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Abstract

Quantum foundations is a field of diverse goals and methods. In this thesis, I will
present three different approaches to quantum foundations, each emphasizing a different
goal or perspective. The causaloid framework has the goal is to use insight from quantum
foundations to study quantum gravity. Ontic models are a tool used to study realist theories
of quantum mechanics from an operational quantum information perspective. Nelson’s
mechanics is a derivation of the Schrodinger equation using the machinery of stochastic
mechanics.

As each of these approaches has different set of goals, they are suited to different
purposes and have different limitations. From the causaloid, I construct the concept of
causally unbiased entropy and at the same time, find an emergent idea of causality in
the form of a measure of causal connectedness, termed the Q factor. In the ontic models
framework, I reproduce the generalization of the concept of contextuality. For Nelson’s
mechanics, I examine its relationship to Bohmian mechanics - a realist formulation of
quantum mechanics.

I will then examine the relationship of these different approaches to one another. From
this examination I will introduce the concept of physical contextuality in order to ask
whether contextuality could be more than just a mathematical artifact. I also include a
discussion of the property of deficiency in ontic models and its relation to contextuality
given certain constraints.
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Chapter 1

Introduction

The study of the foundations of quantum mechanics has existed in one for or another for

more than 75 years[7]. In that time the goals of the subject have varied significantly, with

some programs even working counter to others[4, 5, 22, 8, 3, 33, 27, 29]. Though these goals

are mostly reflective of the philosophies of the researchers that work on these subjects, it is

not always the case that the framework used in research is chosen through this bias. It is for

this reason that it is prudent to examine whether there is the potential for consolidation

of approaches or at the least the transfer of knowledge between them. For this reason

we will examine different approaches to quantum foundations including their motivations,

their applications and their descriptions of reality. We will then examine whether the

opportunity to build bridges between these subjects exists and the implications of looking

for such connections.

From the attempts to create a comprehensible realist interpretation of quantum me-
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chanics we have gained insight into what distinguishes quantum mechanics from the clas-

sical world. One such attempt - due to Nelson [22] - proposed that the departure from

classical physics was unnecessary, instead demonstrating that the Schrodinger equation

(the principle equation of quantum mechanics) can be derived from the theory of Brown-

ian motion. Though Nelson’s Mechanics was an early candidate in a line of attempts to

give a realist interpretation of quantum mechanics, it still remains one of the canonical

examples in the study of quantum foundations. In section 1.1 we present the derivation

of this theory. Then in section 2.4.2 we will compare this theory with another realist

interpretation of quantum mechanics due to Bohm[4, 5].

One of the advances of the modern study of the foundations of quantum mechanics is

the unification of different approaches to quantum mechanics which share commonalities.

Combining approaches in this way allow us to determine which properties are invariant

under the assumptions on which the theories differ, and in doing so develop tools with

which to study them. One example of this method is the development of the ontic models

framework (see for example [12]). In section 1.2 we will present this framework. Then in

section 2.2 we will use this framework to illustrate the concept of contextuality and its

generalizations, and in section 2.3 we will present the concept of deficiency within this

framework and discuss its relations with contextuality.

Though fundamentally quantum foundations is concerned with trying to understand

quantum mechanics, it can also take a broader vision which include looking at how quan-

tum mechanics can interface with other things we know about reality. One such interface

that is cause for concern is that with general relativity. General relativity possesses a very

different structure from quantum mechanics mostly owing to differences in their treatment
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of the causal structure of space-time, and this discord is reflected in the difficulty of con-

structing a theory of quantum gravity[30]. To this end the causaloid [10, 11] framework

was constructed in order to study what would happen if we attempted to generalize how

we treat quantum mechanics to allow for a more general causal structure. We will present

the causaloid framework in section 1.3. We will also present a means of constructing a

concept of entropy in such a framework in section 2.1.

The rest of this thesis will take the form of an evaluation of whether the lessons from

each of these different approaches to quantum foundations can be applied to the others. To

that end we will discuss the compatibilities and incompatibilities of these frameworks and

from these discussions we’ll further examine the idea of whether the concept of contextuality

has a physical meaning (in section 3.1.1).

1.1 Nelson’s Mechanics

In [22], Nelson attempted to construct a realist model of quantum mechanics. The attempt

assumes that the trajectories of particles can be described by a modification of classical

mechanics. This modification is based upon the assumption that whatever real processes

lead to quantum mechanics averages out to give a noise-like modification to the classical

dynamics proportional in magnitude to Planck’s constant. This theory, referred to as

Nelson’s Mechanics is cast in the language of stochastic processes. The central result of

[22] is in constructing the wave function in this language and demonstrating that it is a

solution to the Schrodinger equation. Though foundational, the derivation in [22] is not

fully rigorous and has some gaps. In the following sections we will tighten the derivation
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in [22], while filling in the details missing from the calculations.

1.1.1 Stochastic Mechanics

We will first build the machinery to study classical mechanics with stochastic processes.

Since we will be dealing with processes that are not necessarily differentiable, we must

define a different type of derivative. Central to this is what we’ll define as the mean

forward derivative

Dx(t) = lim
∆t→0+

〈x(t+ ∆t)− x(t)

∆t
〉, (1.1)

and the mean backward derivative

D?x(t) = lim
∆t→0+

〈x(t)− x(t−∆t)

∆t
〉. (1.2)

If the mean forward derivative and the mean backward derivative are equal, then the

process is differentiable. We will use these to study Brownian motion with friction in a

potential and kinematics of Markoff processes, which we will later use to produce quantum

mechanics from Brownian motion.
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Brownian motion with friction in a potential

From Newton’s second law, we know that the acceleration ~K of a particle of mass m due

to a potential V is given by

m~K = −∇V (1.3)

A frictional force is dependent not on the position of a particle, but instead on its velocity.

We use mβ for our coefficient of friction, with β what is commonly termed the drag co-

efficient (to reflect that the frictional force is due to a particle moving through a space

rather than along a surface).

We then get Langevin equations of the form

dx(t) = dv(t)dt (1.4)

dv(t) = −βv(t)dt+ ~K(x(t))dt+ d ~B(t). (1.5)

We have also introduced a Wiener process ~B(t) - a purely diffusive term - where d ~B is a

Gaussian with

〈d ~B〉 = 0 (1.6)

〈dB2〉 =
6βkBT

m
dt (1.7)

Here kB is the Boltzmann constant, and the constant T arises from the assumption that for

a distribution of such systems, we would assume the distribution to arise from a Maxwell-
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Boltzman distribution characterized by a temperature T . In requiring causality and by the

nature of randomness, we also get

〈(d ~B(t))x(s)〉 = 0 ∀ s ≤ t (1.8)

〈d ~B(t)v(s)〉 = 0 ∀ s ≤ t. (1.9)

Clearly, these equations are asymmetric in time. We impose time symmetry by defining

d ~B?(t) such that

〈d ~B?(t)x(s)〉 = 0 ∀ s ≥ t (1.10)

〈d ~B?(t)v(s)〉 = 0 ∀ s ≥ t. (1.11)

We then get the Langevin equation

d~v(t) = β~v(t) + ~K(~x(t)) + d ~B?(t). (1.12)

Applying the definitions of the mean forward and backward derivative we have that - as

~x(t) is differentiable -

D~x(t) = D?~x(t) = ~v(t) (1.13)

where we’ve used the definition of velocity in terms of position

d~x

dt
= ~v(t). (1.14)
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From equation 1.7, we know that

d ~B ∝
√

dt. (1.15)

As d ~B appears in the Langevin equation for ~v(t) linearly, we then have that ~v(t) is not

differentiable.

Examining ~B we see that as ~B(t + ∆t)− ~B(t) is independent of the pair ~x(t), ~v(t) for

∆t > 0, and has mean 0. This implies that

D~B(t) = 0. (1.16)

As D is a linear operation, and so using the Langevin equation we can extract

D~v(t) = lim
∆t→0
〈~v(t+ ∆t)− ~v

∆t
〉 (1.17)

= lim
∆t→0
〈∆~v(t)

∆t
〉 (1.18)

= lim
∆t→0
〈−β~v∆t+ ~K∆t+ ∆ ~B

∆t
〉 (1.19)

= −β~v + ~K + lim
∆t→0

1

∆t
〈d ~B〉 = −β~v(t) + ~K(~x(t)), (1.20)

where we’ve used the fact that the mean of the Wiener process is 0. In the same way we

can extract from the Langevin equation obtained from the Wiener process ~B?

D?~v(t) = β~v(t) + ~K(~x(t)). (1.21)
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We now can consider a free particle - where ~K = 0. In this situation we have that

D~v(t) = −D?~v(t) = −β~v(t). (1.22)

Using our knowledge of the solutions to the differential equation

da

dt
= −βa (1.23)

we know that the velocity tends towards 0 for either choice of time direction.

Returning again to a system with a potential, we can combine equations 1.22 and 1.23

together with the definitions of the mean forward and backward velocities. Doing so we

get

1

2
DD?~x+

1

2
D?D~x =

1

2
(D~v +D?~v) (1.24)

=
1

2

(
−β~v + ~K + β~v + ~K

)
(1.25)

= ~K (1.26)

From this, we define the mean second derivative of ~x(t) to be

~a(t) =
1

2
(DD?~x(t) +D?D~x(t)) . (1.27)

We then get the generalization of Newton’s second law in Ornstein-Uhlenbeck theory: The
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mean acceleration is equal to the external force divided by the mass of the particle.

~F = m~a (1.28)

Kinematics of Markoff Processes

For a sufficiently large time scale compared to the relaxation time (characterized by β−1),

we can describe the Brownian motion of a free particle in a fluid by a Wiener process ~w(t).

The Wiener infinitesimals are mutually independent Gaussians with

〈d~w〉 = 0 (1.29)

and

〈d~wi(t)~wj(t)〉 =
2kBT

mβ
dt (1.30)

As kB, T and m do not occur independently we combine them with β into the diffusion

coefficient ν.

ν =
kbT

mβ
(1.31)

We can then further introduce an external force to the scenario, or equivalently, a current

within the fluid by introducing a time dependent vector field ~b (~x(t), t). This would give

us an equation for the position vector of our particle of the form

d~x(t) = ~b (~x(t), t) dt+ d~w(t) (1.32)
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Like in section 1.1.1, we have that the d~w(t) are independent of the previous positions

(~x(s) with s ≤ t):

〈d~w(t)~x(s)〉 = 0 ∀ s ≤ t (1.33)

This gives us that our mean forward velocity is solely due to the current

D~x(t) = ~b(~x(t), t). (1.34)

Again, in the same form as section 1.1.1 we define a backward Wiener process d~w?, with

〈d~w?〉 = 0. (1.35)

We also have that the backwards Wiener process is independent of the future positions:

〈d~w?(t)~x(s)〉 = 0, ∀ s ≥ t. (1.36)

This allows us to have the Langevin equation from the backward Wiener process:

d~x(t) = ~b? (~x(t), t) dt+ d~w?(t). (1.37)

This gives us the mean backward velocity:

D?~x(t) = ~b? (~x(t), t) . (1.38)

We now move to considering a probability density ρ(~x, t). This density then satisfies
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the Fokker-Planck equation

∂ρ

∂t
= −

3∑
i=1

∂

∂xi
(Aiρ) +

1

2

3∑
i,j=1

∂2

∂xi∂xj
(Bijρ) . (1.39)

Here the Ai are defined by

~A = lim
∆t→0+

〈∆~x〉
∆t

= ~b, (1.40)

and the Bij are defined by

Bij = lim
∆t→0+

〈∆xi∆xj〉
∆t

= 2νδij. (1.41)

From this we arrive at the forward Fokker-Planck equation:

∂ρ

∂t
= −~∇ ·

(
~bρ
)

+∇2 (νρ) . (1.42)

Proceeding instead with the backward derivative instead of the forward changes our equa-

tion slightly. The Ai are then defined in terms of the backward current by

~A = lim
∆t→0−

〈∆~x〉
∆t

= ~b?, (1.43)

and the Bij are defined by

Bij = lim
∆t→0−

∆xi∆xj
∆t

= − lim
∆t→0+

∆xi∆xj
∆t

= −2νδij. (1.44)
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This then gives us what we’ll call the backward Fokker-Planck equation:

∂ρ

∂t
= −~∇ ·

(
~b?ρ
)
−∇2 (νρ) . (1.45)

We can take an evenhanded approach between the forward and backward equations by

defining the current velocity :

~v =
1

2

(
~b+~b?

