
Modeling Management Metrics

for Monitoring Software Systems

by

Miao Jiang

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

c© Miao Jiang 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Software systems are growing rapidly in size and complexity, and becoming

more and more difficult and expensive to maintain exclusively by human operators.

These systems are expected to be highly available, and failure in these systems

is expensive. To meet availability and performance requirements within budget,

automated and efficient approaches for systems monitoring are highly desirable.

Autonomic computing is an effort in this direction, which promises systems that

self-monitor, thus alleviating the burden of detailed operation oversight from hu-

man administrators. In particular, a solution is to develop automated monitoring

systems that continuously collect monitoring data from target systems, analyze the

data, detect errors and diagnose faults automatically. In this dissertation, we sur-

vey work based on management metrics and describe the common features of these

current solutions. Based on observations of the advantages and drawbacks of these

solutions, we present a general solution framework in four separate steps: met-

ric modeling, system-health signature generation, system-state checking, and fault

localization. Within our framework, we present two specific solutions for error de-

tection and fault diagnosis in the system, one based on improved linear-regression

modeling and the second based on summarizing the system state by an information-

theoretic measurement. We evaluate our monitoring solutions with fault-injection

experiments in a J2EE benchmark and show the effectiveness and efficiency of our

solutions.

iii

Acknowledgments

I would like to express my sincere gratitude to my academic advisor, Professor

Paul A.S. Ward, for allowing me to pursue my research interests and for providing

continuous guidance and financial support throughout my doctoral studies. I am

grateful to my PhD committee members, Dr. Lin Tan, Dr. Johnny Wong, Dr.

Andrew Heunis, and Dr. Miroslaw Malek for their effort in evaluating this work

and for their recommendations for improving it.

I am thankful to Mohammad Ahmad Munawar for his help in improving various

aspects of this work. I am grateful to colleagues and faculty members of the Network

and Distributed System Laboratory, in particular the Shoshin Laboratory, for their

assistance and enriching discussions.

There are many other people who have helped me directly or indirectly for

studies or otherwise during my time at the University of Waterloo – Thank you all!

iv

Contents

Abstract iii

List of Tables ix

List of Figures x

1 Introduction 1

1.1 System Monitoring by Modeling Metrics 2

1.2 Thesis Contributions . 3

1.3 Thesis Organization . 4

2 Background 6

2.1 Terminology . 6

2.2 Management Metrics . 8

2.3 Component-Based Distributed Software Systems 9

2.3.1 The Java Platform, Enterprise Edition 10

2.3.2 Monitoring Infrastructure 12

2.4 Modeling Techniques . 15

2.4.1 Linear Regression . 15

2.4.2 Information Entropy . 17

3 Related Work 20

3.1 System Monitoring Based on Linear Regression Models 21

3.2 System Monitoring Based on Other Linear Models 22

v

3.3 System Monitoring Based on Non-linear Models 23

3.4 Fault Diagnosis . 25

3.4.1 Fault Diagnosis by Supervised Learning 27

4 Problem Definition 29

4.1 Error Detection . 30

4.1.1 Measurement of Detection Quality 31

4.2 Fault Diagnosis . 33

4.2.1 Measurement of Diagnosis Quality 35

5 Solution Framework 38

5.1 A General Solution Framework for System Monitoring 38

5.2 Metric Modeling . 39

5.2.1 Specific-Form Modeling . 40

5.2.2 General-Form Modeling . 42

5.3 System-Health Signature Generation 43

5.4 System-State Checking . 43

5.5 Fault Localization . 45

6 Solution One: Linear Models 47

6.1 Problems of Simple Linear Regression 47

6.1.1 Heteroscedasticity . 47

6.1.2 Varying Coefficients . 52

6.1.3 Multi-variable Correlations 54

6.2 Improving Simple Linear Regression 55

6.2.1 Detecting Non-constant Error Variance 55

6.2.2 Generalized Least Squares 56

6.2.3 Fitness Score for Confidence Intervals 58

6.3 System-Monitoring Solution . 59

6.3.1 Metric Modeling . 60

vi

6.3.2 System-Health Signature Generation 61

6.3.3 System-State Checking . 61

6.3.4 Fault Localization . 64

7 Solution Two: Information-Theoretic Models 65

7.1 Approach Overview . 65

7.2 Computing Similarities between Metrics 66

7.3 Metric Modeling by Clustering Correlated Metrics 67

7.3.1 Identifying Correlated Metrics 68

7.4 Tracking Groups of Related Metrics 69

7.4.1 Observations on Cluster Entropy 71

7.4.2 Error Detection by Wilcoxon Rank-Sum Test 72

8 Evaluation 73

8.1 Evaluation Approach . 73

8.1.1 Methodology . 79

8.1.2 Fault Injection . 79

8.1.3 Fault-Injection Experiments 82

8.2 Evaluation of Linear Modeling . 83

8.2.1 The Performance of Individual Models 83

8.2.2 Error-Detection Examples 84

8.2.3 Experimental Results . 88

8.2.4 Comparison with Prior Work 89

8.3 Evaluation of Information-Theoretic Solution 91

8.3.1 Identifying Non-linear Correlations 91

8.3.2 Clustering of Metrics . 94

8.3.3 Error-Detection Examples 96

8.3.4 Experimental Results . 96

8.4 Computational Cost . 101

vii

9 Conclusion and Future Work 104

9.1 Future Research Work . 105

Appendix 106

A Addressing Specific Problems in Linear Modeling 107

A.1 Modeling Varying Coefficients . 107

A.2 Modeling Three-Variable Correlation 108

A.3 System Monitoring with New Models 108

A.3.1 Metric Modeling . 110

A.4 Evaluation . 111

A.4.1 Error-Detection Results . 113

A.4.2 Understanding RLS Performance 114

B Limitations of Fault Localization with Metric Correlations 118

B.1 Simplified View of a System of Correlations 120

B.1.1 Causation and Correlation 120

B.1.2 Cluster of Correlations . 121

B.1.3 Effects of Invalid Causality 123

B.2 Realistic Model of a System of Correlations 125

B.2.1 Cluster of Correlations . 126

B.2.2 Effects of Invalid Causality 127

References 130

viii

List of Tables

6.1 Regression coefficients varying with a third variable 54

7.1 Correlations captured by r2 and NMI 68

8.1 Examples of metrics collected . 78

8.2 Summary of the faults injected . 80

8.3 Fault parameters . 82

8.4 Model performance definition . 84

8.5 Model performance . 84

8.6 Error detection and fault localization with linear models 90

8.7 Error-detection comparison . 92

8.8 Error-detection summary . 92

8.9 Error detection with information-theoretic models 99

8.10 Error detection with different NMI thresholds 100

8.11 Computational cost . 102

A.1 Error-detection summary . 114

ix

List of Figures

2.1 Overview of a Java EE-based architecture 11

2.2 Monitoring infrastructure of a Java EE-based system 12

4.1 The relationship between models, metrics, and subsystems 34

6.1 Heteroscedasticity example . 48

6.2 Confidence intervals using OLS regression 49

6.3 Heteroscedasticity example: varying coefficients 50

6.4 Heteroscedasticity example: inaccurate linear model 52

6.5 Varying coefficients of a metric-pair model 53

6.6 Confidence intervals using GLS regression 58

6.7 Fitness score calculation . 60

6.8 Model learning and system monitoring 61

6.9 Learning metric-correlation models 62

7.1 Approach overview . 66

7.2 Metric similarity measures: r2 and NMI 69

8.1 Experimental setup . 75

8.2 Overall structure of the Trade application 76

8.3 Sample fault detection - Mis-ds-authentication 86

8.4 Sample fault detection - Mis-ds-connection-pool 86

8.5 Sample fault detection - Del-AccountJSP 87

8.6 Sample fault detection - Del-DisplayQuoteJSP 87

x

8.7 Sample fault detection - DB-QuoteEJB 88

8.8 Metric-similarity measures . 93

8.9 Metric relationship - a power function 94

8.10 Metric relationship - a piecewise function 95

8.11 Sample in-cluster entropy . 96

8.12 Sample in-cluster entropy . 97

8.13 Sample in-cluster entropy . 97

8.14 Sample in-cluster entropy . 98

8.15 Sample in-cluster entropy . 98

A.1 Model learning and system monitoring 110

A.2 Learning metric correlation models 111

A.3 Sample fault detection - a simple case 112

A.4 Sample fault detection - tolerating invalid models 113

A.5 Sample error-detection results . 116

A.6 OLS models vs. RLS models . 117

B.1 Fault localization example . 119

B.2 Metrics’ clusters . 122

B.3 The effects of invalid causality . 123

B.4 Realistic view of correlations by m0 126

B.5 Realistic view of the effects of a fault 127

xi

Chapter 1

Introduction

Enterprise software systems are at the core of business activity, requiring high avail-

ability and good performance. They have become critical to the success of many

businesses. These systems have grown in size and complexity, while they are still

expected to be highly available, offer good performance, and operate within con-

strained budgets. Failure in these systems is expensive, as it may cause downtime,

loss of sales, customer dissatisfaction, etc. However, as software is not perfect and

fault-protection mechanisms are not always present, system failures do occur. The

major types of failures include unavailable systems, exceptions and access viola-

tions, incorrect answers, data loss and corruption, and poor performance [67].

To meet availability and performance requirements, businesses rely on human

operators to actively monitor this critical infrastructure, identifying system errors

and failures, diagnosing faulty components, and restoring the system to a correctly

functioning state. However, as the size and complexity of software systems rapidly

grows, this solution becomes more and more expensive. For example, it is expected

that network, computer systems, and database administrators, as well as computer-

system analysts, will be some of the fastest growing occupations from 2004 to

2014 [25]. In particular, the number of human administrators/operators in America

will grow by 35% in ten years, exceeding 1.1 million by 2014 [25]. This tendency is

confirmed with a new projection from 2008 to 2018 [46]: database administrators

are expected to grow by 20.3%, network and computer systems administrators are

expected to grow by 23.2%. In addition, this solution is not necessarily effective.

System complexity can easily overwhelm administrators, affecting their ability to

identify and resolve problems promptly [44]. In fact, many system failures are

caused by operator errors. In some studies it is reported that 40% of failures are

due to operator error [67, 83].

1

In addition, many approaches for monitoring software system require knowledge

of system structure and details. For example, queuing models require knowledge

of system structure and dynamics (e.g., [85]). Likewise, some fault models require

knowing all possible faults and component dependencies (e.g., [87]). The required

information is not always available, and modeling is a difficult manual task. In

addition, as systems evolve, keeping the models up-to-date requires considerable

manual effort.

In sum, as the size and complexity of software systems increase, manual in-

tervention to address problems in these systems is becoming difficult and error

prone [44]. In addition to the larger number of sophisticated components, the in-

teractions and inter-dependencies among the many components are more dynamic

and harder to comprehend. Therefore, it is essential to find automated and effi-

cient approaches to systems monitoring. Autonomic computing [44], also known

as self-managing systems, is an effort in this direction, which promises systems that

self-monitor, therefore alleviating the burden of detailed operation oversight from

human administrators. The idea of self-managing systems has received much atten-

tion both from the research community and the industry (e.g., see [6, 18, 26, 51]),

and this dissertation is intended to augment that literature.

1.1 System Monitoring by Modeling Metrics

Software systems increasingly offer a large amount and variety of monitoring data

to use in system monitoring, including log records, performance metrics, traces,

etc. While in principle the availability monitoring data can help in system moni-

toring, error detection, and problem determination, in practice useful information

is often hard to find quickly in a sea of data. A solution to this problem is to

develop automated monitoring systems that continuously collect monitoring data

from target systems, analyze the data, and report when the behaviour of some of

the data deviates from what is expected.

In our work we focus on metric data because of its richness and the ease of its

collection. Software systems typically expose management metrics that reflect their

behaviour, performance, and state. Examples of these metrics include operation

invocation counts, response time, resource utilization, etc. Often these metrics can

be collected on demand. An important advantage of metrics is that their collection

costs less than alternatives such as traces [56]. Metrics are aggregate measures

computed in place, whereas traces contain timestamps and fine-grained data on

2

system operations, and thus are expensive to collect.

In previous studies [22, 34, 62, 63, 64], people have found that a correctly func-

tioning enterprise-software system exhibits long-term, stable correlations between

many of its monitoring metrics. These correlations are expected to hold during

normal operating conditions. When errors occur in the system, some of the corre-

lations may no longer hold, potentially enabling error detection and fault localiza-

tion. With this approach models can be built in an un-supervised way and without

requiring knowledge of system structure. Once models are built and learned from a

correctly functioning system, they can be used to classify metric samples collected

during monitoring to detect errors. Further, such classifications may be extended

to localize the faulty component, thus helping diagnosis.

The benefits of system monitoring by metrics analysis include:

• Metrics are easily collected on demand.

• No knowledge of the system structure or its dynamics is required beforehand,

therefore it is easy to apply the technique to a wide variety of systems, which

potentially makes the technique scalable.

• Error detection is automated, and human work for diagnosis may be reduced

given information provided by monitoring.

• Computational overhead can be kept low with efficient modeling techniques.

1.2 Thesis Contributions

This work presents a solution to the problem of monitoring the health of complex

software systems and localizing the faults that manifest in these systems. Specifi-

cally, this dissertation makes the following novel and significant contributions:

• We devise a solution framework for error detection and fault localization in

complex software systems. The solution is based on the idea of relationship

modeling of management metrics and is generally applicable for most complex

software systems with management-metrics collection mechanisms.

• We create one solution for the problem based on the modeling of linear rela-

tionships between management metrics, which is the most frequently observed

relationship in management metrics.

3

• We create a second solution based on an information-theoretic modeling of

general relationships between management metrics. This solution can poten-

tially capture all categories of relationships, while being much more compu-

tationally efficient compared with previous solutions.

• We experimentally validate our solutions using a realistic test-bed and a wide

range of faults. We show that our approach is very effective in detecting many

different errors, and significantly better than prior approaches.

• Our linear solution is about five-times faster than the prior approaches, though

it is still O(n2), where nn is the number of metrics being monitored. Our

information-theoretic solution is about two orders-of-magnitude faster com-

pared with the linear solutions and, more importantly, O(n).

1.3 Thesis Organization

This dissertation is organized as follows:

• Chapter 2 introduces the basic terminology we use in the dissertation, as

well as basic information needed to understand this dissertation. In partic-

ular, it covers the basics of management metrics and distributed software

systems, followed by introductions to basic modeling techniques involved in

this dissertation.

• Chapter 3 is a brief survey of the prior research in systems monitoring,

error detection, and fault diagnosis.

• Chapter 4 defines the problem of interest that we solve in this dissertation.

• Chapter 5 presents our solution framework for the system monitoring. It is

also contains examples of related prior work to illustrate how the prior work

fits our solution framework.

• Chapter 6 presents our linear-modeling solution for system monitoring.

It starts with observations of the shortcomings of some previous work and

refines the modeling to better reflect the behaviors of management metrics in

software systems.

4

• Chapter 7 presents our information-theoretic solution for system monitor-

ing. This solution is both more general and more efficient compared with the

linear-modeling solution.

• Chapter 8 experimentally evaluates solutions we created. It also contains

descriptions of our experimental setup and our evaluation methodology.

• Chapter 9 concludes our work and discusses some other related work we

have done and outlines our future work in system monitoring.

5

Chapter 2

Background

Before we propose our formal definition of error detection and fault diagnosis based

on management metrics, and our general four-step solution framework for the prob-

lem, we provide some background information in this chapter and present a brief

survey on current work in this area in Chapter 3.

We first introduce the terminology we use in this thesis, and then provide in-

formation about metrics and how they are collected. An introduction to the J2EE

platform follows, since we use such a platform to evaluate our work. The thesis of

Munawar [65] has a very good introduction to these topics; therefore we reproduce

the relevant material in Section 2.1, 2.2 and 2.3 to make this thesis self-contained.

Then we provide a review of modeling techniques in Section 2.4.

2.1 Terminology

The terminology used throughout this thesis follows that of Avizienis et al. [2]. For

completeness, we reproduce the relevant definitions.

• A system is an entity that interacts with other entities (i.e., other systems such

as software, humans, the physical environment, etc.). These other entities

define the environment of the given system. A system is composed of a set

of components put together in order to interact, where each component is

another system. This recursive definition stops when further decomposition

is either not possible or not of interest.

6

• The total state of a system is the set of the states of its components. The

behavior of a system is a sequence of states through which the system imple-

ments its function.

• The structure of a system is what enables it to generate its behavior.

• The service delivered by a system is its behavior as it is perceived by its

user(s). The part of the system boundary where service delivery takes place

is the service interface. The part of the system’s total state that is perceivable

at the service interface is its external state; the remaining part is its internal

state.

• The function of a system is what it is intended to do and is described by the

functional specification in terms of functionality and performance.

• A service failure is an event that occurs when the delivered service either

does not comply with the functional specification, or when the specification

did not adequately describe the system function.

• An error is the part of the total state of the system that may lead to its

subsequent service failure.

• A fault is the cause of an error.

• A partial failure occurs when a subset of several functions implemented by the

system fails; the system still offers services that have not failed to the user(s).

A component failure represents a fault for its parent system and from the

perspective of interacting components [48].

In addition to the standard definitions above, we use the following terminology

throughout this thesis.

• A model is a description of some characteristics of a system that can be used

to study or predict those characteristics.

• An anomaly is a departure or deviation from the normal or the expected char-

acteristics as determined by a model. It is important to note that anomalies

do not always reflect errors or failures in a system, they may also happen

because of normal, albeit uncommon, events (e.g., a sudden change in user

behavior).

7

• The health of a system is the degree to which its observed behavior and

performance conform with the expected behavior and performance.

• Monitoring is the act of observing a system for the purpose of ensuring that

certain properties are maintained. In our case the purpose is to make sure

that the system is free of errors and failures. We use the terms monitoring

and error detection interchangeably.

• Diagnosis is the process of identifying causal factors underlying some ob-

served anomaly. We use the terms diagnosis, problem determination, fault

localization, and root-cause analysis interchangeably.

• The target system is the system to be monitored.

• A monitoring system is the entity that monitors the target system. A mon-

itoring system is often part of a larger managing system, whose role extends

to other system-management functions.

2.2 Management Metrics

A management metric is a variable measuring an attribute or a parameter of a

managed entity. An attribute either represents an instantaneous property of the

monitored entity (e.g., free-memory size) or an aggregation of the underlying mea-

sure over a specified time interval (e.g., CPU utilization).

Metrics differ according to the scale in which they are measured. A variable

with nominal or categorical scale takes values from a set of exclusive, unordered

values (e.g., male/female). A variable with ordinal scale takes a value from a set of

exclusive, ordered values (e.g., low/medium/high). We can determine the relative

order of the values, but the difference between any two values is undefined. A

variable with interval scale takes values for which differences can be computed.

However, the values start from an arbitrary point (i.e., there is no notion of a

zero value). Temperature measured in Fahrenheit is an example for an interval-

scale variable. A ratio variable is similar to an interval variable with the added

property that zero means that the underlying attribute or parameter is nil (e.g.,

travel speed). Our work focuses on metrics which have an interval or a ratio scale;

these metrics represent the majority of metrics exposed by software systems.

Management frameworks such as the Simple Network Management Protocol

(SNMP) [8] refine the classification of metrics. In SNMP, for example, a counter is a

8

non-negative integer that increments to a maximum and rolls over to zero. A gauge,

on the other hand, is a variable that can increase or decrease subject to a minimum

and a maximum. In addition, it is not necessary for the measurement of a metric to

only be described by a single numeric value. The measurement may be represented

as an object with several attributes. The Java Enterprise Edition Management

Specification [74] defines various types of objects to represent performance data.

A TimeStatistic object, for example, reports the number of times an operation

occurs, the total time taken for the occurrences, and the minimum and maximum

times observed.

Metric measurements are recorded in variables which may be read and updated

either by the managed or the managing entity. The monitoring logic or instrumen-

tation that updates these variables is often part of the system structure. In cases

where such instrumentation does not exist, it is possible to statically or dynamically

instrument components of a software system.

Management frameworks such as SNMP [8] and JMX [80] specify encoding,

transport protocols, and mechanisms to collect metric measurements. In general,

two mechanisms exist to collect the metrics. A managing entity can use polling

(pull mechanism) to read the variables when needed. Alternatively, the managed

entity can send notifications (push mechanism) containing the measurements to the

managing entity.

2.3 Component-Based Distributed Software Sys-

tems

To facilitate development and enable scalability, software systems for network-based

services are typically built using component-based frameworks. Many standards for

implementing component-based distributed systems exist, including Common Ob-

ject Request Broker Architecture (CORBA) [66], Java Platform Enterprise Edition

(Java EE) [79], Distributed Component Object Model (DCOM) [52], and .Net [50].

These frameworks allow components of the same system to be distributed across dif-

ferent machines. These frameworks entail the use of middleware that takes care of

issues such as remote communication, data exchange, object naming, registration,

discovery, object life-cycle management, security, etc.

These component-based software systems are typically organized in tiers, each

addressing specific needs. For example, a basic system to support an online store

9

includes a data tier comprising a database management system for persisting data,

a business logic tier comprising an end-user application and an application server

providing the execution environment for the application, and a presentation tier

comprising an HTTP server and other software to render results of service invoca-

tions. In addition, each tier may be hosted on separate machines, each running its

own operating system.

2.3.1 The Java Platform, Enterprise Edition

One of the most popular frameworks to implement distributed, component-based

software systems is Java EE. The experimental aspect of this work only involves

Java EE; nevertheless, we believe that the insights that our work provides extend

to the other component-based frameworks.

Java EE specifies application program interfaces (APIs) and interactions for

basic services needed for distributed and enterprise computing. It also defines in-

terfaces, roles, and deployment details of components in the framework. A simple

Java EE-based system is illustrated in Figure 2.1. A Java EE server is a runtime en-

vironment for executing Java EE applications. It consists of component containers,

which take care of the components’ lifecycle, thread management, concurrency con-

trol, resource pooling, replication, access control, etc. It also implements various

common services and libraries. A Java EE server allows the execution of multi-

ple applications or many instances of the same application concurrently. Many

such servers exist on the market, e.g., IBM WebSphere, BEA WebLogic, Oracle

Application Server, JBoss, and Jonas.

A Java EE application is a combination of many specialized components. A

typical Java EE application can be accessed via its web interface by making HTTP

requests, by using native Java calls, or by employing other means such as web-

service calls. On the server side, HTTP requests for dynamic content are handled

by web components such as Java Servlets or Java Server Pages (JSP), which are

managed by a web container. The application logic concerned with the processing

of business data is implemented in Enterprise Java Beans (EJBs). These EJBs

can be accessed using a remote method invocation (RMI) protocol. The Java EE

specification classifies EJBs into three different types. A session bean is a compo-

nent that acts temporarily on behalf of a client. This component can be stateful

(e.g., keeping track of a customer’s shopping cart) or it can be stateless (e.g., only

computing a formula given some input). An entity bean is an EJB that provides a

mapping to persistent data, typically a row in a database table. A message-driven

10

Figure 2.1: Overview of a Java EE-based architecture

bean allows an application to provide asynchronous functionality. For example, such

a component can accept a customer order, adding it to a queue of pending orders;

when resources become available, the orders are removed from the queue for pro-

cessing. Web components and enterprise beans execute in containers, which provide

the linkage between components and services and functionality implemented by the

underlying runtime. Java EE applications typically require connection to back-end

data sources, which may include database servers or legacy systems.

Servicing user requests in a typical Java EE-based system entails processing by

many components of different types. A typical flow of execution may include the

following: a client requests a service through a web page; the request is assigned

to a thread at the server, which executes a Servlet. The Servlet code retrieves a

reference to a Session EJB component and executes one of its methods; the Session

EJB causes one or more Entity EJBs to either be instantiated or fetched; the data

mapped to the Entity EJBs is retrieved by using a connection to the back-end

database; once the data is fetched at the session EJB, it is processed, and then

returned to a JSP component; in the JSP, the results are put in HTML format and

sent to the client. While servicing the request, the components involved may utilize

common services such as transactions or logging.

11

Figure 2.2: Monitoring infrastructure of a Java EE-based system

2.3.2 Monitoring Infrastructure

Software systems expose much data to enable their monitoring and management.

Each subsystem can be monitored via a multitude of metrics and events, each

detailing some aspect of its state, behavior, or performance. Much of the available

data can be accessed through predefined mechanisms such as logging, tracing, or

polling of management interfaces. Additional data can be collected on-demand

at runtime by instrumenting parts of the system. Monitoring a software system,

therefore, entails dealing with potentially large volumes of data. A glimpse of

the amount of the data available can be illustrated by considering the monitoring

infrastructure of a basic Java EE-based system. Figure 2.2 presents an overview

of some important sources of information available from various parts of such a

system. Below, we describe the main subsystems, the type of data they provide,

and how such data can be collected.

A software system requires an operating system to function. When distributed,

multiple operating systems support the software system. Most commodity operat-

ing systems provide mechanisms and tools to monitor resource usage, user activity,

process behavior, etc. In Unix, for example, metrics are exposed through a virtual

file system mounted at /proc. Utilities such ps, vmstat, iostat, and netstat

make access to the data even more convenient. Similarly, the Windows Manage-

12

ment Instrumentation (WMI) [53] allows for the monitoring of many aspects of a

system when using Windows. Besides these conventional monitoring facilities, much

more data can be collected via dynamic instrumentation [7, 55, 81] and dynamic

insertion of interceptors between components via hot-swapping [72].

Software systems commonly rely on runtime environments executing above

the operating system layer. These runtimes not only make it possible to de-

velop portable software but also implement features to improve robustness and

performance. Examples of these features include sandboxing, automatic memory

management and exception handling, runtime code optimization and replacement,

etc. Such runtimes include the Java Virtual Machine (JVM) [75] and Microsoft’s

Common Language Runtime (CLR) [54]. A Java EE-based system requires a JVM

to execute. The JVM provides different interfaces for monitoring. The JVM Tool

Interface (JVMTI) [76] enables debugging as well as profiling of Java applications.

