its being a positive map.
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rejected and the protocol is aborted. Defining, as in the Thesis,

ρM0

(ABE)bnEm ∶= (id(ABE)bn ⊗ E
M0

PE ⊗ idEm) [ρ(ABE)bn+m] ,

ρM0

(ABE)bn ∶= TrEm [ρM0

(ABE)bnEm]

and

ρ
∣θ⟩,M0

(ABE)bnEm ∶= (id(ABE)bn ⊗ E
M0

PE ⊗ idEm) [ρ
∣θ⟩
(ABE)bn+m] ,

ρ
∣θ⟩,M0

(ABE)bn ∶= TrEm [ρ
∣θ⟩,M0

(ABE)bnEm] ,

we have, by virtue of the trace-nonincreasing property of the map, the analog of inequality
6.10 of the Thesis,

∥ρM0

(ABE)bn − ∫S1
ρ
∣θ⟩,M0

(ABE)bnν[∣θ⟩]∥
1

≤ ε0. (3.7)

In view of the overall operational role of the PE sub-protocol, which is (apart from the
primary role of aborting insecure runs) to simplify the key-rate calculation by narrowing
down the set over which it is to be performed, it is useful to deviate slightly from the
path taken in the Thesis. Specifically, in the formalism presented in the Thesis, all the
analysis involves considering the whole set Q of distributions accepted by the PE. This
would be necessary only if the PE were a blackbox which only informed Alice and Bob
of the acceptance or rejection, without revealing to them which of the distributions in
Q occurred during an accepted round. But this is an unnecessary assumption, since PE
involves public announcements anyway, so that Alice and Bob might as well make use of
their knowledge of the distribution.

In essence, provided that the particular distribution of outcomes that is observed, Q, is
contained in Q, we can proceed with the protocol, considering only Q for the subsequent
analysis. Specifically, this means that instead of constructing the V set based on the
probability of the finite statistics to only be contained in Q, we can construct it based on
the probability of the statistics to be, in addition to being contained in Q, even coincident
with the particular distribution observed, viz. Q.

This a posteriori knowledge means that instead of EM0

PE , whose output is the probability
that the statistical distribution of the outcomes of M⊗m

0 on the input state is contained
in Q, we can describe the action of the PE operation by a Q-specific map EM0,Q

PE , whose
output is the probability that the statistical distribution of the outcomes of M⊗m

0 on the
input state is coincident with Q. Note that operationally, the PE is described correctly by
the a-priori EM0

PE . This narrowing down to EM0,Q
PE is possible only after the observations are

made.

Before proceeding, it would be convenient to make some definitions, fix some notation
and state an important lemma:
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Definition 3.2.3. For a POVM M ∶= (M i)ki=1 with M i ∈ P[H] ∀i and
k

∑
i=1
M i = 1H, a

positive integer m, and a density matrix ρm ∈ S [H⊗m], define

λMm [ρm]

to be the random (k-variate) variable corresponding to the (k-point) distribution of the
(k-valued) outcomes obtained upon applying the measurement M⊗m to ρm. Also, for
convenience, define for any density matrix ρ ∈ S[H]

λM∞ [ρ] ∶= (Tr [M iρ])
k

i=1
. (3.8)

Definition 3.2.4. For a POVMM ∶= (M i)ki=1, a k-point distribution Q and a real number
µ > 0, define

V
Q,≤µ
M ∶= {∣θ⟩ ∈ S1 [H ⊗HE] ∶ ∥λ

M
∞ [TrE ∣θ⟩⟨θ∣] −Q∥

1
≤ µ}, (3.9)

where HE is an extension (isomorphic to H) which contains purifications of states on H,
and S1 [H ⊗HE] denotes the unit sphere on the product space.

We now restate Lemma 6.2.2 of the Thesis without proof:

Lemma 3.2.5. For a POVM M ∶= (M i)ki=1, a k-point distribution Q, positive integers m
and r ≤ m

2 , and a real number ε > 0, if

µ ∶= 2

√
log [1/ε]

m
+ h [

r

m
] +

k

m
log [

m

2
+ 1],

where h denotes the binary entropy function, then for any state

ρm ∈ S [Sym [(H ⊗HE)
⊗m, ∣θ⟩⊗(m−r)]]

with ∣θ⟩ ∉ VQ,≤µM ,
Pr [λMm [TrEmρm] = Q] ≤ ε. (3.10)

Having stated these definitions and Lemma, let us come back to the QKD protocol.
Picking up where we left at Inequality (3.7), we first write the a posteriori, Q-specific
version of the inequality:

∥ρM0,Q

(ABE)bn − ∫S1
ρ
∣θ⟩,M0,Q

(ABE)bnν[∣θ⟩]∥
1

≤ ε0, (3.11)

where the Q-specific density matrices are defined in the natural way.