)
. (1.46)

With this we can combine the forward and backward Focker-Planck equations to get

∂ρ

∂t
= −∇ · (~vρ) . (1.47)

We now consider the Taylor expansion of a function f of the position ~x and the time t:

f ( ~x4 + d ~x4) = f ( ~x4) + [(d ~x4 · ∇4) f ] ~x4 +
1

2

[
(d ~x4 · ∇4)2 f

]
~x4

+ . . . (1.48)

where we’ve used the subscript 4 to denote that we’re taking the infinitesimal both with

respect to the position and the time, but without the relativistic implications of the

d’Alembertian. Defining the infinitesimal of the function f to be

df = f( ~x4 + d ~x4)− f( ~x4). (1.49)
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With this definition, and returning to separate space and time co-ordinates we reach

df =
∂f

∂t
dt+ d~x · ∇f 1

2

3∑
i,j=1

dxidxj
∂2

∂xi∂xj
f (1.50)

where we’ve dropped higher order terms (including second order terms in time).

Using equation 1.32 we can replace d~xi with d~wi, which allows us to proceed to get:

Df = lim
∆t→0

〈df〉
∆t

(1.51)

=
∂f

∂t
+~b · ~∇f +

1

2
〈dw2〉∇2f. (1.52)

Finally we can implement equation 1.30 to get

Df =
∂f

∂t
+~b · ~∇f + ν∇2f. (1.53)

We can reproduce this same process using the backward derivative:

D?f = lim
∆t→0−

〈∆f〉
∆t

(1.54)

=
∂f

∂t
+~b? · ~∇f − ν∇2f. (1.55)

We now observe the following: as ρ is a probability density its integral across all of

space is 1 and so its distribution across space-time is invariant. From [21] we can then

define adjoints with respect to ρd3xdt as a measure, and find that the operators A and B
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defined by

A =
∂

∂t
+~b · ∇+ ν∇2 (1.56)

B = − ∂

∂t
−~b? · ∇+ ν∇2 (1.57)

are adjoint to one another with respect to this measure. That is to say that

∫
f(Ag)ρ d3xdt =

∫
(Bf)gρ d3xdt. (1.58)

We contrast this to the standard adjoint - which we’ll denote by a † - with respect to the

measure d3xdt, defined by

∫
(Af)gd3xdt =

∫
f(A†g)d3xdt. (1.59)

From this we can form an equation relating A† and B by conjugation by the probability

distribution ρ:

ρ−1

(
∂

∂t
+~b · ∇+ ν∇2

)†
ρ = − ∂

∂t
−~b? · ∇+ ν∇2. (1.60)

Multiplying from the right by ρ−1 and applying both sides to the trivial function, we can

use the definition of the adjoint as being left acting to find

∂ρ−1

∂t
+~b · ∇ρ−1 + ν∇2ρ−1 = −∂ρ

−1

∂t
−
(
~b? · ∇

)
ρ−1 + ν∇2ρ−1. (1.61)
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With some manipulation we reach

2
∂ρ−1

∂t
= −1

ρ

(
~b+~b?

)
· ∇ρ−1 (1.62)

2
−1

ρ2

∂ρ

∂t
=

1

ρ2

(
~b+~b?

)
· ∇ρ (1.63)

2
∂ρ

∂t
= −

(
~b+~b?

)
· ∇ρ (1.64)

Applying the Fokker-Planck equation we can eliminate the time derivative and arrive at

2
(
−∇ ·

(
~bρ
)

+ ν∇2ρ
)

= −
(
~b+~b?

)
· ∇ρ. (1.65)

Using the product rule we have that

∇ ·
(
ρ~b
)

= (∇ρ) ·~b+ ρ∇ ·~b, (1.66)

and likewise for ~b?. We now recall that both of ~b and ~b? are currents of a fluid, and that

they should thus be divergence free, allowing us to eliminate the second term in the right

hand side of the product rule. This allows us to continue to simplify equation 1.65 through

− 2∇ ·
(
~bρ
)

+ 2ν∇2ρ = −∇ ·
(
~b+~b?

)
ρ. (1.67)

Using left cancelation of the gradient we reach

− 2ρ~b+ 2ν∇ρ = −ρ~b− ρ~b?, (1.68)
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which we rearrange to give us

~b? = ~b− 2ν
∇ρ
ρ
. (1.69)

Additionally, if we call the difference between the forward and backward currents the

osmotic velocity, ~u:

~u =
1

2

(
~b−~b?

)
, (1.70)

then equation 1.69 is equivalent to stating that

~u = ν
∇ρ
ρ
. (1.71)

We can compare this to the difference between the forward and backward Fokker-Planck

equations, given by

0 =
∂ρ

∂t
+∇ ·

(
~b?ρ
)

+ ν∇2ρ− ∂ρ

∂t
−∇ ·

(
~bρ
)

+ ν∇2ρ (1.72)

= ∇ ·
((
~b? −~b

)
ρ
)

+ 2ν∇2ρ (1.73)

= ∇ · (~uρ− ν∇ρ) (1.74)

Which under left cancelation would give us equation 1.71 again. Equation 1.71 can also

be written

~u = ν∇ (ln ρ) . (1.75)
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We now proceed to calculate the time derivative of ~u:

∂~u

∂t
= ν∇∂ ln ρ

∂t
(1.76)

= ν∇
(

1

ρ

∂ρ

∂t

)
. (1.77)

Using the continuity equation -

∂ρ

∂t
= −∇ · (~vρ) (1.78)

- we can study the time derivative:

∂~u

∂t
= −ν∇

(
1

ρ
∇ · (~vρ)

)
(1.79)

= −ν
(
−1

ρ2
(∇ρ (∇ · (ρ~v)))− 1

ρ2
∇ρ (ρ∇ · ~v) (1.80)

+
1

ρ
∇ (∇ρ · ~v) +

1

ρ
(∇ρ) (∇ · ~v) +

1

ρ
ρ (∇ (∇ · ~v))

)
= −ν

(
−1

ρ2
∇ρ (∇ρ · ~v) +

1

ρ
∇ (∇ρ · ~v) +∇ (∇ · ~v)

)
(1.81)

= −ν∇ (∇ · ~v)−∇ (~v · ~u) . (1.82)

where in the last step we’ve used that

∇ (~v · ~u) = ∇
(
~v · ∇ρ

ρ

)
(1.83)

=

(
∇1

ρ

)
(~v · ∇ρ) +

1

ρ
(∇ (~v · ∇ρ)) (1.84)

=
−1

ρ2
∇ρ (~v · ∇ρ) +

1

ρ
∇ (∇ρ · ~v) . (1.85)
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With all of these results we can finally approach our goal in this section; to relate the

~b and ~b? of a Markoff process to an acceleration. To do this we begin with

~a(t) =
1

2

(
D~b? +D?

~b
)
, (1.86)

where

D~b? =

(
∂

∂t
+
(
~b · ∇

)
+ ν∇2

)
~b? (1.87)

D?
~b =

(
∂

∂t
+
(
~b? · ∇

)
− ν∇2

)
~b. (1.88)

We then get that

~a(t) =
∂

∂t

[
1

2

(
~b+~b?

)]
+

1

2

(
~b · ∇

)
~b? +

1

2

(
~b?∇̇

)
~b− ν∇2

[
1

2

(
~b−~b?

)]
(1.89)

=
∂~v

∂t
+

1

2

[
~u∇̇+ ~v · ∇

]
(~v − ~u) +

1

2
[~v · ∇ − ~u · ∇] (~u+ ~v)− ν∇2~u (1.90)

=
∂~v

∂t
− (~u · ∇) ~u+ (~v · ∇)~v − ν∇2~u. (1.91)

Where we remind the reader that

~b = ~u+ ~v (1.92)

~b? = ~v − ~u. (1.93)
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We can then rearrange to get

∂~v

∂t
= ~a(t) + (~u · ∇) ~u− (~v · ∇)~v + ν∇2~u, (1.94)

which is our final result of this section.

1.1.2 Using Brownian Motion to Model Quantum Mechanics

To model quantum mechanics through Brownian motion we will make a set of assumptions

based upon what we know from the study of quantum mechanics. First we choose our

diffusion co-efficient in such a manner that we achieve classical mechanics in both the high

mass limit and the limit as we take another constant (we’ll use ~ for reasons that should

be clear, and will be verified later) to zero. For this reason we set

ν =
~

2m
. (1.95)

We assume that the particle moves in a frictionless fluid (either vacuum or a frictionless

ether), so as not to contradict our inability to detect a preferred reference frame. This

means that the Brownian motion will not be smooth and that velocities will not exist.

We describe the motion with a Markoff process in co-ordinate space, subject to dynamics

arising from from Newtonian dynamics

~F = m~a. (1.96)
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Specifying ~b and ~b? - or equivalently ~u and ~v - we fix the Markoff process

∂~u

∂t
= − ~

2m
∇ (∇ · ~v)−∇ (~v · ~u) (1.97)

∂~v

∂t
=

~F

m
− (~v · ∇)~v + (~u · ∇) ~u+

~
2m
∇2~u. (1.98)

From this we can fully determine ~u and ~v given a set of initial distributions ~u(~x(t), t0) and

~v(~x(t), t0).

Real Time-Independent Schrodinger Equation

We consider a force arising from a potential

~F = −∇V. (1.99)

Suppose first that ~v = 0, then by equation 1.97 we have that

∂~u

∂t
= 0 (1.100)

and from equation 1.98 we get that

∇V
m

= (~u · ∇) ~u+
~

2m
∇2~u. (1.101)

As ~u is a gradient field - and the curl of a gradient is zero - we get

(~u · ∇) ~u =
1

2
∇ (~u · ~u) . (1.102)
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Likewise, we also get

∇2~u = ∇ (∇ · ~u) . (1.103)

This allows us to simplify equation 1.101 to

∇V
m

= ∇
(
~u2

2
+

~
2m

(∇ · ~u)

)
(1.104)

V

m
− E

m
=

1

2
~u2 +

~
2m

(∇ · ~u) (1.105)

where E is a constant with dimensions of energy. We can multiply across this by mρ and

integrate across space to find

∫
1

2
m~u2ρd3x+

~
2

∫
(∇ · ~u) ρd3x =

∫
V ρd3x− E. (1.106)

We now perform a quick manipulation:

(∇ · ~u) ρ =

(
∇ · ~

2m

∇ρ
ρ

)
ρ (1.107)

=
~

2m

(
−1

ρ2
(∇ρ)2 +

1

ρ
∇2ρ

)
ρ (1.108)

=
~

2m

(
∇2ρ− (∇ρ)2

ρ

)
. (1.109)

Integrating both sides we can drop the first term by using Gauss’s divergence theorem and

the conservation of probability, giving us

∫
(∇ · ~u) ρd3x = −

∫
~u · ∇ρd3x. (1.110)
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Substituting back into equation 1.106 we get

∫
1

2
m~u2ρd3x− ~

2

∫
(~u · ∇ρ) d3x =

∫
V ρd3x− E. (1.111)

Returning again to the same term we have

~
2
~u · ∇ρ =

~
2
~u ·
(

2mρ

~
~u

)
(1.112)

= m~u2ρ, (1.113)

which allows us to simplify equation 1.111 to

E =

∫
1

2
m~u2ρd3x+

∫
V ρd3x. (1.114)

As ρ is a probability density, E then has an alternate interpretation as the expectation

value of 1
2
m~u2 + V .