A JVM can also be monitored via a standardized management interface, namely

the Java Management Extensions (JMX) [77] interface. JMX allows data related

to various aspects of the JVM, including the number and state of threads, memory

usage, classes instantiated, and garbage collection to be accessed easily. The JMX

technology is much more generic, as it provides a common management interface

for Java applications to make monitoring data available and expose configuration

interfaces. It also defines a scalable notification-based architecture for monitoring.

In addition, it is possible to instrument Java bytecode dynamically at runtime (see,

e.g., [78]). Monitoring probes that were not considered at design and implementa-

tion time can now be retrofitted when the need arises. The availability of runtime

bytecode instrumentation in the JVM allows Java applications to take advantage

of approaches like dynamic aspect-oriented programming (see, e.g., [32]), whereby

monitoring aspects can be added dynamically. This represents another potential

source of monitoring data.

Most Java EE-based systems require a database management system (DMBS)

to manage persistent data. These DBMS expose a rich set of monitoring data to

facilitate their tuning and maintenance (see, e.g., [27]). Examples of the available

data include details on query execution, table activity, application connections,

I/O, threads, memory, storage, and locking.

Java EE applications are typically accessed via their web front-end. As such,

HTTP servers are the first subsystems to handle user-requests. They usually serve

static content (e.g., images) directly, but redirect requests for dynamic content to

an application server. They may also provide authentication and encryption ser-

vices. HTTP servers also make state, performance, and error-related data available

13

through log files or monitoring interfaces. An HTTP server usually logs requests

received, return codes, execution time, etc. It is also possible to query the server’s

state (e.g., to find the number of active worker threads, number of connections alive,

CPU usage per worker thread, etc.). For example, the mod status module [1] of

the Apache HTTP server provides a mechanism for collecting such data.

The application server lies at the center of a Java EE-based system, as it pro-

vides the middleware and the runtime environment to execute the application logic.

Significant events (e.g., exceptions) which occur during a server’s execution are typ-

ically logged or sent in the form of notifications to registered listeners. There is

a wide range of state, performance, and error-related data that can be collected

by querying provided interfaces (e.g., see [31]). Most Java EE servers are JMX-

enabled [80], which allows a management entity to monitor and manage them.

Many subsystems of a Java EE-based system may be shipped with embedded in-

strumentation that makes more detailed information available on a per-request

basis (e.g., using the ARM API [43]).

A Java EE server is itself organized into multiple subsystems, which include

component containers (e.g., web and EJB) and modules for transactions manage-

ment, database connection management, thread pool and object pool management,

etc. Each such subsystem exposes data related to the state, behavior, and perfor-

mance of the subsystem. A Java EE application and its components can also make

fine-grained monitoring data available. Because of standardization, much moni-

toring data related to applications is generic (i.e., applies to all applications that

conform to the Java EE specification). Still, application-specific monitoring can be

made available by instrumenting the application. Data on web components, such

as Servlets, may comprise the number of requests being served over time or at any

time instant, number of errors encountered, response time, etc. As with EJBs,

depending on the type of bean, different aspects can be observed. For example,

one could monitor how many instances of each bean type have been created, the

number of active beans, the number of free beans available in various pools, average

response time per bean, the number of times the various methods of a bean are

called, etc. For entity beans, which are usually mapped to table rows, one could

check the number of times bean data is stored to or loaded from the database and

the time taken for storing or loading the bean. Similarly, for message beans, one

could keep track of the number of messages handled by the bean. Data as detailed

as the time taken by a particular remote method of an EJB can be collected.

As illustrated above, even a basic Java EE-based system can produce a large

amount of monitoring data. A few hundred metrics may be available from the appli-

14

cation server and the DBMS for an application such as an online store. Production-

level Java EE-based systems are generally larger and more complex, comprising

clustered web and application servers, replicated databases, load balancers, etc. Ef-

fectively monitoring such systems is very challenging. The difficulty lies in using the

data generated by these systems to good effect; that is, for quickly detecting errors

and failures and for localizing their causes. Furthermore, collecting all this data

would not only adversely affect performance, but would create significant overhead

for handling the collected data. An important aspect of the challenge is to contain

this overhead, while not sacrificing effectiveness of problem determination.

2.4 Modeling Techniques

In this section we introduce the basics of the modeling techniques we used in system

monitoring with management metrics.

2.4.1 Linear Regression

Linear regression find the best estimation of a target variable given other explana-

tory variables by assuming there is linear relationship between these variables.

Given a set of pair of values {xi, yi : i = 0..n}, the linear regression model for the

two variable is thus:

yi = ŷi + ǫi (2.1)

ŷi = β0 + β1xi (2.2)

where x and y are the two variables assumed correlated, and the β = (β0, β1)

are the model parameters. yi is considered as the sum of its theoretic value ŷi and

an error ǫi. The errors, ǫi, is assumed to be independent and identically normally

distributed.

Finding the parameter of best fit can be done by ordinary least squares regres-

sion, which find β’s estimation β̂ such that the sum of squared residuals
∑

(yi − ŷi)
2

is minimized.

The solution to this optimization is easily computed with analytical formulas:

15

β̂1 =

∑

(xi − x)(yi − y)
∑

(xi − x)2
(2.3)

β̂0 =
1

n
(
∑

yi − β1

∑

xi) (2.4)

where

x =

∑n
i=0 xi

n
(2.5)

and

y =

∑n
i=0 yi

n
(2.6)

The goodness of fit can be measured using the coefficient of determination R2,

which represents the proportion of variance in the dependent variable that is cap-

tured by the model. This measure is computed by:

R2 = 1 −
∑

(yi − ŷi)
2

∑

(yi − ȳ)2

R2 can be shown to be the same as the square of a linear similarity measure Pear-

son product-moment correlation coefficient, r(X, Y), which measures the strength

of the linear relationship between X and Y :

r(X, Y) =
cov(X, Y)

σxσy
(2.7)

cov(X, Y) = E((X − E(X))(Y − E(Y))) (2.8)

σx =
√

cov(X, X) (2.9)

σy =
√

cov(Y, Y) (2.10)

where E()̇ is the expectation, cov(X, Y) is the covariance of the random vari-

ables X and Y . σx and σy are the variances respectively. Because r(X, Y) ranges

from -1 to 1, its square (i.e., R2) is usually adopted as a similarity measure.

16

2.4.2 Information Entropy

In this section we provide a brief overview of the concepts of information entropy

involving our monitoring.

The information entropy introduced by Shannon [71] measures the uncertainty

or unpredictability of a random variable. For a discrete random variable X, the

entropy is given by:

H(X) = Ep ln
1

p(X)
(2.11)

= −
n

∑

i=1

p(xi) ln p(xi)

where X takes values from the set {x1, x2, ..., xn}, Ep refers to the expectation

with respect to the probability distribution of X characterized by the density func-

tion p. If p(X = xi) = 1 and p(X = xj) = 0 for any i 6= j, i.e., there is no

uncertainty about X, then H(X) is zero. Otherwise, H(X) takes a positive value.

H(X) is at its maximum when all the outcomes xi are equally likely.

Conditional entropy measures the uncertainty of a random variable Y given

another random variable X. It represents the remaining uncertainty of Y knowing

values taken by X. It is defined by:

H(Y |X) = Ep ln
1

p(Y |X)
(2.12)

= −
n

∑

i=1

m
∑

j=1

p(xi, yj) ln p(yj|xi)

If Y could be determined by X, i.e., there is a function f such that p(Y = f(X))

approaches 1, then the conditional entropy H(Y |X) approaches zero.

Mutual information (MI) measures the reduction in uncertainty of a random

variable Y given another random variable X. This reduction represents the amount

of information either variable provides about the other. It is defined by:

I(X, Y) = H(Y) − H(Y |X) (2.13)

17

However, it is impractical to use either conditional entropy or MI as a measure

of the similarity between X and Y . Conditional entropy is not symmetric, i.e.,

H(Y |X) is usually not equal to H(X|Y). While MI is symmetric, its absolute value

is not necessarily comparable across random variables. MI is influenced by H(X)

and H(Y), which may have different maximal values. Strehl et al. [73] developed

a normalization for MI, called Normalized Mutual Information (NMI), to address

these shortcomings. It is defined by:

NMI(X, Y) =
I(X, Y)

√

H(X)H(Y)
(2.14)

For any random variable X and Y , NMI has the following nice properties:

1. 0 ≤NMI(X, Y) ≤ 1

2. NMI(X, Y) = NMI(Y, X)

3. If X and Y are independent, NMI(X, Y) = 0

4. If Y = f(X), NMI(X, Y) =
√

H(Y)
H(X)

≤ 1, for any function f

5. If Y = f(X), NMI(X, Y) = 1, for any invertible function f

Consider two random variable P and Q with H(P) = H(X) and H(Q) = H(Y).

We have

NMI(P, Q) =
I(P, Q)

√

H(P)H(Q)
=

I(P, Q)
√

H(X)H(Y)
(2.15)

since

I(P, Q) = H(Q) − H(Q|P) = H(Y) − H(Q|P) (2.16)

We have

NMI(P, Q) =
H(Y) − H(Q|P)
√

H(X)H(Y)
=

√

H(Y)

H(X)
− H(Q|P)

√

H(X)H(Y)
(2.17)

Therefore, we can conclude that NMI(P, Q) will increase as H(Q|P) decreases.

When H(Q|P) is zero, NMI(P, Q) will reach its maximum
√

H(Y)
H(X)

. When H(Q|P)

reach its maximum H(Q), NMI(P, Q) will reach its minimum 0. In other word,

the less uncertainty (measured by the entropy) one random variable have when the

other random variable is known, the higher NMI of the two random variables are,

given that the uncertainties of both variables are fixed. Therefore, NMI provides a

good measure of the relationship between two variables, regardless of the specific

form of the relationship.

Given the background information provided, in the next chapter we provide an

overview of the prior research on monitoring complex software systems. Much of the

18

prior work has been applied to systems built using component-based frameworks

such as Java EE.

19

Chapter 3

Related Work

Two observations are made when surveying related works in research to monitor the

system by analyzing the metrics. First, people do not generally spend efforts differ-

entiate the metrics according to their physical origins in the system. In other words,

people do not involve system-specific knowledge when study the metrics. The reason

is clear given the idea of autonomic computing: minimal system-specific knowledge

is known so that the solution could be easily migrated to different environment or

systems. Therefore, all metrics collected are considered equally informative until

specific modeling techniques are applied, and the nature of the metrics are usually

not taken into consideration.

The second observation is that efforts are usually made on modeling and study-

ing the correlation between metrics, instead of on the metrics themselves. The

reason is that the actual value of most metrics are neither stable nor following any

specific or easily identifiable patterns. For example, The readings of metrics may

simply fluctuate when workload changes, which is very common for most software

systems. However, the workload is usually unpredictable, can fluctuate arbitrarily.

For instance, the sudden increase of the CPU usage of an application server may be

the normal response of increasing incoming requests. In other words, just focusing

on the CPU usage itself does not directly provide much useful information on the

healthy of the system. On the other hand, the relationship between metrics in the

system may be much more stable and may reflect more interesting information of

the system.

20

3.1 System Monitoring Based on Linear Regres-

sion Models

A large proportion of previous work are builds on the premise that a correctly func-

tioning enterprise-software system exhibits long-term, stable correlations between

many of its monitoring metrics [22, 34, 33, 62, 63, 64]. In addition, a large propor-

tion of them focus on linear correlation between management metrics because such

correlation is widely observed between system metrics and the modeling is simple

and effective.

Diao et al. [17] have proposed a framework whereby multiple linear regression

models are created for metrics of interest. They use the ordinary least square

regression to establish models as

y = b0 + b1x1 + b2x2 + · · ·+ bnxn (3.1)

for system modeling. However, they only focused on the finding of correlation

models, and did not propose further steps for system monitoring and fault diagnosis.

Later, Munawar et al. [62, 63, 64] propose a full framework to quantitatively

describe the underlying correlations between metrics and further use them to dis-

cover faults in the system. To identify stable linear correlations, Munawar collect

metric data for a sufficiently long period to capture a representative behavior of the

system. They then perform a pairwise correlation test on this data to find stable

linear correlations, and further validate them using cross validations.

In the prior work [64] they rely on the coefficient of determination,R2, to identify

stable linear correlations. They use the Cook’s Distance (Cook’s D) [15] regression

diagnostic to check whether predictions of the models hold for new samples. When

the diagnostic value, which is computed using the model’s prediction and the cor-

responding observed sample, exceeds a predefined threshold, the associated linear

correlation is considered to have been violated.

Therefore, identification of stable linear correlations consists of two separate

steps. First, they carry out experiments under normal condition, and collect sam-

ples of metrics. Then they pair-wisely study the samples, and retain those correla-

tions with high R2 as potential models. Second, they carry out more experiments

and collect a few more samples and check if these new samples are explained with

the models discovered. If more than a threshold portion of new samples are suc-

cessfully explained, they consider the models stable.

21

Once the stable metric correlations are identified, the models can be used to

detect errors and failures, and help in root-cause analysis by limiting the fault

to a few components. To detect errors in the system, the status of all identified

models is checked to determine how many report outliers. An error is suspected

when a significant portion of all models report outliers, usually defined by another

threshold.

The diagnosis is performed by assigning anomaly scores to metrics, ranking

them, and then, retrieving components to which the metrics belong. It is assumed

that the metric-to-component mapping is known. The more invariants associated

with a metric that are violated, the higher the anomaly score. The diagnosis result

short-lists a set of components which are deemed most likely to be faulty. The

presumption of this approach is that faults often cause many metrics of the affected

component to misbehave, which in turn make it rank high.

The problem with this solution is that it relies on many thresholds to work.

Moreover, there is little guidance on how to set the right threshold. First of all,

correlation candidates are identified by the threshold of R2. In practice, people

usually consider somewhere from 0.6 to 0.9 as the minimal R2 for a pair to be con-

sidered linearly correlated. In [64], the threshold is set to 0.6 without any reasoning

process. Second, to determine if a new sample fits a model, they need threshold

for the diagnostic Cook’s D, which is set to 2 without reasoning or explanation.

However, these thresholds can still be justified by a lot of experience and relevant

researches. The most critical threshold is the next one: to determine if an error

should be suspected, the number of models should exceed a proportion of the total

models. The proportion is another threshold, and is set to 0.5% in the evalua-

tion. This threshold is hard to pick beforehand, and it is possible that the proper

thresholds may be different for different applications. On the other hand, there is

no sensitivity analysis for these thresholds so we do not know how critical these

thresholds are.

3.2 System Monitoring Based on Other Linear

Models

Jiang et al. [34] developed similar approaches to Munawar. While most procedures

are similar, their mathematical tools are a bit different: instead of simple linear

regression, they use auto-regressive regression with exogenous Input (ARX); they

22

develop a fitness score that is similar to R2 to determine the fitness of their models.

They use Jaccard coefficient to do diagnosis, based on the same idea that faults

often cause many metrics of the affected component to misbehave.

The first problem with cross autoregressive models is that it is much more costly

compared with simple linear models. In system monitoring, determining invariants

over all metrics is O(n2) times the cost of building one model, where n is the number

of metrics. Building an ARX model is much more costly compared with building

a simple linear regression model. Therefore, Jiang et al. also make great efforts in

developing approximate algorithms in terms of reducing the number of correlation

tests [35]. Zhang et al. also proposed another approximate algorithm in [88].

The second problem is similar to that of Munawar’s work. Jiang’s work also

relies on a number of thresholds to work. Moreover, they need to choose proper pa-

rameters just to establish the ARX model. The ARX model describes the following

relationship between the input and output:

y(t) + a1y(t − 1) + · · ·+ any(t− n) = b0x(t − k) + · · · + bmx(t − k − m) (3.2)

where [n,m,k] is the order of the model and it determines how many previous steps

are affecting the current output.

Therefore, there is a problem to choose the right [n,m,k] to establish the model.

However, there is no evidence which order is suitable. Therefore, they set a range

of the order [n; m; k] rather than a fixed number to learn a list of model candidates

and then a right model is selected from them according to their performance in

experiments. If the order range is set too small, the right model may not be

included; on the other hand, if the order range is set too large, over fitting may

become a problem and the computational cost will increase by multiple times.

In [34], they use 0 ≤ n, m, k ≤ 2 as the range of the order, which may be due to the

limit of computational cost. The method is also suffered from the threshold-picking

problem as the one for Munawar’s solution.

3.3 System Monitoring Based on Non-linear Mod-

els

Non-linear modeling techniques (see e.g., [22, 64]) are also studied in the hope that

they may provide better metric coverage, and discover useful correlations which are

in forms other than linear.

23

These works have very similar procedures as methods in section 3.1 and 3.2:

collect metrics, apply a specific model, retain models with fitness score passing

a threshold, test new samples with retained models and predict faults, diagnose

based on anomaly scores which usually comes from variants of Jaccard coefficient.

In chapter 5, we will abstract these procedures into four steps.

Munawar et al. [64] try Simple Linear Regression with transformed data in their

work to deal with non-linear correlations. They use the model of the following form:

T (y) = b0 + b1T
′(x) (3.3)

where T ()̇ and T ′()̇ are transformation used in analysis. It is, however, very

critical to find the proper transformation beforehand. In their studies, they try a

few simple functions like logarithm(T (x) = log(1 + x)), inverse(T (x) = 1
1+x

) and

square root (T (x) =
√

x). Each type of models may describe a small portion of all

non-linear relationships.

Another attempt made by Munawar et al. [64] is the use of Locally-Weighted Re-

gression, which minimizes the locally weighted sum of squared residuals
∑

w2
i (yi −

ŷi)
2. The weight wi = K(D(xi,xquery)

h
), where K()̇ is some weighting function, xquery

is the independent variable, D()̇ is the distance, and h is the kernel width set

beforehand.

Gaussian Mixture Models is another modeling technique proposed [22] to model

the non-linear relationship between metrics. They prefer this model because they

have observed that data points for a few metrics pairs can be clustered together

around several centers with compact cluster size. Therefore they apply the specific

Gaussian Mixture Models to capture such behaviors:

p(zi|θ) =
G

∑

j=1

αjpj(zi|µj, Σj) (3.4)

where the probability of observing data points zi = (xi, yi) is considered as the

sum of observing them in G Gaussian-distributed clusters. µj, Σj are the parameters

for multi-dimension Gaussian distribution, and αj ’s are the unknown proportions

of these mixtures.

In these paper the above models are found to be useful in detecting faults.

However, most of them still suffer from a few problems to be practically efficient.

24

In the case of SLRT, for example, usually only a few functions like logarithm, in-

verse, and square functions are involved. In fact, most of these techniques are only

modeling some specific form of relationships. In addition, these techniques usu-

ally require careful parametrization. For example, GMM and LWR both require

appropriately setting critical parameters for the modeling to be effective. GMM

requires finding the right number of clusters to model, and LWR requires choosing

the right value for selecting the smoothing parameter. It is not clear if such pa-

rameter selection can be performed before the model is used or even if it will be

robust.

Also, techniques such as GMM and LWR are computationally costly. Learning

GMM is generally done using algorithms such as Expectation Maximization [86],

with a cost of approximately O(sck) for each model, where c is the number of

clusters, s is the sample size used for learning, and k is the number of iterations

required for convergence. For an LWR model, each prediction requires finding the

nearest neighbors in order to fit a local regression. The cost of this is approximately

O(s2log(s)). Because a large number of such models may be identified for a system,

their use would cause high overhead. Considering the limited type of correlation

these models cover, the gain of using these models in system monitoring may be

costly.

Bulej et al. [5] proposed clustering the recorded response times with the k-means

clustering algorithm and then compare the performance between two tests. The

accuracy of this method depends highly on the quality of the clusters generated.

Malik et al. [49] use Principal Component Analysis to discover clusters of coun-

ters that are correlated to each other. These clusters are also used to detects per-

formance deviations among subsystems. In our view, this is also localizing faults

in a new performance test that show anomalous behaviors.

3.4 Fault Diagnosis

Fault diagnosis has traditionally required that all managed entities, events they

generate, and dependencies among entities to be specified in advance. For example,

Yemini et al. use the information of the system structure to establish the causality

graph to monitor and analyze systems [87]. Brown et al. [4, 24] in their work

analyze correlation between metrics, and then propose procedures to infer the root

cause giving the dependency graph manually. However, this is costly and often

impractical. In general, the more information is required by an diagnosis system,

25

the less likely the system may be applied to a wide variety of systems. Even if

these detailed system information is available, keeping it up-to-date itself would be

challenging or at least costly.

Fault diagnosis is also possible when detailed negative symptoms can be ob-

served and reported. For example, Tang et al. [82] develop an evidential overlay

fault diagnosis framework to diagnose faults in overlay networks. They first identify

a set of potential faulty components based on shared end-user observed negative

symptoms, then dynamically constructs a plausible fault graph to locate the root

causes of end-user observed negative symptoms. This work has the advantage that

in a network environment, many negative symptoms could be observed and reported

from individual sources, which is not present in our target systems.

More recent approaches to diagnosis leverage statistical and machine learning

techniques to somehow automate the process. A few early attempt was made by

Chen et al., who point out that traditional problem determination techniques rely

on static dependency models that are difficult to generate accurately in today’s

large, distributed, and dynamic application environments such as e-commerce sys-

tems [11]. Instead, they propose the solution by dynamically tracing real client

requests through a system, and for each request they record its believed success

or failure and the set of components used to service it. They then use Jaccard

coefficients to measure the distance of components, and use a hierarchical clus-

tering method to cluster components together. The distance of clusters they use

in the method is the unweighted pair-wise arithmetic average of distance between

components.

The method is shown to be working, and two years later, they keep the same

idea but use decision trees as the new tool to process the information [10] and

improves their work. However, they suffers from two drawbacks: first, tracing is

expensive [56], and may add additional burden on the system; second, they have

an orthogonal subsystem attempting to detect whether these client requests are

successfully completing, which may not always be accurate. It is not evaluated

how much burden it adds to the system, nor how reliable the orthogonal subsystem

labels each request in their paper [10, 11].

Another work also use decision trees to analyze call path pattern to detect

application-level failures. Their work is based on the assumption that the probabil-

ity of certain components should be stable in call paths. Thus, they use chi-square

test to determine if a call path is normal [45].

Our work, however, does not assume availability of trace-based path information

26

because the cost of collecting such information is prohibitively high. However,

compared with error detection, fault diagnosis by studying metric correlations is

more difficult. The use of correlation modeling has been shown to provide useful

information for fault diagnosis [9, 33, 62, 64]. Jiang et al. [33, 62] proposed using

Jaccard coefficient for diagnosis without evaluating its accuracy. The basic idea is

to study the correlation between the models’ states and the actual system state. If

many models involving a component show anomaly when the system state is not

normal, and many models involving that component do not show anomaly when

the system state is normal, then the component will receive a high anomaly score.

In earlier work [62, 64] Munawar proposed a similar idea of calculating anomaly

score; they assessed the accuracy of diagnosis with correlation models using fault

injection in application components. In that work, they show that for many faults,

they can have certain form of diagnosis, which consists of a ranked list of compo-

nents likely to be faulty; in many cases they successfully have the faulty component

in top 10 suspected components out of more than 30 components. However, it

cannot pinpoint a single component as faulty or identify a specific fault.

3.4.1 Fault Diagnosis by Supervised Learning

The approaches discussed thus far are all unsupervised: only the normal behavior

of the target system is learned beforehand. Therefore they are generally more

available than the approaches with supervised learning, which requires data from

faulty systems.

However, since it is common seen that the same problem may re-occur many

times, and sometimes the faulty database is available, one other direction of fault

diagnosis takes these advantage by applying pattern matching techniques to dis-

cover known faults. Once a fault has happened before and been solved, databases

of knowledge of this fault may be established, and the fault may be recognized

and diagnosed in the future. We do not attempt this type of fault diagnosis algo-

rithms in this work because of the difficulty to classify different faults beforehand

and to collect representative data with each type of fault. However, since this may

be worth considered as a future work direction, we introduce a few representative

works in this area in this section.

Brodie et al. show that a simple matching procedure works in detecting the

most common problems by mapping call-stacks to faults, and resolving anomalous

events based on knowledge from the database([3]).They generate failure symptoms

27

automatically with a simple algorithm, which simply try to find the longest identical

piece of stacks among all stacks with each identified fault, with some adjustment

for the location and relative length of the stacks. This is a very good try on this

direction, however, the weakness is obvious: their approach is designed specifically

for failure data that is in the form of program call stacks. As a result, their matching

algorithm cannot be applied to other forms of data.

In a supervised approach, the system state needs to be classified a priori and

then provided as input to the modeling technique (See e.g., [11, 12]). Creating

and keeping such knowledge base up-to-date is difficult. Despite the requirement,

supervised learning can usually provide more accurate information in fault diagnosis

for the faults that have been seen and studied. Not surprisingly, problems that have

been resolved in the past should be detected and diagnosed more accurately and

faster when encountered again. Cohen et al. [12, 13] propose an approach whereby

Naive Bayesian models are used to correlate service-level objective (SLO) violations

with low-level system metrics. However, the use of Naive Bayesian models in their

work leads to the assumption that all metrics are independent given the system

state, which is unlikely to be a good assumption. The system is complicated, and

there are many dependencies and connections between its components. Therefore,

it is unlikely that all metrics would be independent if the system is a normal state.

Recent attempts combine both the benefits of analytical models to describe

metrics correlations and machine learning for recurrent faults [19, 36]. Both works

first build a number of correlation models between metrics, and then use machine

learning techniques to classify the system state into normal or with known faults.