Next, we introduce a choosable security parameter εPE characterizing the PE operation.
Further, if

µPE ∶= 2

√
log [1/εPE]

m
+ h [

r

m
] +

k

m
log [

m

2
+ 1], (3.12)
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with the appropriate r (for example, zero if using the postselection technique), chosen such
that Equation 3.5 holds.

Lemma 3.2.5 above assures us that ∀∣θ⟩ ∈ (S1 ∖ V
Q,≤µPE
M0

),

∥ρ
∣θ⟩,M0,Q

(ABE)bnEm∥
1
≡∥(id(ABE)bn ⊗ E

M0,Q
PE ⊗ idEm) [ρ

∣θ⟩
(ABE)bn+m]∥

1
≤ εPE

⇒∥ρ
∣θ⟩,M0,Q

(ABE)bn∥1
≤ εPE, (3.13)

where we have used the fact that tracing over a subsystem cannot increase the trace norm.
Furthermore,

XXXXXXXXXXX

ρM0,Q

(ABE)bn − ∫VQ,≤µPEM0

ρ
∣θ⟩,M0,Q

(ABE)bnν[∣θ⟩]
XXXXXXXXXXX1

=∥ρM0,Q

(ABE)bn − ∫S1
ρ
∣θ⟩,M0,Q

(ABE)bnν[∣θ⟩] + ∫S1∖VQ,≤µPEM0

ρ
∣θ⟩,M0,Q

(ABE)bnν[∣θ⟩]∥
1

≤∥ρM0,Q

(ABE)bn − ∫S1
ρ
∣θ⟩,M0,Q

(ABE)bnν[∣θ⟩]∥
1

+ ∥∫
S1∖V

Q,≤µPE
M0

ρ
∣θ⟩,M0,Q

(ABE)bnν[∣θ⟩]∥
1

≤ε0 + ∥∫
S1∖V

Q,≤µPE
M0

ρ
∣θ⟩,M0,Q

(ABE)bnν[∣θ⟩]∥
1

≤ε0 + ∫
S1∖V

Q,≤µPE
M0

∥ρ
∣θ⟩,M0,Q

(ABE)bn∥1
ν[∣θ⟩]

≤ε0 + εPE∫
S1∖V

Q,≤µPE
M0

ν[∣θ⟩]

≤ε0 + εPE∫
S1
ν[∣θ⟩]

=ε0 + εPE. (3.14)

The first and third inequalities above follow from the triangle inequality for the trace
distance, while the second and fourth follow from (3.11) and (3.13), respectively. The last
two lines are by definition of the measure ν[∣θ⟩] normalized on S1.

The next step is blockwise measurements and information-processing (BI) by Alice and
Bob to reduce the systems in their possession to classical strings. This is modelled by a
CPTP map EJ0,K0

BI acting on each of Alice and Bob’s n blocks of size b and taking it to one
classical symbol each with Alice and Bob. Mathematically, the action of this map can be
described as

E
J0,K0

BI ∶ S [(HA ⊗HB)
⊗b] → S [HX ⊗HY ]

E
J0,K0

BI [σ] ∶= ∑
x∈X ,y∈Y

Tr [(Jx0 ⊗K
y
0 )σ] ∣x⟩⟨x∣ ⊗ ∣y⟩⟨y∣, (3.15)
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where J0 ∶= (Jx0 )x∈X and K0 ∶= (Ky
0 )y∈Y are complete POVMs on P [H⊗b

A ] and P [H⊗b
B ],

respectively, and {∣x⟩ ∶ x ∈ X} and {∣y⟩ ∶ y ∈ Y} are orthonormal bases spanning HX and
HY , respectively. Here X and Y are Alice and Bob’s alphabets, respectively, which are in
most QKD schemes identical.