We now recall that

~u =
~
m

(
1

2
∇ ln ρ

)
(1.115)

⇒ m~u

~
= ∇

(
1

2
ln ρ

)
= R. (1.116)

From this we say that R is the real potential associated with m~u
~ . We can make a change
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of variables from ρ to ψ seemingly inspired by this fact and Born’s rule to get

ψ2 = ρ (1.117)

ψ = eR. (1.118)

We then have that

m~u

~
= ∇ (lnψ) =

∇ψ
ψ
, (1.119)

which we substitute into equation 1.114 -

~2

2m2

(∇ψ)2

ψ2
+

~2

2m2
∇ ·
(
∇ψ
ψ

)
=

1

m
(V − E) (1.120)

~2

2m

[
(∇ψ)2

ψ2
+

(
−1

ψ2

)
(∇ψ)2 +

1

ψ
∇2ψ

]
= V − E (1.121)

−~2

2m
∇2ψ + V ψ = Eψ (1.122)

- to reach the time independent Schrodinger equation.

The Time-Dependent Schrodinger Equation

Now - in place of the assumptions of the previous section - we attempt to construct a more

general solution to equations 1.97 and 1.98. To do this, we make the assumption that

∇ · ~v = 0 and additionally that v is a gradient of some S:

∇S =
m

~
~v. (1.123)
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We now propose - as an ansatz - that

ψ = eR+iS (1.124)

is a solution to the time independent Schrodinger equation

i~
∂ψ

∂t
=
−~2

2m
∇2ψ + V ψ. (1.125)

Substituting in to the left hand side of the equation we get

i~
[
ψ
∂

∂t
(R + iS)

]
(1.126)

−~ψ∂S
∂t

+ i~ψ
∂R

∂t
. (1.127)

Substituting in to the left hand side of the equation we get

−~2

2m
∇ · (ψ∇ (R + iS)) + V ψ (1.128)

=
−~2

2m

[
ψ [∇ (R + iS)]2 + ψ∇2 (R + iS)

]
+ V ψ (1.129)

=
−~2

2m
ψ
[
(∇R)2 − (∇S)2 +∇2R + i

(
2∇R · ∇S +∇2S

)]
+ V ψ. (1.130)
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Dividing through both sides by ψ and taking the gradient of both sides we get that our

right hand side is

− ~
∂

∂t

(m
~
~v
)

+ i~
∂

∂t

(m
~
~u
)

(1.131)

= − ∂

∂t
(m~v) + i

∂

∂t
(m~u) (1.132)

and the left hand side is

−~2

2m
∇
(
m2

~2
~u2 − m2

~2
~v2 +∇ ·

(m
~
~u
)

+ i

(
2
m2

~2
~u · ~v +∇ · m

~
~v

))
− ~F (1.133)

= −m (~u · ∇) ~u+m (~v · ∇)~v − ~2

2
∇2~u+ i

[
−m∇ (~u · ~v)− ~2

2
∇2~v

]
− ~F . (1.134)

Comparing the real parts of the two sides gives us

∂~v

∂t
=
F

m
+ (~u · ∇) ~u− (~v · ∇)~v +

~2

2m
∇2~u (1.135)

while comparing the imaginary parts gives us

∂~u

∂t
= −∇ (~u · ~v)− ~

2m
∇2~v. (1.136)

These two equations are the same as equations 1.97 and 1.98, which arose from the study of

a particle subject to a potential and Brownian motion. This completes the derivation: we

have demonstrated the existence of a method for finding the solutions to the Schrodinger

equation through solutions to a stochastic process. It is then possible that such a process

could be the underlying physics behind quantum mechanics, or at the least an effective
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description of some underlying theory.

1.2 Ontic Models

The study of realist theories of quantum mechanics has progressed significantly from its

origins. Rather than considering specific models of underlying physical structures and

laws, research has instead focused on constructing general frameworks which include all

such models so that the common properties of these theories can be studied. The ontic

models framework is such an attempt, assuming nothing about the underlying ontic state

space other than its existence. In what follows we shall present this framework.

We will use the notation from [12]. We begin by introducing an ontic state space Λ, we

will then introduce epistemic states µ which are probability distributions over Λ - which

reflects our inability to know the true ontic state. We will also allow our epistemic state to

depend on the method which we use to prepare our state, SP . We thus write the epistemic

state as µ (λ| SP ), and we impose the requirement that there must be at least one ontic

state which describes the system (along with normalization of probability) by requiring

that ∫
Λ

dλµ (λ| SP ) = 1. (1.137)

We then introduce the measurement which we allow to depend on the procedure with which

the measurement is taken - the exact form of this dependence within a model will reflect

whether or not the model is contextual in the traditional sense. Additionally, we allow for

the possibility that the ontic states still give probabilistic predictions for measurements.
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For a given measurement procedure SM , with outcomes indexed by a parameter k, we give

a probability distribution for the measurement by ξ (k| λ, SM), where ξ is the probability

that for a given ontic state λ we will get the kth measurement outcome for our procedure.

We then require that this distribution is normalized by saying

∑
k

ξ (k| λ, SM) = 1. (1.138)

We can then extract probabilities of outcomes for experiments by combining these two

quantities. ∫
µ (λ| SP ) ξ (k| λ, SM) dλ = Pr (k| SP , SM) (1.139)

This gives us probabilities of measurement outcomes only in terms of preparations and

measurement procedures, given the assumption of an underlying ontic model.

In [12] this model was explored further and given context in terms of an operational

understanding, its relation to quantum mechanics and how to have the ontic framework

represent different concepts. Here we will present their perspectives on how to understand

this framework.

The operational understanding of the ontic models framework comes with taking it to

describe a system S. The preparation method SP then corresponds to having S interact

with a preparation device P (with macroscopic settings we still label with SP ). After this

the system S then interacts with a measurement device M which records an outcome based

on the state S and the measurement settings SM . This gives us a picture of how to relate

the ontic models framework to experiments and the physical world.
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We can use these operational definitions to relate this framework to standard quantum

mechanics. To do this we first observe that the result of a system interacting with the

preparation device in quantum mechanics is a density matrix, which we’ll label ρSP . We

then take the measurement process as giving a POVM effect Ek with k indexing the

outcome, corresponding to SM . (Note: A POVM (positive operator valued measurement)

is a set of positive semidefinite, self-adjoint operators on a Hilbert space such that the

sum over the elements of the set is the identity.) To have consistency between quantum

mechanics and the ontic models framework we impose matching with the Born rule:

Pr (k | SP , SM) = tr (EkρSP ) . (1.140)

The form of the ontic state space Λ reflects the individual ontic theory that we are

describing with the framework. An example of this is if we consider the possibility of the

wave function being the complete description of reality then Λ would be the projective

Hilbert space of the wave functions. In this case the epistemic state takes a simple form of

µ (λ | ψ) = δ (λ− λψ) , (1.141)

where λψ is just the assignment of ψ to the space Λ. If ψ were instead an incomplete

description of reality then we could decompose Λ into the projective Hilbert space together

with supplementary variables which complete the description. If the wave function only

represents the state of our knowledge - and not anything real - then the Λ cannot even

be decomposed into the projective Hilbert space of the wave function together with other
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variables.

We can also discuss properties of a model that are encoded outside of the structure of

Λ. One such property is outcome determinism. In section 1.2 we allowed for probabilistic

predictions for measurements. If we instead require that each λ gives a completely deter-

mined outcome for a given preparation and measurement we have an outcome deterministic

theory. In the language of the ontic models framework we do this by requiring that for any

k,λ and SM that

ξ (k | λ, SM) ∈ {0, 1} . (1.142)

The last point to be made from the observations in [12] is that though ontic models

typically treat the preparation system P and measurement system and M as external to

the theory it is possible to instead treat them as part of the system described by the

ontological space. This description is equivalent to treating them externally provided we

satisfy three assumptions:

• Separability: The global ontic space Γ is the Cartesian product of the ontic spaces

of the three systems S,P and M :

Γ = ΛP × ΛS × ΛM , (1.143)

where ΛS is the ontic space that we’d previously called Λ.

• Statistical independence: The effect of the preparation device’s ontic state is medi-

ated through S. That is to say that M and P must be statistically independent of
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one another.

• Measurement: The measurement outcome must depend on the measurement settings

rather than the particular ontic state of the measurement device.

Provided these requirements are satisfied, an ontological description of the preparation and

measurement systems is equivalent to the standard picture.

1.3 The Causaloid Framework

In Newtonian physics, physical processes are understood with respect to a fixed spatial

coordinate system and a time parameter, which is absolute and ever increasing. Predictions

are entirely deterministic. Quantum theory and general relativity depart from this classical

picture in opposing manners. Quantum theory gives probabilistic predictions as to the

outcomes of measurements, but retains fixed space and time coordinates. On the other

hand, general relativity is deterministic, but shows that space and time form a dynamical

structure. Reconciling these fundamental philosophical differences is one of the many

challenges one is faced with in trying to construct a theory of quantum gravity. There

have been many different approaches to this problem with many different results [28, 13,

31, 35, 33, 1]. One way of moving forward is to dismiss classical assumptions and create a

probabilistic theory that has a dynamic causal structure. However, what results is indefinite

casual structure. This is more radical than either probabilistic predictions or dynamical

space-time structure. In general relativity, a separation between space-time locations is

either space-like or time-like. An indefinite causal structure would allow for a separation
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between space-time locations to be something like a quantum superposition of a space-like

and a time-like separation. While we may be uncertain of the causal structure of the

path between measurements, we know where in space-time we make measurements, what

measurements we have made, and what outcomes we get. With this data, we can examine

probabilistic correlations for information. The causaloid framework [9, 10, 11] which we

outline below provides us with the necessary tools to examine an indefinite causal structure.

1.3.1 The Picture

Every experiment results in a set of data from making measurements on a system. Each

piece of data could be thought of as a card with three indications on it; where the measure-

ment is made in space-time, what is measured, and what the result of the measurement is.

We will represent each card (or piece of data) as (x, fx, yx) where x denotes the space-time

location, fx represents the apparatus configuration, and yx denotes the outcome of the

measurement. The set of all possible cards (i.e. all possible measurements with all possible

outcomes with every space-time configuration) is denoted V . We can imagine running

an experiment an infinite number of times so as to be able to obtain relative frequencies.

(Note that the concept of relative frequencies is utilized here only has a illustrative tool

and is not meant to specify an ontology.) In order for the cards to tell us the relative

frequencies, we must systematically sort them.

Each distinct x is defined as an elementary region of space-time. A composite region,

denoted O1, is a set of elementary regions. (Note: These definitions of “elementary region”

and “composite region” differ from those in [9, 10, 11].) Therefore, these cards can be sorted
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according to their associated space-time region. The set of all possible cards with the same

space-time location x on them is the elementary information set. We denote this set as

Rx. The composite information set, R1, is the union of all elementary information regions

for which the associated elementary regions are contained within the composite region O1.

More concisely,

R1 ≡
⋃
x∈O1

Rx (1.144)

Note that a composite information set has no more or less structure than an elementary

region of space-time. Therefore, without adding structure or losing generality, we can treat

the sets Rx as elementary regions. From this point forward, the term region will be used

interchangeably to refer to objects of type x or O1 and type Rx or R1.

If we chose a particular measurement to perform in the region x (indexed by αx), the

set of cards consistent with fαxx is called the procedure information set and is denoted Fαx
x .

Fαx
x ≡

⋃
all yx

{(x, fαxx , yx)} (1.145)

For composite regions, we can then define the following:

Fα1
1 ≡

⋃
x∈O1

Fαx
x (1.146)

For the measurement fαxx , the set of cards consistent with the outcome yαxx is called the

outcome information set and is denoted Y αx
x

Y αx
x ≡ {(x, fαxx , yαxx )} (1.147)
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For composite regions, we have

Y1 ≡
⋃
x∈O1

Y αx
x (1.148)

The set of all measurement and outcome pairs (i.e. all α = (Y, F) ) is denoted Υ.

Notice that the set of all cards V can be viewed as all the cards from all (elementary)

regions.