Ghanbari et al. [19] use Gaussian Mixture Models and Bayesian networks; Jiang

et al. [36] use linear models and neural networks. They have different testbed

therefore their evaluation reported in the two papers are not comparable. However,

both pieces of work show that their ideas managed to help diagnosing recurrent

faults.

28

Chapter 4

Problem Definition

We solve the problem of monitoring software systems in this thesis. More specifi-

cally, we work on the error detection and fault diagnosis in complex software sys-

tems. Before we give our definition of error detection and fault diagnosis we would

like to study, we first outline the assumptions about what knowledge we know about

the system, and what data is available during our monitoring. These information

can be viewed as the input of the detection or diagnosis algorithms, and thus de-

termines how well the algorithm could perform. Intuitively, the more information

we have, the easier our algorithm could give accurate error information. On the

other hand, some information are easier to access and some are harder to access.

The more information the algorithm requires, the more difficult to collect these

information and apply these algorithms to a wide range of software systems.

We divide information available to three groups according to the difficulty to

obtain these information.

1. Level I: management metrics(defined in Section 2.2) collected from normal

systems and monitored systems

2. Level II: structure of studied systems and/or relationship between system

components and metrics

3. Level III: management metrics collected from systems with known faults

present

The availability of level I information is a basic assumption of our work. Tools

to collect management metrics is a reasonable assumption. Also, carrying out

experiments to collect samples that are from a fault-free system is also easy as

long as the target system can be running for a period which is believed to have no

fault. Therefore our work assume that at a reasonable and acceptable cost, we are

29

provided with management metrics collected before we start our work.

The level II information is more difficult to collect. Since software is complex

and dynamic, detailed system structure information may not be easily available.

Sometimes even if the information is available, the system structure may frequently

change so the information may be out of date easily. On the other hand, some high

level system structure is readily available. For example, if a system consist of several

machines connected by a network, then the system structure is clear in the machine

level. If we assume the knowledge of the system structure, we usually also know the

relationship between metrics and components. Such information is not enough for

root-cause analysis for faults, but may enable fault localization, since we may have

observed different metrics contributed differently to the disturbance of correlation

existing in a system. Therefore we assume a high-level relationship map between

metrics and components is provided when we talk about fault diagnosis in terms of

fault localization.

The level III information is least available. For faults that never happened be-

fore, it is virtually impossible to access level III information. However, sometimes

faults tend to reoccur, and for such faults some research labs may have database

for past faults, therefore it may be available sometime. The benefit of availability

of level III information is obvious: with level III information one can apply pattern

matching techniques to quickly identify known faults. Therefore, level III informa-

tion could potentially enable root-cause analysis of faults in a system. However,

due to the difficulty to classify faults beforehand and the difficulty to collect the

management metrics samples with real faults, we do not assume the knowledge of

such information throughout this thesis.

After having assumptions of our knowledge of the system, we outline the system

monitoring problem and the scope of our studies in Section 4.1 and Section 4.2.

4.1 Error Detection

Assume all metrics are indexed by the set {1, 2, . . . , k}, the metrics sample we col-

lected at any time t is stored in a vector with k dimensions: mt = (mt1, mt2, ..., mtk)
T .

If we collect samples from time 1 to time T , we have T vectors and they form a

matrix M:

30

M =

m11 m21 . . . mT1

m12 m22 . . . mT2

m13 m23 . . . mT3

.

m1k m2k . . . mTk

.

The system state can be given by a binary vector S = (s1, s2, . . . , sT) such that

st = 1 if an error is present at time t and st = 0 otherwise. The S is correspond to

M if both are for the same period of time in the same system.

If the system is in a health state from time 1 to time T , the S associated with

M is simply S = (0, 0, . . . , 0)T . M is our knowledge of normal behavior of metric

samples. Another monitoring in a similar system with unknown system state from

time T ′ + 1 to T ′′ yields another metrics matrix M̂ :

M̂ =

m(T ′+1)1 m(T ′+2)1 . . . mT ′′1

m(T ′+1)2 m(T ′+2)2 . . . mT ′′2

m(T ′+1)3 m(T ′+2)3 . . . mT ′′3

.

m(T ′+1)k m(T ′+2)k . . . mT ′′k

.

An error detection algorithm with only Level I information is an algorithm which

takes only M and M̂ as inputs, and output a binary vector Ŝ = (ŝT ′+1, ŝT ′+2, . . . , ŝT ′′)

such that ŝt = 1 if an error is claimed at time t and ŝt = 0 otherwise. The pre-

assumed knowledge is that the S correspond to M is S = (0, 0, . . . , 0)T .

A error detection algorithm with level III information is an algorithm which

takes M , it’s corresponding state vector S, and M̂ as inputs, and output a binary

vector Ŝ = (ŝT ′+1, ŝT ′+2, . . . , ŝT ′′) such that ŝt = 1 if a fault is claimed at time t

and ŝt = 0 otherwise.

Usually, level II information does not help error detection much. Therefore we

make no assumption of error detection with level II information.

4.1.1 Measurement of Detection Quality

Determine if a system is in a normal state or in an anomaly state is a typical pattern

recognition problem. Therefore, the quality of error detection is characterized by

the recall and precision of the classification. We use the standard terminology as

presented in Salfner et al.’s survey [70] throughout this thesis.

31

An ideal detection algorithm should report errors whenever there is an error and

should not report an error otherwise. As such, our algorithm target the following:

1. Recall: when a fault occurs, the algorithm should report an error after the

fault occurs and within a short detection window period.

2. Precision: any error reported should truly represent a fault in the system.

Any error reported when there is no fault present is considered a false alarm

and should be avoided.

Assume we apply some error detection algorithms many times to a system. If

the error is present and an alarm is reported, we count it as a true positive. If the

error is not present but an alarm is reported, it is counted as a false positive. If

there is no alarm reported but there is an error present, it is counted as a false

negative. If there is no alarm reported and there is no error present, it is counted

as a true negative.

The recall is also known as the sensitivity, which is defined as:

Recall =
true positive

true positive + false negative

The precision is defined as:

Precision =
true positive

true positive + false positive

Sometimes we refer to its equivalence False-positive Error Rate, which is 1 −
precision to measure the precision.

Sometimes it may be convenient to have a single measure to integrate the trade-

off between recall and precision. The F-measure for this purpose, is defined as:

F − measure =
2 × precision × recall

precision + recall

For any classification algorithm, there is always a balance between recall and

precision. From our perspective, for an error detection algorithm we are willing to

avoid any false positive, but may tolerate some false negatives. In another word,

we want to make sure the false positive is very low, even if the price is to reduce

fault coverage.

The reason of our preference is that each false alarm could have a high cost.

When the system administrators are given an alarm, they must spend much effort

32

in checking the system, which could be very costly. If the false positive is high,

the system administrator would rather not trust the alarms from the automated

monitoring any more. On the other hand, even if some errors are missed by the

automated monitoring but whenever an error is reported there is a true error in

the system, the automated monitoring is still useful and trustable. An example is

the email span-filter. If an email span-filter has a high false positive rate such that

many important emails are classified as spams and are deleted, it would cause a

lot of problems and people would rather not use such a spam-filter. On the other

hand, if a span-filter never mark regular email as spam, but may reduce some true

spam, it would still be valuable.

Therefore, we will try to develop an algorithm with low false positive, and try

to improve the fault coverage when false positive is kept low.

4.2 Fault Diagnosis

Theoretically, different faults may influence the metrics and their correlations dif-

ferently. Therefore, if Level III information is present, it is possible to match the

observed metrics with previously recorded metrics to determine the root cause of

the fault in the system. However, our solution presented in this thesis does not

assume Level III information of the system. There are two major reasons for our

decision. First, it is usually very difficult to access such information in practice.

Second, it is also unlikely that all faults in the system have been seen before we

create our diagnosis algorithm. As a result, an algorithm based on Level III in-

formation may not be able to address unseen faults. Therefore, there is always

incentive to develop diagnosis algorithms without Level III information.

On the other hand, it is very difficult to develop algorithms to diagnose faults

with only Level I information. Without knowledge of the metrics nor previous

faults, there is virtually nothing we can do to diagnose any fault. Therefore, our

work focus on fault diagnosis with Level I and Level II information.

The goal of our diagnosis is to help determine the source of faults. While detec-

tion answers the question of whether there exists a fault in the system, Diagnosis

answers the question of “where the fault is in the system?”. The faster the source of

a fault can be found, the faster its cause can be addressed. This reduces the amount

of downtime the system incurs, thereby improving system availability. Therefore,

we use the word “fault diagnosis” and “fault localization” interchangeably in this

thesis, based on the scope of our work.

33

Figure 4.1: The relationship between models, metrics, and subsystems

We view the system as a collection of subsystems, and diagnosis localizes faults

to a subset of the system. The smaller the subset is, the more precise the diagnosis

is. The precision of diagnosis is determined by the monitoring data available, its

collection cost, and the system administrators’ needs. We consider any mathemat-

ical formula describing the relationship between some management metrics in the

system as a model. These models forms the evidences for our diagnosis.

Fig 4.1 shows such a view of the system. A system S is a collection of subsystems,

S1, S2, ...Sn. Let the set of all metrics be M, and the set of all models be C. Every

metric m ∈ M of the system belongs to exactly one subsystem, S ∈ S. On the

other hand, a number of metrics can form a model C ∈ C, and any metric may

appear in multiple models. Therefore, there is a many-to-1 mapping from metrics

to subsystems: α : M → S. Similarly, there is a many-to-1 mapping from metrics

to models: β : M → C. This implies that the relationship between models to

subsystems is many-to-many, a simple mapping from models to subsystems may

not exist. The relationship between models to subsystems can be modeled by

a subset of the cardinality of models and subsystems: σ ⊂ C × S. Therefore,

identifying the faulty subsystems based on the anomalies in models is non-trivial.

34

Let A be the set of all mappings from subsystems to metrics, and B be the set

of all mappings from models to metrics. By specifying the tuple (S,M,C,A,B),

we formally define the knowledge we assume about the system.

A model-subsystem association matrix [34] can be used to represent the rela-

tionship σ. The element of the matrix Mij = 1 if there exist a metric m ∈ M and

two mappings α ∈ A and β ∈ B such that α(m) = Si and β(m) = Cj, and Mij = 0

otherwise.

At any time t, each model Ci is checked for anomalies. We record oi(t) = 1 if Ci

reports an anomaly, and oi(t) = 0 otherwise. This gives us an observation vector

O(t) = [o1(t), o2(t), ...on(t)]T .

A diagnosis algorithm takes the matrix M for σ and the observation vector

O(t) as inputs, and outputs a anomaly score vector r = [r1, r2, ...rn]T such that the

subsystem Si is considered more likely faulty than Sj if ri > rj.

In our current work, which we discuss later, we have developed examples of

diagnosis algorithms as defined here. In these algorithms, we consider software

components as subsystems. Therefore, our diagnosis localizes faults at the software

component level by integrating analysis results from all the models. However,

with the same algorithms, we can change the tuple (S,M,C,A,B) to extend our

diagnosis to different models and different subsystem granularity.

Actually, different requirement of diagnosis may result in totally different level

of difficulty and different ways to address the problems. For example, diagnosis

in software component level is hard, and the resolution may require experienced

software developers to look into the source code of the software. On the other

hand, diagnosis in machine level may be much easier, and the resolution could be

as easy as reboot a machine. Therefore, it is very important to carefully abstract the

tuple (S,M,C,A,B) according to the information available and resolution actions

available in practice.

4.2.1 Measurement of Diagnosis Quality

The goal of diagnosis is to help determine the source of faults. The faster the source

of a fault can be found, the faster its cause can be addressed. This reduces the

amount of downtime the system incurs, thereby improving system availability.

In general, a good algorithm assigns the faulty component a higher anomaly

score than other components. Hereby we define two measures of diagnosis accuracy,

35

the Faulty Component Rank and Identified Fault Counts. The identified fault counts

could be computed given the faulty component rank so they are coherent. We use

the faulty component rank to evaluate the quality of our diagnosis. However, the

identified fault counts may be more practical for the system administrators who

interpret the diagnosis.

Assume we applied a diagnosis algorithm to m cases where some fault is present

and detected. We use i = 1, 2, ..., m as indices of these cases. Let fi be the number

such that Sfi
is the faulty component in case i, and ri be the anomaly score vector

given by the diagnosis algorithm in case i.

Intuitively, the rank of the faulty component could be an indicator of the quality

of the diagnosis. The faulty component rank Ri for the case i is given by:

Ri =

n
∑

j=1

1rifi
≤rij

where 1Q = 1 if Q is true, and 1Q = 0 if Q is false. The smaller the Ri, the

better the diagnosis is for the case i. Ri = 1 is the ideal case, which indicates that

the diagnosis algorithm assign the faulty component the highest anomaly score.

If the faulty component is assigned an anomaly score of 0, Ri = n, which is the

worst case. Therefore, the vector [R1, R2, ...Rm] is a measure of the quality of the

diagnosis.

While intuitive, the faulty component rank alone is not very practical because

the system administrators would not know the faulty component rank before they

actually confirmed and identified the fault. To interpret the diagnosis, system

administrators may consider components in order of decreasing anomaly scores.

They first check the component with the highest anomaly score; if not faulty, they

proceed to the one with the second highest anomaly score, and so on.

For practical reasons (e.g., time availability), administrators may set a candidate

set size t beforehand, and check if the faulty component is one of the components

with t highest anomaly scores. If so, the fault is diagnosed, i.e, it is identified in the

top-t components. For any t, the number of faults that are successfully identified

in the top-t components (i.e., the identified fault count) is given by:

Nt =

m
∑

i=1

1Ri≤t

Since there are only n components, t ≤ n. t can be any integer value from 1 to

36

n chosen by the system administrator.

37

Chapter 5

Solution Framework

Many prior work on software system monitoring with management metrics mod-

eling has similarities in their methods, regardless of the different correlation mod-

eling techniques being used. We abstract the process in a solution framework in

Section 5.1 and present our two solutions as two separate implementations of the

solution framework in the Chapter 6 and Chapter 7.

5.1 A General Solution Framework for System

Monitoring

Our solutions integrate many techniques to accomplish the task of software system

monitoring. Hereby we give an overview of the solution framework. The framework

is abstracted from many previous works on the similar problem and can accommo-

date many existing solutions.

A complete solution for software system monitoring with metrics modeling is

consist of the following four steps:

• Metric Modeling

• System Health Signature Generating

• System State Checking

• Fault Localization

38

In Metric Modeling, assumptions for the behaviors of system metrics are

made, and mathematical models are established to describe these assumed behav-

iors. Metrics collected from a health system is used to construct these models.

Usually, the modeling is done offline so we can use costly complicated models.

In System Health Signature Generating, metric samples are collected dur-

ing running of the target system and the monitoring is done by checking the col-

lected metrics with the mathematical models established in metric modeling. Usu-

ally, every type of mathematical model has its own diagnostics, so the combination

of all such diagnostics based on all mathematical models learned in metric modeling

form the signature of the current health state of the system.

In System State Checking, a technique is used to estimate the system state:

error present or not. This is usually done by a mapping from the system health

signature to binary state estimations. Sensitivity and Accuracy is the key properties

to evaluate the goodness of the system state checking.

In Fault Localization, we further use some techniques to turn the system

health signature into localization of faults when an error state is found. This is

usually done by a mapping from the system health signature to a faulty component

in the system.

In general, most system monitoring based on metrics is consist of the four steps.

By applying different techniques in any of the four steps, we can result in different

system monitoring algorithms.

The techniques that may be used in each step is discussed in the following

sections in this chapter.

5.2 Metric Modeling

Many models are proposed to describe the metric behaviors, and most of them

assume there exist some relationships between metrics. They fall into two large

categories: explicit correlations and implicit correlations. Specific models are used

to describe explicit correlations, and other techniques are used to describe implicit

correlations. A number of specific models that was used are introduced in this

section.

39

5.2.1 Specific-Form Modeling

A number of modeling techniques have been proposed to characterize relationships

between two metrics. The techniques proposed so far differ in terms of their ex-

planation power as well as their computational cost for learning and tracking. In

general, as the explanation power increases, so does the complexity and the cost of

applying the technique.

These modeling techniques includes Simple Linear Regression, Simple Linear

Regression with transformed data, Locally-Weighted Regression, Auto-regressive

Regression with exogenous Input, and Gaussian Mixture Models, etc. (See Chap-

ter 3).

Linear Models

Many specific models are proposed to model the correlation among management

metrics. Linear regression models are the most well-established ones. Very fre-

quently, there do exist a lot of linear correlations among management metrics.

It is reported that there exist stable, long-term correlations among many metrics

exposed by software systems.

Linear regression models usually have the following benefits:

• Linear correlations are widely observed across management metrics

• Linear regression models are cost efficient

• The confidence interval for new sample estimation is well-established, there-

fore ease our work in the second step “System Health Signature Generating”.

The drawback of linear regression models are:

• Non-linear correlations are also observed between management metrics, there-

fore, using only linear regression models may lose information.

• To simplify the model, linear regression models make some assumption that

may not be valid in real systems

• The confidence interval may be misleading if some of these assumptions are

not met in real systems.

40

The other studied linear models is the auto-regressive regression with exogenous

input (ARX). They were used by Jiang el al. [34] to model linear relationships. An

ARX model predicts values based on past observations of the dependent variable

and current as well as past observations of the independent variable. This is usually

much more expensive than linear regression models in terms of computational cost.

Moreover, they also suffer from the three drawbacks as linear regression models.

Non-linear Models

Examples of specific non-linear models studied thus far includes:

Simple Linear Regression with transformed data: This model is essentially the

application SLR on smoothed data or data transformed using logarithm, inverse,

power functions.

Locally-Weighted Regression: LWR is a non-linear regression technique that

computes a local linear model for each prediction. As such, all points used as

training are kept and used at query time. The local model is obtained by minimizing

the locally weighted sum of squared residuals for all available points.

Gaussian Mixture Models: GMM captures the relationship between two metrics

in the form of a set of Gaussians. GMM was used by Guo et al. [22] as well as

Ghanbari and Amza [20] to track relationships between metrics.

Non-linear models usually have the following benefits:

• Some non-linear correlations are observed in the system. Therefore, non-

linear models may be used to establish correlation models with more metric

pairs.

• Use of non-linear correlations may improve the metrics coverage.

However, non-linear models have much more drawbacks:

• While many correlation could be ”non-linear”, each model can only model a

few specific non-linear correlations

• Non-linear modeling techniques require careful parametrization. For exam-

ple, GMM requires finding the right number of clusters to model, and LWR

requires choosing the right value for selecting the smoothing parameter.

41

• most non-linear techniques such as GMM and LWR are computationally

costly. Learning GMM is generally done using algorithms such as Expec-

tation Maximization (EM) [86], with a cost of approximately O(ksn2), where

n is the number of metrics, s is the sample size used for learning, and k is the

number of iterations required for convergence. For LWR, each prediction re-

quires finding the nearest neighbors in order to fit a local regression. The cost

of this is approximately O(rslog(s)) where r is number of retained models in

LWR.

Therefore, it becomes a question whether it worth to improve system coverage

by a little bit by introducing a specific form of costly non-linear model.

5.2.2 General-Form Modeling

In section 5.2.1 we introduce several existing modeling techniques to characterize

relationships between metric pairs. However, all of them suffer from the same

shortcoming: they assume an underlying mathematical form (e.g., linear functions,

non-linear functions, mixture of Gaussian distributions, etc.). However, there is

no reason to believe that all relationships follow one specific mathematical form;

therefore, each specific form must be modeled and computed separately, adding to

the computation overhead, which makes their general application difficult.

An alternative way we propose is an information-theoretic approach to capture

inter-metric relationship without the need to commit to any specific mathematical

form for that relationship. Further, rather than pairwise comparison, we cluster

similar metrics and monitor the resulting clusters, providing significant efficiency

gains. The benefit of the general form models are as follows:

• We use an information-theoretic measure to quantify the strength of relation-

ships between pairs of metrics. The measure derives from entropy and mutual

information, and it can capture any relationship between metrics without as-

suming any specific form for the relationship.

• In contrast to prior work that entails modeling and tracking pairwise rela-

tionships between metrics, we group similar metrics together by employing

clustering. We consider the resulting clusters as the entities that need to be

tracked to monitor the health of the system.

42

• The number of models is much smaller compared with specific form modeling.

For example, in the system we studied we usually end up with thousands

of models with linear modeling when there is only a few hundred metrics

because we have to model each pair of metrics separately. On the other hand,

information-theoretic modeling usually end up with only a few models, which

significantly improves the efficiency.

5.3 System-Health Signature Generation

Once we found a number of models that describe the behavior of the system in the

metric modeling step, we can generate the system health signature of the system

at each time period for any new sample from monitoring.

System health signature represents a collection of diagnostics of all models found

in the metric modeling step. Assume n models are found during model learning

process and indexed by 1,2,3,...n. For each new sample mt at time t, the System

Health Signature at time t is a vector of n dimension: gt = {gt1, gt2, ..., gtn}, where

gtk represents the diagnostics by model k.

System health signature generating is a direct follow-up to the modeling we

choose to implement. The signature used for the models depends on the type of

models.

Examples of system health signature includes:

Binary Vector : Each specific form of direct models usually have its own way to

determine if a new sample is an outlier. In this case, we can simply record gtk = 1

if mt is classified as an outlier by model k, and gtk = 0 otherwise.

Outlier Count : When binary vector is used, the outlier count wt =
∑n

i=1 gti is

usually used as a more condensed signature.

Cluster Entropy : In our work of the information-theoretic modeling, we group

the metrics into n clusters. We make gtk to be the in-cluster entropy of cluster k

based on sample mt and the resulted gt is the system health signature.

5.4 System-State Checking

The system health signature generating gives us a time series of vectors gt, and the

system state checking step produce the final classification vector Ŝ = (sT ′+1, sT ′+2, . . . , sT ′′)

as discussed in section 4.1.

43

Therefore, the system state checking is a mapping from gt to st. Many different

approaches are proposed to generate the function.

Many preliminary method use predetermined thresholds to make the decision.

For example, many previous work use a specific form model in the metric modeling

step, and outlier count in the system health signature generating step. The system

state is determined by:

st =

1, wt > αn

0, otherwise

where α ∈ [0, 1] is a predetermined threshold. The idea is that if a large pro-

portion of the models report outliers, the system is probably in an error state.

The major problem with such a method includes:

• It is very difficult to choose a proper threshold α. A lower α may lead to a lot

of false positives, while a higher α could lead to a lot of high false negatives.

• For different systems, the best threshold α may vary. Therefore, applying

the monitoring to different system may involve a lot of experimental efforts,

which reduce the scalability of the monitoring solution.

• Even if a proper α could be found by experience for a specific system be-

ing studied, when there is a change in the metric modeling step, the proper

threshold α could have to change. This will prevent the evolution of modeling

techniques.

• Temporary disturbance (“spikes) may trigger a false alarm.

In this thesis we proposed a new way to do the system state checking with a

non-parametric statistical test, namely the Wilcoxon Rank-Sum test [21], to identify

significant shifts in the system signature. We have found the Wilcoxon Rank-Sum

test to be most suitable for our needs. The Wilcoxon Rank-Sum test is relatively

much better than a threshold-based function, as it does not learn a threshold or

rely on one to work and it also allows temporary fluctuations to be accommodated.

The test is performed as follows. Let two sample sets be X1, X2, ...Xn and

Y1, Y2, ...Ym, calculate the Wilcoxon Rank-Sum statistic:

W =

m
∑

j=1

n
∑

i=1

hij +
m(m + 1)

2
(5.1)

44

where

hij =

1, Xi < Yj

0.5, Xi = Yj

0, otherwise

The computed statistic is compared to a critical value from the Wilcoxon Rank-Sum

table to check whether the change is significant.

We detect errors as follows. Let Xi be the number of models that report outliers

for sample i. In order to detect a significant change in Xi when an error occurs,

we keep two sliding windows of Xi’s. The test window consists of the most recent

n Xi’s. The baseline window consist of the m Xi’s preceding the test window. We

apply the Wilcoxon Rank-Sum test to the two windows. If the test indicates a

shift between the two sets, an alarm is raised. Once alarms are raised, the baseline

window is no longer updated to prevent adding anomalous observations.

5.5 Fault Localization

The fault localization is performed by assigning anomaly scores to system compo-

nents, and then ranking the components by the anomaly scores. The fault local-

ization short-lists a set of components which are most likely to be faulty.

Most current attempt to assign components anomaly score is based on the idea

to count the number of times a component is found in anomalous models. The

rationale for such algorithms are that a faulty component is likely to cause the

models which involve the component’s metrics to show anomalous behavior. As

a result, a component has a higher anomaly score than other components if more

clusters containing metrics of that component detect anomalies.

Given the model-subsystem association matrix M and the observation vector

O(t) as defined in section 4.2, a representative algorithm use the Jaccard coefficient

to assign an anomaly score to each component:

rj =

∑n
i=1 oi(t) ∩ Mij

∑n
i=1 oi(t) ∪ Mij

Using an anomaly score based on the Jaccard coefficient is the most current

diagnosis method based on metric correlations. Such methods was proposed in [34,

62] and evaluated in [62] in the context of metric-pair models.

45

Another way to do fault localization proposed so far involves level III informa-

tion. If such additional information is available, then diagnosis may be made by

pattern matching with know faults databases. For example, the pattern matching

techniques may be artificial neural network or Bayesian network. In previous works

it is reported that using such information and techniques may improve diagnosis ac-

curacy. However, the availability of level III information is very difficult in practice

and is not assumed in this thesis.

46

Chapter 6

Solution One: Linear Models

In this chapter we present our work in improving the linear regression model to

monitor the system. Among all specific form models, we are particularly interested

in linear regression models because it is the most cost efficient model, while it

captures most frequently observed correlation, the linear correlation.