Now defining

ρM0,Q,J0,K0

XnY nEbn+m
∶= ((E

J0,K0

BI )
⊗n
⊗ idEbn+m) [ρM0,Q

AbnBbnEbn+m
] ,

ρM0,Q,J0,K0

XnY nEbn
∶= TrEm [ρM0,Q,J0,K0

XnY nEbn+m
]

and

ρ
∣θ⟩,M0,Q,J0,K0

XnY nEbn+m
∶= ((E

J0,K0

BI )
⊗n
⊗ idEbn+m) [ρ

∣θ⟩,M0,Q

AbnBbnEbn+m
] ,

ρ
∣θ⟩,M0,Q,J0,K0

XnY nEbn
∶= TrEm [ρ

∣θ⟩,M0,Q,J0,K0

XnY nEbn+m
] ,

we infer from Inequality (3.14) and the monotonicity of the trace distance under CPTP
maps that

∥ρM0,Q,J0,K0

XnY nEbn
− ∫

VQ,≤µPEM0

ρ
∣θ⟩,M0,Q,J0,K0

XnY nEbn
ν[∣θ⟩]∥

1

≤ ε0 + εPE. (3.16)

After this, if an εIR-secure information-reconciliation scheme with a leakage of leakIR
bits is used, and then 2-universal hashing is used to shorten the key to a length ` satisfying

` ≤HεPA+ε0+εPE
min [ρM0,Q,J0,K0

XnEbn
∣Ebn] − leakIR − 2 log [

1

εPA + ε0 + εPE
]

− (m + k0) log [dimHA ⊗HB] − `0, (3.17)

then the resulting key is η (εIR + 3
2(εPA + ε0 + εPE))-secure. Here εPA is a choosable “smooth-

ness” parameter, `0 and η are polynomial-sized corrections necessary if using the postse-
lection technique of [42], and k0 is the number of subsystems discarded before retaining
the bn + m with which we started our calculations. These do not affect the reasoning
pertaining to device imperfections; what is important is the following lower bound on the
entropy term appearing in the key-length expression, which follows from Inequality (3.16),
combined with the definition and convexity of the conditional smooth min-entropy:

HεPA+ε0+εPE
min [ρM0,Q,J0,K0

XnEbn
∣Ebn] ≥ min

∣θ⟩∈VQ,≤µPEM0

HεPA
min [ρ

∣θ⟩,M0,Q,J0,K0

XnY nEbn
∣Ebn] . (3.18)

This bound, in turn, is usually convenient to calculate, for example by approximating
it using the von Neumann entropy of states on smaller spaces, as in the Thesis. While it
appears to depend on the nature ofM0, this is not really so, since the state parametrized
by θ is almost-iid and depends only on θ and the BI map. The only influence of M0

on the minimum is in determining the set over which it is evaluated. In the remainder,
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when we attempt to incorporate the effects of device imperfections, we shall not concern
ourselves with how this bound is calculated, but rather take for granted that a method for
its computation is known for the ideal measurements (J0,K0), and only aim to reduce the
corresponding calculations in the imperfect case to quantities in terms of such “assumed
known” quantities.

3.3 QKD with imperfect devices

In this section we describe our first heuristic method for incorporating device imperfections
in the Renner QKD framework. In §3.3.1 we discuss some distance measures which form the
basis of our model for imperfections, and then in §3.3.2 we discuss how device imperfections
within such a model can be accounted for in the QKD formalism.

3.3.1 Distance measures and the imperfection model

Since both preparation and measurement devices are modelled in our formalism by mea-
surements, device imperfections can be modelled by measurement imperfections. There-
fore, in order to model these imperfections, we first study distance measures between mea-
surements. Let M1 ∶= (M i

1)
k
i=1 and M2 ∶= (M i

2)
k
i=1 be two complete POVMs on a Hilbert

space H, such that for either j ∈ {1,2}, M i
j ∈ P[H] ∀i and ∑ki=1M

i
j = 1H.

We denote by EMj the action of the POVMMj as a CPTP map:

EMj[σ] ∶=
k

∑
i=1

Tr [M i
jσ] ∣i⟩⟨i∣, (3.19)

where σ ∈ S[H], and ∣i⟩ ∈ HI is a state on a classical register storing the measurement
outcome.