V =
⋃
allx

Rx (1.149)

So V is the largest of all regions that can be considered.

These definitions provide a firm foundation on which the causaloid framework rests

both mathematically and conceptually.

1.3.2 First level physical compression

The most basic quantity that we would want to be able to calculate is the probability

that a certain (set of) outcome(s) is observed given that a certain (set of) measurement(s)

has been performed at a (set of) location(s) in space and time. Suppose that the set of

locations we are interested in is O1. Then the information set of interest is R1. The set

comprised of all the cards not in R1 is V − R1. We call (YV−R1 , FV−R1) the generalized

preparation because it is the information that surrounds R1 not only from the immediate

past, but from the future and the rest of space-time as well. By the choices we make in

setting up the experiment, we can put conditions on the generalized preparation such that
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Prob(YV |FV ) is well-defined. (See Ref.[9] for details.) Then we can write

Prob(YV |FV ) = Prob(Y1, YV−R1|F1, FV−R1) (1.150)

For a specific pair α1 ⇔ (Y α1
1 , Fα1

1 ), we can write this probability as

Prob(Y α1
1 , YV−R1|Fα1

1 , FV−R1) (1.151)

We use the short-hand pα1 to denote the probability defined in Eq.(1.151). One way to

specify the state of a system is to list all the possible pα1 for elements of R1.


...

pα1

...

 α1 ∈ Υ1 (1.152)

However, this over-specifies the state. We do not usually need to know the probability of

every outcome of every measurement in order to determine what the complete state of the

system is. Physical theories tell us what relationships exist between variables and what

constraints those relationships place on the variables of the system. These relationships

and constraints can be used to determine a reduced set of probabilities from which all

other probabilities can be represented. The reduced set of probabilities is defined such

that any probability can be written as a linear combination of the probabilities in the

reduced set. Let us denote the reduced or fiducial set in R1 as Ω1 ⊆ Υ1. This process

of going from the set of all the probabilities to the smallest essential set we call first level
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physical compression. This can be expressed as

p =


...

pl1
...

 l1 ∈ Ω1 ⊆ Υ1 (1.153)

such that

pα1 = rα1 · p (1.154)

where rα1 encodes the physical compression and therefore, is determined by the details of

the physical theory. Of course, the compression is not unique. We can define a decompres-

sion matrix, Λl1
α1

such that

Λl1
α1
≡ rα1

∣∣
l1

(1.155)

where rα1

∣∣
l1

means the l1 component of rα1 . While the decompression matrix may seem

superfluous at the first level, it becomes a useful notation for higher level compression.

1.3.3 Second level physical compression and the causaloid prod-

uct

Let us consider two distinct regions R1, R2 ⊂ V . In a similar fashion to the single region

case,

pα1α2 = Prob(Y α1
1 , Y α2

2 , YV−R1−R2|Fα1
1 , Fα2

2 , FV−R1−R2) (1.156)
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We specify the state of the system by listing all pα1α2 .
...

pα1α2

...

 α1α2 ∈ Υ1 ×Υ2 (1.157)

where × is the cartesian product. It can be shown that

pα1α2 =
∑

l1l2∈Ω1×Ω2

Λl1
α1

Λl2
α2
pl1l2 (1.158)

which implies that the following list of probabilities is sufficient.


...

pl1l2
...

 l1l2 ∈ Ω1 × Ω2 ⊆ Υ1 ×Υ2 (1.159)

This is effectively first level compression on each index. But if a physical theory has

some connection between the two regions, Ω1 × Ω2 may no longer be the smallest set

that is sufficient to represent all possible states. Then second level physical compression is

possible. It is defined to be

p =


...

pk1k2
...

 k1k2 ∈ Ω12 ⊆ Ω1 × Ω2 (1.160)
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such that

pα1α2 = rα1α2 · p =
∑

k1k2∈Ω12

rα1α2

∣∣
k1k2

pk1k2 (1.161)

When Ω12 = Ω1×Ω2, second level compression is trivial. But it is proven in [10] that it is

possible that Ω12 ⊂ Ω1 × Ω2.

Now we can define a second level decompression matrix. By comparing Eq.(1.158) and

Eq.(1.161), we infer that

rα1α2

∣∣
k1k2

=
∑

l1l2∈Ω1×Ω2

Λl1
α1

Λl2
α2

Λk1k2
l1l2

(1.162)

where

Λk1k2
l1l2

= rl1l2
∣∣
k1k2

(1.163)

which is the desired second level decompression matrix. This matrix encodes how we

move from pl1l2 ’s to pk1k2 ’s. Using the definition of the first level decompression matrix,

Eq.(1.162) becomes

rα1α2

∣∣
k1k2

=
∑

l1l2∈Ω1×Ω2

Λk1k2
l1l2

rα1

∣∣
l1
rα2

∣∣
l2

(1.164)

This defines the causaloid product, denoted rα1 ⊗Λ rα2 which unifies the different causal

structure-specific products. Explicitly,

rα1 ⊗Λ rα2 = rα1α2 (1.165)

It is this product that allows us to look at the probabilistic correlations between arbitrary

locations in space-time without specifying the causal relationship.
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We have shown second level compression for the case where we have two regions. This is

easily generalized for any number of regions. The object that would encode the compression

for three regions would be Λk1k2k3
l1l2l3

, for four regions would be Λk1k2k3k4
l1l2l3l4

, etc. After second

level compression over multiple regions, we have



Λk1
α1

Λk1k2
l1l2

Λk1k2k3
l1l2l3

...


(1.166)

There is a third level of physical compression that compresses these multi-region Λ-matrices

to give the Causaloid, Λ, which is defined as

Λ ≡
(
{Λ} | {Λ} ⊆ {Λk1

α1
,Λk1k2

l1l2
, . . .}

)
(1.167)

where {Λ} is determined by the rules of the physical theory (for detailed discussion of how

this works see [2]). By decompressing the set {Λ}, we can obtain the Λ-matrix for any set

of regions. This means that the Causaloid gives us the ability to perform any calculation

that the physical theory allows for.

1.3.4 Well-defined probabilities

Up to this point we have exclusively dealt with probabilities conditioned on procedures. It

is more useful to also be able to condition on outcomes. Specifically, we’d like an expression
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for the following:

Prob(Y α2
2 |Y α1

1 , Fα1
1 , Fα2

2 ) (1.168)

Using Bayes’ Theorem, this becomes

Prob(Y α2
2 |Y α1

1 , Fα1
1 , Fα2

2 ) =
Prob(Y α1

1 , Y α2
2 |Fα1

1 , Fα2
2 )∑

Y
β2
2 ∼F

α2
2

Prob(Y α1
1 , Y β2

2 |Fα1
1 , Fα2

2 )
(1.169)

where Y β2
2 ∼ Fα2

2 denotes that the sum is over all possible outcomes corresponding to the

measurement Fα2
2 (in R2). (For simplicity, we have suppressed the part of the notation

denoting the generalized preparation.) In the causaloid framework, this becomes

Prob(Y α2
2 |Y α1

1 , Fα1
1 , Fα2

2 ) =
rα1α2 · p
rα1_2 · p

(1.170)

where rα1_2 =
∑

β2
rα1β2 . (The sum being over β2 in this notation has the same meaning

as the sum being over all outcomes consistent with F2.) In order for this probability to be

considered well-defined, the right hand side cannot depend on V − R1 − R2. Since rα1α2

and rα1_2 are determined exclusively by the physical theory, neither has any dependence

on V −R1 −R2. However, p does depend on V −R1 −R2. This implies that in order for

the probability Eq.(1.170) to be well defined (i.e. not depend on V − R1 − R2), it must

not vary with p. The dependence on p can be removed altogether by requiring that rα1α2

be parallel to rα1_2 . Therefore, the above probability is well defined if and only if

rα1α2 ‖ rα1_2 (1.171)
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With this condition, we get

Prob(Y α2
2 |Y α1

1 , Fα1
1 , Fα2

2 ) =
|rα1α2|
|rα1_2|

(1.172)

1.3.5 �Γ product

Consider two distinct regions; RA and RP . By definition

rαAαP = rαA ⊗Λ rαP

rβAαP = rβA ⊗Λ rαP

Suppose we wanted to take the dot product between two vectors of the above form. Using

decompression matrices, we can write

rαAαP · rβAαP =
(
rαA ⊗Λ rαP

)
·
(
rβA ⊗Λ rαP

)
(1.173)

=
∑
kAkP

(∑
lAlP

ΛkAkP
lAlP

rαA
∣∣
lA

rαP
∣∣
lP

)∑
l′Al
′
P

ΛkAkP
l′Al
′
P

rβA
∣∣
l′A

rαP
∣∣
l′P


where kAkP ∈ ΩAP , lAlP ∈ ΩA × ΩP , and l′Al

′
P ∈ ΩA × ΩP . Notice that we can write

∑
lAlP

ΛkAkP
lAlP

rαA
∣∣
lA

rαP
∣∣
lP

as ∑
lA∈ΩA

[
rαA
∣∣
lA

( ∑
lP∈ΩP

ΛkAkP
lAlP

rαP
∣∣
lP

)]
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Similarly, ∑
l′Al
′
P

ΛkAkP
l′Al
′
P

rβA
∣∣
l′A

rαP
∣∣
l′P

=
∑
l′A∈ΩA

rβA
∣∣
l′A

 ∑
l′P∈ΩP

ΛkAkP
l′Al
′
P

rαP
∣∣
l′P


Define

ΓkAkPlA
(rαP ) ≡

∑
lP∈ΩP

ΛkAkP
lAlP

rαP
∣∣
lP

and, similarly,

ΓkAkPl′A
(rαP ) ≡

∑
l′P∈ΩP

ΛkAkP
l′Al
′
P

rαP
∣∣
l′P

Using this, Eq.(1.173) becomes

rαAαP · rβAαP =
∑
kAkP

∑
lAl
′
A

ΓkAkPlA
(rαP )ΓkAkPl′A

(rαP )rαA
∣∣
lA

rβA
∣∣
l′A

 (1.174)

where kAkP ∈ ΩAP and lAl
′
A ∈ ΩA ×ΩA. This suggests that the essence of rαAαP · rβAαP is

a relationship between rαA and rβA mediated by matrices that depend on rαP . Therefore,

we can view Eq.(1.173) as kind of product of rαA and rβA . Dot products of this form come

up frequently enough that we will define this as the Γ-dot product and denote it as

rαA �Γ(rαP ) rβA ≡ rαAαP · rβAαP =
(
rαA ⊗Λ rαP

)
·
(
rβA ⊗Λ rαP

)
(1.175)
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Chapter 2

Discussions of the Applicability of

the Models

Equipped with the three frameworks from chapter 1 we now set about to demonstrate

that each of these frameworks can be applied to make progress. Each of these frameworks

are very different in their structure and their intent, and so each is suitable for studying

different problems. With this in mind we will focus here on the applications to which each

framework is well suited rather than pushing them beyond their natural capabilities.

The causaloid framework is a probabilistic framework without a fixed causal structure.

The result of creating such a framework is that we lose contact with many of the quantities

that allow us to have a physical intuition with which to interpret results. One such quantity

that we lose contact with is entropy: the second law of thermodynamics is in particular

intertwined with the notions of causality and time, and so it will require effort to reconnect
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with it. In section 2.1 I introduce the concept of causally unbiased entropy in an effort to

produce a quantity which will allow us to gain a physical intuition for the framework.

The ontic models framework similarly has difficulties connecting its internal statements

to reality due to its high level of abstraction. Despite this, the ontic models framework is

very good at making statements about general properties of measurements. Due to this

capability of the model it is the ideal framework to address the concept of contextuality

- a property of the results of measurements to depend on the choice of what other mea-

surements have been performed at the same time. In section 2.2 we will reproduce both

the original idea of contextuality due to [16] and its extensions from [34]. Additionally in

section 2.3 we will discuss the concept of deficiency from [12] and present a way of relating

it to contextuality.