However, when we investigate and study system monitoring by linear regression

models, we found out several factors that prevent linear regression models from

effectively modeling the relationship between metrics even if the underlying rela-

tionship is indeed linear. We first discuss the several factors in section 6.1, and

then present our solution to these problems in the rest of this chapter.

6.1 Problems of Simple Linear Regression

We encountered several problems when modeling linear correlated metrics. The

most important one is that we observed significant presence of heteroscedasticity

in the linear relationships.

6.1.1 Heteroscedasticity

In the statistics literature, heteroscedasticity refers to the fact that the variance

of the residuals of a model is not constant. Heteroscedasticity is very commonly

observed in applications of regression models. A popular example is the relationship

between individuals’ income and meal expenditure – there is greater variability in

what an individual consumes as his/her income increases.

47

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000 6000 7000 8000

N
u
m
.

m
e
s
s
a
g
e
s

p
r
o
c
e
s
s
e
d

b
y

T
r
a
d
e
S
t
r
e
a
m
e
r
M
D
B

Num. requests to Trade

Figure 6.1: Heteroscedasticity example

When we study relationships between management metrics, we also observe

such behavior in many instances (i.e., the variance of the related variables is not

constant over the observed range). An example is shown in Figure 6.1, which

presents the scatter plot of two management metrics. We can see an overall linear

relationship between the shown metrics. However, we also see that the variance of

the two variables becomes larger as the values of the metrics increase, resulting in

a covered area having a triangular shape.

The presence of heteroscedasticity in relationships between management metrics

prevents us from monitoring these relationships effectively. In theory, such behavior

violates the assumption of most regression techniques which stipulate that the error

has constant variance (i.e., the error covariance matrix is scalar). In the presence

of heteroscedasticity, linear regression estimators based on Ordinary Least Squares

may be biased and inconsistent. Moreover, heteroscedasticity biases the estimated

standard errors, making many diagnostic measures unreliable. For example, the

confidence intervals of model predictions become invalid. This is illustrated by the

example shown in Figure 6.2.

Theoretically, a number of reasons may cause residuals of a regression model to

display heteroscedasticity [68], including:

• Varying regression coefficients: As discussed in Section 6.1.2, while two met-

48

-50

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400

N
u
m
.

r
e
q
u
e
s
t
s

t
o

r
e
t
r
i
e
v
e

u
s
e
r

a
c
c
o
u
n
t

Num. requests to trade

Regression Line
Confidence Interval

Figure 6.2: Confidence intervals using OLS regression

rics remain correlated, their regression coefficients may vary. If this behavior

is not captured by the model, the residuals may include effects due to the vari-

ation of the coefficients. For example, if the true model is yi = α + βixi + ei,

where the parameter βi varies with i such that βi = β + ǫi, then our model

becomes yi = α+βxi+(ǫixi+ei). The residuals (ǫixi+ei) have a non-constant

variance.

An example of such cases which we observed in our evaluation is given in

section 6.1.2. The same pair of metrics are plotted in Figure 6.3 without

differentiating between time intervals. Comparing with Figure 6.5, we can

see that the non-constant residual variance is caused by changing regression

coefficients, which vary with time.

• Omitted variables: As discussed in Section 6.1.3, models may not include a

relevant variable, in which case the residuals will include the effects of that

variable. This will cause residuals to vary with the missing variable. For

example, if the true model is yi = β0 + β1xi + β2zi + ei, but our model is

of the form yi = β0 + β1xi + e′i, then the residual e′i will include the effect

of variable zi. e′i will not be normally distributed with constant variance

because e′i = β2zi + ei.

49

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200 1400 1600

N
u
m
.

d
a
t
a
b
a
s
e

l
o
a
d
s

f
o
r

O
r
d
e
r
E
J
B

Num. requests to trade

Figure 6.3: Heteroscedasticity example: varying coefficients

• Inaccurate models: If the model is not a good fit for the underlying rela-

tionship, then the residuals will capture the model inaccuracies. For exam-

ple, if the true relationship is non-linear, but we capture it using a linear

model, then the residual will exhibit heteroscedasticity. Non-linear relation-

ships do exist in most software systems, especially in transaction-oriented

systems [22, 37, 64].

In practice, we also observed several system-specific examples where the causes

of heteroscedasticity could be identified, including:

• Sampling errors: Sometimes the metrics samples are aggregated (e.g., using

mean) and there exist groups in the sample data. As a result, the aggregate

may be affected by the size of the groups. For example, when computing

mean values, the smaller the group size, the more variance we will observe.

This measurement error becomes part of the residuals, making them vary

with the size of the underlying groups.

• Caches and object pools: At higher load, it is possible for caches and object

pools to become full, creating variability in the response times and thereby

the amount of work that can be completed. After the point where caches

50

and object pools become full, some metrics collected could show different

behaviors. This may be modeled with segregated models or non-linear mod-

els. However, linear models is likely to produce residuals with non-constant

variance.

• Load-related variance: As load increases, resource availability becomes more

constrained. As such the unpredictability of system performance increases,

leading to unpredictability of individual metrics that are performance-related.

The variance of individual metrics contributes to the variance of residuals.

This is an instance of omitted variables in the model. By taking into con-

sideration the load-related effects, we may be able to capture the residual

variance.

• Application logic: There could be application logic in the system that changes

the metric relationships quantitatively. For example, in the system we study,

the middleware on which our benchmarking application executes implements

policies to allow the system to scale to increasing load. As the load increases,

the number of threads available to handle work increases.

A similar policy may also apply to object pools, whereby when load increases

more objects are be pooled to better handle the larger volume of requests.

As a result, varying coefficients of linear correlated metrics may be observed.

If we do not capture these dynamics in the models, the effects will appear in

the residuals.

• Other system-specific reasons: Another example of heteroscedasticity is shown

in Figure 6.4, where the number of requests received by the application (X)

is plotted against the number of requests meant to retrieve user account data

(Y). This is a case where linear regression model does not accurately cap-

ture the underlying relationship. Usually, requests for different services (e.g.,

browse, buy, update profile, etc.) provided by a transaction-oriented system

follow some probability distribution. If the probability of a request for retriev-

ing account data is p, then the number of requests to retrieve user account

data (Y) out of X total requests follows a binomial distribution, B(X, p).

Therefore, the underlying relationship is Y ∽ B(X, p). As such, the expec-

tation of Y is pX, and the variance of Y is p(1 − p)X. Therefore, the actual

relationship is approximately linear but with variance that grows with the

predictor.

In general, there are many factors, either general or system-specific, could lead to

51

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600

N
u
m
.

r
e
q
u
e
s
t
s

t
o

r
e
t
r
i
e
v
e

u
s
e
r

a
c
c
o
u
n
t

Num. requests to trade

Figure 6.4: Heteroscedasticity example: inaccurate linear model

heteroscedasticity. Since heteroscedasticity is a common phenomenon, it is impor-

tant to capture it when modeling metric relationships. Otherwise, the relationships

we learn, especially predictions based on such relationships, may be misleading.

To address this challenge, we need an approach to detect heteroscedasticity; we

need specific models that capture the most frequent causes of heteroscedasticity

such as varying coefficients and missing variables. However, since there are many

possible causes of heteroscedasticity and there is no easy way to determine the

true cause of heteroscedasticity, finding specific models to capture heteroscedastic-

ity is not always feasible. Therefore, we also need a general approach to handle

heteroscedasticity regardless of the underlying cause.

6.1.2 Varying Coefficients

One factor which prevents regression-based correlation models from correctly cap-

turing system dynamics is that the model coefficients may change under different

circumstances, even though the corresponding correlations still exist. For example,

certain optimizations, either automatic or manual, may take effect to improve sys-

tem performance; system operators may tune certain configuration parameters, or

automatic optimizations may arise from shifts in the workload pattern. As discussed

in Section 6.1.1, varying coefficients is also a common cause for heteroscedasticity.

52

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600

N
u
m
.

d
a
t
a
b
a
s
e

l
o
a
d
s

f
o
r

O
r
d
e
r
E
J
B

Num. requests to trade

Time 140 to 160 min.
Time 220 to 240 min.
Time 300 to 320 min.
Time 380 to 400 min.

Figure 6.5: Varying coefficients of a metric-pair model

In Figure 6.5, we plot the samples of two correlated metrics collected during

different time intervals with different colors. From this figure, we can see that the

slope of the linear relationship is changing.

In this particular example, based on the testbed we describe later, the changing

slope can be explained as follows: the relationship is between the number of requests

received by the benchmarking application and number of order records that are

loaded from the database. As time passes, the table grows in size as more orders

are completed. Within any short time interval, the number of orders retrieved is

proportional to the load, thus a linear correlation is observed. However, in distant

time intervals, the number of orders retrieved per request (the slope) differs because

more orders have completed and have been added to the order table.

In general, as systems evolve, many factors may influence the coefficients of

correlation models. As a result, although the correlations still hold, models with

out-of-date parameters may lead to inaccurate assessment of the modeled metrics.

If we do not address the problem of varying coefficients, then the affected models

may fail to hold in new circumstances without the presence of faults in the system.

There are generally two ways to address varying coefficients: 1) we can construct

more powerful models to capture the varying coefficients; 2) because we may not

always be able to include factors that cause coefficients to change, we need to

53

x = Sample size Models F-score
24 617 z = 24.25 − 4.32y 237.15
25 90 z = 25.44 − 4.47y 39.89
26 312 z = 26.64 − 5.01y 226.77
28 981 z = 27.93 − 3.85y 276.00

Table 6.1: Regression coefficients varying with a third variable

be aware of the possibility of out-of-date models, and develop an error detection

approach which can tolerate the failure of such models.

6.1.3 Multi-variable Correlations

A missing variable in a model may cause the coefficients to be unstable. An inter-

esting example we have encountered is presented below.

There are three metrics involved in this example:

Metric x: tradeEJB.AccountProfileEJB:LiveCount

Metric y: tradeEJB:MethodResponseTime

Metric z: tradeEJB.AccountProfileEJB:PooledCount

The first metric, x, takes four values in our experiment: 24, 25, 26 and 28. If

we collect samples of y and z according to different values of x, we find four linear

models as shown in Table 6.1. We see that the constant term in these models varies

with x, and including x would make the model more accurate.

The existence of multi-variable relationships has been observed in prior work [17].

Though, such relationships have been studied much less than those involving two

variables. The reason is that the cost to iterate on every metric multiple times to

test for possible multi-variable correlation is too high, while the gain from multi-

variable correlation is not that significant.

In general, if there are n metrics in the system, and the cost for constructing

a model with a group of selected variables is C, then searching for all two-variable

correlations cost O(n2C) and searching for all k-variable correlations cost O(nkC).

In addition, the number of multiple variable correlation could be as many as O(nk)

which is the possible combinations of k metrics, while the number of two variable

correlation should not be more than O(n2). Therefore, monitoring two variable

correlation may be much more efficient. On the other hand, the majority strong

relationships observed in most systems are still two-variable. Considering the sev-

54

eral magnitudes higher cost and the relatively less significant gain, we spent less

efforts in developing multi-variable models for software systems.

6.2 Improving Simple Linear Regression

In this section, we propose our models to improve on two-variable Ordinary Least

Square (OLS) linear models. Our first step is to detect non-constant error variance

using well-established statistical tests.

6.2.1 Detecting Non-constant Error Variance

Many tests have been developed to test for heteroscedasticity, e.g., White’s General

Heteroscedasticity test, Breusch-Pagan-Godfrey test and Goldfeld-Quandt test [16].

We choose to employ both the White’s General Heteroscedasticity test and the

Goldfeld-Quandt test in our work. The White test is the most general, regardless of

the cause of heteroscedasticity. The Goldfeld-Quandt is more specific and supports

the use of Generalized Least Squares (GLS) to model heteroscedasticity.

The White test for two-variable models consists of the following steps:

• Model the data (x, y) using ordinary regression:

y = β0 + β1x

and obtain the residuals

u = y − β̂0 − β̂1x

• Regress u2 against (x, x2):

u2 = γ0 + γ1x + γ2x
2

Obtain R2 of this regression.

• Compare nR2 with the chi-square critical value χ2
α,k, where n is the number

of samples, α is the significance level of the statistical test, k is the number of

regressors in the second step excluding the constant term, which is 2 in our

case. If nR2 > χ2
α,k, heteroscedasticity is detected.

The White test is general. The Goldfeld-Quandt test, on the other hand, not

only checks whether the error variance is constant, but also tests whether the vari-

ance is correlated with one of the independent variables in the model.

55

The Goldfeld-Quandt test for samples (x, y) involves the following steps:

• Order the observations according to the values of x, a variable to which the

population error variance may be related.

• Omit c middle observations and divide the rest into the two groups of (n−c)/2

observations. The choice of c is arbitrary, but it is often chosen that c = n
3
.

• Separately apply regression on the two groups by y = β0 + β1x. Then, calcu-

late the sum of residuals squared for the two groups, i.e., SSE1 and SSE2:

SSE1 =

(n−c)/2
∑

i=1

(yi − β̂0 − β̂1xi)
2

SSE2 =

n
∑

i=n−(n−c)/2

(yi − β̂0 − β̂1xi)
2

• Compute the F-statistic thus:

F =
SSE2

SSE1

• If F > Fα,d,d, heteroscedasticity is detected, where Fα,d,d represents the critical

value of F-distribution with significance level α, and degree of freedom d given

by:

d =
n − c − 2k − 2

2

where k is the number of estimated coefficients excluding the constant term,

which is 1 in our case.

6.2.2 Generalized Least Squares

A simple linear regression model is of the form:

y = Xβ + e

where e is the random error whose variance matrix is given by Iσ2, i.e., the vari-

ance is uncorrelated, identically and independently normally distributed with fixed

variance.

If the data does not pass the Goldfeld-Quandt test, the variance of the dependent

variable gets larger when an independent variable gets larger. It is often assumed

that the variance matrix of e is given by Cσ2, where C is some known matrix,

56

while σ is unknown [16]. With this assumption, regression and estimation of new

samples can be carried out as follows:

• Find matrix P such that P′P = C. This results in a unique non-singular

symmetric matrix.

• Let y∗ = P−1y, X∗ = P−1X, and e∗ = P−1e, we get the following new

model:

y∗ = X∗β + e∗

where var(e∗) = P−1var(e)P = Iσ2.

• Applying OLS, the estimation of the parameter is given by:

β̂ = (X′C−1X)−1X′C−1Y (6.1)

• An estimation of y, i.e., ŷ, given any value of x is given by ŷ = xβ̂.

• The confidence interval of y can be obtained by transforming the confidence

interval of y∗. In OLS, the confidence interval is given by:

[ŷ − d(x)st(n−k−1),α/2, ŷ + d(x)st(n−k−1),α/2] (6.2)

where k + 1 is the size of vector β, α is the desired significance level, and

s2 =
SSE

n − k − 1

d2(x) = 1 +
1

n
+ (x − x̄)′S−1

xx (x − x̄)

If the sample data passes the Goldfeld-Quandt test based on Xi, the residual

variance grows with the independent variable Xi. Then, we can assume the residual

variance matrix C is given by:

C =

xi1

xi2

xi3

. . .

xin

.

57

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200 1400

N
u
m
.

r
e
q
u
e
s
t
s

t
o

r
e
t
r
i
e
v
e

u
s
e
r

a
c
c
o
u
n
t

Num. requests to trade

Regression Line
Confidence Interval

Figure 6.6: Confidence intervals using GLS regression

6.2.3 Fitness Score for Confidence Intervals

We use confidence intervals of predictions to estimate if a new sample fits the re-

gression model learned; therefore, the better the confidence intervals approximates

the actual distribution of the data samples, the better the model is. As such, we

would prefer the confidence intervals in Figure 6.6 instead of those in Figure 6.2.

Let U(x0) be the upper bound of the confidence interval of y given independent

variable x0, and L(x0) be the lower bound. The area of the confidence interval for

x ∈ [a, b] can be given by:

∫ b

a

U(x) − L(x) dx

Let U ′(x0) be the empirical maximum value y takes when x ≈ x0, and L′(x0)

be the empirical minimum value. The estimation of the area samples (x, y) with

x ∈ [a, b] occupies can be estimated by:

∫ b

a

U ′(x) − L′(x) dx

Therefore, The similarity between the two area can be estimated by the following

58

fitness score:

F =

∫ b

a
max(min(U(x), U ′(x)) − max(L(x), L′(x)), 0) dx

√

∫ b

a
U(x) − L(x) dx

∫ b

a
U ′(x) − L′(x) dx

The fitness score ranges from 0 to 1. If the confidence intervals cover exactly

the area which the observed samples occupy, the fitness score approximates its

maximum 1. If the confidence intervals miss all the samples, the fitness score is at

its minimum, i.e., 0.

In practice, we take the α/2 and 100−α/2 percentile of the interval all x’s takes

as a and b, and estimate the above integration.

For example, in Figure 6.6, suppose the grey triangle area is the area observed

samples occupy. Ideal confidence interval should have EFGH coincide with ABDC.

Therefore, we use the following score to measure how well the model fits the ob-

served data:

Fitscore =
P (ABDC

⋂

EFGH)
√

P (ABCD)P (EFGH)
(6.3)

where P(X) is the estimated area of X.

6.3 System-Monitoring Solution

We developed a new procedure for system monitoring in software systems according

to the solution framework outlined in chapter 5.

1. Metric Modeling: We learn metric correlation models based on metric samples

collected during a normal running period. This is usually done offline so the

models are prepared before we start monitoring the target system.

2. System-Health Signature Generation: We use the outlier count wt (defined

in section 5.3) as the system-health signature. This signature is generated

online as we collect real time samples from the monitored system.

3. System State Checking: We consider persistent changes in the system-health

signature as an indication of existence of errors. Therefore, we use Wilcoxon

Rank-Sum test to detect persistent changes in the outlier count for each type

of models to do system state checking.

59

Figure 6.7: Fitness score calculation

4. Fault Localization: we use the Jaccard coefficient to assign anomaly scores to

components and do fault localization based on the models we learned.

The approach is illustrated in in Fig 6.8 and the details of each step is discussed

in the rest of this section.

6.3.1 Metric Modeling

We begin with model learning, which takes place offline based on metric data col-

lected from a healthy system. Learning involves checking all pairwise combinations

of metrics to identify strong correlations and estimating the corresponding regres-

sion models.

Figure 6.9 presents our approach to identifying the appropriate modeling tech-

nique. In the figure pass means that we accept the null hypothesis (i.e., the error

variance is constant). For each pair of metrics, we first employ the White test to see

if the residual variance of two-variable linear regression models is constant. Next,

the Goldfeld-Quandt test is used to check whether the GLS models can capture

the observed heteroscedasticity. If both tests suggest that the residual variance is

60

Figure 6.8: Model learning and system monitoring

constant, we model the relationship using OLS regression. If both the White and

the Goldfeld-Quandt tests fail, which suggests that the use of GLS regression may

be appropriate, we employ the GLS model. This procedure gives us two categories

of models: OLS and GLS models. The model learning are done offline.

6.3.2 System-Health Signature Generation

First of all, we use confidence intervals in Equation 6.2 to estimate the acceptable

range of the dependent variable for each model. If the observed value lies outside

the confidence intervals, an outlier is reported by the model.

For each new sample we collected from real-time monitoring, we using all models

we learned to test for outliers and aggregate the number of outliers reported by these

models. In other word, we use the outlier counts wt (defined in section 5.3) of all

models as the system-health signature.

6.3.3 System-State Checking

In order to check the system state based on the outlier counts, we need to under-

stand how outlier counts are expected to behave when the system is in a normal

state or in an error state.

Theoretically, if there is no error in the system, the correlation between metrics

are stable so most models we learned should not classify the new samples collected

61

Figure 6.9: Learning metric-correlation models

from monitoring as an outlier. As a result, the outlier count should be relatively

small compared with the number of models. However, the real system behaviors

are usually more complicated.

Two major concerns need to be addressed when we do system state checking.

First, there could be temporary “spikes”, or simply a lot of false positives in the

outlier counts, because of a some other temporary factors or just by a small proba-

bility. Therefore, an alarm should only be raised after investigating a few samples

instead of a single sample. Second, coefficients we learned may be out of date

because an environmental change in the monitoring period. Among the four cat-

egories of models we used, only one category of our models, the Recursive Least

Square models account for varying coefficients; however, even when varying coeffi-

cients are explicitly modeled, it is still possible for some models to become invalid

because of factors that were not considered at the time of modeling. As a result,

we need to cater for cases where some of the models we learned become invalid

when circumstances change. In other word, we need a detection mechanism that

can tolerate failure of some of the learned models.

Given these considerations, we take a change in the outlier count as an indication

of the existence of a error, rather than the value of a single outlier count. The

rational is as follows: when the system is in a normal state, the models that are

not valid report outliers. When the system has errors, additional models that were

valid under normal conditions may also report outliers. Therefore, it is possible to

see a change in the total number of models that report outliers.

Therefore we need a way to detect persistent shifts in number of the outlier

62

counts, as well as to tolerate the outliers reported by models with out-of-date

coefficients. For this purpose, we use the Wilcoxon Rank-Sum test to detect such

changes. The Wilcoxon Rank-Sum test is a non-parametric test; we thus do not

need to specify a specific threshold on the number of failed models to indicate an

anomaly. Also, if a portion of models report outliers from when the monitoring

started, they will not be detected by the test.

By implementing the Wilcoxon Rank-Sum test to check the status of the system,

we assume a relative and persistent change in the system health signature is the

signal of error. Since we may have multiple categories of models, the Wilcoxon

Rank-Sum test is applied to each category of models separately. If test on any one

of these categories of models reports an anomaly, we raise an alarm. This approach

is illustrated in in Fig 6.8.

The test is done as follows: assume wt to be the outlier count for a category of

models at time t. We keep two sliding windows of wt’s. The test window consists

of the most recent n wt’s. The baseline window consists of the m wt’s preceding

the test window. We apply the Wilcoxon Rank-Sum test to the two windows to

determine if there is a persistent shift between values in the two windows.

The Wilcoxon Rank-Sum test is a well-established hypothesis test. In our case,

the null hypothesis is that the two sample sets {wt+1, wt+2, ...wt+m} and

{wt+m+1, wt+m+2, ...wt+n} from the two sample windows (t + 1, t + m) and

(t+m+1, t+n) are from the same distribution. The Wilcoxon Rank-Sum statistic

is given by:

W =
m

∑

j=1

n
∑

i=1

ht+i,t+m+j +
m(m + 1)

2

where

hij =

1, wi < wj

0.5, wi = wj

0, otherwise

The computed statistic is compared to a critical value from the Wilcoxon Rank-

Sum table to check whether the change is significant. If the null hypothesis is

rejected, an anomaly is reported. Once an anomaly is reported, the baseline window

is no longer updated to prevent adding anomalous observations to the baseline

window.

63

6.3.4 Fault Localization

We can use the Jaccard coefficient to assign anomaly scores to components and do

fault localization based on the models we learned.

Assume we have the model-subsystem association matrix M and the observation

vector O(t) as defined in section 4.2, the anomaly score rj of component j is given

by:

rj =

∑n
i=1 oi(t) ∩ Mij

∑n
i=1 oi(t) ∪ Mij

The rationale for this solution is that a faulty component is likely to cause the

metrics to behave unusually. As a result, models which involve the component’s

metrics are more likely to show anomalous behavior. This is reasonable, however,

we also notice that there are intrinsic limitations on the fault localization based

on observing the correlations disturbed when a fault is present in the system. We

discussed these observations in Appendix B.

64

Chapter 7

Solution Two:

Information-Theoretic Models

In this chapter we present our second solution to the problem studied. We

model general relationships by introducing the entropy concept from information

theory, which effectively captures many non-linear correlations, and take the clus-

tered pattern into account. This solution can capture more correlations and it is

much more efficient.

7.1 Approach Overview

We propose an approach to monitor the health of a system as illustrated in Fig-

ure 7.1. The three steps are as follows:

1. We compute the NMI between metrics, which is a similarity measure inde-

pendent of the underlying relationships.

2. We apply clustering, with NMI as the similarity measure, to group similar

metrics together. Each cluster is a model of the correlations in the system.

3. We generate the system health signature by calculating the in-cluster entropy

of each cluster. Then we check the state of the system by identifying persistent

changes in the signature.

The above approach fits into our proposed solution framework. The first two

steps are the metric modeling, which build up metric models by clustering similar

metrics. The third step contains the system health signature generating and the

65

Figure 7.1: Approach overview

system state checking, where the in-cluster entropy of each cluster constitutes the

system health signature and the system state checking is done by identifying per-

sistent changes in the signature. The details of each step is discussed in the rest of

this chapter.

7.2 Computing Similarities between Metrics

The information entropy measures the uncertainty or unpredictability of a random

variable (see Section 2.4.2). The mutual information measures the uncertainty

decreased for a variable when another variable is known, therefore measures the

similarity between two variables. Therefore, we adopt the normalized mutual in-

formation as the measurement of similarity between metrics.

The theoretic value of the information entropy of any system metric is not known

as we can only obtain a limited number of samples of that metric. Therefore, we use

empirical entropy based on observed samples to estimate the information entropy

and calculate the NMI. Computing the empirical entropy requires samples of the

metrics collected. Therefore, we assume the availability of metrics periodically

66

collected from the target system over a period of time during which the system

operates fault-free.

Given n observed samples of any metrics X, the empirical entropy H(X) is then

computed as follows:

H(X) = −
k

∑

i=1

ni

n
log

ni

n

where the observed n samples are divided into k bins and ni is the number of

samples observed in bin i. The empirical conditional entropy H(Y |X) based on

observed samples is computed as follows:

H(Y |X) = −
∑

i

∑

j

nij

n
log

nij

ni

where nij is the number of samples (x, y) with x in bin i and y in bin j.