Towards the objective of a meaningful model for device imperfections, we make the
following observations:

1. Let HE be an extension Hilbert space (it is sufficient to consider one congruent
to H, but we need not assume anything here). Then for any ρ ∈ B [H ⊗HE], i.e.
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ρ ∈ P [H ⊗HE] with Tr[ρ] ≤ 1,

∥((EM1 − EM2) ⊗ idE) [ρ]∥1
=∥

k

∑
i=1

∣i⟩⟨i∣ ⊗ ((Tr ⊗ idE) [((M
i
1 −M

i
2) ⊗ 1E)ρ])∥

1

=
k

∑
i=1

∥(Tr ⊗ idE) [((M
i
1 −M

i
2) ⊗ 1E)ρ]∥1

≤
k

∑
i=1

∥((M i
1 −M

i
2) ⊗ 1E)ρ∥1

≤
k

∑
i=1

∥M i
1 −M

i
2∥∞ . (3.20)

Here the first equality follows by definition, and the other from the block-diagonal
structure. The first inequality is a consequence of the monotonicity of the trace norm
under partial-trace operations, while the other owes to the sub-normalization of ρ.

2. Since the bound in (3.20) is independent of ρ (and indeed of HE), it follows from the
definition of the diamond norm,

∥E∥3 ∶= sup
HE

max
ρ∈B[H⊗HE]

∥(E ⊗ idE) [ρ]∥1 , (3.21)

that

∥EM1 − EM2∥
3
≤

k

∑
i=1

∥M i
1 −M

i
2∥∞ . (3.22)

This means that in place of the diamond norm we may use the above bound in terms
of the POVM elements, which (plausibly) might lead eventually to an imperfection
model that is practically suited to calibrate a device against. We may go so far as to
define a new distance measure between measurements:

Definition 3.3.1. ∥M1 −M2∥M ∶= ∑
k
i=1 ∥M

i
1 −M

i
2∥∞.

That this is a valid distance measure on the set of all POVMs on H with k outcomes
or fewer (provided we establish a correspondence between the outcomes of different
POVMs), follows from the fact that the uniform norm induces a valid distance mea-
sure on P[H].

3. For any ρ ∈ S[H],

∥(EM1 − EM2) [ρ]∥
1
= ∥(λM1

∞ − λM2
∞ ) [ρ]∥

1
, (3.23)

holds, where the right-hand side is the trace distance between the probability distri-
butions induced on ρ by the two measurements. From (3.22) and the definition of
the diamond norm, it follows that

∥(λM1
∞ − λM2

∞ ) [ρ]∥
1
≤ ∥M1 −M2∥M . (3.24)
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This concludes the discussion of distance measures, wherein we have defined a measure,
of distance between POVMs, which might prove useful in designing a practically-applicable
model for device imperfections. With this anticipation, we use this M-distance measure
for our imperfection model, although the model would work just as well with the diamond
distance. Next we discuss how to modify the QKD framework discussed in §3.2 to account
for device imperfections under this M-distance model.

3.3.2 QKD formalism with imperfect devices

We begin by noting that in the QKD formalism reviewed in §3.2, there are exactly two
steps on which device imperfections can have an influence3: the parameter-estimation (PE)
step, and the blockwise information-processing (BI) step, for it is these steps that contain
preparations (modelled by measurements) and measurements. Specifically, we assume that
our knowledge of device imperfections consists of the following promises:

1. Say the device used to carry out the measurement in the PE step behaves imprecisely
in such a way as to perform a POVM M⊗m instead of the desired M⊗m

0 on the m
test systems. Then we are promised that there is a small εMP ≥ 0 such that4

∥M−M0∥M ≤ εMP. (3.25)

Note that we model the imperfect measurement as being identical on allm subsystems
because Lemma 3.2.5 relies on such a structure of the measurement. However, this
does not mean that in reality the device has to behave identically on every subsystem:
it suffices if its departure from the ideal on each subsystem is bounded by εMP. As
long as we are ignorant of the exact nature of the departure (except for the promise
that it is bounded by εMP), the effective measurement is in fact identical on every
subsystem.

2. If the devices used in Alice’s preparations and Bob’s key-forming measurements, i.e.
in the BI step, behave such as to execute a map

n

⊗
i=1
E
Ji,Ki
BI instead of the desired

(E
J0,K0

BI )
⊗n
, then we are promised that there is a small εMI > 0 such that

∀i, ∥Ji − J0∥M + ∥Ki −K0∥M ≤ εMI. (3.26)

Here we can work without the assumption of the imperfections being identical over
different uses of the same device, which we made in the case of PE5.