Nelson’s mechanics has a very different character than the ontic models framework or

the causaloid framework, instead being very definite in its form: dealing with trajectories

rather than abstract states. For this reason, Nelson’s mechanics can be used to examine

an alternate set of questions from the other frameworks. In section 2.4.1 we will introduce

Bohmian mechanics - another realist theory of quantum mechanics - and then in section

2.4.2 we will compare the construction of Bohmian mechanics to that of Nelson’s mechanics.

2.1 Entropy in the Causaloid

The content of this section is a result of a collaboration with Lucien Hardy [18].

It is natural in discussions of causal structure to raise the question of entropy. The
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second law of thermodynamics tells us that in an isolated system, entropy can increase or

remain the same, but it can never decrease [17]. In information theory, entropy is viewed

as being a measure of uncertainty before we measure a state or equivalently, the amount

of information gained by upon learning the state of a system [23]. As is the basis for other

work [19, 14, 15] we shall take an equivalence of these two types of entropy. Inherent

in this concept of entropy is an assumed causal structure, specifically that there exists a

background time[30]. The standard definition of entropy is in the context of a definite

causal structure with reference to absolute time. In order to make sense of entropy in

an indefinite causal structure, a clear definition must be established. To do so requires

consideration of the following questions:

What are the concepts from the usual picture of entropy in a definite causal

structure that are necessary to define entropy? What are the analogues to these

concepts in a picture with indefinite causal structure?

Using the formalism introduced in section 1.3, we are able to provide answers to these

questions and then, define a causally-unbiased entropy.

Standard definitions of entropy assume fixed causal structure. Here we develop a

causally-unbiased definition of entropy in the causaloid formalism.
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(a) (b)

Figure 2.1: (a) Fixed causal structure (b) Indefinite causal structure

2.1.1 The picture

The Shannon entropy [23] for a classical state is defined as

S = −
∑
i

pilog2pi (2.1)

The definition of pi used in this equation requires that the structure of space-time be

organized with the following features:

• a region of interest, A

• an immediate past space-time region, P

• sufficient data about what happened in P

• a measurement FA

• a set of outcomes, {Y i
A}, corresponding to FA
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This allows us to write

pi = Prob(Y i
A|FA, dataP ) (2.2)

Removing all time bias from these features of space-time structure, we get

• a region of interest, A

• a reference region P

• an outcome/measurement pair in P , {αP} = {(FP , YP )}

• a measurement FA

• a set of outcomes, {Y i
A}, corresponding to FA

The reference region can be thought of as a kind of preparation region that is not limited

to being in the causal past. In fact, the choice of reference region is arbitrary as illustrated

in Fig. 2.1b.

The definition of pi in a causally-unbiased structure is

pi = Prob(Y i
A|YP , FP , FA) (2.3)

(Since P is arbitrary, we should technically say ‘pi with respect to the reference region P ’.

However, for the sake of brevity, we will assume that ‘with respect to P ’ is implied much

as ‘with respect to the past’ is taken as implied in the causally-biased situation.)
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Using the above definition of pi, we define the entropy relative to the reference data

(FP , YP ) as

S = −
∑
i

Prob(Y i
A|YP , FP , FA) log2

(
Prob(Y i

A|YP , FP , FA)
)

(2.4)

Notice that this reduces to the causally-biased definition of entropy when P is the past; FA

measures the microstate in the classical case or measures in the basis where ρ̂ is diagonal

in the quantum case.

2.1.2 In the causaloid framework

Taking the probability to be well-defined, Eq.(1.172) and Eq.(2.4) give the following defi-

nition of entropy:

S = −
∑
αA

|rαAαP |
|r_AαP |

log2

(
|rαAαP |
|r_AαP |

)
(2.5)

Of course, this equation requires that rαAαP ‖ r_AαP . We can also consider what hap-

pens when rαAαP is nearly parallel to r_AαP , using the definition of the probability from

Eq.(1.170). The entropy associated with this is

SΛ = −
∑
αA

(
rαAαP · p
r_AαP · p

)
log2

(
rαAαP · p
r_AαP · p

)
(2.6)

It becomes necessary to shorten the notation for the following work so rαAαP will be denoted

as vi (where the index αA is represented by i) and r_AαP will be denoted as u. As

with any vector, vi can be decomposed into a component parallel to u and a component
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perpendicular to u (i.e. components in û‖ and û⊥, respectively). That is,

vi = v
‖
i û
‖ + v⊥i û⊥ (2.7)

Using the unit vectors as defined, p can be decomposed as

p = pxû
‖ + pyû

⊥ + p⊥ (2.8)

where p⊥ is the component of p that is perpendicular to the plane defined by u and vi.

The probability of interest, pi, then becomes

pi =
vi · p
u · p

=
v
‖
i

u
+ k

v⊥i
u

(2.9)

where k = py
px

. Notice that the first term is equivalent to a well-defined probability (Eq.

1.172). We require the second term to be small since the deviation from well-defined should

be small. Since we have already required that v⊥i be small, we need only place restrictions

on k.

2.1.3 Bounds on k

For the purposes of this subsection, we will work in the plane defined by u and vi. Define

the angle between u and the projection of p into the plane to be θ. Define the length of
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the projection of p into the plane to be pxy. Using basic trigonometry, we get

py = pxysinθ (2.10)

px = pxycosθ (2.11)

Therefore, k can be written in a form that is dependent on only one variable, as follows:

k = tanθ (2.12)

As θ tends towards ±π
2
, k tends to infinity. Therefore, to ensure that the second term of

(2.9) is small, we require that k be finite. Assume it to be a property of the state space

for p that there exists some 0 < θmax. Clearly, |θmax| < π
2

in order for k to be finite. So θ

is bounded as follows:

− π

2
< −θmax ≤ θ ≤ θmax <

π

2
(2.13)

The k corresponding to θmax will be denoted as kmax. Further bounds can be placed on k

by the state space of the physical theory. For our purposes, it is sufficient that k is finite.
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2.1.4 Q factor

In light of (2.9), entropy, as defined in (2.6), becomes

SΛ = −
∑
i

(
v
‖
i

u
+ k

v⊥i
u

)
log2

(
v
‖
i

u
+ k

v⊥i
u

)

= −
∑
i

(
v
‖
i

u
+ k

v⊥i
u

)[
log2

(
1 + k

v⊥i

v
‖
i

)
+ log2

(
v
‖
i

u

)]
(2.14)

Since v⊥i is very small (as is implied by the fact that vi and u are nearly parallel) and k is

finite, we can take a Taylor expansion (to leading order) of the first log2 term. Doing this

gives

SΛ = −
∑
i

(
v
‖
i

u
+ k

(
v⊥i
u

))[
k

ln 2

(
v⊥i

v
‖
i

)
+O

(
v⊥i

2
)

+ log2

(
v
‖
i

u

)]

= −
∑
i

(
v
‖
i

u

)
log2

(
v
‖
i

u

)
+ k

(
v⊥i
u

)
log2

(
e
v
‖
i

u

)
+O

(
v⊥i

2
)

(2.15)

Notice that the first term is equivalent to the definition of entropy where u ‖ vi and that

SΛ reduces to this definition when v⊥i = 0. That is, when u ‖ vi (or equivalently, v⊥i = 0)

SΛ = S ≡ −
∑
i

(
v
‖
i

u

)
log2

(
v
‖
i

u

)
(2.16)

For v⊥i 6= 0, we will define

Q = −
∑
i

(
v⊥i
u

)
log2

(
e
v
‖
i

u

)
(2.17)
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Using kmax as defined in the previous section, we can regard kmaxQ as a kind of correction

to the causally-biased entropy. Then, to leading order

S − kmaxQ ≤ SΛ ≤ S + kmaxQ (2.18)

2.1.5 Understanding Q

Q is an entirely new quantity with no direct classical analogue so understanding its physical

interpretation is a non-trivial matter. If we consider entropy as a measure of uncertainty,

then S is the measure of our uncertainty that the measurement FA in region A will yield

the specific outcome Y i
A, given the data we have from the reference region P . Since our

reference region P is arbitrary, one way to view Q is that it measures how completely

the region P influences region A. In a definite causal structure, an immediate past region

would be the exclusive influence on our region of interest and Q would be zero. However, in

the causally-indefinite picture, we cannot require a priori that the reference region we have

chosen will be the exclusive influence on our region of interest. If there are no influences

on region A from outside region P , then the probability will be well-defined and Q will be

zero. But if there are influences on region A from outside region P , then the magnitude of

Q will reflect that.
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2.1.6 Using the �Γ product

For the sake of completeness the u’s and vi’s must be translated into r_AαP ’s and rαAαP ’s.

Notice that

v
‖
i

u
=

vi · u
u · u

(2.19)

v⊥i
u

=

√
v2
i − v

‖
i

2

u2
=

√
vi · vi

u · u
− (vi · u)2

(u · u)2
(2.20)

Substituting rαAαP for vi and r_AαP for u gives

v
‖
i

u
=

rαAαP · r_AαP

r_AαP · r_AαP

(2.21)

v⊥i
u

=

√
rαAαP · rαAαP
r_AαP · r_AαP

− (rαAαP · r_AαP )2

(r_AαP · r_AαP )2
(2.22)

Using the Γ-dot product the above equations simplify to

v
‖
i

u
=

rαA �Γ(rαP ) r_A

r_A
�Γ(rαP ) r_A

(2.23)

v⊥i
u

=

√
rαA �Γ(rαP ) rαA
r_A
�Γ(rαP ) r_A

−
(

rαA �Γ(rαP ) r_A

r_A
�Γ(rαP ) r_A

)2

(2.24)

This allows us to completely specify the entropy of RA relative to a preparation RP in the

causaloid framework. It is straightforward to generalize this to define the joint entropy of
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RA and RB with reference to a “preparation” RP . Simply redefine u and vij as

vij = rαAαBαP (2.25)

u = r_A_BαP (2.26)

where

rαAαBαP = rαA ⊗Λ rαB ⊗Λ rαP

and

r_A_BαP =
∑
βA

rβA ⊗Λ
∑
βB

rβB ⊗Λ rαP

Using the same procedure as for one region, we get

v
‖
ij

u
=

rαAαB �Γ(rαP ) r_A_B

r_A_B
�Γ(rαP ) r_A_B

(2.27)

v⊥ij
u

=

√
rαAαB �Γ(rαP ) rαAαB

r_A_B
�Γ(rαP ) r_A_B

−
(

rαAαB �Γ(rαP ) r_A_B

r_A_B
�Γ(rαP ) r_A_B

)2

(2.28)

In this manner, we can define causally-unbiased entropy in the causaloid framework for

any number of regions.

2.1.7 Conclusions

In a definite causal structure, the only thing required for a definition of entropy that is not

in an indefinite causal structure is an immediate past region. Since there is no reason in an

indefinite causal structure to choose any reference region over any other, we simply choose
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an arbitrary region. This ensures that we do not hold on to any pre-conceived notions of

space-time and its connection to causality. The definition of the causally-unbiased entropy

resulted in a correction to the causally-biased definition of entropy. In a sense, the Q factor

gives us an emergent idea of causality. It is a measure of the extent to which our region

of interest is causally connected to our reference (or “preparation”) region. If it is zero,

the traditional ideas of causality are recovered. The next step would be determining how

the Q factor could potentially be physically observed. To do so may require us to know

more of the theoretical and mathematical properties of Q. Which mathematical properties

of Shannon entropy hold for causally-unbiased entropy? What is the status of the Second

Law of Thermodynamics in an indefinite causal structure? To go about answering this, we

could consider how SΛ “evolves” along tubes through indefinite space-times.

2.2 Contextuality’s Generalization in Ontic Models

The study of ontological models has a peculiar history. A portion of the seminal papers

in the subject actually take the form of attempted ‘no-go’ theorems, intended to prove

that the subject was a dead-end. Beginning with the result of Von Neumann in [36]

which instead of the desired result (of proving what were at the time referred to as hidden

variables theories were incorrect) led to a rebuttal by Bohm with a counterexample[4], and

then the Kochen-Specker paper [16] which again purported to be a no-go result, but then

instead became an introduction to the concept (and necessity within ontological models)

of contextuality.