With the empirical entropy and empirical conditional entropy, we compute the

normalized mutual information using Equations (2.13) and (2.14) for all pairs of

metrics. This allows us to create a metrics similarity matrix as shown in step 1 of

Figure 7.1.

7.3 Metric Modeling by Clustering Correlated Met-

rics

We start our modeling by observing the fact that if both (X,Y) and (Y ,Z) have

relationships, then (X,Z) often also have a relationship. For example, if Y = f(X)

and Z = g(Y) deterministically, then Z = g(f(X)) hold. The relationship between

management metrics may not always be deterministic, however, it is often observed

in practice many such relationships cluster. In other word, there exist groups of

mutually correlated metrics, or clusters. Consider a cluster of n metrics. If we model

them by pairwise correlation models between every two metrics, this will end up

with O(n2) models. On the other hand, if we model the cluster as a whole, we

need only one model. This could provide a significant efficiency gain for the metric

modeling. Therefore, we leverage clusters to improve the efficiency of tracking

metrics. According to our four-step framework, we model the system metrics as a

few clusters each of which consists of correlated metrics.

Given a similarity matrix as shown in step 1 of Figure 7.1, we apply the

complete-link hierarchical agglomerative clustering (HAC) [23] to group similar

67

High NMI Low NMI
High r2 Linearly correlated Not possible
Low r2 Non-linearly correlated Not correlated

Table 7.1: Correlations captured by r2 and NMI

metrics together. The algorithm takes a similarity matrixas input. The distance

between two clusters is defined as the maximum distance between elements of the

two clusters. It treats each metric as a single cluster, and then successively merges

nearest clusters until either the distances between every two clusters exceed a pre-

defined threshold, or all metrics belong to one cluster. The algorithm ensures that

all metrics in a cluster have a similarity of at least tNMI, a threshold that we specify.

Therefore, we ensure that the system metrics are divided into clusters, such that

all metrics within a cluster are correlated to each other.

7.3.1 Identifying Correlated Metrics

Given the empirical entropy and the normalized mutual information, we need a

suitable threshold for the empirical entropy to differentiate weak correlations from

strong correlations. In other word, we need to specify a value for the parameter

tNMI in our clustering algorithm. However, NMI is a relatively new and there

is little guidance as to what value of NMI constitutes an indication of strong re-

lationship. We resolve this issue by comparing it with the square of Pearson’s

correlation coefficient, r2. r2 has the same properties as the first three for NMI(see

section 2.4.2); however, the fourth property holds only if f is a linear function. r2

is a well-studied linear similarity measure, which is widely used.

Our work starts with the observation that any pair of metrics with strong lin-

ear correlation must have a strong correlation, but the reverse is not necessarily

true. Strong non-linearly correlated pairs may have a low r2 but a high NMI. This

observation is summarized in Table 7.1.

Therefore, a suitable NMI threshold for strong correlation must not classify

any pair of metrics with high r2 as weakly correlated. Therefore, the proper NMI

threshold tNMI for strong correlation, with respect to the r2 threshold for strong

linear correlation tr2 , is defined as:

tNMI = min
r2

XY
>t

r2

NMI(X, Y)

68

Figure 7.2: Metric similarity measures: r2 and NMI

If we compute both r2 and NMI for many metric pairs, we can have an estimation

of tNMI with respect to any tr2. This procedure is illustrated in Figure 7.2, which

contains sample points from our experimental data(see section 8.3.1). Based on

this figure, an NMI threshold from 0.25 to 0.5 seems proper. We also evaluate if

our algorithm is sensitive to the NMI threshold in our evaluation(see section 8.3.4).

7.4 Tracking Groups of Related Metrics

According to the solution framework, we need to generate a signature for each

cluster we have obtained. The metrics in one cluster are closely correlated to each

other. However, since a relationship may not fit any pre-assumed specific form, it

is non-trivial to establish analytical models for either metrics in the cluster or the

cluster itself.

Information entropy, however, provides us with a tool to monitor the state of

each cluster. Because metrics in one cluster are highly correlated, the uncertainty

among values of the metrics in the cluster at a given time must be significantly

lower than the uncertainty of the same number of uncorrelated metrics, regardless

of the actual values of the metrics. Therefore, empirical entropy, which measures

uncertainty, can be considered as a signature of the cluster, providing an indication

69

of the current status of the cluster. Therefore, the system health signature is a

collection of cluster entropies of these clusters.

The procedure of computing in-cluster entropy for each cluster is as follows:

• Normalize all metrics values: although highly correlated, some metrics could

range from thousands to millions, while others may never exceed one. We

normalize each metric by dividing it by its average value, which is computed

based on data collected during normal operation.

• We consider values of different metrics in a cluster as pertaining to a single

random variable. Let Wt be the random variable for the studied cluster at

time t, the value of metrics m1, . . . , mk in the cluster are considered as

instances of Wt.

• At each time t when a sample is collected for all metrics, we calculate the

empirical entropy of Wt, E(Wt). We use static binning for this calculation;

we set the range to [0, 7] and divide it into 7 equal bins. We add an eighth

bin with range [7,∞] to cater for values that do not fit in the other 7 bins.

Our normalization entails dividing by the average; as such, we expect most

data to lie within 7 factors of the mean.

As samples of metrics are collected at time t, we calculate E(Wt) for all studied

clusters.

The absolute values of entropy for different clusters are not comparable, as this

value is affected by factors such as the size of the cluster and how data was binned.

Nevertheless, the entropy of the same cluster at different times is comparable. For

a given cluster, a significant change in the behavior of in-cluster entropy indicates a

potential fault. This implicitly indicates that correlations among metrics are either

disturbed or strengthened, both of which could be signs of anomalies.

Therefore, monitoring consists of tracking the entropy of each cluster. For each

cluster, we monitor the in-cluster entropy E(Wt) over time. We expect to see

abrupt changes in the entropy behavior of some clusters when faults occur. This

strategy is based on the observation of in-cluster entropy behaviors illustrated in

Section 7.4.1. The detail procedure is discussed in Section 7.4.2.

The benefits of tracking correlations within a cluster by entropy includes ro-

bustness and efficiency. Small variations will not affect the entropy, as metrics with

minor variations will tend to stay in their current bins and the empirical probability

70

will not be affected. Varying environmental factors such as changing workload are

also unlikely to disturb entropy, as entropy does not depend on actual values but

the uncertainty in the relative values of the metrics. If all metrics are mapped into

some other bins separately, it is likely that the in-cluster entropy would not change

significantly.

The cost of computing entropy for a cluster of size m is only O(m); therefore,

monitoring a system with n metrics, each pertaining to at most one cluster, only

costs O(n). On the other hand, checking all pair-wise correlations is O(n2) for a

system with n modeled metrics, which is a much larger computation overhead.

7.4.1 Observations on Cluster Entropy

Consider the entropy behavior of the clusters shown in Figure 8.11, 8.12, 8.13, 8.14

and 8.15. They show the behavior of in-cluster entropy in some realistic experi-

ments. Some fault occurs at time-sample 56 in all five cases.

Human operators can readily identify unusual changes in the level of the in-

cluster entropy, and, as a result, suspect errors. However, it is impractical to have

these operators continuously track the behavior of all clusters. On the other hand,

automatically identifying anomalies in the in-cluster entropy is non-trivial because

there are no general rules that differentiate between normal and disturbed behavior.

We considered several characteristics of the in-cluster entropy before devising a

method to automatically identify anomalous behavior.

First, the empirical entropy estimated for different clusters are not comparable.

As a result, no single threshold is suitable for all clusters. Thus, techniques based

on setting thresholds do not work. Only relative changes in the entropy within

individual clusters provide reliable signals for error detection.

Second, within a cluster, the in-cluster entropy can be very volatile. The em-

pirical entropy is only a rough estimate computed from a sample; if the sample

size is small (e.g., when a cluster has only eight metrics), changes in in-cluster en-

tropy may not indicate anomalies. For example, changes before time-interval 56 in

Figure 8.15 are normal.

Third, judgment based on a single observation is not reliable(see, e.g., time-

interval 3, 10 and 35 in Figure 8.14). An algorithm must consider several samples

before deciding that an error exists; otherwise, many false alarms may be raised.

These observations suggest that a deviation in entropy is a reliable indication

of errors only if the deviation is relative and persistent.

71

Therefore, we choose to employ the Wilcoxon Rank-Sum test to identify signifi-

cant shifts in the in-cluster entropy of individual clusters. The Wilcoxon Rank-Sum

test suits our needs, as 1) it is non-parametric (i.e., we make no distribution as-

sumptions), and it does not learn a threshold or rely on one to work; 2) it is a

statistical test, which allows temporary fluctuations to be accommodated.

7.4.2 Error Detection by Wilcoxon Rank-Sum Test

For error detection, let Ei be the in-cluster entropy of cluster E at time i. In

order to detect a significant change in Ei when a fault occurs, we keep two sliding

windows of Ei’s. The test window consists of the most recent n Ei’s. The baseline

window consists of the m Ei’s preceding the test window. We apply the Wilcoxon

Rank-Sum test to the two windows. If the test indicates a significant shift between

values in the two windows, an alarm is raised.

The Wilcoxon Rank-Sum test is a well-established hypothesis test. In our

case, the null hypothesis is that the two sample sets {Es+1, Es+2, ...Es+m} and

{Es+m+1, Es+m+2, ...Es+m+n} from the two sample windows (s + 1, s + m) and

(s + m + 1, s + n) are from the same distribution. Then the test is done with

the method introduced in Section 5.4.

We concurrently monitor each cluster at each time interval. At any time, if no

cluster reports an anomaly, we consider the system to be in a healthy state. If any

cluster reports an anomaly, we consider an error present and raise an alarm.

72

Chapter 8

Evaluation

In this chapter we present the evaluation of our two solutions. We use the same

testbed in one of the previous work by Munawar [65]. Therefore, in order to make

this thesis self-contained, we reproduce the evaluation approach in Section 8.1 be-

fore we present our evaluation.

8.1 Evaluation Approach

In this section we describe the setup we use and the methodology we follow to evalu-

ate the feasibility and effectiveness of our solution approach. The setup essentially

refers to one or more software systems that require monitoring and a managing

system which monitors those systems. We use a systematic approach to study the

algorithms and methods we devise for system modeling and monitoring.

There are two important premises that underlie or work. First, distributed,

transaction-oriented software systems are complex. Second, monitoring these sys-

tems is costly both in terms of the monitoring overhead and the human involve-

ment required. It is thus necessary to choose an evaluation setup that matches

these premises. Two choices are available in this regard: production systems and

experimental test-beds.

A system in production is one that is in actual use, providing real services.

Obtaining access to production systems for research purposes is problematic for a

variety of reasons. These systems manage sensitive information and provide critical

functionality to organizations. Access to third parties raises concerns regarding

sensitive and private data. System operators also frown upon any activity that risks

affecting system reliability. Our solution approach requires collecting much more

73

data than what is collected by default in most software systems. System operators

will be reluctant to subject their systems to the resulting adverse performance

impact.

Several organizations have made web server access logs available to the research

community (see, e.g., [47]) However, this data only allows the workload and the

user access patterns to be studied. Moreover, only post-mortem analysis can be

performed on such data. Our work relies on management metrics, which are much

richer than what the access logs contain.

To investigate the effectiveness of our solution approach, we not only need access

to the monitoring data, but we also need to have the ability to control the data

collection. We, therefore, choose to build our own experimental test-bed. This is

described next.

Target Platform

The prevalence and complexity of multi-tier, component-based software systems

make them an ideal target for our research. To this effect, we use a Java EE-based

software system as our target system. This system is built using the WebSphere

application server [28], which provides the execution engine for Java EE applica-

tions. To support long-term data persistence, we make use of the DB2 [29] database

management system. Both WebSphere and DB2 are industrial-strength products

that have significant shares of their respective markets. Our choice is motivated

particularly by the fact that WebSphere provides advanced management interfaces;

in particular, it allows dynamic, fine-grained control of metric collection. DB2 also

provides advanced monitoring facilities, albeit at a coarser granularity. While con-

ceptually simple, our target system displays significant internal complexity. Both

the application server and the database server implement complex functionality

and provide many advanced features.

A simple test-bed based on these products is shown in Figure 8.1. All entities

are connected via a Gigabit LAN. The setup in Figure 8.1 can be scaled up by

adding more application servers or databases, and separate web servers. In related

work we have extended this basic setup to include multiple application servers.

Applications

We use our target platform to execute several existing applications that mimic

functionality implemented in real transaction-oriented software systems. Although

74

�������

�����������	
������
�������������
��������������������

� !"�
����#!� #

� ��� #��$
%�$���

�� &!�'
��(�)� #

�������

*�!���#)�++ #
������,� ��	
-����
�������������
�
������������������.�

�����	

*�!����� #�
������������&�*�/
	����
�����/
.�������
����0��" �+���#1�#�	22/

�33��)!�� �
��#1�#

�0�4�3��#��5
2�
*�	

Figure 8.1: Experimental setup

these applications vary in size and functionality, and have been developed by differ-

ent organizations, they share common characteristics. First, they have been built

using the Java EE framework and provide a web-based user interface. Second, they

require the use of a database management system. Most of these applications have

been designed for the performance benchmarking of web transaction systems.

• PlantsByWebSphere PlantsByWebSphere [30] is a Java EE application de-

veloped by IBM to showcase the features and capabilities of the WebSphere

application server. It implements an online store, selling plants and gardening

tools. It allows users to create accounts, browse, check items of interest in

detail, and purchase items. The application is built using standard Java EE

components such as EJB, Servlet, JSP, and message-driven beans.

• RUBiS RUBiS [69], originally developed at Rice University, is a performance

benchmarking application, which implements an online auction site similar

to eBay. Its workload consists of web interactions for selling and browsing

items, bidding, bids and ratings tracking, and handling user comments. In

our setup we use a servlet-only implementation of RUBiS.

• TPC-W TPC-W [84] is a performance benchmark specification designed to

evaluate web-based transaction-oriented systems. We use a servlet-based im-

plementation of the specification. The application implements the function-

ality of an online retail store, allowing users to browse and purchase items.

75

���
������

	
���
�
����

	
���
��

������������
 ������������

	
���
�
����

	
���
�
���

������
���

�������

�
��

����� �������

!� �������

�����"����

����������	��
������������� ���

#��	����

	

�
�
�
�
�

� �
�

Figure 8.2: Overall structure of the Trade application

The benchmark can be configured to use workload profiles, which correspond

to different proportions of “browse” to “buy” web interactions.

• Trade Trade [14] is a Java EE application developed by IBM that implements

a stock brokerage system. The application allows end-users to trade securities.

For example, users can register themselves, view stock prices, buy and sell

stocks, check their accounts, and track their orders. It has been designed to

exercise many features of the WebSphere application server. It is built with

components such as EJB, Servlet, and JSP. It also makes use of the Java

Database Connectivity (JDBC) to access the database management system

and the Java Messaging Service (JMS) for asynchronous order processing.

The main components of the Trade application are shown in Figure 8.2. A

web interaction in Trade involves many components, even without taking into

account the components of the underlying platform. While it is possible to

access the Trade application via a native or a web service interface, we only

use the web interface, which clients can access via a browser.

We employ Trade as our main target application because of its large size and

its use of the many features of the Java EE technology. Trade comprises many

more components than the other applications; it is thus a better candidate

to evaluate our monitoring and diagnosis solution approach. We use the

other applications to validate our claim that stable metric correlations exist

in software systems.

76

Workload

Many aspects of our work depend on observing a system in operation. We create

synthetic workloads by simulating a population of users accessing the functionality

provided by the applications. We use an open-loop workload1 to estimate the effect

of monitoring on system performance. We make use of a closed-loop workload for

all other experiments.

For Trade and PlantsByWebSphere, we use our own workload generators, which

gives us the flexibility to generate different load patterns. By default, we use a

random uniform load pattern, which is configured to cause the system to operate

over a wide range of resource utilization levels. For RUBiS and TPC-W, we use the

emulated clients that are provided with these benchmarks. Our workload generators

execute on a separate machine, and we ensure that enough resources are dedicated

to avoid bottlenecks in the client machine.

Monitoring Engine

Our monitoring engine consists of data-collection and data-analysis engines. It

also contains a model repository. The monitoring engine operates from outside the

target system and executes on a separate host.

The data collection engine manages the collection of metric data from the

target system. This data is either processed online or saved in a local database for

offline analysis.

The metric data originates from the subsystems of the target system. We use

the JMX interface to collect metrics from the WebSphere application server. We

use the DB2 Snapshot interface to collect metrics from the database. The workload

generators also expose metrics, which we collect through log files. For collecting

host-level metrics, we use the WMI interface on windows hosts or the sar utility

on Linux hosts.

We collect metric data at a fixed rate, which we set to 10 seconds. This choice

allows the overhead of collecting a given set of metrics to remain low, while having

sufficient resolution to capture dynamics of interest in the target system. The

transactions in our applications are short-lived; when the system is not overloaded,

1In an open system the arrival of new requests is independent from the completion of other
requests. In a closed system new requests are submitted upon completion of previous requests,
and the load is primarily a function of the clients.

77

Component Metrics

Web Container # Sessions created/invalidated
Thread Pools #Threads created/active, free pool size
JDBC module Response time, #Free connections
Servlet/JSP and EJB #Requests, #Instantiations, Response time
Database #Active connections, #Log writes
Database tables #Rows retrieved/written/deleted

Table 8.1: Examples of metrics collected

most transactions take much less than one second to complete. As such, a 10-

second interval allows significant activity to be captured. Furthermore, our choice

of collection interval allows prompt detection of anomalies in the monitored system.

The data analysis engine is responsible for processing the collected data. The

processing involves either learning models from the collected data or checking new

data using the learned models. Our analysis engine is built in Java. We leverage

the implementation of regression models available in the Weka-3 data mining [86]

package. However, the majority of the analysis engine is custom-built. This includes

tests for checking model assumptions, the correlation identification and validation

logic, the metric selection methods, the diagnosis method, etc.

Monitoring Data

Our data comprises periodically-collected management metrics from WebSphere

and DB2. For example, with the Trade application, the raw data sets consist of

more than 600 metrics collected every 10 seconds. We take some basic filtering

steps to discard metrics that provide little information or are redundant. More

specifically, we check whether the metrics display non-zero variance in a small

window of samples; we use a window of 60 samples in our experiments. Though

not necessary in general, we discard metrics that we find to be redundant based on

naming conventions. For example, if two metrics are collected, we would ignore a

metric that represents their sum. From the metrics we collect from Trade, only 352

metrics remain after the basic filtering. Table 8.1 lists a few examples of metrics

included in our data sets.

78

Experiment Framework

We have developed a scripting framework to coordinate our experiments. It consists

of an experiment controller and daemons running on hosts involved in the experi-

ments. The controller script sends commands for the daemons to execute. These

commands include operations to reset state, to inject faults, to start and stop the

database and the application servers, to enable and disable metric collection, and

to start and stop workload generation.

All our experiments involve preparatory steps such as synchronizing time, restart-

ing the application and database servers, resetting application and database states,

and warming up the target system.

8.1.1 Methodology

Are metric correlations stable? Can we detect fault-induced disturbance with cor-

relations? How well can we localize faulty components with correlation? To answer

these and other questions raised by our solution approach, we design and carry

out controlled experiments using our test-bed. More specifically, we carry out two

types of experiments: normal activity experiments and fault-injection experiments.

Normal activity experiments involve studying the system under normal operating

conditions. These experiments are used to characterize the target system’s normal

behavior, to check the robustness of our modeling approach, and to assess the over-

head of monitoring. These experiments are typically long (spanning several hours)

to make analysis less vulnerable to spurious observations. Fault-injection exper-

iments are relatively much shorter (lasting less than an hour) and are discussed

next.

8.1.2 Fault Injection

The purpose of our fault-injection experiments is to study how well we can detect

faults and how accurately we can localize the faulty components. To this end, we

postulate various types of faults that can occur in a system. We inject the faults

into the target system while it is in a healthy state and examine the response of the

monitoring system. Knowing the ground truth about the faults, we check whether

the monitoring system can detect the faults. Likewise, knowing the components in

which the faults exist, we can measure the accuracy of the diagnosis produced.

79

Number of
Fault Class Fault Category Components

Injected

Application faults
Exceptions in JSP and EJB components 12
Delays in JSP and EJB components 12
Locking in DB tables 5

Operator mistakes
Misconfigurations 3
Deletion of JSP components 7

Table 8.2: Summary of the faults injected

Faults can be defined at different granularity. We can create faults that cause

subsystems to fail (e.g., kill a database or application server process, disconnect

the network, etc.). These faults cause major subsystems to stop completely and

thus can be detected easily by probing the specific subsystems. However, with such

coarse-grained faults we cannot assess the effectiveness of our diagnosis approach

at the level of software components.

We have implemented faults at the level of software components (e.g., appli-

cation components, middleware components, database tables, etc.). Most of these

faults cause the target system to fail partially, making them more difficult to detect

and diagnose. With such faults, we can evaluate the effectiveness of our solution

approach in the presence of a system’s internal complexity and dynamism.

The fault injections we have designed can be broadly grouped into two cate-

gories: application faults and operator faults. We simulate operator faults, because

it has been observed that a large proportion of faults in software systems are oper-

ator faults [67, 83]. In each category, we have several classes of faults. A summary

of the faults we use in our experiments is given in Table 8.2 and further details are

provided in the following sections.

Application Faults

These faults are injected in application components, which causes the execution of

the application to be affected directly. Such faults may arise from faulty imple-

mentation, which may have escaped testing or may have been introduced during a

system update. Such faults may also be caused by faulty logic, which may cause

part of the application to under-perform or even stall.

80

Faulty execution flow: This class represents faults that cause components to

deviate from the normal flow of execution. We instrument the target application

to induce two types of faults: unhandled exceptions and null call returns. Excep-

tion faults involve throwing an unhandled exception with probability eprob when a

selected method of a component is executed. Null returns are similar to the excep-

tion faults except that they cause a selected method of a component to return null

instead of throwing an exception.

The effects of both types of faults are similar in our test-bed, as most cases of

null returns cause exceptions. We thus only discuss results of the exception faults

in our evaluation.

Performance degradation: This class of faults causes slow-down in specific ap-

plication components. We modify the target application to introduce two types of

such faults: delay loops and thread sleep. Delay-loop faults entail delaying com-

pletion of a selected method for dlen time units by executing extra cpu-intensive

logic. To configure these faults, we specify a component, one of its methods, the

delay-loop duration dlen, and a probability of activation, dprob, when the selected

method is executed. Thread sleep is similar to delay loops except for the fact that

thread sleep causes the executing thread to sleep for dlen instead of keeping the

processor busy.

Both types of faults cause delays in application components. However, unlike

thread sleeps, delay loops tend to monopolize the CPU on the application host,

causing widespread disturbance in the system. Much more insight can be had by

analyzing effects of thread sleeps; we thus limit our evaluation to such faults.

Database table locking: This class of faults represent external disturbance to

components in the database used by our application. We simulate table-locking

faults which periodically lock a chosen database table. The lock is activated for

llock fraction of every linterval time interval during the fault-injection period.

In our experiments we configure our application faults using the parameters

listed in Table 8.3. The tasks of error detection and diagnosis are more difficult

when faults are probabilistic rather than deterministic. Probabilistic faults are not

unrealistic; for example, in a load-balanced, clustered system a fault that affects a

member of a cluster is likely to have effects similar to that of a probabilistic fault.

81

Parameter Value

eprob 0.3
dprob 0.2
dlen 2000 (ms)
linterval 1000 (ms)
llock 0.5

Table 8.3: Fault parameters

Operator Faults

These faults simulate mistakes by a system operator during configuration or tuning

of the system. The faults we devised include misconfiguration of credentials in the

application server for database authentication, wrong tuning of system components

such as connection and thread pools (i.e., the pool sizes are set too low), and

deployment faults such as inadvertent deletion of application components.

The specifics of this class of faults are as follows:

• JSP deletion: the fault consists of removing JSP files from the deployment

files. We consider the separate removal of seven different JSPs. These faults

cause user requests to fail when a missing JSP is involved.

• Thread pool size too low: the fault entails setting the maximum size of

the main thread pool of the application server to a low value. This limits the

application server’s ability to accept and perform concurrent work.

• Database connection pool too small: the fault entails setting connection

pool size in the application server to a low value. The fault causes a slow

down in retrieving data from the DBMS.

• Database authentication error: the fault involves using wrong creden-

tials for the application server to authenticate with the database. This fault

completely prevents the application server from fetching persistent data from

the database.

8.1.3 Fault-Injection Experiments

Each of our fault-injection experiments lasts for approximately 30 minutes, with a

fault injected at the 20-minute point. We treat the first 10 minutes as a warm-up

82

period, and ignore it. Thus, from the perspective of our analysis we have a fault

injected at the 10-minute mark, or at time-interval 56. Any error reported prior to

time-interval 56 is a false alarm. In order to keep the false positive rate low, we use

a window size of 12 for all the Wilcoxon Rank-Sum test, which is the largest value

typical in pre-computed statistics table for small samples. Therefore, any alarm

reported within 12 sampling periods from the point of fault injection is considered

a successful detection.

8.2 Evaluation of Linear Modeling

We first present the evaluation for our linear modeling techniques. The system

modeling process yields 988 OLS models and 3219 GLS models. We first evaluate

the performance of these models and then present the error detection results with

these models.

8.2.1 The Performance of Individual Models

We first evaluate the performance of individual models we have learned during the

system modeling step.

Based on our assumption that the metric correlation are stable when there is no

fault, a model is expected to report no outliers before the fault is injected for each

of the 39 error-injected experiments. We also assume that some of the correlation

would break when there is a fault present in the system, therefore we expect some

models to report many outliers after the fault is injected.