3Imperfections in the communication channel are not to be worried about by cryptographers, as the
channel is assumed to be controlled by the adversary anyway!

4Note that such an εMP always exists; the promise consists of the assurance that it is small.
5In practice, however, we are likely to be ignorant of the precise nature of the imperfections, whereupon

the imperfections would effectively be identical.
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Note that it is usual for the measurements used in PE to be the same as those used in BI,
but we leave the formulation general.

With this model for device imperfections, let us once again walk through the QKD
scheme. We start at the end of the quantum communication step by reproducing (3.4),
which is unaffected:

∥ρ(ABE)bn+m − ∫
S1
ρ
∣θ⟩
(ABE)bn+mν[∣θ⟩]∥

1

≤ ε0. (3.27)

Next, the PE step, but now instead ofM0 we would have someM:

∥ρM,Q

(ABE)bn − ∫S1
ρ
∣θ⟩,M,Q

(ABE)bnν[∣θ⟩]∥
1

≤ ε0. (3.28)

Again, we use Lemma 3.2.5 to restrict the integral to a subset, but first we note that

∀∣θ⟩ ∈ S1,

∣θ⟩ ∉ VQ,≤µPE+εMP

M0
⇒ ∥λM0

∞ [TrE ∣θ⟩⟨θ∣] −Q∥
1
> µPE + εMP

⇒ ∥(λM0
∞ − λM∞ ) [TrE ∣θ⟩⟨θ∣]∥1

+ ∥λM∞ [TrE ∣θ⟩⟨θ∣] −Q∥
1
> µPE + εMP

⇒ ∥λM∞ [TrE ∣θ⟩⟨θ∣] −Q∥
1
> µPE

⇒ ∣θ⟩ ∈ S1 ∖ V
Q,≤µPE
M

⇒ ∥(id(ABE)bn ⊗ E
M,Q
PE ⊗ idEm) [ρ

∣θ⟩
(ABE)bn+m]∥

1
≤ εPE. (3.29)

The first line follows by definition of the parametrized V set, the next one from the tri-
angle inequality for the trace distance, and the third from Promise 1 above regarding the
imperfections in the PE measurement (along with (3.24)). The fourth line follows again
from Lemma 3.2.5 and the definition of the V set, along the same lines as (3.13).

Therefore, we can restrict the integral to the set VQ,≤µPE+εMP

M0
, incurring the same trace-

distance as before, viz. εPE, by means of another triangle inequality. This gives us

∥ρM,Q

(ABE)bn − ∫VQ,≤µPE+εMP
M0

ρ
∣θ⟩,M,Q

(ABE)bnν[∣θ⟩]∥
1

≤ ε0 + εPE. (3.30)

The next step is blockwise measurements and information-processing (BI). Although
the consideration of our model of imperfections entails a change in the map characterizing
BI, it is still useful to write the following inequality, which describes the situation if the
ideal map were to be applied:

∥ρM,Q,J0,K0

XnY nEbn
− ∫

VQ,≤µPE+εMP
M0

ρ
∣θ⟩,M,Q,J0,K0

XnY nEbn
ν[∣θ⟩]∥

1

≤ ε0 + εPE. (3.31)
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Of course, the actual situation is described by the application of a map of the form
n

⊗
i=1
E
Ji,Ki
BI

instead of the desired (E
J0,K0

BI )
⊗n
. We denote the actual state at this point by ρM,Q,J ,K

XnY nEbn
,

where the J ,K stand for the imperfect measurements. Owing to Promise 2 stated earlier
about the measurements used in the raw-key-generation, and to the sub-normalization of
ρM,Q

(ABE)bn , it follows that

∥ρM,Q,J ,K
XnY nEbn

− ρM,Q,J0,K0

XnY nEbn
∥

1
= ∥((

n

⊗
i=1

E
Ji,Ki
BI − (E

J0,K0

BI )
⊗n

) ⊗ idEbn) [ρM,Q

(ABE)bn]∥
1

≤ ∥
n

⊗
i=1

E
Ji,Ki
BI − (E

J0,K0

BI )
⊗n

∥
3

≤
n

∑
i=1

∥E
Ji,Ki
BI − E

J0,K0

BI ∥
3

≤
n

∑
i=1

(∥Ji − J0∥M + ∥Ki −K0∥M)