Contextuality in its basic sense is used to describe a theory in which the relationship
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of the observable results depend not solely on the states of the theory, but also depend

upon the set of what quantities are being observed. Classical mechanics is an example

of a non-contextual theory, best evidenced by the fact that the observables in classical

mechanics are also the states of the theory.

A picture of how such a property could exist in terms of the ontic models framework

emerges from considering three measurements of a quantum system. The first measurement

A commutes with the other two measurements we consider B and C (all of which take

values of either 0 or 1). Contextuality takes the form of the portions of the ontic space

corresponding to 0A0B ∪ 0A1B and 0A0C ∪ 0A1C not coinciding exactly. In terms of the

ontic models framework this can be expressed as

Supp [ξ (0A0B | λ, SAB)] ∪ Supp [ξ (0A1B | λ, SAB)] (2.29)

6= Supp [ξ (0A0C | λ, SAC)] ∪ Supp [ξ (0A1C | λ, SAC)] ,

for a deterministic ontological model. This means that we can’t use such a union to devise

a notion of the portion of the ontic space corresponding to 0A (or likewise for 1A) by

using either of these measurement configurations. We illustrate this in figure 2.2 where the

regions of support are labeled by the measurement outcomes.

We shall represent the central results from [16] and the extensions of the concept of

contextuality from [34] here, in the hopes of providing an introduction to the subject. We

will - where possible - reframe the results in the modern context of ontological models, and

the modern understanding of the impact of the results.
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(a) (b)

Figure 2.2: The ontic space from measuring A with two different contexts

2.2.1 Kochen and Specker

The Kochen-Specker theorem was originally introduced in [16] as a no-go theorem for hid-

den variables approaches to quantum mechanics. As with Von Neumann’s no-go theorem,

there is an ‘out’ to the theorem, which then became a restriction on viable hidden variables

theories. As such the modern statement of the Kochen-Specker theorem is instead that

hidden variables theories must be contextual. We will outline the argument that underlies

the Kochen-Specker theorem, clarifying where the assumption of contextuality entered and

thus demonstrating the more modern form of the theorem.

The central objects within the construction of the Kochen-Specker theorem are the so

called ‘commeasurable observables’ which are a generalization of the commuting observ-

ables of standard quantum mechanics. Formally we give the definition that

A set of observables Ai (with i being elements of an indexing set) is said to
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be comeasurable if there exists an observable B and some set of measurable

functions fi (strictly speaking the functions must be Borel, but this is a require-

ment on the source and target spaces and not on the functions themselves) such

that for each i

Ai = fi(B) (2.30)

This definition then requires that commeasurability means what we would naively ex-

pect: by measuring B we can apply the different functions to our result to have measure-

ments for all of the Ai simultaneously. As measurability of functions is preserved under

addition, scalar multiplication and taking products of the functions, we can form what is

called a partial algebra.

A Partial Algebra is a set A over a field F, together with: addition, scalar

multiplication, a product from A × A to A, an identity element 1 ∈ A, and a

reflexive symmetric binary relation ./, subject to the following restrictions:

• a ./ 1 for all a ∈ A

• ./ is closed under all the operations (addition, scalar multiplication and

the product)

• Given three elements that each satisfy the binary relation with each other,

the values of the polynomials in the three elements form a commutative

algebra over the field F

We can moreover define homomorphisms between partial algebras:
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Given two partial algebras A and B over a field F, a map h : A→ B is a partial

algebra homomorphism if it is compatible with each of the operations and

with the binary relation. Namely, for a, b ∈ A, α, β ∈ F and a ./ b:

h(a) ./ h(b) (2.31)

h(αa+ βb) = αh(a) + βh(b) (2.32)

h(ab) = h(a)h(b) (2.33)

h(1A) = 1B (2.34)

Where 1A and 1B are the identity elements in A and B respectively.

Looking at a general commutative algebra K, we can see that we can construct from it

a partial algebra by taking the set of elements following the binary relation to be the full

space K ×K.

Working from these definitions we have a way of discussing the underlying ideas of the

hidden variables formulation of quantum mechanics. Kochen and Specker put forward the

premise that the underlying notion of a hidden variables theory is that the partial algebra

of observables of quantum mechanics can be embedded into a commutative algebra.

We can then present information necessary for the Kochen-Specker theorem. Beginning

with a hidden state space Λ we consider the set RΛ of all functions from the hidden

states to the real numbers, this space of functions forms a commutative algebra. It is

this commutative algebra that we embed the partial algebra of observables into. Each

hidden state λ ∈ Λ then defines a homomorphism from the partial algebra of quantum
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observables to the real numbers through an element of RΛ. We express this as follows: for

any observable A in the algebra of partial observables, we define the homomorphism h to

the real numbers through the element fA ∈ RΛ by h(A) = fA(λ).

This has within it an assumption of non-contextuality: consider three observables a, b, c

with a ./ b, a ./ c, but b not being comeasurable with c. As a and b are comeasurable,

there exists a single observable M such that both are determined from a measurement of

M , likewise as a and c are comeasurable, there exists as observable N from which they can

be determined. That the value of h(a) depends on fa(ω) and not on M or N , means that

the value is independent of the context in which it is measured.

The primary result of [16] then takes the following form

There exist physical systems for which such a homomorphism cannot exist. As

a result, the only valid hidden variable theories are contextual.

We will construct the counter example as follows: consider the problem of measuring

the square of the spin of a spin-1 object. From standard quantum mechanics we know

that J2
x , J2

y and J2
z are co-measurable as they commute. We likewise know that for a

spin-1 system the sum of the values of these three observables must be 2 (in natural units).

Extending from the fact that these objects only can have values of 0 or 1 we can reach the

conclusion that for any assignment of values to the three observables only one can have

a value of 0. We can also extend this to any triple of squared spin observables which are

mutually orthogonal (and also therefore co-measurable).

We can then consider the following problem: for a non-contextual hidden variables

theory there must exist a homomorphism which assigns values to all possible sets of these
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observables simultaneously. The issue is that there exists a set of observables of this form

so that there is no assignment of values to the directions that can be made without contra-

dicting the requirement that only one of the three values of a set of mutually orthogonal

can be 0.

The particular proof of the existence of such a set of directions is done by demonstrating

that there exists a graph which is realizable on a sphere in the following sense: the points

of the graph correspond to points on a sphere, and edges of the graph correspond to the

points they connect being orthogonal. A trio of mutually orthogonal points then takes the

form of a triangle within such a graph. If there exists a homomorphism then we should be

able to label the vertices of any realizable graph with values 0 or 1 such that:

• No edge connects two vertices labeled with 0

• No triangle contains three 1s.

In particular, there exists a (rather complicated) graph which is proven in [16] to be

realizable which does not admit a homomorphism. The existence of this graph gives us

the desired contradiction: we therefore cannot construct a hidden variable theory which is

non-contextual and gives a consistent value assignment to the observables for this scenario.

Examining the form of this proof gives a natural way of seeing how contextuality pro-

vides the ‘out’ for the no-go theorem as it was originally presented. Allowing for contex-

tuality reduces our problem to only needing to construct a homomorphism which simul-

taneously assigns values for a set of commeasurable observables - in this case, a triangle.

Assigning such a valuation in this case while respecting the requirements defined above is

trivial.
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It is interesting to note that the form of the Kochen Specker theorem does not prove

that non-contextual hidden variable theories are always inconsistent. The statement of the

result is not broad: it only states that there are physical systems which cannot consistently

be described by non-contextual hidden variable theories. It is therefore possible that we

can consistently characterize many physical system by using non-contextual hidden variable

theories.

It was pointed out in [12] that there are three implicit restrictions within the Kochen-

Specker theorem. From the perspective of ontic models we can see that the theorem

only applies to outcome deterministic theories. Looking at the structure of the proof we

can also see that it only considers projective-valued measures (PVMs) and not POVMs

in general. Lastly it relies on the fact that the Hilbert space is 3 or more dimensional

through the fact that the projector is not uniquely defined for more than 2 dimensions.

To see this we observe that in 2 dimensions there is a unique perpendicular to any given

direction, whereas in 3 or more dimensions we have an infinite number of ways to choose

the perpendiculars. In constructing a PVM we construct the context of the measurement,

and thus in 2 dimensions there is no ability to form a contextual measurement.

2.2.2 Spekkens

The work done in [34] extends the notions of contextuality from those introduced in [16]

in three major ways. The first is to extend the idea to non-deterministic ontological

models, the second is to extend the idea of contextuality to a similar property regarding

preparations and lastly to extend the idea of contextuality to measurements associated with

61



positive-operator valued measures (POVMs). These extensions are evident in the form by

which we have constructed our formalism for ontological models, but we will nonetheless

go through each in kind.

The extension to non-deterministic ontological models is encapsulated in how we con-

struct the functions associated with measurement in our ontological theory. In an ontologi-

cal model which is deterministic the function ξ gives a probability of 1 to the measurement

result corresponding to the ontological state and a probability of 0 to all others. By allowing

ξ to take the form of a general probability distribution over the measurement outcomes,

we achieve the extension of the notion of contextuality to non-deterministic ontological

models simply through the allowance of ξ to depend on the measurement procedure.

Preparation contextuality is the extension of the idea of contextuality to the possibility

that the means by which a state is prepared could influence the probability distribution µ

over the ontic space. This possibility is reflected in our general framework through allowing

µ to depend on SP the preparation procedure for the state.

The last extension - to POVMs - follows from the extension to non-deterministic on-

tological models, along with our framework having the allowance for general measurement

procedures. Thus all of the information for this extension is contained in ξ taking the form

of ξ (k| λ, SM).

No Go Theorems

The results in [34] include no-go theorems in two dimensions for both preparation contex-

tuality and also one for measurement contextuality for POVMs. We will replicate both of
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these here.

Both proofs make use of the same set of six two dimensional vectors, and in many ways

are reminiscent of the proof from Kochen and Specker in their use of pairs of orthogonal

vectors to construct contradictory statements. We first give the set of six vectors:

va = (1, 0) (2.35)

vA = (0, 1)

vb =

(
1

2
,

√
3

2

)

vB =

(√
3

2
,
−1

2

)

vc =

(
1

2
,
−
√

3

2

)

vC =

(√
3

2
,
1

2

)

We can see that for any letter pairing the inner product between them is 0. We can then

construct the rank 1 density operators and the projective measurement operators associated

to each of these vectors (these are the same), we will label them σ and D respectively. We
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find for these

σa = Da =

 1 0

0 0

 (2.36)

σA = DA =

 0 0

0 1


σb = Db =

 1
4

√
3

4
√

3
4

3
4


σB = DB =

 3
4

−
√

3
4

−
√

3
4

1
4


σc = Dc =

 1
4

−
√

3
4

−
√

3
4

3
4


σC = DC =

 3
4

√
3

4
√

3
4

1
4


The orthogonality of the letter pairings of these matrices follows from the orthogonality of

the corresponding vectors.

σaσA = DaDA = 0 (2.37)

σbσB = DbDB = 0

σcσC = DcDC = 0
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Lastly we can construct the sum of the density or projective measurement operators labeled

by the same letter in upper and lower case, along with the sums of the triple of lower case

and triple of upper class letters, and find them all to have the same value.

 1
2

0

0 1
2

 =
1

2
σa +

1

2
σA =

1

2
Da +

1

2
DA (2.38)

=
1

2
σb +

1

2
σB =

1

2
Db +

1

2
DB

=
1

2
σc +

1

2
σb =

1

2
Dc +

1

2
DC

=
1

3
σa +

1

3
σb +

1

3
σc =

1

3
Da +

1

3
Db +

1

3
Dc

=
1

3
σA +

1

3
σB +

1

3
σC =

1

3
DA +

1

3
DB +

1

3
DC

We can now consider the question of preparation contextuality. The proof of preparation

contextuality (similarly to the one in [16]) is by contradiction, so we will assume that our

probability distributions are not functions of the preparation method. Next we observe

that for two preparation procedures to be distinguishable their two probability distributions

should have no common support on the ontic space, that is

µ(λ)µ′(λ) = 0 ∀λ. (2.39)

Now, consider six preparation procedures corresponding to the pure states defined by the

vectors from equation 2.35, which we’ll call Pa through PC . These preparations would give

us the density operators from equation 2.36. We can also consider new preparations PaA,

PbB, PcC , Pabc and PABC , by allowing us to create a preparation corresponding to each of
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the subscripts with even probability. These mixed state procedures would all correspond

to the same density matrix 1
2
. In the ontic model framework each of the procedures would

correspond to a probability distribution in the ontic state, which we label µa through µABC .