According to the expectation, the performance of models could be categorized

in three types as shown in Table 8.4. Non-informative models do not report many

outliers throughout the experiment. Informative models may have a few false pos-

itives when there is no fault; but have many outliers reported when the fault is

present. Some models report many outliers even when there is no fault, which we

consider to be inaccurate models. For the seek of evaluating the performance of

models, we consider a false positive rate up to 5% is possible for a good linear

model. Therefore, we use 5% as the threshold to determine if there is “many”

outliers reported in Table 8.4.

Considering the performance of each model in the 39 experiments, we divided

models into a few categories according to the definition in Table 8.5.

83

Outliers reported before fault occurs Outliers reported after fault occurs
Non-informative Less than 5% Less than 5%
Informative Less than 5% More than 5%
Inaccurate More than 5% Any

Table 8.4: Model performance definition

Non-informative Informative Inaccurate Number Proportion
Non-informative Models 39 0 0 298 7.1%
Informative Models Any 1+ 0 3671 87.3%
Inaccurate Models Any 0 1+ 179 4.2%
Not any of the above Any 1+ 1+ 59 1.4%

Table 8.5: Model performance

There are 298 or 7.1% non-informative models, which never report many outliers

in the 39 experiments. Those models probably represent inherent correlation in the

system which never break.

There are 3671 or 87.3% informative models, which are never inaccurate in any

of the 39 experiments and are informative in detecting errors in at least 1 of the 39

experiments. This conforms our assumption that many of the linear correlations in

the system are stable, but may break when fault is present.

There are 179 or 4.2% inaccurate models, which report many outliers when there

is no fault during at least 1 of the 39 experiments and are never informative in any

experiments. For some reason those models are no longer valid after we learned

them in the system modeling step.

There are 59 or 1.4% models show unexpected behaviors. They are sometimes

inaccurate and sometimes informative. Such behaviors are not expected. However,

given the small number of them, we believe they are probably just caused by some

random errors in the modeling and statistics.

In sum, 95% of the models are stable correlations and most of them are useful

in detecting some errors.

8.2.2 Error-Detection Examples

We first show a few examples where we successfully detect errors with our models.

These example support our claim that many errors in the system can invalidate

many linear correlations between metrics such that the increased number of broken

models can be used to identify errors in the system. In addition, these examples

84

also show the complexity of automating the error-detection process and illustrate

the benefit of applying the Wilcoxon Rank-Sum test.

Figure 8.3, 8.4, 8.5, 8.6 and 8.7 show the number of models that report outliers

during five experiments separately. Due to space limitation, we will not show such

figures for all 39 faulty experiments but these five experiments are very represen-

tative.

In all five experiments, before the fault is injected at time 56, the number of

broken models varies around 100 or 2.5% of the 4207 models. Those outliers may

be caused by two reasons. First, there may be some difference in the environment

between the learning experiment and the faulty-injection experiment. As a result,

a few models may no longer be valid. Second, a small false positive rate of one or

two percent is fair since by definition of confidence interval the dependent variable

may have a small chance to be out of the predicted confidence interval.

In four of the five experiments, we can observe an increase in number of models

broken when the fault is injected at time 56. We successfully detect these four

errors with the Wilcoxon Rank-Sum test. The only exception is the one presented

in Figure 8.5, which is not detected.

We can learn a few points from these examples.

First, it is possible that some of the learned models will not hold in the new en-

vironment, where the models are being used for monitoring. Therefore, the method

to detect errors must be able to tolerate such invalid models. This can be done by

the Wilcoxon Rank-Sum test, which only detects changes or increases in number of

broken models instead of the absolute number. Therefore, no anomaly is reported

from time 0 to time 56 in all five experiments. At time 56, the fault is injected.

The number of broken models show an increase in four of the examples, which

can be easily identified with the Wilcoxon Rank-Sum test. Without such a test,

we would need to set a priori an appropriate threshold for the number of broken

models (e.g.200 in our example), which is non-trivial.

Second, we have found that it is common for some models to break occasionally.

As a result, the number of models that report outliers may suddenly increase at

some point and then drop shortly afterward. A threshold-based detection scheme

will likely cause false alarms at these points. For example, at 48 in Figure 8.6,

models reporting outliers show a sudden and temporal increase for two consecutive

samples. It is challenging to avoid false positives at these points. With the Wilcoxon

Rank-Sum test, however, we can make detection robust to the temporary spikes,

thus avoiding false positives.

85

 0

 200

 400

 600

 800

 1000

 0 32 64 96
 0

 5

 10

 15

 20

 25

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

I
n

p
e
r
c
e
n
t

o
f

a
l
l

m
o
d
e
l
s
(
%
)

Time

Figure 8.3: Sample fault detection - Mis-ds-authentication

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 32 64 96
 0

 2

 4

 6

 8

 10

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

I
n

p
e
r
c
e
n
t

o
f

a
l
l

m
o
d
e
l
s
(
%
)

Time

Figure 8.4: Sample fault detection - Mis-ds-connection-pool

86

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 32 64 96
 0

 2

 4

 6

 8

 10

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

I
n

p
e
r
c
e
n
t

o
f

a
l
l

m
o
d
e
l
s
(
%
)

Time

Figure 8.5: Sample fault detection - Del-AccountJSP

 0

 500

 1000

 1500

 2000

 0 32 64 96
 0

 10

 20

 30

 40

 50

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

I
n

p
e
r
c
e
n
t

o
f

a
l
l

m
o
d
e
l
s
(
%
)

Time

Figure 8.6: Sample fault detection - Del-DisplayQuoteJSP

87

 0

 100

 200

 300

 400

 500

 600

 0 32 64 96
 0

 2

 4

 6

 8

 10

 12

 14

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

I
n

p
e
r
c
e
n
t

o
f

a
l
l

m
o
d
e
l
s
(
%
)

Time

Figure 8.7: Sample fault detection - DB-QuoteEJB

8.2.3 Experimental Results

We list the first time our monitoring system report an outlier for the 39 experiments

as well as the rank of the faulty component in the diagnosis in Table 8.6. We

place “X” when error is never reported and “-” when the faulty component has an

anomaly score of 0.

To evaluate the performance of the error detection algorithm, we use the mea-

surements outlined in Section 4.1.1. The details of the measurements for our eval-

uation based on the general idea in Section 4.1.1 follows.

An ideal fault-detection algorithm should report anomalies whenever there is a

fault and report nothing otherwise. Nevertheless, after a fault occurs, the current

observation window may contain both normal and anomalous samples. Thus, the

Wilcoxon Rank-Sum test on sliding windows may not report anomalies immediately.

As a result, there may be a time lag up to the length of the sliding window

before anomalies are detected. We call this lag a detection window, which equals

the size of the observation window times the duration of the sampling period. As

such, we set the following requirements for our algorithm:

88

1. Recall: when a fault occurs, the algorithm should report an anomaly after the

fault occurs and before the detection window elapses.

2. Precision: any error reported should truly represent a fault. Any error re-

ported when there is no fault is considered a false alarm and should be avoided.

Therefor, for each fault-injection experiment, the error is considered detected

(counted as a true positive) if there is no false alarms before the error is present,

and there is at least one alarm soon after the error is present. If there is any alarm

before the error is present, it is counted as a false positive. If there is no alarm

reported but there is an error present, it is counted as a false negative. If there is

no alarm reported and there is no error present throughout the experiment, it is

counted as a true negative.

We then calculate the recall, precision, false positive error rate and F-measure

according to the definitions in Section 4.1.1. These measurements are reported

in Table 8.8 under the column “Current”. We successfully detect the errors in

the system in 33 out of 39 experiments with different faults injected. In addition,

our algorithm does not report any false alarms before the fault is injected in any

of the 39 experiments. All false positives made by individual models have been

successfully filtered at the error detection step. Given a zero false positive error

rate, it is impressive that we still have a high recall of 85%. Therefore, we have a

high F-measure of 0.92.

The fault diagnosis is also informative. Although we are not able to pinpoint

the faulty component in most experiments, we still manage to rank the faulty

component in top 14 out of 28 components in 20 of the 33 experiments when we

detect errors. This diagnosis illustrate some minimal information metric correlation

can provide regarding the fault localization. We are expected to explore methods

to improve the diagnosis in the further work.

8.2.4 Comparison with Prior Work

We would like to compare our new methods with prior work [63, 64, 62]. To this

effect, we use the same data set to compare the methods. We first apply ordinary

least squares to learn linear models, and select linear models with R2 > 0.95,

without any heteroscedasticity test. This procedure yields 15228 models. We then

apply these models to the data from fault-injection experiments and check whether

they are useful in detecting faults. Methods in prior work rely on a threshold of the

number (or proportion) of models that need to break before errors are detected.

89

Error detection time Faulty component rank
Mis-ds-authentication 63 16
Mis-ds-connection-pool 68 14
Del-AccountJSP X
Del-DisplayQuoteJSP 57 -
Del-TradeHomeJSP 65 12
Del-MarketSummaryJSP 66 -
Del-OrderJSP 68 -
Del-PortfolioJSP 65 1
Del-QuoteJSP 66 2
Mis-ThreadPool X
DB-QuoteEJB 66 2
DB-HoldingEJB 66 1
DB-OrderEJB 65 3
DB-AccountEJB 64 -
DB-AccountProfileEJB 65 2
Exception-QuoteEJB 66 2
Exception-OrderEJB 65 5
Exception-HoldingEJB 64 9
Exception-AccountProfileEJB 66 3
Exception-AccountEJB 64 5
Exception-MarketSummaryJSP 65 -
Exception-QuoteJSP 66 1
Exception-PortfolioJSP X
Exception-WelcomeJSP 68 -
Exception-AccountJSP 70 -
Exception-OrderJSP X
Exception-TradeHomeJSP 62 13
Thread-QuoteEJB 63 2
Thread-OrderEJB 65 4
Thread-HoldingEJB 62 10
Thread-AccountProfileEJB 65 9
Thread-AccountEJB 66 10
Thread-MarketSummaryJSP 66 -
Thread-QuoteJSP 65 -
Thread-PortfolioJSP 65 -
Thread-WelcomeJSP 62 -
Thread-AccountJSP 65 -
Thread-OrderJSP X
Thread-TradeHomeJSP 66 -

Table 8.6: Error detection and fault localization with linear models

90

We experiment with different threshold values and report the results under column

with “1%“ to “20%“ in Table 8.7. A summation is reported under the same column

in Table 8.8.

The results show that fact that there are many false alarms if the threshold is too

low and many faults are not detected if the threshold is set higher. This suggests

that setting static thresholds is problematic. Not only it is difficult to select an

appropriate threshold beforehand, it is even doubtful that an appropriate static

threshold exists. For example, comparing the results in Table 8.8, we conclude that

if we are most concerned with the false positive error rate, the best static threshold

is 5%, when 16 out of 39 faults are detected without any false alarms. If we are

most concerned with the F-measure, the best static threshold is 5%, when 25 out of

39 faults are detected, and in 3 out of 39 fault-injection experiments we have false

alarms. Our current method works much better by detecting 33 out of 39 faults

without any false alarms.

To address the problem of selecting an appropriate threshold and make it possi-

ble to compare our models with models in prior work (i.e., we would like to compare

our OLS and GLS models to the previous OLS model with no heteroscedasticity

test applied), we apply the Wilcoxon Rank-Sum test in both cases and see how they

compare in terms of error detection. We report the results under column “WRS

test” and “Current” in Comparing the last column in Table 8.7 and Table 8.8.,

we see that models from prior work has 5 false positives. This is understandable;

as shown in Figure 6.2 and Figure 6.6, the prediction intervals do not account for

heteroscedasticity, and thus could be too narrow, falsely labeling normal samples

as outliers. In addition, with models from prior work only 30 faults are detected

successfully, which is less than the 33 faults detected with current work.

8.3 Evaluation of Information-Theoretic Solution

In this section we present the evaluation for our information theoretic modeling

techniques. We first evaluate our similarity measure Normalized Mutual Informa-

tion, and then evaluate the information theoretic solution.

8.3.1 Identifying Non-linear Correlations

We first study if the Normalized Mutual Information (NMI) similarity measure

helps identify both linear and non-linear relationships between metrics. To bet-

91

Threshold to raise alarms 1 % 2 % 3 % 5 % 10 % 20 % WRS test Current
Mis-ds-authentication 0 56 56 57 57 X 64 63
Mis-ds-connection-pool 56 57 X X X X 64 68
Del-AccountJSP 44 44 44 99 99 X 68 X
Del-DisplayQuoteJSP 47 56 56 82 93 X 66 57
Del-TradeHomeJSP 56 56 56 56 56 56 64 65
Del-MarketSummaryJSP 56 56 56 56 56 56 66 66
Del-OrderJSP 61 X X X X X 65 68
Del-PortfolioJSP 32 74 X X X X 66 65
Del-QuoteJSP 25 25 56 56 56 56 66 66
Mis-ThreadPool 56 X X X X X X X
DB-QuoteEJB 56 56 X X X X 62 66
DB-HoldingEJB 56 62 X X X X 66 66
DB-OrderEJB 56 92 92 92 93 X 64 65
DB-AccountEJB 56 87 X X X X 64 64
DB-AccountProfileEJB 28 77 X X X X 66 65
Exception-QuoteEJB 36 56 56 56 59 71 62 66
Exception-OrderEJB 38 56 56 56 56 56 65 65
Exception-HoldingEJB 55 56 56 56 56 56 61 64
Exception-AccountProfileEJB 56 56 57 58 62 X 65 66
Exception-AccountEJB 20 56 56 56 56 58 47 64
Exception-MarketSummaryJSP 56 56 56 56 56 56 63 65
Exception-QuoteJSP 56 56 57 58 85 X 62 66
Exception-PortfolioJSP 62 X X X X X X X
Exception-WelcomeJSP 43 64 X X X X 38 68
Exception-AccountJSP X X X X X X 68 70
Exception-OrderJSP 97 X X X X X X X
Exception-TradeHomeJSP 52 56 56 56 56 56 63 62
Thread-QuoteEJB 56 56 57 X X X 66 63
Thread-OrderEJB 58 58 74 74 84 X 64 65
Thread-HoldingEJB 54 56 X X X X 44 62
Thread-AccountProfileEJB 37 37 X X X X 63 65
Thread-AccountEJB X X X X X X 65 66
Thread-MarketSummaryJSP 78 X X X X X 52 66
Thread-QuoteJSP 68 X X X X X X 65
Thread-PortfolioJSP X X X X X X 66 65
Thread-WelcomeJSP 92 92 X X X X 66 62
Thread-AccountJSP 29 X X X X X 64 65
Thread-OrderJSP 80 X X X X X 33 X
Thread-TradeHomeJSP 78 78 X X X X 67 66

Table 8.7: Error-detection comparison

Threshold to raise alarms 1.00% 2.00% 3.00% 5.00% 10.00% 20.00% WRS test Current
True Positive 22 25 16 16 15 9 30 33
False Positive 14 3 1 0 0 0 5 0
False Negative 3 11 22 23 24 30 4 6
Recall 56% 64% 41% 41% 38% 23% 77% 85%
False Positive Error Rate 39% 11% 3% 0 0 0 14% 0
F-measure 0.58 0.74 0.57 0.58 0.55 0.37 0.81 0.92

Table 8.8: Error-detection summary

92

Figure 8.8: Metric-similarity measures

ter understand NMI, we compare it with the square of the Pearson’s correlation

coefficient, r2, a measure of how strongly two variables are linearly correlated.

If metrics X and Y are linearly correlated, they should have high r2 and high

NMI; if they are correlated but the relation is nonlinear, they should have low r2

and high NMI; if they are not correlated, they should have low r2 and low NMI.

Metrics will never have a high r2 and a low NMI, as variables that are highly linearly

correlated must be highly correlated, thus have a high NMI.

r2 is a well-studied similarity measure. In general, r2 > 0.6 indicates a strong lin-

ear relationship, and r2 > 0.9 indicates a very strong linear relationship. However,

NMI is a new similarity measure, proposed very recently, and has little guidance

for what value of NMI constitutes an indication of strong relationship. We com-

puted both r2 and NMI for metrics pairs in a three-hour, fault-free experiment.

The results, shown in Figure 8.8, indicate that for r2 = 0.6, the NMI is at least

0.25. As such, we consider NMI > 0.25 to indicate a strong correlation. Similarly,

we consider NMI > 0.5, which corresponds to r2 > 0.9 for a linear correlation, to

indicate a very strong correlation.

Filtering metrics pairs with r2 < 0.6 (not strongly, linearly correlated) and

NMI > 0.25 (strongly correlated) identifies metrics pairs which have strong non-

linear correlation. Our experiment shows that there are quite a few nonlinear

93

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10000 20000 30000 40000 50000 60000M
e
a
n

t
r
a
n
s
a
c
t
i
o
n

d
u
r
a
t
i
o
n

b
e
f
o
r
e

c
o
m
m
i
t

Number of times Quote objects are stored in the database

Figure 8.9: Metric relationship - a power function

correlations within the system. Two examples of such correlations are shown in

Figure 8.9 and 8.10. Figure 8.9 shows the correlation between a response time and

an activity metric. Beyond a certain level of activity (in this case, saving Quote

objects to the database), the increase in the response time of related transactions

becomes non-linear. Figure 8.10 show the correlation the same activity metric and

the time taken to update and publish Quote objects. After a certain level of activ-

ity, the response time is roughly constant but noisy because of additional factors

that affect response time. A conclusion can be easily drawn from the figure that

if the number of times Quote objects are stored in the database exceeds 20000,

the response time of the relevant method would unlikely be lower than 40 seconds.

This relationship can hardly be identified with regular modeling unless a piecewise

function is specifically designed for it. In our case, however, it is easily identified

with a NMI greater than 0.25.

8.3.2 Clustering of Metrics

Clustering using NMI subdivides the metrics in a number of groups, each containing

metrics correlated with each other. We observe that there are usually a small

number of big clusters and many small clusters. The exact number of big clusters

depend on the NMI threshold used to do the clustering. Usually, there will be three

94

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000R
e
s
p
o
n
s
e

t
i
m
e

o
f

t
h
e

u
p
d
a
t
e
Q
u
o
t
e
P
r
i
c
e
V
o
l
u
m
e

m
e
t
h
o
d

Number of times Quote objects are stored in the database

Figure 8.10: Metric relationship - a piecewise function

big clusters.

Given some domain knowledge, some of the big clusters obtained can be ex-

plained. For example, the largest cluster usually corresponds to the direct workload-

induced effects on the system metrics. Most metrics in this cluster relate to activ-

ity count in the different components used by the Trade application. The second

largest cluster also relates to workload-induced activity; however, it mostly con-

tains metrics related to order handling and the messaging engine. Sometimes the

two biggest cluster will merge as they are both workload related. The third largest

cluster contains response-time metrics, whose behavior differ from that of activity

metrics.

An alarm from a cluster with nearly a hundred metrics may be more valuable

than an alarm from a cluster with only two metrics. The former involves a lot

more metrics and it represents broader knowledge of the current system status.

Moreover, since we have eight bins when calculate the in-cluster entropy, a cluster

with too few metrics may not provide enough samples to estimate the empirical in-

cluster entropy. Therefore, we typically require a cluster with at least eight metrics

to be considered valid and only monitor these big clusters.

95

 0

 0.5

 1

 1.5

 2

 0 32 64 96

I
n
-
c
l
u
s
t
e
r

e
n
t
r
o
p
y

Time

Figure 8.11: Sample in-cluster entropy

8.3.3 Error-Detection Examples

Similar to Section 8.2.2 we first show a few examples where we successfully detect

errors with our models. These example support our claim that errors in the system

may cause persistent change in the in-cluster entropy, which could signal an error in

the system. They also illustrate why we use Wilcoxon Rank-Sum test to automate

the error-detection process.

Figure 8.11, 8.12, 8.13, 8.14 and 8.15 show examples where the error in the

system cause the the in-cluster entropy in some cluster to change.

In all five experiments, after the fault is injected at time 56, the in-cluster

entropy show a persistent change which is detected by the Wilcoxon Rank-Sum

test.

8.3.4 Experimental Results

We evaluate the detection performance using the 39 fault-injection experiments.

We use the same definition for fault coverage and false positive as in Section 8.2.3.

The first time an error is reported is presented in Table 8.9.

96

 0

 0.5

 1

 1.5

 2

 0 32 64 96

I
n
-
c
l
u
s
t
e
r

e
n
t
r
o
p
y

Time

Figure 8.12: Sample in-cluster entropy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 32 64 96

I
n
-
c
l
u
s
t
e
r

e
n
t
r
o
p
y

Time

Figure 8.13: Sample in-cluster entropy

97

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 32 64 96

I
n
-
c
l
u
s
t
e
r

e
n
t
r
o
p
y

Time

Figure 8.14: Sample in-cluster entropy

 0

 0.5

 1

 1.5

 2

 0 32 64 96

I
n
-
c
l
u
s
t
e
r

e
n
t
r
o
p
y

Time

Figure 8.15: Sample in-cluster entropy

98

Error detection time
Mis-ds-authentication 65
Mis-ds-connection-pool 65
Del-AccountJSP 64
Del-DisplayQuoteJSP 62
Del-TradeHomeJSP 64
Del-MarketSummaryJSP 65
Del-OrderJSP X
Del-PortfolioJSP X
Del-QuoteJSP 65
Mis-ThreadPool 65
DB-QuoteEJB 63
DB-HoldingEJB 60
DB-OrderEJB 64
DB-AccountEJB 65
DB-AccountProfileEJB 65
Exception-QuoteEJB 64
Exception-OrderEJB 64
Exception-HoldingEJB 61
Exception-AccountProfileEJB 64
Exception-AccountEJB 64
Exception-MarketSummaryJSP X
Exception-QuoteJSP 66
Exception-PortfolioJSP 62
Exception-WelcomeJSP X
Exception-AccountJSP X
Exception-OrderJSP X
Exception-TradeHomeJSP X
Thread-QuoteEJB 58
Thread-OrderEJB 65
Thread-HoldingEJB 63
Thread-AccountProfileEJB 65
Thread-AccountEJB 65
Thread-MarketSummaryJSP 65
Thread-QuoteJSP 62
Thread-PortfolioJSP 65
Thread-WelcomeJSP 65
Thread-AccountJSP 64
Thread-OrderJSP 64
Thread-TradeHomeJSP 64

Table 8.9: Error detection with information-theoretic models

99

NMI threshold 0.99 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0
True Positive 0 0 1 10 32 32 32 26 12
False Positive 0 0 0 0 1 0 0 0 0
False Negative 39 39 38 29 6 7 7 13 27
Recall 0 0 3% 25% 82% 82% 82% 66% 30%
False Positive Error Rate 0 0 0 0 3% 0 0 0 0
F-measure 0 0 0.06 0.4 0.88 0.9 0.9 0.8 0.46

Table 8.10: Error detection with different NMI thresholds

We would like to study the performance of our algorithm with different NMI

threshold. There are two reasons for such a study.

First, we want to see if our algorithm is sensitive to the choice of NMI threshold.

If it works well in a relatively wide range of NMI, then it would not be difficult to

choose a NMI threshold for the algorithm to work.

Second, we also would like to confirm the necessity to cluster correlated metrics.

Assume we set the NMI threshold to 0, then all metrics will be in the same cluster.

In other words, if we do not separate the metrics into clusters based on correlation

but still calculate the cluster entropy for this big cluster, will the algorithm still be

effective?

Therefore, we would like to evaluate what is the overall tendency of our algo-

rithm’s performance when the NMI threshold varies.

Table 8.10 shows the impact of using different values for the NMI threshold.

Nine NMI thresholds are studied. Since different NMI may result in different clus-

ters, to ensure fairness of comparison, we monitor the five biggest clusters, which

in most case include clusters with size eight or more.

We first study the two extreme cases. When the NMI threshold is set to 0, it is

the case that any two metrics are considered correlated, thus there will be a single,

big cluster containing all the metrics. In this case, we are simply trying to calculate

the system-wide entropy. Not surprisingly, there is a lack of sensitivity and only 12

faults are detected. In the reverse case, where the NMI threshold is set to 0.01, only

almost deterministic metrics are considered correlated, thus no meaningful clusters

are found and we do not detect any fault.

When the NMI threshold is too low, metrics with very weak correlations are

considered correlated. When the NMI threshold is too high, only very few met-

rics which are very strongly correlated are included. In both case the correlation

threshold is not proper and the error detection results is not ideal.

The best scenario is the case when NMI thresholds lies around 0.25 to 0.5. In

100

this range, most faults are detected with very low false positive rate. Therefore

our algorithm is not sensitive to the choice of NMI thresholds. Why 0.25 to 0.5

seem to be the best? As illustrated in section 8.3.1, NMI from 0.25 to 0.5 largely

overlaps with R-square from 0.6 to 0.9 in the linear case, a range known to indicate

good linear correlations. In addition, as shown in Figure 8.8, there are a number

of non-linear correlations with NMI close to 0.4. As a result, an NMI threshold

around this level will likely include these non-linear correlations.

8.4 Computational Cost

In this section we evaluate the computational cost of our algorithms.

The cost of the monitoring system consist of three parts: the cost to collect each

metric on the local machine; the cost to transmit metric values to the machine to

process the metrics; and the cost of the algorithms to process the collected metrics.