≤ nεMI. (3.32)

Using (3.31), (3.32) and the triangle inequality for the trace norm, we get

∥ρM,Q,J ,K
XnY nEbn

− ∫
VQ,≤µPE+εMP
M0

ρ
∣θ⟩,M,Q,J0,K0

XnY nEbn
ν[∣θ⟩]∥

1

≤ ε0 + εPE + nεMI. (3.33)

As before, if an εIR-secure information-reconciliation scheme with a leakage of leakIR
bits is used, and then 2-universal hashing is used to shorten the key to a length ` satisfying

` ≤HεPA+ε0+εPE+nεMI
min [ρM,Q,J ,K

XnEbn
∣Ebn] − leakIR − 2 log [

1

εPA + ε0 + εPE + nεMI

]

− (m + k0) log [dimHA ⊗HB] − `0, (3.34)

then the resulting key is η (εIR + 3
2(εPA + ε0 + εPE + nεMI))-secure, again with εPA a choosable

“smoothness” parameter, `0 and η polynomial-sized corrections, and k0 the number of
subsystems discarded before retaining the bn +m with which we started our calculations.
The refined lower bound on the entropy term appearing in the key-length expression, which
follows from Inequality (3.33), is:

HεPA+ε0+εPE+nεMI
min [ρM,Q,J ,K

XnEbn
∣Ebn] ≥ min

∣θ⟩∈VQ,≤µPE+εMP
M0

HεPA
min [ρ

∣θ⟩,M,Q,J0,K0

XnY nEbn
∣Ebn] . (3.35)

An advantage of this bound is that the entropy calculation is required to be done only
under the ideal measurements J0,K0, as before, albeit over a larger set of states. In many
important examples, such as the BB84 and six-state protocols, the entropy calculation
under the ideal measurements is highly simplified by the existence of symmetries, whereas
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it would be in general a nontrivial problem to estimate the effect of imperfect measurements
on the value of the entropy.

However, there are some important disadvantages:

1. The minimum in the upper bound for secure key-rate is calculated over a larger set
V
Q,≤µPE+εMP

M0
⊃ V

Q,≤µPE
M0

, and therefore is expected to go down. Towards quantifying this
effect, the most we can do is give an upper bound on the trace distance between the
states that achieve the minimum in the smaller and the larger sets. Unfortunately, the
exact effect of this on the conditional smooth min-entropy is not at all straightforward
to estimate, for the following reason. While the min-entropy of a state without
conditioning can be related in a straightforward manner to its spectrum (in fact it
is exactly equal to the negative logarithm of the largest eigenvalue), the min-entropy
conditioned on subsystem can only be upper-bounded. Therefore, given two states
whose trace distance is bounded, not much can be said about the difference in their
min-entropies conditioned on a subsystem.

2. The final security parameter is weakened by a term linear in n. Again, this disad-
vantage owes its origin to the difficulty in estimating the difference in the conditional
min-entropies of states in terms of their trace distance. The “advantage” discussed
earlier is that by paying this price in the security parameter we can avoid this difficult
problem of estimating the entropy change. However, it would be in our interest to
be able to eliminate this linear term by finding a way to improve the calculation,
particularly because the parameter εMI is not tunable but characteristic of the device
used.

Overcoming these disadvantages is an important aspect of the improvement required
in our understanding of device imperfections in QKD. Apart from this, another important
aspect is to model the imperfections more realistically and in a manner better-suited for
calibration. We hope that this work acts as a first step in this direction.

56



Closing remarks and open problems

In the present work, we have undertaken the endeavour of bridging various types of gaps
between the theoretical framework of quantum key-distribution (QKD) and its practical
implementations. Specifically, we have addressed various limitations in the way preparation
and measurement devices are modelled in QKD. Our progress has been the following:

1. In Chapter 1, we have presented some advances in the theory of squashing models,
specifically in the understanding of the role of classical post-processing. We have
then applied our understanding to derive a squashing model for the detection device
used in the phase-encoded BB84 (PEBB84) QKD scheme.

2. In Chapter 2, we have discussed a general approach to deriving bounds on security-
related parameters in optical QKD in cases where squashing models do not exist.
Further, we have employed this approach to devise an estimation method in the case
of PEBB84.