As each of the pairs of states for each letter correspond to completely distinguishable

results, we know that the probability distributions must obey

µa(λ)µA(λ) = 0 (2.40)

µb(λ)µB(λ) = 0

µc(λ)µC(λ) = 0.

Additionally, in order for the ontic model framework to be consistent the mixed state proce-

dures must correspond to a convex combination of the constituent preparation procedures’s

probability distributions, so we have:

µaA(λ) =
1

2
µa(λ) +

1

2
µA(λ) (2.41)

µbB(λ) =
1

2
µb(λ) +

1

2
µB(λ)

µcC(λ) =
1

2
µc(λ) +

1

2
µC(λ)

µabc(λ) =
1

3
µa(λ) +

1

3
µb(λ) +

1

3
µc(λ)

µABC(λ) =
1

3
µA(λ) +

1

3
µB(λ) +

1

3
µC(λ)

We now add the implication of our theory being non-contextual. A non-contextual theory

would mean that different preparation procedures corresponding to the same observable

state should correspond to the same probability distribution over the ontic state space,
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this gives us that there should exist a single distribution µλ equal to all of these composite

distributions

µλ =
1

2
µa(λ) +

1

2
µA(λ) (2.42)

=
1

2
µb(λ) +

1

2
µB(λ)

=
1

2
µc(λ) +

1

2
µC(λ)

=
1

3
µa(λ) +

1

3
µb(λ) +

1

3
µc(λ)

=
1

3
µA(λ) +

1

3
µB(λ) +

1

3
µC(λ).

We now must ask the question of if we can satisfy equations 2.40 and 2.42. The three

equations of products constrain us the choosing three of our distributions to be 0, and

attempting to implement those in equations 2.42 gives us all of the other distributions to

be zero. This means that the only solution is the trivial one, which isn’t a permissible

distribution in our framework, yielding a contradiction. We thus get a no-go result for two

dimensional non-contextual ontic theories.

We can now use much of this proof in constructing the proof of measurement contex-

tuality for POVMs for a two dimensional system. We can consider three measurements

Ma = {Da, DA}, Mb = {Db, DB} and Mc = {Dc, DC}, with the D’s as defined above. As

each of the pairs of the D’s span the space and are orthogonal, we get that the sum of the

pairs is the identity (as mentioned in equation 2.38) and we have that the products of the

elements of the pairs are zero (much as we had for the density operators in the previous

proof). Putting this into our ontological framework, we get that each of the measurements
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has two corresponding probability distributions over the ontic space, for example Ma has

two functions ξa (λ) and ξA (λ) providing the probability of receiving results corresponding

to va or vA for each value of λ. As these are mutually exclusive, and exhaustive options,

we get that

ξa (λ) + ξA (λ) = 1 (2.43)

ξb (λ) + ξB (λ) = 1

ξc (λ) + ξC (λ) = 1.

We also make one further assumption: that for PVMs (like those that we have considered

so far) we have outcome determinism. This means that for each λ we have a unique

assignment of the result of a measurement. In our binary situation, this means that one

of the pair will be 0 and the other 1 for each letter pairing. We can represent this as

ξa (λ) ξA (λ) = 0 (2.44)

ξb (λ) ξB (λ) = 0

ξc (λ) ξC (λ) = 0.

We can now construct a POVM from these PVMs by considering a random process where

we perform one of Ma, Mb and Mc, each with equal probability, additionally we don’t

record the details of which process was performed (only recording whether a lower case

result or capital result is obtained). We then have a POVM which we’ll call M ={
1
3
Da + 1

3
Db + 1

3
Dc,

1
3
DA + 1

3
DB + 1

3
DC

}
. In our framework these measurement proce-
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dures must represented by convex sums of the probability distributions of the measure-

ments it is composed of. We then get that M is represented by

{
1

3
ξa (λ) +

1

3
ξb (λ) +

1

3
ξc (λ) ,

1

3
ξA (λ) +

1

3
ξB (λ) +

1

3
ξC (λ)

}
(2.45)

However, we have forms for the matrices Dx in the first definition of M , and so we know

that the POVM should have the form
{

1
2
1, 1

2
1
}

. As we assume non-contextuality, our

probability distributions over the ontic space for the POVM should not depend on our

preparation method. We should then be able to achieve the same probability distribution

by any procedure which assigns equal probabilities to two results independent of the ontic

state. This gives us that our distributions must each be equal to 1
2

and so we get that

1

3
ξa (λ) +

1

3
ξb (λ) +

1

3
ξc (λ) =

1

2
(2.46)

1

3
ξA (λ) +

1

3
ξB (λ) +

1

3
ξC (λ) =

1

2

We now can get our contradiction: the equations labeled 2.46 and the equations labeled

2.43 and 2.44 do not have a consistent solution, and so we have that for two dimensions

we must have measurement contextuality for POVMs.

It should be noted here that these results only apply to ontological models constructed

in such a framework. This should be contrasted to the Kochen-Specker theorem which

applies to any realist construction of quantum mechanics.
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2.2.3 Harrigan & Rudolph

In [12] contextuality was examined further from the perspective of ontic models. They refer

to the contextuality of section 2.2.1 as traditional contextuality and define it as follows:

A model is traditionally contextual if it is both out outcome deterministic and

if there exists at least one projection operator such that measurement outcome

is dependent on the specific PVM used.

This definition is intended to contrast with a generalized definition of context which

they give as:

The context of an outcome is all of the measurement settings that do not effect

the statistics of the outcome.

From this view point we can give an alternate definition of measurement contextuality:

A model is measurement contextual if the indicator function (ξ) is not unique

to a POVM element. Rather it depends on some additional information as well

(i.e. context).

Likewise we then express preparation contextuality

A model is preparation contextual if the epistemic state µ is not unique to the

density matrix ρ, rather depending on other information.
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These two types of contextuality are independent, in that one can have one, the other,

both or neither.

The last observation that we put forward from [12] is that within the ontic models frame-

work there are two ways to achieve traditional contextuality. The first - ξ-contextuality

- gives rise to traditional contextuality by varying the support for the indicator function

as measurement settings change. The second - λ-contextuality - gives rise to traditional

contextuality by instead varying the ontic state of the system as the measurement setting

changes. The key is that in either case it forces that how λ is in the support of ξ is

dependent on the settings (i.e. the context).

2.3 Deficiency in Ontic Models

The strength of the ontic models framework lies in its ability to discover properties of

models of quantum mechanics which would not be clear when looking at these models in

the standard formalism. Contextuality is one such property, but in [12] another property,

termed deficiency, was put forward.

If ∃ a pure quantum state |ψ〉 such that

Supp [µ (λ | ψ, Sp)] ⊂ Supp [ξ (ψ | λ, SM)] (2.47)

for some choice of Sp and SM , then the ontological model is deficient.
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Just from its obscure nature this is an interesting property to consider, and one that

might not arise naturally in the language of a particular model (rather than the general

ontic model framework). We will examine this concept in two steps: First, we will attempt

to provide an understanding of deficiency as a property and secondly, we will present a

theorem from [12] demonstrating that traditional contextuality implies deficiency for ontic

models.

Deficiency, as laid out formally, is rather abstract and so the meaning of it can easily

be missed. The first thing to note is that it is a statement of existence, and so need only

be true for a single ψ along with a single pairing of measurement setup and preparation

method. With this in mind, the left hand side of the subset statement then speaks to the

set of ontic states which the system could be in if prepared in the state ψ with method Sp,

whereas the right hand side speaks to the set of ontic states the system could be in and

still be measured to be the state ψ with method SM . That one of these could be a proper

subset of the other implies that our measurement method and preparation methods are

essentially giving different definitions of the state ψ in terms of the ontic states. We will

discuss the implications of this in section 2.3.1.

Theorem 1. Any ontic model that is traditionally contextual must be deficient.

Proof

We divide the proof into two parts. First we address outcome indeterministic models. Sup-

pose for a contradiction that our model is not deficient. Then for all ψ and choices of SM
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and SP we have

Supp [µ (λ | ψ, Sp)] = Supp [ξ (ψ | λ, SM)] . (2.48)

As ψ should always be measured to be itself we require

∫
dλ µ (λ | ψ) ξ (ψ | λ) = 1. (2.49)

However

∫
µ (λ | ψ) dλ = 1, (2.50)

and so equation 2.49 can only be satisfied if

ξ (ψ | λ) = 1∀λ ∈ Supp [µ (λ | ψ)] . (2.51)

This means though that all indicator functions for all ψ are deterministic indicator func-

tions, which gives us a contradiction with our assumption of outcome indeterminism.

We now assume our model is outcome deterministic, traditionally contextual and as-

sume for a contradiction that our model is also not deficient. We thus have that for a given

SP

Supp [µ (λ | ψ, Sp)] = Supp [ξ (ψ | λ, SM)]∀SM . (2.52)
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We can conclude from this that for any choices of ψ, SM and S ′M that we have

Supp [ξ (ψ | λ, SM)] = Supp [ξ (ψ | λ, S ′M)] . (2.53)

This means that our measurements will not be contextual for any choice of ψ giving us a

contradiction and completing our proof.

We note that our proof differs slightly from [12] since they do not note that the negation

of deficiency requires that equality hold for all ψ rather than for a single ψ. The structure

of the proof is not impacted, rather this just closes a logical gap in their presentation.

2.3.1 Measurement, Preparation and Deficiency

The examination of deficiency as a property of ontic models lends itself to discussing

the division between measurement methods and preparation methods in the ontic mod-

els framework. Even after dissecting the definition of deficiency step by step it can be

difficult to fully understand, however this can be alleviated by treating measurement and

preparation in a more even handed fashion.

Preparation methods which result in a state ψ in many ways must be considered a

measurement as well: that we are preparing a system in a given state means that in some

fashion we have measured the system to be in that particular state. If we only consider

models which are blind to our intentions or labeling of processes, we can then consider

all preparations to in fact be measurements. We can then assume that the measurement

settings and preparation methods are part of the same set, and treat them equivalently.
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Returning to the notion of deficiency, we note that we can use this consistent treatment

of measurement and preparation to clarify it. As deficiency is only the requirement of the

existence of some choice ψ, SM , Sp which obeys the set relation, we can exclude from it

all such choices where SM and Sp are identical. The argument for this exclusion is one of

consistency - appealing again to the notion that our model is blind to our intentions. Once

we’ve excluded this case we can see that deficiency relates very much to the concepts of

measurement and preparation contextuality. Deficiency becomes the statement that the

ontic states associated with a state ψ are dependent upon the method used to prepare the

state (or equivalently to measure it). In particular we get that there exists some ψ, SM

and S ′M

Supp [ξ (ψ | λ, SM)] ⊂ Supp [ξ (ψ | λ, S ′M)] , (2.54)

or equivalently that

Supp [µ (λ | ψ, Sp)] ⊂ Supp
[
µ
(
λ | ψ, S ′p

)]
. (2.55)

These statements then imply the requirement that the model be both preparation and

measurement contextual if it is deficient and blind to our intentions with respect to whether

processes are measurements or preparations.
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2.4 Nelsons Mechanics vs. Bohmian Mechanics

Nelsons mechanics and Bohmian mechanics are often compared to one another due to their

similar structure: both attempt to formulate quantum mechanics in terms of a modified

classical dynamics. Despite this similarity, the two theories produce very different phys-

ical pictures: Bohmian mechanics has a quantum potential which is determined by the

solutions of the Schrodinger equation, whereas Nelson’s mechanics instead assumes only

Brownian motion with a diffusion constant proportional to ~. In section 2.4.1 we will re-

view the derivation of Bohmian mechanics, and then in section 2.4.2 we will compare the

applicability and meaning of these theories.