The first two costs are dependent on the specific system being studied. For the

specific experimental testbed we used, there was metric collection overhead analy-

sis and evaluation in the previous work by Munawar [65]. The performance of the

system we studied is reduced by up to 12%, which is acceptable from our perspec-

tive. However, we would like to note that the metric collection cost would vary

significantly with different systems. The cost to collect metrics on local machines is

dependent on the hardware capability of the machine, the system and application

running on the machine, and the efficiency of the tools to collect the metrics. The

cost to transmit the metric values for processing is dependent on the network topol-

ogy of the monitored system, as well as the way of processing metrics. For example,

the metric processing could be either distributed or centralized, depending on the

size of the system monitored. In our case, we have a centralized server to process

the metrics. One sample consist of less than 400 metrics, each of which is up to 4

bytes. Therefore, the sample size is less than 1600 bytes. On a 100Mbps Ethernet

the time to transmit one sample is less than 1 second. Therefore, for our testbed

the metrics collection and transmission cost are both acceptable. A general analysis

of metrics collecting cost is out of the scope of our thesis. However, the basic as-

sumption of our work is that metrics can be collected with acceptable cost from the

system, and our work starts with the metrics provided by some metric-collection

framework.

We then focus on the study of the cost of processing the metrics. We carry out

our algorithms on a commodity machine with an Intel Xeon 3.2GHz CPU, 4GB

101

Previous OLS Linear Information-theoretic
Theoretic complexity O(m) O(m) O(n)
Parameter in evaluation m ≈ 10000 m ≈ 4000 n ≈ 300
Process time for 100 samples 2300 ∼ 2500 ms 450 ∼ 550 ms 13 ∼ 18 ms
Process time each sample 23 ∼ 25 ms 4.5 ∼ 5.5 ms 0.13 ∼ 0.18 ms

Table 8.11: Computational cost

of memory and CentOS 3. We calculate the time elapsed for the error detection

algorithms, starting from the point that all metric data has been stored in the

memory. We are provided with approximately 300 metrics in our evaluation, and

at each time interval a sample of these 300 metrics is processed. Since the time

to process one sample is very short and the measurement of such a time cannot

be accurate, we record the time to process 100 samples with the three algorithms

being studied: the linear modeling, the information-theoretic modeling, and the

previous OLS modeling(see Section 8.2.4).

The evaluation and analysis is reported in Table 8.11, where n is the number

of metrics, m is the number of models discovered. Usually m ≈ O(n2) for pairwise

modeling. It can be inferred that the time to process one linear model is approx-

imately 2 microsecond. The difference between the linear modeling and previous

simple linear modeling is caused by the difference of number of models they used.

The cost of the two algorithms are the same in the big O notation, and the linear

solution reduces the constant by half.

The difference between the linear modeling and the information-theoretic mod-

eling is significant, as this is a difference between O(n) and O(n2) algorithms. In

our evaluation, the information-theoretic solution is about 2 orders of magnitude

faster compared with the linear solutions when the number of metrics is about 300.

In general , our algorithms are cost-efficient as they both take less than 10 ms

to process one new sample, which is collected every 10 seconds in our evaluation.

Assuming our algorithms are applied to a larger system with 10000 metrics involved.

Based on the analysis the cost of the the linear modeling grows as O(n2) so it can

be estimated that processing one sample should take approximately 5 second, and

the information-theoretic modeling should take only approximately 5 ms. The cost

of the linear modeling is still acceptable, since with a large system of 10000 metrics

we can expect the computational power assigned to process the metrics would be

more than the single 3.2GHz machine we used. However, the information-theoretic

modeling is much more efficient, and the computational cost could be kept very

low. Moreover, there is unlikely to be any algorithm much more efficient compared

102

with the information-theoretic modeling, because reading the n metrics once each

would be an O(n) algorithm. Therefore, the information-theoretic solution can

easily fulfill the scalability requirement in a cloud computing environment.

103

Chapter 9

Conclusion and Future Work

In this dissertation we tackled the challenge of monitoring complex software sys-

tems in an automated and cost-effective manner. After surveying on related work,

we abstracted a solution framework of four steps based on modeling of management

metrics. Approaches following our solution framework entails modeling and mon-

itoring complex software systems using efficient mathematical models with only

metric data, and do not need to use domain knowledge, detailed information about

system structure and mechanism, or prior knowledge of faults. Therefore, these

approaches are widely applicable to many different systems as long as management

metrics are collectible.

Incorporating two different mathematical modeling techniques with the solution

framework, we devised two practical solutions to achieve automatic monitoring of

the software systems. These approaches can be implemented easily and deployed

with little or no change to the target systems.

Our first technique start with analyzing several common factors that reduce the

effectiveness of metric-correlation models in monitoring complex software systems.

We designed methods to capture these factors in the metric-correlation models.

These methods include employing GLS regression and modeling multi-variable cor-

relations and varying coefficients. We employ a non-parametric technique to detect

errors by identifying significant shifts in the number of correlation models reporting

outliers.

We use a realistic enterprise software system to demonstrate that our approach

can successfully detect errors. The OLS and GLS regression has proven valuable in

significant coverage improvements; the improvements from multi-variable models

104

and RLS models are less significant, which is discuss in Appendix A. As a whole,

our approach is very effective in detecting most errors with a very low false-positive

rate.

We devised a second technique, built on normalized mutual information, to

automatically monitor the health of complex software systems and localize faulty

components when errors occur. This approach consists of tracking the entropy of

metric clusters. We employ the Wilcoxon Rank-Sum test to automatically identify

significant changes in cluster entropy, thereby enabling robust error detection.

We evaluate the information theoretic solution using the same testbed and data

we evaluate the linear modeling solution. We show through experiments that both

techniques have high fault coverage and low false-alarm rate. In addition, the

information theoretic solution is very computationally efficient compared with the

linear-model solution.

9.1 Future Research Work

There are many future works associated with the work presented in this dissertation.

Since the error detection is done by modeling the management metrics, the next

challenge is to diagnose the faults in the system. The current work based on metric

correlations is subject to intrinsic limitations as discussed in Appendix B. Methods

to improve the fault localization are desired. Without any knowledge of domain

knowledge or detailed information about system structure and mechanism, it may

be very difficult to do diagnosis. Therefore, an interesting study may start with the

study of what is a reasonable expectation of additional knowledge or information

we can take into consideration when try to do diagnosis.

Although our solutions are very efficient given the fixed number of metrics,

possible improvements are possible by trying to minimize the number of metrics

being modeled. It is possible that for very large distributed systems we have a large

number of metrics available. In such cases, pre-selection of the metrics to reduce

the size of modeled metrics could be a promising direction to reduce monitoring

overhead.

One other promising approach is to assume more knowledge about the faults

instead of assuming more knowledge about the systems. By assuming knowledge

of previous faults there has been a lot of related work which yields accurate fault

diagnosis. This could be another potential research area. We have previously done

some preliminary work in this area [36].

105

After fault localization or diagnosis, the next interesting problem is to put the

system back to a healthy state. This is even more challenging. Some existing work

assumes there are a number of recovery actions that the monitoring system can

automatically perform. Therefore, according to the metrics monitored, a preferred

action could be suggested automatically with the monitoring system.

If the error detection, fault diagnosis and error recovery may all be done effec-

tively in a coherent framework, we can achieve the goal of self-managing systems

and make software systems much more reliable and reduce a large portion of human

workload. However, those problems are very challenging and we are expecting the

researchers working on these problems for years in the future. In sum, the progress

and lessons learned in this dissertation, could be considered as a few first steps

contributing to the goal of self-managing systems.

106

Appendix A

Addressing Specific Problems in

Linear Modeling

We identified a few problems of OLS linear models in Section 6.1. We addressed

the major problem of heteroscedasticity in Section 6.2. We also made an attempt

to address the two other minor problems specifically: missing variable and varying

coefficients. The methods and evaluation are presented in this appendix.

A.1 Modeling Varying Coefficients

We developed a method to explicitly handle the problem of varying coefficients

identified in Section 6.1.2.

If the coefficients of a regression model evolve, then we need to ensure that the

model is up-to-date; otherwise, analysis based on such models may be misleading.

Therefore, every new sample, provided it is not an outlier, should be included in

the regression computation to keep the coefficients current. However, simply re-

learning the models at the arrival of every new sample would be too costly. To

maintain the advantage of the low computational cost of OLS regression, we use a

recursive method to update the model when new a sample arrives.

The recursive algorithm is well studied. The formula to update the model with

new sample (y,x) is given by:

k =
1

1 + x′P0x
P0x (A.1)

107

β = β0 + k(y − x′β0) (A.2)

P = (I − kx′)P0 (A.3)

where P0 may be initialized with P0 = (X ′
0X0)

−1.

A.2 Modeling Three-Variable Correlation

We developed another method to explicitly handle the problem of missing variables

identified in Section 6.1.3.

When we try to model a multi-variable correlation using a two-variable model,

we are likely to see non-constant residual variance because of the missing variable(s).

Specifically, when the true relationship is yi = β0 + β1x1i + β2x2i + ei, a model of

the form yi = β0 + β1x1i + e′i will yield the residuals e′i = β2zi + ei, which do not

have constant variance. As such, we can use non-constant error variance as a clue

in finding multi-variable correlation.

Our greedy algorithm shown in Algorithm 1 builds on this insight to find models

with missing variables .

An exhaustive search of three-variable models cost O(n3C), where n is the

number of metrics, and C is the cost to generate a model with given metrics. Our

algorithm, on the other hand, costs only O(gnC), where g is the number of GLS

models, which is less than n2

2
in the worst case. Therefore, our algorithm cost

no more than an exhaustive search. In addition, if g is much fewer than n2, the

algorithm could be much more efficient than an exhaustive search.

A.3 System Monitoring with New Models

We have four types of models to quantify linear relationships between metrics in a

system. We make small modifications to the solution we presented in Section 6.3

to detect errors in the system with the four types of models. The new procedure is

as follows:

108

Algorithm 1: Algorithm to identify three-variable models efficiently

Input: G ; // set of GLS models

O ; // set of OLS models

M ; // set of all metrics

Output: T ; // set of three-variable models

begin
T := ∅
foreach g ∈ G do

Find metrics m1 and m2 modeled by g
find S1 = {m|m ∈ M, m and m1 related via a model in O}
find S2 = {m|m ∈ M, m and m2 related via a model in O}
foreach m ∈ M \ S1 \ S2 do

Learn the three-variable model t with m1,m2 and m and compute
the F-score f
if f > F2,n−3,α then

T := T + {t}

end

1. Metric Modeling: We learn metric correlation models based on metric samples

collected during a normal running period. This is usually done offline so the

models are prepared before we start monitoring the target system.

2. System Health Signature Generating: For each type of models we found, we

use the outlier count wt (defined in section 5.3) as the system health signature.

This signature is generated online as we collect real time samples from the

monitored system.

3. System State Checking: We consider persistent changes in the system health

signature as an indication of existence of errors. Therefore, we use Wilcoxon

Rank-Sum test to detect persistent changes in the outlier count for each type

of models to do system state checking.

We may end up with several types of models for the system in the metric

modeling step (e.g., both ordinary least square models and generalized least square

models are found). For each type of models, we apply the three-step procedure

and raise alarms separately. We considered an error is detected when any type of

models raise an alarm.

The approach is illustrated in in Fig A.1. The metric modeling step is discussed

in Section A.3.1 and the next two steps are similar to those discussed in Section 6.3.

109

Figure A.1: Model learning and system monitoring

A.3.1 Metric Modeling

Figure A.2 presents our approach to identifying the appropriate modeling tech-

nique. In the figure pass means that we accept the null hypothesis (i.e., the error

variance is constant). For each pair of metrics, we first employ the White test to see

if the residual variance of two-variable linear regression models is constant. Next,

the Goldfeld-Quandt test is used to check whether the GLS models can capture

the observed heteroscedasticity. If both tests suggest that the residual variance

is constant, we model the relationship using OLS regression. If both the White

and the Goldfeld-Quandt tests fail, which suggests that the use of GLS regression

may be appropriate, we employ the GLS model. If the White test suggests het-

eroscedasticity, but the Goldfeld-Quandt test does not, we search for three-variable

models. This procedure gives us two categories of models: GLS models, and the

three-variable models. Finally, since we do not have ways to directly test for varying

coefficients, we then employ OLS regression to each pair of metrics and find those

with high fitness score. In addition, if the pair of metrics also fail the White test,

then varying coefficient is possible, and we use RLS to update the model during

monitoring.

All model learning are done offline with one exception: the RLS models, which

are actually good OLS models but we suspect that they may have varying coef-

ficients. For those models, we need to update the model at every new sample in

order to be updated with varying coefficients. Fortunately, recursive least square is

efficient so it may be implemented online. For those RLS models, we do not trust

110

Figure A.2: Learning metric correlation models

the original coefficients we learned. Therefore at the beginning of the monitoring we

assume the system is in a normal state for a short time, and use samples collected

during that time to reconstruct the model, then update the model at the arriving

of each new sample.

A.4 Evaluation

We use the same testbed as described in Section 8.1 to evaluate the method. Our

learning procedure results in 988 OLS models, 3219 GLS models, 5533 multi-

variable models, and 10501 RLS models. We first show a few examples where

faults are detected.

Figure A.3 shows the number of RLS models that report outliers during one of

the experiments. For RLS, we only use knowledge of which metrics are correlated

and re-learn the model parameters. As such, we use samples before time 20 to

estimate the model parameters, and we start testing new samples at time 20. There

is almost no model reporting outliers at the beginning, but at time 56, when a fault

is injected, we see more than 800 models suddenly reporting outliers. Since we keep

updating the parameters of the models, after a few more samples the models adjust

to the anomalous behavior and stop reporting outliers. However, we can see that

it is easy to infer that the system state changed at time 56.

Figure A.4 shows the number of three-variable models that report outliers for

the same experiment. We see that approximately 300 models (or 5% of the 5533

111

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

Time

RLS models

Figure A.3: Sample fault detection - a simple case

multi-variable models) do not hold from the very beginning. Still, we see evidence

of system anomaly at time 56, when the number of broken models increase to more

than 400.

In Figure A.5 we show two examples of fault-injection experiments and the

results of our monitoring. We plot the number of models that report outliers at

each sampling period for the four categories of models. The time axis starts at

offset 0, and thus the fault is injected at time-interval 56.

In the first example, shown in Figure A.5(a), we observe a significant change in

the number of models reporting outliers for all four types of models soon after the

fault is injected. In the second example, shown in Figure A.5(b), with a different

fault injected, we observe that the three-variable models fail to detect the fault.

These examples indicate that different categories of models may perform better in

detecting errors caused by different faults. This is partly explained by the different

coverage of metrics of the different categories of models. These examples also

suggest that we could improve error detection by raising an alarm when models

from any of the four categories report outliers, provided doing so does not increase

the false-positive rate.

112

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

Time

Three-variable models

Figure A.4: Sample fault detection - tolerating invalid models

A.4.1 Error-Detection Results

We present results of error detection in our 39 fault-injection experiments in Ta-

ble A.1. In the first four columns we show results for all four categories of models.

Any alarm raised by a method within the Wilcoxon Rank-Sum test window from

the point at which fault is injected is considered a successful detection. Errors re-

ported before the point at which the fault is injected is considered a false positive.

If a fault is detected by only one of the category of models, we count it as a “unique

contribution” in the table.

The first observation is that RLS models less reliable than models in the other

categories. With RLS models we have three fault-injection experiments with false

alarms, while with models from the other categories, we have no false alarms.

In addition, RLS models have no unique contribution, and they detect the least

number of faults among all four categories. Therefore, we do not use RLS in

subsequent analysis.

We combine the results of the other three categories of models by declaring

errors in the system when any of the three categories report outliers. The results

are shown under the heading “combined” in Table A.1. We can see that such a

combination enables us to detect 34 out of 39 faults without false alarms. We

113

OLS GLS 3-var RLS Combined
Faults detected 31 24 27 19 34
Faults with no alarm 8 15 12 17 5
Faults with false alarms 0 0 0 3 0
Unique contribution 3 1 1 0 Not defined

Table A.1: Error-detection summary

detect the one more faults compared with the current techniques. The gain is

subtle considering the significant more number of models involved. Therefore, we

think the OLS and GLS models are the better modeling techniques in the balance

of effectiveness and efficiency.

A.4.2 Understanding RLS Performance

We would like to understand why RLS models do not perform as well as the other

models. Two problems plague RLS models: they detect errors in fewer fault-

injection experiments and they cause more false alarms.

For the first problem, our analysis indicates that in many cases when RLS mod-

els miss a fault, it is not the case that none of the RLS models report outliers;

instead, some outliers are reported in the beginning of the fault injection period.

But RLS models update the parameters fast and thus quickly adjust to the anoma-

lous behavior, which causes them to stop detecting outliers. This short burst of

outliers is filtered by our Wilcoxon Rank-Sum test, so no alarm is ever raised.

For the second problem, our analysis shows that because of the adaptive nature

of RLS models, the data fed to the Wilcoxon Rank-Sum test has very low variance,

which in turn makes it sensitive to noise. To illustrate this, we consider one of our

fault-injection experiments in which errors were only detected by three-variable

models. Both OLS and RLS models did not detect errors. While OLS models did

not report a false alarm, RLS models did. In Figure A.6 we can see that OLS models

are noisy. Around 50 to 100 models report outliers throughout the experiment, and

errors are not detected and no false alarms are raised. However, RLS are ”noise-

free” in the beginning but a small number of models (20 out of 10501) report some

outliers which cause the Wilcoxon Rank-Sum test to trigger. 20 out of 10501 is a

tiny model-level false positive rate, which is hard to avoid. However, because of the

absence of noise in the data processed by the Wilcoxon Rank-Sum test prior to this

tiny burst, a false alarm is raised. We have found that a small level of background

“noise” is beneficial for enabling the monitoring system to tolerate false positives.

114

This also explains why the other three categories of models successfully avoided

false alarms.

115

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

Time

OLS models
GLS models

Three-variable models
RLS models

(a) delete-displayquote.jsp

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

Time

OLS models
GLS models

Three-variable models
RLS models

(b) exceptions-AccountEJB

Figure A.5: Sample error-detection results

116

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

N
u
m
b
e
r

o
f

m
o
d
e
l
s

r
e
p
o
r
t
i
n
g

o
u
t
l
i
e
r
s

Time

OLS models
RLS models

Figure A.6: OLS models vs. RLS models

117

Appendix B

Limitations of Fault Localization

with Metric Correlations

In prior work it is often implicitly assumed that if a modeling technique works well

in detecting anomalies in a system, then it is likely that such modeling will help in

fault diagnosis. If the diagnosis does not work well, then improving the technique

used to model the metrics correlation would help. However, this may not true.

With only correlation information and without metric-component knowledge, it

may not be feasible to make an accurate diagnosis irrespective of how effective the

correlation models are in detecting errors in the system. This is the case because

of some intrinsic limitations in the use of correlation models for fault localization.

Specifically, it is usually assumed that a faulty component is likely to cause

many correlations involving the component’s metrics to break. This assumption is

somehow problematic; indeed, a faulty component is likely to cause many corre-

lations to break, however, it is possible that a majority of the broken correlations

are not associated with the faulty component. We next show an example of this

phenomenon and explain it in Section B.1 and Section B.2.

Consider the example in Figure B.1. Assume there are five components A, B,

C, D and E. A transaction in the system starts in component A, which calls some

function in component B, which in turn calls some function in component C, etc.

Such a dependency chains are very common in software systems.

Let ta, tb, tc, td, te be the response time of components A, B, C, D and E, respec-

tively. Let tij , 1 ≤ i ≤ 4, 1 ≤ j ≤ 2 be the execution time in these components

as shown in Figure B.1, we have four basic relationships: ta = tb + t11 + t12,tb =

tc + t21 + t22,tc = td + t31 + t32,td = te + t41 + t42. Further, assume that the bot-

118

Figure B.1: Fault localization example

tleneck of the transaction is in component E, such that the transaction takes most

of time in component E, i.e., te ≫ tij , for any i, j. As a result, when we try to

discover relationships among the five metrics, we will find linear correlations such

as ta = tb. In fact, since every metric should be roughly equal to te, every two

metrics should roughly equal each other. Therefore, we end up with C(5, 2) = 10

correlations , where C(n, k) is the number of k-combination from a set of size n,

given by C(n, k) = n!
k!(n−k)!

.

Now assume there is some problem with component C. As a result, it spends

much more time in component C, i.e., t31 and t32 become larger and are no longer

negligible. In this case, the following four relationships are still valid: ta = tb, tb =

tc, ta = tc, td = te, while the other six relationships no longer hold.

Because six out of ten relationships (or equivalently the corresponding models)

become invalid, we can easily infer that something is wrong in the system. However,

what we observe in this example clearly violates the assumption that ”Correlations

involving metrics from a faulty component are more likely to break when a fault is

present”. In this example, the faulty component is C, but metrics td and te seem

to be more likely to be linked with the fault. For example, let’s compare tc and

td: there were four correlations involving d before the fault occurred: ta = td, tb =

td, tc = td, td = te However, after the fault in component C, only one correlation

td = te remains valid. On the other hand, there were four correlations involving c

before the fault: ta = tc, tb = tc, tc = td, tc = te. After the fault, two correlations

remain valid: ta = tc and tb = tc. Clearly, component D appears to be more likely

119

faulty.

In fact, if we calculate the Jaccard coefficient, we have Ja = Jb = Jc = 2
8

and

Jd = Je = 3
7
. The Jaccard coefficient-based anomaly score of C is one of the

lowest among all five components. Basically, this happens because of the “spread”

of correlations. In Section B.1 and Section B.2 we explain this phenomenon in a

general model.

We should note that the example is not the worst scenario. In real systems,

there are thousands of metrics available. Due to computational cost constrains, it

may not be possible to collect all metrics. As a result, many metrics could be left

out. For example, if we only collect metrics ta and te in the above scenario, we

will be able to discover the correlation ta = te during model learning and find this

equation to become invalid when a fault occurs in component C. However, there is

no way to know that the fault is neither in component A nor component E but in

component C.

Therefore, diagnosis with only metrics and their correlations is hard, even

though they work well in detecting errors in a system. Considering the prevalence

of dependencies in software systems, the example is representative and reveals an

intrinsic limitation of diagnosis with metric correlation models.

B.1 Simplified View of a System of Correlations

In this section we present a simplified, abstract view of the system to study how

correlation between metrics exist and evolve in a software system. First, it is

important to distinguish correlation from causation.

B.1.1 Causation and Correlation

There are at least two ways correlation between metrics arise. First, two metrics

can show correlation if there is causality relationship between the two metrics. One

example of such correlation are the response times in dependent components, as

shown in Figure B.1. The response time tb is part of response time ta, therefore

there are correlations between the two response times.

The second way for two metrics can be correlated is that they are both affected

by the same third unknown factor. For example, number of visits to two different

databases are both affected by the workload. Therefore, even if there is no directly

120

causality relationship between the two databases, the two metrics may show a

correlation because they are both determined by the workload.

B.1.2 Cluster of Correlations

We use a graph G = (V, E) to show the causalities between metrics in a software

system. Every metrics is represented by a node mi ∈ V . Every edge {mi, mj} ∈ E

represents a metric correlation between mi and mj caused by causality in the first

way described in section B.1.1, where mi is the cause of mj . Similarly, we use a

graph G′ = (V, E ′) to show the correlations between metrics in a software system.

Every edge {mi, mj} ∈ E represents a correlation between metrics mi and mj . We

call G the causality graph, and G′ the correlation graph.

To simplify the discussion, we make an assumption about the metric correlations

caused by causalities: We assume that we take into account only the correlations

which are deterministic with no random errors between two metrics. As a result,

for any edge {mi, mj} ∈ E there is a invertible function fij such that mj = fij(mi).

This assumption assures that the graph G consists of a few trees, since every metric

is determined by only one other metric therefore every node in G has at most one

parent. G′ may be generated from G by observing the fact we summarized in

assumption 1:

Assumption 1: Two metrics are correlated if they are in the same tree when

represented in graph G.

Given the above assumption, we can see that the metrics in the same tree are

correlated with each other. Therefore, each tree in G is a cluster in G′ such that

every two metrics in the same cluster are correlated. In reality, we typically do not

know the causal relationships between metrics in a system. Instead, what we can

observe is the correlations between metrics. Therefore, we do not have the graph G

but we can observe the graph G′, i.e., we can see the metrics form several clusters,

such that metrics within a single cluster are correlated with each other as depicted

in Figure B.2.

Consequently, we can observe that a majority of the correlations are not caused

by causality directly. Instead, many metrics are correlated because of the spread

of correlations.

Hereby we estimate the proportion of correlation caused by causality in all the

correlations we observe in a system. Let n be the total number of metrics in a

system, k be the number of clusters, ni, 1 ≤ i ≤ k be the number of metrics in

121

Figure B.2: Metrics’ clusters

cluster i, respectively. Let Ai be the number of correlation caused by only causality

in cluster i and Ci be the number of all correlations in cluster i. We have the

following equations:

Ai = ni − 1 (B.1)

Ci =
ni!

2!(ni − 2)!
=

ni(ni − 1)

2
(B.2)

n =
k

∑

i=1

ni (B.3)

Eq. B.1 is based on the observation that each causality in cluster i corresponds

to an edge in the tree i. Eq. B.2 is based on the observation that every two metrics

in the same cluster are correlated. The total number of causalities, A, and the total

number of correlations, C, has the ratio in Eq. B.4.

A

C
=

∑k
i=1 Ai

∑k
i=1 Ci

=
2(n − k)

∑k
i=1 n2

i − n
(B.4)

122

Figure B.3: The effects of invalid causality

Based on our observation from real systems, we find that usually there is a big

cluster which consist of metrics correlated with the workload. Assume this is cluster

1 and n1 ≥ n
3
. We have

A

C
≤ 2n

n2
1 − n

≤ 18

n − 9
(B.5)

Therefore, if there are more than 100 metrics in the system, the proportion of

correlation caused by causality would be less than 20% (18
91

) of all the correlations.

In other word, the majority of correlations we learn statistically does not imply

causality.