3. In Chapter 3, we have formulated a heuristic scheme for incorporating the effects
of device imperfections on the security and performance of QKD as laid down in
the information-theoretic framework developed by Renner. The present scheme uses
a limited model for imperfections, based on the diamond-norm distance between
measurement operations. The analysis used therein entails an increase in the security
failure-rate by a term polynomial in the key-length.

Given the state of affairs described above, we identify the following as the most impor-
tant among the problems remaining (or emerging) from our work:

1. Advancements in understanding the role of post-processing in particular, and squash-
ing in general, which might provide a universally-applicable toolbox of squashing
models, eliminating the need for detailed search and analysis in every particular
application.

2. Converting the approach of statistical estimation into a more definite method, appli-
cable universally without the need to devise suitable statistical observables in each
application.
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3. In general, we still work with many simplifications in modelling optical systems:
absence of dark counts, assumption of equal efficiencies in all detectors, etc. It is
important to eliminate these simplifying assumptions.

4. Improvements on the methods used in finding bounds on entropies, so that the linear
worsening of the failure-rate under the limited imperfection model can be eliminated.
More ambitiously, generalizing the model of imperfections so that it is both closer to
reality and suitable for use in calibrating devices.

We conclude the thesis with the hope that the problems stated above are tackled, and
eventually solved, using the work presented herein as a first step.
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Appendix A

Input-output relations for the
phase-encoded BB84 detection setup

Here we derive input-output relations for the measurement device used in the phase-
encoded BB84 (PEBB84) scheme.

The detection setup on the receiver’s side consists of a Mach-Zehnder interferometer
with an adjustable phase-modulator (Fig. A.1(a)). Two successive pulses with annihilation
operators u1 and u2 (green) make up two orthogonal modes1 at the input (time being the
relevant degree of freedom distinguishing the two modes). The output of the interferometer,
which consists of six modes labelled by w, is fed to two threshold detectors. Our aim here
is to find the output as a function of the input.

The two input modes u1 and u2, along with two ancillary input modes s1 and s2 which
are forced to be in the vacuum state (all ancillary vacuum modes are shown in grey), are
transformed by a 50-50 beam-splitter into the two lower v modes (red) and the two v′′
modes (dark blue):

(
v′′1
v3

) = (
1/

√
2 −1/

√
2

1/
√

2 1/
√

2
)(

u1

s1
) ,

(
v′′2
v4

) = (
1/

√
2 −1/

√
2

1/
√

2 1/
√

2
)(

u2

s2
) . (A.1)

The lossy phase-modulator, with transmittance η, is modeled by a beam-splitter of the
same transmittance followed by a lossless phase-modulator. The two v′′ modes and two
ancillary vacua s′ modes pass through the beam-splitter to give rise to the two v′ modes
(light blue) and two loss modes (l, brown):

1Throughout this thesis, we use the symbol for the annihilation operator of a certain mode as an
appellation for the mode itself.

60



(a) Model of detection setup with imperfections: Two input modes u pass through a Mach-Zehnder
interferometer with a (1 − η)-lossy phase-modulator in the longer arm, and finally give rise to 6
output w modes, detected by two threshold detectors of equal efficiency η′.

(b) Model of detection setup with imperfections moved to channel: The loss is removed from the
longer arm and the detectors replaced with perfectly-efficient ones; To compensate, a loss η′′ is
inserted in the channel and the first Mach-Zehnder beam-splitter transmittance is changed to ξ.

Figure A.1: Model of the measurement device (a) with its imperfections and (b) after the
imperfections have been outsourced to the channel.
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(
v′1
l1

) = (

√
η −

√
1 − η

√
1 − η

√
η

)(
v′′1
s′1

) ,

(
v′2
l2

) = (

√
η −

√
1 − η

√
1 − η

√
η

)(
v′′2
s′2

) . (A.2)

The two v′ modes pass through the lossless phase-modulator, which introduces a phase
φB, and give rise to the upper two modes v. The basis choice for measurement is exercised
by selecting either 0 or π/2 for the phase φB:

(
v1

v2
) = (

e−iφB 0
0 e−iφB )(

v′1
v′2

) . (A.3)