2.4.1 Bohmian Mechanics

Bohm’s goals for his mechanics [4, 5] were to obtain a theory which gave a realist description

of individual ensembles (instead of for distributions) and to counter two assumptions of

the orthodox interpretation of quantum mechanics that he objected to. The objections

were to the assumption that the wave function is a complete description of reality and the

assumption that measurement is an inherently unpredictable process. These objections

were on the basis of the fact that the assumptions did not give rise to a set of predictions

which were uniquely determined by having chosen these assumptions. Here we reproduce

Bohm’s derivation.
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The derivation begins with the Schrodinger equation

i~
∂ψ

∂t
= −

(
~2

2m

)
∇2ψ + V (x)ψ, (2.56)

where ψ is still considered a complex function over space. From here we break the function

ψ down using a polar decomposition in terms of real functions S and R:

ψ = Re
iS
~ . (2.57)

With this decomposition the Schrodinger equation then becomes

∂R

∂t
=
−1

2m
R∇2S + 2∇R · ∇S (2.58)

∂S

∂t
= −

[
(∇S)2

2m
+ V (x)− ~2

2m

∇2R

R

]
. (2.59)

We now introduce P which in standard quantum mechanics would be interpreted as the

probability density from the quality

P (x) = R2(x). (2.60)

With P we can substitute into equations 2.58 and 2.59 to reach

∂P

∂t
+∇ ·

(
P
∇S
m

)
= 0 (2.61)

∂S

∂t
+

(∇S)2

2m
+ V (x)− ~2

4m

(
∇2P

P
− 1

2

(∇P )2

P 2

)
= 0. (2.62)
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In the limit that ~ goes to zero, we recover the Hamilton-Jacobi equation from equation

2.62 with

∇S
m

= ~v(x) (2.63)

the velocity at each point. We also then have that equation 2.61 is conservation of proba-

bility

∂P

∂t
+∇ · (P~v(x)) = 0. (2.64)

Bohm then observed that the term in ~2 could be interpreted as an addition to the classical

potential. We call this the quantum potential:

U(x) =
−~2

4m

(
∇2P

P
− 1

2

(∇P )2

P 2

)
(2.65)

=
−~2

2m

∇2R

R
. (2.66)

We then have that S is the solution to the Hamilton-Jacobi equation for a probability

distribution subject to the potential V + U , along with conservation of probability.

These equations can also be used to give equations of motion for individual particles

possessing precise positions and momenta. From this we get that a particle is subject to a

modification of Newton’s laws which includes a quantum potential:

m
d2~x

dt2
= −∇

(
V (x)− ~2

2m

∇2R

R

)
. (2.67)
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where the initial particle momentum is related to the wave function of quantum mechanics

through

~p = ∇S(x), (2.68)

though this fact is not necessary for the use of the modified Newton equation.

The resulting mechanics is then deterministic which presents us with a question as to

how it could reproduce the results of quantum mechanics. The solution to this issue is

through uncontrollable disturbances from measurement devices: the inaccuracies inherent

in measurement restrict our knowledge to probability distributions. Though we have exact

trajectories of particles, because we can never measure those trajectories exactly without

disturbance this is then characterized as a hidden variable model.

The picture of Bohmian mechanics that comes from this derivation is that of classical

mechanics with the addition of a quantum potential that is determined by the solutions of

the Schrodinger equation. The corollary of this is that we’re left with a modern equivalent

of the question of why gravitational mass and inertial mass are the same: why is it that

we observe the probability density to be equal to the square of the magnitude of the wave

function? In Bohmian mechanics there is no a priori reason that these two must be equal.

2.4.2 Comparing the two mechanics

Equipped with the two derivations from sections 1.1 and 2.4.1 we now contrast the form

of the two theories. Before we proceed in contrasting their implications it is interesting to
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note that the motivations behind the two theories are very different: Bohm’s mechanics

is motivated by a desire for a realist description of the universe, whereas Nelson’s was

motivated by a desire to apply a recent mathematical advance. Despite Nelson’s differing

motivations he still takes a similar view that there should exist an underlying reality that

leads to quantum mechanics. It is to keep these realist structures that both theories share

a common starting point in newtonian mechanics, and both attempt not to stray from

these roots.

The most striking difference between them is the role of the Schrodinger equation in

their derivations. Bohmian mechanics not only assumes the Schrodinger equation, but it

then requires that the solution to the equation and its derivative are combined to makeup

a potential. Nelsons mechanics instead assumes only diffusion at the level of Planck’s

constant, and arrives at the conclusion that a probability density under these conditions

gives rise to the Schrodinger equation.

The substantive difference in these two theories comes from a subtle difference: Bohmian

mechanics assigns to the trajectories the role of a hidden variable, whereas Nelson’s me-

chanics considers them to be accessible but inherently random. The hidden variables in

Nelson’s mechanics are not made manifest in the theory: the excitations of the hidden

variables relax on a time scale which is small compared to the time scale of the trajectories

and so they are in effect averaged out to noise-like fluctuations.

Due to these differences in structure the two theories may have very different appli-

cations within quantum foundations. In particular Bohmian mechanics acts as a viable

candidate for a realist theory of quantum mechanics, whereas Nelson’s mechanics instead
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tells us that a theory whose hidden variables have dynamics on sufficiently small time

scales can lead to probability distributions evolving according to the schrodinger equation.

It is interesting to look at the criticisms that have been made of Nelson’s mechanics

in [37, 38] and see whether they apply to Bohmian mechanics as well. The criticisms of

Nelson’s mechanics relate to the need for the S in the breakdown of ψ to be multivalued

in certain situations. For instance where the wavefunction is a solution to a problem with

angular momentum and S can therefore take on values differing by integer multiples of

the azimuthal angle, we then have that the wavefunction is only single valued if these

differences are multiples of 2π (which results in multiplication by a factor of 1). What we

then have is a constraint on what values of S will give viable solutions to the Schrodinger

equation. In these situations we have a problem in Nelson’s mechanics: there is no reason

that we should assume our solutions also observe this constraint, and so in general we get

behaviour which does not correspond to a solution of the Schrodinger equation. On the

other hand, as the direction of implication is reversed in Bohmian mechanics - we begin

with solutions to the Schrodinger equation and then derive from them the trajectories -

the difficulty never arises and this criticism is avoided.
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Chapter 3

Discussion and Conclusions

3.1 Compatibilities and Incompatibilities

As we’ve shown in chapter 2, each of these frameworks can be applied in studying dif-

ferent concepts. What we now want to question is whether the advances within each of

these frameworks can be transferred to the others, or whether the choices that went into

constructing each framework mean that their results are inapplicable elsewhere.

Both the causaloid and ontic models share a common obstacle to progress: having

sacrificed a description of reality in terms of variables based upon our experience and

observations for a description in terms of mathematical states. This obstacle is manifest

in different ways for each of the two theories. As the causaloid doesn’t have an assumption

of realism its obstacle is solely computation complexity: that to produce any physical

calculation could take an arbitrary amount of effort. The ontic models framework is more
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constrained than this. It is troubled both by the issue of complexity, but is also constrained

by its assumption of realism. This means that it cannot be used to progress to a deeper

description of reality: an assumption of the model is that it is impossible to create a

description of its variables.

Given these considerations as a background we will look at the notion of contextuality

in section 3.1.1, which we discussed originally in the context of ontic models. Using the

other subjects as a reference we examine whether the notion of contextuality can have

physical meaning.

3.1.1 Physical Contextuality

The concept of contextuality introduced in section 2.2 is used to describe a property of a

theory, not a property of reality itself. We will examine the consequences of relaxing this

fact while attempting to construct a consistent description of reality.

For reality to be contextual, there would have to exist situations where any consistent

description would exhibit contextuality. We use this requirement to distinguish physical

contextuality from a contextual description of non-contextual reality. We also require such

situations to not be those which are contextual simply due to a poor choice of the division

between observer and observed.

The second requirement of physical contextuality is not a trivial escape which would

render the definition worthless. It is possible that such a better choice of division may

not exist. Consider for an illustration the problem of the observer in quantum general

relativity[6] here the object being observed is the entirety of the universe, and so there is
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no way to separate the observer from the observed. There is a contradiction here though: in

this picture there is no notion of repeatability or guarantee of relationship between different

measurements. We then have a complex question: could we observe something which is

actually physically contextual? For the sake of illustration this would mean that there

is some system which we could take multiple choices of simultaneous measurements (say

A,B,C or A,B′, C ′) and the choice of which measurements are taken influences the results

of the measurements. The complication here is that we’ve presupposed that we know

that we can simultaneously take these measurements. In quantum mechanics we have a

definition of what it means for observables to be simultaneously measurable: they must

commute. How do we know that two measurements should in fact be comeasurable? The

reality is that we cannot. Given any scenario where we believe two sets of measurements

with a common element should be co-measurable and find that the result is contextual,

we have to accept the alternative possibility that there is in fact some physical phenomena

which prevents the measurement sets from being comeasurable. This gives us another

possibility: any observed physical contextuality could instead be replaced by a contextual

theory with different physical phenomena.

We should then ask ourself what types of phenomena could lead to apparent physical

contextuality. To answer this we must ask ourselves what conditions would make us believe

that two things might not have influence upon one another. The most obvious answer to

this question is distance: if two objects are sufficiently distant we would think that all forces

between them should fall below levels at which they could influence one another. Any

phenomenon then which acted irrespective of distance would then potentially be confused

with physical contextuality.
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In a situation where we have non-local phenomena giving rise to apparent physical

contextuality, we are faced with a greater hurdle: we cannot repair such an issue by

enlarging our observed system as there is no guarantee that any such enlargement would

dilute the influence of the non-local effects. Here instead we are left with two options.

The first option is to move to a framework which describes reality not in the terms

which we are used to, but instead moves to a description in terms of what parts of the

universe can have influence on others. The causaloid framework (see section 1.3) is an

example of a direct attempt at such a description, and taken in a broader context so is

the ontic models framework (see section 1.2) which never makes reference to a space (or

space-time) description, replacing it instead with an ontic space of be-ables.

The alternative option is to accept that reality is making it clear that one cannot probe

to deeper levels. We must then accept either an inherent connectedness between all things

- which gives rise to a hidden variable theory like Bohmian mechanics (see section 2.4.1)

with its all-knowing quantum potential - or an inherent randomness - which gives rise to

a stochastic theory like Nelson’s mechanics (see section 1.1). It is interesting here to recall

that Nelson’s mechanics and Bohmian mechanics share a common equilibrium description

of reality, meaning that these two options may have more commonality than assumed.

These conclusions leave us with interesting questions concerning the value of research

into contextuality. If any physical meaning of contextuality can be replaced with another

theory, is there any possible result that can emerge from its study?
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3.2 Conclusions

In this thesis I have presented a broad perspective of quantum foundations in the attempt

to show both the benefits and the pitfalls of the existence of a large variety of approaches to

the subject. The breadth of the approaches to quantum foundations certainly has allowed

for many successes, but the vast difference in these approaches means that many of these

results cannot be applied to other approaches.

In chapter 1 I outlined three different frameworks that fall under the general heading

of quantum foundations: ontic models, Nelson’s mechanics, and the causaloid. Then in

chapter 2 I discussed applications of these frameworks in studying entropy, contextuality

and in understanding other approaches to quantum foundations. Lastly, in section 3.1.1 I

presented an argument - rooted in the broader view of having examined multiple approaches

to quantum foundations - that the property of contextuality may not have any physical

meaning.

The study of quantum foundations has advanced significantly from its early origins, but

I believe that until the field begins to learn what results are transferrable from different

frameworks and which are simply artifacts of a particular construction, it will fail to live

up to its promises.
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