B.1.3 Effects of Invalid Causality

We now estimate the effects of errors that cause some causal relationship to become

invalid. Assume a causal relationship is invalid during the occurrence of some faults.

In the causality graph G, an edge {mi, mj} is removed. Denote the original tree

that contains the edge {mi, mj} as T . The removal of the edge {mi, mj} will break

T into two separate trees, denoted by T1 and T2.

While the effect of invalid causality on the causality graph G is just the removal

of a single causal edge, the effect on the correlation graph G′ is much more signif-

123

icant. Originally all metric pairs in T are correlated with each other. After the

removal of the edge {mi, mj}, T will be broken down into two separate trees T1 and

T2. According to Assumption 1 in section B.1.2, all metric pairs in T1 or T2 will

remain correlated, and all metric pairs with one metric from T1 and the other from

T2 will no longer be correlated. This is illustrated by the example in Figure B.3,

where the removal of a single edge {m2, m0} breaks the original tree (cluster) T into

two separate trees(clusters) T1 and T2, and consequently many correlations other

than those with m0 or m2 break. For example, metric pair {m3, m6} are no longer

correlated, neither are {m4, m7}. Those metric pairs in either T1 or T2 will persist,

e.g., {m4, m5}, {m7, m9} and {m6, m8}.
To estimate how a fault affects the correlations in a cluster, assume there are n1

metrics in cluster T1, and n2 metrics in cluster T2. Originally, all metrics in cluster

T are correlated with each other, giving us C(n1 + n2, 2) correlations. After a fault

occurs, cluster T1 and T2 are separated by the removal of causality edge {mi, mj}.
The metrics within cluster T1 are still correlated; the same applied for the metrics

in cluster T2. Therefore, a total number of C(n1, 2) + C(n2, 2) correlations still

persist. Any correlation between a metrics in cluster T1 and a metrics in cluster T2

becomes invalid. Therefore, a total number of n1n2 correlations break. It is easy

to confirm that C(n1 + n2, 2) = C(n1, 2) + C(n2, 2) + n1n2.

We first evaluate how large a proportion of correlations would break. The ratio

R of invalid correlation and original correlation is:

R =
n1n2

C(n1 + n2, 2)
=

2n1n2

(n1 + n2)(n1 + n2 − 1)

For any given tree/cluster, n = n1 + n2 is fixed. It can be proved that

R ≤ (n1 + n2)
2

2(n1 + n2)(n1 + n2 − 1)
=

n2

2(n2 − n)
=

1

2
+

1

2(n − 1)

where ”=” is achieved when n1 = n2 = n
2
. In other words, in the worst case

more than half of the original correlations would break, even if most of them have

no causal relationship with any of the faulty metrics (mi or mj). This illustrates

why it is easy to detect most errors by modeling and tracking metric correlations;

a small error could result in up to half correlations to break.

However, diagnosis becomes very difficult with so many correlations becoming

invalid. A majority of correlations do not imply causality, and their invalidity in

the occurrence of a fault does not imply any invalid causality. For example, in

124

Figure B.3, metrics m3 and m6 were correlated because they had a common factor

m2; when error occurs and affect the causality {m2, m0}, they become uncorrelated.

However, without system specific knowledge, we do not know the causality graph

but can only observe the correlation graph G′. Therefore we do not know if the

breaking of the correlation between m3 and m6 is caused by the breaking of causality

between m2 and m0. Thus, we cannot make a correct diagnosis.

As illustrated in section B.1.2, the majority of correlations we observed usually

do not imply causality. Similarly, the majority of correlations broken during the

occurrence of a fault may not imply any change in causality. This violates the

usual assumption that the faulty component will mostly cause its own metrics and

associated correlations to show anomalous behavior. In fact, a faulty component

will cause many irrelevant metrics to show anomalies in their correlations, and thus

provide unreliable information for diagnosis.

B.2 Realistic Model of a System of Correlations

In this section we extend our observation by make more realistic assumptions of

the system.

To simplify the discussion, we made an assumption about the metrics corre-

lations caused by causalities in section B.1.2: we assume we take into account

only correlations which are deterministic between two metrics. This assumption

inspires our assumption 1, however, the real world may be more complicated. The

assumption 1 could be relaxed to model the real system better.

We observe that the relationship between metrics may not be deterministic. For

a metric pair with causality, the simple and clear relationship mi = f(mj) may not

always exist. Instead, the relationship may be modeled as mi = f(mj) + e, where

e is some random error. The reason is that mj is determined by more than more

factors. The true relationship may be modeled by mi = f(mj, mk, ...). However,

mi is the major factor that contributes most to mj such that mi almost determined

mj ; the combination of other minor factors contribute to a small variation, which

is modeled by the error e.

As a result, the Assumption 1 in section B.1.2 will become invalid. If two

metrics are far from each other in the graph G, they may not be statistically

strongly correlated even if they are in the same tree.

Instead of Assumption 1, we make another more realistic assumption:

125

Figure B.4: Realistic view of correlations by m0

Assumption 2: Two metrics are correlated if they are in the same tree and there

is a short path in G that connects the two metrics.

We then study how the induction based on the new assumption would change

to approximate the real metric correlations better.

B.2.1 Cluster of Correlations

The correlation graph and cluster of correlations would become more complicated

under the realistic assumptions. Figure B.4 shows an example of the causality graph

with correlations involving metrics m0. Assume the short path in Assumption 2 is

the path with a length at most two. Thus, only metrics in the same tree as m0

and with a distance less than three are guaranteed to be correlated with m0. In

the example in Figure B.4, all metrics in the circle are correlated with m0. m4

and m5 were correlated with m0 under the simplified model (See Fig. B.2 and

B.3), however, based on the realistic assumption, they are no longer guaranteed

correlation with m0.

126

Figure B.5: Realistic view of the effects of a fault

However, even if under the realistic assumption, we can see in this example that

a minority of correlations (m2, m6, m9) with metrics m0 implies causality, while a

majority correlations (m1, m3, m7, m8) with metrics m0 do not imply direct causal-

ity.

B.2.2 Effects of Invalid Causality

The effects of a fault also change from the case that we made the simplified as-

sumption. Assume there is a fault that invalid the causality {m2, m0}, as depicted

in Figure B.5, only correlations within the large circle are affected by the fault. All

correlations involving m4, m5, m7, m8 persist, because they are too far away from

the invalid causality. However, within the circle, it is the same case as we analyze in

section B.1.3: the original tree are separated into two trees, and correlation within

each tree persist but correlation between metrics from the two trees break. There-

fore, as discussed in section B.1.3, after excluding the metrics outside of the large

circle, we cannot find the invalid causality because we can only observe the invalid

correlations. Consequently, we cannot localize the fault to a specific component

within the large circle just by studying the change of correlations.

127

How does this affects the diagnosis? First of all, many correlations involving

metrics which are far away from the actual invalid causality are not affected. There-

fore, it is hopefully that we can exclude a number of components from suspicion

since metrics in these components have all their correlations persist. Second, similar

to the case we analyze in section B.1.3, correlations involving many metrics close

to the invalid correlation become invalid, which may be misleading for diagnosis.

In particular, we can hardly distinguish the metrics within a short distance from

the metrics in the actual invalid causality, since many correlations in this range is

affected. Therefore, accurate diagnosis is not possible.

Therefore, we are convinced that diagnosis with correlation models is able to

exclude some components from suspicion. If we assign anomaly score to compo-

nents, those components will get a lower score compared with the faulty component.

However, within the left components, it is unlikely that the faulty component will

be assigned a higher anomaly score compared with the others. Therefore, diagnosis

with metric correlation models will be useful to reduce people’s efforts to locate the

fault. However, we should not expect it to be able to assign the faulty component

the highest anomaly score.

128

Bibliographical Notes

The work presented in this thesis builds on ideas published by the author in [37, 38,

39, 40, 41, 42]. Extensions and related work to which the author has contributed

includes [36, 56, 57, 58, 59, 60, 61, 62, 63, 64].

129

References

[1] Apache Software Foundation. Apache Module mod status. http://httpd.-

apache.org/docs/2.0/mod/mod status.html. 14

[2] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.

Basic concepts and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing, 1(1):11–33, 2004. 6

[3] Mark Brodie, Sheng Ma, Leonid Rachevsky, and Jon Champlin. Automated

problem determination using call-stack matching. J. Network and Systems

Mgmt., 13(2):219–237, June 2005. 27

[4] A. Brown, G. Kar, and A. Keller. An active approach to characterizing dy-

namic dependencies for problem determination in a distributed environment.

In Proc. of IFIP/IEEE International Symposium on Integrated Network Man-

agement, pages 377–390, May 2001. 25

[5] Lubomı́r Bulej, Tomáš Kalibera, and Petr Tma. Repeated results analysis for

middleware regression benchmarking. Perform. Eval., 60:345–358, May 2005.

25

[6] Andrew Byde, Dave Cliff, and Matthew Williamson. HP Labs’ complex adap-

tive systems group research overview. Technical Report HPL-2004-79, HP

Laboratories Palo Alto, 2004. 2

[7] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instru-

mentation of production systems. In USENIX Annual Technical Conference,

General Track, pages 15–28, 2004. 13

[8] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network Manage-

ment Protocol (SNMP). IETF RFC 1157. http://www.ietf.org/rfc/rfc1157.txt.

8, 9

130

[9] Haifeng Chen, Guofei Jiang, Cristian Ungureanu, and Kenji Yoshihira. Failure

detection and localization in component based systems by online tracking. In

KDD, pages 750–755, 2005. 27

[10] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer. Failure diagnosis

using decision trees. In ICAC, 2004. 26

[11] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric A.

Brewer. Pinpoint: Problem determination in large, dynamic internet services.

In ICDSN, pages 595–604, 2002. 26, 28

[12] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeff Chase.

Correlating instrumentation data to system states: A building block for auto-

mated diagnosis and control. In OSDI, pages 231–244, 2004. 28

[13] Ira Cohen, Steve Zhang, Moisés Goldszmidt, Julie Symons, Terence Kelly, and

Armando Fox. Capturing, indexing, clustering, and retrieving system history.

In SOSP, pages 105–118, 2005. 28

[14] Joyce Coleman and Tony Lau. Set up and run a Trade6 benchmark with

DB2 UDB. http://www128.ibm.com/developerworks/edu/dm-dw-dm-0506-

lau.html?S TACT=105AGX11&S CMP=LIB. 76

[15] R. D. Cook and S. Weisberg. Residual and Influence in Regression. Chapman

and Hall, New York, 1982. 21

[16] William H. Crown. Statistical Models for the Social and Behavioral Sciences:

Multiple Regression and Limited-Dependent Variable Models. Greenwood Pub-

lishing Group, 1998. 55, 57

[17] Yixin Diao, Frank Eskesen, Steve Froehlich, Joseph L. Hellerstein, Alexander

Keller, Lisa Spainhower, and Maheswaran Surendra. Generic on-line discovery

of quantitative models for service level management. In IM, pages 157–170,

2003. 21, 54

[18] Armando Fox and David Patterson. Self-repairing computers. Scientific Amer-

ican, June 2003. 2

[19] Saeed Ghanbari and Cristiana Amza. Semantic-driven model composition for

accurate anomaly diagnosis. Autonomic Computing, International Conference

on, 0:35–44, 2008. 28

131

[20] Saeed Ghanbari and Cristiana Amza. Semantic-driven model composition for

accurate anomaly diagnosis. In International Conference on Autonomic Com-

puting, 2008. (ICAC), pages 35–44, June 2008. 41

[21] Jean Dickinson Gibbons and Subhabrata Chakraborti. Nonparametric Statis-

tical Inference. CRC Press, 2003. 44

[22] Zhen Guo, Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. Tracking proba-

bilistic correlation of monitoring data for fault detection in complex systems.

In ICDSN, pages 259–268, 2006. 3, 21, 23, 24, 41, 50

[23] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2nd edition, 2006. 67

[24] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael Hind. Ver-

tical profiling: Understanding the behavior of object-oriented applications. In

Proc. of 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA), 2004. 25

[25] Daniel E. Hecker. Occupational employment projections to 2014. Monthly

Labor Review, pages 70–101, Nov. 2005. 1

[26] IBM Corporation. Autonomic Computing. http://www.research.ibm.com/-

autonomic/. 2

[27] IBM Corporation. DB2 V8.2 - System Monitor Guide and Ref-

erence. ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en US/-

db2f0e81.pdf. 13

[28] IBM Corporation. WebSphere Application Server. http://www.ibm.com/-

software/webservers/appserv/. 74

[29] IBM Corporation. DB2 Universal Database. http://www.ibm.com/software/-

data/db2/udb/. 74

[30] IBM Corporation. PlantsByWebSphere Sample. http://www.ibm.com/-

developerworks/websphere/library/samples/plantsby.html. 75

[31] IBM Corporation. Websphere application server, version 6.0.x - moni-

toring overall system health. http://publib.boulder.ibm.com/infocenter/-

wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/-

tprf monitoringhealth.html. 14

132

[32] JBoss Enterprise. A Framework for Organizing Cross Cutting Concerns.

http://jboss.org/jbossaop/. 13

[33] Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. Discovering likely invari-

ants of distributed transaction systems for autonomic system management. In

ICAC, pages 199–208, 2006. 21, 27

[34] Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. Modeling and tracking of

transaction flow dynamics for fault detection in complex systems. Trans. on

Dependable and Secure Computing, 3(4):312–326, 2006. 3, 21, 22, 23, 35, 41,

45

[35] Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. Efficient and scalable

algorithms for inferring likely invariants in distributed systems. TKDE,

19(11):1508–1523, 2007. 23

[36] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. Detection and diagnosis of recurrent faults in software systems by invari-

ant analysis. In Proceedings of the IEEE High Assurance Systems Engineering

Symposium (HASE), 2008. 28, 105, 129

[37] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. Information-theoretic modeling for tracking the health of complex soft-

ware systems. In Proceedings of the International Conference on Computer

Science and Software Engineering (CASCON), 2008. 50, 129

[38] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. Automatic fault detection and diagnosis using information-theoretic

modeling. In Proceedings of the International Conference on Dependable Sys-

tems and Networks (DSN), 2009. 129

[39] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. Heteroscedastic models to track relationships between management

metrics. In Proceedings of the International Symposium on Integrated Network

Management (IM), 2009. 129

[40] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. System monitoring with metric-correlation models: Problems and solu-

tions. In Proceedings of the International Conference on Autonomic Computing

(ICAC), 2009. 129

133

[41] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. Efficient fault detection and diagnosis in complex software systems with

information-theoretic monitoring. Dependable and Secure Computing, IEEE

Transactions on, 8(4):510 –522, july-aug. 2011. 129

[42] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. System monitoring with metric-correlation models. Accepted in IEEE

Transactions on Network and Service Management, 2011. 129

[43] Mark W. Johnson. Monitoring and diagnosing applications with arm 4.0. In

Proceedings of the Computer Measurement Group (CMG) Conference, pages

473–484, 2004. 14

[44] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

IEEE Computer, 36(1):41–50, 2003. 1, 2

[45] Emre Kiciman and Armando Fox. Detecting application-level failures in

component-based internet services. IEEE Transactions on Neural Networks,

16(5):1027–1041, September 2005. 26

[46] T. Alan Lacey and Benjamin Wright. Occupational employment projections

to 2018. Monthly Labor Review, pages 82–123, November 2009. 1

[47] Lawrence Berkeley National Laboratory. The Internet Traffic Archive.

http://ita.ee.lbl.gov/html/traces.html. 74

[48] Michael R. Lyu, editor. Handbook of software reliability and system reliability.

McGraw-Hill, Inc., Hightstown, NJ, USA, 1996. 7

[49] H. Malik, B. Adams, A.E. Hassan, P. Flora, and G. Hamann. Using load

tests to automatically compare the subsystems of a large enterprise system.

In Computer Software and Applications Conference (COMPSAC), 2010 IEEE

34th Annual, pages 117 –126, july 2010. 25

[50] Microsoft Corp. .NET Platform. Available at http://www.microsoft.com/net/.

9

[51] Microsoft Corporation. Dynamic Systems Initiative. http://www.microsoft.-

com/business/dsi/. 2

[52] Microsoft Corporation. DCOM Architecture. http://msdn.microsoft.com/-

library/en-us/dndcom/html/msdn dcomarch.asp. 9

134

[53] Microsoft Corporation. WMI - Windows Management Instrumentation.

http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx. 13

[54] Microsoft Corporation. CLR - The Common Language Runtime. http://msdn.-

microsoft.com/netframework/programming/clr/default.aspx. 13

[55] A. V. Mirgorodskiy and B. P. Miller. Autonomous analysis of interactive sys-

tems with self-propelled instrumentation. In Proceedings of the 12th Multimedia

Computing and Networking (MMCN), January 2005. 13

[56] Mohammad A. Munawar, Miao Jiang, Allen George, Thomas Reidemeister,

and Paul A. S. Ward. Adaptive monitoring with dynamic differential tracing-

based diagnosis. In Proceedings of the 19th IFIP/IEEE International Workshop

on Distributed Systems: Operations and Management (DSOM), 2008. 2, 26,

129

[57] Mohammad A. Munawar, Miao Jiang, Thomas Reidemeister, and Paul A. S.

Ward. Monitoring multi-tier clustered systems with invariant metric relation-

ships. In Proceedings of the 3rd Workshop on Software Engineering for Adap-

tive and Self-Managing Systems (SEAMS), 2008. 129

[58] Mohammad A. Munawar, Miao Jiang, Thomas Reidemeister, and Paul A. S.

Ward. Filtering metrics for minimal correlation-based self-monitoring. In

IEEE International Conference on Self-Adaptive and Self-Organizing Systems

(SASO), 2009. In press. 129

[59] Mohammad A. Munawar, Miao Jiang, and Paul A.S. Ward. Incremental

budget-constrained system modeling and tracking. Technical Report 2009-08,

Department of Electrical and Computer Engineering, University of Waterloo,

2009. Presented at HotAC 2009. 129

[60] Mohammad A. Munawar, Kevin Quan, and Paul A.S. Ward. Interaction anal-

ysis of heterogeneous monitoring data for autonomic problem determination.

In IEEE International Symposium on Ubisafe Computing. IEEE Computer

Society Press, 2007. 129

[61] Mohammad A. Munawar and Paul A. S. Ward. Better performance or better

manageability? In DEAS ’05: Proceedings of the 2005 workshop on Design

and evolution of autonomic application software, pages 1–4, 2005. 129

135

[62] Mohammad A. Munawar and Paul A. S. Ward. Leveraging many simple sta-

tistical models to adaptively monitor software systems. In ISPA, volume 4742,

pages 457–470, August 2007. 3, 21, 27, 45, 89, 129

[63] Mohammad A. Munawar and Paul A.S. Ward. Adaptive monitoring in enter-

prise software systems. In Proceedings of the 1st Workshop on Tackling Com-

puter Systems Problems with Machine Learning Techniques (SysML), June

2006. 3, 21, 89, 129

[64] Mohammad A. Munawar and Paul A.S. Ward. A comparative study of pairwise

regression techniques for problem determination. In Proceedings of the Interna-

tional Conference on Computer Science and Software Engineering (CASCON),

pages 152–166, 2007. 3, 21, 22, 23, 24, 27, 50, 89, 129

[65] Mohammad Ahmad Munawar. Adaptive Monitoring of Complex Software Sys-

tems using Management Metrics. PhD thesis, University of Waterloo, 2009. 6,

73, 101

[66] Object Management Group Inc. CORBA. http://www.corba.org/. 9

[67] Soila Pertet and Priya Narasimhan. Causes of failure in web applications.

Technical Report CMU-PDL-05-109, Carnegie Mellon University Parallel Data

Lab, December 2005. 1, 80

[68] Gwilym Pryce. Inference and Statistics in SPSS: A Course for Business and

Social Science. GeeBeeJey Publishing, 2005. 48

[69] Rice University/INRIA. RUBiS - Rice University Bidding System.

http://rubis.objectweb.org/. 75

[70] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure

prediction methods. ACM Comput. Surv., 42:10:1–10:42, March 2010. 31

[71] Claude E. Shannon. A mathematical theory of communication. Key Papers

in the Development of Information Theory, 1948. 17

[72] C. Soules, J. Appavoo, K. Hui, D. Silva, G. Ganger, O. Krieger, M. Stumm,

R. Wisniewski, M. Auslander, M. Ostrowski, B. Rosenburg, and J. Xenidis.

System support for online reconfiguration. In Proceedins of USENIX Annual

Technical Conference, June 2003. 13

136

[73] Alexander Strehl and Joydeep Ghosh. Cluster ensembles – a knowledge reuse

framework for combining multiple partitions. Journal on Machine Learning

Research (JMLR), 3:583–617, December 2002. 18

[74] Sun Microsystems Inc. J2EE Management Specification. http://java.sun.-

com/j2ee/tools/management/. 9

[75] ”Sun Microsystems Inc.”. The Java Virtual Machine Specification.

http://java.sun.com/docs/books/vmspec/. 13

[76] Sun Microsystems Inc. The JVM Tool Interface. http://java.sun.com/j2se/-

1.5.0/docs/guide/jvmti/. 13

[77] Sun Microsystems Inc. Platform Monitoring and Management Using JMX.

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html. 13

[78] Sun Microsystems Inc. HPROF: A Heap/CPU Profiling Tool in

J2SE 5.0. http://java.sun.com/developer/technicalArticles/Programming/-

HPROF.html. 13

[79] Sun Microsystems Inc. Java 2 platform enterprise edition, v 1.4 API specifi-

cation. http://java.sun.com/j2ee/1.4/docs/api/. 9

[80] Sun Microsystems Inc. JMX — Java Management Extensions. Available at

http://java.sun.com/products/JavaManagement/. 9, 14

[81] Ariel Tamches and Barton P. Miller. Fine-grained dynamic instrumentation

of commodity operating system kernels. In OSDI, 1999. 13

[82] Yongning Tang and E. Al-Shaer. Sharing end-user negative symptoms for

improving overlay network dependability. In Dependable Systems Networks,

2009. DSN ’09. IEEE/IFIP International Conference on, pages 275 –284, 29

2009-july 2 2009. 26

[83] Brad Topal, David Ogle, Donna Pierson, Jim Thoensen, , John Sweitzer, Marie

Chow, Mary Ann Hoffmann, Pamela Durham, Ric Telford, Sulabha Sheth, and

Thomas Studwell. Autonomic problem determination: A first step toward self-

healing computing systems. Technical report, IBM, 2003. 1, 80

[84] Transaction Processing Performance Council. TPC-W – a transactional web

e-Commerce benchmark. http://www.tpc.org/tpcw/. 75

137

[85] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and

Asser Tantawi. An analytical model for multi-tier internet services and its

applications. In ACM SIGMETRICS, pages 291–302, New York, NY, USA,

2005. ACM Press. 2

[86] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools

and techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005. 25, 42,

78

[87] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and

robust event correlation. IEEE Communications Magazine, 34(5):82–90, May

1996. 2, 25

[88] Hui Zhang, Haifeng Chen, Guofei Jiang, Xiaoqiao Meng, and Kenji Yoshihira.

Fast statistical relationship discovery in massive monitoring data. In IEEE

ANM, 2008. 23

138

	Abstract
	List of Tables
	List of Figures
	Introduction
	System Monitoring by Modeling Metrics
	Thesis Contributions
	Thesis Organization

	Background
	Terminology
	Management Metrics
	Component-Based Distributed Software Systems
	The Java Platform, Enterprise Edition
	Monitoring Infrastructure

	Modeling Techniques
	Linear Regression
	Information Entropy

	Related Work
	System Monitoring Based on Linear Regression Models
	System Monitoring Based on Other Linear Models
	System Monitoring Based on Non-linear Models
	Fault Diagnosis
	Fault Diagnosis by Supervised Learning

	Problem Definition
	Error Detection
	Measurement of Detection Quality

	Fault Diagnosis
	Measurement of Diagnosis Quality

	Solution Framework
	A General Solution Framework for System Monitoring
	Metric Modeling
	Specific-Form Modeling
	General-Form Modeling

	System-Health Signature Generation
	System-State Checking
	Fault Localization

	Solution One: Linear Models
	Problems of Simple Linear Regression
	Heteroscedasticity
	Varying Coefficients
	Multi-variable Correlations

	Improving Simple Linear Regression
	Detecting Non-constant Error Variance
	Generalized Least Squares
	Fitness Score for Confidence Intervals

	System-Monitoring Solution
	Metric Modeling
	System-Health Signature Generation
	System-State Checking
	Fault Localization

	Solution Two: Information-Theoretic Models
	Approach Overview
	Computing Similarities between Metrics
	Metric Modeling by Clustering Correlated Metrics
	Identifying Correlated Metrics

	Tracking Groups of Related Metrics
	Observations on Cluster Entropy
	Error Detection by Wilcoxon Rank-Sum Test

	Evaluation
	Evaluation Approach
	Methodology
	Fault Injection
	Fault-Injection Experiments

	Evaluation of Linear Modeling
	The Performance of Individual Models
	Error-Detection Examples
	Experimental Results
	Comparison with Prior Work

	Evaluation of Information-Theoretic Solution
	Identifying Non-linear Correlations
	Clustering of Metrics
	Error-Detection Examples
	Experimental Results

	Computational Cost

	Conclusion and Future Work
	Future Research Work

	Appendix
	Addressing Specific Problems in Linear Modeling
	Modeling Varying Coefficients
	Modeling Three-Variable Correlation
	System Monitoring with New Models
	Metric Modeling

	Evaluation
	Error-Detection Results
	Understanding RLS Performance

	Limitations of Fault Localization with Metric Correlations
	Simplified View of a System of Correlations
	Causation and Correlation
	Cluster of Correlations
	Effects of Invalid Causality

	Realistic Model of a System of Correlations
	Cluster of Correlations
	Effects of Invalid Causality

	References