Note that there is a negative sign in the phase, because we are writing the relation
in terms of annihilation operators. Thereafter, the four v modes, along with two more
ancillary vacuum modes v0 and v5, pass through the second 50-50 beam-splitter and give
rise to the w modes. Note that the top two v modes lag behind the bottom modes in
precisely such a way as to give rise to an interference between v1 and v4:

(
w1

w4
) = (

1/
√

2 −1/
√

2

1/
√

2 1/
√

2
)(

v0

v3
) ,

(
w2

w5
) = (

1/
√

2 −1/
√

2

1/
√

2 1/
√

2
)(

v1

v4
) ,

(
w3

w6
) = (

1/
√

2 −1/
√

2

1/
√

2 1/
√

2
)(

v2

v5
) . (A.4)

Finally, the six w modes are detected by two threshold detectors, which gives three
time bins over two detectors. Certain important assumptions made about the detectors
are:

1. The two detectors have the same efficiency, which we call η′.

2. The detectors are able to resolve each time slot, i.e., the dead-time is less than the
rate of pulses arriving.

3. There are no dark counts.
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Carrying out the linear transformations, we find

w1 =
1

√
2
v0 −

1

2
u1 −

1

2
s1,

w2,φB =
e−iφB√η
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2
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2
u2 −

1

2
s2,
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2
u2 −
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2
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1 − η

2
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1
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2
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2
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√

1 − η

2
s′2 +

1
√

2
v5. (A.5)

Since we are interested in the working of the device only when all the auxiliary modes
(s1, s2, s′1, s′2, v0 and v5) are in the vacuum state, we will always be projecting onto
the vacuum states on these modes. Therefore, in all our calculations, we can use the
following effective annihilation operators, where we have simply deleted all terms involving
the auxiliary modes, instead of the ones above:

w1 = −
1

2
u1,

w2,φB =
e−iφB√η

2
u1 −

1

2
u2,

w3,φB =
e−iφB√η

2
u2,

w4 =
1

2
u1,

w5,φB =
e−iφB√η

2
u1 +

1

2
u2,

w6,φB =
e−iφB√η

2
u2. (A.6)

Note that while the expressions in (A.5) define annihilation operators of normalized and
independent modes, those in (A.6) are not normalized annihilation operators. However, we
can use them in all our calculations in the same manner as we use normalized annihilation
operators, and the resulting factors would naturally represent the probabilities involved.

The next step is to replace the above model of the measurement device with a model
where all imperfections are outsourced to the channel. For this, we note the following:
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1. Because we assume that both threshold detectors have the same efficiency η′, it is
possible to replace them in the model with detectors with unit efficiency, and model
the efficiency by placing a beam-splitter of transmittance η′ in the channel, before
the input modes. Essentially, this means any detection setup with perfectly efficient
detectors at the end, but which results in output modes

√
η′w just before the perfect

detectors, is equivalent to the one above.

2. Since the only physically meaningful entity is the final statistics of detection out-
comes, and not the meta-modes within the model of the measurement device, we
are allowed to make a different model for the detector, provided the final statistics of
detection outcomes is the same as before. One step towards the new model, that is to
say, moving the detectors’ efficiency to the channel, has been discussed above. In the
next step, we move the phase-modulator loss to the channel. But now, since we have
removed loss in an asymmetric manner between the two arms of the interferometer,
we must compensate by skewing the first beam-splitter of the interferometer. The
following equations will make this point clear; the essence is that the final

√
η′w must

not change.

Let us insert a beam-splitter of ratio η′′ in the channel, and make the transmittance of
the first beam-splitter of the interferometer ξ, where both the new parameters are yet to
be determined. Carrying out similar calculations as before, we get

w′
1 = −

√
η′′ξ

2
u1,

w′
2,φB

= e−iφB
√
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2
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2
u2,
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= e−iφB
√

η′′(1 − ξ)

2
u2,

w′
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η′′ξ

2
u1,

w′
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= e−iφB
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η′′(1 − ξ)

2
u1 +

√
η′′ξ

2
u2,

w′
6,φB

= e−iφB
√

η′′(1 − ξ)

2
u2. (A.7)

Now requiring w′ =
√
η′w, we find that we can satisfy this by assigning

ξ =
1

1 + η
(A.8)
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and

η′′ =
η′

2ξ
. (A.9)

Now that we have pushed all imperfections of the measurement device’s model to the
channel, we can consider the modes after the η′′ beam-splitter as the input.
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